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Abstract

In this thesis, we extend the locally modified finite element method, which is introduced
in [47], to second order in two space dimensions. The method is based on a fixed patch
mesh, which is then refined into sub-elements, to resolve an interface locally. The splitting
into sub-elements is slightly different from the one presented in [47] and leads in general
to a better bound for the maximal angles within the triangles.

We begin in the stationary case by analysing a locally modified second order finite
element method applied to elliptic interface problems. We prove some auxiliary estimates
in order to control the mismatch between continuous and discrete bilinear forms and then
show an optimal a priori error estimates in the L2-norm and in the discrete energy norm.

Furthermore, we study two-phase flow problems and show stability. For the discretization
of the stationary Stokes interface problem, we apply a locally modified second order finite
element scheme for the velocity and piecewise constant elements for the pressure. The
technique used to check the inf-sup stability is a macroelement technique, which is tested
by checking local stability and a relatively simple global stability. For that we use a
two-level family of meshes, i.e. micro- and macrotriangulation. First, we show the stability
locally for each macroelement by constructing a Fortin operator. There is only one rare
case, where the macroelement is not stable and we must add further stabilization terms.
Second, we define a subspace by introducing an appropriate projection and show the
stability of the subspace. With the macroelement approach, we prove a discrete inf-sup
condition for the P2 − P0 element and present optimal error estimations. Moreover, we
consider Stokes interface problems with surface tension. In the variational formulation
of these problems, we use a linear functional which describes the surface tension force.
This functional depends on the location and the curvature of the interface. To handle the
curvature, we apply a Laplace-Beltrami operator. Compared to one-phase flows, two-phase
flows with a surface tension force have very high numerical complexity. Thus, we use the
Rothe method. For time discretization, we use the implicit Euler method for the unsteady
Stokes problem combined with a semi-implicit time integration of the surface tension force.
For spatial discretization, we use the locally modified second order finite element method.

In the final part of the thesis, we study a fluid-structure-interaction problem. We
consider a rigid body model for falling particles and an unsteady Stokes problem for the
fluid model. For spatial discretization, we use the locally modified finite element scheme
and the implicit Euler method for time discretization. To evaluate the solution on the
new spatial mesh, we use the discrete Stokes projection.

We present detailed numerical studies for all three applications including a numerical
convergence analysis.
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Zusammenfassung

In dieser Arbeit erweitern wir die in [47] eingeführte lokal modifizierte Finite-Elemente-
Methode auf die zweite Ordnung in zwei Raumdimensionen. Die Methode basiert auf
einem fest strukturierten groben Gitter, das dann in Unterelemente verfeinert wird, um
das Interface lokal aufzulösen. Die Aufteilung in Unterelemente unterscheidet sich von der
in [47] vorgestellten und das führt zu einer besseren Begrenzung für der maximale Winkel
des Dreiecks.

Zunächst betrachten wir den stationären Fall und analysieren eine lokal modifizierte
Finite-Elemente-Methode zweiter Ordnung für elliptische Interface-Problems. Wir beweisen
einige Hilfs-Abschätzungen, um den Unterschied zwischen kontinuierlichen und diskreten
bilinearen Formen zu kontrollieren. Dann zeigen wir optimale a priori-Fehlerschätzungen
in der L2-Norm und in der diskreten Energie-Norm.

Weiterhin untersuchen wir Zweiphasenströmungsprobleme und zeigen die Stabilität. Für
die Diskretisierung des stationären Stokes-Interface-Problems verwenden wir lokal modi-
fizierte Finite-Elemente-Schemata zweiter Ordnung für die Geschwindigkeit und stückweise
konstante Elemente für den Druck. Um die inf-sup Stabilität zu überprüfen, verwenden wir
die Makroelementtechnik, die durch die lokale Stabilität und eine relativ einfache globale
Stabilität getestet wird. Dafür verwenden wir eine zweistufige Familie von Gittern, d.h.
eine Mikro- und Makrotriangulation. Zunächst zeigen wir die lokale Stabilität für jedes
Makroelement durch Konstruktion des Fortin-Operators. Es gibt nur einen seltenen Fall, in
dem das Makroelement nicht stabil ist. Wir müssen in diesem Fall einen Stabilisierungsterm
hinzufügen. Zweitens definieren wir einen Unterraum durch eine geeignete Projektion und
zeigen die Stabilität des Unterraums. Mit Hilfe der Makroelementtechnik beweisen wir
die diskrete Inf-Sup-Bedingung für die P2 − P0-Elemente und präsentieren die optimalen
Fehlerschätzungen. Darüber hinaus betrachten wir die Stokes-Interface-Probleme mit der
Oberflächenspannung. Bei der Variationsformulierung dieser Probleme verwenden wir ein
lineares Funktional, das die Oberflächenspannungskraft beschreibt. Dieses Funktional
hängt von dem Ort und der Krümmung des Interfaces ab. Daher wenden wir einen
Laplace-Beltrami-Operator an, um die Krümmungsterm zu behandeln. Im Vergleich zu
Einphasenströmungen haben Zweiphasenströmungen mit Oberflächenspannungskräften
eine sehr hohe numerische Komplexität. Deswegen wenden wir die Rothe-Methode an.
Für die Zeitdiskretisierung verwenden wir die implizite Euler-Methode für das insta-
tionäre Stokes-Problem in Kombination mit einer semi-impliziten Zeitintegration der
Oberflächenspannungskraft. Für die räumliche Diskretisierung verwenden wir die lokal
modifizierte Finite-Elemente-Methode zweiter Ordnung.

Im letzten Teil dieser Arbeit betrachten wir ein Fluid-Struktur-Interaktionsproblem.
Wir betrachten ein Starrkörpermodell für fallende Partikel und ein instationäres Stokes-
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Problem für das Fluidmodel. Für die örtliche Diskretisierung verwenden wir das lokal
modifizierte Finite-Elemente-Schema zweiter Ordnung und für die Zeitdiskretisierung das
implizite Euler-Verfahren. Um die Lösung auf dem neuen räumlichen Gitter zu bewerten,
entwickeln wir die diskrete Stokes-Projektion.

Wir präsentieren detaillierte numerische Studien für alle drei Anwendungen, einschließlich
einer numerischen Konvergenzanalyse.
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Chapter 1: Introduction

In this thesis, we investigate interface problems, where the normal derivative of the solution
may have a jump over an interior interface.
Examples of such interface problems are ubiquitous in technology, industry, science and
medicine. Some of the most prominent examples include fluid-structure interactions [17,83]
or multiphase flows [58]. Fluid-structure interactions arise in aerodynamical applications
like flow around the airplanes or parachutes [88], in the biomedical problems such as
a blood flow through the cardiovascular system [43, 81, 94] or the airflow within the
respiratory system [98] and even in the tribological applications [71]. Multiphase problems
include gas-liquid and particle-laden gas flows [33,60,69], rising bubbles [67], droplets in
microfluidic devices [31] or simulations of tumor growth [57]. Another field of application
are shape or topology optimization problems including multi-component structures [30,56].
The simplest possible setting, which is the scope of this thesis, is a diffusion problem where
the diffusion coefficient is discontinuous across an interior interface.

1.1 Motivation

The aim of this thesis is to develop accurate discretization techniques for interface problems.
We assume that the domain Ω ⊂ R2 is divided into Ω = Ω1 ∪ Γ ∪ Ω2 with an interior
interface Γ := ∂Ω1 ∩ ∂Ω2. Let ν > 0 be a discontinuous diffusion coefficient across Γ. In
order to simplify the analysis, we will assume that the domain Ω is a two-dimensional
convex domain with polygonal boundary. We consider the equations for i = 1, 2

−∇ · (νi∇u) = f on Ωi,

JuK = 0, Jν∂nuK = 0 on Γ,

where ν|Ωi
:= νi > 0, i = 1, 2 and n is the unit normal at the interface which is pointing from

Ω1 into Ω2. The jump operator across the interface is denoted by JwK := (w|Ω2)|Γ−(w|Ω1)|Γ.
This interface problem is intensively discussed in the literature. Babuška [8] shows that a
standard finite element ansatz has low accuracy, regardless of the polynomial degree of
the finite element space

||u − uh||Ω = O(h), ||∇(u − uh)||Ω = O(h1/2).
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1 Introduction

To improve the accuracy, the interface needs to be resolved within the discretization. Frei
and Richter [47] presented a locally modified finite element method based on first-order
polynomials with a first-order accuracy in the energy norm and a second order in the
L2-norm such that

||u − uh||Ω = O(h2), ||∇(u − uh)||Ω = O(h).

The method is based on a fixed coarse patch mesh consisting of quadrilaterals, which is
independent of the position of the interface. The patch elements are then divided into
sub-elements, such that the interface is locally resolved.
Due to the fixed background patch mesh this approach is particularly suitable for problems
involving moving interfaces, where functions uh(tn−1) and uh(tn) defined on different
sub-meshes need to be integrated against each other within a time-stepping scheme [49].
Due to the implicit adaption of the finite element spaces within the locally modified
finite element method, a costly re-meshing procedure is avoided. Similarly, the locally
modified finite element method might be useful in shape or topology optimization problems,
where problems need to be solved for different interface and boundary positions, while
approaching the solution [30,56].
The discretization is based on piecewise linear finite elements which have a natural extension
to second order finite element spaces in two space dimensions. We were able to show
optimal-order estimates of order two in the discrete energy norm and almost of order three
(up to a logarithmic term) in the L2-norm.
Furthermore, we study the Stokes interface problems. The motivation for considering and
analysing the Stokes interface problems comes from two-phase incompressible flows. In
order to guarantee the stability of mixed finite elements, the approximating spaces must
satisfy the well-known discrete inf − sup condition. In this thesis, we prove that the
discrete inf −sup constant does not depend on the mesh size and the interface position. To
show the stability of the P2 − P0 elements, we use a macroelements technique. Moreover,
we prove optimal error estimates in the L2-norm and energy norm for Stokes interface
problems. Also we present numerical examples to substantiate the analytical results.
Moreover, we investigate stationary and time dependent Stokes interface problems in
which a localized force at the interface describes the effect of surface tension. The location
of the interface Γ(t) is in general unknown and is coupled to the local flow field which
transports the interface. The variational formulation of these problems include a linear
functional which describes the surface tension force. In this work, we use a Laplace-
Beltrami approximation for the surface tension force. For temporal discretization of the
time depend problems, we use semi-implicit time integration for surface tension force.
Finally, we consider fluid-structure-interaction problems, namely, a single rigid solid
particle falling freely in a viscous fluid. For rigid body motion, most numerical studies
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1 Introduction

are interpreted qualitatively or compared to artificial, analytically derived solutions. The
forces acting on the solid are evaluated by means of the Babuška-Miller Trick, see [11]
and [83]. For time discretization of the time-dependent Stokes system we apply the implicit
Euler method. Dynamically changing meshes require a projection of the discrete soultion
at the old time level onto a different spatial mesh at the new time step. The mesh changes,
especially when the mesh topology is also changed, may yield serious convergence problems.
Dupont in [38] considered the problem for the heat equation in one dimension and has
shown that the frequent and rapid mesh changes introduce an artificial dissipation to damp
the numerical solution to zero, whereas the exact solution is nonvanishing. In computing
incompressible flows, the solenoidal condition has to be taken into account. We use the
discrete Stokes projection to evaluate the old solution on the new spatial mesh.

1.2 The organization of this thesis

After this introduction, we introduce our model problems for two-phase flows and fluid-
structure problems and review known existence and uniqueness results of solutions in
Chapter 2. In Chapter 3, we describe a locally modified second order finite element scheme
for spatial discretization of interface problems. We analyse this scheme in detail for elliptic
interface problems and show convergence results of optimal order and the findings are
substantiated by means of numerical results in Chapter 4. Chapter 5 presents the main
results for Stokes interface problems. To prove the discrete inf-sup condition, we use the
macroelement technique. Furthermore, we use the Laplace-Beltrami approximation to
handle a curvature. In Section 5.3, we use Rothe method for time depend Stokes interface
problem with moving interfaces and the semi-implicit time integration for the surface
tension force. We combine the discretization and Stokes projection techniques in the
context of fluid-structure interaction problems in Chapter 6. The conclusion of our work
and future work follows in Chapter 7.
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Chapter 2: Mathematical Modelling

In this chapter, we introduce model problems of two-phase flow and fluid-structure-
interaction problems and review known existence and uniqueness results of solutions.

2.1 Elliptic interface problems

2.1.1 Problem setting

We assume that the domain Ω ⊂ R2 is divided into Ω = Ω1 ∪ Γ ∪ Ω2 with an interior
interface Γ := ∂Ω1 ∩ ∂Ω2 and a discontinuous diffusion coefficient ν > 0 across Γ and
consider the equations

−∇ · (νi∇u) = f on Ωi, i = 1, 2,

JuK = 0, Jν∂nuK = 0 on Γ,

u = 0 on ∂Ω,

(2.1.1)

where ν|Ωi
:= νi, i = 1, 2. The unit normal n at the interface is pointing from Ω1 into Ω2.

The jump operator across the interface is denoted by JwK := (w|Ω2)|Γ − (w|Ω1)|Γ. For the
notations see Figure 2.1.

Ω1

Ω2

∂Ω

Γ

n

Figure 2.1: Geometry and notations of the interface problems, Ω = Ω1 ∪ Γ ∪ Ω2.
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2 Mathematical Modelling

The corresponding variational formulation of the problem (2.1.1) is given by

u ∈ H1
0 (Ω) :

2∑
i=1

(νi∇u, ∇φ) = (f, φ) ∀φ ∈ H1
0 (Ω). (2.1.2)

2.1.2 Existence and uniqueness

We define the following space

V := H1(Ω) ∩ H2(Ω1) ∩ H2(Ω2)

and a norm
||u||V := ||u||H1(Ω) + ||u||H2(Ω1) + ||u||H2(Ω2), ∀u ∈ V.

Theorem 2.1.1. Let f ∈ L2(Ω). Then the problem (2.1.1) has a unique solution u ∈ V

and u satisfies the a priori estimate

||u||V ≤ C ||f ||L2(Ω).

Proof. The proof is given in Babuška [8] or Kellogg [70].

2.2 Incompressible flow problems

In this section, we consider the Stokes problem and show the existence and uniqueness
results.

2.2.1 Stokes problem

Problem setting
Let Ω ⊂ R2 be an open bounded set with a boundary ∂Ω. We denote a velocity of the
fluid by u ∈ C2(Ω) ∩ C(Ω̄) and a scalar function p ∈ C1(Ω) as pressure, and a constant
ν > 0 as a diffusion coefficient. The pair (u, p) is defined in Ω and satisfies the following
equation and Dirichlet or Neumann boundary conditions:

−ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω.
(2.2.1)

For simplicity, we consider the problem (2.2.1) with homogeneous Dirichlet boundary
condition on ∂Ω. By denoting V := [H1

0 (Ω)]2 and L := L2(Ω)\R the corresponding
variational formulation of the problem (2.2.1) is given by

(u, p) ∈ V × L :
(ν∇u, ∇φ)Ω − (p, ∇ · φ)Ω + (∇ · u, ϕ)Ω = (f , φ)Ω ∀(φ, ϕ) ∈ V × L.

(2.2.2)
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2 Mathematical Modelling

2.2.2 Existence and uniqueness

We start with the theorem of existence and uniqueness for the velocity solution of the
Stokes problem. We define the divergence free space as follows:

V div := {u ∈ V : (∇ · u, ϕ)Ω = 0 ∀ϕ ∈ L} ⊂ V

Then, we can restrict the variational formulation (2.2.2) to the divergence free space. We
obtain

u ∈ V div : (ν∇u, ∇φ)Ω = (f , φ)Ω ∀φ ∈ V div. (2.2.3)

Lemma 2.2.1. Let f ∈ [H−1(Ω)]2. Then the problem (2.2.3) has a unique solution
u ∈ V div ⊂ V and u satisfies the following estimate with the constant c, it holds

||∇u|| ≤ c ||f ||−1.

Proof. The vector space V div ⊂ V is a Hilbert space. With a scalar product defined as
(∇v, ∇v)Ω. Using the Lax-Milgram theorem, it can be easily shown that there exists the
unique solution u ∈ V div of the problem (2.2.3) (the continuity of the solution results
from the Cauchy-Schwarz inequality, and the coercivity from the Poincaré inequality) and
further gives the error estimate.

Now, we show the existence and uniqueness of the pressure. For that, we will need
results of next two theorems. We define the space which is the subspace of H−1 as follows:

V 0
div := {f ∈ H−1 : f(φ) = 0 ∀φ ∈ V div} ⊂ H−1

Theorem 2.2.2. Let g ∈ H−1. If and only if g ∈ V 0
div then there exist a unique solution

p ∈ L such that
−∇ p = g,

where −∇ : L −→ V 0
div is the weak gradient operator.

Proof. For the proof see, e.g. [34].

Theorem 2.2.3. Let domain Ω with Lipschitz boundary be bounded. The gradient of
the pressure solution p ∈ L of the problem (2.2.2) should be from H−1(Ω) such that
∇ p ∈ H−1(Ω). Then, the next estimation holds

C(Ω) ∥p∥L ≤ ∥∇ p∥−1,

here the constant C depends only on the domain Ω.

8



2 Mathematical Modelling

Proof. The proof of this theorem is given in the literature, e.g. [92].

We now determine the pressure p ∈ L with the velocity u ∈ V div ⊂ V as follows:

p ∈ L : (p, ∇ · φ)Ω = g(φ),

here g ∈ H−1 is a linear functional defined by

g(φ) = (f , φ)Ω − (ν∇u, ∇φ)Ω ∀φ ∈ V .

We can reformulate this variational equation in operator notation as follows:

−⟨∇ p, φ⟩ = ⟨g, φ⟩ ∀φ ∈ V .

The next theorem shows the equivalence with the theorem 2.2.3.

Theorem 2.2.4. The theorem 2.2.3 is equivalent with next properties:

• The weak gradient operator −∇ : L −→ V 0
div is an isomorphism;

• The inf-sup condition holds with a constant β sucht that

inf
ϕ∈L

sup
φ∈V

(ϕ, ∇ · φ)
∥ϕ∥ ∥∇φ∥

≥ β.

Proof. The proof of this theorem is given in [92] or [77].

Lemma 2.2.5. The following inequalities hold

• ∥∇ · u∥ ≤
√

d ∥∇ u∥ ∀u ∈ [H1(Ω)]d (d = 2, 3),

• ∥∇ · u∥ ≤ ∥∇ u∥ ∀u ∈ [H1
0 (Ω)]d (d = 2, 3).

Proof. The proof of these inequalities follows with help of Young’s inequality. For the
second inequality first we use the integration by parts of the mixed terms and then Young’s
inequality.

The next theorem gives us the existence and uniqueness of the Stokes problem (2.2.2).

Theorem 2.2.6. Let the domain Ω be have a Lipschitz boundary. For every f ∈ H−1 the
problem (2.2.2) has a unique solution pair (u, p) ∈ V × L. It holds

∥∇u∥ + β ∥p∥ ≤ c ∥f∥−1,

where c > 0 is the constant.

9



2 Mathematical Modelling

Proof. The existence and uniqueness of the velocity solution u ∈ V div is shown in
Lemma 2.2.1. With Lemma 2.2.1 it holds

||∇u|| ≤ c ||f ||−1.

The functional g defined above as

g(φ) = (f , φ) − (ν∇u, ∇φ)

is bound in H−1(Ω). Further, it holds that g ∈ V 0
div. By the Theorem 2.2.2 there exists a

unique pressure solution p ∈ L of the equation

−∇ p = g.

By using the inf-sup inequality and then an a priori estimate for the velocity from Lemma
2.2.1 and Lemma 2.2.5 we get

β ∥p∥ ≤ sup
φ∈V

(p, ∇ · φ)
∥∇φ∥

= sup
φ∈V

(f , φ) − (ν∇u, ∇φ)
∥∇φ∥

≤ ∥f∥−1 + ∥∇u∥ ≤ 2 c ∥f∥−1.

Theorem 2.2.7. Let domain Ω be a convex polygonal domain and f ∈ [L2(Ω)]d. Then
the solution of the Stokes equation is bounded. It holds

∥∇2u∥ + ∥∇p∥ ≤ c̃∥f∥,

here c̃ > 0 is the stability constant.
If Ω ⊂ Rd is a domain with smooth C l+2 - boundary for l ≥ 0 and f ∈ H l(Ω) it holds

∥u∥Hl+2(Ω) + ∥p∥Hl+1(Ω) ≤ c∥f∥Hl(Ω),

with a constant c > 0.

Proof. The proof of this theorem is given in the literature, e.g. [92].

2.3 Two-phase flow problems

In this section, we consider stationary and time dependent Stokes interface problems. A
motivation for considering of this comes from two-phase incompressible flows. We analyse
the inf-sup property for the variational Stokes interface problem in two subdomains. Here
we follow the results given in the paper [79].
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2 Mathematical Modelling

2.3.1 Stokes interface problem and well-posedness results

Problem setting
We present the Stokes interface problem on Lipschitz domain Ω ⊂ R2, such that the Stokes
equation in Ω = Ω1 ∪ Γ ∪ Ω2 with a discontinuous coefficients ν1, ν2 > 0 across an interface
Γ := ∂Ω1 ∩ ∂Ω2 is given as

−∇ · (νi ∇u) + ∇p = f in Ωi,

∇ · u = 0 in Ωi, i = 1, 2
JuK = 0 on Γ,

J(ν ∇u − p I) nK = τ K n on Γ,

u = 0 on ∂Ω,

(2.3.1)

where νi = 2µi, i = 1, 2 with the viscosity of the respective liquids µ1 and µ2, τ the surface
tension coefficient, K the curvature of Γ, and n the unit normal at the interface Γ pointing
from Ω1 to Ω2, for notations see Figure 2.1. The jump operator across the interface is
denoted by JwK := (w|Ω2)|Γ − (w|Ω1)|Γ.

Definition of the spaces and variational form
For the velocity field we use space V = [H1

0 ]2 with the scalar product on V as (ν∇·, ∇·).
Then we define an induced norm for any u ∈ V as follows:

∥∇u∥ν := (ν∇u, ∇u) 1
2

For the pressure, we define the space as follows:

Lν :=
{

q ∈ L2(Ω) :
∫

Ω
ν−1q dx = 0

}
.

The scalar product and an induced norm in Lν are denoted by:

(p, q)ν :=
∫

Ω
ν−1pq dx =

(
ν−1p, q

)
∀p, q ∈ Lν ,

and ∥p∥ν := (p, p)
1
2
ν .

In the analysis on the product space V × Lν , we use the norms depending of ν such that

(
∥∇u∥2

ν + ∥p∥2
ν

) 1
2 .

The corresponding variational formulation of the problem (2.3.1) without curvature term

11
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given by

(u, p) ∈ V × Lν :
(ν∇u, ∇φ)Ω − (p, ∇ · φ)Ω + (∇ · u, ϕ)Ω = (f , φ)Ω ∀(φ, ϕ) ∈ V × Lν .

(2.3.2)

Well-posedness results
Now we show the well-posedness of the problem (2.3.2). By definition, we have ellipticity
and continuity of the bilinear form (ν∇u, ∇u) in the space V with the norm ∥u∥ν . The
following Lemma shows continuity of the bilinear form (∇ · u, p).

Lemma 2.3.1. The following inequality holds

|(∇ · u, p)| ≤ ∥∇u∥ν ∥p∥ν ∀(u, p) ∈ V × Lν .

Proof. The proof of these inequality is straightforward and it follows with help of Cauchy
inequality and Lemma 2.2.5. In our case, the second inequality of Lemma 2.2.5 is as
follows:

∥ν
1
2 ∇ · u∥ ≤ ∥∇ u∥ν ∀u ∈ V .

We derive now the inf-sup condition to problem (2.3.2). For that, we recall the Nec̆as
inequality from Theorem 2.2.3. It holds with CΩ > 0

CΩ ∥p∥ ≤ ∥∇ p∥−1 := sup
u∈V

(∇ · u, p)
∥∇u∥

∀p ∈ L2(Ω)\R. (2.3.3)

Further, we will need an equivalent form of Nec̆as inequality (2.3.3):
For any p ∈ L2(Ω)\R there exist u ∈ V such that

∥p∥2 = (∇ · u, p) and CΩ ∥∇u∥ ≤ ∥p∥. (2.3.4)

Theorem 2.3.2. There exists a positive constant α independent of ν such that

sup
u∈V

(∇ · u, p)
∥∇u∥ν

≥ α ∥p∥ν ∀p ∈ Lν . (2.3.5)

Proof. The proof of this theorem is given in [80].

12
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2.3.2 Two-phase Stokes problem and well-posedness

Two phase Stokes problem
In this section we give a mathematical model of the time dependent Stokes interface
problem. We denote a space-time domain as Q and define it as follows:

Q := {(t, Ω(t)) , t ∈ [0, T ]} ⊂ R×R2, Ω(t) = Ω1(t) ∪ Γ(t) ∪ Ω2(t)

The space-time domain is split into two space-time domains Q1 and Q2 by an interface G,
such that:

Q = Q1 ∪ G ∪ Q2, G := {(t, Γ(t)), t ∈ [0, T ]} ⊂ R×R

The Figure 2.2 shows us the sketch of the domain. We define our model problem for given
u0 and with p = p(t, x), u = u(t, x) as follows:

ρi ∂tui − ∇ · (νiD(ui)) + ∇p = f in Qi, i = 1, 2,

∇ · ui = 0 in Qi, i = 1, 2,

JuK = 0 on Γ(t),
J(νD(u) − p I) nK = −τ K n on Γ(t),

uΓ = u · n on Γ(t),
u = uD on ∂Ω(t),

u(0, x) = u0 in Ω(0),

(2.3.6)

where the the density and viscosity, ρi and νi, i = 1, 2, are assumed to be constant in each
phase. The force term is defined as f = ρi g, where ρi is the density in the subdomain
Ωi(t), i = 1, 2, and g is an external gravity force. In our case we assume that ρ1 = ρ2.
D(u) := 1

2(∇u + ∇uT ) is the symmetric gradient, τ is the surface tension coefficient, K is
the unknown curvature of Γ(t). In general, the location of the interface Γ(t) is unknown
and is determined by the local flow field, which transports the interface. For two immiscible
fluids this transport of the interface is modeled by a kinematic interface condition by the
fifth equation of (2.3.6), where uΓ is the normal velocity of the interface, and n is the unit
normal at the interface which is pointing from Ω1 into Ω2.
The jump operator across the interface is denoted by JwK := (w|Ω2)|Γ − (w|Ω1)|Γ. To
formulate problem (2.3.6) as a well-posed problem, we need to assume suitable initial and
boundary conditions for u and Γ. Due to the coupling of the interface dynamics and the
fluid dynamics in the two phases, this is very a komplex problem. There is a wide variety
of literature on the existence of solutions and well-posedness of different formulations of
this problem. In publications [36], [35], [87], and [86] on this topics the authors study quite
regular solutions in Hölder spaces and deal with well-posedness locally in time existence of
solutions close to equilibrium states.
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x

y

t

Ω1(0) Ω2(0)Γ(0)

G Q1 Q2

Ω1(tn) Ω2(tn)
Γ(tn)

Figure 2.2: Geometry and notations of the problem (2.3.6). The space-time domain:
Q = Q1 ∪ G ∪ Q2. The interface Γ(t) might move and the outer boundary
∂Ω(t) does not move in time.

Existence and uniqueness
First, we consider problem (2.3.6) with the assumption that ν ∈ L∞(Ω). We define the
operator π as the trace mapping from H1(Q) onto H1/2(Ω). We assume that the initial
value u0 is the trace of some divergence free function ũ0 belonging to H1(Q) such that

u0 = π (ũ0) , ũ0 ∈ H1(Q), div (ũ0) = 0. (2.3.7)

The assumption (2.3.7) was introduced by Temam in [92] for obtaining the existence and
uniqueness result for the Stokes problem.

Theorem 2.3.3. Let the initial value u0 satisfy (2.3.7) for some divergence free function
ũ0 and let ν ∈ L∞(Ω) be a bounded function such that 0 < νl < ν(x) < νr < ∞. Then
there exists a unique solution pair (u, p) of the time dependent Stokes problem. Moreover,

∥u∥H1(Ω) ≤ 2 C(Ω)
√

νr

νl

∥u0∥H1(Q)

where C(Ω) is a Poincaré constant.

Proof. The proof of this theorem is given in [78]. The authors used a Schauder fixed point
theorem and the concept of renormalized solutions introduced in [37].

Next, we follow [96] to show the well-posedness of (2.3.6). As usually done in the
analysis of Stokes equations, we also restrict to a suitable subspace of divergence free
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velocity fields. We introduce the spaces:

V div :=
{
v ∈ [H1

0 (Ω)]d | divv = 0
}
, Xdiv := L2(I; V div),

W :=
{
v ∈ Xdiv | ρ ∂tv ∈ X

′

div

}
, ∥v∥2

W = ∥v∥2
Xdiv

+ ∥ρ∂t v∥2
X

′
div

,

V 0
div :=

{
v ∈ V div | v(0) = 0

}
.

Theorem 2.3.4. Let a(·, ·) be a continuous bilinear form on V div × V div that does not
depend on time. For every F ∈ X

′

div there exists a unique solution u ∈ V 0
div such that

⟨ρ∂t v, φ⟩ +
∫ T

0
a(u(t), φ(t))dt = F (φ) ∀φ ∈ Xdiv.

Moreover, it holds
∥u∥V div ≤ c ∥F∥X

′
div

where c is a constant independent of F .

Proof. The proof is based on a standard Galerkin technique known in literature, e.g. [39]
and is given in [96].

2.4 Fluid-structure interaction problems

2.4.1 Model problem

In this section we consider a linear fluid-structure interaction problem such that a time
dependent Stokes equation is coupled with a solid structure equation.
Let Ω ∈ R2 be a bounded domain and I = [0, T ] be a finite time interval. Further, we
denote the time dependent domain as Ω := Ω(t). We split this domain into a fluid domain
and a solid domain which is described by Ωs := {(x − x0)2 + (y − y0)2 < r2} with the
middle point (x0, y0) and a radius r of the rigid body and there is an interface between
these domains, such that Ω = Ωs ∪ ΓI ∪ Ωf , see Figure 2.3.

ρf ∂tuf − ∇ · σ(uf , pf ) = 0 in Ωf ,

∇ · uf = 0 in Ωf ,

d
dtus · ms = fs in Ωs,

uf = us on ΓI,

uf = 0 on ΓW ∪ ΓB,

σ(uf , pf ) n = 0 on ΓT,

(2.4.1)

with the stress tensor
σ(uf , pf ) := µ∇uf − pfI. (2.4.2)
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We denote by uf the fluid and us the solid velocities, pf is the fluid pressures, µ is the
dynamic viscosity and ρf is the density of the fluid, ms is the mass of the solid body, fs is
the force acting on the rigid body

fs =
 0

ms g − Vs ρf g + F drag

 (2.4.3)

where Vs = ms

ρs

is the volume of the solid body and g is a gravitational acceleration and it
is given constant g = −9, 81 m

s2 . The drag force F drag is defined as follows

F drag =
∫

ΓI
σ(uf , pf ) n e2 ds, (2.4.4)

where e2 is the unit vector in vertical direction.

Ωs

Ωf

ΓW ΓW

ΓB

ΓT

ΓI

fs

Figure 2.3: Geometry and notations of the fsi problem, Ω = Ωs ∪ ΓI ∪ Ωf .

2.4.2 Existence and uniqueness results

The analysis of the well-posedness of problem (2.4.1) is nowadays an active topic in
research. The existence and uniqueness of the coupled fluid-structure interaction problems
are shown by Coutand and Shkoller in [32].

Theorem 2.4.1 ( [32]). Let Ω ∈ R and Ωs ⊂ Ω be bounded domains of class H4, such
that Ω = Ω̄s ∪ Ωf . Let f ∈ Hm(I, H3(Ω), for m = 0, 1, 2, 3 with f(0), ∂t f(0) ∈ H4(Ω).
Let assume that the initial velocity satisfies u0 ∈ H0

1. Furthermore, let u0
f ∈ H6(Ωf(t))

with ∇ · u0
f = 0, u0

s ∈ H6(Ωs(t)). We assume as mentioned in [32] the compatibility
conditions for the data corresponding to the interface condition are hold. Then, there exists
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a time t̃ ∈ I and a unique solution of (2.4.1) in Ĩ = [ 0, t̃ ] with the following regularities:

uf ∈ Hm
(
Ĩ; H4−n(Ωf (t))

)
, m = 0, 1, 2, 3, 4∫ t

0
us dt ∈ Hm

(
Ĩ; H4−n(Ωs(t))

)
, m = 0, 1, 2, 3, 4

pf ∈ Hm
(
Ĩ; H3−n(Ωf (t))

)
, m = 0, 1, 2.

In the article [68] the global existence in time was shown. The authors study in this
article the coupling between the incompressible Navier-Stokes equations and a wave
equation.
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Chapter 3: A locally modified finite element method

The locally modified finite element method introduced by Frei and Richter in [47], [83]
and [44], is a simple fitted finite element method that is able to resolve weak discontinuities
in interface problems. The method is based on a fixed structured coarse mesh, which is
then refined into sub-elements to resolve an interior interface. In this work, we extend the
locally modified finite element method in two space dimensions to second order using an
isoparametric approach in the interface elements. Therewith we need to take care that the
resulting curved edges in the second order elements do not lead to degenerate sub-elements.
The splitting into subelements that we propose in this work is slightly different from the
one presented in [47] and leads in general to a better bound for the maximal angles within
the triangles.

3.1 A locally modified first order finite element method

Let ΩP be a fully shape-regular quadrilateral mesh of convex domain Ω with polygonal
boundary. We call the elements P ∈ ΩP the patches and these do not necessarily resolve
the partitioning. The interface Γ may cut the patches, but Γ ∩ ∂Ω = ∅. In this case we
make the next assumption:

Assumption 3.1.1. 1. Each patch P ∈ ΩP is either cut P ∩Γ ̸= ∅ or not cut P ∩Γ = ∅.
If it is cut, then it is cut in exactly two points on the boundary, see Figure 3.1 (top).

2. The interface can not cut the same edge multiple times and may not enter and leave
the patch at the same edge, see Figure 3.1 (bottom).

Figure 3.1: Patches with possible configurations (top), and not allowed configurations
(bottom).
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3 A locally modified finite element method

Given a smooth interface Γ, this assumption is fulfilled after sufficient refinement. The
patch mesh ΩP is the fixed background mesh used in the parametric finite element method
described below. We will introduce a further local refinement of the mesh, denoted Ωh

where the interface is resolved. However, this refined mesh is only for illustrative purpose.
The numerical realization is based on the fixed mesh ΩP and the "refinement" is in fact
only included in a parametric way within the reference map for each patch P ∈ ΩP .
If the interface is matched by one of the edges of the patch, then the patch is considered
as not cut. We will split such patches into four quadrilaterals. If the interface cuts the
patch, then the patch splits either in eight triangles or in four quadrilaterals. In both
cases, the patch P is first split into four quadrilaterals, which are then possibly refined
into two triangles each. This two-step procedure will simplify the following proofs.

3.1.1 Modification of the finite element space

We define the isoparametric finite element space Vh ⊂ H1
0 (Ω) on the triangulation ΩP

Vh := {φ ∈ C(Ω̄) ∩ H1
0 (Ω) | (φ ◦ K−1

P ) ∈ Q̂P for all P ∈ ΩP }, (3.1.1)

where KP ∈ [Q̂P ]2 is the mapping between the reference patch and the patch from ΩP

such that:
KP (x̂i) = xi, i = 1, ..., 9,

here x1, ..., x9 are the nodes of the patch, see Figure 3.2.
Q̂P is the piecewise first order polynomial space. The reference space Q̂P will depend

x̂1 x̂3

x̂9x̂7

x̂2

x̂6

x̂8

x̂4
x̂5

Figure 3.2: Left: Reference patch P̂ = (0, 1)2 with four elements. Right: Splitting the
patch elements into two triangles.

on whether a patch P is cut or not cut by the interface. There are two possibilities of
choosing the reference element:

• For the patches which are not cut by the interface, we choose the reference space
Q̂P as the standard space of piecewise bilinear functions. In this case, we divide the
reference patch into four quadrilaterals Q̂i, i = 1, ..., 4 and define

Q̂ := {ϕ ∈ C(P̂ ) , ϕ|Q̂i
∈ span{1, x, y, xy}, Q̂i ∈ P̂ , i = 1, ..., 4}.
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• For the patches which are cut by the interface, we choose the reference space Q̂P

as a modified space. In this case we divide the reference patch into eight triangles
T̂i, i = 1, ..., 8 and define a modified space as follows

Q̂mod := {ϕ ∈ C(P̂ ) , ϕ|T̂i
∈ span{1, x, y}, T̂i ∈ P̂ , i = 1, ..., 8}.

Depending on the position of the interface Γ in the patch P̂ , we consider different types
of the reference configurations by splitting the quadrilaterals into two triangles via the
largest angle.
We note here, that the the functions in Q̂ and Q̂mod are all piecewise linear on the edges
of the patch P̂ , such that mixing different element types does not affect the continuity of
the global finite element space. We denote by ϕ̂i, i = 1, ..., 9 the standard Lagrange basis
of Q̂ or Q̂mod with ϕ̂i(xj) = δij. The transformation KP̂ is given as follows

KP̂ (x̂) =
9∑

k=1
xi ϕ̂i(x̂).

In order to show optimal-order error estimates, the finite element mesh needs to fulfill a
maximum angle condition in a fitted finite element method. We first analyse the maximum
angles of the subtriangles for a Cartesian patch grid ΩP . A bound for a general regular
patch mesh can be obtained by using the regularity of the patch mesh.

3.1.2 Linear interface approximation and maximum angle condition

We distinguish between five different types of interface cuts, depending on how the interface
intersects a patch, see Figure 3.3. We denote the relative cut positions on an edge e by
r, s ∈ (0, 1). in the case of adjacent edges, we distinguish further between the case that
r ≤ 1

2 and s ≥ 1
2 and the case that one of these inequalities is violated. In all cases the

patch element is split in four large quadrilaterals Q1, ..., Q4 first, which are then divided
into two sub-triangles T1, ..., T8, if the interface cuts through the patch.
We consider the following five cases, see Figure 3.3

• Configuration A: The patch is cut in two opposite nodes.

• Configuration B: The patch is cut at the interior of one edge and in one node.

• Configuration C: The patch is cut at the interior of two opposite edges.

• Configuration D: The patch is cut at the interior of two adjacent edges with
r ∈ (0, 1

2), s ∈ (1
2 , 1).

• Configuration E: The patch is cut at the interior of two adjacent edges with

– r ∈ (0, 1) and s ∈ (0, 1
2)
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(e) Configuration E

r ∈ (0, 1), s ∈ (0, 1/2)
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e3

e4 xm

r sT1
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(f) Configuration E

r ∈ (1/2, 1), s ∈ (0, 1)

1

Figure 3.3: Different configurations and splitting into four large quadrilaterals Q1, ..., Q4.
The red dashed line shows a linear approximation of the interface. Triangles
T1 and T2 are taken from dividing the quadrilateral by the interface. In
quadrilaterals that are not split by the interface, we divide in such a way into
subtriangles, that the largest angle is split.

– r ∈ (1
2 , 1) and s ∈ (0, 1)

The subdivisions can be anisotropic with the parameters r, s ∈ (0, 1) in the configurations
B, C, D and E. These parameters describe the relative position of the intersection points
with the interface on the edges. We denote by ei ∈ R, i = 1, 2, 3, 4, the vertices on the
edges. When the interface intersects an edge, then we move the corresponding point ei,
i = 1, ..., 4 on the intersected edge to the point of the intersection (see Figure 3.3). If
an edge is not intersected by the interface then we take ei as midpoint of this edge. By
xm ∈ R2 we denote the midpoint of the patch, which has different positions depending
on the configurations. We choose the midpoint as the intersection of the line connecting
e1 and e3 with the line connecting e2 and e4 for the configurations A, C and E. For the
configuration B we choose the midpoint as the intersection of the line connecting e1 and
e3 with the line connecting x1 and e2. The midpoint for the configuration D is chosen as
the midpoint of the line segment e1e2.
The patch is first divided into four quadrilaterals in all configurations, see Figure 3.3.
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Depending on the configuration, we will get different types of the quadrilaterals. We
note that each quadrilateral Q1, ..., Q4 in the patch has at least one right angle. The
quadrilaterals in configuration A are squares. There are right-angled trapezoids in the
configurations B and C. Furthermore, there are one quadrilateral with a large interior
angle 180◦ and one quadrilateral with two large interior angles between (90◦, 180◦) in the
configuration D and E, respectively. We split all types of quadrilaterals into sub-triangles
by dividing the largest interior angle of the quadrilaterals. Considering arbitrary interface
positions, anisotropic elements can arise, when the relative cut position r, s ∈ (0, 1) on an
edge e tends to 0 or 1 (see Figure 3.3). We can not guarantee a minimum angle condition
for the sub-triangles, but we can ensure that the maximum angles remain bounded away
from 180◦.

Lemma 3.1.1 (Linear approximation of the interface). All interior angles of the Cartesian
patch elements shown in Figure 3.3 are bounded by 127◦ independently of the parameters
r, s ∈ (0, 1).

Proof. First, the patch is split into four sub-quadrilaterals Q1, ..., Q4, and some of the
quadrilaterals are already divided into two triangles by the interface. Other quadrilaterals
which are not divided by the interface, we split in such a way that the largest angle of Qi

is divided.
We consider exemplary configurations A, B, C, D, E as shown in Figure 3.3 separately.
We note that in all cases the angles at the vertices xi, i = 1, ..., 4 are exactly 90◦.
In configuration A we have two squares and four right-angled triangles. This case is
obvious and the maximum angle of the sub-triangles is 90◦.
In configuration B and C each quadrilateral Qi (i = 1, ..., 4) has two right angles, as the
positions of e1 and e3, or e2 and e4, respectively, are fixed. In the configuration B, there
are two triangles T1, T2 and three right-angled trapezoids in the patch, see Figure 3.3 (b).
Here, T2 is the right-angled triangle and all interior angles of the triangle T1 less than or
equal to 90◦. Then we note that all right-angled trapezoids in the configurations B and C

have one possible largest interior angle, see Figure 3.3 (b) and (c). In the configuration
B, first, we show that the largest interior angle of all three quadrilaterals which are not
divided by the interface is bounded by 135◦. It holds:

cos(∠x4e4xm) = (x4 − e4) · (xm − e4)
|x4 − e4| · |xm − e4|

= (0, 1/2) · (1/2, s/2 − 1/2)
1/2 ·

√
(1/2)2 + (s/2 − 1/2)2

= s − 1√
1 + (s − 1)2

∈
(

− 1√
2

, 0
)
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such that ∠x4e4xm ∈ (90◦, 135◦). By denoting ∠e1xme2 = ∠xme2x3 = αB
max we obtain:

cos(αB
max) = (e1 − e3) · (e2 − x1)

|e1 − e3| · |e2 − x1|
= (0, −1) · (1, s)√

1 + s2

= −s√
1 + s2

∈
(

− 1√
2

, 0
)

such that αB
max ∈ (90◦, 135◦).

Now, we show that the largest interior angle for all quadrilaterals of the configuration C is
bounded also by 135◦. It holds:

cos(αC
max) = ± 1 − s − r√

1 + (1 − s − r)2
∈
(

− 1√
2

,
1√
2

)

such that αC
max ∈ (45◦, 135◦).

The largest interior angle for the right-angled trapezoids of the configurations B and C is
αB,C

max = 135◦. Then we split all these trapezoids into two triangles by dividing the largest
interior angle which is equal to 135◦.Then the largest interior angle of the sub-triangles
are less than or equal to 90◦. It holds:

cos(α△)(or cos(β△)) ∈
(

0,
1√
2

)

such that α△(or β△) ∈ (45◦, 90◦). We showed that all interior angles of the triangles
bounded by 90◦ for the configurations B and C.

In the configurations D and E could have two kind of quadrilaterals as mentioned above.
First, we consider the quadrilaterals in configuration D. As shown in Figure 3.3 (d), we
have one quadrilateral with largest interior angle equal to 180◦. In this case, we divide
this angle into two angles by connecting xm and x2. In this case it holds:

cos(∠e1xmx2) = (e1 − xm) · (x2 − xm)
|e1 − xm| · |x2 − xm|

= ((r − 1), −s) · ((1 − r), −s)
(1 − r)2 + s2

= −(1 − r)2 + s2

(1 − r)2 + s2 ∈
(

− 3
5 ,

3
5

)

such that ∠e1xmx2 ∈ (53◦, 127◦).
All other quadrilaterals could have one or two largest angles between 90◦ and 180◦. It
holds:

cos(∠x1e1e2) = (x1 − e1) · (e2 − e1)
|x1 − e1| · |e2 − e1|

= (−r, 0) · (1 − r, s)
r ·
√

s2 + (1 − r)2

= r − 1√
s2 + (1 − r)2

∈
(

− 2√
5

, − 1√
5

)

23



3 A locally modified finite element method

such that ∠x1e1e2 ∈ (117◦, 153◦),
and

cos(∠e1e2x3) = (e1 − e2) · (x3 − e2)
|e1 − e2| · |x3 − e2|

= (r − 1, −s) · (0, 1 − s)√
s2 + (1 − r)2 · (1 − s)

= −s√
s2 + (1 − r)2

∈
(

− 2√
5

, − 1√
5

)

such that ∠e1e2x3 ∈ (117◦, 153◦),
and

cos(∠x41e4xm) = (x4 − e4) · (xm − e4)
|x4 − e4| · |xm − e4|

= (0, 1/2) · ((r + 1)/2, (s − 1)/2)
1/4 ·

√
(r + 1)2 + (s − 1)2

= s − 1√
(r + 1)2 + (s − 1)2

∈
(

− 1√
5

, − 1√
10

)

such that ∠x4e4xm ∈ (108◦, 117◦).
Then, by dividing the largest angle of the quadrilateral we obtain two triangles and one of
them is the right-angled triangle. It holds for not right-angled triangles:

cos(∠e4e1e2) = (e4 − e2) · (e2 − e1)
|e4 − e2| · |e2 − e1|

= (−r, 1/2) · (1 − r, s)√
r2 + 1/4 ·

√
s2 + (1 − r)2

= r(r − 1) + s/2√
r2 + 1/4 ·

√
s2 + (1 − r)2

∈
(

0,
1√
2

)

such that ∠e4e1e2 ∈ (45◦, 90◦).

cos(∠e1e2e3) = (e1 − e2) · (e3 − e2)
|e1 − e2| · |e3 − e2|

= (r − 1, −s) · (−1/2, 1 − s)√
s2 + (r − 1)2 ·

√
1/4 + (1 − s)2

= (1 − r)/2 + s(s − 1)√
s2 + (r − 1)2 ·

√
1/4 + (1 − s)2

∈
(

0,
1√
2

)

such that ∠e4e1e2 ∈ (45◦, 90◦).
We note that the right-angled triangle ∆e4x4e3 has two equal sides and, therefore, we have
117◦ − 45◦ = 72◦ and 108◦ − 45◦ = 63◦, then ∠e3e4xm ∈ (63◦, 72◦). Our results show that
all interior angles of the triangles bounded by 127◦ for configuration D.
Now, we consider the configuration E. In this case, we have two triangles which are divided
by the interface, see Figure 3.3 (e) and (f). The triangle T2 is a right-angled triangle. We
need only to show how the largest interior angle of the triangle T1 is bounded. It holds:

cos(∠e1xme2) = (e1 − e3) · (e2 − e4)
|e1 − e3| · |e2 − e4|

= (r − 1/2, −1) · (1, s − 1/2)√
1 + (r − 1/2)2 ·

√
1 + (s − 1/2)2

= r − s√
1 + (r − 1/2)2 ·

√
1 + (s − 1/2)2

∈
(

− 1√
5

,
4
5

)
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3 A locally modified finite element method

such that ∠e1xme2 ∈ (36◦, 117◦).
In configuration E, the angles in e1, ..., e4 are all between 63◦ and 117◦. It holds for
example:

cos(∠x1e1e3) = (x1 − e1) · (e3 − e1)
|x1 − e1| · |e3 − e1|

= (−r, 0) · (1/2 − r, 1)
r ·
√

1 + (1/2 − r)2

= r − 1/2√
1 + (1/2 − r)2

∈
(

− 1√
5

,
1√
5

)

such that ∠x1e1e3 ∈ (63◦, 117◦). A bound on the angles of the quadrilaterals at xm is
therefore given by 360◦ − 2 · 63◦ − 90◦ = 144◦. This maximum is attained for r → 1, s → 0
(cf. Figure 3.3 (f)).
The largest interior angle for quadrilaterals in configuration E is equal to 144◦. By dividing
the largest angle of the quadrilateral we obtain two triangles. All interior angles of all
triangles are bounded by 117◦ in configuration E.

Theorem 3.1.2. We assume that the patch grid ΩP is Cartesian. For all types of the
interface cuts (see Figure 3.3), the interior angles of all subelements are bounded by 127◦

independently of the parameters r, s ∈ (0, 1).

Proof. By means of Lemma 3.1.1 all interior angles on the reference patch are bounded by
127◦. As all cells are Cartesian, the same bound holds for the elements in ΩP .

Remark 3.1.1. We have assumed for simplicity that the underlying patch mesh is fully
Cartesian. This assumption can, however, easily be weakened. Allowing more general form-
and shape-regular patch meshes a geometric transformation of each patch to the unit patch
will give a bound α < αmax < 180◦ for the interior angles α (with αmax larger than 127◦).

3.2 Extension to second order finite element method

In this section, we extend the first order approach discussed in the previous section to a
second order discretization.

3.2.1 Modified finite element spaces

We define the isoparametric finite element space Vh ⊂ H1
0 (Ω)

Vh := {φ ∈ C(Ω) | (φ ◦ T −1) ∈ Pr
K(K̂) for K ∈ Th},

where

Pr
K(K̂) :=

Qr(K̂), K is a quadrilateral,

Pr(K̂), K is a triangle,
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3 A locally modified finite element method

and T ∈ Pr
K(K̂) is a transformation from the reference element K̂ to K. The space Vh is

continuous, as the restriction of a function in Qr(K̂) to a line e ⊂ ∂K̂ is in Pr(e).

3.2.2 Quadratic interface approximation

In this section, we define a quadratic approximation of the interface. In each of the
sub-triangles obtained in the previous paragraph, we consider 6 degrees of freedom that
lie on the vertices and edge midpints of the triangles (see the dots in Figure 3.4). In order

Figure 3.4: Mesh consisting of four patches, three of which are cut by the interface.

to guarantee a higher-order interface approximation those that lie on the discrete interface
Γh need to be moved.

Lemma 3.2.1. (Quadratic elements) All interior angles of the triangles under certain
assumptions are also bounded by 127◦ independently of the parameters r, s ∈ (0, 1).

Proof. The proof of this lemma follows by the Lemma 3.1.1. For the elements with curved
boundaries we consider two kinds of interfaces:

1. Second order finite elements for the interface given by first order functions. In this
case, we use Lemma 3.1.1 and properties of a middle segments of the triangles.
We get also easily that all interior angles of the triangles are bounded by 127◦

independently of the parameters r, s ∈ (0, 1).

2. In the case when the interface is given by second order functions, we need to ensure
that all elements are allowed in the sense of Assumption 3.1.1 (see also Figure 3.1)
and that the maximum angle condition shown above remains valid.

We need to move certain points to the interface in order to obtain a second-order interface
approximation, for the details see also Section 3.2.3. This is possible if the following
criteria are satisfied. Otherwise, we leave them in their original positions and obtain a
first-order interface approximation in the respective element. By α△ we denote the largest
angle in a triangle.
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3 A locally modified finite element method

In the first step, we move the midpoint of the patch. If this is possible, we shift the
other corresponding points in a second step (if possible). We use the following criteria for
each configuration.

First step: Move the midpoints

• Configuration A: the midpoint of the patch can be moved along the normal line n

(see Figure 3.3a) if α△ ≤ αmax < 180◦.

• Configuration B: the midpoint of the patch can be moved along the line segment
e1e3, if the relative length d = |e1−xm|

|e2−e1| of the line e1xm (see Figure 3.3b) satisfies
ϵ < d < 1 − ϵ and α△ ≤ αmax < 180◦.

• Configuration C: the midpoint of the patch can be moved along the line segment
e2e4, if the parameter d (see Figure 3.3c) satisfies ϵ < d < 1 − ϵ.

• Configuration D: the midpoint of the patch can be moved along the normal line
n (see Figure 3.3d) if α△ ≤ αmax < 180◦.

• Configuration E: in this configuration we do not need to move the midpoint of
the patch (see Figures 3.3e), and 3.3f).

Second step: Move other points

• In the second step, we investigate the other two points that need to be moved in
order to obtain a second-order interface approximation. These are the points between
the midpoint of the patch and the points where exterior edges are intersected. In all
configurations, we obtain triangles with one curved edge. It can happen that this
curved edge intersects other edges of the element T . Thus, we shift the corresponding
points along the normal line to the interface, if and only if the curved edge of the
triangle does not cut any other edges and α△ ≤ αmax < 180◦.

In certain “pathological” situations we can not guarantee that the angle conditions
imposed above are fulfilled. This is due to the fact that the curved edges that
correspond to a quadratic interface approximation might intersect other edges, see
Figure 3.5 for an example.
In this case, we use a linear approximation of the interface in the affected patch.
We will see in the numerical examples below that this happens rarely. Moreover,
it is reasonable to assume that the maximum number of such patches remains
bounded under refinement independently of h. We give a heuristic argument for this
assumption. Let us consider the situation sketched in Figure 3.5. In the configuration
on the right the quadratic interface approximation lies slightly outside of the triangle.
On the other hand, the linear approximation of the interface (i.e. the lower edge) will
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3 A locally modified finite element method

never leave the patch by definition. The maximum distance between a linear and a
quadratic interface approximation is bounded by O(h2

P ). In relation to the patch
size O(hP ) this means that -considering arbitrary interface positions- the probability
that the quadratic interface approximation leaves the patch is bounded by O(hP ).
The number of interface patches, on the other hand, grows like O(h−1

P ). Hence it
is reasonable to assume that the number of affected patches behaves like O(1) for
hP → 0. We will denote the maximum number of patches with a linear interface
approximation by nl.

Γ Γ

1

Figure 3.5: The interface Γ needs to be approximated quadratically on all triangles. To
achieve this, the midpoint of the edge that corresponds to the interface is
pulled onto the curve. Left: This is a valid configuration where a quadratic
approximation is possible. Right: In some configurations a fully quadratic
interface approximation would result in a degenerate element with an interface
that is leaving triangle (see the mark on the bottom edge). Such triangles are
approximated linearly, which results in nl > 0.

3.2.3 Implementation

The locally modified finite element method is based on a patch-wise parametric approach.
Let Ωh be the triangulation. We denote by P ∈ Ωh the patches, which are quadrilaterals
with 25 degrees of freedom. Depending on the location of the interface, we have two kinds
of patches:

• If the patch is not cut by the interface, then the patch is split into four quadrilaterals
Q1, ... , Q4. In this case we take the standard space of piecewise biquadratic functions
as follows:

Q̂ := {ϕ ∈ C(P̂ ) , ϕ|Q̂i
∈ span{1, x, y, x2, xy, y2, xy2, x2y, x2y2}, i = 1, ..., 4},
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3 A locally modified finite element method

where P̂ is the reference patch on the unit square (0, 1)2 consisting of the four
quadrilaterals Q̂1, ..., Q̂4.

• If the patch is cut by the interface, then the patch is split into eight triangles
T1, ... , T8. Here we define the space of piecewise quadratic functions as follows:

Q̂mod := {ϕ ∈ C(P̂ ) , ϕ|T̂i
∈ span{1, x, y, x2, xy, y2}, i = 1, ..., 8},

where the reference patch P̂ consists of triangles T̂1, ..., T̂8.

x1 x2

x3x4

e1

e2

e3

e4 xm

(c) shifting other points

x1 x2

x3x4

e1

e2

e3

e4 xm

(d) points on the interface

x1 x2

x3x4

e1

e2

e3

e4

γ > 0

γ < 0

γ = 0

(a) shifting cut points

x1 x2

x3x4

e1

e2

e3

e4

xm

(b) shifting a middle point

1

Figure 3.6: Rearrangement of the Lagrangian points on the interface.

In both cases, we have locally 25 basis functions in each patch (see Figure 3.6)

Q(P ) := span{ϕi}, ϕi := ϕ̂i ◦ T̂ −1
P , i = 1, ..., 25,

where T̂P is the reference patch map, which is defined in an isoparametric way as follows

T̂P (x̂) :=
25∑

j=1
xj ϕ̂j.
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3 A locally modified finite element method

Definining the patch type and movement of mesh nodes
We assume that the interface is given as zero set of an implicit level-set function γ(x)

γ(x) = 0 ⇔ x ∈ Γ.

The patch type and the edges that are cut can then be easily determined by computing
γ(xi) for the exterior vertices x1, ..., x4, see Figure 3.6. An edge e is cut, if γ(x1) ·γ(x2) < 0
for its two end points x1, x2. The intersection of the interface with the edge can the be
found by applying locally a Newton’s method to find the zero r of

γ
(
x1 + r(x2 − x1)

)
= 0, (3.2.1)

see Figure 3.6 (a). The edge midpoints e1 and e2 will be moved to the respective position
x1 + r(x2 − x1). Next, we define a preliminary coordinate for the midpoint of the patch
xm as the midpoint of a segment e1e2, see Figure 3.6 (b). For a second-order interface
approximation, it is necessary to move xm to the interface Γ in the configurations A to
D. We use again Newton’s method to move xm to the interface along a normal line,
see Figure 3.6 (c). Second, we also move the midpoints of the segments e1xm and xme2

analogously, see Figure 3.6 (d). Finally, we need to specify criteria to ensure that the
resulting sub-triangles with curved boundaries fulfill a maximum angle condition. For the
details see the proof of Lemma 3.2.3.

Remark 3.2.1. A disadvantage of the modified second order finite element method described
above is that the stiffness matrix can be ill-conditioned for certain anisotropies. In particular,
the condition number depends not only on the mesh size, but also on how the interface
intersects the triangulation (e.g., s, r → 0). In section 4.3 we consider two examples, where
the condition number of the stiffness matrix is not bounded. For this reason a hierarchical
finite element basis was introduced in [47] for the linear finite elements and it was shown
that the stiffness matrix satisfies the usual bound O(h−2

P ) with a constant that does not
depend on the position of the interface. We extend this approach to the second order
finite element method in Chapter 4. We will see that the condition number for a scaled
hierarchical basis is reduced significantly, although we can not guarantee the optimal bound
for the method presented here.
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Chapter 4: Discretization of elliptic interface problems

In this chapter, we study the interface Laplace equation (2.1.1). We consider the model
problem

−∇ · (νi∇u) = f on Ωi, i = 1, 2,

JuK = 0, Jν∂nuK = 0 on Γ,

u = 0 on ∂Ω,

(4.0.1)

For the discretization of this problem we use the locally modified second order finite element
method introduced in Chapter 3. We prove optimal a priori error estimates in the L2-norm
and in the discrete energy norm. Finally, we present numerical examples to substantiate
the theoretical findings.

Literature review
The locally modified finite element method has been used by the authors and co-workers [44,
50–52], and by Langer & Yang [72] for fluid-structure interaction (FSI) problems, including
the transition from FSI to solid-solid contact [27, 28, 48]. Holm et al. [65] and Gangl &
Langer [56] used a corresponding approach based on triangular patches, the latter work
being motivated by a topology optimization problem. A pressure stabilization technique for
flow problems has been developed in [45] and a suitable (second-order) time discretization
scheme in [49]. Details of the implementation in deal.ii and the corresponding source code
have been published in [53,54]. Extensions to three space dimensions have been developed
by Langer & Yang [72], where hexahedral coarse cells are divided into sub-elements
consisting of hexahedra and tetrahedra, and by Höllbacher & Wittum, where a coarse mesh
consisting of tetrahedra is sub-divided into hexahedrons, prisms and pyramids [66,95].
Alternative approaches are unfitted methods, where the mesh is fixed and does not resolve
the interface. Prominent examples are the extended finite element method (XFEM [76]),
the generalized finite element (GFEM [10]) and Cut Finite Elements [29, 61] including
unfitted DG methods [59]. For Cut Finite Elements a higher order unfitted finite element
method has been developed and analyzed by Lehrenfeld and Reusken (see [73–75]).
For further fitted finite element methods, we refer to [9,15,25,42,97]. Some works are similar
to the locally modified finite element methods in the sense that only mesh elements close
to the interface are altered [23,100]. A fitted method with a higher order approximation
has been developed by Fang [41].
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4 Discretization of elliptic interface problems

4.1 Discrete variational formulation

We use the space Vh defined as in Chapter 3

Vh := {φ ∈ C(Ω) | (φ ◦ T −1) ∈ Pr
K(K̂) for K ∈ Ωh},

where the map T resolves the interface with order r in all but nl elements, where the
approximation is only linear. The polynomial order of the trial functions φ ◦ T −1 is r

independent of the interface approximation. We consider a C3- parameterized interface
Γ, which is not matched by the triangulation Ωh. The triangulation induces a discrete
interface Γh, which is a quadratic and in some special cases a linear approximation to Γ.
The discrete interface splits the triangulation in two sub-domains Ω1

h and Ω2
h, such that

each triangle K ∈ Ωh is either completely included in Ω1
h or in Ω2

h.
We consider the following discrete variational formulation: Find uh ∈ Vh such that

ah(uh, ϕh) = (fh, ϕh)Ω ∀ϕh ∈ Vh. (4.1.1)

By reason of Ωi ̸= Ωi
h, we set fh|Ωi

h
:= fi, i = 1, 2. We note that fi is a smooth extension

of f |Ωi
to Ωi

h. The bilinear form is given by

ah(uh, ϕh) := (νh∇uh, ∇ϕh)Ω,

where νh is defined by

νh =

ν1, x ∈ Ω1
h

ν2, x ∈ Ω2
h.

4.2 A priori error analysis

Let hP be the maximum size of a patch element P ∈ ΩP of the regular patch grid. We
will denote the mismatch between Ωi

h and Ωi by Si
h, i = 1, 2 (see Figure 4.1)

S1
h := Ω1

h \ Ω1 = Ω2 \ Ω2
h,

S2
h := Ω2

h \ Ω2 = Ω1 \ Ω1
h.

Moreover, we denote the set of elements T ∈ Ωh that contain parts of Si
h by

Si
T := {T ∈ Ωh | T ∩ Si

h ̸= 0}, ST := S1
T ∪ S2

T .

Further, we split Si
h into linear parts Si

h,lin with a linear approximation of the interface and
quadratic parts Si

h,qu with a quadratic approximation of the interface. Similarly, we split
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4 Discretization of elliptic interface problems

the set of triangles Si
T that are affected by the interface into parts Si

T,lin if the triangle
(patch) contains a linear approximation of the interface and Si

T,qu if the approximation
is fully quadratic. The union of S1

T,qu and S2
T,qu is denoted by ST,qu and analogously for

ST,lin.

Γ

Ω1 Ω2

ν1 ν2

S1
h

S2
h

Γh

Si
h = Ωi

h \ Ωi

1

Figure 4.1: Mismatch Si
h between Ωi and Ωi

h, i = 1, 2 at two elements along the curved
interface.

4.2.1 Auxiliary estimates

First, we need to prove some auxiliary estimates in order to control the mismatch between
continuous and discrete bilinear forms. For that we need the following Sobolev imbedding
estimation for 2 ≤ p < ∞

∥u∥Lp(Ω) ≤ cp
1
2 ∥u∥H1(Ω), (4.2.1)

which is valid with a constant c independent of p, see [91]. We start with the following
technical result.

Lemma 4.2.1. Let α ∈ N, h ∈ R+ and J(p) := √
p h− α

p . It holds that

min
p∈[2,∞]

J(p) ≤ c | ln(h)| 1
2 .
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4 Discretization of elliptic interface problems

Proof. We start with the necessary condition for a local minimum: J ′(p) = 0. It holds:

J ′(p) = 1
2√

p
h− α

p + h− α
p ln(h) α

p
√

p
= h− α

p p− 1
2

(
1
2 + ln(h) α

p

)
1
2 + ln(h) α

p
= 0

p = −2α ln(h).

The minimum value is

J(−2α ln(h)) =
√

−2α ln(h) h− α
(−2α ln(h)) =

√
2α e | ln(h)| 1

2 .

The fact that lim
p→∞

J(p) = ∞ and J(2) > J(−2α ln(h)) show that the local minimum is in
fact a global one.

For the estimation of the mismatch between continuous and discrete bilinear forms, we
need to prove the following geometry approximation lemma.

Lemma 4.2.2. Let T ∈ ST and let s be the local approximation order of the interface, i.e.

dist (Γh ∩ T ; Γ ∩ T ) ≤ chs+1
P . (4.2.2)

If the number of elements with a linear interface approximation is bounded by nl, it holds
for the areas of the regions Sh,lin and Sh,qu that

|Sh,lin| ≤ nlh
3
P , |Sh,qu| ≤ h3

P . (4.2.3)

For u ∈ H1(Ω1 ∪ Ω2) and ϕh ∈ Vh we have the bounds

∥∇ϕh∥Sh∩T ≤ ch
s
2
P ∥∇ϕh∥T (4.2.4)

∥u∥Sh∩T ≤ ch
s+1

2
P ∥u∥Γ∩T + chs+1

P ∥∇u∥Sh∩T . (4.2.5)

Moreover, we have for u ∈ H1(Ω1 ∪ Ω2) and v ∈ H2(Ω1 ∪ Ω2)

∥u∥Sh,lin ≤ chP ∥u∥H1(Ω1∪Ω2), ∥u∥Sh,qu ≤ ch
3
2
P ∥u∥H1(Ω1∪Ω2) (4.2.6)

and

∥u∥Sh,lin ≤ cn
1
2
l h

3
2
P | ln(h)|1/2∥u∥H1(Ω1∪Ω2), ∥v∥Sh,lin ≤ cn

1
2
l h

3
2
P ∥v∥H2(Ω1∪Ω2). (4.2.7)

For functions u ∈ H1
0 (Ω) the H1-norm on the right-hand side of (4.2.6) and (4.2.7) can

be replaced by the H1-seminorm.
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Proof. Estimates (4.2.3)-(4.2.5) have been shown in [83]. (4.2.3) follows from (4.2.2) and
simple geometric arguments. For (4.2.4) and (4.2.5) a Poincaré-type estimate is used,
see [83, Lemma 4.34]

∥u∥2
Sh∩T ≤ chs+1

P ∥u∥2
Γh∩T + ch2s+2

P ∥∇u∥2
Sh∩T . (4.2.8)

Summation over all elements in ST,lin and ST,qu, respectively, and a global trace inequality
for the interface terms yields (4.2.6). To show (4.2.7), we use a Hölder inequality for
p ∈ [2, ∞]

∥u∥Sh,lin
≤ |Sh,lin|

1
2 − 1

p ∥u∥Lp(Sh,lin). (4.2.9)

Due to |Sh,lin| ≤ cnlh
3
P and the Sobolev imbedding (4.2.1) for Ω = Ωi we have for arbitrary

p ∈ [2, ∞)

∥u∥Sh,lin
≤ cp

1
2 n

1
2
l h

3
2 − 3

p

P ∥u∥H1(Ω1∪Ω2). (4.2.10)

Using Lemma 4.2.1, we obtain the first estimate in (4.2.7).
If v ∈ H2(Ω1 ∪ Ω2) we can use (4.2.9) for p = ∞ due to the Sobolev imbedding H2(Ωi) ⊂
L∞(Ωi) and we obtain

∥u∥Sh,lin
≤ cn

1
2
l h

3
2
P ∥u∥H2(Ω1∪Ω2). (4.2.11)

Finally, the norms on the right-hand side can be substituted by the H1-seminorm for
u ∈ H1

0 (Ω) by means of the Poincaré inequality.

The continuous solution u is regular in Ωi, i = 1, 2, but its normal derivative has a jump
across the interface. Discrete functions have non-regularities only at the boundaries of
cells ∂T . This means that a discrete function can only resemble a similar discontinuity
across the discrete interface. Therefore, we need some technicalities in the estimates.

We consider a map π : H3(Ω1 ∪ Ω2) → H3(Ω1
h ∪ Ω2

h). Let u ∈ H3(Ω1 ∪ Ω2) and
ui := u|Ωi

∈ H3(Ωi). Due to smooth interface Γ we can use smooth extensions ũi ∈ H3(Ω)
(i = 1, 2) to the full domain Ω, e.g. see the textbook of Wloka [99], such that

∥ũi − u∥Hm(Ωi) = 0, ∥ũi∥Hm(Ω) ≤ C∥u∥Hm(Ωi), i = 1, 2, m = 2, 3, (4.2.12)

By using these extensions we define a function πu ∈ H3(Ω1
h ∪ Ω2

h):

πu =

ũ1, x ∈ Ω1
h,

ũ2, x ∈ Ω2
h.

(4.2.13)
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We note that that πu can be discontinuous across Γh.

Lemma 4.2.3. Let u ∈ H3(Ω1 ∪ Ω2) and πu ∈ H3(Ω1
h ∪ Ω2

h) the function defined by
(4.2.13). It holds that

∥∇(u − πu)∥Ω ≤ chP

(
n

1/2
l + 1

)
∥u∥H2(Ω1∪Ω2) (4.2.14)

∥∇(u − πu)∥Ω ≤ ch
3/2
P

(
n

1/2
l + 1

)
∥u∥H3(Ω1∪Ω2). (4.2.15)

where nl is the maximum number of elements with a linear interface approximation.

Proof. In the small strip Sh around the interface u and πu are defined differently. Using
the Sobolev embedding H3(Ωi) ⊂ W 1,∞(Ωi) and the continuity of the extensions (4.2.12)
it holds for u ∈ H3(Ωi):

∥∇(u − πu)∥Ω = ∥∇(u − πu)∥Sh
≤ |Sh|

1
2
(
∥∇u∥L∞(Ω) + ∥∇πu∥L∞(Ω)

)
≤ c|Sh|

1
2 ∥u∥H3(Ω1∪Ω2).

Then by applying (4.2.3) we get (4.2.15).
To show (4.2.14), we note that u − πu vanishes in cells T ∈ Th \ ST . Thus, let T ∈ ST

and let s ∈ {1, 2} be the local approximation order of the interface in T . We use (4.2.5)
and the fact that s ≥ 1 to get

∥∇(u − πu)∥T = ∥∇(u − πu)∥Sh∩T ≤ ch
1+s

2
P ∥∇(u − πu)∥Γ∩T + ch1+s

P ∥∇2(u − πu)∥Sh∩T

≤ chP (∥∇u∥Γ∩T + ∥∇πu∥Γ∩T ) + ch2
P

(
∥∇2u∥Sh∩T + ∥∇2πu∥Sh∩T

)
,

where the derivatives on Γ need to be seen from Sh.
After summation over all cells T ∈ Ωh a global trace inequality and (4.2.12) yield

∥∇(u − πu)∥Ω ≤ chP

(
∥u∥H2(Ω1∪Ω2) + ∥πu∥H2(Ω1∪Ω2)

)
≤ chP ∥u∥H2(Ω1∪Ω2).

4.2.2 Interpolation

In this subsection, we will derive interpolation estimates for a Lagrangian interpolant
Ih. Let LT be the set of Lagrange points that belong to a cell T ∈ Ωh. In the case of a
linear interface approximation, it can happen that some of these lie on Γh, but not on Γ.
This means that there are elements with Lagrange points xi ∈ LT , that lie in different
sub-domains Ω1 and Ω2, see Figure 4.2. Defining the interpolant as Ihu = ∑

i∈LT
u(xi)

would lead to a poor approximation order (O(hP ) in the H1-norm), due to the discontinuity
of ∇u across Γ. Each such point xi lies, however, on a line between two points x∗

1 and

36



4 Discretization of elliptic interface problems

x∗
2 on Γ. We use a linear interpolation of the values u(x∗

1) and u(x∗
2) in order to define

Ihu(xi) := 1
2(u(x∗

1) + u(x∗
2)), see also [44] and Fig. 4.2 (right). We have the following

Γ Γ

x∗1

xi

x∗2

1

Figure 4.2: Interpolation operator at the interface Γ. Left: For second order interface
approximations we use the standard nodal interpolation for the interface. Right:
For linear interface approximations we replace the node xi in the middle of
the interface edge by the mean of the two adjacent corner nodes x∗

1 and x∗
2.

approximation properties for this modified Lagrangian interpolant.

Lemma 4.2.4 (Interpolation). Let u ∈ U :=
[
H1

0 (Ω) ∩ H3(Ω1 ∪ Ω2)] and ũ = πu ∈
H3(Ω1

h ∪ Ω2
h) the function resulting from the map π defined in (4.2.13). Moreover, we

assume that Γ is a smooth interface with C3-parametrization and that the interface is
approximated with second order in all elements T ∈ Ωh, except for at most nl elements,
where the interface approximation is linear. It holds for the Lagrangian interpolation
operator Ih : U → Vh that

∥∇m(u − Ihu)∥Ω ≤ ch2−m
P ∥u∥H2(Ω1∪Ω2), m = 0, 1 (4.2.16)

∥∇(ũ − Ihu)∥Ω ≤
(
cln

1/2
l | ln(h)|1/2 + cq

)
h2

P ∥u∥H3(Ω1∪Ω2). (4.2.17)

where cl and cq are generic constants that correspond to patches with a linear and a
quadratic interface approximation, respectively. For u ∈ W 2,∞(Ω1 ∪ Ω2) we have further

∥∇(ũ − Ihu)∥Ω ≤
(
cln

1/2
l + cq

)
h2

P ∥u∥W 2,∞(Ω1∪Ω2). (4.2.18)

Proof. For the prove of this Lemma see [46].
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4.2.3 A priori error estimate

We are now ready to prove the main result of this section. To this end, we introduce the
discrete energy norm as follows:

|||u − uh||| :=
(
∥ν1∇(ũ1 − u1

h)∥2
Ω1

h
+ ∥ν2∇(ũ2 − u2

h)∥2
Ω2

h

)1/2
,

where ũi are smooth extensions of ui = u|Ωi
to Ωi

h and ui
h := uh|Ωi

h
for i = 1, 2.

Theorem 4.2.5 (A priori estimate). Let Ω ⊂ R2 be a convex domain with polygonal
boundary, which is resolved (exactly) by the family of triangulations Ωh. We assume a
splitting Ω = Ω1 ∪ Γ ∪ Ω2, where Γ is a smooth interface with C3-parametrization and that
the solution u to (2.1.2) belongs to H3(Ω1 ∪ Ω2). Moreover, we denote by nl the maximum
number of elements K ∈ Ωh, where the interface is approximated linearly. For the locally
modified finite element solution uh ∈ Vh to (4.1.1) it holds

|||u − uh||| ≤
(

cln
1
2
l | ln(h)|1/2 + cq

)
h2

P ∥u∥H3(Ω1∪Ω2), (4.2.19)

∥u − uh∥Ω ≤
(

clnl| ln(h)|1/2 + cq

)
h3

P ∥u∥H3(Ω1∪Ω2). (4.2.20)

where cl and cq are generic constants that correspond to patches with a linear and a
quadratic interface approximation, respectively. If additionally u ∈ W 2,∞(Ω1 ∪ Ω2) we have
further

|||u − uh||| ≤
(

cln
1
2
l + cq

)
h2

P

(
∥u∥H3(Ω1∪Ω2) + ∥u∥W 2,∞(Ω1∪Ω2)

)
. (4.2.21)

Proof. (i) First, we have the following perturbed Galerkin orthogonality by subtracting
(4.1.1) from (2.1.2)

a(u, ϕh) − ah(uh, ϕh) = (f − fh, ϕh)Ω ∀ϕh ∈ Vh. (4.2.22)

We estimate the right-hand side in (4.2.22). The difference f − fh vanishes everywhere
besides on Sh. We have

(f − fh, ϕh)Ω = (f − fh, ϕh)Sh
≤ (∥f1∥Sh

+ ∥f2∥Sh
) ∥ϕh∥Sh

,

where fi denotes a smooth extension of f |Ωi
to Ω, i = 1, 2.

We split the region Sh into parts with a quadratic interface approximation Sh,qu and
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parts with a linear approximation Sh,lin. (4.2.6) and (4.2.7) yield

∥fi∥Sh,qu
+ ∥fi∥Sh,lin

≤ chP ∥f∥H1(Ω1∪Ω2) ≤ chP ∥u∥H3(Ω1∪Ω2)

and

∥fi∥Sh,qu
+ ∥fi∥Sh,lin

≤
(

ch
3
2
P + cn

1
2
l h

3
2
P | ln(h)|1/2

)
∥f∥H1(Ω1∪Ω2)

≤
(

ch
3
2
P + cn

1
2
l h

3
2
P | ln(h)|1/2

)
∥u∥H3(Ω1∪Ω2).

(4.2.23)

The second estimate yields

(f − fh, ϕh)Ω ≤ ch
3
2
P

(
1 + n

1
2
l | ln(h)|1/2

)
∥u∥H3(Ω1∪Ω2)∥ϕh∥Sh

.

(ii) For the energy norm estimate, we start by splitting into an interpolatory and a discrete
part

|||u − uh||| ≤ ∥ν
1/2
h ∇(ũ − Ihu)∥Ω + ∥ν

1/2
h ∇(Ihu − uh)∥Ω. (4.2.24)

The interpolatory part has already been estimated in Lemma 4.2.4. For the second term
in (4.2.24), we use the perturbed Galerkin orthogonality (4.2.22) with φh := Ihu − uh

∥ν
1/2
h ∇(Ihu − uh)∥2

Ω = (νh∇(Ihu − uh), ∇(Ihu − uh))Ω

= (νh∇Ihu − ν∇u, ∇(Ihu − uh))Ω + (f − fh, Ihu − uh)Ω. (4.2.25)

We split the first part in (4.2.25) further

(νh∇Ihu − ν∇u, ∇(Ihu − uh))Ω = (νh∇(Ihu − ũ), ∇(Ihu − uh))Ω

+ (νh∇ũ − ν∇u, ∇(Ihu − uh))Ω .
(4.2.26)

For the first part, we use (4.2.17) to get

(νh∇(Ihu − ũ), ∇(Ihu − uh))Ω ≤ ch2
P

(
n

1
2
l | ln(h)|1/2 + 1

)
∥u∥H3(Ω1∪Ω2)∥ν

1/2
h ∇(Ihu − uh)∥Ω.

(4.2.27)

The integrand in the second term on the right-hand side of (4.2.26) vanishes everywhere
besides on Sh. We obtain by the Sobolev imbedding H3(Ωi) ⊂ W 1,∞(Ωi), the continuity
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of the extension (4.2.12) and (4.2.4) and (4.2.3) from Lemma 4.2.2

(νh∇ũ − ν∇u, ∇(Ihu − uh))Ω = (νh∇ũ − ν∇u, ∇(Ihu − uh))Sh

≤ c
(
∥∇ũ∥Sh

+ ∥∇u∥Sh

)
∥ν

1/2
h ∇(Ihu − uh)∥Sh

≤ c|Sh|1/2∥u∥W 1,∞(Ω1 ∪ Ω2)h1/2
P ∥ν

1/2
h ∇(Ihu − uh)∥Sh

≤ ch2
P

(
n

1/2
l + 1

)
∥u∥H3(Ω1∪Ω2)∥ν

1/2
h ∇(Ihu − uh)∥Ω

(4.2.28)

For the second term in (4.2.25), we use (4.2.23) and (4.2.6)

(f − fh, Ihu − uh)Ω ≤ chP ∥u∥H3(Ω1∪Ω2)∥Ihu − uh∥Sh

≤ ch2
P ∥u∥H3(Ω1∪Ω2)∥ν

1/2
h ∇(Ihu − uh)∥Ω1∪Ω2 .

Combining the estimates, we obtain
∥∥∥ν 1

2
h ∇(Ihu − uh)

∥∥∥
Ω1∪Ω2

≤ ch2
P ∥u∥H3(Ω1∪Ω2)

This completes the proof of (4.2.19). The proof of (4.2.21) follows exactly the same lines,
with the only difference that we use (4.2.18) instead of (4.2.17) in (4.2.27) to get

(νh∇(Ihu − ũ), ∇(Ihu − uh))Ω ≤ ch2
P

(
n

1
2
l + 1

)
∥u∥W 2,∞(Ω1∪Ω2)∥ν

1/2
h ∇(Ihu − uh)∥Ω.

(4.2.29)

(iii) To estimate the L2 - norm error, we define the following adjoint problem. Let

z ∈ H1
0 (Ω) be the solution of

(ν∇φ, ∇z) = ∥eh∥−1(eh, φ)Ω ∀φ ∈ H1
0 (Ω).

The solution z lies in in H1
0 (Ω) ∩ H2(Ω1 ∪ Ω2) and satisfies

∥z∥H2(Ω1∪Ω2) ≤ cs.

By choosing φ = u − uh = eh and adding and subtracting νh∇uh, we have

∥eh∥ = (ν∇eh, ∇z)Ω = (ν∇u − νh∇uh, ∇z)Ω + ((νh − ν)∇uh, ∇z)Ω. (4.2.30)

For the second term in (4.2.30), we have

((νh − ν)∇uh, ∇z)Ω = ((νh − ν)∇uh, ∇z)Sh
≤ C (∥νh∇uh∥Sh

∥∇z∥Sh
) (4.2.31)

We split the first term on the right-hand side further and use the bound for the energy
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norm error as well as (4.2.7) (Lemma 4.2.2)

∥νh∇uh∥Sh
≤ ∥νh∇(uh − u)∥Sh

+ ∥ν∇u∥Sh

≤ c
(

n
1
2
l + 1

)
h

3/2
P ∥u∥H3(Ω1∪Ω2).

For the last term in (4.2.31), we obtain from (4.2.6) and (4.2.7)

∥∇z∥Sh,lin
≤ ch

3
2
P

(
n

1
2
l | ln(h)|1/2 + 1

)
∥z∥H2(Ω1∪Ω2) ≤ ch

3
2
P

(
n

1
2
l | ln(h)|1/2 + 1

)
,

∥∇z∥Sh,qu
≤ ch

3
2
P ∥z∥H2(Ω1∪Ω2) ≤ ch

3
2
P .

Altogether, we obtain for the second term in (4.2.30)

((νh − ν)∇uh, ∇z)Ω ≤ ch3
P

(
nl| ln(h)|1/2 + 1

)
∥u∥H3(Ω1∪Ω2). (4.2.32)

Concerning the first term in (4.2.30), we add and subtract the interpolant ∇Ihz, as well
as ±νhũ

(ν∇u − νh∇uh, ∇z)Ω = (ν∇u − νh∇ũ, ∇(z − Ihz))Ω + (νh∇(ũ − uh), ∇(z − Ihz))Ω

+ (ν∇u − νh∇uh, ∇Ihz)Ω.

(4.2.33)

For the first term on the right-hand side, we obtain as in (4.2.28)

(ν∇u − νh∇ũ, ∇(z − Ihz))Ω ≤ ch
3/2
P

(
n

1/2
l + 1

)
∥u∥H3(Ω1∪Ω2)∥ν

1/2
h ∇(z − Ihz)∥Sh

We estimate the latter norm using (4.2.6), (4.2.7) and (4.2.16)

∥ν
1/2
h ∇(z − Ihz)∥Sh

≤ ch
3/2
P

(
n

1/2
l | ln(h)|1/2 + 1

)
∥z − Ihz∥H2(Ω1∪Ω2)

≤ ch
3/2
P

(
n

1/2
l | ln(h)|1/2 + 1

)
.

The second term in (4.2.31) is easily estimated with the bound for the energy norm and
the interpolation error (4.2.16)

(νh∇(ũ − uh), ∇(z − Ihz))Ω ≤ c
(

n
1
2
l + 1

)
h3

P ∥u∥H3(Ω1∪Ω2).

For the third term in (4.2.33), we use the perturbed Galerkin orthogonality (4.2.22)

(ν∇u − νh∇uh, ∇Ihz)Ω = (f − fh, Ihz)Sh

≤ ∥f1 − f2∥Sh,lin
∥Ihz∥Sh,lin

+ ∥f1 − f2∥Sh,qu
∥Ihz∥Sh,qu

.
(4.2.34)
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For the first part in both terms, we use (4.2.6) and (4.2.7), respectively

∥f1 − f2∥Sh,lin
+ ∥f1 − f2∥Sh,qu

≤ ch
3
2
P

(
n

1
2
l | ln(h)|1/2 + 1

)
∥f∥H1(Ω1∪Ω2)

≤ ch
3
2
P

(
n

1
2
l | ln(h)|1/2 + 1

)
∥u∥H3(Ω1∪Ω2).

For the remaining terms in (4.2.34), it is sufficient to consider the smallness of |Sh|, a
Sobolev imbedding and the continuity of the extension (4.2.12)

∥Ihz∥Sh,lin
≤ |Sh,lin|

1
2 ∥Ihz∥L∞(Ω) ≤ cn

1
2
l h

3
2
P ∥z∥L∞(Ω) ≤ cn

1
2
l h

3
2
P ∥z∥H2(Ω1∪Ω2) ≤ cn

1
2
l h

3
2
P

∥Ihz∥Sh,qu
≤ |Sh,qu|

1
2 ∥Ihz∥L∞(Ω) ≤ ch

3
2
P .

Altogether this yields the following estimate for the term in (4.2.33), which completes the
proof of the L2-norm estimate

(ν∇u − νh∇uh, ∇z)Ω ≤ ch3
P

(
nl| ln(h)|1/2 + 1

)
∥u∥H3(Ω1∪Ω2).

Remark 4.2.1. (Energy norm) There are different possibilities to choose the energy norm
in Theorem 4.2.5. The result (4.2.19) could also be shown in the corresponding norm
defined on the continuous sub-domains Ω1 and Ω2

|||u − uh|||2 :=
(
∥ν1∇(u1 − ũ1

h)∥2
Ω1 + ∥ν2∇(u2 − ũ2

h)∥2
Ω2

)1/2
, (4.2.35)

where ui = u|Ωi
and ũi

h denote the canonical extensions of ui
h := uh|Ωi

h
to Ωi. If one would

consider the norm

|||u − uh|||3 := ∥ν
1/2
h ∇(u − uh)∥Ω (4.2.36)

a reduced order of convergence, namely O(h
3
2
P ) would result, even for a fully quadratic

interface approximation (nl = 0). The reason is that ∇u shows a discontinuity across
Γ, while ∇uh is discontinuous across the discrete interface Γh. Hence, the error in the
gradient is O(1) in the strip Sh between the interfaces, which is of size |Sh|1/2 = O(h3/2

P ).
This bound is already optimal in the estimate for ∥∇(u − πu)∥Ω in (4.2.15).

We have chosen the discrete energy norm |||u − uh||| in Theorem 4.2.5, as this is the
only norm, which can be easily evaluated by numerical quadrature. A quadrature formula
that evaluates the norms (4.2.35) or (4.2.36) accurately would need to resolve the strip Sh,
which is non-trivial. Any standard approximation, such as a summed midpoint rule would
lead to an additional quadrature error of O(h3/2

P ), which would dominate the overall error.
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Remark 4.2.2. (Regularity) We have assumed the regularity u ∈ H3(Ω1 ∪ Ω2) (resp. u ∈
W 2,∞(Ω1 ∪ Ω2)) in Theorem 4.2.5. This is guaranteed if both sub-domains Ω1 and Ω2

are smooth (precisely W 3,∞) and the right-hand side has regularity f ∈ H1(Ω1 ∪ Ω2)
(resp. f ∈ L∞(Ω1 ∪ Ω2)). In this work, the overall domain Ω is assumed polygonal in
order to avoid additional technicalities associated with the approximation of exterior curved
boundaries. For the latter, we refer to the literature, for example [21].

4.3 Numerical examples

The second order parametric finite element method is based on the finite element framework
Gascoigne 3d [18]. The source code is freely available at https://www.gascoigne.de
and published as zenodo repository [24]. For reproducibility of the numerical results,
the following two configurations are implemented and described in a separate zenodo
repository [84].

Example 1

We consider a square domain Ω = (0, 2)2. The domain is split into two domains Ω1 and Ω2

by the interface Γ. The interface is defined as Γ{(x, y) ∈ Ω | l(x, y) = 0} with the level-set
function l(x, y) = y − 2(x + δh)2 + 0.5, where δ ∈ [0, 1] and h is the mesh size. We take
ν1 = 4 and ν2 = 1 and choose the exact solution as follows

u(x, y) =


1
ν1

sin(l), in Ω1,

1
ν2

sin(l), in Ω2,

and define a right-hand side fi = −νi∆u and Dirichlet boundary data. We vary δ ∈ [0, 1],
such that this example includes different configurations with arbitrary anisotropies. The
configuration and the exact solution for this example are shown in Figure 4.3. In this

Figure 4.3: Left: Configuration of the test problem. Right: Sketch of the exact solution

example the interface could be resolved with second order on all refinement levels and for
all δ ∈ [0, 1] (nl = 0). Table 4.1 shows the discrete energy norm error |||u − uh||| and the
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L2-norm error as well as estimated convergence orders on several levels of global mesh
refinement for the fixed parameter δ = 0. According to the a priori error estimate in
Theorem 4.2.5, we observe fully quadratic convergence in the discrete energy norm and
fully cubic convergence in the L2 - norm. In Figure 4.4, we plot the L2-norm error for

h L2 - error EOC energy error EOC

1/32 3.43 · 10−4 - 4.19 · 10−2 -
1/64 4.24 · 10−5 3.014 1.04 · 10−2 2.002
1/128 5.28 · 10−6 3.005 2.61 · 10−3 2.001
1/256 6.59 · 10−7 3.003 6.52 · 10−4 2.001

Table 4.1: Example 1. Errors in the L2 - norm and the discrete energy - norm, including
an estimated order of convergence which is computed from two consecutive
values in each row for Example 1 and δ = 0.

δ ∈ [0, 1] and the discrete energy norm error on several levels of global mesh refinement
and observe that the error is bounded independently of δ.

In Figure 4.5, we show how the condition number depends on the parameter δ ∈ [0, 1]
by moving the interface. We get the largest condition numbers at δ ≈ 0.84. Furthermore,
we show a zoom-in of the numbers for δ ∈ [0.83; 0.85] in Figure 4.5, right. We see that the
condition number is reduced by a factor of 100 using a scaled hierarchical basis, but that
is not necessarily bounded for arbitrary anisotropies.

||u− uh||

h =
1

128

h =
1

64

h =
1

32

10.80.60.40.20

3.4e-04

4.3e-05

5.3e-06

||| u− uh |||

h =
1

128

h =
1

64

h =
1

32

10.80.60.40.20

4.2e-02

1.0e-02

2.6e-03

Figure 4.4: Example 1. L2 - norm and discrete energy - norm errors for Example 1 with
x = 1.0 + δh and δ ∈ [0, 1].
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Hierarchical scaled basis

Lagrange basis

10.840.70.60.40.20

1× 106

100000

10000

1000

100

Hierarchical scaled basis

Lagrange basis

0.850.8420.840.83

1× 109

1× 108

1× 107

1× 106

100000

10000

1000

Figure 4.5: Condition number of the stiffness matrix depending on the position of the inter-
face δ. Comparison of the standard Lagrangian basis and a scaled hierarchical
basis for h = 1/32. Left: δ ∈ [0, 1]. Right: Zoom-in for δ ∈ [0.83, 0.85].

Example 2

We consider a square domain Ω = (0, 2)2 that is split into a ball Ω1 = Br(x0, y0) with r = 0.3
and (x0, y0) = (1 + δh, 1.2), where δ ∈ [0, 1], and Ω2 = Ω \ Ω̄1. We take the exact solution
as in example 1, with the level set function replaced by l(x, y) = (x − x0)2 + (y − y0)2 − r2.
In Figure 5.14 we show the configuration and the exact solution for this example. For
different δ ∈ [0, 1], this example includes all configurations A-E with different anisotropies.
The L2−norm and the discrete energy norm errors are shown in Figure 4.7 and Figure 4.8,

Ω1
Γ

Ω2

Figure 4.6: Left: Configuration of the test problem. Right: Sketch of the exact solution

respectively, for δ ∈ [0, 1] on several levels of global mesh refinement. We observe
convergence in both norms for all δ ∈ [0, 1]. The errors vary slightly depending on δ. Its
magnitude depends mainly on the number of linearly approximated elements (nl): We
have nl = 0 for δ = 0 on all mesh levels, while nl > 0 for all other values of δ. The errors
increase from δ = 0 to δ = 0.01, as nl increases from 0 to 8. Moreover, the number of
linearly approximated elements increases once more from nl = 8 to nl = 16 for h = 1/64
and h = 1/256 in the range δ ∈ [0.74, 0.81] resp. δ ∈ [0.8, 0.81]. Again, we observe
a slight increase in the magnitude of the error within this range. This indicates that
the constant cln

1/2
l corresponding to the linearly approximated part in (4.2.21) is larger

than the constant cq arising from the quadratically approximated elements. Table 4.2,
Table 4.3 and Table 4.4 show the L2-norm and the discrete energy norm errors obtained
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Figure 4.7: Example 2: L2-norm error depending on x = 1.0 + δh with δ ∈ [0, 1].
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Figure 4.8: Example 2: Discrete energy-norm error depending on x = 1.0 + δh with
δ ∈ [0, 1].

on several levels of global mesh refinement for the fixed positions x0 = 1.0 + δ0
64 of the

midpoint, with δ0 ∈ {0, 0.01, 0.8}, which results in three different cases (nl = 0, nl = 8
and nl = 16) for h = 1/64. In Table 4.2 (δ0 = 0) we observe fully quadratic (resp. cubic)
convergence in the discrete energy norm (resp. the L2-norm) as shown in Theorem 4.2.5,
as no linearly approximated elements are present. This changes slightly for the other
values of δ0, see Table 4.3 and Table 4.4. In Table 4.3 (δ0 = 0.01), we see that 8 linearly
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4 Discretization of elliptic interface problems

h L2 - error EOC energy error EOC

1/32 7.61 · 10−6 - 1.54 · 10−3 -
1/64 8.18 · 10−7 3.217 3.63 · 10−4 2.089
1/128 9.41 · 10−8 3.119 8.83 · 10−5 2.039
1/256 1.12 · 10−8 3.064 2.17 · 10−5 2.021

Table 4.2: Example 2. L2 - norm and discrete energy - norm errors, and convergence order
for δ0 = 0 (nl = 0).

approximated elements were required on all mesh levels. The convergence order in the
discrete energy norm seems to be fully quadratic (according to (4.2.21)), while in the
L2-norm error the logarithmic factor ln(|h|)1/2 leads to a slightly reduced convergence, as
predicted in Theorem 4.2.5. For δ0 = 0.8, the number nl varies between 8 and 16, see

h L2 - error EOC energy error EOC PN nl

1/32 2.10 · 10−5 - 1.80 · 10−3 - 18 8
1/64 2.73 · 10−6 2.942 4.29 · 10−4 2.066 36 8
1/128 3.61 · 10−7 2.919 1.05 · 10−4 2.028 76 8
1/256 4.78 · 10−8 2.919 2.60 · 10−5 2.015 154 8

Table 4.3: Example 2. L2- and discrete energy - norm errors for δ0 = 0.01, including
estimated convergence orders obtained from two consecutive values. PN denotes
the number of patches which are cut by the interface and nl the number of
linearly approximated elements.

Table 4.4. This is again reflected in the magnitude of the error: The reduction factor
lies below 4 in the energy norm, and below 8 in the L2-norm error when nl increases and
above 4 resp. 8 when nl decreases. This shows again that the term cln

1/2
l ln(|h|)1/2 in front

of the linearly approximated part is larger than the constant cq in front of the quadratic
counterpart. For δ0 = 0.8 and hP = 1

32 , we show the resulting finite element mesh in Figure

h L2 - error EOC energy error EOC PN nl

1/32 2.15 · 10−5 - 1.83 · 10−3 - 18 8
1/64 4.14 · 10−6 2.377 5.14 · 10−4 1.833 36 16
1/128 3.74 · 10−7 3.465 1.09 · 10−4 2.233 76 8
1/256 7.17 · 10−8 2.384 3.16 · 10−5 1.790 152 16

Table 4.4: Example 2. L2 and discrete energy - norm errors, including an estimated
convergence order for δ = 0.8.

4.9, where in 8 of the 18 patches, which are cut by the interface, a linear approximation
was required, including a zoom around one linearly approximated patch on the right. In
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4 Discretization of elliptic interface problems

Figure 4.9: Example 2. Left: Illustration of the sub-elements for h = 1/32 and δ = 0.8.
Right: Zoom of the upper part with linearly approximated elements (top right).

Figure 4.10 we show how the condition numbers depend on the parameter δ ∈ [0, 1] when
moving the interface. We get the largest condition numbers at δ ≈ 0.04 for h = 1/32 and
at δ ≈ 0.07 for h = 1/64, respectively. The condition numbers are again reduced by a
factor of approx. 100 for the scaled hierarchical basis compared to the standard Lagrangian
basis.
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Figure 4.10: Example 2. Condition number of the stiffness matrix depending on the
displacement of the circle. Comparison of the Lagrange and hierarchical
scaled basis for h = 1/32 (left) and h = 1/64 (right).
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Chapter 5: Discretization of two-phase flow problems

5.1 Stokes interface problem and stability analysis

In this section, we analyze a stationary Stokes interface problem (2.3.1) without surface
tension. We consider the following linear Stokes model problem

−∇ · (νi ∇u) + ∇p = f , ∇ · u = 0 in Ωi, i = 1, 2,

JuK = 0, J(ν ∇u − p I) nK = 0 on Γ,

u = 0 on ∂Ω,

(5.1.1)

where JwK := (w|Ω2)|Γ − (w|Ω1)|Γ and a discontinuous viscosity coefficient ν is defined as
follows:

ν =

ν1, in Ω1

ν2, in Ω2.

For the velocity field we use the space V = H1
0 (Ω)2 and for the pressure, we define the

space
L :=

{
q ∈ L2(Ω) :

∫
Ω

ν−1q dx = 0
}

.

The corresponding norms for any u ∈ V and p ∈ L as follows:

∥∇u∥ν := (ν∇u, ∇u) 1
2 , ∥p∥ν := (ν−1p, p) 1

2 .

The weak form of the Stokes interface problem (5.1.1) reads:
Find (u, p) ∈ V × L such that

A(u, p)(φ) = (f , φ) ∀ φ ∈ V

(∇ · u, ϕ) = 0 ∀ ϕ ∈ L
(5.1.2)

where
A(u, p)(φ) := (ν∇u, ∇φ) − (∇ · φ, p) .

For the discretization, we apply locally modified second order finite elements for velocity,
which are introduced in chapter 3 and piecewise constant finite elements for pressure.
First, we prove the stability of the locally modified finite element pair P2 − P0 for the
Stokes interface problem. The technique used to check the stability is a macroelement
technique. In other words, the stability is tested by checking local stability and a relatively
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5 Discretization of two-phase flow problems

simple global stability. Furthermore, we prove optimal error estimates in the L2-norm and
sub-optimal estimations in an energy norm for the Stokes interface problems. Also, we
present numerical examples to substantiate the analytical results.

Literature review
Finite element pairs, which satisfy the discrete inf-sup condition for the discrete Stokes
problem are known for isotropic meshes, see, e.g., [40] and [93]. Reusken and Olshanskii
in [79] analyzed a Stokes interface problem and showed the inf-sup result for the discrete
problem that is uniform with respect to the jump in the viscosity coefficient. Moreover,
the authors derived a robust estimate for the discretization error. Lehrenfeld in [73]
presented a higher order unfitted finite element method, which is based on a Taylor-Hood
P2 − P1 velocity-pressure pair for the Stokes interface problem and used a ghost penalty
stabilization to obtain the inf-sup stability. Hansbo and others in [62] used a cut FEM for
the Stokes interface problems and they proposed to use a Nitsche formulation to allow
discontinuities along the interface.

The stability of the mixed finite element method for incompressible flow on meshes
containing anisotropically refined elements has attracted considerable attention in the
literature. Many authors intensively discussed such kind of problems with non-conforming
and conforming methods. Some results on stability of velocity-pressure pairs on anisotropic
meshes for non-conforming methods are given by Apel et al. in [4, 6, 7] and by Rannacher
and Turek in [82]. The stability proof for the element pair P+

k − Pk−1 is given by Apel
and Matthies in [6].

Some of the first results for conforming methods start with Becker and Rannacher
in [19]. In this paper, the authors introduced stabilized Q1 − P0 and Q1 − Q1 elements
on anisotropic meshes and proved the inf-sup condition with a constant independent
of the aspect ratio. Schötzau, Schwab and Stenberg in [85] consider Qk − Qk−2 and
Pk − Pk−2, k ≥ 2 elements for the hp-version of the finite element method, in particular
Q2 − P0 rectangular element. They showed that for boundary layer patches the inf-sup
constant does not depend on aspect ratio, but only on a polynomial order. The case for
the corner patch has to be treated carefully. Therefore, in this case, the authors advised
to use geometric tensor product meshes near corners and proved the stability for this.
Another related study is presented by Apel and Nicaise in [90], where they proved the
inf-sup condition for Bernardi/Raugel elements on anisotropic meshes. Furthermore, a
pressure stabilization on anisotropic meshes has been studied for the pressure-stabilized
Petrov-Galerkin method by Apel et al. [5]. In [14], Barrenechea and Wachtel proved a
uniform inf-sup condition for the lowest-order Taylor–Hood pairs Q2 − Q1 and P2 − P1

on a family of affine anisotropic meshes.
These results were refined in a paper [2] by Ainsworth and Coggings. They considered

the finite element pair with smaller velocity space such that Qk+max {µk,1},k − Pk−1, with
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5 Discretization of two-phase flow problems

a fixed constant µ ∈ [0, 1]. It was shown that the stability constant depends only of the
polynomial order and µ. They did not consider a geometric tensor product mesh in the
corner patch. The mesh is constructed by using layer and corner macroelements for a
general polygonal domain Ω. Moreover, Ainsworth and others in [1] presented Qk+1 − Pk−1

mixed finite elements and showed how to suppress the spurious pressure modes in order to
restore the stability and presented two results. In the first result it was shown that the
approximation properties of the constrained pressure space and the unconstrained pressure
space are essentially identical. Thus, it gave the minimal constraints on the pressure space
needed to restore stability with respect to aspect ratio. The second result showed that the
stabilized finite element scheme is robust with respect to the aspect ratio of the elements.

5.1.1 Locally modified finite element spaces and discrete weak form

Let TP be a fully structured quadrilateral patch mesh. Each patch P ⊂ TP is split into
either 4 smaller quadrilaterals (when P is not cut by the interface) or into 8 triangles,
according to the type of the cut, see Figure 5.1. We call P ∈ TP the patches, K ∈ P the
elements of Th which is the mesh consisting of all triangles. For each K ∈ Th we denote by
ΛK : K̂ → K the reference map, where K̂ is the unit triangle.

On Th we define V h ⊂ V for the discrete velocities, Lh ⊂ L2(Ω) for the discrete pressure
as follows:

V h := {φ ∈ [C(Ω)]2 | (φ ◦ Λ−1
K ) ∈ [P2

K(K̂)]2 for K ∈ Th, φ = 0 on ∂Ω},

Lh := {ϕ ∈ L2
0(Ω) | ϕ ∈ P0

K(K) for K ∈ Th}.
(5.1.3)

Moreover, we define

V 1
h := {φ ∈ C(Ω) | (φ ◦ Λ−1) ∈ [P1

K(K̂)]2 for K ∈ Th, φ = 0 on ∂Ω}, (5.1.4)

a space that will also be used later. We distinguish five configurations for the patches
which are cut by the interface, see Figure 5.1. Note that depending on the parameters
r, s ∈ (0, hP ) the patches can include highly anisotropic triangles.

hP

hP

s

r

s

r

s

r

s

1

Figure 5.1: Illustration of patches P cut by interface. The red dashed line is the interface.
The parameters r and s can take all values between 0 and hP .
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5 Discretization of two-phase flow problems

Lemma 5.1.1 (Maximum-angle condition). We assume that the patch grid TP is Cartesian,
consisting of patches with size hP × hP . For all types of the interface cuts, the interior
angles of all subelements are bounded by 127◦ independently of the parameters r, s ∈ (0, hP ).

Proof. The proof is given in Chapter 3, see Theorem 3.1.2.

This maximum angle condition allows us to define robust Lagrangian interpolation
operators Ihu : H2(K) ∩ C(K̄) → V h with accurate error estimates

∥u − Ihu∥K ≤ c1 h2
K,max ∥∇2u∥K , (5.1.5)

∥∇(u − Ihu)∥K ≤ c2 hK,max ∥∇2u∥K . (5.1.6)

where c1, c2 are positive constants and hK,max is the maximum diameter of a triangle
K ∈ P (see e.g. [3]). The interpolation error estimates are robust with respect to the
maximum diameter hK,max ≈ hP that is of the same order as the diameter of the patches
P .

Discrete weak form
The discrete formulation reads: Find (uh, ph) ∈ Vh × Lh ⊂ V × L such that

Ah(uh, ph)(φh) = (fh, φh) ∀ φh ∈ V h

(∇ · uh, ϕh) = 0 ∀ ϕh ∈ Lh

(5.1.7)

where fh|Ωi
h

:= f i, i = 1, 2 and f i is a smooth extension of f |Ωi
to Ωi

h.
The bilinear form is given by

Ah(uh, ph)(φh) := (ν∇uh, ∇φh) + δν (∇uh, ∇φh)Sh
− (∇ · φh, ph)

where Sh = S1
h ∪ S2

h, Si
h is the mismatch between Ωi

h and Ωi i = 1, 2 (see Figure 4.1)

S1
h := Ω1

h \ Ω1 = Ω2 \ Ω2
h,

S2
h := Ω2

h \ Ω2 = Ω1 \ Ω1
h.

and δν defined as follows

δν =

ν1 − ν2, x ∈ S1
h

ν2 − ν1, x ∈ S2
h.

5.1.2 Macroelement technique

The aim of the macroelement approach consists in reducing the global proof of the discrete
inf-sup condition to the proof of a local version of it. The idea behind localizing the
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5 Discretization of two-phase flow problems

discrete stability condition was introduced by Boland and Nicolaides [22] and Stenberg [89].
In this work, we use the approach of Boland and Nicolaides and follow [90] and [85].
For that we use a two-level family of meshes, i.e. micro- and macrotriangulation. The
macrotriangulation TM is a splitting of the domain into quadrilateral macroelements.
Further, we assume that macroelements are isotropic. The microtriangulation Th is the
splitting of the domain into triangular elements that has been introduced above. Each
macroelement M ∈ TM is a collection of triangles K ⊂ TM such that M is isotropic. We
define a two-level family of meshes as shown in Figure 5.2.

• The micro-triangulation Th:
Ω̄ =

⋃
T ∈Th

T̄

• The macro-triangulation TM :
Ω̄ =

⋃
M∈TM

M̄

Figure 5.2: Left (microtriangulation): Mesh consisting of four patches, three of which are
cut by the interface (red line). Right (macrotriangulation): Macroelement
partitions of the patches which are cut or not cut by the interface.

For each macroelement M ∈ TM we define the spaces

V h(M) := {uh ∈ V h : uh = 0 in Ω \ M},

Lh(M) := {ph ∈ Lh :
∫

M
ph dx = 0, ph = 0 in Ω \ M}.

(5.1.8)

5.1.3 Types of the macroelements

We distinguish seven configurations A - G for the patches and corresponding types of
macroelements. We note that depending on the interface-cut, the patches can include
highly anisotropic triangles.
Depending on the configuration we determine two different ways for splitting a patch
P ∈ TP into macroelements M ∈ TM :

• Macroelements: A, B, F, G. The patch P is not split, therefore the macroelement
is the entire patch M = P . In the configurations A and B the macroelement consists
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5 Discretization of two-phase flow problems

of isotropic triangles T ∈ Th only, see Figure 5.3. But in cases F and G, the
macroelement might contain anisotropic triangles.

• Macroelements: C, D, E. The patch P is split into two or three isotropic
quadrilaterals. In cases C and D from Figure 5.3 we split the patch P into two
rectangular macroelements M1, M2 so that the new inner edge em = ∂M1 ∩ ∂M2

meets the boundary of P only in P ’s edges that are not intersected by the interface,
see Figure 5.3 (bottom). The case E is split into three isotropic macroelements as
shown in Figure 5.3 (bottom).

A B C D E F G

Figure 5.3: Illustration of configurations A - G. The upper row shows the microtriangu-
lation Th depending on the interface location and the lower row the splitting
into macroelements used for inf-sup stability. The red line is the interface.

Depending on the configuration, the macroelements can include isotropic and anisotropic
triangular elements, see Figures 5.1 and 5.3.

Macroelements of isotropic elements. In the following two cases we observe macroelements
with isotropic elements only:

• All macroelements which are not cut by interface, configuration A in Figure 5.3, see
also Figure 5.2.

• Configuration B from the Figure 5.3.

Macroelements of anisotropic elements. The configurations C - G in Figure 5.3 which
depend on the parameters r and s can include anisotropic elements, see Figures 5.4 and
5.5. Hence, we need to be carefully by defining the macroelements.

Lemma 5.1.2 (Macroelement). The macroelements mesh TM has the following properties:
For each M ∈ T M of type A–F

• M is an union of at least two triangles T ∈ Th that share a common edge

• If M contains an anisotropic triangle T ∈ M , its shortest edge is on the boundary of
M
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5 Discretization of two-phase flow problems

• If T ∈ M is anisotropic with dimensions hmin × hmax, where hmin < hmax, the
complete triangle is close, O(hmin), to the boundary of the macroelement.

Proof. We present in Figure 5.4 the macroelements C - F which contain the anisotropic
elements depending on the interface. As we see, all shortest edges of the anisotropic
triangles lie on the boundary of the macroelement. Moreover, as shown in the first and
third macroelements in Figure 5.4, there are some anisotropic triangles with two long
edges which are not on the boundary of the macroelement. However, these anisotropic
triangles lie close to the boundary of the macroelement.

C: s → 0 C: s → hP D: r → hP , s → 0 D: r, s → 0 E: r → 0, s → hP F: r → 0, s → 0

Figure 5.4: Illustration of macroelements C - F which are included the anisotropic elements
(red filled).

Remark 5.1.1 (A special case for macroelement G). In Figure 5.5, we see the macroele-
ment G which is the entire patch. The macroelement G contains one anisotropic triangle
whose shortest edge lies on the boundary of the macroelement. However, there are two
anisotropic triangles whose shortest edges γ1 and γ2 do not lie on the boundary of the
macroelement. In this case we use an edge stabilisation on these edges. For further details
see also Remark 5.1.3 and Lemma 5.1.5.

γ1

γ2

G: r → hP , s → 0

Figure 5.5: Illustration of macroelement G which is included the anisotropic elements (red
filled).
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5.1.4 Local stability

We show the stability locally for each macroelement. We denote a local parametrization of
the interface on the patch by γ and its linear approximation by γh. Furthermore, α and δ

are the angle and maximum distance between the interface and linear approximation of the
interface, respectively. For the notations see Figure 5.6. As we mentioned in Section 3.2.2,
the maximum distance δ between the interface and the linear interface approximation is
bounded by O(h2

P ).

Remark 5.1.2. As the interface satisfies γ ∈ C2 and δ = O(h2
P ), we observe that δ → 0

and α → 0 when h → 0. It holds

|γ′(0)| ≤ h max |γ′′| ≤ h Cγ,

where Cγ is the constant. Thus, we can use for the stability proof the illustration from
Figure 5.1 where the patch is cut by the straight line as an interface.

δ

γ(0) = 0

γ(hP ) = 0

γ hγ
′ (ξ)

=
0

α

hP

h
P

Figure 5.6: Illustration of the patch with the size hP × hP . The local parametrization of
the interface γ (green line) and its linear approximation γh (dashed red line).

On the macroelement M ∈ TM we consider the local spaces V h(M) and Lh(M),
see (5.1.8). Furthermore, we define on M ∈ TM the local space of piecewise linear functions
as follows

V 1
h(M) := {u ∈ V 1

h : u = 0 in Ω \ M},

where V 1
h is the space of linear velocities, see (5.1.4). To show the stability in the

macroelements A - F, we construct for each macroelement a Fortin operator. For each
macroelement M we define V (M) = H1

0 (M)2.

Definition 5.1.1 (A possible construction of a Fortin Operator). We construct a linear
Fortin operator ΠM : V (M) → V h(M) with help of two linear operators
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5 Discretization of two-phase flow problems

CM : V (M) → V 1
h(M) which maps into the space of piecewise linear functions, and

EM : V (M) → V h(M) satisfying the following conditions:

∥∇CMu∥M ≤ c1 ∥∇u∥M ∀ u ∈ V (M) (5.1.9)
∥EM(u − CMu)∥M ≤ c2 ∥∇u∥M ∀ u ∈ V (M) (5.1.10)

(∇ · (u − EMu), ph)M = 0 ∀ph ∈ Lh(M), ∀ u ∈ V (M), (5.1.11)

where c1, c2 > 0 are constants independent of the mesh size. Then the Fortin operator is
defined by

ΠMu := CMu + EM(u − CMu). (5.1.12)

The construction of the operators CM and EM will be given in the following. First, we
show that ΠM is indeed a Fortin operator.

Lemma 5.1.3 (A Property of the Operator (5.1.12)). The operator ΠM : V (M) → V h(M)
defined in (5.1.12) satisfies the Fortin criterion

∥∇ ΠM u∥M ≤ c ∥∇u∥M ∀ u ∈ V (M), (5.1.13)
(∇ · ΠMu, ph)M = (∇ · u, ph)M ∀ph ∈ Lh(M), ∀ u ∈ V (M). (5.1.14)

Thus, the local set of spaces V h(M) − Lh(M) is stable.

Proof. (i) The estimation (5.1.13) is obtained by applying the triangle inequality and
using (5.1.9) and (5.1.10)

∥∇ ΠM u∥M ≤ ∥∇ CM u∥M + ∥EM(u − CMu)∥M ≤ c1 ∥∇u∥M + c2 ∥∇u∥M = c ∥∇u∥M ,

with c = c1 + c2.
(ii) It is easy to check that (5.1.14) holds. Using (5.1.11) we have

(∇ · ΠMu, ph)M = (∇ · CMu, ph)M + (∇ · EM(u − CMu), ph)M

= (∇ · CMu, ph)M + (∇ · (u − CMu), ph)M

= (∇ · u, ph)M .

Only the macroelements A, B, F and G have one inner corner point of a triangle.
Hence, for types C, D, E it holds

CMu = 0

for all u ∈ V (M) as CMu ∈ V 1(M) is linear.

57



5 Discretization of two-phase flow problems

The remaining case A, B, F and G have one inner node only. In the following we will
call it xm ∈ M and ω := {K ∈ M | xm ∈ ∂K} is the patch of elements containing this
point.

Definition 5.1.2 (Construction of the Clément Interpolation). Let u ∈ V (M). We define
the Clément type operator CM : V (M) → V 1

h(M)

CM u := πω(u) φω, πω(u) := |ω|−1
∫

ω
udx, (5.1.15)

where φω is the basis function of the degree of freedom xm, for the notations see Figure 5.7.

xm

Figure 5.7: Illustration of the notation for the patch ω.

Definition 5.1.3 (Construction of the operator EM). Let u ∈ V (M). We define the
linear operator EM : V (M) → V h(M) by the conditions

EM u|T (xi) = 0,
∫

σi

EM u · ni ds =
∫

σi

u · ni ds, ∀T ∈ M, (5.1.16)

where xi and σi for i = 1, 2, 3 are the vertices and the edges of the triangle T , respectively.
For the notations see Figure 5.8. Then we can construct the operator EM as follows

EM u =
3∑

i=1
χi(u) φini, χi(u) = 1∫

σi
φi ds

∫
σi

u · ni ds, (5.1.17)

with the Lagrange basis functions φi attached to the three edges σi.

σ
3

σ2

σ1
T

x3 x2

x1

n
2

n3

n 1

Figure 5.8: Illustration of the notation for one triangle T ∈ M
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Stability of Macroelements
We show the stability for the different types of macroelements from Figure 5.3 separately.

Macroelements (A, B). In this case, the patch P is not split. The macroelement of
type A, B is the entire patch M = P .

Lemma 5.1.4 (Local inf-sup stability in macroelements of type A, B). Let M be any
macroelement of configurations (A, B). Then the operator ΠM is the Fortin type operator
and well defined for u ∈ V (M), we have

∥∇ ΠM u∥M ≤ c ∥∇u∥M ∀ u ∈ V (M), (5.1.18)

(∇ · (u − ΠMu), ph)M = 0 ∀ph ∈ Lh(M), ∀ u ∈ V (M). (5.1.19)

Thus, the local set of spaces V h(M) − Lh(M) for all M of the configurations (A, B) is
stable.

Proof. Since all elements of the macroelement types A, B are isotropic, the stability
results in this case are well known, see, e.g. [93]. The idea is to construct a Fortin operator
by using the Clément interpolation to treat nodal values.

Macroelements (C, D, E). We denote by M ∈ TM one of the macroelements
corresponding to the configurations C, D or E in Figure 5.3. We note that all non-
vanishing velocity degrees of feedom of a function uh ∈ V h(M) are on inner edges σ that
belong to triangles σ ∈ ∂T making up the macroelement M . All corner points lie on the
boundary of the macroelement where u = 0 and thus CMu = 0. Then we construct an
interpolation operator ΠM from definition 5.1.1 only with the EM operator in 5.1.12 as
follows:

ΠM u = EMu, (5.1.20)

where the operator EM is defined in definition 5.1.3.

Lemma 5.1.5 (Local inf-sup stability in macroelements of type C, D, E). Let M be any
macroelement of the configurations (C, D, E). Then the operator EM is the Fortin type
operator and well defined for u ∈ V (M), we have

∥∇ EM u∥M ≤ c ∥∇u∥M ∀ u ∈ V (M), (5.1.21)

(∇ · (u − EMu), ph)M = 0 ∀ph ∈ Lh(M), ∀ u ∈ V (M). (5.1.22)

Thus, the local set of spaces V h(M) − Lh(M) for all M of the configurations (C, D, E)
is stable.

Proof. (i) By noting that ph is the pieceweise constant and using the construction of EM
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in (5.1.16), we can easily show the orthogonality condition:

(∇ · (u − EMu), ph)M =
∑

T ∈M

−(u − EMu, ∇ph︸ ︷︷ ︸
=0

)T + ⟨n · (u − EMu), ph⟩∂T︸ ︷︷ ︸
=0

 = 0

for all u ∈ V (M) and ph ∈ Lh(M).

(ii) It remains to show the stability estimate (5.1.21). For this, we use the interpolation
operator EM from Definition 5.1.3 such that

EM u =
3∑

i=1

(
1∫

σi
φi ds

∫
σi

u · ni ds

)
φini.

Here, we only discuss the case of anisotropic triangles, they are filled in red in Figure 5.4.
For the isotropic triangles it can be shown with standard technique from the literature,
i.e. [93].

y

x

σ
3

u
=

0

u = 0

σ2

σ
1

T

Figure 5.9: Illustration of the notation for the anisotropic triangle T , with two edges σ2, σ3
that lie on the boundary of the macroelement.

We denote the smallest edge of the anisotropic triangle by |σ2| = hmin and observe

∥∇φi∥T ≤ h−1
min

√
|T |.

First, we only consider the anisotropic triangles, where σ2 and σ3 lie on ∂M with u = 0,
see Figure 5.9. The remaining case, appearing in configurations C and D is discussed
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below. It holds

∥∇ EM u∥T ≤ h−1
min

√
|T |

∣∣∣∣∣
3∑

i=1

1
|σi|

∫
σi

u · ni ds

∣∣∣∣∣ = h−1
min

√
|T | 1

|σ1|

∣∣∣∣∫
σ1

u · n1 ds

∣∣∣∣
≤ h−1

min

√
|T | |σ1|−1

∣∣∣∣∣∣
∫

σ1
u · n1 ds +

∫
σ2

u · n2︸ ︷︷ ︸
=0

ds +
∫

σ3
u · n3︸ ︷︷ ︸

=0

ds

∣∣∣∣∣∣
≤ h−1

min

√
|T | |σ1|−1

∣∣∣∣∫
∂T

u · n ds
∣∣∣∣ ≤ h−1

min

√
|T | |σ1|−1

∣∣∣∣∫
T

∇ · u dx
∣∣∣∣

Then with |T | = O(|σ1| · hmin) we obtain

∥∇ EM u∥T ≤ 1
|σ1|

·

√
|T |

hmin

·
√

|T | ||∇u||T ≤ c ||∇u||T . (5.1.23)

As shown in Figure 5.10, the macroelement belonging to configurations C or D can contain
two anisotropic elements T1 and T2. The anisotropic triangle T1 is treated as above. We
note that the anisotropic triangle T2 consists of two long edges σ1 and σ3 which do not
lie on the boundary of the macroelement, see Figure 5.10, the triangle T2. In this case,
we can still use the above estimate by noting that the shortest edge σ2 of the anisotropic
triangle T2 lies on ∂M where u = 0.

σ3

σ1

h
m
in

|σ
2
|=

h
m
in

hmax

T2

T1

Figure 5.10: Macroelement with two anisotropic elements T1 and T2.
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It holds

∥∇ EM u∥T2 ≤ h−1
min

√
|T2|

∣∣∣∣∣
3∑

i=1

1
|σi|

∫
σi

u · ni ds

∣∣∣∣∣
≤ h−1

min

√
|T2|

1
min{|σ1|, |σ3|}

(∣∣∣∣∫
σ1

u · n1 ds

∣∣∣∣+ ∣∣∣∣∫
σ3

u · n3 ds
∣∣∣∣ )

≤ h−1
min

√
|T2|

1
min{|σ1|, |σ3|}

∣∣∣∣∫
σ1

u · n1 ds
∣∣∣∣+ h−1

min

√
|T2|

1
min{|σ1|, |σ3|}

×

∣∣∣∣∣∣
∫

σ1
u · n1 ds +

∫
σ2

u · n2︸ ︷︷ ︸
=0

ds +
∫

σ3
u · n3 ds −

∫
σ1

u · n1 ds

∣∣∣∣∣∣
≤ h−1

min

√
|T2|

1
min{|σ1|, |σ3|}

∣∣∣∣∫
σ1

u · n1 ds

∣∣∣∣
+ h−1

min

√
|T2|

1
min{|σ1|, |σ3|}

( ∣∣∣∣∫
∂T2

u · n ds

∣∣∣∣+ ∣∣∣∣∫
σ1

u · n1 ds
∣∣∣∣ )

≤ h−1
min

√
|T2|

1
min{|σ1|, |σ3|}

( ∣∣∣∣∫
T2

∇ · u dx
∣∣∣∣+ 2

∣∣∣∣∫
σ1

u · n1 ds
∣∣∣∣ )

≤ h−1
min

√
|T2|

1
min{|σ1|, |σ3|}

( ∣∣∣∣∫
T2

∇ · u dx
∣∣∣∣+ 2

∣∣∣∣∫
T1

∇ · u dx
∣∣∣∣ )

≤ h−1
min

√
|T2|

1
min{|σ1|, |σ3|}

(√
|T2| ||∇u||T2 + 2

√
|T1| ||∇u||T1

)
.

It holds with |T2| = O(hmin · hmax) = |T1| and min{|σ1|, |σ3|} = O(hmax)

∥∇ EM u∥T2 ≤

√
|T2|

hmin · hmax

· 2
√

|T2| ( ||∇u||T2 + ||∇u||T1 ) ≤ c ||∇u||T2 . (5.1.24)

With estimates (5.1.23) and (5.1.24) the inf-sup stability of cases C, D, E follows.

Macroelement (F). For patches of type F a splitting into isotropic macroelements is
not possible such that the complete patch P ∈ TP is considered as macroelement M . In
constrast to cases C, D, E, this macroelement has an inner degree of freedom xm where
u(xm) ̸= 0, see Figure 5.11. Thus, we use the Definition 5.1.1 for defining the interpolation
operator ΠM such that

ΠMu = CMu + EM(u − CMu).

The interpolation operators CM and EM are defined in the Definitions 5.1.2 and 5.1.3,
respectively. First, we show the interpolation estimations for the Clément operator.
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xm

ω

Figure 5.11: Macroelement of the configuration F for the case r, s → 0. The red line is the
interface. The red filled elements are anisotropic elements. The black points
are the nodes which are contained on the boundary of the macroelement and
the green points are the nodes which are located inside of the macroelements.
xm is the vertex of the element. ω is a isotropic support of xm.

Lemma 5.1.6. Let T ∈ M , then it holds for all u ∈ V (M)

∥u − CMu∥T ≤ c hT ∥∇u∥M , (5.1.25)

∥∇(u − CMu)∥T ≤ c ∥∇u∥M , (5.1.26)

with hT = diam(T ). Further,

∥∇CMu∥T ≤ c ∥∇u∥M . (5.1.27)

Proof. (i) First, we consider T ∈ M with T ∈ M \ ω here it holds

CMu|T = 0.

With Poincarés inequality

∥u − CMu∥T = ∥u∥T ≤ hT ∥∇u∥T ≤ hT ∥∇u∥M ,

and, naturally,
∥∇CMu∥T = 0 ≤ c ∥∇u∥M .

(ii) Next, T ∈ ω ⊂ M . Two nodes of T are on the boundary ∂M and only one inner node
xm exists, such that

CMu|T = φm · πω(u).

All T ∈ ω are isotropic and it holds

hM ≤ c1 hT , diam(ω) ≤ c2 hT (5.1.28)

with a constants c1, c2 > 0 independent of M , ω and T and hM = diam(M). Further, with
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Poincaré inequality (the version for average-zero functions)

∥u − πω(u)∥T ≤ ∥u − πω(u)∥ω ≤ c diam(ω) ∥∇ (u − πω(u)) ∥ω ≤ c hT ∥∇u∥M , (5.1.29)

and
|πω(u)| ≤ |ω|−1

∫
ω

|πω(u)| dx ≤ |ω|−
1
2 ∥u∥L2(ω) ≤ |ω|−

1
2 ∥u∥L2(M)

≤ |ω|−
1
2 hM ∥∇u∥M ≤ c ∥∇u∥M .

(5.1.30)

(iii) As φ1 + φ2 + φm = 1 it holds with |φi| ≤ 1 for i = 1, 2, m

∥u − CMu∥T ≤
2∑

i=1
∥φiu∥T + ∥φm(u − πω(u))∥T ≤

2∑
i=1

∥u∥T + ∥u − πω(u)∥T

≤ 2 ∥u∥M + ∥u − πω(u)∥ω

with (5.1.29) we obtain
∥u − CMu∥T ≤ 3 c hT ∥∇u∥M .

(iv) Now, we show (5.1.27). It holds

∥∇CMu∥T ≤ ∥∇(πω(u)φm)∥T ≤ |πω(u)| ∥∇φm∥T .

Using ∥∇φm∥T ≤ c (since T ∈ ω is isotropic triangle) and (5.1.30) we get

∥∇CMu∥T ≤ c ∥∇u∥M .

(v) Next, we show the estimation (5.1.26). It holds by triangle inequality and (5.1.27)

∥∇(u − CT u)∥T ≤ ∥∇u∥T + ∥∇CMu∥T ≤ c ∥∇u∥M .

Lemma 5.1.7 (Local inf-sup stability in macroelement of type F). Let M be any macroele-
ment of configuration (F). Then the operator ΠM defined as in (5.1.12) is the Fortin type
operator and well defined for u ∈ V (M), since the operators CM : V (M) → V 1

h(M) and
EM : V (M) → V h(M) satisfy the following conditions:

∥∇CMu∥M ≤ c1 ∥∇u∥M ∀ u ∈ V (M) (5.1.31)

∥EM(u − CMu)∥M ≤ c2 ∥∇u∥M ∀ u ∈ V (M) (5.1.32)

(∇ · (u − EMu), ph)M = 0 ∀ph ∈ Lh(M), ∀ u ∈ V (M), (5.1.33)

where c1, c2 are the constants independent of the mesh size.
Thus, the local set of spaces V h(M) − Lh(M) for all M of the configuration (F) is stable.
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Proof. (i) The stability estimate (5.1.31) follows from Lemma 5.1.6.
(ii) We show the stability estimate (5.1.32). For this by denoting w := u − CT u we show
the stability of the EMw. As shown in Figure 5.11, the macroelement of configuration
F contains isotropic and anisotropic triangles. For the isotropic triangles EMw can be
estimate by standard techniques from the literature, i.e. [93]. For the anisotropic trian-
gles (filled in red in Figure 5.11), the stability of EMw is treated as in the proof of the
Lemma 5.1.5. Then with estimate (5.1.26), we get the assertion.

(iii) The orthogonality condition (5.1.33) is shown in Lemma 5.1.5.

Remark 5.1.3 (Instability of macroelement G). The configuration G can contain one
small triangle Ts where all three sides are short and two anisotropic triangles T1 and T2,
see Figure 5.12. We will demonstrate numerically that this configuration is not inf-sup
stable, when the triangle Ts is getting smaller. We observe the instability of the pressure
in Example 1 from section 5.1.8, see Figure 5.15. If the triangle Ts from Figure 5.12 is
getting smaller, the spurious discrete pressure is growing. This is shown in Table 5.1 (Left)
via the maximum norm of the pressure error.

γ1

γ2

Ts

T1

T2

Figure 5.12: Macroelement of the configuration G. The smallest edges of the anisotropic
elements T1 and T2 are denoted by γ1 and γ2, respectively. The black points
are the nodes which are contained on the boundary of the macroelement and
the green points are the inner nodes of the macroelement.

Remark 5.1.4. We have omitted the case G with anisotropic triangles. Here, the element
is not stable and we must add further stabilization terms. This is described in [1] and we
refer also to Example 1 in section 5.1.8.

Remark 5.1.5 (Inf-sup stability of the stabilized macroelement G). As mentioned in
Remark 5.1.4, the instability from Remark 5.1.3 was corrected numerically by using the
following stabilzation term:

As(p, ξ) = α |γi|
∫

γi

JpK JξK ds i = 1, 2, (5.1.34)
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where α > 0 is the stabilization parameter, γ1 and γ2 are the small edges of the anisotropic
triangles T1 and T2 from Figure 5.12 (red filled triangles). We get local inf-sup stability for
the macroelement G, if we enrich the variational formulation with an additional pressure
stabilization term (5.1.34). For further details, see [1].

Finally, by combining Lemma 5.1.4, Lemma 5.1.5, Lemma 5.1.7 and Remark 5.1.5, we
obtain local inf-sup stability in all macroelements from Figure 5.3.

Corollary 5.1.1 (Local inf-sup condition). Let M be any macroelement from Figure 5.3
except type G, then there exists a constant γM > 0, independent of the mesh size, such that

inf
ph∈Lh(M)

sup
uh∈V h(M)

(ph, ∇ · uh)M

∥∇uh∥M∥ph∥M

≥ γM , (5.1.35)

for all M ∈ TM .

Remark 5.1.6. The inf-sup condition (5.1.35) can be written in another useful way,
namely for each ph ∈ Lh(M) there exists a uh ∈ V h(M) such that:

(ph, ∇ · uh)M = ∥ph∥2
M , ∥∇uh∥M ≤ γ−1

M ∥ph∥M .

5.1.5 Stability of subspace

In this section, we show the stability of the subspace. For that we have to define a subspace
V̄h by using an appropriate projection, see [90]. First, we define the global velocity and
pressure spaces for micro- and macrotriangulations. For the microtriangulation Th we use
the standard finite element spaces

V h := {u ∈ V : u|T ∈ P2 ∀ T ∈ Th}

Lh := {p ∈ L2
0(Ω) : p|T ∈ P0 ∀ T ∈ Th}

(5.1.36)

and for the macrotriangulation TM

V M := {u ∈ V : u|M ∈ Q2 ∀ M ∈ TM}

LM := {p ∈ L2
0(Ω) : p|M ∈ P0 ∀ M ∈ TM}

(5.1.37)

where Q2 is the standard space of piecewise biquadratic functions.
The macrotriangulation is isotropic and therefore the pair (V M , LM ) satisfies the inf-sup

condition with a constant independent of the diameter hM of the patch M . But in our
case V M is not a subset of V h.

For the definition of the subspace we follow closely Apel and Nicaise [90]. For that we
define the space of the Bernardi-Fortin-Raugel elements which is introduced in [93] as
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follows:

V BF R
h := {u ∈ V : u|T ∈ [P1]2 ⊕ span{n1λ2λ3, n2λ3λ1, n3λ1λ2} ∀ T ∈ Th},

where ni = (ni
1, ni

2)T , i = 1, 2, 3 are the corresponding outward unit normals and λi are the
affine nodal basis functions in barycentric coordinates, for illustration see Figure 5.13. To

n
1

n2

n 3

σ1

σ
2

σ3
T

x3

x2

x1

Figure 5.13: Illustration of the notation for triangular element T .

define a subspace, we introduce a projection P h
M : V M → V BF R

h ⊂ V h. This projection
operator is defined locally on each triangle T of each macroelement

P h
M |T := PT ,

where
PT u(xi) := u(xi),

∫
σi

(PT u − u) · ni = 0, i = 1, 2, 3.

Then, we can define the subspace V̄ h ⊂ V h as follows:

V̄ h := P h
M V M .

To show the stability of the subspace, first, we need to prove two Lemmas. We start with
the stability estimate for PT . For that we can use the interpolation results for anisotropic
elements from Lemma 2.1 in [3]

∥∇i(uM − NT uM)∥T ≤ h2−i
T ∥∇2uM∥T i = 0, 1, 2, (5.1.38)

where hT = diam(T ).

Lemma 5.1.8 (Stability of PT ). Let M ∈ TM is an arbitrary macroelement. For any
function uM ∈ V M , the following stability estimate holds

∥∇PT uM∥T ≤ c
(
∥∇ uM∥T + hT ∥∇2uM∥T

)
∀ T ∈ M, (5.1.39)

where hT is the diameter of the triangle.

The Lemma 5.1.8 corresponds to the Lemma 3 in [90]. For the proof see Section 5
in [90]. We project on V BF R

h , which is a subspace of V h.
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Lemma 5.1.9 ( Stability of P h
M ). The operator P h

M is the Fortin type operator for any
uM ∈ V M , such that

∥∇P h
M uM∥ ≤ C ∥∇ uM∥ (5.1.40)

(∇ · (uM − P h
M uM), pM) = 0 ∀ pM ∈ LM . (5.1.41)

Proof. The stability estimate (5.1.40) follows using Lemma 5.1.8 and the inverse inequality
on the patch M . Here, we use the fact that the function uM is from the finite dimensional
space. Moreover, if hM < C is small enough, it holds

∥∇P h
M uM∥M ≤ c

(
∥∇uM∥M + hM ∥∇2uM∥M

)
≤ C ∥∇uM∥M .

The orthogonality condition (5.1.41) is obtained easily by using the fact that pM is constant
in each M . By choosing pM = 1 on M and pM = 0 elsewhere we get

(∇ · (uM − P h
M uM), pM) =

∫
M

∇ · (uM − P h
M uM) dx =

∑
T ∈M

∫
T

∇ · (uM − PT uM) dx

=
∑

T ∈M

∫
∂T

n · (uM − ET uM) ds = 0.

We note that the pair (V M , LM) is stable, since the macrotriangulation is an isotropic
mesh. Therefore, there exists a Fortin type operator ΠM : V → V M with the following
properties:

∥∇ ΠM u∥ ≤ c ∥∇ u∥ ∀ u ∈ V , (5.1.42)

(∇ · (u − ΠM u), pM) = 0 ∀ pM ∈ LM , ∀ u ∈ V . (5.1.43)

Now, we define the operator Πh : V → V̄ h by

Πh := P h
M ΠM (5.1.44)

Lemma 5.1.10 (Stability of subspace V̄ h). The pair of subspaces (V̄ h, LM) ⊂ (V h, Lh)
is stable. Then by Fortin lemma there exists an operator Πh : V → V̄ h with

∥∇ Πh u∥ ≤ c ∥∇ u∥ ∀ u ∈ V , (5.1.45)

(∇ · (u − Πh u), pM) = 0 ∀ pM ∈ LM , ∀ u ∈ V . (5.1.46)

Proof. Using the stability estimates (5.1.40) and (5.1.42) we get easily (5.1.45), it holds

∥∇ Πh u∥ ≤ ∥∇(P h
M ΠM u)∥ ≤ c ∥∇ ΠM u∥ ≤ c ∥∇ u∥.

For all piecewise constant functions pM ∈ LM and for all u ∈ V using the orthogonality
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estimations (5.1.41) and (5.1.43) we easily get the orthogonality estimate (5.1.46), it holds

(∇ · (u − Πh u), pM) = (∇ · (u − P h
M ΠM u), pM)

= (∇ · (u − ΠM u), pM) + (∇ · (ΠMu − P h
M ΠM u), pM) = 0.

Now we are able to prove the stability of the pair (V h, Lh) by using the macroelement
technique [93].

5.1.6 Main result

Theorem 5.1.11. Let the local inf-sup condition (5.1.35) be satisfied with a positive
constant γM independent of the mesh size. If there exists a subspace V̄ h of V h such that
the element pair (V̄ h, LM) is inf-sup stable with a positive constant γ̄h independent of the
mesh size, then there exists a constant γh > 0 such that the discrete inf-sup condition

inf
ph∈Lh(Ω)

sup
uh∈V h(Ω)

(ph, ∇ · uh)
∥∇uh∥ ∥ph∥

≥ γh (5.1.47)

is satisfied for (V h, Lh) independently of the mesh size.

Proof. For the proof we follow [22], see also [93]. We start with the derivation of the
orthogonal decomposition of Qh(M) from the definitions (5.1.8) such that

Qh(M) = Lh(M) ⊕ R.

Let ph ∈ Lh be arbitrary but fixed. Then we can split ph ∈ Lh as

ph = p̃h + p̄h, (5.1.48)

where p̄h ∈ LM is the L2(Ω)-projection of ph into LM , i.e.

p̄h |M= |M |−1
∫

M
phdx.

It holds
p̃h|M = ph|M − p̄h|M ∈ Lh(M) ∀M ∈ TM,

and
∥ph∥2

Ω = ∥p̃h∥2
Ω + ∥p̄h∥2

Ω. (5.1.49)

Using Lemma 5.1.1 and Remark 5.1.6 for each p̃M := p̃h|M ∈ Lh(M) there exists a function
ũM := ṽh |M∈ V h(M) such that

(p̃M , ∇ · ũM)M = ∥p̃M∥2
M , ∥∇ũM∥M ≤ γ−1

M ∥p̃M∥M . (5.1.50)
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Since the pair (V̄ h, LM) satisfies (5.1.47) there exists a function ūh ∈ V̄ h such that

(p̄h, ∇ · ūh)Ω = ∥p̄h∥2
Ω, ∥∇ūh∥Ω ≤ β−1

h ∥p̄h∥Ω. (5.1.51)

Now, we propose to associate with ph in (5.1.48) the function uλ
h ∈ V h by defining

uλ
h = ũh + λ ūh (5.1.52)

with some constant λ > 0. Then with (5.1.48) and (5.1.52) we have

(
ph, ∇ · uλ

h

)
= (p̃h, ∇ · ũh) + (p̄h, ∇ · ũh) + λ (p̃h, ∇ · ūh) + λ (p̄h, ∇ · ūh) .

We estimate each component on the right hand side separately. Using (5.1.50) and (5.1.51)
we have

• (p̃h, ∇ · ũh) = ∥p̃h∥2
Ω,

• (p̄h, ∇ · ũh) = 0 since ũM vanishes on ∂M,

• (p̃h, ∇ · ūh) ≤
√

d ∥p̃h∥Ω∥∇ūh∥Ω ≤
√

d

βh

∥p̃h∥Ω ∥p̄h∥Ω,

• (p̄h, ∇ · ūh) = ∥p̄h∥2
Ω.

Then we obtain

(
ph, ∇ · uλ

h

)
≥ ∥p̃h∥2

Ω + λ ∥p̄h∥2
Ω − λ

√
d

βh

∥p̃h∥Ω ∥p̄h∥Ω.

By Young’s inequality with arbitrary ϵ > 0 we get

∥p̃h∥Ω ∥p̄h∥Ω ≤ ϵ ∥p̃h∥2
Ω + 1

4ϵ
∥p̄h∥2

Ω.

It holds (
ph, ∇ · uλ

h

)
≥
(

1 − ϵ λ
√

d

βh

)
∥p̃h∥2

Ω + λ

(
1 −

√
d

4ϵ βh

)
∥p̄h∥2

Ω.

By choosing ϵ = βh

2λ
√

d
and λ = β2

h

d
we have

(
ph, ∇ · uλ

h

)
≥ min

(
1
2 ,

λ

2

)
∥ph∥2

Ω. (5.1.53)

Finally, applying (5.1.49), (5.1.50) and (5.1.51) we have

∥∇uλ
h∥Ω ≤ ∥∇ũh∥Ω + λ ∥∇ūh∥Ω ≤ γ−1

M ∥p̃h∥Ω + λ β−1
h ∥p̄h∥Ω ≤ c ∥ph∥Ω, (5.1.54)

70



5 Discretization of two-phase flow problems

where c =
√

γ−2
M + λ2 β−2

h .
Last two inequalities (5.1.53) and (5.1.54) give us the stability of the space (V h, Lh).

5.1.7 Error estimations

Lemma 5.1.12. Let u ∈ V and Sh = S1
h ∪ S2

h, where Si
h := Ωi

h \ Ωi is the mismatch
between Ωi

h and Ωi, i = 1, 2 (see Figure 4.1). It holds

∥u∥Sh
≤ c h

3
2 ∥u∥H1(Ω).

Further, let uh ∈ V h. It holds

∥uh∥Hk(Sh) ≤ c h ∥uh∥Hk(Ω), k = 0, 1.

Moreover, let Ihu ∈ V h be the interpolation and u ∈ H3(Ω)2. It holds

∥∇(u − Ihu)∥Sh
≤ c h

3
2 ∥u∥H3(Ω).

Proof. The proofs are given in [83], see Sections 4.2.3 and 4.5.1, where this argument is
given for first order.

Now, we are ready to prove the best approximation error estimate.

Lemma 5.1.13 (Best approximation). Let Ω ∈ C1 and f ∈ H1(Ω)2. Let the mesh be
such that no elements of type G exist. Then it holds for (u, p) ∈ H3(Ω)2 × H1(Ω) and
(uh, ph) ∈ Vh × Lh, where Vh × Lh ⊂ V × L is an inf-sup stable finite element spaces.

∥ν1/2 ∇(u − uh)∥ + ∥p − ph∥ ≤ c
(

min
φh∈V h

∥∇(u − φh)∥ + min
ϕh∈Lh

∥p − ϕh)∥
)

+ c h2 ∥∇3u∥,

(5.1.55)
where c > 0 is the constant depending only on the diffusion coefficient ν and on the discrete
inf-sup constant γh.
Furthermore,

∥u − uh∥ ≤ c h
(

min
φh∈V h

∥∇(u − φh)∥ + min
ϕh∈Lh

∥p − ϕh)∥
)

+ c h3 ∥∇3u∥. (5.1.56)

Proof. We define eu = u − uh ∈ V and ep = p − ph ∈ L. By subtracting (5.1.7) from
(5.1.2) we have the perturbed Galerkin orthogonality

(ν∇eu, ∇φh) − (∇ · φh, ep) = δν (∇uh, ∇φh)Sh
+ (f − fh, φh) ∀ φh ∈ Vh

(∇ · eu, ξh) = 0 ∀ ξh ∈ Lh

(5.1.57)
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(i) First, we show the energy norm estimate for the velocity:

∥ν1/2 ∇eu∥2 = (ν ∇eu, ∇eu) − (∇ · eu, ep) + (∇ · eu, ep).

By the perturbed Galerkin orthogonality (5.1.57), we get for arbitrary φh ∈ V h, ξh ∈ Lh

∥ν1/2 ∇eu∥2 =(ν ∇eu, ∇(u − φh)) − (∇ · (u − φh), ep) + (∇ · eu, p − ξh)
+ δν (∇uh, ∇(φh − uh))Sh

+ (f − fh, φh − uh) .

The difference f − fh vanishes everywhere besides on Sh:

(f − fh, φh − uh)Ω = (f − fh, φh − uh)Sh
.

It holds

∥ν1/2 ∇eu∥2 ≤ ∥ν1/2 ∇eu∥ ∥ν1/2 ∇(u − φh)∥ + ∥∇(u − φh)∥ ∥ep∥

+ c(ν)∥ν1/2 ∇eu∥ ∥p − ξh∥

+ δν ∥∇uh∥Sh
∥∇(φh − uh)∥Sh

+ ∥f − fh∥Sh
∥φh − uh∥Sh

,

where c(ν) is the constant depending on ν. Using Lemma 5.1.12 and Poincaré inequality
we get

∥φh − uh∥Sh
≤ c h ∥φh − uh∥Ω ≤ c h ∥∇(φh − uh)∥Ω,

∥∇(φh − uh)∥Sh
≤ c h ∥∇(φh − uh)∥Ω.

(5.1.58)

By picking φh = Ihu and inserting ±u we obtain

∥∇(Ihu − uh)∥ ≤ ∥∇(u − uh)∥ + ∥∇(u − Ihu)∥
≤ c(ν) ∥ν1/2 ∇eu∥ + c h2 ∥∇3u∥.

(5.1.59)

Similar to the discussions in Section 4 (the proof of the Theorem 4.2.5), we have

∥f − fh∥Sh
≤ c h ∥u∥H3(Ω1∪Ω2). (5.1.60)

By inserting the solution ±u and ±Ihu and then using Lemma 5.1.12 and with (5.1.59)
we obtain

∥∇uh∥Sh
≤ ∥∇u∥Sh

+ ∥∇(u − Ihu)∥Sh
+ ∥∇(Ihu − uh)∥Sh

≤ c h3/2 ∥u∥H2(Ω) + c h3/2 ∥u∥H3(Ω) + c h ∥∇(Ihu − uh)∥Ω

≤ c h3/2 ∥u∥H3(Ω) + c(ν) h ∥ν1/2 ∇eu∥ + c h3 ∥∇3u∥

≤ c(ν) h ∥ν1/2 ∇eu∥ + c h3/2 ∥∇3u∥.

(5.1.61)
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It holds with estimations (5.1.58)-(5.1.61) and Young’s inequality

2∥ν1/2 ∇eu∥2 ≤ 1
2 ∥ν1/2 ∇eu∥2 + 2 ∥ν1/2 ∇(u − φh)∥2

+ ϵ2 ∥ep∥2 + 1
ϵ2 ∥∇(u − φh)∥2

+ 2 c(ν)2 ∥p − ξh∥2 + 1
2 ∥ν1/2 ∇eu∥2

+ c (h + ϵ̃) ∥ν1/2 ∇eu∥2 + (c + 1
ϵ̃
) h4 ∥∇3u∥2,

where the constants ϵ > 0 and ϵ̃ > 0 come from Young’s inequality. Then we obtain

∥ν1/2 ∇eu∥ ≤ c(ν, ϵ) ∥∇(u − φh)∥ + c̃ν ∥p − ξh∥ + ϵ ∥ep∥

+ c(ν, ϵ̃) h2 ∥∇3u∥.
(5.1.62)

(ii) Next, we estimate the pressure error. Let ξh ∈ Lh be arbitrary and p − ξh ∈ L, then
we get

∥p − ph∥ ≤ ∥p − ξh∥ + ∥ph − ξh∥. (5.1.63)

For ph − ξh ∈ Lh we use the discrete inf-sup inequality and we get

γh∥ph − ξh∥ ≤ sup
φh∈V h

(ph − ξh, ∇ · φh)
∥∇φh∥

≤ sup
φh∈V h

(ep, ∇ · φh)
∥∇φh∥

+ sup
φh∈V h

(p − ξh, ∇ · φh)
∥∇φh∥

.

(5.1.64)

On the first part we use (5.1.57) to replace the pressure error by the velocity error. It
holds with Lemma 5.1.12

sup
φh∈V h

(ep, ∇ · φh)
∥∇φh∥

= sup
φh∈V h

ν (∇eu, ∇φh) − δν (∇uh, ∇φh)Sh
− (f − fh, φh)

∥∇φh∥

≤
√

ν sup
φh∈V h

∥ν1/2 ∇eu∥ ∥∇φh∥
∥∇φh∥

+ sup
φh∈V h

c h (δν ∥∇uh∥Sh
+ ∥f − fh∥Sh

) ∥∇φh∥
∥∇φh∥

≤
√

ν∥ν1/2 ∇eu∥ + c(ν)h2∥ν1/2 ∇eu∥ + c1 h5/2∥∇3u∥ + c2 h2∥∇3u∥

≤ c̄(ν)∥ν1/2 ∇eu∥ + c̃(ν) h2∥∇3u∥.

Then we get together with the second part of (5.1.64)

γh ∥ph − ξh∥ ≤ c̄(ν)∥ν1/2 ∇eu∥ + c̃(ν) h2∥∇3u∥ + ∥p − ξh∥.
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With (5.1.63), we get the estimate for ∥ep∥

∥ep∥ ≤ γ−1
h c̄(ν) ∥ν1/2 ∇eu∥ +

(
1 + γ−1

h

)
∥p − ξh∥ + c(γh, ν) h2 ∥∇3u∥. (5.1.65)

(iii) By inserting estimate (5.1.65) into (5.1.62), using ϵ = γh

2c̄(ν) , we obtain

∥ν1/2 ∇eu∥ ≤ c
(

∥∇(u − φh)∥ + ∥p − ξh∥
)

+ c h2 ∥∇3u∥,

which is the best-approximation estimate (5.1.55) since φh and ξh are arbitrary.
(iv) Now we derive the L2 estimation for velocity. We define an adjoint problem

(ν∇φ, ∇z) − (∇ · z, ξ) + (∇ · φ, q) = ∥eu∥−1 (eu, φ) ∀φ ∈ [H1
0 (Ω)]2, ∀ξ ∈ L2(Ω).

If the domain has a convex or smooth boundary then by Lemma 2.46 in [83] it holds

∥z∥H2(Ω1∪Ω2) + ∥q∥H1(Ω1∪Ω2) ≤ cs ∥∥eu∥−1 eu∥ = cs.

We get
∥eu∥ = (eu, eu)

∥eu∥
= (ν∇eu, ∇z) − (∇ · z, ep) + (∇ · eu, q).

By using the perturbed Galerkin orthogonality and inserting the interpolants Ihz ∈ V h

and Ihq ∈ Lh and with (5.1.60) and (5.1.61) it follows

∥eu∥ =(ν∇eu, ∇z) − (∇ · z, ep) + (∇ · eu, q)
=(ν∇eu, ∇(z − Ihz)) − (∇ · (z − Ihz), ep) + (∇ · eu, (q − Ihq))

+ δν(∇uh, ∇Ihz)Sh
+ (f − fh, Ihz)

≤ ν1/2∥ν1/2 ∇eu∥ ∥∇(z − Ihz)∥ + ∥ep∥ ∥∇(z − Ihz)∥
+ ∥∇eu∥ ∥(q − Ihq)∥
+
(
c(ν) h ∥ν1/2 ∇eu∥ + c h

3
2 ∥∇3u∥

)
∥∇Ihz∥Sh

.

Using the adjoint interpolation (5.1.6) by adding and subtracting z and with Lemma
5.1.12 it follows

∥∇Ihz∥Sh
≤ ∥∇z∥Sh

+ ∥∇(z − Ihz)∥Sh
≤ c h

3
2 ∥∇2z∥ + c h

3
2 ∥∇3z∥ ≤ c h

3
2 ∥∇2z∥.
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Using (5.1.55) and the interpolation estimates (5.1.5) and (5.1.6), we obtain

∥eu∥ ≤c(ν) h
(

∥ν1/2 ∇eu∥ + ∥ep∥
)(

∥∇2z∥ + ∥∇q∥
)

+
(

c(ν) h
5
2 ∥ν1/2 ∇eu∥ + c h3∥∇3u∥

)(
∥∇2z∥ + ∥∇q∥

)
≤c(ν) cs h

(
min

φh∈V h

∥∇(u − φh)∥ + min
ϕh∈Qh

∥p − ϕh)∥
)

+ c(ν) cs h3 ∥∇3u∥.

Theorem 5.1.14 (A priori estimate). Let u ∈ H3(Ω)2 and p ∈ H1(Ω) be solutions of the
Stokes interface problem (5.1.2). Let the mesh be such that no elements of type G exist.
For the locally parametric P2 − P0 solution uh ∈ V h and ph ∈ Lh it holds

∥ν1/2 ∇(u − uh)∥ + ∥p − ph∥ ≤ c h
(

∥∇3u∥ + ∥∇p∥
)

∥u − uh∥ ≤ c h2
(

∥∇3u∥ + ∥∇p∥
)

,

where c > 0 is the constant depending only on the diffusion coefficient ν and on the discrete
inf-sup constant γh.

Proof. By Lemma 5.1.13 we have

∥ν1/2 ∇(u − uh)∥ + ∥p − ph∥ ≤ c
(

∥∇ (u − Ihu) ∥ + ∥p − Ihp∥
)

+ c h2 ∥∇3u∥,

∥u − uh∥ ≤ c h
(

∥∇ (u − Ihu) ∥ + ∥p − Ihp∥
)

+ c h3 ∥∇3u∥,

where Ihu ∈ V h and Ihp ∈ Lh are the nodal interpolations. By interpolation estimates
(5.1.5) and (5.1.6) and with given sufficient regularity it holds

∥∇(u − Ihu)∥ ≤ c̃ h2 ∥∇3u∥, ∥p − Ihp∥ ≤ c̃ h ∥∇p∥.

The last inequalities complete the a priori error estimates.

5.1.8 Numerical examples

We consider a square domain Ω. The domain is split into two domains Ω1 and Ω2 by the
interface Γ. The interface is defined as Γ = {(x, y) ∈ Ω | l(x, y) = 0} with the level-set
function l(x, y). In Figure 5.14 we show the configuration for our numerical examples.

Example 1.
In this example, we show instability of type G. We compare the maximum-norm for
pressure error in the coarse mesh before and after the stabilization.
Let Ω = [−1, 1]2 be a square domain. We consider Stokes problem with ν = 1 and a
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Ω1
Γ

Ω2

Figure 5.14: Configuration of the test problems with Ω = Ω1 ∪ Γ ∪ Ω2.

do-nothing condition on the left and Dirichlet boundary condition on the right, upper and
lower. An analytical solution is given by

u1(x, y) = sin(πx) · cos(πy),
u2(x, y) = − cos(πx) · sin(πy),
p(x, y) = 2π cos(πx) · cos(πy),

and define a right-hand side as f = −ν∆u + ∇p and Dirichlet boundary data. We define
the the level-set function l(x, y) = x2 + y2 − r2, with a given radius r.
Figure 5.15 shows us the discrete pressure profile in the coarse mesh with the circle radius
r = 10−3. We observe the instability of the pressure. As shown in Table 5.1 (Left) the
maximum-norms of the pressure error grows very quickly when r ≤ 10−3, which means
that there are some spurious pressures in the discrete solution. This is the reason for
instability. This instability was corrected numerically by stabilising of the small edges γ1

and γ2 with (5.1.34). In the Table 5.1 we show the maximum-norms of the pressure error
before and after the stabilization.

r ∥p − ph∥l∞

10−1 2.40484
10−2 2.40484
10−3 11.5363
10−4 84.3159
10−5 102.416
10−6 102.645
10−7 102.648

r ∥p − ph∥l∞

10−1 2.40484
10−2 2.40484
10−3 5.44222
10−4 5.46533
10−5 5.78036
10−6 5.78100
10−7 5.78101

Table 5.1: Maximum-norm for pressure error in the coarse mesh. Left: before stabilization.
Right: after stabilization
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Figure 5.15: The circle with radius r = 10−3. Left: pressure in the coarse mesh. Right:
zoom of the middle cells.

Example 2.
In this example, we show the robustness of the interface discretization. Thus we consider
the Stokes problem with constant viscosity coefficients in each subdomain.
Let Ω = [−1, 1]2 be a square domain. We consider the Stokes problem with ν1 = ν2 = 1
and a do-nothing condition on the right and Dirichlet boundary condition on the left,
upper and lower boundaries. Analytical solutions are given as follows

u1(x, y) = 4l(x, y)(x − 1)3(y − y0),
u2(x, y) = −4l(x, y)(x − 1)3(x − x0) − 3l(x, y)2(x − 1)2,

p(x, y) = 8(x − x0)(x − 1)3(y − y0) + 12l(x, y)(x − 1)2(y − y0),

where l(x, y) = (x − x0)2 + (y − y0)2 − r2 is the level-set function. We set (x0, y0) = (0, 0)
and r = 0.4. We define a right-hand side f = −ν∆u + ∇p and Dirichlet boundary data
on the left, upper and lower.
According to the a priori error estimate in Lemma 5.1.14, we observe first order in the
energy norm and quadratic convergence in the L2-norm for velocity and first order conver-
gence in the L2-norm for pressure, see Table 5.2.

Example 3.
Let Ω = (−1, 1)2 be a square domain. We consider the Stokes interface problem with
ν1 = 0.5 and ν2 = 20 and Dirichlet boundary condition on the boundary. The level-set
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h ∥u − uh∥L2 EOC ∥∇(u − uh)∥L2 EOC ∥p − ph∥L2 EOC
1/16 8.48 · 10−3 - 4.36 · 10−1 - 1.22 · 100 -
1/32 2.20 · 10−3 1.94 2.20 · 10−1 0.98 6.07 · 10−1 1.00
1/64 5.60 · 10−4 1.97 1.11 · 10−1 0.99 3.03 · 10−1 1.00

Table 5.2: Errors in the L2 norm of pressure and u and energy norm and order of conver-
gence.

function defined as l(x, y) = (x − x0)2 + (y − y0)2 − r2 with (x0, y0) = (0, 0) and r = 1/
√

π.
We choose the exact solutions as follows:

u(x, y) =



l(x,y)
ν1

 y

−x

 in Ω1,

l(x,y)
ν2

 y

−x

 in Ω2,

p(x, y) = y2 − x2

The error norms and experimental rates are shown in Table 5.3. According to the Lemma
5.1.14, we observe first order in the energy norm and quadratic convergence in the L2-norm
for velocity and first order convergence in the L2-norm for pressure.

h ∥u − uh∥L2 EOC ∥ν1/2 ∇(u − uh)∥L2 EOC ∥p − ph∥L2 EOC
1/16 1.44 · 10−4 - 7.01 · 10−3 - 4.92 · 10−2 -
1/32 5.09 · 10−5 1.50 3.78 · 10−3 0.89 2.44 · 10−2 1.01
1/64 1.05 · 10−5 2.26 1.78 · 10−3 1.08 1.21 · 10−2 1.00

Table 5.3: Errors in the L2 norm of pressure and u and energy norm. Also the order of
convergence.

Furthermore, we will show that the errors ∥u − uh∥L2 , ∥ν1/2 ∇(u − uh)∥L2 and ∥p − ph∥L2

are independent of ν. For that we compute the errors experimentally, with fixed ν1 = 0.5
and increasing values of ν2 = 200, 2000, 20000. The numerical results for the errors with
fixed mesh size h = 0.03125 are summarized in Table 5.4. From Table 5.4, we observe that
remain unchanged for a fixed mesh when ν2 increases.

Example 4.
Let Ω = (−1, 1)2 be a square domain. We consider the Stokes interface problem with
ν1 = 1 and ν2 = 10 and Dirichlet boundary condition on the boundary. The level-set
function is defined as l(x, y) = (x − x0)4 + (y − y0)4 − r with (x0, y0) = (0, 0) and r = 0.1.
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ν2 ∥u − uh∥L2 ∥ν1/2 ∇(u − uh)∥L2 ∥p − ph∥L2

200 5.11 · 10−5 3.32 · 10−3 2.44 · 10−2

2000 5.11 · 10−5 3.32 · 10−3 2.44 · 10−2

20000 5.11 · 10−5 3.32 · 10−3 2.44 · 10−2

Table 5.4: Errors are shown for a fixed mesh h = 0.03125 and fixed value ν1 = 0.5 and
increasing values of ν2.

We choose the exact solutions as follows:

u(x, y) =



sin(l(x,y))
ν1

 y3

−x3

 in Ω1,

sin(l(x,y))
ν2

 y3

−x3

 in Ω2,

p(x, y) = 1
10 · (x3 − y3)

As shown in Table 5.5 (top), we observe for this example almost second order in energy
norm and almost third order convergence in the L2-norm for velocity and first order
convergence in the L2-norm for pressure. Furthermore, we consider this example by setting
p = 0. As shown in Table 5.5 (bottom), we observe in this case almost second order in
energy norm and a bit more than cubic convergence in the L2-norm for velocity.

h ∥u − uh∥L2 EOC ∥ν1/2 ∇(u − uh)∥L2 EOC ∥p − ph∥L2 EOC
1/16 9.60 · 10−6 - 2.87 · 10−3 - 3.15 · 10−3 -
1/32 3.37 · 10−6 1.50 8.09 · 10−4 1.82 1.59 · 10−3 0.98
1/64 4.38 · 10−7 2.94 2.14 · 10−4 1.91 7.92 · 10−4 1.00

h ∥u − uh∥L2 EOC ∥ν1/2 ∇(u − uh)∥L2 EOC
1/16 8.87 · 10−6 - 2.84 · 10−3 -
1/32 2.97 · 10−6 1.57 7.82 · 10−4 1.863
1/64 2.88 · 10−7 3.367 1.90 · 10−5 2.041

Table 5.5: Top: Errors in the L2 - and energy-norm of velocity and the errors in the
L2-norm of pressure. Bottom: Errors in the L2 - and energy-norm errors of
velocity for the case when p = 0. Also the order of convergence.

Example 5.
In this example, we show the robustness of the interface discretization by moving the
middle point of the circle horizontally.
Let Ω = (−1, 1)2 be a square domain. We consider the Stokes interface problem with
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ν1 = 1 and ν2 = 10 and Dirichlet boundary condition on the boundary. The level-set
function defined as l(x, y) = r2 − (x − x0)2 + (y − y0)2 with r =

√
0.3 and (x0, y0) = (ϵh, 0),

where ϵ ∈ [0, 1] and h is the mesh size. We choose the exact solutions as follows:

u(x, y) =



l(x,y)2

ν1

 y

x0 − x

 in Ω1,

l(x,y)2

ν2

 y

x0 − x

 in Ω2,

p(x, y) = 1
10 · (x3 − y3)

We vary ϵ ∈ [0, 1], such that this example includes different configurations with arbitrary
anisotropies. According to the Lemma 5.1.14, we observe first order in the energy -norm
and quadratic convergence in the L2-norm for velocity and first order in the L2-norm for
pressure. We show these for the case when ϵ = 0 in Table 5.6.

h ∥u − uh∥L2 EOC ∥ν
1
2 ∇(u − uh)∥L2 EOC ∥p − ph∥L2 EOC

1/16 1.37 · 10−4 - 1.30 · 10−2 - 6.38 · 10−3 -
1/32 2.49 · 10−5 2.46 3.76 · 10−3 1.79 3.17 · 10−3 1.00
1/64 5.56 · 10−6 2.16 1.34 · 10−3 1.48 1.58 · 10−3 1.00

Table 5.6: The errors and the convergence orders for the case when ϵ = 0.

Moreover, we consider this example with the exact pressure solution as p = 0. In this case
we observe second order in the energy norm and cubic convergence in the L2-norm for
velocity, see Table 5.7.

Furthermore, in Figures 5.16 and 5.17, we plot the L2- and energy norm errors for

h ∥u − uh∥L2 EOC ∥ν
1
2 ∇(u − uh)∥L2 EOC

1/16 1.09 · 10−4 - 1.22 · 10−2 -
1/32 1.35 · 10−5 3.019 3.05 · 10−3 2.006
1/64 1.70 · 10−6 2.992 7.64 · 10−4 1.997

Table 5.7: The errors and the convergence orders for the case when ϵ = 0 and p = 0.

ϵ ∈ [0, 1] on several levels of global mesh refinement and observe that the errors are
bounded independently of ϵ.
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Figure 5.16: L2 and energy - norm errors for velocity with x = ϵh and ϵ ∈ [0, 1].

||p− ph||
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Figure 5.17: L2 - norm error for pressure with x = ϵh and ϵ ∈ [0, 1].

5.2 Stokes interface problem with surface tension

In this section, we investigate the Stokes interface problem (2.3.1) with surface tension.
We consider the following model problem

−∇ · (νi ∇u) + ∇p = f , ∇ · u = 0 in Ωi, i = 1, 2
JuK = 0, J(ν ∇u − p I) nK = τ K n on Γ,

u = 0 on ∂Ω,

(5.2.1)

where JwK := (w|Ω2)|Γ − (w|Ω1)|Γ and τ is the surface tension coefficient, K is the curvature
of Γ, and n is the unit normal at the interface Γ pointing from Ω1 to Ω2.
We define the spaces as follows:

V = H1
0 (Ω)2, L :=

{
q ∈ L2(Ω) :

∫
Ω

ν−1q dx = 0
}

.

The weak form is: find (u, p) ∈ V × L such that

(ν ∇u, ∇φ)Ω − (∇ · φ, p)Ω + (∇ · u, ϕ)Ω = (f , φ)Ω + ⟨τ K n, φ⟩Γ

∀ (φ, ϕ) ∈ V × L.
(5.2.2)
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5 Discretization of two-phase flow problems

5.2.1 The effects of different curvature handling

CASE I: The curvature is known

For simplicity we take f = 0 in (5.2.2). Then we get the following weak form:

Find (u, p) ∈ V × L such that

(ν ∇u, ∇φ)Ω − (∇ · φ, p)Ω + (∇ · u, ϕ)Ω − τ ⟨K, n · φ⟩Γ = 0

∀ (φ, ϕ) ∈ V × L.
(5.2.3)

For discretization, we use the locally modified finite element pair P2 − P0 and get the
following discrete problem:

Find (uh, ph) ∈ V h × Lh such that

(ν ∇uh, ∇φh)Ωh − (∇ · φh, ph)Ωh + (∇ · uh, ϕh)Ωh − τ ⟨Kh, n · φh⟩Γh
= 0

∀ (φh, ϕh) ∈ V h × Lh
(5.2.4)

CASE II: The curvature is unknown
In this case, we use the technique which is introduced by Dziuk, i.e. integration by part of
the Laplace-Beltrami operator. The advantage of using this approach is that there is no
need to compute the curvature. We will use the identity

∆Γ idΓ = ∇Γ · (∇Γ idΓ) = K n,

where idΓ : Γ → Γ is the identity mapping on Γ. ∆Γ is the Laplace-Beltrami operator and
∇Γ is the tangential derivative. We note that a normal defined as follows

n = ∇ l(x, y)
∥∇ l(x, y)∥ ,

where l(x, y) is the level-set function. With an orthogonal projection

P := I− nnT ,

the tangential derivative, for a sufficiently smooth function η : U → R2 with open subset
U which containes Γ, can be written as follows:

∇Γη = (I− nnT ) ∇η = P∇η. (5.2.5)
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5 Discretization of two-phase flow problems

Since Γ is closed, we can use the integration by parts and we get

⟨τ K n, φ⟩Γ = τ ⟨∇Γ · (∇Γ idΓ), φ⟩Γ = −τ ⟨∇ΓidΓ, ∇Γφ⟩Γ .

Then the weak form of (5.2.1) is:
Find (u, p) ∈ V × L such that

(ν ∇u, ∇φ)Ω − (∇ · φ, p)Ω + (∇ · u, ϕ)Ω = −τ ⟨∇ΓidΓ, ∇Γφ⟩Γ

∀ (φ, ϕ) ∈ V × L.
(5.2.6)

We can rewrite the right hand side by using (5.2.5) as:

−τ ⟨∇ΓidΓ, ∇Γφ⟩Γ = −τ ⟨P∇idΓ, ∇Γφ⟩Γ

After discretising (5.2.6) in V h × Lh we get a discrete problem:

Find (uh, ph) ∈ V h × Lh such that

(ν ∇uh, ∇φh)Ωh − (∇ · φh, ph)Ωh + (∇ · uh, ϕh)Ωh = −τ ⟨Ph∇ idΓh
, ∇Γh

φh⟩Γh

∀ (φh, ϕh) ∈ V h × Lh,
(5.2.7)

where the identity idΓh
is the coordinate vector on Γh. Ph is a discrete analogue of the of

the orthogonal projection P and it is defined as

Ph := I− nh nT
h ,

here nh is the pieceweise constant outward unit normal on Γh.
In this case, the curvature term is unknown, therefore, the source for the velocity error is
the approximation of the pressure and the curvature, see (5.2.8).

5.2.2 Numerical experiment

This example was taken from [55]. Let Ω = (−2, 2)2 ⊂ R2 and the interface Γ := {(x, y) ∈
Ω : l(x, y) = 0}, and Ω2 := Ω \ (Ω1 ∪ Γ). In the calculations we use τ = 1, ν1 = ν2 = 1,
f = 0. The exact solutions of (2.3.1) are known as follows:

uex ≡ 0 in Ω,

pex =


π
16 − 1 in Ω1,

π
16 in Ω2.
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5 Discretization of two-phase flow problems

We define the interface as follows:

Γ := {(x, y) ∈ Ω : (x − x0)2 + (y − y0)2 − r2 = 0}.

The curvature of circle is a constant function, K = 1
r
. We take (x0, y0) = (0, 0) and r = 1.

For our numerical example we have the error bound

∥ν1/2∇uh∥+∥p−ph∥ ≤ c

(
min

ϕh∈Qh

∥p − ϕh∥ + sup
φh∈V h

| ⟨Kh, φh · n⟩ − ⟨K, φh · n⟩ |
∥∇φh∥

)
(5.2.8)

We see from 5.2.8 that the size of the non-physical or spurious velocities depends on the
approximation of the pressure and the curvature.
In this case, the curvature term is handled exactly, therefore, the only source for the
velocity error is the approximation of the pressure, see (5.2.8).
With the locally modified finite element method we observe that the numerical solution of
the velocity is zero, i.e., no spurious velocities (or very small) are generated, see Figure
5.18. As shown in the Table 5.8 the pressure error is very small, i.e. our discretization gives
the best result which is almost exact. Moreover, we consider l∞-norm errors of pressure,
see Table 5.8. We observe that there is no spurious pressure in numerical solution.

Figure 5.18: The velocity(left) and pressure(right) profiles
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5 Discretization of two-phase flow problems

h ∥p − ph∥L2 ∥p − ph∥l∞

1/8 3.86 · 10−6 1.94 · 10−6

1/16 5.04 · 10−7 2.67 · 10−7

1/32 4.36 · 10−8 3.80 · 10−8

1/64 1.68 · 10−8 2.14 · 10−8

Table 5.8: Errors in the L2 - and l∞-norm errors of pressure

5.3 Two-phase Stokes problem

Compared to one-phase flows, two-phase flows with a surface tension forces have very high
numerical complexity. Among them are:

• due to the unknown interface the flow problem is nonlinear;

• the surface tension force is localized at the interface which is unknown;

• the pressure and viscosity have a jump across the interface.

To handle these issues, we need a special numerical method. As mentioned above, we
use the numerical method which combines an Eulerian approach with semi-implicit time
integration of the surface tension force. We will use the Rothe method. Because of
the third issure the pressure is discontinuous across the interface, in a finite element
discretization for the Stokes problem we should use a pressure finite element space that
is time dependent. Therefore, the Rothe approach is more natural than the method of
lines. There is an alternative approach which is based on a space-time finite element
method in literature, e.g. [13]. For time discretization, we use implicit Euler method for
unsteady Stokes problem combined with a semi-implicit time integration of the surface
tension force which has been developed in [12]. For space discretization, we use the locally
modified finite element pair P2 − P0. We consider the model two phase Stokes problem
on a fixed domain Q := [0, T ] × Ω where only the interior interface Γ(t) moves and the
outer boundary ∂Ω is fixed, for notations see Figure 2.2

ρi ∂tu − ∇ · (νi ∇u) + ∇p = f , ∇ · u = 0 in Qi, i = 1, 2
JuK = 0, J(ν ∇u − p I) nK = −τ K n, uΓ = u · n on Γ(t),

u = 0 on ∂Ω,

u(0, x) = u0 in Ω,

(5.3.1)

where uΓ is the normal velocity of the interface, and n is the unit normal at the interface
which is pointing from Ω1 into Ω2.
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5 Discretization of two-phase flow problems

5.3.1 Space-time variational vormulation

We introduce the following spaces for velocity and pressure, respectively as follows:

V : = {v ∈ H1(Ω)2 | v = 0 on ∂ Ω},

L : = {q ∈ L2(Ω) | (p, 1)Ω = 0},

and
X : = {v : Q 7→ R2 | v ∈ L2(I; V ) , ∂tv ∈ L2(I; V ′)},

Y : = L2(I; L),

with a time interval I.

A variational formulation of (5.3.1) is given by:
Find (u, p) ∈ X × Y such that for all (φ, ϕ) ∈ (X, Y ) it holds

(∂t u, φ)Q + (ν ∇u, ∇φ)Q − (∇ · φ, p)Q + (u(0), φ(0))Ω

= (f , φ)Q + (u0, φ(0))Ω + τ ⟨−Kn, φ⟩G

(∇ · u, ϕ)Q = 0

u(0) = u0

uΓ = u · n,

(5.3.2)

where (v, w)Q =
∫ T

0 (v(t), w(t))Ω dt and ⟨v, w⟩G =
∫ T

0 ⟨v(t), w(t)⟩Γ(t) dt.

Remark 5.3.1. We note that the last term (a curvature term) in the right hand-side of
first equation of (5.3.2) corresponds to a force that acts only on the space-time interface G.
Due to this, the pressure has a jump across the evolving interface Γ(t). To approximate
the curvature term in moving interface problems we need some accurate technique.

Now, we replace the curvature term −Kn by the Laplace - Beltrami operator and then
integrate by parts

−
∫

Γ(t)
Kn · φ ds =

∫
Γ(t)

∆Γ idΓ(t) · φ ds = −
∫

Γ(t)
∇Γ idΓ(t) : ∇Γ φ ds, (5.3.3)

where the identity mapping idΓ(t) : R2 7→ R2 is the restriction onto interface Γ(t).

5.3.2 Temporal discretization and handling the curvature term

Let 0 = t0 < t1 < ... < tM = T be a decomposition of the time interval I = [0, T ] with
a time-step km = tm+1 − tm, 0 ≤ m ≤ M − 1. We use the notations for time dependent
subdomains ωm+1 = ω(tm+1), i = 1, 2, and time dependent interface Γm+1 = Γ(tm+1).
Note that the outer boundary ∂Ω(tm+1) is fixed and therefore for all times t we have that
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5 Discretization of two-phase flow problems

Ω(t) = Ω. For the discretization in time, we use an implicit Euler scheme.

Find (um+1, pm+1) ∈ V × L for given um ∈ V such that for all (φ, ϕ) ∈ V × L it holds

1
km

(
um+1 − um, φ

)
Ω

+
(
ν ∇um+1, ∇φ

)
Ω

−
(
∇ · φ, pm+1

)
Ω

+
(
∇ · um+1, ϕ

)
Ω

=
(
fm+1, φ

)
Ω

− τ ⟨∇ΓidΓm+1 , ∇Γ φ⟩Γm+1

(5.3.4)

As mentioned in Remark 5.3.1, we need here to handle the curvature term, which is the
last term in (5.3.4). The curvature term can be treated as fully explicit, semi-implicit or
fully implicit in time. Numerical experiments in [12] show us that the explicit form is only
conditionally stable and the fully implicit form with unknown subdomains ωm+1 = ω(tm+1),
i = 1, 2, is too complicated. Therefore we use the semi-implicit time discretization as
proposed in [12]. The idea of this approach based on the fact that the fifth equation in
(2.3.6) can be solved directly by using implicit Euler scheme. Then we can describe the
new position xm+1 as follows:

xm+1 = xm + km um+1, (5.3.5)

where um+1 is the unknown velocity at the new time step. After plugging (5.3.5) in the
curvature term we obtain

⟨∇ΓidΓm+1 , ∇Γ φ⟩Γm+1 ≈
〈
∇Γ

(
idΓm + km um+1

)
, ∇Γ φ

〉
Γm

= ⟨∇ΓidΓm , ∇Γ φ⟩Γm + km

〈
∇Γum+1, ∇Γ φ

〉
Γm

.

The last term is unknown, but it is symmetric in the unknowns and positive semi - definite.
Therefore we will shift it to the left hand side of the equation.

Find (um+1, pm+1) ∈ V × L for given um ∈ V such that for all (φ, ϕ) ∈ V × L it holds

1
km

(
um+1 − um, φ

)
Ω

+
(
ν ∇um+1, ∇φ)

)
Ω

−
(
∇ · φ, pm+1

)
Ω

+
(
∇ · um+1, ϕ

)
Ω

+ km

〈
∇Γum+1, ∇Γ φ

〉
Γm

=
(
fm+1, φ

)
Ω

− τ ⟨∇ΓidΓm , ∇Γ φ⟩Γm .

(5.3.6)

In [20] the unknown term defined as the known function um+1(xm) and to get a new
position we just use (5.3.5).

5.3.3 Spatial discretization

For space discretization, we use the locally modified finite element pair P2 − P0.
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5 Discretization of two-phase flow problems

Find (um+1
h , pm+1

h ) ∈ V h × Lh for given um
h ∈ V h such that for all (φ, ϕ) ∈ V h × Lh it

holds
1

km

(
um+1

h − um
h , φ

)
Ω

+
(
ν ∇um+1

h , ∇φ
)

Ω
−
(
∇ · φ, pm+1

h

)
Ω

+
(
∇ · um+1

h , ϕ
)

Ω
+ km

〈
∇Γum+1

h , ∇Γ φ
〉

Γm
h

=
(
fm+1

h , φ
)

Ω
− τ

〈
∇ΓidΓm

h
, ∇Γ φ

〉
Γm

h

.

(5.3.7)

5.3.4 Numerical Results

In this section, we consider time dependent Stokes problem with a pressure solution that
is discontinuous across a interface.

Example 1
In the first example, we present time dependent Stokes problem with a pressure solution
that is discontinuous across a stationary interface Γ. We consider the problem (5.3.1) on
the domain Ω = [−2, 2]2 with Dirichlet boundary condition on the boundary ∂Ω. On the
interface we have the surface tension force with τ = 1. The viscosities and densities on Ω
are constant and equal to one. The analytical solutions are as follows

uex(t, x) =
−y (1 − e−t) e−(x2+y2)

x (1 − e−t) e−(x2+y2)

 ,

pex(t, x) = x3 (1 − e−t) +


π
16 − 1 in Ω1,

π
16 in Ω2,

where Ω1 = {x ∈ Ω : l(x) < 0}, Ω2 = Ω \ Ω1, Γ = {x ∈ Ω : l(x) = 0} with
l(x) = x2 + y2 − 1. The right hand-side f is adjusted to the prescribed analytical
solution.
In Figures 6.2, 6.3 are shown the solutions which are compared with analytical solutions
with mesh size h = 1/128 and time step k = 1/10. As shown in the diagram on the right
of Figures 6.2, 6.3, the exact and numerical values for the first component of velocity and
pressure agree well. We observe that our method gives the excellent results which are
almost exact.
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5 Discretization of two-phase flow problems

Figure 5.19: Comparison of numerical and exact solutions for the first component of
velocity at t = 1. Left: Profile of the first component of velocity . Right: Plot
over the line.

Figure 5.20: Comparison of numerical and exact solutions for pressure at t = 1. Left:
Pressure profile. Right: Plot over the line.

Example 2
We take Ω = [−2, 2]2 ⊂ R2 and consider a time dependent interface Γ(t) which is a moving
circle as follows

Γ(t) := {(x, y) ∈ Ω : (x − t)2 + y2 − 1 = 0}.

On the interface we have the surface tension force with τ = 1. The viscosities and
densities on Ω are equal to one. We take f = 0 and non-homogeneous Dirichlet boundary
condition with uD = (1, 1)T on the upper and bottom boundaries. Other boundaries have
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5 Discretization of two-phase flow problems

a do-nothing condition. The analytical solutions are given as follows:

u ≡ (1, 1)T in Ω, p =

1 in Ω1,

0 in Ω2.

The computed discrete velocity magnitude and pressure for t = i
8 , i = 0, ..., 8 are shown

h ∥uk
h − u∥L∞(Ω) ∥pk

h − p∥L∞(Ω1) ∥pk
h − p∥L∞(Ω2)

1/32 0.019 0.145 0.059
1/64 0.004 0.164 0.183
1/128 0.002 0.146 0.209

Table 5.9: The maximum norm for velocity and pressure in different mesh sizes with fixed
time step t = 0.5.

in Figure 6.2, 6.3. We observe that the first component of discrete velocity and pressure
values in different time steps with fixed mesh size are close to the exact solutions.
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5 Discretization of two-phase flow problems

Figure 5.21: The computed the first component of velocity magnitude for t = i
8 , i = 0, ..., 8

with mesh size 1/32. The all discrete velocities are very close to 1.
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Figure 5.22: Pressure for t = i
8 , i = 0, ..., 8 with mesh size 1/32. The discrete pressure

values are close to 1 in Ω1 and close to 0 in Ω2.
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Chapter 6: Discretization of fluid-structure interaction
problems

In this chapter, we study a model problem of a fluid-rigid body interaction problem (2.4.1).
The model problem is constructed by taking only the drag force, which is acting on the
rigid body in the vertical direction such that

ρf ∂tuf − ∇ · σ(uf , pf ) = 0, ∇ · uf = 0 in Ωf ,

d
dtus · ms = fs in Ωs,

uf = us on ΓI,

uf = 0 on ΓW ∪ ΓB,

σ(uf , pf ) n = 0 on ΓT,

(6.0.1)

with the stress tensor
σ(uf , pf ) := µ∇uf − pfI. (6.0.2)

Here, fs is the force acting on the rigid body

fs =
 0

ms g − Vs ρf g + F drag

 (6.0.3)

where Vs = ms

ρs

and g = −9, 81 m
s2 . The drag force F drag is defined as follows

F drag =
∫

ΓI
σ(uf , pf ) n e2 ds, (6.0.4)

where e2 is the unit vector in vertical direction.

6.1 Solid equation

We consider the solid equation of the problem (6.0.1) as the movement of the solid and
it is governed by Newton’s second law of motion. We assume that the solid material is
relatively hard and has a spherical form. Since we will take only vertical movement of the
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Ωf

ΓW ΓW

ΓB

ΓT

ΓI

Ωs

fs

Figure 6.1: Geometry and notations of the fsi problem, Ω = Ωs ∪ ΓI ∪ Ωf .

solid, we get a scalar ODE as follows:

d
dtus(t) =

(
1 − ρf

ρs

)
g + 1

Vs ρs

F drag, (6.1.1)

where us(t) = d
dtcs is the solid velocity with the center of mass cs of the solid Ωs.

The solid body equation is coupled with fluid equations through the boundary conditions
at the interface ΓI as follows:

uf |ΓI = us = d
dtcs. (6.1.2)

6.1.1 Evaluation of the surface integral.

Surface integrals (6.1.3) are evaluated by using the Babuška − Miller trick, see Remark
8.17 of the book [83] or [11]. We show first the derivation for the drag functional. For
that, we define a test function ξ ∈ H1(Ω(t))2 with a vanishing first component ξ1. We
define the second component ξ2 as follows:

ξ2 =

1, on ΓI

0, else

It holds
F drag =

∫
ΓI

σ(uf , pf ) n e2 ds =
∫

ΓI
σ(uf , pf ) n ξ ds.

Now we use the divergence theorem on Ωf and we obtain

F drag =
∫

ΓI
σ(uf , pf ) n ξ ds =

∫
Ωf

(
σ(uf , pf )∇ξ + ∇ · σ(uf , pf ) ξ

)
dx.

After using the first equation of (2.4.1), we get

F drag =
(
σ(uf , pf ), ∇ξ

)
Ωf

+
(
ρf ∂tuf , ξ

)
Ωf

. (6.1.3)
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Now, (6.1.3) is exactly the bilinear form that we have to evaluate when we set up the
right-hand side and the system matrix.

6.2 Discretization and Implementation

For spatial discretization, we apply the locally modified finite element scheme introduced
in chapter 5. For time discretization, we use implicit Euler method for the unsteady Stokes
equation and explicit Euler method for solid ODE.

Solid ODE
We discretize the scalar ODE (6.1.1) with given u0

s, u0
f , p0

f and for all k = 0, 1, ..., n − 1. It
holds with time step τ :

uk+1
s − uk

s

τ
=
(
1 − ρf

ρs

)
g + 1

Vs ρs

F k
drag

(
uk

f , pk
f , ξk

)
uk+1

s = uk
s +

((
1 − ρf

ρs

)
g + 1

Vs ρs

F k
drag

(
uk

f , pk
f , ξk

))
τ,

likewise the center of mass (6.1.2) of the rigid body with given c0
s and for all k = 0, 1, ..., n−1,

it holds
ck+1

s = ck
s + uk+1

s τ.

Unsteady Stokes equation
We discretize the time dependent Stokes equation in (2.4.1) with given u0

f and for all
k = 0, 1, ..., n − 1. It holds with time step τ

uk+1
f − uk

f

τ
− ∇ · σ(uk+1

f , pk+1
f ) = 0. (6.2.1)

6.2.1 Handling of dynamic meshes

In the numerical approximation (6.2.1), the velocity approximation uk
f at time tk that has

been computed on the domain Ωf (tn) has to be evaluated on the new domain Ωf (tk+1) at
time tk+1. The velocity uk

f is divergence-free with respect to the test space corresponding
to the domain Ωf (tk), but this condition no longer holds on the new spatial domain at time
tk+1. Thus, in the spatial discrete case, the loss of the discrete divergence-free condition
gives us nonphysical osculation, in particular, in the discrete solution for pressure. Many
authors studied this problem by assuming static finite element mesh, e.g Temam [92],
Girault and Raviart [93], Heywood and Rannacher [63], [64], Bause [16]. Error estimates
for finite element approximations of the Stokes system on dynamic meshes have been
established in [26]. We follow here [26] and use the discrete Stokes projection to evaluate
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6 Discretization of fluid-structure interaction problems

the solution at time tk on the new domain at time tk+1.

Divergence-free Stokes projection: After computing (uk
f , pk

f )T ∈ V (Ω(tk))×L(Ω(tk))
we first compute a projection ũk

f of uk
f into V (Ω(tk+1)) which is divergence-free with

respect to the test function in V (Ω(tk+1)) and use this projection as initial values for the
next time step. The projection ũk

f is determined by:

(
∇ ũk

f , ∇ φ
)

−
(
p̃f , ∇ · φ

)
=
(
∇ uk

f , ∇ φ
)

∀φ ∈ V (Ω(tk+1))(
∇ · ũk

f , ζ
)

= 0 ∀ζ ∈ L(Ω(tk+1))
(6.2.2)

Then we apply the projection ũk
f in (6.2.1) and for all k = 0, 1, ..., n − 1 it holds with time

step τ :

(uk+1
f − ũk

f

τ
, φ
)

+
(
∇ uk+1

f , ∇ φ
)

−
(
pk+1

f , ∇ · φ
)

= 0 ∀φ ∈ V (Ω(tk+1))(
∇ · uk+1

f , ξ
)

= 0 ∀ξ ∈ L(Ω(tk+1))
(6.2.3)

Implementation
The described algorithm and equations above have been implemented in the finite element
library Gascoigne3d.

6.2.2 Numerical experiment

In our numerical example we study the convergence rates of the locally modified finite
element approximation of the fluid-structure problem. We consider the falling ball example
of the problem (6.0.1) with Ω := [−2, 2]2 and rigid body Ωs on the time interval [0, 2]. At
t = 0 the rigid body domain is described by Ωs(0) := {x = (x, y)T ∈ R2 | x2 + y2 ≤ r} for
a given circle radius r = 0.5. A material parameters densities and viscosity are given as
ρf = 1, ρs = 10 and µ = 1. Boundary conditions: on the interface ΓI between the fluid and
solid, the Dirichlet boundary condition is given by the continuity of the velocity (6.1.2).
On the wall and bottom boundaries ΓW ∪ ΓB we take homogeneous Dirichlet boundary
and do-nothing condition on the top boundary, for the notations see Figure 2.3. The y

component for velocity and pressure profiles are shown in Figures 6.2, 6.3 at the beginning
and the end of time. In Figures 6.4 and 6.5 (left) we compare the approximate solutions
for the velocity in y-direction, rigid body motion and the drag functional with mesh
size h = 0.03125 and time step τ = 0.02 before and after using divergence-free Stokes
projection (6.2.2). We also investigate the velocity in y-direction, rigid body motion and
the drag functional for different mesh sizes with fixed time step τ = 0.02, and for different
time steps with fixed mesh size h = 0.03125, see Figures 6.6, 6.7 and 6.8. The convergence
orders for velocity in y-direction, rigid body motion and Drag functional in each iteration
and their mean values are plotted in Figures 6.9, 6.10 and 6.11, respectively. We have
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6 Discretization of fluid-structure interaction problems

observed that the mean values of the convergence orders are for velocity in y-direction
O(τ + h2), rigid body motion O(τ + h2) and drag functional O(τ + h

1
2 ). The Stokes

projection is used for evaluating the velocity approximation on the new meshes. Our
observation is that if the configuration of the patch is changed in the new time step the
Stokes projection is capable of preventing a loss in the rate of convergence. Moreover, the
drag functional depends on pressure which is unstable. These could be reasons why the
mean value of the convergence of order of the drag functional is O(τ + h

1
2 ), see Figure 6.12

(left). Next, we investigate the convergence for the drag functional by neglecting the
pressure component. In Figure 6.5 (right), we show the behavior of the drag functional
without pressure component. The convergence orders in each iteration and the mean value
of the convergence orders for the drag functional without pressure component is plotted
in Figure 6.12 and we observe that the mean value of convergence orders for the drag
functional without pressure component has O(τ + h2).

Figure 6.2: Second component of the velocity at time t = 0 (left) and t = 1 (right).
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Figure 6.3: Pressure profile at time t = 0 (left) and t = 1 (right).
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Figure 6.4: Comparison the results for velocity and motion before and after using Stokes
projection with mesh size h = 0.03125 and time step τ = 0.02.
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Figure 6.5: Left: Comparison the results for drag before and after using Stokes projection
with mesh size h = 0.03125 and time step τ = 0.02. Right: Behavior of the
drag without pressure component.
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Figure 6.6: Velocity in y-direction with fixed time step τ = 0.02 and different mesh sizes
(left) and with fixed mesh size h = 1/32 and different time steps (right).
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Figure 6.7: Rigid body motion with fixed time step τ = 0.02 and different mesh sizes (left)
and with fixed mesh size h = 1/32 and different time steps (right).
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Figure 6.8: Drag functional with fixed time step τ = 0.02 and different mesh sizes (left)
and with fixed mesh size h = 1/32 and different time steps (right).
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Figure 6.9: Convergence order for the velocity in y-direction and their mean value with
fixed time step τ = 0.02 and different mesh sizes (left) and with fixed mesh
size h = 1/32 and different time steps (right).
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Figure 6.10: Convergence order for the rigid body motion and their mean value with fixed
time step τ = 0.02 and different mesh sizes (left) and with fixed mesh size
h = 1/32 and different time steps (right).
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Figure 6.11: Convergence order for the drag functional and their mean value with fixed
time step τ = 0.02 and different mesh sizes (left) and with fixed mesh size
h = 1/32 and different time steps (right).
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Figure 6.12: Convergence orders for the drag functional without pressure component and
their mean value with different mesh sizes and fixed time step t = 0.02.
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Chapter 7: Conclusion and Future work

Elliptic interface problems
We have presented an extension of the locally modified finite element method for interface
problem that was introduced in [47], to second order. We were able to show optimal-order
error estimates of order 3 − ϵ in the L2-norm and 2 − ϵ in the discrete energy norm. In
the standard H1-norm, the convergence order is reduced to 1.5, due to the mismatch of
continuous and discrete interface. Finally, we have presented different numerical examples
that illustrate the convergence behaviour and the performance of the method.

Tho-phase flow problems
First, we analyzed a stationary Stokes interface problem. For the discretization, we applied
locally modified finite elements for the velocity combined with piecewise constant elements
for the pressure. We proved the discrete inf-sup condition for the P2 − P0 elements. We
presented optimal error estimates in the L2-norm and sub-optimal estimates in the energy
norm for the Stokes interface problem. Moreover, we considered stationary and time
dependent Stokes interface problems with surface tension. In the variational formulation
of these problems, a linear functional which describes the surface tension force occurs
and it depends on the location and the curvature of the interface. Thus, we used a
Laplace-Beltrami operator to handle the curvature term and for time dependent problem
we applied the semi-implicit time integration of the surface tension force.

Fluid-structure problems
We investigated a fluid-structure-interaction problems. In the numerical simulations we
took a rigid body model for the falling particles. We studied locally modified finite element
approximations of the time dependent Stokes system, which prescribed the fluid model, on
dynamically changing meshes. We applied the implicit Euler method for time discretization
and used the discrete Stokes projection.

Future work
For the future, we have some ideas to apply our method for advanced problems.
– Apply the inf-sup stable P2 − P0 elements for the discretization of interface problems
including Navier-Stokes equations.
– Extend the rigid body to elastic solids in the fluid-structure-interaction problems.
– The P2 − P0 elements is not optimal since the pressure is 2 orders lower. Thus, we
prefer to use a parametric finite element method for a balanced approach such as P2 − P1

elements.
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