

Working Paper No. 03/08

# A STATISTICAL ANALYSIS OF BANKS IN ARMENIA

Cyrus Safdari, Ph.D. Michigan State University <u>nnanjoan@aol.com</u>

Nancy J. Scannell, Ph.D. University of Illinois – Springfield <u>Scannell.nancy@uis.edu</u>

Rubina Ohanian, Ph.D. American University of Armenia and Accenture <u>rohanian@aua.am</u>

#### Abstract

The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the Armenian International Policy Research Group. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate.

Financial data for banks operating in Armenia in 2001 were extracted from Arka News Agency publications which use the variable, Weight Share of Assets, to rank and classify the country's 31 banks. The present study employs statistical procedures, including Factor Analysis and Cluster Analysis, applied to a selected subset of banks, namely those for which complete data was available. One conclusion drawn from the study corroborates Arka's use of the Weight Share of Assets to classify banks. Further analysis determined various cutoff points for Weight Share values used to delineate bank peer groups. Peer grouping is an effective tool to perform comparative analyses among banks or other entities.

*The authors welcome and appreciate all comments. (Corresponding co-author: Nancy Scannell. Email: scannell.nancy@uis.edu)* 

# **INTRODUCTION - AN HISTORICAL FRAMEWORK**

In the beginning of the 20th century capitalism emerged in Armenia. The Russian capital, Moscow, ruled over Armenia, and the major banks of Russia had established their branches in principal towns of Transcaucasia (Armenia, Georgia and Azerbaijan). About 10 banking institutions were operating in Yerevan in 1914. In October 26, 1920, the law established the State Bank of the Republic of Armenia on the basis of the Yerevan branch of the State Bank. After establishment of the Soviet regime in Armenia, the Revolutionary Committee and the People's Commissariat of Finance (PCF) issued a decree on December 10, 1920, to nationalize the private banks and withdraw the currency then in circulation. In 1921 the State Bank of USSR was established, with the main office and branches created in Armenia in 1924. In 1925 the Yerevan office of the State Bank of the USSR (CBA, 2002).

In the late 80's, there were 52 branches of the Republican Office of the State Bank of the USSR in Armenia in 1987. Haik was the first cooperative bank established in Soviet Armenia October 6, 1988, which put basis and gave rise to a broad network of banks in the republic. In December 1988, Erevan Bank was the first among commercial banks established. Armeconombank was the first bank established immediately after the independence of the Republic of Armenia was obtained on September 26, 1991 (CBA, Banking System of Armenia; 1999, P. 11). In December 1991, the State Bank of the SSRA was charged with responsibility as a National Bank of the newly independent Armenian Republic. The Armenian Law on The Central Bank of the Republic of Armenia adopted in March 27, 1993, renamed the National Bank into the Central Bank of Armenia (CBA) (CBA, 2002).

Banks and financial institutions mushroomed rapidly during Armenia's early years of independence, but faced a number of serious problems in the years 1994 and 1995, when a banking system crises forced 37 banks to cease their activities. At the end of 1995, only 34 banks were operating in Armenia (Synthesis, 2001, p. 74). The new minimum capital requirements had forced the closure of almost half of Armenia's banks (Lafferty, 1995).

As of 1995 the CBA's organizational structure has been based on experiences of European and international financial institutions adapted to take into consideration local characteristics (Asatrian, 1995, p. 60). The Association of Banks of Armenia was founded on July 27, 1995, and Tigran Sargsyan was elected as President. On June 31, 1996, the National Assembly adopted Armenian laws on banking designed to regulate the banking system (CBA, 2002). As of January 1, 1996, 38 banking institutions operated in the ROA, including 3 branches of non-resident banks. During the same year, 8 of these institutions terminated their activities - two of them through self-liquidation, while the banking licenses of the other six banks were revoked by the CBA (Asatrian, 1996, p. 39).

As of January 1, 1997, there were 33 banking institutions and one non-resident bank branch operating in Armenia. One year later, only 30 banks with 174 branches were registered in the country (CBA, Banking System of Armenia; 1999, P. 11). Mainly due to tightening of normative requirements by the CBA to increase the minimum total capital, during 1997 total assets of the

banking system grew by 57.6% (as the number of banks decreased); the magnitude of actuallycompleted share capital of the banking system increased by 60.6%. (Sargsyan, 1997, pp. 54-55). The year 1998 heralded the installation of Tigran Sargsyan as chair of the CBA (CBA, 2002) and stabilization of the banking system of Armenia due to improvements of the regulatory field and introduction of international accounting standards (CBA, 1998, p. 35). As of January 1, 1999, 18 of 31 banks operating in Armenia were registered as Closed Joint-Stock companies, 5 Public Joint-Stock Companies, 7 Limited Liability Companies and 1 Cooperative Bank (CBA, Banking System of Armenia; 1999, P. 11).

The banking situation remained more or less stable until mid-2000 when another wave of asset mismanagement and minimum capital under-performance was observed. During 2000 and at the beginning of 2001 the CBA undertook various types of insolvency procedures against the 5 worst-performing commercial banks. At the beginning of 2001, the license of Econominvestbank was revoked because of minimum capital requirement violations. As of March 31, 2001, 30 banks with 218 branches were registered in Armenia, but only 26 of them were totally operating, out of which 4 were subsidiaries of foreign banks: HSBC-Armenia, Areximbank, Mellatbank, and International Commercial Bank-Armenia. Regarding ownership, 15 banks were closed joint-stock companies (one, Armsavingsbank, being state-owned), 6 were open joint-stock companies, 4 were limited liability companies and one was a co-operative (Synthesis, 2001, pp. 74-75).

# **DATA DISCUSSION**

All data employed in the present study are obtained from Arka News Agency publications. Special issue *Main indicators of Banks of Armenia* (Arka, 2001) is published by Arka News Agency on the basis of consolidated balances and other financial accounts published in press which reflect activity of banks in Armenia. The present study extracted 13 financial variables (see Table 2) from Arka's March 31, 2001 publication. All other variables featured in the Arka document are functions of one or more of the 13 variables, for example, 'Demand Liabilities per Total Liabilities', and are thus omitted. Of the 31 banks reported in operation by Arka as of its March 31, 2001 and presented in the Arka report, a sample of 17 banks was extracted and included in this study, each bank corresponding, respectively, to one of the 13 aforementioned variables. Data used in the present analysis and their corresponding standardized scores are presented in Appendix Table A1 and Appendix Table A2, respectively. The remaining 14 banks, either had no data or had incomplete data. If the exclusion of these banks could be viewed as random events, then the findings from the 17-bank study would probably apply to these banks.

Arka's bank data is reported without assignment of subjective commentary or recommendation about the banks, or claims as to the explanatory powers of the banking variables. The present study selects the 13 variables as potentially explanatory or causal, although possibly uncorrelated, or correlated but not causal, i.e., associative. In the event that any of the 13 variables proves not useful in explaining variances among groups of banks, it will be ignored in the statistical analysis and will not interfere with the study. Thus, the intent was to include as many variables as practicable from Arka data, in this case 13, in order to avoid the possibility of omitting an important yet seemingly unrelated variable at the outset. As of the 3<sup>rd</sup> quarter of 2002, Arka's Armenia bank data reports are referred to as *Activity* rather than *Main* indicators of Banks in Armenia. Three Peer Groups are delineated depending on Bank Asset Volume, the middle peer group defined as ranging between 5 and 10 Billion AMD. Also unlike previous issues, Armenia's banks are divided into two groups, namely 'banks operating in a common normative framework' and 'banks under trusteeship and temporary administration.' Incorporating this into the study would mean inclusion of a binary *variable*, which, in effect, would transform the study into two studies, one for each administrative framework. This would not be problematic if the original sample size was large enough such that, after bifurcation, either sub-sample retained sufficient number of observations. Because, however, as in the present case, we have a very small sample size, 17, relative to the number of variables, 13, adding a binary variable will cause the sample size to be so small that any analytical results would not be as reliable.

All references to currency in the present study will preserve data in local currency, the Armenian Dram (AMD), unless otherwise indicated. The CBA issues the AMD, which traded per USD at 544.68 on March 31, 2001 (coincident with Arka's publication date), and at 582.00 on January 22, 2003 (CBA, 2003).

#### **BANK PEER GROUPING**

The differentiation of Armenian banks by Arka into three groups was realized for specifying their position in peer groups and calculation of peer group ratio averages. Acknowledged by Arka, classification of banks by assets size - large (Group I), medium (Group II), and small (Group III) bears conditional character, does not speak to the efficiency of bank activity, and may disagree with classifications of other organizations and agencies. The criterion for banks classification by *asset size* considers, more specifically, relations of average assets of banks to average assets of banking system for periods reported June 30, 2000 to March 31, 2001. As such, Arka's Peer Groups I, II and III are defined by Weight Share of Assets, respectively, *greater than 5%, from 1% to 5%*, and *less than 1%* (Arka, 2001). Cluster Analysis could plausibly yield similar demarcations, but generally classification will not be based on one variable alone. The present study, which considers a subset (17) of the 31 banks reflected in Arka data, employs Factor Analysis and Cluster Analysis, which result in the determination of bank peer group cutoff points, as well as the identification of the most salient variable affecting the demarcation process.

#### FACTOR ANALYSIS

Factor Analysis was performed on a 17 by 13 matrix, corresponding to the 17 banks and 13 financial banking variables (see Table 2) which, in effect, relate to 13 corresponding *traits* identified with banks in Armenia. An 'n x m' matrix may be thought of as *n* vectors in an *m*-dimensional space or as *m* vectors in an *n*-dimensional space. One goal of Factor Analysis is to

reduce the dimensionality of the vector space and reduce the number of dimensions required to represent a set of variables.

Given 13 variables, factor analysis yields 13 factors that will each be a product conversion of *all* 13 variables, and that will explain *all* the variance in the data. However, generally only a few of these generated factors will explain *most* of the variance and, as such, the remaining factors may be, and are in this study, neglected without much loss of accuracy.

These factors may be given appropriate names, based on the variables they highly correlate with, (+ or -), whereas other times there may not be a pre-defined name assigned, in which case the factors are simply labeled as, for example, factor 1, factor 2, etc. Alternatively, the researcher can interpret the factors and what they stand for and, as such, even make up names for them. In this study, no attempt was made to name the factors, based on their association with the variables.

Factor Analysis isolates the particular relationship in a set of data, which is taken from the usual condition that many variables vary concurrently. It groups variables together and delineates the underlying constructs, with their elements generating the factors which may be responsible for said groupings. Factor Analysis might, therefore, be thought of as performing variable synthesis, producing new entities, which could be considered new variables for both analyses and groupings. As such, a factor is a linear compound of variables, so weighted, and referred to as factor loading, as to best explain the variance in the correlation and constitutes the correlation of a variable with a factor.

The factors are extracted using many methods - most often the Principal-Factor Analysis, the principal-factors being the Eigenvectors. There is also a method, Principal-Component Analysis, applied to the variance-covariance matrix rather than the correlation matrix. In this sense, Principal-Factor Analysis is a special case of Principal-Component Analysis, namely, Principal-Component Analysis applied to the standardized variables.

In our study, the results of Factor Analysis reveal that only a few of the 13 variables enter the generated factors with a high correlation (+ or -) as evidenced in Table 1, Total Variance Explained, which shows the amount each factor (component) contributes to explain the variance. The statistical procedure's first factor always explains more of the variance than the second factor, and the second factor more than the third, etc. Specifically, Table 1 shows that the first factor explains 70.319% of the variance, and that the first two factors combined explain 88.755% of the variance. With inclusion of the successive 3 factors, approximately 99%, (98.975%) of the variance is explained. The remaining 8 factors in entirety explain only approximately 1% of the variance.

Only factors 1 and 2 have Eigenvalues equal to or greater than 1. This indicates that for each of the subsequent 11 factors, the variable itself is more effective in explaining the variance than the component (factor), as the variables are standardized and thus the variance of each variable is 1, with a total variance of 13, for all the 13 variables combined. The statistical software by default ignores such factors, and accordingly, cells associated with these components, are left blank in Table 1.

| (Fac-<br>tor)       | Initia     | al Eigenvalu     | ies               | Extract | ion Sums o<br>Loadings | f Squared         | Rotation Sums of Squared |                  |                      |  |
|---------------------|------------|------------------|-------------------|---------|------------------------|-------------------|--------------------------|------------------|----------------------|--|
| Com-<br>pon-<br>Ent | Total      | % of<br>Variance | Cum-<br>ulative % | Total   | % of<br>Variance       | Cum-<br>ulative % | Total                    | % of<br>Variance | Cum-<br>ulative<br>% |  |
| 1                   | 9.141      | 70.319           | 70.319            | 9.141   | 70.319                 | 70.319            | 6.343                    | 48.796           | 48.796               |  |
| 2                   | 2.397      | 18.436           | 88.755            | 2.397   | 18.436                 | 88.755            | 5.195                    | 39,959           | 88.755               |  |
| 3                   | .648       | 4.988            | 93.743            | -       | _                      | _                 | -                        | -                | -                    |  |
| 4                   | .394       | 3.028            | 96.771            | -       | _                      | _                 | -                        | -                | -                    |  |
| 5                   | .286       | 2.204            | 98.975            | -       | _                      | _                 | -                        | -                | -                    |  |
| 6                   | 6.410E-02  | .493             | 99.468            | -       | -                      | -                 | -                        | -                | -                    |  |
| 7                   | 3.589E-02  | .276             | 99.744            | -       | _                      | _                 | -                        | -                | -                    |  |
| 8                   | 2.781E-02  | .214             | 99.958            | -       | _                      | _                 | -                        | -                | -                    |  |
| 9                   | 3.940E-03  | 3.030E-02        | 99.988            | -       | _                      | _                 | -                        | _                | -                    |  |
| 10                  | 1.516E-03  | 1.166E-02        | 100.000           | -       | _                      | _                 | -                        | -                | -                    |  |
| 11                  | 1.680E-05  | 1.292E-04        | 100.000           | -       | _                      | _                 | -                        | -                | -                    |  |
| 12                  | 1.947E-17  | 1.498E-16        | 100.000           | -       | _                      | _                 | -                        | -                | -                    |  |
| 13                  | -1.676E-16 | -1.289E-15       | 100.000           | -       | _                      | -                 | -                        | -                | -                    |  |

Table 1. Total Variance Explained

Extraction Method: Principal Component Analysis (Factor Analysis).

The Factor Analysis output in tabular form found in Table 1is reformatted in graphical form using the displayed Scree Plot.



**Component Number** 

Table 2 presents the result of Factor Analyses. The first 8 or 9 variables show high correlation with, or loading on, component 1. The remaining 5 or 4 variables have a moderate correlation with, or loading on, component 1. The first 3 variables, on the other hand, have near zero correlation with, or loading on, component 2. The other variables have moderate or low correlation with, or loading on, component 2 (a negative sign indicates an inverse correlation).

|      | Financial Data            |          | 2-Component Outcomes |            |      |      |              |      |  |  |
|------|---------------------------|----------|----------------------|------------|------|------|--------------|------|--|--|
| m=   | Variable Name             | Variable | UN-I                 | ROTATED    | ROTA | ATED | Factor Score |      |  |  |
| 1-13 | (From Arka)               | Ivanic   |                      | Zscore     | Zsc  | ore  | Coefficients |      |  |  |
|      | (1101111111))             |          | 1                    | 2          | 1    | 2    | 1            | 2    |  |  |
| 1    | Total Assets              | TTL.ASST | .993                 | 4.209E-01  | .732 | .672 | .093         | .058 |  |  |
| 2    | Average Assets            | AVG.ASST | .991                 | -3.728E-02 | .782 | .610 | .072         | .083 |  |  |
| 3    | Total Liabilities         | TTL.LIAB | .990                 | 9.785E-03  | .751 | .645 | .080         | .073 |  |  |
| 4    | Loan Investments          | LN.INVST | .928                 | 315        | .913 | .357 | .162         | 035  |  |  |
| 5    | Total Capital             | TTL.CAP  | .911                 | .330       | .484 | .839 | 012          | .169 |  |  |
| 6    | Time Deposits of          | TD.PH    | .902                 | 231        | .839 | .404 | .138         | 010  |  |  |
|      | Physical Entities         |          |                      |            |      |      |              |      |  |  |
| 7    | Total Time Deposits of    | TD.PHLGL | .873                 | 364        | .903 | .284 | .171         | 055  |  |  |
|      | Physical & Legal Entities |          |                      |            |      |      |              |      |  |  |
| 8    | Time Liabilities          | TM.LIAB  | .842                 | 510        | .972 | .152 | .207         | 103  |  |  |
| 9    | Demand Liabilities        | DMD.LIAB | .784                 | .575       | .229 | .945 | 089          | .239 |  |  |
| 10   | Statutory Fund            | STAT.FND | .625                 | .301       | .284 | .633 | 029          | .140 |  |  |
| 11   | Securities                | SECURIT  | .618                 | .555       | .116 | .822 | 097          | .221 |  |  |
| 12   | Loans to Economy          | LN.ECON  | .667                 | 723        | .976 | 123  | .250         | 184  |  |  |
| 13   | Interbank Loans           | INTBK.LN | .619                 | .699       |      | .934 | 136          | .267 |  |  |

 Table 2. Component Matrices & Factor Scores

Extraction Method: Principal Component Analysis. A 2-component outcome extracted.

Rotation Method: Varimax with Kaiser Normalization. A rotation converged in 3 iterations.

Once the factors and the factor loadings are defined, the coordinate system (the factors) may be rotated, such that those factor loadings (un-rotated) in Table 2 which are small, but not small enough to be neglected, are converted to values either large enough to keep or small enough to neglect. Rotation changes the factor loadings but they remain identical mathematically and explain the same amount of variance in each variable and thus in the entire matrix. The rotated component matrix demonstrates that correlation values, overall, are significantly strengthened relative to the original (un-rotated) manifestation. Both un-rotated and rotated cases are presented in Table 2.

The factors obtained from Factor Analysis may be interpreted as latent, fundamental, underlying variables, which explain the variance in bank data. In this study we can relate the banks to these factors, allowing us to ascribe a given bank with so much of factor 1, so much of factor 2, etc., which are referred to as a Factor Score.

The last 2 columns of Table 2 show Factor Score coefficients for the two factors referred to as component 1 and component 2 for each of the 13 variables. Total Factor Scores for component 1 (Equation 1) and for component 2 (Equation 2) would be, respectively:

(Eq. 1) f1 = .093 (zttl.asst) + .072 (zavg.asst) ... -.089 (zdmd.liab) -.029 (zstat.fnd) ... -.136 (zintbk.ln), and

(Eq. 2) f2 = .058 (zttl.asst) +.083 (zavg.asst) ... +.239 (zdmd.liab) + .140 (zstat.fnd) ... + .267 (zintbk.ln),

where the variable names represent their respective standardized values.

# **CLUSTER ANALYSIS**

The goal of Cluster Analysis is to group cases together to form clusters which are relatively homogeneous within each cluster *and* relatively distinct from one another. To define homogeneous and distinct, the concept of *distance* is utilized. Homogeneous cases are similar cases and are associated with short distances, while distinct clusters are dissimilar and are associated with long distances.

There are several measures of distance that can be used to depict the dissimilarity of two cases. The more common ones being the Euclidean distance, the square root of the sum squared differences in values of each variable for the two cases; the Squared Euclidean distance, the sum squared differences in values of each variable for the two cases; and City-Block or Manhattan distance, the sum of the absolute differences in values of each variable for the two cases. There are other distance measures as well.

Cluster Analysis starts by assigning all cases to a single cluster. Then it will pick the case which is *farthest* and assign it to a new cluster. It will then again pick the next farthest case and either adds it to the previous cluster or assign it to a 3<sup>rd</sup> cluster. The procedure continues in this manner until every case is in a cluster by itself. Alternatively, it may assign each case to a cluster on its own and then merge the clusters to each other until all clusters are merged and one cluster is formed.

In our study, several clustering methods and various options and measures of distance were utilized to group the banks into 2, 3, 4, and 5 clusters. Table 3 summarizes the SPSS output, which features Armenia's banks listed in descending order by Weight Share of Assets (Table 3, column 2).

| DANIZ                         | Weight    | PEER      | K-Mean |           | Hierarchical<br>Clustering<br>(No. of |           |   | 5-Cluster Cases |            |       |      |
|-------------------------------|-----------|-----------|--------|-----------|---------------------------------------|-----------|---|-----------------|------------|-------|------|
| NAME                          | Share (%) | (%) GROUP |        | (No. of   |                                       |           |   | K Meen          |            | Hier- |      |
| (n=17)                        | (per      | (per (per |        | Clusters) |                                       | Clusters) |   |                 | ix-ivicali |       | icol |
|                               | Arka)     | Arka)     | 2      | 3         | 4                                     | 2         | 3 | 4               | a          | b     | Ical |
| HSBC Bank                     | 12.75     | 1         | 2      | 3         | 4                                     | 2         | 3 | 4               | 4          | 4     | 5    |
| Armimpexbank                  | 9.99      | 1         | 2      | 2         | 2                                     | 2         | 2 | 2               | 2          | 2     | 2    |
| Ardshinbank                   | 8.64      | 1         | 2      | 2         | 2                                     | 2         | 2 | 2               | 2          | 2     | 2    |
| Credit-Yerevan                | 8.34      | 1         | 2      | 2         | 2                                     | 2         | 2 | 2               | 2          | 2     | 2    |
| Converse Bank                 | 6.79      | 1         | 2      | 2         | 3                                     | 1         | 1 | 3               | 5          | 5     | 4    |
| Armagrobank                   | 4.77      | 2         | 1      | 1         | 3                                     | 1         | 1 | 3               | 5          | 5     | 3    |
| Armenian Development Bank     | 4.72      | 2         | 1      | 1         | 3                                     | 1         | 1 | 3               | 5          | 5     | 3    |
| Armeconombank                 | 3.69      | 2         | 1      | 1         | 3                                     | 1         | 1 | 3               | 3          | 3     | 3    |
| Mellat Bank                   | 3.04      | 2         | 1      | 1         | 1                                     | 1         | 1 | 1               | 3          | 3     | 1    |
| Arminvestbank                 | 2.09      | 2         | 1      | 1         | 1                                     | 1         | 1 | 1               | 3          | 1     | 1    |
| Credit-Service Bank           | 1.46      | 2         | 1      | 1         | 1                                     | 1         | 1 | 1               | 1          | 1     | 1    |
| Artsakhbank                   | 1.42      | 2         | 1      | 1         | 1                                     | 1         | 1 | 1               | 1          | 1     | 1    |
| Areximbank                    | 1.40      | 2         | 1      | 1         | 1                                     | 1         | 1 | 1               | 1          | 1     | 1    |
| Inecobank                     | 1.11      | 2         | 1      | 1         | 1                                     | 1         | 1 | 1               | 1          | 1     | 1    |
| Internat. Com. Bank           | 0.79      | 3         | 1      | 1         | 1                                     | 1         | 1 | 1               | 1          | 1     | 1    |
| Adana Bank                    | 0.64      | 3         | 1      | 1         | 1                                     | 1         | 1 | 1               | 1          | 1     | 1    |
| International Investment Bank | 0.42      | 3         | 1      | 1         | 1                                     | 1         | 1 | 1               | 1          | 1     | 1    |

Table 3. Cluster Analysis Output Matrix

# **CLUSTER ANALYSIS OUTCOMES**

Interestingly, clustering results are strongly consistent with that of Arka in terms of its implementation of Assets as the most effective variable in classifying banks. Hence, using the Weight Share (%) as a grouping variable has proven statistical merits. Given results of all Cluster Analyses performed, the cutoff points would be as shown in Table 3.

Another interesting point is that for the 3-Cluster case (more comprehensively, for all but the 2cluster cases), HSBC Bank-Armenia, enters into a group of its own, at a cutoff point between 9.99% and 12.75%. For all the clustering cases except K-Mean 2 and K-Mean 3 cases, the cutoff point is between 6.79% and 8.34%. For K-Mean 4 and Hierarchical 4-Cluster cases (as well as for other 4-Clustering procedures not presented), cutoff points are consistently established between the following sets of values: 3.04% and 3.69%; 6.79% and 8.34%; and 9.99% and 12.75%.

Common across all 5-Cluster Cases are the two upper-end cutoff points, between 9.99% and 12.75% and between 6.79% and 8.34%. From there, however, cutoff points become dissimilar, exemplified at the lower end: between 1.46% and 2.09% (K-Mean-a Cluster Case), between 2.09% and 3.04% (K-Mean-b Cluster Case), and between 3.04% and 3.69% (Hierarchical Case). Three institutions, Mellat Bank, Arminwestbank and Credit-Service Bank, lie within this array of cutoff points and, hence, could be associated with one group or another depending on the clustering assumption.

As clustering dimensions increase (6-Cluster procedures were performed but not shown), the condition is further exacerbated and, accordingly, noise in the data within a group becomes

significant compared with the differences between the groups. In such cases, very minor fluctuation in the data is sufficient to shift a given institution from one peer group to another.

## MANAGERIAL IMPLICATIONS

Banking consolidation, mergers, insolvencies, liquidations, charter conversions, restructuring and other machinations adversely affect the financial manager's ability to analyze bank performance across strictly defined peer groups. Armenia's banking environment, for example, which had experienced a semblance of stability circa mid-2000, subsequently thereafter suffered a wave of asset mismanagement and minimum capital under-performance. Consequently, the CBA executed insolvency procedures against the country's 5 worst-performing commercial banks (Synthesis, 2001, pp. 74-75). Notwithstanding institutional volatilities, the financial manager derives merit from segregating entities into groups (in this study accomplished by employing cluster analysis). The manager's expectation is that, again citing our banking case, if a bank in one peer group performs well, chances are all other banks in the same group should perform equally as well. (*Doing well* was quantified in this study using factor analysis.) Hence, the peer group becomes an important benchmarking tool for the financial manager.

Managerial decisions are routinely executed on the basis of institutional (or divisions thereof) performance. Hence, it is imperative that managers judge an entity's performance within the context if its apposite peer group. This, accordingly, necessitates careful specification of both the salient variable(s) - in our case, Assets - and the variable's ranges, in order to appropriately demarcate discrete peer groups within a given population. A United States Federal Reserve Bank Peer Performance study (Federal Reserve, 2002) also selected Assets as its discriminating variable. The Fed's 6 peer groups were established based on the following 5 ascending-order Asset value demarcations (in USD): 25million, 100million, 300million, 1billion, and 5billion. Indeed, managerial decision-making with regard to a given financial institution essentially necessitates the establishment of a construct conducive to fair comparative analyses, which peerbased modeling affords to a large degree.

#### **SUMMARY**

Factor Analysis and Cluster Analysis allow us to draw two conclusions with respect to Armenia's Banks. Among 13 financial variables considered, Bank Assets, measured in Weight Share (%), is found to be the principal variable in explaining variation among the 17 banks sampled in the study. This finding is strongly consistent with Arka's peer-grouping practice. The present study's Cluster Analysis establishes cutoff points and methodically delineates peer groupings in order to render an efficacious milieu for comparative analyses of banking institutions in Armenia.

## REFERENCES

Arka Agency, Chief Editor, Galina Davidyan, Special Issue; Financial and Economic Bulletin of Arka Agency; Main Indicators of Banks of Armenia, May 3, 2001, Arka News Agency, Yerevan.

Asatrian, Bagrat, 1995 Annual Report to the Supreme Council of the Republic of Armenia, CBA, p. 60.

Asatrian, Bagrat, 1996 Annual Report to the Supreme Council of the Republic of Armenia, CBA, pp. 39, 49.

CBA, 1998, Banking System Regulation and Development, www.cba.am/public/public.htm, p. 35.

CBA, 1999, Banking System of Armenia; Development, Regulation, Supervision, Yerevan, p. 11.

CBA, 2003, www.cba.am.

Federal Reserve Bank of Kansas City, 2002, Bank Peer Performance Summary, Supervision and Risk Management, <u>http://www.kc.frb.org/bs&s/bankpeer/peermain.htm</u>.

Lafferty Publications Limited, 1995, Armenia: Reserves Force Mass Bank Closure, East European Banker, November 1995, P. 2, Lexis-Nexis.

Sargsyan, Tigran, 1997, Annual Report to the National Assembly of the Republic of Armenia, CBA, pp. 54-55.

Synthesis, Economic Trends Quarterly Issue, January - March 2001, Armenia, European Commission, Director General IA, NIS/Tasis services, July 2001, p. 74.

# ACKNOWLEDGMENTS

The authors wish to express their gratitude to Dr. Judy Newton, Associate Dean of the American University of Armenia's (AUA) College of Business and Management (CBM); AUA Center for Business and Research Development (CBRD) research assistants, Ms. Christina Dombayan, Ms. Lusine Poghosyan, and Ms. Anna Vardapetyan; and University of Illinois at Springfield research assistant, Mr. Priyoo G. Manakote, for their valuable efforts in support of this research.

# APPENDIX

| BANKNAME                      | AVG.ASST   | TTL.ASST   | TTL.CAP   | STAT.FND  | TTL.LIAB   | LN.INVST   |
|-------------------------------|------------|------------|-----------|-----------|------------|------------|
| Adana Bank                    | 1,479,050  | 1,770,570  | 557,172   | 539,537   | 1,213,398  | 615,349    |
| Ardshinbank                   | 20,105,571 | 21,997,495 | 1,746,691 | 800,000   | 20,250,804 | 13,480,079 |
| Areximbank                    | 3,266,104  | 4,178,315  | 649,906   | 663,327   | 3,528,409  | 888,021    |
| Armagrobank                   | 11,097,400 | 11,257,814 | 1,300,430 | 1,239,776 | 9,957,384  | 6,144,986  |
| Armeconombank                 | 8,586,753  | 9,199,386  | 1,134,536 | 1,100,000 | 8,064,850  | 4,079,566  |
| Armenian Development Bank     | 10,986,603 | 12,017,263 | 1,497,037 | 1,077,001 | 10,520,226 | 4,719,361  |
| Armimpexbank                  | 23,246,610 | 21,006,023 | 2,363,645 | 2,028,408 | 18,642,378 | 14,849,242 |
| Arminvestbank                 | 4,868,846  | 4,537,749  | 718,690   | 630,500   | 3,819,059  | 2,913,352  |
| Artsahkbank                   | 3,307,105  | 3,313,335  | 1,045,835 | 682,050   | 2,267,500  | 1,795,025  |
| Converse Bank                 | 15,797,971 | 15,375,568 | 1,247,767 | 129,966   | 14,127,801 | 10,003,522 |
| Credit-Service Bank           | 3,399,253  | 3,586,194  | 752,947   | 525,400   | 2,833,247  | 2,146,070  |
| Credit-Yerevan Bank           | 19,404,177 | 18,439,635 | 1,962,375 | 1,842,762 | 16,477,260 | 10,793,296 |
| HSBC Bank-Armeni              | 29,658,313 | 33,127,230 | 4,200,515 | 2,437,600 | 28,926,715 | 11,917,567 |
| Inecobank                     | 2,589,476  | 2,499,145  | 717,452   | 304,733   | 1,781,693  | 1,875,895  |
| Intern. Com. Bank (Armenia)   | 1,848,150  | 2,233,315  | 1,457,819 | 2,153,770 | 775,496    | 704,190    |
| International Investment Bank | 969,459    | 1,031,229  | 389,621   | 500,000   | 641,608    | 582,839    |
| Mellat Bank                   | 7,080,160  | 6,520,829  | 680,344   | 1,424,012 | 5,840,485  | 2,652,020  |

Appendix Table A1. Data per Arka used in Present Analysis.

#### Appendix Table A1 Continued.

| BANKNAME                      | LN.ECON    | INTBK.LN   | SECURIT   | DMD.LIAB   | TM.LIAB    | TD.PHLGL   | TD.PH     |
|-------------------------------|------------|------------|-----------|------------|------------|------------|-----------|
| Adana Bank                    | 184,307    | 431,042    | 74,400    | 266,054    | 942,312    | 343,164    | 234,253   |
| Ardshinbank                   | 13,200,658 | 279,421    | 481,500   | 5,072,283  | 14,734,122 | 11,142,126 | 6,766,717 |
| Areximbank                    | 884,770    | 3,251      | 570,894   | 2,166,438  | 1,337,564  | 1,255,862  | 487,997   |
| Armagrobank                   | 5,639,169  | 505,817    | 355,785   | 1,285,024  | 8,208,567  | 7,190,895  | 2,169,273 |
| Armeconombank                 | 3,820,843  | 258,723    | 1,693,725 | 2,693,191  | 5,157,014  | 4,531,435  | 3,852,882 |
| Armenian Development Bank     | 4,281,438  | 437,923    | 3,381,345 | 3,324,719  | 6,948,095  | 4,224,598  | 2,554,199 |
| Armimpexbank                  | 14,554,370 | 294,872    | 1,212,748 | 3,143,308  | 15,136,387 | 7,196,675  | 4,117,915 |
| Arminvestbank                 | 2,913,352  | 0          | 204,784   | 1,145,718  | 2,581,893  | 1,409,554  | 789,293   |
| Artsahkbank                   | 1,269,798  | 525,227    | 617,420   | 913,915    | 1,223,678  | 1,223,678  | 1,155,744 |
| Converse Bank                 | 6,790,924  | 3,212,598  | 823,644   | 2,553,061  | 11,095,605 | 3,405,572  | 1,880,616 |
| Credit-Service Bank           | 2,143,070  | 3,000      | 616,865   | 411,643    | 2,210,135  | 1,318,722  | 435,108   |
| Credit-Yerevan Bank           | 10,278,448 | 514,848    | 670,907   | 3,521,471  | 12,659,045 | 11,731,246 | 7,008,210 |
| HSBC Bank-Armeni              | 1,749,663  | 10,167,904 | 3,728,007 | 20,808,067 | 7,904,248  | 7,894,426  | 5,725,585 |
| Inecobank                     | 1,870,895  | 5,000      | 203,135   | 0          | 1,716,169  | 1,187,788  | 714,644   |
| Intern. Com. Bank (Armenia)   | 252,106    | 452,084    | 585,184   | 255,855    | 500,445    | 228,105    | 225,405   |
| International Investment Bank | 582,839    | 0          | 294       | 0          | 629,460    | 304,141    | 79,478    |
| Mellat Bank                   | 337,130    | 2,314,890  | 701,184   | 3,098,482  | 2,496,045  | 2,496,045  | 1,714,179 |

| BANKNAME                      | ZAVG.ASS | ZTTL.ASS | ZTTL.CAP | ZSTAT.FN | ZTTL.LIA | ZLN.INVS |
|-------------------------------|----------|----------|----------|----------|----------|----------|
| Adana Bank                    | -0.95478 | -0.91524 | -0.82940 | -0.75676 | -0.91437 | -0.95181 |
| Ardshinbank                   | 1.16614  | 1.30118  | 0.46565  | -0.38054 | 1.37888  | 1.66001  |
| Areximbank                    | -0.75130 | -0.65140 | -0.72844 | -0.57795 | -0.63550 | -0.89645 |
| Armagrobank                   | 0.14042  | 0.12435  | -0.02020 | 0.25467  | 0.13893  | 0.17083  |
| Armeconombank                 | -0.14545 | -0.10121 | -0.20082 | 0.05278  | -0.08904 | -0.24850 |
| Armenian Development Bank     | 0.12781  | 0.20757  | 0.19385  | 0.01956  | 0.20673  | -0.11860 |
| Armimpexbank                  | 1.52380  | 1.19253  | 1.13734  | 1.39377  | 1.18513  | 1.93798  |
| Arminvestbank                 | -0.56880 | -0.61202 | -0.65355 | -0.62537 | -0.60049 | -0.48526 |
| Artsahkbank                   | -0.74663 | -0.74619 | -0.29739 | -0.55091 | -0.78739 | -0.71231 |
| Converse Bank                 | 0.67566  | 0.57556  | -0.07754 | -1.34834 | 0.64130  | 0.95419  |
| Credit-Service Bank           | -0.73613 | -0.71629 | -0.61626 | -0.77718 | -0.71924 | -0.64104 |
| Credit-Yerevan Bank           | 1.08628  | 0.91132  | 0.70047  | 1.12562  | 0.92432  | 1.11454  |
| HSBC Bank-Armeni              | 2.25388  | 2.52075  | 3.13717  | 1.98481  | 2.42398  | 1.34279  |
| Inecobank                     | -0.82834 | -0.83540 | -0.65490 | -1.09591 | -0.84591 | -0.69589 |
| Intern. Com. Bank (Armenia)   | -0.91275 | -0.86453 | 0.15115  | 1.57484  | -0.96712 | -0.93377 |
| International Investment Bank | -1.01280 | -0.99625 | -1.01182 | -0.81386 | -0.98324 | -0.95841 |
| Mellat Bank                   | -0.31700 | -0.39472 | -0.69530 | 0.52078  | -0.35699 | -0.53832 |

Appendix Table A2. Standardized Scores of Table A1.

#### Appendix Table A2 Continued.

| BANKNAME                      | ZLN.ECON | ZINTBK.L | ZSECURIT | ZDMD.LIA | ZTM.LIAB | ZTD.PHLG | ZTD.PH   |
|-------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Adana Bank                    | -0.87494 | -0.28633 | -0.80714 | -0.56190 | -0.90845 | -0.95538 | -0.90897 |
| Ardshinbank                   | 1.98817  | -0.34743 | -0.42603 | 0.43320  | 1.77205  | 1.90814  | 1.90053  |
| Areximbank                    | -0.72086 | -0.45873 | -0.34234 | -0.16843 | -0.83163 | -0.71337 | -0.79984 |
| Armagrobank                   | 0.32492  | -0.25620 | -0.54372 | -0.35092 | 0.50378  | 0.86041  | -0.07675 |
| Armeconombank                 | -0.07504 | -0.35577 | 0.70882  | -0.05937 | -0.08931 | 0.15521  | 0.64734  |
| Armenian Development Bank     | 0.02627  | -0.28356 | 2.28871  | 0.07138  | 0.25880  | 0.07384  | 0.08880  |
| Armimpexbank                  | 2.28593  | -0.34121 | 0.25854  | 0.03382  | 1.85023  | 0.86194  | 0.76132  |
| Arminvestbank                 | -0.27465 | -0.46004 | -0.68508 | -0.37977 | -0.58979 | -0.67261 | -0.67026 |
| Artsahkbank                   | -0.63617 | -0.24838 | -0.29878 | -0.42776 | -0.85377 | -0.72190 | -0.51266 |
| Converse Bank                 | 0.57827  | 0.83460  | -0.10572 | -0.08839 | 1.06489  | -0.14333 | -0.20090 |
| Credit-Service Bank           | -0.44409 | -0.45883 | -0.29930 | -0.53175 | -0.66205 | -0.69670 | -0.82259 |
| Credit-Yerevan Bank           | 1.34539  | -0.25256 | -0.24871 | 0.11212  | 1.36875  | 2.06435  | 2.00439  |
| HSBC Bank-Armeni              | -0.53062 | 3.63751  | 2.61324  | 3.69120  | 0.44463  | 1.04696  | 1.45276  |
| Inecobank                     | -0.50395 | -0.45802 | -0.68662 | -0.61698 | -0.75805 | -0.73142 | -0.70237 |
| Intern. Com. Bank (Armenia)   | -0.86003 | -0.27785 | -0.32896 | -0.56401 | -0.99433 | -0.98589 | -0.91278 |
| International Investment Bank | -0.78728 | -0.46004 | -0.87652 | -0.61698 | -0.96926 | -0.96573 | -0.97554 |
| Mellat Bank                   | -0.84132 | 0.47284  | -0.22037 | 0.02454  | -0.60648 | -0.38451 | -0.27248 |