

Synthese und Charakterisierung von zinkhaltigen Layered Double Hydroxides mit organischen Zwischenschichtanionen

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Naturwissenschaftliche Fakultät III der Martin-Luther-Universität Halle-Wittenberg

von Herrn Thomas Kühn

geb. am 02.09.1975 in Altdöbern

Gutachter:

- 1. Prof. Dr. Dr. Herbert Pöllmann
- 2. Prof. Dr. Christian Kaps

Halle(Saale), 23.06.2008

Inhaltsverzeichnis

Danksagung	I
Erklärung	II
Abkürzungen und Nomenklatur	
Kurzzusammenfassung	IV
1. Einleitung	1
1.1 Layered Double Hydroxides (LDHs)	1
1.1.1 Struktureller Aufbau	3
1.1.2 Kationen- und Anionenaustausch	5
1.1.3 Anwendungen	6
1.2 Aufgabenstellung	6
2. Experimentelle Methoden und verwendete Materialien	8
2.1 ICP-Untersuchungen	8
2.2 CHNS-Elementaranalyse	8
2.3 Ionenchromatographie (IC)	8
2.4 Röntgenographische Methoden	8
2.5 Thermische Analysen	10
2.6 IR-Spektroskopie	11
2.7 Rasterelektronenmikroskopie	11
2.8 BET-Oberflächenbestimmung	11
2.9 Verwendete Materialien	12
2.9.1 Aminosäuren	12
2.9.2 Monocarbonsäuren	13
2.9.3 Alkandisäuren	14
2.9.4 Aromatische Dicarbonsäuren	14
2.9.5 Butendisäuren	14
2.9.6 Hydroxysäuren	15
2.9.7 Alkylsulfonate	15
2.9.8 Arensulfonsäuren	16
2.9.9 Farbstoffe	16

3. Synthese von ZnAI-LDHs mit anorganischen Anionen	18
3.1 Synthesemethoden	19
3.2 Syntheseparameter	21
3.3 Synthese von ZnAl-Chlorid	26
3.4 Synthese von ZnAl-Nitrat	31
3.5 Synthese von ZnAI-Sulfat	37
3.6 Precursorphasen	42
4. Anionenaustausch von ZnAI-LDHs mit organischen Anionen	44
4.1 Austauschreaktionen mit Carboxylationen	45
4.2 Austauschreaktionen mit Dicarboxylaten	58
4.2.1 Dicarboxylate mit der Zusammensetzung $C_nH_{2n}(COOH)_2$	58
4.2.2 Aromatische Dicarboxylate, Butendisäuren und Hydroxysäuren	63
Aromatische Dicarboxylate	63
Butendisäuren	66
Hydroxysäuren	67
4.3 Austauschreaktionen mit Sulfonaten	73
4.3.1 Alkylsulfonate mit der Zusammensetzung $C_nH_{2n+1}SO_3^-$	73
4.3.2 Aromatische Sulfonate und Farbstoffe	84
4.4 Austauschreaktionen mit Aminosäureanionen	95
4.4.1 Glycin, Alanin, Prolin, Isoleucin, Phenylalanin	95
4.4.2 Cystein und Methionin	99
4.4.3 Serin und Asparaginsäure	101
5. Diskussion	103
6. Literaturverzeichnis	112
7. Anhang	A1
7.1 Gitterparameter von zinkhaltigen LDHs	A2
7.1.1 ZnAI-LDHs mit anorganischen Anionen	A2
7.1.2 ZnAl-Carboxylate	A6
7.1.3 ZnAl-Dicarboxylate	A21
7.1.4 ZnAl-Sulfonate	A29
7.1.5 ZnAI-Aminosäureanionen	A46
7.2 Ergebnisse der CHNS-Elementaranalysen	A48
7.3 IR-Spektren und IR-Absorptionsbanden zinkhaltiger LDHs	A50

Danksagung

Die vorliegende Arbeit wurde am Institut für Geowissenschaften der Martin-Luther-Universität Halle-Wittenberg durchgeführt.

Ganz herzlich möchte ich mich bei meinem Doktorvater Herrn Prof. Dr. Dr. Herbert Pöllmann für die interessante Themenvergabe, der sehr guten wissenschaftlichen Betreuung sowie der weit reichenden Unterstützung zu jeder Phase der Dissertation bedanken.

Des Weiteren bedanke ich mich bei Herrn Prof. Dr. Christian Kaps für die spontane Bereitschaft zur Begutachtung dieser Arbeit.

Mein besonderer Dank gilt Herrn Prof. Dr. Richard Wenda, Fakultät Werkstofftechnik der Georg-Simon-Ohm Hochschule Nürnberg, für die stete Diskussionsbereitschaft projektspezifischer Probleme.

Herrn Dr. Stefan Stöber möchte ich für seine Hilfsbereitschaft beim Lösen röntgenographischer und kristallographischer Probleme danken. Vor allem die fachlichen Diskussionen in der Cafeteria waren häufig Hilfe und Motivation zugleich.

Für die Unterstützung in den Laboren danke ich Frau D. Steller, Frau G. Kummer und Frau D. Sieber.

Frau Ziehn vom Institut für Chemie der Martin-Luther-Universität Halle-Wittenberg danke ich für die Durchführung der CHNS-Elementaranalysen sowie ihrer Hilfsbereitschaft bei der Erläuterung der verwendeten Gerätschaften und Standards.

Herrn Dr. Uwe König möchte ich für die kritischen Diskussionen über Synthesemethoden und Austauschprozesse von *Layered Double Hydroxides* danken.

Allen nicht namentlich erwähnten Mitarbeitern des Instituts für Geowissenschaften der Martin-Luther-Universität Halle-Wittenberg sei an dieser Stelle für die fachliche und moralische Unterstützung während des Anfertigen dieser Arbeit gedankt.

Ein besonderer Dank geht auch an Herrn Prof. Dr.-Ing. Reinhold Jahn, der mir die Möglichkeit gab, mich in der ,heißen Phase' dieser Arbeit voll und ganz auf die Fertigstellung konzentrieren zu können.

Von ganzem Herzen danke ich meinen Eltern und im Besonderen meiner Frau Anja, ohne deren Geduld und moralische Unterstützung diese Arbeit nicht zustande gekommen wäre.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Halle/Saale, 23.06.2008

Thomas Kühn

Abkürzungen und Nomenklatur

Um die Bezeichnungen der synthetisierten Verbindungen im Text abzukürzen, wurde folgende Nomenklatur verwendet:

Zinkaluminiumnitrathydrat bzw.	ZnAI-Nitrat
Zink Aluminium Nitrat Hydrat	[Zn ₂ Al(OH) ₆][NO ₃ • 1,9H ₂ O]
Zinkaluminiumpentansulfonat Hydrat bzw.	ZnAI-Pentansulfonat Hydrat
Zink Aluminium Pentansulfonat Hydrat	$[Zn_2AI(OH)_6][C_5H_{11}SO_3 \bullet 3H_2O]$

Des Weiteren wurden folgende Abkürzungen eingesetzt:

Å	Ångström (1Å = 0,1nm)
BET	Brunnauer-Emmett-Teller (N ₂ -Adsorption)
C'	Schichtdicke
DTA	Differenzthermoanalyse
DTG	Differentialthermogravimetrie
DSC	Differential Scanning Calorimetry
F _N	Figure of Merit, N=Anzahl der Reflexe
H_2O_{dest}	abgekochtes, destilliertes Wasser
ICP	Inductively Coupled Plasma
IR	Infrarot (Spektroskopie)
KF	Karl-Fischer-(Titration)
LDH	Layered Double Hydroxide
MW	Mittelwert
n _c	Anzahl der Kohlenstoffatome einer organischen Verbindung
PE	Polyethylen
OES	Optical Emission Spectroscopy
REM	Rasterelektronenmikroskop
r.F.	relative Feuchte
RG	Raumgruppe
StdAbw.	Standardabweichung
TG	Thermogravimetrie
t _A	Alterungszeit
T _A	Alterungstemperatur
V _{as}	asymmetrische Valenzschwingung
Vs	symmetrische Valenzschwingung
z.A., p.A.	zur Analyse

Kurzzusammenfassung

Layered Double Hydroxides (LDHs) sind aufgrund ihres chemischen Aufbaus und der Fähigkeit, verschiedenste organische und anorganische Anionen in die Schichtstruktur einzubauen, schon lange von großem Interesse für den Einsatz als katalytischer Werkstoff, Speichermineral, Antacidum oder Adsorbermaterial. Die starke Variabilität in der Zusammensetzung der Haupt- und Zwischenschicht führt dabei zu einer großen Bandbreite an spezifischen Eigenschaften der jeweiligen LDHs. Aus diesem Grund ist es nötig, systematische Untersuchungen zu chemischen und physikalischen Parametern von LDHs durchzuführen.

Ziel dieser Arbeit war die Untersuchung der kristallchemischen und thermischen Eigenschaften von ZnAI-LDHs mit organischen Zwischenschichtanionen unterschiedlicher Kettenlänge und funktioneller Gruppen. Anhand der Analyseergebnisse wurden Aussagen über Stabilitätsfelder bzw. Hydratstufen der synthetisierten Verbindungen getroffen, welche von großer Bedeutung für potentielle Anwendungen im Bereich der Nanomaterialien sind.

Sämtliche synthetisierten ZnAI-Verbindungen kristallisieren in der für LDHs typischen Form als hexagonale Plättchen mit einem Durchmesser von wenigen Mikrometern. Im Vergleich verschiedener Synthesemethoden und unter Variation der Syntheseparameter Zeit, Temperatur und pH-Wert erweist sich Nitrat als optimales Precursoranion für Austauschreaktionen mit organischen Anionen, wobei allerdings auf die Bildung von ZnO als Nebenphase zu achten ist.

Der Schichtabstand von ZnAI-LDHs ändert sich in Abhängigkeit von der Größe und der Anordnung des Zwischenschichtanions. Anhand der Zunahme der Schichtabstände mit steigender Kettenlänge wurden die Inklinationswinkel der substituierten organischen Anionen bestimmt. Dicarboxylate und Alkylsulfonate ordnen sich in monomolekularen Schichten in der Zwischenschicht an, wobei der Schichtabstand linear mit der Anzahl der Kohlenstoffatome der organischen Kette steigt. Monocarboxylate bilden in Abhängigkeit von der Kettenlänge und den eingestellten Syntheseparametern monomolekulare oder bimolekulare Strukturen bzw. Überstrukturen aus beiden Anordnungen aus. Durch Trocknung bei unterschiedlichen relativen Luftfeuchten verändern sich die Gitterparameter nur geringfügig. Die Stapelordnungen der Dicarboxylate, Aminosäureanionen und Verbindungen mit kurzkettigen organischen Molekülen sind instabil gegenüber Trocknung. Eine Änderung des Schichtabstandes tritt bei der Remobilisierung des nicht strukturnotwendigen Zwischenschichtwassers auf. ZnAI-LDHs mit stabilen kurzkettigen organischen Anionen bilden durch Aufheizen auf Temperaturen bis max. 150°C eine zwischenschichtwasserfreie Hydratstufe aus, wobei der Schichtabstand abnimmt. Langkettige Sulfonatketten richten sich dagegen bei Temperaturerhöhung auf, ohne das Zwischenschichtwasser dabei vollständig abzugeben. Dadurch kommt es zu einer Aufweitung der Zwischenschicht. Erst bei höheren Temperaturen werden die OH-Gruppen der Hauptschichten entwässert und die Kristallstruktur wird zerstört.

Die Ergebnisse dieser Arbeit zeigen, dass die Größe der Zwischenschicht gezielt durch den Einbau spezifischer organischer Anionen mit unterschiedlichen Kettenlängen und funktionellen Gruppen eingestellt werden kann. Nach Ausheizen des Zwischenschichtwassers bleibt die Kristallstruktur der organischen ZnAI-LDHs in einem weiten Temperaturbereich stabil. Die spezifischen Oberflächen der Hydratstufen sind generell größer als die BET-Werte der hydratisierten Verbindungen.

1. Einleitung

Die vorliegende Arbeit beschäftigt sich mit der Synthese und Charakterisierung von lamellaren Phasen der Hydrotalkit-Gruppe. Die Vertreter dieser Gruppe werden in der Literatur häufig als Layered Double Hydroxides (LDHs) beschrieben. Ältere oder seltener verwendete Begriffe sind Metall-Metall-Hydroxisalze, lamellare Doppelsalze, hybride Schichtstrukturen, lamellare Hydroxide von Übergangsmetallen oder Double Layer Hydroxides. Aufgrund der Eigenschaft, Anionen der Zwischenschicht auszutauschen, werden LDHs häufig mit Tonmineralen verglichen und in Anlehnung zu der Eigenschaft der Tonminerale, Kationen auszutauschen, als "Anionische Tone" bezeichnet.

Seit der Entdeckung des Hydrotalkits 1842 an einer Steatitprobe von Snarum (Norwegen) durch den Geologen Carl Hochstetter haben die LDHs stark an Bedeutung gewonnen. Die große Variabilität ihrer strukturellen Eigenschaften ermöglicht den Einsatz in einem breiten Spektrum an technischen Anwendungsbereichen. Aufgrund dessen werden die Eigenschaften von zinkhaltigen LDHs in dieser Arbeit untersucht und charakterisiert.

1.1 Layered Double Hydroxides (LDHs)

Natürlich vorkommende LDHs werden aufgrund ihrer feinkristallinen Ausbildung oft übersehen oder makroskopisch mit anderen Mineralen verwechselt. LDHs kristallisieren unter sauren und alkalischen Bedingungen. Sie können rezent als Bildungen aus Verwitterungslösungen auf Halden und in Oxydationszonen von Lagerstätten gefunden werden (Göske *et al.*, 1997, NICKEL UND WILDMAN, 1981). Manganhaltige LDHs sind aus den Manganminen Südafrikas und der Shiga-Region in Japan bekannt (PEACOR *et al.*, 1985). WITZKE (1995) beschreibt Verbindungen der Hydrotalkit-Gruppe als Neubildung in stillgelegten Bergwerken und auf Schlackehalden (WITZKE UND PÖLLMANN, 1996). So wurden Anreicherungen zinkhaltiger LDHs in Böden in der Nähe einer Blei-Zink Aufbereitungsanlage in Frankreich nachgewiesen (JUILLOT *et al.*, 2003).

Des Weiteren können LDHs als Hydratationsprodukt in zementären Systemen auftreten (PÖLLMANN UND OBERSTE-PADBERG, 2001). Eine Auswahl natürlich vorkommender Verbindungen der Hydrotalkit-Gruppe ist in Tabelle 1.1 aufgelistet.

Die ersten umfassenden Arbeit über LDHs wurden durch FRONDEL (1941) mit seiner Klassifizierung der Pyroaurit- und der Sjögrenitgruppe durchgeführt. FEITKNECHT UND GERBER (1942) beschrieben Untersuchungen an natürlichen Magnesium-Aluminium-Doppelhydroxiden. Erste lamellare Doppelsalze mit Mg²⁺ und Al³⁺ als Kationen synthetisierte FEITKNECHT (1942a) unter Verwendung von MgCl₂ und AlCl₃ als Edukte. Im selben Jahr stellte FEITKNECHT (1942b) eine Zusammenfassung über LDHs mit verschiedenen zwei- und dreiwertigen Kationen vor. Seine Strukturvorstellungen wurden von ALLMANN (1968) und TAYLOR (1969) korrigiert.

Die Verbindungen der Hydrotalkit-Gruppe wurden unter anderem intensiv durch BRINDLEY UND KIKKAWA (1979), MIYATA (1975, 1980, 1983), MIYATA UND KURUMA (1973) und MIYATA UND OKADA (1977) auf ihre chemischen und strukturellen Eigenschaften untersucht. Die Synthese von LDHs unter der Verwendung der Salz-Oxid-Methode beschrieben ROY *et al.* (1953). SERNA *et al.* (1982) synthetisierten unter hydrothermalen Bedingungen eine hydrotalkitähnliche Phase mit der Zusammensetzung $[Al_2Li(OH)_6]^+[X^\bullet nH_2O]$. Die experimentellen Parameter der Hydrothermalsynthese wurden durch TAYLOR (1984) kontrolliert und optimiert. HANSEN UND TAYLOR (1990) führten für eisenhaltige LDHs einen kontrollierten Oxidationsprozess ein.

Zunehmend werden strukturelle Untersuchungen an komplexen lamellaren Doppelsalzen wie Mutokoreait (RIUS UND PLANA, 1986), Lawsonbauerit (TREIMAN UND PEACOR, 1982) und Shigait (COPPER UND HAWTHORNE, 1999) durchgeführt. Katalytische Reaktionen von LDHs beschrieben REICHLE (1985, 1986) und WANG *et al.* (1999). Die Verwendung nickelhaltiger LDHs als Elektrodenmaterial in Energiespeicherzellen wurde von CLAUSE *et al.* (1991) und FAURE *et al.* (1991) und FAURE *et al.* (1991) untersucht und spezifiziert.

Mo ²⁺	Ma ³⁺	∧ n-	Kristallgitter		lgitter	Literatur
INIG	Me	A	X	2H	3R	Literatur
Mg	AI	CO3 ²⁻	0,25		Hydrotalkit	Allmann und Jepsen, 1969
Mg	AI	CO3 ²⁻	0,25	Manasseit		Allmann und Lohse, 1966
Mg	AI	CO3 ²⁻	0,33	Quin	tinit	Chao und Gault, 1997
Mg	Fe	CO3 ²⁻	0,25	Sjögrenit		Allmann und Lohse, 1966
Mg	Fe	CO3 ²⁻	0,25		Pyroaurit	Allmann, 1968
Mg	Fe	CO3 ²⁻	0,17		Coalingit	Pastor-Rodriguez und Taylor, 1971
Mg	Cr	CO3 ²⁻	0,25	Barbertonit		Frondel, 1941
Mg	Cr	CO3 ²⁻	0,25		Stichtit	Frondel, 1941
Mg	Mn	CO3 ²⁻	0,25		Desautelsit	Dunn et al., 1979
Mn	AI	CO3 ²⁻	0,33	Charr	narit	Chao und Gault, 1997
Ni	AI	CO3 ²⁻	0,25		Takovit	Bish und Brindley, 1977
Ni	Fe	CO3 ²⁻	0,25		Reevesit	White et al., 1967
Ni	Со	CO3 ²⁻			Comblainit	Piret und Deliens, 1980
Mg	AI	OH	0,25		Meixnerit	Kortnig und Süsse, 1975
Mg	Fe	Cl	0,20		Iowait	Allmann und Donnay, 1969
Ni	Fe	OH	0,30	Hydrohonessit		Nickel und Wildman, 1981
Zn, Cu	AI	SO4 ²⁻	0,38	Glaucocerinit		Raade et al., 1985
Cu	AI	SO4 ²⁻	0,33	Woodwardit		Nickel, 1976
Ni, Mg	Fe	SO4 ²⁻	0,25		Honessit	Bish und Livingstone, 1981
Ni, Cu	AI	SO ₄ ²⁻ , CO ₃ ²	0,40	Carrboydit		Nickel und Clark, 1976
Mg, Mn, Zn	AI	SO4 ²⁻ , CO3 ² <i>(Na, K)</i>	0,33		Motukoreait	Brindley, 1979
Mg	Al, Fe	SO4 ²⁻ (<i>Ca, Mg)</i>	0,22	Wermlandit		Rius und Allmann, 1984
Mn	AI	SO₄ ²⁻ <i>(Na)</i>	0,33		Shigait	Cooper und Hawthorne, 1996

Tab. 1.1. Namen und allgemeine Zusammensetzung natürlich vorkommender LDHs (Zwischenschichtkationen in kursiv; modifiziert nach DRITS UND BOOKIN, 2001, TOTH, 1998)

Zahlreiche Arbeitsgruppen, wie z.B. CAVANI *et al.* (1991), FORANO *et al.* (1997), HOU *et al.* (2003) und KIM *et al.* (2004), haben sich mit der Synthese und dem Anionenaustauschverhalten von LDHs mit verschiedenen Kationen und anorganischen Anionen beschäftigt. Aufgrund der Anwendung von LDHs als Katalysator und Adsorbermaterial gewinnen die Untersuchungen zu Austauschreaktionen mit organischen Anionen an Bedeutung. Die Wechselwirkungen von LDHs mit ausgewählten Carboxylaten, Sulfaten und technischen Tensiden untersuchte MEYN (1991). Die Autorin konnte eine Aufweitung der Schichtstruktur in Abhängigkeit vom substituierten Anion feststellen. Zu einem ähnlichen Resultat kamen KOOLI UND JONES (1997) beim Einbau von Benzoat und Terephthalat. Zunehmend werden Aminosäureanionen, pharmazeutische Komponenten und

medizinische Wirkstoffe in die Zwischenschicht eingebaut (AISAWA *et al.*, 2001, HWANG *et al.*, 2001, NEWMAN *et al.*, 2002).

Die in dieser Arbeit synthetisierten und untersuchten Verbindungen sind Vertreter der Hydrotalkit-Gruppe. Ihre allgemeine chemische Zusammensetzung kann wie folgt beschrieben werden:

$[Me^{2+}_{1-x}Me^{3+}_{x}(OH)_{2}]^{x+}[A_{x/r} \bullet nH_{2}O]^{x-}$

Als zweiwertiges Kation wurde Zink verwendet, Aluminium diente als Kation für die dreiwertige Position. Untersucht wurden zinkhaltige LDHs mit verschiedenen anorganischen Anionen, die durch Anionenaustauschreaktionen mit organischen Säuren unterschiedlicher Kettenlänge und funktioneller Gruppe ersetzt wurden.

1.1.1 Struktureller Aufbau

LDHs sind Schichtstrukturen, die aus chemisch und strukturell verschiedenen, alternierenden Schichten aufgebaut sind. Alternierend zu den positiv geladenen Hauptschichten liegen negativ geladene Zwischenschichtanionen und nicht strukturnotwendige reversibel austauschbare Wassermoleküle.

Der Aufbau der LDHs wird auf die Struktur des Brucits mit Mg(OH)₂ zurückgeführt (FEITKNECHT, 1942, FRONDEL, 1941). Kantenverknüpfte Me(OH)₆-Koordinationspolyeder bilden die primären Baueinheiten der Hauptschichten. Es können sich zwei unterschiedliche Stapelfolgen ausbilden, die zu zweischichtig hexagonalen (2H) oder dreischichtig rhomboedrischen (3R) Raumgruppen führen. In der Hauptschicht schwankt das Me²⁺ : Me³⁺-Verhältnis, unabhängig von der Struktur, im Bereich 4:1 (x = 0.2) bis 3:2 (x = 0.4), wenn geringe Unterschiede der Ionenradien zwischen den Kationen vorherrschen (ALLMANN, 1970). In den Doppelschichtstrukturen von Pyroaurit- und Sjögrenit-Typ (INGRAM UND TAYLOR, 1967) mit der chemischen Zusammensetzung $[Mg_6Fe_2(OH)_{16}]^{2+}$ $[CO_3] \cdot 4H_2O]^{2-}$ erfolgt eine statistische Anordnung von zwei- (Mg^{2+}) und dreiwertigen (Fe³⁺) Metallionen in den Oktaederlücken der brucitähnlichen Hauptschicht. Beide Strukturtypen unterscheiden sich durch eine differenzierte Stapelfolge der Hauptschichten. In der trigonalen Struktur der Raumgruppe R3m liegen die 3-zähligen Achsen mit A, B, und C in 0; 2/3; 1/3 bzw. 1/3; 2/3 einer trigonalen Zelle. Im rhomboedrischen Pyroaurit haben somit die OH-Gruppen der Hauptschicht die Schichtenabfolge BC-CA-AB-BC. Die Elementarzelle ist aus drei Hauptschichten $[Mg_6Fe_2(OH)_{16}]^{2+}$ in Richtung c_0 mit $c_0 = 3c'$ (c'= Schichtdicke) aufgebaut. In der hexagonalen Schichtstruktur (P63/mmc) des Sjögrenits liegt hingegen eine 2-fache Stapelung der Hauptschicht $[Mg_6Fe_2(OH)_{16}]^{2+}$ pro Elementarzelle mit der Abfolge BC-CB-BC vor.

ALLMANN (1970) erklärt, dass aufgrund der Existenz von Wasserstoffbrückenbindungen ein Teil der Me²⁺ Kationenpositionen der Brucitschicht mit Al³⁺ - Ionen ersetzt werden kann. Die entstandenen [Me_{1-x}Al_x(OH)₂]^{x+} Schichten sind positiv geladen und müssen durch negativ geladene Anionen in den Zwischenschichten ausgeglichen werden. In natürlichen LDHs geschieht der Ladungsausgleich vor allem durch den Einbau planarer Karbonatgruppen. Wasserstoffbrückenbindungen verknüpfen die Zwischenschichtionen mit den OH-Gruppen der Hauptschicht. Die Zwischenschicht ist häufig nicht stöchiometrisch zusammengesetzt (ALLMANN, 1970).

Neben den Anionen befinden sich nicht strukturnotwendige Wassermoleküle in den Zwischenschichten. Die Bindungen der verschiedenen Plätze in der Zwischenschicht der Kristallstruktur sind so gering, dass die Wassermoleküle und das Anion bei Temperaturerhöhung diese leicht austauschen (BISH, 1980). Darauf basiert die große Mobilität des Zwischenschicht-

kristallwassers, welches sehr leicht reversibel entfernt werden kann. Die Kristallstruktur wird durch diese Dehydratation der Zwischenschicht nicht zerstört.

Zusätzlich können große monovalente Kationen in die Zwischenschicht der LDHs eingebaut werden (COOPER UND HAWTHORNE, 1996). Die Größe des Schichtabstandes c' ist von der Art, Größe und Position des Zwischenschichtanions abhängig, der Gitterparameter a₀ wird durch die Zusammensetzung der Hauptschicht bestimmt. Eine ausführliche Beschreibung der Hydrotalkit-Struktur ist unter anderem bei ALLMANN (1977), ALLMANN UND JEPSEN (1969), BELLETTO *et al.* (1996), CAVANI *et al.* (1991), MIYATA (1975) und TAYLOR (1973) zu finden.

Abb. 1.1.1.1 Modell zur Schichtstruktur von LDHs der Hydrotalkitgruppe (blaugrün: Kationenoktaeder der Hauptschicht, rot: Sauerstoffatome, grau: Wasserstoffatome)

Abb. 1.1.1.2 Modelle zur Verteilung von Al³⁺ in der Hauptschicht (links, Al³⁺ Oktaeder in blau) und Aufbau der Zwischenschicht von LDHs (modifiziert nach RENNEMANN, 1997, BRAVO-SUÁREZ *et al.*, 2004)

1.1.2 Kationen- und Anionenaustausch

Eine charakteristische Eigenschaft der LDHs ist die Fähigkeit eine Vielzahl von Kationen in die Hauptschicht und verschiedenen Anionen in die Zwischenschicht einzubauen (Tab. 1.1.2.1). Der diadoche Ersatz von zweiwertigen und dreiwertigen Kationen in die Doppelsalzstruktur ist abhängig von den Ionenradien und den Konzentrationen der Metallionen während der Bildung der LDHs. Nach CAVANI *et al.* (1991) und TOTH (1998) sind Me²⁺ und Me³⁺ mit Ionenradien zwischen 0,055nm und 0,073nm für den Einbau in die Brucitschicht geeignet. Tabelle 1.1.2.2 stellt die Radien einiger zweiwertiger und dreiwertiger Kationen dar. Obwohl Ca²⁺ demzufolge zu groß für den Einbau in die Hauptschicht wäre, existieren LDHs mit Calcium als zweiwertiges Kation (ALLMANN, 1977). AHMED UND TAYLOR (1967) und KUZEL (1968) gehen von einer Verzerrung der Metalloktaeder aus. Aufgrund des großen Ionenradius sind die Calciumionen durch Umgebung von sechs Sauerstoffatomen der Hauptschicht plus eines zusätzlichen Sauerstoffatoms der Zwischenschicht 7-koordiniert. Die Aluminiumionen sind von sechs OH-Ionen umgeben. Zusätzlich zur Art der Me²⁺ und Me³⁺ Ionen kann auch das Verhältnis der Kationen stark variieren. Die optimalen Verhältnisse sind in Tabelle 3.2.2 argestellt.

Me ²⁺ – Ion	Mg ²⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Fe ²⁺ , Zn²⁺ , Cu ²⁺ , Ca ²⁺ , [Li ⁺]
Me ³⁺ – Ion	Mn ³⁺ , Co ³⁺ , Cr ³⁺ , Ni ³⁺ , Fe ³⁺ , Al³⁺
Anion	$CO_3^{2^-}$, $SO_4^{2^-}$, NO_3^- , CI^- , OH^- , Br^- , CIO_4^- COO^- , $(COO)_2^-$, SO_3^- , Aminosäuren, Farbstoffe

Tab. 1.1.2.1 Variabilität der Kationen und Anionen in natürlichen und synthetischen LDHs

Me ²⁺	Be	Mg	Cu	Ni	Co	Zn	Fe	Mn	Cd	Ca
	0,03	0,065	0,069	0,072	0,074	0,074	0,076	0,080	0,097	0,098
Me ³⁺	AI	Ga	Ni	Co	Fe	Mn	Cr	V	Ti	In
	0,05	0,062	0,062	0,063	0,064	0,066	0,069	0,074	0,076	0,081

Tab. 1.1.2.2 Ionenradien einiger Kationen [nm] (CAVANI et al., 1991)

Von großer Bedeutung für die Mehrzahl der Anwendungsmöglichkeiten von LDHs ist ihre Fähigkeit des Anionenaustausches. Natürliche LDHs bauen bevorzugt Karbonat in die Zwischenschicht ein. Untersuchungen an synthetischen Verbindungen der Hydrotalkit-Gruppe haben gezeigt, dass eine Vielzahl an anorganischen und organischen Anionen in die Zwischenschicht substituiert werden können (ANBARASAN *et al.*, 2005, KOPKA *et al.*, 1988, MEYN *et al.*, 1990).

Der interlamellare Einbau organischer Moleküle in die Schichtstruktur von Tonmineralen ist bereits seit längerem bekannt (LAGALY UND WEISS, 1971, MACEWAN, 1962). Laborversuche zum Sorptionsverhalten von Alkoholen und Carbonsäuren an Tetracalciumaluminathydraten und anschließender Hydratisierung zeigen, dass organische Verbindungen bei hohen relativen Feuchten an Hydratwassermoleküle gebunden sein können (DOSCH, 1967). Bei Dehydrierung werden diese Zwischenschichtwassermoleküle aus der Schichtstruktur entfernt, was eine Neuanordnung der organischen Moleküle mit Verkleinerung der Schichtdicke c' zur Folge hat. Die Schichtdicke c' ist demzufolge abhängig von der Größe und der Lage des in die Zwischenschicht eingebauten organischen Gastmoleküls (CHIBWE UND JONES, 1989, PÖLLMANN *et al.*, 2006). Die organischen Moleküle liegen bei hoher Feuchtigkeit senkrecht zu den anionischen Hauptschichten in der Zwischenschicht und werden über Bildung von Ionenpaaren mit den Al³⁺ Kationen stabilisiert

(CHIBWE UND JONES, 1989, KUK UND HUH, 1997). Durch die Substitution von organischen Molekülen in die Zwischenschicht von Hydrotalkit kommt es, in Abhängigkeit vom eingebauten Gastmolekül, zur Bildung geregelter Hybridstrukturen mit einfacher und Doppelschichtstapelung (YANG *et al.*, 2003). Aufgrund der im Nanometerbereich liegenden Größe dieser Partikel eignen sie sich besonders gut für pharmazeutische und kosmetische Applikationen.

1.1.3 Anwendungen

Aufgrund ihres strukturellen Aufbaus und der einfachen Synthesebedingungen bieten LDHs vielfältige Einsatzmöglichkeiten. Die Eigenschaft der Substitution verschiedener Kationen und Anionen in die Schichtstruktur der LDHs sowie das Anionenaustauschvermögen ermöglichen den Einsatz als *Anionenaustauscher* für anorganische und organische Ionen (KHAN UND O'HARE, 2002, LEE *et al.*, 2006), *Adsorber* (DAS *et al.*, 2003, GOSWAMEE *et al.*, 1998) und *Trägermaterial* für photokatalytische Zwecke (COSTANTINO *et al.*, 1999, 2000). Vor allem kalzinierte LDHs besitzen eine hohe spezifische Oberfläche und uniforme Verteilung der Metallionen in der Oxidmatrix, wodurch sie sich bevorzugt als *Katalysatoren* (CHOUDARY *et al.*, 2001, CHOUDHARY *et al.*, 2003, KAGUNYA *et al.*, 1996, KAKIUCHI *et al.*, 2001, KANEDA *et al.*, 2000, REICHLE, 1985, 1986, WANG *et al.*, 1999) eignen.

Seit 1977 wird Hydrotalkit erfolgreich in der Pharmazie als **Antacidum** (Talcid; WIECHERT, 1976) zur Neutralisation überschüssiger Magensäure angewendet. Eine weitere Nutzung in der Medizin als Trägermaterial für pharmazeutische Komponenten wurde von Hwang *et al.* (2001) untersucht. Mit Hilfe von kalzinierten ZnAI-LDHs kann Urea in Urin und Blut quantitativ und qualitativ nachgewiesen werden (MELO *et al.*, 2002).

Aufgrund der hohen Sensitivität der Austauschreaktionen werden LDHs als **Biosensor** zur Detektion von Phenolen in Abwässern eingesetzt (HAN *et al.*, 2007, SHAN *et al.*, 2003). Die Vertreter der Hydrotalkit-Gruppe können als **Speicherminerale** für Schwermetalle (AUER *et al.*, 1992, PÖLLMANN UND GEBHARD, 1992, YANG *et al.*, 2005, YOU *et al.*, 2001), bei der Abwasserbehandlung, Sondermüllentsorgung sowie der Deponietechnik verwendet werden. LDHs adsorbieren CO_2 aus der Luft bevorzugt bei erhöhten Temperaturen (200-300°C) und können deshalb zur Reduzierung von CO_2 -Emissionen in Kraftwerksabgasen eingesetzt werden (RAM REDDY *et al.*, 2006, YONG *et al.*, 2001).

Andere Anwendungen umfassen die Verwendung als **Stabilisator** von PVC-Folien, Ausgangsmaterial zur Bildung dünner Filme oder Biomembranen (GARDNER *et al.*, 2001) und **Verdickungsmittel** in Bohrlochspülungen (LANGE UND PLANK, 1999).

1.2 Aufgabenstellung

Im Rahmen der vorliegenden Arbeit sollen zinkhaltige Verbindungen der Hydrotalkit-Gruppe mit organischen Zwischenschichtanionen der Monocarbonsäuren, Alkandisäuren, aromatischen Dicarbon- und Sulfonsäuren, Butendisäuren, Hydroxysäuren, Farbstoffe, Alkylsulfonsäuren und Aminosäuren auf Bildungsbedingungen und Eigenschaften untersucht werden.

ZnAI-LDHs werden schon seit langem intensiv untersucht und für selektive Anionenaustauschprozesse verwendet (z.B. BEAUDOT *et al.*, 2004, COSTANTINO *et al.*, 1999, HWANG *et al.*, 2001, MELO *et al.*, 2002). Aufbauend auf diese Erfahrungen sollen die chemischen und physikalischen Syntheseparameter zur Bildung einer für Anionenaustauschreaktionen geeigneten Precursorphase analysiert und optimiert werden. Dabei wird auch auf verschiedene Methoden zur Herstellung von ZnAI-LDHs mit anorganischen Anionen eingegangen. Die zunehmende Bedeutung von LDHs als Adsorbermaterialien oder Katalysatoren (siehe 1.1.3) erfordert genaue Kenntnisse der Zusammensetzung der Zwischenschicht sowie der Oberflächeneigenschaften. Durch die Substitution organischer Anionen definierter Größe und spezifischer Eigenschaften können möglicherweise Parameter wie Porenvolumen und spezifische Oberfläche gezielt moduliert und verifiziert werden. Die Verwendung organischer Substanzen verschiedener funktioneller Gruppen als Zwischenschichtanion soll Aufschluss über die Stabilität und Reaktionskinetik der ausgetauschten Phasen geben. Bisherige Arbeiten beschäftigen sich überwiegend mit Austauschprozessen einzelner repräsentativer organischer Moleküle. Innerhalb dieser Arbeit werden mehrere Vertreter verschiedener Gruppen organischer Substanzen (siehe oben) für die Substitution in ZnAI-LDHs eingesetzt, um so eine systematische Untersuchung der Austauschprozesse in Abhängigkeit von der Kettenlänge und der funktionellen Gruppe zu ermöglichen. Besonderer Schwerpunkt liegt hierbei auf der Untersuchung der Schichtdicke bzw. möglicher Schichterweiterungen in Abhängigkeit von der Größe und Lage des substituierten Zwischenschichtanions. Mit Hilfe von kristallchemischen Untersuchungen werden strukturelle Eigenschaften, die Zusammensetzung der Verbindungen, Morphologie und Bindungen der Einzelkomponenten analysiert.

Ein weiterer Schwerpunkt dieser Arbeit sind Untersuchungen zur thermischen Stabilität der organischen, zinkhaltigen Verbindungen und zur Entwicklung der Porenvolumina in Abhängigkeit vom Zwischenschichtanion und des Zwischenschichtwassers. Anhand von Sorptionsexperimenten werden die Oberflächenbeschaffenheiten von ZnAI-LDHs untersucht. Neben dem wissenschaftlichen Erkenntnisgewinn soll innerhalb dieses Themenschwerpunktes überprüft werden, ob generelle Aussagen über eine Verwendung der synthetisierten Schichtstrukturen als Nanomaterialien gemacht werden können.

2. Experimentelle Methoden und verwendete Materialien

2.1 ICP-Untersuchungen

Sämtliche Reinphasen der ZnAI-LDHs wurden mittels ICP-OES (Plasmaquant 110, Analytik Jena) auf die Konzentrationen der Elementgehalte von Zn, Al und Na untersucht. Die auf 35% r.F. getrockneten Proben wurden in H₂O_{dest} in Suspension gebracht und mit konzentrierter HNO₃ angesäuert. Die langkettigen Carboxylatverbindungen wurden vor dem Aufschluss für eine Stunde bei 250°C im Ofen erhitzt und nach Abkühlung mit HNO₃ aufgeschlossen. Aufgrund der verwendeten Temperatur konnten die organischen Zwischenschichtanionen entfernt werden, ohne die Gehalte der Kationen zu verändern. Die Kalibrierung der ICP-OES erfolgte mit aus Standard-Iösungen hergestellten Eichlösungen.

2.2 CHNS-Elementaranalyse

ZnAI-LDHs mit organischen Zwischenschichtanionen wurden nach Trocknung auf 35% r.F. mittels Elementaranalyse auf die Gehalte von Kohlenstoff, Wasserstoff, Stickstoff und Schwefel untersucht. Die eingewogene pulverfeine Probe wurde bei 950°C in einem Sauerstoff/Helium-Gemisch verbrannt und C, H und S infrarotspektroskopisch bestimmt. Die Messung der N-Gehalte erfolgte mittels einer Wärmeleitzelle. Sämtliche Analysen wurden an einem Elementaranalysator Typ CHNS-932 der Firma Leco Corporation durchgeführt.

2.3 Ionenchromatographie (IC)

Die Gehalte von Nitrat und Chlorid in den Precursorphasen wurden mittels der Ionenchromatographie gemessen. Anionen und Kationen werden auf Grund unterschiedlicher elektrostatischer Wechselwirkungen an Ionenaustauschern getrennt und können so qualitativ und quantitativ bestimmt. Zur Messung der Anionen stand ein Ionenchromatograph DX 100 der Firma Dionex Corporation zur Verfügung. Die Gehalte von Natrium wurden an einem DIONEX ICS-1000 analysiert. Des Weiteren wurden ZnAI-LDHs mit organischen Zwischenschichtanionen auf Restgehalte und Verunreinigungen der anorganischen Precursoranionen untersucht.

2.4 Röntgenographische Methoden

Die Phasenanalyse der synthetisierten ZnAI-LDHs erfolgte an einem Röntgendiffraktometer X'Pert Pro MPD der Firma PANalytical mit Bragg-Brentano-Geometrie und X'Celerator Detektor (,Real-Time-Multiple-Strip' Detektor). Die Messungen wurden im Step-scan-mode durchgeführt. Die Diffraktogramme wurden mit dem Softwarepaket X'Pert HighScore Plus (V.2.1.0) der Firma PANalytical ausgewertet. Die Verfeinerung der Gitterkonstanten nach der Methode der kleinsten Quadrate (Least-Squares Verfahren) erfolgte mit den Programmen CellRef V3 (LAUGIER UND BOCHU, 2003) und PowdMult V.2.2 (Interactive Powder Diffraction Data Interpretation and Indexing by E.WU, School of Physical Scienes, Flinders University of South Australia). Zur Verfeinerung des Gitterparameters a₀ der ZnAI-LDHs mit organischen Zwischenschichtanionen wurden beim Auftreten weniger, intensitätsschwacher (hkl)-Reflexe zum Teil die Gitterparameter der verwendeten anorganischen Precursorphasen mit hinzugezogen.

Die röntgenographischen Untersuchungen der ZnAI-LDHs wurden an den feuchten Pasten bei 100% r. F. und nach Trocknung über einer gesättigten CaCl₂ Lösung auf 35% r.F. mit folgenden Messparametern durchgeführt:

Messbereich [°2Theta]:	2(3)-90 (vereinzelt 2(3)-70)
Spannung [kV]:	45
Stromstärke [mA]:	40
Schrittweite [°]:	0,016
Zählzeit [s]:	10,16
Messzeit [min]:	7:14
Strahlung:	$CuK_{\alpha 1,2}$ (Wellenlänge 1,5406)
Blendensystem:	programmierbar (variabel)
Filter:	Nickel

Die kurze Messzeit verhindert eine Karbonatisierung und Austrocknung der Probe. Lamellare Verbindungen vom Hydrotalkit-Typ regeln sich u. a. unter Einwirkung von Druck bevorzugt senkrecht zur c-Richtung ein. Um die daraus resultierenden Textureffekte der (00I)-Reflexe zu vermeiden bzw. zu verringern, wurden die Proben mittels ,back-loading' Methode für die Röntgenphasenanalyse präpariert. Dabei wird der Probenträger von der Rückseite mit der pulverfeinen Probe befüllt. Als interner Standard wurde Si (a_0 =0,54308nm, 99,99% z.A.) der Probe beigemischt. Mit Hilfe eines äußeren Standards (NIST, Standard Reference Material 1976) konnte eine Korrektur der Intensitäten der ZnAI-LDHs und des Gerätenullpunktes durchgeführt werden.

Abb. 2.4.1 XRD-Probenträger (back-loading, links) und Röntgendiffraktometer X'Pert Pro MPD (rechts)

Zur Untersuchung der Hydratstufen der lamellaren Hydroxysalze wurde eine Heizkammer HTK-16 der Firma Anton-Paar verwendet. Im Temperaturintervall 25-300°C wurden die Proben röntgenographisch untersucht. Die Kalibrierung der Röntgenheizkammer erfolgte durch definiertes Aufheizen von Ammoniumnitrat (TOMASZEWSKI, 1992). Die Proben wurden entweder als feuchte Pasten auf das Platinheizband aufgetragen oder in Form einer Suspension, bestehend aus den auf 35% getrockneten Verbindungen und einigen Tropfen Aceton. Die verwendeten Untersuchungsparameter zur Analyse der Hydratstufen sind wie folgt gewählt worden:

Temperaturbereich [°C]:	25-300
Aufheizrate [K • min ⁻¹]:	5
Temperaturschritt [K]:	5(10)
Haltezeit [min]:	3
Schutzgas:	Luft

2.5 Thermische Analysen

Mit Hilfe thermogravimetrischer Methoden (TG) wurde der Gewichtsverlust lamellarer zinkhaltiger LDHs in Abhängigkeit von der Temperatur gemessen. Anhand der Massenverluste konnten die Dehydratationsreaktionen der synthetisierten Verbindungen qualitativ und quantitativ bestimmt werden.

Die DSC wurde zur Bestimmung der Onsettemperaturen eingesetzt, um durch ein verbessertes Auflösungsvermögen parallel ablaufende Dehydratationsreaktionen zu entzerren. Durch Messung von aufgenommener bzw. abgegebener Wärmemenge während der Phasenumwandlungen konnten Aussagen über die Art der Reaktionen gemacht werden.

Sämtliche Analysen wurden an einem Thermoanalysesytem TG/DTA 320U und einer DSC 220 der Firma Seiko Instruments unter Verwendung der folgenden Parameter durchgeführt:

Anfangstemperatur [°C]:	25
Endtemperatur [°C]:	1000 (DSC: 500)
Aufheizrate [K • min ⁻¹]:	5
Referenzmaterial:	AI_2O_3
Schutzgas:	Stickstoff, Luft

Abb. 2.5.1 TG (links) und Karl-Fischer-Titration (rechts)

TG-Untersuchungen bestimmen Gewichtsverluste, ohne spezifische Aussagen über Aussagen über deren Ursachen wiederzugeben. Neben der Abgabe von Wassermolekülen können zusätzliche Reaktionen, wie Oxidationsvorgänge oder Zerfalls- bzw. Zersetzungsprozesse die Ergebnisse verfälschen. Aufgrund dessen wurden die Gehalte an H₂O der ZnAI-LDHs mittels Karl-Fischer- (KF) Titration ermittelt. Die Bestimmung des Wassergehaltes nach der KF-Methode beruht auf der Oxidation von Schwefeldioxid durch Jod in der Gegenwart von Wasser (WIELAND, 1985).

Die Reaktion läuft nach folgendem Prinzip ab:

$$I_2 + SO_2 + 3C_5H_5N + H_2O \rightarrow 2C_5H_5NH^+I^- + C_5H_5N \bullet SO_3$$
$$C_5H_5N \bullet SO_3 + CH_3OH \rightarrow C_5H_5NH^+CH_3SO_4^-$$

Dazu wurde das in der pulverfeinen Probe enthaltene Wasser in einem Ofen ausgeheizt und in eine Titrierzelle überführt. Als Lösungsmittel wurde Methanol eingesetzt. Die Indikation des Endpunktes erfolgte bipotentiometrisch mit Hilfe zweier Platinelektroden. Sämtliche KF-Titrationen wurden an einem Karl-Fischer-Automat der Firma Metrohm durchgeführt.

2.6 IR-Spektroskopie

Anhand der Absorptionsbanden einer Substanz im IR-Spektrum lassen sich funktionelle Gruppen und Strukturelemente identifizieren und charakterisieren. Über Bandenlagen, -intensitäten und - formen können Rückschlüsse auf die Bindungsverhältnisse in den Molekülen und deren Aufbau gezogen werden. Des Weiteren wurden die ZnAI-LDHs auf mögliche Karbonatisierungserscheinungen untersucht. Besonderes Augenmerk liegt hierbei auf der asymmetrischen Schwingungsbande von CO₃²⁻ bei ~1364cm⁻¹. Da sich Karbonat- und Nitratbande an dieser Position teilweise überlagern, ist die IR-Spektroskopie allerdings nur in Kombination mit anderen Analysemethoden, wie z.B. CHNS-Elementaranalyse, für die Untersuchung von ZnAI-Nitrat sinnvoll.

Zur Aufnahme der IR-Spektren stand ein FT-IR-Spektrometer Typ IR Equinox 55 der Firma BRUKER zur Verfügung. Alle Untersuchungen fanden im Wellenlängenbereich 400cm⁻¹ bis 4000cm⁻¹ statt. Die Messungen erfolgten an KBr-Presslingen, bestehend aus 300mg bei 80°C getrocknetem KBr und 0,5-1mg Pulverprobe.

2.7 Rasterelektronenmikroskopie

Da eine geringe Kristallitgröße für alle synthetisierten Reinphasen charakteristisch ist, wurden morphologische Eigenschaften wie Form, Habitus, Oberflächeneigenschaften und Verwachsungen der Kristallite mit einem Rasterelektronenmikroskop Typ JSM 6300 der Firma JEOL untersucht. Des Weiteren wurden semiquantitative Analysen der LDHs mit der EDX-Analyse zur Lokalisierung und chemischen Charakterisierung auftretender Nebenphasen durchgeführt.

2.8 BET-Oberflächenbestimmung

LDHs werden häufig als Ionenaustauscher, Molekularsiebe und Katalysatoren eingesetzt, weshalb die Kenntnis der spezifischen Oberfläche der Strukturen von großer Bedeutung ist. Die Analyse der Gesamtoberfläche von porösen Substanzen wird meist mit Hilfe der Sorption chemischer Spezies durchgeführt, deren Dimension auf die Porengeometrie abgestimmt ist.

Die Bestimmung der spezifischen Oberfläche erfolgt nach der Theorie von Brunnauer, Emmett und Teller (BRUNAUER *et al.*, 1938). Die Grundlage dieses Verfahren beruht auf der Annahme, dass die Kräfte, welche bei der Kondensation eines Gases auftreten, auch für die Bindungsenergien bei multimolekularer Adsorption verantwortlich sind. Es wird die Menge eines Adsorbates oder eines

verbrauchten Adsorptivs bestimmt, die verwendet wurde, um die äußere Oberfläche sowie die effektiv erreichbare innere Porenoberfläche eines Feststoffes vollständig mit einer monomolekularen Schicht des Adsorbates zu bedecken. Zur Adsorption werden Gase verwendet, die auf Grund schwachen Wechselwirkungskräfte (Van-der-Waals-Kräfte) leicht an der Feststoffoberfläche adsorbiert und wieder desorbiert werden können. Zur Messung der spezifischen Oberfläche der ZnAl-LDHs wurde Stickstoff als Adsorptiv verwendet.

Die Messungen wurden an einem Analysator NOVA 2000 der Firma Quantachrome an der Fachhochschule Nürnberg durchgeführt. Zur Bestimmung der BET-Oberfläche der Hydrate und der zwischenschichtwasserfreien Proben wurden die Verbindungen bei 50°C und 150°C ausgeheizt.

Verbindung		Molgewicht [g • mol⁻¹]	Hersteller
AICI ₃ •6H ₂ O	purum	241,43	Fluka
$AI(NO_3)_3 \bullet 9H_2O$	reinst	375,13	Merck
$AI_2(SO_4)_3 \bullet 16H_2O$	purum	630,39	Merck
ZnCl ₂	purum	136,29	AppliChem
$Zn(NO_3)_2 \bullet 6H_2O$	purum	297,48	Fluka
ZnSO ₄ • 7H ₂ O	purum	287,54	Fluka
ZnO	purum	81,38	Fluka
NaOH	purum	40,01	Fluka
Al-Band	purum	26,98	Fluka

2.9 Verwendete Materialien

Tab. 2.9.1 Verwendete Ausgangssubstanzen zur Synthese der ZnAI-LDH Precursorphasen

Die zur Synthese der Precursorphasen verwendeten Chemikalien sind Tabelle 2.9.1 aufgelistet. Sämtliche Edukte wurden vorab mittels KF-Titration und TG auf ihre Wassergehalte und röntgenographisch auf mögliche Verunreinigungen überprüft.

In dieser Arbeit wurden organische Moleküle mit unterschiedlichen funktionellen Gruppen in die Schichtstruktur von ZnAI-LDHs eingebaut. Es wurden die Anionen von Aminosäuren, Carbonsäuren, Dicarbonsäuren und Sulfonsäuren in die Zwischenschicht substituiert. Im Folgenden sollen die Eigenschaften der verwendeten Organika kurz vorgestellt werden. Eine Auflistung der eingesetzten organischen Substanzen ist in Tabelle 2.9.2 am Ende dieses Kapitels dargestellt.

Die organischen Anionen werden in den folgenden Kapiteln durch Strukturmodelle dargestellt. Dabei wurden, wenn nicht anders beschrieben, folgende Farbcodes für die einzelnen Atome verwendet:

Kohlenstoff – grau, Sauerstoff – rot, Schwefel – gelb, Stickstoff – dunkelblau, Wasserstoff – hellgrau

2.9.1 Aminosäuren

Aminosäuren oder Aminocarbonsäuren sind organische Verbindungen mit mindestens einer Carboxylgruppe und ein bis zwei Aminogruppen. Anhand der Stellung der NH₂-Gruppe unterscheidet man α -, β -, γ - Aminosäuren (FITTKAU, 1984). In wässrigen Lösungen liegen Aminosäuren als Zwitterionen vor, d.h. die Carboxylgruppe ist deprotoniert, die Aminogruppe protoniert (STRYER, 2003). Neben der Einteilung in essentielle und nichtessentielle Säuren, werden die

proteinogene Aminosäuren nach ihren Funktionen in basische, neutrale und saure Gruppen unterteilt (TAYLOR, 1986). Die Einteilung in eine dieser Gruppen ist abhängig von der Seitenkette R und seiner Funktion als Protonenakzeptor oder -donator. Die in dieser Arbeit verwendeten Aminosäuren sind mit Ausnahme der sauren Asparaginsäure neutrale Säuren.

Abb. 2.9.1 Strukturmodelle der Anionen der für Austauschreaktionen verwendeten Aminosäuren

2.9.2 Monocarbonsäuren

Abb. 2.9.2 Aufbau von Monocarbonsäuren am Beispiel von Undekancarboxylat (C10H21COO⁻ - Undekanoat)

Carbonsäuren sind organische Verbindungen die, ähnlich der Alkohole und Aldehyde, aus einer Kohlenstoffkette und einer funktionellen Gruppe, der Carboxylgruppe bestehen. Sie bilden eine homologe Reihe. Die Carboxylgruppe bestimmt die physikalischen und chemischen Eigenschaften der Säuren. Die gesättigten Monocarbonsäuren sind stark polar, weshalb sie untereinander über Wasserstoffbrückenbindungen verknüpft sind. Mit zunehmender Kettenlänge nehmen die hydrophilen Eigenschaften ab und die lipophilen zu. Carbonsäuren mit Kettenlängen n_c<5 lösen sich in jedem Verhältnis in Wasser, während längerkettige Säuren in Wasser praktisch unlöslich sind. Weiterhin steigen die Siedepunkte der Monocarbonsäuren mit zunehmender Anzahl der Kohlenstoffatome, da der unpolare Rest an Bedeutung gewinnt und stärkere Van-der-Waals-Kräfte auftreten. Monocarbonsäuren werden oft als Fettsäuren bezeichnet, da einige von ihnen Bestandteile von Fetten sind. Des Weiteren kommen sie in Pflanzensäften, Schweiß, Tiersekreten, sowie in natürlichen Aromen und Harzen vor. Carbonsäuren werden als Ausgangsprodukt zur Herstellung von Seifen, Tensiden, Harzen und Kunststoffen verwendet.

2.9.3 Alkandisäuren

Alkandisäuren besitzen im Gegensatz zu den Monocarbonsäuren zwei Carboxylgruppen. Sie bilden ebenfalls eine homologe Reihe. Aufgrund der erhöhten Polarität der OH-Bindung durch Ausbildung gleichsinnig polarisierter C=O-Bindungen sind die unverzweigten, gesättigten Dicarbonsäuren stärkere Säuren als ihre Äquivalente bei den Monocarbonsäuren. Sie werden für die Synthese von Polyamiden, Polyester und anderen Kunststoffen verwendet.

Abb. 2.9.3 Aufbau von gesättigten Dicarbonsäuren am Beispiel von Adipinat ((CH₂)₄(COO)₂⁻)

2.9.4 Aromatische Dicarbonsäuren

Verbindungen der aromatischen Dicarbonsäuren lassen sich auf einen gemeinsamen Grundkörper, das Benzen bzw. den Benzolring, zurückführen. Der Name beschreibt die Eigenschaft vieler Säuren dieser Gruppe, einen aromatischen Geruch zu besitzen. Eingebaut in die Schichtstruktur der LDHs wurden Phthalsäure, Isophthalsäure und Terephthalsäure. Sie unterscheiden sich durch die Position der Carboxylgruppen am Benzolring. Alle drei aromatischen Dicarbonsäuren sind gering in Wasser löslich und besitzen keinen definierten Schmelzpunkt (FITTKAU, 1984). Bei Erwärmung spaltet Phthalsäure unter Bildung eines Anhydrids Wasser ab. Die aromatischen Säuren werden für die Herstellung von Kunstfasern und Kunstharzen eingesetzt.

Abb. 2.9.4 ,Ball-and-Stick' - Strukturmodelle der aromatischen Dicarbonsäuren

2.9.5 Butendisäuren

Maleinsäure (cis-Butendisäure) ist gut wasserlöslich und reagiert stark sauer. Sie wird zur Herstellung von Kunstharzen und Polymeren verwendet. Fumarsäure oder trans-Butendisäure kommt in verschiedenen Pflanzen als Zwischenprodukt im Zitronensäurezyklus vor oder wird synthetisch durch Isomerisierung aus Maleinsäure gewonnen. In der Lebensmittelindustrie wird sie als Konservierungsmittel oder Ersatzstoff für Zitronensäure eingesetzt.

Abb. 2.9.5 Strukturmodelle von Maleat (links) und Fumarat (rechts)

2.9.6 Hydroxysäuren

Carbonsäuren mit mindestens einer Carboxylgruppe und einer oder mehrerer Hydroxylgruppen werden als Hydroxysäuren bezeichnet.

Milchsäure oder auch 2-Hydroxypropansäure entsteht durch anaerobe Glykolyse beim Abbau von Zuckern. Sie ist somit ein Zwischenprodukt des Stoffwechsels und kann sich unter anderem bei Sauerstoffmangel im Muskel bilden. Häufigere Bildungsbereiche sind aber saure Milch, Sauerkraut und alter Käse. Milchsäure findet Verwendung als Lebensmittelzusatzstoff, in der Genussmittelindustrie und in antibakteriellen Flüssigreinigern. Das Salz der Milchsäure wird als Lactat bezeichnet.

Abb. 2.9.6 ,Ball-and-Stick' - Strukturmodelle der Hydroxysäuren

Die Weinsäure (2,3-Dihydroxybernsteinsäure) und deren Salze sind vor allem in vielen Pflanzen (u.a. Wein, Löwenzahn, Zuckerrüben) weit verbreitet. Sie entsteht durch Abscheidung des schwerlöslichen Kaliumsalzes bei der Weinherstellung als Weinstein. Das Anion der Weinsäure kann mit Kupfer(II)-Ionen zu Komplexen reagieren, die auch in alkalischer Lösung und damit bei hohen pH-Werten stabil sind. Weinsäure wird aufgrund konservierender Eigenschaften als Zusatzstoff in Lebensmitteln eingesetzt (HART *et al.*, 2002). Das Salz der Weinsäure wird als Tartrat bezeichnet.

Citronensäure ist eine Hydroxysäure mit drei Carboxylgruppen und einer Hydroxylgruppe an Position 3 der Kohlenstoffkette. Sie ist eine der weit verbreiteten natürlichen organischen Säuren und ist Bestandteil des Stoffwechsels von Organismen. Des Weiteren kommt sie in vielen Pflanzen, wie Zitronen, Johannisbeeren und Stachelbeeren vor. Aufgrund ihrer kalklösenden Wirkung wird die Citronensäure in Reinigungsmitteln eingesetzt. Weitere Einsatzgebiete sind Konservierungsmittel, Wasserenthärter und Nahrungsergänzungsstoff.

2.9.7 Alkylsulfonate

Alkylsulfonsäuren sind organische Schwefelverbindungen, deren Moleküle sich aus einer unverzweigten hydrophoben Kohlenstoffkette und einer hydrophilen Sulfo-Gruppe zusammen-

setzen (HOFFMANN UND ULBRICHT, 1993). Die allgemeine Struktur kann mit R-S(=O)₂-OH dargestellt werden, wobei der Rest R die unpolare Kohlenstoffkette beschreibt. Die Löslichkeit der Salze in Wasser nimmt mit zunehmender Kettenlänge ab (SOWADA, 1985). Zur Gruppe der technischen Tenside gehörend, können Alkylsulfonsäuren Proteine und Zucker binden. Sie werden als Katalysatoren, Aufschäumer in Reinigungsmitteln und Waschpasten und als Emulgatoren in der chemischen Industrie eingesetzt (HAUTHAL, 1985).

In dieser Arbeit wurde versucht, Alkylsulfonate der Kettenlängen n_c =1-18 in die Zwischenschicht der ZnAI-Precursorphasen zu substituieren.

Abb. 2.9.7 Aufbau von Alkylsulfonsäuren am Beispiel von Methansulfonsäure (links) und Pentansulfonat (rechts)

2.9.8 Arensulfonsäuren

Abb. 2.9.8 Strukturmodelle der zum Anionenaustausch verwendeten aromatischen Sulfonate

Benzolsulfonsäure, Benzoldisulfonsäure, verschiedene Naphthalinsulfonsäuren und Toluolsulfonsäure wurden als Ausgangsstoffe für den Anionenaustausch verwendet. Bei den Arensulfonsäuren beginnt die Restgruppe R mit einem aromatischen Ring. Hauptunterscheidungsmerkmal der aromatischen Sulfonsäuren ist die Position der SO₃-Gruppe(n) am aromatischen Ring. Nach STÖBER (1999) können Arensulfonsäuren, je nach Konzentration, als Beschleuniger oder Verzögerer in Zementen eingesetzt werden.

2.9.9 Farbstoffe

Viele gefärbte organische Substanzen absorbieren Licht im sichtbaren Wellenlängenbereich zwischen 400-800nm. Farbstoffe sind solche Verbindungen, die mit anderen Stoffen chemisch

oder physikalisch reagieren und ihre Farbe dabei auf den Reaktionspartner übertragen (FITTKAU, 1984). Unterschieden wird anhand struktureller Merkmale in Azofarbstoffe (Kongorot, Methylorange), Triphenylmethanfarbstoffe (Kristallviolett, Malachitgrün, Phenolphthalein), Anthachinonfarbstoffe, Indigofarbstoffe und Thiazinfarbstoffe. Anwendungsbereiche finden sich als Indikator, im Färben von verschiedenen synthetischen Stoffen oder in der Entwicklung von Farblacken. LDHs mit anionischen Farbstoffen in der Zwischenschicht bieten die Möglichkeit zur Entwicklung neuer Pigmente (COSTANTINO *et al.*, 1999).

Abb. 2.9.9 Strukturmodell des Methylorangeanions (C₁₄H₁₄N₃SO₃⁻)

Verbindung		Hersteller	Verbindung		Hersteller
HCO₂Na	purum	Fluka	C ₃ H ₄ (COONa) ₃ (OH)	purum	Roth
$C_2H_3O_2Na$	purum	Fluka	CH_4SO_3	purum	Merck
$C_3H_5O_2Na$	purum	Sigma	$C_2H_6SO_3$	purum	Merck
C ₄ H ₇ O ₂ Na	purum	Merck	$C_3H_7SO_3Na \bullet H_2O$	purum	AppliChem
C₅H ₉ O₂Na	purum	Merck	$C_4H_9SO_3Na$	purum	Merck
$C_{6}H_{12}O_{2}$	purum	Merck	C₅H ₁₁ SO ₃ Na	purum	Lancaster
$C_7H_{14}O_2$	purum	Merck	$C_6H_{13}SO_3Na \bullet H_2O$	purum	Lancaster
C ₈ H ₁₉ O ₂	purum	Fluka	$C_7H_{15}SO_3Na \bullet H_2O$	purum	Lancaster
$C_9H_{20}O_2$	purum	Fluka	$C_8H_{17}SO_3Na \bullet H_2O$	purum	Lancaster
$C_{10}H_{20}O_2$	purum	Fluka	C ₉ H ₁₉ SO ₃ Na	purum	Lancaster
$C_{11}H_{22}O_2$	purum	Fluka	C ₁₀ H ₂₁ SO ₃ Na	puriss.	Lancaster
$C_{12}H_{24}O_2$	purum	Fluka	C ₁₁ H ₂₃ NaSO ₃	purum	Lancaster
$C_{13}H_{26}O_2$	purum	Fluka	$C_{12}H_{25}SO_3Na \bullet H_2O$	puriss.	Fluka
$C_{14}H_{28}O_2$	purum	Fluka	$C_{14}H_{29}SO_3Na \bullet H_2O$	purum	Lancaster
$C_{15}H_{30}O_2$	purum	Fluka	C ₁₆ H ₃₃ SO ₃ Na	purum	Lancaster
$C_{16}H_{32}O_2$	purum	Fluka	C ₁₈ H ₃₇ SO ₃ Na	purum	Lancaster
$C_{17}H_{34}O_2$	purum	Fluka	1-C ₁₀ H ₈ SO ₃	techn.	Acros
$C_{18}H_{36}O_2$	purum	Fluka	2-C ₁₀ H ₈ SO ₃	purum	Merck
$C_{19}H_{38}O_2$	purum	Fluka	$C_{10}H_6(SO_3H)_2 \bullet 4H_2O$	purum	Merck
$C_{20}H_{40}O_2$	purum	Fluka	$C_6H_5NaSO_3$	puriss.	Fluka
CH ₂ (COOH) ₂	reinst	Ferak	$C_7H_7SO_3H \bullet H_2O$	reinst	Ferak
(CH) ₂ (COOH) ₂	purum	Fluka	$C_6H_4Na_2S_2O_6$	purum	Merck
$(CH_2)_2(COOH)_2$	purum	Fluka	$C_{14}H_{14}N_3NaSO_3$	purum	Merck
(CH ₂) ₃ (COOH) ₂	purum	Reachim	$C_{32}H_{22}N_6NaS_2O_6$	purum	Merck
$(CH_2)_4(COOH)_2$	purum	Germed	C ₂₅ H ₃₀ CIN ₃	purum	Merck
(CH ₂) ₅ (COOH) ₂	purum	Acros	$C_{25}H_{26}N_2O_4$	purum	Merck
$(CH_2)_7(COOH)_2$	purum	Fluka	$C_2H_5NO_2$	purum	Fluka
C(COONa) ₂	puriss.	Fluka	C ₃ H ₇ NO ₂	purum	Fluka
1,2-C ₆ H ₄ (COOH) ₂	purum	Lab. Apolda	$C_5H_9NO_2$	purum	Fluka
1,3-C ₆ H ₄ (COOH) ₂	puriss	Merck	$C_6H_{13}NO_2$	purum	Fluka
1,4-C ₆ H ₄ (COOH) ₂	purum	Fluka	$C_9H_{11}NO_2$	purum	Fluka
C ₄ H ₄ O ₄ (Fumarsäure)	purum	Acros	$C_3H_7NO_2S$	purum	Fluka
C ₄ H ₄ O ₄ (Maleinsäure)	purum	Merck	$C_5H_{11}NO_2S$	purum	Fluka
$C_2H_4(COOH)_2(OH)$	purum	Fluka	C ₃ H ₇ NO ₃	purum	Fluka
$C_2H_2(COOH)_2(OH)_2$	puriss.	Chemapol	C ₄ H ₇ NO ₃	purum	Fluka

Tab. 2.9.2 Verwendete organische Ausgangssubstanzen zum Anionenaustausch mit ZnAI-LDH Precursor

3. Synthese von ZnAI-LDHs mit anorganischen Anionen

LDHs können im basischen und sauren Milieu mit verschiedenen Methoden synthetisiert werden, die unter anderem von FEITKNECHT (1942a, b), MIYATA (1975) und KOOLI *et al.* (1995) beschrieben wurden. Die am häufigsten angewandte Synthesemethode ist die Fällung aus wässriger Lösung (FEITKNECHT UND GERBER, 1942). Dabei wird eine Lösung stöchiometrischer Einwaagen der Metallsalze in NaOH-Lösung getropft. Um eine vollständige Ausfällung der Hydroxide zu erreichen, muss der pH-Wert während der Reaktion größer als 8 sein. Die Kopräzipitationsmethode wurde durch viele Arbeitsgruppen abgewandelt, wobei vor allem die Syntheseparameter Temperatur und pH-Wert variiert werden, das Syntheseprinzip aber das gleiche bleibt (GASTUCHE *et al.*, 1967, JOHNSON UND GLASSER, 2003, REICHLE, 1986). SEIDA *et al.* (2002) führte die Kopräzipitationsmethode unter Einfluss von Ultraschall durch und konnte die Größe der Kristallite erhöhen. Eine Übersicht der verschiedenen Variationen sind u. a. bei CAVANI *et al.* (1991), CREPALDI *et al.* (2000) und ROY *et al.* (2001) aufgelistet.

Die zweite häufig angewendete Methode ist die Salz-Oxid-Methode (ROY *et al.*, 2001). Einer Suspension von Me²⁺O wird eine wässrige Salzlösung von Me³⁺ im Überschuss hinzugefügt und diese für einige Tage in geschlossenen Behältern bei Raumtemperatur gealtert. Das Syntheseprodukt ist ein feinkristalliner, zum Teil schlecht geordneter LDH. Obwohl nicht alle Mitglieder der Hydrotalkit-Gruppe mit der Salz-Oxid-Methode synthetisiert werden konnten, wurde sie für die Herstellung von MgAl-, ZnAl-, ZnCr-, und CuCr-LDHs beschrieben (BOEHM *et al.*, 1977, GOSWAMEE, 1999, MASCOLO UND MARINO, 1980).

Die Hydrothermalsynthese umfasst alle Methoden zur Herstellung von LDHs mit erhöhten Temperaturen und/oder hohen Drücken. MgAI-CO₃ und MgAI-NO₃ wurden im Temperaturintervall 100-350°C und Drücken von bis zu 100MPa synthetisiert (PAUSCH *et al.*, 1986). Unter Verwendung von Gibbsit und Brucit als Ausgangsmaterial gelang OGAWA UND ASAI (2000) die Herstellung von MgAI-LDH mit organischen Anionen der Desoxycholsäure in der Zwischenschicht. NAYAK *et al.* (1997) synthetisierten im Autoklaven bei Temperaturen T ≤ 140°C und $p_{H2O} \le 20$ MPa LiAI-OH LDHs.

Für Herstellung von NiCo-LDHs wurde die Chimie-Douce Methode verwendet (DELMAS UND BORTHOMIEU, 1993). Ausgehend von einer Festkörperreaktion bei hohen Temperaturen wird ein Precursor synthetisiert, der anschließend unter reduzierenden Bedingungen hydriert wird (SCHLEICH, 1994).

Eine neuere Methode zur Synthese von LDHs mit hoher spezifischer Oberfläche beschreiben RAMOS *et al.* (1997). Bei der Sol-Gel Methode werden Me²⁺ -Alkoxide in Anwesenheit eines Katalysators hydrolysiert, auf Temperaturen zwischen 70-80°C erwärmt und anschließend mit Me³⁺ -Alkoxiden oder -Salzen versetzt. Aus dem entstandenen Gel bilden sich feinkristalline LDH Partikel mit intrakristallinen Defektstellen. Auf Grund der Defekte eignen sich die mit der Sol-Gel Methode hergestellten LDHs besonders für katalytische Anwendungen (WANG *et al.*, 1999). YAMAGUCHI *et al.* (2006) verwenden die Sol-Gel Methode zur Synthese fein verteilter, homogener ZnAl-LDH Nanokristalle auf einem amorphen Al₂O₃-ZnO Film.

3.1 Synthesemethoden

Um für den Anionenaustausch geeignete Precursorphasen zu erhalten, wurden folgende Synthesemethoden angewendet:

I. Kopräzipitationsmethode

I.1) Synthese von ZnAI-LDH durch Fällung der Zn²⁺ und Al³⁺ Hydroxide aus einer Salzlösung bei hohem pH-Wert

I.2) Fällung der LDHs aus Zn²⁺ und Al³⁺ Salzlösung unter Umsetzung von Urea *II.* Salz-Oxid Methode

II.1) Umsetzung einer Al³⁺ Salzlösung und einer wässrigen Suspension von ZnO

II.2) Umsetzung einer wässrigen Suspension von Me²⁺O in einer Natriumaluminatlösung

Alle vier verwendeten Methoden konnten erfolgreich zur Bildung von ZnAI-LDHs eingesetzt werden. Die Synthesen wurden wie folgt durchgeführt:

I.1) Für die Kopräzipitationsmethode nach MIYATA (1975) und REICHLE (1986) wurden jeweils 20ml 0,3M Me²⁺ und Me³⁺ Salzlösungen mit gleichem Anionentyp hergestellt und ineinander überführt. Durch Verwendung der Metallsalze kann die Bildung von Nebenphasen durch Fremdionen vermieden werden. Die Fällung der Hydroxide erfolgte unter ständigem Rühren des wässrigen Salzgemisches auf einer Heizplatte durch Zugabe von 2molarer bzw. 1molarer NaOH. Der pH-Wert wurde während der Fällungsreaktion kontinuierlich mit einer Glaselektrode (pH 7-14, T=0-70°C) überwacht. Ab einem pH-Wert von 5 wurde die Lösung ähnlich einem Gel hochviskos. Durch Zugabe von 10ml H₂O_{dest} konnte die Viskosität herabgesetzt werden. Die Suspension wurde in PE-Fläschchen überführt, luftdicht verschlossen und anschließend im Trockenschrank bzw. auf einem Heizrüttler (Bühler-Schüttler mit Inkubationshaube, TH 30) für definierte Zeiten gealtert. Die im Trockenschrank reagierenden Proben wurden dreimal pro Tag geschüttelt. Die Kopräzipitationsmethode läuft für ZnAI-LDHs mit Me²⁺/Me³⁺ Verhältnis von 2:1 und Chlorid- bzw. Nitration nach folgender Reaktion ab:

 $2\mathsf{ZnCl}_2 + \mathsf{AlCl}_3 \bullet \mathsf{6H}_2\mathsf{O} + \mathsf{6NaOH} + \mathsf{nH}_2\mathsf{O} \rightarrow \mathsf{Zn}_2\mathsf{Al}(\mathsf{OH})_{\mathsf{6}}\mathsf{Cl} + \mathsf{6NaCl} + \mathsf{nH}_2\mathsf{O}$

 $2\text{Zn}(\text{NO}_3)_2 \bullet 6\text{H2O} + \text{Al}(\text{NO}_3)_3 \bullet 9\text{H}_2\text{O} + 6\text{NaOH} + \text{nH}_2\text{O} \rightarrow \text{Zn}_2\text{Al}(\text{OH})_6\text{NO}_3 + 6\text{NaNO}_3 + \text{nH}_2\text{O}$

Nach Ablauf der definierten Alterungszeiten wurden die Präzipitate in der Glovebox abfiltriert und dreimal mit je 20ml CO₂-freiem, deionisiertem Wasser (T=20°C) gewaschen. Die Proben wurden in inerter Atmosphäre (Stickstoff, Argon) im Exsikkator über gesättigter CaCl₂ Lösung auf 35% r.F. getrocknet.

Die Synthesemethode lieferte für alle synthetisierten ZnAI-LDHs sehr gut kristalline und von Nebenphasen freie Reaktionsprodukte. Aufgrund dessen wurden die in dieser Arbeit verwendeten Precursorphasen mit der Kopräzipitationsmethode hergestellt. Die verwendeten Syntheseparameter werden im Abschnitt 3.2 näher beschrieben.

1.2) COSTANTINO *et al.* (1998) synthetisierten ZnAI-CI LDHs unter Verwendung von Urea und erhielt für den Anionenaustausch geeignete Precursorphasen. Auf Grund dessen wurde die Synthesemethode für die Anwendung innerhalb dieser Arbeit angewendet und überprüft. Harnstoff (Urea) ist eine schwache Base die eine Vielzahl von Eigenschaften besitzt, die sie attraktiv für die

Präzipitationsmethode aus Lösungen macht. Sie ist leicht in Wasser löslich und die Hydrolyse kann sehr einfach mittels Temperatur beeinflusst werden. Folgende Reaktion findet während der Hydrolyse statt:

$$CO(NH_2)_2 \rightarrow NH_4CNO$$
$$NH_4CNO + H_2O \rightarrow (NH_4)_2CO_3$$

Die Umwandlung zu Hydrogencarbonat führt zu einem pH-Wert von 9. In diesem pH-Wert Bereich präzipitieren viele Metallhydroxide, unter anderem auch Zn(OH)₂ und Al(OH)₃ (COSTANTINO *et al.*, 1998).

Der Syntheseablauf wurde wie folgt durchgeführt: Stöchiometrische Mengen von ZnCl₂ und AlCl₃•6H₂O im Verhältnis 2:1 wurden in H₂O_{dest} gelöst. Harnstoff wurde dieser 0,5mol/dm³ Salzlösung zugeführt bis das molare Verhältnis Harnstoff/M(II)+M(III) = 3,3 erreicht wurde. Die klare Lösung wurde auf 90°C erwärmt und für 3 Tage abgedeckt stehengelassen. Da der publizierte pH-Wert von 9 nicht erreicht wurde, musste NaOH zur pH-Wert Einstellung zugegeben werden. Nach oben angegebener Alterungszeit wurde die Probe abfiltriert, mehrmalig mit destilliertem Wasser gewaschen und anschließend getrocknet. Die röntgenographische Untersuchung der Substanz zeigt hohe Intensitäten der (00I)-Reflexe, aber geringere Intensitäten als vergleichbare Proben, welche mit der Kopräzipitationsmethode hergestellt wurden. Sehr gute Intensitäten zeigen die anderen (hkl) Reflexe, besonders der (110) Peak bei ~60°2Theta und (113) bei 61,5°2Theta. Die Urea-Methode wurde innerhalb der vorliegenden Arbeit nicht zur Synthese der Precursorphasen verwendet, da diese Methode zum einen sehr materialintensiv ist (Urea), und mit Karbonat, trotz des großen Angebots an Chloridionen, ein potentielles Zwischenschichtanion an der Reaktion beteiligt ist, was einen späteren Anionenaustausch behindern könnte.

II.1) Die Umsetzung der Al(NO₃)₃- und AlCl₃-Lösungen mit einer wässrigen Suspension von ZnO ergab in Abhängigkeit vom initialen pH-Wert gute Ergebnisse. Die Reaktion läuft, dargestellt am Beispiel von Chlorid, nach folgender Gleichung ab:

$$2ZnO + AlCl_3 \bullet 6H_2O + 2NaOH + nH_2O \rightarrow Zn_2Al(OH)_6Cl + 2NaCl + nH_2O$$

Der pH-Wert wurde mit 2M NaOH bzw. 1M HCl oder 1M HNO₃ eingestellt. Die Proben alterten für 7-14 Tage im Trockenschrank bei 60°C. Die Reaktion findet langsamer statt als bei der Kopräzipitationsmethode und ein kompletter Umsatz der Ausgangssubstanzen war erst nach einigen Tagen zu verzeichnen. Bei allen Syntheseprodukten trat ZnO als Nebenphase auf.

II.2) Die Reaktion von NaAl(OH)₄ mit einer Suspension von Me²⁺O führte ebenfalls zu guten Ergebnissen. Stöchiometrische Einwaagen von ZnO (MgO) wurden in 40ml deionisiertem Wasser in Suspension gebracht. Eine frisch hergestellte NaAl(OH)₄ Lösung wurde unter kontinuierlichem Rühren langsam zugegeben. Der pH-Wert wurde durch 1M HCl kontrolliert. Die Reaktion läuft wie folgt ab:

$$2ZnO + NaAl(OH)_4 + 2HCl + nH_2O \rightarrow Zn_2Al(OH)_6Cl + NaCl + nH_2O$$

Auch bei dieser Methode ist die Reaktionskinetik stark verzögert. Die Umsetzungsraten erhöhten sich mit zunehmenden initialen pH-Wert während der Synthese. Als Nebenphase wurde ZnO bei allen Versuchen beobachtet.

3.2 Syntheseparameter

Die Synthesen von ZnAI-LDHs wurden mit dem Ziel durchgeführt, eine für den Anionenaustausch geeignete Precursorphase herzustellen. Auf Grund dessen war es nötig, die Syntheseparameter hinsichtlich eines reaktiven Precursors mit guter Kristallinität zu optimieren. Alle Synthesen wurden in Abhängigkeit von folgenden Syntheseparametern durchgeführt:

- Verhältnis der Me²⁺ / Me³⁺ Kationen in den Ausgangslösungen
- Konzentration der Ausgangslösungen (Wasser/Feststoff Verhältnis)
- Art und Bau des Zwischenschichtanions
- Reaktions- bzw. Alterungstemperatur (T_A)
- Reaktions- bzw. Alterungszeit (t_A)
- pH-Wert

Als Anionen wurden Chlorid (Cl⁻), Nitrat (NO₃⁻) und Sulfat (SO₄²⁻) in die Schichtstruktur der Precursorphasen substituiert. Um eine Karbonatisierung der Proben zu verhindern, wurden sämtliche Syntheseschritte unter Stickstoffatmosphäre in einer Glovebox durchgeführt. Das in der Luft enthaltene CO₂ reagiert besonders in Gegenwart von Wasser zu CO₃²⁻, welches sich bevorzugt in die Zwischenschicht von LDHs einbaut. Karbonat als Zwischenschichtion ist nur schwer remobilisierbar und behindert einen nebenphasenfreien Anionenaustausch. Auf Grund dessen wurde mit abgekochtem, CO₂ freien deionisiertem Wasser gearbeitet. Die synthetisierten Substrate wurden mittels IR-Spektroskopie und CHNS-Elementaranalyse auf eine mögliche Karbonatisierung untersucht.

Die verwendeten Edukte zur Synthese der Precursorphasen sind in Tabelle 2.9.1 dargestellt.

Abb. 3.2.1 Diagramm zur Hydroxidfällung in wässrigen Lösungen (modifiziert nach SEEL, 1970)

Der pH-Wert ist der limitierende Faktor bei der Synthese von ZnAl-LDHs. ZnAl-Chlorid, ZnAl-Nitrat und ZnAl-Sulfat kristallisieren im pH-Wert Bereich 7-11 mit unterschiedlicher Kristallinität. Bei den Reaktionen wurden die Alterungszeit und –temperatur mit $t_A = 3d$ und $T_A = 45^{\circ}$ C konstant gehalten. Die besten Ergebnisse wurden bei pH-Werten von 7,5 – 8,5 erhalten (Abb. 3.2.2 – 3.2.3). Aufgrund unterschiedlicher Löslichkeiten kann es zur Präzipitation zweier nebeneinander vorkommender

Hydroxide kommen, wobei zuerst das schwer lösliche und anschließend das leichter lösliche Hydroxid ausfällt (SEEL, 1970). Um eine simultane Präzipitation beider Hydroxide zu erreichen, muss der pH-Wert im Bereich gleicher Löslichkeiten der einzelnen Hydroxide liegen. Die Löslichkeitskurven von Zn(OH)₂ und Al(OH)₃ schneiden sich bei pH-Wert 7,8 (Abb. 3.2.1). Der experimentell ermittelte optimale pH-Wert liegt bei 7,5 für $T_A = 45^{\circ}$ C (60°C). Bei niedrigeren Werten bilden sich mit der angewandten Methode keine LDHs, bei pH-Wert größer 8,0 wurde ZnO als Nebenphase beobachtet.

Die Bestimmung des optimalen pH-Wertes erfolgte in Abhängigkeit von der Alterungstemperatur. Die Synthesen wurden bei Raumtemperatur durchgeführt und die Proben im Temperaturintervall 25° C – 90° C gealtert. Mit zunehmender Alterungstemperatur (bis 90° C) steigt die Kristallinität der synthetisierten Precursorphasen an. Eine Hydrothermalsynthese von ZnAl-Chlorid bei 140°C zeigte keine signifikante Verbesserung der Kristallinität des LDHs. Der Anteil von ZnO als Nebenphase steigt in Abhängigkeit von der Temperatur. Zinkoxid bildet sich bei 25°C und einem pH-Wert von 9,5 (OLIVEIRA *et al.*, 2003). Durch Erhöhung der Temperatur der Salzlösung sinkt der pH-Wert der nötig ist, um ZnO zu fällen. Um nebenphasenfreie Verbindungen zu erhalten, wurden deshalb alle Precursorphasen bei T_A = 60° C und pH 7,5 synthetisiert.

Abb. 3.2.2 Ausschnitte der Röntgendiffraktogramme von ZnAl-Chlorid bei 100% r.F in Abhängigkeit vom pH-Wert ($T_A = 60$ °C, $t_A = 3d$)

Abb. 3.2.3 Ausschnitte der Röntgendiffraktogramme von ZnAI-Nitrat bei 100% r.F in Abhängigkeit vom pH-Wert ($T_A = 60^{\circ}C$, $t_A = 7d$)

Der Einfluss der Reaktionszeit auf die Kristallitgröße der ZnAI-LDHs wurde durch Alterungszeiten von 1 - 7 Tage und 1-3 Wochen überprüft. Die Alterungstemperatur betrug bei allen Versuchen 60°C. Bereits nach wenigen Stunden konnten LDH Strukturen röntgenographisch nachgewiesen werden. Die besten Ergebnisse wurden nach 7 Tagen erreicht.

Das Wasser-Feststoffverhältnis lag bei allen Synthesen bei 20:1. Aufgrund des hohen Angebotes der Metallsalze im Überschuss wurden keine zusätzliche Hydroxidionen in die Zwischenschicht substituiert. Die Konzentration der Ausgangslösungen hatte keinen Einfluss auf die Kristallinität der Precursorphasen.

Das Verhältnis der Kationen Me²⁺/Me³⁺ von LDHs kann stark variiert werden (CAVANI *et al.*, 1991). Tabelle 3.2.2 stellt einen Überblick über die möglichen Me²⁺/Me³⁺-Verhältnisse dar, in denen LDHs kristallisieren. Die Precursorphasen wurden im Bereich r = 1,8 – 3,2 synthetisiert. Für ZnAl-Chlorid und ZnAl-Nitrat wurden bei r = 2 die größten Intensitäten beobachtet.

Auf Grund ihrer Schichtstruktur sind die (00I)-Reflexe von LDHs stark texturabhängig. Um eine Reproduzierbarkeit der röntgenographischen Untersuchungen gewährleisten zu können, wurden die Precursorphasen je dreimal präpariert und dann analysiert.

x	LDH	Me ²⁺ / Me ³⁺	LDH
0,25 - 0,44	MgAI-OH	1,0 - 5,0	ZnAI-CI (pH 7)
0,20 - 0,33	MgAI-CIO ₄	1,0 - 3,0	ZnAI-CI (pH 10)
0,17 – 0,33	MgAI-CO ₃	1,7 – 2,3	ZnAI-CO ₃ (pH 9)
0,20 - 0,337	MgAI-CO ₃	1,0 - 3,0	NiCr-Cl (pH 11,5)
0,10 - 0,34	MgAI-CO ₃	1,6 – 2,3	CuCr-Cl (pH 5,5)
0,20 - 0,41	NiAI-CO ₃	~ 2,0	ZnCr-Cl (pH 4,5)
0,25 - 0,35	ZnCr-CO ₃	2,0-3,0	ZnCr-Cl (pH 10)

Tab. 3.2.2 Optimale Me^{2+}/Me^{3+} Verhältnisse zur Synthese verschiedener LDHs der Zusammensetzung $[M^{2+}_{1-x}M^{3+}_{x}(OH)_2]^{x+}[A^{n-}_{x/n}] \cdot mH_2O$ (pH = pH-Wert während der Synthese; modifiziert nach CAVANI *et al.*, 1991, Roy *et al.*, 2001)

Abb. 3.2.4 Basisreflexe von ZnAl-Chlorid (A) und ZnAl-Nitrat (B) bei 100% r.F in Abhängigkeit von der Alterungstemperatur ($t_A = 3d$, pH-Wert = 7,5)

Abb. 3.2.5 Basisreflexe von ZnAl-Nitrat bei 100% r.F in Abhängigkeit von der Alterungszeit ($T_A = 60^{\circ}C$, pH-Wert = 7,5)

Abb. 3.2.6 Ausschnitte der Röntgendiffraktogramme von ZnAI-Chlorid (A), ZnAI-Nitrat (B) und ZnAI-Sulfat (C) bei 100% r.F. in Abhängigkeit vom Verhältnis r = Me^{2+}/Me^{3+} (T_A =60°C, t_A =7d, pH=7,5(SO₄²⁻: 8,0))

3.3 Synthese von ZnAI-Chlorid

ZnAl-Chlorid mit einem Me²⁺/Me³⁺ Verhältnis von 2:1 wurde bei 60°C und einem pH-Wert von 7,5 synthetisiert. Als Ausgangssubstanzen dienten Zinkchlorid und Aluminiumchlorid Hexahydrat. Die Proben alterten im Trockenschrank für sieben Tage. Nach Filtration wurde die Probe dreimal mit H_2O_{dest} (T=30°C) gewaschen. Die röntgenographische Untersuchung der Precursorphase erfolgte an den feuchten Pasten bei 100% r.F. und nach Trocknung in Stickstoffatmosphäre auf 35% r.F. über Calciumchlorid.

Abb. 3.3.1 REM-Aufnahme von ZnAI-Chlorid

Die REM-Aufnahmen zeigen dünne, blättrige Kristalle mit hexagonaler Form. Die Kristallite sind häufig zu größeren Aggregaten verwachsen und an den Kanten gerundet. Eine homogen verteilte Kristallitgröße konnte nicht beobachtet werden. Die Größe der einzelnen Kristalle schwankt zwischen 500nm – 2µm.

Die röntgenographische Phasenanalyse zeigt eine Phase mit scharfen Basalreflexen mit hohen Intensitäten, die sich mit bisher bekannten Strukturen nicht identifizieren lässt (Abb. 3.3.2). Die Reflexe können auf Grundlage einer Dreischichtstruktur im trigonalen System indiziert werden. Die Ergebnisse der Gitterkonstantenverfeinerung nach dem Least-Squares-Verfahren wurden auf Basis einer rhomboedrischen Zelle mit hexagonalen Achsen durchgeführt. Die Gitterparameter der feuchten Probe bei 100% r.F. und nach Trocknung auf 35% r.F. sind in Tabelle 3.3.1 dargestellt. Weder a_0 noch c_0 unterscheiden sich vor und nach der Trocknung signifikant voneinander.

Die chemische Zusammensetzung der Precursorphase wurde bei 35% r.F. mittels ICP, Ionenchromatograph und CHNS-Elementaranalyse untersucht. Alle Analysen wurden in Doppelbestimmung durchgeführt. Obwohl die Probe nach der Filtration mehrmals gewaschen wurde, konnte Natrium nicht vollständig entfernt werden. Aufgrund der nachgewiesenen sehr geringen Gehalte an Na₂O und dem Ladungsgleichgewicht des Verhältnisses Kationen zu Anion ist Na nicht am strukturellen Aufbau des LDHs beteiligt.

Abb. 3.3.2 Röntgendiffraktogramm von ZnAl-Chlorid bei 100% r.F. (schwarz) und 35% r.F. (rot, quadratische Darstellung der Abszisse)

	a₀ [nm]	c₀ [nm]	c ' [nm]
100% r.F.	0,308	2,334	0,778
35% r.F.	0,308	2,322	0,774

Tab. 3.3.1 Gitterkonstanten a_0 und c_0 und Schichtabstände c' von ZnAl-Chlorid bei relativen Luftfeuchten von 100% und 35%

	ZnO	Al ₂ O ₃	Na₂O	HCI	H₂O	SUM	$H_2O_{TG}^*$
berechnet	49,7	15,6	0,0	10,8	23,9	100	
Analyse	49,7	15,5	0,1	10,8	24,0	100,1	10,8

Tab. 3.3.2 Chemische Analyse von ZnAl-Chlorid (Angaben in [Gew.-%], * Zwischenschicht; 35% r.F.)

Mit thermogravimetrischer Analyse wurden 1,8mol Zwischenschichtwasser bestimmt. Anhand der ermittelten Ergebnisse lässt sich folgende Formel für die ZnAl-Chlorid Precursorphase berechnen:

berechnet: $[Zn_2AI(OH)_6][CI \bullet 1,8H_2O]$ Analyse: $[Zn_{2,0(0)}AI_{0,9(9)}(OH)_6][CI_{0,9(9)} \bullet 1,8H_2O]$

Zur Untersuchung der strukturellen Stabilität wurde ZnAl-Chlorid im Temperaturintervall 25°C-1000°C mit TG und zwischen 25°C-300°C mit der Röntgenheizkammer aufgeheizt. Die TG-Aufnahme zeigt einen kontinuierlichen, durch mehrere Stufen geteilten Gewichtsverlust bei steigender Temperatur. Bis 170°C tritt eine Gewichtsreduzierung von 9,9% auf, die einer Dehydratationsreaktion von 1,8mol H₂O entspricht. Laut DSC-Analyse handelt sich dabei um eine endotherme Reaktion. Durch die Entwässerung der Zwischenschicht ändert sich die Zusammensetzung von ZnAl-Chlorid Hydrat auf $[Zn_2Al(OH)_6][CI]^{-}$. Ab 170°C beginnt die Entwässerung der Hauptschicht und die Kristallstruktur der Precursorphase wird instabil. Ab 430°C beginnt die Abgabe von Chlorid (VELU *et al.*, 1997).

Abb. 3.3.3 TG/DTG Kurven von ZnAl-Chlorid

Abb. 3.3.4 DSC-Analyse von ZnAl-Chlorid (Aufheizrate: 5°C/min, Spülgas: Argon, Referenzmaterial: Al₂O₃)

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
			$[Zn_2Al(OH)_6]^+[Cl \bullet 1,8H_2O]^-$
30	9,9	1,8	[Zn₂Al(OH) ₆] ⁺ [Cl] ⁻
170			Hauptschichtentwässerung

Tab. 3.3.3 Dehydratationsprozesse von ZnAl-Chlorid

Die Dehydratation der Zwischenschicht ist mit einer Verringerung des Schichtabstandes von 0,77nm bei 30°C auf 0,74nm bei 140°C verbunden. Abbildungen 3.3.5 und 3.3.6 zeigen die Änderung der Schichtdicke in Abhängigkeit von der Temperatur. Die Schichtdicke sinkt kontinuierlich mit steigender Temperatur. Zwischen 140°C und 170°C nehmen die Intensitäten der Basisreflexe stark ab und die Halbwertsbreiten steigen an. Der Schichtabstand vergrößert sich auf 0,75nm. Mit Abgabe der (OH)⁻-Gruppen der Hauptschicht wird die Probe röntgenamorph.

Abb. 3.3.5 TG und Änderung der Schichtdicke c' von ZnAI-Chlorid als Funktion der Temperatur

Abb. 3.3.6 Ausschnitt der Röntgenheizaufnahmen von ZnAI-Chlorid. Position der Basisreflexe während der Dehydratationsreaktionen im Temperaturintervall 25-300°C.
Die Bestimmung der spezifischen Oberfläche von ZnAl-Chlorid Hydrat erfolgte nach Ausheizen der Proben bei Temperaturen von 50°C und 150°C durch Sorption von Stickstoff. Die BET-Oberflächen betragen 10,9 m²• g⁻¹ (50°C) für das Hydrat und 14,6 m²• g⁻¹ (150°C) für die zwischenschichtwasserfreien Probe.

ZnAl-Chlorid wurde nach Trocknung unter Luft und Stickstoff mittels IR-Spektrometrie untersucht. Ziel war es, exemplarisch eine mögliche Karbonatisierung der LDHs nach Trocknung auf 35% r.F. zu untersuchen. Die Lagerungs- bzw. Trocknungszeit betrug 7 Tage. Die Absorptionsbande bei 1360cm⁻¹ wurde bei in Luft getrockneten Proben detektiert und zeigt die Anwesenheit von CO₃²⁻ in der Schichtstruktur. Bei allen unter N₂-Atmosphäre getrockneten Precursorphasen war die CO₃²⁻ Bande nicht präsent. Auf Grund der Verwendung von KBr als Trägermaterial während der Analyse konnte Chlorid nicht IR-spektrometrisch erfasst werden. Die Zuordnung der Banden erfolgte mit Hilfe von Literaturdaten (GüNZLER UND HEISE, 1996, KLOPROGGE UND FROST, 2001, KUSTROWSKI *et al.*, 2004, NAKAMOTO, 1986, VELU *et al.*, 1997, WANG *et al.*, 2003).

Abb. 3.3.7 IR-Spektrum von ZnAl-Chlorid (unter Luft getrocknet)

Bandenlage [cm⁻¹]		Art der lokalisierten Schwingung
3650 (Schulter)	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3464	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1617	$v_2(H_2O)$	H ₂ O – Valenzschwingung
1364	$v_{as}(CO_3^{2-})$	asym. (C-O) – Valenzschwingung der (CO ₃ ²⁻)-Gruppe
1045 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
873 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
612	(AIO ₆)	(Al ^{IV} -O) − Schwingung
551	(AlO ₆)	(Al ^{IV} -O) – Schwingung
426	(ZnO)	Zn-O – Schwingung

Tab. 3.3.4 IR-Absorptionsbanden von ZnAI-Chlorid

3.4 Synthese von ZnAl-Nitrat

Als Ausgangssubstanzen für die Synthese von ZnAl-Nitrat mit $Me^{2^+}/Me^{3^+} = 2:1$ wurden Zinknitrat Hexahydrat und Aluminiumnitrat Nonahydrat verwendet. Die Precursorphasen alterten im Trockenschrank bei 60°C für 7d und wurden täglich dreimal geschüttelt. Der pH-Wert betrug 7,5. Synthesen bei höheren Temperaturen (80°C) und pH-Werten < 8,0 erzeugten ebenfalls gut kristalline LDHs, allerdings bildete sich ZnO als Nebenphase (Abb.3.4.2).

Die Probe wurden unter Stickstoffatmosphäre filtriert und dreimal mit je 20ml H_2O_{dest} (T=30°C) gewaschen. Die röntgenographische Untersuchung der Precursorphase erfolgte an den feuchten Pasten bei 100% r.F. und nach Trocknung bei einer relativen Luftfeuchte von 35%.

Abb. 3.4.1 REM-Aufnahme von ZnAI-Nitrat

ZnAl-Nitrat kristallisiert in dünnen, hexagonal-blättrigen Kristallen mit einer durchschnittlichen Größe von 2-5µm. Die Kristallite sind an den Kanten gerundet und häufig zu größeren Aggregaten zusammengewachsen.

Die Röntgendiffraktogramme zeigen jeweils eine Phase, die sich mit bisher bekannten Strukturen nicht identifizieren lässt. Nebenphasen bzw. eine Karbonatisierung der Probe konnten röntgenographisch und mittels IR-Spektroskopie nicht beobachtet werden. Die Diffraktometeraufnahme zeigt scharfe Reflexe mit hohen Intensitäten und geringen Halbwertsbreiten (Abb. 3.4.3). Die Indizierung der Reflexe erfolgte auf Grundlage einer Dreischichtstruktur im trigonalen System. Die Ergebnisse der Gitterkonstantenverfeinerung nach dem Least-Squares-Verfahren wurden auf Basis einer rhomboedrischen Zelle mit hexagonalen Achsen durchgeführt. Die Gitterkonstanten der feuchten Paste bei 100% r.F. und nach Trocknung auf 35% r.F. sind in Tabelle 3.4.1 dargestellt. Der Schichtabstand der getrockneten Probe ist mit c'= 0,887nm nur geringfügig kleiner als c' der feuchten Probe mit 0,893nm. Der Wert von a_0 ändert sich nicht.

Die chemische Zusammensetzung der Precursorphase wurde nach Trocknung auf 35% r.F. mittels ICP, Ionenchromatograph und CHNS-Elementaranalyse untersucht (Tab. 3.4.2). Sämtliche

Analysen wurden in Doppelbestimmung durchgeführt. Analog zu den chloridhaltigen Precursorphasen wurden geringe Gehalte an Na₂O nachgewiesen. Die Verwendung von erwärmten Wasser zum Waschen der Proben nach der Filtrationen mit T > 30°C zeigte keine signifikante Verbesserung in der Lösung der Natriumionen. Aufgrund der sehr geringen Gehalte an Na₂O und dem Ladungsgleichgewicht des Verhältnisses Kationen zu Anion der Precursorphase kann Na nicht am strukturellen Aufbau des LDHs beteiligt sein. KÖNIG (2006) geht von einer Akkumulation des Natriums in dem Präzipitat anhaftenden Wasser nach der Filtration aus.

Abb. 3.4.2 REM-Aufnahme und EDX-Analysen von ZnAI-Nitrat (links) und der Nebenphase ZnO (rechts)

	a ₀ [nm]	c₀ [nm]	c ' [nm]
100% r.F.	0,308	2,678	0,893
35% r.F.	0,308	2,662	0,887

Tab. 3.4.1 Gitterkonstanten a_0 und c_0 und Schichtabstände c' von ZnAl-Nitrat bei relativen Luftfeuchten von 100% und 35%

	ZnO	AI_2O_3	Na₂O	HNO ₃	H₂O	SUM	H ₂ O _{TG} *
berechnet	45,7	14,3	0,0	17,4	22,6	100	
Analyse	45,7	14,3	0,2	17,5	22,7	100,4	9,6

Tab. 3.4.2 Chemische Analyse von ZnAl-Nitrat (Angaben in [Gew.-%], * Zwischenschicht; 35% r.F.)

Abb. 3.4.3 Röntgendiffraktogramm von ZnAI-Nitrat bei 100% r.F. (schwarz) und 35% r.F. (rot, quadratische Darstellung der Abszisse)

Anhand der chemischen Analysen und die durch TG und Karl-Fischer-Titration bestimmten Gehalte des Zwischenschichtwassers wurde folgende Zusammensetzung der ZnAl-Nitrat Precursorphase ermittelt:

berechnet: $[Zn_2AI(OH)_6][NO_3 \bullet 1,9H_2O]$ Analyse: $[Zn_{1,9(9)}AI_{0,9(9)}(OH)_6][NO_{1,0(1)} \bullet 1,9H_2O]$

Zur Untersuchung der thermischen Stabilität der ZnAl-Nitrat LDHs wurden die Precursorphasen mittels Thermogravimetrie und Röntgenheizkammer im Temperaturintervall 25° C- 300° C(1000° C) analysiert. Die TG-Aufnahme zeigt einen, mit steigender Temperatur über mehrere Stufen kontinuierlich verlaufenden Gewichtsverlust (Abb. 3.4.4). Die Dehydratation der Zwischenschicht beginnt ab 30°C. Bis einer Onsettemperatur von 90°C werden 1,9mol Wasser ausgeheizt, was einem Gewichtsverlust von 9,6% entspricht. Die Ausheizung des Zwischenschichtwassers ist bei 125°C abgeschlossen. Die Zusammensetzung des Precursors ändert sich zu [Zn₂Al(OH)₆]⁺[NO₃]⁻. Laut DSC-Analyse handelt es sich bei dieser Stufe (125°C) um eine endotherme Reaktion (Abb. 3.4.5). Ab 190°C setzt die Dehydratation der Hauptschicht ein und die strukturelle Stabilität von ZnAl-Nitrat bricht zusammen.

Die Entwässerung der Zwischenschicht ist verbunden mit einer Abnahme des Schichtabstandes von 0,893nm bei 25°C auf 0,735nm bei 125°C (Abb.3.4.6). Die Dehydratationsreaktion verläuft in zwei Schritten. Bis 90°C sinkt c' nur gering auf 0,88nm ab, wobei 0,7mol Zwischenschichtwasser ausgeheizt werden. Danach verringert sich der Schichtabstand auf 0,735nm bei 125°C und bleibt bis zur Entwässerung der Hauptschicht konstant. Ab 190°C ist die Verbindung röntgenamorph, was den strukturellen Kollaps der Precursorphase anzeigt. Die Zersetzung des Nitrats in der Zwischenschicht beginnt ab 230°C (VELU *et al.*, 1997).

Die Bestimmung der spezifischen Oberfläche von ZnAl-Nitrat erfolgte bei *outgassing* – Temperaturen von 50°C und 150°C durch die Adsorption von Stickstoff. Die BET-Oberflächen betragen 5,2 m²• g⁻¹ (50°C) für das Hydrat und 6,6 m²• g⁻¹ (150°C) für die zwischenschichtwasserfreien Probe.

Abb. 3.4.4 TG/DTG Kurven von ZnAI-Nitrat

Abb. 3.4.5 DSC-Analyse von ZnAl-Nitrat (Aufheizrate: 5°C/min, Spülgas: Argon, Referenzmaterial: Al₂O₃)

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
			[Zn ₂ Al(OH) ₆] ⁺ [NO ₃ • 1,9H ₂ O] ⁻
30	3,8	0,7	$[Zn_2Al(OH)_6]^{+}[NO_3 \bullet 1, 2H_2O]^{-}$
90	5,8	1,2	[Zn ₂ Al(OH) ₆] ⁺ [NO ₃] ⁻
190			Hauptschichtentwässerung

Tab. 3.4.3 Dehydratationsprozesse von ZnAI-Nitrat

Abb. 3.4.6 TG und Änderung der Schichtdicke c' von ZnAI-Nitrat als Funktion der Temperatur

Abb. 3.4.7 Ausschnitt der Röntgenheizaufnahmen von ZnAl-Nitrat. Position der Basisreflexe vor (schwarz) und nach (rot) der Dehydratationsreaktionen im Temperaturintervall 25-220°C. (gelb: Zwischenschichtentwässerung)

Mit Hilfe der IR-Spektrometrie wurde der strukturelle Aufbau von ZnAl-Nitrat untersucht. Anhand der Lage der Absorptionsbanden können schwingungserzeugende Teilstrukturen identifiziert werden, wodurch Rückschlüsse auf den Aufbau der Hauptschicht und des Zwischenschichtwassers möglich sind. Die Zuordnung der Banden erfolgte mit Hilfe von Literaturdaten (DUNN *et al.*, 1979, GÜNZLER UND HEISE, 1996, HICKEY *et al.*, 2000, KLOPROGGE UND FROST, 2001, NAKAMOTO, 1986, VELU *et al.*, 1997, WANG *et al.*, 2003). Die Nitratbande im Intervall 1384-1364cm⁻¹ überlagert sich mit Bande von CO₃²⁻, was eine Unterscheidung beider Strukturen erschwert. Durch IC- und CHNS-Messungen konnte eine Karbonatisierung der auf 35% r.F. getrockneten Probe ausgeschlossen und die betreffende Absorptionsbande dem Nitrat zugeordnet werden.

Abb. 3.4.8 IR-Spektrum von ZnAl-Nitrat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3565 (Schulter)	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1635	v ₂ (H ₂ O)	H ₂ O – Valenzschwingung
1384 1364	$v_{as}(NO_3)$	asym. (N-O) – Valenzschwingung der (NO ₃ ⁻)-Gruppen
1045	δ(Me-OH)	(Me-OH) – Deformationsschwingung
770	δ(Me-OH)	(Me-OH) – Deformationsschwingung
610	(AIO ₆)	(Al ^{IV} -O) – Schwingung
550	(AlO ₆)	(Al ^{IV} -O) – Schwingung
428	(ZnO)	Zn-O – Schwingung

Tab. 3.4.4 IR-Absorptionsbanden von ZnAl-Nitrat

3.5 Synthese von ZnAI-Sulfat

Die Synthese von ZnAI-Sulfat mit $Me^{2+}/Me^{3+} = 3:1$ erfolgte aus den Ausgangssubstanzen ZnSO₄ • 7H₂O und Al₂(SO₄)₃ • 16H₂O über einen Zeitraum von sieben Tagen und T_A=60°C. Nach Filtration der Präzipitate in N₂-Atmosphäre wurde die Probe dreimal mit 30ml H₂O_{dest} (T=30°C) gewaschen. Die röntgenographischen Untersuchungen wurden an den Pasten bei 100% r.F. und den auf 35% r.F. getrockneten Proben durchgeführt. Nebenphasen konnten anhand der Diffraktometeraufnahmen nicht identifiziert werden.

Abb. 3.5.1 REM-Aufnahme von ZnAI-Sulfat

ZnAl-Sulfat bildet kleine, hexagonal blättrige bis tafelige Kristalle von bis zu 500nm Kantenlänge aus. Die Kristallite sind an den Kanten gerundet und fast vollständig zu größeren Aggregaten zusammengewachsen, welche der Verbindung ein sehr kompaktes Aussehen verleihen (Abb. 3.5.1).

Die röntgenographische Phasenanalyse zeigt scharfe Basalreflexe mit hohen Intensitäten (Abb. 3.5.2). Die Ergebnisse der Gitterkonstantenverfeinerung nach dem Least-Squares-Verfahren auf Basis einer rhomboedrischen Zelle mit hexagonalen Achsen sind in Tabelle 3.5.1 dargestellt. Der Schichtabstand der feuchten Probe bei 100% r.F. beträgt 1,11nm und ist nur geringfügig größer als der Schichtabstand der auf 35% r.F. getrockneten Probe von 1,104nm. Der Gitterparameter a_0 vor und nach der Trocknung bleibt konstant.

Bei einer relativen Luftfeuchte von 35% wurde die chemische Zusammensetzung ZnAl-Sulfat mittels ICP, Ionenchromatograph und CHNS-Elementaranalyse untersucht. Alle Analysen wurden in Doppelbestimmung durchgeführt. Die in Tabelle 3.5.2 angegebenen Werte zeigen geringe Gehalte von Na₂O. Obwohl die Probe nach dem Abfiltrieren dreimal gewaschen wurde, konnte Natrium nicht vollständig entfernt werden. Die nachgewiesenen sehr geringen Gehalte an Na₂O sowie das Ladungsgleichgewicht der ZnAl-Sulfatverbindung deuten darauf hin, dass Na nicht am strukturellen Aufbau des LDHs beteiligt ist.

Abb. 3.5.2 Röntgendiffraktogramm von ZnAI-Sulfat bei 100% r.F. (schwarz) und 35% r.F. (rot)

	a ₀ [nm]	c₀ [nm]	c ' [nm]
100% r.F.	0,925	3,329	1,110
35% r.F.	0,924	3,312	1,104

Tab. 3.5.1 Gitterkonstanten a_0 und c_0 und Schichtabstände c' von ZnAl-Sulfat bei relativen Luftfeuchten von 100% und 35%

	ZnO	Al ₂ O ₃	Na₂O	H ₂ SO ₄	H₂O	SUM	$H_2O_{TG}^*$
berechnet	55,9	11,7	0,0	11,0	21,4	100	
Analyse	56,8	11,9	0,1	10,9	21,2	100,9	6,8

Tab. 3.5.2 Chemische Analyse von ZnAI-Sulfat (Angaben in [Gew.-%], * Zwischenschicht; 35% r.F.)

Aus den gemessenen und berechneten Werten der chemischen Analyse sowie den durch TG bestimmten Wassergehalt ergab sich für die Verbindung auf der Basis von neun Kationen folgende chemische Zusammensetzung von ZnAI-Sulfat:

Zur Untersuchung der thermischen Stabilität der ZnAl-Sulfat wurden Untersuchungen mittels TG und Röntgenheizkammer im Temperaturintervall 25°C-300°C(1000°C) durchgeführt. Die thermogravimetrische Aufnahme zeigt einen, mit steigender Temperatur stufenweise verlaufenden Gewichtsverlust (Abb. 3.5.3). Die Dehydratationsreaktionen von ZnAl-Sulfat unterteilen sich allgemein in die Entwässerung der Zwischenschicht und den Abbau der Hauptschicht durch Abgabe der OH-Gruppen. Die Dehydratation der Zwischenschicht ist zweigeteilt. Der Gewichtsverlust von 2,5% bei 50°C entspricht einer Entwässerungsreaktion von 1,2mol H₂O. Bei einer

Onsettemperatur von 75°C werden die restlichen 2,1mol Zwischenschichtwasser abgegeben. Laut DSC-Analyse handelt es sich bei dieser Gewichtsabnahme (75°C) um eine endotherme Reaktion (Abb. 3.5.4).

Die Entwässerung der Zwischenschicht ist mit der Abnahme des Schichtabstandes von 1,105nm bei 30°C auf 1,04nm bei 60°C und 0,867nm bei 75°C verbunden. Der Schichtabstand verändert sich im Temperaturbereich 80°C-190°C kaum. Zwischen 55°C und 75°C liegen hydratisierte und Wasserfreie Zwischenschichten nebeneinander vor, was an der Ausbildung von Überstrukturreflexen der Basispeaks erkennbar ist (Abb. 3.5.6). Ab 175°C setzt die Dehydratation der Hauptschicht ein und die Verbindung wird röntgenamorph.

Abb. 3.5.3 TG/DTG Kurven von ZnAl-Sulfat

Abb. 3.5.4 DSC-Analyse von ZnAI-Sulfat (Aufheizrate: 5°C/min, Spülgas: Argon, Referenzmaterial: Al₂O₃)

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25			[Zn ₆ Al ₂ (OH) ₁₆][SO ₄ • 3,3H ₂ O]
50	2,5	1,2	$[Zn_6Al_2(OH)_{16}][SO_4 \bullet 2, 1H_2O]$
75	4,3	2,1	[Zn ₆ Al ₂ (OH) ₁₆][SO ₄]
175			Hauptschichtenwässerung

Tab. 3.5.3 Dehydratationsprozesse von ZnAI-Sulfat

Abb. 3.5.5 TG und Änderung der Schichtdicke c' von ZnAl-Sulfat als Funktion der Temperatur

Abb. 3.5.6 Ausschnitt der Röntgenheizaufnahmen von ZnAl-Sulfat. Position der Basisreflexe vor (schwarz) und nach (rot) der Dehydratationsreaktionen im Temperaturintervall 25-250°C. (gelb: Zwischenschichtentwässerung)

Die Bestimmung der spezifischen Oberfläche von ZnAl-Sulfat erfolgte nach Ausheizen der Proben bei Temperaturen von 50°C und 150°C durch Adsorption von Stickstoff. Die BET-Oberflächen betragen 13,4 m²• g⁻¹ (50°C) für das Hydrat und 21,2 m²• g⁻¹ (150°C) für die zwischenschichtwasserfreien Proben.

Mit Hilfe der IR-Spektrometrie wurde der Aufbau von ZnAl-Sulfat untersucht. Anhand der Lage der Absorptionsbanden können schwingungserzeugende Teilstrukturen identifiziert werden, wodurch Rückschlüsse auf den Aufbau der Hauptschicht und des Zwischenschichtwassers möglich sind. Eine Karbonatisierung der Phase ist nicht zu erkennen. Die Zuordnung der Banden wurde mit Hilfe von Literaturdaten (DUNN *et al.*, 1979, GÜNZLER UND HEISE, 1996, HICKEY *et al.*, 2000, KLOPROGGE UND FROST, 2001, NAKAMOTO, 1986, RADHA *et al.*, 2007, VELU *et al.*, 1997) durchgeführt.

Abb. 3.5.7 IR-Spektrum von ZnAI-Sulfat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3649	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3455	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1660	v ₂ (H ₂ O)	H ₂ O – Valenzschwingung
1194	V _{as} (SO ₄ ²⁻)	asym. (S-O) – Valenzschwingung der (SO4 ²⁻)-Gruppen
1157	$v_{as}(SO_4^{2-})$	asym. (S-O) – Valenzschwingung der (SO ₄ ²⁻)-Gruppen
1107	v _s (SO ₄ ²⁻)	sym. (S-O) – Valenzschwingung der (SO4 ²⁻)-Gruppen
960	δ(Me-OH)	(Me-OH) – Deformationsschwingung
794	δ(Me-OH)	(Me-OH) – Deformationsschwingung
618	$(AIO_{6}), v_{as}(SO_{4}^{2})$	(Al ^{IV} -O) – Schwingung, asym. (S-O) – Valenzschwingung der (SO₄ ²⁻)-Gruppen
548	(AIO ₆)	(Al ^Ⅳ -O) – Schwingung
425	(ZnO)	Zn-O – Schwingung

Tab. 3.5.4 IR-Absorptionsbanden von ZnAI-Sulfat

3.6 Precursorphasen

Nach Optimierung der Syntheseparameter von ZnAI-Chlorid, ZnAI-Nitrat und ZnAI-Sulfat wurden die Precursorphasen auf ihre Anionenaustauschfähigkeit untersucht. Ziel dieser Voruntersuchungen war die Auswahl einer ZnAI-Verbindung zur späteren Verwendung als Precursor für die Substitution organischer Moleküle. Dazu wurden die LDHs nach den in den Abschnitten 3.3 - 3.5 beschriebenen Parametern synthetisiert und mit unterschiedlichen Einwaagen neutralisierter kurzkettiger organischen Säurelösungen versetzt. Die Proben alterten für 14 Tage bei 45°C auf dem Heizrüttler. Nach Filtration in N₂-Atmosphäre wurden die Präzipitate mehrmals mit H₂O_{dest} gewaschen. Die Anionenaustauschversuche werden am Beispiel von Methansulfonat erläutert.

Abb. 3.6.1 Ausschnitt der Röntgendiffraktogramme von ZnAl-Chlorid (rot) nach Anionenaustausch mit verschiedenen Einwaagen von Methansulfonat (pH=7,5, T_A =45°C, t_A =14d, 100% r.F.)

Der nebenphasenfreie Einbau von Methansulfonat in die Zwischenschicht der ZnAl-Chlorid Precursorphase gelang unter den angegebenen Syntheseparametern nicht (Abb. 3.6.1). Obwohl die bis zu 6fache Menge der stöchiometrischen Einwaage der organischen Säure zugegeben wurde, traten noch (00I)-Reflexe der Precursorphase auf. Eine Erhöhung des initialen pH-Wertes während der Austauschreaktion auf pH 9,0 brachte bessere Ergebnisse, allerdings bildete sich Zinkoxid als Nebenphase. Höhere Synthesetemperaturen verbesserten und beschleunigten den Anionenaustausch. In Kombination mit einem pH-Wert von 8-8,5 konnten aber geringe Mengen an ZnO beobachtet werden. Für den Anionenaustausch mit ZnAl-Sulfat wurden ähnliche Resultate wie für ZnAl-Chlorid erzielt.

Die Substitution von Methansulfonat in ZnAl-Nitrat gelang nebenphasenfrei mit einer 1,5fachen Menge der stöchiometrischen Einwaage (Abb. 3.6.2). Da sich besonders die ZnAl-Nitrat

Precursorphasen als sehr anfällig für die Bildung von ZnO als Nebenphase herausgestellt haben, wurde auf eine Erhöhung des initialen pH-Wertes verzichtet.

Auf Grund des leichten Einbaus von organischen Anionen in die Schichtstruktur von ZnAl-Nitrat bei Verwendung geringer Quantitäten organischer Säuren, wurde ZnAl-Nitrat als Precursorphase bevorzugt eingesetzt.

Abb. 3.6.2 Ausschnitt der Röntgendiffraktogramme von ZnAl-Nitrat (rot) nach Anionenaustausch mit verschiedenen Einwaagen von Methansulfonat (pH=7,5, T_A =45°C, t_A =14d, 100% r.F.)

4. Anionenaustausch von ZnAI-LDHs mit organischen Anionen

Die Synthese von zinkhaltigen LDHs mit organischen Anionen erfolgte nach dem Prinzip des indirekten Anionenaustausches. Dazu wurden vorab Precursorphasen mit der Zusammensetzung $[Zn_2Al(OH)_6][X^- \cdot nH_2O]$ hergestellt. Die filtrierten und mehrmals gewaschenen Precursor wurden im Anschluss mit den wässrigen Lösungen der organischen Anionen in stöchiometrischer Einwaage unter kontinuierlichem Rühren auf einer Heizplatte versetzt. Die Proben alterten im Heizrüttler bei 45°C für 1-7 Tage. Sämtliche Rückstände wurden dreimal mit je 20ml H₂O_{dest} gewaschen und als Paste bei 100% r.F. und nach Trocknung in Argonatmosphäre bei 35% r.F. untersucht. Um eine Aussage über die Anhängigkeit der strukturellen Stabilität der LDHs von der Luftfeuchte treffen zu können, wurden ausgewählte Proben auch nach Trocknung bei 55% r.F. und 75% r.F. röntgenographisch analysiert. Alle Synthesen erfolgten in der Glovebox in inerter Atmosphäre.

Untersucht werden sollte das Anionenaustauschvermögen von zinkhaltigen LDHs mit organischen Anionen verschiedener Kettenlängen und funktioneller Gruppen. Die Synthesen wurden mit Carboxylat-, Dicarboxylat-, Sulfonat- und Aminosäureanionen durchgeführt. Die Austauschreaktion läuft nach der folgenden Gleichung ab:

$$[\mathsf{M}^{2\text{+-}} \mathsf{M}^{3\text{+-}} \mathsf{X}_{\text{anorg}}] + \mathsf{Z}_{\text{org}} + \mathsf{nH}_2\mathsf{O} \rightarrow [\mathsf{M}^{2\text{+-}} \mathsf{M}^{3\text{+-}} \mathsf{Z}_{\text{org}}] + \mathsf{X}_{\text{anorg}} + \mathsf{nH}_2\mathsf{O}$$

$$M^{2+} = Zn$$

 $M^{3+} = Al$
 $X = NO_3^-, Cl^-$
 $Z = Carboxylat-, Dicarboxylat-, Sulfonat-, Aminosäureanionen$

Abb. 4.0.1 Schematische Darstellung zum Anionenaustausch mit organischen Anionen; links der Precursor mit Nitrat, rechts die ausgetauschte Probe mit Hexanoat in der Zwischenschicht

Spezielle Synthesebedingungen beim Einbau der organischen Anionen in die Zwischenschicht der Precursorphasen werden im Einzelnen beschrieben. Die für alle Austauschreaktionen verwendeten Ausgangssubstanzen sind in Tabelle 2.9.2 dargestellt.

4.1 Austauschreaktionen mit Carboxylationen

Die Substitution von Monocarbonsäuren der Kettenlängen $n_c = 1-20$ in die Zwischenschicht der ZnAl-LDH Precursorphasen sollte untersucht werden. Dazu wurden die Salze der Carbonsäuren mit $n_c = 1-5$ verwendet. Die Fettsäuren mit $n_c = 6-20$ wurden in destillierten Wasser gelöst und durch Zugabe von NaOH neutralisiert. Dies erfolgte für Carbonsäuren mit Kettenlängen von 6-11 Kohlenstoffatomen in der Glovebox in Stickstoffatmosphäre und bei Raumtemperatur T=25°C. Die längerkettigen und schwer löslichen Carbonsäuren ($n_c = 12-20$) wurden auf 60°C erhitzt und anschließend mit NaOH (1mol) tropfenweise bis zur Klärung der wässrigen Lösungen versetzt. Die Zusammensetzung der verwendeten Carboxylatlösungen war wie folgt:

n _c =1-9	-	0,50mol•l⁻¹	
n _c =10-14	-	0,20mol•l⁻¹	(in 10% Ethanol)
n _c =15-20	-	0,05mol•l⁻¹	(in 10% Ethanol)

(n_c = Anzahl der Kohlenstoffatome der Carbonsäure)

Alle mit Carbonsäureanionen umgesetzten Precursorphasen alterten für 1-14 Tage bei 80°C (60°C) im Trockenschrank und wurden mehrmals am Tag geschüttelt.

Abb. 4.1.1 REM-Aufnahme von $[Zn_2Al(OH)_6][C_4H_9COO \bullet 2,7 H_2O]$

Die Syntheseprodukte kristallisieren in unregelmäßig angeordneten, hexagonalen Plättchen mit bis zu 3µm Durchmesser. Sie sind randlich abgerundet und vereinzelt zu größeren Aggregaten verwachsen. Die Ergebnisse der röntgenographische Phasenanalyse der synthetisierten Strukturen bei 100% r.F. zeigen scharfe, intensive (00I)-Reflexe mit geringen Halbwertsbreiten und asymmetrischer Peakform. Je nach Kettenlänge des Zwischenschichtanions können bis zu 11 Ordnungen auftreten (Abb. 4.1.2).

Abb. 4.1.2 Röntgendiffraktogramme der Basisreflexe von ZnAI-LDHs mit Carboxylatzwischenschichtionen (quadratische Darstellung der Abszisse; Proben: 100% r.F.)

Abb. 4.1.3 Röntgendiffraktogramme der Basisreflexe von zinkhaltigen LDHs mit kurzkettigen Carboxylaten bei 100% r.F. - schwarze Linie, und 35% r.F. - rote, gestrichelte Linie. (quadratische Darstellung der Abszisse)

Nach Trocknung der Proben auf 35% r.F. bilden die Verbindungen mit kurzkettigen Carboxylationen Stapelfehlordnungen aus. Die Basisreflexe sind breit und zum Teil in mehrere Peaks aufgespaltet (Abb. 4.1.3). Aufgrund dieser Unordnung nach Trocknung werden die Strukturen der feuchten Pasten bei 100% r.F. untersucht und bei 35% r.F nur die Proben der Carboxylate mit fünf oder mehr Kohlenstoffatome.

Die Gitterparameter der feuchten Pasten und der bei 35% r.F. getrockneten Verbindungen sind in Tabelle 4.1.1 dargestellt. Weder a_0 noch c_0 der Proben bei 100% r.F. unterscheiden sich signifikant von den getrockneten Proben.

Während a_0 bei 100% r.F. konstant bei 0,307-0,308 nm liegt, steigt der Wert für c_0 mit zunehmender Kettenlänge von 3,36 nm (ZnAI-Formiat) bis auf 13,52 nm für ZnAI-Nonadekanoat an. Dabei können zwei Bereiche mit unterschiedlichem Anstieg des mittleren Schichtabstandes c' unterschieden werden (Abb. 4.1.4). Der Schichtabstand der Carboxylatderivate $n_c = 1$ - 12 sowie ZnAI-Oktadekanoat steigt linear mit zunehmender Anzahl der Kohlenstoffatome an. Ab $n_c = 10$ verdoppelt sich der Anstieg des mittleren Schichtabstands c'.

		100% r.F.		35% r.F.		
n _c	a₀ [nm]	c₀ [nm]	c' [nm]	a₀ [nm]	c₀ [nm]	c ' [nm]
1	0,308	3,360	1,120	/	/	/
2	0,308	3,816	1,272	/	/	/
3	0,308	4,125	1,375	/	/	/
4	0,308	4,506	1,502	/	/	/
5	0,308	4,746	1,582	0,308	4,727	1,576
6	0,308	5,193	1,731	0,308	5,149	1,716
7	0,308	5,469	1,823	0,307	5,498	1,833
8	0,307	5,835	1,945	0,306	6,212	2,071
9	0,307	6,171	2,057	0,306	6,930	2,310
10	0,307	6,525	2,175	0,306	6,513	2,171
10	0,307	7,503	2,501	0,307	7,491	2,497
11	0,307	6,881	2,293	0,307	6,854	2,265
	0,308	8,162	2,721	0,307	8,162	2,721
12	0,307	7,141	2,381	0,307	7,192	2,397
12	0,307	8,779	2,926	/	/	/
13	0,307	9,420	3,140	0,307	9,372	3,124
14	0,308	10,127	3,376	0,308	10,058	3,353
15	0,307	10,848	3,616	0,307	10,820	3,607
16	0,308	11,387	3,796	0,308	11,364	3,788
17	/	/	/	/	/	/
18	0,307	9,006	3,002	0,307	9,048	3,016
10	0,307	12,698	4,233	0,307	12,567	4,189
19	0,307	13,518	4,506	0,308	13,455	4,485
20	/	/	/	/	/	/

Tab. 4.1.1 Gitterkonstanten a_0 und c_0 und Schichtabstände c' der Carboxylatderivate der ZnAl-LDHs. Kursiv gestellte Gitterparameter wurden aus Strukturen mit zwei Stapelfolgen der Anionen errechnet.

In der Tabelle 4.1.1 sind für zinkhaltige LDHs mit Dekanoat-, Undekanoat-, Dodekanoat- und Oktadekanoatcarboxylaten jeweils zwei verschiede Resultate der Gitterparameter a₀ und c₀ dargestellt. Diese Ergebnisse repräsentieren die gleichen ZnAI-Carboxylatverbindungen, nur dass die Werte von c' auf beiden linearen Anstiegen des mittleren Schichtabstandes vertreten sind. Am Beispiel von ZnAI-Dodekanoat sind in Abbildung 4.1.5 die Röntgenpulverdiagramme der Strukturen

mit gleichem Anion aber unterschiedlichem Schichtabstand dargestellt. Alle drei verwendeten ZnAl-NO₃⁻ Precursor wurden mit Dodekancarbonsäurelösungen mit zweifachem Überschuss versetzt und bei 60°C im Trockenschrank für 7 Tage gealtert. Die zugeführte C₁₂-Carbonsäure-Lösung der Probe A wurde vor dem Anionenaustausch auf einen pH-Wert von 8,5 eingestellt, bei Probe B auf pH = 7,0. Der pH-Wert der wässrigen Lösung von Probe C wurde nicht verändert (pH = 4,5).

Abb. 4.1.4 Schichtabstände der ZnAl-Carboxylatverbindungen in Abhängigkeit von der Kettenlänge der eingebauten Carboxylationen (100% r.F.)

Abb. 4.1.5 XRD-Aufnahmen von ZnAI-LDH mit Dodekancarboxylat in der Zwischenschicht. Die Basisreflexe der Probe A (grüne gestrichelte Linie) verschieben sich zu kleineren Winkeln °2Theta der Probe C (rote gestrichelte Linie). Syntheseparameter: Precursor: ZnAI-NO₃⁻; $T_{alter} = 60$ °C, $t_{alter} = 7d$; Einwaage 2xm; pH-Wert: **Probe A pH = 8,5**; **Probe B pH = 7,0**; **Probe C pH = 4,5**. (100% r.F.)

Mit zunehmenden pH-Wert (4,5 - 8,5) verschieben sich die scharfen Basisreflexe der Probe C (rot) zu größeren Winkelbereichen °2Theta der Probe A (rot), wobei die Halbwertsbreiten zu-, und die Intensitäten stark abnehmen. Zwischen den angegebenen pH-Wert Bereichen treten beide (00I)-Reflex-Serien nebeneinander auf (Probe B).

Polare Anionen mit langen Alkylketten bilden bevorzugt monomolekulare Schichten an Phasengrenzflächen (LAGALY UND WEISS, 1970). Durch Aufrichtung der parallel zur Zwischenschicht angeordneten Moleküle werden höhere Packungsdichten erreicht, wobei einer senkrecht stehenden Alkylkette eine Äquivalentfläche von 0,19-0,25 nm² zur Verfügung steht. Nach LAGALY UND WEISS (1970) und König (2006) berechnet sich der optimale Neigungswinkel für eine durchschnittliche Packungsdichte von 0,21nm² pro Alkylkette wie folgt:

$$\sin \alpha = 21 / A_E \tag{1}$$

Die Äquivalentfläche A_E ist die einem monovalentem Anion in monomolekularer Anordnung zur Verfügung stehende Fläche im Schichtzwischenraum. Sie errechnet sich aus der Gitterkonstanten a und dem Verhältnis der Kationen in der Hauptschicht.

Analog den Berechnungen von DOSCH (1967), KOPKA *et al.* (1988), MEYN *et al.* (1990) und STERN (2003) lassen sich die Winkel, in denen die Alkylketten zu den Zwischenschichtebenen geneigt sind, nach folgender Formel berechnen:

$$sin α = Δc' / 0,127$$
 (2)

 $\Delta c'$ ist die mittlere Zunahme des Schichtabstandes in Abhängigkeit von der Kettenlänge des Zwischenschichtanions und kann aus den Steigungen der Geraden der Schichtabstände ermittelt werden. Entsprechend Abbildung 4.1.4 und Gleichung (2) berechnen sich die Inklinationswinkel für ZnAl-Carboxylathydrate mit Kettenlängen n_c = 1-12 (+18) wie folgt:

I.
$$\alpha = \arcsin(0,1108 / 0,127) = 60,7^{\circ}$$
 (100% r.F.) (3)
I. $\alpha = \arcsin(0,1103 / 0,127) = 60,3^{\circ}$ (35% r.F.)

Mit Hilfe des ermittelten Inklinationswinkels von $\alpha = 60,7^{\circ}$ und den von MEYN (1991) angegebenen Werten für die Carboxylatgruppe (0,30nm), endständige Methylgruppe (0,30nm) und der Hauptschicht (0,20nm) lassen sich anhand der Formel von KOPKA *et al.* (1988) die Schichtabstände berechnen:

 $c'_{cal} = 0,30nm_{Carboxylatgruppe} + 0,30nm_{Methylgruppe} + 0,20nm_{Hauptschicht} + 0,127 (n_{C}-1) sin\alpha_{CH2-Kette} (4)$

Beispiel: $n_c = 7$

 $c'_{cal} = 0,30nm + 0,30nm + 0,20nm + 0,127 (7-1) sin 60,7°$ $c'_{cal} = 1,464nm$ $c'_{cal} = 1,464nm + 0,31nm_{H2O} = 1,774nm$ Vergleicht man die kalkulierten Werte der mittleren Schichtabstände mit den experimentell ermittelten, so sind die errechneten Ergebnisse für c' um 0,32 – 0,39nm kleiner. In Gleichung (4) wird das Zwischenschichtwasser nicht berücksichtigt. Nach MEYN *et al.* (1990) wird die Dicke einer Schicht zusätzlich eingelagerten Wassermoleküle mit 0,31nm angegeben. Bei Addition des Zwischenschichtwassers betragen die Abweichungen 0,01 – 0,07nm von den gemessenen Schichtabständen (Tab. 4.1.2).

Abb. 4.1.6 Anordnung der Carboxylationen in den Zwischenschichten der ZnAI-LDH (modifiziert nach MEYN *et al.*, 1990)

	100% r.F.			35% r.F.		
n _c	c'_{gem} [nm]	c' _{cal} [nm]	∆ c' [nm]	c'_{gem} [nm]	c' _{cal} [nm]	∆ c' [nm]
1	1,120	1,110	0,010	/	/	/
2	1,272	1,221	0,051	/	/	/
3	1,375	1,332	0,043	/	/	/
4	1,502	1,442	0,060	/	/	/
5	1,582	1,553	0,029	1,576	1,551	0,025
6	1,731	1,664	0,067	1,716	1,661	0,055
7	1,823	1,774	0,049	1,833	1,772	0,061
8	1,945	1,886	0,059	/	/	/
9	2,057	1,996	0,061	/	/	/
10	2,175	2,107	0,068	2,171	2,103	0,068
11	2,293	2,218	0,075	2,285	2,213	0,072
12	2,381	2,329	0,052	2,397	2,323	0,074
18	3,002	2,994	0,008	3,016	2,985	0,031

Tab. 4.1.2 Experimentell ermittelte (c'_{gem}) und berechnete (c'_{cal}) Schichtabstände der feuchten (100%r .F.) und getrockneten (35% r.F.) ZnAl-Carboxylathydrate bei einem Inklinationswinkel von $\alpha = 60,7^{\circ}$ bzw. $60,3^{\circ}$ (35% r.F.).

Der Schichtabstand bei kurzkettigen Carboxylatzwischenschichtionen mit $n_c = 1-7$ ändert sich in Abhängigkeit von der Anzahl der C-Atome (Abb. 4.1.7). Die Werte der Basalabstände liegen auf zwei parallelen Geraden, wobei die obere blaue Linie für $n_{C-gerade}$ und die untere für $n_{C-ungerade}$ gilt. Laut DOSCH (1967) erklärt sich dieses Phänomenen aus der Orientierung der Alkylketten in der Zwischenschicht. Geht man bei der Orientierung der Alkylketten vom größtmöglichsten Schichtabstand aus, so kann der Inklinationswinkel von $\alpha = 60,7^{\circ}$ für gerade und ungerade Kettenlängen aus den beiden parallelen Geraden abgeleitet werden.

Abb. 4.1.7 Schichtabstände der ZnAl-Carboxylatverbindungen in Abhängigkeit von der Anzahl der C-Atome der eingebauten Carboxylationen (100% r.F.)

Für zinkhaltige Carboxylatderivate mit Kettenlängen $n_c > 9$ lässt sich mit Ausnahme von $n_c = 10$, 11, 12 und 18 keine monomolekulare, senkrechte Anordnung der Zwischenschichtanionen berechnen. Die Werte für c' liegen auf einer zweiten Geraden mit fast doppelt so hohen Anstieg des Schichtabstandes wie für ZnAI-LDHs mit kurzkettigen Carboxylaten (Abb. 4.1.4).

Nach MEYN *et. al.* (1990), HWANG *et al.* (2001) und ITOH *et al.* (2003) können sich langkettige organische Anionen auf Grund ihrer hydrophoben Eigenschaften in mono- und bimolekulare Schichten in der Zwischenschicht von LDHs anordnen.

Zur Überprüfung einer bimolekularen Orientierung werden die chemischen Analysen der Verbindungen herangezogen. Die chemische Zusammensetzung der Proben wurde nach Trocknung auf 35% r.F. mittels ICP-OES und CHNS-Elementaranalyse durchgeführt. Aufgrund der Polymerisation der organischen Anionen von ZnAI-Carboxylaten mit Kettenlängen größer 13 Kohlenstoffatomen, können die Proben nicht vollständig nasschemisch aufgeschlossen werden.

Deshalb wurden die langkettigen Carboxylatverbindungen vor dem Aufschluss für eine Stunde bei 250°C im Ofen erhitzt und nach Abkühlung mit Salpetersäure aufgeschlossen. Die C₁₆ und C₁₇-Carboxylate konnten trotzdem nicht reststofffrei gelöst werden. Der Gehalt an Zwischenschichtwasser wurde mittels TG und Karl-Fischer-Titration bestimmt. In Tabelle 4.1.3 sind die Ergebnisse der chemischen Untersuchungen dargestellt.

Die Annahme einer bimolekularen Anordnung der Carboxylate in der Zwischenschicht wird durch den Vergleich der gemessenen Ergebnisse an Kohlenstoff und Wasserstoff mit theoretisch berechneten Werten unterstützt (Abb. 4.1.8). Die Gehalte für Kohlenstoff und Wasserstoff steigen

Ι.	n _c	ZnO	Al ₂ O ₃	C _n H _{2n+1} COOH	H₂O	SUM	H ₂ O _{TG} *
berechnet	5	39,7	12,5	24,7	23,1	100	
Analyse	5	39,9	11,8	23,9	23,3	98,9	11,9
berechnet	6	37,9	11,9	26,8	23,4	100	
Analyse	6	37,5	12,1	25,7	23,3	98,5	12,6
berechnet	7	37,5	11,8	29,8	20,9	100	
Analyse	7	37,5	13,1	28,4	20,3	99,3	10,4
berechnet	8	36,8	11,5	32,3	19,4	100	
Analyse	8	37,5	11,4	31,8	19,3	99,9	9,0
berechnet	9	34,8	11,0	33,6	20,6	100	
Analyse	9	35,1	11,8	32,6	20,2	99,6	10,8
berechnet	10	34,0	10,6	35,7	19,7	100	
Analyse	10	34,0	12,0	34,9	19,0	99,9	10,1
berechnet	11	32,4	10,1	36,9	20,6	100	
Analyse	11	33,1	10,7	35,7	20,2	99,7	11,5
berechnet	18	27,2	8,5	47,4	16,9	100	
Analyse	18	26,8	8,5	47,6	17,0	99,9	9,2

ab einer Kettenlänge von 11 C-Atomen sprunghaft an, womit der steile Anstieg der zweiten Regressionsgerade erklärt werden kann. Auf Grund dessen wird von einer bimolekularen Anordnung der Zwischenschichtanionen ausgegangen.

П.	n _c	ZnO	Al ₂ O ₃	C _n H _{2n+1} COOH	H₂O	SUM	$H_2O_{TG}^*$
berechnet	11	25,1	7,9	52,3	14,7	100	
Analyse	11	25,1	8,1	52,3	14,6	100,1	7,8
berechnet	12	23,9	7,5	54,0	14,6	100	
Analyse	12	23,2	7,6	56,7	14,6	102,1	7,8
berechnet	13	22,8	7,2	55,5	14,5	100	
Analyse	13	22,8	6,9	56,7	14,7	101,1	8,1
berechnet	14	21,5	6,8	56, 1	15,6	100	
Analyse	14	21,8	7,5	54,1	15,1	98,5	9,5
berechnet	15	21,2	6,6	58,7	13,5	100	
Analyse	15	20,8	6,6	59,9	13,5	100,8	7,5
berechnet	18	18,9	5,9	62,5	12,7	100	
Analyse	18	18,6	5,8	63,4	12,9	100,7	7,3
berechnet	19	18,6	5,9	64,8	10,7	100	
Analyse	19	18,2	5,5	66,6	11,0	101,3	5,4

Tab. 4.1.3 Chemische Analysen der ZnAl-Carboxylatverbindungen. Die Unterteilung in I. und II. zeigt die Lage der Proben in Abbildung 4.1.3. (Angaben in [Gew.-%], * Zwischenschicht; 35% r.F.)

Die Inklinationswinkel der Carboxylate mit $n_c > 10$ berechnen sich dann nach folgender Formel:

II.
$$\alpha = \arcsin(0,2206 / 0,254) = 60,3^{\circ}$$
(100% r.F.)II. $\alpha = \arcsin(0,2156 / 0,254) = 58,1^{\circ}$ (35% r.F.)

Die Carboxylatketten der auf 35% r.F. getrockneten Proben sind mit Einfallwinkel von 58,1° in der Zwischenschicht angeordnet, die bei 100% r.F. untersuchten Proben mit 60,3°.

Abb. 4.1.8 Gemessene und für eine monomolekulare und bimolekulare Anordnung berechnete Gehalte von Kohlenstoff und Wasserstoff in Abhängigkeit von der Kettenlänge der Carboxylate (35% r.F.)

Ein bimolekularer Aufbau der organischen Zwischenschichtanionen kann durch zwei Modelle beschrieben werden (LAGALY, 1981). Gibt nur eine der Carboxylatgruppen ein Wasserstoffatom ab, so handelt es sich um eine Anordnung mit einfacher Zwischenschichtladung, auch ,gestopfte Struktur' genannt (KÖNIG, 2006). Zu einer Anordnung mit doppelter Zwischenschichtladung kommt es, wenn beide Carboxylatketten je ein Wasserstoffatom abgeben (Abb. 4.1.9). Zum Ladungsausgleich werden dann doppelt so viele Kationen pro Formeleinheit benötigt. Die Ergebnisse der chemischen Analysen zeigen, verglichen mit den Gehalten der Carbonsäuren, keine erhöhten Werte für Zink und Aluminium. Demzufolge wird von einer Anordnung mit einfacher Zwischenschichtladung ausgegangen.

Mit Hilfe des berechneten Inklinationswinkels von 60,3° (100% r.F.) lassen sich die Schichtabstände der bimolekular angeordneten ZnAI-Carboxylate wie folgt berechnen:

$$c'_{cal} = 0,30nm_{Carboxylatgruppe A} + 0,30nm_{Methylgruppe} + 0,20nm_{Hauptschicht} + 0,127 (n_{C}-1) sin\alpha_{CH2-Kette A} + 0,0000 cm^{-1}$$

0,30nm_{Carboxylatgruppe B} + 0,127 (n_C-1) $sin\alpha_{CH2-Kette B}$

(6)

Beispiel: $n_c = 14$

 $c'_{cal} = 0,30nm + 0,30nm + 0,20nm + 0,127 (14-1) \sin 60,3^{\circ} +0,30nm + 0,127 (14-1) \sin 60,3^{\circ} = 3,968nm$ $c'_{cal} = 3,968nm + 0,31nm_{H2O} = 4,278nm$

Abb. 4.1.9 Bimolekulare Orientierung von Carboxylaten in der Zwischenschicht: links: Anordnung mit doppelter Zwischenschichtladung, rechts: Anordnung mit einfacher Zwischenschichtladung (modifiziert nach CARLINO, 1997, KÖNIG, 2006)

Die errechneten Basisabstände der feuchten Proben sind um 0,88-0,93nm größer als die gemessenen Werte (Tab. 4.1.4). Die Schichtabstände c'_{cal} der auf 35% r.F. getrockneten Proben sind zwischen 0,50-0,58nm größer als c'_{gem}. Nach LAGALY (1976) können Ketten- und Schichtabstände durch Ausbildung von Kinken und gauche-Block-Strukturen verkürzt werden (Abb. 4.1.10), was die Differenzen erklären würde. Dabei knicken Ketten um und bilden Kinken, aus denen bei räumlicher Ausweitung innerhalb der Kinken-Blöcke gauche-Block-Strukturen entstehen können (SCHWARTZ UND ENGEL, 1972).

_		100% r.F.		35% r.F.		
n _c	c'_{gem} [nm]	c'_{cal} [nm]	∆ c' [nm]	c'_{gem} [nm]	c'_{cal} [nm]	∆ c' [nm]
10	2,501	3,396	- 0,90	2,497	3,041	- 0,54
11	2,721	3,616	- 0,90	2,721	3,256	- 0,54
12	2,926	3,837	- 0,91	/	/	/
13	3,140	4,058	- 0,92	3,124	3,688	- 0,56
14	3,376	4,278	- 0,90	3,353	3,903	- 0,55
15	3,616	4,499	- 0,88	3,607	4,119	- 0,51
16	3,796	4,719	- 0,92	3,788	4,335	- 0,55
18	4,233	5,161	- 0,93	4,189	4,766	- 0,58
19	4,506	5,381	- 0,88	4,485	4,981	- 0,50

Tab. 4.1.4 Experimentell ermittelte (c'_{gem}) und berechnete (c'_{cal}) Schichtabstände der ZnAl-Carboxylathydrate bei Luftfeuchten von 100% und 35% r.F. unter Verwendung der Inklinationswinkel von α = 60,3° (100% r.F.) bzw. 58,31 (35% r.F.)

Abb. 4.1.10 Anordnungen bimolekularer Moleküle aus Alkylketten: a) all-Trans-Konformation, b) Kinken, c) gauche-Block-Struktur (modifiziert nach LAGALY, 1981)

Zur Untersuchung der thermischen Stabilität der mit Carboxylaten ausgetauschten ZnAI-LDHs wurden die Proben mit thermogravimetrischen Methoden und röntgenographisch in einer Heizkammer bei definierten Temperaturen analysiert. Die TG-Aufnahmen zeigen eine stufenweise Gewichtsabnahme aller Carbonsäureverbindungen, wobei die Dehydratationsstufen für ZnAI-Phasen mit monomolekular angeordneten organischen Anionen ausgeprägter sind, als bei den bimolekular angeordneten.

Abb. 4.1.11 TG und Änderung der Schichtdicke c' von ZnAl-Pentanoat als Funktion der Temperatur

Das Beispiel von ZnAl-Pentanoat (Abb. 4.1.11) weist eine zweigeteilte Dehydratationsreaktion bis 70°C auf, die insgesamt einer Gewichtsabnahme von 11,9% bzw. Verlust von 2,7mol Wasser entspricht. Der Schichtabstand c' sinkt leicht von 25°C bis 70°C von 1,583nm auf 1,545nm ab und fällt dann auf 1,308nm. Bis 90°C steigen die Basisabstände auf 1,378nm an und bleiben dann

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25	0	0	[Zn ₂ Al(OH) ₆][C ₄ H ₉ COO • 2,7 H ₂ O]
70	11,9	2,7	[Zn ₂ Al(OH) ₆][C ₄ H ₉ COO]
140			Hauptschichtentwässerung

konstant. Ab 140°C beginnt die Entwässerung der Hauptschicht und die Kristallstruktur des LDHs wird zerstört. Die Probe ist dann röntgenographisch amorph.

Tab. 4.1.5 Dehydratationsprozesse von ZnAI-Pentanoat

Die langkettigen bimolekular angeordneten Carboxylatverbindungen besitzen keine ausgeprägten Dehydratationsstufen in den TG-Aufnahmen. Die Untersuchungen in der Röntgenheizkammer zeigen mit steigender Temperatur eine Verschiebung der (00I)-Basisreflexe zu kleineren °2Theta Winkeln bei gleichzeitiger Intensitätszunahme. Wie am Beispiel von ZnAI-Nonadekanoat in Abbildung 4.1.12 dargestellt, steigt der Schichtabstand im Temperaturintervall 25 – 125°C von 4,485nm auf 4,597nm an. Die Dehydratation der Hauptschicht beginnt ab 125°C und die Verbindung wird röntgenamorph.

Abb. 4.1.12 Ausschnitt der Röntgendiffraktogramme von ZnAl-Nonadekanoat in Abhängigkeit von der Temperatur

Anhand von Absorptionsbanden wurden mittels IR-Spektroskopie schwingungserzeugende Teilstrukturen der Carboxylatverbindungen analysiert, da dadurch Rückschlüsse auf deren strukturellen Aufbau gezogen werden können (RICHARDSON UND BRATERMAN, 2007). Die Zuordnung der Bandenlagen erfolgte mit Hilfe von Literaturdaten (GÜNZLER UND HEISER, 1996, NAKAMOTO, 1986, ROCCA *et al.*, 2006). Am Beispiel von ZnAl-Dekanoat sind die charakteristischen Schwingungsbanden der Carboxylatstrukturen in Abbildung 4.1.13 und Tabelle 4.1.6 dargestellt. Alle anderen aufgenommenen IR-Spektren sind mit Angabe der Position der Schwingungsbanden im Anhang 7.3 aufgelistet.

Abb. 4.1.13 IR-Spektrum von ZnAI-Dekanoat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung			
3480 3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers			
2960	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH ₃ -Gruppen			
2930	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen			
2872 2850	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen			
1548	v(C=O)	v (C=O) – Valenzschwingung			
1460	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH2- u. CH3-Gruppen			
1409	δ(С-Н), δ(О-Н)	(C-H), (O-H) – Deformationsschwingungen			
1363	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen			
1240	δ(CH ₂)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen			
1110	δ(CH ₃)	(C-H) – Deformationsschwingung der CH ₃ -Gruppen			
936 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung			
771	δ(Me-OH)	(Me-OH) – Deformationsschwingung			
622	(AIO ₆)	(Al ^{IV} -O) − Schwingung			
556	(AIO ₆)	(Al ^{IV} -O) − Schwingung			
425	ZnO	Zn-O – Schwingung			

Tab. 4.1.6 IR-Absorptionsbanden von ZnAI-Dekanoat

4.2 Austauschreaktionen mit Dicarboxylaten

Analog zu den Carboxylaten wurden die zinkhaltigen LDHs mit Alkandisäureanionen, aromatischen Dicarboxylaten, Butendisäuren und Hydroxysäuren umgesetzt. Bei allen Austauschreaktionen dienten nitrathaltige ZnAI-LDHs als Precursorphase.

Abb. 4.2.1.1 Röntgendiffraktogramme der Basisreflexe von ZnAI-LDHs mit Dicarboxylationen in der Zwischenschicht (100% r.F.)

Die Umsetzung der unverzweigten, gesättigten Dicarboxylate mit $C_nH_{2n}(COO^{-})_2$ erfolgte für Säuren mit n = 0-7. Die 0,1 molaren Dicarboxylatlösungen wurden mit NaOH (1 molar) neutralisiert und

dem Precursor im Überschuss zugeführt. Die Proben alterten bei 60°C (Oxalat: 90°C) im Trockenschrank für 3-7 Tage. Alle Proben wurden nach dem Filtrieren dreimal mit je 10ml H_2O_{dest} gewaschen.

Alle verwendeten Dicarboxylate konnten in die Zwischenschicht der ZnAI-Precursoren eingebaut werden. Als Nebenphase wurde ZnO in der Probe mit Oxalationen beobachtet.

Die röntgenographischen Untersuchungen der feuchten Pasten zeigen scharfe und intensive Basisreflexe. Es treten bis zu vier Ordnungen auf. Um die Stabilität der ausgetauschten Proben gegenüber Trocknung zu untersuchen, wurden die ZnAI-Dicarboxylate in Stickstoffatmosphäre auf 75% r.F., 55% r.F. und 35% r.F. über gesättigten Salzlösungen getrocknet (EBERT, 1930). Schon bei einer relativen Luftfeuchte von 75% kommt es mit Ausnahme von ZnAI-Azelainat zu Stapelfehlordnungen, was an den breiten, verwaschenen Basisreflexen erkennbar ist. Bei weiterer Trocknung spalten sich die (00I)-Reflexe auf und die Intensitäten nehmen ab. Alle anderen Reflexe werden von der Trocknung kaum beeinflusst.

Abb. 4.2.1.2 Röntgendiffraktogramme von ZnAl-Malonat in Abhängigkeit von der relativen Luftfeuchte (quadratische Darstellung der Abszisse)

		100% r.F.					
Anion	n _c	a ₀ [nm]	c ₀ [nm]	c ' [nm]			
Oxalat	2	0,307	2,973	0,991			
Malonat	3	0,307	3,257	1,086			
Succinat	4	0,307	3,630	1,210			
Glutarat	5	0,307	3,997	1,332			
Adipinat	6	0,307	4,304	1,435			
Pimelinat	7	0,307	4,496	1,499			
Azelainat	9	0,307	4,758	1,586			

Tab. 4.2.1.1 Gitterkonstanten a₀ und c₀ und Schichtabstände c' der Dicarboxylatderivate der ZnAI-LDHs

Die Gitterkonstantenverfeinerung der Dicarboxylatderivate erfolgte an einem trigonalen R-Gitter mit hexagonalen Achsen. Die Schichtabstände der Proben bei 100% r.F. steigen mit zunehmender Anzahl der Kohlenstoffatome von 0,99nm auf 1,59nm an (Tab. 4.2.1.1). Zu ähnlichen Ergebnissen kommen MIYATA UND KURUMA (1973) für ZnAl-Dicarboxylate, die allerdings keine Orientierung der

Anionen in der Zwischenschicht vorgeben. DOSCH (1967) geht auf Grund der Einlagerungsisothermen der Dicarboxylationen von einer monomolekularen Anordnung der Alkandisäureanionen in der Zwischenschicht aus.

Abb. 4.2.1.3 Schichtabstände der ZnAl-Alkyldicarboxylatverbindungen in Abhängigkeit von der Kettenlänge der eingebauten Anionen (blau: Regressionsgerade für c' mit $n_c = 2-6$, grün: Regressionsgerade für c' mit $n_c = 2-9$ (100%r.F.))

Analog zu den Carboxylaten, lassen sich die Neigungswinkel der Dicarboxylatketten in der Zwischenschicht nach folgender Formel bestimmen, wobei die mittlere Zunahme der Schichtabstände aus der Regressionsgeraden in Abbildung 4.2.1.3 ermittelt wurde:

Die mittlere Schichtabstandszunahme für ZnAl-Dicarboxylate mit Kettenlängen von $n_c = 2-9$ beträgt 0,089nm/-CH₂-, woraus sich ein Inklinationswinkel von 44,7° berechnet. Bis Kettenlängen von $n_c = 6$ steigen die Schichtabstände linear an, danach nimmt der Wert der Zunahme des Schichtabstandes ab.

Unter Verwendung der von MEYN (1991) angegebenen Werte für Carboxylatgruppe (0,30nm), endständiger Methylgruppe (0,30nm) und Hauptschicht (0,20nm) sowie des ermittelten Neigungswinkels lassen sich die Schichtabstände berechnen:

 $c'_{cal} = 0,30nm_{Carboxylatgruppe} + 0,30nm_{Methylgruppe} + 0,127 (n_{C}-1) sin\alpha_{CH2-Kette} + 0,20nm_{Hauptschicht} (3)$

Beispiel: $n_c = 4$

$$c'_{cal} = 0,30nm + 0,30nm + 0,127 (4-1) \sin 44,7^{\circ} + 0,20nm$$

 $c'_{cal} = 1,068nm$

Im Vergleich mit den experimentell ermittelten Werten sind die berechneten Schichtabstände, mit Ausnahme von ZnAl-Azelainat, zwischen 0,10nm und 0,19nm kleiner. Geht man von der Einlagerung einer zusätzlichen Wasserschicht aus (0,28-0,31nm), so ergeben sich ebenfalls Differenzen von 0,12nm - 0,21nm. Bei Annahme einer senkrechten Anordnung der Dicarboxylatketten in der Zwischenschicht (MEYN, 1991, MOREL-DESROSIERS *et al.*, 2003) ist die Übereinstimmung der berechneten und experimentellen Schichtabstände recht gut. Nur der Basalabstand von ZnAl-Azelainat unterscheidet sich mit 0,23nm erheblich vom berechneten Wert. MEYN (1991) und KÖNIG (2006) postulieren die Ausbildung einer Kinke und der damit verbundenen Verkleinerung des Schichtabstandes für langkettige Dicarboxylate.

		100% r.F.						
			44,7° 90°					
Anion	n _c	c'_{gem} [nm]	c'_{cal} [nm]	∆ c' [nm]	c'_{cal} [nm]	∆ c' [nm]		
Oxalat	2	0,991	0,889	0,10	0,927	0,06		
Malonat	3	1,086	0,979	0,11	1,054	0,03		
Succinat	4	1,210	1,068	0,14	1,181	0,03		
Glutarat	5	1,332	1,157	0,17	1,308	0,02		
Adipinat	6	1,435	1,247	0,19	1,435	0,00		
Pimelinat	7	1,499	1,336	0,16	1,562	- 0,06		
Azelainat	9	1,586	1,515	0,07	1,816	- 0,23		

Tab. 4.2.1.2 Experimentell ermittelte (c'_{gem}) und berechnete (c'_{cal}) Schichtabstände der ZnAl-Dicarboxylate für Inklinationswinkel von α = 44,7° bzw. 90° (100% r.F.)

Abb. 4.2.1.4 Modelle zur Anordnung von Dicarboxylationen in den Zwischenschichten der ZnAl-LDHs (modifiziert nach MEYN *et al.*, 1990)

Mit Hilfe des IR-Spektrums wurden schwingungserzeugende Teilstrukturen von ZnAl-Azelainat nach Trocknung auf 35% r.F. analysiert, wodurch Aussagen über die strukturelle Zusammensetzung der Verbindung getroffen werden können. Die Zuordnung der Bandenlagen erfolgte anhand von Literaturdaten (GÜNZLER UND HEISER, 1996, NAKAMOTO, 1986, PRETSCH *et al.*, 2001, WYPYCH, *et al.*, 2005). Die Banden sind in Tabelle 4.2.1.3 dargestellt.

Abb. 4.2.1.5 IR-Spektrum von ZnAI-Azelainat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung		
3480 3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers		
2925	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen		
2850	v _s (CH ₂ , CH ₃)	sym. (C-H) – Valenzschwingung CH ₂ - u. CH ₃ -Gruppen		
1600	v ₂ (H ₂ O)	H ₂ O – Valenzschwingung		
1540	v(C=O)	v (C=O) – Valenzschwingung		
1460 1450	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen		
1405	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen		
1383	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen		
1363	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen		
1240	δ(CH ₂)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen		
1160 1105	δ(CH ₃)	(C-H) – Deformationsschwingung der CH_3 -Gruppen		
930 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung		
775	δ(Me-OH)	(Me-OH) – Deformationsschwingung		
620	(AIO ₆)	(Al ^Ⅳ -O) – Schwingung		
555	(AIO ₆)	(Al ^{IV} -O) – Schwingung		
425	ZnO	Zn-O – Schwingung		

Tab. 4.2.1.3 IR-Absorptionsbanden von ZnAI-Azelainat

4.2.2 Aromatische Dicarboxylate, Butendisäuren und Hydroxysäuren

Neben den Alkandisäuren wurden weitere organische Anionen mit zwei bzw. drei Carboxylatgruppen in die Zwischenschicht der Precursorphasen substituiert:

1.) Aromatische Dicarbonsäuren: Phthalat-, Isophthalat- und Terephthalationen

2.) Butendisäuren: Fumarat- und Maleationen

3.) Hydroxysäuren: Lactat-, Tartrat- und Citrationen

Der Anionenaustausch erfolgte durch Zugabe der Ionen im Überschuss. Die 0,15molaren Dicarbonsäurelösungen wurden mit NaOH neutralisiert. Nach der Alterung im Trockenschrank (45°C) wurden die Proben dreimal mit je 20ml H_2O_{dest} gewaschen.

Anion	a₀ [nm]	c₀ [nm]	c ' [nm]	c'_{cal} [nm]	∆c'
Phthalat	0,307	4,495	1,498	1,51	0,01
Isophthalat	0,307	4,494	1,498	1,51	0,01
Terephthalat	0,307	4,261	1,420	1,38	0,04
Terephthalat (35% r.F.)	0,306	4,258	1,419	1,38	0,04
Fumarat	0,307	3,610	1,203	1,09	0,11
Maleat	0,307	3,922	1,307	1,09	0,22
Lactat	0,307	4,370	1,457	1,42	0,04
Tartrat	0,307	3,653	1,218	1,22	0,01
Tartrat (35% r.F.)	0,307	3,642	1,214	1,22	0,01
Citrat	0,307	3,656	1,219	1,18	0,04
Citrat (35% r.F.)	0,306	3,628	1,209	1,18	0,03

Tab. 4.2.2.1 Gitterkonstanten der ZnAl-Dicarboxylate. Bei der Berechnung der theoretischen Schichtabstände (c'_{cal}) wird von einer Orientierung der Anionen senkrecht zu den Hauptschichten ausgegangen. (100% r.F.)

Aromatische Dicarboxylate

Als Ausgangsstoffe für die Synthesen wurden Phthalsäure $(1,2-C_6H_4(COOH)_2)$, Isophthalsäure $(1,3-C_6H_4(COOH)_2)$ und Terephthalsäure $(1,4-C_6H_4(COOH)_2)$ verwendet. Ziel der Austauschreaktionen war die Untersuchung des Schichtabstandes in Abhängigkeit von der Lage der Carboxylatgruppen am Benzolring.

Alle verwendeten Dicarboxylate konnten nebenphasenfrei in die Zwischenschicht der Precursorphasen eingebaut werden. Die Probenpasten bei 100% r.F. zeigen scharfe Basisreflexe mit hohen Intensitäten (Abb. 4.2.2.1). Mit Ausnahme von Terephthalat bilden die aromatischen Dicarboxylatverbindungen Stapelfehlordnungen nach Trocknung auf eine relative Luftfeuchte von 35% aus. Die Halbwertsbreiten der Basisreflexe nehmen zu und ihre Intensitäten sinken stark ab. Zum Teil spalten sich die Basispeaks auf.

Die Schichtabstände von ZnAI-Phthalat und ZnAI-Isophthalat sind mit c' = 1,498nm gleich. Wird für die Berechnung des theoretischen Schichtabstandes von einer senkrechten Position des Benzolringes in der Zwischenschicht und einer eingelagerten Wasserschicht ausgegangen (Abb. 4.2.2.2), so unterscheiden sich die experimentellen und berechneten Basisabstände mit $\Delta c' = 0,01nm$ kaum voneinander. Die Lage der zweiten Carboxylatgruppe in der -2- bzw. -3- Position scheint demnach keinen Einfluss auf die Größe des Schichtabstandes zu haben.

Der Einbau von Terephthalat führt zu einem Schichtabstand von 1,42nm, der sich auch nach Trocknung auf 35% r.F. kaum ändert. Der experimentelle Wert korreliert sehr gut mit dem nach dem Modell berechneten von 1,38nm (Abb. 4.2.2.2). Der im Vergleich mit Phthalat und Isophthalat geringere Schichtabstand ergibt sich aus dem Fehlen der Wasserschicht.

Abb. 4.2.2.1 Diffraktogramme der Basisreflexe von ZnAI-LDHs mit Phthalat, Isophthalat und Terephthalat in der Zwischenschicht bei 100% r.F. (schwarze Linie) und 35% r.F. (rote Linie)

Die chemische Zusammensetzung von ZnAl-Terephthalat wurde nach Trocknung auf 35% r.F. mittels ICP-OES, CHNS-Elementaranalyse und TG durchgeführt. Die Analyseergebnisse sind in Tabelle 4.2.2.2 dargestellt.

ZnAl-		ZnO	AI_2O_3	Anion	H₂O	SUM	H ₂ O _{TG}
Toronhtholot	berech.	39,8	12,5	20,1	27,6	100	
Terephthalat	Analyse	40,6	12,4	19,9	27,5	100,4	16,4

Tab. 4.2.2.2 Chemische Analyse von ZnAl-Terephthalat (Angaben in [Gew.-%], * Zwischenschicht; 35% r.F.)

Abb.4.2.2.2 Modelle zur Berechnung der Schichtabstände von ZnAI-LDHs mit A) Phthalat, B) Isophthalat und C) Terephthalat (modifiziert nach MEYN, 1991)

Obwohl in dem Modell zur Berechnung des Schichtabstandes keine zusätzliche Wasserschicht angegeben wird, ergaben Untersuchungen zur thermischen Stabilität der Terephthalatverbindung mittels TG/DTG einen Zwischenschichtwassergehalt von 3,7mol. Dieser Wert liegt in dem Bereich, wie er für CaAl-Terephthalat ($x \approx 4$) von MILLANGE *et al.* (200) beschrieben wird.

Abb. 4.2.2.3 TG/DTG Kurven von ZnAI-Terephthalat
Die Zwischenschicht von $[Zn_2Al(OH)_6][0,5C_6H_4-1,4-(COO)_2 \cdot 3,7H_2O]$ entwässert in zwei Schritten. Im Temperaturintervall $30^{\circ}C - 140^{\circ}C$ werden 2,9mol Wasser ausgeheizt. Die chemische Zusammensetzung ist dann $[Zn_2Al(OH)_6][0,5C_6H_4-1,4-(COO)_2 \cdot 0,8H_2O]$. Bis $180^{\circ}C$ verliert die Zwischenschicht die restlichen 0,8mol Wasser. Ab einer Onsettemperatur von ca. 210°C beginnt die Dehydratation der Hauptschicht.

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25			$[Zn_2Al(OH)_6][0,5C_6H_4-1,4-(COO)_2 \bullet 3,7H_2O]$
30	12,9	2,9	$[Zn_2Al(OH)_6][0,5C_6H_4-1,4-(COO)_2 \bullet 0,8H_2O]$
140	3,4	0,8	[Zn ₂ Al(OH) ₆][0,5C ₆ H ₄ -1,4-(COO) ₂]
210			Hauptschichtentwässerung

Tab. 4.2.2.3 Dehydratationsprozesse von ZnAI-Terephthalat

Butendisäuren

Von den ungesättigten Butendisäuren C₄H₄O₄ wurden die Anionenkomplexe der Fumarsäure (trans-Butendisäure) und die Maleinsäure (cis-Butendisäure) in die Zwischenschicht der Precursorphasen eingebaut. Die Syntheseprodukte zeigen Stapelfehlordnungen bei Trocknung auf relative Feuchte von 35%.

Abb. 4.2.2.4 Röntgendiffraktogramme von ZnAI-LDHs mit Fumarat- und Maleationen in der Zwischenschicht (100% r.F.)

Die Modelle zur Anordnung der Anionen in der Zwischenschicht liefern einen theoretischen Schichtabstand von 1,09nm (Abb. 4.2.2.5). Die experimentellen Werte sind mit 1,203nm (Fumarat) und 1,307nm (Maleat) um 0,11nm bzw. 0,22nm größer.

Abb. 4.2.2.5 Modelle zur Berechnung der Schichtabstände von ZnAI-LDHs mit Fumarat (links) und Maleat (rechts) in der Zwischenschicht (modifiziert nach MEYN, 1991)

Hydroxysäuren

Als Ausgangsstoffe für die Austauschreaktionen wurden die Anionen der Milchsäure (Lactat, $C_2H_4(COOH)(OH)$, Weinsäure (Tartrat, $C_2H_2(COOH)_2(OH)_2$) und Citronensäure (Citrat, $C_3H_4(COOH)_2(COOH)(OH)$) verwendet. Mit Ausnahme von ZnAl-Lactat bleibt die Stapelfolge der Syntheseprodukte bei Trocknung auf 35% r.F. erhalten.

Die Röntgendiffraktogramme zeigen scharfe integrale Basisreflexe mit hohen Intensitäten. Es treten vier Ordnungen auf.

Die Hydroxysäureanionen weiten den Schichtabstand der ZnAI-LDHs bei 100% r.F. auf 1,22nm (Tartrat) bis 1,46nm (Lactat) auf. Die Werte von c' unterscheiden sich bei 100% r.F. und 35% r.F. kaum; die Schichtabstände sind nach der Trocknung um 0,004nm bzw. 0,01nm erniedrigt. Die nach den Modellen (Abb. 4.2.2.7) berechneten Basisabstände der senkrecht in der Zwischenschicht orientierten Anionen zeigen nur geringe Abweichungen ($\Delta c' = 0,01-0,04nm$) von den experimentell ermittelten. Demzufolge sind die Hydroxidgruppen der Lactat-, Tartrat- und Citrationen für die Aufweitung der Schichtstruktur ohne Bedeutung. Dasselbe gilt für die dritte (COOH)-Gruppe des Citrats.

Bei einer relativen Luftfeuchte von 35% wurde die chemische Zusammensetzung von ZnAl-Tartrat und ZnAl-Citrat mit ICP-OES, CHNS-Elementaranalyse und Thermoanalyse untersucht. Die Ergebnisse sind in Tabelle 4.2.2.4 dargestellt. Die daraus ermittelten chemischen Zusammensetzungen der Dicarboxylatverbindungen sind $[Zn_2AI(OH)_6][0,5C_2H_2(COO)_2(OH)_2$ • 2,2H₂O] für das Tartration und $[Zn_2AI(OH)_6][0,5C_3H_4(COO)_2(COOH)(OH)$ • 2,5H₂O] für Citrat.

Die thermische Stabilität von ZnAl-Citrat und ZnAl-Tartrat wurde im Temperaturintervall 25°C-1000°C mittels TG/DTG untersucht. Die Entwässerung der Zwischenschicht der Citratverbindung unterteilt sich in zwei Abschnitte (Abb. 4.2.2.3.4). Zwischen 30°C und 145°C tritt ein Gewichtsverlust von 9,2% auf, der einer Dehydratation von 2,2mol Wasser entspricht. Bis 175°C werden die restlichen 0,3mol Wasser der Zwischenschicht ausgeheizt. Die chemische Zusammensetzung des Citrat-LDHs lautet dann $[Zn_2Al(OH)_6][0,5C_3H_4(COO)_2(COOH)(OH)]$. Ab ca. 220°C beginnt die Entwässerung der Hauptschicht und die strukturelle Stabilität des LDHs wird zerstört. Die Citrationen zersetzen sich ab etwa 300°C und Zinkoxid und Aluminiumoxid werden als primäre Phasen gebildet.

Abb. 4.2.2.6 Röntgendiffraktogramme von ZnAI-LDHs mit Lactat-, Tartrat- und Citrationen in der Zwischenschicht (100% r.F.)

Abb. 4.2.2.7 Modelle zur Berechnung der Schichtabstände von ZnAI-LDHs mit A) Lactat, B) Tartrat und C) Citrat (modifiziert nach MEYN, 1991, PREVOT *et al.*, 1998, JAUBERTIE *et al.*, 2006)

ZnAI-		ZnO	Al ₂ O ₃	Anion	H ₂ O	SUM	H ₂ O _{TG}
Tortrot	berech.	43,6	13,7	19,8	22,9	100	
Tartiat	Analyse	44,8	13,2	19,8	22,9	100,7	10,6
Citrot	berech.	40,7	12,7	23,8	22,8	100	
Citrat	Analyse	42,4	12,0	21,9	22,9	99,2	10,3

Tab. 4.2.2.4 Chemische Analysen der ZnAl-Hydroxysäureverbindungen (Angaben in [Gew.-%], * Zwischenschicht; 35% r.F.)

Abb. 4.2.2.8 TG/DTG Kurven von ZnAl-Citrat

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25			$[Zn_2Al(OH)_6][0,5C_3H_4(COO)_2(COOH)(OH) \bullet 2,5H_2O]$
90	9,2	2,2	$[Zn_2Al(OH)_6][0,5C_3H_4(COO)_2(COOH)(OH) \bullet 0,3H_2O]$
150	2,1	0,3	$[Zn_2Al(OH)_6][0,5C_3H_4(COO)_2(COOH)(OH)]$
220			Hauptschichtentwässerung

Tab. 4.2.2.5 Dehydratationsprozesse von ZnAl-Citrat

Die Dehydratation von ZnAl-Tartrat verläuft ähnlich dem Citrat. Die TG-Kurve zeigt einen stufenweise verlaufenden Gewichtsverlust. Die Entwässerung der Zwischenschicht beginnt ab 30°C und entspricht einem Gewichtsverlust von 10,6% bis 140°C. Es werden 2,2mol Wasser abgegeben und die zwischenschichtwasserfreie Hydratstufe bildet sich. Ab 250°C beginnt die Entwässerung der Hauptschicht. Mit der Ausheizung des Zwischenschichtwassers ist eine Verringerung des Schichtabstandes verbunden. Zwischen 30°C-90°C sinkt c' nur leicht von 1,21nm auf 1,18nm ab. Bis 140°C verringert sich der Schichtabstand sprunghaft auf 0,95nm. Bis 250°C bleibt der Schichtabstand nahezu gleich. Danach beginnt die Dehydratation der Hauptschicht und die Probe wird röntgenographisch amorph.

PREVOT *et al.* (1998) erklärt die Abnahme des Schichtabstandes um 0,26nm mit der vollständigen Entwässerung der Zwischenschicht bei gleichzeitiger Rotation der Tartrationen entlang der zentralen C_2 - C_3 Verbindung. Bis 90°C sind die Anionen senkrecht zu den Hauptschichten in der Zwischenschicht orientiert. Nach Ausheizung der Wassermoleküle legen sich die Tartrationen parallel zu den Hauptschichten, was eine Verringerung des Schichtabstandes bewirkt. Dabei geht er nicht von einer Wasserschicht, sondern von Wassermolekülen aus, die in den Zwischenräumen der Tartratketten angeordnet sind.

Abb. 4.2.2.9 TG und Schichtdickenänderung von ZnAI-Tartrat als Funktion der Temperatur

Abb. 4.2.2.10 Ausschnitt der Röntgenheizaufnahmen von ZnAl-Tartrat im Temperaturintervall 25-300°C. Position der Basisreflexe von ZnAl-Tartrat Hydrat (schwarz) und der zwischenschichtwasserfreien Probe (rot).

Abb. 4.2.2.11 IR-Spektrum von ZnAI-Tartrat

Anhand des IR-Spektrums von ZnAI-Tartrat lassen sich Absorptionsbanden schwingungserzeugenden Teilstrukturen zuordnen. Die Charakterisierung der Bandenlagen erfolgte mit Hilfe

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3480 3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2880 (Schulter)	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH ₂ - u. CH ₃ -Gruppen
1650 1580	v ₂ (H ₂ O)	H ₂ O – Valenzschwingung
1550 (Schulter)	v(C=O)	v (C=O) – Valenzschwingung
1400	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1328	$\delta_{s}(CH_{3})$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1230	δ(CH ₂)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
1130	δ(CH ₃)	(C-H) – Deformationsschwingung der CH ₃ -Gruppen
1080	δ(CH ₃)	(C-H) – Deformationsschwingung der CH ₃ -Gruppen
930 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
750	δ(Me-OH)	(Me-OH) – Deformationsschwingung
616	(AIO ₆)	(Al ^{IV} -O) − Schwingung
560	(AIO ₆)	(Al ^{IV} -O) – Schwingung
426	ZnO	Zn-O – Schwingung

von Literaturdaten (GÜNZLER UND HEISER, 1996, JAUBERTIE *et al.*, 2006, NAKAMOTO, 1986, PREVOT *et al.*, 1998, WYPYCH, *et al.*, 2005). Die zum IR-Spektrum von ZnAI-Citrat dazugehörende Auflistung der Absorptionsbanden befindet sich im Anhang 7.3.

Tab. 4.2.2.6 IR-Absorptionsbanden von ZnAI-Tartrat

Abb. 4.2.2.12 IR-Spektrum von ZnAI-Citrat

4.3 Austauschreaktionen mit Sulfonaten

4.3.1 Alkylsulfonate mit der Zusammensetzung C_nH_{2n+1}SO₃⁻

Die Austauschreaktionen der ZnAl-NO₃⁻ Precursorphasen erfolgten mit Sulfonaten der allgemeinen Zusammensetzung C_nH_{2n+1}SO₃⁻, mit n_c = 1-18. Es wurden die Na-Salze der Sulfonsäuren (n_c = 3-18) zur Herstellung von 0,15 molaren Lösungen verwendet. Methan- und Ethansulfonsäure wurden vor dem Austausch mit NaOH (1mol) neutralisiert. Alle Proben alterten bei 45°C im Heizrüttler für 3-7 Tage.

Abb. 4.3.1.1 REM-Aufnahme von $[Zn_2AI(OH)_6][C_6H_{13}SO_3 \bullet 3 H_2O]$

Die ausgetauschten und mehrmals mit destilliertem Wasser gewaschenen Proben wurden nach Trocknung auf 35% r.F. im REM auf ihren Habitus untersucht (Abb. 4.3.1.1). Die Syntheseprodukte kristallisieren in hexagonal blättrigen Plättchen mit Kantenlängen von 1-5µm. Die Kristallite sind gerundet und häufig zu größeren Aggregaten verwachsen. Die REM-Aufnahme von ZnAl-Dodekansulfonat zeigt größere Kristalle mit Kantenlängen von bis zu 10µm, die auf kleineren Plättchen aufwachsen bzw. herausstehen (Abb.4.3.1.2). Die semiquantitativen EDX-Analysen weisen äquivalent zu den chemischen Analysen auf sulfonathaltige ZnAl-Verbindungen.

Die Röntgenpulverdiffraktogramme der feuchten Pasten zeigen scharfe, asymmetrische (00I)-Reflexe, die nur bei Hexadekan- und Oktadekansulfonat größere Halbwertsbreiten haben. Es treten bis zu 8 Ordnungen auf. Mit zunehmender Kettenlänge verschieben sich die Basalreflexe zu kleineren 2Theta-Werten. Die Anordnung der Stapelung von ZnAI-LDHs mit Methan- und Ethansulfonat bei 100% r.F. ist instabil gegen Trocknung auf 35% r.F. (Abb. 4.3.1.3).

Die Bestimmung der Gitterkonstanten erfolgte am trigonalen Gitter auf Basis einer R-Zelle mit hexagonalen Achsen. Die verfeinerten Gitterparameter bei 100% r.F. und 35% r.F. sind in Tabelle 4.3.1.1 dargestellt.

Abb. 4.3.1.2 REM-Aufnahme und EDX-Analysen der Kristallite von ZnAI-Dodekansulfonat Hydrat

Die Gitterkonstanten der feuchten und auf 35% r.F. getrockneten Proben zeigen keine signifikanten Unterschiede. Die Werte für a_0 sind unabhängig von der Anzahl der Kohlenstoffatome des substituierten Anions konstant, während c' mit zunehmender Kettenlänge des Sulfonats linear ansteigt (Abb. 4.3.1.4). Für ZnAl-Derivate mit Sulfonate $n_c = 7-12$ zeigt sich ein ähnliches Muster im Anstieg des Schichtabstandes wie für die kurzkettigen Carboxylate. Abhängig von gerader oder ungerader Anzahl der Kohlenstoffatome und damit der Orientierung der Alkylketten in der Zwischenschicht liegt c' auf zwei parallelen Geraden, die den Winkel der mittleren Schichtabstandszunahme beschreiben (vgl. Abb. 4.1.7).

Mit Hilfe des Anstiegs der Regressionsgeraden aus Abbildung 4.3.1.4 kann der Neigungswinkel der Sulfonatketten in der Zwischenschicht bestimmt werden. Für die feuchten Proben ergibt sich eine mittlere Zunahme des Schichtabstandes von $\Delta c' = 0,1003$ nm, für die getrockneten (35% r.F.) Verbindungen ist $\Delta c' = 0,0968$ nm. Daraus berechnet sich der Inklinationswinkel α wie folgt:

I.
$$\alpha = \arcsin (0,1003 / 0,127) = 52,2^{\circ}$$
 (100% r.F.)
I. $\alpha = \arcsin (0,0986 / 0,127) = 50,9^{\circ}$ (35% r.F.)

Die Sulfonatketten sind bei einer Luftfeuchte von 100% mit 52,2° in der Zwischenschicht geneigt, der Inklinationswinkel bei 35% r.F. beträgt 50,9°.

Anhand der berechneten Winkel und den von MEYN (1991) angegebenen Werten für die Hauptschicht (0,20nm), Sulfonatgruppe (0,29nm), endständige Methylgruppe (0,30nm) und Zwischenschichtwasser (0,31nm) lassen sich die Schichtabstände berechnen:

Abb. 4.3.1.3 Ausgewählte Diffraktogramme der Basisreflexe von ZnAI-LDHs mit Sulfonaten in der Zwischenschicht bei 100% r.F. (schwarze Linie) und 35% r.F. (rote Linie; quadratische Darstellung der Abszisse)

		100% r.F.		35% r.F.			
n _c	a₀ [nm]	c₀ [nm]	c ' [nm]	a₀ [nm]	c₀ [nm]	c ' [nm]	
1	0,308	3,912	1,304	/	/	/	
2	0,308	4,158	1,386	/	/	/	
3	0,307	4,544	1,515	0,307	4,527	1,509	
4	0,307	4,811	1,604	0,307	4,777	1,592	
5	0,307	5,215	1,738	0,308	5,186	1,729	
6	0,307	5,512	1,837	0,307	5,480	1,827	
7	0,307	5,856	1,952	0.307	5,833	1,944	
8	0,307	6,017	2,006	0,307	5,906	1,969	
9	0,308	6,468	2,156	0,307	6,477	2,159	
10	0,307	6,566	2,189	0,306	6,523	2,174	
11	0,308	7,072	2,357	0,307	7,059	2,353	
12	0,307	7,177	2,392	0,307	7,183	2,394	
14	0,307	7,782	2,594	0,307	7,761	2,587	
16	0,307	8,416	2,805	0,307	8,377	2,792	
18	0,307	9,099	3,033	0,307	9,009	3,003	

Tab. 4.3.1.1 Gitterkonstanten a_0 und c_0 und Schichtabstände c' der Sulfonatderivate der ZnAl-LDHs bei Luftfeuchten von 100% und 35%

Abb. 4.3.1.4 Schichtabstände der ZnAl-Sulfonatverbindungen in Abhängigkeit von der Kettenlänge der eingebauten Sulfonate (grün: Regressionsgerade für c' (100%r.F.))

 $c'_{cal} = 0,29nm_{Sulfonatgruppe} + 0,30nm_{Methylgruppe} + 0,20nm_{Hauptschicht} + 0,127 (n_{C}-1) sin\alpha_{CH2-Kette}$ (1)

Beispiel: $n_c = 7$

$$c'_{cal} = 0,29nm + 0,30nm + 0,20nm + 0,127 (7-1) sin 52,2°$$

 $c'_{cal} = 1,392nm$
 $c'_{cal} = 1,392nm + 0,31nm_{H20} = 1,702nm$ → eine Wasserschicht
 $c'_{cal} = 1,392nm + 2 \bullet 0,31nm_{H20} = 2,012nm$ → zwei Wasserschichten

Die theoretischen Schichtabstände der Proben sind unabhängig von der Luftfeuchte zwischen 0,179nm und 0,271nm kleiner als die gemessenen Werte. Die Ergebnisse der CHNS-Elementaranalyse zeigt keinen sprunghaften Anstieg der Kohlenstoff- und Wasserstoffgehalte wie bei den Carboxylaten, was einer bimolekulare Anordnung der Sulfonate in der Zwischenschicht widerspricht (Abb. 4.3.1.5). Wird eine zweite Lage Zwischenschichtwasser (0,31nm) hinzuaddiert, so verringern sich die Differenzen von gemessenem zu berechnetem Schichtabstand auf 0,039-0,131nm.

		100% r.F.		35% r.F.			
n _c	c'_{gem} [nm]	c'_{cal} [nm]	∆ c' [nm]	c'_{gem} [nm]	c'_{cal} [nm]	∆ c' [nm]	
1	1,304	1,100	0,204	/	/	/	
2	1,386	1,200	0,186	/	/	/	
3	1,514	1,301	0,213	1,509	1,297	0,212	
4	1,604	1,401	0,203	1,592	1,396	0,196	
5	1,738	1,501	0,237	1,728	1,494	0,234	
6	1,837	1,602	0,235	1,827	1,593	0,234	
7	1,952	1,702	0,250	1,944	1,691	0,253	
8	2,005	1,802	0,203	1,969	1,790	0,179	
9	2,156	1,903	0,253	2,159	1,888	0,271	
10	2,188	2,003	0,185	2,174	1,987	0,187	
11	2,357	2,103	0,254	2,353	2,086	0,267	
12	2,392	2,204	0,188	2,394	2,184	0,210	
14	2,594	2,405	0,189	2,587	2,381	0,206	
16	2,805	2,605	0,200	2,792	2,578	0,214	
18	3,033	2,806	0,227	3,003	2,775	0,228	

Tab. 4.3.1.2 Gemessene (c'_{gem}) und berechnete (c'_{cal}) Schichtabstände der ZnAl-Sulfonathydrate mit einer Wasserschicht bei einem Inklinationswinkel von α = 52,2° bzw. 50,9° (35% r.F.)

Abb. 4.3.1.5 Gemessene und berechnete Gehalte von Kohlenstoff, Wasserstoff und Schwefel in Abhängigkeit von der Kettenlänge der Sulfonate (35% r.F.)

	n _c	ZnO	Al ₂ O ₃	C _n H _{2n+1} SO ₃ H	H₂O	SUM	H ₂ O _{TG} *
berechnet	3	37,2	11,7	28,2	22,9	100,0	
Analyse	3	37,1	11,7	28,3	22,9	100,0	12,4
berechnet	4	35,9	11,3	30,3	22,5	100,0	
Analyse	4	35,9	11,4	30,0	22,5	99,8	12,3
berechnet	5	35,0	11,0	32,5	21,5	100,0	
Analyse	5	34,9	10,7	32,1	21,7	99,4	11,6
berechnet	6	34,0	10,6	34,5	20,9	100,0	
Analyse	6	33,8	10,5	34,0	21,2	99,5	11,5
berechnet	7	32,6	10,2	36,0	21,2	100,0	
Analyse	7	33,1	10,1	35,5	21,2	99,9	12,0
berechnet	8	31,9	10,0	37,8	20,3	100,0	
Analyse	8	31,8	10,0	37,6	20,3	99,7	11,3
berechnet	9	30,7	9,6	39,1	20,6	100,0	
Analyse	9	30,8	9,5	38,8	20,5	99,6	11,8
berechnet	10	29,9	9,4	40,7	20,0	100,0	
Analyse	10	29,9	9,5	40,7	19,9	100,1	11,6
berechnet	11	29,5	9,2	42,6	18,7	100,0	
Analyse	11	29,5	9,1	42,9	18,8	100,3	10,4
berechnet	12	28,9	9,1	44,3	17,7	100,0	
Analyse	12	28,7	9,1	44,5	17,8	100,1	9,6
berechnet	14	27,5	8,6	46,9	17,0	100,0	
Analyse	14	27,8	8,6	47,1	16,9	100,4	9,2
berechnet	16	26,3	8,2	49,4	16,1	100,0	
Analyse	16	26,0	8,3	49,3	16,1	99,7	8,7
berechnet	18	25,2	7,9	51,7	15,2	100,0	
Analyse	18	25,4	7,9	51,6	15,2	100,1	8,1

Tab. 4.3.1.3 Chemische Analysen der ZnAl-Sulfonatverbindungen (Angaben in [Gew.-%], * Zwischenschicht; 35% r.F.)

Abb. 4.3.1.6 Anordnung der Alkylsulfonate mit einer und zwei Wasserschichten in den Zwischenschichten der ZnAI-LDHs (modifiziert nach STERN, 2003)

Die thermische Stabilität der ZnAl-Sulfonathydrate wurde mit thermogravimetrischen Methoden und in der Heizkammer röntgenographisch analysiert. Die TG-Aufnahmen zeigen einen stufenweise verlaufenden Gewichtsverlust aller Sulfonatverbindungen, welche allgemein die Dehydratation der Zwischenschicht und der Hauptschicht beschreiben. Abbildung 4.3.1.7 zeigt am Beispiel von ZnAl-Pentansulfonat den typischen Verlauf der Entwässerungsreaktionen der Sulfonathydrate. Die Entwässerung beginnt ab 30°C und entspricht einem Gewichtsverlust von 11,6% bei 90°C. Die Zwischenschicht mit der Zusammensetzung $[C_5H_{11}SO_3 \cdot 3H_2O]^{-}$ gibt 3mol Wasser ab, wobei sich die Hydratstufe $[Zn_2Al(OH)_6][C_5H_{11}SO_3]$ bildet. Ab 200°C beginnt die Hauptschicht zu dehydratisieren und die Probe kann aufgrund ihres amorphen Zustands röntgenographisch nicht mehr untersucht werden. Bei Temperaturen größer 240°C werden die Sulfonationen der Zwischenschicht zersetzt und ZnO und Al₂O₃ bilden sich.

Abb. 4.3.1.7 TG und Schichtdickenänderung von ZnAI-Pentansulfonat als Funktion der Temperatur

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25	0	0	[Zn ₂ Al(OH) ₆][C ₅ H ₁₁ SO ₃ • 3 H ₂ O]
90	11,6	3,0	$[Zn_2AI(OH)_6][C_5H_{11}SO_3]$
200			Hauptschichtentwässerung
>240			Zersetzung des Sulfonations

Tab. 4.3.1.4 Dehydratationsprozesse von ZnAI-Pentansulfonat Hydrat

Die Dehydratation der Zwischenschicht kann in zwei Schritte unterteilt werden. Im Temperaturintervall 30-85°C nimmt der Schichtabstand c' von 1,725nm auf 1,588nm ab. Dem folgt bis 90°C eine Verringerung der Schichtdicke auf 1,450nm. Bis zur Dehydratation der Hauptschicht bei 200°C schwanken die Schichtabstände nur leicht zwischen 1,435nm und 1,426nm. In den Diffraktogrammen ist die Bildung der zwischenschichtwasserfreien Hydratstufe gut an der

Verschiebung der Basisreflexe zu Positionen bei größeren °2Theta-Werten zu erkennen (Abb. 4.3.1.8 und 4.3.1.9). Die Gitterparameter der Hydratstufen ausgewählter ZnAl-Sulfonat Hydrate sind im Anhang 7.1.4 aufgelistet.

Abb. 4.3.1.8 Ausschnitt der Röntgendiffraktogramme von ZnAI-Pentansulfonat Hydrat. Darstellung der Basisreflexe als Funktion der Temperatur im Intervall 25-210°C. (gelb: Entwässerung der Zwischenschicht)

Abb. 4.3.1.9 Ausschnitt der Röntgendiffraktogramme von ZnAl-Oktansulfonat Hydrat. Darstellung der Basisreflexe während der Dehydratationsreaktionen im Temperaturintervall 25-190°C. (gelb: Entwässerung der Zwischenschicht)

Abb. 4.3.1.10 Peakposition und Intensität des (006)-Basisreflexes von ZnAI-Dodekansulfonat Hydrat in Abhängigkeit von der Temperatur. Ausschnitt (links oben) zeigt (00I)-Reflexe der Überstruktur bei 110°C (blau: wasserhaltige Zwischenschichten, rot: entwässerte Zwischenschichten).

Abb. 4.3.1.11 TG/DTG Kurven von ZnAI-Dodekansulfonat Hydrat

Die langkettigen ZnAl-Sulfonathydrate bilden keine ausgeprägten Hydratstufen wie die kurzkettigen Sulfonate. Ähnlich zu den Proben mit Carboxylationen in der Zwischenschicht verschieben sich die Basisreflexe mit zunehmender Temperatur zu Positionen mit kleineren °2Theta Werten (Abb. 4.3.1.10). Im Temperaturbereich von 110-180°C treten Überstrukturen der entwässerten und wasserhaltigen Zwischenschicht nebeneinander auf (Ausschnitt links oben in Abb. 4.3.1.10). Die

TG Aufnahme von ZnAI-Dodekansulfonat zeigt einen Gewichtsverlust von 9,6% im Temperaturintervall von 30-170°C an, was der Entwässerung von 3mol H₂O der Zwischenschicht entspricht. Danach beginnt die Dehydratation der Hauptschicht und die Phase wird röntgenamorph.

Abb. 4.3.1.12 TG/DTG Kurven von ZnAI-Hexadekansulfonat Hydrat

Die thermogravimetrische Untersuchung von ZnAl-Hexadekansulfonat Hydrat zeigt, im Gegensatz zu den anderen Verbindungen mit langkettigen Alkylsulfonaten, einen gleichmäßig verlaufenden Gewichtsverlust von ca. 70% bis 210°C. Die Entwässerung der Zwischenschicht kann dabei kaum von der Dehydratation der Hauptschicht unterschieden werden. Der Schichtabstand c' verändert sich während des Aufheizens bis 70°C nur leicht, erhöht sich dann innerhalb einer Temperaturdifferenz von 30K auf 3,37nm bei 100°C. Im Temperaturbereich 100-170°C steigt c' nur schwach auf 3,82nm. Danach sinken die Intensitäten der Basisreflexe ab und die Peakhalbwertsbreiten nehmen zu. Ab 220°C ist die Verbindung röntgenamorph, was auf die Dehydratation der Hauptschicht deutet.

Die ZnAl-Sulfonathydrate wurden bei 35% r.F. mittels IR-Spektrometrie analysiert. Anhand der Lage der Absorptionsbanden der CH₂- und CH₃-Fragmente sowie der Sulfonatgruppe können Alkylsulfonsäuren identifiziert werden (CABWELL *et al.*, 1967). Die Zuordnung der Banden erfolgte mit Hilfe von Literaturdaten (BUBNIAK *et al.*, 2002, GÜNZLER UND HEISE, 1996, STÖBER, 1999, XU UND BRATERMANN, 2007).

Abb. 4.3.1.13 IR-Spektrum von ZnAI-Pentansulfonat Hydrat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3523 3495	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2955	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH ₃ -Gruppen
2914	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2872 2849	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH ₂ - u. CH ₃ -Gruppen
1653	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1472	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH ₂ - u. CH ₃ -Gruppen
1374	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH ₃ -Gruppen
1189	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1050	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
796	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
720	ρ(CH₂)n	Rocking-Schwingung
619	$\delta_{as}(SO_3)$, (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO₃ ⁻)-Gruppen, (Al ^Ⅳ -O) – Schwingung
555	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^V -O) – Schwingung
428	(ZnO)	Zn-O – Schwingung

Tab. 4.3.1.5 IR-Absorptionsbanden von ZnAI-Pentansulfonat Hydrat

4.3.2 Aromatische Sulfonate und Farbstoffe

Der Anionenaustausch erfolgte mit den Na-Salzen folgender Sulfonate: Benzolsulfonsäure, Benzol-1,3-Disulfonsäure, Naphthalin-2-Sulfonsäure, Kongorot, Kristallviolett, Malachitgrün und Methylorange. Toluol-4-Sulfonsäure und Naphthalin-1-Sulfonsäure wurden vor der Umsetzung mit 1mol NaOH neutralisiert. Die ZnAI-NO₃ Precursorphasen wurden vor den Austauschreaktionen dreimal mit destillierten Wasser gewaschen und anschließend mit 0,25molaren Lösungen der Sulfonate versetzt. Die Proben alterten bei 45°C für 3-7Tage im Heizrüttler.

Abb. 4.3.2.1 REM-Aufnahme von [Zn₂Al(OH)₆][C₁₀H₇SO₃ • 2,9H₂O]

Die Syntheseprodukte bilden 1-2µm große, gerundete Kristallite mit lamellarem Aufbau. Die Kristalle lagern sich zu größeren Aggregaten zusammen, wodurch in der gesamten Probe unregelmäßig verteilte Porenhohlräume entstehen (Abb. 4.3.2.1, zentraler Teil).

Die Röntgenpulverdiffraktogramme der feuchten und auf 35% r.F. getrockneten Proben zeigen mit Ausnahme von ZnAI-Benzol-1,3-Disulfonat Hydrat und ZnAI-Naphthalin-1-Sulfonat Hydrat scharfe Basisreflexe mit bis zu 7 Ordnungen (Abb. 4.3.2.2 – 4.3.2.4). ZnAI-Benzol-1,3-Disulfonat Hydrat besitzt unter Gleichgewichtsbedingungen bei 100% r.F. breite (00I)-Reflexe und einen stark erhöhten Untergrund im Bereich von 30°2Theta, was auf einen hohen amorphen bzw. röntgenographisch nicht detektierbaren Anteil hinweist. Die Probe zeigt nach Trocknung auf 35% r.F. breite, verwaschene Basisreflexe mit geringen Intensitäten. Die Proben mit Naphthalin-1-Sulfonationen formen, unabhängig vom bei der Synthese eingestellten pH-Wert, Paare von (00I)-Reflexen, die sich bei Trocknung noch weiter aufspalten.

Die Synthese eines nebenphasenfreien ZnAI-LDH mit den Farbstoffen Kongorot, Kristallviolett und Malachitgrün als Zwischenschichtanion gelang nicht.

Die Gitterkonstanten der ZnAl-Sulfonatverbindungen wurden nach dem Least-Squares-Verfahren auf Basis eines trigonalen Gitters mit hexagonalen Achsen bestimmt. Die Gitterparameter der feuchten Proben und bei 35% r.F. sind in Tabelle 4. 3.1.1 dargestellt. Die doppelt angegebenen Parameter für ZnAl-Naphthalin-1-Sulfonat Hydrat beziehen sich auf beide Reflexserien der im Diffraktogramm ersichtlichen Überstruktur.

Abb. 4.3.2.2 Diffraktogramme der Basisreflexe von ZnAI-LDHs mit aromatischen Sulfonaten in der Zwischenschicht bei 100% r.F. (schwarze Linie) und 35% r.F. (rote Linie)

Abb. 4.3.2.3 Diffraktogramme der Basisreflexe von ZnAI-LDHs mit aromatischen Sulfonaten in der Zwischenschicht bei 100% r.F. (schwarze Linie) und 35% r.F. (rote Linie)

Abb. 4.3.2.4 Diffraktogramm von ZnAI-Methylorange bei 100% r.F. (schwarze Linie) und 35% r.F. (rote Linie)

		100% r.F.		35% r.F.			
Sulfonation	a₀ [nm]	c₀ [nm]	c' [nm]	a₀ [nm]	c₀ [nm]	c ' [nm]	
Nanhthalin 1 Sulfonat	0,308	3,341	1,114	/	/	/	
Naphthaint-1-Suitonat	0,308	4,898	1,633	/	/	/	
Naphthalin-2-Sulfonat	0,307	5,368	1,789	0,307	5,356	1,785	
Naphthalin-1,5-Disulfonat	0,307	4,574	1,525	0,306	4,529	1,510	
Benzolsulfonat	0,307	4,705	1,568	0,306	4,684	1,561	
Toluolsulfonat	0,307	5,161	1,720	0,307	5,143	1,714	
Benzol-1,3-Disulfonat	0,308	4,751	1,584	/	/	/	
Methylorange	0,307	7,219	2,406	0,307	7,167	2,389	

Tab. 4.3.2.1 Gitterkonstanten a_0 und c_0 und Schichtabstände c' der Sulfonatderivate der ZnAI-LDHs bei Luftfeuchten von 100% und 35%

Die Gitterkonstanten a_0 und c_0 der feuchten und trockenen Proben unterscheiden sich nicht signifikant voneinander. In den Zwischenschichten der ZnAI-LDH Pasten (100% r.F.) führen die einfachen aromatischen Sulfonate zu Schichtabständen zwischen 1,11nm und 1,79nm. Der Schichtabstand c' verringert sich nach dem Trocknen auf 35% r.F. um maximal 0,017nm (Methylorange).

Für die Berechnung der theoretischen Schichtabstände wurden Literaturdaten von COSTANTINO *et al.* (1999), DREZDON (1988), KUK UND HUH (1997) und MEYN (1991) herangezogen. Die Ergebnisse der berechneten und experimentell ermittelten Schichtabstände sind in Tabelle Tab. 4.3.2.2 dargestellt. Wird von einem senkrecht stehenden Benzolsulfonation und einer monomolekularer Wasserschicht in der Zwischenschicht ausgegangen (Abb. 4.3.2.5), so berechnet sich der Schichtabstand wie folgt:

```
c'<sub>cal</sub> = 0,20nm<sub>Hauptschicht</sub> + (0,29nm+0,18nm)<sub>Sulfonatgruppe</sub> + 0,28nm<sub>Benzolring</sub> + 0,30nm<sub>Methylgruppe</sub> + 0,28<sub>Zwischenschichtwasser</sub>
```

c'cal = 1,53nm (Benzolsulfonat)

(2)

Abb. 4.3.2.5 Modelle zur Berechnung der Schichtabstände der ZnAI-LDHs mit aromatischen Sulfonationen. A) Benzolsulfonat, B) Toluolsulfonat, C) Benzoldisulfonat, D) Naphthalin-1-Sulfonat, E) Naphthalin-1,5-Disulfonat, F) Naphthalin-2-Sulfonat (modifiziert nach MEYN, 1991)

Wird für das Naphthalin-1-Sulfonation eine analoge Orientierung in der Zwischenschicht vorausgesetzt, so ergibt sich ein Wert für c'_{cal} = 1,53nm. Die experimentellen Basisabstände wurden aus Proben mit zwei Serien von (00l)-Reflexen bestimmt. Bei Annahme einer Überstruktur von wasserfreien und wasserhaltigen Schichten sind die Schichtabstände der dehydratisierten Schichten um 0,14nm kleiner und der wasserhaltigen Schichten um 0,10nm größer als die theoretischen Basisabstände. MEYN (1991) geht von einer Drehung der Verbindungslinie der Positionen 1 und 5 des Naphthalin-1-Sulfonations senkrecht zur Hauptschicht aus, welche die Differenz von 0,1nm bedingt. Der geringe Basisabstand der "wasserfreien" Schichten lässt sich dadurch nicht eindeutig erklären.

		100% r.F.		35% r.F.			
Sulfonation	c' _{gem} [nm]	c'_{cal} [nm]	Δc' [nm]	c'_{gem} [nm]	c'_{cal} [nm]	Δc' [nm]	
Nanhthalin 1 Sulfanat	1,114	1,25*	- 0,14	/	/	/	
Naphthalin-1-Sullonat	1,633	1,53	0,10	/	/	/	
Naphthalin-2-Sulfonat	1,789	1,75	0,04	1,785	1,75	0,03	
Naphthalin-1,5-Disulfonat	1,525	1,42	0,10	1,510	1,42	0,09	
Benzolsulfonat	1,568	1,53	0,04	1,561	1,53	0,03	
Toluolsulfonat	1,720	1,68	0,04	1,714	1,68	0,03	
Benzol-1,3-Disulfonat	1,584	1,42	0,16	/	/	/	
Methylorange	2,406	2,37	0,04	2,389	2,37	0,02	

Tab. 4.3.2.2 Gemessene (c'_{gem}) und berechnete (c'_{cal}) Schichtabstände der ZnAl-Sulfonathydrate mit einer Wasserschicht bei 100% r.F. und 35% r.F (* Schichtabstand ohne monomolekulare Wasserschicht).

Die Schichtabstände des Naphthalin-2-Sulfonats unterscheiden sich um 0,04-0,03nm von den berechneten Ergebnissen. Es wird ebenfalls von einer senkrechten Orientierung des Moleküls in der Zwischenschicht ausgegangen.

Die gefundenen Schichtabstände der Naphthalin-1,5-Disulfonat Verbindungen sind um 0,1nm größer als die nach dem Modell berechneten Werte. Aufgrund seines Substitutionsmusters sollte das Disulfonation mit je einer Sulfonatgruppe an der oberen und unteren Hydroxidschicht fixiert sein (MEYN, 1991). Die Differenz der Schichtabstände von 0,1nm deutet auf eine Verdrehung des Anions in der Zwischenschicht. Ist das Naphthalin-1,5-Disulfonation mit seiner langen Achse senkrecht zur Hydroxidschicht orientiert, so kann die Anionengröße mit 1,04nm-1,06nm angegeben werden (DREZDON, 1988, KANEZAKI *et al.*, 1994). Zusammen mit der Hydroxidschicht (0,49nm) errechnet sich dann ein Schichtabstand von 1,53nm, der um 0,01-0,02nm von den experimentellen Werten abweicht.

Auch Benzol-1,3-Disulfonat ist mit jeweils einer Sulfonatgruppe mit der unteren und oberen Hydroxidschicht verbunden. Die beobachteten Schichtabstände der feuchten Proben bei 100% r.F. sind bei Annahme einer monomolekularen Wasserschicht um 0,16nm größer als die berechneten Werte. Auch durch Addition einer zweiten Wasserschicht (0,28nm) lässt sich die dann berechnete Differenz von 0,12nm nicht hinreichend erklären.

Die ermittelten Schichtabstände der Toluolsulfonat-Verbindungen unterscheiden sich für die feuchten und getrockneten Proben nur um 0,03nm -0,04nm von den nach Abbildung 4.3.2.5 berechneten.

Abb. 4.3.2.6 Modell zur Berechnung des Schichtabstandes von ZnAI-Methylorange (modifiziert nach COSTANTINO et al., 1999)

Der Anionenaustausch mit verschiedenen Farbstoffen gelang nur mit Methylorange. Für ein senkrecht in der Zwischenschicht orientiertes Methylorangeanion wird ein Schichtabstand von 2,37nm ermittelt, wobei der Wert von 1,30nm für Methylorange ohne Sulfonatgruppe mit dem Programm ACD/Chemsketch berechnet wurde. COSTANTINO *et al.* (1999) gibt eine Größe von 1,67nm für das gesamte Methylorange-Ion an. Die beobachteten Schichtabstände sind um 0,04nm bei 100% r.F. und 0,02nm nach Trocknung auf 35 r.F. größer als die berechneten.

ZnAI-		ZnO	Al ₂ O ₃	Anion	H ₂ O	SUM	H ₂ O _{TG}
Bonzoloulfonot	berech.	35,0	11,0	33,7	20,3	100	
Benzoisulional	Analyse	35,6	10,2	32,4	20,9	99,1	10,5
Toluolsulfonat	berech.	33,4	10,5	35, 1	21,0	100	
Toluoisullollat	Analyse	33,5	11,0	34,1	20,8	99,4	11,6
Naphthalin-2-	berech.	31,3	9,8	39,9	19,0	100	
Sulfonat	Analyse	31,5	10,0	39,5	18,9	99,9	10,1
Mothylorango	berech.	26,7	8,3	50,0	15,0	100,0	
weinyorange	Analyse	26,1	8,0	51,6	15,2	100,9	7,3

Tab.	4.3.2.3	Chemische	Analysen	der	ZnAI-Arylsulfonatverbindungen	(Angaben	in	[Gew%]
* Zwis	chenschie	cht; 35% r.F.)						

Die ZnAl-LDHs mit Benzolsulfonat, Toluolsulfonat, Naphthalin-2-Sulfonat und Methylorange in der Zwischenschicht wurden nach Trocknung auf 35% r.F. chemische Analysen mittels CNS-Analyse und ICP-OES durchgeführt. Die Wassergehalte wurden durch TG-Aufnahmen im Temperaturintervall 25-1000°C im Stickstoffstrom bestimmt. Die Ergebnisse sind in Tabelle 4.3.2.3 dargestellt.

Abb. 4.3.2.7 TG und Schichtdickenänderung von ZnAI-Benzolsulfonat Hydrat als Funktion der Temperatur

Die TG-Aufnahme von ZnAl-Benzolsulfonat Hydrat zeigt eine stufenweise, kontinuierlich verlaufende Gewichtsabnahme zwischen 25-300°C (Abb.4.3.2.7). Bis 110°C verringert sich das Gewicht der Probe um 10,5%, was 2,7mol H₂O der Zwischenschicht entspricht. Gleichzeitig nimmt der Schichtabstand c' von 1,564nm (25°C) in mehreren Schritten (110°C: 1,527nm; 120°C: 1,366nm) auf 1,269nm (130°C) ab. Ab einer Temperatur von 110°C treten zwei Serien von Basisreflexen auf, die auf Grund der Schichtabstände auf eine Überstruktur entwässerter und wasserhaltiger Schichten deuten (Abb. 4.3.2.8).

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25	0	0	[Zn ₂ Al(OH) ₆][C ₆ H ₅ SO ₃ • 2,7 H ₂ O]
120			$[Zn_2Al(OH)_6][C_6H_5SO_3 \bullet n H_2O]$
130	10,5	2,7	$[Zn_2AI(OH)_6][C_6H_5SO_3]$
220			Hauptschichtentwässerung

Tab. 4.3.2.4 Dehydratationsprozesse von ZnAI-Benzolsulfonat (rot: wasserhaltige Schichten nach teilweiser Entwässerung der Zwischenschicht)

Abb. 4.3.2.8 Diffraktogramm von ZnAI-Benzolsulfonat Hydrat bei 180°C. Ausschnitt zeigt die Basisreflexe der Überstruktur entwässerter (rot) und wasserhaltiger (blau) Schichten.

Die thermische Stabilität der ZnAl-Sulfonathydrate wurde röntgenographisch in der Heizkammer untersucht. Zwischen 130-220°C verändern sich die Schichtabstände der Überstruktur kaum. Ab 220°C beginnt die Dehydratation der Hauptschicht und die Phase wird röntgenographisch amorph. Die Entwässerung der Zwischenschicht von ZnAl-Naphthalin-2-Sulfonat Hydrat verläuft über eine Temperaturstufe bei einer Onsettemperatur von 30°C. Es werden 2,9mol Wasser abgegeben. Die Schichtdicke verringert sich von 1,782nm (30°C) auf 1,514nm (110°C) und bleibt dann bis zur Dehydratation der Hauptschicht ab 240°C konstant. Ähnlich der ZnAl-Benzolsulfonatverbindung treten ab 110°C Überstrukturreflexe entwässerter und wasserhaltiger Schichten auf (Abb. 4.3.2.9), wobei die Intensitäten der Basisreflexe der dehydrierten Schichten mit steigender Temperatur ansteigen. Der Schichtabstand der wasserhaltigen Strukturen nimmt im Temperaturintervall 110°C bis 240°C leicht von 1,794nm auf 1,837nm zu. Die Differenz der ermittelten Schichtabstände zu dem nach Abbildung 4.3.2.5 berechneten Wert von c'_{cal}=1,75nm liegt demnach bei 0,09nm bei 240°C.

Der Dehydratationsprozess der Zwischenschicht von ZnAl-Methylorange verläuft in einem Schritt (Abb. 4.3.2.10). Entsprechend der TG-Untersuchungen beginnt die Entwässerung ab 30°C und führt zu einer Gewichtsabnahme von 7,4% bzw. 2,5mol Wasser. Der Schichtabstand sinkt dabei über mehrere Schritte (30-90°C) auf 2,172nm ab. Dieser Wert deckt sich mit dem von COSTANTINO *et al.* (1999) angegebenen Wert für ein Methylorange substituiertes ZnAL-LDH von c'_{cal} = 2,15nm. Dabei wird von einer Orientierung des Anions senkrecht zur Hauptschicht ausgegangen (Abb. 4.3.2.6).

Abb. 4.3.2.9 TG und Schichtdickenänderung von ZnAI-Naphthalin-2-Sulfonat als Funktion der Temperatur

Abb. 4.3.2.10 TG und Schichtdickenänderung von ZnAI-Methylorange als Funktion der Temperatur

Abbildung 4.3.2.11 zeigt die Entwässerungsreaktionen von ZnAl-Methylorange. Die Änderung der Position der Basisreflexe zu größeren Winkeln °2Theta ab 90°C stellt die Dehydratation der Zwischenschicht mit gleichzeitiger Abnahme des Schichtabstandes dar. Ab 250 °C sind keine auswertbaren Reflexe mehr vorhanden, da die (OH)-Gruppen der Hauptschicht ausgeheizt werden.

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25	0	0	[Zn ₂ Al(OH) ₆][C ₁₀ H ₇ SO ₃ • 2,9 H ₂ O]
110	10,1	2,9	[Zn ₂ Al(OH) ₆][C ₁₀ H ₇ SO ₃]
110			[Zn ₂ Al(OH) ₆][C ₁₀ H ₇ SO ₃ • n H ₂ O]
200			Hauptschichtentwässerung

Tab. 4.3.2.5 Dehydratationsprozesse von ZnAI-Naphthalin-2-Sulfonat (rot: wasserhaltige Schichten nach teilweiser Entwässerung der Zwischenschicht)

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25	0	0	$[Zn_2AI(OH)_6][C_{14}H_{14}N_3SO_3 \bullet 3 H_2O]$
90	11,6	3,0	[Zn ₂ Al(OH) ₆][C ₅ H ₁₁ SO ₃]
200			Hauptschichtentwässerung
>240			Zersetzung des Sulfonations

	Tab.	4.3.2.6	Dehydratat	ionsprozesse von	ZnAl-Methy	lorange
--	------	---------	------------	------------------	------------	---------

Abb. 4.3.2.11 Ausschnitt der Röntgenheizaufnahmen von ZnAl-Methylorange. Darstellung der Basisreflexe während der Dehydratationsreaktionen im Temperaturintervall 25-250°C. (gelb: Entwässerung der Zwischenschicht)

Die zinkhaltigen Arylsulfonathydrate wurden mittels IR-Spektrometrie untersucht. Die Zuordnung der Banden erfolgte mit Hilfe von Literaturdaten (GÜNZLER UND HEISE, 1996, STÖBER, 1999). Analog zu den Alkylsulfonaten treten zwischen 3060-2800 cm⁻¹ C-H – Schwingungen auf. Charakteristisch für Sulfonate sind die (SO₃⁻)-Absorptionsbanden im Wellenlängenbereich von 1000-1200 cm⁻¹. Als weitere typische Absorptionsbanden aromatischer Moleküle dienen die out-ofplane C-H – Deformationsschwingungen bei 800-820 cm⁻¹.

Abb. 4.3.2.12 IR-Spektrum von ZnAl-Naphthalin-2-Sulfonat Hydrat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung		
3649 (Schulter)	v(OH)	(OH) – Valenzschwingung der Hauptschicht		
3510 3470	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers		
3058	v(C-H)	(C-H) – Valenzschwingung		
2920	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen		
2850	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH ₂ - u. CH ₃ -Gruppen		
1650	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers		
1507	v(C-C)	(C-C) – Valenzschwingung		
1345 δ _s (CH ₃)		sym. (C-H) – Deformationsschwingung der CH ₃ -Gruppen		
1270 v _{as} (SO ₃ ⁻)		asym. (S-O) – Valenzschwingung der (SO3)-Gruppen		
1188 1167	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen		
1097	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung		
1030 ν _s (SO ₃ ⁻), δ(C-H) i.p.		sym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen, (C-H) – Deformationsschwingung, in plane		
816 δ(C-H) o.o.p		(C-H) – Deformationsschwingung, out of plane		
757	ρ(CH₂)n	Rocking-Schwingung		
695 δ(Me-OH)		(Me-OH) – Deformationsschwingung		
620 $\delta_{as}(SO_3^{-}), (AIO_6) $ asym. (S-O) – Definition $(AI^{V}-O)$ – Schwing		asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung		
555 δ _s (SO ₃ ⁻), (AlO ₆)		sym. (S-O) – Deformationsschwingung der (SO₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung		
481	(ZnO)	Zn-O – Schwingung		
430 (ZnO)		Zn-O – Schwingung		

Tab. 4.3.2.7 IR-Absorptionsbanden von ZnAI-Naphthalin-2-Sulfonat Hydrat

4.4 Austauschreaktionen mit Aminosäureanionen

Der Einbau von Aminosäureanionen in die Zwischenschichten der ZnAI-LDH Precursorphasen erfolgte unter Stickstoffatmosphäre in der Glovebox. Alle verwendeten Aminosäuren wurden bei Raumtemperatur (21°C) in destilliertem Wasser gelöst und mit 1molarer NaOH auf initiale pH-Werte von 7,5-12 eingestellt. Die Zugabe der Anionen erfolgte im Überschuss. Die Proben alterten bei 45°C für 3-7 Tage. Für die Umsetzung wurden die Anionen folgender Aminosäuren verwendet: Glycin (C₂H₅NO₂), β-Alanin (C₃H₇NO₂), Prolin (C₅H₉NO₂), Isoleucin (C₆H₁₃NO₂), Phenylalanin (C₉H₁₁NO₂), Cystein (C₃H₇NO₂S), Methionin (C₅H₁₁NO₂S), Serin (C₃H₇NO₃), Asparaginsäure (C₄H₇NO₄).

Alle Proben wurden nach dem Filtrieren dreimal mit je 20ml destilliertem Wasser gewaschen.

				100% r.F.	
Anion	Trivialname	c'_{cal} [nm]	a₀ [nm]	c ₀ [nm]	c' [nm]
Aminocontat	Chuoin	0.79	0,307	2,265	0,755
Aminoacetat	Giycin	0,78	0,307	3,768	1,256
3-Aminopropionat	β-Alanin	0,78	0,307	2,254	0,751
2-Amino-3-methylpentanoat	Isoleucin	1,40	0,307	5,622	1,874
2-Amino-3-phenylpropionat	Phenylalanin	1,72	0,307	5,248	1,749
2-Amino-3-sulfonylpropionat	Cystein	1,58	0,307	5,308	1,769
2-Amino-4-methylsulfonylbutyrat	Methionin	1,84	0,307	5,753	1,918
2-Amino-3-hydroxypropionat	Serin	0,78	0,307	2,281	0,760
Aspartat	Asparaginsäure	1,10	0,307	3,795	1,265

Tab. 4.4.1 Gitterkonstanten a_0 und c_0 und Schichtabstände c' der Aminosäurederivate der ZnAI-LDHs bei einer relativen Luftfeuchte von 100%

4.4.1 Glycin, Alanin, Prolin, Isoleucin, Phenylalanin

Der Einbau der neutralen Aminosäureanionen mit $C_nH_{2n+1}NO_2$ und Phenylalanin wurde im pH-Wert Bereich von 10-11 durchgeführt. Bei niedrigeren pH-Werten konnte keine Aminosäureanionen ausgetauscht werden. Mit Ausnahme von Prolin gelang die Substitution der Anionen in die Zwischenschicht der ZnAI-NO₃ Precursorphasen. Nur ZnAI-Amino-3-phenylpropionat erwies sich als stabil gegenüber Trocknung auf 35% r.F. . Auf Grund des hohen initialen pH-Wertes der Aminosäurelösungen trat vereinzelt ZnO als Nebenphase auf.

Die Röntgendiffraktogramme zeigen scharfe integrale Basisreflexe mit hohen Intensitäten (Abb. 4.4.1.1). Es können bis zu fünf Ordnungen beobachtet werden. Die Austauschreaktion von Nitrat mit 3-Aminopropionat erfolgte nur unvollständig, was an den noch vorhandenen Basisreflexen der Precursorphase nach dem Anionenaustausch erkennbar ist. Die zwei Serien von Basisreflexen bei ZnAl-Aminoacetat deutet auf eine Überstruktur hin. NAKAYAMA *et al.* (2004) gehen von zwei möglichen Orientierungen der Aminosäureanionen in der Zwischenschicht aus: senkrecht und parallel zu den Hauptschichten. Der berechnete Schichtabstand für eine parallele Anordnung des Glycinanions ist c'_{cal} = 0,78nm mit den Werten von d_{Zwischenschicht} = 0,3nm und 0,48nm für die Hauptschicht (Abb. 4.4.1.2). Mit c' = 0,76nm und 1,256nm unterscheiden sich die experimentell ermittelten Schichtabstände des ZnAl-Aminoacetats um 0,02nm und 0,48nm von dem nach dem Modell berechneten Wertes. Demzufolge kann eine Serie von Basisreflexen der Überstruktur einer parallelen Orientierung des Aminoacetats zugeordnet werden. Bei Annahme einer senkrechten

Anordnung in der Zwischenschicht kann der Schichtabstand analog zu AISAWA *et al.* (2001) wie folgt berechnet werden:

 $c'_{cal} = 0,30nm_{Glycinanaion} + 0,48nm_{Hauptschicht} = 0,78nm$ (1)

Abb. 4.4.1.1 Diffraktogramme der Basisreflexe von ZnAI-LDHs mit (von oben nach unten) Glycin, β -Alanin, Isoleucin und Phenylalanin in der Zwischenschicht bei 100% r.F. Die rote gestrichelte Linie markiert die Position der (003) und (006) Basisreflexe der ZnAI-NO₃ Precursorphasen.

Die Größe des Glycinanions von 0,36nm wurde mit dem Programm ACD/Chemsketch (10.02) bestimmt. Damit ergibt sich eine Differenz von c' und c'_{cal} von 0,42nm. Auch durch Addition einer Wasserschicht lässt sich die große Abweichung nicht erklären.

Ähnlich der Carboxylate können sich Aminosäureanionen bimolekular in der Zwischenschicht von LDHs anordnen (AISAWA *et al.*, 2001, FUDALA *et al.*, 1999). Wird von senkrecht bimolekular angeordneten Aminoacetationen ausgegangen, so ergibt sich ein Schichtabstand von 1,2nm. Der experimentell ermittelte Wert des Schichtabstandes der zweiten Serie von Basisreflexen der Überstruktur liegt mit 1,26nm sehr nah am kalkulierten Wert und kann als bimolekulare Anordnung der Anionen interpretiert werden.

Abb. 4.4.1.2 Modelle zur Berechnung der Schichtabstände der ZnAI-LDHs mit Aminosäureanionen: A+B) Glycin, C) Alanin, D) Aspartat, E+F) Phenylalanin (modifiziert nach Alsawa *et al.*, 2001, MEYN, 1991, NAKAYAMA *et al.*, 2004, WHILTON *et al.*, 1997)

Der Einbau von 2-Amino-3-methylpentanoat erfolgte bei pH 10 unter Zugabe der Aminosäure im zweifachen Überschuss. Der ermittelte Schichtabstand von 1,87nm ist 0,47nm größer als der berechnete Wert von 1,25nm. Dabei wurde eine monomolekulare senkrechte Anordnung des Isoleucin Anions (0,62nm) mit einer Wasserschicht angenommen. Aufgrund der hydrophoben Eigenschaften der R-Gruppen ordnen sich insbesondere langkettige Aminosäuren bevorzugt in bimolekularen Schichten in der Zwischenschicht an (NAKAYAMA *et al.*, 2004). Für Isoleucin berechnet sich dann in bimolekularer senkrechter Position in der Zwischenschicht ein Schichtabstand von 1,72nm. Die Differenz zwischen berechneten und experimentellen Wert liegt bei 0,15nm. Analog zum Aminoacetat ist der Untergrund zwischen den (006) und (009) Basisreflexen leicht erhöht und deutet auf die schwache Ausbildung einer Überstruktur mit Zwischenschichten, in denen die Isoleucinanionen monomolekular und parallel zu den Hauptschichten angeordnet sind.

ZnAI-2-Amino-3-phenylpropionat (Phenylalanin-Anion) zeigt als einziger untersuchte LDH mit Aminosäureanionen in der Zwischenschicht keine Stapelfehlordnung nach Trocknung auf 35% r.F. und ist röntgenographisch nebenphasenfrei. Bei der Analyse der Pasten bei 100% r.F. können scharfe und integrale Basalreflexe beobachtet werden. Nach Trocknung auf 35% r.F. spalten sich diese aber bei allen anderen Aminosäureverbindungen auf (Abb. 4.4.1.4) und Überstrukturreflexe ähnlich der Aminoacetatverbindung treten auf. Die berechneten und experimentellen Schichtabstände bei 100% r.F. unterscheiden sich mit 1,75nm und 1,72nm (c'_{cal}) kaum voneinander. AISAWA *et al.* (2001) geben einen Schichtabstand von 1,60nm für ZnAI-2-Amino-3-phenylpropionat an. FUDALA *et al.* (1999) berechneten einen Schichtabstand von 1,80nm unter Annahme einer bimolekularen parallelen Anordnung des Zwischenschichtanions ohne zusätzliche Wasserschicht.

Abb. 4.4.1.3 TG und Schichtdickenänderung von ZnAI-2-Amino-3-phenylpropionat als Funktion der Temperatur. Die leeren Quadrate repräsentieren Schichtabstände von Zwischenschichten mit parallel angeordneten Phenylalaninanionen vor der Dehydratation der Zwischenschicht.

T _{onset} [°C]	Gewichtsverlust [%]	H₂O [mol]	Hydratstufe
25	0	0	[Zn ₂ Al(OH) ₆][C ₉ H ₁₀ NO ₂ • 2,2 H ₂ O]
60	8,5	2,2	$[Zn_2AI(OH)_6][C_9H_{10}NO_2]$
170			Hauptschichtentwässerung

Tab. 4.4.1.1 Dehydratationsprozesse von ZnAI-2-Amino-3-phenylpropionat

Die thermische Stabilität der auf 35% r.F. getrockneten Probe wurde mittels TG und Röntgenheizkammer im Temperaturintervall 25 – 350°C untersucht. Die thermogravimetrische Analyse zeigt ein stufenweise verlaufende Dehydratationsreaktionen. Ab einer Onsettemperatur von 30°C beginnt die Entwässerung der Zwischenschicht. Es tritt ein Gewichtsverlust von 8,5% auf, der der Abgabe von 2,2mol Zwischenschichtwasser entspricht. Der Schichtabstand sinkt gleichzeitig von 1,75nm (30°C) auf 0,75nm ab. Bis 170°C verändert sich der Schichtabstand kaum. Ab einer Temperatur von 170°C beginnt die Dehydratation der Hauptschicht und die Probe wird röntgenamorph. Die Aufnahmen mit der Röntgenheizkammer zeigen bis 65°C die Basisreflexe der Überstruktur von Zwischenschichten mit senkrecht und parallel angeordneten Phenylalaninanionen (Abb. 4.4.1.4). Mit zunehmender Temperatur regeln sich die Phenylalaninanionen parallel zu den

Hauptschichten ein. Ab 80°C sind die Überstrukturreflexe nicht mehr sichtbar, was auf eine vollständige parallele und monomolekulare Anordnung der Zwischenschichtanionen hinweist. Zwischen den Basisreflexen können breite und unscharfe Reflexe beobachtet werden, die anhand der verwendeten Gitterparameter nicht der Kristallstruktur von ZnAI-2-Amino-3-phenylpropionat zugeordnet werden können. Als Nebenphase wurde ZnO ab 150°C beobachtet. Bei Temperaturen >250°C bilden sich Zink- und Aluminiumoxid als Hauptphase.

Abb. 4.4.1.4 Ausschnitt der Röntgendiffraktogramme von ZnAI-2-Amino-3-phenylpropionat. Darstellung der Basisreflexe als Funktion der Temperatur im Intervall 25-190°C. (gelb: Entwässerung der Zwischenschicht und Anordnung der Phenylalaninanionen in monomolekulare, parallel zur Hauptschicht orientierte Schichten)

Die 2-Amino-3-phenylpropionatprobe wurde nach Trocknung auf 35% r.F. mittels IR-Spektrometrie analysiert. Anhand der Lage der Absorptionsbanden der CH₂- und CH₃-Fragmente können schwingungserzeugende Teilstrukturen der Aminosäureverbindungen identifiziert werden. Die Zuordnung der Banden erfolgte mit Hilfe von Literaturdaten (AISAWA *et al.*, 2001, FUDALA *et al.*, 1999, GÜNZLER UND HEISE, 1996, LABERGE *et al.*, 1998, WEI *et al.*, 2006). Das IR-Spektrum und die Lage der IR-Banden sind im Anhang A7.3 dargestellt.

4.4.2 Cystein und Methionin

Als Ausgangsstoffe für die Austauschreaktionen dienten Cystein und Methionin. Beide schwefelhaltige Aminosäuren konnten in die Zwischenschicht substituiert werden. Die untersuchten Verbindungen bilden nach Trocknung auf 35% r.F. Stapelfehlordnungen aus.

Der Einbau des Cysteinanions führt zu einem Schichtabstand von 1,77nm. Der kalkulierte Schichtabstand von 0,78nm für parallel zu den Hauptschichten orientierte Aminosäureanionen (NAKAYAMA *et al.*, 2004) ist um 0,99nm zu klein. Nach dem Modell in Abbildung 4.4.2.2. berechnet sich c' für eine senkrechte Anordnung mit einer Wasserschicht:

$c'_{cal} = 0,52nm_{Cysteinanaion} + 0,30nm_{Methylgruppe} + 0,48nm_{Hauptschicht} + 0,28nm_{H2O} = 1,58nm$ (2)

Die Differenz zwischen der Schichtabstände c' und c'_{cal} von 0,19nm lässt sich nicht durch eine zusätzliche Wasserschicht erklären.

Abb. 4.4.2.1 Diffraktogramme von ZnAI-LDHs mit 2-Amino-3-sulfonylpropionat (Cystein) und 2-Amino-4methylsulfonylbutyrat (Methionin) in der Zwischenschicht bei 100% r.F.

Abb. 4.4.2.2 Modelle zur Berechnung der Schichtabstände der ZnAI-LDHs mit schwefelhaltigen Aminosäureanionen (links: 2-Amino-3-sulfonylpropionat, rechts: 2-Amino-4-methylsulfonylbutyrat; modifiziert nach MEYN, 1991 und NAKAYAMA *et al.*, 2004)

Für die 2-Amino-4-methylsulfonylbutyratverbindung ergibt sich ein theoretischer Schichtabstand von 1,84nm. Der experimentell ermittelte Wert für c' ist mit 1,92nm um 0,08nm größer. Das Röntgendiffraktogramm zeigt einen stark erhöhten Untergrund im Winkelbereich von 11,6°2Theta, der wie für die Aminoacetatverbindung beschrieben, auf untergeordnet auftretende Zwischenschichten mit monomolekular und parallel angeordneten Methioninanionen hindeutet.

4.4.3 Serin und Asparaginsäure

Abb. 4.4.3.1 Diffraktogramme von ZnAI-LDHs mit 2-Amino-3-hydroxypropionat (Serin) und Aspartat in der Zwischenschicht bei 100% r.F. Die rote gestrichelte Linie markiert die Position des (003) Basisreflexes der ZnAI-NO₃ Precursorphase.

Für den Anionenaustausch mit Serin und Asparaginsäure wurden die wässrigen Lösungen der Aminosäuren auf einen initialen pH-Wert von 10 (Aspartat) und 11 (Serin) eingestellt. Die Stapelfolge der ausgetauschten Proben erwiesen sich als instabil gegen Trocknung auf 35% r.F. Der Schichtabstand von ZnAl-2-Amino-3-hydroxypropionat beträgt 0,76nm und unterscheidet sich damit kaum vom theoretische Wert mit 0,78nm. Die Berechnung erfolgte analog zum Glycin-Modell in Abbildung 4.4.1.2.A. Die Serinanionen ordnen sich demzufolge parallel in den Zwischenschichten an. Der Einbau von Aspartat führt zu einer Aufweitung der Schichtstruktur des LDHs auf 1,26nm. Der theoretische Schichtabstand von 1,10nm berechnet sich aus der Hauptschicht (0,48nm) und dem Aspartation (0,62nm) bei senkrechter Orientierung. Der experimentelle Schichtabstand ist um 0,16nm größer als der berechnete Wert. WHILTON *et al.* (1997) ermittelten Schichtabstände von 1,11nm und 1,22nm für MgAl-Aspartatverbindungen und geben den zusätzlichen Einbau von OH⁻ in die Zwischenschicht als Grund für den größeren Schichtabstand an. Zu einem ähnlichen Ergebnis kommen AISAWA *et al.* (2001).
ZnAl-Aspartat wurde nach Trocknung auf eine relative Luftfeuchte von 35% mit Hilfe der IR-Spektrometrie untersucht. Anhand der Lage der Absorptionsbanden der CH₂-, CH₃- und Aminogruppen können schwingende Teilstrukturen der Aminosäureverbindungen identifiziert werden. Die Zuordnung der Banden erfolgte mit Hilfe von Literaturdaten (AISAWA *et al.*, 2001, FUDALA *et al.*, 1999, GÜNZLER UND HEISE, 1996, JAUBERTIE *et al.*, 2006, LABERGE *et al.*, 1998, WEI *et al.*, 2006, WHILTON *et al.*, 1997).

Abb. 4.4.3.2 IR-Spektrum von ZnAI-Aspartat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3470 3350	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2970	$v_{as}(CH_3)$, $v(N-H)$	asym. (C-H) – Valenzschwingung der CH ₃ -Gruppen (N-H) – Valenzschwingung der Amingruppe
2910	$v_{as}(CH_2), v(N-H)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen, (N-H) – Valenzschwingung der Amingruppe
1580	v(C=O)	v(C=O) – Valenzschwingung
1430	$\delta_{as}(CH_3)$	asym. (C-H) – Deformationsschwingung der CH ₃ -Gruppen
1406	δ(С-Н), δ(О-Н)	(C-H), (O-H) – Deformationsschwingungen
1360 1301	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH ₃ -Gruppen
1270 1220	δ(CH ₂)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
1120	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH ₃ -Gruppen
1074	δ(Me-OH)	(Me-OH) – Deformationsschwingung
1001	δ(Me-OH)	(Me-OH) – Deformationsschwingung
855	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH ₃ -Gruppen
761	ρ(CH₂)n	Rocking-Schwingung
621	(AIO ₆)	(Al ^{IV} -O) – Schwingung
554	(AIO ₆)	(Al ^{IV} -O) – Schwingung
425	(ZnO)	Zn-O – Schwingung

Tab. 4.4.3.1 IR-Absorptionsbanden von ZnAI-Aspartat

5. Diskussion

In dieser Arbeit sollten Anionenaustauschprozesse von zinkhaltigen LDHs mit organischen Zwischenschichtionen untersucht werden. Dazu wurde die Arbeit in zwei Bereiche unterteilt. Unter Verwendung verschiedener Synthesemethoden erfolgte im ersten Abschnitt die Optimierung der Syntheseparameter Temperatur, pH-Wert und Alterungszeit zur Herstellung einer nebenphasenfreien, für den Anionenaustausch geeigneten Precursorphase. Neben der Verwendung verschiedener Zwischenschichtanionen wurden dafür auch die Verhältnisse der Hauptschichtkationen variiert und optimiert.

Im zweiten Arbeitsschritt wurden die zinkhaltigen Precursorphasen mit organischen Molekülen der Carboxylate, Dicarboxylate, Sulfonate und Aminosäuren ausgetauscht und die strukturellen Eigenschaften der synthetisierten Verbindungen röntgenographisch untersucht. Analysen der Stabilitätsfelder und damit verbundenen Dehydratationsreaktionen und Phasenumwandlungen der organischen ZnAI-LDHs in Abhängigkeit von der Temperatur wurden mittels Thermogravimetrie und röntgenographisch in der Heizkammer durchgeführt.

Alle synthetisierten zinkhaltigen Verbindungen kristallisieren im trigonalen Kristallsystem in Form hexagonaler Plättchen. Die Gitterkonstantenverfeinerung erfolgte auf Basis von Strukturbestimmungen von ALLMANN (1968) und ALLMANN UND JESPEN (1969).

ZnAI-Precursorphasen

Die indirekte Synthesemethode zum Anionenaustausch von LDHs mit organischen Molekülen setzt die Herstellung einer Precursorphase voraus. Die besten Syntheseprodukte wurden mit der Kopräzipitationsmethode bei gleichzeitigem Fällen der Metallsalzlösungen bei schwach alkalischem pH-Wert erreicht. Sehr gute Kristallinitäten konnten auch mit der ,Urea-Methode' nach COSTANTINO *et al.* (1998) erreicht werden. Allerdings war es unter Verwendung der angegebenen Syntheseparameter nicht möglich, Verunreinigungen durch Karbonatisierung der Zwischenschicht vollständig auszuschließen. Außerdem ist der Materialaufwand, verglichen mit der Kopräzipitationsmethode, sehr hoch, was ebenfalls gegen eine Verwendung dieser Methode im Rahmen dieser Arbeit sprach.

Zn Al-	Formel		Spezifische Oberfläche [m ² •g ⁻¹]		
ZIIAI			50°C	150°C	
Chlorid	[Zn ₂ Al(OH) ₆][Cl • 1,8H ₂ O]	2	10,9	14,6	
Nitrat	[Zn ₂ Al(OH) ₆][NO ₃ • 1,9H ₂ O]	2	5,2	6,6	
Sulfat	[Zn ₆ Al ₂ (OH) ₁₆][SO ₄ • 3,3H ₂ O]	3	13,4	21,2	

Tab. 5.1 Synthetisierte ZnAI-Precursorphasen und die spezifische Oberflächen der hydratisierten und zwischenschichtwasserfreien Verbindungen (r= Me²⁺/Me³⁺)

Die Schichtabstände der in Tabelle 5.1 dargestellten Verbindungen mit Chlorid-, Nitrat- und Sulfatanionen steigen in Abhängigkeit der Größe des Zwischenschichtanions in der Reihenfolge Cl⁻ \rightarrow NO₃⁻ \rightarrow SO₄²⁻ an. Der Anteil an Zwischenschichtwasser bleibt konstant bei 1,8/1,9M für Chlorid/Nitrat und 3,3M H₂O für Sulfat. Zu beachten ist, dass ZnAl-Chlorid und ZnAl-Nitrat mit Me²⁺/Me³⁺ = 2:1 und ZnAl-Sulfat mit Me²⁺/Me³⁺ = 3:1 synthetisiert wurden. Der Gitterparameter c= 1,1nm von ZnAl-Sulfat deutet auf eine 2H- Stapelfolge der synthetisierten Verbindung anstelle der 3R-Stapelfolge von ZnAl-Chlorid und ZnAl-Nitrat (Roy et al., 2001). Im Falle der sulfathaltigen LDHs besteht der primäre Unterschied zur 3R-Stapelfolge darin, dass zusätzlich zum Anion auch monovalente Kationen in die Zwischenschicht eingebaut werden. Diese können durch mehrmaliges Waschen entfernt werden, wobei die Kristallstruktur erhalten bleibt (DRITS UND BOOKIN, 2001). Aufgrund der chemischen Analysen kann von einer natriumfreien ,11Å'-Phase des ZnAI-Sulfats ausgegangen werden.

Untersuchungen zu den Dehydratationsreaktionen der Precursorphasen zeigen die Ausbildung einer Hydratstufe im Temperaturbereich bis 160-170°C durch Ausheizen des Zwischenschichtwassers. Die Struktur wird dadurch nicht zerstört. Erst ab Temperaturen von 180-190°C beginnt die Entwässerung der Hauptschicht und die LDHs werden strukturell instabil. Die spezifische Oberfläche von LDHs ist abhängig von der Synthesemethode und den Syntheseparametern (RIVES, 2001, SEIDA *et al.*, 2002). Generell zeigen die Ergebnisse einen Anstieg der spezifischen Oberfläche durch Entfernen des Zwischenschichtwassers (Tab. 5.1). Die geringen Werte der nitrathaltigen Verbindung sind auf eine Optimierung der Syntheseparameter zur Bildung eines nebenphasenfreien Precursors auf Kosten der Kristallinität. Um die Bildung von ZnO als Nebenphase zu verhindern, wurden die nitrathaltigen LDHs bei einem pH-Wert von 7,5 bei gleichzeitiger Temperaturerhöhung auf 45°C synthetisiert. Versuche bei höheren initialen pH-Wert resultierten in besseren Kristallinitäten, begleitet von ZnO als Nebenphase. Aufgrund dessen zeigten Synthesen der ZnAl-Nitrat Precursorphasen bei pH=7,5 die besten Ergebnisse.

ZnAl-	n _c	Formel		
Formiat	1	[Zn ₂ Al(OH) ₆][HCOO • n H ₂ O]		
Acetat	2	[Zn ₂ Al(OH) ₆][CH ₃ COO • n H ₂ O]		
Propionat	3	$[Zn_2AI(OH)_6][C_2H_5COO \bullet n H_2O]$		
Butyrat	4	$[Zn_2AI(OH)_6][C_3H_7COO \bullet n H_2O]$		
Pentanoat	5	[Zn ₂ Al(OH) ₆][C ₄ H ₉ COO • 2,7 H ₂ O]		
Hexanoat	6	[Zn ₂ Al(OH) ₆][C ₅ H ₁₁ COO • 3,0 H ₂ O]		
Heptanoat	7	[Zn ₂ Al(OH) ₆][C ₆ H ₁₃ COO • 2,5 H ₂ O]		
Oktonost	0	[Zn ₂ Al(OH) ₆][C ₇ H ₁₅ COO • 2,2 H ₂ O]		
Oktanoat	0	[Zn ₂ Al(OH) ₆][(C ₇ H ₁₅ COO) (C ₇ H ₁₅ COOH) • n H ₂ O]		
Nananaat	0	[Zn ₂ Al(OH) ₆][C ₈ H ₁₇ COO • 2,8 H ₂ O]		
nonanoat	9	[Zn ₂ Al(OH) ₆][(C ₈ H ₁₇ COO) (C ₈ H ₁₇ COOH) • n H ₂ O]		
Dekenset	10	[Zn ₂ Al(OH) ₆][C ₉ H ₁₉ COO • 2,7 H ₂ O]		
Dekanoat		[Zn ₂ Al(OH) ₆][(C ₉ H ₁₉ COO) (C ₉ H ₁₉ COOH) • n H ₂ O]		
Undekenset	11	[Zn ₂ Al(OH) ₆][C ₁₀ H ₂₁ COO • 3,2 H ₂ O]		
Undekanoat		[Zn ₂ Al(OH) ₆][(C ₁₀ H ₂₁ COO) (C ₁₀ H ₂₁ COOH) • 2,8 H ₂ O]		
Dedekenset	10	[Zn ₂ Al(OH) ₆][C ₁₁ H ₂₃ COO • n H ₂ O]		
Dodekanoat	12	$[Zn_2AI(OH)_6][(C_{11}H_{23}COO)(C_{11}H_{23}COOH) \bullet 3 H_2O]$		
Tridekanoat	13	[Zn ₂ Al(OH) ₆][(C ₁₂ H ₂₇ COO)(C ₁₂ H ₂₇ COOH) • 3,2 H ₂ O]		
Tetradekanoat	14	[Zn ₂ Al(OH) ₆][(C ₁₃ H ₂₇ COO)(C ₁₃ H ₂₇ COOH) • 4 H ₂ O]		
Pentadekanoat	15	[Zn ₂ Al(OH) ₆][(C ₁₄ H ₂₉ COO)(C ₁₄ H ₂₉ COOH) • 3,2 H ₂ O]		
Hexadekanoat	16	$[Zn_2Al(OH)_6][(C_{15}H_{31}COO)(C_{15}H_{31}COOH) \bullet n H_2O]$		
Oktodokonast	10	[Zn ₂ Al(OH) ₆][C ₁₇ H ₃₅ COO • 3,1 H ₂ O]		
Oktadekanoat	18	$[Zn_2AI(OH)_6][(C_{17}H_{35}COO)(C_{17}H_{35}COOH) \bullet 3,5 H_2O]$		
Nonadekanoat	19	[Zn ₂ Al(OH) ₆][(C ₁₈ H ₃₇ COO)(C ₁₈ H ₃₇ COOH) • 2,9 H ₂ O]		

Tab. 5.2 Synthetisierte ZnAI-LDHs mit Carboxylationen in der Zwischen

ZnAl-	n _c	Formel		
Oxalat	2	$[Zn_2Al(OH)_6][0,5(COO)_2 \bullet n H_2O]$		
Malonat	3	$[Zn_2AI(OH)_6][0,5CH_2(COO)_2 \bullet n H_2O]$		
Succinat	4	[Zn ₂ Al(OH) ₆][0,5(CH ₂) ₂ (COO) ₂ • n H ₂ O]		
Glutarat	5	[Zn ₂ Al(OH) ₆][0,5(CH ₂) ₃ (COO) ₂ • n H ₂ O]		
Adipinat	6	[Zn ₂ Al(OH) ₆][0,5(CH ₂) ₄ (COO) ₂ • n H ₂ O]		
Pimelinat	7	$[Zn_2AI(OH)_6][0,5(CH_2)_5(COO)_2 \bullet n H_2O]$		
Azelainat	9	[Zn ₂ Al(OH) ₆][0,5(CH ₂) ₇ (COO) ₂ • n H ₂ O]		

Tab. 5.3 Synthetisierte ZnAI-LDHs mit Dicarboxylationen in der Zwischenschicht

ZnAl-	n _c	Formel
Maleat	4	[Zn ₂ Al(OH) ₆][0,5(CH) ₂ (COO) ₂]
Fumarat	4	[Zn ₂ Al(OH) ₆][0,5(CH) ₂ (COO) ₂]
Phthalat	8	[Zn ₂ Al(OH) ₆][C ₆ H ₄ -1,2-(COO)(COOH) • n H ₂ O]
Isophthalat	8	[Zn ₂ Al(OH) ₆][0,5C ₆ H ₄ -1,3-(COO) ₂ • n H ₂ O]
Terephthalat	8	[Zn ₂ Al(OH) ₆][0,5C ₆ H ₄ -1,4-(COO) ₂ • 3,7H ₂ O]
Lactat	3	$[Zn_2Al(OH)_6][C_2H_4(COO)(OH) \bullet n H_2O]$
Tartrat	4	$[Zn_2Al(OH)_6][0,5C_2H_2(COO)_2(OH)_2 \bullet 2,2H_2O]$
Citrat	6	[Zn ₂ Al(OH) ₆][0,5C ₃ H ₄ (COO) ₂ (COOH)(OH) • 2,5H ₂ O]

Tab. 5.4 Synthetisierte ZnAI-LDHs mit aromatischen Dicarboxylationen, Butendisäure- und Hydroxysäureanionen in der Zwischenschicht

ZnAl-	n _c	Formel
Methansulfonat	1	$[Zn_2AI(OH)_6][CH_3SO_3 \bullet n H_2O]$
Ethansulfonat	2	$[Zn_2Al(OH)_6][C_2H_5SO_3 \bullet n H_2O]$
Propansulfonat	3	[Zn ₂ Al(OH) ₆][C ₃ H ₇ SO ₃ • 3 H ₂ O]
Butansulfonat	4	[Zn ₂ Al(OH) ₆][C ₄ H ₉ SO ₃ • 3,1H ₂ O]
Pentansulfonat	5	[Zn ₂ Al(OH) ₆][C ₅ H ₁₁ SO ₃ • 3H ₂ O]
Hexansulfonat	6	[Zn ₂ Al(OH) ₆][C ₆ H ₁₃ SO ₃ • 3H ₂ O]
Heptansulfonat	7	[Zn ₂ Al(OH) ₆][C ₇ H ₁₅ SO ₃ • 3,3H ₂ O]
Oktansulfonat	8	[Zn ₂ Al(OH) ₆][C ₈ H ₁₇ SO ₃ • 3,2H ₂ O]
Nonansulfonat	9	[Zn ₂ Al(OH) ₆][C ₉ H ₁₉ SO ₃ • 3,5H ₂ O]
Dekansulfonat	10	[Zn ₂ Al(OH) ₆][C ₁₀ H ₂₁ SO ₃ • 3,5H ₂ O]
Undekansulfonat	11	[Zn ₂ Al(OH) ₆][C ₁₁ H ₂₃ SO ₃ • 3,2H ₂ O]
Dodekansulfonat	12	[Zn ₂ Al(OH) ₆][C ₁₂ H ₂₅ SO ₃ • 3H ₂ O]
Tetradekansulfonat	14	[Zn ₂ Al(OH) ₆][C ₁₄ H ₂₉ SO ₃ • 3H ₂ O]
Hexadekansulfonat	16	[Zn ₂ Al(OH) ₆][C ₁₆ H ₃₃ SO ₃ • 3H ₂ O]
Oktadekansulfonat	18	[Zn ₂ Al(OH) ₆][C ₁₈ H ₃₇ SO ₃ • 2,9H ₂ O]

Tab. 5.5 Synthetisierte ZnAI-LDHs mit Alkylsulfonationen in der Zwischenschicht

ZnAl-	n _c	Formel
Naphthalin-1-Sulfonat	10	$[Zn_2AI(OH)_6][C_{10}H_7SO_3 \bullet n H_2O]$
Naphthalin-2-Sulfonat	10	[Zn ₂ Al(OH) ₆][C ₁₀ H ₇ SO ₃ • 2,9H ₂ O]
Naphthalin-1,5-Disulfonat	10	$[Zn_2Al(OH)_6][C_{10}H_6(SO_3)_2 \bullet n H_2O]$
Benzolsulfonat	6	[Zn ₂ Al(OH) ₆][C ₆ H ₅ SO ₃ • 2,7H ₂ O]
Toluolsulfonat	7	[Zn ₂ Al(OH) ₆][C ₇ H ₇ SO ₃ • 3,1H ₂ O]
Benzol-1,3-Disulfonat	6	$[Zn_2Al(OH)_6][C_6H_4(SO_3)_2 \bullet n H_2O]$
Methylorange	14	[Zn ₂ Al(OH) ₆][C ₁₄ H ₁₄ N ₃ SO ₃ • 2,5H ₂ O]

Tab. 5.6 Synthetisierte ZnAI-LDHs mit aromatischen Sulfonaten und Farbstoffen in der Zwischenschicht

ZnAl-	Formel
Aminoacetat	$[Zn_2Al(OH)_6][C_2H_4NO_2 \bullet n H_2O]$
3-Aminopropionat	$[Zn_2AI(OH)_6][C_3H_6NO_2 \bullet n H_2O]$
2-Amino-3-methylpentanoat	[Zn ₂ Al(OH) ₆][C ₆ H ₁₂ NO ₂ • n H ₂ O]
2-Amino-3-phenylpropionat	[Zn₂Al(OH) ₆][C ₉ H ₁₀ NO₂ • n H₂O]
2-Amino-3-sulfanylpropionat	$[Zn_2Al(OH)_6][C_3H_6NO_2S \bullet n H_2O]$
2-Amino-4-methylsulfanylbutyrat	[Zn₂Al(OH)6][C₅H10NO2S • n H2O]
2-Amino-3-hydroxypropionat	$[Zn_2Al(OH)_6][C_3H_6NO_3 \bullet n H_2O]$
Aspartat	$[Zn_2Al(OH)_6][C_4H_6NO_4 \bullet n H_2O]$

Tab. 5.7 Synthetisierte ZnAI-LDHs mit Aminosäureanionen in der Zwischenschicht

ZnAI-LDHs mit organischen Zwischenschichtanionen

Hauptschwerpunkt dieser Arbeit lag in der Synthese und Untersuchung von ZnAI-LDHs mit organischen Anionen. Dazu wurden die in den Tabellen 5.2 – 5.7 aufgelisteten LDHs synthetisiert. Die Anionen aller in Tabelle 2.9.2 aufgelisteten organischen Säuren konnten in die Zwischenschicht der LDH-Precursorphasen eingebaut werden. Allerdings gelang nur für die in den Tabellen 5.2-5.7 dargestellten LDHs die Synthese von röntgenographisch nebenphasenfreien Verbindungen.

Der Gitterparameter a_0 der LDHs mit organischen Anionen liegt zwischen 0,306-0,308nm und unterscheidet sich damit nicht von a_0 der Precursorphasen. Auch nach Entfernung des adhäsiven Wassers durch Trocknung bei 40°C für 24h verändert sich die a_0 - Gitterkonstante nicht. Selektive Untersuchungen zur Stabilität der synthetisierten Verbindungen gegenüber Trocknung auf relative Feuchten von 75%, 55% und 35% zeigen, dass die Hauptschichten bei allen eingestellten Luftfeuchten strukturell stabil bleiben.

Ganz anders verhält es sich mit dem Aufbau der Zwischenschichten. Mit Hilfe röntgenographischen Untersuchungen konnte nachgewiesen werden, dass die Schichtdicke c' von der Größe und Lage des in der Zwischenschicht substituierten Anions abhängt. Der Einbau von Anionen der unverzweigten Monocarbonsäuren, Alkandisäuren und Alkylsulfonsäuren führt zu einem fast linearen Anstieg der Schichtdicke in Abhängigkeit von der Kettenlänge. Anhand von Modellberechnungen nach DOSCH (1967) und MEYN (1991) wurden die Inklinationswinkel der organischen Ketten in der Zwischenschicht bestimmt. Beim Vergleich der nach diesen

Modellvorstellungen berechneten Werte mit den experimentell ermittelten Schichtabständen treten nur geringe Differenzen von 0,01-0,07nm (Carboxylate) und 0,04-0,13nm (Sulfonate) von c' auf. Demzufolge bilden sich beim Anionenaustausch mit aliphatischen Carboxylaten mit n_c=1-8 und Alkylsulfonaten monomolekulare Schichten von geneigten Alkylketten in der Zwischenschicht. Verkürzungen der Alkylketten können auf die Ausbildung von Kinken zurückgeführt werden (MEYN, 1991). Die Schichtabstände von Monocarbonsäuren der feuchten Pasten (100% r.F.) mit Kettenlängen n_c>9 folgen generell nicht diesem Trend, sondern steigen sprunghaft an. Gleichzeitig werden erhöhte Gehalte an Kohlenstoff und Wasserstoff gemessen. Nach HWANG et al. (2001) und ITOH et al. (2003) nehmen die hydrophoben Eigenschaften von Carbonsäuren mit zunehmender Kettenlänge zu, was zu einer bevorzugten Anordnung in bimolekularen Lagen innerhalb der Zwischenschicht führt. Eine ähnliche Beobachtung beschreibt König (2006) für manganhaltige LDHs mit Carboxylationen. Die Anordnung in mono- oder bimolekularen Schichten scheint des Weiteren stark von den Synthesebedingungen abhängig zu sein. Austauschreaktionen mit ausgewählten Monocarbonsäuren (n_c=10, 11, 12, 18) mit unterschiedlichen pH-Werten der Säurelösungen deuten auf eine bevorzugt monomolekulare Anordnung bei alkalischen pH-Werten und eine bimolekulare Anordnung bei sauren pH-Werten. Bei einem pH-Wert von 7 können Überstrukturen beider Anordnungen der organischen Zwischenschichtanionen beobachtet werden (Abb. 5.1).

Abb. 5.1 Modelle zur mono- und bimolekularen Anordnung langkettiger Carboxylate in der Zwischenschicht von ZnAI-LDHs in Abhängigkeit vom pH-Wert (A: pH8,5, B: pH7,0, C: pH4,5)

Aufgrund der chemischen Zusammensetzung und des daraus berechneten Ladungsausgleichs der ZnAI-LDHs mit bimolekular angeordneten Carbonsäureanionen wird von "gestopften Strukturen" ausgegangen, bei denen nur eine Carboxylatkette ein Wasserstoffatom abgibt.

Aromatischen Dicarboxylate und Sulfonate, Butendisäure-, Hydroxysäure und Farbstoffanionen ordnen sich unter den Gleichgewichtslösungen bei 100% r.F. senkrecht zu den Hauptschichten in der Zwischenschicht der ZnAI-LDHs an. Die berechneten Schichtabstände unterscheiden sich kaum von den experimentell ermittelten Werten. Die OH-Gruppen der aromatischen Dicarboxylate

haben unter Annahme der verwendeten Modellparameter keinen Einfluss auf die Größe der Schichtdicke.

Auch für Aminosäureanionen kann eine bevorzugt senkrechte Orientierung in der Zwischenschicht beobachtet werden. Allerdings treten bei allen synthetisierten Verbindungen, unabhängig von der Kettenlänge, Überstrukturreflexe von parallel zu den Hauptschichten angeordneten Aminosäureanionen auf. Eine Abhängigkeit von den Syntheseparametern analog zu den Carboxylaten kann allerdings aufgrund des verwendeten begrenzten pH-Wert Bereichs der Säurelösungen (pH10-11) nicht eindeutig zugeordnet werden.

Die Stapelung von ZnAI-LDHs mit kurzkettigen organischen Anionen sowie der Mehrzahl der Dicarboxylat- und Aminosäureverbindungen erwiesen sich gegenüber Trocknung auf 35% r.F. als instabil, was bedeutet, dass es zur Ausbildung von Stapelfehlordnungen kommt. Im Falle der ZnAI-Dicarboxylate tritt eine Fehlordnung der Schichtfolge schon nach Trocknung auf eine relative Luftfeuchte von 75% ein.

Thermoanalytische Untersuchungen zur Stabilität von ZnAI-LDHs mit organischen Anionen können generell in Dehydratationsreaktionen der Zwischenschicht und der Hauptschicht unterschieden werden. Die schwach gebundenen Wassermoleküle der Zwischenschicht werden bei ZnAI-LDHs mit kurzkettigen Organika bis ca. 150°C remobilisiert, ohne dass die Kristallstruktur zerstört wird. Die Dehydratation beginnt bei fast allen synthetisierten Verbindungen ab 30°C und verläuft, ähnlich dem Nitrat-Precursor, über zwei Entwässerungsstufen. Die zwischenschichtwasserfreien LDHs sind in Abhängigkeit vom Zwischenschichtanion bis max. 250°C stabil. Folgender Temperatur-gradient der Hauptschichtentwässerung kann in Abhängigkeit vom substituierten Anion beobachtet werden: ca. 150°C (kurzkettige Monocarboxylate), ca. 200°C (kurzkettige Alkylsulfonate), 210°C (Terephthalat), 220-240°C (aromatische Sulfonate), 220-250°C (Hydroxysäuren). Demzufolge ist der Stabilitätsbereich der Hydratstufen von ZnAI-LDHs mit aromatischen Sulfonaten und Hydroxysäureanionen (Citrat, Tartrat) am größten. Bei weiterer Erhöhung der Temperatur werden die organischen Anionen abgebaut und Aluminiumoxid und Zinkoxid werden als Hauptphase gebildet.

Verbindungen mit langkettigen organischen Anionen zeigen ein anderes Verhalten auf thermische Beanspruchung als LDHs mit kurzkettigen Carbon- und Sulfonsäureanionen in der Zwischenschicht. Die Schichtabstände von ZnAI-Alkylsulfonate mit mehr als 9 Kohlenstoffatomen vergrößern sich mit zunehmender Temperatur bis ca. 140°C. Gleichzeitig treten ab 90-120°C Überstrukturreflexe der Basispeaks auf. Nach den Modellvorstellungen von MEYN (1991) sind die Sulfonatketten in den Zwischenschichten mit einem Inklinationswinkel zwischen 51-61° zu den Hauptschichten angeordnet, wobei der in dieser Arbeit bestimmte Winkel bei 50,9° für 35% r.F. liegt.

		$[Zn_2Al(OH)_6][C_nH_{2n+1}SO_3 \bullet nH_2O]$			[Zn₂Al	(OH) ₆][C _n H _{2n}	₊1 SO ₃]
n _c	T [°C]	c' _{gem} [nm]	c' _{cal} [nm]	∆ c' [nm]	c'_{gem} [nm]	c'_{cal} [nm]	∆ c' [nm]
10	120	2,453	2,553	0,100	1,988	1,933	0,055
11	140	2,486	2,680	0,194	2,081	2,060	0,021
12	140	2,737	2,807	0,070	2,128	2,187	0,059
14	140	3,102	3,061	0,041	2,447	2,441	0,006
16	110	3,387	3,315	0,072	/	2,695	/

Tab. 5.8 Gemessene und für eine senkrechte Anordnung berechnete Schichtabstände c' der Überstrukturen von ZnAI-Sulfonaten mit zwei Wasserschichten bei definierten Temperaturen (α =90°, * unter Annahme von zwei Wasserschichten)

Die Aufweitung der Zwischenschichten während der Aufheizung in der Röntgenheizkammer kann durch die Aufrichtung der Sulfonatketten erklärt werden. Wird von senkrecht zu den Kohlenstoffketten ausgegangen, Hauptschichten angeordneten SO berechnen sich Schichtabstände c'cal, die nur geringe Abweichungen zu den gemessenen Schichtabständen haben (Tab. 5.8). Demzufolge richten sich die langkettigen Alkylsulfonate mit zunehmender Temperatur auf. Ab Temperaturen von 90-120°C entwässert ein Teil der Zwischenschichten und es bilden sich Überstrukturen zwischenschichtwasserhaltiger und -freier ZnAI-LDHs. Bei weiterer Temperatur-erhöhung werden die Wassermoleküle der Zwischenschichten kontinuierlich ausgeheizt ohne jedoch eine vollständige Dehydratation zu erreichen. Bis zum röntgenamorphen Zustand der Verbindungen sind die Überstrukturreflexe identifizierbar. Die Sulfonatketten der ZnAl-Sulfonat Hydrate mit 10 bzw. 11 Kohlenstoffatome ordnen sich bei den angegebenen Temperaturen nicht senkrecht, sondern entsprechend Gleichung 4.3.1 mit einem Inklinationswinkel von α = 61,9° in der Zwischenschicht an. Analog zu den Sulfonaten zeigen auch die Monocarboxylate den Trend zur Aufrichtung bei Temperaturerhöhung in Abhängigkeit von der Kettenlänge.

Von ausgewählten ZnAI-LDHs mit organischen Zwischenschichtanionen wurden die spezifischen Oberflächen der Hydrate bei 50°C und der zwischenschichtwasserfreien Proben nach Ausheizen bei 150°C gemessen. Die Ergebnisse sind in den Tabellen 5.9 und 5.10 dargestellt.

7:: 41	nc	r	Spezifische Oberfläche [m ² •g ⁻¹]		
			50°C	150°C	
Acetat	2	2	9,0	28,5	
Propionat	3	2	2,5	31,6	
Pentanoat	5	2	12,8	29,7	
Hexanoat	6	2	5,6	22,2	
Heptanoat	7	2	5,1	18,5	
Oktanoat	8	2	8,6	12,9	
Nonanoat	9	2	1,2	2,4	
Oktadekanoat	18	2	7,9	7,2	
Lactat	3	2	7,8	9,2	
Tartrat	4	2	17,7	18,7	

Tab. 5.9 Spezifische Oberflächen ausgewählter ZnAl-Carboxylathydrate nach Ausheizen bei 50°C und deren zwischenschichtwasserfreien Analogons (150°C; r= Me²⁺/Me³⁺)

Generell zeigt sich eine große Variabilität der spezifischen Oberflächen von ZnAI-LDHs mit organischen Zwischenschichtanionen, unabhängig von der Kettenlänge oder der funktionellen Gruppe. Die BET-Werte der zwischenschichtwasserfreien Proben sind bis auf wenige Ausnahmen größer als die der hydratisierten Verbindungen. Besonders bei Verbindungen mit kurzkettigen organische Anionen steigt die spezifische Oberfläche zum Teil um das Doppelte an. Im Falle von ZnAI-Acetat, ZnAI-Propionat und ZnAI-Pentanoat ist die lamellare Struktur bei 150°C bereits teilweise zerstört und Zinkoxid und Aluminiumoxid bilden sich, ohne dass die organischen Moleküle bereits vollständig abgebaut sind. Diese organisch-anorganischen Mischphasen zeichnen sich durch eine vergleichbar hohe spezifische Oberfläche aus und sind besonders für die Verwendung als Biosensor attraktiv (HAN *et al.*, 2007).

Die spezifische Oberfläche von LDHs ist stark abhängig von der Synthesemethode und damit auch von den Syntheseparametern (RIVES, 2001). Die Variation des Kationenverhältnisses von ZnAl-Sulfonate zeigt prinzipiell ähnliche spezifische Oberflächen für die Hydratphasen, aber stark erhöhte Werte der zwischenschichtwasserfreien Verbindungen (Tab. 5.10). Trotzdem kann ein Einfluss der Kettenlänge der substituierten Alkylsulfonate auf die Größe der spezifischen Oberfläche nicht nachgewiesen werden. Als Grund gibt RIVES (2001) die Größe der Zwischenschicht und die Größe des verwendeten Adsorbents an. Mit einem Durchmesser von 3,65Å sind die Stickstoffmoleküle zu groß für den Zwischenschichtraum von LDHs mit anorganischen Anionen. Demzufolge würden bei der Adsorption von N₂ nur die Meso- und Makroporen berücksichtigt. Der Einbau großer organischer Moleküle weitet die Schichtstruktur zwar auf, doch möglicherweise behindert das Zwischenschicht hinein. Nach Dehydratation der Zwischenschicht steigen demzufolge die spezifischen Oberflächen an. ZnAl-LDHs mit langkettigen organischen Anionen zeigen aber die geringsten Differenzen der spezifischen Oberfläche bei Temperaturen von 50°C und 150°C.

ZnAL	na		Spezifische Oberfläche [m ² •g ⁻¹]		
2045	IIC	I	50°C	150°C	
Propansulfonat	3	3	2,4	10,9	
Putonoulfonot	4	2	8,8	14,0	
Butansulonat	4	3	6,2	23,4	
Pentansulfonat	5	2	7,6	6,9	
Hovenoulfonet	6	2	6,9	11,5	
Hexansulonat	0	3	8,8	42,2	
Henteneulfonet	7	2	7,0	11,2	
neptansulionat	1	3	13,5	35,6	
Oktonoulfonat	0	2	10,5	12,2	
Oktansulohat	0	3	11,1	25,6	
Nonansulfonat	9	3	15,7	22,3	
Dekeneulfenet	10	2	11,9	16,5	
Dekansulonat		3	4,8	7,6	
Lindekeneulfenet		2	8,4	11,8	
Undekansulionat		3	20,3	22,9	
Dodekansulfonat	12	2	10,6	10,2	
Tetradekansulfonat	14	2	11,3	11,2	
Hexadekansulfonat	16	2	11,1	7,8	
Methylorange	14	2	13,7	17,6	

Tab. 5.10 Spezifische Oberflächen ausgewählter ZnAI-Sulfonat Hydrate nach Ausheizen bei 50°C und deren zwischenschichtwasserfreien Analoga (150°C; r= Me²⁺/Me³⁺)

Obwohl ZnAI-LDHs im Vergleich zu herkömmlichen "Nanocomposites' geringe spezifische Oberflächen besitzen, sind sie auf Grund ihrer thermischen und chemischen Stabilität für den Einsatz als Nanomaterialien durchaus geeignet (RIVES, 2001). Die in dieser Arbeit synthetisierten Verbindungen sind in Abhängigkeit vom substituierten Anion bis ca. 200(250)°C strukturell stabil. Des Weiteren haben sich besonders ZnAI-LDHs mit langkettigen organischen Anionen als äußerst resistent gegen Zersetzung bzw. Lösung in einem weiten pH-Wert Bereich erwiesen. Ihre Fähigkeit des Anionenaustausches prädestiniert die zinkhaltigen Precursorphasen zur Verwendung als Filtermaterial für die Sorption von organischen und anorganischen Verbindungen aus wässrigen Lösungen. ZnAI-LDHs mit organischen Zwischenschichtanionen könnten als Speichermineral zur

Immobilisierung von organischen Schadstoffen aus Abwässern verwendet werden (ULIBARRI UND HERMOSIN, 2001).

Zusammenfassend können folgende Ergebnisse aus dieser Arbeit gewonnen werden:

1. Mit Hilfe der Kopräzipitationsmethode können für den Anionenaustausch geeignete ZnAl-Precursorphasen im pH-Wert Bereich 7-7,5 und unter Verwendung von Nitrat als Zwischenschichtanion synthetisiert werden.

2. Organische Moleküle unterschiedlicher Kettenlänge und funktioneller Gruppe lassen sich in die Zwischenschicht der Precursorphasen substituieren, wobei langkettige organische Anionen leichter als kurzkettige Organika eingebaut werden können. Der Schichtabstand c' ist abhängig von der Größe und der Lage des Zwischenschichtanions.

3. Mit Ausnahme langkettiger Carboxylate ordnen sich organischen Anionen in monomolekularen Schichten in der Zwischenschicht an. Die Kohlenstoffketten sind zu den Hauptschichten geneigt (Monocarbonäuren, Sulfonsäuren), senkrecht (Dicarboxylate, Aminosäureanionen) oder parallel (Aminosäureanionen) orientiert. ZnAl-Carboxylate mit n_c<9 bilden in Abhängigkeit vom pH-Wert der Säurelösungen mono- oder bimolekulare Schichten.

4. Die Stapelfolge von ZnAI-LDHs mit kurzkettigen organischen Anionen ist unter Verwendung der in dieser Arbeit angegebenen Synthesemethoden bzw. – parameter instabil gegenüber Trocknung auf 35% r.F.

5. Die Dehydratationsreaktionen der synthetisierten Verbindungen unterteilen sich in Entwässerung der Zwischenschicht und Dehydratation der Hauptschicht. Das Ausheizen des Zwischenschichtwassers wird häufig über Ausbildung mehrerer Temperaturstufen realisiert, wobei die Struktur erhalten bleibt. Erst mit dem Ausheizen der OH-Gruppen der Hauptschicht wird die Kristallstruktur des LDHs zerstört.

6. In der Zwischenschicht geneigt angeordnete langkettige Sulfonate und Carboxylate richten sich bei Temperaturerhöhung bis ca. 140°C auf und entwässern teilweise unter Ausbildung von Überstrukturreflexen.

7. Die mit N_2 bestimmte spezifische Oberfläche der ZnAl-LDHs steigt nur unwesentlich mit zunehmender Kettenlänge des eingebauten Gastmoleküls.

Weiterführende Arbeiten

Sämtliche in dieser Arbeit durchgeführten Berechnungen beruhen auf Modellvorstellungen. Zukünftige Arbeiten sollten Strukturbestimmungen an größeren Kristalliten oder Einkristallen durchführen, um die verwendeten Modelle mit experimentellen Fakten zu bestätigen. Dafür würden sich Synthesen mit der Hydrothermalsynthese oder der Sol-Gel-Methode anbieten. Vor allem die genaue Position des Zwischenschichtanions ist häufig noch unklar. Mit Hilfe von *ab-initio* Strukturanalysen könnten strukturelle und kristallchemische Fragestellungen untersucht werden. Durch Verwendung von Glaskapillaren ist es möglich, Textureffekte während der röntgenographischen Phasenanalyse zu vermeiden oder zu minimieren.

Zukünftige Arbeiten sollten die Selektivität im Einbau von verschiedenen Anionen unterschiedlicher Zusammensetzung bestimmen, um damit einen Einsatz als Speichermineral oder Adsorber zu optimieren. Da in natürlicher Umgebung vor allem Gemische von anorganischen und organischen Substanzen vorzufinden sind, sind vor allem Studien der Anionenaustauschkapazität in Abhängigkeit der angebotenen Anionen von Interesse. Alle Synthesen dieser Arbeit wurden in inerter Atmosphäre durchgeführt. Für den Einsatz als Filtermaterial bzw. Austauscher ist es allerdings notwendig, Austauschreaktionen in der Gegenwart von CO₂ aus der Luft zu studieren, um sich dadurch den natürlichen Bedingungen anzunähern.

6. Literaturverzeichnis

- Ahmed, S.J. und Taylor, H.F.W., 1967, Crystal structures of the lamellar calcium aluminate hydrates. Nature, 215, 622.
- Aisawa, S., Takahashi, S., Ogasawara, W., Umetsu, Y. und Narita, E., 2001, Direct Intercalation of Amino Acids into Layered Double Hydroxides by Coprecipitation. J. Solid State Chem., 162, 52-62.
- Allmann, R., 1968, Verfeinerung der Struktur des Zinkhydroxidchlorids II, Zn₅(OH)₈Cl₂ 1H₂O. Zeitschrift für Kristallographie, 126, 417-426.
- Allmann, R., 1970, Doppelschichtstrukturen mit brucitähnlichen Schichtionen [Me(II)_{1-x}Me(III)_x (OH)₂]^{x+}. Chimica, 24, 99-107.
- Allmann, R., 1977, Refinement of the hybrid layer structure $[Ca_2AI(OH)_6]^+ \cdot [1/2 SO_4 \cdot 3H_2O]^-$. N. Jb. Min. Mh., 136-144.
- Allmann, R. und Lohse, H.H., 1966, Die Kristallstruktur des Sjögrenits und eines Umwandlungsproduktes des Koenits (=Chlor-Manasseits). N. Jb. Min., 11, 161-180.
- Allmann, R. und Donnay, J.D., 1969, About the structure of iowaite. Am. Min., 54, 269-299.
- Allmann, R. und Jespen, H.P., 1969, Die Struktur des Hydrotalkits. N. Jb. Min., 544-551.
- Anbarasan, R., Lee, W.D. und Im, S.S., 2005, Adsorption and intercalation of anionic surfactants onto layered double hydroxides XRD study. Bull. Mater. Sci., 28, 145-149.
- Auer, St., Pöllmann, H. und Kuzel, H.-J., 1992, Einbau von Cd²⁺ in komplexen Calciumaluminathydroxisalze. Bh. Z. Eur. J. Min., 4, 11.
- Beaudot, P., De Roy, M.E. und Besse, J.P., 2004, Preparation and Characterization of Intercalation Compounds of Layered Double Hydroxides with Metallic Oxalato Complexes. Chem. Mater, 16, 935-945.
- Bellotto, M., Rebours, B., Clause, O., Lynch, J., Bazin, D. und Elkaim, E., 1996, A Reexamination of Hydrotalcite Crystal Chemistry. J. Phys. Chem., 100, 8527-8534.
- Bish, D.L., 1980, Anion-exchange in takovite: applications to other hydroxide minerals. Bull. Min., 103, 170-175.
- Bish, D.L. und Brindley, G.W., 1977, A reinvestigation of takovite, a nickel aluminium hydroxylcarbonate of the pyroaurite group. Am. Min., 62, 458-464.
- Bish, D.L. und Livingstone, A., 1981, The crystal chemistry and paragenesis of honessite and hydrohonessite : The sulphate analogues of reevesite. Min. Mag., 44, 339-343.

- Boehm, H.P., Steinle, J. und Vieweger, C., 1977, [Zn₂Cr(OH)₆]X 2H₂O, New Layer Compounds Capable of Anion Exchange and Intracrystalline Swelling. Angew. Chem. Int. Ed. Engl., 16, 265-266.
- Bravo-Suárez, J.J., Páez-Mozo, E.A. und Oyama, S.T., 2004, Models for the estimation of thermodynamic properties of layered Double Hydroxides: Application to their study of their anion exchange characteristics. Quim. Nova, 27, 574-581.
- Brindley, G.W., 1979, Motukoreaite- additional data and comparison with related minerals. Min. Mag., 43, 337-340.
- Brindley, G.W. und Kikkawa, S., 1979, A crystal-chemical study of Mg, Al, and Ni, Al hydroxyperchlorates and hydroxy-carbonates. Am. Min., 64, 836-843.
- Brunauer, S., Emmett, P.H und Teller, E., 1938, Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60, 309-319.
- Bubniak, G.A., Schreiner, W.H., Mattoso, N. und Wypych, F., 2002, Preparation of a New Nanocomposite of Al_{0.33}Mg_{0.67}(OH)₂(C₁₂H₂₅SO₄)_{0.33} and Poly(ethylene oxide). Langmuir, 18, 5967-5970.
- Cabwell, R.J., Rhee, K.H. und Seshadri, K.S., 1967, Vibrational Spectra of Na and Li methanesulfonates. Spectrochimica Acta, 24A, 955-958.
- Carlino, S., 1997, The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods. Solid State Ionics, 98, 73-84.
- Cavani, F., Trifiro, F. und Vaccari, A., 1991, Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173-301.
- Chao, G.Y. und Gault, R.A., 1997, Quintinite-2H, Quintinite-3T, Charmarite-2H, Charmarite-3T and Caresite-3T, a new group of carbonate minerals related to the hydrotalcite manasseite Group. Can. Min., 35, 1541-1549.
- Chibwe, K. und Jones, W., 1989, Intercalation of Organic and Inorganic Anions into Layered Double Hydroxides. J. Chem. Soc., Chem. Com., 926-927.
- Choudary, B.M., Lakshmi Kantam, M., Neeraja, V., Koteswara Rao, K., Figueras, F. und Delmotte, L., 2001, Layered double hydroxide fluoride: a novel solid base catalyst for C–C bond formation. Green Chem., 3, 257-260.
- Choudhary, V.R., Dumbre, D.K., Narkhede, V.S. und Jana, S.K., 2003, Solvent-free selective oxidation of benzyl alcohol and benzaldehyde by tert-butyl hydroperoxide using MnO₄ exchanged Mg–Al–hydrotalcite catalysts. Catalysis Lett., 86, 229-233.
- Clause, O. Gazzano, M., Trifiro, F. Vaccari, F. und Zatorski, L., 1991, Preparation and thermal reactivity of nickel/chromium and nickel/aluminium hydrotalcite-like precursors. Applied Catalysis, 73, 217-236.

- Cooper, M.A. und Hawthorne, F.C., 1996, The crystal structure of shigaite, $[AIMn_2^{2+}(OH)_6]^3(SO_4)_2$ Na(H₂O)6{H₂O}, a hydrotalcite-group mineral. Can. Min., 34, 91-97.
- Costantino, U., Marmottini, F., Nocchetti, M. und Vivani, R., 1998, New Synthetic Routes to Hydrotalcite-Like Compounds - Characterisation and Properties of the Obtained Materials. Eur. J. Inorg. Chem., 10, 1439-1446.
- Costantino, U., Coletti, N., Nocchetti, M., M., Aloisi, G.G. und Elisei, F. 1999, Anion Exchange of Methyl Orange into Zn-Al Synthetic Hydrotalcite and Photophysical Characterization of the Intercalates Obtained. Langmuir, 15, 4454-4460.
- Costantino, U., Coletti, N., Nocchetti, M., Aloisi, G.G., Elisei, F. und Latterini, L., 2000, Surface Uptake and Intercalation of Fluorescein Anions into Zn-Al-Hydrotalcite. Photophysical Characterization of Materials Obtained. Langmuir, 16, 10351-10358.
- Crepaldi, E.L., Pavan, P.C. und Valim, J.B., 2000, Comparative Study of the Coprecipitation Methods for the Preparation of Layered Double Hydroxides. J. Braz. Chem. Soc., 11, 64-70.
- Das, D.P., Das, J. und Parida, K., 2003, Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J. Coll. Int. Sci., 261, 213-220.
- Delmas, C. und Borthomieu, Y., 1993, Chimie douce reactions: a new route to obtain well crystallized layer double hydroxides, J. Solid State Chem., 104, 345-352.
- Dosch, W., 1967, Die innerkristalline Sorption von Wasser und organischen Substanzen an Tetracalciumaluminathydrat. N. Jb. Min. Abh., 106, 200-239.
- Drezdon, M.A., 1988, Synthesis of isopolymetalate-pillared hydrotalcite via organic-anionpillared precursors. Inorg. Chem., 27, 4628-4632.
- Drits, V.A. und Bookin, A.S., 2001, Crystal Structure and X-ray identification of Layered double hydroxides. In: Rives, V. (Ed.): Layered double hydroxides: Present and future. Nova science publishers, Inc., New York, 39-92.
- Dunn, P.J., Peacor, D.R. und Palmer, T.H., 1979, Desautelsite, a new mineral of the pyroaurite group. Am. Min., 64, 127-130.
- Ebert, H., 1930, Dampfdrucke einiger wässriger Lösungen und ihre Verwendung zur Herstellung bestimmter relativer Feuchtigkeiten. Z. f. Instrumentenkunde, 50, 43-57.
- Faure, C., Borthomieu, Y. und Delmas, C., 1991, Infrared characterization of turbostratic α- and well crystallized α*-cobalted nickel hydroxides. J. Power Sources, 36, 113-125.
- Feitknecht, W., 1942a, Zur Kenntnis der Doppelhydroxide und basischen Doppelsalze III. Helv. Chim. Acta, 25, 131-137.

- Feitknecht, W., 1942b, Über die Bildung von Doppelhydroxiden zwischen zweiwertigen und dreiwertigen Metallen. Helv. Chim. Acta, 25, 555-569.
- Feitknecht, W. und Gerber, M., 1942, Zur Kenntnis der Doppelhydroxide und basischen Doppelsalze III: Über Magnesium-Aluminiumdoppelhydroxid. Helv. Chim. Acta, 25, 131-137.
- Fittkau, S., 1984, Organische Chemie. VEB Gustav Fischer Verlag, Jena, 243 S.
- Forano, C., Roy, A., Depége, C., Khaldil, M., Métoui, F.Z. und Besse, J.P., 1997, Post-Synthesis modification of layered double hydroxides. In: Occelli, M.L. und Kessler, H. (Eds.): Synthesis of porous materials. Marcel Dekker, Inc., 718 S.
- Frondel, C., 1941, Constitution and polymorphism of the pyroaurite and sjögrenite groups. Am. Min., 26, 295-315.
- Fudala, Á., Pálinkó, I. und Kiricsi, I., 1999, Preparation and Characterization of Hybrid Organic-Inorganic Composite Materials Using the Amphoteric Property of Amino Acids: Amino Acid Intercalated Layered Double Hydroxide and Montmorillonite. Inorg. Chem., 38, 4653-4658.
- Gardner, E., Huntoon, K.M. und Pinnavaia, T.J., 2001, Direct Synthesis of Alkoxide-Intercalated Derivatives of Hydrotalcite-like Layered Double Hydroxides: Precursors for the Formation of Colloidal Layered Double Hydroxide Suspensions and Transparent Thin Films. Adv. Mater., 13, 1263-1266.
- Gastuche, M.C., Brown, G. und Mortland, M.M., 1967, Mixed magnesium-aluminium hydroxides. I. Preparation, and characterisation of compounds formed in dialysed systems. Clay Min., 7, 177-192.
- Göske, J., Witzke, T., Pöllmann, H. und Stöber, S., 1997, Neufunde von Sekundärmineralen in der Lagerstätte Calamita / Insel Elba. Aufschluss, 48, 305-313.
- Goswamee, R.L., Sengupta, P., Bhattacharyya, K.G. und Dutta, D.K., 1998, Adsorption of Cr(VI) in layered double hydroxides. Applied Clay Sci., 13, 21-34.
- Goswamee, R.L., 1999, Synthesis and characterisation of some mixed metal hydroxides and their applications. Dissertation, Guwahati, Assam, 195 S.
- Günzler, H. und Heise, H.M., 1996, IR-Spektroskopie. VHC-Verlag, Weinheim, 397 S.
- Han, E., Shan, D., Xue, H. und Cosnier, S., 2007, Hybrid Material Based on Chitosan and Layered Double Hydroxides: Characterization and Application to the Design of Amperometric Phenol Biosensor. Biomacromolecules, 8, 971-975.
- Hansen, H.C.B. und Taylor, R.M., 1990, Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions: I. The synthesis of pyroaurite and reevesite. Clay Min., 2, 161-179.

- Hauthal, H.G., 1985, Alkansulfonate im Ensemble der Tenside. In: Hauthal, H.G. (Ed.): Alkansulfonate. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 7-11.
- Hart, H., Crane, L.E. und Hart, D.J., 2002, Organische Chemie. Wiley-VCH Verlag, Weinheim, 193 S.
- Hickey, L., Kloprogge, J.T. und Frost, R.L., 2000, The effects of various hydrothermal treatments on magnesium-aluminium hydrotalcites. J. Mater. Sci., 35, 4347-4355.
- Hoffmann, H. und Ulbricht, W., 1993, Physikalische Chemie der Tenside. In: Kosswig, K. und Stache, H. (Eds.): Die Tenside. Carl Hanser Verlag, München, Wien, 1-114.
- Hou, X., Bish, D.L., Wang, S.-L., Johnston, C.T. und Kirkpatrick, R.J., 2003, Hydration, expansion, structure, and dynamics of layered double hydroxides. Am. Min., 88, 167-179.
- Hwang, S.-H., Han, Y.-S. und Choy, J.-H., 2001, Intercalation of Functional Organic Molecules with Pharmaceutical, Cosmetical and Nutraceutical Functions into Layered Double Hydroxides and Zinc Basic Salts. Bull. Korean Chem. Soc., 22, 9, 1019-1022.
- Ingram, L. und Taylor, H.F.W., 1967, The crystal structure of sjögrenite and pyroaurite. Min. Mag., 36, 465-479.
- Itoh, T., Ohta, N., Shichi, T., Yui, T. und Takagi, K., 2003, The Self-Assembling Properties of Stearate lons in Hydrotalcite Clay Composites. Langmuir, 19, 9120-9126.
- Jaubertie, C., Holgado, M. J., San Román, M. S. und Rives, V., 2006, Structural Characterization and Delamination of Lactate-Intercalated Zn,Al-Layered Double Hydroxides. Chem. Mater., 18, 3114-3121.
- Johnson, C.A. und Glasser, F.P., 2003, Hydrotalcite-like Minerals $(M_2AI(OH)_{6}(CO_3)_{0,5}\bullet XH_2O)$, where M = Mg, Zn, Co, Ni) in the Environment: Synthesis, Characterization and Thermodynamic Stability. Clays and Clay Min., 1, 1-8.
- Juillot, F., Morin, G., Ildefonse, P., Trainor, T.P., Benedetti, M., Galoisy, L., Calas, G. und Brown, G.E., 2003, Occurrence of Zn/Al hydrotalcite in smelter-impacted soils from northern France: Evidence from EXAFS spectroscopy and chemical extractions. Am. Min., 88, 509-526.
- Kagunya, W., Hassan, Z. und Jones, W., 1996, Catalytic Properties of Layered Double Hydroxides and Their Calcined Derivatives. Inorg. Chem., 35, 5970-5974.
- Kakiuchi, N., Maeda, Y., Nishimura, T. und Uemura, S., 2001, Pd(II)-Hydrotalcite-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones Using Atmospheric Pressure of Air. J. Org. Chem, 66, 6620-6625.
- Kaneda, K., Yamaguchi, K., Mori, K., Mizugaki, T. und Ebitani, K., 2000, Catalyst design of hydrotalcite compounds for efficient oxidations. Catalysis Surv., 4, 31-38.

- Kanezaki, E., Kinugawa, K. und Ishikawa, Y., 1994, Conformation of intercalated aromatic molecular anions between layeres of Mg/AI- and Zn/AI-hydrotalcites. Chem. Phys. Lett., 226, 325-330.
- Khan, A.I. und O'Hare, D., 2002, Intercalation chemistry of layered double hydroxides: recent developments and applications. J. Mater. Chem., 12, 3191-3198.
- Kim, Y., Yang, W., Liu, P.K.T., Sahimi, M. und Tsotsis, T.T., 2004, Thermal Evolution of the Structure of a Mg-Al-CO₃ Layered Double Hydroxide: Sorption Reversibility Aspects. Ind. Eng. Chem. Res., 43, 4559-4570.
- Kloprogge, J.T. und Frost, R.L., 2001, Infrared and Raman Spectroscopic Studies of Layered Double Hydroxides (LDHs). In: Rives, V. (Ed.): Layered double hydroxides: Present and future. Nova science publishers, Inc., New York, 139-192.
- König, U., 2006, Synthese, Charakterisierung und Eigenschaften von manganhaltigen Layered Double Hydroxides (LDHs). Dissertation, Halle, 124 S.
- Kooli, F., Kosuge, K. und Tsunahima, A., 1995, Mg-Zn-Al-CO₃ and Zn-Cu-Al-CO₃ hydrotalcite-like compounds: preparation and characterisation. J. Mater. Sci., 30, 4591-4597.
- Kooli, F. und Jones, W., 1997, The incorporation of benzoate and terephthalate anions into layered double hydroxides. In: Occelli, M.L. und Kessler, H. (Eds.): Synthesis of porous materials. Marcel Dekker, Inc., 718 S.
- Kopka, H., Beneke, K. und Lagaly, G., 1988, Anionic surfactants between double metal hydroxide layers. J. Colloid Interf. Sci., 123, 427-436.
- Kortnig, S. und Süsse, P., 1975, Meixnerit, Mg₆Al₂(OH)₁₈ 4H₂O, ein neues Magnesium-Aluminium-Hydroxid-Mineral. Tscherm. Min. Pet. Mitt., 22, 79-87.
- Kuk, W.K. und Huh, Y.D., 1997, Preferential intercalation of isomers of anthraquinone sulfonate ions into layered double hydroxides. J. Mater. Chem., 7, 1933-1936.
- Kustrowski, P. Chmielarz, L., Bozek, E., Sawalha, M. und Roessner, F., 2004, Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH₃ and CO₂. Mater. Res. Bull., 39, 263-281.
- Kuzel, H.-J., 1968, Über die Diadochie von Al^{3+} , Cr^{3+} und Fe^{3+} in $3CaO \cdot Al_2O_3 \cdot 6H_2O$ oberhalb 50°C. N. Jb. Miner. Mh., 3/4, 87-96.
- Laberge, M., Sharp, K.A. und Vanderkooi, J.M., 1998, Effect of charge interactions on the carboxylate vibrational stretching frequency in *c*-type cytochromes investigated by continuum electrostatic calculations and FTIR spectroscopy. Biophys. Chem., 71, 9-20.
- Lagaly, G., 1976, Kink-Block and Gauche-Block Structures of Bimolecular Films. Angew. Chem. Int. Ed. Engl., 15, 575-586.

Lagaly, G., 1981, Inorganic layer compounds. Naturwissenschaften, 68, 82-88.

- Lagaly, G. und Weiss, A., 1970/1971, Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen. Kolloid Z. Z. Polymere, 237: Teil 1, 266-273, Teil 2, 364-368, Teil 3, 485-493, 243: Teil 4, 48-55.
- Lange, P. und Plank, J., 1999, Mixed Metal Hydroxide (MMH) Eigenschaften und Wirkmechanismus als Verdickungsmittel in Bohrlochspülungen. Erdöl, Erdgas, Kohle, 7/8, 349-353.
- Laugier, J. und Bochu, B., 2003, Celref3 beta version. Programme d'affinement des paramètres de maille à partir d'un diagramme de poudre. Développé au laboratoire des matériaux et du Génie Physique. Ecole nationale supérieure de physique de Grenoble (INPG). Domaine universitaire BP 46, 38402 Saint Martin d'Hères. Http://www.inpg.fr/LMGP
- Lee, J.H., Rhee, S.W. und Jung, D.-Y., 2006, Ion-Exchange Reactions and Photothermal Patterning of Monolayer Assembled Polyacrylate-Layered Double Hydroxide Nanocomposites on Solid Substrates. Chem. Mater., 18, 4740-4746.
- MacEwan, D.M.C., 1962, Interlamellar Reactions of Clays and other Substances. Clays and Clay Min., 9, 431-443.
- Mascolo, G. und Marino, O., 1980, A new synthesis and characterisation of magnesiumaluminiumhydroxides. Min. Mag., 43, 619-621.
- Melo, J. V., Cosnier, S., Mousty, C., Martelet, C. und Jaffrezic-Renault, N., 2002, Urea Biosensors Based on Immobilization of Urease into Two Oppositely Charged Clays(Laponite and Zn-Al Layered Double Hydroxides). Anal. Chem., 74, 4037-4043.
- Meyn, M., Beneke, K. und Lagaly, G., 1990, Anion-exchange reactions of layered double hydroxides. Inorg. Chem., 29, 5201-5207.
- Meyn, M., 1991, Doppelhydroxide und Hydroxidoppelsalze Synthese, Eigenschaften und Anionenaustauschverhalten. Dissertation, Kiel, 265 S.
- Miyata, S., 1975, The synthesis of hydrotalcite-like compounds and their structures and physicochemical properties I: the system Mg²⁺-Al³⁺-ClO₄⁻, Ni²⁺-Al³⁺-Cl⁻ and Zn²⁺-Al³⁺-Cl⁻. Clays and Clay Min., 23, 369-375.
- Miyata, S., 1980, Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Min., 28, 50-56.
- Miyata, S., 1983, Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Min., 31, 305-311.
- Miyata, S. und Kuruma, T., 1973, Synthesis of new hydrotalcite-like compounds and their physicochemical properties. Chem. Lett., 2, 843-848.

- Miyata, S. und Okada, A., 1977, Synthesis of hydrotalcit.like compounds and their physicochemical properties – The synthesis of Mg²⁺ - Al³⁺ - SO₄²⁻ and Mg²⁺ - Al³⁺ - CrO₄²⁻. Clays and Clay Min., 25, 14-18.
- Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Guého, C., Besse, J.P. und Morela, J.P., 2003, Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem., 13, 2582–2585.
- Nakamoto, K., 1986, Infrared and raman spectra of inorganic and coordination compounds. John Wiley & Sons, New York, 484 S.
- Nakayama, H., Wada, N. und Tsuhako, M., 2004, Intercalation of amino acids and peptides into Mg–AI layered double hydroxide by reconstruction method. Int. J. Pharm., 269, 469–478.
- Nayak, M., Kutty, T.R.N., Jayaraman, V. und Periaswamy, G., 1997, Preparation of the layered double hydroxide (LDH) LiAl₂(OH)₇·2H₂O, by gel to crystallite conversion and a hydrothermal method, and its conversion to lithium aluminates. J. Mater. Chem., 7, 2131-2137.
- Newman, S.P., Cristina, T.D. und Coveney, P.V., 2002, Molecular Dynamics Simulation of Cationic and Anionic Clays Containing Amino Acids. Langmuir, 18, 2933-2939.
- Nickel, E.H., 1976, New data on woodwardite. Min. Mag., 40, 644-647.
- Nickel, E.H. und Clarke, R.M., 1976, Carrboydite, a hydrated sulfate of nickel and aluminium: A new mineral from Western Australia. Am. Min., 61, 366-372.
- Nickel, E.H. und Wildman, J.E., 1981, Hydrohonessite- a new hydrated Ni-Fe hydroxy-sulfate mineral; its relationship to honessite, carrboydite, and minerals of the pyroaurite group. Min. Mag., 44, 333-337.
- Oliveira, A.P.A., Hochepied, J.F., Grillon, F. und Berger, M.H., 2003, Controlled Precipitation of Zinc Oxide Particles at Room Temperature. Chem. Mater., 15, 3202-3207.
- Ogawa, M. und Asai, S., 2000, Hydrothermal Synthesis of Layered Double Hydroxide-Deoxycholate Intercalation Compounds. Chem. Mater, 12, 3253-3255.
- Pastor-Rodriguez, J. und Taylor, H.F.W., 1971, Crystal structure of coalingite. Min. Mag., 38, 286-294.
- Pausch, I., Lohse, H.H., Schürmann, K. und Allmann, R., 1986, Synthesis of disordered and Al-rich hydrotalcite-like compounds. Clays and Clay Min., 34, 507-510.
- Peacor, D.R., Dunn, P.J., Kato, A. und Wicks, F.J., 1985, Shigaite, a new manganese aluminum sulfate mineral from the loi Mine, Shiga, Japan. N. Jb. Min. Mh., 10, 453-457.

- Piret, P. und Deliens, M., 1980, La comblainite, $(Ni^{2+}_x, Co^{3+}_{1-x})(OH)_2(CO_3)_{(1-x)/2}$ YH₂O, nouveau mineral du groue de la pyroaurite. Bull. Mineral., 103, 113-117.
- Pöllmann, H. und Gebhard, G., 1992, Speicherminerale für Schwermetalle Co, Ni, Cu, Zn. Bh. Z. Eur. J. Min., 4, 219.
- Pöllmann, H. und Oberste-Padberg, R., 2001, Manganese in high alumina cement (HAC). In: Mangabhai, R.J. und Glasser, F.P. (Eds.): Calcium aluminate cements 2001. Conference on calcium aluminate cements. 139-148.
- Pöllmann, H., Stöber, S. und Stern, E., 2006, Synthesis, characterization and reaction behaviour of lamellar AFm phases with aliphatic sulfonate-anions. Cem. Concr. Res., 36, 2039-2048.
- Pretsch, E., Bühlmann, P., Affolter, C. und Badertscher, M., 2001, Spektroskopische Daten zur Strukturaufklärung organischer Verbindungen. Springer-Verlag, Berlin, 419.
- Prevot, V., Forano, C., Besse, J.P. und Abraham, F., 1998, Syntheses and Thermal and Chemical Behaviors of Tartrate and Succinate Intercalated Zn₃Al and Zn₂Cr Layered Double Hydroxides. Inorg. Chem., 37, 4293-4301.
- Raade, G., Elliott, C.J. und Din, V.K., 1985, New data on glaucocerenite. Min. Mag., 49, 583-590.
- Radha, A.V., Vishnu Kamath, P. und Shivakumara, C., 2007, Conservation of Order, Disorder, and "Crystallinity" during Anion-Exchange Reactions among Layered Double Hydroxides (LDHs) of Zn with Al. J. Phys. Chem. B, 111, 3411-3418.
- Ram Reddy, M.K., Xu, Z.P., Lu, G.Q. und Diniz da Costa, J.C., 2006, Layered Double Hydroxides for CO₂ Capture: Structure Evolution and Regeneration. Ind. Eng. Chem. Res., 45, 7504-7509.
- Ramos, E., Lopez, T., Bosch, P., Asomoza, M. und Gomez, R., 1997, Thermal Stability of Sol-Gel Hydrotalcites. J. Sol-Gel Sci. Tech., 8, 437-442.
- Reichle, W.T., 1985, Catalytic reactions by thermally activated, synthetic, anionic clay minerals. J. Catalysis, 94, 547-557.
- Reichle, W.T., 1986, Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22, 135-141.
- Rennemann, F., 1997, Untersuchungen zur Protonenmobilität in synthetischen Hydrotalciten. Dissertation, Mainz, 90 S.
- Richardson, M.C. und Braterman, P.S., 2007, Infrared Spectra of Oriented and Nonoriented Layered Double Hydroxides in the Range from 4000 to 250 cm-1, with Evidence for Regular Short-Range Order in a Synthetic Magnesium-Aluminum LDH with Mg:Al = 2:1 but Not with Mg:Al = 3:1. J. Phys. Chem. C, 111, 7 S.
- Rius, J. und Allmann, R., 1984, The superstructure of the double layer mineral wermlandite. Z. Krist., 168, 133-144.

- Rius, J, und Plana, F., 1986, Contribution to the superstructure resolution of the double layer mineral motukoreaite. N. Jb. Min., 6, 263-272.
- Rives, V., 2001, Surface Texture and Electron Microscopy Studies of Layered Double Hydroxides.In: Rives, V. (Ed.): Layered double hydroxides: Present and future. Nova science publishers, Inc., New York, 229-250.
- Rocca, E., Caillet, C., Mesbah, A., Francois, M. und Steinmetz, J., 2006, Intercalation in Zinc-Layered Hydroxide: Zinc Hydroxyheptanoate Used as Protective Material on Zinc. Chem. Mater., 18, 6186-6193.
- Roy, A., Forano, C. und Besse, J.P., 2001, Layered double hydroxides: Synthesis and postsynthesis modification. In: Rives, V. (Ed.): Layered double hydroxides: Present and future. Nova science publishers, Inc., New York, 1-38.
- Roy, D.M., Roy, R. und Osborn, E.F., 1953, The system MgO-Al₂O₃-H₂O and influence of carbonate and nitrate ions on the phase equilibria. Amer. J. Sci., 251, 337-361.
- Schleich, D.M., 1994, Chimie deuce: Low temperature techniques for synthesizing useful compounds. Solid State Ionics, 70/71, 407-411.
- Seel, F., 1970, Grundlagen der analytischen Chemie. Verlag Chemie, Weinheim, 176 S.
- Schwartz, G. und Engel, J., 1972, Kinetics of Cooperative Conformational Transitions of Linear Biopolymers. Angew. Chem. Int. Edit., 11, 7, 568-575.
- Seida, Y., Nakano, Y. und Nakamura, Y., 2002, Crystallization of Layered Double Hydroxides by Ultrasound and the Effect of of Crystal Quality on their Surface Properties. Clays and Clay Min., 50, 525-532.
- Serna, C.J., Rendon, J.L. und Iglesias, J.E., 1982, Crystal-chemical study of layered [Al₂Li(OH)₆]X
 nH₂O. Clays and Clay Min., 30, 180-184.
- Shan, D., Cosnier, S. und Mousty, C., 2003, Layered Double Hydroxides: An Attractive Material for Electrochemical Biosensor Design. Anal. Chem., 75, 3872-3879.
- Sowada, R., 1985, Tensidchemische Korrelation in der Alkansulfonat-Reihe. In: Hauthal, H.G. (ED.): Alkansulfonate. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 113-142.
- Stern, E., 2003, Untersuchungen zu Tetracalciumaluminathydrat und der Einbau von Alkylsulfonaten. Dissertation, Halle, 115 S.
- Stöber, S., 1999, Einfluß von Sulfonsäuren und deren Natriumverbindungen auf die Hydratation eines Portlandzementes (CEM I 32,5 R) unter Berücksichtigung der Kristallisation lamellarer Calciumaluminathydrate. Dissertation, Halle, 178 S.
- Stryer, L., 2003, Biochemie. Spektrum Akademischer Verlag, Heidelberg, 1125 S.

- Taylor, H.F.W., 1969, Segregation and cation-ordering in sjögrenite and pyroaurite. Min. Mag., 37, 287, 338-342.
- Taylor, H.F.W., 1973, Crystal structures of some double hydroxide minerals. Min. Mag., 39, 304, 377-389.
- Taylor, R.M., 1984, The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis. Clay Min., 19, 519-603.
- Talor, W.R., 1986, The classification of amino acid conservation. J. Theor. Biol., 119, 205-218.
- Tomaszewski, P.E., 1992, Structural phase transitions in crystals. I. Database. Phase Transitions, 38, 127-220.
- Toth, E., 1998, Untersuchungen zur Synthese, zu den Quellungseigenschaften und zum Anionenaustausch von kristallchemisch modifizierten Hydrotalkiten. Dissertation, München, 228.
- Treiman, A.H. und Peacor, D.R., 1982, The crystal structure of lawsonbauerite, $(Mn,Mg)_9Zn_4(SO_4)_2$ (OH)₂₂ 8H₂O, and its relation to mooreite. Am. Min., 67, 1029-1034.
- Ulibarri, M.A. und Hermosin, M.C., 2001, Layered Double Hydroxides in water decontamination. In: Rives, V. (Ed.): Layered double hydroxides: Present and future. Nova science publishers, Inc., New York, 251-284.
- Velu, S., Ramkumar, V., Narayanan, A. und Swamy, C. S., 1997, Effect of interlayer anions on the physicochemical properties of zinc–aluminium hydrotalcite-like compounds. J. Mater. Sci., 32, 957-964.
- Wang, J. A., Morales, A., Bokhimi, X. und Novaro, O., 1999, Cationic and Anionic Vacancies in the Crystalline Phases of Sol-Gel Magnesia-Alumina Catalysts. Chem. Mater., 11, 308-313.
- Wang, J., Kalinichev, A.G., Amonette, J.E. und Kirkpatrick, R.J., 2003, Interlayer structure and dynamics of CI-bearing hydrotalcite: far infrared spectroscopy and molecular dynamics modeling. Am. Min., 88, 398-409.
- Wei, M., Xu, X., He, J., Yuan, Q., Rao, G., Evans, D.G., Pu, M. und Yang, L., 2006, Preparation and thermal decomposition studies of L-tyrosine intercalated MgAI, NiAI and ZnAI layered double hydroxides. J. Phys. Chem. Sol., 67, 1469-1476.
- Whilton, N.T., Vickers, P.J. und Mann, S., 1997, Bioinorganic clays: synthesis and characterization of amino- and polyamino acid intercalated layered double hydroxides. J. Mater. Chem., 7, 1623-1629.
- White, J.S., Henderson, E.P. und Mason, B., 1967, Secondary minerals produced by weathering of the wolf Creek meteorite. Am. Min., 52, 1190-1197.

- Wiechert, E., 1976, Talcid, a new antacid. Report on an open 'Clinical Test'. Med. Welt, 27, 2489-2491.
- Wieland, G., 1985, Wasserbestimmung durch Karl-Fischer-Titration. Theorie und Praxis. GIT Verlag, Darmstadt, 102 S.
- Witzke, T., 1995, A new aluminum chloride hydroxide hydrate mineral. Ber. D. Min. Ges., 1, Eur. J. Min., 7, 271.
- Witzke, T. und Pöllmann, H., 1996, Mineralneubildungen in den Schlacken der Kupferschieferverhüttung des Mansfelder Reviers, Sachsen-Anhalt. Hall. Jhb. Geo., 18, 109-118.
- Wypych, F., Arízaga, G.G.C. und Costa Gardolinski, J.E.F., 2005, Intercalation and functionalization of zinc hydroxide nitrate with mono- and dicarboxylic acids. J. Coll. Int. Sci., 283, 130-138.
- Xu, Z.P. und Bratermann, P.S., 2007, Competitive Intercalation of Sulfonates into Layered Double Hydroxides (LDHs): the Key Role of Hydrophobic Interactions. Phys. Chem. C, 111, 4021-4026.
- Yamaguchi, N., Nakamura, T., Tadanaga, K., Matsuda, A., Minami, T. and Tatsumisago, M., 2006, Direct Formation of Zn-Al Layered Double Hydroxide Films with High Transparency on Glass Substrate by the Sol-Gel Process with Hot Water Treatment. Cryst. Growth Design, 6, 1726-1729.
- Yang, Q.Z., Sun, D.J., Zhang, C.G., Wang, X.J. und Zhao, W.A., 2003, Synthesis and Characterization of Polyoxyethylene Sulfate Intercalated Mg-Al-Nitrate Layered Double Hydroxide. Langmuir, 19, 5570-5574.
- Yang, L., Sharivari, Z., Liu, P.K.T., Sahimi, M., Tsotsis, T.T., 2005, Removal of Trace Levels of Arsenic and Selenium from Aqueous Solutions by Calcined and Uncalcined Layered Double Hydroxides (LDH). Ind. Eng. Chem. Res., 44, 6804-6815.
- Yong, Z., Mata, V. und Rodrigues, A.E., 2001, Adsorption of Carbon Dioxide onto Hydrotalcite-like Compounds (HTlcs) at High Temperatures. Ind. Eng. Chem. Res., 40, 204-209.
- You, Y., Vance, G.F. und Zhao, H., 2001, Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Sci., 20, 13-25.

7. Anhang

7.1 Gitterparameter von zinkhaltiger LDHs

7.1.1 ZnAI-LDHs mit anorganischen Anionen	A2
7.1.2 ZnAl-Carboxylate	A6
7.1.3 ZnAI-Dicarboxylate	A20
7.1.4 ZnAI-Sulfonate	A28
7.1.5 ZnAI-Aminosäureanionen	A44

7.2 Ergebnisse der CHNS-ElementaranalysenA48

7.3 IR Spektren und IR-Absorptionsbanden zinkhaltiger LDHs

ZnAI-Carboxylate	A50
ZnAI-Dicarboxylate	A57
ZnAI-Sulfonate	A60
ZnAI-Aminosäureanionen	A73

7.1. Gitterparameter von LDHs mit $[Zn_{1-x}AI_x(OH)_2]^{x+}[A^{r-}_{x/r} \bullet nH_2O]^{x-}$

Zink Aluminium Chlor	rid Hydrat						
[Zn ₂ Al(OH) ₆][Cl • n H ₂	0]			100%	r.F.		
a ₀ = 0,307(9) nm	C ₀ =	= 2,333(9) nm		V = 0,	191(6)	nm ³	
F ₂₂ = 68,1 (0.010, 33)	RG	: R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
11,36	100	7,7835	0	0	3	- 0,006	Ī
22,84	52	3,8896	0	0	6	0,001	
33,79	1	2,6505	1	0	1	- 0,020	
34,50	4	2,5978	1	0	2	0,019	
37,03	1	2,4257	1	0	4	- 0,010	
38,87	4	2,3150	1	0	5	0,003	
43,42	1	2,0825	1	0	7	- 0,005	
46,07	5	1,9685	1	0	8	- 0,010	
46,65	2	1,9453	0	0	12	- 0,009	
52,03	2	1,7563	1	0	10	- 0,006	
55,30	2	1,6598	1	0	11	0,015	
60,06	2	1,5393	1	1	0	0,003	
61,34	3	1,5101	1	1	3	- 0,001	
62,31	2	1,4888	1	0	13	0,017	
65,12	1	1,4312	1	1	6	0,005	
66,04	1	1,4135	1	0	14	0,002	
71,18	1	1,3236	1	1	9	0,008	
72,90	1	1,2965	0	0	18	0,008	
74,01	2	1,2798	1	0	16	- 0,008	
79,27	1	1,2075	1	1	12	- 0,039	
86,08	1	1,1286	2	0	11	0,021	
87.75	1	1.1114	0	0	21	0.001	

7.1.1 Anorganische Zwischenschichtanionen

[Zn ₂ Al(OH) ₆][Cl • 1,8H ₂ O] 35% r.F.							
a ₀ = 0,307(9) nm	c ₀ =	$c_0 = 2,322(2) \text{ nm}$ $V = 0,190(6) \text{ nm}^3$					
F ₁₉ = 52,4 (0.013, 28)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
11,42	100,0	7,7427	0	0	3	0,002	
22,94	48	3,8736	0	0	6	- 0,018	
33,79	3	2,6530	1	0	1	- 0,022	
34,47	13	2,6530	1	0	2	- 0,010	
37,05	1	2,4247	1	0	4	- 0,022	
38,91	13	2,3145	1	0	5	- 0,007	
43,50	2	2,0790	1	0	7	- 0,008	
46,19	10	1,9652	1	0	8	0,004	
46,90	3	1,9355	0	0	12	- 0,010	
52,20	3	1,7508	1	0	10	0,014	
55,48	3	1,6550	1	0	11	0,011	
60,06	11	1,5392	1	1	0	0,018	
61,36	9	1,5109	1	1	3	0,014	
62,54	2	1,4840	1	0	13	0,002	
65,16	4	1,4305	1	1	6	0,003	
66,32	1	1,4083	1	0	14	0,07	
71,25	2	1,3225	1	1	9	- 0,028	
74,33	2	1,2761	1	0	16	- 0,018	
78,97	1	1,2114	2	0	8	0,020	

[Zn ₂ Al(OH) ₆][Cl]	135°C					
a ₀ = 0,307(0) nm	С	₀ = 2,246(0) nm	V	= 0,	183(4)	nm ³
F ₁₃ = 109,1 (0.007, 16)	R	RG: R3, R-3, R32, R3m, R-3r	n			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad] h		k	I	∆2θ [Grad]
11,81	100	7,4891 0		0	3	- 0,004
23,75	19	3,7437 0		0	6	- 0,002
33,93	1	2,6397 1		0	1	0,011
34,65	1	2,5867 1		0	2	0,007
35,97	1	2,4948 0		0	9	0,012
39,33	1	2,2892 1		0	5	- 0,019
47,03	1	1,9307 1		0	8	- 0,004
48,62	1	1,8711 0		0	12	0,017
53,34	1	1,7161 1		0	10	- 0,009
60,23	1	1,5352 1		1	0	- 0,001
61,63	1	1,5038 1		1	3	0,005
61,91	1	1,4974 0		0	15	- 0,004
64,24	1	1,4487 1		0	13	0,001

Zink Aluminium Nitrat Hydrat							
[Zn ₂ Al(OH) ₆][NO ₃ • n	[Zn ₂ Al(OH) ₆][NO ₃ • n H ₂ O] 100% r.F.						
a ₀ = 0,307(8) nm	c ₀ =	2,678(4) nm		V = 0,	,219(8)	nm ³	
F ₁₈ = 39,7 (0.012, 37)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
9,90	100	8,9933	0	0	3	0,003	
19,87	51	4,4677	0	0	6	0,000	
30,00	4	2,9787	0	0	9	- 0,002	
34,27	1	2,6145	1	0	2	- 0,002	
36,22	1	2,4799	1	0	4	- 0,018	
37,65	1	2,3873	1	0	5	- 0,013	
43,34	2	2,0861	1	0	8	- 0,017	
48,09	1	1,8905	1	0	10	- 0,03	
50,74	1	1,7977	0	0	12	0,002	
51,09	2	1,7879	0	0	15	- 0,021	
56,39	1	1,6304	1	0	13	- 0,011	
60,09	1	1,5384	1	1	0	0,024	
61,07	2	1,5161	1	1	3	0,022	
63,93	1	1,4550	1	1	6	- 0,006	
65,84	1	1,4185	1	0	16	0,013	
74,30	1	1,2766	0	0	21	- 0,004	
76,35	1	1,2463	1	0	19	- 0,007	
87,27	1	1,1163	0	0	24	- 0,027	

[Zn₂Al(OH)₆][NO₃ • 1,9H₂O] 35% r.F.						
a ₀ = 0,307(9) nm	C ₀ =	: 2,662(0) nm		V = 0,	218(5)	nm ³
F ₁₇ = 41,6 (0.011, 37)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
9,97	100	8,8663	0	0	3	0,008
20,01	62	4,4332	0	0	6	0,016
30,19	6	2,9579	0	0	9	- 0,002
36,26	1	2,4752	1	0	4	- 0,005
37,72	1	2,3826	1	0	5	0,021
40,63	1	2,2185	0	0	12	- 0,003
43,48	1	2,0798	1	0	8	0,019
48,26	1	1,8841	1	0	10	- 0,009
50,93	1	1,7915	1	0	11	0,014
51,44	1	1,7750	0	0	15	- 0,010
56,62	1	1,6243	1	0	13	- 0,012
59,65	1	1,5487	1	0	14	- 0,027
62,77	1	1,4791	0	0	18	- 0,008
66,13	1	1,4118	1	0	16	- 0,019
74,85	1	1,2676	0	0	21	0,004
76,79	1	1,2402	1	0	19	0,004
87,98	1	1,1091	0	0	24	0,008

[Zn ₂ Al(OH) ₆][NO ₃]	150°C					
a ₀ = 0,308(0) nm	$c_0 = 0$	2,205(8) nm		V = 0	181(3)	nm ³
F ₆ = 40,7 (0.006, 26)	RG:	R3, R-3, R32, R3m	, R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
12,02	100	7,3575	0	0	3	- 0,008
24,19	37	3,6759	0	0	6	0,003
49,56	1	1,8376	0	0	12	0,015
63,17	1	1,4706	0	0	15	- 0,005
77,67	1	1,2284	2	0	7	- 0,001
77,79	1	1,2247	1	0	16	0,002

[Zn ₃ Al(OH) ₈][NO ₃ • n H ₂ O] 100% r.F.						
a ₀ = 0,308(0) nm	$c_0 = 2$	2,301(0) nm		V = 0,	189(1)	nm³
F ₂₀ = 129,9 (0.006, 2	7) RG: I	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
11,52	100	7,6793	0	0	3	- 0,004
23,18	25	3,8376	0	0	6	0,004
33,81	1	2,6514	1	0	1	0,008
34,48	8	2,6010	1	0	2	- 0,003
37,12	1	2,4201	1	0	4	- 0,001
38,99	5	2,3080	1	0	5	- 0,002
43,66	1	2,0715	1	0	7	- 0,003
46,38	4	1,9560	1	0	8	- 0,002
47,36	1	1,9178	0	0	12	- 0,006
52,47	2	1,7426	1	0	10	- 0,006
55,80	1	1,6462	1	0	11	- 0,002
60,02	2	1,5402	1	1	0	- 0,003
61,32	2	1,5106	1	1	3	- 0,027
62,97	2	1,4749	1	0	13	0,000
65,23	1	1,4291	1	1	6	0,003
66,79	1	1,3994	1	0	14	- 0,007
71,11	1	1,3247	2	0	2	0,014
73,93	1	1,2810	2	0	5	0,005
74,97	1	1,2657	1	0	16	0,011
79,08	1	1,2100	2	0	8	0,004

Zink Aluminium Sulfat	Zink Aluminium Sulfat Hydrat							
[Zn ₆ Al ₂ (OH) ₁₆][SO ₄ • n	Zn₆Al₂(OH)₁₆][SO₄ • n H₂O] 100% r.F.							
a ₀ = 0,925(4) nm	C ₀ =	= 3,329(4) nm		V = 2	469(2)	nm ³		
F ₁₅ = 11,2 (0.012, 116)	RG	: R3, R-3, R32, R3m,	R-3m					
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
7,95	100	11,1062	0	0	3	- 0,006		
15,98	21	5,5419	0	0	6	0,021		
20,77	1	4,2729	1	1	3	- 0,011		
24,07	12	3,6938	1	0	8	- 0,002		
33,54	3	2,6699	3	0	0	0,019		
34,49	2	2,5986	3	0	3	- 0,018		
37,22	2	2,4140	2	0	11	0,018		
41,66	1	2,1662	3	0	9	- 0,009		
47,18	1	1,9249	3	0	12	- 0,013		
52,95	1	1,7279	4	1	3	- 0,012		
53,37	1	1,7153	2	1	16	- 0,006		
59,94	1	1,5418	3	3	0	0,021		
60,15	1	1,5371	2	0	20	0,010		
60,56	1	1,5277	3	3	3	- 0,003		
62,45	1	1,4859	3	3	6	0,004		

[Zn ₆ Al ₂ (OH) ₁₆][SO ₄ • 6,6 H ₂ O] 35% r.F.						
a ₀ = 0,924(1) nm	c ₀ =	3,311(6) nm		V = 2,	448(9)	nm ³
F ₁₄ = 6,5 (0.012, 183)	RG:	R3, R-3, R32, R3m, I	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
8,04	100	10,9903	0	0	3	0,035
16,06	57	5,5138	0	0	6	0,016
24,16	51	3,6813	0	0	9	- 0,012
33,60	3	2,6654	3	0	0	0,027
34,56	3	2,5931	3	0	3	- 0,003
37,42	3	2,4015	3	0	6	0,003
41,78	2	2,1604	3	0	9	- 0,015
47,37	4	1,9174	3	0	12	0,015
49,38	2	1,8440	3	1	10	- 0,008
53,46	3	1,7125	4	0	10	- 0,004
60,01	2	1,5403	3	3	0	- 0,010
60,56	4	1,5276	4	0	14	- 0,005
62,56	1	1,4836	3	3	6	- 0,006
77,06	1	1,2366	5	0	17	0,007

[Zn ₆ Al ₂ (OH) ₁₆][SO ₄]		105°C				
a ₀ = 0,923(3) nm	c ₀ =	2,585(1) nm		V = 1,	908(4)	nm ³
F ₇ = 6,2 (0.013, 84)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	l	∆2θ [Grad]
10,25	65	8,6170	0	0	3	- 0,009
20,60	100	4,3070	0	0	6	0,007
33,61	5	2,6643	3	0	0	0,013
34,31	2	2,6119	2	1	5	- 0,038
52,41	1	1,7444	4	1	0	0,015
60,55	2	1,5278	5	0	5	- 0,003
61,40	2	1,5087	4	2	1	- 0,009

7.1.2 ZnAl-Carboxylate

Zink Aluminium Formiat Hydrat								
[Zn ₂ Al(OH) ₆][HCOO •	[Zn ₂ Al(OH) ₆][HCOO • n H ₂ O] 100% r.F.							
a ₀ = 0,307(8) nm	c ₀ =	3,360(9) nm		V = 0	275(8)	nm ³		
F ₁₁ = 40,9 (0.011, 25)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
7,90	100	11,1870	0	0	3	0,018		
15,82	28	5,6027	0	0	6	0,010		
23,81	32	3,7366	0	0	9	0,007		
34,02	1	2,6351	1	0	2	- 0,001		
40,06	1	2,2509	1	0	8	- 0,027		
45,15	1	2,0081	1	0	11	0,021		
48,73	1	1,8687	0	0	18	0,003		
51,18	1	1,7850	1	0	14	0,007		
55,65	1	1,6516	1	0	16	- 0,010		
63,02	1	1,4752	1	0	19	0,001		
65,58	1	1,4204	1	0	20	0,014		

Zink Aluminium Acetat Hydrat								
[Zn ₂ Al(OH) ₆][CH ₃ COO • n H ₂ O] 100% r.F.								
a ₀ = 0,307(9) nm	c ₀ =	3,816(8) nm		V = 0	,313(3)	nm ³		
F ₈ = 48,7 (0.007, 25)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
6,94	100	12,7337	0	0	3	- 0,006		
13,90	25	6,3679	0	0	6	- 0,014		
20,92	24	4,2409	0	0	9	0,000		
28,02	4	3,1818	0	0	12	- 0,009		
42,73	1	2,1161	1	0	11	- 0,006		
50,15	1	1,8174	0	0	21	0,003		
60,55	1	1,5279	1	1	3	0,008		
61,97	1	1,4960	1	1	6	- 0,005		

Zink Aluminium Propionat Hydrat								
[Zn ₂ Al(OH) ₆][C ₂ H ₅ COO • n H ₂ O] 100% r.F.								
a ₀ = 0,307(7) nm	C ₀ = 4	4,123(8) nm		V = 0	,338(2)	nm³		
F ₁₃ = 33,7 (0.012, 31)) RG: I	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
6,43	100	13,7463	0	0	3	0,005		
12,87	36	6,8813	0	0	6	- 0,004		
19,38	28	4,5812	0	0	9	0,020		
25,90	14	3,4402	0	0	12	- 0,006		
37,96	1	2,3682	1	0	8	- 0,014		
41,55	1	2,1715	1	0	11	0,012		
46,21	1	1,9645	0	0	21	0,021		
50,87	1	1,7934	1	0	17	0,015		
53,28	1	1,7180	0	0	24	0,011		
54,49	1	1,6825	1	0	19	0,023		
56,38	1	1,6307	1	0	20	0,010		
60,48	1	1,5308	1	1	3	- 0,020		
66,62	1	1,4026	1	0	25	0,000		

Zink Aluminium Butyrat Hydrat									
[Zn₂Al(OH)₆][C₃H₇COO • n H₂O] 100% r.F.									
a ₀ = 0,308(5) nm	C ₀ =	4,506(5) nm		V = 0	,371(4)	nm³			
F ₁₁ = 26,0 (0.012, 34)	RG:	R3, R-3, R32, R3m,	R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]			
5,86	100	15,0621	0	0	3	- 0,016			
11,76	43	7,5214	0	0	6	- 0,016			
17,72	30	5,0090	0	0	9	0,009			
23,67	29	3,7595	0	0	12	- 0,005			
29,72	1	3,0057	0	0	15	0,012			
42,06	1	2,1483	0	0	21	- 0,010			
48,42	1	1,8800	0	0	24	- 0,018			
56,57	1	1,6257	1	0	22	- 0,002			
60,26	1	1,5358	1	1	3	- 0,008			
63,03	1	1,4750	1	1	9	0,017			
67,91	1	1,3791	1	0	28	- 0,024			

Zink Aluminium Pentanoat Hydrat							
[Zn ₂ Al(OH) ₆][C ₄ H ₉ COO • n H ₂ O] 100% r.F.							
a ₀ = 0,307(9) nm	c ₀ =	4,745(0) nm		V = 0	389(5)	nm ³	
F ₈ = 40,2 (0.006, 32)	RG:	R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
5,59	100	15,8056	0	0	3	0,009	
11,19	31	7,9070	0	0	6	0,012	
16,80	14	5,2772	0	0	9	- 0,001	
22,47	19	3,9576	0	0	12	0,000	
28,18	2	3,1673	0	0	15	- 0,010	
45,85	1	1,9777	0	0	24	- 0,013	
60,36	1	1,5335	1	1	3	- 0,002	
62,84	1	1,4777	1	1	9	0,003	

[Zn ₂ Al(OH) ₆][C ₄ H ₉ COO • 2,7 H ₂ O]				35% r.F.			
a ₀ = 0,307(7) nm	c ₀ =	c ₀ = 4,726(7) nm			$V = 0,387(4) \text{ nm}^3$		
F ₉ = 51,5 (0.005, 32)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
5,61	100	15,7319	0	0	3	0,008	
11,22	50	7,8796	0	0	6	- 0,003	
16,88	12	5,2472	0	0	9	0,015	
22,56	24	3,9386	0	0	12	0,001	
28,29	3	3,1521	0	0	15	- 0,009	
33,84	3	2,6470	1	0	2	0,008	
34,48	6	2,5992	1	0	4	- 0,002	
60,41	3	1,5310	1	1	3	- 0,002	
62,90	4	1,4762	1	1	9	0,000	

Zink Aluminium Hexanoat Hydrat								
[Zn₂Al(OH)₆][C₅H₁₁COO • n H₂O] 100% r.F.								
a ₀ = 0,307(9) nm	c ₀ =	5,194(2) nm		V = 0	,426(5)	nm ³		
F ₈ = 23,7 (0.011, 31)	RG:	R3, R-3, R32, R3m,	R-3m					
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
5,09	100	17,3689	0	0	3	- 0,012		
10,21	21	8,6602	0	0	6	0,005		
15,35	8	5,7729	0	0	9	0,009		
20,49	10	4,3303	0	0	12	- 0,008		
25,69	4	3,4643	0	0	15	- 0,010		
34,31	1	2,6112	1	0	4	0,015		
36,27	1	2,4769	0	0	21	- 0,021		
60,29	1	1,5338	1	1	3	- 0,007		

[Zn ₂ Al(OH) ₆][C ₅ H ₁₁ COO • 3,0 H ₂ O]				35% r.F.			
a ₀ = 0,307(6) nm	c ₀ =	$c_0 = 5,149(0) \text{ nm}$ $V = 0,421(8) \text{ nm}^3$				nm ³	
$F_{10} = 47,9 (0.007, 31)$	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
5,14	100	17,1684	0	0	3	- 0,002	
10,32	33	8,5663	0	0	6	0,018	
15,48	10	5,7205	0	0	9	0,001	
20,69	14	4,2893	0	0	12	0,007	
25,93	4	3,4330	0	0	15	- 0,003	
33,80	1	2,6496	1	0	2	- 0,001	
34,36	1	2,6080	1	0	4	0,006	
34,74	2	2,5801	1	0	5	- 0,019	
47,64	1	1,9071	0	0	27	- 0,003	
60,39	3	1,5315	1	1	3	0,008	

Zink Aluminium Heptanoat Hydrat								
[Zn ₂ Al(OH) ₆][C ₆ H ₁₃ COO • n H ₂ O] 100% r.F.								
a ₀ = 0,307(5) nm	c ₀ =	5,469(2) nm		V = 0	447(9)	nm³		
F ₁₂ = 22,4 (0.011, 48)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
4,85	100	18,2124	0	0	3	0,005		
9,71	32	9,1022	0	0	6	0,014		
14,58	8	6,0704	0	0	9	0,016		
19,47	11	4,5545	0	0	12	0,014		
24,40	7	3,6450	0	0	15	0,008		
29,36	2	3,0397	0	0	18	- 0,013		
33,79	4	2,6506	1	0	2	- 0,002		
34,63	2	2,5878	1	0	5	- 0,005		
39,51	2	2,2792	0	0	24	- 0,007		
60,35	6	1,5325	1	1	3	- 0,019		
61,10	4	1,5155	1	1	6	0,027		
71,15	1	1,3241	1	1	21	- 0,005		

[Zn ₂ Al(OH) ₆][C ₆ H ₁₃ COO • 2,5 H ₂ O]				35% r.F.			
a ₀ = 0,307(2) nm	c ₀ =	c ₀ = 5,498(1) nm			449(4)	nm ³	
F ₁₀ = 40,1 (0.005, 48)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
4,82	100	18,3372	0	0	3	- 0,003	
9,64	43	9,1672	0	0	6	- 0,004	
14,49	26	6,1087	0	0	9	0,001	
19,36	62	4,5815	0	0	12	0,001	
24,26	60	3,6660	0	0	15	- 0,004	
29,22	7	3,0539	0	0	18	0,006	
33,81	17	2,6486	1	0	2	- 0,006	
34,65	18	2,5869	1	0	5	- 0,014	
60,42	20	1,5307	1	1	3	- 0,003	
71,16	4	1,3239	2	0	4	0,010	

Zink Aluminium Oktanoat Hydrat								
[Zn ₂ Al(OH) ₆][C ₇ H ₁₅ CO	$[Zn_2AI(OH)_6][C_7H_{15}COO \bullet n H_2O]$				r.F.			
a ₀ = 0,307(1) nm	c ₀ =	5,835(1) nm		V = 0	,476(7)	nm ³		
F ₁₅ = 30,8 (0.010, 51)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
4,57	100	19,3554	0	0	3	0,026		
9,11	21	9,7008	0	0	6	0,023		
13,64	11	6,4867	0	0	9	- 0,007		
18,23	10	4,8620	0	0	12	0,003		
22,83	13	3,8925	0	0	15	- 0,014		
27,49	2	3,2415	0	0	18	0,003		
33,82	3	2,6485	1	0	2	0,007		
34,56	4	2,5930	1	0	5	0,007		
35,40	3	2,5337	1	0	7	0,006		
39,35	1	2,2879	1	0	13	0,009		
46,67	2	1,9446	0	0	30	0,013		
56,75	1	1,6210	0	0	36	- 0,003		
60,42	6	1,5309	1	1	3	0,003		
61,61	3	1,5042	1	0	32	- 0,009		
71,11	1	1,3247	2	0	4	- 0,011		

[Zn ₂ Al(OH) ₆][(C ₇ H ₁₅ C	[Zn ₂ Al(OH) ₆][(C ₇ H ₁₅ COO) (C ₇ H ₁₅ COOH) • n H ₂ O]				35% r.F.			
a ₀ = 0,306(5) nm	c ₀ =	nm ³						
F ₁₄ = 23,4 (0.011, 53)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
4,32	100	20,4466	0	0	3	0,054		
8,54	21	10,3454	0	0	6	0,007		
12,81	14	6,9060	0	0	9	- 0,007		
17,12	1	5,1753	0	0	12	0,004		
21,43	4	4,1432	0	0	15	- 0,010		
25,81	2	3,4491	0	0	18	0,015		
30,19	1	2,9576	0	0	21	0,005		
33,87	3	2,6443	1	0	2	0,000		
34,51	4	2,5966	1	0	5	- 0,017		
38,79	2	2,3198	1	0	13	0,005		
39,54	1	2,2771	1	0	14	0,010		
43,66	1	2,0713	0	0	30	- 0,014		
60,35	3	1,5324	1	1	0	- 0,005		
71,27	1	1,3221	2	0	4	0,005		

Zink Aluminium Nona	noat Hydrat					
[Zn ₂ Al(OH) ₆][C ₈ H ₁₇ COO • n H ₂ O] 100% r.F.						
$a_0 = 0,307(1) \text{ nm}$	c ₀ =	6,172(1) nm		V = 0	,504(1)	nm³
F ₁₄ = 21,5 (0.012, 53)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
4,29	100	20,6024	0	0	3	- 0,002
8,61	18	10,264	0	0	6	0,019
12,91	8	6,8502	0	0	9	0,015
17,24	5	8,1402	0	0	12	0,011
21,60	11	4,1114	0	0	15	0,018
25,96	5	3,4293	0	0	18	- 0,002
33,81	4	4,6487	1	0	2	0,014
34,46	5	2,6005	1	0	5	- 0,007
34,86	4	2,5717	0	0	24	0,001
35,66	2	2,5156	1	0	8	- 0,017
39,36	1	2,2874	0	0	27	- 0,024
60,42	6	1,5310	1	1	3	0,013
61,80	2	1,5000	1	0	34	- 0,028
71,10	1	1,3249	2	0	4	0,000

[Zn ₂ Al(OH) ₆][(C ₈ H ₁₇ COO) (C ₈ H ₁₇ COOH) • n H ₂ O]				35% r	.F.	
a ₀ = 0,306(4) nm	c ₀ =	6,930(0) nm		V = 0	563(5)	nm³
F ₁₄ = 22,7 (0.010, 60)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
3,86	100	22,8716	0	0	3	0,038
7,65	35	11,5408	0	0	6	0,006
11,48	14	7,6997	0	0	9	0,001
15,31	1	5,7818	0	0	12	- 0,018
19,20	14	4,6196	0	0	15	0,002
27,01	2	3,2990	0	0	21	0,008
33,87	7	2,6442	1	0	2	0,021
34,40	6	2,6048	1	0	5	0,019
34,93	6	2,5668	0	0	27	- 0,002
38,96	3	2,3098	0	0	30	0,003
60,52	8	1,5286	1	1	3	0,002
60,94	4	1,5191	1	1	6	- 0,015
61,66	2	1,5030	1	0	38	- 0,003
71,35	2	1,3208	2	0	5	- 0,006

Zink Aluminium Dekanoat Hydrat

$[Zn_2Al(OH)_6][C_9H_{19}COO \bullet n H_2O]$				100%	r.F.	
a ₀ = 0,306(5) nm	c ₀ =	6,524(9) nm		V = 0	,530(7)	nm ³
F ₁₂ = 21,6 (0.010, 56)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
4,05	100	21,8259	0	0	3	- 0,014
8,14	36	10,8475	0	0	6	0,021
12,20	26	7,2511	0	0	9	- 0,002
16,29	11	5,4374	0	0	12	0,000
20,42	11	4,3460	0	0	15	0,019
24,53	7	3,6255	0	0	18	- 0,004
28,70	1	3,1083	0	0	21	- 0,012
33,87	7	2,6445	1	0	2	0,011
34,47	8	2,5995	1	0	5	0,018
60,51	14	1,5289	1	1	3	- 0,015
61,02	6	1,5173	1	1	6	0,002
71,23	1	1,3228	2	0	4	- 0,002

[Zn ₂ Al(OH) ₆][C ₉ H ₁₉ COO • 2,7 H ₂ O]				35% r.F.			
a ₀ = 0,306(5) nm	c ₀ =	6,513(1) nm		V = 0,	529(9)	nm ³	
F ₁₂ = 35,6 (0.009, 39)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]	
4,05	100	21,7829	0	0	3	- 0,014	
8,15	19	10,8422	0	0	6	0,010	
12,23	5	7,2328	0	0	9	0,007	
16,32	3	5,4279	0	0	12	- 0,001	
20,44	6	4,3416	0	0	15	0,002	
24,59	2	3,6173	0	0	18	0,008	
28,75	1	3,1024	0	0	21	- 0,009	
33,76	1	2,6526	1	0	1	- 0,007	
33,86	2	2,6454	1	0	2	0,002	
34,21	1	2,6190	1	0	4	0,009	
34,43	1	2,6027	1	1	5	- 0,026	
60,53	2	1,5284	1	1	3	0,011	

[Zn ₂ Al(OH) ₆][(C ₉ H ₁₉ COO) (C ₉ H ₁₉ COOH) • n H ₂ O]				100%	r.F.	
a ₀ = 0,306(5) nm	c ₀ =	7,503(7) nm		V = 0	nm³	
F ₁₃ = 28,3 (0.007, 65)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]
3,54	100	24,9383	0	0	3	0,010
7,06	22	12,5033	0	0	6	0,001
10,62	18	8,3226	0	0	9	0,018
14,16	2	6,2477	0	0	12	0,010
17,73	4	4,9992	0	0	15	0,009
21,30	1	4,1672	0	0	18	0,005
24,90	2	3,5727	0	0	21	0,000
28,53	1	3,1274	0	0	24	- 0,012
33,78	1	2,6515	1	0	1	0,015
34,28	2	2,6136	1	0	5	0,003
55,01	1	1,6677	1	0	35	- 0,002
60,35	3	1,5325	1	1	0	- 0,002
71,27	1	1,3220	2	0	5	- 0,005

	050/
$[2n_2Ai(OH)_6][(C_9H_{19}COO)(C_9H_{19}COOH) \bullet n H_2O]$	35% r.F.

a ₀ = 0,306(9) nm	c ₀ =	7,491(4) nm	V = 0	611(0)	nm ³	
F ₁₂ = 23,2 (0.011, 48)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
3,56	100	24,7983	0	0	3	0,025
7,09	33	12,4575	0	0	6	0,016
10,63	46	8,3187	0	0	9	0,007
14,18	5	6,2390	0	0	12	0,009
17,75	7	4,9939	0	0	15	0,001
21,33	6	4,1622	0	0	18	- 0,001
24,93	4	3,5691	0	0	21	- 0,013
33,80	6	2,6500	1	0	2	0,014
34,21	5	2,6187	1	0	5	- 0,025
34,75	7	2,5795	1	0	7	- 0,002
60,39	3	1,5315	1	1	3	0,001
61,56	3	1,5053	1	0	41	0,016

Zink Aluminium Undekanoat Hydrat								
$[Zn_2AI(OH)_6][C_{10}H_{21}COO \bullet n H_2O]$				100%	r.F.			
$a_0 = 0,307(1) \text{ nm}$	c ₀ =	6,881(3) nm		V = 0	,562(0)	nm ³		
F ₁₂ = 26,5 (0.008, 59)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
3,84	100	23,0146	0	0	3	- 0,013		
7,71	36	11,4571	0	0	6	0,008		
11,57	30	7,6440	0	0	9	0,003		
15,45	7	5,7319	0	0	12	0,007		
19,33	8	4,5874	0	0	15	0,001		
23,26	20	3,8208	0	0	18	0,013		
27,18	2	3,2785	0	0	21	- 0,015		
33,76	1	2,6529	1	0	2	- 0,018		
34,08	1	2,6282	1	0	4	0,001		
47,53	1	1,9114	0	0	36	0,001		
60,37	1	1,5321	1	1	3	- 0,004		
71,05	1	1,3256	2	0	4	0,011		

[Zn ₂ Al(OH) ₆][C ₁₀ H ₂₁ COO • 3,2 H ₂ O]				35% r	.F.	
a ₀ = 0,307(1) nm	c ₀ =	6,853(5) nm	V = 0,559(8) nm ³			
F ₁₄ = 25,4 (0.009, 62)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
3,83	100	23,0446	0	0	3	- 0,033
7,75	46	11,3951	0	0	6	0,019
11,61	44	7,6125	0	0	9	0,004
15,50	11	5,7121	0	0	12	- 0,002
19,42	31	4,5677	0	0	15	0,005
23,35	41	3,8063	0	0	18	0,007
27,30	3	3,2683	0	0	21	- 0,002
34,09	28	2,6279	1	0	4	0,003
34,92	25	2,5675	1	0	7	- 0,012
39,41	14	2,2844	0	0	30	0,002
39,84	16	2,2606	1	0	16	- 0,020
60,38	14	1,5319	1	1	3	0,009
60,82	28	1,5218	1	1	6	0,003
71,77	5	1,3140	2	0	8	0,001

[Zn ₂ Al(OH) ₆][(C ₁₀ H ₂₁ COO) (C ₁₀ H ₂₁ COOH) • n H ₂ O]				100%	r.F.	
a ₀ = 0,307(6) nm	c ₀ =	8,161(6) nm		V = 0,	668(6)	nm³
F ₁₂ = 17,3 (0.013, 52)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]
3,29	100,0	26,8327	0	0	3	0,045
6,52	22,8	13,5474	0	0	6	0,027
9,75	35,6	9,0603	0	0	9	0,009
13,01	5,8	6,8018	0	0	12	- 0,001
16,28	6,0	5,4418	0	0	15	- 0,002
19,56	1,2	4,5353	0	0	18	- 0,005
22,85	4,7	3,8893	0	0	21	- 0,017
26,16	0,3	3,4032	0	0	24	- 0,020
34,53	0,4	2,5956	1	0	7	0,013
36,29	0,3	2,4732	0	0	33	0,001
60,11	0,3	1,5380	1	1	0	- 0,009
61,29	0,3	1,5111	0	0	54	0,012

[Zn ₂ Al(OH) ₆][(C ₁₀ H ₂₁ COO) (C ₁₀ H ₂₁ COOH) • 2,8 H ₂ O]				35% r	r.F.	
a ₀ = 0,307(5) nm	C ₀ =	= 8,161(8) nm		V = 0	,668(2)	nm ³
F ₁₈ = 27,7 (0.011, 59)	RG	: R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
3,28	100	26,9309	0	0	3	0,033
6,50	67	13,5869	0	0	6	0,008
9,75	89	9,0603	0	0	9	0,009
13,02	14	6,7966	0	0	12	0,009
16,27	18	5,4441	0	0	15	- 0,009
19,55	12	4,5369	0	0	18	- 0,011
22,89	40	3,8828	0	0	21	0,023
26,17	1	3,4029	0	0	24	- 0,016
29,53	1	3,0226	0	0	27	0,003
33,71	2	2,6565	1	0	2	0,006
33,92	2	2,6410	1	0	4	- 0,010
34,53	8	2,5951	1	0	7	0,009
43,20	1	1,9660	0	0	39	0,004
46,13	8	1,7548	1	0	28	- 0,003
52,07	2	1,7548	1	0	35	- 0,018
60,16	2	1,5369	1	1	0	0,015
61,29	2	1,5112	0	0	54	0,010
65,21	1	1,4295	1	1	21	0,002

Zink Aluminium Dodekanoat Hydrat							
[Zn ₂ Al(OH) ₆][C ₁₁ H ₂₃ C	00 • n H ₂ 0]			100%	r.F.		
a ₀ = 0,306(5) nm	c ₀ =	7,141(4) nm		V = 0	581(1)	nm³	
F ₁₂ = 22,9 (0.012, 45)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
3,72	100	23,7512	0	0	3	0,008	
7,42	74	11,9026	0	0	6	0,000	
11,16	45	7,9239	0	0	9	0,015	
14,86	15	5,9566	0	0	12	- 0,014	
18,64	16	4,7573	0	0	15	0,014	
22,41	20	3,9640	0	0	1	0,020	
26,18	6	3,4007	0	0	21	0,000	
29,98	1	2,9782	0	0	24	- 0,027	
33,87	2	2,6441	0	0	27	0,011	
39,45	1	2,2824	1	0	16	- 0,017	
60,48	2	1,5295	1	1	3	- 0,002	
61,59	1	1,5045	1	1	9	0,011	

$[Zn_2Al(OH)_6][C_{11}H_{23}COO \bullet n H_2O]$				35% r.F.		
a ₀ = 0,306(9) nm	c ₀ = 7,192(4) nm			V = 0	nm³	
F ₁₂ = 31,3 (0.008, 46)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
3,68	100	23,9769	0	0	3	0,000
7,37	56	11,9816	0	0	6	0,003
11,08	50	7,9810	0	0	9	0,015
14,74	9	6,0053	0	0	12	- 0,029
18,49	4	4,7954	0	0	15	- 0,002
22,23	22	3,9951	0	0	18	0,003
25,98	34	3,4269	0	0	21	- 0,015
33,78	1	2,6512	1	0	2	- 0,005
39,34	1	2,2884	1	0	16	- 0,008
56,56	1	1,6257	1	0	35	0,001
60,40	1	1,5313	1	1	3	0,006
61,88	1	1,4981	0	0	48	0,013

[Zn ₂ Al(OH) ₆][(C ₁₁ H ₂₃ COO)(C ₁₁ H ₂₃ COOH) • n H ₂ O]				100% r.F.		
a ₀ = 0,306(6) nm	$c_0 = 8,778(7) \text{ nm}$ $V = 0,714(7) \text{ nm}^3$					nm ³
F ₁₉ = 29,0 (0.011, 59) RG: R3, R-3, R32, R3m, R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
3,06	100	28,8208	0	0	3	0,046
6,06	17	14,5628	0	0	6	0,028
9,07	18	9,7431	0	0	9	0,010
12,09	4	7,3156	0	0	12	0,000
15,13	5	5,8509	0	0	15	0,004
18,18	1	4,8767	0	0	18	0,001
21,22	1	4,1835	0	0	21	- 0,016
24,29	1	3,6610	0	0	24	- 0,021
27,38	1	3,2547	0	0	27	- 0,028
33,65	1	2,6609	0	0	33	- 0,009
36,33	1	2,4708	1	0	13	0,006
38,07	1	2,3616	1	0	17	- 0,004
39,10	1	2,3021	1	0	19	0,003
40,02	1	2,2511	0	0	39	- 0,003
44,69	1	2,0261	1	0	28	0,003
55,06	1	1,6665	1	0	41	0,009
60,03	1	1,5399	0	0	57	0,008
60,32	1	1,5332	1	1	0	- 0,008
63,47	1	1,4645	1	0	50	0,002

Zink Aluminium Tridekanoat Hydrat						
$[Zn_2Al(OH)_6][(C_{12}H_{27}COO)(C_{12}H_{27}COOH) \cdot n H_2O] $ 100%						
a ₀ = 0,306(8) nm	c ₀ =		$V = 0,767(9) \text{ nm}^3$			
$F_{15} = 20,7 \ (0.009, 78)$	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
2,83	100	31,2450	0	0	3	0,014
5,64	17	15,6663	0	0	6	0,012
8,45	20	10,4552	0	0	9	0,009
11,27	4	7,8469	0	0	12	0,004
14,09	5	6,2807	0	0	15	- 0,002
16,92	1	5,2345	0	0	18	- 0,004
19,79	7	4,4821	0	0	21	0,015
22,61	1	3,9288	0	0	24	- 0,023
25,48	1	3,4924	0	0	27	- 0,027
33,71	1	2,6567	1	0	1	- 0,009
34,37	1	2,6068	1	0	7	- 0,001
43,35	1	2,0853	1	0	28	- 0,004
60,16	1	1,5368	1	0	50	0,001
64,09	1	1,4517	1	1	21	- 0,008
70,91	1	1,3279	2	0	2	0,006
[Zn ₂ Al(OH) ₆][(C ₁₂ H ₂₇ COO)(C ₁₂ H ₂₇ COOH) • 3,2 H ₂ O]				35% r	.F.	
--	-------------------------	------------------------	------	--------	--------	-----------------
a ₀ = 0,307(3) nm	C ₀ =	= 9,371(6) nm		V = 0,	766(5)	nm ³
F ₁₅ = 30,4 (0.009, 57)	RG	: R3, R-3, R32, R3m, I	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
2,86	100	30,9300	0	0	3	0,029
5,65	54	15,6179	0	0	6	0,001
8,46	67	10,4393	0	0	9	- 0,022
11,31	25	7,8191	0	0	12	- 0,014
14,16	18	6,2495	0	0	15	- 0,004
17,02	2	5,2046	0	0	18	0,006
19,88	12	4,4617	0	0	21	0,004
22,75	19	3,9050	0	0	24	- 0,001
25,64	2	3,4721	0	0	27	- 0,009
28,56	5	3,1234	0	0	30	0,005
33,88	8	2,6435	1	0	4	0,012
34,43	8	2,6026	0	0	36	0,009
35,02	8	2,5602	1	0	10	0,001
38,89	5	2,3139	1	0	20	0,005
60,48	13	1,5294	1	1	6	- 0,009

Zink Aluminium Tetradekanoat Hydrat							
[Zn ₂ Al(OH) ₆][(C ₁₃ H ₂₇ COO)(C ₁₃ H ₂₇ COOH) • n H ₂ O] 100% r.F.							
$a_0 = 0,308(4) \text{ nm}$	c ₀ =	10,127(2) nm		V = 0	,833(9)	nm³	
F ₁₄	RG: I	R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
2,64	100	33,5318	0	0	3	0,019	
5,24	17	16,8656	0	0	6	0,009	
7,86	22	11,2519	0	0	9	0,006	
10,48	4	8,4418	0	0	12	0,006	
13,11	6	6,7530	0	0	15	0,008	
15,75	1	5,6284	0	0	18	0,007	
18,39	2	4,8255	0	0	21	0,003	
21,03	1	4,2247	0	0	24	- 0,008	
23,72	2	3,7481	0	0	27	0,018	
34,50	3	2,5980	0	0	39	- 0,017	
42,82	1	2,1100	0	0	48	- 0,004	
60,02	1	1,5401	1	1	3	0,006	
62,39	1	1,4871	1	1	18	- 0,008	
73,85	1	1,2822	0	2	22	0,015	

[Zn ₂ Al(OH) ₆][(C ₁₃ H ₂	Zn ₂ Al(OH) ₆][(C ₁₃ H ₂₇ COO)(C ₁₃ H ₂₇ COOH) • 4 H ₂ O]				.F.	
a ₀ = 0,307(9) nm	c ₀ =	10,058(3) nm		V = 0	825(6)	nm³
F ₁₅	RG: I	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
2,69	28	32,8764	0	0	3	0,052
5,27	58	16,7563	0	0	6	0,003
7,91	100	11,1758	0	0	9	0,001
10,56	22	8,3740	0	0	12	0,010
13,19	24	6,7070	0	0	15	- 0,003
15,84	4	5,5905	0	0	18	- 0,007
18,50	8	4,7915	0	0	21	- 0,008
21,18	4	4,1910	0	0	24	- 0,001
23,87	10	3,7247	0	0	27	0,004
29,27	1	3,0483	0	0	33	- 0,004
34,77	1	2,5784	0	0	39	0,009
38,19	2	2,3548	0	1	20	0,013
39,08	2	2,3029	1	0	22	0,004
42,17	1	2,1412	1	0	28	- 0,005
45,97	1	1,9725	0	0	51	- 0,007

Zink Aluminium Pentadekanoat Hydrat									
[Zn ₂ Al(OH) ₆][(C ₁₄ H	₂₉ COO)(C ₁₄ H ₂₉ C	00H) • n H₂O]		100%	r.F.				
$a_0 = 0,307(0) \text{ nm}$	c ₀ =		V = 0	,885(5)	nm³				
F ₂₀	F ₂₀ RG: R3, R-3, R32, R3m, R-3m								
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]			
2,49	100	35,5281	0	0	3	0,044			
4,91	16	17,9768	0	0	6	0,028			
7,34	28	12,0276	0	0	9	0,016			
9,78	4	9,0370	0	0	12	0,004			
12,23	13	7,2311	0	0	15	0,002			
14,70	1	6,0226	0	0	18	0,011			
17,15	3	5,1656	0	0	21	0,001			
19,63	4	4,5180	0	0	24	0,009			
22,09	1	4,0206	0	0	27	- 0,015			
24,63	1	3,6122	0	0	30	0,027			
27,05	2	3,2932	0	0	33	- 0,049			
34,67	1	2,5851	0	0	42	- 0,029			
35,69	1	2,5136	0	1	14	0,018			
41,13	1	2,1932	1	0	28	- 0,019			
42,47	1	2,1266	0	0	51	0,010			
46,05	1	1,9696	1	0	37	- 0,002			
53,16	1	1,7216	0	0	63	0,012			
60,32	1	1,5332	1	1	3	0,020			
61,50	1	1,5066	0	0	72	0,003			
63,61	1	1,4615	0	1	61	0,005			

[Zn ₂ Al(OH) ₆][(C ₁₄ H	[Zn ₂ Al(OH) ₆][(C ₁₄ H ₂₉ COO)(C ₁₄ H ₂₉ COOH) • 3,2 H ₂ O]					35% r.F.			
a ₀ = 0,306(6) nm	c ₀ =	10,819(8) nm		V = 0	,880(9)	nm ³			
F ₂₁	RG:	R3, R-3, R32, R3m,	R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]			
2,50	65	35,2925	0	0	3	0,055			
4,92	52	17,9388	0	0	6	0,026			
7,35	100	12,0138	0	0	9	0,005			
9,81	21	9,0206	0	0	12	0,003			
12,27	41	7,2165	0	0	15	0,004			
14,72	7	6,0157	0	0	18	0,001			
17,18	12	5,1608	0	0	21	- 0,015			
19,68	28	4,5084	0	0	24	- 0,001			
22,15	5	4,0133	0	0	27	- 0,015			
24,68	7	3,6078	0	0	30	0,012			
27,17	6	3,2819	0	0	33	- 0,004			
33,88	2	2,6458	1	0	4	- 0,013			
34,76	5	2,5810	1	0	10	0,000			
38,92	2	2,3139	0	1	23	0,008			
41,23	6	2,1899	1	0	28	0,008			
42,57	3	2,1221	0	0	51	- 0,012			
46,14	3	1,9675	1	0	37	- 0,001			
48,62	2	1,8726	0	1	41	0,021			
53,30	2	1,7188	0	0	63	0,001			
60,39	2	1,5316	1	1	3	0,006			
61,67	2	1,5028	0	0	72	- 0,004			

Zink Aluminium Hexadekanoat Hydrat									
[Zn ₂ Al(OH) ₆][(C ₁₅ H ₃₁ COO)(C ₁₅ H ₃₁ COOH) • n H ₂ O] 100% r.F.									
a ₀ = 0,307(9) nm	c ₀ =	11,386(6) nm		V = 0	,935(0)	nm ³			
F ₁₅	RG: I	R3, R-3, R32, R3m,	R-3m						
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]			
2,35	100	37,5277	0	0	3	0,028			
4,67	19	18,8825	0	0	6	0,018			
6,99	24	12,6282	0	0	9	0,013			
9,31	5	9,4875	0	0	12	0,001			
11,66	8	7,5845	0	0	15	0,010			
13,99	1	6,3249	0	0	18	0,002			
16,33	2	5,4240	0	0	21	- 0,006			
18,67	1	4,7477	0	0	24	- 0,014			
21,03	1	4,2211	0	0	27	- 0,019			
23,43	1	3,7932	0	0	30	0,015			
25,78	1	3,4530	0	0	33	- 0,019			
34,51	1	2,5966	1	0	10	- 0,002			
50,43	1	1,8080	0	0	63	- 0,019			
60,04	1	1,5396	1	1	0	0,001			
61,26	1	1,5118	0	1	62	0,033			

[Zn ₂ Al(OH) ₆][(C ₁₅ H	[Zn ₂ Al(OH) ₆][(C ₁₅ H ₃₁ COO)(C ₁₅ H ₃₁ COOH) • n H ₂ O]						
a ₀ = 0,307(6) nm	$c_0 = 1$	c ₀ = 11,364(1) nm			V = 0,931(3) nm ³		
F ₁₃	RG: I	R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]	
2,38	57	37,0537	0	0	3	0,053	
4,68	75	18,8682	0	0	6	0,017	
6,99	100	12,6263	0	0	9	0,000	
9,32	21	9,4876	0	0	12	- 0,009	
11,65	39	7,5946	0	0	15	- 0,019	
14,01	7	6,3232	0	0	18	- 0,010	
16,38	24	5,4064	0	0	21	0,016	
18,72	1	4,7401	0	0	24	- 0,005	
21,08	15	4,2143	0	0	27	- 0,010	
23,46	28	3,7921	0	0	30	- 0,006	
33,67	4	2,6618	0	1	2	0,020	
25,19	3	2,5505	1	0	13	- 0,001	
42,95	4	2,1057	0	0	54	0,010	

Zink Aluminium Oktadekanoat Hydrat

[Zn ₂ Al(OH) ₆][C ₁₇ H ₃₅ COO • n H ₂ O]				100%	r.F.	
a ₀ = 0,306(7) nm	c ₀ =	9,006(2) nm		V = 0	733(7)	nm ³
F ₁₂ = 17,1 (0.013, 53)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]
2,93	100	30,0877	0	0	3	- 0,007
5,89	40	15,0053	0	0	6	0,002
8,84	13	9,9949	0	0	9	0,011
11,76	11	7,5202	0	0	12	- 0,024
14,73	2	6,0109	0	0	15	- 0,017
17,71	2	5,0031	0	0	18	0,001
20,74	5	4,2792	0	0	21	0,046
23,67	6	3,7554	0	0	24	- 0,018
33,78	4	2,6509	1	0	2	0,011
34,44	4	2,6019	1	0	7	- 0,006
36,17	2	2,4811	1	0	13	- 0,013
60,39	4	1,5315	1	1	3	0,004

[Zn ₂ Al(OH) ₆][C ₁₇ H ₃₅ COO • 3,1 H ₂ O]			35% r.F.			
a ₀ = 0,306(7) nm	c ₀ =	= 9,047(6) nm		V = 0,	737(0)	nm ³
F ₁₇ = 20,9 (0.010, 78)	RG	6: R3, R-3, R32, R3m, F	R-3m			
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]
2,93	100	30,0774	0	0	3	0,008
5,86	19	15,1002	0	0	6	- 0,008
8,81	14	10,0255	0	0	9	0,024
11,72	8	7,5432	0	0	12	- 0,006
14,67	1	6,0346	0	0	15	- 0,007
17,60	1	5,0350	0	0	18	- 0,030
20,61	4	4,3066	0	0	21	0,009
23,58	3	3,7705	0	0	24	- 0,004
26,59	1	3,3498	0	0	27	0,009
33,78	1	2,6512	1	0	2	0,002
34,42	1	2,6030	1	0	7	- 0,019
36,19	1	2,4799	1	0	13	0,023
39,30	1	2,2909	1	0	20	- 0,008
56,55	1	1,6261	1	0	44	- 0,005
60,39	2	1,5315	1	1	3	- 0,002
67,85	1	1,3801	1	0	56	0,011
71,13	1	1,3244	2	0	5	0,002

[Zn ₂ Al(OH) ₆][(C ₁₇ H ₃₅ COO)(C ₁₇ H ₃₅ COOH) • n H ₂ O]				100% r.F.			
a ₀ = 0,306(6) nm	$c_0 = 1$	12,698(3) nm	V = 1,033(8) nm ³				
F ₁₆	RG: F	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
2,13	100	41,4954	0	0	3	0,041	
4,20	17	21,0418	0	0	6	0,024	
6,27	20	14,0791	0	0	9	0,014	
8,35	4	10,5765	0	0	12	0,004	
10,44	6	8,4691	0	0	15	- 0,004	
12,53	2	7,0568	0	0	18	- 0,003	
14,64	3	6,0445	0	0	21	0,005	
16,76	1	5,2866	0	0	24	0,014	
18,86	1	4,7026	0	0	27	0,002	
20,97	1	4,2330	0	0	30	- 0,001	
23,08	1	3,8500	0	0	33	- 0,012	
27,35	1	3,2580	0	0	39	- 0,018	
29,52	1	3,0238	0	0	42	- 0,004	
34,64	1	2,5876	0	1	11	0,002	
42,70	1	2,1160	0	0	60	0,008	
61,41	1	1,5085	1	1	15	0,000	

[Zn ₂ Al(OH) ₆][(C ₁₇ H	Zn ₂ Al(OH) ₆][(C ₁₇ H ₃₅ COO)(C ₁₇ H ₃₅ COOH) • 3,5 H ₂ O]						
a ₀ = 0,307(4) nm	c ₀ = 2	= 12,566(9) nm V = 1,028(7) nm ³					
F ₁₆	RG: F	R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
4,24	38	20,83895	0	0	6	0,022	
6,33	100	13,9701	0	0	9	0,022	
8,44	24	10,4824	0	0	12	- 0,001	
10,52	32	8,4068	0	0	15	- 0,028	
12,67	8	6,9846	0	0	18	0,005	
19,03	9	4,6646	0	0	27	- 0,026	
21,19	11	4,1939	0	0	30	- 0,008	
23,37	23	3,8066	0	0	33	0,029	
25,50	2	3,4927	0	0	36	0,007	
33,83	8	2,6474	0	1	5	0,003	
34,57	37	2,5922	0	1	11	0,011	
52,38	5	1,7453	0	0	72	0,003	
60,15	16	1,5372	1	1	0	- 0,001	
65,40	1	1,4258	1	1	33	- 0,019	
71,27	5	1,3222	2	0	11	0,008	
74,24	3	1,2764	0	2	28	- 0,006	

Zink Aluminium Nonadekanoat Hydrat								
[Zn ₂ Al(OH) ₆][(C ₁₈ H	₃₇ COO)(C ₁₈ H ₃₇ C	:OOH) • n H₂O]		100%	r.F.			
a ₀ = 0,307(3) nm	c ₀ =	13,518(0) nm		V = 1	,105(5)	nm³		
F ₁₄	RG:	R3, R-3, R32, R3m,	R-3m					
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
3,91	63	22,6005	0	0	6	- 0,009		
5,87	100	15,0557	0	0	9	- 0,009		
7,84	16	11,2838	0	0	12	- 0,007		
9,80	31	9,0233	0	0	15	- 0,004		
11,77	5	7,5186	0	0	18	- 0,003		
13,74	12	6,4436	0	0	21	- 0,003		
15,72	2	5,6267	0	0	24	0,001		
17,70	4	5,0074	0	0	27	- 0,003		
19,64	7	4,5161	0	0	30	- 0,044		
21,70	4	4,0927	0	0	33	0,020		
23,70	7	3,7505	0	0	36	0,029		
33,84	2	2,6469	0	1	5	0,021		
37,96	2	2,3686	0	1	26	0,006		
39,64	2	2,2717	1	0	31	- 0,000		

[Zn ₂ Al(OH) ₆][(C ₁₈ H ₃₇ COO)(C ₁₈ H ₃₇ COOH) • 2,9 H ₂ O]				35% r.F.			
a ₀ = 0,307(7) nm	c ₀ =	$c_0 = 13,454(7) \text{ nm}$ $V = 1,103(2)$					
F ₂₂	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
3,96	62	22,3186	0	0	6	0,019	
5,92	100	14,9305	0	0	9	0,008	
7,88	25	11,2155	0	0	12	- 0,002	
9,85	50	8,9761	0	0	15	- 0,007	
11,84	7	7,4712	0	0	18	0,006	
13,81	14	6,4064	0	0	21	0,002	
15,80	2	5,6034	0	0	24	0,008	
17,77	5	4,9861	0	0	27	- 0,011	
19,75	11	4,4923	0	0	30	- 0,033	
21,80	5	4,0743	0	0	33	0,015	
23,79	26	3,7377	0	0	36	- 0,001	
27,81	1	3,2056	0	0	42	- 0,019	
33,93	1	2,6401	1	0	7	- 0,008	
34,45	3	2,6012	0	1	11	0,034	
36,04	1	2,4901	0	0	54	0,023	
37,95	3	2,3690	0	1	26	0,002	
38,93	3	2,3117	0	1	29	- 0,016	
39,66	1	2,2706	1	0	31	0,006	
42,30	1	2,1349	0	0	63	0,015	
46,04	2	1,9700	1	0	46	- 0,003	
57,48	1	1,6021	0	0	84	- 0,012	
60,09	2	1,5384	1	1	0	0,003	

7.1.3 ZnAI-Dicarboxylate

Zink Aluminium Oxalat Hydrat							
[Zn ₂ Al(OH) ₆][0,5(CO	[Zn ₂ Al(OH) ₆][0,5(COO) ₂ • n H ₂ O]				r.F.		
a ₀ = 0,306(6) nm	c ₀ =	2,972(6) nm		V = 0	,242(0)	nm ³	
F ₁₄ = 39,6 (0.009, 41)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
8,92	100	9,9010	0	0	3	0,007	
17,90	78	4,9521	0	0	6	0,008	
26,97	14	3,3033	0	0	9	- 0,004	
36,23	11	2,4772	0	0	12	0,000	
45,75	2	1,9815	0	0	15	0,006	
55,59	1	1,6518	0	0	18	- 0,012	
60,31	4	1,5334	1	1	0	- 0,014	
61,12	3	1,5151	1	1	3	- 0,004	
63,48	3	1,4643	1	1	6	0,012	
70,99	1	1,3266	2	0	1	- 0,017	
72,44	1	1,3036	1	1	12	- 0,004	
76,07	1	1,2501	2	0	8	0,010	
76,91	3	1,2386	0	0	24	- 0,001	
86,58	1	1,1233	1	1	18	0,022	

Zink Aluminium Malonat Hydrat								
$[Zn_2AI(OH)_6][0,5CH_2(COO)_2 \bullet n H_2O]$				100%	r.F.			
a ₀ = 0,307(5) nm	c ₀ =	3,257(3) nm		V = 0	266(8)	nm ³		
F ₁₄ = 51,3 (0.009, 29)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
8,15	100	10,8329	0	0	3	0,019		
16,31	50	5,4289	0	0	6	0,000		
24,57	46	3,6197	0	0	9	- 0,004		
33,73	2	2,6549	1	0	1	- 0,008		
34,10	4	2,6267	1	0	2	0,020		
36,41	3	2,4656	1	0	5	- 0,008		
40,43	2	2,2292	1	0	8	- 0,010		
45,79	1	1,9799	1	0	11	0,007		
50,39	1	1,8094	0	0	18	0,005		
60,15	4	1,5371	1	1	0	0,020		
60,80	3	1,5223	1	1	3	0,005		
62,75	1	1,4795	1	1	6	- 0,005		
65,95	1	1,4153	1	1	9	- 0,009		
70,95	1	1,3273	2	0	2	- 0,012		

Zink Aluminium Succi	inat Hydrat					
[Zn ₂ Al(OH) ₆][0,5(CH ₂)) ₂ (COO) ₂ • n	H ₂ O]		100%	r.F.	
a ₀ = 0,307(2) nm	C ₀ =	= 3,629(7) nm	$V = 0,296(6) \text{ nm}^3$			nm ³
F ₁₈ = 102,9 (0.006, 31)	RG:	: R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]
7,30	100	12,1063	0	0	3	- 0,004
14,63	33	6,0514	0	0	6	- 0,005
22,04	39	4,0299	0	0	9	0,017
29,51	3	3,0244	0	0	12	0,003
33,77	2	2,6517	1	0	1	0,020
35,12	5	2,5530	1	0	4	- 0,001
37,98	1	2,3670	1	0	7	0,000
39,22	1	2,2953	1	0	8	- 0,007
42,07	2	2,1460	1	0	10	- 0,007
44,91	1	2,0166	0	0	18	- 0,003
47,15	2	1,9261	1	0	13	- 0,002
52,94	1	1,7282	0	0	21	0,008
55,10	1	1,6652	1	0	17	- 0,003
60,21	3	1,5358	1	1	0	0,008
60,73	4	1,5238	1	1	3	- 0,003
62,31	3	1,4889	1	1	6	- 0,007
64,91	1	1,4353	1	1	9	0,002
70,82	1	1,3293	2	0	1	- 0,002

Zink Aluminium Glutarat Hydrat									
[Zn ₂ Al(OH) ₆][0,5(CH ₂	[Zn ₂ Al(OH) ₆][0,5(CH ₂) ₃ (COO) ₂ • n H ₂ O]				r.F.				
a ₀ = 0,307(2) nm	c ₀ =	c ₀ = 3,997(3) nm			326(7)	nm ³			
F ₁₈ = 102,9 (0.006, 31)	RG:	R3, R-3, R32, R3m,	R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]			
6,64	100	13,2968	0	0	3	0,014			
13,27	48	6,6676	0	0	6	- 0,011			
20,02	18	4,4325	0	0	9	0,041			
26,73	8	3,3319	0	0	12	- 0,007			
33,72	11	2,6560	1	0	1	- 0,016			
33,98	7	2,6359	1	0	2	0,020			
34,83	6	2,5735	1	0	4	- 0,034			
42,05	2	2,1471	1	0	11	- 0,008			
46,62	3	1,9467	1	0	14	- 0,004			
60,20	12	1,5359	1	1	0	0,010			
60,64	6	1,5258	1	1	3	0,007			
61,77	5	1,5005	1	0	22	- 0,002			
70,95	2	1,3273	2	0	2	0,003			

Zink Aluminium Adipinat Hydrat								
[Zn ₂ Al(OH) ₆][0,5(CH ₂)₄(COO)₂ • n	H ₂ O]		100%	r.F.			
a ₀ = 0,307(3) nm	c ₀ =	4,303(7) nm		V = 0	351(9)	nm³		
F ₁₇ = 38,7 (0.012, 37)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
6,16	100	14,3361	0	0	3	0,004		
12,31	75	7,1836	0	0	6	- 0,019		
18,57	21	4,7754	0	0	9	0,025		
24,80	25	3,5867	0	0	12	- 0,002		
33,72	10	2,6562	1	0	1	0,000		
33,92	9	2,6402	1	0	2	0,012		
35,28	7	2,5418	1	0	5	0,010		
37,59	1	2,3908	0	0	18	0,002		
45,02	2	2,0119	1	0	14	0,003		
50,88	1	1,7930	0	0	24	0,005		
53,02	1	1,7256	1	0	19	- 0,024		
60,20	10	1,5358	1	1	0	0,029		
60,44	8	1,5303	1	0	23	0,014		
61,67	5	1,5027	1	1	6	- 0,015		
63,57	2	1,4625	1	1	9	0,018		
66,09	1	1,4125	1	1	12	- 0,010		
70,91	2	1,3280	2	0	2	0,008		

Zink Aluminium Pimelinat Hydrat								
[Zn ₂ Al(OH) ₆][0,5(CH ₂	[Zn ₂ Al(OH) ₆][0,5(CH ₂) ₅ (COO) ₂ • n H ₂ O]				r.F.			
a ₀ = 0,307(1) nm	c ₀ =	4,496(2) nm		V = 0	,367(2)	nm ³		
F ₁₅ = 55,1 (0.007, 40)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
5,89	84	14,9850	0	0	3	0,001		
11,80	100	7,4935	0	0	6	0,000		
17,76	14	4,9905	0	0	9	0,019		
23,72	50	3,7486	0	0	12	- 0,011		
29,78	1	2,9975	0	0	15	- 0,001		
33,73	5	2,6552	1	0	1	- 0,004		
34,62	5	2,5889	1	0	4	- 0,011		
35,16	3	2,5500	1	0	5	0,005		
39,32	4	2,2895	1	0	10	- 0,007		
48,55	4	1,8736	0	0	24	- 0,004		
60,22	9	1,5355	1	1	0	0,000		
60,57	4	1,5274	1	1	3	0,004		
61,60	3	1,5043	1	1	6	- 0,001		
70,80	2	1,3297	2	0	1	- 0,033		
71,37	1	1,3206	2	0	4	0,001		

Zink Aluminium Azelainat Hydrat							
[Zn ₂ Al(OH) ₆][0,5(CH		100%	r.F.				
a ₀ = 0,307(2) nm	c ₀ =	4,757(9) nm		V = 0	,388(8)	nm ³	
F ₉ = 30,2 (0.008, 39)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
5,54	100	15,9275	0	0	3	- 0,024	
11,16	96	7,9204	0	0	6	0,013	
16,75	11	5,2870	0	0	9	- 0,001	
22,41	33	3,9636	0	0	12	0,007	
33,72	11	2,6560	1	0	1	0,002	
34,51	10	2,5970	1	0	4	- 0,012	
60,21	16	1,5358	1	1	0	0,005	
61,45	6	1,5077	1	0	26	- 0,001	
70,82	4	1,3294	1	0	31	0,004	

Zink Aluminium Maleat Hydrat								
[Zn ₂ Al(OH) ₆][0,5(CH)	[Zn ₂ Al(OH) ₆][0,5(CH) ₂ (COO) ₂]				r.F.			
$a_0 = 0,307(1) \text{ nm}$	c ₀ =	3,922(1) nm		V = 0	,320(3)	nm ³		
F ₁₆ = 64,9 (0.007, 33)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$Δ2\theta$ [Grad]		
6,76	100	13,0591	0	0	3	0,007		
13,54	24	6,5357	0	0	6	0,002		
20,37	14	4,3555	0	0	9	0,011		
27,26	4	3,2687	0	0	12	- 0,003		
33,75	3	2,6532	1	0	1	0,001		
33,98	3	2,6359	1	0	2	- 0,009		
34,28	3	2,6135	0	0	15	0,016		
35,63	1	2,5181	1	0	5	0,008		
38,48	1	2,3377	1	0	8	- 0,001		
47,06	1	1,9295	1	0	14	- 0,019		
48,71	2	1,8678	0	0	21	- 0,005		
60,22	4	1,5355	1	1	0	- 0,006		
60,69	2	1,5247	1	1	3	0,010		
62,03	1	1,4949	1	1	6	- 0,007		
64,28	1	1,4479	1	1	9	0,013		
70,99	1	1,3267	2	0	2	0,000		

Zink Aluminium Fumarat Hydrat								
[Zn ₂ Al(OH) ₆][0,5(CH) ₂ (COO) ₂]				100%	r.F.			
a ₀ = 0,307(2) nm	c ₀ =	$c_0 = 3,610(0) \text{ nm}$,295(0)	nm³		
F ₁₄ = 35,0 (0.013, 31)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
7,34	100	12,0289	0	0	3	0,003		
14,68	23	6,0288	0	0	6	- 0,030		
22,16	46	4,0085	0	0	9	0,014		
29,68	2	3,0079	0	0	12	0,004		
33,74	2	2,6545	1	0	1	- 0,017		
37,31	2	2,4081	0	0	15	- 0,024		
39,26	1	2,2930	1	0	8	- 0,023		
45,18	3	2,0051	0	0	18	0,011		
60,20	2	1,5360	1	1	0	0,000		
60,76	1	1,5232	1	1	3	0,021		
62,10	1	1,4933	1	0	20	0,016		
62,33	1	1,4886	1	1	6	- 0,013		
64,96	1	1,4344	1	1	9	0,002		
70,83	1	1,3293	2	0	1	0,004		

Zink Aluminium Phthalat Hydrat								
[Zn ₂ Al(OH) ₆][C ₆ H ₄ -1,2-(COO)(COOH) • n H ₂ O] 100% r.F.								
a ₀ = 0,307(0) nm	c ₀ =	4,495(2) nm		V = 0,	366(9)	nm³		
F ₁₂ = 45,5 (0.005, 49)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
5,90	100	14,9698	0	0	3	0,006		
11,80	95	7,4948	0	0	6	- 0,004		
17,74	23	4,9944	0	0	9	0,001		
23,73	52	3,7467	0	0	12	- 0,004		
29,79	1	2,9962	0	0	15	0,006		
33,74	3	2,6547	1	0	1	- 0,010		
48,56	2	1,8732	0	0	24	- 0,005		
60,25	2	1,5347	1	1	0	0,010		
60,59	2	1,5269	1	1	3	0,003		
61,62	1	1,5039	1	1	6	- 0,010		
65,69	1	1,4203	1	1	12	0,003		
76,27	1	1,2474	1	1	21	- 0,002		

Zink Aluminium Isophthalat Hydrat								
[Zn ₂ Al(OH) ₆][0,5C ₆ H ₄ -1,3-(COO) ₂ • n H ₂ O] 100% r.F.								
a ₀ = 0,307(3) nm	c ₀ =	4,494(4) nm		nm³				
F ₁₆ = 75,9 (0.006, 39)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
5,89	100	15,0053	0	0	3	- 0,009		
11,80	85	7,4923	0	0	6	- 0,003		
17,75	20	4,9914	0	0	9	0,009		
23,73	42	3,7461	0	0	12	- 0,005		
29,80	1	2,9958	0	0	15	0,004		
33,71	3	2,6570	1	0	1	- 0,001		
34,61	2	2,5894	1	0	4	0,007		
35,94	1	2,4970	0	0	18	- 0,001		
39,31	1	2,2902	1	0	10	- 0,001		
42,19	2	2,1401	0	0	21	0,001		
48,50	1	1,8754	1	0	17	0,006		
60,19	4	1,5361	1	1	0	0,023		
60,52	3	1,5287	1	1	3	- 0,001		
61,57	2	1,5050	1	1	6	0,013		
65,62	1	1,4216	1	1	12	0,000		
70,88	1	1,3285	2	0	2	- 0,001		

Zink Aluminium Terephthalat Hydrat									
[Zn ₂ Al(OH) ₆][0,5C ₆ H ₄		100%	r.F.						
a ₀ = 0,307(2) nm	C ₀ =	4,261(1) nm		V = 0	,348(3)	nm ³			
F ₁₄ = 41,8 (0.008, 44)	RG:	R3, R-3, R32, R3m,	R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]			
6,22	100	14,2070	0	0	3	- 0,001			
12,46	30	7,1003	0	0	6	0,003			
18,73	10	4,7327	0	0	9	0,008			
25,05	8	3,5517	0	0	12	- 0,006			
33,70	3	2,6571	1	0	1	- 0,025			
35,32	2	2,5390	1	0	5	0,007			
37,78	2	2,3794	1	0	8	0,010			
41,11	2	2,1938	1	0	11	- 0,014			
44,62	1	2,0290	0	0	21	0,003			
60,21	3	1,5357	1	1	0	0,012			
60,59	3	1,5271	1	1	3	0,001			
61,21	3	1,5012	1	1	6	0,005			
66,23	1	1,4099	1	1	12	- 0,008			
73,58	1	1,2862	1	0	29	0,003			

[Zn ₂ Al(OH) ₆][0,5C ₆ H ₄ -1,4-(COO) ₂ • 3,7H ₂ O]				35% r.F.			
a ₀ = 0,306(4) nm	c ₀ =	c ₀ = 4,258(0) nm			$V = 0,346(1) \text{ nm}^3$		
F ₁₄ = 51,1 (0.010, 28)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]	
6,23	100	14,1842	0	0	3	0,004	
12,43	59	7,1140	0	0	6	- 0,030	
18,76	20	4,7257	0	0	9	0,022	
25,07	14	3,5490	0	0	12	- 0,004	
33,82	8	2,6485	1	0	1	- 0,006	
34,05	7	2,6311	1	0	2	0,023	
35,42	6	2,5324	1	0	5	0,010	
37,86	4	2,3743	1	0	8	0,004	
44,66	1	2,0273	0	0	21	0,008	
45,31	2	2,0000	1	0	14	- 0,015	
60,38	4	1,5319	1	1	0	- 0,002	
60,76	3	1,5231	1	1	3	- 0,005	
60,97	2	1,5183	1	0	23	- 0,002	
61,92	2	1,4974	1	1	6	- 0,002	

Zink Aluminium Lactat Hydrat									
[Zn ₂ Al(OH) ₆][C ₂ H ₄ (CO	Zn₂Al(OH) ₆][C₂H₄(COO)(OH) • n H₂O]								
a ₀ = 0,307(4) nm	c ₀ =	4,370(0) nm		V = 0	,357(7)	nm ³			
F ₁₈ = 63,4 (0.008, 37)	RG:	R3, R-3, R32, R3m,	R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]			
6,08	100	14,5341	0	0	3	0,014			
12,14	73	7,2856	0	0	6	- 0,004			
18,26	62	4,8547	0	0	9	0,003			
24,40	24	3,6449	0	0	12	- 0,022			
30,66	4	2,9132	0	0	15	0,001			
33,70	3	2,6577	1	0	1	0,000			
35,20	2	2,5476	1	0	5	- 0,008			
37,53	2	2,3943	1	0	8	- 0,014			
40,79	2	2,2105	1	0	11	0,025			
44,70	3	2,0258	1	0	14	- 0,001			
49,22	1	1,8498	1	0	17	- 0,010			
50,06	2	1,8204	0	0	24	0,012			
60,15	4	1,5371	1	1	0	0,009			
60,51	5	1,5288	1	1	3	- 0,002			
61,60	2	1,5042	1	1	6	- 0,006			
63,42	1	1,4656	1	1	9	0,000			
65,64	1	1,4212	1	0	26	0,005			
70.86	1	1.3288	2	0	2	0.002			

Zink Aluminium Tartrat Hydrat								
[Zn ₂ Al(OH) ₆][0,5C ₂ H	[Zn ₂ Al(OH) ₆][0,5C ₂ H ₂ (COO) ₂ (OH) ₂]				r.F.			
$a_0 = 0,307(4) \text{ nm}$	c ₀ =	3,652(8) nm		V = 0	,298(8)	nm ³		
F ₁₆ = 81,7 (0.006, 32)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
7,25	100	12,1880	0	0	3	- 0,007		
14,54	47	6,0887	0	0	6	- 0,002		
21,87	40	4,0603	0	0	9	- 0,009		
29,32	7	3,0438	0	0	12	0,002		
33,72	3	2,6558	1	0	1	- 0,015		
34,01	5	2,6336	1	0	2	0,004		
35,87	4	2,5012	1	0	5	- 0,005		
39,15	2	2,2993	1	0	8	0,003		
43,53	2	2,0772	1	0	11	- 0,006		
44,63	1	2,0285	0	0	18	0,019		
52,56	1	1,7397	0	0	21	- 0,008		
60,17	3	1,5365	1	1	0	0,010		
60,69	3	1,5247	1	1	3	- 0,001		
62,26	1	1,4901	1	1	6	- 0,003		
64,82	1	1,4371	1	1	9	0,004		
70,94	1	1,3274	2	0	2	- 0,002		

$[Zn_2Al(OH)_6][0,5C_2H_2(COO)_2(OH)_2 \bullet 2,2H_2O]$				35% r.F.			
a ₀ = 0,306(6) nm	c ₀ =	c ₀ = 3,641(6) nm			V = 0,296(5) nm ³		
F ₁₃ = 67,9 (0.008, 25)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]	
7,28	100	12,1345	0	0	3	0,002	
14,57	49	6,0733	0	0	6	- 0,010	
21,96	32	4,0447	0	0	9	0,008	
29,41	3	3,0349	0	0	12	- 0,002	
33,80	5	2,6496	1	0	1	- 0,017	
34,10	4	2,6268	1	0	2	0,009	
35,99	3	2,4936	1	0	5	0,016	
39,26	3	2,2927	1	0	8	0,016	
43,66	1	2,0716	1	0	11	- 0,007	
44,76	1	2,0232	0	0	18	- 0,001	
60,33	4	1,5330	1	1	0	0,002	
60,85	3	1,5211	1	1	3	- 0,005	
62,42	1	1,4864	1	1	6	- 0,004	

[Zn ₂ Al(OH) ₆][0,5C ₂ H ₂ (COO) ₂ (OH) ₂]						
a ₀ = 0,306(0) nm	$c_0 = 0$	2,823(6) nm	$V = 0,229(9) \text{ nm}^3$			nm ³
F ₉ = 23,4 (0.016, 24)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
9,39	100	9,4107	0	0	3	0,038
18,76	64	4,7269	0	0	6	- 0,010
28,31	4	3,1504	0	0	9	- 0,007
33,90	28	2,6423	1	0	1	- 0,045
34,40	21	2,6046	1	0	2	0,009
37,42	12	2,4010	1	0	5	0,000
60,47	34	1,5298	1	1	0	0,018
61,33	26	1,5103	1	1	3	0,009
71,16	12	1,3239	2	0	1	- 0,007

Zink Aluminium Citrat Hydrat								
[Zn ₂ Al(OH) ₆][0,5C ₃ H	4(COO)2(COO	H)(OH)]		100% r.F.				
a ₀ = 0,307(4) nm	c ₀ =	3,656(5) nm		V = 0	,299(3)	nm ³		
F ₁₈ = 53,2 (0.008, 43)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
7,25	100	12,1813	0	0	3	0,004		
14,53	55	6,0928	0	0	6	0,003		
21,87	58	4,0604	0	0	9	0,013		
29,28	6	3,0473	0	0	12	- 0,002		
33,72	1	2,6554	1	0	1	- 0,002		
34,03	1	2,6325	1	0	2	0,027		
35,86	2	2,5019	1	0	5	- 0,003		
39,11	1	2,3013	1	0	8	- 0,014		
43,51	2	2,0784	1	0	11	- 0,010		
44,56	2	2,0315	0	0	18	- 0,003		
48,79	2	1,8650	1	0	14	- 0,016		
52,53	2	1,7406	0	0	21	0,019		
52,75	1	1,7338	1	0	16	0,009		
60,15	1	1,5371	1	1	0	- 0,001		
60,74	1	1,5235	0	0	24	0,000		
62,23	1	1,4905	1	1	6	- 0,005		
64,80	1	1,4375	1	1	9	0,008		
78,39	1	1,2187	0	0	30	- 0,004		

[Zn₂Al(OH)₆][0,5C₃H₄(COO)₂(COOH)(OH) • 2,5H₂O] 35% r.F. $V = 0,294(8) \text{ nm}^3$ $a_0 = 0,306(3) \text{ nm}$ $c_0 = 3,628(1) \text{ nm}$ $F_{16} = 60,6 (0.010, 26)$ RG: R3, R-3, R32, R3m, R-3m 20 Exp [Grad] Int. I/I₁₀₀ d Exp [Grad] $\Delta 2\theta$ [Grad] h k T 7,32 100 12,0749 0 0 3 0,011 14,65 68 6,0407 0 6 0,015 0 71 0 22,04 4,0295 0 9 0,009 3 29,51 3,0244 0 0 12 - 0,010 5 33,85 2,6457 1 0 1 0,001 5 1 2 34,16 2,6228 0 0,028 36,01 3 1 5 - 0,007 2,4920 0 39,31 4 2,2903 1 0 8 - 0,008 1 43,77 2,0666 1 0 11 0,012 44,95 2 2,0151 0 0 18 0,012 2 1 49,12 1,8534 0 14 0,011 52,94 1 0 - 0,015 1,7281 0 21 3 60,39 1,5316 1 1 0 0,003 3 3 - 0,006 60,91 1,5196 1 1 62,50 1 1 6 0,000 1,4847 1 - 0,014 65,08 1 1,4320 1 1 9

7.1.4 ZnAl-Sulfonate

Zink Aluminium Methansulfonat Hydrat								
[Zn ₂ Al(OH) ₆][CH ₃ SO ₃	• n H ₂ O]		100% r.F.					
a ₀ = 0,307(9) nm	c ₀ =	c ₀ = 3,912(2) nm			321(3)	nm³		
F ₁₈ = 77,4 (0.009, 27)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]		
6,78	100	13,0422	0	0	3	0,005		
13,56	24	6,5288	0	0	6	- 0,006		
20,42	27	4,3501	0	0	9	0,003		
27,33	4	3,2631	0	0	12	- 0,001		
34,36	1	2,6078	0	0	15	0,006		
35,53	1	2,5267	1	0	5	- 0,002		
38,40	1	2,3441	1	0	8	- 0,010		
41,51	1	2,1753	0	0	18	0,000		
42,31	1	2,1343	1	0	11	- 0,010		
47,04	1	1,9303	1	0	14	- 0,023		
48,84	1	1,8647	0	0	21	- 0,004		
50,59	1	1,8029	1	0	16	- 0,017		
52,49	1	1,7433	1	0	17	0,016		
56,42	1	1,6295	1	0	19	0,016		
60,04	1	1,5409	1	1	0	0,012		
60,49	1	1,5306	1	1	3	- 0,007		
62,76	1	1,4793	1	0	22	0,012		
64,11	1	1,4136	1	1	9	0,005		

Zink Aluminium Ethansulfonat Hydrat								
[Zn ₂ Al(OH) ₆][C ₂ H ₅ SO	₃ • n H₂O]		100% r.F.					
a ₀ = 0,307(9) nm	c ₀ =	4,157(6) nm		V = 0	,341(4)	nm ³		
F ₁₅ = 43,5 (0.008, 45)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
6,64	100	13,8893	0	0	3	- 0,009		
12,77	17	6,9333	0	0	6	0,004		
19,20	22	4,6228	0	0	9	0,003		
25,68	11	3,4686	0	0	12	- 0,007		
33,66	1	2,6627	1	0	1	0,013		
33,86	1	2,6454	1	0	2	- 0,003		
35,31	1	2,5399	1	0	5	- 0,005		
37,88	1	2,3754	1	0	8	- 0,012		
41,39	1	2,1796	1	0	11	- 0,010		
45,78	1	1,9806	0	0	21	- 0,017		
60,04	1	1,5409	1	1	0	0,008		
60,45	1	1,5314	1	1	3	0,008		
61,65	1	1,5033	1	1	6	- 0,007		
63,65	1	1,4608	1	1	9	- 0,001		
75,37	1	1,2600	0	0	33	- 0,010		

Zink Aluminium Propansulfonat Hydrat								
[Zn ₂ Al(OH) ₆][C ₃ H ₇ SC	0₃ • n H₂O]			100%	r. F.			
a ₀ = 0,307(2) nm	c ₀ =	4,543(6) nm		V = 0	,371(2)	nm ³		
F ₉ = 17,1 (0.011, 48)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]		
5,86	100	15,0722	0	0	3	0,028		
11,70	51	7,5605	0	0	6	0,019		
17,56	26	5,0466	0	0	9	0,007		
23,47	45	3,7869	0	0	12	- 0,003		
29,45	1	3,0303	0	0	15	- 0,011		
39,20	1	2,2981	1	0	10	0,000		
41,70	1	2,1642	0	0	21	- 0,010		
48,01	1	1,8934	0	0	24	- 0,004		
75,21	1	1,2624	0	0	36	- 0,015		

$[Zn_2Al(OH)_6][C_3H_7SO_3 \bullet 3H_2O]$

35% r. F.

a ₀ = 0,307(1) nm	$c_0 =$	4,526(6) nm	V = 0,369(6) nm ^o			
F ₁₂ = 21,2 (0.014, 40)	RG:	R3, R-3, R32, R3m,	R-3m			
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]
5,87	100	15,0472	0	0	3	0,016
11,70	36	7,5581	0	0	6	- 0,021
17,62	13	5,0280	0	0	9	0,006
23,55	23	3,7745	0	0	12	- 0,015
33,77	9	2,6523	1	0	1	0,031
34,62	20	2,5885	1	0	4	0,003
36,49	8	2,4605	1	0	7	- 0,017
39,26	8	2,2927	1	0	10	0,002
60,25	16	1,5347	1	1	0	0,027
61,41	9	1,5086	0	0	30	0,011
70,96	2	1,3271	2	0	2	0,011
71,36	3	1,3207	2	0	4	- 0,010

Zink Aluminium Butansulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₄ H ₉ SO ₃ • n H ₂ O] 100% r.F.							
a ₀ = 0,307(2) nm	c ₀ =	4,810(8) nm		V = 0	,393(3)	nm³	
F ₈ = 56,2 (0.005, 28)	RG:	R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]	
5,50	100	16,0558	0	0	3	- 0,002	
11,02	20	8,0266	0	0	6	- 0,002	
16,56	15	5,3528	0	0	9	- 0,009	
22,15	22	4,0142	0	0	12	- 0,010	
27,78	2	3,2116	0	0	15	- 0,015	
33,71	1	2,6569	1	0	1	- 0,002	
45,20	1	2,0062	0	0	24	0,000	
60,19	1	1,5362	1	1	0	0,001	

[Zn ₂ Al(OH) ₆][C ₄ H ₉ SO ₃ • 3,1H ₂ O]				35% r.F.			
a ₀ = 0,306(6) nm	c ₀ =	c ₀ = 4,776(7) nm			$V = 0,388(9) \text{ nm}^3$		
F ₁₁ = 18,6 (0.014, 42)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
5,56	100	15,8731	0	0	3	0,017	
11,14	39	7,9358	0	0	6	0,036	
16,70	25	5,3035	0	0	9	0,013	
22,32	55	3,9791	0	0	12	0,009	
27,98	5	3,1868	0	0	15	- 0,020	
33,91	11	2,6413	1	0	2	- 0,027	
34,57	10	2,5928	1	0	4	- 0,008	
45,54	3	1,9904	0	0	24	- 0,001	
60,33	10	1,5329	1	1	0	0,011	
61,54	4	1,5056	1	1	6	-0,005	
71,06	1	1,3256	2	0	2	0,009	

Zink Aluminium Pentansulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₅ H ₁₁ S	0 ₃ • n H ₂ O]			100%	. r.F.		
a ₀ = 0,307(3) nm	c ₀ =	5,214(7) nm		V = 0	,426(4)	nm ³	
F ₉ = 24,0 (0.012, 30)	RG:	R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]	
5,07	100	17,4456	0	0	3	- 0,014	
10,16	19	8,7039	0	0	6	- 0,006	
15,29	13	5,7965	0	0	9	0,007	
20,43	24	4,3440	0	0	12	0,008	
25,62	9	3,4747	0	0	15	0,014	
33,84	1	2,6491	1	0	2	0,008	
41,65	1	2,1686	1	0	14	- 0,029	
47,03	1	1,9305	0	0	27	0,025	
60,18	2	1,5377	1	1	0	0,001	

$[Zn_2Al(OH)_6][C_5H_{11}SO_3 \bullet 3H_2O]$				35% r.F.			
a ₀ = 0,307(9) nm	c ₀ =	c ₀ = 5,185(6) nm			V = 0,425(7) nm ³		
F ₁₂ = 19,7 (0.014, 45)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
5,13	100	17,2230	0	0	3	0,019	
10,25	14	8,6428	0	0	6	0,019	
15,37	10	5,7619	0	0	9	0,004	
20,55	19	4,3214	0	0	12	0,017	
25,74	5	3,5571	0	0	15	- 0,007	
33,74	1	2,6526	1	0	2	- 0,017	
34,28	1	2,6119	1	0	4	- 0,023	
36,36	1	2,4694	0	0	21	0,011	
41,76	1	2,1607	0	0	24	- 0,009	
47,29	1	1,9206	0	0	27	0,000	
60,34	1	1,5335	1	1	3	0,030	
71,00	1	1,3263	2	0	4	- 0,007	

[Zn₂Al(OH)₆][C₅H₁₁SO₃] 150°C						
a ₀ = 0,307(0) nm	C	₀ = 4,270(5) nm		V = 0,	348(7)) nm ³
F ₁₆ = 58,8 (0.008, 36)	R	RG: R3, R-3, R32, R3m, R-	3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		$\Delta 2\theta$ [Grad]
6,21	100	14,2207	0	0	3	0,006
12,43	31	7,1134	0	0	6	0,007
18,69	18	4,7432	0	0	9	0,007
25,00	9	3,5591	0	0	12	- 0,003
31,39	1	2,8471	0	0	15	- 0,001
33,76	4	2,6524	1	0	1	0,020
34,72	2	2,5812	1	0	4	- 0,014
36,84	2	2,4376	1	0	7	- 0,001
39,88	3	2,2584	1	0	10	- 0,021
43,78	1	2,0662	1	0	13	0,014
48,27	1	1,8838	1	0	16	- 0,002
60,23	2	1,5352	1	1	0	- 0,001
60,61	2	1,5265	1	1	3	- 0,007
61,78	1	1,5004	1	1	6	0,012
63,65	1	1,4607	1	1	9	- 0,003
70,97	1	1,3269	2	0	2	0,002

Zink Aluminium Hexansulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₆ H ₁₃ SO	O₃ • n H₂O]			100%	r.F.		
a ₀ = 0,307(1) nm	c ₀ =	5,511(8) nm		V = 0	450(2)	nm ³	
F ₁₀ = 39,3 (0.008, 32)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
4,79	100	18,4187	0	0	3	- 0,008	
9,62	21	9,1973	0	0	6	- 0,003	
14,44	9	6,1337	0	0	9	- 0,010	
19,30	11	4,5951	0	0	12	- 0,008	
24,19	7	3,6765	0	0	15	- 0,012	
29,13	1	3,0630	0	0	18	- 0,008	
33,70	1	2,6593	1	0	1	- 0,006	
39,19	1	2,2984	0	0	24	0,003	
44,35	1	2,0406	0	0	27	0,018	
60,22	1	1,5355	1	1	0	0,008	

[Zn₂Al(OH)₆][C₆H₁₃SO₃ • 3H₂O]

35% r.F.

a ₀ = 0,306(9) nm	$c_0 = 5,479(7) \text{ nm}$ $V = 0,447(0) \text{ nm}^\circ$					nm°
$F_{13} = 20,1 (0.014, 47)$	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
4,86	100	18,1768	0	0	3	0,024
9,73	23	9,0793	0	0	6	0,057
14,54	14	6,0854	0	0	9	0,008
19,44	26	4,5634	0	0	12	0,013
24,31	20	3,6583	0	0	15	- 0,034
29,31	1	3,0445	0	0	18	- 0,002
33,86	4	2,6450	1	0	2	0,006
34,33	5	2,6099	0	0	21	- 0,007
39,43	1	2,2835	0	0	24	- 0,004
60,25	2	1,5347	1	1	0	- 0,006
60,50	4	1,5290	1	1	3	0,007
60,81	2	1,5220	0	0	36	0,008
71,23	1	1,3228	1	1	21	- 0,003

[Zn ₂ Al(OH) ₆][C ₆ H ₁₃ SC	D ₃]			140°C)	
a ₀ = 0,307(2) nm	c ₀ =	4,569(9) nm		V = 0	,373(5)	nm ³
F ₁₀ = 20,3 (0.016, 30)	RG:	R3, R-3, R32, R3m,	R-3m			
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
5,85	100	15,1002	0	0	3	0,051
11,65	50	7,5897	0	0	6	0,041
17,45	32	5,0782	0	0	9	- 0,002
23,34	30	3,8084	0	0	12	- 0,001
29,28	7	3,0478	0	0	15	- 0,011
33,89	9	2,6428	1	0	2	- 0,004
35,11	3	2,5541	1	0	5	0,004
60,22	4	1,5353	1	1	0	0,028
60,53	7	1,5284	1	1	3	- 0,007
61,56	3	1,5053	1	1	6	0,016

Zink Aluminium Heptansulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₇ H ₁₅ S	O₃ • n H₂O]			100%	r.F.		
a ₀ = 0,307(0) nm	c ₀ =	5,856(0) nm		V = 0	,478(2)	nm ³	
F ₉ = 17,9 (0.010, 50)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
4,51	100	19,5920	0	0	3	- 0,013	
9,03	17	9,7764	0	0	6	- 0,015	
13,59	11	6,5151	0	0	9	- 0,006	
18,16	11	4,8815	0	0	12	- 0,005	
22,77	14	3,9016	0	0	15	0,015	
27,39	1	3,2534	0	0	18	0,000	
33,68	4	2,6607	1	0	1	- 0,023	
60,23	4	1,5352	1	1	0	0,012	
70,88	1	1,3284	2	0	2	- 0,002	

[Zn ₂ Al(OH) ₆][C ₇ H ₁₅ SO ₃ • 3,3H ₂ O]				35% r.F.			
a ₀ = 0,306(9) nm	c ₀ = 5,833(1) nm			V = 0,	nm ³		
F ₁₃ = 18,2 (0.014, 52)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]	
4,53	100	19,4439	0	0	3	- 0,011	
9,13	38	9,7219	0	0	6	0,043	
13,66	15	6,4813	0	0	9	0,009	
18,26	19	4,8610	0	0	12	0,026	
22,85	21	3,8888	0	0	15	- 0,002	
27,51	8	3,2406	0	0	18	0,008	
33,82	25	2,6476	1	0	2	- 0,009	
34,25	24	2,6155	1	0	4	- 0,005	
34,57	21	2,5921	1	0	5	- 0,006	
35,95	12	2,4977	1	0	8	0,023	
36,95	9	2,4305	0	0	24	0,001	
60,22	25	1,5354	1	1	0	- 0,020	
71,37	2	1,3205	2	0	5	0,015	

[Zn ₂ Al(OH) ₆][C ₇ H ₁₅ SO ₃]				130°C)	
a ₀ = 0,307(4) nm	c ₀ =	4,932(8) nm		V = 0,	,403(8)	nm³
F ₁₃ = 35,0 (0.012, 31)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]
5,38	100	16,4096	0	0	3	0,011
10,78	68	8,1964	0	0	6	0,033
16,17	54	5,4762	0	0	9	0,014
21,61	41	4,1083	0	0	12	0,012
27,07	12	3,2915	0	0	15	- 0,025
33,85	14	2,6459	1	0	2	0,017
34,43	7	2,6026	1	0	4	0,001
36,03	6	2,4907	1	0	7	0,000
38,29	5	2,3488	0	0	21	0,002
39,31	6	2,2899	1	0	11	- 0,007
41,38	4	2,1803	1	0	13	- 0,015
60,42	12	1,5308	1	1	3	- 0,009
61,30	5	1,5109	1	1	6	0,009

Zink Aluminium Oktansulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₈ H ₁₇ S	[Zn ₂ Al(OH) ₆][C ₈ H ₁₇ SO ₃ • n H ₂ O] 100% r.F.						
a ₀ = 0,307(1) nm	c ₀ =	6,016(6) nm		V = 0	,491(4)	nm ³	
F ₉ = 34,0 (0.007, 36)	RG:	R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
4,41	100	20,0285	0	0	3	0,010	
8,79	17	10,0413	0	0	6	- 0,012	
13,23	9	6,6930	0	0	9	- 0,004	
17,67	10	5,0196	0	0	12	- 0,005	
22,14	9	4,0148	0	0	15	- 0,002	
26,66	2	3,3436	0	0	18	0,015	
34,20	1	2,6216	1	0	4	- 0,004	
35,29	1	2,5409	1	0	7	- 0,001	
60,24	1	1,5350	1	0	32	0,013	

$[Zn_2Al(OH)_6][C_8H_{17}SO_3 \cdot 3, 2H_2O]$			35% r.F.			
$a_0 = 0,307(1) \text{ nm}$	c ₀ =	5,905(7) nm	$V = 0,482(5) \text{ nm}^3$			
F ₁₇ = 31,8 (0.010, 52)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
4,51	100	19,5722	0	0	3	0,026
9,00	34	9,8132	0	0	6	0,027
13,49	12	6,5578	0	0	9	0,008
18,02	18	4,9196	0	0	12	0,007
22,57	27	3,9368	0	0	15	0,002
27,13	5	3,2840	0	0	18	- 0,025
33,81	2	2,6490	1	0	2	0,006
34,51	4	2,5967	1	0	5	- 0,021
35,36	6	2,5364	1	0	7	0,010
37,03	4	2,4254	1	0	10	0,002
39,23	2	2,2946	1	0	13	0,018
41,24	1	2,1875	0	0	27	- 0,004
41,82	1	2,1580	1	0	16	0,002
44,80	1	2,0214	1	0	19	- 0,006
48,12	2	1,8896	1	0	22	0,001
60,40	5	1,5312	1	1	3	0,001
71,29	1	1,3219	2	0	5	- 0,006

[Zn ₂ Al(OH) ₆][C ₈ H ₁₇ SC	Zn ₂ Al(OH) ₆][C ₈ H ₁₇ SO ₃]				150°C			
$a_0 = 0,307(4) \text{ nm}$	c ₀ =	5,261(1) nm		V = 0	,430(7)	nm ³		
F ₁₂ = 83,6 (0.004, 33)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]		
5,03	100	17,5608	0	0	3	- 0,007		
10,09	35	8,7637	0	0	6	0,005		
15,14	21	5,8463	0	0	9	- 0,002		
20,25	17	4,3827	0	0	12	0,007		
25,36	9	3,5085	0	0	15	- 0,008		
30,57	1	2,9220	0	0	18	0,008		
33,81	3	2,6490	1	0	2	0,000		
34,34	1	2,6094	1	0	4	0,003		
35,81	1	2,5054	0	0	21	- 0,002		
60,15	2	1,5371	1	1	0	0,004		
60,40	3	1,5314	1	1	3	0,000		
61,15	1	1,5143	1	1	6	- 0,006		

Zink Aluminium Nonansulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₉ H ₁₉ SO ₃ • n H ₂ O] 100% r.F.							
a ₀ = 0,307(9) nm	c ₀ =	6,467(5) nm		V = 0	,531(0)	nm ³	
F ₈ = 73,1 (0.003, 39)	RG:	R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
4,09	100	21,5590	0	0	3	0,003	
8,19	25	10,7886	0	0	6	0,000	
12,31	10	7,1896	0	0	9	0,005	
16,42	15	5,3962	0	0	12	- 0,006	
20,58	23	4,3148	0	0	15	0,003	
24,75	8	3,5969	0	0	18	- 0,005	
33,69	1	2,6598	1	0	1	0,000	
60,21	3	1,5357	1	1	0	0,000	

[Zn ₂ Al(OH) ₆][C ₉ H ₁₉ SC	$[Zn_2Al(OH)_6][C_9H_{19}SO_3 \bullet 3,5H_2O]$				35% r.F.			
a ₀ = 0,306(9) nm	C ₀ =	c ₀ = 6,477(1) nm			528(3)	nm ³		
F ₁₁ = 13,8 (0.014, 57)	RG	: R3, R-3, R32, R3m, I	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
4,09	100	21,5965	0	0	3	- 0,001		
8,20	27	10,7696	0	0	6	0,020		
12,30	15	7,1912	0	0	9	0,010		
16,42	11	5,3954	0	0	12	0,007		
20,57	18	4,3142	0	0	15	0,019		
24,69	6	3,6030	0	0	18	- 0,032		
33,83	3	2,6477	1	0	2	0,017		
34,43	3	2,6027	1	0	5	0,013		
35,11	2	2,5547	1	0	7	0,014		
60,41	2	1,5307	1	1	3	- 0,012		
71,26	1	1,3220	2	0	5	- 0,009		

[Zn ₂ Al(OH) ₆][C ₉ H ₁₉ S0	[Zn ₂ Al(OH) ₆][C ₉ H ₁₉ SO ₃])	
a ₀ = 0,307(4) nm	c ₀ =	$c_0 = 5,593(8) \text{ nm}$ $V = 0,457(7) \text{ nm}^3$				
F ₁₀ = 24,1 (0.012, 34)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
4,74	100	18,6232	0	0	3	0,006
9,50	41	9,2990	0	0	6	0,024
14,25	27	6,2115	0	0	9	0,009
19,03	24	4,6600	0	0	12	0,006
23,85	16	3,7281	0	0	15	0,007
28,68	4	3,1099	0	0	18	- 0,021
33,81	7	2,6486	1	0	2	0,017
34,62	4	2,5892	1	0	5	0,006
39,76	5	2,2651	1	0	13	- 0,025
60,38	7	1,5317	1	1	3	- 0,001

Zink Aluminium Dekansulfonat Hydrat								
[Zn ₂ Al(OH) ₆][C ₁₀ H ₂₁ S	[Zn ₂ Al(OH) ₆][C ₁₀ H ₂₁ SO ₃ • n H ₂ O] 100% r.F.							
a ₀ = 0,306(7) nm	c ₀ =	6,565(7) nm		V = 0,	535(1)	nm ³		
F ₁₄ = 54,1 (0.007, 38)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]		
4,03	100	21,9010	0	0	3	0,001		
8,07	29	10,9559	0	0	6	- 0,003		
12,12	13	7,3001	0	0	9	0,002		
16,18	11	5,4763	0	0	12	0,000		
20,27	19	4,3794	0	0	15	0,007		
24,38	13	3,6503	0	0	18	0,003		
28,51	1	3,1310	0	0	21	- 0,016		
34,42	1	2,6034	1	0	5	0,008		
36,94	1	2,4316	0	0	27	0,003		
41,20	1	2,1895	1	0	17	- 0,011		
45,56	1	1,9910	0	0	33	0,008		
46,68	1	1,9442	1	0	23	0,018		
49,96	1	1,8256	0	0	36	- 0,007		
60,28	1	1,5353	1	1	0	- 0,007		

[Zn ₂ Al(OH) ₆][C ₁₀ H ₂₁ SO ₃ • 3,5H ₂ O]			35% r.F.			
a ₀ = 0,306(1) nm	C ₀ :	= 6,523(2) nm		V = 0,	529(2)	nm ³
F ₁₈ = 35,2 (0.009, 57)	RG	: R3, R-3, R32, R3m, F	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]
4,10	100	21,5422	0	0	3	0,038
8,15	27	10,8430	0	0	6	0,022
12,21	8	7,2432	0	0	9	0,008
16,30	10	5,4351	0	0	12	0,003
20,41	18	4,3487	0	0	15	0,001
24,54	8	3,6250	0	0	18	- 0,006
28,71	1	3,1070	0	0	21	- 0,006
33,90	3	2,6420	1	0	2	- 0,002
34,51	5	2,5965	1	0	5	0,013
35,59	2	2,5206	1	0	8	0,001
37,18	2	2,4162	0	0	27	- 0,002
39,08	1	2,3033	1	0	14	0,011
41,37	1	2,1807	1	0	17	0,003
43,97	1	2,0574	1	0	20	- 0,009
46,87	1	1,9368	1	0	23	- 0,008
50,03	1	1,8215	1	0	26	0,016
60,43	3	1,5303	1	1	0	- 0,011
71,49	1	1,3185	2	0	5	- 0,001

Zink Aluminium Undekansulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₁₁ H ₂₃ S	6O₃ • n H₂O]			100%	r.F.		
a ₀ = 0,307(5) nm	c ₀ =	7,072(4) nm		V = 0	,579(2)	nm ³	
F ₉ = 37,9 (0.006, 42)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]	
3,75	100	23,5546	0	0	3	0,006	
7,50	27	11,7901	0	0	6	0,005	
11,25	10	7,8682	0	0	9	- 0,005	
15,02	6	5,8966	0	0	12	0,005	
18,80	13	4,7199	0	0	15	- 0,004	
22,61	10	3,9324	0	0	18	0,001	
26,44	3	3,3709	0	0	21	- 0,001	
42,15	1	2,1438	0	0	33	0,024	
60,27	3	1,5344	1	1	3	0,000	

[Zn₂Al(OH)₆][C₁₁H₂₃SO₃ • 3,2H₂O]

35% r.F.

a ₀ = 0,307(3) nm	C ₀	= 7,058(6) nm	V = 0,577(2) nm°				
F ₁₁ = 23,4 (0.011, 42)	RG	6: R3, R-3, R32, R3m, R	-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
3,76	100	23,4728	0	0	3	0,009	
7,50	33	11,7804	0	0	6	- 0,010	
11,26	13	7,8492	0	0	9	- 0,009	
15,06	6	5,8770	0	0	12	0,013	
18,82	8	4,7102	0	0	15	- 0,018	
22,65	13	3,9230	0	0	18	- 0,009	
26,51	3	3,3596	0	0	21	0,013	
33,76	8	2,6526	1	0	2	0,013	
34,28	6	2,6140	0	0	27	0,005	
34,82	6	2,5745	1	0	7	- 0,020	
60,32	4	1,5331	1	1	3	0,003	

Zink Aluminium Dodekansulfonat Hydrat									
[Zn ₂ Al(OH) ₆][C ₁₂ H ₂₅ S	O ₃ • n H ₂ O]			100%	r.F.				
a ₀ = 0,306(6) nm	c ₀ =	7,177(1) nm		V = 0	,584(3)	nm ³			
F ₁₄ = 18,1 (0.013, 60)	RG:	R3, R-3, R32, R3m,	R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]			
3,68	100	24,0192	0	0	3	- 0,015			
7,37	27	11,9860	0	0	6	- 0,015			
11,08	7	7,9820	0	0	9	- 0,010			
14,79	5	5,9838	0	0	12	- 0,007			
18,51	12	4,7894	0	0	15	- 0,018			
22,27	13	3,9889	0	0	18	- 0,009			
26,05	5	3,4177	0	0	21	0,000			
29,84	1	2,9919	0	0	24	- 0,015			
33,72	1	2,6557	1	0	1	- 0,028			
41,51	1	2,1734	1	0	19	- 0,022			
45,48	1	1,9929	0	0	36	0,018			
49,50	1	1,8397	0	0	39	0,016			
60,46	1	1,5300	1	1	3	- 0,002			
70,95	1	1,3274	2	0	1	0,005			

[Zn ₂ Al(OH) ₆][C ₁₂ H ₂₅ S	$[Zn_2Al(OH)_6][C_{12}H_{25}SO_3 \cdot 3H_2O]$			35% r.F.			
a ₀ = 0,306(8) nm	c ₀ =	7,182(9) nm		V = 0	,585(3)	nm ³	
F ₁₄ = 24,5 (0.009, 61)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
3,67	100	24,0847	0	0	3	- 0,022	
7,38	98	11,9717	0	0	6	0,000	
11,07	46	7,9868	0	0	9	- 0,008	
14,77	26	5,9943	0	0	12	- 0,021	
18,50	47	4,7910	0	0	15	- 0,009	
22,26	53	3,9909	0	0	18	- 0,002	
26,03	19	3,4206	0	0	21	- 0,001	
29,83	1	2,9930	0	0	24	- 0,001	
33,82	1	2,6483	1	0	2	0,014	
34,28	1	2,6139	1	0	5	- 0,022	
41,51	2	2,1736	1	0	19	- 0,001	
45,44	2	1,9953	0	0	36	0,019	
60,43	1	1,5307	1	1	3	- 0,004	
70,94	1	1,3272	2	0	2	0,007	

Zink Aluminium Tetradekansulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₁₄ H ₂₉ S	[Zn₂Al(OH)₆][C₁₄H₂₉SO₃ • n H₂O] 100% r.F.						
a ₀ = 0,306(7) nm	c ₀ =	7,781(8) nm		V = 0,	634(2)	nm ³	
F ₁₃ = 47,1 (0.006, 46)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]	
3,40	100	25,9618	0	0	3	- 0,003	
6,80	25	12,9809	0	0	6	- 0,006	
10,23	5	8,6374	0	0	9	0,011	
13,64	2	6,4864	0	0	12	- 0,003	
17,08	3	5,1860	0	0	15	0,006	
20,53	5	4,3226	0	0	18	0,003	
24,00	3	3,7050	0	0	21	0,004	
27,48	1	3,2434	0	0	24	- 0,008	
33,78	1	2,6511	1	0	2	- 0,008	
34,03	1	2,6323	1	0	4	- 0,001	
34,70	1	2,5830	1	0	7	0,013	
35,67	1	2,5149	1	0	10	- 0,009	
60,41	1	1,5311	1	1	3	0,002	

[Zn ₂ Al(OH) ₆][C ₁₄ H ₂₉ S	$[Zn_2Al(OH)_6][C_{14}H_{29}SO_3 \cdot 3H_2O]$			35% r.F.			
a ₀ = 0,306(8) nm	c ₀ =	7,761(2) nm		V = 0	,663(0)	nm ³	
F ₁₅ = 31,0 (0.010, 47)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
3,44	100	25,6981	0	0	3	0,023	
6,84	94	12,9110	0	0	6	0,013	
10,26	26	8,6167	0	0	9	0,008	
13,68	8	6,4697	0	0	12	- 0,004	
17,13	11	5,1712	0	0	15	0,010	
20,58	19	4,3117	0	0	18	0,000	
24,06	10	3,6958	0	0	21	0,000	
27,55	2	3,2348	0	0	24	- 0,008	
34,04	1	2,6319	1	0	4	0,017	
34,64	1	2,5874	0	0	30	- 0,004	
34,96	1	2,5646	1	0	8	- 0,019	
41,87	1	2,1557	0	0	36	0,004	
45,55	1	1,9900	0	0	39	0,002	
60,40	1	1,5313	1	1	3	0,021	
60,71	1	1,5238	1	1	6	- 0,020	

Zink Aluminium Hexadekansulfonat Hydrat								
[Zn ₂ Al(OH) ₆][C ₁₆ H ₃₃ S	[Zn ₂ Al(OH) ₆][C ₁₆ H ₃₃ SO ₃ • n H ₂ O]				r.F.			
a ₀ = 0,306(6) nm	c ₀ =	8,415(5) nm		V = 0	,685(3)	nm ³		
F ₁₁ = 27,1 (0.008, 50)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
3,16	100	27,9602	0	0	3	0,010		
6,30	21	14,0187	0	0	6	0,003		
9,45	5	9,3523	0	0	9	- 0,002		
12,59	2	7,0242	0	0	12	- 0,020		
15,77	2	5,6135	0	0	15	- 0,009		
18,97	3	4,6735	0	0	18	0,007		
22,17	3	4,0055	0	0	21	0,011		
25,38	2	3,5060	0	0	24	0,003		
34,01	4	2,6339	1	0	4	0,011		
35,75	2	2,5096	1	9	11	- 0,012		
60,42	3	1,5309	1	1	3	0,000		

$[Zn_2Al(OH)_6][C_{16}H_{33}SO_3 \cdot 3H_2O]$			35% r.F.			
a ₀ = 0,306(6) nm	c ₀ =	8,377(2) nm	V = 0,682(1) nm ³			nm ³
F ₁₄ = 25,3 (0.011, 50)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]
3,18	38	27,8000	0	0	3	0,014
6,31	100	14,0007	0	0	6	- 0,018
9,49	29	9,3118	0	0	9	- 0,004
12,67	6	6,9807	0	0	12	0,001
15,83	5	5,5929	0	0	15	- 0,023
19,08	8	4,6488	0	0	18	0,022
22,27	6	3,9885	0	0	21	0,003
25,49	5	3,4912	0	0	24	- 0,005
34,00	3	2,6345	1	0	4	- 0,002
34,82	3	2,5744	1	0	8	- 0,006
35,80	3	2,5061	1	0	11	0,019
36,54	3	2,4568	1	0	13	- 0,025
37,02	2	2,4263	1	0	14	0,014
60,42	6	1,5308	1	1	3	0,000

[Zn ₂ Al(OH) ₆][C ₁₆ H ₃₃	$[Zn_2AI(OH)_6][C_{16}H_{33}SO_3 \bullet nH_2O]$			110°C				
a ₀ = 0,307(4) nm	c ₀ =	c ₀ = 10,161(7) nm			$V = 0.831(8) \text{ nm}^3$			
F ₁₁	RG:	R3, R-3, R32, R3m,	R-3m					
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]		
2,62	12	33,6815	0	0	3	0,015		
5,21	100	16,9336	0	0	6	0,000		
7,82	39	11,2911	0	0	9	0,000		
10,43	13	8,4781	0	0	12	- 0,012		
13,08	9	6,7651	0	0	15	0,018		
15,70	6	5,6380	0	0	18	0,020		
18,32	7	4,8385	0	0	21	0,001		
20,94	6	4,2387	0	0	24	- 0,023		
33,81	9	2,6491	1	0	4	- 0,013		
60,43	8	1,5307	1	1	6	0,012		

Zink Aluminium Oktadekansulfonat Hydrat								
[Zn ₂ Al(OH) ₆][C ₁₈ H ₃₇ S	[Zn ₂ Al(OH) ₆][C ₁₈ H ₃₇ SO ₃ • n H ₂ O]				r.F.			
a ₀ = 0,306(6) nm	c ₀ =	9,098(8) nm		V = 0	,741(0)	nm³		
F ₁₁ = 18,3 (0.011, 53)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
2,91	100	30,3796	0	0	3	- 0,005		
5,81	32	15,2096	0	0	6	- 0,017		
8,74	7	10,1098	0	0	9	0,000		
11,65	2	7,5922	0	0	12	- 0,015		
14,58	1	6,0722	0	0	15	- 0,015		
17,54	1	5,0511	0	0	18	0,013		
20,48	4	4,3332	0	0	21	- 0,002		
23,46	2	3,7887	0	0	24	0,016		
34,44	2	2,6020	1	0	7	0,001		
36,17	4	2,4812	1	0	13	0,027		
60,38	3	1,5317	1	1	3	- 0,014		

[Zn ₂ Al(OH) ₆][C ₁₈ H ₃₇ SO ₃ • 2,9H ₂ O]			35% r.F.			
a ₀ = 0,306(6) nm		c ₀ = 9,009(3) nm		V = 0,	733(5)	nm ³
F ₁₅ = 27,1 (0.007, 78)		RG: R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]
2,93	100	30,1545	0	0	3	- 0,012
5,89	15	14,9908	0	0	6	0,010
8,83	4	10,0103	0	0	9	0,000
11,78	1	7,5062	0	0	12	0,002
14,73	1	6,0109	0	0	15	- 0,012
17,70	1	5,0067	0	0	18	- 0,005
20,69	2	4,2899	0	0	21	0,001
23,67	1	3,7550	0	0	24	- 0,007
26,70	1	3,3362	0	0	27	0,005
33,78	1	2,6513	1	0	2	- 0,009
34,48	1	2,5988	1	0	7	0,023
36,20	1	2,4795	1	0	13	- 0,001
38,96	1	2,3096	0	0	39	0,008
60,41	1	1,5311	1	1	3	- 0,005
71,16	1	1,3238	1	0	59	- 0,005

Zink Aluminium Naphthalin-1-Sulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₁₀ H ₇ SO ₃ • n H ₂ O] 100% r.F.							
a ₀ = 0,308(0) nm	C ₀	= 3,340(6) nm		V = 0,	274(4)	nm ³	
F ₁₀ = 17,8 (0.015, 38)	R	G: R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]	
7,93	100	11,1383	0	0	3	- 0,002	
15,91	71	5,5654	0	0	6	0,006	
23,95	43	3,7123	0	0	9	- 0,004	
33,64	5	2,6617	1	0	1	- 0,037	
49,05	2	1,8556	0	0	18	0,007	
60,07	9	1,5389	1	1	0	0,048	
60,68	6	1,5249	1	1	3	0,027	
62,53	3	1,4843	1	1	6	0,001	
65,59	1	1,4222	1	1	9	0,015	
77,01	2	1,2372	0	0	27	0,002	

Zink Aluminium Naphthalin-2-Sulfonat Hydrat								
[Zn ₂ Al(OH) ₆][C ₁₀ H ₇ SO ₃ • n H ₂ O] 100% r.F.								
a ₀ = 0,306(8) nm	C ₀ =	= 5,367(8) nm		V = 0,	437(7)	nm³		
F ₁₂ = 53,1 (0.007, 31)	RG	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
4,93	100	17,9206	0	0	3	- 0,008		
9,89	28	8,9351	0	0	6	0,012		
14,84	8	5,9654	0	0	9	- 0,003		
19,84	15	4,4719	0	0	12	0,006		
24,86	9	3,5792	0	0	15	- 0,004		
33,74	1	2,6544	1	0	1	- 0,005		
33,87	1	2,6443	1	0	2	0,001		
34,76	1	2,5784	1	0	5	0,014		
36,35	1	2,4695	1	0	8	0,016		
40,29	1	2,2368	0	0	24	- 0,003		
45,59	1	1,9880	0	0	27	0,001		
60,26	1	1,5345	1	1	0	- 0,013		

[Zn ₂ Al(OH) ₆][C ₁₀ H ₇ SO ₃ • 2,9H ₂ O]				35% r.F.		
a ₀ = 0,306(8) nm	c ₀ =	5,356(4) nm	$V = 0,436(6) \text{ nm}^3$			nm ³
F ₁₂ = 35,8 (0.010, 32)	RG:	R3, R-3, R32, R3m,	R-3m			
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]
4,94	100	17,8662	0	0	3	- 0,003
9,91	26	8,9144	0	0	6	0,014
14,87	6	5,9511	0	0	9	0,001
19,89	11	4,4608	0	0	12	0,013
24,90	7	3,5734	0	0	15	- 0,017
33,88	1	2,6436	1	0	2	0,006
34,74	1	2,5799	1	0	5	- 0,014
35,16	1	2,5504	0	0	21	0,004
40,39	1	2,2312	0	0	24	0,012
45,69	1	1,9842	0	0	27	- 0,010
60,30	1	1,5336	1	1	0	0,019
60,54	1	1,5281	1	1	3	0,012

Zink Aluminium Naphthalin-1,5-Disulfonat Hydrat									
[Zn ₂ Al(OH) ₆][C ₁₀ H ₆ (S	[Zn ₂ Al(OH) ₆][C ₁₀ H ₆ (SO ₃) ₂ • n H ₂ O] 100% r.F.								
$a_0 = 0,307(1) \text{ nm}$	c ₀ =	4,574(4) nm		V = 0	373(6)	nm³			
F ₁₆ = 39,0 (0.009, 47)	RG:	R3, R-3, R32, R3m,	R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]			
5,79	100	15,2408	0	0	3	0,003			
11,61	24	7,6151	0	0	6	0,014			
17,44	24	5,0817	0	0	9	0,004			
23,31	33	3,8134	0	0	12	- 0,008			
29,25	2	3,0508	0	0	15	- 0,012			
33,72	1	2,6554	1	0	1	- 0,003			
34,56	2	2,5929	1	0	4	- 0,032			
35,29	2	2,5414	0	0	18	0,000			
39,14	1	2,2994	1	0	10	- 0,002			
41,40	1	2,1789	0	0	21	- 0,012			
47,67	1	1,9063	0	0	24	- 0,008			
60,22	2	1,5355	1	1	0	0,005			
60,69	2	1,5246	0	0	30	0,008			
67,52	1	1,3860	0	0	33	0,009			
70,84	1	1,3291	2	0	1	0,011			
74,64	1	1,2706	0	0	36	0,008			

[Zn ₂ Al(OH) ₆][C ₁₀ H ₆ (SO ₃) ₂ • n H ₂ O]				35% r	.F.	
a ₀ = 0,306(4) nm	C ₀ =	$c_0 = 4,529(2) \text{ nm}$ $V = 0,368(3) \text{ nm}^3$				
F ₁₅ = 34,9 (0.011, 40)	RG	: R3, R-3, R32, R3m,	R-3m			
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]
5,85	100	15,1002	0	0	3	- 0,001
11,70	51	7,5593	0	0	6	- 0,017
17,62	22	5,0296	0	0	9	0,010
23,56	35	3,7733	0	0	12	0,006
29,55	12	3,0203	0	0	15	- 0,009
33,99	6	2,6356	1	0	2	0,003
34,71	5	2,5827	1	0	4	0,016
35,18	6	2,5487	1	0	5	- 0,027
35,65	5	2,5162	0	0	18	0,000
37,37	3	2,4044	1	0	8	- 0,024
39,33	2	2,2890	1	0	10	0,013
48,19	5	1,8867	0	0	24	0,011
60,69	8	1,5246	1	1	3	- 0,009
61,36	2	1,5097	0	0	30	0,001
71,55	1	1,3177	2	0	4	0,014

Zink Aluminium Benzolsulfonat Hydrat								
[Zn ₂ Al(OH) ₆][C ₆ H ₅ SO	₃ • n H₂O]			100%	r.F.			
a ₀ = 0,306(7) nm	C ₀ =	4,704(7) nm		V = 0	,383(3)	nm³		
$F_{15} = 26,9 \ (0.009, \ 65)$	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]		
5,63	100	15,6872	0	0	3	- 0,002		
11,28	36	7,8357	0	0	6	0,008		
16,94	11	5,2284	0	0	9	- 0,003		
22,67	31	3,9191	0	0	12	0,009		
28,43	3	3,1370	0	0	15	- 0,005		
33,78	1	2,6513	1	0	1	0,008		
34,29	1	2,6133	0	0	18	0,006		
36,35	1	2,4697	1	0	7	0,007		
40,23	1	2,2400	0	0	21	0,007		
46,26	1	1,9609	0	0	24	- 0,015		
52,48	1	1,7423	0	0	27	0,008		
60,33	1	1,5329	1	1	0	0,028		
65,40	1	1,4258	0	0	33	- 0,004		
72,21	1	1,3071	0	0	36	- 0,016		
86,89	1	1,1201	0	0	42	0,002		

[Zn ₂ Al(OH) ₆][C ₆ H ₅ SO ₃ • 2,7H ₂ O]				35% r.F.			
a ₀ = 0,306(3) nm		c ₀ = 4,684(2) nm		V = 0	,380(5)	nm ³	
F ₁₆ = 25,5 (0.010, 65)		RG: R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]	
5,64	100	15,6705	0	0	3	- 0,020	
11,33	63	7,8054	0	0	6	0,002	
17,01	30	5,2077	0	0	9	- 0,010	
22,76	62	3,9030	0	0	12	0,003	
28,57	5	3,1222	0	0	15	0,006	
33,44	1	2,6016	0	0	18	0,009	
36,42	1	2,4652	1	0	7	0,008	
40,40	1	2,2308	0	0	21	- 0,005	
46,53	2	1,9503	0	0	24	0,036	
52,72	1	1,7347	0	0	27	0,006	
56,94	1	1,6160	1	0	23	- 0,024	
60,73	1	1,5238	1	1	3	0,009	
65,72	1	1,4196	0	0	33	- 0,008	
72,62	1	1,3008	2	0	7	0,003	
79,78	1	1,2011	0	0	39	0,001	
87,37	1	1,1152	0	0	42	0,004	

Zink Aluminium Toluo	olsulfonat Hyd	drat				
[Zn ₂ Al(OH) ₆][C ₇ H ₇ SO	₀₃ • n H₂O]			100%	r.F.	
a ₀ = 0,307(0) nm	C ₀ =	5,161(4) nm		V = 0	,421(3)	nm ³
F ₁₉ = 47,6 (0.009, 44)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]
5,13	100	17,2186	0	0	3	- 0,004
10,28	34	8,5979	0	0	6	0,005
15,43	13	5,7397	0	0	9	- 0,013
20,63	27	4,3012	0	0	12	0,000
25,86	12	3,4423	0	0	15	- 0,011
33,85	5	2,6462	1	0	2	- 0,020
34,81	8	2,5755	1	0	5	- 0,011
36,53	4	2,4574	0	0	21	0,006
38,90	2	2,3130	1	0	11	0,002
41,86	2	2,1564	1	0	14	0,000
45,31	5	1,999	1	0	17	0,008
47,55	2	1,9107	0	0	27	0,024
49,15	1	1,8521	1	0	20	- 0,008
60,24	7	1,5349	1	1	0	0,005
60,49	7	1,5294	1	1	3	- 0,019
61,31	5	1,5107	1	1	6	0,019
62,60	2	1,4827	1	1	9	0,003
64,40	1	1,4455	1	1	12	0,008
71.18	1	1.3235	0	0	39	- 0.006

[Zn ₂ Al(OH) ₆][C ₇ H ₇ SO ₃ • 3,1H ₂ O]				35% r.F.			
a ₀ = 0,307(4) nm	c ₀ =	c ₀ = 5,142(8) nm			V = 0,420(8) nr		
F ₁₃ = 25,1 (0.012, 44)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	∆2θ [Grad]	
5,16	100	17,1020	0	0	3	0,012	
10,34	26	8,5448	0	0	6	0,032	
15,48	11	5,7180	0	0	9	- 0,010	
20,71	19	4,2850	0	0	12	0,003	
25,96	7	3,4298	0	0	15	- 0,010	
33,83	2	2,6471	1	0	2	0,011	
34,76	2	2,5785	1	0	5	- 0,018	
36,51	2	2,4589	1	0	8	0,011	
42,12	2	2,1435	0	0	24	- 0,014	
47,71	1	1,9047	0	0	27	0,000	
60,41	3	1,5311	1	1	3	- 0,011	
61,28	1	1,5114	1	0	28	0,016	
71,16	1	1,3239	2	0	4	0,003	

Zink Aluminium Benzol-1,3-Disulfonat Hydrat							
[Zn ₂ Al(OH) ₆][C ₆ H ₄ (SO	O ₃)₂ • n H₂O]			100%	r.F.		
a ₀ = 0,307(6) nm	c ₀ =	= 4,750(5) nm		V = 0,	389(2)	nm ³	
F ₁₃ = 28,8 (0.012, 38)	RG	: R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	Ι	$\Delta 2\theta$ [Grad]	
5,62	100	15,7011	0	0	3	0 ,048	
11,16	23	7,9197	0	0	6	- 0,003	
16,78	12	5,2785	0	0	9	- 0,001	
22,44	16	3,9591	0	0	12	- 0,002	
28,18	6	3,1636	0	0	15	0,031	
33,66	13	2,6601	1	0	1	- 0,007	
34,97	14	2,5638	1	0	5	0,015	
36,93	10	2,4320	1	0	8	- 0,025	
39,74	6	2,2665	1	0	11	0,012	
60,12	28	1,5379	1	1	0	0,002	
60,43	17	1,5306	1	1	3	0,002	
61,36	11	1,5096	1	1	6	0,003	
70,70	4	1,3314	2	0	1	- 0,004	

Zink Aluminium Methylorange Hydrat								
[Zn ₂ Al(OH) ₆][C ₁₄ H ₁₄ N	$[Zn_2Al(OH)_6][C_{14}H_{14}N_3SO_3 \bullet n H_2O]$							
a ₀ = 0,307(2) nm	c ₀ =	7,219(2) nm		V = 0,	590(0)	nm ³		
F ₁₈ = 38,9 (0.007, 64)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
3,67	100	24,0356	0	0	3	0,004		
7,34	41	12,0289	0	0	6	0,002		
11,03	21	8,0163	0	0	9	0,007		
14,70	10	6,0215	0	0	12	- 0,014		
18,42	13	4,8116	0	0	15	0,005		
22,14	25	4,0113	0	0	18	- 0,004		
25,88	11	3,4396	0	0	21	- 0,014		
33,76	2	2,6530	1	0	2	0,002		
34,81	3	2,5753	1	0	7	0,010		
35,93	2	2,4974	1	0	10	- 0,017		
37,35	2	2,4054	0	0	30	0,015		
39,29	1	2,2914	1	0	16	0,004		
41,24	1	2,1870	0	0	33	0,011		
45,18	2	2,0054	0	0	36	- 0,001		
49,17	1	1,8515	1	0	28	- 0,001		
53,24	1	1,7190	0	0	42	- 0,004		
60,34	2	1,5326	1	1	3	0,009		
71,11	1	1,3247	2	0	5	- 0,006		

[Zn ₂ Al(OH) ₆][C ₁₄ H ₁₄ N ₃ SO ₃ • 2,5H ₂ O]				35% r	.F.	
a ₀ = 0,306(6) nm	c ₀ =	c ₀ = 7,166(6) nm			583(3)	nm ³
F ₁₄ = 16,7 (0.013, 64)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]
3,74	100	23,5925	0	0	3	0,046
7,43	60	11,8866	0	0	6	0,036
11,12	27	7,9474	0	0	9	0,022
14,82	14	5,9722	0	0	12	0,000
18,56	16	4,7777	0	0	15	0,000
22,30	28	3,9831	0	0	18	- 0,009
26,07	9	3,4153	0	0	21	- 0,020
33,84	3	2,6467	1	0	2	0,015
34,89	5	2,5691	1	0	7	0,013
36,06	4	2,4907	1	0	10	- 0,015
37,62	2	2,3889	0	0	30	0,000
39,42	1	2,2839	1	0	16	0,000
60,47	4	1,5298	1	1	3	- 0,003
71,28	1	1,3219	2	0	5	- 0,003

7.1.5 ZnAI-Aminosäureanionen

Zink Aluminium Aminoacetat Hydrat						
[Zn ₂ Al(OH) ₆][C ₂ H ₄ NO ₂ • n H ₂ O] 100% r.F.						
a ₀ = 0,306(9) nm	c ₀ =	2,265(3) nm		V = 0,	184(8)	nm ³
F ₈ = 85,8 (0.006, 15)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]
11,72	100	7,5471	0	0	3	0,006
23,54	44	3,7767	0	0	6	- 0,007
34,62	3	2,5888	1	0	2	- 0,013
39,27	3	2,2923	1	0	5	0,007
46,83	3	1,9382	1	0	8	- 0,003
60,25	5	1,5347	1	1	0	- 0,002
61,34	3	1,5101	0	0	15	0,004
61,62	3	1,5038	1	1	3	0,007

$[Zn_2Al(OH)_6][C_2H_4NO_2 \bullet n H_2O]$							
a ₀ = 0,307(0) nm	c ₀ =	c ₀ = 3,767(9) nm			V = 0,307(6) nm		
F ₁₂ = 32,8 (0.007, 50)	RG:	: R3, R-3, R32, R3m,	R-3m				
20 Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
7,02	100	12,5744	0	0	3	- 0,008	
14,10	38	6,2782	0	0	6	0,004	
21,20	46	4,1870	0	0	9	- 0,002	
28,39	7	3,1409	0	0	12	- 0,009	
33,78	1	2,6513	1	0	1	0,012	
35,73	1	2,5106	0	0	15	0,019	
43,18	2	2,0935	0	0	18	- 0,004	
48,06	1	1,8915	1	0	14	- 0,001	
50,86	1	1,7937	0	0	21	0,017	
60,23	1	1,5352	1	1	0	- 0,006	
75,65	1	1,2560	0	0	30	- 0,005	
84,85	1	1,1418	0	0	33	0,000	

Zink Aluminium 3-Aminopropionat Hydrat							
[Zn ₂ Al(OH) ₆][C ₃ H ₆ NO	$[Zn_2Al(OH)_6][C_3H_6NO_2 \bullet n H_2O]$				r.F.		
a ₀ = 0,306(6) nm	c ₀ =	2,254(4) nm		V = 0,	183(5)	nm ³	
F ₁₁ = 51,2 (0.013, 17)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
11,76	100	7,5164	0	0	3	- 0,003	
23,67	47	3,7562	0	0	6	0,007	
33,94	3	2,6388	1	0	1	- 0,027	
34,71	11	2,5820	1	0	2	0,031	
39,36	7	2,2872	1	0	5	0,010	
46,96	5	1,9332	1	0	8	- 0,019	
53,24	1	1,7190	1	0	10	- 0,017	
56,70	1	1,6222	1	0	11	0,005	
60,34	9	1,5326	1	1	0	0,009	
61,70	8	1,5021	1	1	3	- 0,007	
65,74	2	1,4192	1	1	6	0,003	

Zink Aluminium 2-Amino-3-methylpentanoat Hydrat								
[Zn ₂ Al(OH) ₆][C ₆ H ₁₂ N(O₂ • n H₂O]							
a ₀ = 0,307(0) nm	c ₀ =	5,621(8) nm		V = 0	,458(8)	nm ³		
F ₁₆ = 34,5 (0.010, 48)	RG:	R3, R-3, R32, R3m,	R-3m					
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
4,71	100	18,7378	0	0	3	0,000		
9,47	16	9,3333	0	0	6	0,037		
14,17	25	6,2460	0	0	9	0,001		
18,93	14	4,6836	0	0	12	0,005		
23,70	18	3,7511	0	0	15	- 0,021		
28,57	2	3,1223	0	0	18	0,008		
33,83	3	2,6478	1	0	2	- 0,014		
34,65	3	2,5869	1	0	5	0,004		
36,09	2	2,4867	1	0	8	- 0,002		
43,65	1	2,0720	1	0	17	- 0,001		
47,01	2	1,9314	1	0	20	0,004		
60,26	4	1,5346	1	1	0	0,015		
61,15	3	1,5142	1	1	6	0,022		
62,22	1	1,4908	1	1	9	- 0,012		
63,75	1	1,4587	1	1	12	- 0,003		
70,92	1	1,3277	2	0	2	0,006		

Zink Aluminium 2-A	mino-3-phenylp	propionat Hydrat						
[Zn ₂ Al(OH) ₆][C ₉ H ₁₀ N	10 ₂ • n H ₂ O]			100% r.F.				
$a_0 = 0,307(4) \text{ nm}$	c ₀ =	$c_0 = 5,248(1) \text{ nm}$ $V = 0,429(5) \text{ nm}^3$						
F ₂₂ = 18,9 (0.012, 99)) RG:	P3, P-3, P321, P3m	1, P-3r	n1				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	$\Delta 2\theta$ [Grad]		
5,08	100	17,3829	0	0	3	0,032		
10,12	28	8,7315	0	0	6	0,018		
15,18	9	5,8312	0	0	9	0,000		
20,28	17	4,3743	0	0	12	- 0,004		
25,43	7	3,5003	0	0	15	- 0,012		
30,62	1	2,9176	0	0	18	- 0,022		
33,82	3	2,6481	1	0	2	0,008		
34,05	2	2,6310	1	0	3	0,014		
34,37	3	2,6074	1	0	4	0,023		
35,20	4	2,5473	1	0	6	- 0,005		
35,76	2	2,5085	1	0	7	0,005		
37,09	2	2,4222	1	0	9	- 0,005		
37,85	1	2,3753	1	0	10	- 0,017		
39,44	3	2,2831	0	0	23	- 0,023		
43,74	1	2,0678	1	0	16	- 0,015		
46,69	1	1,9440	0	0	27	- 0,007		
60,33	4	1,5328	1	0	28	- 0,010		
60,60	2	1,5267	1	1	4	- 0,001		
61,55	1	1,5058	1	1	7	0,018		
62,94	1	1,4751	1	1	10	- 0,014		
68,08	1	1,3760	1	1	17	- 0,005		
71,01	1	1,3263	1	1	20	- 0,001		

Zink Aluminium 2-Amino-3-sulfanylpropionat Hydrat						
[Zn ₂ Al(OH) ₆][C ₃ H ₆ NO ₂ S • n H ₂ O] 100% r.F.						
a ₀ = 0,307(5) nm	c ₀ =	5,308(0) nm		V = 0	434(7)	nm ³
F ₈ = 14,0 (0.012, 46)	RG:	R3, R-3, R32, R3m,	R-3m			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k		∆2θ [Grad]
5,03	100	17,5574	0	0	3	0,039
9,99	80	8,8433	0	0	6	0,004
15,00	27	5,9002	0	0	9	- 0,006
20,04	40	4,4267	0	0	12	- 0,015
25,15	27	3,5376	0	0	15	0,008
33,81	28	2,6492	1	0	2	0,010
60,38	34	1,5317	1	1	3	0,007
71,08	16	1,3251	2	0	4	- 0,010

Zink Aluminium 2-Amino-4-methylsulfanylbutyrat Hydrat							
[Zn ₂ Al(OH) ₆][C ₅ H ₁₀ NC	$D_2S \bullet n H_2O$]			100%	r.F.		
a ₀ = 0,306(9) nm	c ₀ =	5,753(4) nm		V = 0,	469(2)	nm ³	
F ₁₇ = 33,1 (0.012, 42)	RG:	R3, R-3, R32, R3m,	R-3m				
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
4,61	100	19,1605	0	0	3	0,004	
9,22	32	9,5859	0	0	6	0,003	
13,83	37	6,3965	0	0	9	- 0,008	
18,50	43	4,7907	0	0	12	0,015	
23,17	45	3,8352	0	0	15	0,003	
27,90	4	3,1950	0	0	18	0,012	
33,82	8	2,6479	1	0	2	- 0,019	
34,59	6	2,5913	1	0	5	- 0,024	
35,47	4	2,5288	1	0	7	- 0,001	
37,26	2	2,4114	1	0	10	0,021	
39,52	5	2,2782	1	0	13	0,005	
42,25	2	2,1372	1	0	16	0,002	
45,38	2	1,9967	1	0	19	0,017	
48,83	2	1,8637	1	0	22	0,009	
60,46	9	1,5299	1	1	3	- 0,017	
62,27	4	1,4897	1	0	32	- 0,023	
65,48	1	1,4242	1	1	15	0,024	

Zink Aluminium 2-Amino-3-hydroxypropionat Hydrat								
$[Zn_2AI(OH)_6][C_3H_6NO_3 \bullet n H_2O]$					r.F.			
a ₀ = 0,307(3) nm	c ₀ =	c ₀ = 2,281(0) nm			V = 0,186(5) nm ³			
F ₁₀ = 32,0 (0.015, 21)	RG:	RG: R3, R-3, R32, R3m, R-3m						
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]		
11,63	100	7,6053	0	0	3	- 0,003		
23,38	39	3,8020	0	0	6	- 0,002		
33,83	14	2,6476	1	0	1	- 0,061		
34,56	16	2,5929	1	0	2	- 0,022		
46,64	8	1,9456	1	0	8	- 0,011		
52,82	2	1,7318	1	0	10	- 0,002		
60,20	18 1,5359		1	1	0	0,016		
61,54	15 1,5056		1	1	3	0,012		
65,48	4	1,4243	1	1	6	0,005		
71,81	3	1,3135	1	1	9	0,016		

Zink Aluminium Aspartat Hydrat							
[Zn ₂ Al(OH) ₆][C ₄ H ₆ NO		100%	r.F.				
a ₀ = 0,306(9) nm	C ₀ =	3,795(2) nm		nm³			
F ₁₆ = 35,3 (0.008, 59)	RG:	P3, P-3, P321, P3m [•]	1, P-3r	n1			
2θ Exp [Grad]	Int. I/I ₁₀₀	d Exp [Grad]	h	k	I	∆2θ [Grad]	
6,97	100	12,6754	0	0	3	- 0,014	
11,66	1	7,5825	0	0	5	0,012	
13,97	29	6,3331	0	0	6	- 0,017	
21,06	32	4,2141	0	0	9	0,014	
28,19	2	3,1626	0	0	12	0,000	
33,69	4	2,6580	1	0	0	0,002	
34,44	6	2,6022	1	0	3	- 0,013	
36,64	4	2,4508	1	0	6	- 0,004	
40,06	3	2,2488	1	0	9	- 0,003	
44,47	1	2,0355	1	0	12	- 0,014	
49,72	2	1,8324	1	0	15	0,007	
55,59	1	1,6518	1	0	18	0,001	
60,26	7	1,5345	1	1	0	0,005	
60,74	4	1,5235	1	1	3	- 0,001	
62,19	2	1,4914	1	1	6	- 0,003	
64,58	1	1.4419	1	1	9	0.013	

	C [%]				H [%]			
ZnAl-	Mess	werte	MW	Stdabw.	Mess	werte	MW	Stdabw.
Pentanoat	13,44	13,45	13,4	0,01	4,70	4,64	4,7	0,04
Hexanoat	15,66	15,64	15,7	0,01	5,34	5,29	5,3	0,04
Heptanoat	18,20	18,30	18,3	0,07	5,21	5,23	5,2	0,01
Oktanoat	21,30	21,21	21,3	0,06	5,63	5,39	5,5	0,17
Nonanoat	23,00	22,78	22,9	0,16	5,83	5,87	5,9	0,03
Dekanoat	24,39	24,42	24,4	0,02	6,04	6,11	6,1	0,05
Lindakanaat	25,14	25,06	25,1	0,06	6,98	6,51	6,7	0,33
Undekanoat	40,60	40,61	40,6	0,01	8,58	8,91	8,7	0,23
Dodekanoat	45,61	45,77	45,7	0,11	7,84	7,98	7,9	0,10
Tridekanoat	44,56	44,29	44,4	0,19	9,83	9,51	9,7	0,23
Tetradekanoat	43,95	42,48	43,2	1,04	8,91	8,30	8,6	0,43
Pentadekanoat	48,02	47,48	47,8	0,38	9,97	9,39	9,7	0,41
Oktodokopost	36,67	36,58	36,6	0,06	7,93	8,30	8,1	0,26
Oklauekanoal	51,12	51,16	51,1	0,03	10,14	10,23	10,2	0,06
Nonadekanoat	54,35	53,85	54,4	0,35	10,25	10,10	10,2	0,11
Terephthalat	11,54	11,22	11,4	0,23	3,87	3,92	3,9	0,04
Tartrat	6,37	6,38	6,4	0,01	3,40	3,40	3,4	0,00
Citrat	7,08	7,09	7,1	0,01	3,58	3,43	3,5	0,11

7.2 Ergebnisse der CHNS-Elementaranalysen

Tab. 7.2.1 Messergebnisse der CHNS-Analysen für ZnAl-Carboxylate

	C [%]				H [%]			
ZnAl-	Mess	werte	MW	Stdabw.	Mess	werte	MW	Stdabw.
Propansulfonat	8,31	8,33	8,3	0,01	4,25	4,11	4,2	0,10
Butansulfonat	10,87	9,99	10,4	0,62	4,88	4,72	4,8	0,11
Pentansulfonat	12,31	12,61	12,5	0,21	5,04	4,85	4,9	0,13
Hexansulfonat	14,59	14,76	14,7	0,12	5,36	5,25	5,3	0,08
Heptansulfonat	16,69	16,23	16,5	0,33	5,58	5,36	5,5	0,16
Oktansulfonat	18,67	18,42	18,5	0,18	5,77	5,53	5,7	0,17
Nonansulfonat	20,35	19,34	19,8	0,71	5,75	5,73	5,7	0,01
Dekansulfonat	22,15	22,35	22,3	0,14	6,07	6,03	6,1	0,03
Undekansulfonat	24,14	24,37	24,3	0,16	6,57	6,30	6,4	0,19
Dodekansulfonat	25,04	26,06	25,6	0,72	6,95	6,62	6,8	0,23
Tetradekansulfonat	28,48	28,49	28,5	0,01	6,96	6,76	6,9	0,14
Hexadekansulfonat	30,93	30,83	30,9	0,07	7,28	7,44	7,4	0,11
Oktadekansulfonat	33,68	33,33	33,5	0,25	7,86	7,37	7,6	0,35
Benzolsulfonat	14,44	14,37	14,4	0,05	3,96	3,77	3,9	0,13
Toluolsulfonat	16,09	15,93	16,0	0,11	4,15	4,06	4,1	0,06
Naphthalin-2- Sulfonat	23,91	23,02	23,5	0,63	3,87	4,03	4,0	0,11
Methylorange	28,35	28,43	28,4	0,06	4,51	4,38	4,4	0,09

Tab. 7.2.2 Messergebnisse der CHNS-Analysen für ZnAl-Sulfonate

	S [%]				
Kettenlänge	Mess	werte	MW	Stdabw.	
Propionat	7,53	7,44	7,5	0,06	
Butyrat	6,76	6,93	6,8	0,12	
Pentansulfonat	6,72	6,74	6,7	0,01	
Hexansulfonat	6,52	6,48	6,5	0,03	
Heptansulfonat	6,41	6,31	6,4	0,07	
Oktansulfonat	6,16	6,11	6,1	0,04	
Nonansulfonat	6,02	5,97	6,0	0,04	
Dekansulfonat	5,91	5,86	5,9 0,04		
Undekansulfonat	5,84	5,93	5,9	0,06	
Dodekansulfonat	5,89	6,22	6,1	0,23	
Tetradekansulfonat	5,55	5,68	5,6	0,09	
Hexadekansulfonat	5,19	5,67	5,4	0,34	
Oktadekansulfonat	5,51	4,28	4,9	0,87	
Benzolsulfonat	6,33	6,25	6,3	0,06	
Toluolsulfonat	6,69 6,62 6,7 (0,05		
Naphthalin-2-Sulfonat	5,88	6,18	6,0	0,21	
Methylorange	5,84	5,77	5,8	0,05	

Tab. 7.2.3 Messergebnisse der CHNS-Analysen für ZnAI-Sulfonate

7.3 IR-Spektren und Zuordnung der IR-Schwingungsbanden

Abb. 7.3.1 IR-Aufnahme von ZnAI-Propionat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3490 3470	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2979	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2941	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2881	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1599	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1554	v(C=O)	v (C=O) – Valenzschwingung
1467	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1418	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1384 1363	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1294	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
1077	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
926 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
764	δ(Me-OH)	(Me-OH) – Deformationsschwingung
621	(AIO ₆)	(Al ^{IV} -O) – Schwingung
552	(AIO ₆)	(Al ^{IV} -O) – Schwingung
425	ZnO	Zn-O – Schwingung

Tab. 7.3.1 IR-Absorptionsbanden von ZnAI-Propionat

Abb. 7.3.2 IR-Aufnahme von ZnAI-Pentanoat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3647	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3510 3450	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2959	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2932	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2874	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH ₂ - u. CH ₃ -Gruppen
1599	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1559	v(C=O)	v (C=O) – Valenzschwingung
1456	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1412	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1384 1360	$\delta_{s}(CH_{3})$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1241	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
1106	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
925 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
762	δ(Me-OH)	(Me-OH) – Deformationsschwingung
620	(AIO ₆)	(Al ^{IV} -O) – Schwingung
555	(AIO ₆)	(Al ^{IV} -O) – Schwingung
424	ZnO	Zn-O – Schwingung

Tab. 7.3.2 IR-Absorptionsbanden von ZnAI-Pentanoat

Abb. 7.3.3 IR-Aufnahme von ZnAI-Hexanoat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3480 3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2959	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2932	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2873 2861	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1598	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1557	v(C=O)	v (C=O) – Valenzschwingung
1466 (Schulter)	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1404	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1363	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1229	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
1105	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
930 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
768 747	δ(Me-OH)	(Me-OH) – Deformationsschwingung
622	(AIO ₆)	(Al ^{IV} -O) – Schwingung
552	(AIO ₆)	(Al ^{IV} -O) – Schwingung
427	ZnO	Zn-O – Schwingung

Tab. 7.3.3 IR-Absorptionsbanden von ZnAI-Hexanoat

Abb. 7.3.4 IR-Aufnahme von ZnAI-Heptanoat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3500 3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2958	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2927	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2873 2858	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1559	v(C=O)	v (C=O) – Valenzschwingung
1457	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1418	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1360	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1220	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
1115	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
980 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
770	δ(Me-OH)	(Me-OH) – Deformationsschwingung
624	(AIO ₆)	(Al ^{IV} -O) – Schwingung
555	(AIO ₆)	(Al ^{IV} -O) − Schwingung
426	ZnO	Zn-O – Schwingung

Tab. 7.3.4 IR-Absorptionsbanden von ZnAI-Heptanoat

Abb. 7.3.5 IR-Aufnahme von ZnAI-Oktanoat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3648 (Schulter)	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3470 3450	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2956	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2924	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2872 2855	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH ₂ - u. CH ₃ -Gruppen
1600	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1554	v(C=O)	v (C=O) – Valenzschwingung
1457	δ (CH ₂), δ_{as} (CH ₃)	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1410	δ (C-H), δ (O-H)	(C-H), (O-H) – Deformationsschwingungen
1362	$\delta_{s}(CH_{3})$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1255 1214	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
1109	δ(CH ₃)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
921 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
778	δ(Me-OH)	(Me-OH) – Deformationsschwingung
623	(AIO ₆)	(Al ^{IV} -O) − Schwingung
556	(AIO ₆)	(Al ^{IV} -O) − Schwingung
425	ZnO	Zn-O – Schwingung

Tab. 7.3.5 IR-Absorptionsbanden von ZnAI-Oktanoat

Abb. 7.3.6 IR-Aufnahme von ZnAI-Nonanoat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3470 3450	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2956	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2920	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2850	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1551	v(C=O)	v (C=O) – Valenzschwingung
1460	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1409	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1365	$\delta_{s}(CH_{3})$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1246	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
1108	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
935 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
775	δ(Me-OH)	(Me-OH) – Deformationsschwingung
625	(AIO ₆)	(Al ^{IV} -O) – Schwingung
555	(AIO ₆)	(Al ^{IV} -O) – Schwingung
426	ZnO	Zn-O – Schwingung

Tab. 7.3.6 IR-Absorptionsbanden von ZnAI-Nonanoat

Abb. 7.3.7 IR-Aufnahme von ZnAI-Undekanoat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3645	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3482 3466	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2955	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2920	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2850	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1596	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1547	v(C=O)	v (C=O) – Valenzschwingung
1470	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1409	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1364	$\delta_{s}(CH_{3})$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1296 1269	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
1108	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
917 870	δ(Me-OH)	(Me-OH) – Deformationsschwingung
775	δ(Me-OH)	(Me-OH) – Deformationsschwingung
622	(AIO ₆)	(Al ^{IV} -O) – Schwingung
555	(AIO ₆)	(Al ^{IV} -O) – Schwingung
425	ZnO	Zn-O – Schwingung

Tab. 7.3.7 IR-Absorptionsbanden von ZnAI-Undekanoat

Abb. 7.3.8 IR-Aufnahme von ZnAI-Adipinat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3477 3455	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2943	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2862	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1559	v(C=O)	v (C=O) – Valenzschwingung
1472 1460	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1404	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1361	$\delta_{s}(CH_{3})$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1212	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
1130	δ(CH ₃)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
920 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
779	δ(Me-OH)	(Me-OH) – Deformationsschwingung
617	(AIO ₆)	(Al ^{IV} -O) – Schwingung
556	(AIO ₆)	(Al ^{IV} -O) – Schwingung
425	ZnO	Zn-O – Schwingung

Tab. 7.3.8 IR-Absorptionsbanden von ZnAI-Adipinat

Abb. 7.3.9 IR-Aufnahme von ZnAI-Pimelinat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3650	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3472 3455	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2940	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2862	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1556	v(C=O)	v (C=O) – Valenzschwingung
1460	$\delta(CH_2), \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1407	δ(C-H), δ(Ο-Η)	(C-H), (O-H) – Deformationsschwingungen
1364 1320	$\delta_{s}(CH_{3})$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1253 1208	$\delta(CH_2)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
1143	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
1086	$\delta(CH_3)$	(C-H) – Deformationsschwingung der CH_2 -Gruppen
933(Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
774	δ(Me-OH)	(Me-OH) – Deformationsschwingung
617	(AIO ₆)	(Al ^{IV} -O) – Schwingung
552	(AIO ₆)	(Al ^{IV} -O) – Schwingung
426	ZnO	Zn-O – Schwingung

Tab. 7.3.9 IR-Absorptionsbanden von ZnAI-Pimelinat

Abb. 7.3.10 IR-Aufnahme von ZnAI-Citrat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3649	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3474 3456	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2972	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2875	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1560	v(C=O)	v (C=O) – Valenzschwingung
1384	$\delta_{s}(CH_{3})$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1298 1225	δ(CH ₂)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
1180	δ(CH ₃)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
1049	δ(CH ₃)	(C-H) – Deformationsschwingung der CH ₂ -Gruppen
951 931	δ(Me-OH)	(Me-OH) – Deformationsschwingung
791	δ(Me-OH)	(Me-OH) – Deformationsschwingung
613	(AIO ₆)	(Al ^{IV} -O) – Schwingung
557 (Schulter)	(AIO ₆)	(Al ^{IV} -O) – Schwingung
426	ZnO	Zn-O – Schwingung

Tab. 7.3.10 IR-Absorptionsbanden von ZnAI-Citrat

Abb. 7.3.11 IR-Aufnahme von ZnAI-Methansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3650	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3520 3450	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
3013	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2934	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
1650	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1437	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1384	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1210 1195	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1053	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO $_3$)-Gruppen
965	δ(Me-OH)	(Me-OH) – Deformationsschwingung
787	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
619	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
555 537	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO ₃)-Gruppen, $(AI^{IV}-O) - Schwingung$
425	(ZnO)	Zn-O – Schwingung

Tab. 7.3.11 IR-Absorptionsbanden von ZnAI-Methansulfonat

Abb. 7.3.12 IR-Aufnahme von ZnAI-Ethansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3520 3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2991	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2937 2918	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2845	v _s (CH ₂)	sym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
1640	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1539	v(C=O)	v (C=O) – Valenzschwingung
1455	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1384	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1251	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1187	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1060	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
986	δ(Me-OH)	(Me-OH) – Deformationsschwingung
754	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
618 584	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
535	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
427	(ZnO)	Zn-O – Schwingung

Tab. 7.3.12 IR-Absorptionsbanden von ZnAI-Ethansulfonat

Abb. 7.3.13 IR-Aufnahme von ZnAI-Propansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3645 (Schulter)	v(OH)	(OH) – Valanzschwingung der Hauptschicht
3490 3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2970	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2941	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2879	v _s (CH ₂)	sym. (C-H) – Valenzschwingung der CH_2 -Gruppen
1635	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1460	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1362	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1261 1224	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1183	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1050	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
789	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
613	δ _{as} (SO ₃ ⁻), (AlO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
550	$\delta_{s}(SO_{3}), (AIO_{6})$	sym. (S-O) – Deformationsschwingung der (SO₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
425	(ZnO)	Zn-O – Schwingung

Tab. 7.3.13 IR-Absorptionsbanden von ZnAI-Propansulfonat

Abb. 7.3.14 IR-Aufnahme von ZnAI-Hexansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3496 3471	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2961	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2935	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2876 2855	v _s (CH ₂)	sym. (C-H) – Valenzschwingung der CH_2 -Gruppen
1647 1630	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1461	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1365	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1290	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1190	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1050	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO $_3$)-Gruppen
793	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
725	ρ(CH ₂)n	Rocking-Schwingung
615	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
555	$\delta_s(SO_3)$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (S \overline{O}_3)-Gruppen, (Al ^{IV} -O) – Schwingung
426	(ZnO)	Zn-O – Schwingung

Tab. 7.3.14 IR-Absorptionsbanden von ZnAI-Hexansulfonat

Abb. 7.3.15 IR-Aufnahme von ZnAI-Heptansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3487 3454	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2961	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2933	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2872 2855	v _s (CH ₂)	sym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
1638	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1465	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1363	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1280 (Schulter)	v_{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
1181	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
1051	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
792	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
723	ρ(CH₂)n	Rocking-Schwingung
617	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
553	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO ₃)-Gruppen, (Al ^{IV} -O) – Schwingung
426	(ZnO)	Zn-O – Schwingung

Tab. 7.3.15 IR-Absorptionsbanden von ZnAI-Heptansulfonat

Abb. 7.3.16 IR-Aufnahme von ZnAI-Oktansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3520 3480	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2961	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2919	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2870 2853	v _s (CH ₂)	sym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
1653	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1470	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1364	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1250	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
1188	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
1048	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
795	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
720	ρ(CH₂)n	Rocking-Schwingung
617	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
553	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO ₃)-Gruppen, (Al ^{IV} -O) – Schwingung
427	(ZnO)	Zn-O – Schwingung

Tab. 7.3.16 IR-Absorptionsbanden von ZnAl-Oktansulfonat

Abb. 7.3.17 IR-Aufnahme von ZnAl-Nonansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3518 3486	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2959	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2921	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2870 2852	v _s (CH ₂)	sym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
1647	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1466	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1371	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1257 (Schulter)	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
1177	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
1049	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
794	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
729	ρ(CH ₂)n	Rocking-Schwingung
619	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
554	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO ₃)-Gruppen, (Al ^{IV} -O) – Schwingung
427	(ZnO)	Zn-O – Schwingung

Tab. 7.3.17 IR-Absorptionsbanden von ZnAI-Nonansulfonat

Abb. 7.3.18 IR-Aufnahme von ZnAI-Dekansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3608 (Schulter)	v(OH)	(OH) – Valenzschwingung der Hauptschicht
3527 3464	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2948	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2915	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH_2 -Gruppen
2873 2850	v _s (CH ₂)	sym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
1640	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1471	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1366	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1224	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
1172	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
1047	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
788	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
718	ρ(CH₂)n	Rocking-Schwingung
622	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
554	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO ₃)-Gruppen, $(AI^{V}-O) - Schwingung$
426	(ZnO)	Zn-O – Schwingung

Tab. 7.3.18 IR-Absorptionsbanden von ZnAI-Dekansulfonat

Abb. 7.3.19 IR-Aufnahme von ZnAI-Undekansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3540 3510	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2961	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2916	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2870 2851	v _s (CH ₂ , CH ₃)	sym. (C-H) – Valenzschwingung CH ₂ - u. CH ₃ -Gruppen
1639	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1470	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1370	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1175	v _{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1049	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO ₃ ⁻)-Gruppen
943	δ(Me-OH)	(Me-OH) – Deformationsschwingung
793	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
722	ρ(CH ₂)n	Rocking-Schwingung
619	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
555	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
427	(ZnO)	Zn-O – Schwingung

Tab. 7.3.19 IR-Absorptionsbanden von ZnAI-Undekansulfonat

Abb. 7.3.20 IR-Aufnahme von ZnAI-Dodekansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3521 3490	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2963	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH ₃ -Gruppen
2915	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2850	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1630	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1471	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1361	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1169	v_{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1048	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
938 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
794	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
719	ρ(CH ₂)n	Rocking-Schwingung
621	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)- Gruppen, (Al ^{IV} -O) – Schwingung
555	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO_3) -Gruppen, $(AI^{V}-O) - Schwingung$
425	(ZnO)	Zn-O – Schwingung

Tab. 7.3.20 IR-Absorptionsbanden von ZnAI-Dodekansulfonat

Abb. 7.3.21 IR-Aufnahme von ZnAI-Tetradekansulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3520 3490	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2952	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2915	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2850	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1635	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1470	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1380	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1174	v_{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1050	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
935 (Schulter)	δ(Me-OH)	(Me-OH) – Deformationsschwingung
836 795	δ(Me-OH), v(C-S)	(Me-OH) – Deformationsschwingung, (C-S) – Valenzschwingung
718	ρ(CH ₂)n	Rocking-Schwingung
621	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)- Gruppen, (Al ^{IV} -O) – Schwingung
556	$\delta_{s}(SO_{3}^{-}), (AIO_{6})$	sym. (S-O) – Deformationsschwingung der (SO₃)-Gruppen, (Al ^Ⅳ -O) – Schwingung
427	(ZnO)	Zn-O – Schwingung

Tab. 7.3.21 IR-Absorptionsbanden von ZnAI-Tetradekansulfonat

Abb. 7.3.22 IR-Aufnahme von ZnAl-Hexadekansulfonat

	1	
Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3471 3440	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
2957	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen
2925	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2855	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH ₂ - u. CH ₃ -Gruppen
1596	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1549	v(C-C)	(C-C) – Valenzschwingung
1465	$\delta(CH_2), \\ \delta_{as}(CH_3)$	(C-H) – Deformationsschwingungen CH_2 - u. CH_3 -Gruppen
1405	v(C-C)	(C-C) – Valenzschwingung
1360 1309	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1181	v_{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1105	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO $_3$)-Gruppen
921	δ(Me-OH)	(Me-OH) – Deformationsschwingung
723	ρ(CH ₂)n	Rocking-Schwingung
620	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)- Gruppen, (Al ^{IV} -O) – Schwingung
560	$\delta_{s}(SO_{3}), (AIO_{6})$	sym. (S-O) – Deformationsschwingung der (SO ₃)-Gruppen, (Al ^{IV} -O) – Schwingung
428	(ZnO)	Zn-O – Schwingung

Tab. 7.3.22 IR-Absorptionsbanden von ZnAI-Hexadekansulfonat

Abb. 7.3.23 IR-Aufnahme von ZnAI-Toluolsulfonat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3514 3470	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
3060	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH ₃ -Gruppen
2919	$v_{as}(CH_2)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen
2851	$v_s(CH_2, CH_3)$	sym. (C-H) – Valenzschwingung CH_2 - u. CH_3 -Gruppen
1647	v ₂ (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
1506	v(C-C)	(C-C) – Valenzschwingung
1345	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1179	v_{as} (SO ₃ ⁻)	asym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1097	v _s (SO ₃ ⁻)	sym. (S-O) – Valenzschwingung der (SO3 ⁻)-Gruppen
1032	δ(C-H) i.p.	(C-H) – Deformationsschwingung, in plane
968 905	δ(Me-OH)	(Me-OH) – Deformationsschwingung
817	δ(С-Н) о.о.р.	(C-H) – Deformationsschwingung, out of plane
757	ρ(CH ₂)n	Rocking-Schwingung
697	δ(Me-OH)	(Me-OH) – Deformationsschwingung
623	$\delta_{as}(SO_3),$ (AIO ₆)	asym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)- Gruppen, (Al ^{IV} -O) – Schwingung
555	$\delta_{s}(SO_{3})$, (AIO ₆)	sym. (S-O) – Deformationsschwingung der (SO ₃ ⁻)-Gruppen, (Al ^{IV} -O) – Schwingung
427	(ZnO)	Zn-O – Schwingung

Tab. 7.3.23 IR-Absorptionsbanden von ZnAI-Toluolsulfonat

Abb. A7.3.24 IR-Aufnahme von ZnAI-2-Amino-3-phenylpropionat

Bandenlage [cm ⁻¹]		Art der lokalisierten Schwingung
3460	v _{1,3} (H ₂ O)	(H-O-H) – Valenzschwingung des Zwischenschichtwassers
3029	$v_{as}(CH_3)$	asym. (C-H) – Valenzschwingung der CH_3 -Gruppen,
2942	$v_{as}(CH_2), v(N-H)$	asym. (C-H) – Valenzschwingung der CH ₂ -Gruppen, (N-H) – Valenzschwingung der Amingruppe
2851	v _{as} (CH ₂), v(N-H)	asym. (V-H) – Valenzschwingung der CH ₂ -Gruppen, (N-H) – Valenzschwingung der Amingruppe
1586	v(C=O)	v(C=O) – Valenzschwingung
1496	v(N-H)	(N-H) – Valenzschwingung der Amingruppe
1455	$\delta_{as}(CH_3)$	asym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1363	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
1150	δ(CH ₃)	(C-H) – Deformationsschwingung der CH ₃ -Gruppen
1078	δ(Me-OH)	(Me-OH) – Deformationsschwingung
1029	δ(Me-OH)	(Me-OH) – Deformationsschwingung
865 (Schulter)	$\delta_s(CH_3)$	sym. (C-H) – Deformationsschwingung der CH_3 -Gruppen
759	ρ(CH ₂)n	Rocking-Schwingung
703	δ(Me-OH)	(Me-OH) – Deformationsschwingung
625	(AIO ₆)	(Al ^{IV} -O) − Schwingung
558	(AIO ₆)	(Al ^{IV} -O) – Schwingung
426	(ZnO)	Zn-O – Schwingung

Tab. 7.3.24 IR-Absorptionsbanden von ZnAI-2-Amino-3-phenylpropionat

Lebenslauf

Persönliche Daten

Vor- und Zuname:	Thomas Kühn
Geburtsdatum:	02.09.1975
Geburtsort:	Altdöbern
Familienstand:	verheiratet

Schulausbildung

1982 – 1991	Polytechnische Oberschule Altdöbern
1991 – 1995	Gymnasium Calau
Abschluss:	Allgemeine Hochschulreife

Wehrdienst

1995 – 1996	5.PzBtl 373, Doberlug-Kirchhain
-------------	---------------------------------

Hochschulstudium

1996 – 2002	Studium Geologie/Paläontologie an der Martin-Luther-Universität Halle-
	Wittenberg
Abschluss:	Diplom
2002 – 2007	Promotionsstudium Mineralogie an der Martin-Luther-Universität Halle-
	Wittenberg

Berufliche Tätigkeiten

2004-2005	Wissenschaftlicher Mitarbeiter, Fachgruppe Mineralogie/Geochemie an der
	Martin-Luther-Universität Halle-Wittenberg
seit 2007	Wissenschaftlicher Mitarbeiter, Fachgruppe Bodenkunde/Bodenschutz an
	der Martin-Luther-Universität Halle-Wittenberg

Halle/Saale, 23.06.2008