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ABSTRACT

Neural approaches, which are currently state-of-the-art in many areas, have con-
tributed significantly to the exciting advancements in machine translation. How-
ever, Neural Machine Translation (NMT) requires a substantial quantity and good
quality training data or parallel corpus to train the best models. A large amount
of training data, in turn, increases the underlying vocabulary exponentially. There-
fore, several proposed methods have been devised for relatively limited vocabulary
due to constraints of computing resources such as system memory. Encoding words
as sequences of subword units for so-called open-vocabulary translation is an ef-
fective strategy for solving this problem. However, the conventional methods for
splitting words into subwords focus on statistics-based approaches that mainly cater
to agglutinative languages. In these languages, the morphemes have relatively clean
boundaries. These methods still need to be thoroughly investigated for their appli-
cability to fusion languages, which is the main focus of this dissertation. Phono-
logical and orthographic processes alter the borders of constituent morphemes of a
word in fusion languages. Therefore, it makes it difficult to distinguish the actual
morphemes that carry syntactic or semantic information from the word’s surface
form, the form of the word as it appears in the text. We, thus, resorted to a word
segmentation method that segments words by restoring the altered morphemes. Ad-
ditionally, in order to meet the enormous data demands of NMT, we created a new
dataset for a low-resource language. Moreover, we optimized the hyperparameters
of an NMT system to train optimally performing models in low-data conditions.
We also compared conventional and morpheme-based NMT subword models. We
could prove that morpheme-based models outperform conventional subword models
on benchmark datasets.
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ZUSAMMENFASSUNG

Neuronale Ansätze, die derzeit in vielen Bereichen den Stand der Technik darstel-
len, haben wesentlich zu den spannenden Fortschritten in der maschinellen Über-
setzung beigetragen. Die Neuronale Maschinelle Übersetzung (NMÜ) erfordern
jedoch eine große Menge und qualitativ hochwertige Trainingsdaten oder einen
parallelen Korpus, um die besten Modelle zu trainieren. Eine große Menge an
Trainingsdaten wiederum vergrößert den zugrunde liegenden Wortschatz exponen-
tiell. Daher wurden mehrere Methoden aufgrund begrenzter Computerresourcen
— wie z.B. Systemspeicher — für ein relativ begrenztes Vokabular entwickelt. Die
Kodierung von Wörtern als Sequenzen von Teilworteinheiten für die so genannte
Übersetzung mit offenem Vokabular ist eine effektive Strategie zur Lösung dieses
Problems. Die herkömmlichen Methoden zur Aufteilung von Wörtern in Teilwörter
konzentrieren sich jedoch auf statistikbasierte Ansätze, die hauptsächlich für agglu-
tinierende Sprachen geeignet sind. In diesen Sprachen haben die Morpheme relativ
klare Grenzen. Diese Methoden müssen noch gründlich auf ihre Anwendbarkeit
in Fusionssprachen untersucht werden, die im Mittelpunkt dieser Dissertation ste-
hen. Phonologische und orthographische Prozesse verändern die Grenzen der kon-
stituierenden Morpheme eines Wortes in Fusionssprachen. Daher ist es schwierig,
die eigentlichen Morpheme, die syntaktische oder semantische Informationen tra-
gen, von der Oberflächenform des Wortes, d. h. der Form des Wortes, wie es
im Text vorkommt, zu unterscheiden. Wir haben daher auf eine Wortsegmen-
tierungsmethode zurückgegriffen, die Wörter durch Wiederherstellung der verän-
derten Morpheme segmentiert. Um den enormen Datenanforderungen der NMÜ
gerecht zu werden, haben wir außerdem einen neuen Datensatz für eine Sprache mit
geringen Ressourcen erstellt. Darüber hinaus optimierten wir die Hyperparameter
eines NMÜ-Systems, um unter datenarmen Bedingungen optimal funktionierende
Modelle zu trainieren. Des Weiterem verglichen wir konventionelle und Morphem-
basierte NMÜ-Unterwortmodelle. Wir konnten nachweisen, dass Morphem basierte
Modelle die konventionellen Teilwortmodelle in Benchmark Datensätzen übertref-
fen.
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CHAPTER 1

Introduction

Machine translation is a valuable mechanism for information access, cross-language
information retrieval, and speech interpretation. In other words, it helps to tackle
language barriers that otherwise may lead to isolation. Neglecting less-resourced
languages will have detrimental effects on integrating societies in today’s globalized
world. Even worse, this eventually increases the risk of digital language death, a
huge extinction brought on by the digital divide (Kornai, 2013).

Machine translation is challenging because of morphological variations of languages
(Dorr et al., 1999), among others. Categorizing languages for cross-linguistic com-
parison is also difficult (Haspelmath, 2007). One way to make such a comparison
is by assessing the dimensions of morphological typology. According to Jurafsky
and Martin (2009), morphological typology can vary in two dimensions: the first
dimension ranges from isolating to polysynthetic, and the second dimension ranges
from agglutinative to fusional. The first dimension relates to the number of mor-
phemes per word. In isolating morphology, words typically consist of only one
morpheme, while in polysynthetic morphology, words have multiple morphemes.
The second dimension has to do with how segmentable morphemes are. It encom-
passes morpheme boundaries that are generally clear in agglutinative morphology
and morpheme boundaries that are hazy in fusional morphology. The dimensions
can be exemplified by Vietnamese (isolating), Siberian Yupik (polysynthetic), Turk-
ish (agglutinative), and Amharic (fusional).

Different approaches have been used up to this point to automate the intricate task
of translation. The initial attempt involved using rule-based systems to translate
a text from the source language. However, developing rule-based systems is time-
consuming and costly because it is difficult to codify all the essential language
knowledge for accurate translations using hand-crafted rules. It also necessitates
considerable linguistic knowledge and resources that might not be available for
low-resource languages (Haddow et al., 2022). Therefore, alternative data-driven
strategies emerged as parallel corpora became more widely accessible. Such methods
benefit from the accurate translations produced by human translators as they use
curated parallel training data, or parallel corpora, to create translation models by
relying on machine learning.

The two most well-known data-driven approaches are Statistical Machine Transla-
tion (SMT) and Neural Machine Translation (NMT). NMT has surpassed SMT in
recent years (Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani et al., 2017;
Sennrich and Zhang, 2019). Its success attributes to its unique characteristics.
First, unlike SMT, the whole NMT system components can be jointly tuned to
optimize the translation performance. Second, it processes complete sentences, not
just words or n-grams like SMT. Third, it handles syntactic and semantic differ-
ences in languages better than SMT (Bentivogli et al., 2016; Castilho et al., 2017).
Ultimately, it produces more fluent translations than SMT (Koehn and Knowles,
2017).

However, NMT has certain limitations, as detailed in Section 1.1, regarding low-
resource fusion languages. Therefore, we adopted the design science research method-
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Chapter 1. Introduction

ology (Peffers et al., 2008) to design, build, and evaluate an NMT system that suits
low-resource languages with fusional morphology. The design science process in-
cludes problem identification and motivation (Section 1.1); definition of the objec-
tives for a solution (Section 1.2); design and development (Section 1.3); experimen-
tation and evaluation (Section 1.4); and communication (Section 1.5). Figure 1.1
summarizes the research methodology process model.
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Problem
in NMT NMT System

System Adaptation
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Figure 1.1: The design science research methodology process model based on Peffers
et al. (2008)

1.1. Problem Identification and Motivation
Although there are significant improvements in NMT for a few high-resource lan-
guages, it has lower performance than SMT for less-resourced languages (Koehn
and Knowles, 2017; Lample et al., 2018b). The primary reason is that the amount
and quality of training data significantly affect the performance of NMT models
(Gu et al., 2018). Very few of the approximately seven-thousand languages spoken
today have adequate training data with the required amount and quality for NMT.

One approach to tackling the scarce data problem is optimizing the NMT hyper-
parameters that are essential to NMT architecture design. Different optimization
techniques have been proposed for NMT; each technique exhibits a different per-
formance level based on the training data size (Sennrich and Zhang, 2019; Araabi
and Monz, 2020; Lankford et al., 2021). Therefore, optimizing the NMT hyperpa-
rameters for low-resource languages has vital importance.

Additionally, because NMT only works with a fixed vocabulary due to the con-
straints of computing resources like computer and GPU dedicated memories, it
has trouble handling rare and out-of-vocabulary words in texts (Sennrich et al.,
2016b). The issue gets exacerbated when a word has multiple morphemes, like
in synthetic languages such as Amharic and Turkish. In these languages, a single
word may have thousands of inflections, and the languages’ lexicon may number in
hundreds of thousands or millions. For instance, in Amharic, the official language
of Ethiopia, the word ሆን /hon/ meaning “to be” has roughly five-thousand inflec-
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tions in the twenty-two million tokens Contemporary Amharic Corpus1 (CACO2)
(Gezmu et al., 2018c). In Amharic, a space-delimited word may represent a phrase,
clause, or sentence. For example, the word እስኪያብራራላቸው /ɨskiyabraralacəw/ mean-
ing “until he explains it to them” is a clause. This word does not appear even once
in the CACO corpus. Nevertheless, its constituent morphemes — እስክ/ɨsk/-ይ/y/-
አብራራ/abrara/-ል/l/-አቸው/acəw/ — appear several times in the corpus, being part of
other words. Hence, the vocabulary of the language is too large for NMT.

Many suggested methods have been established for relatively small vocabulary be-
cause NMT is computationally resource-intensive and necessitates vast quantities of
training parallel corpora. Segmenting words as sequences of subword units for so-
called open-vocabulary translation is one effective way to address this issue (Schus-
ter and Nakajima, 2012; Sennrich et al., 2016b; Wu et al., 2016; Kudo, 2018; Zuters
et al., 2018). By doing this, it may train the models using all words. As a result, it
can utilize the limited training data effectively. Furthermore, because some of the
unknown words are only inflections of existing words already included in the train-
ing, the method also somewhat helps solve the issue of out-of-vocabulary words.
However, the conventional methods, which are primarily designed for agglutinative
languages, depend on statistics-based methods for splitting words into subword
units. The boundaries between morphemes, or meaningful word components, are
generally clear in agglutinative languages. The suitability of these methods for
fusion languages needs to be examined. The borders of constituent morphemes
in fusion languages are altered by phonological and orthographic processes, mak-
ing it difficult to separate the actual morphemes that carry syntactic or semantic
information from written words or surface forms.

We, thus, addressed four main research questions:

• RQ1: How can we optimize NMT hyperparameters during system architec-
ture design to train the best NMT models under low data conditions?

• RQ2: Does an optimized NMT system perform better than a baseline SMT
system in low-data scenarios?

• RQ3: Is morpheme-based word segmentation for fusion languages more ef-
fective than conventional methods in low-resource NMT?

• RQ4: Which of the conventional word segmentation techniques in low-resource
NMT outperform on fusion languages?

1.2. Objective of the Solution
Our goal was to develop an NMT system by designing an NMT architecture suitable
for resource-poor languages and creating a word segmentation system that gener-
ates subwords for fusion languages. Therefore, we resorted to a word segmentation
method that segments morphemes by restoring the actual morphemes. Moreover,
we optimized the hyperparameters of an NMT system to train optimally perform-
ing models in low-data conditions. We also compared conventional and morpheme-
based NMT subword models in an evaluation study on a benchmark dataset. To
this end, we selected Amharic-English, Turkish-English, and Vietnamese-English

1The corpus is available at http://dx.doi.org/10.24352/ub.ovgu-2018-144
2The vocabulary size of the corpus is approximately 870,000.
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language pairs to optimize NMT hyperparameters during architecture design. We
chose these language pairs because they have different morphological and ortho-
graphic features. Turkish is primarily an agglutinative language in which a space-
delimited word is a concatenation of multiple morphemes. Amharic is mainly a
fusion language in which an orthographic word, the surface form, is a fusion of
numerous morphemes with no clear boundaries. English also has a relatively sim-
ple fusional morphology. Vietnamese, on the other hand, is an isolating language.
Besides, Amharic uses the Ethiopic script, whereas the other languages employ
Latin-based scripts. Amharic and English were, thus, our study objects while de-
veloping the word segmentation method for fusion languages.

1.3. Design and Development

In recent years, NMT systems have moved toward a standard architecture, a sequence-
to-sequence neural network. It has an encoder and an auto-regressive decoder,
commonly implemented as a Transformer (Vaswani et al., 2017) or recurrent neu-
ral network (Bahdanau et al., 2015). Nevertheless, in both high- and low-resource
settings, the Transformer models outperform the recurrent neural network models
(Sennrich and Zhang, 2019; Araabi and Monz, 2020; Lankford et al., 2021). Thus,
we adapted the Transformer-based architecture for NMT of low-resource languages.
Also, to address the issues related to conventional word segmentation techniques,
we used a method that considers the structures of words beyond the written words
or surface forms.

Moreover, we constructed a monolingual and parallel corpus to train NMT models
for a low-resource language, Amharic. To perform automatic spelling correction
during the preparation of the corpus, we also developed a spelling corrector that
uses a monolingual corpus for language modeling and a spelling error corpus for
evaluation.

1.4. Experimentation and Evaluation

We evaluated the NMT models in the experiments with the classic Bilingual Eval-
uation Understudy (BLEU) metric (Papineni et al., 2002). BLEU is helpful and
frequently used for comparing systems that utilize comparable translation tech-
niques, observing incremental changes to a single system, or optimizing the settings
of hyperparameters. However, it has severe limitations (Callison-Burch et al., 2006;
Reiter, 2018). Firstly, it is too strict; it does not make partial matches. Secondly,
it does not consider the morphological variants of words. Thirdly, it gives equal
emphasis to both content and function word matches. Additionally, implementing
BLEU requires standardizing many details of smoothing and tokenization (Post,
2018).

For this reason, we used the standard implementation of BLEU, sacreBLEU (Post,
2018). To offset the limitations of BLEU, we also used two metrics that strongly
correlate with human evaluations: COMET (for Crosslingual Optimized Metric
for Evaluation of Translation) (Rei et al., 2020) and ChrF (for Character n-gram
F-score) (Popovic, 2015). These are the best-performing metrics on an extensive
survey of automatic machine translation evaluation (Kocmi et al., 2021).
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1.5. Communication
The outcomes of this research are the subject of several publications that we have
already authored in renowned scientific conference proceedings. The results of our
adaptation of the NMT system to low-resource settings have been published in
the proceedings of the International Conference on Agents and Artificial Intelli-
gence (ICAART 2022) (Gezmu et al., 2022). We have presented the NMT for the
Amharic-English translation at ICAART 2021 (Gezmu et al., 2021b). We have
described the compilation of the Amharic-English parallel corpus in the proceed-
ings of the International Conference on Language Resources and Evaluation (LREC
2022) (Gezmu et al., 2022). We have discussed the development of the monolingual
Amharic corpus in the proceedings of the Workshop on Linguistic Resources for
Natural Language Processing (LR4NLP) (Gezmu et al., 2018c). We explored the
development of the Amharic spelling corrector used in the automatic editing of the
corpora in the proceedings of the LREC 2018 (Gezmu et al., 2018b). Furthermore,
we have freely shared our datasets with their technical reports for research purposes
to enhance the replicability of our research. Moreover, we have submitted some re-
sults of this research to the prestigious ACM journal, Transactions on Asian and
Low-Resource Language Information Processing (TALLIP).

1.6. Outline of the Dissertation
We go over the basics of NMT, a literature review on low-resource NMT, and related
work in Chapters 2, 3, and 4. Since we have dealt with low-resource languages, we
need to prepare different types of corpora and a spelling corrector to clean up
the corpora. Hence, Chapter 5 explains the compilation of a monolingual corpus,
mainly used for developing a spelling corrector. To evaluate the spelling corrector,
there is a need to develop a spelling error corpus. Therefore, Chapter 6 deals with
the preparation of the spelling error corpus. Chapter 7 explains the development of
the spelling corrector. The theme of Chapter 8 is the collection and preprocessing
of a parallel corpus, which is the main ingredient for developing NMT models. We
developed an NMT system by optimizing hyperparameters with a guided random
search, as presented in Chapter 9. In Chapter 10, we used the optimized system to
compare conventional and morpheme-based NMT subword models in an evaluation
study on a benchmark dataset. The last chapter, Chapter 11, gives concluding
remarks and future research directions.
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PART I
FUNDAMENTALS & RELATED WORK

The majority of Part I is devoted to the fundamentals and current state of Neural
Machine Translation (NMT), specifically subword-based low-resource NMT. First,
Chapter 2 covers principles of NMT from concept to practice. Next, Chapter 3,
which is a continuation of Chapter 2, presents a literature review on low-resource
NMT. The final chapter in this part, Chapter 4, examines current research on
subword-based low-resource NMT.
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CHAPTER 2

Fundamentals of Neural Machine Translation

Translation has become difficult due to the intricate variations across languages
(Dorr et al., 1999). For instance, certain words may have different meanings based
on the context, or other words may not have equivalent translations in other lan-
guages. Additionally, translating idiomatic expressions calls for a thorough under-
standing of both the source and target languages. Further, structural variations
like word order disparities between languages complicate translation.

Another difficulty is that a good translation needs to be faithful and fluent. A faith-
ful translation accurately conveys the sense of the original text, whereas a fluent
translation is easy to understand and sounds natural. A literal, faithful translation
could result in an unpleasant and unnatural translation in the target language. For
example, fluency rather than faithfulness is more critical when translating liter-
ary works. We might have to alter some of the meaning to keep the text flowing
smoothly. Readers should feel as if it was written in their native language. The
faithfulness of the translation, however, is prioritized when translating a techni-
cal manual or a legal document. Even if the translation is not fluent, it must be
faithful and convey the same meaning. To produce accurate translations that bal-
ance faithfulness and fluency, human translators primarily rely on their experience,
knowledge, and reasoning abilities. Due to these issues, various human translators
will translate the same text in different ways.

Despite the complex linguistic distinctions, recent decades have seen significant im-
provements in machine translation. It is even applied in practical, real-world appli-
cations. For instance, we employ machine translation for cross-language information
retrieval. It allows people to interact and obtain information in other languages.
Machine translation is also used to assist human translators. By creating a draft
translation that human translators will edit, it expedites a time-consuming transla-
tion task (Plitt and Masselot, 2010). In addition, we can employ machine transla-
tion for translations that are speech- and image-centric. Speech-centric translation
involves translating a text from a speech recognition system into another language
before the text is fully formed. As a result, it mimics a live human interpretation.
Image-centric machine translation uses an optical character recognition system to
translate the text included in images, such as billboard advertisements or street
signs.

There are various methods for automating the challenging task of translation. Data-
driven methods later supplanted the initial rule-based approaches. The most pop-
ular data-driven methods are Statistical Machine Translation (SMT) and Neural
Machine Translation (NMT). Nevertheless, due to its remarkable successes, NMT
has become state-of-the-art.

Language differences and the various machine translation approaches are briefly
discussed in the sections that follow, Sections 2.1 and 2.2. Neural networks and
NMT are explained in Sections 2.3 and 2.4. The evaluation of machine translation
is covered in the final section, Section 2.5.
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2.1. Language Differences

Both human and machine translations will benefit from an understanding of lan-
guage differences. Languages differ in many ways; they have complex differences
(Dorr et al., 1999). The meaning of a word can vary depending on the context.
The German word sie, for example, can be translated as they or she riding on the
context. There are also false friends between related languages; for example, gift
means poison in German. In these situations, it is necessary to distinguish be-
tween the various meanings of words while translating them. A lexical gap may
exist between two languages if no word or phrase in one language can fully convey
the meaning in the other. Idiomatic expressions may be constructed using specific
metaphors or contain particular allusions, which differ in various languages. Thus,
their peculiarities should be taken into account while translating them. For ex-
ample, the Amharic idiom ጆሮ ጠቢ (literally “an ear licker”) for “eavesdropper” and
the English idiom dark horse will not make sense if translated word-for-word into
another language.

While some languages demand that we address a referent presented in the dis-
course with an explicit pronoun, other languages may omit pronouns. There are
substantial variations in omission frequencies even among these languages. For in-
stance, Japanese frequently omits more pronouns than Spanish (Jurafsky and Mar-
tin, 2009). The reader must perform more inferential work to recover antecedents
in these languages. Since the system should make the reference resolution, trans-
lating from languages that frequently omit pronouns to languages that do not is
challenging. In addition, it can be challenging to choose the correct pronoun, even
among languages that seem close. Let us consider the following example:

I saw the movie; it was terrific!

When translating the sentence into German, we have to find the right word for the
translation of the pronoun it. German has gendered nouns; they can be masculine,
feminine, or neutral. A translation for movie is Film in German, which has a
masculine gender. Hence the masculine pronoun er must be rendered, not the
feminine sie nor the neutral es.

The word order of verbs, subjects, and objects in typical declarative clauses is an-
other way languages differ. For instance, the verb frequently comes between the
subject and object in the subject-verb-object languages of English and German.
Likewise, Irish and Arabic are verb-subject-object languages, while Amharic and
Japanese are subject-object-verb languages. Languages also vary in how strictly
word order is used. For instance, German permits the subject or object before the
verb, whereas English strictly uses the subject-verb-object word order. Addition-
ally, whereas adjectives usually precede nouns in some languages like English and
Amharic, they usually follow nouns in others like Spanish and Hebrew. Translation
issues might arise from word order discrepancies between languages, necessitating
numerous structural reorderings. As an illustration, consider translating an English
sentence ‘Galileo is considered by many to be the “father of modern science.”’ into
Amharic in Figure 2.1. The literal translations of the Amharic words in italics
indicate that we need to make many reorderings.

The number of morphemes per word varies among languages, in isolating languages
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  Galileo is considered by many to be the “father of modern science.”
  ጋሊልዮ በብዙዎች ዘንድ «የዘመናዊ ሳይንስ አባት» እንደሆነ ይቆጠራል።
  [Galileo by-many “of-modern science father” is-to-be considered.]

Figure 2.1: A pair of parallel sentences.

like Vietnamese, where each word typically contains one morpheme, and in polysyn-
thetic languages like Siberian Yupik, where a single word may include numerous
morphemes. The other difference is how easily morphemes may be segmented. It
can vary from agglutinative languages like Turkish, where morphemes have very
distinct boundaries, to fusion languages like Amharic, where a word may blend dif-
ferent morphemes. Therefore, to translate between fusion languages, one must deal
with the word structures beyond the surface forms.

2.2. Approaches to Machine Translation
The first machine translation attempt consisted of incrementally translating a source
language text word-for-word using a sizable bilingual lexicon with little analysis or
syntactic reordering. After then, the analysis-transfer-generation model was pre-
sented, which served as the basis for developing the previous version of the com-
mercial translation system Systran. According to Hutchins and Somers (1992)
and Senellart et al. (2001), the system starts by doing a cursory analysis that in-
cludes morphological analysis, part-of-speech tagging, and basic dependency pars-
ing. Then, during the transfer phase, it does word sense disambiguation and lexicon
and idiom translation. Finally, it does reorderings and morphological generation.
However, due to the difficulty of creating hand-crafted rules to code all the essential
linguistic knowledge for accurate translations, such rule-based systems are tedious
and expensive to build.

Alternative data-driven approaches emerged as parallel corpora became more widely
accessible. These methods use machine learning to create models based on parallel
corpora by reusing human translations. As a result, the distinction between hu-
man and machine translation has become blurry (O’Hagan, 2013; Doherty, 2016).
Modern approaches rely on parallel corpora to resolve various ambiguities. Human
translators have already resolved such issues in parallel corpora. Here, the inter-
dependence of human and machine translation is evident. In other words, these
methods reuse translations created by humans, but the results of machine transla-
tion are typically edited by humans afterward.

Gale and Church (1993) and Kay and Röscheisen (1993) created statistical tech-
niques in the early 1990s to automatically align parallel corpora at the sentence
level and identify potential word translations between source and destination sen-
tences. Then, the IBM group proposed IBM Models 1 through 5 for creating word
alignments based on their experience with the noisy channel model for speech recog-
nition (Brown et al., 1990, 1993). The findings pave the way for Statistical Machine
Translation (SMT).

The foundation of SMT is integrating a language and translation model in the
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noisy channel approach. In translating from a source language sentence X =
x1, x2, . . . , xm to target language Y , the best-estimated target sentence Ŷ = y1, y2, . . . ,
yn is the one whose probability P (Y |X) is the highest. According to Bayes rule,
it evaluates to Equation 2.1 as shown in a very simplified form. The noisy channel
model of SMT requires three components to translate from a source sentence X to
a target sentence Y : a translation model to compute P (X|Y ), a language model to
compute P (Y ), and a decoder. An SMT system employs the language model from a
given target language monolingual corpus and the translation model it learned from
a parallel corpus. The translation model is probabilistic word alignments estimated
from parallel corpora using word alignment techniques. The language model aims
to provide the system with knowledge about the target language as represented by
n-gram probabilities. Finally, the decoder produces the most likely target language
translation.

Ŷ = argmaxXP (X|Y )P (Y ) (2.1)

The phrase-based SMT techniques utilized larger units, such as a sequence of words
or phrases instead of plain words, as opposed to the earliest SMT systems. N -grams,
not grammatical phrases, are used in this context. The estimation of probabilistic
phrase alignments is made possible by word alignment methods (Koehn et al., 2003;
Och and Ney, 2004). Although phrase-based SMT tends to take more local contexts
into account than word-based SMT, it still frequently misses long-distance depen-
dencies (e.g., gender agreements in a long sentence). Additionally, SMT requires
that various components be optimized independently, which causes a performance
bottleneck while training models.

Like SMT, Neural Machine Translation (NMT) builds translation models based on
parallel corpora using machine learning techniques. However, it accomplishes so
using a distinct computational approach. Using an end-to-end process, it employs
an encoder-decoder network to train and infer machine translation models. First,
it reads the source sentence using an encoder to build a vector, a sequence of
numbers representing a sentence; then, a decoder processes the vector to produce a
plausible translation. The encoder-decoder architecture can be implemented using
Transformers or recurrent neural networks. Encoder-decoder networks are utilized
for sequence modeling, where the output word sequence is a complex function of
the complete input sequence. Hence, even if the target language’s number of words
or word order might differ from the source language’s, NMT can successfully model
these languages (Jurafsky and Martin, 2021). Besides, the NMT system is jointly
tweaked to maximize translation performance, unlike SMT. Therefore, it will not
experience a performance constraint. Furthermore, in contrast to phrase-based
SMT, it analyzes whole sentences rather than n-grams and models semantics and
syntax more accurately (Bentivogli et al., 2016; Castilho et al., 2017). As a result,
NMT can produce more fluent translations than SMT while handling long-distance
dependencies properly (Koehn and Knowles, 2017).

2.3. Neural Networks
The fundamental computational tools for NMT are neural networks. A single node,
or processing unit, is an essential neural network component. In most cases, a node
receives a set of real-valued numbers as input, computes them, and outputs the
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results. The various neural network types are covered in the subsections that follow,
starting with the most basic, the feed-forward neural network.

2.3.1. Feed-Forward Neural Networks

A feed-forward neural network is a straightforward multi-layer network with no
cycles between the nodes. No output is returned to lower layers; instead, the outputs
from nodes in each layer are transmitted to nodes in the layer above it. Figure 2.2
displays an image of a feed-forward network with two layers. Input, hidden, and
output nodes are the three types of nodes found in feed-forward networks. There are
scalar values as input nodes. There is a bias node, x0 , among the input nodes that
is always set to 1. The hidden layer comprises hidden nodes that use a nonlinear
function after calculating the weighted sum of their inputs.
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Figure 2.2: A two-layer feed-forward network with an input layer x, hidden layer h,
and output layer y.

Each layer in the typical architecture is fully connected, which means that each
node accepts the outputs from every node in the layer below as input. Modern
neural networks are deep, meaning they frequently have many layers. Each hidden
node can be thought of as a feature detector. The goal of using hidden nodes is to
automate the feature engineering process. In other words, by training the hidden
nodes, useful features in input data are automatically recognized rather than having
to be manually identified.

A single hidden node has parameters (the weight vector) and the bias scalar. We
represent the entire hidden layer parameters by combining the weight vector uk
for each node k into a single weight matrix U and a single bias vector for the
whole layer. Each element ujk of the weight matrix U represents the weight of the
connection from the kth input node xk to the jth hidden node hj .

An impressive characteristic of neural networks is their use of nonlinear activation
functions. The rectified linear unit (ReLU) is the easiest to compute and most
commonly used activation function. Figure 2.3 (a) shows the ReLU. It is the same
as z when z is positive and 0 otherwise, as shown in Equation 2.2.
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y = max(z, 0) (2.2)

Figure 2.3: Typical activation functions in neural networks.

Another commonly used activation function, the sigmoid (logistic function), has
been computed with Equation 2.3, shown in Figure 2.3 (b).

y =
1

1 + e−z
(2.3)

A similar to the sigmoid but more commonly used activation function is the tanh
(hyperbolic tangent); it is shown in Figure 2.3 (c) and computed with Equation 2.4.

y =
ez − e−z

ez + e−z
(2.4)

The hidden layer computation for the simple feed-forward network can be done very
efficiently with simple matrix operations. The calculation has three steps:

• Multiplying the weight matrix by the input vector x,

• Adding the bias vector, and

• Applying the activation function f such as the ReLU, sigmoid, or tanh.

Therefore, the neural network in Figure 2.2 can be represented as follows with
mathematical notations:

• A vector of input nodes with values x = (x1, x2, x3, . . . , xm)T ;

• A vector of hidden nodes with values h = (h1, h2, h3, . . . , hr)
T ;

• A vector of output nodes with values y = (y1, y2, y3, . . . , yn)
T ;

• A matrix of weights connecting input nodes to hidden nodes U = ujk;

• A matrix of weights connecting hidden nodes to output nodes W = wij .

The output of the hidden layer, the vector h, is thus computed with Equation 2.5,
using the activation function f .
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hj = f(
∑
k

ujkxk) (2.5)

The resulting value h forms a representation of the input. The role of the out-
put layer is to take this new representation h and compute a final output with
Equation 2.6.

yi =
∑
j

wijhj (2.6)

This output can be a real-valued number, but it will be converted to a probability
distribution with a softmax function in many cases. For a vector y of dimensionality
d, the softmax is defined in Equation 2.7, where 1 ≤ i ≤ d.

softmax(yi) =
eyi∑
j e

yj
(2.7)

The softmax function takes a vector y = [y1, y2, y3, . . . , yn] of n arbitrary values and
maps them to a probability distribution, with each value in the range (0, 1) and all
the values summing to one.

2.3.2. Recurrent Neural Networks
A neural network containing a cycle inside its network connections is called a recur-
rent neural network (RNN). Its preceding outputs directly or indirectly influence
the value of a node. Figure 2.4 illustrates the structure of a simple RNN based on
Elman (1990). Similar to conventional feed-forward networks, the values for a layer
of hidden nodes are calculated by multiplying an input vector representing the cur-
rent input, x, by a weight matrix and then passing the result through a nonlinear
activation function. The associated output, y, is then determined using the hidden
layer, which comprises the hidden nodes. The context layer is where it differs from
a feed-forward network the most. It keeps the previous values and sends them to
the appropriate nodes in the hidden layer. This layer uses the hidden layer’s value
from the previous time step as input to the computation at the hidden layer.

Recurrent networks are very flexible; we can stack layers upon layers (stacked RNNs)
or combine the forward and backward networks (bidirectional RNNs). On the down
side, information loss result from processing data via a long series of RNNs, which
can be somewhat mitigated by Long Short-Term Memory and Gated Recurrent
Units as discussed in Section 2.3.3.

Stacked Recurrent Neural Networks
Multiple layers make up stacked RNNs, where the input from one layer serves as
the output of the next. Higher layers receive input from lower levels, while the final
output comes from the last layer.

Stacked RNNs can perform better in NMT than single-layer networks (Bahdanau
et al., 2015). The network’s capacity to produce representations at various degrees
of abstraction across layers is one factor in this accomplishment. However, the
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Figure 2.4: A simple recurrent neural network.

training data determine the ideal number of stacked RNNs. When data is plentiful,
it may generalize well, but when data is few, it is likely to overfit (Lample et al.,
2018b). Another drawback is that training costs quickly increase as the number of
stacks increases.

Bidirectional Recurrent Neural Networks

The hidden state in recurrent networks at any given time contains all the informa-
tion about the sequence up to that point. It can be considered as the context of
the network to the left of the input at hand. In NMT, we have simultaneous access
to the whole input sequence. Utilizing the context to the right of the current input
is, therefore, a good move. Training an RNN on an input sequence in the oppo-
site direction is one method for retaining such information. A bidirectional RNN
(Schuster and Paliwal, 1997) is created when the forward and backward networks
are combined.

A bidirectional RNN consists of two independent RNNs, one of which processes
input from beginning to end and the other of which processes input from end to
beginning. The outputs of the two networks are then combined to create a single
representation that includes both the left and right input contexts at every time
step. Concatenating the forward and backward pass outputs is one method of
combining the forward and backward networks. Element-wise summation, multi-
plication, or averaging are other straightforward methods for tying the forward and
backward contexts together. The information to the left and right of the current
input is thus captured in the output at each time step.

2.3.3. Long Short-Term Memory and Gated Recurrent Units

The inability of RNNs to manage long-distance dependencies, which is crucial for
machine translation, is one of its primary flaws. Distant words are essential, as the
following example shows:

The country that has made much economic progress over the years still
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has fundamental problems.

In this example, the verb has depends on the subject country, which is separated
by a long subordinate clause.

Although RNN may access the previous sequence, the information stored in hidden
states is typically somewhat local. As a result, increasingly intricate network archi-
tectures have been created to handle the challenge of preserving meaningful context
over time. The network has to be able to forget information that is no longer neces-
sary while remembering information that will be important for decision-making in
the future. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs)
are the most widely used methods for accomplishing this task.

By deleting information from the context that is no longer needed and adding
information that is likely to be required for future decision-making, LSTM networks
(Hochreiter and Schmidhuber, 1997) break the context management problem into
two sub-problems. Instead of hard-coding a strategy into the architecture, learning
to handle this context is the key to tackling both issues. LSTMs achieve this by first
extending the architecture with an additional explicit context layer and employing
specialized neural units that use gates to regulate the information flow into and
out of the units that make up the network layers. Additional weights that operate
sequentially on the input, previous hidden layer, and previous context layers are
used to build these gates.

GRU is similar to LSTM but has fewer parameters. The benefit of training fewer
parameters is that training costs are reduced. Thus, by removing the need for a
distinct context vector and lowering the number of gates, GRU lessens the burden
placed on LSTM. Similar to LSTMs, the sigmoid is used in these gates to provide a
binary-like mask that either blocks information with values close to zero or permits
information with values close to one to pass through unchanged.

Compared to simple feed-forward networks, LSTMs and GRUs use more compli-
cated neural nodes. The inputs and outputs connected to each type of node are
shown in Figure 2.5. The greater complexity of the LSTM and GRU is encapsu-
lated inside the nodes. The availability of the other context vector as an input and
output is the only added external complexity for the LSTM over the primary recur-
rent node in this encapsulation; the GRU nodes have analogous input and output
architecture as the simple recurrent node.

2.3.4. Transformers

Although LSTMs and GRUs mitigate the loss of distant information brought on by
simple RNNs, they cannot utilize parallel computing resources due to their intrin-
sic sequential nature. These constraints are addressed in Transformers (Vaswani
et al., 2017). Transformers apply a method of processing sequences that completely
replaces RNNs.

Transformers map sequences of input vectors (x1, x2, . . . , xm) to sequences of output
vectors (y1, y2, . . . , yn) via stacks of network layers with custom connections of basic
feed-forward networks and self-attentions. Unlike RNNs, a Transformers network
may harvest and utilize information from broad contexts because of self-attention
without transferring it through recurrent intermediary connections.
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Figure 2.5: Basic neural nodes used in long short-term memory (LSTM) and gated
recurrent units (GRUs).

2.4. Neural Machine Translation
Encoder-decoder network is the typical architecture for NMT. The primary concept
of this architecture is to employ an encoder network that converts a sequence of
source language sentence words into a context representation. After that, a decoder
uses this representation to produce an output sequence, i.e., a plausible translation
into the target language. Figure 2.6 shows the encoder-decoder architecture at the
highest level of abstraction. The network consists of three components: an encoder,
context, and decoder. The encoder accepts a source language sentence as an input
sequence of words, x1, x2, . . . , xm, and generates a corresponding sequence of contex-
tualized representations, a context vector. The context vector conveys the input’s
essence to the decoder. Finally, the decoder accepts the context vector as input and
generates the most probable translation as a sequence of words, y1, y2, . . . , yn. We
can use RNNs or Transformers to implement encoders and decoders.
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Figure 2.6: The encoder-decoder architecture at the highest level of abstraction.
Adapted from Jurafsky and Martin (2021)
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2.4.1. Neural Machine Translation with Recurrent Neural Networks
Figure 2.7 shows a simplified version of the RNN-based encoder-decoder architec-
ture. The encoder processes the input sequence x. The encoder aims to generate a
representation of the input. This representation is represented in the final hidden
state of the encoder, hen. This context representation, c, is then passed to the de-
coder. The decoder takes this state and uses it to initialize its first hidden state.
The first decoder cell uses c as its initial hidden state, hd0. The decoder generates
a sequence of outputs, one element at a time, until an end-of-word marker, </s>,
is generated. Thus, each hidden state depends on the previous hidden state and
the output generated in the previous state. The embedding layer comprises word
embeddings. The theme of word embeddings is: since related words in similar con-
texts are semantically alike, they should have similar representations. Eventually,
the output y at each time step consists of a softmax computation over the vocabu-
lary, V . We might compute the most probable output at each time step by taking
the argmax over the softmax output according to Equation 2.8. While Figure 2.7
shows only a single network layer, stacked and bi-directional networks are the norm
for the encoder and decoder in practice.

ŷt = argmaxw∈V P (w|x, y1, . . . , yt−1) (2.8)
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Figure 2.7: The basic RNN-based encoder-decoder architecture. Reproduced from
Jurafsky and Martin (2021)

A fundamental problem with this architecture is that the information at the begin-
ning of the sentence, especially in long sentences, may not be evenly represented
in the context vector. The attention mechanism is a solution to this problem. It
allows the decoder to obtain information from all the hidden states of the encoder,
not just the last hidden state. The idea behind the attention mechanism is to create
a single fixed-length context vector, c, by taking a weighted sum of all the hidden
states of the encoder. The weights focus on a particular part of the source text that
is relevant to the token generated by the decoder. The context vector generated by
the attention mechanism is dynamic, since it differs for each token as it is decoded.
The attention mechanism replaces the static context vector with one dynamically
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derived from the encoder’s hidden states at each point during decoding. Thus, a
new context vector, ci, is generated with each decoding step i and considers all of
the encoder’s hidden states.

2.4.2. Neural Machine Translation with Transformers

The Transformer-based NMT follows the overall architecture, using the encoder
and decoder, shown in the left and right halves of Figure 2.8. The encoder is com-
posed of a stack of N identical Transformer blocks. Each Transformer block com-
prises a multi-head self-attention layer followed by a fully-connected feed-forward
layer with residual connections and layer normalizations. The decoder is similar to
the encoder, except it includes a masked multi-head self-attention layer, which is
a modification of multi-head self-attention to prevent positions from meddling in
subsequent computations. While an attention-based approach compares an element
of interest to a collection of other elements to reveal their relevance in the current
context, a self-attention approach focuses on comparing elements within a given se-
quence. These comparisons are used to compute an output for the current input. A
dot product is the simplest form of comparison between elements in a self-attention
layer. The result of a dot product is a scalar value; the more significant the value,
the more similar the vectors being compared. A self-attention layer maps input
sequences (x1, x2, . . . , xm) to output sequences of the same length (y1, y2, . . . , ym).
Thus, when processing each item in the input, the model has access to all of the
inputs, including the one under consideration, but no access to information about
inputs beyond the current one. Besides, the computation performed for each item
is independent of all the other computations, which enables the network to exploit
parallel computational resources.

The different words in a sentence can simultaneously relate to each other in many
different ways. Transformers represent complex relations of input words (subwords)
with multihead self-attention layers. These are sets of self-attention layers that
reside in parallel layers at the same depth, each with its own set of parameters.
These sets of self-attention layers are called heads. Given distinct sets of parameters,
each head can learn different aspects of the relationships among input words at the
same level of abstraction.

With RNNs, information about the order of the inputs is integrated into the net-
work. Unfortunately, the same is not valid for Transformers; nothing would allow
such models to use information about the relative or absolute positions of the ele-
ments of an input sequence. So Transformer inputs are combined with positional
encoding specific to each position in an input sequence. Then, as with word em-
beddings, the positional encoding is learned along with other parameters during
training. We add the word embedding for each input to its corresponding posi-
tional encoding to produce an input that captures positional information. This
new encoding serves as the input for further processing.

2.4.3. Training Neural Machine Translation Models

An NMT is a supervised machine learning in which we know the correct output
y for each observation x. What the system produces, ŷ, is the system’s estimate
of the actual y. The training procedure aims to learn parameters for each layer
that make ŷ as close as possible to the actual y for each training example. We
need a loss function that models the distance between the system output and the
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Figure 2.8: The basic Transformer-based encoder-decoder architecture. Reproduced
from Vaswani et al. (2017)

actual output. The gradient descent optimization algorithm finds the parameters
that minimize this loss function. Gradient descent uses the gradient of the loss
function, which is the partial derivative of the loss function with respect to each
parameter. Machine learning for neural networks is very complex. With millions
of parameters in many layers, we should use the error back-propagation or reverse
differentiation to compute the partial derivative of some weight in one layer when
the loss is attached to another.

Furthermore, NMT models are trained end-to-end. Each training example is a pair
of sentences (segments), a source and a target language text. Concatenated with
a separator token, <s>, these source-target pairs will serve as training data. The
training data consists of sets of sentences and their translations that can be drawn
from standard datasets of aligned sentence pairs, or parallel corpora. Optimization
in NMT is a non-convex problem. However, there are many best practices for
successfully training NMT models. For example, in NMT, we need to initialize the
weights with small random numbers, random seeds. It is also helpful to normalize
the input values with zero mean and unit variance.

NMT models training proceeds for several epochs, i.e., complete iterations over
the training data. When we track training progress, we see that the error on the
training set continuously decreases. However, overfitting creeps in at some point
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when the training data are memorized and not sufficiently generalized. We can
check this with an additional set of examples, called the development (validation)
set, that is not used during training. When we measure the error on the devel-
opment set at each training point, we see that this error increases at some point.
In theory, we stop training when the minimum error on the development set is
reached. However, in practice, it does not apply to NMT. The situation in NMT is
complicated because the training of NMT systems is usually non-deterministic and
hardly ever converges or starts overfitting on reasonably big datasets (Popel and
Bojar, 2018). Most research in NMT does not specify any stopping criteria. Some
mention only an approximate number of days to train a model (Bahdanau et al.,
2015) or the exact number of epochs (Vaswani et al., 2017). Different regularization
techniques are used to prevent overfitting. For instance, dropout randomly removes
some nodes and their connections from the network during training (Hinton et al.,
2012; Srivastava et al., 2014).

When designing the NMT architecture, hyperparameters tuning is also essential.
The architectural designer chooses hyperparameters. Hyperparameters include,
among others, the learning rate, mini-batch size, number of layers, number of hidden
nodes per layer, and activation functions.

2.4.4. Decoding

The decoding (inference) algorithm we used for producing translations in Sec-
tion 2.4.1 has a problem. Choosing a single most probable word to generate transla-
tion at each step implies a 1-best greedy search; a greedy algorithm makes a locally
optimal choice. However, sometimes we follow a sequence of words and realize too
late that we should have made a mistake early on. In that case, the best sequence
consists initially of less probable words obtained by subsequent words in the context
of the entire output. For example, considering translating an idiomatic expression,
the first words might be peculiar word choices (e.g., piece of cake for easy).

For decoding in NMT, we mainly use a method called beam search. In beam search,
instead of choosing the best word to generate at each step, we keep k possible
words. k is called the beam size or beam width. Thus, at the first decoding
step, we compute a softmax over the entire vocabulary, assigning a probability
to each word. We then select the k-best candidates from this softmax output.
These k initial candidates are called hypotheses. In other words, a hypothesis is
an initial output sequence with its probability. Each k best hypothesis is extended
incrementally by being passed to different decoders at subsequent steps. First, each
decoder generates a softmax over the entire vocabulary to advance the hypothesis
to every possible next word. Next, each of these k ∗ V hypotheses is scored by
P (yi|x, y1, y2, . . . , yi), the product of the probability of the current word choice
multiplied by the probability of the path that led to it. We then prune the k ∗
V hypotheses down to the k best hypotheses, so there are never more than k
hypotheses. This process continues until a </s> is generated, indicating a complete
candidate translation. Then, the completed hypothesis is removed, and the beam
size is reduced by one. The search continues until the beam is reduced to zero.
The result will be k hypotheses. The complete hypothesis (i.e., one that ended
with a </s> symbol) with the highest score will be the best translation. Figure 2.9
illustrates this process with a beam size of six.
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Figure 2.9: Beam search decoding with a beam width of six. Adapted from Koehn
(2020)

When choosing among the best paths, we score each with the product of its word
prediction probabilities. In practice, we get better results when we normalize the
score by the output length of a translation, i.e., dividing the score by the number
of words. We carry out this normalization after the search is completed.

2.5. Evaluation
As an integral part of design science research, evaluation is crucial to assessing the
quality of machine translation outputs and comparing different machine translation
methods. We need to measure quality to track progress, ideally with a single score.
However, devising such a score is still an open research question (Koehn, 2020).
Nonetheless, some best practices have already been established, and in general,
there is broad consensus on how to track quality gains.

Human (Section 2.5.1) and automatic (Section 2.5.2) evaluation methods exist.
Human evaluation seems more accurate than automatic evaluation because the
translation is, after all, intended for humans. However, running a human evaluation
can be time-consuming and expensive. In practice, it can be used to compare
a small number of variant systems. Therefore, automated metrics are prevalent
because they can rapidly evaluate system improvements; they are also used as a
loss function for training models.

2.5.1. Human Evaluation

Human raters can evaluate machine translation outputs along two dimensions:
faithfulness and fluency. Faithfulness, also called adequacy or fidelity, refers to
how well the translation captures the exact meaning of the source sentence. Along
the dimension of fluency, we can consider how intelligible, clear, readable, or natural
the machine translation output is. During a human evaluation of fluency, we can
give the human raters a scale, for example, from 1 (incomprehensible) to 5 (flawless
fluent translation), as in Table 2.1. We can do the same to evaluate the second di-
mension, faithfulness, from 1 (no meaning preserved) to 5 (all meaning preserved).
We can do this with bilingual or monolingual raters. If we have bilingual raters,
they use the source sentence to rate a machine translation output. If we only have
monolingual raters and an excellent human translation of the source text, they can
still rate a machine translation output.
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Score Fluency Faithfulness

5 Fluent translation All meaning preserved
4 Very good translation Most meaning preserved
3 Good translation Adequate meaning preserved
2 Disfluent translation Little meaning preserved
1 Incomprehensible No meaning preserved

Table 2.1: A 5-point scale for rating fluency and faithfulness based on Koehn (2020)

The definitions mentioned above for fluency and faithfulness are vague. As a result,
it is difficult for human raters to be consistent in their evaluation. Also, some raters
might be more lenient than others. According to the survey by Koehn and Monz
(2005), the average scores for fluency and faithfulness significantly differ among
the human raters. An alternative approach to relieve the problem is to do rank-
ing. Instead of judging fluency and adequacy on an absolute scale, it is typically
easier to rank translations of different systems by assigning higher scores to better
translations.

Another method is to have post-editing translations done by human experts. They
will take the results of machine translation and make minimal changes until they
feel it is a proper translation. The quality can then be determined by comparing
their post-edited translations to the original machine translation output.

2.5.2. Automatic Evaluation

In automatic evaluation, the main idea is to compare a machine translation output
(hypothesis) against a human-curated reference translation(s). The more similar
the machine translation is to the reference translation, the better the score of the
automatic evaluation metric. Proper uses for automatic evaluation metrics include
comparing systems that apply similar translation methods, optimizing the values
of hyperparameters, and tracking incremental changes to a single system (Callison-
Burch et al., 2006; Reiter, 2018). Most automatic evaluation metrics fall into two
groups, those based on string overlap and those based on embedding similarity.

String-Based Metrics

String-based metrics such as BLEU (for Bilingual Evaluation Understudy) and
ChrF (for Character n-gram F-score) are derived based on the assumption that
good machine translation outputs tend to contain similar strings that occur in
human translations (Miller and Beebe-Center, 1956). The most popular among
these metrics is BLEU (Marie et al., 2021), but the one that best correlates with
human evaluations is ChrF (Kocmi et al., 2021).

Bilingual Evaluation Understudy (BLEU)

BLEU (Papineni et al., 2002) is the popular automatic metric for machine transla-
tion. The idea behind BLEU is that it counts not only the number of words in the
translation that match the reference translation but also the n-gram matches. So
it rewards correct word order as it increases the likelihood of matching word pairs
(bigrams) or even sequences of three or four words (trigrams or 4-grams). We can
also use multiple reference translations to consider whether the machine translation
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has n-gram matches with any of them.

The BLEU score for a machine translation output is a function of the modified
n-gram precision combined with a brevity-penalty. In this case, precision is the
ratio of the n-grams in the machine translation output that matches the reference
translation. Typically, precision is paired with recall, which would compute the
ratio of the n-grams in the reference translation that match the machine translation.
However, using multiple reference translations makes the use of recall complicated.
Thus, BLEU chooses the explicit use of a brevity penalty. It is based on the ratio
between the number of words in the machine translation and reference translation;
it ignores the machine translation if the ratio is below one (i.e., if the machine
translation is too short). So BLEU is not interpreted as a simple precision metric.
Instead, the BLEU metric is defined as in Equation 2.9.

BLEU = BP ∗ exp
4∑
i

log matching_igrams

total_igrams
(2.9)

In Equation 2.9, brevity-penalty, BP, is defined as: BP = min(1, outputlength
referencelength)

BLEU scores are computed over an entire test set with one or more reference trans-
lations. Nevertheless, in practice, multiple reference translations are rarely used.

Figure 2.10 shows the BLUE scores for the best systems of the 2019 news translation
tasks conducted at the fourth Conference on Machine Translation (Barrault et al.,
2019). The highest score, 44.9, is for English-to-German translation; the lowest,
11.1, is for English-to-Kazakh translation, which involves low-resource NMT (Li
et al., 2019).

Source: http://matrix.statmt.org/matrix

Figure 2.10: BLUE scores for the best systems of the 2019 news translation tasks.
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Although BLEU is beneficial and widely used, it has some severe limitations. It does
poorly at comparing very different systems, like human-aided translation against
machine translation (Callison-Burch et al., 2006). It is also too strict. For example,
its computation has as a factor tri-gram or 4-gram precision, but the translation of a
sentence may not have any tri-gram or 4-gram match with the reference translation,
resulting in a BLEU score of zero. Furthermore, implementing BLEU requires
standardizing many details of smoothing and tokenization; for this reason, it is
recommended to use standard implementations like sacreBLEU (Post, 2018).

Character N-Gram F-Score (ChrF)

The ChrF (Popovic, 2015) metric ranks each machine translation output by a func-
tion of the number of character n-gram overlaps with the reference translation.
Unlike BLEU, ChrF takes into account both precision and recall. Given the ma-
chine translation output and the reference, ChrF takes a parameter n indicating
the length of character n-grams to be considered, and computes the average of the
n precisions, ChrP, and the average of the n recalls, ChrR, where:

ChrP is a percentage of character 1-grams, 2-grams, …, n-grams in the
translation output that have counterparts in the reference, averaged.

ChrR is a percentage of character 1-grams, 2-grams, …, n-grams in the
reference that are also present in the translation output, averaged.

ChrF then computes an F-score by combining ChrP and ChrR using a weighting
parameter β, as in Equation 2.10. β is a parameter that assigns β times more
importance to recall than precision. If β = 1, both recall and precision have the
same importance; if β = 2, recall weighs twice as much as precision.

ChrF = (1 + β2)
ChrP · ChrR

β2 · ChrP + ChrR
(2.10)

Embedding-Based Metrics

The string-based metrics measure the exact string matches of a reference and ma-
chine translation outputs. This criterion is too strict since a good translation may
use alternate words or synonyms. The early solution was proposed in METEOR
(for Metric for Evaluation of Translation with Explicit Ordering) (Banerjee and
Lavie, 2005). It allows synonyms to match between the reference and machine
translation outputs. It incorporates the use of stemming and synonyms by match-
ing the surface forms of the words and then backing off to stems and semantic
classes. Semantic matches are determined using synonym databases like Wordnet
(Miller, 1995). However, more recent metrics use word embeddings like BERT (for
Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) for
synonym matching.

The most successful automatic embedding-based metric, COMET (for Crosslingual
Optimized Metric for Evaluation of Translation) (Rei et al., 2020), uses human-
labeled datasets of ratings that express the quality of machine translation outputs
with respect to reference translations along with word embeddings, XML-R embed-
dings (Conneau et al., 2020). As such, it best correlates with human judgments
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(Kocmi et al., 2021; Freitag et al., 2021).
2.5.3. Statistical Significance Testing
In empirical machine translation research, we want to prove the superiority of one
system or algorithm over the other based on evaluation metrics, such as BLEU
and COMET. Although largely missing in the bulk of machine translation research
(Marie et al., 2021), statistical hypothesis testing enables us to determine the sig-
nificant performance difference between the systems.

To compare two machine translation systems, S1 and S2, let x be a sample of the
population of test sets. We define the difference in performance between the two
systems according to a metric M on test set x as in Equation 2.11. δ(x) is simply
a test statistic, an observed value, or an amount obtained from an experiment on
the test set x. In terms of the evaluation metric M , S1 outperforms S2 on test set
x if δ(x) > 0. In other words, system S1 performs better than system S2 in one test
set, but this may not hold in another test set.

δ(x) = M(S1, x)−M(S2, x) (2.11)

Formally, we test two hypotheses using Equation 2.12 in statistical hypothesis test-
ing. The null hypothesis, H0, states that S2 performs better than S1 or S2 is as
good as S1, but the alternative hypothesis, H1, indicates that system S1 performs
noticeably better than system S2.

H0 : δ(x) ≤ 0

H1 : δ(x) > 0 (2.12)

Type I and type II errors are the two types of errors that could occur during our
hypothesis testing. Rejecting the null hypothesis when it is true is referred to
as a type I error. Contrarily, a type II error occurs when we fail to reject the null
hypothesis while it is false. The goal of statistical significance testing is to reduce the
probability of both type I and type II errors. Nevertheless, lowering the probability
of one error might raise the probability of the other. The traditional approach to
hypothesis testing is finding a test that controls a type I error at a threshold value
of α, the significance level of the test, while keeping the probability of a type II
error as low as feasible. A small α value guarantees that we do not lightly reject
the null hypothesis, but it also increases the probability that we will not reject the
null hypothesis when we ought to. In other words, a low α value results in a larger
probability of type II error and a lesser probability of type I error. In practice, it
is customary to select an α value of 0.01 or 0.05.

A random variable δ(X) that spans the entire population of test sets must be created
in order to conduct a statistical significance test. The likelihood of observing future
values that are as extreme or more extreme than the test statistic δ(x) value, given
that the null hypothesis is true, is represented by the p-value in a statistical test.
The p-value is officially defined in Equation 2.13. A very low p-value indicates that
the null hypothesis cannot be accepted, which allows us to rule out the difference
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we saw. If the p-value is less than 0.05, for example, at an α value of 0.05, we reject
the null hypothesis and believe that S1 is truly superior to S2. To put it another
way, we can argue that the outcome is statistically significant and that the null
hypothesis can be rejected.

P (δ(X) ≥ δ(x)|H0 is true) (2.13)

We should pick an acceptable statistical test to obtain the p-value. We can apply
a suitable test from the family of parametric tests, such as paired z-test or t-test,
if the distribution of the test statistic δ(x) is known or if there is independence
between the observations in the sample. These assumptions, however, do not apply
to machine translation (Dror et al., 2020). As a result, we frequently use non-
parametric tests like paired Bootstrap (Efron and Tibshirani, 1993; Koehn, 2004)
and Approximate Randomization (Noreen, 1989; Riezler and Maxwell-III, 2005)
tests.

2.6. Conclusion
Because of the complex differences between languages, translation has become a
difficult task. Morphological differences between languages, among others, make
machine translation a very intricate task. Nevertheless, we have seen exciting ad-
vances in machine translation in recent decades. Data-driven approaches replaced
the earliest rule-based approaches. Statistical Machine Translation (SMT) and
Neural Machine Translation (NMT) are the most common data-driven approaches.
Nonetheless, NMT has become prominent and state-of-the-art because of its out-
standing successes.

An NMT system can implement the encoder-decoder architecture with recurrent
neural networks or Transformers. Encoder-decoder networks are used for sequence
modeling in which the output sequence of words is a complex function of the entire
input sequence. As a result, the number or order of the words in the target language
may not be similar to the source language. Because of this, NMT can effectively
model languages with different word orders.

There are human and automatic evaluation methods. Human evaluation is more
accurate than automatic evaluation as the translation is intended for humans. How-
ever, running a human evaluation can be time-consuming and expensive. In prac-
tice, it can be used to compare a small number of variant systems. Therefore,
automated metrics are prevalent because they can rapidly evaluate system improve-
ments.

Most automatic evaluation metrics fall into two groups, those based on string over-
lap and those based on embedding similarity. String-based metrics such as BLEU
and ChrF are derived based on the assumption that good machine translation out-
puts tend to contain similar strings that occur in human translations. The most
popular among these metrics is BLEU, but the one that best correlates with hu-
man evaluations is ChrF. On the other hand, embedding-based metrics address the
fundamental limitations of string-based metrics. Among embedding-based metrics,
COMET best correlates with human judgments. It uses human-labeled datasets
of ratings that express the quality of machine translation outputs with respect to
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reference translations along with word embeddings, XML-R embeddings.

Although largely missing in the bulk of machine translation research, statistical
hypothesis testing enables us to determine the significant performance differences
between machine translation systems. Currently, because of their power and sim-
plicity, non-parametric tests, such as Approximate Randomization and Bootstrap,
are prevalent.
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CHAPTER 3

Low-Resource Neural Machine Translation

The key to our success in data-driven machine translation is the high-quality and
substantial quantity of the training data. When doing Neural Machine Translation
(NMT) on a new language pair, it is essential first to ascertain what data resources
are already available. Often parallel corpora for many languages are scarce; we
frequently need more data to train NMT models. In that case, data augmentation
comes into the picture.

A pivot translation is also possible for some low-resource language pairs. The
source-to-pivot and pivot-to-target parallel data, if available, can then be utilized
to aid with source-to-target translation by choosing one or more pivot languages
as a bridge between the source and target languages. On the other hand, transfer
learning refers to learning from one model and then using that knowledge to train
another model. For instance, we might initialize the training of part or all of the
parameters of a low-resource NMT model using other high-resource language NMT
models. Furthermore, because multilingual NMT aims to develop a model that
can translate across various language pairs, low-resource languages included in the
model may benefit from other languages used to train the model. As a last resort,
unsupervised NMT might be considered for low-resource NMT as it requires only
monolingual data, which is easier to obtain than parallel data.

In Section 3.1, we discuss topics related to datasets, i.e., data sources and data
augmentation. In Section 3.2, we explore assisted training. It includes pivot trans-
lation, transfer learning, and multilingual NMT. In the last section, Section 3.3, we
explain unsupervised NMT.

3.1. Datasets
When performing NMT for a new language pair, we must first determine what
data resources (Section 3.1.1) are already available. Often, parallel corpora for
many languages are scarce; we often need more data to train NMT models. In this
case, data augmentation (Section 3.1.2) comes into play.

3.1.1. Data Sources

The broadest collection of freely accessible parallel corpora harvested from web
can be found in OPUS (for Open Parallel Corpus) (Tiedemann, 2012) and Hug-
ging Face. They are expanding collections of translated texts for several languages
and dialects, including low-resource languages. Besides, the United States’ govern-
ment Defence Advanced Project Agency has taken the initiative called the “Low-
Resource Languages for Emergent Incidents” (LORELEI) to collect parallel data
for low-resource languages (Tracey and Strassel, 2020). However, the datasets are
made available under constrained and occasionally pricey licensing via the Linguis-
tic Data Consortium. Table 3.1 lists the repositories of parallel and monolingual
data sources.

Although not quite as valuable as parallel corpora, monolingual corpora are also
helpful for NMT. Among the different sources for monolingual data, Common Crawl
maintains a sizable open repository of web-crawled data. It is a heterogeneous
multilingual corpus made up of billions of web pages crawled from the internet. It
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Type Repository URL

Parallel OPUS https://opus.nlpl.eu
Hugging Face https://huggingface.co

LORELEI https://www.ldc.upenn.edu

Monolingual Common Crawl https://commoncrawl.org
OSCAR https://oscar-corpus.com
CC-100 https://data.statmt.org/cc-100

mC4 https://huggingface.co/datasets/mc4
News Crawl http://data.statmt.org/news-crawl
Wikipedia https://www.wikipedia.org

Table 3.1: Main repositories of parallel and monolingual data sources.

is distributed as a collection of plain text files, each containing text written in many
different languages. It is quite challenging to use Common Crawl for monolingual
applications because, despite each document’s metadata information, this data lacks
any information on the language in which each document is written. There are
attempts, like OSCAR (Suárez et al., 2019), CC-100 (Conneau et al., 2020), and
mC4 (Raffel et al., 2020), to clean the data and make it more accessible. Smaller
but cleaner corpora of monolingual news are updated yearly for the Conference
on Machine Translation shared tasks; it presently supports fifty-nine languages
(Akhbardeh et al., 2021). Wikipedia also has text in over three hundred languages,
albeit many language texts are pretty small.

All web-crawled data sources should be handled carefully because errors are a given,
especially in languages with limited resources. Automatically generated data are
frequently noisy and of poor quality. Furthermore, such data are likely to be in
a very different domain from the text that we would like to translate. According
to a large-scale quality examination of the two hundred fifty language-specific cor-
pora (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4), many crawled datasets
contain inaccurate language identification, non-parallel sentences, low-quality text,
and objectionable language (Kreutzer et al., 2022). These issues can be especially
severe in low-resource languages and necessitate the development of new corpora,
preferably with targeted data collection from edited sources that meet publication
standards.

3.1.2. Data Augmentation

Numerous data examples can be synthesized by rotating and cropping images in
image recognition. However, it is challenging to generate synthetic examples in
machine translation since altering words of a sentence is likely to alter its semantics
or syntax. Additionally, it is crucial to maintain the translation relationship between
the two sentences in the parallel pair when generating synthetic parallel examples
from existing ones.

The most popular data augmentation technique in NMT is back-translation (Sen-
nrich et al., 2016a). Back-translation is a powerful method for raising quality in
low-resource NMT (Guzmán et al., 2019). It takes advantage of monolingual cor-
pora in the destination language. Figure 3.1 illustrates back-translation steps. In
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Figure 3.1: Illustration of action steps performed in back-translation. Reproduced
from Koehn (2020)

back-translation, to synthesize new data examples, first, we train an initial target-
to-source machine translation system on the available parallel data. Then, we trans-
late the monolingual target sentences into the source language. Each monolingual
target sentence and its translation forms a synthetic parallel data example pair. Fi-
nally, we retrain the source-to-target machine translation model using the synthetic
and authentic (original) parallel data. For example, let us say we want to trans-
late from Amharic to English, but there are small Amharic-English parallel data.
Nevertheless, we can get a ton of monolingual data for English. So, first, we train
a machine translation model using the small available parallel data. Then, after
translating the monolingual English text into Amharic using the machine transla-
tion model, we can add this synthetic Amharic-English parallel data into the original
training data to retrain another, most probably, improved model. It is crucial that
the initial model that is used to generate the back-translation is of sufficiently high
quality. However, when parallel data are scarce, the initial model used for transla-
tion is frequently of poor quality, which invariably results in poor-quality synthetic
parallel data. Iterative back-translation is a viable solution to this problem, which
uses intermediary models of progressively higher quality in both language directions
to generate synthetic parallel data for the following phase. Experimental results by
Chen et al. (2020) have demonstrated that two iterations are adequate for the pro-
cess. Additionally, prior research has demonstrated that tagged back-translation,
which adds a tag to synthesized data to separate them from the authentic par-
allel data, improves performance (Caswell et al., 2019). Nevertheless, Goyal et al.
(2020b) showed an exceptional case in which tagged back-translation underperforms
untagged back-translation in a multilingual translation setup. Although forward-
translation (Zhang and Zong, 2016), which involves translating monolingual source
data into the target language, is also an option for low-resource NMT, it has at-
tracted much less attention than back-translation because of the noise it induces to
the decoder (Haddow et al., 2022).

Another data augmentation technique, considered complementary to back-translation,
is using language models to predict likely equivalent words in sentences (Fadaee
et al., 2017; Arthaud et al., 2021). This technique generates equivalent words with
appropriate context to substitute words in parallel training sentences to create new
synthetic parallel data.

We can also synthesize parallel data from related languages. For example, once
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Hindi has been transliterated into Gujarati script, there is a significant amount
of lexical overlap between Hindi and Gujarati, which allows to produce synthetic
Gujarati-English parallel data using a Hindi-English parallel data (Li et al., 2019;
Bawden et al., 2019).

3.2. Assisted Training
Assisted training aims to adapt NMT to low-data conditions by deriving support
from resource-rich languages. The notable methods for assisted training are pivot
translation, transfer learning, and multilingual NMT. Section 3.2.1 explores pivot
translation. The parallel source-to-pivot and pivot-to-target data, if available, can
be used to support source-to-target translation by choosing one or more pivot lan-
guages as a bridge between the source and target languages. On the other hand,
transfer learning refers to learning from one model and then using this knowledge to
train another model, often a model involving low-resource languages. Section 3.2.2
reviews transfer learning. Since multilingual NMT aims to develop a model that
can translate across different language pairs, resource-poor languages included in
the model can benefit from other languages used to train the model. Section 3.2.3
describes multilingual translation.

3.2.1. Pivot Translation

We can employ pivot translation to translate between low-resource languages. A
pivot language, typically a rich-resource language, is chosen as a bridge. The source-
to-target translation can then be made using the source-to-pivot and pivot-to-target
models trained on the respective parallel corpora. For example, since we can get
some Amharic-English and English-Turkish parallel data, we can use English as
a pivot or bridge language for Amharic-to-Turkish translation, the case where we
hardly find parallel data. The source-pivot-target model can be created by di-
rectly combining the source-to-pivot and pivot-to-target models once they have been
trained (Cheng et al., 2017). Another popular technique is training the source-to-
target model with synthetic parallel data produced using the pivot language (Chen
et al., 2017).

The choice of a pivot language significantly impacts the translation’s quality (Wang
et al., 2021). For instance, Russian is the language of choice for Kazakh-English (Li
et al., 2019; Toral et al., 2019; Dabre et al., 2019; Budiwati et al., 2019), and Span-
ish is for Basque-English translation (Scherrer, 2018; Sánchez-Cartagena, 2018).
Moreover, while only one pivot language is customarily chosen, a learning-to-route
method can automatically choose numerous pivot languages to translate across a
number of intermediary languages (Leng et al., 2019). The method also automati-
cally selects an optimum translation path for a language pair.

3.2.2. Transfer Learning

In transfer learning, we can train an NMT model on language pairs with rich re-
sources, referred to as the parent model. Then all or some of the model’s parameters
— which are configuration variables that are internal to the model and whose values
can be estimated from training data — are fine-tuned on language pairs with low
resources, referred to as the child model. So first, with the aid of a high-resource
language pair, we train a parent model for transfer learning. Then, we initialize
the training of a low-resource language pair, a child model, using all or some of
the trained parameters. This technique remarkably outperforms the commonly
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used random initialization to start a training (Zoph et al., 2016; Kocmi and Bojar,
2018). Regarding the choice of parent languages, a common strategy is to select
high-resource parent languages (Zoph et al., 2016). While Dabre et al. (2017) sug-
gested that language relatedness is important, Kocmi and Bojar (2018) argued that
the method works even if the languages are unrelated. Furthermore, Lin et al. (2019)
provided a thorough investigation into the issue of selecting the parent language and
even proposed a framework to detect the optimal parent language automatically.

Sharing the vocabulary between the parent and child models is advantageous when
carrying out transfer learning across related languages because there is likely to
be lexical overlap (Nguyen and Chiang, 2017). We can employ word segmentation
such as BPE, Word-Piece, and SPULM to maximize lexical overlap; transliteration
is also helpful for closely related languages written in different scripts (Dabre et al.,
2018; Goyal et al., 2020a). Even in situations with little lexical overlap, mapping
the bilingual word embeddings between parent and child languages can be beneficial
(Kim et al., 2019).

Not only a model trained on the parallel data of a parent language is used for
transfer learning, but a pre-trained monolingual model is also utilized to initialize
a low-resource NMT model training (Ramachandran et al., 2017). In addition, Qi
et al. (2018) demonstrated how pre-trained word embeddings could be successful in
some low-resource scenarios.

3.2.3. Multilingual Neural Machine Translation

Having a global model that can translate between any two languages is the aim of
multilingual NMT. We can train a universal model with several languages’ parallel
data, which permits parameter sharing among the model elements in joint learn-
ing. Hence, the included low-resource languages take advantage of the multilingual
model and outperform the bilingual models (Dong et al., 2015; Firat et al., 2016).
In multilingual NMT, the extent of parameter sharing between the incorporated
languages varies greatly, ranging from minimal parameter sharing (Dong et al.,
2015) to entire parameter sharing (Johnson et al., 2017). In the so-called zero-shot
translation, the whole parameter sharing promises to do good translations even
if no training data exists for a low-resource language pair (Johnson et al., 2017;
Lakew et al., 2018). Although multilingual models typically perform worse than
bilingual models for language pairs with high resources, they have positive effects
on low-resource languages (Johnson et al., 2017; Arivazhagan et al., 2019; Adelani
et al., 2021). Additionally, they yield better results for zero-shot translation when
more languages are used (Aharoni et al., 2019; Arivazhagan et al., 2019).

Neubig and Hu (2018) proposed methods for adapting multilingual models to new
languages by applying the transfer learning strategies (see Section 3.2.2), depending
on whether the original multilingual model might have been trained using training
data of a new language. They discovered that multilingual models that have been
fine-tuned using training data from the new low-resource language combined with
data from a related high-resource language produced the best translation results.

The quantity of training data available for different language pairs is frequently
drastically out of balance. Hence it is advantageous to upsample the data for
low-resource language pairs. Upsampling low-resource pairs, however, has the un-
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pleasant side effect of degrading performance on high-resource pairs (Arivazha-
gan et al., 2019). Additionally, the model overfits on the low-resource data before
it can converge on the high-resource language data, which is another problem.
The widely-used temperature-based sampling technique can solve this issue (Devlin
et al., 2019; Fan et al., 2021). The statistical thermodynamics model, which holds
that low energy states are more likely to occur at high temperatures, is the basis
for temperature-based sampling. For example, in the context of natural language
processing, a high-temperature sample exhibits more linguistic variation, but a
low-temperature sample is more grammatically accurate. In multilingual models, it
involves adjusting how much we sample from the actual data distribution. Hence,
it offers an inevitable compromise between ensuring that low-resource languages
are adequately represented and minimizing the performance degradation seen in
high-resource language pairs.

3.3. Unsupervised Neural Machine Translation
The objective of unsupervised NMT is to build a translation model without using
parallel data. Unsupervised NMT may be used to make up for the lack of parallel
data in low-resource NMT because it is considerably simpler to develop monolin-
gual data than parallel data. An unsupervised NMT model is frequently trained in
two stages (Lample et al., 2018a; Artetxe et al., 2018): bilingual alignment, which
gives the model strong alignments between the two languages; and translation en-
hancement, which continuously improves the quality of the translation by iterative
learning, typically through back-translation.

Although unsupervised NMT has been successfully applied to language pairs with
high resources by ignoring parallel data, it has been demonstrated to perform poorly
on actual low-resource language pairs (Guzmán et al., 2019; Marchisio et al., 2020;
Kim et al., 2020), primarily due to the initial poor quality of the word embeddings
and their cross-lingual alignments (Edman et al., 2020). To solve the problem,
monolingual and auxiliary parallel data from other high-resource language pairs
may help (Garcia et al., 2021; Ko et al., 2021). Also, adding a supervised training
step using the available parallel data can help even more (Bawden et al., 2019).

3.4. Conclusion
The high quality and significant quantity of the training data are the secrets to
our success in data-driven machine translation. Knowing what data resources are
already accessible is crucial when applying NMT to a new language pair. We usually
require more data to train NMT models because parallel corpora for numerous
languages are frequently lacking. Data augmentation may increase the amount of
data by generating synthetic data. A pivot translation is also an option for some
low-resource language pairs. By selecting one or more pivot languages as a bridge
between the source and target languages, the source-to-pivot and pivot-to-target
parallel data, if available, can then be used to help with source-to-target translation.
We might also use other high-resource language NMT models to initialize some
or all of the parameters of a low-resource NMT model in transfer learning. Low-
resource languages included in the multilingual NMT model may benefit from other
languages used to train the model. Unsupervised NMT may be considered a final
choice for low-resource NMT since it just needs monolingual data, which is simpler
to get than parallel data.
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Related Work

Research on machine translation dates back to the late 1940s, soon after the in-
vention of digital computers. In a groundbreaking work, Weaver (1949) offered
potential machine translation research areas. Later, IBM and Georgetown Uni-
versity’s collaboration resulted in the first public demonstration of the viability of
machine translation in 1954. Despite being a small-scale experiment with only 250
words and six grammar rules, this demonstration of a Russian–English machine
translation system created great expectations for systems that can translate well
(Hutchins, 2004).

The earliest attempt at machine translation was to use rule-based approaches. How-
ever, such rule-based approaches are tedious and expensive to implement since
making hand-crafted rules to code all the necessary linguistic knowledge to produce
plausible translations takes much work. The alternative data-driven approach came
when parallel corpora were more and more available. These approaches rely on ma-
chine learning to build models based on parallel corpora by recycling translations
made by humans. Hence, this fact has made the line between human and machine
translation blurry (O’Hagan, 2013; Doherty, 2016). Currently, the state-of-the-art
data-driven approach is Neural Machine Translation (NMT) (Bahdanau et al., 2015;
Wu et al., 2016; Vaswani et al., 2017).

In general, translation involves the whole vocabulary in a language. That means,
it is an open vocabulary problem. However, since NMT consumes a lot of system
resources like dedicated memories, many proposed approaches have been developed
for a rather limited vocabulary. One approach to tackling this problem is segmenting
words as sequences of subword units for open-vocabulary translation, as discussed
in Section 4.1.
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Figure 4.1: Related work in subword-based low-resource NMT.

Moreover, NMT is data inefficient. That is, to build competitive models, NMT
should use sufficiently large training data. In ablation studies, Koehn and Knowles
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(2017) and Lample et al. (2018b) experimentally showed that NMT outperforms
phrase-based statistical machine translation when only large training data is avail-
able. They conducted the experiments with hyperparameters that have been used
and proved successful for high-resource languages. They have not modified the
systems to optimize NMT for low-resource settings. However, there are success-
ful attempts to adapt systems for low-resource NMT, as discussed in Section 4.2.
Another remedy for NMT’s data inefficiency is a new parallel corpus creation for
low-resource languages (Haddow et al., 2022). For instance, Hasan et al. (2020)
have shown that gathering a large quantity and good quality parallel corpus can
significantly improve Bengali-English machine translation. Section 4.3 describes
the state of dataset creation. Figure 4.1 summarizes related work in subword-based
low-resource NMT.

4.1. Subword-Based Neural Machine Translation
Although translation is an open-vocabulary problem, NMT models operate with
a fixed vocabulary due to the limitations of computational resources. During the
training of NMT models, the top most frequent words, commonly between 30,000
and 80,000, are included in the vocabulary (Sutskever et al., 2014; Bahdanau et al.,
2015). Both unseen words at training time and less frequent (rare) words, thus,
will be out-of-vocabulary words. In practical NMT model training, a unique token
represents them. This technique works well when there are only a few out-of-
vocabulary words. However, the translation performance degrades rapidly as the
number of out-of-vocabulary words increases (Cho et al., 2014; Bahdanau et al.,
2015). The problem worsens for languages dominated by synthetic morphology,
either agglutinative or fusional. These languages can have hundreds of thousands, if
not millions, of words in their vocabulary, most of which become out-of-vocabulary
words. The worst-case scenario is when we use small training data of synthetic
low-resource languages, which brings forth several out-of-vocabulary words during
inference.

Another procedure to address the translation problem of out-of-vocabulary words is
a back-off to a dictionary lookup (Jean et al., 2015; Luong et al., 2015). Nonetheless,
this approach requires supplementary resources like bilingual lexicons, which may
only be readily available for some low-resource languages. It also makes assumptions
that only sometimes hold in reality, like a one-to-one correspondence between the
source and target language words (Sennrich et al., 2016b).

A feasible solution to make an NMT model capable of open-vocabulary translation
is segmenting words as sequences of subword units (Schuster and Nakajima, 2012;
Sennrich et al., 2016b; Wu et al., 2016; Kudo, 2018; Zuters et al., 2018). The extreme
case can be a character-level segmentation (Costa-jussà and Fonollosa, 2016; Lee
et al., 2017). However, compared to higher-level subwords, translating characters
results in longer sequences, which is challenging for both modeling and computation
(Mielke et al., 2021).

In subword NMT models, most conventional word segmentation methods follow
statistics-based approaches that use a data compression method (Gage, 1994) to
reduce text entropy (Shannon, 1948), the idea derived from information theory. We
can consider a text as a sequence of symbols (i.e., words or subwords), where each
symbol is generated with a certain probability and carries a certain information
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content (Bentz et al., 2017). The higher the probability of a symbol, the lower its
information content (Gutierrez-Vasques et al., 2021). According to Mielke et al.
(2021), the most conventional word segmentation methods commonly used in NMT
are Byte Pair Encoding (BPE) (Sennrich et al., 2016b), Word-Piece (Schuster and
Nakajima, 2012; Wu et al., 2016), and Sentence Piece with Unigram Language
Modeling (SPULM) (Kudo, 2018). BPE iteratively replaces the most frequent pair
of characters in a sequence with a single, unused character. A subword learner
first decomposes the entire training text into single characters. Then, it induces
a vocabulary by iteratively merging the most frequent adjacent pairs of characters
or subwords until the desired subword vocabulary is achieved. Once the subword
vocabulary is learned, a segmenter splits words in a text by greedily segmenting
words with the longest available subword type. Word-Piece is similar to BPE.
However, while BPE uses co-occurrence frequency to apply potential mergers of
subwords, Word-Piece relies on the likelihood of an n-gram language model trained
on a version of the training text that contains the merged subwords. SPULM,
on the other hand, is a fully probabilistic method based on a unigram language
model. Unlike BPE or Word-Piece, SPULM builds the vocabulary using a top-down
approach. It starts with a vast starting vocabulary containing all characters and the
most frequent subword candidates in the training text. Then it iteratively removes
subwords from the vocabulary that do not improve the overall probability. It is
similar to Morfessor’s unsupervised segmentation (Creutz and Lagus, 2007), apart
from Morfessor’s informed priority over subword length (Rissanen, 1998; Bostrom
and Durrett, 2020).

The conventional methods for word segmentation are language-independent. Re-
markably, they work well for agglutinative languages, in which words are formed
by concatenating morphemes, since they work only with the surface form of words
in estimating subword units. However, they overlook the morphology of fusion lan-
guages, in which words are formed by blending several morphemes. As a result,
they may lead to the loss of semantic or syntactic information contained in the
word structure. Nevertheless, there are several variants to the purely statistics-
based conventional word segmentation methods to make them morphology-aware
(Huck et al., 2017; Ataman et al., 2017; Machácek et al., 2018; Sánchez-Cartagena
et al., 2019; Ortega et al., 2020). These modifications, however, did not seem to
improve the original methods for the translation of a few low-resource language
pairs (Toral et al., 2019; Dhar et al., 2020; Ortega et al., 2020; Sälevä and Lignos,
2021).

Another issue with using traditional segmentation methods in low-resource settings
is determining the optimal vocabulary size based on the degree of segmentation
(Sennrich and Zhang, 2019; Ding et al., 2019; Gowda and May, 2020). There are
mixed results regarding the optimal vocabulary size when training subword NMT
models. While Wu et al. (2016) and Denkowski and Neubig (2017) recommend a
value between 8,000 and 32,000 for the vocabulary size, Cherry et al. (2018) and
Ding et al. (2019) argue that such large vocabularies degrade the performance of
the models, especially in low-data conditions. Thus, the size of the vocabulary
needs to be tailored to the dataset. Therefore, we need to train several models with
different possible vocabulary sizes to obtain the best model. However, since this trial
training involves high computational costs, some techniques have been proposed to
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estimate the optimal vocabulary size. Salesky et al. (2020) proposed a method that
gradually introduces new BPE vocabulary online based on the persistent validation
loss. It starts with smaller, general subwords and adds larger, more specific units as
training progresses. Xu et al. (2021) proposed another efficient solution, VOLT (for
Vocabulary Learning via Optimal Transport), by applying the Economics concept
of marginal utility (Samuelson, 1937), where the benefit is text entropy and the
cost is vocabulary size. On the one hand, increasing vocabulary size reduces text
entropy, which benefits model learning (Bentz and Alikaniotis, 2016). On the other
hand, an extensive vocabulary leads to parameter explosions and data sparseness,
which is detrimental to model learning (Allison et al., 2006). Therefore, Xu et al.
(2021) formulated vocabulary construction as an optimization problem aimed at
finding the optimal vocabulary size with the highest marginal utility.

4.2. System Adaptation
There are various attempts to adapt NMT to low-resource settings (Östling and
Tiedemann, 2017; Nguyen and Chiang, 2018; Sennrich and Zhang, 2019; Araabi and
Monz, 2020; Lankford et al., 2021). Primarily the attempts are to tune NMT hy-
perparameters to optimize the systems’ performance. When designing the NMT ar-
chitecture, hyperparameters tuning is essential. The architectural designer chooses
hyperparameters. Hyperparameters include, among others, the learning rate, mini-
batch size, number of layers, number of hidden nodes per layer, and activation
functions.

The main algorithms for hyperparameter tuning are grid search and random search
(Bergstra and Bengio, 2012). Grid search divides the domain of the hyperparame-
ters into a discrete grid of search space. Then, it tries every combination of values
in the search space, evaluating the model with a machine translation evaluation
metric. The optimal set of values for the hyperparameters is the combination of
values that maximizes the evaluation metric. Its primary drawback is that the
process is very slow. Checking every combination of values of the search space is
time-consuming and expensive, given many hyperparameter values and long NMT
model training time. Random search, unlike grid search, evaluates only a randomly
selected subset of the search space. Since it uses a smaller subset, the process is
faster, but the optimization is less accurate than grid search.

4.3. Dataset Creation
A good number of parallel corpora are available for dominant languages such as
English, German, and French. Some international and governmental institutions
provide such corpora for public use. For example, the Canadian Hansard corpus
(Roukos S. et al., 1995) consists of parallel texts in English and French, drawn
from official records of the proceedings of the Canadian Parliament. Similarly, the
Europarl corpus (Koehn and Monz, 2005), extracted from the proceedings of the
European Parliament, contains parallel corpora for twenty-one European languages.
The United Nations (UN) Parallel Corpus (Ziemski et al., 2016) is available in six
official UN languages. The current version of the parallel corpus consists of manually
translated UN documents between 1990 and 2014. Other parallel corpora have been
made from movie subtitles, like the OpenSubtitles corpus (Lison and Tiedemann,
2016), or from general web text, like the ParaCrawl corpus (Bañón et al., 2020).
Additionally, Linguistic Data Consortium hosts the “Low-Resource Languages for

37



Chapter 4. Related Work

Emergent Incidents” (LORELEI) corpora (Tracey and Strassel, 2020). OPUS3 (for
Open Parallel Corpus) (Tiedemann, 2012) and Hugging Face4 host most of the
abovementioned parallel data.

Nevertheless, there is a scarcity of available parallel corpora for low-resource lan-
guages. Therefore, there are efforts to collect parallel data from the web. However,
errors are inevitable when using any web-crawled data, especially in low-resource
scenarios. Numerous crawled datasets have incorrectly identified languages, non-
parallel sentences, substandard text, and offensive language. A large-scale quality
analysis of such datasets revealed that these problems could be particularly severe
in low-resource languages (Kreutzer et al., 2022). For instance, although some of
the sources mentioned above host parallel corpora for Amharic, they have only a
few hundred parallel sentences (e.g., Tatoeba, GlobalVoices, and TED2020); some
use archaic language (e.g., Tanzil and Bible Corpus); and others contain misaligned
parallel sentences (e.g., MultiCCAligned). This calls for creating new parallel cor-
pora for low-resource languages, preferably with targeted parallel data gathering
from well edited sources.

4.4. Conclusion
Machine translation is one of the oldest natural language processing problems. The
earliest rule-based approaches are tedious and expensive to implement. They were
replaced by data-driven approaches when parallel corpora were increasingly avail-
able. The current state-of-the-art data-driven approach, Neural Machine Transla-
tion (NMT), requires sufficiently large training data, which increases the size of
the underlying vocabulary, to build competitive models. Although translation is
an open-vocabulary problem, NMT models operate with a fixed vocabulary due
to limitations of computational resources like system memory. There are differ-
ent procedures to tackle this limitation. The feasible solution to make the NMT
model capable of open-vocabulary translation is segmenting words as sequences
of subword units. However, most conventional word segmentation methods follow
statistics-based approaches that overlook the morphology of languages while esti-
mating the subword units. As a result, they may lead to the loss of semantic or
syntactic information preserved in the word structure. Another drawback of these
approaches is determining the optimum vocabulary size; one must train several
models with different possible vocabulary sizes or estimate the size to obtain the
best model.

On the other hand, there are successful attempts to adapt NMT for low-resource
settings by tuning NMT hyperparameters to optimize the systems’ performance.
Although grid search promises to generate an optimum model, the process is time-
consuming and expensive. An alternative method, random search, yields a cost-
effective but less accurate model than a grid search. Still, another solution for
NMT’s data inefficiency is a new dataset creation, especially parallel corpora, for
low-resource languages.

3Available at https://opus.nlpl.eu
4Available at https://huggingface.co
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PART II
DATASET CREATION & SPELLING CORRECTION

Dataset creation is the main topic of Part II. We have worked with low-resource
languages; thus, we need to develop various corpora and a spelling corrector to clean
up the corpora. The building of a monolingual corpus, which was largely utilized
to create a spelling corrector, is therefore described in Chapter 5. To assess the
spelling corrector, a corpus of spelling errors must be created. Thus, the theme
of Chapter 6 is the development of spelling error corpora. The development of
the spelling corrector is covered in Chapter 7. Finally, Chapter 8 focuses on the
collection and preprocessing of a parallel corpus, which is essential for building
NMT models.
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CHAPTER 5

Monolingual Corpora

Data-driven approaches to machine translation, such as Statistical Machine Trans-
lation (SMT) and Neural Machine Translation (NMT), came when parallel corpora
or bitexts, which are collections of texts translated into other languages, were in-
creasingly available. These approaches take advantage of the translations made by
human translators. They recycle the human translations available in the corpora
to build translation models relying on machine learning. Furthermore, to train the
best models, they need a considerable amount and good quality of such parallel
data (Koehn and Knowles, 2017; Lample et al., 2018b). So one of the main hurdles
in machine translation of low-resource languages is the need for clean and sizable
parallel corpora.

SMT needs monolingual corpora in order to produce a language model. Although
they are not mandatory in NMT, they can aid in creating artificial parallel sentences
by back-translation. Additionally, monolingual corpora are required when using a
data-driven technique for spelling correction.

Amharic is a typical low-resource language that we dealt with in this dissertation.
Amharic is a Semitic language that serves as the official language of Ethiopia. Al-
though it plays several roles in the government, it is considered a low-resource
language because it lacks essential tools and resources for natural language process-
ing (NLP) (Tracey and Strassel, 2020). Amharic uses a syllabic writing system,
Ethiopic (Bloor, 1995; The Unicode Consortium, 2021). Each Amharic letter sys-
tematically conflates a consonant and vowel (e.g., በ /bə/ and ቡ /bu/) (see Table A.1
in Appendix A). Sometimes consonants and vowels can be written as bare conso-
nants (e.g., ብ /b/) or bare vowels (e.g., አ /a/ in አገር /agər/). Some phonemes with
one or more homophonic script representations and peculiar labiovelars sometimes
compromise the consistency of the writing system (see Tables A.2 and A.3 in Ap-
pendix A). Amharic orthography has no case difference; it is written from left to
right. In present-day Amharic writings, words are delimited by plain space.

The existing corpora (Section 5.1) for Amharic are either small or have poor qual-
ity; they are mainly collected from the web. Considering the web as a source for
corpora is motivated to get more extensive data with open access and low cost.
Nevertheless, such sources are often not edited and may contain several spelling
mistakes. Moreover, as Amharic is not standardized, one may face many spelling
variations in these sources. This calls for manual or automatic spelling correction.

Therefore, we compiled a new monolingual Contemporary Amharic Corpus, CACO.
We collected the corpus from edited documents such as newspapers, magazines,
and textbooks (Section 5.2). We also preprocessed the corpus (Section 5.3). We
used the corpus for developing an Amharic spelling corrector (Chapter 7), SMT
language model (Chapter 9), and morpheme segmentation database (Chapter 10).
We also used it to generate synthetic data via back-translation to increase the size
of the Amharic-English parallel corpus (Chapter 9). We have already released the
corpus for research purposes; the corpus is available at http://dx.doi.org/10.24352/
ub.ovgu-2018-144. Our original publication (Gezmu et al., 2018c) also details the
preparation of the corpus.
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5.1. Existing Monolingual Corpora
Although Amharic is a less-resourced language, there are some monolingual corpus
collections by different initiatives. The most prominent ones are the Walta Infor-
mation Center Corpus (WIC) (Demeke and Getachew, 2006), HaBit (for harvesting
big text data for under-resourced languages) (Rychlý and Suchomel, 2016), and An
Crúbadán (Scannell, 2007).

The WIC corpus is a small-sized corpus of approximately 200,000 tokens collected
from a thousand Amharic news documents. Since this corpus can be accessible to
most NLP researchers on Amharic, it is used to train a stemmer (Argaw and Asker,
2005), named-entity recognition (Chekol Jibril and Cüneyd Tantğ, 2022), and a
chunker (Ibrahim and Assabie, 2014).

The HaBit corpus is another web corpus that was developed by crawling using
SpiderLing. Most of the crawling was done in August 2013, October 2015, and
January 2016. It consists of approximately 20 million tokens collected from 34,000
documents5. Finally, the An Crúbadán corpus was developed under the corpus
building project for under-resourced languages. The initiative aimed at creating
text corpora for many under-resourced languages by crawling the web. The project
collected written corpora for more than two-thousand languages. Amharic was one
of the languages to be included in this project. The Amharic corpus consists of
seventeen million words crawled from a thousand documents.

In the three corpora mentioned above, WIC is too small for most NLP tasks; HaBit
and An Crúbadán are collected from the web, including discussion forums and
weblogs. Although it is possible to collect massive data from the web, such sources
are inaccurate. Furthermore, as Amharic is not standardized, in these sources, one
may face lots of variation and expect to find misspellings and grammar mistakes.

5.2. Data Sources

Type of Documents Titles

Newspapers አዲስ አድማስ, አዲስ ዘመን, ሪፖርተር, ነጋሪት ጋዜጣ

News articles Ethiopian News Agency, Global Voices
Magazines ንቁ, መጠበቂያ ግንብ

Fictions የልምዣት, ግርዶሽ, ልጅነት ተመልሶ አይመጣም, የአመጽ ኑዛዜ,

የቅናት ዛር, አግዐዚ

Historic novel አሉላ አባነጋ, ማዕበል የአብዮቱ ማግሥት, የማይጨው ቁስለኛ,

የታንጉት ሚስጢር

Short stories የዓለም መስታወት, የቡና ቤት ስዕሎችና ሌሎችም ወጎች

History books አጭር የኢትዮጲያ ታሪክ, ዳግማዊ አጤ ምኒልክ, ዳግማዊ ምኒልክ,

የእቴጌ ጣይቱ ብጡል (፲፰፻፴፪ - ፲፱፻፲) አጭር የሕይወት ታሪክ,

ከወልወል እስከ ማይጨው

Politics book ማርክሲዝምና የቋንቋ ችግሮች, መሬት የማን ነው

Children’s book ፒኖኪዮ, ውድድር

Table 5.1: Data sources for Contemporary Amharic Corpus (CACO).

We collected the CACO corpus from the archives of various edited sources; all of the
5Source: http://habit-project.eu/wiki/AmharicCorpus
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documents are written in modern or contemporary Amharic. Table 5.1 summarizes
documents used in the corpus. We collected approximately 25,000 documents from
these sources. All news articles, newspapers, and magazines were collected from
November 2011 to January 2018 archives.

5.3. Preprocessing
The preprocessing of the documents mainly involves normalization. Four Amharic
phonemes have one or more homophonic character representations (see Tables A.2
in Appendix A). Homophonic characters are commonly used interchangeably. To
normalize homophonic characters, we adhered to the Ethiopian Languages Academy
spelling reform (Aklilu, 2004). Following their reform, we replaced homophonic
characters and their corresponding variants with common forms. For example, we
replaced ሐ and ኀ with ሀ, ሠ with ሰ, ዐ with አ, and ፀ with ጸ.

Different styles of punctuation marks have been used in Amharic text. For instance,
for a double quotation mark, two successive single quotation marks or similar sym-
bols (e.g., ‹‹, ››, « or ») are used; for end-of-sentence punctuation (። “Amharic
full stop”), two successive Amharic word separator (፡) that give the same appear-
ance are used. Thus, the normalization of punctuation is a non-trivial matter. We
normalized all types of double quotes, all single quotes, question marks (e.g., ? and
፧), word separators (e.g., : and ፡), full stops (e.g., :: and ።), exclamation marks (e.g.,
! and !), hyphens (e.g., :-, and ፡—), and commas (e.g.,፥ and ÷).

We collected approximately 1.6 million sentences from the documents. Nonetheless,
in the current version, we removed duplicate sentences. The corpus size is roughly
1.4 million sentences and twenty-two million tokens. Table 5.2 gives the corpus
statistics.

Elements Numbers

Documents 25199
Sentences 1399095
Tokens 21907292

Table 5.2: Statistical information for Contemporary Amharic Corpus (CACO).

5.4. Conclusion
We have developed a new monolingual corpus, a Contemporary Amharic Corpus
(CACO). We compiled the corpus from different sources, including newspapers,
historical books, political books, short stories, and novels. These sources meet
publication standards and are well-edited. The corpus consists of approximately 22
million tokens from 25,000 documents.
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Spelling Error Corpora

Spelling error corpora help to evaluate spelling error detectors and correctors. They
consist of pairs of spelling errors and their corrections. Grudin (1983) made an early
attempt related to a spelling error corpus by compiling letter confusion matrices
in which typographical errors are categorized according to the letter intended and
the letter struck by typists while transcribing a text. Although the letter confusion
matrices might be used in analyzing and modeling sources of misspellings, their lack
of contextual information limits their scope of usage only to non-word errors. Mitton
(1985) also made an effort to compile a manually tagged spelling error corpus for
English6 from the book “English for the Rejected” (Holbrook, 1964). The exciting
feature of the corpus is that it retains contextual information about spelling errors.

Corpora of spelling errors can be automatically gathered from word-typing games or
keystroke records. For instance, Baba and Suzuki (2012) used Amazon Mechanical
Turk to extract pairs of misspellings and corrections from input logs. Likewise, both
Rodrigues and Rytting (2012) and Tachibana and Komachi (2016) sought to compile
such corpora from word-typing games. These corpora, however, were solely curated
for English. As a result, we manually created an Amharic spelling mistake corpus
following Mitton (1985). For research purposes, the corpus is accessible at https://
github.com/andmek/ErrorCorpus. Additionally, the technical report (Gezmu et al.,
2017, 2021a) describes how the corpus was compiled.

Section 6.1 defines the two categories of spelling mistakes: real-word and non-word
errors. Section 6.2 outlines the guidelines used when annotating the corpus of
spelling mistakes. The spelling error corpus’s data sources are provided in Sec-
tion 6.3, and Section 6.4 highlights the results of the annotations in terms of the
different categories of errors and their edit distances from their corrections.

6.1. Types of Spelling Errors
The spelling errors in Amharic can be grouped as non-word and real-word errors.
When typographical or cognitive errors accidentally produce valid Amharic words,
we get real-word errors; otherwise, we get non-word errors. Typographical errors
include insertion, deletion, transposition, and substitution of letters. Missed-out
spaces are also sources of typos.

The cognitive errors in Amharic mainly result from the inconsistency of its writing
system, Ethiopic. Although Ethiopic shares some features of abugida, it is con-
sidered a syllabary (Bloor, 1995; The Unicode Consortium, 2021). Amharic has
twenty-seven consonant phonemes and seven vowels. Four phonemes have one or
more homophonic character representations (see Table A.2 in Appendix A). Homo-
phonic characters are the source of many cognates (e.g., ጸሀይ, ፀሀይ, ጸሃይ, ጸሐይ, ጸሓይ,
ፀሃይ, ፀሐይ, and ፀሓይ; pronounced as /ṣəhay/ meaning “sun”). The general practice
for strict Amharic writing style is that spellings of Amharic words inherited from
Ge’ez, a parent language of Amharic, should follow Ge’ez features as much as pos-
sible. Loan words that use homophonic characters should be written only with ሀ

/ha/, ሰ /sə/, ጸ /ṣə/, and አ /a/, not with their variants (Cowley, 1967). As such,

6Available at https://www.dcs.bbk.ac.uk/~roger/holbrook-tagged.dat

43

https://github.com/andmek/ErrorCorpus
https://github.com/andmek/ErrorCorpus
https://www.dcs.bbk.ac.uk/~roger/holbrook-tagged.dat


Chapter 6. Spelling Error Corpora

Edit Distance Count Percentage

1 290 78%
2 59 16%
3 18 5%
4 5 1%

Total 372 100%

Table 6.1: The edit distance of the misspellings against their corrections.

real-word errors might occur from wrongly typed homophones. For example, ስእል
/sɨl/ is a real-word error for ሥዕል /sɨl/ meaning “paint” as its origin is the Ge’ez word
ሥዒል. However, in modern Amharic writings such as newspapers and magazines,
homophonic characters are commonly used interchangeably.

6.2. Guidelines
We set guidelines to annotate misspellings collected from different sources with
contextual information. The guidelines are as follows:

• if a misspelling is not a valid Amharic word, tag it as a non-word error;

• if a valid Amharic word is determined to be a misspelling based on its context,
tag it as a real-word error;

• tag words of informal Amharic dialects as non-word errors;

• consider the various cognates of a word as correct words;

• when deriving corrections for misspellings, adhere to the intended spellings of
the original authors rather than following the strict Amharic writing style.

6.3. Data Sources
The data sources are textual documents from random samples of Amharic news ar-
ticles of Deutsche Welle and Voice of America, issued from June to November 2016;
a retyped document of Aklilu (2010); and an errata list of the famous Amharic novel
ፍቅር እስከ መቃብር (Engl. “Love unto Crypt”) (Alemahehu, 2004). We annotated 372
misspellings from 367 sentences with guidelines presented in the previous section.

6.4. Results
Among the 372 misspellings, 287 (77%) were non-word and 85 (23%) were real-word
spelling errors. Two of the real-word and thirty-four of the non-word misspellings
occur at least twice in the documents.

Since Amharic uses a syllabic writing system, in order to analyze the edit distance
(Damerau, 1964) of the misspellings from their corrections, there is a need to map
the Amharic characters into Latin-based alphabets. Therefore, we adopted the
System for Ethiopic Representation in ASCII (SERA) (Firdyiwek and Yaqob, 1997);
we modified the original SERA to meet our needs. The modification is in mapping
vowels and labiovelars. For example, the original SERA maps the labiovelar ቧ and
the vowel ኡ as bWa and ‘u, but the modified version as bua and u, respectively.
The popular Amharic keyboard input methods, Google and Keyman input methods,
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also use the same technique for rendering Amharic letters. Finally, we computed
the edit distances of the misspellings against their corrections; Table 6.1 shows the
results. About 78% and 16% of the misspellings are one and two edit distances from
their corrections, respectively. That means about 94% of the misspellings have two
or fewer edit distances from their corrections.

6.5. Conclusion
We developed a manually annotated corpus for Amharic misspellings that can be
used to evaluate spelling error detection and correction. The availability of contex-
tual information in the corpus makes it helpful in dealing with both non-word and
real-word spelling errors. The result shows that 77% and 23% of the spelling errors
are non-word and real-word. Furthermore, approximately 94% of the misspellings
are two or fewer edit distances away from their corrections.
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CHAPTER 7

Spelling Correction

Spelling correction is among the oldest computational linguistics problems (Blair,
1960). It is considered from two perspectives: non-word and real-word correction.
When typographical or cognitive errors accidentally produce valid words, we get
real-word errors; otherwise, we get non-word errors.

The earliest spelling corrector systems were developed based on phonetic and string
similarities, such as Metaphone and Damerau-Levenshtein edit distance algorithms
(Damerau, 1964). These algorithms rank candidate corrections from manually com-
piled lexicons. GNU Aspell and Hunspell are good examples that follow this ap-
proach. Mekonnen (2012) followed the same approach for Amharic. These ap-
proaches use lexicons and some linguistics rules for spelling error detection. Gen-
erally, these rule-based systems are challenging to develop and maintain (Norvig,
2009). Nevertheless, there was also an attempt to detect errors without using
lexicons (Morris and Cherry, 1975). This approach depends on n-gram letter se-
quences from a target text. It generates an “index of peculiarity”; it determines
which words are spelling errors in the target text based on the index. For exam-
ple, the typo ‘exmination’ contains ‘exm’ and ‘xmi,’ trigrams that are peculiar and
will be included in the list. Although this approach has the advantage of being
language-independent and works for less-resourced languages, many misspellings
do not comply with the peculiar n-grams (Mitton, 2010).

The current spelling corrector systems rely on using some monolingual corpora to
infer knowledge about spellings. Most of these systems are developed based on the
noisy channel model (Kernighan et al., 1990; Kukich, 1992; Brill and Moore, 2000;
Whitelaw et al., 2009; Gao et al., 2010). Also, additional features of spelling, such
as phonetic similarities and modified edit distance (e.g., Winkler (2006)) are used to
generate plausible candidates for spelling correction (Toutanova and Moore, 2002).

Therefore, we developed and evaluated a spelling corrector system that considers
the context of misspellings. Furthermore, since we have planned to use the spelling
corrector for cleaning up an Amharic-English parallel corpus, we made it easily
portable to either language. Our original publication (Gezmu et al., 2018b) also
explains the development of the spelling corrector.

Section 7.1 details the data-driven approach we have followed to develop the spelling
corrector. Section 7.2 explains the evaluation of the system. Section 7.3 describes
the evaluation results.

7.1. Approach
We applied a data-driven (corpus-driven) approach with the noisy channel for
spelling correction. According to the noisy channel model, for a misspelled word
x, the most likely candidate correction wn out of all possible candidate correc-
tions C with w1w2 . . . wn−1 preceding words context is suggested by the maxi-
mum probability of P (wn|w1w2 . . . wn−1x), which is computed by Equation 7.1.
P (w1w2 . . . wn−1wn) is the prior probability and P (x|wn) the likelihood where both
are represented in the language and error models; see Sections 7.1.1 and 7.1.2 for
details. x is conditionally dependent only on wn and assumes the preceding words
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are correct.

argmaxwn∈CP (w1w2 . . . wn−1wn)P (x|wn) (7.1)

Based on the proposed approach, the spelling error detection and correction pro-
cesses are as follows. First, an input word not in the term list, compiled from the
most frequent words in a text corpus, is flagged as a spelling error. Then, candidate
corrections that are closer (nearer) to the misspelling are generated from the term
list. For language independence, we measure nearness using Damerau-Levenshtein
edit distance (Damerau, 1964). Since most of the misspellings fall within two edit
distances from their corrections (Damerau, 1964; Gezmu et al., 2021a), we selected
all words in the term list that are one up to two edit distances from the misspelled
word. Then the candidates are scored and ranked according to their prior and like-
lihood probabilities. If there is no candidate correction, the misspelled term will be
split. This step is needed to correct misspellings resulting from missed-out spaces
between words, like brownfoxcafe and ዮሃንስነገይመጣል. The correction is to segment
the expressions as brown fox cafe and ዮሃንስ ነገ ይመጣል.

7.1.1. Language Model

We built a trigram Amharic and English language models smoothed with the mod-
ified Kneser-Ney method (Kneser and Ney, 1995), following Chen and Goodman
(1999). To train the English language model, we used the British National Corpus
(BNC) (BNC Consortium, 2007). For Amharic language modeling, being a less-
resourced language, the only available sizable text corpora are HaBiT (Rychlý and
Suchomel, 2016) and An Crúbadán (Scannell, 2007). Both were created from au-
tomatically crawled web pages. Except for their size differences, both corpora are
essentially the same. We found several spelling errors in these corpora through
a manual check. Therefore, we build our own Contemporary Amharic Corpus
(CACO) (Gezmu et al., 2018c) from well-edited sources; see Chapter 5 for details.
We also used HaBiT for comparison.

We trained the language models using the KenLM language modeling toolkit (Heafield,
2011). The prior probability, P (w1w2 . . . wn−1wn), for the trigram language model
is estimated by Equation 7.2, based on the chain rule of probability and Markov’s
assumption.

n∏
i=1

P (wi|wi−2wi−1) (7.2)

7.1.2. Error Model

There is no sizable Amharic spelling error corpus to train the error model. However,
as Amharic scripts are typed with an English QWERTY keyboard, the key slips
that cause spelling errors in English and Amharic are related. So, a substring-based
English spelling error model that represents the likelihood probability, P (x|wn), is
helpful for languages that can be transliterated into Latin-based alphabets. Norvig
(2009) created an error model based on forty-thousand spelling errors. Since it suits
our needs, we adopted the error model.
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Besides, most Amharic characters are syllabary (Bloor, 1995; The Unicode Con-
sortium, 2021). For instance, በ /bə/, ቡ /bu/, and ቢ /bi/ are all syllabic scripts
with consonant-vowel pattern. They conflate consonants and vowels even if they
are typed with a QWERTY keyboard input methods with direct mappings between
keystrokes and characters. Hence, there is a need to separate the two components to
model spelling errors properly. Mapping the letters into Latin-based alphabets with
the System for Ethiopic Representation in ASCII (SERA) (Firdyiwek and Yaqob,
1997) does the separation. We modified the original SERA to meet our needs as
we did in Chapter 6. The modification is in mapping vowels and labiovelars. For
example, the labiovelar ቧ and the vowel ኡ using the original SERA are mapped as
bWa and ‘u but with the modified version as bua and u, respectively. The popular
Amharic keyboard input methods, Google and Keyman input methods, also use
the same technique for rendering Amharic letters.

7.1.3. Term Splitting

For spelling errors resulting from missed-out spaces, term splitting is necessary.
The algorithm segments the error term to all possible valid words using a word
list to generate candidate corrections for a spelling error. Then using a language
model, a prior probability for each candidate was assigned. The candidate that has
the highest probability is the plausible spelling correction. For example, Table 7.1
demonstrates how to split the abovementioned example (i.e., ዮሃንስነገይመጣል mapped
to Latin with the modified SERA as yohansnegeymeTal) using the CACO language
model and the corresponding term list. The probability of yohans nege ymeTal is
the highest of all. Thus, the expression is split and mapped back into Amharic
script as ዮሃንስ ነገ ይመጣል.

Candidates Probability

yo hans nege ymeTal 6.92868 · 10−20

yoha ns nege ymeTal 2.44245 · 10−21

yohan s nege ymeTal 6.75098 · 10−20

yohans nege ymeTal 2.25817 · 10−12

Table 7.1: Example of a term splitting.

7.2. Evaluation
To evaluate the system’s performance and demonstrate its easy portability to other
languages, we evaluated it with benchmark Amharic and English test data. We
compared the results with the baseline systems: GNU Aspell and Hunspell. We
used precision, recall, and F1 metrics to evaluate spelling error detection capability.
To evaluate the performance of spelling error correction, we assessed the relative
positions of the correct spellings in the plausible suggestions list. To interface with
Aspell and Hunspell, we used PyEnchant7 with their latest dictionaries available
for both languages.

7.2.1. Test Data

We used benchmark spelling error corpora for evaluation. For Amharic, we compiled
a new spelling error corpus (Gezmu et al., 2021a) (Chapter 6); for English, we

7PyEnchant is available at https://pypi.python.org/pypi/pyenchant
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used the one that was compiled by Mitton (1985)8 from the book “English for the
Rejected” (Holbrook, 1964). In the English test data, we used 1043 unique non-
word errors, including one misspelling, “o clock,” which was not tagged by mistake
in the original test corpus. For the Amharic test data, 367 sentences were tagged
with 287 non-word spelling errors, but 35 of the non-word misspellings appear
twice in the documents with different contexts. Thus, we used 252 unique non-
word misspellings to compare the system with the baseline systems. Removal of
the duplicates is needed because the baseline systems do not use the context of
the misspellings; for the baseline systems, two similar misspellings are just one test
case.

7.2.2. Evaluation Metrics

The evaluation metrics are based on spelling error detection capability and the
quality of plausible suggestions offered for each spelling error.

We evaluated spelling error detection capabilities by precision, recall, and F1 mea-
sure, in the manner of the binary classification of terms as the misspelling and
correct term classes. These evaluation metrics are calculated based on Equa-
tions 7.3, 7.4, and 7.5; where True Negatives (TN) are correctly flagged misspellings,
False Positives (FP ) are unidentified misspellings, True Positives (TP ) are correctly
identified well-spelled words, and False Negatives (FN) are wrongly flagged well-
spelled words. The desirable property for any spelling error detector would be to
score 100% precision, as it should flag all misspellings and only misspellings; and
to score 100% recall, as it should recognize all valid words as correct and all invalid
words as misspellings. Hence, recall is primarily an indication of language coverage.
F1 measure, thus, gives an overall view of the capability of a spelling error detector.

Precision =
TP

TP + FP
(7.3)

Recall =
TP

TP + FN
(7.4)

F1 =
2(Precision ·Recall)

Precision+Recall
(7.5)

Following Mitton (2009), we measured the quality of suggestions offered by a
spelling corrector by the relative positions of the correct spellings in the sugges-
tions list. In the best-case scenario, the right correction always appears at the top
of the list.

7.3. Results and Discussions

We presented the results with perspectives on spelling error detection and correction
in Amharic and English.

8The English spelling error corpus is available at https://www.dcs.bbk.ac.uk/~roger/
holbrook-tagged.dat
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Chapter 7. Spelling Correction

7.3.1. Amharic Results
For Amharic spelling error detection, the precision, recall, and F1 scores are com-
puted based on the different word lists compiled from the most frequent words in
CACO and HaBiT corpora. We obtained the optimum results when a term list
comprised seven or more frequent words from the HaBiT corpus and eight or more
frequent words from the CACO corpus. Table 7.2 shows the precision, recall, and
F1 scores of the systems. The evaluation results indicate that the proposed system
that uses the CACO corpus attained the highest F1 score. It also achieved the
highest precision and recall scores.

Metric CACO HaBiT Aspell Hunspell

Precision 89% 75% 79% 79%
Recall 81% 80% 77% 77%

F1 85% 77% 78% 78%

Table 7.2: Amharic spelling error detection results.

The measures of qualities of suggestions offered by the baseline and proposed sys-
tems for Amharic spelling errors are shown in Table 7.3. According to the results,
77% of correct spellings appeared in the top five suggestions list for the proposed
system using CACO, compared to 34% for Hunspell and 62% for Aspell. On the
other hand, when we used the HaBiT corpus, 75% of correct spellings appeared in
the top five suggestions list, which is lower than that of the CACO corpus by 2%.
Furthermore, when we considered the correct spellings in the top first suggestions
list, the proposed system that uses the CACO corpus scored 9% higher than that
of the HaBiT corpus. This difference indicates that the system depends on the
underlying corpus.

Rank CACO HaBiT Aspell Hunspell

Top 1 52% 43% 34% 17%
Top 2 68% 62% 45% 27%
Top 3 74% 69% 53% 29%
Top 4 76% 74% 60% 34%
Top 5 77% 75% 62% 34%

Table 7.3: Percentage of the topmost correct suggestions provided for Amharic
spelling error correction.

7.3.2. English Results
We obtained the optimum F1 measure for English spelling error detection when we
used a term list compiled from fifty-seven or more frequent words from the BNC
corpus. Its corresponding precision, recall, and F1 scores are given in Table 7.4,
along with those of the baseline systems. The F1 score for the proposed system is
96% and 97% for both baseline systems. The proposed system is lower than the
baseline systems by 1%.

The measures of qualities of suggestions offered by the proposed and baseline sys-
tems for English spelling errors are shown in Table 7.5. With the proposed system,
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Metric BNC Aspell Hunspell

Precision 95% 99% 98%
Recall 96% 95% 95%

F1 96% 97% 97%

Table 7.4: English spelling error detection results.

74% of correct spellings appeared in the top five suggestions list, compared to 56%
for Hunspell and 61% for Aspell.

Rank BNC Aspell Hunspell

Top 1 57% 27% 27%
Top 2 66% 36% 39%
Top 3 70% 50% 47%
Top 4 72% 56% 53%
Top 5 74% 61% 56%

Table 7.5: Percentage of the topmost correct suggestions offered for English spelling
error correction.

7.4. Conclusion
We have developed a system of a language-independent spelling corrector. It can
easily be ported to other written languages as long as they are typed using a QW-
ERTY keyboard with direct mappings between keystrokes and characters. The
effort it requires is tokenization and mapping of non-Latin scripts to Latin alpha-
bets. We compared the proposed system with the baseline systems. The evaluation
results for Amharic and English benchmark test data show that the proposed system
performs better than the baseline systems.
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CHAPTER 8

Parallel Corpora

Parallel corpora are essential ingredients when we follow data-driven machine trans-
lation approaches such as Statistical Machine Translation (SMT) and Neural Ma-
chine Translation (NMT). These approaches take advantage of the authentic trans-
lations made by human translators in parallel corpora. They rely on machine learn-
ing to build translation models by taking parallel corpora as training data.

The existing Amharic-English parallel corpora (Section 8.1) are either small or have
poor quality; they were mainly collected from the web. Although considering the
web as a corpus, which is motivated to get more extensive data with open access
and low cost may sound good, such sources are inaccurate. Moreover, as Amharic
is not standardized, one may face many spelling variations in these sources and
expect typographical errors. This calls for manual or automatic editing.

Therefore, we compiled a parallel corpus for Amharic-English machine translation
by extending the Ge’ez Frontier Foundation’s news corpus made available for re-
search purposes. We collected additional bilingual documents from various edited
sources such as newspapers, magazines, and textbooks (Section 8.2). We also nor-
malized the text and made some automatic spelling error corrections (Section 8.3)
prior to sentence segmentation (Section 8.4). Like other Semitic languages, Amharic
words are highly inflectional and have a root-pattern morphology (Fabri et al.,
2014). Thus, Amharic lexicons cannot contain all word forms; the available bilin-
gual lexicons contain only lemmas of common words. As a result, we used a sentence
aligner that does not require a bilingual lexicon (Section 8.5).

The corpus is available at http://dx.doi.org/10.24352/ub.ovgu-2018-145. We have
already published the development of the corpus in Gezmu et al. (2022). The
technical report is also available in Gezmu et al. (2018a). Besides, we used the
corpus for NMT of Amharic-English translation (Gezmu et al., 2021b).

8.1. Existing Parallel Corpora
There were attempts to compile parallel corpora for Amharic-English machine
translation. The most notable ones are the “Amharic-English bilingual corpus,”
“English-Ethiopian languages parallel corpora” (Abate et al., 2018), the “Low Re-
source Languages for Emergent Incidents: Amharic representative language pack”
(LORELEI-Amharic) (Tracey and Strassel, 2020), and the OPUS collection (Tiede-
mann, 2012).

The European Language Resource Association (ELRA) hosts the Amharic-English
bilingual corpus, containing a small parallel text from legal and news domains.
In addition, Abate et al. (2018) compiled small-sized English-Ethiopian languages
parallel corpora. Linguistic Data Consortium developed the LORELEI-Amharic
corpus. Although LORELEI-Amharic is larger than the Amharic-English bilingual
corpus and English-Ethiopian languages parallel corpora, more is needed to train
machine translation models with competitive performance (Koehn and Knowles,
2017; Lample et al., 2018b). Besides, the parallel text was collected from discussion
forums, newswires, and weblogs. These sources are susceptible to spelling mistakes.
The problem worsens as there is no readily available spell checker to assist Amharic
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writers.

In the OPUS collection, there are parallel corpora for Amharic and English. For
this language pair, however, some of the corpora have a few hundred parallel sen-
tences (e.g., Tatoeba, GlobalVoices, and TED2020); some use archaic language
(e.g., Tanzil and bible-uedin); others contain misaligned parallel sentences (e.g.,
MultiCCAligned and JW300).

There were also few attempts at Amharic-English machine translation using small-
sized corpora (Teshome and Besacier, 2012; Teshome et al., 2015; Ashengo et al.,
2021). Still, their corpora are not readily available to the research community.

8.2. Data Sources
We created a new parallel corpus by extending the existing news corpus made
available by Ge’ez Frontier Foundation for research purposes. We collected, pre-
processed, segmented, and aligned sentences of additional bilingual documents to
compile the corpus from various sources.

We identified potential data sources that could serve as a basis for building a par-
allel corpus. We have considered newswires, magazines, and the Bible to get ex-
tensive data with open access. Major newswires such as Deutsche Welle, BBC, and
Ethiopian News Agency provide news articles in Amharic and English. Besides,
the Ethiopian Herald and the Ethiopian Reporter publish bilingual news articles
in Amharic and English. In these newswires, the translations are intended for
the local public. Because of this, only a tiny portion of English news articles are
translated into Amharic, or vice versa. For instance, in the Ethiopian News Agency,
approximately one news story out of ten has a rough translation (Argaw and Asker,
2005).

The Watchtower (መጠበቂያ ግንብ in Amharic) and Awake magazines (ንቁ in Amharic)
have been published since 2006. They are available for the public; they have ad-
equate sentence-by-sentence translations. Watchtower mainly discusses religious
issues. Unlike Watchtower, Awake contains articles on general interest topics such
as nature, geography, and family life. So it corresponds more to news articles.

The Bible is the most translated and readily available book. It is translated with
great care and has high vocabulary coverage (Chew et al., 2006). Additionally, its
content reflects the everyday living of human beings, like love, war, and politics.
However, older translations of the Bible used archaic languages. In contrast, the
recent translations of the Bible use contemporary language. For example, the Stan-
dard Version and the New World Translation use the modern-day language in both
Amharic and English.

Therefore, we selected text from Awake and Watchtower magazines, the Bible, and
newswires. Then, we preprocessed the text as a preparation step for the following
sentence segmentation and alignment activities.

8.3. Preprocessing
The preprocessing of the text involves spelling correction and normalization. In
addition, we removed boilerplates such as headers, footers (including footnotes),
and verse numbers (in the Bible).
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In the text, we observed different types of misspellings: misspellings result from
missed-out spaces (e.g., አንዳንድየህክምናተቋማትናባለሙያዎቻቸው) replacing letters with visu-
ally similar characters (e.g., ቁጥር for ቍጥር), and typographical errors. Because of
its limitations, we could not use the rule-based Amharic spelling corrector (Mekon-
nen, 2012). Instead, we developed another spelling corrector (Gezmu et al., 2018c)
(Chapter 7) that has a better performance measured with the benchmark test sets.
We employed the spelling corrector primarily to correct the first two types of spelling
errors. Since an intensive manual intervention is needed to select the correct spelling
from the plausible suggestions for typographical errors, we have not corrected the
typographical errors in the current version of the corpus.

Different styles of punctuation marks have been used in Amharic documents. For
instance, for a double quotation mark, two successive single quotation marks or
similar symbols (e.g., ‹‹, ››, « or ») are used; for end-of-sentence punctuation (።
“Amharic full stop”), two successive Amharic word separator (፡) that give the same
appearance are used. Thus, we normalized all Amharic and English punctuation.

Four Amharic phonemes have one or more homophonic script representations, and
there are other peculiar labiovelars (e.g., ቍ /qʷ/ and ጒ /gʷi/). In modern-day
Amharic writings, homophonic characters are commonly used interchangeably and
there is no uniform use of the peculiar labiovelars. For consistent spelling, the
Ethiopian Languages Academy proposed a spelling reform (Aklilu, 2004). Follow-
ing the reform, we converted homophonic characters and peculiar labiovelars into
standard forms.

8.4. Sentence Segmentation
Segmentation of sentences involves the disambiguation of end-of-sentence punctu-
ation. To do so, we identified end-of-sentence punctuation marks. We considered
end-of-sentence punctuation (። for Amharic and period for English) and question
marks as a sentence boundary. The exceptions are abbreviations, initials of names,
clitics, Uniform Resource Locators (URLs), e-mail addresses, and hashtags. Thus,
we created a list of known abbreviations and clitics to retain them. We also used
regular expressions for URLs, e-mail addresses, and hashtags. Finally, after sentence
segmentation, we deleted duplicate sentences.

8.5. Sentence Alignment
Amharic has a rich morphology; it is practically impossible for Amharic lexicons to
contain all word forms. Therefore, using a sentence aligner that does not require
any bilingual lexicon is beneficial. Hence, we used the Bilingual Sentence Aligner9

(Moore, 2002) to align sentences in the bilingual documents.

Table 8.1 shows the number of sentences aligned in each bilingual document. The
corpus comprises approximately 83% of the Watchtower magazine and Bible text
that can be considered a “belief and thought” domain (Burnard, 2007). The re-
maining 17% of the Awake magazine and news articles is in the “world affairs”
domain (Burnard, 2007).

After merging and shuffling the aligned sentences, we divided them into the training,

9The implementation is available at https://www.microsoft.com/en-us/download/details.aspx?
id=52608
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8.6. Conclusion

Document Number of sentence pairs

Awake 16,491
Watchtower 72,512
The Bible 48,651
News articles 7,710
Total 145,364

Table 8.1: The number of sentences (segments) aligned in each bilingual document.

Dataset Sentences English Tokens Amharic Tokens

Test 2,500 46,154 34,689
Validation 2,864 53,818 39,980
Training 140,000 2,574,538 1,930,220
Total 145,364 2,674,510 2,004,889

Table 8.2: The number of sentences (segments), tokens, and types in each dataset.

validation (development), and test sets. Table 8.2 shows the statistics of each
dataset.

8.6. Conclusion
We collected, preprocessed, segmented, and aligned Amharic-English parallel sen-
tences from various sources. In doing so, we addressed issues such as normalization
and spelling correction. As a result, the corpus will be helpful for machine transla-
tion of a low-resource language, Amharic.
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PART III
MODEL CONSTRUCTION & EVALUATION

The construction and evaluation of Neural Machine Translation (NMT) models is
the focus of Part III. The development of an NMT system by optimizing hyper-
parameters using a guided random search is first described in Chapter 9. Next,
a morpheme-based word segmentation approach for subword-based NMT models
is explained in Chapter 10. It also explains the comparison of conventional and
morpheme-based NMT subword models using a benchmark dataset.
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CHAPTER 9

Neural Machine Translation System Adaptation

There are significant improvements in Neural Machine Translation (NMT) for a
few high-resource languages. However, since the amount and quality of parallel
training data significantly affect the quality of NMT models, it does not perform
well for less-resourced languages (Koehn and Knowles, 2017; Lample et al., 2018b).
Nonetheless, as a system adaptation of NMT for less-resourced languages, opti-
mizing hyperparameters in low-data conditions improves the performance of NMT
systems (Sennrich and Zhang, 2019; Araabi and Monz, 2020; Lankford et al., 2021).

Therefore, we have adapted an NMT system (Section 9.1) for low-resource lan-
guages, as has already been presented in our original publication in Gezmu and
Nürnberger (2022). We also developed a baseline phrase-based Statistical Machine
Translation (SMT) system (Section 9.2). We evaluated our proposed and baseline
systems (Section 9.4) with public benchmark datasets of Amharic-English, Turkish-
English, and Vietnamese-English. We selected these language pairs because they
have different morphological and orthographic features. Vietnamese is an isolating
language. In contrast, Turkish is primarily an agglutinative language in which a
space-delimited word is a concatenation of multiple morphemes. Amharic is mainly
a fusion language in which an orthographic word is an amalgamation of several mor-
phemes without clear boundaries. Likewise, English has a relatively simple fusional
morphology. Moreover, Amharic uses the Ethiopic script, while the other languages
use Latin script. Therefore, we created a transliteration system (Section 9.3) for
Amharic to share vocabulary between the languages.

9.1. System Architecture

The encoder-decoder architecture is a de facto architecture for NMT. The encoder
accepts a sentence as a sequence of words and generates a corresponding sequence
of contextualized representations that communicate the essence of the sentence
to the decoder. The decoder, in turn, generates a translation output sequence.
An NMT system can implement the encoder and decoder with recurrent neural
networks or Transformers (Vaswani et al., 2017). The Transformer-based models
attain the highest performance in both high- and low-resource scenarios (Sennrich
and Zhang, 2019; Araabi and Monz, 2020; Lankford et al., 2021). Thus, we used
the Transformer-based encoder-decoder architecture to train NMT models.

Figure 9.1 depicts the Transformer-based encoder-decoder architecture at the high-
est level of abstraction. Word segmentation splits each word in a sentence into
subwords. The embedding layer learns representations of the meaning of words or
subwords from their distributions in the underlying text. The encoder takes the
embedding of words (subwords) of a source language sentence and maps them to
contextualized representation, c1, c2, . . . , cm, via N stacked encoder blocks. Each en-
coder block contains a multi-head self-attention layer followed by a fully-connected
feed-forward layer with residual connections and layer normalizations. The decoder
is similar to the encoder, except it includes a masked multi-head self-attention layer,
which modifies the multi-head self-attention layer to prevent positions from interfer-
ing in subsequent computations. Transformers represent complex relations of input
words with multihead self-attention layers. These are sets of self-attention layers
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Figure 9.1: A high level depiction of the Transformer-based encoder-decoder archi-
tecture.

that reside in parallel layers at the same depth, each with its own set of parameters.
These sets of self-attention layers are called heads. Given distinct sets of parame-
ters, each head can learn different aspects of the relationships among input words
at the same level of abstraction. After decoding, word desegmentation reverses
the word segmentation process. The last layers are the linear and softmax layers.
The linear layer is for linear transformation with the ReLU function; the softmax
layer generates a probability distribution over the entire vocabulary to produce the
translation outputs. More details can be found in Section 2.4.2.

Since NMT requires high-quality massive parallel training data, its performance de-
grades in low-data conditions (Koehn and Knowles, 2017; Lample et al., 2018b; Gu
et al., 2018). However, hyperparameter optimization improves translation perfor-
mance in low-resource settings (Sennrich and Zhang, 2019; Araabi and Monz, 2020;
Lankford et al., 2021). The main algorithms for hyperparameter optimization are
grid search and random search (Bergstra and Bengio, 2012). Since checking ev-
ery combination of hyperparameter values of the search space requires much time,
the grid search process is too slow given the many hyperparameter values and long
NMT model training time. We, thus, followed the best practices of prior research to
optimize hyperparameters in low-resource settings by employing a guided random
search.

Since a deep NMT model typically uses millions of parameters to learn complex
relations among its inputs, it may generalize better when data is abundant but is
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liable to overfit when data is scarce. So there is a trend to use small and few layers
in low-data conditions (Araabi and Monz, 2020; Lankford et al., 2021). However,
there are mixed findings on the size of training batch sizes in low-data conditions.
While Morishita et al. (2017) and Neishi et al. (2017) use large batch sizes, Sen-
nrich and Zhang (2019) recommend small batch sizes. Therefore, we considered
two architectures, TranShallow1 and TranShallow2, that have small and few lay-
ers but differ in training batch sizes. We also considered a deeper architecture,
TranDeep, than the preceding ones. Table 9.1 details the differences between the
three architectures. All architectures use Adam optimizer (Kingma and Ba, 2015)
with varied learning rates throughout the training, dropout (Srivastava et al., 2014)
rate of 0.1, and label smoothing (Szegedy et al., 2016) value of 0.1. Appendix B
gives all the common hyperparameters shared among the three systems. We used
the Tensor2Tensor (Vaswani et al., 2018) library to implement the systems. The
preconfigured hyperparameter sets in Tensor2Tensor were the basis for the above-
mentioned architectures.

Hyperparameter TranShallow1 TranShallow2 TranDeep

Batch size 1,024 4,096 1,024
Filter size 512 512 2,048

Hidden size 128 128 512
Number of heads 4 4 8

Transformer blocks 2 2 6

Table 9.1: Differences between TranShallow1, TranShallow2, and TranDeep. Batch
size is given in terms of the number of source and target language tokens.

9.2. Baseline System
The phrase-based SMT baseline system had settings that were typically used by
Ding et al. (2016), Williams et al. (2016), Koehn and Knowles (2017), and Sennrich
and Zhang (2019). We used the Moses (Koehn et al., 2007) toolkit to train phrase-
based SMT models. First, we used GIZA++ (Och, 2003) and the grow-diag-final-
and heuristic for symmetrization for word alignment. Then, we used the phrase-
based reordering model (Koehn et al., 2003) with three orientations: monotone,
swap, and discontinuous in backward and forward directions conditioned on the
source and target languages.

We used five-gram language models smoothed with the modified Kneser-Ney (Kneser
and Ney, 1995). We also applied KenLM (Heafield, 2011) language modeling toolkit.
Initially, we have not used big monolingual corpora for language models. This is
because big monolingual corpora are no longer the exclusive advantages of phrase-
based SMT, as NMT can also benefit from them (Sennrich and Zhang, 2019). After-
ward, to prove this claim, we used the Contemporary Amharic Corpus10 (CACO)
(Gezmu et al., 2018c) for English-to-Amharic translation.

The feature weights were tuned using Minimum Error Rate Training (MERT) (Och,
2003). We also used the k-best batch Margin Infused Relaxed Algorithm (MIRA)
for tuning (Cherry and Foster, 2012) by selecting the highest-scoring development
run with a return-best-dev setting. For decoding, we applied the standard stack

10The corpus is available at http://dx.doi.org/10.24352/ub.ovgu-2018-144
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search algorithm.

9.3. Transliteration
Transliteration improves machine translation quality (Dabre et al., 2018; Goyal
et al., 2020a; Gezmu et al., 2021b). It facilitates vocabulary sharing, especially
loan words and named entities, between languages. Therefore, after examining the
orthography of Amharic, we developed a rule-based transliteration method.

Amharic uses the Ethiopic writing system. Although Ethiopic shares some features
of abugida, it is considered a syllabary (Bloor, 1995; The Unicode Consortium,
2021). The ancient Ethiopian Semitic language, Ge’ez, initially used the writing
system. Nonetheless, Ge’ez is now extinct and used only for Liturgy. Each character
of the Ethiopic writing system is formed by systematically integrating a consonant
and vowel (e.g., መ /mə/ and ሙ /mu/). Sometimes consonants and vowels can be
written as bare consonants (e.g., ም /m/ and ን /n/) or bare vowels (e.g., አ /a/ in
አለም /aləm/). In addition to the characters in the basic script set (see Appendix A),
some characters represent labialized variants of consonants followed by particular
vowels. There are also some homophonic characters11 in the writing system (e.g.,
ሰ and ሠ represent /sə/ sound). Originally, these characters had distinct sounds
but were lost in Amharic (Aklilu, 2004); they are the source of many cognates.
For example, ሰም and ሠም are transliterated as /səm/, meaning “wax.” In everyday
use, homophonic characters are written interchangeably. For consistent spelling, the
Ethiopian Languages Academy proposed a spelling reform (Aklilu, 2004). According
to the reform, homophonic characters, being redundant, should be reduced to their
standard forms. For example, instead of ሠ /sə/ the character ሰ /sə/ should be
used. Also, some labiovelars are substituted by their closest counterparts in the
basic script set (e.g., ቍ by ቁ). There is no case difference in Amharic. Unlike other
Semitic languages, such as Arabic and Hebrew, it is written from left to right, and
its orthography is nearly phonetic (Cowley, 1967).

There is no standard transliteration for Amharic. In line with its unique features
and the reform of the writing system, we used a new transliteration scheme, Amharic
Transliteration for Machine Translation (AT4MT). To make AT4MT worthwhile for
machine translation, we aimed to transliterate Amharic loan words and named en-
tities as close as their phonemic representations in Latin-based characters. In doing
so, we had to consider the restoration of the original spelling to make it invertible.
The transliteration algorithm follows a rule-based approach. We have provided its
implementation at https://github.com/andmek/AT4MT. It is similar to the one
shown in Figure 9.2 for converting an Ethiopic numeral into an Arabic numeral. It
maps Ethiopic characters to their phonemic representations in Latin-based charac-
ters. Appendix A shows the transliteration tables, and Table 9.2 demonstrates the
transliterations of some Amharic words.

Although Ethiopic numerals tend to be replaced by Arabic in modern-day Amharic
writings, they are still in use. The Ethiopic number system does not use zero or
digital-positional notation, just like Roman numerals. A sequence of powers of 100
represents a number, each preceded by a coefficient equivalent to 2 through 99. For
example, the number 345 is represented by 3 ∗ 1001 + (40 + 5) ∗ 1000 = 3 100 40 5
= ፫፻፵፭. The algorithm in Figure 9.2 converts an Ethiopic numeral into an Arabic

11You can see the complete list of homophones in Table A.2 in Appendix A.
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9.4. Experiments and Evaluation

FUNCTION ethiopicnum2arabicnum(number):
   IF LENGTH(number) == 1:
        RETURN conversion_table[number]
    result = 0
    FOR digit IN number:
        IF (digit == ፻) OR (digit == ፼):
            result = result * 100
        ELSE:
            result = result + conversion_table[digit]
  RETURN result

conversion_table = { ፩:1, ፪:2, ፫:3, ፬:4, ፭:5, ፮:6, ፯:7, 
፰:8, ፱:9, ፲:10, ፳:20, ፴:30, ፵:40, ፶:50, ፷:60, 
፸:70, ፹:80, ፺:90, ፻:100, ፼:10000 }

Figure 9.2: An algorithm to convert an Ethiopic numeral into an Arabic numeral.

Amharic AT4MT English

ሆስፒታል hospital hospital
አንጌላ angela Angela
ማስክ mask mask
ኢራን iran Iran
ኢራቅ iraq Iraq
እስራኤል ɨsrael Israel
ራዲዮ radiyo radio

Table 9.2: Sample transliterations of Amharic words.

numeral.

Transliteration of Amharic punctuation is a straightforward process. Word bound-
ary is traditionally indicated by a colon-like character (“፡”); albeit, a white word
space is becoming common in modern use. The end of the sentence marker is a
double-colon-like character (“።”) and is transliterated as a period (“.”). A comma,
hyphen, colon, semicolon, and question mark are “፣”, “፦”, “፥”, “፤”, and “፧”, respec-
tively; they are transliterated accordingly.

9.4. Experiments and Evaluation
We evaluated the performance of the systems. We used the same datasets and
followed similar preprocessing, training, and evaluation steps for each system.
9.4.1. Datasets and Preprocessing
We trained our models on the benchmark datasets of the Amharic-English12 (Gezmu
et al., 2022), Turkish-English13, and Vietnamese-English14 parallel corpora to opti-
mize hyperparameters. Chapter 8 has a detailed description of the Amharic-English

12Available at http://dx.doi.org/10.24352/ub.ovgu-2018-145
13Available at http://data.statmt.org/wmt18/translation-task/preprocessed
14Available at https://wit3.fbk.eu/2015-01
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parallel corpus. We used the datasets from the Conference on Machine Translation
for Turkish-English translation. For Vietnamese-English translation, we used the
TED talks datasets provided by the 2015 International Workshop on Spoken Lan-
guage Translation evaluation campaign (Cettolo et al., 2012). We used the TED
tst2012 as a validation set and TED tst2013 as the test set. Although the sen-
tence pairs for the test and validation (development) sets were properly aligned,
we observed mismatches in the training set. Thus, we used the Microsoft Sentence
Aligner (Moore, 2002) to realign the Vietnamese-English training set. Table 9.3
shows the number of sentence pairs in each dataset.

Language Pair Dataset Number of Sentence Pairs

Amharic-English Test 2,500
Validation 2,864
Training 140,000

Turkish-English Test 3,010
Validation 3,007
Training 207,373

Vietnamese-English Test 1,268
Validation 1,553
Training 130,466

Table 9.3: The number of sentence (segment) pairs in each dataset.

We preprocessed the datasets with standard Moses tools (Koehn et al., 2007) to
prepare them for machine translation training. We tokenized the English datasets
with Moses’ tokenizer script; we modified Moses’ script to tokenize the Amharic,
Turkish, and Vietnamese datasets. We transliterated the Amharic datasets with
AT4MT (Section 9.3). All but the Amharic datasets were true-cased with Moses’
true-caser script. We removed sentence pairs with extreme length ratios of more
than one to nine and sentences longer than eighty tokens for the phrase-based SMT
baseline. For open vocabulary NMT, the tokens were split into a 32,000 Word-Piece
vocabulary as Wu et al. (2016) recommended.
9.4.2. Training and Decoding
Training of NMT models is usually non-deterministic (Popel and Bojar, 2018). In
the training of the models, there is no convergence guarantee. Most research in
NMT does not specify any stopping criteria. Some mention only an approximate
number of days spent to train the models (Bahdanau et al., 2015) or the exact
number of training steps (Vaswani et al., 2017). We trained, thus, each NMT
model for 250,000 steps following the default in Tensor2Tensor. We used a single
model obtained by averaging the last twelve checkpoints for decoding. Following
Wu et al. (2016) and Vaswani et al. (2017), we used a beam search with a beam
size of four and a length penalty of 0.6.
9.4.3. Evaluation
We focused on the objective evaluation with automated metrics because our goal is
to compare the different systems. Most automatic metrics fall into two groups: met-
rics based on string overlap and metrics based on embedding similarity. COMET
(Rei et al., 2020) is the best-performing metric of all widely used metrics (Kocmi
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et al., 2021; Freitag et al., 2021). Additionally, it supports Amharic, English, Turk-
ish, and Vietnamese. ChrF (Popovic, 2015) is also the best-performing among the
string-based metrics (Kocmi et al., 2021). These metrics strongly correlate with hu-
man evaluations. We also used the BLEU metric (Papineni et al., 2002) because of
its popularity (Marie et al., 2021). We desegmented, detokenized, and detruecased
the translation outputs before evaluating the models with the automatic metrics.
Since COMET supports Amharic, we computed it after we “de-romanize” Amharic
text back into Ethiopic script. However, we did not do that for BLEU and ChrF
metrics. Strictly speaking, they are typically tailored for alphabetic writing systems
and it is wise to compute them on the transliterated text.

Using these metrics, we ran two statistical significance tests, Bootstrap (Efron and
Tibshirani, 1993; Koehn, 2004) and Approximate Randomization (Noreen, 1989;
Riezler and Maxwell-III, 2005) tests, to evaluate our models. Section 2.5.2 covers
more details about the metrics and Section 2.5.3 describes statistical significance
testing. For consistency, we used the sacreBLEU15 (Post, 2018) implementations
of BLEU16 and ChrF17. With BLEU and ChrF, we ran the paired Bootstrap and
Approximate Randomization tests with 1,000 and 10,000 trials, respectively. For
COMET, we used the recommended model, “wmt22-comet-da,”, and default pa-
rameters in version 2.0 of its implementation18. Since COMET’s implementation
supports only the paired Bootstrap test, we did not run the Approximate Random-
ization test for COMET.

9.5. Results and Discussions
We made paired statistical significance tests with Bootstrap and Approximate Ran-
domization to evaluate the baseline, TranShallow1, TranShallow2, and TranDeep
systems. Each system is compared to the baseline as well as the one with the best
BLEU, ChrF, and COMET metrics scores. For the sake of uniformity, we scaled
the COMET scores up to fall in the 0 to 100 range. The null hypothesis states that
the systems are not significantly different. We took 0.05 as a significance threshold.
Thus, we rejected the null hypothesis for p-values less than 0.05.

Tables 9.4 and 9.5 shows the performance results of the three systems against the
baseline with BLEU, ChrF, and COMET metrics. For BLEU and ChrF, the p-
values for the Bootstrap test are in parenthesis next to the actual scores; for the
Approximate Randomization test, they are in parenthesis beneath the scores. With
the COMET metric, we made only the Bootstrap test, and the p-values are in
parenthesis beneath the scores. Therefore, there are five p-values for a pair of
systems. We decided that two systems are significantly different when at least
three p-values are less than 0.05, marked with asterisk, applying the majority rule.

The baseline system achieved better scores when feature weights were tuned us-
ing MERT than batch MIRA. Thus, we took the phrase-based SMT system tuned
with MERT as our strong baseline. In Table 9.4, the TranDeep models outper-
form the baseline models by more than six BLEU points in the Amharic-English
translation; they gained approximately five more BLEU points than the baseline

15Available at https://github.com/mjpost/sacrebleu
16Signature: nrefs:1, case:mixed, eff:no, tok:13a, smooth:exp, version:2.3.1
17Signature: nrefs:1, case:mixed, eff:yes, nc:6, nw:0, space:no, version:2.3.1
18Available at https://github.com/unbabel/COMET
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Direction System BLEU ChrF2 COMET

am-to-en Baseline: SMT 25.8 44.5 65.0
TranDeep 32.2 (p = .001)* 49.1 (p = .001)* 79.6

(p < .001)* (p < .001)* (p < .001)*
TranShallow1 24.0 (p = .001)* 41.7 (p = .001)* 75.1

(p < .001)* (p < .001)* (p < .001)*
TranShallow2 25.4 (p = .121) 43.2 (p = .001)* 75.8

(p = .291) (p < .001)* (p < .001)*

en-to-am Baseline: SMT 20.2 43.4 75.7
TranDeep 26.7 (p = .001)* 48.1 (p = .001)* 85.8

(p < .001)* (p < .001)* (p < .001)*
TranShallow1 17.8 (p = .001)* 38.8 (p = .001)* 80.3

(p < .001)* (p < .001)* (p < .001)*
TranShallow2 18.9 (p = .003)* 40.6 (p = .001)* 81.3

(p = .002)* (p < .001)* (p < .001)*

tr-to-en Baseline: SMT 10.7 42.1 59.9
TranDeep 16.3 (p = .001)* 43.5 (p = .001)* 69.9

(p < .001)* (p < .001)* (p < .001)*
TranShallow1 10.2 (p = .020)* 34.8 (p = .001)* 60.1

(p = .028)* (p < .001)* (p = .512)
TranShallow2 11.6 (p = .001)* 36.7 (p = .001)* 62.7

(p < .001)* (p < .001)* (p < .001)*

en-to-tr Baseline: SMT 7.8 39.4 55.8
TranDeep 12.6 (p = .001)* 44.9 (p = .001)* 74.4

(p < .001)* (p < .001)* (p < .001)*
TranShallow1 7.8 (p = .312) 35.0 (p = .001)* 59.2

(p = .813) (p < .001)* (p < .001)*
TranShallow2 9.4 (p = .001)* 37.9 (p = .001)* 63.7

(p < .001)* (p < .001)* (p < .001)*

Table 9.4: Performance results of TranShallow1, TranShallow2, and TranDeep
against the baseline system. [Continued to Table 9.5]

models in the Turkish-English translation. In Table 9.5, while it gains roughly
four BLEU points in Vietnamese-to-English translation, it loses 0.5 BLEU points
in English-to-Vietnamese translation. This anomaly suggests that we need to tune
hyperparameters to the datasets instead of using a universal hyperparameter set
for all datasets. ChrF and COMET metrics also show corresponding differences.

While BLEU and ChrF scores show inconsistent differences between the baseline
system and TranShallow2, COMET consistently gives TranShallow2 higher scores
than the baseline system in all cases of pairwise comparisons. Similarly, except
for Turkish-to-English and English-to-Vietnamese translations, COMET scores are
higher for TranShallow1 than the baseline system. Because of the strongest corre-
lation of COMET with human evaluation (Kocmi et al., 2021; Freitag et al., 2021),
we primarily rely on it.
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Direction System BLEU ChrF2 COMET

vi-to-en Baseline: SMT 22.8 47.6 72.1
TranDeep 26.6 (p = .001)* 48.7 (p = .001)* 75.6

(p < .001)* (p < .001)* (p < .001)*
TranShallow1 23.6 (p = .021)* 46.4 (p = .001)* 73.5

(p = .043)* (p < .001)* (p < .001)*
TranShallow2 25.2 (p = .001)* 48.1 (p = .034)* 75.1

(p < .001)* (p = .062) (p < .001)*

en-to-vi Baseline: SMT 27.7 47.3 76.8
TranDeep 27.2 (p = .037)* 46.5 (p = .002)* 78.5

(p = .093) (p = .002)* (p < .001)*
TranShallow1 27.2 (p = .054) 46.0 (p = .001)* 76.1

(p = .105) (p < .001)* (p = .016)*
TranShallow2 27.3 (p = .077) 46.4 (p = .001)* 76.7

(p = .150) (p < .001)* (p = .795)

Table 9.5: Performance results of TranShallow1, TranShallow2, and TranDeep
against the baseline system. [Continued from Table 9.4]

We excluded the baseline to make further comparisons between the NMT systems.
Table 9.6 shows the performance results of the three NMT systems: TranShal-
low1, TranShallow2, and TranDeep, with BLEU, ChrF, and COMET metrics. For
Amharic-English and Turkish-English translations, TranShallow1 and TranShal-
low2 differ significantly from TranDeep; TranShallow1 is the worst performing sys-
tem in these language pairs. Therefore, for these language pairs, the evaluation’s
findings demonstrated that a larger training batch size enhances system perfor-
mance, and the system’s performance is negatively impacted by drastically lower-
ing the depth and width of the network. However, there is no significant difference
between the three systems in English-to-Vietnamese translation. This exceptional
case disproves a common belief that deeper Transformer networks always perform
better than their shallower counterparts. This peculiarity once more indicates the
need to tune the hyperparameters rather than using a single set across all datasets.

Although big monolingual corpora are not integral components of NMT, both SMT
and NMT can benefit from them. For example, Table 9.7 shows the results of
English-to-Amharic translation using the CACO corpus for language modeling of
the baseline phrase-based SMT and back-translating (Sennrich et al., 2016a; He
et al., 2016; Cheng et al., 2016; Qin, 2020) of the TranDeep to produce synthetic
training data. Both models gained more than one BLUE point by using CACO.
The TranDeep model attained the optimum result when we randomly drew three
times the size of the original training data from the CACO corpus and translated it
into English. Then we mixed the synthetic data with the original (authentic) data
to train the new model.

9.6. Conclusion
Since it has been empirically shown to perform better than other systems in both
high- and low-resource settings, we used a Transformer-based architecture to con-
struct an NMT system for low-resource languages based on the best practices of
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Direction System BLEU ChrF2 COMET

am-to-en TranDeep 32.2 49.1 79.6
TranShallow1 24.0 (p = .001)* 41.7 (p = .001)* 75.1

(p < .001)* (p < .001)* (p < .001)*
TranShallow2 25.4 (p = .001)* 43.2 (p = .001)* 75.8

(p < .001)* (p < .001)* (p < .001)*

en-to-am TranDeep 26.7 48.1 85.8
TranShallow1 17.8 (p = .001)* 38.8 (p = .001)* 80.3

(p < .001)* (p < .001)* (p < .001)*
TranShallow2 18.9 (p = .001)* 40.6 (p = .001)* 81.3

(p < .001)* (p < .001)* (p < .001)*

tr-to-en TranDeep 16.3 43.5 69.9
TranShallow1 10.2 (p = .001)* 34.8 (p = .001)* 60.1

(p < .001)* (p < .001)* (p < .001)*
TranShallow2 11.6 (p = .001)* 36.7 (p = .001)* 62.7

(p < .001)* (p < .001)* (p < .001)*

en-to-tr TranDeep 12.6 44.9 74.4
TranShallow1 7.8 (p = .001)* 35.0 (p = .001)* 59.2

(p < .001)* (p < .001)* (p < .001)*
TranShallow2 9.4 (p = .001)* 37.9 (p = .001)* 63.7

(p < .001)* (p < .001)* (p < .001)*

vi-to-en TranDeep 26.6 48.7 75.6
TranShallow1 23.6 (p = .001)* 46.4 (p = .001)* 73.5

(p < .001)* (p < .001)* (p < .001)*
TranShallow2 25.2 (p = .002)* 48.1 (p = .026)* 75.1

(p < .001)* (p = .054) (p = .103)

en-to-vi TranDeep 27.2 46.5 78.5
TranShallow1 27.2 (p = .361) 46.0 (p = .025)* 76.1

(p = .891) (p = .061) (p < .001)*
TranShallow2 27.3 (p = .245) 46.4 (p = .285) 76.7

(p = .708) (p = .792) (p < .001)*

Table 9.6: Performance results of TranShallow1, TranShallow2, and TranDeep.

System BLEU ChrF2 COMET

SMT 20.2 43.4 75.7
SMT + CACO 21.4 (p = .001)* 44.0 (p = .001)* 75.6

(p < .001)* (p < .001)* (p = .820)

TranDeep 26.7 48.1 85.8
TranDeep + CACO 27.8 (p = .001)* 50.3 (p = .001)* 87.2

(p < .001)* (p < .001)* (p < .001)*

Table 9.7: Performance results of English-to-Amharic translation using the CACO
corpus.
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earlier research in this field. We used a guided random search to adjust its hyperpa-
rameters and enhance its performance. We performed statistical significance tests
for the evaluation study using the BLUE, ChrF, and COMETmetrics. For Amharic-
English and Turkish-English translations, the evaluation’s findings demonstrated
that a larger training batch size enhances system performance, and the system’s
performance is negatively impacted by drastically lowering the depth and width of
the network. In the Amharic-English translation, the optimized NMT models out-
performed the baseline models by more than six BLEU points. Additionally, they
scored about five higher BLEU points in the Turkish-English translation than in the
baseline models. However, while it gains about four BLEU points when translated
from Vietnamese to English, it deducts 0.5 BLEU points when translated from En-
glish to Vietnamese. This peculiarity shows that rather than utilizing a single set of
hyperparameters for all datasets, we should tailor them to the datasets. ChrF and
COMET measures display related differences as well. Furthermore, TranShallow1
and TranShallow2 deviate significantly from TranDeep for translations between
Amharic-English and Turkish-English; TranShallow1 is the least effective technique
in these translations. The three systems, however, do not significantly differ from
one another when translating from English to Vietnamese. This exceptional case
disproves the widespread assumption that deeper Transformer networks always out-
perform their shallower counterparts. This oddity again highlights the necessity to
tune the hyperparameters to a dataset rather than using a single set across all
datasets.
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CHAPTER 10

Subword-Based Neural Machine Translation

Neural Machine Translation (NMT) requires a substantial quantity and good quality
parallel data to train the best models. A large amount of training data, in turn,
increases the underlying vocabulary significantly. Thus, several proposed methods
have been devised for limited vocabulary due to constraints of computing resources
like system memory. Segmenting words as sequences of subword units for open-
vocabulary translation is a practical approach to addressing this problem.

Nevertheless, the conventional methods for splitting words into subwords focus on
statistics-based approaches mainly tailored for agglutinative languages. In these
languages, the morphemes, meaningful word elements, have relatively clean bound-
aries. These methods still need to be thoroughly investigated for their applicability
to fusion languages. Since phonological and orthographic processes modify the
boundaries of constituent morphemes in fusion languages, the actual morphemes
that bear syntactic or semantic information may not readily stand out from the writ-
ten words or surface forms. Amharic is one of the languages with predominantly
fusional morphology (Fabri et al., 2014). Therefore, we resorted to a morphologi-
cal segmentation method that segments words by restoring the actual morphemes.
We also compared conventional and morpheme-based NMT subword models in an
evaluation study on benchmark Amharic-English parallel data.

In the following, first, we explain the commonly used conventional word segmen-
tation methods for NMT in Section 10.1. Then, we describe the proposed word
segmentation approach in Section 10.2. In Section 10.3, we discuss the evalua-
tion study we have conducted on a benchmark dataset to evaluate traditional and
morpheme-based NMT subword models. Section 10.4 reports the findings of the
evaluation study. The final section, Section 10.5, provides a conclusion.

10.1. Statistics-Based Word Segmentation

In subword-based NMT, most established word segmentation methods follow statistics-
based approaches. The prominent techniques are Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016b), Word-Piece (Schuster and Nakajima, 2012; Wu et al., 2016),
and Sentence Piece with Unigram Language Modeling (SPULM) (Kudo, 2018).

BPE is a data compression method that iteratively replaces the most frequent pair
of character sequences with a single, unused character. A token learner first splits
the whole training text into individual characters. Then, it induces a vocabulary by
iteratively incorporating the most frequent adjacent pairs of characters or subwords
until the desired vocabulary is reached. Eventually, a segmenter splits tokens in
a new text in the same order as they occurred while constructing the vocabulary
containing ordered merges.

Word-Piece is analogous to BPE. Nonetheless, while BPE uses frequency occur-
rences to apply potential merges of subwords, Word-Piece relies on the likelihood of
an n-gram language model trained on a version of the training text incorporating
the merged subwords.

SPULM, on the other hand, is a completely probabilistic system grounded on a
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unigram language model. Unlike BPE or Word-Piece, SPULM follows a top-down
procedure in constructing the vocabulary. It begins with an extensive candidate
vocabulary. The vocabulary comprises all characters and the most frequent candi-
date subwords in the training corpus. Then, it iteratively removes subwords that
do not improve the overall likelihood. It is analogous to Morfessor’s (Creutz and
Lagus, 2007) unsupervised segmentation, apart from Morfessor’s informed priority
over subword length (Rissanen, 1998; Bostrom and Durrett, 2020).

10.2. Morpheme-Based Word Segmentation
The well-established statistics-based word segmentation methods are primarily tai-
lored for agglutinative languages. So their use should be investigated for fusion
languages. In fusion languages, phonological and orthographic processes modify
the boundaries of the actual morphemes. To restore the altered morphemes, the
most straightforward approach is to examine the morphological analysis or tree-
banks of the languages. The following subsections discuss the morphology and
morpheme-based segmentation of the predominantly fusion language Amharic along
with English.

10.2.1. Morphology
Amharic has a rich morphology. In Amharic, a space-delimited word is blends
of several morphemes. It may function as a word (e.g., ሰው /səw/ meaning “hu-
man”); a phrase (e.g., ከቤትዋ /kəbetʷa/ meaning “from her house”); a clause (e.g.,
የመጣው /yəməṭaw/ meaning “the one who came”); or even a sentence (e.g., አልበላችም
/albəlacɨm/ meaning “She did not eat.”).

Amharic is dominated by fusional morphology; the boundaries of morphemes are
unclear in many words. Like other Semitic languages, Amharic word formation rides
on root-and-pattern morphology. Root-and-pattern morphology is non-agglutinative
because the two morphemes that make up the word, the root and pattern, are inter-
laced instead of concatenated (Fabri et al., 2014). For example, the Amharic verbs
ይሰብራል /ysəbral/ “he/it will break” and ይሰበራል /ysəbəral/ “he/it will be broken” have
a prefix ይ and a suffix አል to indicate tense and aspect. When removing the affixes
from both words, the stems ሰብር /səbr/ and ሰበር /səbər/ remain; they are composed
of two parts, the root consisting of the consonant sequence ስ•ብ•ር /s•b•r/, and the
pattern consisting of a template of vowels. In the first word, the pattern consists
of the vowel ኧ /ə/ between the first and second consonant and no vowel between
the second and third consonant, i.e., ስኧብር /səbr/; in the second word, the pattern
consists of the same vowel in both positions, i.e., ስኧብኧር /səbər/.

English has a relatively simple fusional morphology. For example, in the word
unreasonably, the morphemes are un, reason, able, and ly. So, the subword ably
blends two morphemes: able and ly; to obtain the actual morphemes, we need to
restore the letters le.

10.2.2. Word Segmentation
We devised a morphological word segmentation method, MorphoSeg, based solely
on a language’s morphological analyzer or treebank. It segments actual morphemes
from words by recovering morphemes that phonological and orthographic processes
have altered.

We used a morphological analyzer and generator, HornMorpho (Gasser, 2011), for
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Amharic morpheme-based word segmentation. HornMorpho is a rule-based system
for morphological analysis and generation. It forms a cascade of composite finite-
state transducers that implement a lexicon of roots and morphemes, as well as
alternation rules that govern phonological or orthographic changes at morpheme
boundaries (Beesley and Karttunen, 2003). HornMorpho analyzes only nouns and
verbs prior to version 2.5. Since Amharic adjectives behave like nouns, HornMorpho
also does not distinguish between adjectives and nouns. It cannot handle compound
words and light verb constructions either. Therefore, we helped the author to
modify HornMorpho19. The improved version distinguishes more parts of speech,
such as verbs, nouns, adjectives, adverbs, and conjunctions. It has more lexicons
than before; it also performs morphological analysis for constructions like light
verbs and compound words. Batsuren et al. (2022) also used it in the Universal
Morphology (UniMorph 4.0) project to generate the Amharic inflectional data.

Method Sentence

Original ከናቴ ጋር ብኖር ይሻለኛል።

Transliteration kənate gar bnor yšaləñal.

MorphoSeg kə-ɨnat-e gar b-ɨ-nor y-šal-ə-ñ-al .

Morfessor kə-na-t-e gar b-nor yšal-əñal .

BPE kəna@@ te gar b@@ nor y@@ š@@ alə@@ ña@@ l@@ .

BPE-Seg kəna-te gar b-nor y-š-alə-ña-l .

SPULM _kə na t e _gar _b nor _y šal əñal .

SPULM-Seg kə-na-t-e gar b-nor y-šal-əñal .

Word-Piece kən ate_ gar_ bn or_ yša ləñ al_ ._

Word-Piece-Seg kən-ate gar bn-or yša-ləñ-al .

Table 10.1: Sample segmentations of an Amharic sentence using different methods.

We extracted all distinct words from the CACO corpus to compile a morpheme
segmentation database. To create the database, we used HornMorpho’s analyzer
by removing the grammatical features. For example, HornMorpho analyzes ይሻለኛል
/yšaləñal/ as ይ(subject = 3rd person singular masculine)-ሻል-ኧ(infinitive)-ኝ(object =
1st person)-ኣል(auxiliary); when removing the grammatical features in the paren-
theses, it becomes ይ-ሻል-ኧ-ኝ-ኣል /y-šal-ə-ñ-al/. When HornMorpho provides multiple
analyses of a word, we took the first analysis; we have not disambiguated the
part-of-speech of words in a sentence as HornMorpho does not have such a fea-
ture. Finally, we created a morpheme segmentation database for approximately
840,000 word types. We have provided the morpheme segmentation database at
https://github.com/andmek/AmhSegTable. Table 10.1 demonstrates the segmen-
tation of an example sentence: “ከናቴ ጋር ብኖር ይሻለኛል። ” /kənate gar bnor yšaləñal./
meaning “It is better for me to live with my mother.” with MorphoSeg and the other
conventional segmentation methods: BPE, Morfessor, SPULM, and Word-Piece.
MorphoSeg uses the morpheme segmentation database to segment the words. For
BPE, SPULM, and Word-Piece, the original and interpreted segmentation outputs
are shown. MorphoSeg segments the noun ከናቴ /kənate/ as kə-ɨnat-e by restoring
the missed-out vowel ɨ as the result of phonological omission. All methods do not
segment the postposition ጋር /gar/. All methods but Word-Piece correctly identify

19The modified version is available at https://github.com/hltdi/HornMorpho.
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the stem of the verb ብኖር /bnor/, albeit only MorphoSeg accurately segments it.
For the verb ይሻለኛል /yšaləñal/, MorphoSeg and SPULM identify the right stem šal,
SPULM, however, under-segments the word.

Method Sentence

Original She acts unreasonably and without knowledge.
MorphoSeg She act-s un-reason-able-ly and without knowledge .
Morfessor She act-s un-reason-ably and with-out know-ledge .

BPE She acts un@@ reason@@ ably and without knowledge .
BPE-Seg She acts un-reason-ably and without knowledge .
SPULM _She _act s _un re as on ab ly _and _with out _knowledge .

SPULM-Seg She act-s un-re-as-on-ab-ly and with-out knowledge .
Word-Piece She_ acts_ un reas ona bl y_ and_ without_ knowledge_ ._

Word-Piece-Seg She acts un-reas-ona-bl-y and without knowledge .

Table 10.2: Sample segmentations of an English sentence using different methods.

UniMorph does have a morpheme segmentation database for English, but most en-
tries have shallow segmentations as far as our need is concerned. For instance, the
adjective unaccountable is not segmented at all, even if we expect the segmentation
to be un-account-able. Therefore, we used a morphology treebank manually curated
by Cotterell et al. (2016) as a seed for English morpheme-based word segmentation.
The morphology treebank consists of about seven thousand word types. To increase
its coverage, we extracted all sentences from the monolingual News Crawl corpus20.
First, we lemmatize each word in each sentence using the Word Net Lemmatizer
and Part-of-Speech Tagger in the Natural Language Toolkit (Bird, 2006). Then,
we check whether the lemma is in the treebank and has further segmentation. If
it does so, then the word is segmented accordingly. Otherwise, the word is seg-
mented based on its lemma and the remaining subwords. Due to the relatively
simpler morphology of English, most of the remaining subwords are either prefixes
or suffixes. For example, the noun achievements has a lemma achievement, so the
initial segmentation is achievement-s; yet achievement is segmented in the treebank
as achieve-ment. Thus, the final segmentation will be achieve-ment-s. Eventually,
we created a morpheme segmentation database for nearly 42,000 word types along
with their part-of-speech. We have provided the English morpheme segmentation
database at https://github.com/andmek/EngSegTable. Table 10.2 demonstrates
the segmentation of an example sentence using MorphoSeg and other segmentation
methods. The BPE and Word-Piece methods do not segment the word acts, while
the other methods segment it correctly. Only MorphoSeg produces the correct
morphological segmentation for unreasonably; the other methods either underseg-
ment or oversegment it. In addition, Morfessor and SPULM oversegment without
as with-out; likewise, Morfessor oversegments knowledge as know-ledge.
10.3. Experiments and Evaluation
We trained several subword models using the best-performing system, TranDeep,
from Chapter 9. We used different word segmentation methods, such as BPE,
Morfessor, MorphoSeg, SPULM, and Word-Piece, to segment words into subwords.

20The corpus was provided at the Third Conference on Machine Translation and is available at
http://data.statmt.org/wmt18/translation-task.
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10.3.1. Datasets and Preprocessing

We used the Amharic-English parallel data21 (Gezmu et al., 2022) (see Chapter 8)
to train the subword models. It consists of 140,000 sentence pairs for training; the
validation (development) and test sets have 2,864 and 2,500 sentence pairs.

We tokenized the English datasets with Moses’ tokenizer script; we modified Moses’
script to tokenize the Amharic datasets. We transliterated the Amharic datasets
with a transliteration scheme, Amharic transliteration for machine translation22

(see Section 9.3). We used BPE, Morfessor, MorphoSeg, SPULM, and Word-Piece
to segment words in the datasets for subword models. We used the BPE23 imple-
mentation in Sennrich et al. (2016b); the Morfessor 2.024 implementation in Smit
et al. (2014); the SPULM implementation in the sentence-piece25 library (Kudo
and Richardson, 2018); and the Word-Piece implementation in Tensor2Tensor26 li-
brary (Vaswani et al., 2018). Since sentence-piece operates on raw text, we did not
tokenize the text for SPULM.

10.3.2. Training and Decoding

Training of NMT models is usually non-deterministic (Popel and Bojar, 2018).
There is no guarantee of convergence when training models. Most research in NMT
does not specify stopping criteria. Some mention only an approximate number of
days needed to train the models (Bahdanau et al., 2015) or the exact number of
training steps (Vaswani et al., 2017). As in Chapter 9, we trained each NMT model
for 250,000 steps, according to the default in Tensor2Tensor. For decoding, we used
a single model obtained by averaging the last twelve checkpoints. Following Wu
et al. (2016) and Vaswani et al. (2017), we used a beam search with a beam size of
four and a length penalty of 0.6.

Because the vocabulary sizes in BPE, Word-Piece, and SPULM affect the perfor-
mance of the NMT models (Sennrich and Zhang, 2019; Ding et al., 2019; Gowda
and May, 2020), we trained several models with different vocabulary sizes. There-
fore, we evaluated the NMT models by comparing the models trained with varying
vocabulary sizes for BPE, Word-Piece, and SPULM subword models. Xu et al.
(2021) proposed an efficient solution, VOLT27 (for Vocabulary Learning via Opti-
mal Transport), to estimate an optimal vocabulary size by applying the Economics
concept of marginal utility (Samuelson, 1937), where the benefit is the text entropy
and the cost is the vocabulary size. The team formulated the vocabulary construc-
tion as an optimization problem to find the optimal vocabulary size with the highest
marginal utility. Thus, we also used VOLT to estimate the optimal vocabulary size.
Eventually, we selected the best BPE, Word-Piece, and SPULM subword models
to compare them with the Morfessor and MorphoSeg subword models.

21Available at http://dx.doi.org/10.24352/ub.ovgu-2018-145
22The implementation is available at https://github.com/andmek/AT4MT
23Available at https://github.com/rsennrich/subword-nmt
24Available at http://morpho.aalto.fi/projects/morpho
25Available at https://github.com/google/sentencepiece
26Available at https://github.com/tensorflow/Tensor2Tensor
27Available at https://github.com/Jingjing-NLP/VOLT
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10.4. Results and Discussions

10.3.3. Evaluation
Like in Chapter 9, we focused on the objective evaluation of the NMT models
with automated metrics as our goal is to compare the different models. Proper
uses for automatic evaluation metrics include comparing systems that apply similar
translation methods (Callison-Burch et al., 2006; Reiter, 2018). Running a human
evaluation (expert judgment) can be time-consuming and expensive. In practice, it
can be used to compare a small number of variant systems. Therefore, automated
metrics are prevalent because they can rapidly evaluate system improvements. Most
automatic metrics fall into two groups: metrics based on string overlap and metrics
based on embedding similarity. COMET (Rei et al., 2020) is an embedding sim-
ilarity based metric and is the best-performing of all widely used metrics (Kocmi
et al., 2021; Freitag et al., 2021). It strongly correlates with human evaluations
or expert judgments. ChrF (Popovic, 2015) is also the best-performing among the
string-based metrics (Kocmi et al., 2021). We also used the BLEU (Papineni et al.,
2002) metric because it is so popular (Marie et al., 2021).

We desegmented and detokenized the translation outputs. Since COMET supports
Amharic, we computed it after we “de-romanize” Amharic text back into Ethiopic
script. However, we did not do that for BLEU and ChrF metrics. Strictly speaking,
they are typically tailored for alphabetic writing systems and it is wise to compute
them on the transliterated text. Using these metrics, we ran two statistical sig-
nificance tests, paired Bootstrap (Efron and Tibshirani, 1993; Koehn, 2004) and
Approximate Randomization (Noreen, 1989; Riezler and Maxwell-III, 2005) tests,
to evaluate our models. For consistency, we used the sacreBLEU28 (Post, 2018)
implementations of BLEU29 and ChrF30. With BLEU and ChrF, we ran the paired
Bootstrap and Approximate Randomization tests with 1,000 and 10,000 trials, re-
spectively. For COMET, we used the recommended model, “wmt22-comet-da,”,
and default parameters in version 2.0 of its implementation31. Since COMET’s
implementation supports only the paired Bootstrap test, we did not run the Ap-
proximate Randomization test for COMET.

10.4. Results and Discussions
We performed pairwise statistical significance tests with Bootstrap and Approxi-
mate Randomization by taking 0.05 as a threshold value. Thus, we rejected the
null hypothesis for p-values less than 0.05. In addition, we have provided sample
translations in Appendix D.

With trial training, the optimal vocabulary sizes range from 2,000 to 16,000 when
BPE was trained on joint parallel data. VOLT also suggested that 9,000 is an
optimal size for BPE. For SPULM, the optimal vocabulary size ranges from 4,000
to 16,000; likewise, VOLT estimated it to be 7,000. For Word-Piece, the optimal
vocabulary size ranges from 1,000 to 16,000, but we could not estimate it with
VOLT as VOLT does not support Word-Piece. Appendix C details the results of
the trial training.

After choosing the best subword models for BPE, Word-Piece, and SPULM, we
28Available at https://github.com/mjpost/sacrebleu
29Signature: nrefs:1, case:mixed, eff:no, tok:13a, smooth:exp, version:2.3.1
30Signature: nrefs:1, case:mixed, eff:yes, nc:6, nw:0, space:no, version:2.3.1
31Available at https://github.com/unbabel/COMET
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Direction Model BLEU ChrF2 COMET

am-to-en MorphoSeg 34.0 51.1 81.6
BPE 33.2 (p = .006)* 50.5 (p = .008)* 81.0

(p = .012)* (p = .015)* (p < .001)*
Morfessor 32.7 (p = .001)* 50.3 (p = .001)* 80.6

(p < .001)* (p = .003)* (p < .001)*
SPULM 33.3 (p = .017)* 50.5 (p = .023) 81.0

(p = .028)* (p = .035)* (p = .001)*
Word-Piece 32.8 (p = .001)* 49.9 (p = .001)* 80.7

(p < .001)* (p < .001)* (p < .001)*

en-to-am MorphoSeg 26.4 49.9 86.9
BPE 26.6 (p = .167) 49.3 (p = .015)* 86.6

(p = .475) (p = .035)* (p = .020)*
Morfessor 26.4 (p = .342) 48.9 (p = .001)* 86.2

(p = .876) (p < .001)* (p < .001)*
SPULM 25.9 (p = .079) 48.9 (p = .001)* 86.5

(p = .159) (p < .001)* (p = .003)*
Word-Piece 26.1 (p = .166) 48.9 (p = .001)* 86.4

(p = .406) (p = .001)* (p = .001)*

Table 10.3: Pairwise comparisons of MorphoSeg with conventional subword models.

made comparisons. Table 10.3 presents the results of the conventional subword
models pairwise compared to the MorphoSeg model. For BLEU and ChrF, the
p-values for the Bootstrap test are in parentheses next to the actual scores; for the
Approximate Randomization test, they are in parentheses below the scores. We
only ran the Bootstrap test for the COMET metric; its p-values are in parentheses
below the scores. Thus, five p-values exist for a pair of systems. We decided that
two systems are significantly different if at least three p-values are less than 0.05,
which is indicated by asterisk, using the majority rule.

According to Table 10.3, the MorphoSeg subword models obtained the best scores.
Hence, MorphoSeg outperforms the other methods in both translation directions.
Because of the strongest correlation of COMET with human evaluation (Kocmi
et al., 2021; Freitag et al., 2021), we primarily rely on it. Its superiority in evaluat-
ing machine translation outputs, affords us to safely conclude that the differences
are, in fact, significant. Also, when applying MorphoSeg to Amharic datasets, we
did not disambiguate the part-of-speech (POS) of words in a sentence since the
Amharic morphological analyzer HornMorpho does not have such a feature. The
segmentation of a word varies with its POS as words take on different POS depend-
ing on the context. If the proper disambiguation had been made, we would even
expect more significant differences.

We also compared the traditional subword models (Table 10.4) by taking a subword
model that has the highest COMET score as a baseline. In the Amharic-to-English
translation, the Morfessor and Word-Piece models have lower performance than the
BPE and SPULM models; BPE and SPULM models have equivalent results. In the
reverse translation direction, English-to-Amharic, the Morfessor model has lower
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Direction Model BLEU ChrF2 COMET

am-to-en SPULM 33.3 50.5 81.0
BPE 33.2 (p = .270) 50.5 (p = .0.305) 81.0

(p = .721) (p = .802) (p = .760)
Morfessor 32.7 (p = .033)* 50.3 (p = .153) 80.6

(p = .059) (p = .420) (p = .021)*
Word-Piece 32.8 (p = .036)* 49.9 (p = .006)* 80.7

(p = .068) (p = .014)* (p = .040)*

en-to-am BPE 26.6 49.3 86.6
Morfessor 26.4 (p = .188) 48.9 (p = .068) 86.2

(p = .560) (p = .143) (p = .014)*
SPULM 25.9 (p = .018)* 48.9 (p = .045)* 86.5

(p = .032)* (p = .118) (p = .523)
Word-Piece 26.1 (p = .054) 48.9 (p = .051) 86.4

(p = .112) (p = .117) (p = .229)

Table 10.4: Pairwise comparisons of conventional subword models.

performance than the other models; BPE, SPULM, and Word-Piece models obtain
comparable results.

10.5. Conclusion
We addressed the limitation of conventional word segmentation methods often em-
ployed for Neural Machine Translation (NMT). Furthermore, we investigated the
applicability of these methods for fusion languages. We also devised a morpheme-
based word segmentation method, MorphoSeg, as a remedy to restore phonologi-
cal or orthographic changes at morpheme boundaries. MorphoSeg is a compelling
word segmentation method that solely depends on a language’s morphological ana-
lyzer or treebank. Besides, we compared conventional and morpheme-based NMT
subword models. For the training of subword models, we used different word seg-
mentation methods to segment words into subwords, such as Byte Pair Encoding
(BPE), Word-Piece, Sentence Piece with Unigram Language Modeling (SPULM),
Morfessor, and MorphoSeg. Since the vocabulary sizes in BPE, Word-Piece, and
SPULM impact the performance of the NMT models, we trained several models
with different vocabulary sizes. We also used an optimization technique, Vocabu-
lary Learning via Optimal Transport, to estimate the optimal vocabulary size for
further confirmation. Eventually, we ran statistical significance tests with BLUE,
ChrF, and COMET metrics to compare conventional and morpheme-based NMT
subword models. The morpheme-based models outperformed the conventional sub-
word models in an evaluation study on a benchmark dataset.
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CHAPTER 11

Concluding Remarks

Different strategies have been put out and analyzed in this dissertation that all
help achieve the overarching principal goal, Neural Machine Translation (NMT) for
low-resource fusion languages. Section 11.1 provides a summary of the work while
emphasizing the major contributions. However, despite what may be considered
important measures being taken, some issues still need to be resolved. Therefore,
future research directions are discussed in Section 11.2, along with the limitations
of the suggested strategies.

11.1. Dissertation Summary
The availability of a large quantity and good quality data, especially parallel cor-
pus, determines the success of machine translation. NMT mainly demands such
parallel data to generate competitive models. Therefore, as the preferred language
pair of our study of subword-based NMT for low-resource fusion languages, we col-
lected, preprocessed, segmented, and aligned Amharic-English parallel sentences
from various trustworthy sources. We chose Amharic — it is a low-resource lan-
guage frequently overlooked in contemporary mainstream NMT — because it ex-
hibits root-pattern and fusional morphology. In doing so, we addressed different
issues, such as normalization and spelling correction. We have proposed a method
of a language-independent spelling corrector. It can be ported to other written lan-
guages with little effort as long as they are typed using a QWERTY keyboard with
direct mappings between keystrokes and characters. In fact, the effort it requires is
only tokenization and mapping of characters into Latin alphabets.

As the text corpus for the spelling corrector, we developed a new monolingual
corpus, a Contemporary Amharic Corpus (CACO). We compiled the corpus from
different sources, including newspapers, historical books, political books, short sto-
ries, and novels. These sources meet publication standards and are well-edited. The
corpus consists of approximately 22 million tokens from 25,000 documents.

We evaluated the proposed spelling corrector with the baseline systems. We devel-
oped a manually annotated corpus for Amharic misspellings that can be used to
evaluate spelling error detection and correction. The availability of contextual infor-
mation in the corpus makes it helpful in dealing with both non-word and real-word
spelling errors. The evaluation results for Amharic and English test data confirm
that the spelling corrector system performs better than the baseline systems.

Furthermore, we addressed the limitations of conventional statistics-based word
segmentation methods, which operate on words’ surface form and are often em-
ployed for subword-based NMT. We investigated the applicability of these methods
for fusion languages from a linguistic point of view. In these languages, phono-
logical or orthographic processes alter morpheme boundaries, and the morphemes
do not stand out in the surface forms. It is critical to draw attention to these
flaws to ensure a more equitable representation of many languages in NMT and
prevent the discipline from moving toward effective systems for some languages but
not for others. Thus, we devised a morpheme-based word segmentation method,
MorphoSeg, to restore phonological or orthographic changes at morpheme bound-
aries. MorphoSeg is a compelling word segmentation method that solely depends
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11.1. Dissertation Summary

on a language’s morphological analyzer or treebank. Using such a segmentation
approach instead of unsupervised ones such as BPE, Word-Piece, and SPULM is
innovative. It represents a significant line of research where linguistic knowledge
is somewhat introduced into the model. Besides, we compared conventional and
morpheme-based NMT subword models.

To this end, we created an NMT system for low-resource languages based on a
Transformer-based architecture, which has been empirically demonstrated to out-
perform other systems in both high- and low-resource situations. We improved its
performance by modifying its hyperparameters via a guided random search. Ad-
ditionally, we performed statistical significance tests using the BLUE, ChrF, and
COMET metrics for the evaluation study. We ran the tests in a way that made
them simple to replicate, using standard implementations like sacreBLEU. The
evaluation’s findings for Amharic-English and Turkish-English translation demon-
strated that a larger training batch size enhances system performance. Neverthe-
less, the system’s performance is negatively impacted by drastically reducing the
depth and width of the network. As a result, we responded to the first research
question, RQ1, which is concerned with optimizing NMT hyperparameters dur-
ing system architecture design for training the best NMT models under low data
conditions. Furthermore, in the Amharic-English translation, the improved NMT
models outscored the baseline phrase-based statistical machine translation models
by more than six BLEU points. Additionally, they scored about five higher BLEU
points in the Turkish-English translation than in the baseline models. However,
while it gains about four BLEU points when translated from Vietnamese to En-
glish, it deducts 0.5 BLEU points when translated from English to Vietnamese.
This anomaly shows that rather than utilizing a single set of hyperparameters for
all datasets, we should tune them to a particular dataset. ChrF and COMET mea-
sures display related differences as well. The second research question, RQ2, which
states whether an optimized NMT system outperforms a baseline SMT system in
low-data conditions, was thus addressed. Furthermore, TranShallow1 and TranShal-
low2 deviate significantly from TranDeep for translations between Amharic-English
and Turkish-English; TranShallow1 is the least effective technique in these trans-
lations. The three systems, however, do not significantly differ from one another
when translating from English to Vietnamese. This exceptional case disproves the
widespread assumption that deeper Transformer networks always outperform their
shallower counterparts. This oddity again highlights the necessity to tailor the hy-
perparameters to a dataset rather than using a single set of hyperparameters across
all datasets.

We used a variety of word segmentation techniques, including Byte Pair Encoding
(BPE), Word-Piece, Sentence Piece with Unigram Language Modeling (SPULM),
Morfessor, and MorphoSeg, to split words into subwords for the training of sub-
word models. We trained numerous models with various vocabulary sizes because
the BPE, Word-Piece, and SPULM vocabulary sizes affect how well the NMT mod-
els perform. For additional confirmation, we also estimated the optimal vocabulary
size using an optimization technique, Vocabulary Learning through Optimal Trans-
port. The third research question, RQ3, investigates whether morpheme-based word
segmentation for fusion languages is more effective than conventional methods in
low-resource NMT. In order to evaluate conventional and morpheme-based NMT
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subword models, we ultimately did statistical significance tests with the BLUE,
ChrF, and COMET metrics. The morpheme-based models outperformed the con-
ventional subword models in an evaluation study on a benchmark Amharic-English
dataset. The final research question, RQ4, asks which conventional word segmen-
tation techniques in low-resource NMT work better. Therefore, we compared the
conventional subword models. While BPE and SPULM models have equivalent
results, Morfessor and Word-Piece models have lower performance in the Amharic
to English translation. When translating from English to Amharic in the opposite
direction, the Morfessor model has lower performance than the other models.

11.2. Future Directions
Looking ahead, we propose the incorporation of linguistic knowledge into NMT
models for future work. For example, the Universal Morphology (UniMorph 4.0)
undertaking (Batsuren et al., 2022) recently provided morphological inflection ta-
bles containing morphological features for 182 varied languages. It also offered
morpheme segmentation for sixteen languages. The use of linguistic knowledge can
reduce our heavy reliance on the quality and quantity of parallel data, especially
when translating low-resource languages.

The creation and application of linguistic techniques, such as morphological seg-
mentation, can be another research topic in relation to low-resource NMT. It is
important to investigate the efficacy of other morphological segmentation tools, like
MorphAGram (Eskander et al., 2020), in low-resource NMT of fusion languages.

The success of unsupervised NMT (Lample et al., 2018a; Artetxe et al., 2018) and
multilingual pre-trained models (Tran et al., 2021; Yang et al., 2021) for high-
resource languages requires further investigation for low-resource languages. Then,
we can improve the performance of unsupervised NMT for low-resource languages
and account for languages not included in the multilingual pre-trained models.

In particular to our efforts, we recommend increasing the size of the Amharic-
English parallel corpus by drawing on texts from other well-edited sources. For
example, the Federal Negarit Gazette proceedings of Ethiopia’s House of Peoples’
Representatives provide parallel translations in Amharic and English. The problem
is that most documents available electronically are written in different non-Unicode
fonts or are scanned copies. Nevertheless, parallel data can be obtained from this
source by using font conversion, optical character recognition, and spelling cor-
rection tools. The quality of the parallel corpus is also improved by correcting
grammatical errors. Furthermore, when applying MorphoSeg to Amharic datasets,
we did not disambiguate the part-of-speech (POS) of words in a sentence since the
Amharic morphological analyzer HornMorpho does not have such a feature. How-
ever, since the segmentation of a word varies with its POS as words take on different
POS depending on the context, we strongly recommend the inclusion of POS dis-
ambiguation for future research. Moreover, human evaluation or expert judgment
helps the in-depth analysis of morpheme-based NMT models.

78



APPENDIX A

Amharic Transliteration Table

The Amharic Transliteration Table used in character mapping in Section 9.3.

Table A.1: Basic Script Set

እ ɨ ኧ ə ኡ u ኢ i ኣ a ኤ e ኦ o

ብ b በ bə ቡ bu ቢ bi ባ ba ቤ be ቦ bo

ች c ቸ cə ቹ cu ቺ ci ቻ ca ቼ ce ቾ co

ጭ ċ ጨ ċə ጩ ċu ጪ ċi ጫ ċa ጬ ċe ጮ ċo

ድ d ደ də ዱ du ዲ di ዳ da ዴ de ዶ do

ፍ f ፈ fə ፉ fu ፊ fi ፋ fa ፌ fe ፎ fo

ግ g ገ gə ጉ gu ጊ gi ጋ ga ጌ ge ጎ/ጐ go

ህ h ኸ hə ሁ hu ሂ hi ሃ ha ሄ he ሆ ho

ጅ j ጀ jə ጁ ju ጂ ji ጃ ja ጄ je ጆ jo

ክ k ከ kə ኩ ku ኪ ki ካ ka ኬ ke ኮ/ኰ ko

ል l ለ lə ሉ lu ሊ li ላ la ሌ le ሎ lo

ም m መ mə ሙ mu ሚ mi ማ ma ሜ me ሞ mo

ን n ነ nə ኑ nu ኒ ni ና na ኔ ne ኖ no

ኝ ñ ኘ ñə ኙ ñu ኚ ñi ኛ ña ኜ ñe ኞ ño

ፕ p ፐ pə ፑ pu ፒ pi ፓ pa ፔ pe ፖ po

ጵ ṗ ጰ ṗə ጱ ṗu ጲ ṗi ጳ ṗa ጴ ṗe ጶ ṗo

ቅ q ቀ qə ቁ qu ቂ qi ቃ qa ቄ qe ቆ/ቈ qo

ር r ረ rə ሩ ru ሪ ri ራ ra ሬ re ሮ ro

ስ s ሰ sə ሱ su ሲ si ሳ sa ሴ se ሶ so

ሽ š ሸ šə ሹ šu ሺ ši ሻ ša ሼ še ሾ šo

ፅ ṣ ፀ ṣə ፁ ṣu ፂ ṣi ፃ ṣa ፄ ṣe ፆ ṣo

ት t ተ tə ቱ tu ቲ ti ታ ta ቴ te ቶ to

ጥ ṭ ጠ ṭə ጡ ṭu ጢ ṭi ጣ ṭa ጤ ṭe ጦ ṭo

ቭ v ቨ və ቩ vu ቪ vi ቫ va ቬ ve ቮ vo

ው w ወ wə ዉ wu ዊ wi ዋ wa ዌ we ዎ wo

ይ y የ yə ዩ yu ዪ yi ያ ya ዬ ye ዮ yo

ዝ z ዘ zə ዙ zu ዚ zi ዛ za ዜ ze ዞ zo

ዥ ž ዠ žə ዡ žu ዢ ži ዣ ža ዤ že ዦ žo

Table A.2: Homophone Variants

ዕ ɨ ዐ/አ a ዑ u ዒ i ዓ a ዔ e ዖ o

ሕ h ሐ ha ሑ hu ሒ hi ሓ ha ሔ he ሖ ho

ኅ H ኀ ha ኁ hu ኂ hi ኃ ha ኄ he ኆ/ዀ ho

ሥ s ሠ sə ሡ su ሢ si ሣ sa ሤ se ሦ so

ኽ h ሀ ha ኹ hu ኺ hi ኻ ha ኼ he ኾ ho

ጽ ṣ ጸ ṣə ጹ ṣu ጺ ṣi ጻ ṣa ጼ ṣe ጾ ṣo

Continued to the next page ...
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Table A.3: Labiovelars

ቧ bʷa ጯ ċʷa ቿ cʷa ዷ dʷa ፏ fʷa ጓ/ጔ gʷa ዃ hʷa

ኋ/ኌ hʷa ሗ hʷa ጇ jʷa ኳ/ኴ kʷa ሏ lʷa ሟ/ፙ mʷa ኗ nʷa

ኟ ñʷa ፗ pʷa ጷ ṗʷa ቋ/ቌ qʷa ሯ rʷa ሧ sʷa ሷ sʷa

ሿ šʷa ጿ ṣʷa ቷ tʷa ጧ ṭʷa ቯ vʷa ዟ zʷa ዧ žʷa

Table A.4: Visually Similar Script

ጒ/ጕ gu ኊ/ኍ hu ዂ/ዅ hu ኲ/ኵ ku ቊ/ቍ qu
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APPENDIX B

Common Hyperparameters

Hyperparameters used in the design of system architecture in Section 9.1.

Hyperparameter Value

Activation data type float32
Attention dropout 0.1
Batch shuffle size 512
First kernel size 3
Dropout 0.2
Evaluation frequency in steps 1000
Evaluation steps 100
Evaluation timeout minutes 240
FFN layer dense relu dense
Initializer uniform unit scaling
Initializer gain 1
Kernel height 3
Kernel width 1
Label smoothing 0.1
Layer prepostprocess dropout 0.1
Learning rate 0.2
Learning rate cosine cycle steps 250000
Learning rate decay rate 1
Learning rate decay scheme noam
Learning rate decay steps 5000
Length bucket step 1.1
Max area height 1
Max area width 1
Max length 256
Memory height 1
Min length bucket 8
Mixed precision optimizer init loss scale 32768
Mixed precision optimizer loss scaler exponential
MOE hidden sizes 2048
MOE k 2
MOE loss coef 0.001
MOE number experts 16
MOE overhead evaluation 2
MOE overhead train 1
Multiply embedding mode sqrt depth
Multiproblem label weight 0.5
Multiproblem mixing schedule constant
Multiproblem schedule max examples 10000000
Multiproblem schedule threshold 0.5
NBR decoder problems 1
Norm epsilon 0.000001
Norm type layer
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Continued from the previous page ...

Hyperparameter Value

Optimizer adam
Optimizer adafactor beta2 0.999
Optimizer adafactor clipping threshold 1
Optimizer adafactor decay type pow
Optimizer adafactor memory exponent 0.8
Optimizer adam beta1 0.9
Optimizer adam beta2 0.997
Optimizer adam epsilon 0.000000001
Optimizer momentum 0.9
Position embedding timing
ReLu dropout 0.1
Sampling method argmax
Sampling temp 1
Schedule continuous train and evaluate
Scheduled sampling gold mixin prob 0.5
Scheduled sampling method parallel
Scheduled sampling number passes 1
Scheduled sampling warmup schedule exp
Scheduled sampling warmup steps 50000
Self attention type dot product
Split targets max chunks 100
Standard server protocol grpc
Symbol modality number shards 16
Training steps 250000
Vocabulary divisor 1
Weight data type float32
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APPENDIX C

Results of Trial Training

Since the vocabulary sizes of the subword models are important for Byte Pair En-
coding (BPE), Word-Piece, and Sentence Piece with Unigram Language Modeling
(SPULM), we trained several models with different vocabulary sizes as discussed in
Section 10.4. Furthermore, Sennrich et al. (2016b) claim that learning BPE on the
joint source and target languages’ text for languages that share alphabets increases
the consistency of segmentation. Since we transliterated the Amharic datasets, we
also considered the joint data training of BPE as an additional factor for model
variation. Table C.1 shows the performance results of the BPE subword models
with different vocabulary sizes from one thousand (1K) to 16 thousand (16K) with
the metrics BLEU, ChrF, and COMET32 by taking a subword model that has the
highest COMET score as a baseline. For BLEU and ChrF, the p-values for the
Bootstrap test are in parentheses next to the actual scores; for the Approximate
Randomization test, they are in parentheses below the scores. We ran only the
Bootstrap test for the COMET metric, and the p-values are in parentheses below
the scores. Thus, five p-values exist for a pair of systems. We decided that the two
systems are significantly different if at least three p-values are less than 0.05, which
is indicated by asterisk, using the majority rule.

In Table C.1, the optimal vocabulary size ranges from 2K to 16K when BPE was
trained on joint training data. VOLT (for Vocabulary Learning via Optimal Trans-
port) (Xu et al., 2021) also suggests that 9K is an optimal size. We further empir-
ically analyzed the effect of BPE separate and joint data training. While we could
not see significant differences among the separately trained BPE subword models
in Table C.1, there were differences among the jointly trained models up to one
BLEU point in the Amharic-to-English translation and two BLEU points in the
English-to-Amharic translation. The other metrics as well indicate similar results.
For clarity, we also presented the results in Table C.2 with a different format.

Table C.3 shows performance results of Word-Piece subword NMT models with
different vocabulary sizes ranging from one thousand (1K) to 32 thousand (32K).
We obtained optimum results when the vocabulary sizes were between 1K and 16K,
but we could not estimate it with VOLT as VOLT does not support Word-Piece.
The differences in vocabulary sizes induce up to 0.8 and 1.2 BLEU points in the
Amharic-to-English and English-to-Amharic translations.

Table C.4 shows performance results of SPULM subword NMTmodels with different
vocabulary sizes ranging from one thousand (1K) to 32 thousand (32K). We gained
optimum results when the vocabulary sizes were between 4K and 16K. VOLT also
suggests that 7K is an optimal size.

32For trial training, we used the COMET’s recommended model, “wmt20-comet-da,”, and default
parameters in version 1.3.3.
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Table C.1: Performance results of BPE subword models with different vocabulary
sizes, both separate and joint data training of BPE.

Direction Model BLEU ChrF2 COMET

am-to-en BPE-Joint-2K 33.2 50.5 0.3384
BPE-1K 32.8 (p = .056) 50.2 (p = .123) 0.3290

(p = .139) (p = .294) (p = .144)
BPE-2K 33.3 (p = .222) 50.3 (p = .210) 0.3375

(p = .653) (p = .599) (p = .856)
BPE-4K 33.3 (p = .267) 50.3 (p = .183) 0.3205

(p = .730) (p = .530) (p = .009)*
BPE-8K 33.3 (p = .324) 50.0 (p = .038)* 0.3196

(p = .825) (p = .057) (p = .009)*
BPE-16K 32.9 (p = .144) 49.8 (p = .007)* 0.3027

(p = .394) (p = .010)* (p < .001)*
BPE-Joint-1K 32.2 (p = .001)* 49.9 (p = .001)* 0.3285

(p = .001)* (p = .011)* (p = .101)
BPE-Joint-4K 32.9 (p = .146) 50.2 (p = .120) 0.3210

(p = .392) (p = .298) (p = .018)*
BPE-Joint-8K 33.3 (p = .325) 50.3 (p = .145) 0.3255

(p = .836) (p = .432) (p = .058)
BPE-Joint-16K 33.3 (p = .233) 50.0 (p = .035)* 0.3197

(p = .628) (p = .057) (p = .009)*

en-to-am BPE-4K 26.6 49.3 0.5538
BPE-1K 26.0 (p = .034)* 49.2 (p = .250) 0.5528

(p = .055) (p = .726) (p = .988)
BPE-2K 26.4 (p = .198) 49.3 (p = .418) 0.5534

(p = .567) (p = .992) (p = .939)
BPE-8K 26.4 (p = .180) 48.6 (p = .006)* 0.5340

(p = .497) (p = .007)* (p = .014)*
BPE-16K 26.1 (p = .043)* 47.9 (p = .001)* 0.5067

(p = .088) (p < .001)* (p < .001)*
BPE-Joint-1K 24.6 (p = .001)* 48.1 (p = .001)* 0.5171

(p < .001)* (p < .001)* (p < .001)*
BPE-Joint-2K 25.6 (p = .001)* 48.9 (p = .074) 0.5218

(p = .001)* (p = .144) (p < .001)*
BPE-Joint-4K 26.4 (p = .193) 49.2 (p = .154) 0.5477

(p = .565) (p = .498) (p = .407)
BPE-Joint-8K 26.6 (p = .356) 48.9 (p = .052) 0.5480

(p = .899) (p = .122) (p = .438)
BPE-Joint-16K 26.6 (p = .351) 48.7 (p = .006)* 0.5290

(p = .899) (p = .015)* (p = .002)*
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Table C.2: Pairwise comparison of separately and jointly trained BPE models on
source and target training data.

Direction Model BLEU ChrF2 COMET

am-to-en BPE-1K 32.8 50.2 0.3290
BPE-Joint-1K 32.2 (p = .014)* 49.9 (p = .064) 0.3285

(p = .030)* (p = .030)* (p = .838)
BPE-2K 33.3 50.3 0.3375

BPE-Joint-2K 33.2 (p = .222) 50.5 (p = .210) 0.3384
(p = .653) (p = .599) (p = .857)

BPE-4K 33.3 50.3 0.3205
BPE-Joint-4K 32.9 (p = .101) 50.2 (p = .253) 0.3210

(p = .215) (p = .650) (p = .866)
BPE-8K 33.3 50 0.3196

BPE-Joint-8K 33.3 (p = .404) 50.3 (p = .091) 0.3255
(p = .969) (p = .209) (p = .433)

BPE-16K 32.9 49.8 0.3027
BPE-Joint-16K 33.3 (p = .075) 50 (p = .175) 0.3197

(p = .161) (p = .517) (p = .013)*

en-to-am BPE-1K 26 49.2 0.5528
BPE-Joint-1K 24.6 (p = .001)* 48.1 (p = .001)* 0.5171

(p < .001)* (p < .001)* (p < .001)*
BPE-2K 26.4 49.3 0.5534

BPE-Joint-2K 25.6 (p = .002)* 48.9 (p = .051) 0.5218
(p = .002)* (p = .111) (p < .001)*

BPE-4K 26.6 49.3 0.5218
BPE-Joint-4K 26.4 (p = .193) 49.2 (p = .154) 0.5477

(p = .565) (p = .498) (p = .407)
BPE-8K 26.4 48.6 0.5340

BPE-Joint-8K 26.6 (p = .170) 48.9 (p = .103) 0.5480
(p = .421) (p = .215) (p = .084)

BPE-16K 26.1 47.9 0.5067
BPE-Joint-16K 26.6 (p = .043)* 48.7 (p = .002)* 0.5290

(p = .110) (p = .005)* (p = .016)*
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Table C.3: Performance results of Word-Piece subword models with different vo-
cabulary sizes.

Direction Model BLEU ChrF2 COMET

am-to-en Word-Piece-4K 32.8 49.9 0.3304
Word-Piece-1K 32.2 (p = .033)* 49.8 (p = .198) 0.3165

(p = .061) (p = .591) (p = .037)*
Word-Piece-2K 32.2 (p = .026)* 49.6 (p = .069) 0.3103

(p = .057) (p = .180) (p = .005)*
Word-Piece-8K 33.0 (p = .170) 50.0 (p = .345) 0.3035

(p = .494) (p = .867) (p < .001)*
Word-Piece-16K 32.9 (p = .212) 49.9 (p = .330) 0.3074

(p = .623) (p = .835) (p = .002)*
Word-Piece-32K 32.2 (p = .034)* 49.1 (p = .001)* 0.2835

(p = .056) (p < .001)* (p < .001)*

en-to-am Word-Piece-4K 26.1 48.9 0.5466
Word-Piece-1K 25.5 (p = .017)* 48.9 (p = .429) 0.5410

(p = .036)* (p = .991) (p = .456)
Word-Piece-2K 25.7 (p = .061) 48.7 (p = .128) 0.5303

(p = .136) (p = .319) (p = .031)*
Word-Piece-8K 26.4 (p = .151) 48.7 (p = .105) 0.5402

(p = .411) (p = .285) (p = .374)
Word-Piece-16K 26.7 (p = .014)* 48.8 (p = .185) 0.5319

(p = .047)* (p = .526) (p = .063)
Word-Piece-32K 26.7 (p = .032)* 48.1 (p = .002)* 0.5158

(p = .056) (p = .001)* (p = .007)*
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Table C.4: Performance results of SPULM models with different vocabulary sizes.

Direction Model BLEU ChrF2 COMET

am-to-en SPULM-16K 33.3 50.5 0.3445
SPULM-1K 31.9 (p = .001)* 49.7 (p = .001)* 0.3215

(p < .001)* (p = .002)* (p = .001)*
SPULM-2K 32.3 (p = .001)* 49.9 (p = .005)* 0.3330

(p = .001)* (p = .001)* (p = .085)
SPULM-4K 33.4 (p = .214) 50.7 (p = .151) 0.3442

(p = .635) (p = .373) (p = .983)
SPULM-8K 33.4 (p = .256) 50.4 (p = .188) 0.3414

(p = .727) (p = .570) (p = .528)
SPULM-32K 33.1 (p = .158) 50.2 (p = .077) 0.3330

(p = .428) (p = .217) (p = .073)

en-to-am SPULM-8K 25.9 48.9 0.5382
SPULM-1K 24.5 (p = .001)* 47.7 (p = .001)* 0.4996

(p < .001)* (p < .001)* (p < .001)*
SPULM-2K 25.5 (p = .037)* 48.7 (p = .161) 0.5199

(p = .083) (p = .469) (p = .030)*
SPULM-4K 26.0 (p = .321) 49.0 (p = .334) 0.5373

(p = .817) (p = .840) (p = .910)
SPULM-16K 26.2 (p = .142) 48.6 (p = .123) 0.5233

(p = .390) (p = .305) (p = .064)
SPULM-32K 25.8 (p = .155) 47.6 (p = .001)* 0.4943

(p = .483) (p < .001)* (p < .001)*
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APPENDIX D

Sample Translation Outputs

The following samples show the translation of Amharic sentences into English using
different subword NMT models of Section 10.4. The samples are sorted from short
to long sentences.

Source: በእርግጥ ለዘላለም መኖር እንችላለን?

Transliteration: bəɨrgṭ ləzəlaləm mənor ɨnclalən?

Reference: Can we really live forever?
BPE: Can we really live forever?
Morfessor: Will we really live forever?
MorphoSeg: Can we really live forever?
SPULM: Can we really live forever?
Word-Piece: Can we really live forever?
Source: ሳንድራ እንደተታለለች ወዲያውኑ ተገነዘበች።

Transliteration: Sandra ɨndətətalələc wədiyawnu təgənəzəbəc.

Reference: Sandra quickly discovered that she had been scammed.
BPE: Sandra immediately recognized that she had been deceived.
Morfessor: Sandra saw that she had been removed.
MorphoSeg: Sandra immediately realized that she had been deceived.
SPULM: Sandra immediately realized that she had been abandoned.
Word-Piece: Sandra immediately recognized that she was mistaken.
Source: በዚያው ጊዜ አካባቢ ወላጆቼ ወደ ቤት እንድመለስ ጠየቁኝ።

Transliteration: bəziyaw gize akababi wəlajoce wədə bet ɨndmələs ṭəyəquñ.

Reference: About that time, my parents asked me to come back home.
BPE: About that time, my parents asked me to return home.
Morfessor: About that time, my parents asked me to return home.
MorphoSeg: About that time, my parents asked me to go home.
SPULM: About that time, my parents asked me to go home.
Word-Piece: About that time, my parents asked me to return home..
Source: ከስድስት አመታት በኋላ የመላው አለም ኢኮኖሚ ተንኮታኮተ።

Transliteration: kəsdst amətat bəhʷala yəməlaw aləm ikonomi tənkotakotə.

Reference: Six years later, the whole world economy collapsed.
BPE: Six years later, the whole world economic window came to an end.
Morfessor: Six years later, the global economy collapsed.
MorphoSeg: Six years later, the whole world’s economic developments have been
interrupted.
SPULM: Six years later, the entire world economy has been destroyed.
Word-Piece: Six years later, the global economy sank into the world.
Source: አስጨናቂ ሁኔታዎች የስሜት ቀውስ ሊያስከትሉብን ይችላሉ።

Transliteration: asċənaqi hunetawoc yəsmet qəws liyaskətlubn yclalu.

Reference: Distressing circumstances can have a terrible impact on us.
BPE: Distressing circumstances can cause us feelings of anxiety.
Morfessor: Anxiety can cause us emotional trauma.
MorphoSeg: Distressing events can cause us pain.
SPULM: Stress can cause us emotional pain.
Word-Piece: Distressing situations can cause anxiety.
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Source: የወይራ ዘይት በከፍተኛ መጠን ስለሚመረት በብዛት ጥቅም ላይ ይውላል።

Transliteration: yəwəyra zəyt bəkəftəña məṭən sləmimərət bəbzat ṭqm lay ywlal.

Reference: Olive oil is used copiously, as it is produced there on a large scale.
BPE: Olive oil is achieved in the abundance of attack.
Morfessor: Olive oil is widely used for a high level.
MorphoSeg: Olive oils are widely used, and there is widespread use.
SPULM: Olive oil is highly guided by the product of sophistication.
Word-Piece: The olive oil is so extensive that it pushes on the abundant possible.

Source: ዴስኩን የጎበኙ በርካታ ሃኪሞች በቀዶ ህክምና ወቅት ብዙ ደም እንዳይፈስ ማድረግ እጅግ አስፈላጊ እንደሆነ

ተስማምተዋል።

Transliteration: deskun yəgobəñu bərkata hakimoc bəqədo hkmna wəqt bzu dəm ɨn-

dayfəs madrəg ɨjg asfəlagi ɨndəhonə təsmamtəwal.

Reference: Many doctors who visited the booth agreed that there is a need for
blood conservation in surgical practice.
BPE: many visitors have agreed that practicing surgery is vital to blood transfu-
sion.
Morfessor: his part, dozens of doctors enjoyed the importance of keeping a brief
period of blood polluted.
MorphoSeg: a number of doctors who visited became gifted at a high risk of
flowing blood vessels.
SPULM: many visitors have agreed that having a lot of surgery during the surgery
is vital.
Word-Piece: many physicians have found that it is too important to prevent blood
loss during medical treatment.

Source: እንደ ማንኛውም ሰው ሁሉ አይነ ስውራንም የተለያየ አይነት ስሜት ለማስተላለፍ የሚረዳውን የሰዎችን የድምጽ

ቃና ያስተውላሉ።

Transliteration: ɨndə manñawm səw hulu aynə swranm yətələyayə aynət smet ləmas-

təlaləf yəmirədawn yəsəwocn yədmṣ qana yastəwlalu.

Reference: And like all of us, the blind take careful note of tone, which can convey
a variety of emotions.
BPE: Like any human, they discern the sound and sense of enlightenment that can
help us to pass on various types of blindness.
Morfessor: Like anyone, the blind notice the tone of people who can understand
how to react to different ways.
MorphoSeg: Like everyone, they notice the sound of the tone of voice of the peo-
ple.
SPULM: Like anyone, blind people discern the concept of an eye to convey variety
of emotions.
Word-Piece: Like everyone, people’s voice and tongues introduce various kinds of
emotions.

Source: አምስቱ ጠላፊዎች በአገር ውስጥ በረራ ላይ የነበረውን የአየር ሃይል አውሮፕላን ሚያዝያ 18 ቀን 1993

በማስገደድ ካርቱም ካሳረፉ በኋላ በውስጡ የነበሩትን ተሳፋሪዎች በመልቀቅ እጃቸውን ለሱዳን መንግስት መስጠታቸው የሚታወስ

ነው።

Transliteration: amstu ṭəlafiwoc bəagər wsṭ bərəra lay yənəbərəwn yəayər hayl awro-

plan miyazya 18 qən 1993 bəmasgədəd kartum kasarəfu bəhʷala bəwsṭu yənəbərutn təsa-

fariwoc bəməlqəq ɨjacəwn ləsudan məngst məsṭətacəw yəmitawəs nəw.

Reference: It’s to be recalled that the five kidnappers after having obliged the
airplane that was having a local flight on April 26, 2001 landed it in Khartoum,
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released the people on board and gave themselves up to the Sudan government.
BPE: It is to be recalled that five enemies gave their hands in Sudan by disturbing
the air force plane that was in the country on April 18, 2001 and after scheduling
the Khartoum passed on by.
Morfessor: It is to be recalled that the five kidnappers used to hand the passen-
gers down to Sudan government by giving the heads of the passengers who were in
their arms on April 18, 2001, after threatening airport.
MorphoSeg: It is to be recalled that the five kidnappers left the air force in their
country on April 18, 2001 to put the passengers behind bars and handed them over
to Sudan.
SPULM: It is to be recalled that the five enemies released the air force airplane
that was on its way to April 18, 2001 and released their hand to Sudanese govern-
ment.
Word-Piece: The five enemys are to give their hand over to Sudan with out pas-
sengers’ hand after diverting the air force on May 18, 2001, the dispute was to be
recalled.
Source: በ 1930 ዎቹ በአለም ላይ በተከሰተው ታላቅ የኢኮኖሚ ድቀት ወቅት በቺካጎ፣ ኢሊኖይ፣ ዩናይትድ ስቴትስ

ከቤት ኪራይ ጋር በተያያዘ አመጽ ተነስቶ ነበር፤ በመሆኑም የከተማይቱ ባለስልጣናት ተከራዮችን ከተከራዩት ቤት የማስወጣቱ

እንቅስቃሴ እንዲቆም እንዲሁም አንዳንድ ተቃዋሚዎች ስራ እንዲያገኙ አድርገዋል።

Transliteration: bə 1930 wocu bəaləm lay bətəkəsətəw talaq yəikonomi dqət wəqt bə-

cikago, ilinoy, yunaytd stets kəbet kiray gar bətəyayazə aməṣ tənəsto nəbər; bəməhonum

yəkətəmaytu baləslṭanat təkərayocn kətəkərayut bet yəmaswəṭatu ɨnqsqase ɨndiqom ɨndi-

hum andand təqawamiwoc sra ɨndiyagəñu adrgəwal.

Reference: In response to so called rent riots in Chicago, Illinois, U.S.A., that
occurred during the great depression of the 1930’s, city officials suspended evictions
and arranged for some of the rioters to get work.
BPE: During the 1930’s, world economic downfall was raised in Chicko, U.S.A.,
with regards to rent accounts for local oppositions and some oppositions to function
in the activities of the city.
Morfessor: In the 1930’s, the world grew up during a great depression in the nation
of economic depression as a result of the Jerusalem crisis, contact with housebounds,
enforced security officials from house to house, and oppositions stopped.
MorphoSeg: In the 1930’s, during the great depression in the world, an violence
in the United States was formed in rebellion against houses, so the city authorities
could stand up to ground troops to get jobs from their rent.
SPULM: During the 1930’s, an average of great economic breakthroughs in the
world between China, U.S.A., U.S.A., and some staffs of the town’s authorities had
influenced themselves to stop checking chores.
Word-Piece: During the 1930’s a great depression on the world’s economic depres-
sion, Missouri, U.S.A., U.S. home rebellion was issued, and some opposers promoted
headquarters and opposed virtually.
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