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Abstract

In this thesis we lay the foundations to develop multirelational learning systems
which can cope better with the challenges posed by structural and topological
domains. Even though many interesting application domains contain structural
or topological data, current multirelational systems have difficulties dealing with
the complexity of the search space of theses domains, their indeterminacy, and
the presence of non-discriminating relations. In this work, we describe macro-
operators which are a formal method to reduce the search space explored in
structural or topological domains and can also be used to alleviate the myopia
of greedy systems. We also explore parallel search based on stochastically se-
lected examples to reduce the instability of example-driven learning. As a third
contribution, we present active inductive learning as an approach to improve the
efficiency of the instance space exploration.



Zusammenfassung

Diese Dissertation legt die Grundlage zur Entwicklung multirelationaler Lern-
verfahren, die strukturelle und topologische Anwendungsbereiche erfolgreich
bearbeiten können. Obwohl viele gängige Anwendungsbereiche strukturelle und
topologische Daten enthalten, ist es für herkommliche multirelationale Lernver-
fahren schwierig, diese Lernaufgabe zu bewältigen. Das liegt an der Komplex-
ität ihres Suchraums, an ihrer Unbestimmtheit und an den vorliegenden nicht-
diskriminierenden Relationen. Diese Arbeit stellt die Methoden macro-operators,
Parallel-Suche und aktives induktives Lernen vor. Macro-operators sind eine
formale Methode, um den Suchraum in den erwähnten Anwendungsbereichen
einzuschränken. Zudem sind macro-operators geeignet zur Verringerung der
Kurzsichtigkeit von auf gieriger Suche basierenden Systemen. Durch die Anwen-
dung der Parallel-Suche, die auf zufällig ausgewählten Beispielen basiert, kann die
Stabilität von example-driven Verfahren verbessert werden. Aktives induktives
Lernen ist eine Methode, die eine effizientere Erforschung des Instanzenraums
ermöglicht.
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1 Introduction

The question whether computers are able to learn has been a perennial topic
in artificial intelligence research. As far back as 1959, Samuel [96] worked on
a checkers program that improved its performance through learning. Machine
learning is the branch of artificial intelligence (AI) which deals with the construc-
tion of systems which are able to learn. Being able to learn means that the system
is capable of improving with experience, or of the autonomous acquisition and in-
tegration of knowledge. Multirelational learning or inductive logic programming
(ILP) [33, 71, 76, 103] is a subfield of machine learning concerned with learning
concept definitions from examples using a first-order representation.

Multirelational learning has been applied to several real-world problems1 such
as finite element mesh design [26], predicting the mutagenicity of chemical com-
pounds [100], classification of river water quality [7], detection of traffic prob-
lems [32], and protein secondary structure prediction [74]. Despite these suc-
cesses, ILP systems still have difficulties dealing with application domains con-
taining structural or topological data. Structural data contains information about
the parts, arrangement and composition of complex entities or objects; e.g., infor-
mation about the components of a mechanical structure or about the hierarchy of
a company. Topological data contains information about geometrical and spatial
relations among entities or objects; e.g., the relative position of a piece in a board
game with respect to other pieces on the board or the position of a robot in a
room. Many interesting application domains contain structural or topological
data. In this thesis, we address the question: how to efficiently learn in domains
with structural/topological information. Specifically, we lay the foundations to
develop ILP systems which can better cope with the challenges posed by domains
with structural or topological data. These challenges are the combinatorial na-
ture of structural/topological domains, their indeterminacy, and the presence of
non-discriminating relations.

1For an overview of ILP applications the reader is referred to [8, 28].
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1 Introduction

In the next section we explain why a first-order data representation is needed.
After that, we illustrate the challenges posed by structural/topological domains.
Section 1.3 enumerates the contributions of this thesis, and Section 1.4 describes
this thesis structure.

1.1 Why a Relational Data Representation?

Machine learning approaches (e.g., neural networks, Bayesian learning, rein-
forcement learning, genetic algorithms, decision tree learning, multirelational
learning, and kernel methods) differ from each other in the way knowledge and
data are represented. A main distinction is drawn between propositional (also
called attribute-value) and relational (also called first-order) representations. In a
propositional representation, the data contains attributes (or features) and their
values, and an example is usually described as a vector of values of fixed size.
On the other hand, in a relational representation, the data contains not only
information about the value of the attributes but also about relations among
elements in the domain of discourse, and an example is usually described as a
set of tuples of several relations.

Due to the simplicity of their data representation, propositional algorithms are
usually more efficient than relational ones. Because of this efficiency, several re-
searchers [56] have developed methods to transform relational learning problems
into a propositional representation and then solve them using a propositional
algorithm. Such a transformation is called propositionalization. In database
terminology, propositionalization means to store in one single table the informa-
tion contained in multiple tables of a relational database. However, as described
in [105], there are two problems associated with this process: redundancy and
information loss. What is more, De Raedt [17] has shown that the complete
transformation of non-trivial multirelational problems to an attribute-value rep-
resentation is computationally too expensive to be applied in practice.

In addition, a first-order representation has two main advantages over an
attribute-value representation. First, the relational representation provides with
a more expressive description language, and second, the learning results are more
understandable and general. As an example, consider a learning problem from
the games domain: to predict whether a given unknown tile in a Minesweeper2

board (see Figure 1.1) contains a mine or not. In an attribute-value representa-
tion, we can choose to have a binary target attribute indicating whether a square
in the board contains a mine (e.g., tile4IsMine is true if the top right square

2Minesweeper is a common one-person computer game. More about this game can be found
in Chapter 8.
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1.1 Why a Relational Data Representation?
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Figure 1.1: A Minesweeper board

boardID tile4IsMine tile1 tile2 tile3 tile4 tile5 . . . tile16
1 false null null null null 2 . . . null
...

...
...

...
...

...
...

...
...

Table 1.1: An attribute-value representation of Minesweeper

minesAround(tile5,2) isMine(tile1)
minesAround(tile7,1) not(isMine(tile3))
minesAround(tile9,1) not(isMine(tile4))

...
...

neighbourOf(tile5,tile1)
neighbourOf(tile5,tile9)

...

Table 1.2: A relational representation of Minesweeper

is a mine), and we can also have integer attributes indicating the number of
mines around a square (see Table 1.1). Since in Minesweeper the neighborhood
relation between tiles is very important, we need to introduce this information
in our propositional representation. One way to do it is to provide a set of eight
attributes for each tile to indicate its neighbours. This representation is not
only too cumbersome but also dependent on the size of the board and contains
null values for several attributes. Besides that, the learning result would be a
collection of very specific rules such as:

if (tile4 = 0) and (neighbour4,1 = tile3) then (tile3IsMine = false).

In contrast, in a first-order representation we can have several relations such as
minesAround, neighbourOf, and isMine and represent the examples and the
information on the board as shown in Table 1.2. With a relational representation,
the following rule, for instance, could be obtained:

if minesAround(A,0) and neighbourOf(A,B) then not(isMine(B)).

3
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This rule is more general than our propositional one because it contains variables
and relations. In addition, a first-order representation is independent of the size
of the board and allows us to include in the learning process knowledge about
relations among elements in the domain. That is, in our Minesweeper example,
we can express the spatial relations among the tiles and the arithmetic relations
among the numbers appearing on the tiles.

1.2 Challenges of Structural/Topological Domains

To illustrate why structural/topological domains are challenging for ILP Systems,
let us take the domain of hand drawn sketches. The learning task is to find rules
to classify hand drawn sketches according to the object they represent; e.g.,
chair, wheel, table, etc. Since the sketches are composed of simple geometrical
forms (e.g., circle, square and triangle), the domain has structural relations such
as partOf. For example, a circle is part of a wheel sketch. In addition, there
are topological relations describing the placing of each simple form (also called
stroke) with respect to other strokes in the sketch; e.g., overlap, near, and
insideOf. Finally, there are also predicates describing properties of the strokes
such as shape, size, and orientation. In this domain, the following rule could
be used to classify hand drawn sketches of wheels.

if partOf(Sketch,Stroke1) and shapeOf(Stroke1, circle) and
insideOf(Stroke1,Stroke2) and shapeOf(Stroke2, circle) then

wheel(Sketch).

We explain now the challenges imposed by structural/topological domains.

1. Complexity of the search space

Predicates denoting structural or topological relations introduce references
to new elements in the condition part of the rules. For example, relations
such as partOf and insideOf introduce a new reference to a stroke in the
rule. When a reference to a new stroke (e.g., Stroke1 in the rule above) has
been made in a rule all predicates characterizing this stroke can be included
in the rule too. Some of these predicates may denote as well structural or
topological relations and introduce new references to other elements in the
domain (e.g., Stroke2), which in turn originates that predicates about
these other elements have to be taken into account for inclusion in the rule,
and so on.

The set of all rules that can be constructed using the predicates denoting
relations among elements in the domain or characterizing those elements
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is called hypothesis space. By depicting the hypothesis space as a search
tree, one can visualize that every new reference to an element creates new
branches in the search tree. Each new branch in the search tree increases
exponentially the size of the hypothesis space; i.e., the number of rules we
have to look at.

Depending on the number of elements and relations in the domain, the
search tree can rapidly become so huge that it is not possible to look effi-
ciently at all the rules to find the “best” ones. In this case, one alternative
is to prune the tree; i.e., to leave out some branches. However, by pruning
the search tree, we may remove the rules we are looking for. To avoid this,
what is needed is an approach to reduce the size of the search tree with the
following properties.

a) Safe: Only rules which cannot be selected as best clauses should be
discarded.

b) General: The approach should be suitable for every struc-
tural/topological domain.

c) Effective: The search space should be substantially reduced.

d) User-friendly: The approach should not imply extra work for the
user.

However there is no such approach in ILP.

2. Non-discriminating relations

Usually, relations that introduce into a rule new references to elements in
the domain do not help to distinguish among examples belonging to differ-
ent classes. For instance, the relation partOf does not help to differentiate
between sketches of wheels and sketches of chairs because both sketches
are formed by strokes. We call these relations non-discriminating.

Suppose we have a search algorithm, which evaluates all the relations that
can be included in the condition part of a rule at one level of the search
tree, and then, selects the one with the highest evaluation value before look-
ing at the next level of the search tree. Such a search algorithm is called
hill-climbing search. Because partOf does not differentiate between exam-
ples belonging to different classes, it is evaluated by hill-climbing search as
unimportant or useless, and it is not selected to construct a rule. Thus,
hill-climbing search may end up with a non-optimal rule. In this case,
the algorithm cannot “see” that partOf combined with other relations is
important and it is said to suffer from myopia. Currently, there are ILP
approaches which reduce the myopia of hill-climbing; however, they are
either general or user-friendly but not both.
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3. Instability

Several ILP systems use one or a few positive examples to guide the search
in the hypothesis space. This approach is called example-driven or data-
driven and is quite effective to learn complex rules (such as the rules usually
needed in structural/topological domains). However, this approach has the
drawback that since only one or a few individual examples are selected as
a basis to search for a rule in each round, the choice of examples can
have a significant effect on the quality and contents of the rules obtained.
That means that the user cannot rely on obtaining identical, or at least
identically performing rules in different runs with the same examples; i.e.,
the learning system is instable.

Although it is well known that example-driven systems potentially exhibit
the instability described above, their instability has not been considered in
great detail in the literature.

4. Inefficient exploration of the instance space

Since in many games structural and topological relations constitute an
important part of the relations in the domain, games have been a frequent
application domain in our research. In this way, we realized that games
introduce an extra challenge for ILP which is the amount of examples (i.e.,
thousands) required to obtain information about most of the possible game
situations. Considering thousands of examples when evaluating a rule slows
down the learning process because the rule has to be applied to every single
example.

In addition, since in games there are rare or exceptional cases which have
to be considered by the set of rules obtained, random sampling is not an
optimal solution because it may result that no instances of some rare case
are present in the examples (which could prevent the system from learning
a complete set of rules). For example, in chess one may have a lot of
examples about the opening moves but very few examples about end-game
moves of king-rook versus king-knight, and for a learning system it would be
optimal to have only some instances of opening moves and all the examples
available for end-game moves.

1.3 Thesis Contributions

The main motivation behind this work is to lay the foundations to develop mul-
tirelational learning systems capable to better deal with the challenges posed

6



1.4 Thesis Outline

by structural/topological application domains. Specifically in this thesis we pro-
posed the following solutions to deal with the problems described above.

� Problem: Complexity of the search space.
Thesis contribution: Macro-operators.

We propose macro-operators as a formal approach to reduce the hypoth-
esis space searched by a system in domains with topological/structural
data. Macro-operators are general, safe, effective and user-friendly. We
also elaborate a formal theory which supports the use of macro-operators,
and provide correct and complete algorithms for their generation.

� Problem: Non-discriminating Relations.
Thesis contribution: Macro-operators.

We introduce macro-operators also as an approach to allow ILP learning
systems to more accurately assess the relevance of structural/topological
relations to construct adequate rules. Macro-operators do not imply ex-
tra work for the user and can be applied to every structural/topological
domain; i.e., they are general and user-friendly.

� Problem: Instability.
Thesis contribution: Parallel Search.

We show that by performing independent parallel searches on several
stochastically selected examples, the instability of example-driven learning
is reduced. Parallel search is combined with exhaustive and hill-climbing
search.

� Problem: Inefficient exploration of the instance space.
Thesis contribution: Active Inductive Learning.

We introduce active inductive learning to deal with the instance space ex-
ploration problem. Active inductive learning consists in integrating active
learning [15] in a multirelational learning framework. Basically, a system
uses the knowledge it obtains during learning to suggest explorations of un-
known portions of the instance space and uses this exploration to validate
the rules already obtained.

To empirically evaluate these contributions, we developed Mio, an example-
driven multirelational learning system.

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 introduces logic programming
notions relevant to ILP and Chapter 3 examines learning and search issues con-
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cerning multirelational learning. The goal of these two chapters is to provide all
the background material required to understand the remaining chapters.

Chapter 4 describes in detail a basic approach for ILP which is modified and
improved through the thesis.

Chapter 5 elaborates the formal theory behind macro-operators, provides algo-
rithms for their generation, identifies the required properties of the application
domain that allow their use, and introduces Mio, our multirelational learning
system. This chapter is partially based on the paper Macro-operators in Mul-
tirelational Learning: a Search-Space Reduction Technique [79] presented in 2002
at the European Conference on Machine Learning.

In Chapter 6, the use of macros to overcome the myopia of hill-climbing search is
explained and compared with previous approaches to solve the shortsightedness
of greedy algorithms. Part of the work described in this chaper is contained
in the paper A Comparative Study on Methods for Reducing Myopia of Hill-
climbing Search in Multirelational Learning [83] accepted for presentation at the
International Conference on Machine Learning, 2004.

Chapter 7 is dedicated to discuss in detail parallel search. This chapter is par-
tially based on the paper On the Stability of Example-Driven Learning Systems:
a Case Study in Multirelational Learning [81] which won a Best Conference Paper
Award at the Mexican International Conference on Artificial Intelligence 2002.

In Chapters 5 to 7 the reader will find sections devoted to related work and
empirical evaluations of each contribution.

Chapter 8 introduces the task of learning a playing strategy for Minesweeper,
a widely distributed one-person computer game, which is taken as an instance
of a highly structural/topological application domain. In addition, this chapter
discusses active inductive learning which allows for an efficient exploration of
the instance space and illustrates how the use of macro-operators and active
inductive learning allowed Mio to learn a playing strategy for this game. Part of
the work described in Chapter 8 is contained in the paper Learning Minesweeper
with Multirelational Learning [82] presented at the International Joint Conference
on Artificial Intelligence in 2003.

Conclusions and pointers to future work are given in Chapter 9.
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This chapter discusses logic programming notions relevant for multirelational
learning and its main goal is to define the terms used throughout the thesis. As
usual in logic, we deal separately with the syntax (the rules to construct well-
formed structures admitted by the grammar of the formal language) and the
semantics (the meaning assigned to those structures) of first-order logic. The
definitions here provided are mostly taken from [61] and [76]. For this chapter,
it is assumed the reader has some logic background. A complete introduction to
logic programming can be found in [61].

2.1 Syntax

The first thing we need to construct well-formed syntactical structures admitted
by the grammar of a formal language is an alphabet.

Definition 2.1 – Alphabet. An alphabet consists of the following classes of
symbols:

1. A set of constants.
2. A non-empty set of variables.
3. A set of function symbols. Each function symbol has a natural number (its

arity) assigned to it.
4. A non-empty set of predicate symbols. Each predicate symbol has a natural

number (its arity) assigned to it.
5. Five connectives: ¬, ∨, ∧, →, and ↔.
6. Two quantifiers: ∃ and ∀.
7. Three punctuation symbols: ’(’, ’)’ and ’,’.

Definition 2.2 – Arity. The arity of a function or predicate symbol gives the
number of arguments the function or predicate symbol has.
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For instance, the mathematical function f(x, y) = x+ y has two arguments and
its arity is thus two. Predicates and functions are commonly described by their
name followed by their arity, e.g., f/2. In general, a function or predicate symbol
of arity n is called an n-ary function or predicate. In this thesis, we adopt Prolog
conventions for naming constants, variables, function and predicate symbols.

Now we define the two well-formed syntactic structures (terms and formulas)
that can be constructed with an alphabet.

Definition 2.3 – Term. A term is defined as follows:

1. A variable is a term.
2. A constant is a term.
3. If f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn)

is a term.

Definition 2.4 – Formula. Well-formed formulas (or just formulas) are defined
as follows:

1. If p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn)
is a formula, called an atom.

2. If φ and ψ are formulas, then ¬φ, (φ∨ψ), (φ∧ψ), (φ→ ψ), and (φ↔ ψ)
are formulas.

3. If φ is a formula and X is a variable, then (∀Xφ) and (∃Xφ) are formulas.

Definition 2.5 – Ground Term. A ground term (respectively ground formula)
is a term (formula) which does not contain any variables.

From an alphabet, one can construct an infinite number of formulas, and all these
formulas form a language.

Definition 2.6 – First-order Language. The first-order language given by an
alphabet is the set of all formulas which can be constructed from the symbols of
the alphabet.

Logic programs use a restricted first-order language where the only class of for-
mulas allowed are clauses. This subset of first-order logic is called clausal logic.

Definition 2.7 – Literal. A literal is an atom or the negation of an atom. A
positive literal is an atom, a negative literal is the negation of an atom.

Definition 2.8 – Clause. A clause is a formula which consists of a finite dis-
junction of zero or more literals. That is, it has the form ∀X1 . . . ∀Xs(l1∨. . .∨lm)
where li is a literal and X1, . . . , Xs are all the variables occurring in l1∨ . . .∨ lm.
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Definition 2.9 – Function-free. A clause is function free, if it does not contain
function symbols of arity 1 or more. A set of clauses is function-free if all its
members are function-free.

Definition 2.10 – Clausal Language. The clausal language given by an al-
phabet is the set of all clauses which can be constructed from the symbols of the
alphabet.

In logic programming, a special clausal notation has been adopted. In this no-
tation the clause

∀X1 . . . ∀Xs(a1 ∨ . . . ∨ ak ∨ ¬g1 ∨ . . . ∨ ¬gn)

where a1, . . . , ak, g1, . . . , gn are atoms and X1, . . . Xs are all the variables occur-
ring in these atoms, is denoted by

a1, . . . , ak ← g1, . . . , gn

In this clausal notation, all variables are assumed to be universally quantified,
the commas in the condition part g1, . . . , gn denote conjunction, and the commas
in the conclusion part a1, . . . , ak indicate disjunction.

A clausal language is usually further restricted to Horn clauses. Although there
is a loss of expressive power by using Horn clauses, it is compensated by a gain
in tractability: sets of Horn clauses are practically and theoretically easier to
handle than sets of general clauses. In fact, the programming language Prolog
uses Horn clauses and most work in ILP is only concerned with Horn clauses.

Definition 2.11 – Definite Program Clause. A definite program clause is a
clause containing one atom in its conclusion part and zero or more literals in its
condition part. That is, it has the form a← g1, . . . , gn. a is called the head and
g1, . . . , gn the body of the program clause.

Definition 2.12 – Unit Clause. A unit clause or fact is a definite program
clause with an empty body (i.e., a←).

Definition 2.13 – Definite Goal. A definite goal is a clause which has an
empty head (i.e., ← g1, . . . , gn). Each gi is called a subgoal of the goal.

Definition 2.14 – Empty Clause. The empty clause, denoted �, is the clause
with empty head and empty body. This clause is to be understood as a contradic-
tion and is also considered to be a goal.

Definition 2.15 – Horn Clause. A Horn clause is either a definite program
clause or a definite goal.
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2 Logic Programming for ILP

Horn clause︷ ︸︸ ︷
head︷ ︸︸ ︷

no payment due(Person)←
body︷ ︸︸ ︷

enrolled︸ ︷︷ ︸
predicate

(Person,School,N︸ ︷︷ ︸
arguments

)

︸ ︷︷ ︸
literal

, geq(N, 12).

Figure 2.1: An example of a Horn clause

Figure 2.1 illustrates a Horn clause and its parts. For simplicity, we refer often
to Horn clauses as clauses. Horn clauses are usually ended with a point.

Definition 2.16 – Definite Program. A definite program is a finite set of
definite program clauses.

Definition 2.17 – Predicate Definition. In a definite program, the set of all
program clauses with the same predicate symbol p (and arity) in their heads is
called the definition of p.

For example, the following three clauses form a predicate definition of the pred-
icate symbol no payment due/1.

no payment due(Person) ← unemployed(Person).
no payment due(Person) ← filed for bankruptcy(Person).
no payment due(Person) ← enrolled(Person,School,N),geq(N,12).

In the same way as we have clausal languages, we also have Horn languages.

Definition 2.18 – Horn Language. The Horn language given by an alphabet
is the set of all Horn clauses which can be constructed from the symbols in the
alphabet.

2.2 Semantics

The truth value of a formula depends on the meaning assigned to each of the
symbols in the formula. The quantifiers and connectives have a fixed meaning
but the meaning of constants, function symbols and predicate symbols varies
according to the domain of discourse. For example, a domain could be a set of
families with two children, a set of mechanical structures, or the set of prime
numbers.
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Each term in the language refers to an object or element in the domain, each
function symbol denotes a mapping on the domain and each predicate symbol
denotes a relation in the domain. Specifying a meaning for each symbol and
determining the truth value of each formula is called an interpretation of the
language. An interpretation for which a formula expresses a true statement is
called a model of the formula. We now provide the corresponding definitions.

Definition 2.19 – Pre-interpretation. A pre-interpretation of a first-order
language L consists of the following:

1. A non-empty set D, called the domain of the pre-interpretation which may
be finite or infinite.

2. Each constant in L is assigned an element of D.
3. Each n-ary function symbol f in L is assigned a mapping from Dn to D,

where Dn is the set of all n-tuples of domain elements: Dn = {(d1, . . . , dn) |
for every 1 ≤ i ≤ n, di ∈ D}.

Definition 2.20 – Interpretation. An interpretation I of a first-order lan-
guage L consist of the following:

1. A pre-interpretation J , with some domain D, of L. I is said to be based
on J .

2. Each n-ary predicate symbol p in L is assigned a mapping from Dn to
{true, false }.

Definition 2.21 – Model of a Formula. Let φ be a formula, and I be an
interpretation of a language L. I is a model of φ if I satisfies φ (i.e., the truth
value of φ under I is true).

Definition 2.22 – Model of a Theory. Let Σ be a theory (a set of formulas),
and I an interpretation. I is a model of Σ if I is a model of all formulas φ ∈ Σ.

Definition 2.23 – Logical Consequence. Let Σ be a theory (a set of formulas),
and φ a formula. φ is a logical (or semantic) consequence of Σ (written as
Σ |= φ), if every model of Σ is also a model of φ. Then it is also said that Σ
(logically) implies φ. Similarly, a theory Γ is said to be a logical (or semantic)
consequence of Σ (Σ |= Γ), if Σ |= φ, for every formula φ ∈ Γ. Then it is also
said that Σ (logically) implies Γ.

2.3 Programming Aspects

Logical implication for first-order logic (by Church’s Theorem [10]) is an unde-
cidable problem. That means that there is no algorithm which can in a finite
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number of steps find out whether Σ |= φ, for every φ and Σ. However, there
are proof procedures which given Σ and φ can in a finite number of steps re-
turn the right answer if Σ |= φ, otherwise the procedures answer ’no’ or do not
terminate.

Given a set of formulas Σ (the premises) and a set of inference rules R, a proof
procedure shows the way to derive or construct some formula φ (the conclusion).
The procedure applies R to Σ and previously derived formulas until φ is derived.
The fact that φ can be derived from Σ is written as Σ ` φ. There are two
properties which are desirable in a proof procedure: soundness and completeness.
A proof procedure is sound if all formulas it derives from some Σ are logical
consequences of Σ; and it is complete if it can derive all logical consequences of
Σ.

The two most important inference rules are resolution and subsumption. Since a
formal introduction to resolution is beyond the scope of this chapter, interested
readers are referred to [76]. We now define subsumption.

Definition 2.24 – Substitution. A substitution θ is a finite set of the form
{X1/t1, . . . , Xn/tn}, n ≥ 0, where the Xi are distinct variables and the ti are
terms. Then it is said ti is substituted for Xi. Each element Xi/ti is called a
binding for Xi. The substitution θ is called a ground substitution if every ti is
a ground term. θ is called a variable-pure substitution if every ti is a variable.

Definition 2.25 – Expression. An expression is either a term, a literal, or a
conjunction or disjunction of literals.

Definition 2.26 – Renaming Substitution. Let A be an expression, and
let θ be the variable pure substitution {X1/Y1, . . . , Xn/Yn}. θ is a renaming
substitution for A if each Xi occurs in A, and Y1, . . . , Yn are distinct variables
such that each Yi is either equal to some Xj in θ, or Yi does not occur in A.

Definition 2.27 – Subsumption. Let C and D be clauses. C subsumes D if
there exists a substitution θ, such that Cθ ⊆ D (i.e., every literal in Cθ is also in
D). C properly subsumes D if C subsumes D and D does not subsume C.

Let us illustrate subsumption, assume C and D are the following clauses:

C = no payment due(Person) ← unemployed(Person).
D = no payment due(ana) ← unemployed(ana), female(ana).

by applying the substitution θ = {Person/ana} to C, C subsumes D.

If C subsumes D then C logically entails D (C |= D); however, the reverse is not
always true. That means subsumption is sound but incomplete with respect to
logical implication.
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From the point of view of ILP, an important property of subsumption is that it
introduces a partial order on a set of clauses based on their generality.

Definition 2.28 – Relation Properties. Let R be a relation on a set S.

1. R is reflexive if for all x ∈ S, xRx holds.
2. R is symmetric if for all x, y ∈ S, xRy implies that also yRx.
3. R is transitive if for all x, y, z ∈ S, xRy and yRz implies xRz.
4. R is antisymmetric if for all x, y ∈ S, xRy and yRx implies x = y.

Definition 2.29 – Partial Order. A relation R on a set S is a partial order
on S, if R is reflexive, transitive, and antisymmetric. A partial order is denoted
by �.

Definition 2.30 – Bounds. Let S be a set with a partial order � and let S′ ⊂ S.
An element x ∈ S is an upper bound of S′ if x � y for all y ∈ S′. An upper
bound x of S′ is a least upper bound (lub) of S′, if z � x for all upper bounds
z of S′. If x ∈ S is an upper bound of S′, and if for any upper bound y ∈ S of
S′ we have that x � y implies x ≈ y, then x is called a minimal upper bound
(mub) of S′.

Similarly, an element x ∈ S is a lower bound of S′ if y � x for all y ∈ S′. A
lower bound x of S′ is a greatest lower bound (glb) of S′, if x � z for all lower
bounds z of S′. If x ∈ S is a lower bound of S′, and if for any lower bound y ∈ S
of S′ we have that y � x implies x ≈ y, then x is called a maximal lower bound
(mlb) of S′.

Definition 2.31 – Lattice. A partially ordered set L is a lattice if for every
subset L′ of L, a lub of L′ and a glb of L′ exist. > denotes the top element (lub)
and ⊥ denotes the bottom element (glb) of L.

Definition 2.32 – ILP Terminology. Let T be a set of clauses, S ⊂ T and �
a partial order on T . Then the following definitions are used in ILP:

� If C,D ∈ T and C � D, then C is called a generalization of D (or C is more
general than D), and D is a specialization of C (or D is more specific than
C).

� An upper bound C ∈ T of S is called a generalization of S.
� A lub C ∈ T of S is called a least generalization of S.
� A mub C ∈ T of S is called a minimal generalization of S.
� A lower bound C ∈ T of S is called a specialization of S.
� A glb C ∈ T of S is called a greatest specialization of S.
� A mlb C ∈ T of S is called a maximal specialization of S.

Subsumption and logical implication are the most commonly used generality
orders. Under subsumption, a clause C is more general than D (C � D) if C
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properly subsumes D. In this case, D is a proper specialization (refinement)
of C. Generalization is seen as an “upward” step in the partial order, while
specialization corresponds to a “downward” step. In Section 3.1.2 we explain
how partial orders are used to search for clauses in a hypothesis space.

Note that from a programming point of view, a definite program computes bind-
ings for variables of a definite goal. These bindings correspond to the output of
the program. Thus we talk about input and output arguments of a goal, where
the input arguments are bound before the goal is executed. For instance, assume
we have a logic program that determines whether an individual must pay back a
student loan. In this case, the goal ←no payment due(Person) can be seen
as a request to prove that (∃Person no payment due (Person)) is a logical
consequence of our program; however, it can also be regarded as a request to
provide a specific binding for Person which makes no payment due(Person)
true in the given interpretation. An answer is the output from a program and a
goal.

Definition 2.33 – Correct Answer. Let Π be a definite program and G =←
g1, . . . , gk a definite goal, and θ be a substitution for variables of G (also called
an answer for Π ∪ {G}). We say that θ is a correct answer for Π ∪ {G} if
Π |= ∀((g1, . . . , gk)θ).

2.4 Summary

Since multirelational learning is concerned with inducing concept definitions gen-
erally expressed as logic programs, several terms commonly used in ILP can be
traced back to logic programming terminology. This chapter provides an intro-
duction to logic programming in ILP and defines logic programming terminology
used throughout the thesis.
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3 Learning and Search in Multirelational
Learning

This chapter provides an introduction to learning and search in ILP, and together
with Chapter 2, defines the terms used throughout the thesis. Comprehensive
introductions to ILP can be found in [33, 76, 103]. In Section 3.1, learning
issues in ILP such as learning task, covering algorithm and refinement operators
are reviewed. In Section 3.2, a brief overview of search terminology and search
strategies in multirelational learning is given. Finally, in Section 3.3, some ILP
systems are described.

3.1 Learning in ILP

Machine learning deals with the construction of systems capable of the au-
tonomous acquisition and integration of knowledge. Most learning systems ac-
quire and integrate knowledge from experience, i.e., they perform inductive learn-
ing. Inductive learning can be seen as learning the representation of a function;
i.e., given a collection of examples of a function f , return a function h that ap-
proximates f [95]. To accomplish this task, learning systems search through a
large space of hypotheses to find the hypothesis (generalization) h that best fits
the examples given [64].

Machine learning approaches (e.g., neural networks, Bayesian learning, reinforce-
ment learning, genetic algorithms, decision tree learning, multirelational learning,
and kernel methods) differ from each other in the representation used for exam-
ples, hypotheses and prior knowledge (if available), and whether prior knowledge
and feedback are considered in the learning process. However, sometimes ma-
chine learning approaches overlap; for example, in [37, 50] Bayesian learning and
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ILP are combined, and in [30] reinforcement and multirelational learning inter-
sect. In this section, we describe the task of multirelational learning and how
this task can be accomplished.

3.1.1 Learning Task

Most multirelational learning systems represent examples and hypotheses using
a Horn language and include in the learning process prior knowledge (called
background knowledge in ILP terminology). Typically, a multirelational learning
system takes as input background knowledge B, which provides the system with
information about the domain, and a set of examples E, and has to induce a
predicate definition T which defines a relation on the domain (a formal definition
of this task is given in Definition 3.3). This predicate definition T is used to
classify unseen examples E?, and can be seen as a concept definition or as an
approximation of a boolean function whose value is true for all objects or elements
belonging to that concept.

To define the ILP learning task, we assume a representation similar to the
individual-centered representation [35]. That is, in the examples, terms refer
to elements of specific types in the domain, and the target concept or target
predicate p denotes a relation R in the domain among these elements. The
training examples E represent a proper subset of the set X of all elements of
those types in the domain for which R holds or not, and it is assumed that E
follows a distribution D similar to that of X over which future test examples E?

are drawn. The training examples can be defined as follows.

Definition 3.1 – Training Examples. Let R be a relation in a domain, let X
be the set of all possible instances of R in the domain, let p be a predicate symbol
denoting R, and D be a probability distribution over X. Training examples E of
p are a set of ground facts with the same predicate symbol p (and arity) whose
terms are drawn at random according to D from X such that E = E+ ∪ E−

(positive and negative examples) and E+ ∩ E− = ∅. Each example e ∈ E is
classified as a positive or negative instance of p according to whether R holds or
not among the terms in e.

The learning task definition, which we provide below, fits within the predictive
ILP framework and within the learning from entailment formalization, which is
nowadays the most common ILP problem setting. Note, however, that there are
systems (e.g., CLAUDIEN [19], TILDE [6]) which use other concept learning
formalizations. Learning formalizations differ from each other in the example
representation and the membership function or coverage notion; more details on
the relation among various ILP settings can be found in [16]. In addition, for
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3.1 Learning in ILP

simplicity, we have assumed a single-predicate learning problem where all given
examples are instances of one predicate p; however, multiple-predicate learning
is also considered by ILP Systems (e.g., CLINT [18] and MOBAL [52]).

Based on these assumptions, we define now classification error and the learning
task.

Definition 3.2 – Classification Error and Accuracy. Let T be a predicate
definition of a target concept p, B be a definite program, D be a probability
distribution over the set X of all possible instances of p, and e be an unseen
example drawn at random according to D from X. The classification error of
T with respect to p and distribution D is the probability αT ∈ [0, 1] that T will
misclassify e. e is misclassified by T if T ∧ B |= e and e is a negative instance
of p, or if T ∧B 6|= e and e is a positive instance of p. The predictive accuracy
of T is (1− αT ).

Definition 3.3 – ILP Learning Task. Let B be a definite program, p be a
target concept, X be the set of all possible instances of p, D be a probability
distribution over X, and E be training examples of p. Then the multirelational
learning task is as follows.

Given: B and E.
Find: A set of Horn clauses T in the hypothesis space (see Definition 3.5 below),

such that T is a definition of p and T minimizes the expected classification
error over future instances E? drawn at random (the same as E) according
to D from X. If an example e ∈ E? is classified as a positive instance of p
by T we also say that e is covered (Definition 3.4) by T .

Definition 3.4 – Covering. Let C be a definite program clause, A a ground
atom, and B a definite program. C covers A with respect to B if there is a
ground substitution θ for C, such that the body of C is true with respect to B, and
the head of C is equal to A. Let T be a set of clauses, T covers A if A is covered
by at least one clause C ∈ T .

Now we define the hypothesis space where a system searches for T .

Definition 3.5 – Hypothesis Space. Let B be a definite program, E be training
examples of a target concept p, and V be a non-empty set of variables. The
hypothesis space consists of all Horn clauses whose head has the predicate symbol
p (and arity) as that of the examples in E and whose literals are constructed with
V and the constants, predicates and functions in B and E.

Due to the large size of the hypothesis space, several ILP systems impose re-
strictions on the properties of the clauses they can learn, such as size, depth,
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and determinacy of the clauses, and consider only a subset of the clauses in the
hypothesis space. This subset is the search space of the system. Other systems
(e.g., CLINT [18], FOIL [85], RDT [52]) restrict the choice of first-order language
further and use a function-free Horn language as the hypothesis language.

Definition 3.6 – Depth. Let C be a clause. The depth of C is the largest
variable depth of its variables. The depth of a variable in C is calculated as
follows. Consider C = p(X1, . . . , Xi, . . . , Xn) ← l1, l2, . . . , lr, . . .. All the vari-
ables X1, . . . , Xi, . . . , Xn that appear in the head of C have depth zero, and a
variable V appearing for first time in literal lr has depth d + 1 where d is the
maximum depth of the variables in lr that appear in C before lr, i.e., they occur
in p(X1, . . . , Xi, . . . , Xn)← l1, l2, . . . , lr−1.

For instance, consider the clause in Figure 2.1, the variable Person has depth
zero because it appears in the head of the clause, and the variables School and
N have depth one because the only variable which appears in a previous literal
is Person, which has depth zero. The depth of the clause in Figure 2.1 is equal
to the highest depth value of its variables, which is one.

Definition 3.7 – Determinacy. Let C be a clause. C is determinate if each of
its literals is determinate. A literal lr is determinate if each of its output variables
has exactly one ground binding given the ground bindings of its input variables.
A literal can be determinate or non-determinate depending on the relationship
between its input and output arguments.

Let us exemplify determinacy. Consider the predicate fatherOf/2, where the
first argument is the father and the second argument is the child. The literal
fatherOf(X, Y ) is determinate if Y is the input variable and X is the output
variable since the value of variable X is uniquely defined by the value of variable
Y (a person Y has only one father X); however, if X is the input variable and
Y the output variable, the same literal is non-determinate because the value of
Y is not necessarily uniquely defined by the value of X (father X can have more
than one child Y ).

Definition 3.8 – ij-Determinacy. Let C be a clause. If C is determinate, its
variable depth is at most i and the arity of its predicate symbols is at most j,
then C is called ij-determinate.

3.1.2 Refinement Operators

To search for a clause in the hypothesis space to add to a theory T , most ILP
approaches use a refinement operator. Given a clause C, a refinement operator
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returns a set of clauses which are either specializations or generalizations of C.
Since specialization is seen as a “downward” step in a lattice of clauses, a refine-
ment operator returning a set of specializations of a clause is called a downward
refinement operator. Analogously, operators which compute generalizations of
a clause are called upward refinement operators. Refinement operators were in-
troduced by Ehud Shapiro in MIS, which is an implementation of his Model
Inference Algorithm restricted to Horn clauses [97].

Definition 3.9 – Refinement Operator. Let S be a clausal language with a
partial order �. A downward refinement operator for S and � is a function ρ,
such that ρ(C) ⊆ {D | C � D} for every C ∈ S.

An upward refinement operator for S and � is a function δ, such that δ(C) ⊆
{D | D � C} for every C ∈ S.

Refinement operators allow a system to search step-by-step through a generality
order of clauses for a correct theory T . This ordering structures the hypothe-
sis space and allows the system to organize the search for clauses to be added
to T . Since the ILP learning task has been proven undecidable under logical
implication [51], most ILP approaches use subsumption (Definition 2.27) as par-
tial ordering of the hypothesis space (e.g., CLAUDIEN [19], FOIL, ICL [21],
Progol [68], TILDE [6]). In fact, most multirelational learning systems use a
downward refinement operator for clauses ordered by subsumption.

Usually at the top of the lattice there is a unit clause which covers every example
in E and has the same predicate symbol (and arity) as that of the examples.
A downward refinement operator ρ normally computes only the set of greatest
specializations of a clause C under subsumption by adding literals to the body of C
and by applying substitutions to C. In fact, many downward refinement operators
work by adding to a clause C a literal which is an instance of a predicate available
from the background knowledge.

The search space is restricted to clauses that can be obtained by successively
applying the refinement operator. This approach works if and only if there is
a number of refinement steps to every clause composing at least one adequate
theory. The search space induced by a refinement operator can be represented
as a refinement graph.

Definition 3.10 – Refinement Graph. Let C and D be two clauses. A refine-
ment graph Υ (see Figure 3.1) is a directed graph which has the clauses in the
search space as nodes and contains an edge from C to D if D is a refinement of
C (i.e., D ∈ ρ(C)).

A path in a refinement graph from a clause C to a clause E is called a ρ−chain.
ρd(C) is the set of clauses obtained after d-step refinements of some clause C;
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Figure 3.1: A partial view of a refinement graph induced by a downward refinement
operator under subsumption

for instance, in the refinement graph in Figure 3.1, ρ2(C) = {E1, E2}. d can be
seen as the depth of E1 and E2 in the refinement graph. ρ∗(C) is the set of all
refinements of C; i.e., ρ∗(C) = ρ1(C) ∪ ρ2(C) ∪ . . ..

For practical purposes, a refinement operator ρ should have certain desirable
properties. Ideally, it should be locally finite, complete and proper. If an oper-
ator satisfies all these three properties it is called ideal. ρ is locally finite if for
every clause in the hypothesis space, ρ(C) is finite and computable – otherwise
it cannot be used in a system; ρ is complete if there is a finite ρ-chain from a
clause to each of its specializations – otherwise ρ might not generate all clauses
belonging to a theory; and finally, ρ is proper if it only computes proper special-
izations of a clause – otherwise the refinement graph might contain cycles and the
operator might loop forever. Nienhuys-Cheng and de Wolf [76] proved that ideal
refinement operators do not exist for clausal languages ordered by subsumption
or stronger orders. Thus, since local finiteness is the most important property
for practical purposes, refinement operators are either locally finite and proper,
or locally finite and complete.

3.1.3 Covering Algorithm

In the previous section, we explain a common approach to search for a single
clause. In this section, we introduce the covering algorithm which is the most
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widespread approach in ILP1 to learn a set of clauses. Systems using this al-
gorithm build up a theory by sequentially constructing a set of clauses that
together cover all or most positive examples and none or few negative examples.
Although the goal is to find a theory which minimizes the expected classification
error (Definition 3.2), there is not a unique method to decide how well hypotheses
will perform on unseen data. Most approaches use heuristics based on statistics
about coverage and consistency of the hypotheses (see [40, 59]) to evaluate the
clauses, but other approaches have also been studied (e.g., [99]).

Definition 3.11 – Coverage and Consistency. Let C be a clause and E be
training examples of a target predicate p. The coverage of C with respect to E is
the number of examples in E+ covered by C. The consistency of C with respect
to E is the number of examples in E− covered by C.

Similarly, the coverage of a theory T is the number of examples in E+ covered
by T and its consistency is the number of examples in E− it covers. We say T
has complete coverage with respect to E if T |= E+. T is consistent with respect
to E if and only if T 6|= e, for every e ∈ E−.

To illustrate the covering algorithm, assume there is an existing partial theory Tp

(which is initially empty), background knowledge B, and training examples E.
A system using the covering algorithm constructs first a new clause Cnew, which
covers some positive examples E+′ and few or none of the negative examples,
then removes from E+ the subset E+′ of positive examples covered by Cnew, and
adds Cnew to the partial theory (Tp = Tp ∪ Cnew). This process is repeated until
no positive example remains uncovered (E+ = ∅) or no Cnew can be constructed.
The negative examples determine the level of specialization of every Cnew and are
therefore kept during the whole process.

The covering algorithm described here learns sets of clauses instead of decision
lists (as most multirelational covering systems do). That means that the clauses
are unordered, independent, and several of them may apply to a new example
which has to be classified. In addition, it is described for single-predicate learning.
A way to adapt this algorithm to multiple-predicate (also called multi-class)
learning is to separately construct a theory for each predicate. In this case, when
clauses for predicate p are learned, E+ are the examples belonging to p and E−

are the examples from all the other classes; this works under the preconditions
that all the predicates have the same arity, and that the relations denoted by the
other predicates hold for elements of the same types as the relation denoted by
p.

Multirelational learning systems using the covering algorithm differ from each
other in the approach taken to find Cnew. In fact, ILP systems can be classified

1The reader can consult [40] for a survey of ILP systems using the covering algorithm.
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Figure 3.2: Example-driven covering algorithm

according to various dimensions. One of these dimensions is the direction, top-
down or bottom-up, in which a system searches. In the top-down approach, which
is the typical approach taken by ILP systems (e.g., FOIL, ICL, MIS [97], Progol),
the search starts with a unit clause and proceeds to consider specializations of
this clause. Conversely, in a bottom-up approach the system (e.g., CIGOL [70],
GOLEM [72]) searches from an overly specific clause to a more general one.

Another dimension is whether the individual examples are used to constrain the
search space of the system (example-driven approach), or not (generate-then-
test approach)2. Generate-then-test algorithms (e.g., FOIL, ICL), construct Cnew

based on heuristic measures that take all examples into account. One positive
point of this approach is that, since all examples are taken into account to eval-
uate a clause, few noisy data does not affect the quality of the learning results;

2This terminology is taken from [65].
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a negative point is that generate-then-test systems may have trouble learning
complex rules. Example-driven algorithms (e.g., CIGOL, GOLEM, Progol), on
the other hand, take individual examples as starting points and use them to con-
strain the search space. An important advantage of the example-driven approach
is that individual examples can be used to guide the search for hypotheses. On
the negative side, example-driven algorithms are more easily misled by a few
noisy examples and are hence less robust when the training data contains errors.
Figure 3.2 depicts the example-driven covering algorithm.

Finally, a third dimension is the search strategy used by the system. This strategy
can go from exhaustive search in one extreme to hill-climbing search in the other
extreme. Search issues in multirelational learning are discussed in Section 3.2.

3.2 Search in Multirelational Learning

Search in ILP covering systems is usually done by traversing the refinement
graph (Definition 3.10). In that case, the search algorithm is performed inside
the covering algorithm and uses a refinement operator (Definition 3.9) to traverse
the graph. Typically, the refinement graph is searched level-wise and the quality
of a clause C is estimated using an heuristic function eval(C) called evaluation
function.

Definition 3.12 – Evaluation Function. Let C be a clause. An evaluation
function eval(C) returns a real number for C based on a number of attributes of
C. These attributes typically are the coverage, the consistency and the size of C.

In a top-down approach, the search starts at the top of the lattice, and then, all
or a subset of the clauses in the sets ρd(C), d = 1 . . . n are iteratively evaluated
with eval(C) until either a clause to be added to the theory is found, there are
no more refinements to consider, or the resources assigned to the search are
exhausted. How many clauses are considered at each iteration depends on the
search strategy used.

3.2.1 Breadth-first

In breadth-first search, the clause C at the top of the lattice is considered first,
then all the clauses which are refinements of C, then the refinements of C’s refine-
ments, and so on. In general, breadth-first considers all the refinements at depth
d in the refinement graph before the refinements at depth d+ 1. Breadth-first is
complete and optimal, but it has exponential complexity.
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Top Down Search
Input: The top of the lattice >, B, E, b
Output: Either a clause C or ∅

1. S = {>} /* Ordered set of clauses to consider*/
2. While a clause D ∈ S can be refined or search resources are not

exhausted
a) R = ∅ /* Set of refinements */
b) For every clause D ∈ S that can be refined

i. R = R ∪ ρ(D)
c) Sort R according to eval
d) Let Rb be the best b refinements in R
e) S = Rb

3. Let C be the best evaluated clause in S
4. If eval(C) ≥ minimum value accepted and C covers enough positive

and few enough negative examples in E
a) Then Return C
b) Else Return ∅

Algorithm 3.1: Top-down beam-search

With a Horn language as hypothesis language, breadth-first can be applied only
to small problem instances because the branching factor (i.e., the number of
refinements per clause) can be very large depending on the available background
knowledge. Typically, ILP systems using breadth-first search use other measures
to control the learning complexity (e.g., RDT). Setting b = ∞ in step 2d of
Algorithm 3.1 yields breadth-first search.

3.2.2 IDA*

Iterative deepening A* (IDA*) [53, 54] explores at each iteration all clauses
inside a heuristic threshold. This heuristic threshold can for example be the
size of the clause, number of literals needed to obtain an I/O-complete clause
(Definition 4.7) or a minimum evaluation value. If an iteration finishes without
finding a solution, the heuristic threshold is extended and the search is restarted.
The IDA* algorithm is shown in Algorithm 3.2. IDA* is complete and optimal
as long as an admissible heuristic is used. Admissible heuristics are optimistic in
the sense that they always assume that the goal (in our case, the best refinement
of a clause) is closer than it actually is.
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IDA*
Input: The top of the lattice >, B, E, threshold t
Output: Either a clause C or ∅

1. currentThreshold = t
2. solutionFound = FALSE
3. Do

a) S = {>} /* Ordered set of clauses to consider */
b) Do

i. Let C be the first clause in S
ii. Remove C from S
iii. If eval(C) is maximal and C covers enough positive and few

enough negative examples in E
A. Then solutionFound = TRUE
B. Else If C is inside currentThreshold

Then S = S ∪ ρ(C)
c) Until solutionFound or S = ∅ or search resources exhausted
d) Extend currentThreshold

4. Until solutionFound or search resources exhausted
5. If solutionFound

a) Then Return C
b) Else Return ∅

Algorithm 3.2: Top-down IDA* search

3.2.3 Hill-Climbing

Hill-climbing search is one of the most commonly used search algorithms in ILP
systems (e.g., FOIL, GOLEM, TILDE) due to its efficiency. Hill-climbing consists
in selecting the best refinement of a clause until a clause is reached which cannot
be further refined. By setting b = 1 in step 2d in Algorithm 3.1, hill-climbing
search is performed. If there is more than one best refinement to choose from, hill-
climbing randomly selects one or returns the first one found. Contrary to IDA*
and breadth-first search, hill-climbing does not guarantee optimality because of
the following well-known problems:

1. Local optima (also called myopia). The algorithm does not find a global
optimum if any of the refinement steps along the path to get to the global
optimum is locally suboptimal.

2. Plateaux. Following the “hill-climbing” metaphor, a plateau is an area of
the search space where the evaluation function is essentially flat (i.e., it does
not differentiate between refinements). The search algorithm performs then
a random walk.
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3.2.4 Beam-search

Some systems (e.g., m-FOIL [29], ICL) mitigate the problems of hill-climbing
search by performing beam-search. Beam-search considers the b best refinements
at each level, where b (1 < b � ∞) is the beam width. Algorithm 3.1 shows
the beam-search algorithm. Although beam-search explores a larger search space
than hill-climbing, it does not guarantee optimality either.

3.3 Multirelational Learning Systems

Although Plotkin’s seminal work in ILP [84], in which he formalized induction in
terms of clausal logic, goes back to 1970, multirelational learning became a flour-
ishing field only until the second half of the 1980s. By the beginning of the 1990s,
systems such as FOIL [85], GOLEM [72], LINUS [57] and CIGOL [70] were imple-
mented. With FOIL, Quinlan adapted his attribute-value decision tree algorithm
to work using a first-order representation; LINUS solves relational problems by
propositionalizing them and applying one of several possible attribute-value al-
gorithms to the propositional representation; CIGOL introduced an approach
known as inverse resolution, and GOLEM is based on Plotkin’s ideas.

In 1990 Muggleton coined the name inductive logic programming, and organized
with Pavel Brazdil the first international workshop on ILP. Since then, ILP pa-
pers have regularly appeared in major AI and machine learning conferences, and
several ILP systems have been applied successfully to real-world problems [8, 28].
ILP Systems are also increasingly being used as tools for data mining in business
and marketing applications [105].

There is a vast amount of ILP systems: in the proceedings of the last seven
(1997–2003) international conferences on ILP, over sixty different multirelational
learning systems have been used for experiments. However, even though there
are numerous systems3, only few of them are frequently used. For example,
in the same ILP proceedings, only seven systems are used in more than three
papers. In this thesis, we decided to compare our system with the three sys-
tems most commonly used in ILP publications (i.e., FOIL [85], Progol [68] and
TILDE [6]). Next we briefly describe the seven multirelational learning systems
most frequently used in order of relevance.

3Overviews can be found in [40, 71, 102].
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3.3.1 Progol

Progol [68, 73] (also known as CProgol) is a top-down, example-driven, covering
system which performs an A* search through the refinement graph. Progol re-
duces the hypothesis space by requiring as input, besides a definite program B
as background knowledge and a set of ground facts E as examples, a set of mode
declarations, and by using a most specific clause (also called bottom clause) as
the glb (Definition 2.30) of the refinement lattice. The mode declarations (more
about them in Section 4.1) define the predicates from B which can appear in the
head and in the body of the clauses in the hypothesis space, as well as the type
(and mode) of the arguments taken by the predicates. Mode declarations are a
common approach to reduce the branching factor of a refinement graph and have
been used since the early days of ILP (e.g., MIS [97]). A bottom clause (Sec-
tion 4.2) is a maximally specific clause which entails (covers) a positive example
e and is derived using inverse entailment [68].

Progol has been applied to many application domains and it has become a stan-
dard in ILP. However, as will be shown in the next chapter, Progol’s search space
in structural/topological domains contains unnecessary clauses that should not
be considered by the system, and, as will be shown in Chapter 7, its learning
results may significantly vary depending on the order in which the system takes
the training examples.

3.3.2 TILDE

TILDE [6, 4] is an upgrade to multirelational learning of Quinlan’s popular C4.5
algorithm [87] for decision tree induction that uses the learning from interpreta-
tions [16] setting. In this setting, each example is a Prolog program that encodes
the example’s description. TILDE, as well as Progol, needs that the user pro-
vides (besides B and E) a set of mode declarations, and accepts B in the form
of a definite program.

First-order logical decision trees are induced by TILDE in a top-down, generate-
then-test fashion using hill-climbing search. It starts with the empty tree, com-
putes all possible refinements that can be applied at that node, evaluates them,
and selects the refinement (test) with the highest heuristic value. It uses then the
resulting partial tree to classify the examples. All examples passing the test are
assigned to one branch of the tree and the rest is assigned to the other branch.
This procedure is iteratively applied to each branch until all bottom nodes are
leaves. A node can be turned into a leaf if it contains only examples of a single
class.
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TILDE’s main drawback is its myopia when dealing with non-discriminating
relations (see Chapter 6). To alleviate this problem, the user can give TILDE
a set of templates indicating how to combine those non-discriminating relations
with other relations in the domain. Although this approach mitigates TILDE’s
myopia, it requires extra work for the user.

3.3.3 FOIL

FOIL [85, 89] is a top-down, generate-then-test, covering system that extends to
first-order logic methods from attribute-value learning systems. FOIL’s language
is function-free, and background knowledge and examples have to be extension-
ally defined as sets of tuples of constants.

FOIL explores the hypothesis space using a slightly modified hill-climbing strat-
egy, where it maintains alternative refinements (checkpoints) when the refinement
chosen is only marginally better than the alternatives. These alternatives are
pursued if the actual choice produces no adequate clause to add to the theory
which allows the system to continue searching after hitting a dead end. FOIL’s
evaluation function is based on the information gain heuristic. Several newer
ILP systems, e.g., FOCL [78], mFOIL [29] and FFOIL [88], have incorporated
elements of FOIL’s approach and made extensions on it.

The same as TILDE, FOIL’s main drawback is its myopia when dealing with non-
discriminating relations (Chapter 6). FOIL’s approach to deal with this problem
is based on ij-determinate literals (Definition 3.8), however, determinate literals
are not suitable for every structural/topological domain because they require
determinacy (Definition 3.7).

3.3.4 RIBL

RIBL [34, 46] stands for relational instance-based learning and extends the k-
nearest neighbor (kNN) classification approach to a first-order representation.
According to [34], this approach is appropriate for domains with continuous at-
tribute values and/or with noisy attributes and/or noisy examples. Background
knowledge for this system consists of facts, and, since RIBL delays generalization
until classification time, it does not construct an explicit theory.

To our knowledge, experimental results of RIBL on other domains other than
Hungarian part-of-speech tagging [45] and mRNA signal structure prediction [46]
are not available. For this reason, we lack information about the average perfor-
mance of RIBL in structural/topological domains.
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3.3.5 ALEPH

ALEPH [1] is based on inverse entailment and supersedes P-Progol. Aleph is
written in Prolog and, with appropriate settings, can emulate some of the func-
tionality of other ILP systems such as CProgol, FOIL, FORS [48], MIDOS [104],
TILDE and WARMR [23].

ALEPH suffers the same problems as Progol; namely, its search space contains
unnecessary clauses that should not be considered by the system, ant its learning
results may significantly vary depending on the order in which the system takes
the training examples.

3.3.6 ICL

ICL [21] upgrades the CN2 algorithm [11] to first-order. It uses the learning
from interpretations setting and is a top-down generate-then-test covering system
which performs beam-search. To specify the hypothesis language, ICL uses a
declarative bias language called DLAB [20]. DLAB templates define the syntax
of the clauses that can be learned and are automatically translated in a refinement
operator (under subsumption) which defines ICL’s search space. Constructing
the DLAB templates for ICL implies extra work for the user.

3.3.7 FOIDL

FOIDL [66] is an ILP system for learning first-order decision lists. FOIDL is a
descendant of FOIL but employs intensional background knowledge and avoids
the need for explicit negative examples.

To our knowledge, FOIDL has been exclusively applied for natural language
tasks such as learning rules for producing and analyzing inflectional forms of
nouns [31, 62], and inducing rules for forming the past tense of English verbs [66].
Thus, there is not enough information to evaluate FOIDL’s performance in struc-
tural/topological domains.

3.4 Summary

This chapter discusses learning and search issues in multirelational learning. It
defines ILP learning task and describes how this task is achieved using the cov-
ering algorithm and refinement operators. In the section dedicated to search
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in multirelational learning, four search strategies, namely hill-climbing, beam-
search, breadth-first and IDA*, are reviewed. Finally, seven frequently-used ILP
systems are briefly described to illustrate different multirelational learning im-
plementations.

32



4 A Basic Approach for ILP

As explained in Section 3.1.3, multirelational learning systems using the cover-
ing algorithm differ from each other in various aspects, and usually, new ILP
approaches have to be developed considering a set of characteristics common to
some systems. For the work presented in this thesis, we decided to focus on the
top-down search approach. We chose this approach because it is the most com-
mon approach in ILP [40], and thus, new developments can be easily adapted
to other systems. In addition, since example-driven learning significantly im-
proves efficiency over a purely generate-then-test approach [33], we restricted
ourselves to the example-driven approach. This chapter describes the particular
example-driven top-down approach which serves as base case for this thesis and
is henceforth referred to as literal-based approach.

To describe the literal-based approach we build upon Chapter 3. Specifically, this
approach deals with the learning task defined in Section 3.1.1; it uses a downward
refinement operator to search for a clause to add to a theory T (see Section 3.1.2);
and it constructs T using the covering algorithm (Section 3.1.3). In the literal
based approach, a system is given type and mode information about the argu-
ments of background predicates. This information is usually given to ILP systems
in the form of mode declarations. The literal-based approach uses mode declara-
tions similar to those used in Progol (Section 3.3.1) and TILDE (Section 3.3.2);
these mode declarations are explained in the next section. Section 4.2 describes
the use of a bottom clause as a lower bound for the search space, and Section 4.3
defines the literal-based refinement operator.

4.1 Mode Declarations

The mode declarations are a set of specifications indicating how to construct
literals that can be added to a clause by the refinement operator. The mode dec-
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larations contain a predicate symbol and the modes and types of the predicate’s
arguments. There are two types of mode declarations: those which are used
to form a head literal (i.e., a literal having as predicate symbol a target predi-
cate) and are called modeh; and those which define body literals and are called
modeb. Thus, a mode declaration can have one of the following formats:

modeh: target concept(v1type1,. . .,vntypen)
modeb: predicate(v1type1,. . .,vntypen)

where vi and typei indicate the mode and type of the ith argument, respectively.
The mode of an argument is indicated by a +,- or #,1 and each typei should be
defined in the background knowledge.

In the literal-based approach, each literal used to refine some clause C is con-
structed according to a mode declaration. Thus, there is a correspondence be-
tween literals and mode declarations.

Definition 4.1 – Correspondence between a literal and a mode decla-
ration. Let m = pred(v1type1,. . .,vitypei,. . .,vntypen) be a mode declaration,
and l = pred(X1, . . . , Xi, . . . , Xn) be a literal constructed according to m. Then
we say that vitypei corresponds to Xi so that Xi is said to be an input (respec-
tively output) variable of type typei when vi is + (-). In this case, we also say
that l has an input (output) variable of type typei. If vi is #, a constant c is
substituted for Xi and we say that c is a constant of type typei and l has a
constant of type typei.

A literal l is constructed according to a mode declaration m using Algo-
rithm 4.1.

For example, the following mode declarations can be used to learn the target
concept auntOf(A,B), which means “aunt of A is B”.

modeh: auntOf(+person,+person)
modeb: parentOf(+person,-person) /* parent of +person is -person */
modeb: sisterOf(+person,+person)
modeb: brotherOf(+person,+person)

In this case, the head literal of every clause considered has the target predicate
auntOf and two input variables of type person, and each body literal of every
clause constructed has as predicate symbol parentOf, sisterOf or brotherOf.

1In Section 5.1, we extend the mode declaration language.
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Input: a mode declaration m = pred(v1type1,. . .,vitypei,. . .,vntypen), some
clause C to refine, a non-empty set of variables V, e ∈ E+ and B.

Output: literal l
1. Let l have predicate symbol pred
2. For every vitypei in m

a) If vi is + then
Add to l a variable Xi ∈ V such that Xi occurs in the head

literal of C as input variable of type typei or a body literal in
C has Xi as output variable of type typei.

b) Else If vi is - then
Add to l a variable Xi ∈ V such that Xi may appear only in

the head literal of C as output variable of type typei.
c) Else Add to l a constant c of type typei obtained from e and B.

Algorithm 4.1: Constructing a literal according to a mode declaration

We classify the literals according to their variables as providers or consumers.
That is, a literal is a provider if it has an output variable (−var) and a consumer
if it has an input variable (+var). We also establish provider-consumer relations
among the literals: A literal l is a consumer of literal q if l has at least one
+var bound to an −var of q; conversely, q is a provider of l. Notice that these
relations apply as well to the head literal. A literal providing the value for an
output variable of the head literal is a head provider, and a body literal is a head
consumer if it consumes a +var of the head.

We now precisely define the hypothesis space defined by a set of mode declara-
tions.

Definition 4.2 – Hypothesis Space Defined by a Set of Mode Decla-
rations. Let mh be a mode declaration specifying a target predicate p, M be a
set of modeb declarations, E be training examples of p (Definition 3.1), B be a
definite program containing a predicate definition for each predicate specified by
an mb ∈M , and V be a non-empty set of variables.

The hypothesis space Hm defined by mh and M consists of all Horn clauses
whose head has the predicate symbol p (and arity) as defined by mh, and whose
body literals are constructed according to an mb ∈M using Algorithm 4.1.

Definition 4.2 determines the hypothesis space with respect to a single head
declaration mh. If several head declarations are given, the complete hypothesis
space is the union of all hypothesis spaces defined per modeh.

By constructing the literals according to the types (and modes) indicated by the
mode declarations, we enforce type strictness.
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modeh: water quality(+river,#class).
modeb: warmer than(+temperature,#temperature).
modeb: water chlorine concentration(+river, -chlorine concentration).
...
% Type definitions
temperature(X):- float(X).
chlorine concentration(X):- float(X).

Table 4.1: Sample type definitions and mode declarations to illustrate type strictness

Definition 4.3 – Type Strictness. Type strictness is achieved when

(a) every variable is assigned a unique type (in our case this type assignment is
done through the correspondence between literals and mode declarations),

(b) a variable may be only bound to a term of the variable’s type, and,
(c) in a correct answer (see Definition 2.33), each term substituted for a variable

is assigned the type of the variable.

Let us illustrate this concept. Suppose the task is to learn a theory about river
water quality and some background predicates deal with water temperature and
others with chlorine concentration (see Table 4.1). The user may decide then to
define a type called temperature and another one chlorine concentration
as shown in Table 4.1. In this case, we say that temperature and chlo-
rine concentration are compatible types; i.e., they map to the same set of
values. However, under type strictness, a variable of type temperature is not
instantiated with a chlorine concentration value (although both types are
represented by floats), and thus the following clause is not in Hm.

water quality(X,good) ← water chlorine concentration(X,Y),
warmer than(Y,15.30).

Some ILP systems such as FOIL and Progol require type definitions as well but
do not enforce type strictness; i.e., they allow the instantiation of variables with
values of compatible types and consider clauses such as the one above (which is
semantically incorrect). Thus, to discard meaningless clauses from the hypothesis
space Hm, we assume type strictness. Furthermore, type strictness has also
advantages for the users because they do not need to introduce artifices in the
background knowledge, such as employing different sets of values, to distinguish
between types. Type strictness can also be obtained by using a strongly typed
language instead of Prolog as proposed by Flach et al. [36]; however, this implies
introducing a new language to a field where Prolog is already a standard.
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4.2 Bottom Clause

A bottom clause or most specific clause (see Definition 4.4, below) is constructed
with two purposes: 1) to provide a lower bound for the search space, i.e., no
learned clause is more specific than the bottom clause; and 2) to guide the
search. The latter is done by taking the literals in the bottom clause as the set
of literals available to refine a clause (as will be explained in Section 4.3). A
most specific clause ⊥ acts as the bottom element of a refinement lattice (see
Definition 2.31).

A bottom clause can be constructed as the relative generalization of two (or
more) examples [72], or as the most specific inverse resolvent of an example [70],
or with inverse entailment [68]. We derive ⊥ using inverse entailment because, by
using inverse entailment, 1) any clause which could be added to an appropriate
theory subsumes the bottom clause, and 2) intensional background knowledge
can be used. Yamamoto [107, 106] has pointed out that inverse entailment is
complete with respect to Plotkin’s relative subsumption if E+ is not a tautology
and B 6|= E+, but it is incomplete with respect to logical implication. This
means that there are correct2 hypotheses which cannot be found since there are
B and E+ where the equivalence B ∧ Hyp |= E+ ←→ B ∧ Hyp |= ⊥∞ does
not hold for a correct hypothesis Hyp. Furukawa et al. [42] and Muggleton [69]
have proposed conditions under which inverse entailment should be complete for
logical implication.

To construct the bottom clause by inverse entailment, one takes a positive ex-
ample e ∈ E, background knowledge B, and a set of mode declarations. An
algorithm to construct ⊥ can be found in Table 7.6 of [73]. Assuming that liter-
als in a clause are evaluated from left to right, a literal l can appear in ⊥ if and
only if for each +var of l there is at least one provider in ⊥ and this provider
is placed to the left of l in ⊥. Thus, the literals in ⊥ are placed according to
their consumer-provider relationships. The most specific clause is then defined
as follows (cf. Muggleton [68]).

Definition 4.4 – Most Specific Clause ⊥. Let ⊥ be the most specific def-
inite clause constructed with the literals defined by a set of mode declarations,
background knowledge B, and example e ∈ E+ such that:

(a) B ∧ ⊥ `k e (i.e., e can be derived in k resolution steps), and
(b) ⊥ � ⊥∞ (i.e., ⊥ subsumes ⊥∞) where ⊥∞ is the (potentially infinite)

conjunction of ground literals which are true in all models of B ∧ ¬E
(B ∧ ¬E |= ⊥∞).

2According to Yamamoto a hypothesis Hyp is correct if B ∧ Hyp |= E+ and B ∧ Hyp is
consistent.
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person(anita). sisterOf(beate,sara).
person(beate). sisterOf(sara,beate).

... sisterOf(tom,lucy).
person(tom).

parentOf(anita,sara). brotherOf(beate,charles).
parentOf(anita,tom). brotherOf(sara,charles).

... brotherOf(lucy, tom).

parentOf(tom,alex). % Positive examples
parentOf(tom,lisa). auntOf(anita,lucy).

auntOf(anita,beate).

Figure 4.1: Kinship example

By using the bottom clause, the hypothesis space Hm (Definition 4.2) is further
restricted to H⊥.

Definition 4.5 – Hypothesis Space Defined by a Set of Mode Decla-
rations and a Bottom Clause. Let mh, p, M , E, and B be as defined in
Definition 4.2; ⊥ be the bottom clause constructed with mh, M , B and e ∈ E+;
> be the unit clause whose head has the predicate symbol p (and arity) as de-
fined by mh; and, Hm be the hypothesis space defined by mh and M according to
Definition 4.2.

The hypothesis space H⊥ defined by mh, M and ⊥ consists of every Horn clause
C ∈ Hm such that > � C � ⊥. We say then that C is between > and ⊥.

From now on, we refer to any bottom clause constructed given a set of mode
declarations M , a definite program B and an example e ∈ E+ simply as ⊥. In
addition, we consider ⊥ as an ordered sequence of literals where every literal is
mapped to its position in ⊥ starting with the first body literal after the head of ⊥
(i.e., p(X)← l1, . . . , li−1, li, . . . , ln). The literals in ⊥ are then ordered according
to this mapping. We refer henceforth to every literal li (1 ≤ i ≤ n) in ⊥ as the
integer i corresponding to its position in ⊥.

To illustrate the most specific clause assume we want to learn a theory about
the relation auntOf. To learn this, we have the genealogical tree depicted in
Figure 4.1 on the left, the table shown in Figure 4.1 right, and the positive
example: e =auntOf(anita,beate) (aunt of anita is beate). The following
bottom clause ⊥ is constructed with e, the background knowledge in Figure 4.1,
and the mode declarations listed on page 34. In Figure 4.1, the letters above
the names in the genealogical tree indicate the bindings of the variables in the
bottom clause.
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auntOf(A,B)← -1- parentOf(A,C), -2- parentOf(A,D), -3- parentOf(B,E),
-4- parentOf(B,F), -5- parentOf(C,E), -6- parentOf(C,F),
-7- parentOf(D,G), -8- parentOf(D,H), -9- sisterOf(B,C),

-10- sisterOf(C,B).

Remember that the numbers which precede the literals in the bottom clause
indicate the position of each literal in ⊥ and are used from now on to denote the
literals in ⊥.

4.3 Literal-Based Refinement Operator

The literal-based refinement operator (henceforth referred to as ρL) consists in
adding one literal from ⊥ to a clause C and is defined as follows.

Definition 4.6 – Literal-Based Refinement Operator ρL. Let i and j be
literals in ⊥, and C be a clause whose last literal is i, then ρL(C) = {C∪{j} | i < j,
at least one provider for every +var in j is already in C and there is at least one
provider for every −var in the head of C in C ∪ {j}}.

The first restriction in the refinement operator achieves non-redundancy in
the generation of clauses and the second and third restrictions ensure I/O-
completeness. In addition, ρL preserves the order of the literals in ⊥.

Definition 4.7 – I/O-completeness. Let C be a clause and assume the literals
in C are evaluated from left to right. C is an I/O-complete clause if C has neither
uninstantiated (unbound) output arguments in the head nor uninstantiated input
arguments in the body.

As explained in Section 3.1.2, ideal refinement operators for subsumption do not
exist; i.e., a refinement operator has to be either locally finite and proper, or
locally finite and complete. In this case, ρL is finite and proper but incomplete
with respect to the hypothesis spaceH⊥ (Definition 4.5) because the body literals
in the constructed clauses maintain the positional order of ⊥, which is done to
achieve ρL properness (and I/O-completeness in the clauses).

ρL incompleteness with respect to H⊥ have two consequences. First, ρL generates
the clause D1 = p(X) ← i, j but it does not generate D2 = p(X) ← j, i;
although D2 may constitute a valid clause. Theoretically, this is not a problem
because clauses consist of a disjunction of literals and disjunction is commutative.
However, from a procedural point of view, if computations are involved, clauses
with the same but permuted literals may not have identical meaning. Second,
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Figure 4.2: Partial refinement graph of ρL for the kinship example

suppose we have two literals j and k, and k is a provider of j situated to the
right of j in ⊥ (j < k). In this case, ρL does not generate either D3 =p(X) ←
j, k (because when ρL considers j there is no provider of j already in D3) or
D4 =p(X) ← k, j (because once k is in D4, j is not added by ρL to D4).

Remark 4.1. The search space S explored by ρL consists of every clause C ∈ H⊥

(Definition 4.5) such that C is I/O-complete (Definition 4.7) and its body literals
occur in the same order as in ⊥.

Let us illustrate ρL using again the kinship example for which we constructed
the bottom clause in Section 4.2. In this example, every clause explored by ρL

is between auntOf(A,B)← and ⊥. Figure 4.2 shows the refinement graph
(Definition 3.10) of ρL for clauses with up to two literals. In Figure 4.2, each
body literal is represented by the integer corresponding to its position in ⊥, and
the target predicate auntOf(A,B) is represented by s(A,B). By using ρL, a
multirelational learning system searches in this refinement graph for clauses to
add to an appropriate theory about auntOf(A,B). We call those clauses added
to the final theory solutions.

Definition 4.8 – Solution. Let Υ be a refinement graph whose top element is C
and whose bottom element is ⊥ such that ⊥ ∈ ρn(C); let m be an integer number
in [0, n], and let eval be an evaluation function (Definition 3.12). A solution is
a clause E ∈ ρm(C) such that there is no E ′ ∈ ρ∗ such that eval(E ′) > eval(E)
or such that eval(E ′) = eval(E) and the ρ-chain from C to E ′ is shorter than the
ρ-chain from C to E .

In the kinship example, clause D7 corresponds to the following solution.

auntOf(A,B) ← parentOf(A,C), sisterOf(C,B).

40



4.4 Summary

4.4 Summary

In this chapter we precisely describe the literal-based approach which is the
base case for the work presented in the next chapters. For that, mode decla-
rations, bottom clause and a literal-based refinement operator are defined and
illustrated.
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In this chapter, we present macro-operators (or macros for short). Macro-
operators are a formal approach to significantly reduce the search space1 explored
in structural/topological domains, which does not further restrict the underlying
hypothesis space; i.e.,macros do not affect the completeness of the search. This
chapter extends the kinship example (Chapter 4) and relies primarily on the
terminology and definitions introduced in Section 3.1.2, Section 3.2 and Chap-
ter 4.

Macros are inspired by and obtained their name from the concept of macro-moves
found in the literature about single-agent search in games and puzzles [47, 55].
Korf [55] introduced macros as a domain-independent weak-method for learn-
ing and defined a macro as a sequence of operators chosen from the “primitive
operators” of a problem. We adjust this definition to multirelational learning
by considering the primitive operators to be the literals which form the clauses
in the hypothesis space, so a macro is informally speaking a sequence of those
literals.

As we will explain in Section 5.1, macro-operators exploit the fact that, in many
cases, literals which introduce existential variables do not have discriminative
power (i.e., they do not help differentiate between positive and negative exam-
ples), and thus, do not need to be included in clauses by themselves; for example,
the literal multiply(A,B,C) does not have discriminative power because there
is always an output value C for every combination of input values A and B.
We call such literals dependent providers and a list of them (user declared or
automatically determined) are the basis for automatically creating the set of
macro-operators.

1Recall from Section 3.1.1 that in this thesis the search space is the hypothesis space actually
searched by a learning system.
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In Section 5.2, after formally defining macro-operators, we modify a refinement
operator so that it computes the refinements of a clause based on a set of auto-
matically created macro-operators. By using macro-operators instead of single
literals, the refinement operator only generates relevant clauses. At the same
time, macros only discard clauses that could be pruned from any final theory be-
cause they contain unnecessary literals. Section 5.3 provides complete and correct
algorithms for constructing macros. Finally Section 5.4 contains the results of
the empirical evaluation, and Section 5.5 discusses macros’ related work.

5.1 Reducing the Search Space

Sometimes there are literals which, when added to any clause C in the hypothesis
space, do not affect the coverage nor the consistency of it; i.e., they do not help to
discriminate among the examples. These literals introduce existential variables
in C (they provide a value). For example, returning to the kinship example of
Chapter 4 (see pages 34 and 38), the literal parentOf(A,F) is (with respect to
the given background knowledge, training examples, and mode declarations) true
for every input argument A. Intuitively this is explained by the fact that in the
real life everyone has parents. Adding this literal by itself to any clause C in the
hypothesis space of the kinship example does not help to distinguish between
the positive and the negative examples of the target concept auntOf(A,B);
however, it is necessary to construct any solution. We call these literals dependent
providers.

Definition 5.1 – Dependent Provider. Let i be a literal in the body of ⊥,2 B
be a definite program, E be training examples, m a mode declaration defining i,
VI the set of input variables of i according to m, VO the set of output variables
of i according to m, and C be any clause in H⊥ which does not contain i and
where all the variables in VI appear.

i is a dependent provider if VO is non-empty and each variable in VO has, for
the given B ∪ E, at least one ground binding given the ground bindings of the
variables in VI.

In other words, a literal i is a dependent provider if and only if i has output
variables and is true for every combination of input argument values.

The literal-based refinement operator defined in Section 4.3 produces clauses
D ∈ ρL(C) which might vary from C only in having one dependent provider

2Remember that we refer to any bottom clause constructed given a set of mode declarations
M , a definite program B and an example e ∈ E+ as ⊥.
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added. However, since dependent providers succeed for every combination of
input argument values, they modify neither the coverage nor the consistency of
C but they do increase its length (therefore, eval(C) > eval(D)). In this case, D
cannot be a solution and can be discarded.

Theorem 5.1. Let D and C be clauses such that D ∈ ρ(C) and i be a dependent
provider in D. D is not a solution if there is not at least one consumer of i in
D too.

Proof by contradiction. Assume that D = C ∪ {i} is a solution and i is a de-
pendent provider and there is not a consumer of i in D. But, since i does not
modify the statistics about D except for D’s size, then eval(C) > eval(D). Hence
D cannot be a solution (Definition 4.8) which contradicts the assumption and
completes the proof.

One way to avoid that D differs from C only in having one dependent provider
added is 1) to identify the dependent providers in the mode declarations, and
2) to modify the refinement operator so that it only adds dependent providers
to C together with at least one of their consumers. Such a sequence of literals
composed of a dependent provider and at least one of its consumers is what we
call a macro-operator, which is formally defined in the next section.

To identify the dependent providers, we enhance the mode declaration language
defined in Section 4.1 with the ∗var notation. A ∗var is an output argument of
a dependent provider. For instance, with the new notation the mode declaration
for the literal parentOf(A,F) is parentOf(+person,*person), which means
that literals with the predicate symbol parentOf are dependent providers which
supply an output argument value of type person. Using this notation, the types
of the arguments in the mode declarations can now be preceded by a +,-,* or #,
where - and * are mutually exclusive. That is, in a mode declaration can appear
either - or * but not both.

Now we have to modify ρL to restrict, based on Theorem 5.1, the search space
S (Remark 4.1 on page 40) to:

S′ := {C ∈ S such that each dependent provider in C has at least one consumer
for one of its ∗var in C}.

We say that the clauses belonging to S ′ are admissible. In the next section we
propose a refinement operator which generates only admissible clauses.
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5.2 Macro-based Method

So far we have intuitively used the term macro in relation to a refinement oper-
ator, but now we are ready to formally define it. For that, we first define what
a legal subsequence of literals is. Remember that we represent the literals as
the index corresponding to their positions in the bottom clause. Thus, if i and
j are two literals and i < j then literal i appears in ⊥ to the left of literal j.
Note that although the bottom clause is constructed by inverse entailment, this
is not a requirement of the macro-based method and thus it is not assumed in
the following definitions.

Definition 5.2 – Subsequence of Literals. Let the body of ⊥ be a sequence
of literals 1, . . . , n and jk ∈ {1, . . . , n},∀k ∈ {1, . . . , i} then j1 . . . ji (i ≤ n) is a
subsequence of literals when jk < jk+1,∀k ∈ {1, . . . , i− 1}.

Observe that the order of the literals in ⊥ is preserved in a subsequence of
literals.

Definition 5.3 – Legal Subsequence of Literals. A subsequence of literals
j1 . . . ji is a legal subsequence if and only if:

(a) at least one ∗var of every dependent provider jp, 1 ≤ p ≤ i, is used by a
consumer q such that q ∈ {jp+1, . . . , ji}, or jp is also a head provider; and,

(b) every +var of consumer js, 1 < s ≤ i, has at least one provider r such that
r ∈ {j1, . . . , js−1}, or the +var is provided by the head.

∅ is also a legal subsequence of literals.

Definition 5.4 – Legal Subsequence of Literals Given Another Subse-
quence. Let j1 . . . ji be a legal subsequence of literals according to Definition 5.3.
Then ji+1 . . . jm (m ≤ n) is a legal subsequence of literals given j1 . . . ji if and
only if:

(a) at least one ∗var of every dependent provider jp, i+ 1 ≤ p ≤ m, is used by
a consumer q such that q ∈ {jp+1, . . . , jm}, or jp is also a head provider;
and,

(b) every +var of consumer js, i+ 1 < s ≤ m, has at least one provider r such
that r ∈ {j1, . . . , js−1}, or the +var is provided by the head.

In the previous definitions, the first condition is the restriction we propose for
constructing admissible clauses and the second one refers to I/O-completeness;
i.e., it ensures that no unbound input variable occurs in a body literal. Defi-
nition 5.3 defines subsequences of literals which are legal without requiring the
presence of any other body literal in any clause C to be refined (i.e., they can
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be added to a unit clause consisting only of the head of ⊥); while Definition 5.4
refers to subsequences of literals which require that other body literals appear in
C before they can be added to C.

Definition 5.5 – Macro-operator. A macro-operator (or macro for short) is
a subsequence of literals ji+1 . . . jm which is either legal or for which there exists
a subsequence of literals j1 . . . ji (ji < ji+1) such that ji+1 . . . jm is legal given
j1 . . . ji; and no proper subsequence (besides ∅) of ji+1 . . . jm is legal or is legal
given any j1 . . . ji.

5.2.1 Macros’ Ordering

In the literal-based refinement operator (ρL), the literals are ordered by their po-
sition in ⊥ and this ordering is used to achieve non-redundancy in the generation
of clauses. With the same purpose, we introduce for the macro-based method a
new ordering based on the maximum provider of the literals in a macro.

Definition 5.6 – Maximum Provider of a Literal. Let j be a consumer.
The maximum provider of j (max provider of literal(j)) is the provider i of j
(i < j) with the greatest (rightmost) position in ⊥. The position of the head of
⊥ is 0.

Definition 5.7 – Maximum Provider of a Subsequence of Literals. The
maximum provider of a subsequence of literals a = ji . . . jm is:

max prov(a) = max
k∈{i...m}

(max provider of literal(jk)).

Definition 5.8 – Comparison between Subsequences of Literals. Let a =
ji . . . jm and b = jk . . . jn be subsequences of literals, then a < b if and only if:

(a) max prov(a) < max prov(b); or,
(b) max prov(a) = max prov(b) and a is lexicographically less than b. That

is, it exists g ∈ {0, . . . ,min(m − i, n − k)} such that ji = jk ∧ ji+1 =
jk+1 ∧ . . . ∧ ji+g−1 = jk+g−1 ∧ ji+g < jk+g.

For instance, suppose we obtain the following two macros in the kinship ex-
ample: ma = parentOf(A,C), sisterOf(B,C) and mb = parentOf(A,C),
sisterOf(C,B), which are formed by the literals [1,9] and [1,10], respectively.
The maximum provider of both macros is literal 1, since the maximum provider
of literal 1 is 0 and the maximum provider of literals 9 and 10 is 1 (i.e.,
max prov(ma) = max prov(mb)). Then, according to the second item of Defi-
nition 5.8, ma < mb because [1,9] is lexicographically less than [1,10].
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Figure 5.1: Refinement graph of ρM for the kinship example

5.2.2 Macro-based Refinement Operator

Now everything is ready to define the macro-based refinement operator (hence-
forth referred to as ρM). Note that single literals can fulfill the macro’s definition
and be used in the refinement operator defined below.

Definition 5.9 – Macro-based Refinement Operator ρM . Let ma and mb

be macros and C be a clause (and a legal subsequence of literals) whose last added
macro is ma, then ρM(C) = {C ∪ {mb} | ma < mb, mb is a legal subsequence
given C, and C ∪ {mb} is I/O-complete}.

Using the macro-based ρM the search space S is reduced to legal subsequences
of literals.

Remark 5.1. The search space S ′ explored by ρM consists of every clause C ∈
H⊥ such that C is I/O-complete and a legal subsequence of literals. That is, S ′

consists of every clause C ∈ S such that C is a legal subsequence of literals.

Let us illustrate the search space explored by ρM using our long-familiar kin-
ship example. The bottom clause is the same as the one on page 38, and the
only change in the mode declarations is the definition of the predicate par-
entOf from parentOf(+person,-person) to parentOf(+person,*person).
The new mode declarations are as follows.

modeh: auntOf(+person,+person)
modeb: parentOf(+person,*person)
modeb: sisterOf(+person,+person)
modeb: brotherOf(+person,+person)

In this example, the macros ma = parentOf(A,C), sisterOf(B,C) and mb =
parentOf(A,C), sisterOf(C,B), formed by the literals [1,9] and [1,10], are
obtained using the algorithms described in Section 5.3. Figure 5.1 shows the
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refinement graph induced by the macro-based refinement operator (see the re-
finement graph in Figure 4.2 on page 40 as comparison with ρL). ρM generates
only two clauses while ρL generates sixteen clauses.

We now prove the crucial property of the macro-based approach, namely that
ρM is as complete as ρL. For this proof, we introduce the concept of depen-
dent consumer. A dependent consumer is a literal which has at least one input
argument value provided exclusively by dependent providers. By the macro’s
definition, a dependent consumer appears always in a macro together with at
least one dependent provider.

Theorem 5.2. Let D be a solution and C be the unit clause at the top of the
lattice such that D ∈ ρn

L(C). Then there exists m such that D ∈ ρm
M(C), where

m ≤ n and m,n ∈ N0.

Proof by induction. Let jn be the last literal in D. If D is a solution then per
Theorem 5.1 jn cannot be a dependent provider (i.e., D is a legal subsequence).
Thus there are two cases to consider:

1. jn is not a dependent consumer and there exists a macro mb s.t. mb = jn.
2. jn is a dependent consumer and there exists a macro mb s.t. mb = ji . . . jn.

Basis: Let n = 1. Since n = 1 there is only one body literal in D and thus
jn cannot be a dependent consumer (i.e., mb = jn). Since jn is the only
body literal in D and D ∈ ρ1

L(C) per Definition 4.6 all the input argument
values (+var) of jn are provided by the head of D and thus mb is a legal
subsequence given C. Therefore D ∈ ρ1

M(C).

Induction Step: Consider any n > 1 and let E1 ∈ ρn−1
L (C) and E2 ∈ ρm−1

M (C) such
that D ∈ ρL(E1) and E2 ⊆ E1.

Assume the case when mb = jn; in this case E2 = E1. For mb to be a legal
subsequence given E2 it is only required that at least one provider for every
input argument of jn is already in E2. All the providers of jn can be added
before mb because max prov(jn) > max prov(k) for every provider k of
jn. Then a ρM -chain can be found so that mb is a legal subsequence given
E2. Thus D ∈ ρm

M(C), as claimed.

Assume the second case when mb = ji . . . jn; in this case E2 ⊂ E1 and all
the literals in E1 \ E2 occur in mb. For mb to be a legal subsequence given
E2, at least one provider for every input argument value of jl, i ≤ l ≤ n in
mb is required to be in E2 or in mb. Since max prov(mb) > max prov(k)
for every provider k (k < ji) of jl, a ρM -chain can be found so that mb is
a legal subsequence given E2. Hence D ∈ ρm

M(C) as claimed.

This completes the proof of the induction step and of the theorem.
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Input: Bottom clause ⊥ = head← 1, . . . , n., mode declarations M .
Output: MSet (set of macros)

1. For every literal i (1 ≤ i ≤ n) in ⊥
a) If i is not a dependent consumer and i is not a dependent provider

Then add i to MSet.
b) If i is not a dependent consumer and i is a dependent provider

Then
i. dpM = Get macros of dependent provider(⊥,M, i)
ii. Add dpM to MSet.

2. Sort MSet according to Definition 5.8.
3. Output MSet

Algorithm 5.1: Obtaining the ordered set of macros MSet

5.3 Macros’ Algorithms

We obtain the ordered set MSet of all macros from a given most spe-
cific clause and mode declarations using Algorithm 5.1. To obtain the
macros based on a dependent provider dp in step 1b of Algorithm 5.1,
Get macros of dependent provider (Algorithm 5.2) is called. In Algo-
rithm 5.2, × means a special case of Cartesian product where the resulting set’s
elements are numerically ordered; A[j] represents the element j of set A; and,
disaggregate(A[j]) is a function that separates the compound element A[j] into
its component parts.

Let us explain Algorithm 5.2 in more detail. First, in steps 1 and 2, the set Z of
all the consumers of dp is obtained. If a consumer k in Z is itself a dependent
provider then a recursive call is performed to combine k with at least one of
its consumers (step 3). In this way, Algorithm 5.2 generates macros which end
with a non-dependent provider literal unless the dependent provider is as well
a head provider (step 3(a)ii). Then dp is combined with each element in Z
(step 5). After all the subsequences of literals starting with dp and ending with
a non-dependent provider or with a head provider have been established, each
subsequence of literals found is extended in step 6 with the providers required to
make this subsequence satisfy the definition of a macro-operator (Definition 5.5).
To constrain the number of macros generated, we discard any subsequence of
literals as soon as it exceeds a user defined maximum number of literals in a
clause.

Algorithm 5.2 differs from the algorithm presented in [79] in the recursive call in
step 3. By doing this recursive call, the algorithm constructs macros with more
than one dependent provider.
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Get macros of dependent provider
Input: Bottom clause ⊥, mode declarations M , dependent provider dp.
Output: dpM (set of macros based on dp)

1. Let Z1, . . . ,Zn be the sets of consumers of dp for ∗var1, . . . , ∗varn ∈
dp (i.e., Zj = {k ∈ ⊥ | k > dp and k consumes ∗varj ∈ dp})

2. Let Z =
n⋃

j=1

Zj

3. For every literal k in Z

a) If k is a dependent provider Then

i. B = Get macros of dependent provider(⊥,M ,k)
ii. If k is not a head provider Then Remove k from Z
iii. Add B to Z

4. If Z = ∅ Then Output ∅
5. Let A = {dp} × Z
6. While A 6= ∅

a) Let a be A[0] And Y = ∅
b) Remove a from A
c) Let i be the first literal in disaggregate(a)
d) For each literal j ≥ i+ 1 in disaggregate(a)

i. For each +var in j

A. If +var is not provided by the head And +var needs a
provider which is not in a Then

Let Yj,+var be the set of providers of j for +var (i.e.,
Yj,+var = {g ∈ ⊥ | g provides +var to j and (g > i or g
is not a dependent provider )} )

Let Y = Y ×Yj,+var

e) If Y 6= ∅ Then

Add {a×Y} to A

Else Add a to dpM

7. Output dpM

Algorithm 5.2: Obtaining the macros based on a dependent provider

Example 5.1. Consider again the kinship example with the mode declarations
on page 47 and the bottom clause on page 38. Algorithm 5.1 executes step 1b
for literals 1, . . . , 4 (they are all dependent providers). Since literals 5, . . . , 10 are
dependent consumers nothing is done for them.

For literal 1 in step 2 of Algorithm 5.2, we get Z = {5, 6, 9, 10}; however, after
step 3, Z is reduced to Z = {9, 10}, because literals 5 and 6 are themselves
dependent providers but no consumer of them was found in ⊥. Then, in step 5
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we obtain A = {[1, 9], [1, 10]}. Since no provider of the literals 9 and 10 is
needed, step 6 is executed only once per each literal and dpM = {[1, 9], [1, 10]}
is returned.

For literals 2, 3, and 4, Get macros of dependent provider outputs ∅ in
step 4. Thus, Algorithm 5.1 returns MSet = {[1, 9], [1, 10]}.
Example 5.2. Now we illustrate how Algorithm 5.2 works with a more complex
example. Suppose Get macros of dependent provider is given ⊥ = h(+x) ←
p(+x, ∗y, ∗z), t(+x,−u), o(+y, ∗w), q(+x,−w), r(+w,+z), s(+u,+y), m(+z),
and dp = p(+x, ∗y, ∗z).

(1) Zy = {o, s}, Zz = {r,m}
(2) Z = {o, s, r,m}
(3) o is a dependent provider Then Z = {[o, r], s, r,m}
(5) A = {p} × {[o, r], s, r,m} = {[p, o, r], [p, s], [p, r], [p,m]}
(6) While A 6= ∅

(6a) a = [p, o, r], A = {[p, s], [p, r], [p,m]}
(6e) Y = ∅ Then dpM = {[p, o, r]}
(6a) a = [p, s], A = {[p, r], [p,m]}
(6(d)iA) Ys,+u = {t}, Y = {t}
(6e) Y 6= ∅ Then A = {[p, r], [p,m], [p, t, s]}
(6a) a = [p, r], A = {[p,m], [p, t, s]}
(6(d)iA) Yr,+w = {o, q}, Y = {o, q}
(6e) Y 6= ∅ Then A = {[p,m], [p, t, s], [p, o, r], [p, q, r]}
(6a) a = [p,m], A = {[p, t, s], [p, o, r], [p, q, r]}
(6e) Y = ∅ Then dpM = {[p, o, r], [p,m]}
(6a) a = [p, t, s], A = {[p, o, r], [p, q, r]}
(6e) Y = ∅ Then dpM = {[p, o, r], [p,m], [p, t, s]}
(6a) a = [p, o, r], A = {[p, q, r]}
(6e) Y = ∅ Then dpM = {[p, o, r], [p,m], [p, t, s]}
(6a) a = [p, q, r], A = ∅
(6e) Y = ∅ Then dpM = {[p, o, r], [p,m], [p, t, s], [p, q, r]}

(7) dpM = {[p, o, r], [p,m], [p, t, s], [p, q, r]}

Notice that the literals in a macro are always ordered according to their position
in ⊥. In this example the ordered set of all macros is MSet = { t, q, [p,m],
[p, t, s], [p, o, r], [p, q, r]}.

5.3.1 Correctness of the Algorithms

We now show that the algorithms work as they should; that is, every macro
constructed by them is a correct macro (i.e., the macro satisfies Definition 5.5).
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Theorem 5.3. Let dp be a dependent provider which is not a dependent con-
sumer. Then Algorithm 5.2 with dp as input returns the set dpM of macros
based on dp such that every macro in dpM satisfies Definition 5.5.

Proof by contradiction. Assume mb = ji+1 . . . jm is a macro in dpM generated by
Get macros of dependent provider and mb does not satisfy Definition 5.5.
That is, either (1) there is no subsequence j1 . . . ji such that mb is legal given
j1 . . . ji, or (2) a proper subsequence of mb is legal given j1 . . . ji.

1. Assume the former is true, then (see Definition 5.4) there should be a
dependent provider in mb without a consumer, or there should be a con-
sumer jk (i + 1 < k ≤ m) in mb missing a provider p which cannot be in
a subsequence j1 . . . ji. However, after steps 1–5 every dependent provider
in mb has at least one consumer or is a head provider; and, after step 6
every required provider p is either in mb or p < ji+1 so that p can be in
a subsequence j1 . . . ji. Thus, mb is legal given ∅ or there exists a subse-
quence j1 . . . ji such that mb is legal given j1 . . . ji, which contradicts our
first assumption.

2. Assume now the second case is true, then we could remove a literal l from
mb such that it would still be legal given j1 . . . ji. However, since step 5
adds only one consumer per dependent provider and step 6 adds only one
provider for every +var, if l is in mb, l is either a consumer of a dependent
provider and thus mb without l is not legal given j1 . . . ji, or l is a provider
> ji+1 needed by a consumer in mb and thus mb without l is not legal
given j1 . . . ji since l cannot be in a subsequence j1 . . . ji. Thus no proper
subsequence of mb is legal given j1 . . . ji, which contradicts our second
assumption and completes the proof.

Theorem 5.4. Let ⊥ be a bottom clause and M a set of mode declarations.
Then Algorithm 5.1 with ⊥ and M as input returns the ordered set MSet of
macros such that every macro in MSet satisfies Definition 5.5.

Proof. It is clear that every literal l added in step 1a fulfills Definition 5.5 since l
is not a dependent provider and every provider of l is before l in ⊥ so that there
is a subsequence j1 . . . ji such that l is legal given this subsequence. In addition,
by Theorem 5.3 all the macros added in step 1b satisfy Definition 5.5.

5.3.2 Completeness of the Algorithms

In this section we show that Algorithm 5.1 generates every possible macro given
a bottom clause and a set of mode declarations.
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Theorem 5.5. Let ⊥ be a bottom clause and M a set of mode declarations.
Then Algorithm 5.1 with ⊥ and M as input returns the ordered set MSet of
macros such that no correct macro which can be obtained from the given input is
missing in MSet.

Proof. The algorithm to obtain MSet generates the macros traversing
the bottom clause so that it must eventually consider every literal in
⊥. Thus every one-literal macro is added to MSet in step 1a and
Get macros of dependent provider (see Algorithm 5.2) is executed for every
dependent provider which is not a dependent consumer.

Get macros of dependent provider generates macros composed of two or
more literals. In this case, for a macro based on a dependent provider dp to be
missing in MSet, it is necessary that either a consumer of dp is not considered or
some combination of providers is not taken into account. However, steps 1 and 2
ensure that every consumer of dp is considered for inclusion in a macro, and
step 6 generates a macro for every possible combination of available providers.
Thus, every macro which can be obtained from the given input is in MSet.

5.3.3 Identifying the Dependent Providers

To be able to use ρM and the Algorithms 5.1 and 5.2, one needs to identify the
dependent providers on the application domain. This is easy for domains with
predicates denoting mathematical functions such as diff/3 which computes the
absolute difference between two numbers, because those predicates ought to be
dependent providers. However, in some cases, the meaning of the predicates is not
as clear such that the dependent providers can be easily identified. Fortunately,
an automatic test can be done to identify the dependent providers. Basically,
for every body predicate with output arguments, one obtains how many different
instantiations of their input variables are in B ∪E such that there is at least one
instantiation of their output variables. This is done using the Prolog predicate
setof/3, which returns the non-empty set of all possible ground bindings of one
or more given variables such that a given query is satisfied. If there are no ground
bindings of the given variables such that the query is satisfied then setof fails.

Let us illustrate this test using the mutagenesis domain where the target predi-
cate is active/1 whose mode declaration is modeh: active(+drug). Assume
we want to find out whether the predicate lumo whose mode declaration is
modeb: lumo(+drug,-energy) is a dependent provider with respect to back-
ground knowledge B and training examples E. Then we execute the following
Prolog query:
setof((Drug), (Energy)ˆ(drug(Drug), lumo(Drug,Energy)), Set),
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length(Set,NumEx).
This query asks how many different ground bindings for the input variable Drug
are there such that there exists at least one ground binding for the output vari-
able Energy. The instantiations of the input variable Drug are given by the
elements of type drug in B. If this query instantiates NumEx to a value equal
to the total number of elements of type drug in B, the background predicate,
in this case lumo, is a dependent provider.

5.3.4 Mio

We implemented the literal-based approach and the macro-based approach (in-
cluding Algorithms 5.1 and 5.2) in the system Mio3. Mio is an example-driven
covering system which performs a top-down search in the hypothesis space H⊥

(see Definition 4.5). Three search strategies are included in Mio: IDA*, beam-
search and hill-climbing. In this chapter, we concentrate in IDA* because macros
are first shown to work within exhaustive search; hill-climbing and beam-search
are treated in the next chapter.

IDA* in Mio is guided by the number of literals needed to obtain an I/O-complete
clause. When using IDA*, Mio evaluates a clause C using the evaluation function
eval(C) shown in Equation 5.1. In Equation 5.1 | C | is the size of C, pos is the
number of positive examples covered by C and neg is the number of negative
examples covered by C.

eval(C) =
pos

| C |
− neg (5.1)

The idea behind Equation 5.1 is to penalize inconsistent clauses and, given two
clauses C1 and C2 with the same coverage, to favour the smallest one.

Besides the use of macros, Mio distinguishes itself from other systems in that it
performs parallel search, selects stochastically the examples to guide the search,
and enforces type strictness (Definition 4.3). The stochastic example selection
and parallel search are done to avoid that the order in which the examples are
given to the system affects the learning results4. As already mentioned in Sec-
tion 4.1, type strictness is done to discard meaningless hypotheses.

3Mio’s user manual is provided in Appendix A.
4Parallel search is discussed in Chapter 7.
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5.4 Empirical Evaluation

Until this point, we have shown that a learning system using ρM explores, at
least in theory, less clauses than ρL when learning in application domains with
dependent providers. In this section we empirically analyze the performance of
the macro-based method in comparison with the literal-based method. The goal
of our empirical evaluation was to find out:

a) What is the search space reduction obtained by using the macro-based ρM ,
and

b) how this reduction reflects on the running time of the learning system.

In addition, we compare Mio (using IDA*) with Progol.5 We decided to use
Progol in these experiments because both learning systems perform exhaustive
search and construct the bottom clause using inverse entailment. In addition,
as mentioned in Section 3.3, Progol is the most commonly used system in ILP
publications of the last 7 years. Mio differs from Progol in several aspects such
as including parallel search, hill-climbing search and beam-search; enforcing type
strictness; selecting stochastically the examples to guide the search; and support-
ing the use of macros and active inductive learning6.

5.4.1 Application Domains

We carried out experiments on the following datasets.

1. Chess moves7. This dataset contains 180 positive and 17 negative examples
of valid chess moves for five pieces: king, queen, rook, bishop and knight.
The learning task is to learn what are correct moves for these pieces.

2. Eastbound trains8. One has to determine the direction (east or west) of
trains based on their attributes. This dataset contains 42 positive and 19
negative examples.

3. Student loan9. This dataset was used in [77] and consists of 643 positive and
357 negative examples. The learning problem is to discriminate between
individuals who are not required to pay back an educational loan and those
who must pay.

5Comparisons with other systems are presented in Chapter 6.
6Active inductive learning is discussed in Section 8.2.
7Part of this dataset is contained in the distribution package of CProgol 4.4.
8To generate the examples we used the Random Train Generator available at www.doc.ic.ac.

uk/∼shm/Software/GenerateTrains/. The dataset we used is available upon request.
9This dataset is available at the UCI repository [3].

55

www.doc.ic.ac.uk/~shm/Software/GenerateTrains/
www.doc.ic.ac.uk/~shm/Software/GenerateTrains/


5 Macro-operators

Dataset Dependent Providers
Chess moves diff/3
Eastbound trains has car/2, infront/3
Student loan longest absence from school/2,

enrolled/3 (96%)
Mutagenesis lumo/2, logp/2, bond/4, nitro/2,

benzene/2 (99%), ring size 6/2 (99%)
Mesh design neighbour/2 (98%)
Traffic secciones posteriores/2 (74%)

Table 5.1: Dependent providers declared for application domain

4. Mutagenesis10. This is an ILP benchmark dataset described in [100] with
188 compounds (125 positive and 63 negative examples). The mutagene-
sis problem deals with the prediction of the mutagenic activity of small,
heterogeneous molecules.

5. Mesh design11. The finite element method is used to analyze stresses in
physical structures by approximating them with a mesh model. The learn-
ing problem is to determine the appropriate number of elements N on an
edge. This dataset contains information about the edges of ten different
structures and is described in [25].

6. Traffic problem detection. This dataset was used in [32] and consists of
256 examples of traffic situations in road sections in the city of Barcelona.
The task is to classify such situations as accident, congestion or non-critical
section.

Table 5.1 shows which background predicates were declared as dependent
providers for each domain. In this table, a percentage x following a predicate
indicates that the property or relation denoted by the predicate does not hold
for every input argument values but holds for x% of the input argument values
(as explained in Section 5.3.3).

5.4.2 Experiment Design

In the experiments, we set the maximum number of clauses explored per search
by Mio to 70000 so that the searches were not interrupted by reaching a clause
limit. For Progol, we follow the recommendations in [73] and set the maximum

10Available at web.comlab.ox.ac.uk/oucl/research/areas/machlearn/mutagenesis.html.
11This dataset is available at www.mlnet.org.
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Figure 5.2: MioM (left) and Progol’s accuracies per dataset

number of nodes to 1.6 times the number of examples in E when this number is
greater than the default value (200). This was done for every dataset, except for
mutagenesis and eastbound trains, where the settings indicated by the author of
Progol were used. Appendix B contains the settings and mode declarations used
for each system per dataset.

To learn and evaluate the results, we used 5-fold-cross-validation for the first three
datasets (because of Mio’s small standard deviation), 10-fold-cross-validation for
mutagenesis and traffic, and cross-validation-leave-one-out for mesh design (i.e.,
the systems learned from nine structures and the theories were evaluated in
the tenth structure). In the mesh dataset, negative examples were introduced
for learning but they are not included in the test data, because the accuracy
obtained when including them is misleadingly high. Mio was run twice on every
dataset: once using ρL (MioL) and once using ρM (MioM).

5.4.3 Results

Figure 5.2 shows the average accuracy and standard deviation of MioM and
Progol per application domain. In the chess, trains, student loan and mesh
design domains, the accuracy of Mio is statistically higher than that of Progol
(t-significance level α = 0.01); while there is no statistically significant difference
between Mio and Progol’s accuracies in the mutagenesis and traffic domains.

As Theorem 5.2 asserts, in domains with dependent providers, MioL and MioM
obtain the same theory, and thus, their accuracy is the same. However, in mesh
design and the traffic problem, sometimes there are clauses which differ between
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Average nodes/search Average run time
Dataset MioL MioM Progol MioL MioM Progol
Chess 79 29 33 8.2s 5.2s 1.2s
Trains 4862 2754 1230 3.3m 2.5m 54.2s
Student-Loan 72 33 60 14s 8.3s 17s
Mutagenesis 42919 11191 20000 6h30m 1h54m 1h18m
Mesh 23854 3334 7900 18h30m 4h53m 13h55m
Traffic 479 175 420 6.4m 2.4m 3.2m

Table 5.2: Search space explored and run time per system per dataset

Dataset Search space Speed-up
reduction ratio

Chess 63% 1.6
Trains 43% 1.3
Student-Loan 54% 1.7
Mutagenesis 74% 3.4
Mesh 86% 3.8
Traffic 63% 2.7
Average 64± 14% 2.4± 0.95

Table 5.3: Comparison of MioM against MioL

the theories learned by MioM and MioL. In some of these cases, the accuracy of
MioM is slightly higher; e.g., in the traffic dataset MioM has an average accuracy
of 94.2 ± 5.5% versus 93.9 ± 5.5% obtained by MioL, and in the mesh dataset
MioM obtains an accuracy of 39.9±18.8% while MioL obtains 38.1±18.3%. This
indicates that the macro-based ρM can also be used in domains with providers
which succeed for most of the input argument values as long as a consumer of
these providers is also available.

Table 5.2 shows the average number of nodes (clauses) expanded per search and
the run time per system per dataset (all the experiments were run on a 500 MHz
Sun Blade 100 with 128 MB of RAM). In Table 5.3 the column speedup ratio
shows the geometrical ratio of MioL’s average run time t1 to MioM’s average run
time t2 (i.e., t1/t2). The search space reduction obtained by using ρM compared
with ρL is calculated with the formula (1− s2/s1) ∗ 100, where s1 and s2 are the
average number of nodes explored per search by MioL and MioM, respectively.

ρM evaluates on average 64± 14% less clauses than ρL. In fact, in every domain
MioM considers statistically less clauses than MioL (t-significance level α =
0.005). With this search space reduction, MioM is on average 2.4 times faster
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Ave. No. Ave. No. Ave. macros
Dataset literals macros construction time

in ⊥ in MSet (msec)
Chess 20± 5 29± 10 2.5± 1.1
Trains 33± 8 202± 68 19.8± 7.4
Student-Loan 8± 2 6± 1 0.7± 0.6
Mutagenesis 210± 43 432± 104 29.7± 10.8
Mesh 97± 35 92± 49 9.7± 5.4
Traffic 34± 10 21± 6 2.2± 0.9

Table 5.4: Average macros construction time per dataset

than MioL. Note that this improvement is obtained without further restricting
the hypothesis space; i.e., MioM and MioL search for solutions in the same
hypothesis space but MioM considers only legal sequences of literals. MioM’s run
time is comparable to that of Progol even though Mio was allowed to consider a
larger number of clauses per search than Progol.

To determine the overhead caused by the macros construction algorithms in
Mio’s run time, we measured the average construction time per dataset. Ta-
ble 5.4 shows per dataset the average size of the bottom clause, the average
number of macro-operators constructed, and the average macros construction
time in milliseconds. On average, there is a time overhead of 0.1 milliseconds
per macro automatically constructed. Thus, the macros construction time is a
minor overhead in the performance of the system.

5.5 Related Work

Reviewers of our work have pointed out that the definition of macros reminds
them of k-local clauses, a language bias12 proposed by Cohen [14]. Cohen intro-
duced k-local clauses as an alternative restriction to determinate clauses which
still leads to a pac-learnable language13. In this bias, only clauses of locality k
or less are considered, where the locality of a clause is the size of the largest
set of literals which contain either a free (local) variable X or some free variable

12A bias refers to any criteria used by a learning system for preferring one clause over another
when constructing a theory, other than strict consistency with training data.

13Pac stands for probably approximately correct, which means that a system can probably
learn from a polynomial number of training examples a theory that is approximately correct
(see [65], Chapter 7).
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5 Macro-operators

influenced by X (this set is called the locale of X)14. However, contrary to the
clauses generated by a macro-based refinement operator, a k-local clause might
not be a legal subsequence of literals, in this case, it does not need to be consid-
ered because it cannot be a solution. For example, suppose we search for 3-local
clauses. In this case, a clause whose body consists of one dependent provider
is considered. However, as discussed before, we know that such a clause cannot
be a solution. A macro-based refinement operator, on the other side, does not
generate this kind of clauses.

Another work reminiscent of macros is first-order feature construction for
individual-centered domains by Flach and Lavrač. This approach is used in
1BC [37] to restrict the search space, and in LINUS [57, 58] and RSD [60] to
propositionalize the input data. Individual-centered domains [35] are domains in
which there is a clear notion of individual; i.e., an example refers to a single indi-
vidual and the target concept is a property of a set of individuals. The relation
between individual-centered first-order feature construction and macros becomes
more apparent if the macro generation is seen as first-order feature construction
and macros are considered first-order features used by the refinement operator
to construct the body of a clause. In both approaches, feature construction and
macros, the key idea is to use provider-consumer iterations of existential vari-
ables among the literals as basis to construct the features or, respectively, the
macros.

To establish the differences between first-order features and macros, let us relate
the terms used in [37, 58] to macros’ terminology. Structural predicates are re-
stricted to represent binary relations between complex structures (or types) with
one of their parts. Since dependent providers are n-ary predicates which can
denote any relation or function, structural predicates can be seen as a proper
subset of binary dependent providers. Structural predicates are similar to struc-
tural literals defined by Zucker and Ganascia [108] but structural predicates relax
the condition of transitivity (see Definition 2.28). Our dependent providers relax
in addition the requirement of antisymmetry. Properties or utility predicates are
equivalent to consumers, and features are legal subsequences of literals (i.e., a
feature satisfies Definition 5.3) where head providers are not allowed. Macros
extend individual-centered feature construction by allowing head providers and
n-ary dependent providers. In addition, macros can be applied to non-individual-
centered domains such as the kinship example used in this chapter or for program
synthesis tasks.

14Let X, Y and Z be free variables. According to [14], X influences Y if they appear in the
same literal, or if X occurs with Z in the same literal and Z appears in some other literal
together with Y . Note that the relation influences does not imply a provider-consumer
relation.
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5.6 Summary

Macros have four advantages with respect to other ILP approaches to restrict
the size of the search space. First, contrary to ij-determinate literals (see Defi-
nition 3.8), macros are suitable for a large variety of application domains and do
not require properties such as determinacy (Definition 3.7) in the application do-
main which are not present in many interesting problems. Second, compared with
k-local clauses, macros prevent the system from considering unneeded clauses;
i.e., clauses which cannot belong to an appropriate theory. Third, macros are
automatically constructed and do not imply extra work for the user. Finally,
contrary to most language biases, macros guarantee that only unneeded clauses
are discarded.

Macros can also be considered a formalism to specify language bias (such as
MOBAL’s schemata [52] or ADG [13]). Within ADG, Cohen [12] uses the term
lazy macros to denote a method for completing a given antecedent description
grammar, but this is unrelated to our macros’ definition. Macros are also related
to approaches used to solve the shortsightedness of a learning system using hill-
climbing search but these approaches are surveyed in Chapter 6.

5.6 Summary

In this chapter we precisely develop the use of automatically constructed macros
as a formal technique to reduce the search space defined by a downward refine-
ment operator. Macros are suitable for domains with dependent providers or
providers which succeed for most of the input argument values, and they do
not add incompleteness to the search. By using a macro-based refinement op-
erator, we discard a significant number of clauses which cannot belong to an
adequate theory. Thus, a reduction in the search space is obtained which results
in shorter run-times. This approach was implemented in Mio, an example-driven
covering system. Experiments on six application domains show that an average
search space reduction of 64% obtained using ρM produces on average a 2.4 fold
speedup of the learning process.

In addition, we provided algorithms for constructing the macros based on a set
of mode declarations and a bottom clause. These algorithms are shown to be
complete and correct.
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6 Hill-Climbing Search Using Macros

In the previous chapter we introduced macros and explained how they reduce
the search space explored when exhaustive search (e.g., IDA*) is used. However,
even with a search space reduction, considering all possible alternatives at each
level of the refinement graph (i.e., performing exhaustive search) can be too
inefficient because the branching factor of most multirelational learning problems
is very large. Consequently, search strategies which only take a limited number
of alternatives at each level are typically applied. Among these search strategies,
hill-climbing search, which takes only one (the best) alternative at each level,
is the most commonly used search algorithm in ILP.1 However, a well known
problem of systems using hill-climbing search is their myopia; i.e., the search
algorithm might be unable to correctly assess the quality of a refinement and
end up with a non-optimal theory.

This chapter examines the use of macro-operators as an alternative approach
to mitigate hill-climbing’s myopia. As shown in Chapter 5, macro-operators
combine dependent providers (see Definition 5.1) with their consumers, and a
macro-based refinement operator ρM (Definition 5.9) only generates clauses which
are legal subsequences of literals (Definition 5.3). Hill-climbing’s shortsightedness
usually occurs because hill-climbing search does not consider the existence of
dependent providers and the inability of the evaluation function (Definition 3.12)
to deal properly with this kind of literals. For example, consider the eastward
trains domain where the learning task is to find a theory to classify the trains
according to their traveling direction (east or west). One of the relations in
this domain is the structural relation between one train and its cars denoted
by the predicate hasCar/2. Since every train is composed by cars, hasCar
is a dependent provider and does not differentiate between examples of trains
belonging to different classes. Thus, the evaluation value of clauses that contain

1The reader is referred to [40] for a list of ILP systems and their search strategies.
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hasCar as their last literal is low and they are not selected by hill-climbing
(i.e., hasCar does not occur in any learned clause). In this case, hill-climbing
search may end up with a non-optimal clause or hit a dead end. The fact that
hill-climbing cannot “see” that hasCar combined with other relations may yield
a solution (Definition 4.8) is called myopia.

The benefit derived from macro-operators in hill-climbing is that the evaluation
function is only applied to legal subsequences of literals, which has the advantage
that the quality of the clauses can be more accurately assessed since they have
discriminative power and can in fact be a solution. For instance, in the eastward
trains domain with the macro-based approach, hasCar is always added to a
clause with one of its consumers so that the evaluation function is able to more
accurately estimate its importance.

In the next section, our hill-climbing search algorithm is presented. In Section 6.2,
we use this algorithm to illustrate hill-climbing’s myopia problem. Section 6.3
explains how macros alleviate the shortsightedness of hill-climbing. Section 6.4
presents a detailed comparative study on approaches to reduce the myopia prob-
lem of hill-climbing search in multirelational learning. This study involves fixed-
depth lookahead, template-based lookahead, beam-search, determinate literals
and macros. Our results show that, with the exception of beam-search, a hill-
climbing learner using macros reports significantly lower classification error than
systems using other approaches. Finally, Section 6.5 discusses related work.

6.1 A Hill-Climbing Search Algorithm

With the purpose of having a general search algorithm able to perform various
search strategies, we formulate Algorithm 6.1. This algorithm performs a top-
down search and uses an example to guide the search for hypothesis. It receives
two user-defined parameters, s and b, which indicate the amount of lookahead and
the beam width, respectively. The default values (s = 1 and b = 1) correspond to
hill-climbing search. An s with value of x means that step 2(b)ii in Algorithm 6.1
adds to R the set of all refinements W obtained by x or less applications of ρ to
D; that is, the system performs an x-step lookahead. With a value of b greater
than one (1 < b � ∞), beam-search is obtained. In addition, ρ can be either
a literal-based refinement operator (ρL) or a macro-based refinement operator
(ρM). As in Chapter 5, when ρL is employed we refer to Mio as MioL and when
ρM is used as MioM.

To evaluate the quality of a clause C, Algorithm 6.1 uses the evaluation function
shown in Equation 6.1 which is based on the information gain heuristic [41].
In Equation 6.1, pos is the number of positive examples covered by C; neg the
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6 Hill-Climbing Search Using Macros

Top Down Search
Input: The top of the lattice >, B, E, b, s
Output: Either a clause C or ∅

1. S = {>} /* Ordered set of clauses to consider*/
2. While a clause D ∈ S can be refined or search resources are not

exhausted
a) R = ∅ /* Set of refinements */
b) For every clause D ∈ S that can be refined

i. W =
s⋃

d=1

ρd(D)

ii. R = R ∪W
c) Sort R according to eval
d) Let Rb be the best b refinements in R
e) S = Rb

3. Let C be the best evaluated clause in S
4. If eval(C) ≥ minimum value accepted and C covers enough positive

and few enough negative examples in E
a) Then Return C
b) Else Return ∅

Algorithm 6.1: A search algorithm to perform literal-based or macro-based hill-climbing
and beam-search with or without lookahead

number of negative examples covered by C; |E+| the total number of positive
examples; |E−| the total number of negative examples; |C| the number of body
literals in C (or 1 if C’s body is empty); > refers to the unit clause at the top of
the refinement lattice, and IC(D) returns the information content of any clause
D. IC(C) is calculated by −log2(

pos
pos+neg

).

eval(C) =

pos+(|E−|−neg)
|E+|+|E−| ∗ (IC(>)− IC(C))

|C|
. (6.1)

From an information theory perspective, IC(>) − IC(C) can be interpreted as
the reduction due to C’s literals in the total number of bits needed to encode the
classification of an arbitrary positive example. In Equation 6.1, we weight C’s
information gain with its accuracy, because two clauses may have equal informa-
tion gain but different accuracy and we want the evaluation function to reward
accuracy. In addition, given two different clauses with the same information gain
and accuracy, Equation 6.1 assigns a higher value to the shortest one.

In the subsequent sections, every reference to Mio pertains to Mio using Algo-
rithm 6.1, unless otherwise stated.

64



6.2 Myopia of Hill-Climbing: An Example

Figure 6.1: Search space explored by hill-climbing using ρL. Below each clause one can
see between braces the number of positive and negative examples covered by the clause
followed by the clause’s heuristic value obtained by Equation 6.1. A square enclosing a
clause indicates the clause chosen by hill-climbing at each iteration.

6.2 Myopia of Hill-Climbing: An Example

To illustrate the myopia problem of hill-climbing using Algorithm 6.1, consider
the student loan domain where the system has to induce a theory to classify
individuals into those who are not required to pay back an educational loan and
those who must pay. Assume we set the maximum length of the clauses to four
body literals2 and that in one iteration of the covering algorithm the following
bottom clause is derived from a given example e.

no payment due(A) ← -1- male(A), -2- longest absence from school(A,I0),
-3- enrolled(A,School1,I1), -4- enrolled(A,School2,I2), -5- gte(I1,3), -6-

gte(I0,4), -7- gte(I2,9), -8- lte(I1,3), -9- lte(I0,4), -10- lte(I2,9).

Recall from Chapter 5, that the numbers which precede the literals in the bottom
clause indicate the position of each literal in ⊥ and they are used to refer to the
literals.

Let us explain how Algorithm 6.1 with b and s equal to one and ρ being ρL

works. In the first iteration, after step 2b, the set R contains four refinements

2The corresponding mode declarations can be seen in Appendix B.
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6 Hill-Climbing Search Using Macros

Figure 6.2: Search space explored by hill-climbing using ρL with 2-step lookahead. The
ellipses inclose the clauses generated by ρL per iteration (Algorithm 6.1, step 2b).

of the clause C =no payment due(A)← (these refinements are C1, . . . , C4 in
Figure 6.1). From these refinements, C3 and C4 are the best evaluated clauses
by Equation 6.1. Assume that, in step 2d, C3 is chosen. Then, after three more
iterations, hill-climbing hits a dead end with three clauses in S which cannot
be refined (F1, F2 and F3 in Figure 6.1), and since F1 does not satisfy the
criterion in step 4, the algorithm returns ∅. Hill-climbing fails to find a solution
because the literals 2, 3 and 4 are dependent providers (i.e., they do not have
discriminative power) and the evaluation function is unable to correctly assess
their quality when added by themselves to a clause. The refinements which
lead to a solution in this example are C2 and C4 and the solution is the clause
no payment due(A) ← 2,4,7,9.

In this case, 2-step lookahead solves the myopia of hill-climbing and finds a solu-
tion (see Figure 6.2); however, employing 2-step lookahead has the drawback that
several non-admissible clauses (e.g. clauses which contain a dependent provider
as the last literal such as C5 in Figure 6.2) are considered; and, we know that
the evaluation function cannot adequately estimate the value of such clauses.
Furthermore, as shown in Section 6.4, fixed-depth lookahead may incur in sig-
nificantly longer run times without gain in accuracy. In the next section, we
illustrate how a macro-based approach finds a solution for this learning prob-
lem.
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6.3 How Macros Alleviate the Myopia of Hill-Climbing

Figure 6.3: Search space explored by hill-climbing using ρM . A square enclosing a clause
indicates the clause chosen by hill-climbing at each iteration.

6.3 How Macros Alleviate the Myopia of
Hill-Climbing

Let us illustrate how macros alleviate the myopia of hill-climbing us-
ing the example above. Since every body literal applying the predicates
longest absence from school and enrolled introduces existential variables
to a clause and succeeds for any combination of input argument values, these
literals are dependent providers. Seven macros are built by the macros genera-
tion algorithm described in Section 5.3 with the bottom clause listed above and
the mode declarations given in Appendix B as input. These seven macros are
MSet = {1, [2, 6], [2, 9], [3, 5], [3, 8], [4, 7], [4, 10]}.

As depicted in Figure 6.3, in the first iteration, macro-based hill-climbing (i.e.,
Algorithm 6.1 with b and s equal to one and ρ being ρM) evaluates seven refine-
ments obtained by adding to C =no payment due(A)← the generated macros.
From those refinements, C6 obtains the highest heuristic value and is selected in
step 2d. In the second iteration, in step 2b, C6 is refined by adding the available
macros, and in step 2d, D3 is selected. Since D3 cannot be further refined, the
algorithm terminates and returns D3, which is a solution and is then added to
the final theory. D3 corresponds to the following solution.
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6 Hill-Climbing Search Using Macros

D3 =no payment due(A) ← longest absence from school(A,I0),
enrolled(A,School2,I2), gte(I2,9), lte(I0,4).

Macros alleviate hill-climbing’s myopia problem because Equation 6.1 is applied
to clauses whose quality can be more accurately assessed because they have
discriminative power and can be a solution. By using macros, an automatically
adjusted variable-depth lookahead is performed where only legal subsequences of
literals are considered.

6.4 Empirical Evaluation

In this section we empirically analyze how effective macros are to alleviate the
shortsightedness of hill-climbing search compared with other approaches against
myopia. Specifically, we compared macros with fixed-depth lookahead, beam-
search, determinate literals and template-based lookahead. These approaches
were compared in terms of classification error and run time.

We performed experiments on the six application domains described in the previ-
ous chapter (page 55) which are chess moves, student loan, eastward trains, mesh
design, traffic problem detection, and mutagenesis. The same as in Chapter 5,
we used 5-fold-cross-validation for the first three datasets, 10-fold-cross-validation
for mutagenesis and traffic, and cross-validation-leave-one-out for mesh design.

6.4.1 Comparing Macros with Template-based Lookahead
and Determinate Literals

For the comparison with template-based lookahead and determinate literals, we
carried out experiments with FOIL (version 6.4) and TILDE (contained in ACE
1.1.15), respectively. We defined the templates needed by TILDE to perform
lookahead based on the macros created by MioM. This was done for every dataset
except for mutagenesis and mesh where the templates indicated by the author of
TILDE were used [4]. MioM was run with s = 2. As a comparison point, Progol’s
results reported in the previous chapter are also included. Appendix B contains
the settings and mode declarations per dataset used for Mio and TILDE; for
FOIL the defaults values were used.

As Figure 6.4 and Table 6.1 show, the classification error of MioM is lower than
that of TILDE, FOIL and Progol, with mesh being an exception, where TILDE
obtains the lowest error. According to a t-significance value of α = 0.005, MioM’s
accuracy is statistically higher than that of FOIL in the chess, student loan,
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Figure 6.4: Classification error of Progol (left), FOIL (2nd bar), TILDE (3rd bar), and
MioM (right) per dataset

Dataset Progol FOIL TILDE MioM
Chess 0.02 0.08 0.12 0.01
S.Loan 0.003 0.02 0.08 0.00
Trains 0.23 0.20 0.15 0.05
Traffic 0.08 0.09 0.07 0.06
Mutag. 0.14 0.19 0.17 0.14
Mesh 0.81 0.81 0.56 0.61

Table 6.1: Average error per system per dataset

trains, and mesh design domains. MioM’s accuracy is statistically higher than
that of TILDE in the chess, student loan, and trains datasets. Finally, MioM’s
accuracy is statistically higher than that of Progol in the trains, student loan,
and mesh datasets. Thus, macros significantly improve accuracy compared with
template-based lookahead (TILDE) and determinate literals (FOIL), and obtain
an average accuracy which positively compares with that obtained by exhaustive
search (Progol).

Table 6.2 shows the average run time on a Sun Blade 100 (500 MHz and 128
MB of RAM) of Progol, MioM, TILDE and FOIL per dataset. One can see that
while macros represent a significant improvement in accuracy with respect to
the other systems, they attain a middle place in terms of running time. There
is reason to believe that MioM’s longer running times are in part due to imple-
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Dataset Progol MioM TILDE FOIL
Chess 1.2s 4.6s 1.1s 0.8s
S.Loan 17s 7.1s 1.6s 24.7s
Trains 54s 100s 0.2s 0.1s
Traffic 182s 113s 2.8s 1.7s
Mutag. 1h18m 48m 18.6s 2.2s
Mesh 13h55m 1h48m 35.3s 9.1s

Table 6.2: Average run time per system per dataset

mentation issues: Mio’s main components are implemented in Java and calls to
SICStus Prolog are done using Jasper (a Java-SICStus interface); while FOIL
is implemented in C and TILDE is implemented in ilProlog which is a built-in
high performance Prolog system with special purpose features for ILP. To deter-
mine the impact of the implementation, we executed a single query to obtain the
coverage of a four-body-literal clause (given identical examples and background
knowledge) using TILDE and Mio. TILDE takes on average 0.01s to execute this
query, while Mio takes 0.10s. Generating the macros is a minor time overhead
since, on average, it takes 0.1 milliseconds to automatically construct a macro
and 130 macros are generated per covering iteration (see Table 5.4 on page 59).
Hence, macros are not the efficiency bottleneck of the system.

6.4.2 Comparing Macros with Fixed-depth Lookahead and
Beam-Search

To compare macros with fixed-depth lookahead and beam-search in terms of
classification error and run time, we ran MioM and MioL using Algorithm 6.1
with different values for the parameters b and s. MioM was run with s set to 1, 2,
and 3, and b= 1. MioL was run with eight different parameter settings: using hill-
climbing (s = 1 and b = 1); with 2, 3 and 4-step lookahead (s = 2 . . . 4 and b = 1),
and using beam-search with various beam widths (s = 1 and b = 5, 20, 80, 160).

Figure 6.5 (top) shows the average classification error across all six datasets
obtained by each parameter setting. The horizontal line at 0.162 represents the
average classification error of all settings reported. The table on the bottom of
Figure 6.5 shows the values of the data points. For comparison, MioM using
IDA* reports an average classification error of 0.149 across the same six datasets
with an average run time of 4095 seconds.

In the experiments, hill-climbing (see data point 1 in Figure 6.5) has, as we ex-
pected, the highest classification error. The lowest classification error is obtained
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1 Hill-climbing - 76s 0.217
2 Beam-search (b = 5) 135s 0.171
3 Fixed-depth L-ahead (s = 2) 171s 0.164
4 MioM - 175s 0.171
5 Beam-search (b = 20) 390s 0.158
6 Beam-search (b = 80) 1514s 0.143
7 MioM (s = 2) 1598s 0.144
8 Beam-search (b = 160) 2990s 0.143
9 MioM (s = 3) 3096s 0.142
10 Fixed-depth L-ahead (s = 3) 4336s 0.175
11 Fixed-depth L-ahead (s = 4) 6362s 0.151

Figure 6.5: Up: Average classification error and running times across all six datasets using
macros, hill-climbing, fixed-depth lookahead and beam-search. Bottom: Reference table
with the values of the data points shown in the diagram

using macros with lookahead (data points 7 and 9) and beam-search with the
beam width set to 80 and 160 (data points 6 and 8). However, beam-search
has the drawback that the beam width has to be tuned by trial-and-error. In
our case, we tried in total six different beam width values for every application
domain.

Increasing the amount of fixed-depth lookahead beyond two (data points 10 and
11) does not pay off because of the long running times and the marginal decrease

71



6 Hill-Climbing Search Using Macros

Approach Beam- Fixed- TILDE Progol FOIL Hill-
search depth L. climb.

MioM (s = 2) vs. 0-0-6 2-0-4 3-0-3 4-0-2 5-0-1 5-0-1
Beam-search (b = 80) vs. 2-0-4 3-0-3 4-0-2 5-0-1 5-0-1
Fixed-depth L-ahead (s = 2) vs. 3-1-2 4-0-2 4-0-2 4-0-2
TILDE (template-based) vs. 1-2-3 1-2-3 2-0-4
Progol (exhaustive search) vs. 2-0-4 2-1-3
FOIL (determinate literals) vs. 2-1-3

Table 6.3: Win-loss-tie comparison between the approaches (row vs. column) in terms of
the no. of domains with a significant (α = 0.05) difference in accuracy

in classification error (which only occurs for data point 11). In addition, the
behaviour of beam-search and macros is more stable than that of fixed-depth
lookahead since there is no descent in accuracy (in fact, their accuracy seems to
converge) and no oversearching [90] occurs when the beam width or the amount
of lookahead is increased.

6.4.3 Results Summary

Table 6.3 shows a win-loss-tie comparison between all the approaches’ accuracies.
For this table, we select the best configuration found for fixed-depth lookahead
(s = 2) and beam-search (b = 80). As shown in the first row of Table 6.3, MioM
is more accurate than all the other approaches but beam-search, with 0.95%
statistical significance.

The most effective approaches to reduce hill-climbing’s myopia problem are
macros with lookahead (s = 2) and beam-search with the beam width set to 80
clauses, which obtain practically the same accuracy on every domain and have
similar run times (1598 and 1514 seconds respectively). In addition, macros, in
contrast to some of the other approaches, can be computed fully automatically,
do not require user involvement nor special domain properties such as deter-
minacy, and their performance is less sensitive to domain-dependent tuning of
parameters.

6.5 Related Work

Related approaches to the use of macro-operators to alleviate the myopia of
hill-climbing search are FOIL’s determinate literals [86], Relational clichés [98],
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TILDE’s lookahead [5] and pathfinding [94].

� Determinate literals

Determinate literals (Definition 3.8) appeared first in Golem [72] and were
subsequently adopted by FOIL and LINUS [58]. This approach works as
follows. In a first step, all determinate literals are added to the clause to
be refined. In a second step, refinements containing consumers of these
literals are evaluated, and the best one is selected. Finally, all determinate
literals without a consumer are removed from the clause.

Determinate literals are the subset of dependent providers which are
uniquely satisfied by all the examples. That is, determinate literals must be
uniquely satisfied by all the positive examples while a dependent provider
must be satisfied by all the examples but can be multiply satisfied. Deter-
minate literals’ approach requires determinacy in the application domain.
However, determinacy is not a property present in many application do-
mains. For example, in the eastward trains domain, a train can have mul-
tiple cars, or in the mesh design domain, a node has multiple neighbours.

� Template-based lookahead

Relational clichés and TILDE’s lookahead refine a clause based on user-
defined templates. Basically, in these two approaches, the user has to
provide a template for every provider-consumer match. For example, in
the mesh design domain the user has to combine the relations neighbor
and opposite with every relation about edge attributes. This equates to
36 templates (see B.2.5). In macros, on the other hand, the user only has
to identify the dependent providers; in fact, not even that since there is
a procedure for automatically finding the dependent providers in a given
domain as explained in Section 5.3.3.

In addition, in both approaches, relational clichés and TILDE’s lookahead,
the system can, but does not have to, use the templates provided to refine
a clause and by doing this the system may consider clauses which are not
legal subsequences of literals.

Therefore, a macro-based approach has two advantages over template-
based approaches such as relational clichés and TILDE’s lookahead: 1)
macros do not imply extra work for the user, and 2) with macros the sys-
tem considers only legal subsequences of literals.

� Pathfinding

In relational pathfinding, a domain is viewed as a graph with constants as
its nodes and the relations which hold between the constants as its edges.
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6 Hill-Climbing Search Using Macros

The learning system is then restricted to learn clauses that correspond to
a path through the graph; i.e., all the constants in the clause are in the
same path formed by the relations which hold among them. Relational
pathfinding improves the accuracy of a greedy learning system but, as
pointed out by Richards and Mooney, is less efficient than determinate
literals and relational clichés.

Pathfinding can be seen as restricting the macro-based refinement operator
to add a macro to a clause only if there is a variable intersection between the
macro and the body of the clause. Macros are more general than relational
pathfinding because they allow the system to learn clauses formed by two
or more disconnected subpaths in the graph.

6.6 Summary

In this chapter, we showed that macros are also suitable for alleviating the my-
opia of hill-climbing search. Myopia in hill-climbing mainly occurs because hill-
climbing does not consider the existence of dependent providers and the inability
of the evaluation function to deal properly with these kind of literals. Macros
reduce hill-climbing’s myopia problem because the evaluation function is only
applied to legal subsequences of literals; i.e., to clauses whose quality can be
more accurately assessed because they have discriminative power and can in fact
be a solution.

Empirical results on several application domains showed that a greedy learner
using macros exhibits significantly lower classification error than other systems
using other techniques such as fixed-depth lookahead, template-based lookahead
or determinate literals. What is more, macros are automatically computed, can
be employed in any domain with dependent providers, and their performance
does not rely on user-defined parameters or user-defined templates.
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7 Improving the Stability of
Example-driven Learning

This chapter deals with the instability of example-driven learning. In the
example-driven approach, a learning system employs one or a few positive ex-
amples to guide the search for hypotheses. This approach is quite effective to
learn complex rules (such as the rules usually needed in structural/topological
domains); however, it has the drawback that since only one or a few individual
examples are selected as basis for generalization in each round, the choice of ex-
amples can have a significant effect on the quality and contents of the learning
results. Thus, the user can not rely on obtaining identical, or at least identically
performing results in different runs with the same data; i.e., the learning sys-
tem is instable (see Definition 7.1 below). What is more, as pointed out in [65],
example-driven algorithms are easily misled by a few noisy examples and are
hence less robust when the training data contains errors.

While it is well known that example-driven systems potentially exhibit the kind
of instability described above, such stability issues have not been considered in
great detail in the literature. In this chapter, we explore the stability of two
example-driven multirelational learning systems, namely Progol and Mio. We
also examine one possible solution to the problem, presenting an algorithm which
relies on stochastically selected examples and parallel search. We implemented
this algorithm in Mio and carried out experiments on four application domains.
The empirical results obtained show that our algorithm almost eliminates the
instability of example-driven search with limited additional effort. Our approach
also delivers a numerical characterization of the degree of instability of a partic-
ular application domain, providing additional insight about the behavior of ILP
problems.

In the next section, we formally define what we mean by stability. In section 7.2,
we describe how we reduce the instability of example-driven learning by perform-
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ing parallel search on stochastically selected examples. Section 7.3 presents our
empirical results, and related work is discussed in Section 7.4.

7.1 Stability in Example-driven Learning

Example-driven learning consists in using generalizations of one or a few individ-
ual examples to constrain the search space and guide the search for appropriate
hypotheses. The expectation is that, by using individual examples as starting
points or seeds, the learning system starts the learning process closer to appro-
priate hypotheses than when no seed is used. How an example is generalized is a
specific feature of each example-driven system. For example, Progol [68] and Mio
use an example to derive a bottom clause using inverse entailment (Section 4.2);
while Golem [72] obtains the relative least general generalization (rlgg) of two
examples.

Since typically not every selected example e leads to equally good generaliza-
tions, the results obtained by example-driven learning systems can be affected
by the order in which the examples are taken into consideration by the system.
This lack of stability might have negative consequences such as increasing the
likelihood of obtaining sub-optimal results (i.e., theories with lower prediction
power), and getting different theories from the same training examples. For in-
stance, Table 7.1 shows two theories about the diagonal movement of the queen
in chess. Both theories were learned by Progol from exactly the same set of
examples; the only difference was the order in which the examples were given
to the system. In this case, the learning system is instable. We therefore define
stability after renaming variables (Definition 2.26) as follows.

Definition 7.1 – Stability. A learning system is defined as stable (against
reordering) when, given reordered but otherwise identical training examples E
(Definition 3.1),

(a) it obtains identical sets of clauses: syntactic stability, or
(b) if all different results have equal prediction power: predictive stability.

This stability definition directs toward two possible measures of stability, or
rather, instability: accuracy distance and syntactic distance. We designed our
own instability measures, because no standard measures exist to compare the
stability of rule learning systems.

Definition 7.2 – Accuracy Distance. Let A and B be two theories obtained
on reordered example sets, and let αA ∈ [0, 1] and αB ∈ [0, 1] be the classification
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Theory A Theory B
move(queen,pos(A,B),pos(C,D)):- move(queen,pos(A,B),pos(C,D)):-

diff(B,D,5), diff(A,C,5). diff(B,D,E), diff(A,C,E).

move(queen,pos(A,B),pos(C,D)):-

diff(B,D,4), diff(A,C,4).

move(queen,pos(A,B),pos(C,D)):-

diff(B,D,3), diff(A,C,3).

move(queen,pos(A,B),pos(C,D)):-

diff(B,D,2), diff(A,C,2).

move(queen,pos(A,B),pos(C,D)):-

diff(B,D,1), diff(A,C,1).

Table 7.1: Instability example: theory A and theory B were obtained by the same ILP
system from the same training examples

error (Definition 3.2) of A and B. The accuracy distance between A and B is
defined as follows.

δacc(A,B) := |αA − αB|. (7.1)

For example, assume Theory A in Table 7.1 has a classification error of 0.05 and
Theory B of 0.0, then the δacc(A,B) = |0.05− 0| = 0.05.

Definition 7.3 – Syntactic Distance. Consider A and B as sets of clauses,
and Abag := bagOf(A \ (A ∩ B)) and Bbag := bagOf(B \ (A ∩ B)) as bags of
literals. The syntactic distance between A and B is calculated as follows.

δsyn(A,B) =

{
|Abag\Bbag |+|Bbag\Abag |

|Abag |+|Bbag |
ifA ∩B 6= ∅,

1 ifA ∩B = ∅
(7.2)

where | S | is the cardinality of S.

Note that Abag and Bbag contain the clauses’ literals as single elements and may
have duplicate literals. Let us consider again the theories shown in Table 7.1. In
this case, A ∩ B = ∅ (i.e., there is no clause in common between both theories)
and thus δsyn(A,B) = 1.

We define the degree of stability of a learning system on a particular problem as
follows.

Definition 7.4 – Instability Measures. Let E be training examples from an
application domain, L an example-driven learning system, and T1, . . . , Tn be the
theories obtained by running L on n random permutations of E. The instability
of L on E can be measured as follows.
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� The syntactic instability of L on E (based on n permutations) is calculated
with the following equation.∑n−1

i=1

∑n
j=i+1 δsyn(Ti, Tj)

n
, (7.3)

i.e., the average pairwise syntactic distance between the Ti.

� The predictive instability of L on E (based on n permutations) is given by
the following equation. ∑n−1

i=1

∑n
j=i+1 δacc(Ti, Tj)

n
, (7.4)

i.e., the average pairwise accuracy distance between the Ti.

Note that a system having zero syntactic instability has as well zero value in the
predictive stability measure.

7.2 Enhancing the Stability of Example-Driven
Learning

To increase the stability of example-driven learning, we propose parallel stochas-
tic search on several examples because with parallel search generalization is based
on more than one example. Basically, we integrate parallel search with the cov-
ering algorithm, using previous solutions both to increase quality and to avoid
unnecessary search through iterative deepening. This algorithm was implemented
in Mio.

The parallel search is performed as follows. At each iteration, Mio takes ran-
domly a subset of positive examples of the same target predicate and creates an
independent search agent1 for each example in the subset to search its hypoth-
esis space H⊥ (Definition 4.5) as shown in Figure 7.1. Each agent searches for
a solution (Definition 4.8) using the search strategy selected by the user. This
search strategy can either be IDA*, hill-climbing or beam-search.

When IDA* is performed, each agent keeps a transposition table2 during the
search. The transposition table stores the clauses which cannot be improved by
adding a new literal, and is used to prune the search tree in subsequent IDA*

1An agent can be seen as an independent process or a thread.
2Transposition table is a term used in game-playing that refers to a search enhancement.

Basically, a transposition table is a large cache in which newly expanded states are stored.
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Figure 7.1: Parallel search algorithm

iterations. In addition, after finishing searching for a given clause-length (i.e., an
IDA* iteration is over), the agents check a global best evaluation value (GBE-
value) to stop searching when the GBE-value cannot be outperformed. This is
only done for IDA* because the deepening mechanism of IDA* allows to stop and
restart the search without problem. In the case of hill-climbing and beam-search,
the search is completed without interruption.

After every agent stops, all the agents’ solutions are placed in a descending
ordered list according to an evaluation function (Definition 3.12). Mio traverses
this list and adds to the final theory T the solutions whose evaluation value
is above a user-defined threshold F and cover enough positive and few enough
negative examples in E. Every time a solution is added to T , all the positive
examples covered by it are removed and the remaining agents’ solutions are
reordered. Those examples which at the end do not provide a solution are added
to a losers list. If an example in the losers list is selected again in a subset, no
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search is performed and its value is the initial value of the GBE-value.

The number n of positive examples taken in each iteration is determined by
three user-defined parameters. One parameter indicates which fraction of the
remaining examples to be covered has to be taken, the other is the minimum
number of examples that Mio takes, and the third one indicates the maximum
number of examples that Mio takes. The percentage of remaining examples taken
for parallelization can be seen as another measure for the instability of a domain:
the more examples necessary to obtain stability, the less stable a domain is. We
thus can measure stability of an application domain in a third way by determining
the minimum percentage of examples required to achieve perfect stability (i.e.,
∀A,B δsyn(A,B) = 0).

Definition 7.5 – Parallelism for Perfect Stability. Let E be training exam-
ples from an application domain, and L an example-driven learning system. Let
s ∈ [0, 1] be a parameter controlling the amount of parallel search performed by
L. The required parallelism of L on E is the smallest number p such that the
syntactic instability of L on E is zero when using p as a value for s.

7.3 Empirical Results

To explore the use of parallel stochastic search as a solution against the instabil-
ity of example-driven, we carried out experiments on four application domains,
namely, chess moves, student loan, eastward trains and mesh design which are
described in Chapter 5 (page 55). The goals of our experiments were:

1. to determine in which degree two example-driven systems (Progol and Mio)
are affected by instability;

2. to find out whether the search strategy employed has an influence on the
stability level;

3. to explore the suitability of stochastic example selection and parallel search
as a solution to the instability problem, and

4. to find out whether the required parallelism for perfect stability varies
according to the application domain.

We decided to use Progol (Section 3.3.1) because it is the most commonly used
example-driven system in ILP publications of the last 7 years, and, the same as
Mio, constructs the bottom clause by inverse entailment. Mio differs from Pro-
gol in several aspects such as including parallel search, hill-climbing search and
beam-search; enforcing type strictness (Definition 4.3); selecting stochastically
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Avg. δsyn Avg. δacc
Dataset Progol Mio Progol Mio

IDA* HC IDA* HC
Chess moves 0.15 0.02 0.02 0.03 0.01 0.01
Student loan 0.23 0.17 0.17 0.01 0.01 0.01
Eastward trains 0.07 0.16 0.06 0.03 0.03 0.00
Mesh Design 0.03 0.09 0.10 0.00 0.00 0.01

Table 7.2: Syntactic and predictive instability of Progol and Mio on four application
domains based on five random permutations

the examples to guide the search; and supporting the use of macros and active
inductive learning (described in Section 8.2).

For the mesh design dataset, the examples corresponding to one structure were
set as testing data and the examples of the nine other structures were arranged
in five different random permutations. For the three other datasets, 20% of the
examples available was set apart as testing data and the training examples were
arranged in five different random permutations. The systems were given these five
reordered but otherwise identical training examples, and the theories obtained
were compared using the stability measures defined in Section 7.1. Mio was run
twice on each permutation: one using IDA* and one using hill-climbing with
2-step lookahead. In these experiments Mio used the macro-based refinement
operator ρM (Definition 5.9).

Table 7.2 shows the syntactic and predictive instability of Progol and Mio. The
instability values were obtained with Equations 7.3 and 7.4 respectively. Mio
using hill-climbing seems to be on average the least affected by instability.

Once the instability levels of Progol and Mio per dataset were determined, the
amount of parallelism (i.e., percentage of positive examples taken for paralleliza-
tion) performed by Mio was gradually increased to try to reach perfect stability
on each application domain. The percentage of positive examples required for
perfect stability indicates the degree of instability intrinsic to every application
domain (see Definition 7.5). Table 7.3 shows the minimum percentage of exam-
ples required to achieve perfect stability per application domain and the run-time
penalty. Perfect stability was achieved on all datasets but mesh design. Run-
time penalty is the factor in which the run-time of Mio increases compared with
a version of Mio taking one example for iteration. We have an increase in run-
time because the parallelization is actually done sequentially in a one-processor
computer. All the experiments were done in a Sun Blade 100 (500 MHz and 128
MB of RAM).
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Parallelism for Run Time Run Time
Dataset Perfect Stability seconds Penalty

IDA* HC IDA* HC IDA* HC
Chess moves 5% 5% 5.8 5.4 1.1 1.2
Student loan 50% 50% 208 149 22.1 17.1
Eastward trains 40% 75% 284 684 3.7 7.7
Mesh Design+ N/A 70% N/A 11800 N/A 3.4

+ Only predictive stability was reached.

Table 7.3: Percentage of positive examples per application domain taken by Mio for
parallelization to obtain perfect stability, and Mio’s run time by performing parallel search

Accuracy without Accuracy with
Parallel Search Parallel Search

(%) (%)
Dataset Progol Mio Mio

IDA* HC IDA* HC
Chess moves 97± 2.5 99.5± 0.9 99.5± 0.9 100± 0 100± 0
Student loan 99± 0.7 99.6± 0.8 99.6± 0.8 100± 0 100± 0
Eastward trains 57± 3.3 85.0± 3.3 91.7± 0.0 83.3± 0 83.3± 0
Mesh Design 36± 0.0 78.6± 0.0 77.9± 1.4 N/A 78.6± 0

Table 7.4: Average accuracy obtained by the systems per dataset

Table 7.4 shows the average accuracy and standard deviation per dataset ob-
tained by Progol and Mio without parallel search, and by Mio with parallel
search. In the trains dataset, loss in accuracy is observed by performing parallel
search specially when using hill-climbing search. An explanation could be that
hill-climbing search has null predictive instability without parallel search and by
performing parallel search to obtain perfect stability oversearching [90] occurs.
The same phenomenon occurs in the mesh design domain with IDA*; that is,
Mio with IDA* has null predictive instability without parallel search and by in-
creasing the amount of parallelism up to 60% we observed that a decrease in
accuracy occurs. In mesh design, syntactic stability was not reached.

With our empirical results, we have seen that two example-driven systems are
indeed affected by re-ordering of the training examples; that parallel search based
on randomly selected examples reduces the effects caused by reordering of the
examples; and, that the minimum amount of parallelization required seems to
be related to some intrinsic features of each dataset. However, parallel search
is not yet a perfect solution against the instability of example-driven systems;
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specially in domains with numerical data. For domains with numerical data, an
alternative could be to combine discretization with parallel search. In addition,
the impact of oversearching has to be further investigated. It might be that
striving syntactic stability is too ambitious and predictive stability is enough for
most purposes.

7.4 Related Work

Work related to the one presented in this chapter is the use of parallelization to
speed up the learning process in ILP systems.

Matsui et al. [63] examine three parallelization approaches to speed up FOIL:
partition of the search space, partition of the training examples, and partition of
the background knowledge. With the last two alternatives, the authors reported
a 4-fold speed-up of FOIL using five processors. However, by increasing the num-
ber of processors beyond five no speed-up of the system is obtained because of
communication overhead. Similarly, Fujita et al. work on a parallel implementa-
tion of Progol. In [38], the design and a partial implementation of parallel-Progol
is discussed, but no empirical results are provided.

Dehaspe and De Raedt [22] created a parallel version of CLAUDIEN [19] based
on recursively partitioning the search space and processing these partitions con-
currently to speedup the learning process. However, since in this approach mul-
tiple processors participate in the same search (instead of creating independent
searches as we do), it could not be applied to increase the stability of example-
driven learning because the learning results would still be based on one single
example.

Graham et al. present in [43] a parallel inductive logic search, which is imple-
mented to run on special hardware (an eight node Beowulf cluster), to expedite
the drug design cycle. Initial results reported by these authors show an almost
linear speed-up of the learning process. However, similar to the work done by
Dehaspe and De Raedt, this approach is unsuitable for increasing the stability
of example-driven learning because a master processor distributes the work load
from the same search to other processors; i.e., one single example is still taken
as basis for generalization.

In addition, contrary to us, all the authors previously mentioned do not consider
parallel search as a solution to the instability problem of example-driven learning,
and, consequently, do not explore the stability of their results.

Using several stochastically selected examples to guide the search in example-
driven learning was first done in Golem [72]. Golem takes a user-defined number
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of positive examples at each iteration of the covering algorithm, computes their
rlggs, and selects the one rlgg with the greatest coverage. However, contrary to
our approach, no parallelization is added to the covering algorithm.

An interesting work in exploiting the instability of example-driven learning to
create ensembles3 is done by [27]. Basically, in [27] the authors compare the
performance of ensembles created by using the theories obtained by an example-
driven learning system, which is run on identical but re-ordered training exam-
ples, with the performance obtained by using bagging. However, an ensemble is
more complex than a single theory and thus harder to understand.

7.5 Summary

In this chapter, we study the stability of example-driven learning against re-
ordering of the examples. For that, the concept of stability against reordering
is formally defined and two reasonable stability measures are suggested. In ad-
dition, parallel stochastic search is proposed as a solution to provide stability
against reordering of the training data. This approach is explored in Mio.

Experimental results in four datasets show that two example-driven multirela-
tional learning systems are affected by re-ordering of the examples, and that
stochastic selection of examples and parallel search are indeed a viable solution
to provide stability against reordering of the training data.

3An ensemble is a classifier which combines the predictions of various classifiers into a single
prediction [24]
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This chapter describes how the techniques presented in previous chapters to-
gether with active inductive learning, which is introduced in this chapter, make
possible for Mio to discover a Minesweeper playing strategy. We focus on learning
playing strategies for Minesweeper because Minesweeper is a highly structured
application domain, and, thus, an ideal test-bed for the work presented in this
thesis. In fact, the task of learning rules to deduce Minesweeper moves proved
itself to be an arduous test for current general purpose multirelational learning
systems such as FOIL, Progol and TILDE. Experimental results obtained by
playing Minesweeper using Mio’s playing strategy show a better performance
than that obtained on average by non-expert human players.

Given the difficulty of hand-crafting playing strategies for game playing pro-
grams, AI researchers have always been interested in the possibility of auto-
matically learning such strategies from experience. However, with the excep-
tion of TD-Gammon which uses reinforcement learning [101] and LOGISTELLO
which applies GLEM [9], most of the playing strategies and heuristics used in
game playing programs are coded and tuned per hand instead of automatically
learned. Games are one of the oldest domains used in AI because they provide a
controllable environment to try out new techniques and study problems found in
real-world domains. Multirelational learning is a good option for learning game
playing strategies because many games involve structural and topological com-
ponents which are difficult to describe using a propositional representation.

In the next section, we describe Minesweeper, discuss its complexity and define
it as a multirelational learning task. In Section 8.2, we explain active inductive
learning. Section 8.3 describes the background knowledge used. Section 8.4
shows our empirical results on the effectiveness of the learning techniques, the
strategy obtained and its performance at game playing. Related work is surveyed
in Section 8.5 and Section 8.6 concludes.
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8.1 Minesweeper

Minesweeper is a popular one–player computer game written by Robert Donner
and Curt Johnson which was included in Microsoft Windows© in 1991. At the
beginning of the game, the player is presented with a p × q board containing
pq tiles or squares which are all blank. Hidden among the tiles are M mines
distributed uniformly at random on the board. The task of the player is to
uncover all the tiles which do not contain a mine. At each turn the player can
select one of three actions (moves): to mark a tile as a mine; to unmark a tile;
and to uncover a tile. In the last action, if the tile contains a mine, the player
loses; otherwise, the number of mines around the tile is displayed. For example,
in the 4 × 4 board depicted in Figure 8.1 center, the number 2 located on the
second row from top indicates that there are exactly two mines hidden among
the eight blank neighbouring tiles.

Figure 8.1 shows two possible starting sequences of a Minesweeper game. In the
top right board, the player uncovers a tile which has zero mines around and sev-
eral other tiles are automatically revealed. Most Minesweeper implementations
automatically unveil all the neighboring tiles of a square with zero mines around
when it is uncovered, which actually does not increase the player’s chances of
winning the game. In the bottom right board, the player steps in a mine and
loses the game.

Figure 8.1: Two possible starting sequences of a Minesweeper game. Left: Starting
position where all squares are blank. Center: Uncovering a tile - the first move is always a
guess. Right: Two possible outcomes for the second move.

Although the simplicity of its rules makes Minesweeper look deceptively easy,
playing the game well is indeed challenging: A player requires logic and arith-
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metic reasoning to perform certain moves given the board state, and probabilistic
reasoning to minimize the risk of uncovering a mine when a safe move cannot be
done. Playing well Minesweeper means that the player never makes a risky move
(i.e., a guess) when there is some blank tile which can be uncovered safely.

8.1.1 Why Is Minesweeper Interesting?

Minesweeper has been shown to be NP-complete by simulating boolean circuits
as Minesweeper positions [49]. Kaye describes the Minesweeper consistency prob-
lem as the problem of determining if there is some pattern of mines in the blank
squares that give rise to the numbers seen in a given board partially filled with
numbers and marked mines, and thus determining that the data given is consis-
tent.

One realizes the complexity of the game by calculating an estimate for the size
of its search space. Consider an 8 × 8 board with M = 10 mines; in this case
at the beginning of the game the player has pq = 64 tiles from which to choose
a move (i.e., a tile to uncover) and in the last move, assuming the player does
not uncover a mine, there are 11 tiles from which to choose one. This leads
to 54! ≈ 1071 possible move sequences to win a game. Alternatively, one can
calculate the probability of a random player winning a game. In the first move
the probability that the random player chooses a tile which does not contain a
mine is 54/64, and in the last move it has 1/11 chance to choose the only tile
without a mine. Then, the probability of a random player winning a game is

1(
64
54

) ≈ 10−12

and that is only for the easiest playing level!

Another measure of the complexity of Minesweeper is the number of games won
on average by non-expert human players. To estimate the average human per-
formance playing Minesweeper, we carried out an informal study. In the study,
eleven persons who have played Minesweeper before were asked to play at least
ten times in an 8× 8 board with 10 mines. Every participant was told to aim for
accuracy rather than for speed, which is different from the way people usually
play Minesweeper. Another difference with most Minesweeper implementations
is that in this study a player can hit a mine in the first move. In the study, a
person won on average 35% of the games with a standard deviation of 8%.
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8.1.2 Minesweeper as a Learning Task for ILP

In Minesweeper there are situations that can be “solved” with nontrivial reason-
ing. For example, consider Figure 8.2 left where the only available information
about the board state are the numbers. After careful analysis one finds that the
squares with an s (see Figure 8.2 right) do not contain a mine, the square with
an m is a mine, and the state of the blank tiles cannot be determined if we do
not know how many mines are hidden in the board. If we know how many mines
are hidden in the board (either two or three) the state of all blank squares can
be determined.

M S S

S

S S

S

S

Figure 8.2: Left: Available information on a board. Right: Seven tiles can be determined
safe (s) and one a mine(m).

There are other Minesweeper situations where the available information is not
enough to identify a safe square or a mine, as in Figure 8.3, and the best option
available to the player may be to make an informed guess, i.e., a guess that
minimizes the risk of blowing up by uncovering a mine. However, in the worst
case, as in Figure 8.3, the probability of containing a mine is the same for all the
remaining blank squares and the player has to be fortunate to win.

Figure 8.3: A Minesweeper board where the position of the last mine cannot be determined

In this work, we consider the learning task in Minesweeper to be the induction of
a theory to identify all the safe squares1 and squares with a mine which can be
deduced given a board state. For instance, we want the system to learn clauses to

1A safe square is a blank tile which given the current board state cannot contain a mine.
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classify all the blank tiles in Figure 8.2 either as safe or mine. The set of clauses
found by the learning system is then used as a playing strategy of a Minesweeper
program.

8.2 Actively Exploring the Instance-Space

By using Minesweeper as an application domain, we realized that games intro-
duce an extra challenge for multirelational learning: The amount of examples
(i.e., thousands) required to obtain information about most of the possible game
situations. Considering thousands of examples when evaluating a clause slows
down the learning process, because it has to be determined for every example in
the training data whether or not it is covered by the clause. Since in games there
are rare or exceptional cases which have to be covered by the induced playing
strategy, random sampling is not an optimal solution because it may result that
no instances of some minority case are present in the training data. This could
prevent the system from learning a complete theory. Besides, as pointed out by
Holte et al. [44], clauses or small disjuncts induced to cover these rare situations
are more error prone than large disjuncts (i.e., clauses which cover a large num-
ber of training examples). To improve the efficiency of the exploration of the
instance space and the quality of the small disjuncts learned, active learning [15]
is included in Mio.

We refer to the combination of multirelational learning and active learning as
active inductive learning. Active inductive learning consists of the following
steps. At the beginning, Mio learns from few randomly drawn examples and
when it has learned some clauses gives these clauses to an active learning server.
The active learning server returns to Mio counterexamples. A counterexample
is a positive example not covered by a theory T or a negative example covered
by T . These counterexamples are selected from examples given by a random
example generator (or random sampler). While Mio iterates on the new examples
received, the server tests the clauses obtained against randomly drawn examples,
discards all the clauses below a user-defined accuracy value, and collects new
counterexamples. This validation step on the server side avoids overfitting5 and
improves the quality of the small disjuncts learned. These steps are repeated until
a user-defined maximum number of iterations is reached or no counterexample
is found.

Figure 8.4 depicts our active inductive learning framework, which is implemented
in a client-server architecture. In this framework, the learner receives as input

5Overfitting refers to obtaining a theory with high classification error over new data despite
null or almost null training error.
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Server
Active Learning

Background
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Figure 8.4: Active inductive learning framework

background knowledge B (and in the case of Mio a set of mode declarations),
and the active learning server, similar to the minimally adequate Teacher in [2],
is assumed to answer correctly the following two types of questions from the
inductive learner.

1. ?T′.- The active learning server receives a set of Horn clauses T ′ and an-
swers yes if no counterexample is found; otherwise, answers with a set of
counterexamples.

2. ?Ex.- The active learning server acts as a random sampling oracle and
selects examples from the whole domain according to a distribution P over
all the elements in the domain and returns a set of correctly classified
examples.

In our active inductive learning framework, the example generator is the domain-
dependent component either by actually producing the examples or by accessing
the file or database which contains the training data. In the case of Minesweeper,
the example generator randomly generates Minesweeper board configurations and
takes all blank tiles with at least two known (uncovered) neighbours as positive
or negative examples. We restrict the examples to be those tiles with at least
two known neighbours to guarantee that the board contains information about
their state (safe or mine).

Active inductive learning is similar in spirit to integrative windowing [39] with
two main differences: in our approach random sampling is done dynamically and
a client-server architecture is used which allows to treat testing and learning as
separate processes.

8.3 Background Knowledge

The background knowledge predicates provided to the learning systems about
Minesweeper are shown in Table 8.1. In this table, predicates are described in
the form of mode declarations. That is, a predicate p is defined by
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1. zoneOfInterest(+TU, +Board, -Zone) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
returns in Zone the tiles which are determined neighbours of TU and the
determined tiles which share an undetermined neighbour with them (see
Figure 8.6 center on page 95).

2. totalMinesLeft(+Board,-Int) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
returns how many mines remained to be marked.

3. allMinesInFringe(+Board, -Set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
gives the set of tiles in the fringe where all the remaining mines are. Fringe
refers to all the blank tiles with a determined neighbour

4. setHasXMines(-TD, +Board, +Zone, -Set) . . . . . . . . . . . . . . . . . . . . . . .
gives in Set the undetermined neighbours of TD (TD is in Zone), and the
number of mines hidden among them (see Figure 8.6 right).

5. diffSetHasXMines(+Set1, +Set2, -Set) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
returns in Set all and only the tiles of Set1 which are not also in Set2 and
the number of mines hidden among the tiles in Set.

6. notInSet(+TU, +Board, +Set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
is true when TU is not in Set.

7. inSet(+TU, +Set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
is true when TU is a member of Set.

8. lengthSet(+Set,+Int) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
is true when Set contains Int tiles.

9. minesInSet(+Set,-#Int) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
returns the number of mines hidden among the tiles in Set.

Table 8.1: Minesweeper background knowledge

p({+/-/#}arg1,. . .,{+/-/#}argn)
where argi indicates the type of the ith argument and +, - or # indicates whether
it is an input, output or constant argument. In the predicates listed in Table 8.1,
the following types are used:

� TD is the ID of a determined or uncovered tile, i.e., a number 0 . . . 8 is
shown on the tile;

� TU is the ID of an undetermined or blank tile;
� Board is a board state description given as a list of p × q characters

0 . . . 8,m, u;
� Zone is a list of determined tiles;
� Set is a composite type formed by an ordered set of undetermined tiles to-

gether with the number of mines hidden among those tiles; e.g., set([0,1,5],
1), and

� Int is an integer number.
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The predicates in Table 8.1 were defined by abstracting the concepts used by
humans when explaining their own Minesweeper playing strategies. These con-
cepts were obtained from our own Minesweeper playing experience and from
Minesweeper pages on the web. In addition, the examples are ground facts of
the form safe(TU,Board) or mine(TU,Board).

When using Mio’s macro-based refinement operator ρM (Definition 5.9), literals
having the predicates zoneOfInterest, totalMinesLeft, allMinesInFringe,
minesInSet, diffSetHasXMines and setHasXMines are considered depen-
dent providers (see Definition 5.1).

8.4 Empirical Evaluation

Experiments were carried out to determine the effects on the theory obtained
and on the system’s efficiency, of macros, the search strategy, and active induc-
tive learning. To produce the training examples, we randomly generate board
configurations and take all blank tiles with at least two determined neighbours as
examples. If the blank tile does not contain a mine it is labeled as safe, otherwise
it is labeled as mine. Afterwards, contradictory examples are removed. In the
experiments, the learning task was to learn rules to identify safe tiles. These
experiments differ from those presented in [82] in that the maximal clause length
was set to nine literals instead of eight.

All the experiments with active inductive learning were performed with the same
seeds which means that the same training examples are generated by the ran-
dom sampler and that Mio selects the same examples to guide the search. In
these experiments, Mio performed three active inductive learning iterations. For
the experiments without active learning, we took five random samples from the
examples used in the active inductive learning experiments. The size of the sam-
ple is equal to the number of examples received by the inductive learner (Mio)
when performing active inductive learning (i.e., 40 positive and 34 negative ex-
amples). We carried out an extra experiment where Mio was given the complete
set of examples (2890 positive and 1306 negative) used by the active learning
server to test Mio’s rules and select counterexamples; however, this experiment
was stopped after Mio ran for 10 days. To reduce the running time of the ex-
periments, we set the maximum number of clauses explored per search to 4000
clauses.
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Ave. No. % searches Ave. Ave.% Ave.
Mio Setting clauses reaching max. of run-

per 4000-clause search games time
search limit depth won

IDA* 3283 72% 7.3 43± 10.8% 61h
IDA*+M 1440 22% 8.2 35± 9.5% 63h
IDA*+AL 2600 59% 7.3 51% 74h
IDA*+M+AL 1052 8% 8.0 52% 156h
HC 63 0% 8.4 34± 16.8% 10h
HC+M 68 0% 8.6 28± 13.5% 4h
HC+AL 60 0% 8.5 45% 19h
HC+M+AL 61 0% 8.7 51% 6h
HC2+M+AL 279 0% 7.9 52% 42h

Table 8.2: Performance of various Mio settings used to learn rules about safe tiles (AL
= Active Learning, HC = Hill-climbing search, HC2 = Hill-climbing search with 2-step
lookahead, IDA* = Iterative Deepening A*, M = Macros)

8.4.1 Results

Table 8.2 shows the empirical results with various Mio settings. Active inductive
learning, independently of the search strategy, avoids overfitting, discards overly
general clauses and provides the system with the negative and positive examples
required to learn more accurate clauses.

Macros in IDA* (see Chapter 5) reduce the search space, decrease the number of
times the search reached the 4000-clause limit, and allow Mio to search deeper
in the lattice. IDA*+AL learns Rules S-1 and S-2 in Table 8.3 but is unable to
learn Rule S-3 because its average maximum search depth is 7.3 and Rule S-3
is at depth 8. With the macro-based approach (IDA*+M+AL) Mio finds Rule
S-3.

Hill-climbing search without macros learns clauses with unneeded body liter-
als. In some cases these extra literals do not have an effect on the coverage
of the clause, e.g., HC+AL learns Rule S-1 with the extra literal totalMi-
nesLeft(BOARD,INT); but in other cases the unneeded literals reduce the
coverage of the clauses learned. Macros reduce the myopia of hill-climbing search
(Chapter 6) and avoid unneeded literals to be added to the clauses. HC+M+AL
learns the same rules as IDA*+AL (Rules S-1 and S-2) but 10 times faster.
Adding 2-step lookahead to hill-climbing (HC2+M+AL) allows Mio to learn
Rule S-4 too.
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Search depth
(No. body literals) 1 2 3 4 5 6 7 8 9

Ave. evaluation
time per clause (s) 0.3 0.5 0.6 0.7 1.5 4.0 6.6 10.6 28

Figure 8.5: Distribution of clauses considered by Mio during an active learning iteration
according to their size. In the diagram, top bars correspond to IDA*+AL+M; bottom
bars to IDA*+AL. The table in the bottom shows the average evaluation time per clause
according to its size.

In Table 8.2, one observes that there is an increase in run-time when macros are
used with IDA*. This seems contra-intuitive since in the macro-based approach
(MioM) less clauses are considered per search and less searches reached the 4000-
clause limit than in the literal-based version (MioL). To explain this behaviour
we analyzed, during an active learning iteration, the clause distribution according
to the clauses’ size and measured how many seconds it takes to determine the
coverage and consistency of each clause.

Figure 8.5 shows the percentage of clauses explored by IDA*+M+AL and
IDA*+AL at each search depth. In this diagram, we observe that more than 80%
of the clauses considered by the literal-based version contain less than seven body
literals, while 80% of the clauses evaluated by the macro-based approach contain
more than six literals. Due to this distribution of the clauses in the search space,
the average evaluation time per clause of IDA*+AL is 2.6s, while IDA*+AL+M
takes on average 14.8s to evaluate a clause. Thus, since the search space is re-
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safe?

ZoneOfInterest

41

34 35

set([34,35],1)

set([34,35,41],2)set([40,41],1)

40

safe!

Figure 8.6: A clause to play Minesweeper learned by Mio. Left: Is the highlighted tile safe?
Center: zoneOfInterest corresponding to the highlighted tile. Right: Applying difference
operations to the sets determined by the tiles inside a circle is concluded that the tile 40
is safe.

stricted at 4000 clauses and MioL considers non-admissible clauses too, it ends
evaluating more clauses with few body literals than MioM, and, since shorter
clauses are evaluated faster than longer ones, MioM’s run time is penalized by
searching deeper in the refinement graph.

8.4.2 Theory Learned

Table 8.3 shows the theory with the highest winning rate which was obtained by
joining the theories obtained by IDA*+M+AL and HC2+M+AL. Both settings
learn Rules S-1 and S-2, and IDA*+M+AL learns Rule S-3 while HC2+M+AL
learns Rule S-4. This combined theory has a winning rate of 53.6%.

One important feature of the theory learned by Mio is that the clauses can be
applied independently of the size of the board and the number of mines. The
clauses vary in complexity. Rule S-1 and Rule M-1 correspond to the trivial sit-
uations where a determined tile needs k mines and k mines are already marked,
and where a determined tile needs k mines and it has k blank neighbours, re-
spectively.

On the other hand, Rule S-3 can be seen as one of the most complex clauses
because it involves three determined tiles to deduce a safe tile. Figure 8.6 left
shows a board state where Rule S-3 is the only one which allows to identify a safe
tile. The clause obtains the zoneOfInterest corresponding to the undetermined
tile considered (Figure 8.6 center). Then by applying difference operations on the
sets determined by three uncovered tiles from the zoneOfInterest (see Figure 8.6
right), the set ([40], 0) is obtained and thus it is deduced that tile 40 is safe.
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Rules about safe tiles
%% RULE S-1 %%
safe(TILEUK,BOARD):-
zoneOfInterest(TILEUK,BOARD,ZONE),
setHasXMines(TILEK,BOARD,ZONE,SET),
inSet(TILEUK,SET), minesInSet(SET,0).
%% RULE S-2 %%
safe(TILEUK,BOARD):-
zoneOfInterest(TILEUK,BOARD,ZONE),
setHasXMines(TILEK0,BOARD,ZONE,SET0),
setHasXMines(TILEK1,BOARD,ZONE,SET1),
diffSetHasXMines(SET1,SET0,SET3),
inSet(TILEUK,SET3), minesInSet(SET3,0).
%% RULE S-3 %%
safe(TILEUK,BOARD):-
zoneOfInterest(TILEUK,BOARD,ZONE),
setHasXMines(TILEK0,BOARD,ZONE,SET0),
setHasXMines(TILEK1,BOARD,ZONE,SET1),
setHasXMines(TILEK2,BOARD,ZONE,SET2),
diffSetHasXMines(SET1,SET0,SET3),
diffSetHasXMines(SET2,SET3,SET4),
inSet(TILEUK,SET4), minesInSet(SET4,0).
%% RULE S-4 %%
safe(TILEUK,BOARD):-
allMinesInFringe(BOARD,SET),
unknownNotInSet(TILEUK,BOARD,SET).

Rules about mines
%% RULE M-1 %%
mine(TILEUK,BOARD):-
zoneOfInterest(TILEUK,BOARD,ZONE),
setHasXMines(TILEK,BOARD,ZONE,SET),
inSet(TILEUK,SET), minesInSet(SET,INT),
lengthSet(SET,INT).

Table 8.3: Minesweeper playing strategy learned by Mio
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Rule S-4 is a clause for end-game situations. Basically it says that if all the
remaining mines are in the fringe, any unknown tile outside the fringe is safe.

8.4.3 Game Playing

To evaluate the performance at game playing of each set of clauses obtained, we
used each set of clauses as the playing strategy of an automatic Minesweeper
player and calculated the percentage of games won by the player in 1000 random
games (see Table 8.2). The playing conditions were the same as the ones pre-
sented to the human players; i.e., at the beginning the player is presented with
an empty 8 × 8 board with M = 10 mines and can uncover a mine in the first
move. Note that in most Minesweeper implementations, one never hits a mine
in the first move.

In addition, we examined the effect of adding probabilistic reasoning. In the ex-
periment, we instructed the player using the playing strategy shown in Table 8.3
to select a tile which minimizes the probability P (TU) that an undetermined tile
TU is a mine when none of the clauses can be applied. P (TU) is equal to

maxTD(
fm(TD)

fn(TD)
)

where TD is a determined neighbour of TU , fm(TD) returns the number of
mines needed by TD and fn(TD) returns the number of blank neighbours of
TD. Every time the player has to guess, it selects the tile which minimizes
P (TU). This player wins 570 of 1000 random games.

8.4.4 Experiments with Other ILP Systems

For the completeness of this work, we ran FOIL, Progol and TILDE on the the
same training examples given to Mio when no active learning was performed.
Progol and TILDE settings can be seen in Appendix B; default values were used
for FOIL.

FOIL removes from the two clauses it learns zoneOfInterest and, by doing so,
its clauses are not I/O-complete and cannot be used as playing strategy for a
Minesweeper player. If FOIL would not have removed zoneOfInterest from the
clauses, its first clause would have been identical to Rule S-1 in Table 8.3, and
its second clause would have been overly general.

Progol warns about depth and resolution-bound failure, although the maximum
stack depth and resolutions steps were set to 50000 and 10000, respectively;
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and it learns only overly general clauses which if used as playing strategy of a
Minesweeper player have an average performance below 1%.

Finally, TILDE, due to hill-climbing search myopia, returns an empty tree in four
of the runs. In the fifth run, TILDE learns Rule S-4 in Table 8.3 which is ap-
plicable only in end-game situations. To alleviate TILDE’s myopia, we included
zoneOfInterest in the root of the tree and gave TILDE several lookahead-
templates. With this setting, TILDE was able to learn a theory on every run;
however, TILDE’s theories have also an average playing performance below 1%.

These observations might imply that the optimizations (macro-operators and
active inductive learning) included in Mio are indeed necessary to learn a
Minesweeper playing strategy.

8.5 Related Work

Work related to learning Minesweeper playing strategies with multirelational
learning can be classified into two categories, one is work done on implementing
Minesweeper playing programs and the other is ILP applied to games.

8.5.1 Minesweeper Playing Programs

There are several Minesweeper programs available on the web. These programs
are not learning programs but playing programs where the authors have embed-
ded their own game playing strategy. Among these programs, John D. Ramsdell’s
PGMS is quite successful winning 60% of 10000 random games in a 8× 8 board
with 10 mines.

PGMS plays using the Equation Strategy based on finding approximate solutions
to derived integer linear equations, and probabilities. As mentioned by Rams-
dell [93], PGMS represents the information available on the board as a set of
integer linear equations. Associated with an undetermined tile is a variable x
that has the value 1 if the tile hides a mine, or 0 otherwise. An equation is gener-
ated for each uncovered tile with an adjacent undetermined tile. Each equation
has the form c =

∑
i∈S xi, where S is a set of undetermined tiles, and c is the

number of mines hidden among S. To simplify notation, this equation is writ-
ten as c

.
= S. Since the total number of hidden mines is known, an additional

equation simply equates this number with the sum of all of the undetermined
tiles.

Every time a tile t is determined safe or a mine, the board changes are propa-
gated to all the equations containing t and a new equation for the undetermined
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neighbours of t is added. In addition, if c0
.
= S0 and c1

.
= S1 are two equations

such that S0 is a proper subset of S1, the equation c1− c0
.
= S1 \S0 is added. To

determine whether a tile is safe or a mine, PGMS iteratively applies the following
rules until none are applicable7:

� If 0
.
= S, all tiles in S are safe.

� If c
.
= S and c = |S|, all tiles in S are a mine.

� Let c0
.
= S0 and c1

.
= S1 be two equations and tu be an undetermined tile

such that c0 < c1, and tu ∈ S0 and tu ∈ S1. If c1 − c0 = |S1 \ S0|, all the
tiles in S1 \ S0 are a mine and all the tiles in S0 \ S1 are safe.

PGMS must guess when presented with a board to which none of the rules apply.
For each tile t it computes the value P (t) as follows. Given an equation c

.
= S,

define its single equation probability to be c/|S|. P (t) is equal to maxt∈S(c/|S|).
PGMS picks the tile t that minimizes P (t). A random choice is made when there
is more than one tile that minimizes P (t).

We were surprised to notice that although Mio was only given general background
knowledge about Minesweeper, the theory it learned is similar to the rules pro-
grammed in PGMS. For example, Mio’s Rule S-1 and Rule S-2 correspond to
the first and third rule in PGMS, respectively; and Mio’s Rule M-1 is similar
to PGMS second rule. To compare PGMS performance with the performance
of Mio’s best playing strategy, we let our best player (i.e., the player using the
theory in Table 8.3 and probabilities) play 10000 random games in a 8× 8 board
with 10 mines. Its winning rate is also 60%.

8.5.2 Multirelational Learning for Games

Ramon et al. [91] use TILDE to learn a theory that predicts the value of candidate
moves in certain Go problems. This theory is then used to reduce the number
of moves considered by alpha-beta search. In [92], Ramon et al. apply TILDE
for opponent modeling in Go. Opponent modeling is done with two different
purposes: to characterize the play of a particular opponent and to recognize an
unknown opponent.

Nakano et al. [75] presented an approach to generate an evaluation function for
Shogi (Japanese chess) mating problems, which are puzzles where the player
has to check continuously. The evaluation function obtained by a FOIL-like
system (FOIL-I) is then used in the search to solve those problems. Finally,
Morales [67] applied the system PAL to learn chess patterns to construct chess
playing strategies or to analyze chess positions.

7In these rules |S| is the cardinality of S and S0 \ S1 is the difference between S0 and S1.
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The tasks addressed by the work described above are, to a certain extent, less
ambitious than the task of learning a full playing strategy for a game; however,
they contribute to show that ILP is a good option for learning in games.

8.6 Summary

In this chapter we described how the use of new ILP techniques such as macros,
hill-climbing using macros, and active inductive learning allow Mio to learn a
Minesweeper playing strategy. This learning task proved itself to be a challenging
testbed for general purpose multirelational learning systems such as FOIL, Progol
and TILDE.

The best theory obtained by Mio wins 53.6% of the games in a 8× 8 board with
10 mines, while on average a non-expert human player wins 35% of the games.
The performance of the playing program using this theory as playing strategy
improves to 60% when adding the use of probabilities.
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Inductive logic programming or multirelational learning is a sub-area of machine
learning concerned with inducing concept definitions using a first-order (rela-
tional) representation. Most interesting multirelational domains contain struc-
tural and/or topological information. Structural and topological data refers to
the parts, arrangement and composition of complex entities or objects, and
to geometrical and spatial relations among them. Dealing well with struc-
tural/topological domains is then an important issue in ILP. In this thesis we
analyzed the challenges that structural/topological domains pose to current mul-
tirelational learning systems and lay the foundations to allow ILP systems to bet-
ter cope with these challenges. In this chapter we summarize our contributions
and give pointers to future work.

9.1 Contributions Summary

Since learning is in fact performed by searching through a hypothesis space to
find the hypothesis that best meets a specific criteria, our work can be seen as
improving the way ILP systems search for hypothesis in structural/topological
domains. Our contributions in this respect are:

� Thesis contribution: Macro-operators.
Achievement: Significant reduction of the search space explored.

Macros are the first safe, general, effective and user-friendly formal method
to reduce the search space explored by multirelational learning systems
in structural/topological domains. Macros are safe because they discard
only clauses which cannot belong to an adequate theory; they are general
because they are suitable for every structural/topological domain; effec-
tive because, according to our empirical study on six application domains,
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macros reduce on average in a 64% the search space explored by a system;
and user-friendly because they do not imply extra work for the user. In
addition, macros reduce the search space explored by a system without fur-
ther restricting the underlying hypothesis space. The algorithms provided
for the macros generation are shown to be complete and correct.

� Thesis contribution: Macro-operators.
Achievement: Reduction of the myopia of hill-climbing search.

A greedy learner using macros reports, according to our empirical results,
significantly lower classification error than other systems using other tech-
niques, such as fixed-depth lookahead, template-based lookahead or de-
terminate literals, to alleviate the myopia problem of hill-climbing search.
In addition, macros, contrary to template-based lookahead, do not require
user-defined templates and are automatically constructed; macros are more
general than determinate literals since they are suitable for every struc-
tural/topological domain; and, contrary to beam-search and fixed-depth
lookahead, macros’ performance is less sensitive to domain-dependent tun-
ing of parameters.

� Thesis contribution: Stochastic parallel search
Achievement: Increasing the stability of example-driven learning.

Stochastic selection of examples and parallel search was empirically shown
to be a viable solution to increase the stability of example-driven systems
against reordering of the training data. However, in our implementation,
parallel search has the drawbacks of increasing the running time of the
system and of being unsuitable for domains with numerical data.

� Thesis contribution: Active inductive learning
Achievement: Improving the efficiency of the instance space explo-
ration.

Active inductive learning allows a system to gather examples of those sit-
uations not yet covered by the clauses already learned and to validate the
clauses already obtained. By performing active inductive learning, a system
requires less examples to learn a theory and avoids overfitting.

To measure the effectiveness of these contributions, we implemented Mio, an
example-driven covering system. According to our experiments, Mio’s learning
results with respect to predictive accuracy can be favourably compared with that
of the most commonly used systems in ILP publications.

A side contribution of this thesis is the introduction of the task of learning a
Minesweeper playing strategy as a testbed for current ILP systems in struc-
tural/topological domains. This task was an arduous test for the three systems
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most commonly used in ILP publications. In fact, none of these systems was
able to learn a playing strategy for Minesweeper. On the other hand, the use of
macros and active inductive learning allows Mio to induce a Minesweeper play-
ing strategy whose winning rate (60%) is better than the average winning rate
of non-expert human players (35%) and identical to that of hand-coded playing
strategies.

9.2 Future Research Directions

To establish macro-operators as a truly general approach for multirelational
learning, one has to implement and evaluate them within other multirelational
learning approaches. Thus, future research avenues are to adapt the use of macros
to the generate-then-test approach and to upward refinement operators. For
generate-then-test systems, the only needed modification is to base the macros
construction on the mode declarations and eliminate the use of a bottom clause.
For upward refinement operators, macros may be used to select which literals
should be removed (instead of added) from a clause C to obtain generalizations
of C which are legal subsequences of literals.

Recently Lavrač and Flach [58] have shown how propositionalization methods
may deal with nondeterminate individual-centered domains. However, their ap-
proach is restricted to binary dependent providers denoting structural relations
in individual-centered domains. Since macros relax these limitations, other fu-
ture work concerning macros is to explore their use as first-order features for
propositionalization approaches. In this case, after macros are constructed, a
method to eliminate irrelevant macros such as the one described in [58] could be
applied to reduce the number of macros (features) available.

With respect to parallel search, we observed that in domains with numerical data,
parallel search is not enough to increase the stability of example-driven learning,
because numerical constants appearing in the clauses are obtained from single
examples. We expect that, by combining parallel search with discretization,
perfect stability could be achieved in domains with numerical data.

Active inductive learning proved itself to be critical for learning a Minesweeper
playing strategy; however, as future work, this framework has to be validated
in other domains where minority cases are presented and there is a rich amount
(thousands) of examples available.

Finally, there is still work to do to achieve the goal of finding a complete playing
strategy for Minesweeper, since with Mio’s playing strategy there are still board
situations where the player guesses when a certain choice can still be made.
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Thus, it remains to explore whether other machine learning approaches such as
multiagent learning induce more complete Minesweeper playing strategies.
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A Mio: User’s Manual

Mio is an example-driven multirelational learning system which performs a top-
down search in the subsumption lattice, which is lower bound by a bottom clause.
This bottom clause is constructed by inverse entailment. Three search strategies
are included in Mio: IDA*, beam-search and hill-climbing. In addition, Mio
supports the use of macro-operators and is able to perform parallel search and
active inductive learning. This manual explains how to use Mio but not the
research results behind it; for information about macros, parallel search, active
inductive learning and experiments performed with Mio the reader is referred
to [79, 80, 81, 82].

A.1 Input File

Mio expects as input a single file with the user-defined parameters, mode dec-
larations, background knowledge and training examples. Testing data may be
given in an additional file.

A.1.1 Parameters

User-defined parameters, if given, should be provided one per line in the following
format:

$set(parameter,value)@

where parameter can be any of the abbreviations listed below and value can
be either an integer, a long or a float value. We describe now the parameters
available in Mio.
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� General Behaviour

seed – sets the seed of the random number generator used to stochastically
select the positive examples to guide the search. Default value: current
time in milliseconds.

verbose – controls the amount of output Mio generates. It can be an integer
value between 0 and 4. Default value: 1.

� Learning Restrictions

iglb – determines the variable depth of the bottom clause. The default value is
automatically computed at run time so that every predicate defined in the
mode declarations may be used at least once.

mbl – specifies the maximum number of body literals allowed in any clause.
Default value: 20 literals.

mec – sets the minimum number of positive examples that a clause has to cover
to be considered a solution. Default value: number of literals in the body
of the clause.

noise – indicates the maximum percentage of negative examples that a clause is
allowed to cover and still be considered as a solution. Default value: 0.0%.

� Search Settings

bsze – specifies the beam-width. Default value: 1 clause.
lka – sets the amount of lookahead to perform. Default value: 1.
nodes – determines the maximum number of clauses considered during search.

Default value: 70000 clauses.
styp – specifies the search strategy; 0 indicates IDA* and 1 hill-climbing search.

Default value: 0.

� Parallel Search

msp – specifies the minimum number of remaining positive examples taken for
parallelization. Default value: 1 example.

mxp – sets the maximum number of remaining positive examples taken for par-
allelization. Default value: 500 examples.

pp – determines the percentage of remaining positive examples taken for paral-
lelization. Default value: 0.0%.

� Active Inductive Learning

active – sets active inductive learning; the value given in the set command is
ignored.

almxi – indicates the maximum number of active inductive learning iterations
to be performed. Default value: 3 iterations.

alt – determines with how many remaining positive examples asks the inductive
learner for more examples to the server. Default value: 1 remaining positive
example.
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nne – indicates the number of negative examples the active inductive server
should supply to the learner. Default value: 20 negative examples.

npe – indicates the number of positive examples the active inductive server
should supply to the learner. Default value: 20 positive examples.

lap – sets the minimum acceptable Laplace value of a clause. Any clause with a
Laplace estimate below this threshold is discarded. The Laplace estimate
of a clause C is calculated by (p + 1)/(p + n + 2) where p and n are the
number of positive and negative examples covered by C. Default value:
0.50.

pur – sets the minimum acceptable purity value of a clause. Any clause with a
purity estimate below this threshold is discarded. The purity of a clause C
is calculated by p/(p + n) where p and n are the number of positive and
negative examples covered by C. Default value: 0.99.

seedge – sets the seed of the random number generator used to generate the
examples. Default value: current time in milliseconds.

tsz – indicates the minimum number of examples used by the active server to
test the learner’s solutions. After testing the clauses once, the server checks
whether a request from the learner has been received. If no request has been
received, it performs a new testing iteration. Up to 15 testing iterations
may be executed. Default value: 40 examples.

A.1.2 Mode Declarations

The mode declarations define the literals that may appear in the head (target
concept) and in the body of any learned clause. In addition, they provide Mio
with information about the type and mode of the literal’s arguments. Mode
declarations have to be provided, one per line, in the following formats:

$modeh(r, target concept(m1type1,. . .,mntypen))@
$modeb(r, p(m1type1,. . .,mntypen))@

mi is the mode of a variable argument and can be one of the following four
modes:

� +X indicates that X is an input argument; X is bound to a variable
appearing in a literal already in the clause.

� −X means that X is an output argument; i.e., X is a new variable.
� ∗X means that X is an output argument of a literal which is a dependent

provider.
� #X indicates that X has to be replaced by a constant value in the literal.

typei indicates the type of the ith argument. The background knowledge should
contain a predicate definition of typei, or typei should be a SICStus built-in
predicate, so that, the query :-type: i(X) can be executed.
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r is an integer value which indicates the maximal number of different bindings for
the output variables of a literal, which may be computed given a specific binding
for its input variables.

A.1.3 Background Knowledge

The background knowledge is given as a definite program. Since Mio uses as
Prolog engine SICStus Prolog, any logic program executable by SICStus can
be given as background knowledge. This also means that all SICStus built-in
predicates and libraries can be used in the background knowledge.

A.1.4 Examples

Examples are provided as ground facts in the input file. Each example should
end with a new line character. Negative examples are identified with the symbol
’>’. For instance, the following five examples are syntactically correct examples
for the chess moves application domain.

move(bishop,pos(4,3),pos(6,5)).
move(bishop,pos(4,8),pos(5,7)).
move(bishop,pos(5,4),pos(4,5)).
>move(knight,pos(2,8),pos(2,6)).
>move(knight,pos(2,8),pos(3,7)).

Testing examples can be supplied to Mio in a separate file following the format
described above.

A.2 Running Mio

Mio is implemented in Java� under Solaris and is distributed as a JAR file. To
run it, use the command:

java -jar java-options Mio.jar input-file [test-file]

Some useful Java-options are -Xms and -Xmx which set the initial and maximum
Java heap size, respectively. The default maximum Java heap size is 16MB
which depending on the number of examples and background knowledge may be
insufficient.

108



A.3 Mio’s Output

Let us illustrate how to run Mio. Assume we have our input-file in.pl which
contains the parameters, mode declarations, background knowledge, and training
examples, and which is placed in the directory testfiles. This directory is under
the directory where the Mio.jar file is. In addition, we have our testing examples
in the file test.pl located at /common/ILP/testData, and want to allocate for
Mio up to 64MB of memory. Then we run Mio with the following command:

java -jar -Xmx64mb Mio.jar testfiles/in.pl /user/ILP/test.pl

A.3 Mio’s Output

Mio’s output goes to standard output. With a verbose value of 0, Mio prints
the number of examples read, the value of the user-defined parameters, and the
learning and testing results. Below follows an example of Mio’s output at the 0
verbosity level.

Input File: testfiles/fam.pl Writing in File: tmp/tmp1070540670776.pl
2 Positive examples
3 Negative examples
-- listing properties --
iglb=4.0
msp=1.0
verbose=0.0
styp=0.0
mec=1.0
--- Run time information ---
Pseudorandom Generator Seed= 1070540671162
USING IDA* SEARCH

*** SOLUTIONS (1):
auntOf(PERSON0,PERSON1):- parentOf(PERSON0,PERSON3),
sisterOf(PERSON3,PERSON1).
Total learning time in ms: 2511
Total time elapsed in ms: 2532

With verbose set to one, the output includes bottom clauses constructed and
solutions found at each covering iteration. The search space is also printed with
a verbose value of 2. At the third verbosity level, Mio additionally outputs the
macros generated. In the highest verbosity level (i.e., 4), one sees as well the
bottom clause construction iterations and the variable bindings.
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A.4 FAQ

1. Can Mio learn multiple predicates?

Yes, you just need to give Mio a modeh declaration for each target concept
and the corresponding negative and positive examples.

2. Can Mio learn recursive clauses?

Yes; however, Mio recursive capabilities have been only tested in simple do-
mains such as factorial, quick sort and member. In addition, when learning
recursive clauses, Mio ignores any testing data provided. As an example of
an input file to learn recursive clauses, here are the settings, mode decla-
rations and background knowledge used for quick sort.

$set(iglb,5)@
$set(mbl,5)@
$set(styp,1)@

$modeh(1, qsort(+clist,-clist))@ % target concept
$modeb(1, components(+clist,*const,*clist))@
$modeb(1, partition(+const,+clist,*clist,*clist))@
$modeb(1, qsort(+clist,*clist))@
$modeb(1, insert(+clist,+const,+clist,*clist))@

%const type definition
const(0). const(1). const(2). const(3).

%%% clist is extensionally defined as all lists up
%%% to 4 digits made with 0,1,2,and 3; e.g.,
clist([0,1,2,3]).
clist([1,0,2,3]).
%% etc...
clist([3]).
clist([]).

:- [library(lists)]. % A SICStus library
components([H|Tail], H, Tail):-!.

insert(L1, Cte, L2, L3):-
Ltemp = [Cte|L2], append(L1,Ltemp,L3).

partition(_,[],[],[]).
partition(X,[Y|Tail],[Y|Small],Big):-

X > Y, !, partition(X,Tail,Small,Big).
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partition(X,[Y|Tail], Small, [Y|Big]):-
partition(X,Tail,Small,Big).

3. How do I run Mio with active inductive learning?

Active inductive learning in Mio is implemented as a Java RMI (Remote
Method Invocation) Application, which means that there are two indepen-
dent Java applications: the active server and Mio. More information about
Java RMI Applications can be found at http://java.sun.com/docs/books/
tutorial/rmi/overview.html

To run Mio with active inductive learning, you have to do the following:

a) Create a class ExampleGenerator which implements the interface Gen-
erator provided with Mio distribution package.

b) Compile the class ActiveLearningServer
c) Write a Java security policy file and install it in Mio’s active server

directory and Mio’s directory (a sample policy file is provided).
d) Run the Java RMI remote object registry (rmiregistry) in the server’s

directory.
e) Start the server with the command:

java -jar -Djava.security.policy=java.policy ActiveLearn-
ingServer
If everything is fine, the message “ActiveLearningServer ready” is
shown.

f) In Mio’s input file, set the parameters accordingly to perform active
inductive learning.

g) Run Mio with the command:
java -jar -Djava.security.policy=java.policy Mio input-file
If necessary, extra memory can be allocated for Mio. In that case, use
the command:
java -jar -Djava.security.policy=java.policy -Xmx64mb Mio
input-file
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B Settings

B.1 Mio Settings per Dataset

B.1.1 Chess Moves

$set(mbl,2)@
$set(iglb,2)@
$set(verbose,1)@
%$set(styp,1)@ % Uncomment to set hill-climbing search
%$set(lka,2)@ % Uncomment to set lookahead with hill-climbing (s=2)
%$set(bsze,10)@ % Uncomment to set beam-search (b=10)

%Parameters for parallel search
%Set percentage of positive examples taken for parallelization
%$set(pp,5)@
%Set minimum number of examples taken for parallelization
%$ set(msp,4)@

% Target concept
$ modeh(1,move(#piece,pos(+column,+row),pos(+column,+row)))@

%%% Mode declarations for macro-based approach
%%% Comment out for literal-based approach
$ modeb(1,diff(+row,+row,*integer))@
$ modeb(1,diff(+column,+column,*integer))@
%%% Uncomment for literal-based approach
%$ modeb(1,diff(+row,+row,-integer))@
%$ modeb(1,diff(+column,+column,-integer))@

%%% Mode declarations common to both approaches
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$ modeb(1,diff(+row,+row,+integer))@
$ modeb(1,diff(+column,+column,+integer))@
$ modeb(1,diff(+row,+row,#integer))@
$ modeb(1,diff(+column,+column,#integer))@

B.1.2 Eastward Trains

$set(iglb,3)@
$set(mbl,4)@
$set(mec,2)@
$set(verbose,1)@
%$set(styp,1)@ % Uncomment to set hill-climbing search
%$set(lka,2)@ % Uncomment to set lookahead with hill-climbing (s=2)
%$set(bsze,10)@ % Uncomment to set beam-search (b=10)

%Parameters for parallel search
%Set percentage of positive examples taken for parallelization
%set(pp,40)@
%Set minimum number of examples taken for parallelization
%$set(msp, 4)@

% Target concept
$ modeh(1,east(+train))@

%%% Mode declarations for macro-based approach
%%% Comment out for literal-based approach
$ modeb(10,has_car(+train,*car))@
$ modeb(10,infront(+train,*car,*car))@
$ modeb(10,infront(+train,+car,*car))@
$ modeb(10,infront(+train,*car,+car))@

%%% Uncomment for literal-based approach
%$ modeb(10,has_car(+train,-car))@
%$ modeb(10,infront(+train,-car,-car))@
%$ modeb(10,infront(+train,+car,-car))@
%$ modeb(10,infront(+train,-car,+car))@

%%% Mode declarations common to both approaches
$ modeb(1, shape(+car, #shape))@
$ modeb(1,long(+car))@
$ modeb(1,closed(+car))@
$ modeb(1,short(+car))@
$ modeb(1,open(+car))@
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$ modeb(1,double(+car))@
$ modeb(1,jagged(+car))@
$ modeb(1,flat(+car))@
$ modeb(1,peaked(+car))@
$ modeb(1,arc(+car))@
$ modeb(1,sload(+car,#shape))@
$ modeb(1,nload(+car,#integer))@
$ modeb(1,wheels(+car,#integer))@

B.1.3 Student Loan

$set(iglb, 3)@
$set(mbl, 4)@
$set(verbose,1)@
%$set(styp,1)@ % Uncomment to set hill-climbing search
%$set(lka,2)@ % Uncomment to set lookahead with hill-climbing (s=2)
%$set(bsze,10)@ % Uncomment to set beam-search (b=10)

%Parameters for parallel search
%Set percentage of positive examples taken for parallelization
%$set(pp, 50)@
%Set minimum number of examples taken for parallelization
%$set(msp, 4)@

%Target concept
$modeh(1, no_payment_due(+student))@

%%% Mode declarations for macro-based approach
%%% Comment out for literal-based approach
$modeb(1, longest_absence_from_school(+student, *integer))@
$modeb(2, enrolled(+student,*school,*integer))@

%%% Mode declarations for literal-based approach
%$modeb(1, longest_absence_from_school(+student, -integer))@
%$modeb(2, enrolled(+student,-school,-integer))@

%%% Mode declarations common to both approaches
$modeb(1, male(+student))@
$modeb(2, enlist(+student,-org))@
$modeb(1, armed_forces(+org))@
$modeb(1, peace_corps(+org))@
$modeb(1, unemployed(+student))@
$modeb(1, filed_for_bankrupcy(+student))@
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$modeb(1, disabled(+student))@
$modeb(15, gte(+integer, #integer))@
$modeb(15, lte(+integer, #integer))@

B.1.4 Mutagenesis

$ set(iglb,3)@
$ set(mbl,3)@
$ set(noise,7)@
$ set(mec,3)@
$ set(verbose,1)@
%$set(styp,1)@ % Uncomment to set hill-climbing search
%$set(lka,2)@ % Uncomment to set lookahead with hill-climbing (s=2)
%$set(bsze,10)@ % Uncomment to set beam-search (b=10)

% Target concept
$ modeh(1,active(+drug))@

%%% Comment out for literal-based approach
$ modeb(1,lumo(+drug,*energy))@
$ modeb(1,logp(+drug,*hydrophob))@
$ modeb(50,bond(+drug,*atomid,*atomid,#integer))@
%%% Uncomment for literal-based approach
%$ modeb(1,lumo(+drug,-energy))@
%$ modeb(1,logp(+drug,-hydrophob))@
%$ modeb(50,bond(+drug,-atomid,-atomid,#integer))@

$ modeb(50,bond(+drug,-atomid,+atomid,#integer))@
$ modeb(50,bond(+drug,+atomid,-atomid,#integer))@
$ modeb(50,atm(+drug,-atomid,#element,#integer,-charge))@
$ modeb(10,atm(+drug,+atomid,#element,#integer,-charge))@

$ modeb(1,gteq(+charge,#float))@
$ modeb(1,gteq(+energy,#float))@
$ modeb(1,gteq(+hydrophob,#float))@
$ modeb(1,lteq(+charge,#float))@
$ modeb(1,lteq(+energy,#float))@
$ modeb(1,lteq(+hydrophob,#float))@
$ modeb(1,equal(+charge,#charge))@
$ modeb(1,equal(+energy,#energy))@
$ modeb(1,equal(+hydrophob,#hydrophob))@

%%% Comment out for literal-based approach
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$ modeb(50,benzene(+drug,*ring))@
$ modeb(50,ring_size_6(+drug,*ring))@
$ modeb(50,nitro(+drug,*ring))@
%%% Uncomment for literal-based approach
%$ modeb(50,benzene(+drug,-ring))@
%$ modeb(50,ring_size_6(+drug,-ring))@
%$ modeb(50,nitro(+drug,-ring))@

$ modeb(50,carbon_5_aromatic_ring(+drug,-ring))@
$ modeb(50,carbon_6_ring(+drug,-ring))@
$ modeb(50,hetero_aromatic_6_ring(+drug,-ring))@
$ modeb(50,hetero_aromatic_5_ring(+drug,-ring))@
$ modeb(50,ring_size_5(+drug,-ring))@
$ modeb(50,methyl(+drug,-ring))@
$ modeb(50,anthracene(+drug,-ringlist))@
$ modeb(50,phenanthrene(+drug,-ringlist))@
$ modeb(50,ball3(+drug,-ringlist))@
$ modeb(1,member(+ring,+ringlist))@
$ modeb(1,connected(+ring,+ring))@

B.1.5 Mesh Design

$set(mbl,5)@
$set(noise,1)@
$set(mec,2)@
$set(iglb,3)@
$set(verbose,1)@
%$set(styp,1)@ % Uncomment to set hill-climbing search
%$set(lka,2)@ % Uncomment to set lookahead with hill-climbing (s=2)
%$set(bsze,10)@ % Uncomment to set beam-search (b=10)

%Parameters for parallel search
%Set percentage of positive examples taken for parallelization
%$set(pp, 70)@
%Set minimum number of examples taken for parallelization
%$set(msp, 10)@

% Target concept
$modeh(1, mesh(+edge,#integer))@

$modeb(1,long(+edge))@
$modeb(1,usual(+edge))@
$modeb(1,short(+edge))@
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$modeb(1,circuit(+edge))@
$modeb(1,half_circuit(+edge))@
$modeb(1,quarter_circuit(+edge))@
$modeb(1,short_for_hole(+edge))@
$modeb(1,long_for_hole(+edge))@
$modeb(1,circuit_hole(+edge))@
$modeb(1,half_circuit_hole(+edge))@
$modeb(1,not_important(+edge))@
$modeb(1,free(+edge))@
$modeb(1,one_side_fixed(+edge))@
$modeb(1,two_side_fixed(+edge))@
$modeb(1,fixed(+edge))@
$modeb(1,not_loaded(+edge))@
$modeb(1,one_side_loaded(+edge))@
$modeb(1,two_side_loaded(+edge))@
$modeb(1,cont_loaded(+edge))@
$modeb(6,opposite(+edge,-edge))@

%%% Macro-based approach
%%% Comment out for literal-based approach
$modeb(6,neighbour(+edge,*edge))@

%%% Uncomment for literal-based approach
%$modeb(6,neighbour(+edge,-edge))@

B.1.6 Traffic Problem Detection

$set(verbose,1)@
$set(iglb,3)@
$set(mbl,4)@
$set(mec,2)@
%$set(styp,1)@ % Uncomment to set hill-climbing search
%$set(lka,2)@ % Uncomment to set lookahead with hill-climbing (s=2)
%$set(bsze,10)@ % Uncomment to set beam-search (b=10)

% Target concepts
$modeh(1,accident(+section,+time))@
$modeh(1,congestion(+section,+time))@
$modeh(1,noncs(+section,+time))@

%%% Mode declarations common to both approaches
$modeb(1,velocidadd(+time,+section,#velocity))@
$modeb(1,ocupaciond(+time,+section,#velocity))@
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$modeb(1,saturaciond(+time,+section,#velocity))@
$modeb(1,tipo(+section,#stype))@

%%% Mode declarations for macro-based approach
%%% Comment out for literal-based approach
$modeb(100,secciones_posteriores(+section,*section))@
$modeb(100,secciones_posteriores(*section,+section))@

%%% Uncomment for literal-based approach
%$modeb(100,secciones_posteriores(+section,-section))@
%$modeb(100,secciones_posteriores(-section,+section))@

B.1.7 Minesweeper

%% Active inductive learning parameters
%% Comment out to unset active inductive learning
$set(active,1)@
$set(nne,10)@
$set(npe,10)@
$set(alt,1)@
$set(tsz,50)@
$set(pur,0.99)@
$set(almxi, 3)@
$set(seedge, 1034604377230)@ % Example generator random seed
$set(seed, 1034343047909)@ % Examples selection random seed

%% General parameters
$set(iglb,5)@
$set(mec,1)@
$set(verbose,1)@
$set(mbl,9)@
$set(set,1)@
$set(nodes,4000)@
%$set(styp,1)@ % Uncomment to perform Hill-climbing search
%$set(lka,2)@ % Uncomment to perform lookahead (s=2)

$modeh(1, safe(+tileUK,+board))@ %Target Concept

%%% Mode declarations for macro-based approach
%%% Comment out for literal-based approach
$modeb(1, zoneOfInterest(+tileUK, +board, *zone))@
$modeb(1, totalMinesLeft(+board,*integer))@
$modeb(1, allMinesInFringe(+board, *set))@
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$modeb(24, setHasXMines(*tileK, +board, +zone, *set))@
$modeb(1, diffSetHasXMines(+set, +set, *set))@
$modeb(1, unknownNotInSet(+tileUK, +board, +set))@
$modeb(1, inSet(+tileUK, +set))@
$modeb(1, lengthSet(+set,+integer))@
$modeb(1, minesInSet(+set,*integer))@
$modeb(1, minesInSet(+set,#integer))@

%%% Uncomment for literal-based approach
%$modeb(1, zoneOfInterest(+tileUK, +board, -zone))@
%$modeb(1, totalMinesLeft(+board,-integer))@
%$modeb(1, allMinesInFringe(+board, -set))@
%$modeb(24, setHasXMines(-tileK, +board, +zone, -set))@
%$modeb(1, diffSetHasXMines(+set, +set, -set))@
%$modeb(1, unknownNotInSet(+tileUK, +board, +set))@
%$modeb(1, inSet(+tileUK, +set))@
%$modeb(1, lengthSet(+set,+integer))@
%$modeb(1, minesInSet(+set,-integer))@
%$modeb(1, minesInSet(+set,#integer))@

B.2 TILDE Settings per Dataset

B.2.1 Chess Moves

predict(move(+mid,-class)).

typed_language(yes).
type(position(mid, c,r)).
type(position(mid, c,r)).
type(diffCols(mid,number)).
type(diffRows(mid,number)).
type(piece(mid,p)).

rmode(1: piece(+M, #[king,queen,rook,bishop,knight])).
rmode(1: diffCols(+M,-N)).
rmode(1: diffRows(+M,-N)).
rmode(1: diffRows(+M,#[0,1,2,3,4,5,6,7])).
rmode(1: diffCols(+M,#[0,1,2,3,4,5,6,7])).

%%% Uncomment to activate lookahead
%lookahead(diffRows(M,N), diffCols(M,N)).
%lookahead(diffCols(M,#[0,1,2,3,4,5,6,7]),
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% diffRows(M,#[0,1,2,3,4,5,6,7])).
%lookahead(diffRows(M,N), diffCols(M,#[0,1,2,3,4,5,6,7])).
%lookahead(diffCols(M,N), diffRows(M,#[0,1,2,3,4,5,6,7])).

B.2.2 Eastward Trains

predict(train(+tid,-class)).
classes([east,west]).

typed_language(yes).
type(cars(tid, lcars)).
type(has_car(tid,car)).
type(infront(tid,car,car)).
type(shape(car,shape)).
type(has_roof(car,roof)).
type(long(car)).
type(double(car)).
type(short(car)).
type(closed(car)).
type(sload(car,shape)).
type(nload(car,number)).
type(wheels(car,number)).

rmode(10: has_car(+TID, -Car)).
rmode(10: infront(+TID,-Car1,-Car2)).
rmode(1: #(5*5*S: shape(C,S), shape(+C,S))).
rmode(1: long(+Car)).
rmode(1: double(+Car)).
rmode(1: short(+Car)).
rmode(1: closed(+Car)).

% Following four mode declarations have to
% be commented out when performing lookahead
rmode(1: #(5*1*R: has_roof(C,R), has_roof(C,R))).
rmode(1: #(5*5*S: sload(C,S), sload(+C,S))).
rmode(1: #(5*5*N: nload(C,N), nload(+C,N))).
rmode(1: #(5*5*N: wheels(C,N), wheels(+C,N))).
% Uncomment to perform lookahead
%rmode(1: (has_car(+TID, -Car), long(+Car))).
%rmode(1: (has_car(+TID, -Car), double(+Car))).
%rmode(1: (has_car(+TID, -Car), short(+Car))).
%rmode(1: (has_car(+TID, -Car), closed(+Car))).
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B.2.3 Student Loan

predict(no_payment_due(+sid,-class)).
classes([pos,neg]).

typed_language(yes).
type(male(sid)).
type(longest_absence_from_school(sid,number)).
type(enrolled(sid,school,number)).
type(enlist(sid,org)).
type(armed_forces(org)).
type(peace_corps(org)).
type(unemployed(sid)).
type(filed_for_bankrupcy(sid)).
type(disabled(sid)).
type(gte(number,number)).
type(lte(number,number)).

rmode(1: male(+SID)).
rmode(1: longest_absence_from_school(+SID, -N)).
rmode(1: enrolled(+SID,-S,-N)).
rmode(1: enlist(+SID, -O)).
rmode(1: armed_forces(+O)).
rmode(1: peace_corps(+O)).
rmode(1: unemployed(+SID)).
rmode(1: filed_for_bankrupcy(+SID)).
rmode(1: disabled(+SID)).
rmode(1: #(10*1*N: longest_absence_from_school(SID, N), gte(+N1,N))).
rmode(1: #(10*1*N: longest_absence_from_school(SID, N), lte(+N1,N))).
rmode(1: #(10*1*N: enrolled(SID, S, N), gte(+N1,N))).
rmode(1: #(10*1*N: enrolled(SID, S, N), lte(+N1,N))).

% Uncomment to activate lookahaed
%lookahead(enrolled(SID, S, N), gte(+N1,N)).
%lookahead(enrolled(SID, S, N), lte(+N1,N)).
%lookahead(longest_absence_from_school(SID, N), gte(+N1,N)).
%lookahead(longest_absence_from_school(SID, N), lte(+N1,N)).

B.2.4 Mutagenesis

%%% Settings obtained from~\cite{blockeel}
load(models).

121



B Settings

discretization(bounds(3)).
to_be_discretized(lumo(X), [X]).
to_be_discretized(logp(X), [X]).
to_be_discretized(atom(_,_,_,X), 100, [X]).

typed_language(yes).
type(atom(id, element, type, charge)).
type(bond(id, id, bondtype)).
type(lumo(lumo)).
type(logp(logp)).
type(X =< X).
type(X=X).

type(nitro(structure)).
type(carbon_6_ring(structure)).
type(benzene(structure)).
type(ring_size_6(structure)).
type(ring_size_5(structure)).
type(methyl(structure)).
type(phenanthrene(structure)).
type(anthracene(structure)).
type(ball3(structure)).
type(hetero_aromatic_5_ring(structure)).
type(hetero_aromatic_6_ring(structure)).
type(carbon_5_aromatic_ring(structure)).
type(occurs_in(id, structure)).

type(discretized(_, _, _)).
type(member2(_, _)).

max_lookahead(5).
lookahead(nitro(S), occurs_in(A, S)).
lookahead(carbon_6_ring(S), occurs_in(A, S)).
lookahead(benzene(S), occurs_in(A, S)).
lookahead(ring_size_6(S), occurs_in(A, S)).
lookahead(ring_size_5(S), occurs_in(A, S)).
lookahead(methyl(S), occurs_in(A, S)).
lookahead(phenanthrene(S), occurs_in(A, S)).
lookahead(anthracene(S), occurs_in(A, S)).
lookahead(ball3(S), occurs_in(A, S)).
lookahead(hetero_aromatic_5_ring(S), occurs_in(A, S)).
lookahead(hetero_aromatic_6_ring(S), occurs_in(A, S)).
lookahead(carbon_5_aromatic_ring(S), occurs_in(A, S)).
lookahead(occurs_in(A, S), #(230*37*T: atom(A, _, T, _),
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atom(A, E, T, Ch))).
lookahead(occurs_in(A, S), #(230*9*E: atom(A, E, _, _),

atom(A, E, T, Ch))).

rmode(20: #(1*10*C: (discretized(lumo(X), [X], L), member2(C,L)),
+Lumo=<C)).

rmode(20: #(1*10*C: (discretized(logp(X), [X], L), member2(C,L)),
+LP =< C)).

rmode(20: #(230*37*T: atom(_, _, T, _), atom(A, E, T, Ch))).
rmode(20: #(230*9*E: atom(_, E, _, _), atom(A, E, T, Ch))).
rmode(20: #(1*100*C:(discretized(atom(_,_,_,X), [X], L),

member2(C, L)), (atom(-A, E, T, Ch), Ch =< C))).
rmode(20: bond(+A1, -A2, BT)).
rmode(3: nitro(-S)).
rmode(3: carbon_6_ring(-S)).
rmode(3: benzene(-S)).
rmode(3: ring_size_6(-S)).
rmode(3: ring_size_5(-S)).
rmode(3: methyl(-S)).
rmode(3: phenanthrene(-S)).
rmode(3: anthracene(-S)).
rmode(3: ball3(-S)).
rmode(3: hetero_aromatic_5_ring(-S)).
rmode(3: hetero_aromatic_6_ring(-S)).
rmode(3: carbon_5_aromatic_ring(-S)).

root((lumo(Lumo), logp(Logp))).

B.2.5 Mesh Design

%%% Settings obtained from~\cite{blockeel}
tilde_mode(regression).
load(models).
euclid(mesh(E,X), X).
root(mesh(E,X)).

rmode(5: long(+E)).
rmode(5: usual(+E)).
rmode(5: short(+E)).
rmode(5: circuit(+E)).
rmode(5: quarter_circuit(+E)).
rmode(5: short_for_hole(+E)).
rmode(5: long_for_hole(+E)).
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rmode(5: circuit_hole(+E)).
rmode(5: half_circuit_hole(+E)).
rmode(5: not_important(+E)).
rmode(5: free(+E)).
rmode(5: one_side_fixed(+E)).
rmode(5: two_side_fixed(+E)).
rmode(5: fixed(+E)).
rmode(5: not_loaded(+E)).
rmode(5: one_side_loaded(+E)).
rmode(5: two_side_loaded(+E)).
rmode(5: cont_loaded(+E)).
rmode(5: neighbour(+E,-E2)).
rmode(5: opposite(+E,-E2)).

%% Comment out to deactivate lookahead
lookahead(neighbour(E1, E2), long(E2)).
lookahead(neighbour(E1, E2), usual(E2)).
lookahead(neighbour(E1, E2), short(E2)).
lookahead(neighbour(E1, E2), circuit(E2)).
lookahead(neighbour(E1, E2), quarter_circuit(E2)).
lookahead(neighbour(E1, E2), short_for_hole(E2)).
lookahead(neighbour(E1, E2), long_for_hole(E2)).
lookahead(neighbour(E1, E2), circuit_hole(E2)).
lookahead(neighbour(E1, E2), half_circuit_hole(E2)).
lookahead(neighbour(E1, E2), not_important(E2)).
lookahead(neighbour(E1, E2), free(E2)).
lookahead(neighbour(E1, E2), one_side_fixed(E2)).
lookahead(neighbour(E1, E2), two_side_fixed(E2)).
lookahead(neighbour(E1, E2), fixed(E2)).
lookahead(neighbour(E1, E2), not_loaded(E2)).
lookahead(neighbour(E1, E2), one_side_loaded(E2)).
lookahead(neighbour(E1, E2), two_side_loaded(E2)).
lookahead(neighbour(E1, E2), cont_loaded(E2)).
lookahead(opposite(E1, E2), long(E2)).
lookahead(opposite(E1, E2), usual(E2)).
lookahead(opposite(E1, E2), short(E2)).
lookahead(opposite(E1, E2), circuit(E2)).
lookahead(opposite(E1, E2), quarter_circuit(E2)).
lookahead(opposite(E1, E2), short_for_hole(E2)).
lookahead(opposite(E1, E2), long_for_hole(E2)).
lookahead(opposite(E1, E2), circuit_hole(E2)).
lookahead(opposite(E1, E2), half_circuit_hole(E2)).
lookahead(opposite(E1, E2), not_important(E2)).
lookahead(opposite(E1, E2), free(E2)).
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lookahead(opposite(E1, E2), one_side_fixed(E2)).
lookahead(opposite(E1, E2), two_side_fixed(E2)).
lookahead(opposite(E1, E2), fixed(E2)).
lookahead(opposite(E1, E2), not_loaded(E2)).
lookahead(opposite(E1, E2), one_side_loaded(E2)).
lookahead(opposite(E1, E2), two_side_loaded(E2)).
lookahead(opposite(E1, E2), cont_loaded(E2)).

B.2.6 Traffic Problem Detection

minimal_cases(3).
talking(4).
load(models).
classes([accident,congestion,noncs]).
root((section(A), timemoment(B))).

typed_language(yes).
type(section(sec)).
type(timemoment(time)).
type(tipo(sec,type)).
type(velocidadd(time,sec,range)).
type(ocupaciond(time,sec,range)).
type(saturaciond(time,sec,range)).
type(secciones_posteriores(sec,sec)).
type(velocidad(time,sec,number)).
type(saturacion(time,sec,number)).
type(ocupacion(time,sec,number)).

rmode(velocidadd(+T,+S,#[baja,media,alta])).
rmode(ocupaciond(+T,+S,#[baja,media,alta])).
rmode(saturaciond(+T,+S,#[baja,media,alta])).
rmode(tipo(+S,#[carretera,rampa_abandono,rampa_incorporacion])).
rmode(secciones_posteriores(+S,-S1)).
rmode(secciones_posteriores(-S1,+S)).

% Uncomment to activate lookahaed
%max_lookahead(2).
%lookahead(secciones_posteriores(S,S1),
% tipo(S1,#[carretera,rampa_abandono,rampa_incorporacion])).
%lookahead(secciones_posteriores(S,S1),
% velocidadd(+T,S1,#[baja,media,alta])).
%lookahead(secciones_posteriores(S,S1),
% saturaciond(+T,S1,#[baja,media,alta])).
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%lookahead(secciones_posteriores(S,S1),
% ocupaciond(+T,S1,#[baja,media,alta])).
%lookahead(secciones_posteriores(S1,S),
% tipo(S1,#[carretera,rampa_abandono,rampa_incorporacion])).
%lookahead(secciones_posteriores(S1,S),
% velocidadd(+T,S1,#[baja,media,alta])).
%lookahead(secciones_posteriores(S1,S),
% saturaciond(+T,S1,#[baja,media,alta])).
%lookahead(secciones_posteriores(S1,S),
% ocupaciond(+T,S1,#[baja,media,alta])).

B.2.7 Minesweeper

minimal_cases(2).
talking(4).
use_packs(0).
output_options([c45,prolog,elaborate]).
classes([safe,mine]).

load(models).
%With the following root, TILDE generates an empty tree
root((tile(T),board(B))).
%With the next one, Tilde learns a theory
%root((tile(T),board(B),zoneOfInterest(T,B,Z))).

typed_language(yes).
type(tile(tileUK)).
type(board(board)).
type(zoneOfInterest(tileUK, board, zone)).
type(totalMinesLeft(board,integer)).
type(allMinesInFringe(board, set)).
type(setHasXMines(tileK, board, zone, set)).
type(diffSetHasXMines(set, set, set)).
type(unknownNotInSet(tileUK, board, set)).
type(inSet(tileUK, set)).
type(lengthSet(set,integer)).
type(minesInSet(set,integer)).

%Comment next line out when second root is used
rmode(1: zoneOfInterest(+TUK, +B, -Z)).
rmode(1: totalMinesLeft(+B, -X)).
rmode(1: allMinesInFringe(+B, -S)).
rmode(8: setHasXMines(-TK, +B, +Z, -S)).
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rmode(8: diffSetHasXMines(+S, +S1, -S2)).
rmode(1: unknownNotInSet(+TUK, +B, +S)).
rmode(1: inSet(+TUK, +S)).
rmode(1: lengthSet(+S,+X)).
rmode(1: minesInSet(+S,-X)).
rmode(1: minesInSet(+S,#[0,1,2,3,4,5,6,7,8])).

%Comment next line out when second root is used
lookahead(zoneOfInterest(TUK, B, Z), setHasXMines(TK, B, Z, S)).
lookahead(setHasXMines(TK, B, Z, S), inSet(TUK, S)).
lookahead(setHasXMines(TK, B, Z, S), minesInSet(S, X)).
lookahead(setHasXMines(TK, B, Z, S),

minesInSet(S, #[0,1,2,3,4,5,6,7,8])).
lookahead(setHasXMines(TK, B, Z, S), diffSetHasXMines(S, S1, S2)).
lookahead(diffSetHasXMines(S, S1, S2), inSet(TUK, S2)).
lookahead(diffSetHasXMines(S, S1, S2), minesInSet(S2, X)).

B.3 Progol Settings per Dataset

B.3.1 Chess Moves

:- set(c,2)?
:- set(i,1)?
:- set(verbose, 2)?

:- modeh(1,move(#piece,pos(+file,+rank),pos(+file,+rank)))?
:- modeb(1,rdiff(+rank,+rank,-nat))?
:- modeb(1,fdiff(+file,+file,-nat))?
:- modeb(1,rdiff(+rank,+rank,#nat))?
:- modeb(1,fdiff(+file,+file,#nat))?
:- commutative(rdiff/3)?
:- commutative(fdiff/3)?

B.3.2 Eastward Trains

:- set(nodes,3750)?
:- set(i,3)?
:- set(c,4)?
:- set(verbose,2)?
:- set(r,1000000)?
:- set(h,1000000)?
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:- modeh(1,east(+train))?
:- modeb(100,has_car(+train,-car))?
:- modeb(100,infront(+train,-car,-car))?
:- modeb(100,infront(+train,+car,-car))?
:- modeb(100,infront(+train,-car,+car))?
:- modeb(1,shape(+car,#shape))?
:- modeb(1,long(+car))?
:- modeb(1,closed(+car))?
:- modeb(1,short(+car))?
:- modeb(1,open(+car))?
:- modeb(1,double(+car))?
:- modeb(1,jagged(+car))?
:- modeb(1,flat(+car))?
:- modeb(1,peaked(+car))?
:- modeb(1,arc(+car))?
:- modeb(1,sload(+car,#shape))?
:- modeb(1,nload(+car,#int))?
:- modeb(1,wheels(+car,#int))?

B.3.3 Student Loan

:-set(nodes, 1280)?
:-set(verbose,2)?

:-modeh(1, no_payment_due(+student))?
:-modeb(1, male(+student))?
:-modeb(1, longest_absence_from_school(+student, -nat))?
:-modeb(2, enrolled(+student,-school,-nat))?
:-modeb(2, enlist(+student,-org))?
:-modeb(1, armed_forces(+org))?
:-modeb(1, peace_corps(+org))?
:-modeb(1, unemployed(+student))?
:-modeb(1, filed_for_bankrupcy(+student))?
:-modeb(1, disabled(+student))?
:-modeb(15, gte(+nat, #nat))?
:-modeb(15, lte(+nat, #nat))?

B.3.4 Mutagenesis

:- set(i,2)?
:- set(nodes,20000)?
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:- set(noise,5)?
:- set(c,3)?
:- set(verbose,1)?
:- set(h,10000)?
:- set(r,100000)?
:- noreductive?
:- unset(splitting)?

:- modeh(1,active(+drug))?

:- modeb(1,lumo(+drug,-energy))?
:- modeb(1,logp(+drug,-hydrophob))?
:- modeb(*,bond(+drug,-atomid,-atomid,#int))?
:- modeb(*,bond(+drug,+atomid,-atomid,#int))?
:- modeb(*,atm(+drug,-atomid,#element,#int,-charge))?
:- modeb(1,gteq(+charge,#float))?
:- modeb(1,gteq(+energy,#float))?
:- modeb(1,gteq(+hydrophob,#float))?
:- modeb(1,lteq(+charge,#float))?
:- modeb(1,lteq(+energy,#float))?
:- modeb(1,lteq(+hydrophob,#float))?
:- modeb(1,(+charge)=(#charge))?
:- modeb(1,(+energy)=(#energy))?
:- modeb(1,(+hydrophob)=(#hydrophob))?
:- modeb(*,benzene(+drug,-ring))?
:- modeb(*,carbon_5_aromatic_ring(+drug,-ring))?
:- modeb(*,carbon_6_ring(+drug,-ring))?
:- modeb(*,hetero_aromatic_6_ring(+drug,-ring))?
:- modeb(*,hetero_aromatic_5_ring(+drug,-ring))?
:- modeb(*,ring_size_6(+drug,-ring))?
:- modeb(*,ring_size_5(+drug,-ring))?
:- modeb(*,nitro(+drug,-ring))?
:- modeb(*,methyl(+drug,-ring))?
:- modeb(*,anthracene(+drug,-ringlist))?
:- modeb(*,phenanthrene(+drug,-ringlist))?
:- modeb(*,ball3(+drug,-ringlist))?
:- modeb(*,member(-ring,+ringlist))?
:- modeb(1,member(+ring,+ringlist))?
:- modeb(1,connected(+ring,+ring))?

:- determination(active/1,atm/5)?
:- determination(active/1,bond/4)?
:- determination(active/1,gteq/2)?
:- determination(active/1,lteq/2)?
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:- determination(active/1,’=’/2)?
:- determination(active/1,lumo/2)?
:- determination(active/1,logp/2)?
:- determination(active/1,benzene/2)?
:- determination(active/1,carbon_5_aromatic_ring/2)?
:- determination(active/1,carbon_6_ring/2)?
:- determination(active/1,hetero_aromatic_6_ring/2)?
:- determination(active/1,hetero_aromatic_5_ring/2)?
:- determination(active/1,ring_size_6/2)?
:- determination(active/1,ring_size_5/2)?
:- determination(active/1,nitro/2)?
:- determination(active/1,methyl/2)?
:- determination(active/1,anthracene/2)?
:- determination(active/1,phenanthrene/2)?
:- determination(active/1,ball3/2)?
:- determination(active/1,member/2)?
:- determination(active/1,connected/2)?

B.3.5 Mesh Design

:-set(noise,1)?
:-set(nodes,7900)?
:-set(verbose,1)?

:-modeh(1, mesh(+edge,#int))?

:-modeb(1,long(+edge))?
:-modeb(1,usual(+edge))?
:-modeb(1,short(+edge))?
:-modeb(1,circuit(+edge))?
:-modeb(1,half_circuit(+edge))?
:-modeb(1,quarter_circuit(+edge))?
:-modeb(1,short_for_hole(+edge))?
:-modeb(1,long_for_hole(+edge))?
:-modeb(1,circuit_hole(+edge))?
:-modeb(1,half_circuit_hole(+edge))?
:-modeb(1,not_important(+edge))?
:-modeb(1,free(+edge))?
:-modeb(1,one_side_fixed(+edge))?
:-modeb(1,two_side_fixed(+edge))?
:-modeb(1,fixed(+edge))?
:-modeb(1,not_loaded(+edge))?
:-modeb(1,one_side_loaded(+edge))?
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:-modeb(1,two_side_loaded(+edge))?
:-modeb(1,cont_loaded(+edge))?
:-modeb(6,neighbour(+edge,-edge))?
:-modeb(6,opposite(+edge,-edge))?

B.3.6 Traffic Problem Detection

:- set(verbose,2)?
:- set(nodes,1100)?

:- modeh(1,accident(+section,+time))?
:- modeh(1,congestion(+section,+time))?
:- modeh(1,noncs(+section,+time))?
:- modeb(1,velocidadd(+time,+section,#velocity))?
:- modeb(1,ocupaciond(+time,+section,#velocity))?
:- modeb(1,saturaciond(+time,+section,#velocity))?
:- modeb(*,secciones_posteriores(+section,-section))?
:- modeb(*,secciones_posteriores(-section,+section))?
:- modeb(1,tipo(+section,#stype))?

B.3.7 Minesweeper

:-set(i,5)?
:-set(verbose,2)?
:-set(c,8)?
:-set(r,50000)?
:-set(h,10000)?
:-set(nodes,4000)?
:-set(inflate,600)?

:-modeh(1, safe(+tileUK,+board))?
:-modeb(1, zoneOfInterest(+tileUK, +board, -zone))?
:-modeb(1, totalMinesLeft(+board,-nat))?
:-modeb(1, allMinesInFringe(+board, -setP))?
:-modeb(24, setHasXMines(-tileK, +board, +zone, -setP))?
:-modeb(1, diffSetHasXMines(+setP, +setP, -setP))?
:-modeb(1, unknownNotInSet(+tileUK, +board, +setP))?
:-modeb(1, inSet(+tileUK, +setP))?
:-modeb(1, lengthSet(+setP,+nat))?
:-modeb(1, minesInSet(+setP,-nat))?
:-modeb(1, minesInSet(+setP,#nat))?
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lingual morphology with CLOG. In D. Page, editor, Proc. of the 8th Int.
Conf. on ILP, volume 1446 of Lecture Notes in AI, pages 135–144, 1998.

[63] Tohgoroh Matsui, Nobuhiro Inuzuka, Hirohisa Seki, and Hidenori Itoh.
Comparison of three parallel implementations of an induction algorithm.
In Proc. of 8th Int. Parallel Computing Workshop, pages 181–188, 1998.

[64] Tom M. Mitchell. Generalization as search. Artificial Intelligence,
18(2):203–226, 1982.

[65] Tom M. Mitchell. Machine Learning. McGraw Hill, first edition, 1997.

[66] Raymond J. Mooney and Mary Elaine Califf. Induction of first-order de-
cision lists: Results on learning the past tense of english verbs. Journal of
Artificial Intelligence Research, 3:1–24, 1995. http://www.cs.utexas.edu/
users/ml/foidl.html.

[67] Eduardo Morales. Learning playing strategies in chess. Computational
Intelligence, 12(1):65–87, 1996.

[68] Stephen Muggleton. Inverse entailment and Progol. New Generation Com-
puting, 13:245–286, 1995.

[69] Stephen Muggleton. Completing inverse entailment. In D. Page, editor,
Proc. of the 8th Int. Conf. on ILP, volume 1446 of Lecture Notes in AI,
pages 245–249, 1998.

[70] Stephen Muggleton and Wray L. Buntine. Machine invention of first-order
predicates by inverting resolution. In J. Laird, editor, Proc. of the 5th Conf.
on Machine Learning, pages 339–352, 1988.

[71] Stephen Muggleton and Luc de Raedt. Inductive logic programming: the-
ory and methods. Journal of Logic Programming, 19(20):629–679, 1994.

[72] Stephen Muggleton and Cao Feng. Efficient induction in logic programs.
In S. Muggleton, editor, Inductive Logic Programming, volume 38 of APIC
Series, pages 281–298. Academic Press, 1992.

[73] Stephen Muggleton and John Firth. Relational rule induction with CPro-
gol4.4: a tutorial introduction. In S. Džeroski and N. Lavrač, editors,
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