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ABSTRACT 
 

Processes of functional plasticity such as hippocampal long-term 

potentiation (LTP) and long-term depression (LTD) are regarded as cellular 

mechanisms underlying learning and memory formation. LTP and LTD are 

used as suitable models for the investigation of the latter processes. 

During the last decades LTP was intensively investigated. However, 

less is known about LTD and its relation to learning. Here, studies were 

performed to investigate whether electrically-induced LTD within rat CA1 

hippocampal slices in vitro shares common cellular features with LTD in the 

intact animal, with particular emphasis being placed on mechanisms required 

for its late maintenance. My initial studies have led to the development of 

stimulation protocols which were able to reliably induce different forms of LTD 

in vitro. Depending on the induction protocol, either a transient protein 

synthesis-independent early-LTD (with duration of up to 3-4 h) or a de novo 

protein synthesis-dependent late-LTD (lasting for at least 8 h) could be 

induced in the hippocampal slices in vitro. Both forms required NMDA-

receptor activation during their induction. Furthermore, LTD was input-

specific, i.e., the expression was shown only by those synapses specifically 

stimulated by a low-frequency protocol. Thus, phenotypically LTD in vitro was 

characterized by analog induction properties as LTP.  

Recently, it was described that the induction of LTP can mark a 

specifically activated synapse by a ´synaptic tag´ to capture synapse non-

specific plasticity-related proteins (PRPs) and thus maintaining input-specific 

LTP for prolonged periods. My studies show that in rat hippocampal slices in 

vitro, the induction of protein synthesis-dependent late-LTD is also 
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characterized by processes of ´synaptic tagging´ and that heterosynaptic 

induction of either LTD or LTP on two sets of independent synaptic inputs S1 

and S2 can lead to late-associative interactions between LTD- and LTP-

inputs: early-LTD in a synaptic input S2 was transformed into a late-LTD, if 

late-LTP was induced in a synaptic input S1 of the same neuronal population 

within a distinct time interval. The synthesis of process-independent PRPs by 

late-LTP in S1 was sufficient to transform early- into late-LTD in S2 when 

process-specific synaptic tags were set. We have named this new late 

associative property of cellular information processing as 'cross-tagging', 

since process-unspecific PRPs can be captured by either LTP- or LTD- 

synpatic tags thus transforming a normally transient LTP or LTD in a long-

lasting form. 

 The 'tag' as well as the PRPs are characterized by a relatively short 

half-life of several minutes up to a few hours before they degrade most likely 

by processes such as dephosphorylation. The question now arose whether 

the ‘tags’ or better: the ‘tag complex’ can also be reset in an activity-

dependent manner, thus preventing the processing of PRPs with the result of 

transient short-lasting plasticity. Early-LTP was used to study this and we  

found that low-frequency stimulation shortly after early-LTP induction (5 min) 

reset the 'tag' preventing any lasting forms of LTP and thus, preventing the 

formation of a cellular memory trace.  

Next, we searched for the possible 'tag' candidate or 'PRP'-molecules. 

The role of a PKC isoform is widely speculated as a candidate molecule 

involved in the ´synaptic tag-complex’. So we investigated the putative role of 

protein kinase M-zeta (PKMζ) required for the protein synthesis-dependent 
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phases of late-LTP/-LTD, 'synaptic tagging', or ‘synaptic cross-tagging’. PKMζ 

inhibition, after LTP induction reversed late-LTP maintenance, and 

subsequently depressed tetanized inputs. In contrast, LTD maintenance was 

unaffected, but its induction was blocked. PKMζ inhibition prevented ´synaptic 

tagging´ of LTP, but during ´cross-tagging´, the inhibitor reversed late-LTP, 

while early-LTD of a second, independent synaptic input was converted into 

late-LTD. Thus PKMζ is specific to the ´synaptic tagging´ mechanism of LTP, 

but not LTD. Our data provide evidence that PKMζ activity has dual functions: 

(1) it is specifically involved in LTP-maintenance and LTP-tagging, but not in 

LTD-maintenance and LTD-tagging and (2) it is required for processes 

necessary for the induction of both LTP and LTD.  
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1.0. Introduction 
 
1.1  Synaptic plasticity, learning and memory 

One of the most intriguing of the brain's complex functions is its ability 

to store information provided by experience. Learning is the process by which 

new information is acquired by the nervous system, and memory vouches for 

the mechanisms underlying storage and/or retrieval of that information (Dudai, 

2004;Dudai, 2002;Dudai, 1997). Memory, as measured by changes in an 

animal's behavior some time after learning, reflects many processes including 

acquisition, consolidation, retention, retrieval and performance.  

A fundamental issue in neuroscience is how the environment can 

modify its representations within the mammalian brain by changing the 

efficacy of synaptic circuitry to mediate long-lasting cellular processes which 

might finally underlie such complex phenomena like cognition and specific 

behaviour (Thomas and Malenka, 2003). To address this issue 

experimentally, two basic questions have been posed. First, what are the 

molecular mechanisms activated by specific patterns of neural activity and 

how do they modify synaptic efficacy? Progress in answering this question 

has come mainly through the discovery and study of hippocampal long-term 

potentiation (LTP) and long-term depression (LTD). 

Work on LTP began in the early 1970s, when Timothy Bliss and his 

colleague Terje Lømo discovered that brief high-frequency electrical 

stimulation can enhance synaptic transmission for days or even weeks in the 

rabbit hippocampus in vivo (Bliss and Lomo, 1973;Bliss and Gardner-Medwin, 

1973). LTP is defined as ‘persistent increase in the synaptic efficacy after a 
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brief tetanic stimulation in the afferent pathway’ (Malenka and Bear, 

2004;Malenka, 1994;Malenka and Nicoll, 1999).  

 In the late 1970’s Dunwiddie and Lynch discovered LTD, that was 

found to occur at the synapses between the Schaffer collaterals and the CA1 

pyramidal cells in the hippocampus (Dunwiddie and Lynch, 1978). LTD is 

defined as ‘persistent decrease in synaptic efficacy after a relatively short 

episode of low-frequency stimulation (LFS)´ (Bear and Malenka, 1994;Nicoll 

and Malenka, 1997;Braunewell and Manahan-Vaughan, 2001;Malenka, 

1994;Malenka and Bear, 2004).  

Work on LTP and LTD has greatly expanded our understanding of the 

molecular mechanisms underlying activity-dependent synaptic function in 

general. A second challenge is to search for the consequences of these 

fuctional modifications on neural circuits and behaviour. LTP is a highly 

popular topic in neuroscience research. The great interest is generated by its 

properties, making it a useful candidate for cellular processes which may 

underlie learning and memory.  

 At the beginning of the 20th century, Cajal (Ramón y Cajal S, 1894) 

proposed that neuronal networks are not cytoplasmatically continuous, but 

communicate with each other at distinct junctions, which Sherrington termed 

´synapses´ (Sherrington et al., 1897). In human brains, approximately 100 

billion of neurons interconnect in vast networks via even more number of 

synapses (Pakkenberg and Gundersen, 1997;Mouton et al., 1994). The brain 

accomplishes all of its remarkable activity through networks of neurons. It is 

thought that information processing and storage is achieved within neuronal 

networks. A single neuron is unlikely to encode a specific memory, but it is 
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able to store a memory trace, i.e. part of a specific memory. Hebb (Hebb, 

1949) increased our understanding of how networks of neurons might store 

information with the provocative theory, that memories are represented by 

reverberating assemblies of neurons. Hebb recognized that a memory, so 

represented cannot reverberate forever and that some alteration in the 

network must occur, to provide integrity both to make the assembly a 

permanent trace and to make it more likely that, the trace could be 

reconstructed as a remembrance. Because neurons communicate with each 

other mainly through synapses, the activity of the assembly or network is most 

easily (perhaps only) altered by changes in synaptic function. Hebb formalized 

this idea known as Hebb’s postulate: 

 

“ When an axon of cell A is near enough to excite cell B and 

repeatedly or persistently takes part in firing it, some growth 

process or metabolic change takes place in one or both cells 

such that A’s efficacy, as one of the cells firing B, is 

increased.” (Hebb, 1949, pg.62) 

 

‘’….any two cells or systems of cells that are repeatedly 

active at the same time will tend to become ‘associated’, so 

that activity in one facilitates activity in the other ’’ (Hebb, 

1949, pg.70) 

Hebb’s postulate is very close to the common definition of LTP and 

LTD.  
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LTP and LTD has been most thoroughly studied in the mammalian 

hippocampus, an area of the brain that is specially important in the the 

formation and/or retrieval of some forms of memory. 

 

1.2. The hippocampal formation 

The hippocampus, named for its resemblance to the sea horse (hippo 

=horse, kampos= sea monster ; Greek) is one among a group of structures 

forming the limbic system and is a part of the hippocampal formation, which 

also includes the dentate gyrus, subiculum, and entorhinal cortex. Different 

components of the limbic system have been shown to play a critical role in all 

aspects of emotions, fear, learning and memory (Geinisman, 2000;Geinisman 

et al., 2000). The initial insights on the role of the hippocampus came from 

studies of amnesia in human patients following removal of the hippocampus 

and neighboring medial temporal structures. Extensive evidence implicates 

the hippocampus and related structures in the formation of episodic memories 

in humans (Reilly, 2001;Aggleton and Brown, 1999) and in consolidating 

information into long-term declarative memory (Mumby et al., 1999). 

 

1.2.1. Main hippocampal in- and outputs  

Around 1970´s it became clear that, the hippocampus has a lamellar 

functional organization (Andersen et al., 1969). It has direct connections to the 

entorhinal cortex (via the subiculum) and the amygdala. Outputs from these 

structures can then affect many other areas of the brain (Fig. 1). For example, 

the entorhinal cortex projects to the cingulate cortex, which has a connection 

to the temporal lobe cortex, orbital cortex, and olfactory bulb. Thus, all of 

these areas can be influenced by hippocampal output, primarily from CA1. 
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The entorhinal cortex has a major source of inputs to the hippocampus, 

collecting information from the cingulate cortex, temporal lobe cortex, 

amygdala, orbital cortex, and olfactory bulb (Amaral and Witter, 1989). The 

hippocampus receives inputs via the precommissural branch of the fornix from 

the septal nuclei.   

 

1.2.2. Intrahippocampal pathways  

One of the main inputs to the hippocampus (perforant pathway) arises 

from the entorhinal cortex and passes through the dentate gyrus. From the 

granule cells of dentate gyrus, connections are made to area CA3 of the 

hippocampus proper via mossy fibers. CA3 sends connections to CA1 

pyramidal cells via the Schaffer collateral (SC) as well as commissural fibers 

from the contralateral hippocampus (Fig. 1). The major neurotransmitter in 

these three pathways is glutamate. The final output from the two CA fields 

passes through the subiculum, entering the alveus, fimbria, and fornix and 

then to other areas of the brain. Hippocampus is one of the useful structures 

for brain slice preparation and for investigating synaptic plasticity. The main 

reason is because of its structure, that allows a slice to  be cut  whilst 

preserving a large number of neurons and their interconnecting axons 

(Andersen et al., 1969;Amaral and Witter, 1989). The dendritic structure of the 

three main hippocampal cell types and their interconnecting axons lay in a 

single plane. This plane is oriented normal to the ventricular surface and to 

the longitudinal axis of the hippocampus. The lamellar structure allows slices 

to be taken without destroying the neurons together with their dendrites and 

axons. The highly organized and laminar arrangement of synaptic pathways 
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makes the hippocampus a convenient model for studying synaptic function in 

vivo and in vitro (Andersen et al., 1969;Amaral and Witter, 1989). 
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Figure 1.  Schematic representation of major intrinsic connections of the mamma
hippocampal formation (adapted from Amaral and Witter, 1995). EC, entorhinal cortex; 
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Brain slices offer a variety of novel opportunities, the most obvious 

being visual inspection. Depending upon the brain region, histological 

landmarks can be seen with an ordinary dissecting microscope. In many ways 

the tissue can be seen in a gross microscopic slide. This allows visual control 

of electrode placement. It is also possible to direct electrodes to known parts 

of a given cell. For example, in the hippocampus, an electrode may be placed 

in the apical or basal dendritic tree of pyramidal cells at known distances from 

the soma to record the activity of a small group of synapses. Hippocampal 

slice also allows a comparison of the effectiveness of proximal and distal 

synapses to the same cell to be made. A great advantage is the lack of 

anaesthesis. This is of obvious importance for many studies on neuronal 

excitability, but is also invaluable for many pharmacological studies. 

Furthermore, in the slice preparation the influence of the blood brain barrier is 

removed. The ability to change the tissue concentration of interesting 

molecules at will provides good experimental control of the preparation. In 

addition to the temperature and oxygen concentration, the pH, ionic 

concentration and hormonal levels can be changed at will. The slice neurons 

are consequently under less synaptic bombardment than cells in the intact 

brain. Other modulating influences (neuromodulators, biological clocks, 

hormones) are also absent. 

 

1.2.3. Electrophysiology of the glutamatergic CA3-CA1 synapse  

Extracellular field recordings represent the summed responses from a 

number of neurons in the vicinity of the recording electrode. Because of the 

orderly polar arrangement of the pyramidal neurons and their dendrites, 
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electrical field recordings offer valuable information about the temporal 

arrangement of responses from apical dendrites to cell bodies. Following 

stimulation of the Schaffer collaterals and commissural fibers, an extracellular 

recording electrode in the stratum radiatum containing synapses, would 

record a small negative potential that results from the action potentials 

generated in the presynaptic fibers, corresponding to the field excitatory 

postsynaptic potential (fEPSP). The fEPSP represents in general, 

depolarization at the post synaptic membrane, indicating that glutamatergic 

transmission took place at the CA3-CA1 synapse. Placing the recording 

electrode in the stratum pyramidale would allow us to record a positive 

deflection due to current exciting the basal dendrites near the cell body. If the 

magnitude of the depolarization is sufficient to drive the membrane potential 

to a distinct threshold, it will fire one or more action potentials. These 

simultaneous firing of action potentials from a population of hippocampal 

neurons generate a field in which we can record the so named population 

spike (PS) as a negative potential overlapping the positive potential. While the 

EPSP is affected by changes occurring at the synapse, the PS is affected by 

combination of 3 factors:  1) the amplitude of the EPSP, 2) the passive 

properties of the CA1 pyramidal cell (from dendrites to axon- hillock), and 3) 

the level of inhibition produced by the GABAergic interneurons innervating the 

CA1 pyramidal neurons.  A change in the PS gives great deal of information 

about the number and excitability of neurons involved in the final output from 

the hippocampus. 
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1.2.4. The CA1 pyramidal neuron  

Activation of the CA3 neuron leads to an increase in glutamate release 

from the nerve terminals of the Shaffer collaterals. Glutamate released in the 

stratum radiatum and stratum lacunosum moleculare layer of CA1 activates 

ionotropic and metabotropic receptors. The ionotropic glutamate receptors are 

classified into three types AMPA, kainite, and NMDA-receptors, named after 

the ligand initially used to characterize them. AMPA and kainate receptors 

mediate the fast EPSP seen following SC stimulation (Karnup and Stelzer, 

1999). NMDA- receptors mediate slow-rising EPSP’s and are thought to be 

responsible for some forms of long-term synaptic plasticity (Tsien et al., 

1996;Kullmann et al., 1996). Metabotropic glutamate receptors, which are 

located at both the presynaptic and postsynaptic side act to modulate release 

of neurotransmitter presynaptically, and modify postsynaptic responses 

(Manahan-Vaughan et al., 1998;Wilsch et al., 1998;Baskys and Malenka, 

1991;Xiao et al., 2001;Behnisch et al., 1998;Manahan-Vaughan and 

Reymann, 1997;Riedel and Reymann, 1996). 

The major inhibitory neurotransmitter in the hippocampus is gamma-

aminobutyric acid (GABA) (Dutar and Nicoll, 1988). Eliciting a single evoked 

potential via stimulation of the SCs results in a characteristic sequence of 

excitation followed by inhibition when recorded from the stratum pyramidale. 

In rats, the excitation typically precedes the inhibition by a few milliseconds. 

The inhibition arises from feed-forward and feedback connections via 

inhibitory interneurons.  The inhibition corresponds to the release of GABA, 

which initiates two types of inhibitory responses, a fast inhibitory postsynaptic 
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potential (IPSP) mediated by GABAA-receptors and a slow IPSP brought on 

by GABAB-receptor activation.  

 

1.3. Temporal phases of LTP and LTD 

Brief high-frequency stimulation of the the CA3-CA1 synapses can 

result in LTP, which can be divided into several temporal phases 

characterized by different underlying mechanisms. In general, it is divided into 

induction, expression and maintenance. The initial induction phase of LTP i.e. 

so named ‘posttetanic potentiation’ (PTP) with a duration of several seconds 

to minutes is characterized by presynaptic mechanisms, i.e. transient increase 

in transmitter release (Huang, 1998;Dobrunz et al., 1997). PTP is followed by 

a ‘short-term potentiation’ (STP) with a duration up to one hour. Postsynaptic 

events like activation of receptors by local protein kinases (e.g.CaMKII, 

tyrosine kinase) (Huang, 1998;Dobrunz et al., 1997) are responsible for the 

maintenance of that phase. STP can be followed by at least two further 

phases: early-and late-LTP (Matthies et al., 1990;Huang, 1998). Early-LTP is 

a transient form of LTP which lasts 3-4 h in vitro and 7-8 h in vivo, while late-

LTP lasts for 8-10 h in vitro and days or even months in intact animals  

The different forms of LTP can be specifically induced by distinct 

stimulus protocols in acute slices in vitro (Frey et al., 1993;Huang and Kandel, 

1994). A single high-frequency stimulus train of distinct stimulation strength 

can induce early-LTP that lasts for up to 3-4 h, but such a protocol is normally 

not sufficient to induce late-LTP. The induction of late-LTP, on the other hand, 

requires repeated or stronger trains of high-frequency stimulation. Processes 
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specifically involved in early- and late- phases of LTP require different cellular 

signaling pathways (Fig. 2).  
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Figure 2. The multiple phases of LTP. See text for a detailed description. 

 

The early-phase of LTP is transient and protein synthesis- 

independent, lasting about 2-4 h, induced by second messenger cascades, 

activated by Ca2+  influx, and maintained by activated kinases like CaMKII, 

tyrosine kinase, (Malenka and Nicoll, 1999;Soderling and Derkach, 2000). 

Late-LTP begins gradually during the first 1-3 h and can last for 6-10 h in 

hippocampal slices in vitro and for days to months in vivo (Krug et al., 

1989;Frey et al., 1995;Reymann et al., 1985;Otani et al., 1989;Abraham et al., 

2002;Kandel, 2001). A further major difference between early-LTP and late-

LTP is that late-LTP requires protein synthesis (Krug et al., 1984;Frey et al., 

1988;Otani et al., 1989). Application of suppressors of RNA-translation during 

LTP-induction resulted in a decremental early-LTP while late-LTP was 
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prevented (Krug et al., 1984;Stanton and Sarvey, 1984;Deadwyler et al., 

1987;Abraham and Kairiss, 1988;Frey et al., 1988;Frey et al., 1996;Mochida 

et al., 2001).  

The phases and mechanisms of LTD are less extensively studied as 

compared to LTP. However, there is also evidence that LTD in area CA1, like 

LTP, requires NMDA-receptor activation (Mulkey and Malenka, 1992;Dudek 

and Bear, 1992) and protein synthesis for stable expression (Kauderer and 

Kandel, 2000;Manahan-Vaughan et al., 2000)  

 

1.4. Basic properties of LTP and LTD 

LTP and LTD at the Schaffer collaterals CA1 synapses share several 

common properties: like input-specificity, co-operativity, associativity and late-

associativity (Bliss and Collingridge, 1993;Bear and Malenka, 1994;Malenka 

and Bear, 2004). LTP/LTD is input-specific, in the sense that it is restricted to 

the synapses which receive high-frequency stimulation (HFS) or low-

frequency stimulation respectively (LFS) (Kelso and Brown, 1986;Lynch et al., 

1977). This feature is consistent with its involvement in memory formation. If 

activation of one set of synapses led to the activation of all other synapses, 

even inactive ones-being potentiated or depressed, it would be difficult to 

selectively enhance particular sets of inputs, as is presumably required for 

learning and memory (Bliss and Collingridge, 1993). Cooperativity refers to 

the fact that, the probability of inducing LTP/LTD increases or decreases with 

the number of stimulated or depressed afferents (McNaughton et al., 

1978;Malenka and Bear, 2004;Bear and Malenka, 1994;Otmakhova and 

Lisman, 1998) for instance weak-HFS/-LFS was found to result in weak LTP/-
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LTD while strong HFS/-LFS results in late-LTP/-LTD. LTP/-LTD in area CA1 is 

also associative as shown in preparations, when two distinct axonal inputs 

converge on the same cell, where stimulation or depression of a weak input 

(few stimulated/depressed afferents) only evokes weak LTP/-LTD when 

coupled with stimulation/depression of the strong input (many stimulated 

/depressed afferents). In other words, strong activation /depression of one set 

of synapses can facilitate LTP/LTD at synapses on the same cell if both are 

activated/depressed during a specific time window (Barrionuevo and Brown, 

1983;Levy and Steward, 1983). This selective enhancement /depression of 

conjointly activated sets of synaptic inputs is often considered as a cellular 

analog of associative or classical conditioning. More generally, associativity is 

expected in any network of neurons that links one set of information with 

another. 

Late-associativity is a novel property of LTP/LTD. It describes 

intersynaptic interventions within a time frame of few minutes to few hours 

(Frey and Morris, 1997;Frey and Morris, 1998a;Frey and Morris, 1998b;Morris 

and Frey, 1999). More clearly, a weak protein synthesis independent early-

LTP/-LTD in one synaptic input can be transformed into a late, protein 

synthesis-dependent form, if a protein synthesis-dependent late-LTP/-LTD is 

induced in the second synaptic input preceded by the weak events in the first 

synaptic input (weak before strong) within a specific time frame (Frey and 

Morris, 1998b;Kauderer and Kandel, 2000). 
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1.5. Cellular mechanisms of LTP and LTD 

1.5.1. NMDA-receptor -dependent LTP and LTD 

 The N-methyl-D-aspartate (NMDA) receptor is a voltage-dependent 

glutamate receptor subtype. NMDA-receptors are composed of assemblies of 

NR1 and NR2 subunits, which can be one of four separate gene products 

(NR2A-D) (Gomperts et al., 2000;Racca et al., 2000;Robert et al., 2000). 

Expressions of both subunits are required to form functional channels. The 

glutamate binding domain is formed at the junction of NR1 and NR2 subunits 

(Yamakura and Shimoji, 1999). In addition to glutamate, the NMDA-receptor 

requires a co-agonist, glycine, to bind to allow the receptor to function. The 

glycine binding site is found on the NR1 subunit. The NR2B subunit also 

possesses a binding site for polyamines, regulatory molecules that modulate 

the functioning of the NMDA-receptor (Yamakura and Shimoji, 1999). At 

resting membrane potentials, NMDA-receptors are inactive. This is due to a 

voltage-dependent blockade of the channel pore by magnesium ions. In a 

recent report by Liu et. al., (Liu et al., 2004) and Massey et al., (Massey et al., 

2004) showed that selectively blocking NMDA-receptors that contain the 

NR2B subunit abolishes the induction of LTD, but not LTP. In contrast, 

preferential inhibition of NR2A containing NMDA-receptors prevents the 

induction of LTP without affecting LTD. This result demonstrates that distinct 

NMDA-receptor subunits are critical factors that determine the polarity of 

synaptic plasticity. 

For the induction of LTP/LTD, the NMDA-receptor must be activated by 

the neurotransmitter glutamate and simultaneously there must be a sufficient 

depolarization of the postsynaptic membrane to relieve a magnesium block in 
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the NMDA-receptor-associated ion channel, which allows then the entry of 

Ca2+ into the post synaptic terminal. Ca2+ activates a number of Ca2+ -sensitive 

second-messenger processes. Because NMDA-receptors are sensitive to 

both presynaptic transmitter release and postsynaptic depolarization, they act 

as Hebbian coincidence detectors (Collingridge, 2003). NMDA-receptor- 

dependent LTP can be triggered experimentally either by delivering high-

frequency tetani to a critical number of presynaptic afferent fibers, or by 

pairing postsynaptic depolarization with presynaptic stimulation (Gustafsson 

et al., 1987). 

  The mechanism of LTD induction are some what similar to those 

underlying LTP, in that both postsynaptic Ca2+ influx and NMDA-receptor 

activation are necessary. These findings  were first reported by Mulky et al., 

(Mulkey and Malenka, 1992) who found that intracellular injection of BAPTA, a 

calcium chelator, or suppression of NMDA currents by intracellular hyper- 

polarization both blocks LTD induction. Although both Ca2+ influx and NMDA-

receptor activation are necessary for LTP as well as LTD-induction in CA1, 

the concentration of intracellular Ca2+ determines whether LTP or LTD is 

induced. According to Lisman (Lisman, 1989), a small influx of Ca2+, which 

produces a low intracellular Ca2+ concentration, may activate selective protein 

phosphatases whose action leads to the induction  of LTD. Selective inhibitors 

of protein phosphatases block the induction of LTD in CA1 (Mulkey et al., 

1993).  
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1.5.2. Role of protein kinases in LTP and LTD 

Protein kinases critically regulate synaptic plasticity in the mammalian 

hippocampus (Gass et al., 1998;Frey et al., 1993;Rongo, 2002;Sweatt, 

1999;Sweatt, 2004). Protein phosphorylation is mediated by protein kinases, 

and it is a key regulatory mechanism in neurons, enabling and modulating a 

plethora of important cellular processes, including neuronal development, 

growth, and plasticity (Walaas and Greengard, 1991). A large number of 

chemical neurotransmitters, hormones, and other signaling substances use 

cyclic adenosine 3’,5’-monophosphate (cAMP) as an intracellular second 

messenger (Nguyen and Woo, 2003). The principal target for cAMP in 

mammalian cells is cAMP-dependent protein kinase A (PKA), which is 

ubiquitously expressed and mediates intracellular signal transduction and 

intracellular signal transmission in invertebrates and vertebrates (Frey et al., 

1993;Nguyen and Kandel, 1996;Brandon et al., 1995). Late-LTP requires 

cAMP-dependent PKA activity during LTP induction (Frey et al., 1993;Huang 

and Kandel, 1994;Abel et al., 1997;Nguyen and Kandel, 1997;Nguyen and 

Woo, 2003). For example, application of cAMP analogs to synapses in a 

hippocampal slice induces a slowly expressing, but long-lasting LTP (Frey et 

al., 1993). Furthermore, application of PKA inhibitors attenuates LTP 

expression, apparently eliminating the ability of synapses to express LTP  

(Otmakhova et al., 2000) . These results suggest that PKA activated by cAMP 

may gate the expression of late-LTP by direct, indirect or permissive 

activation of transcription factors. 

In addition to PKA, numerous signaling molecules that regulate 

synaptic plasticity have been identified that, include calcium/calmodulin 
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dependent protein kinases (CaMKII, CaMKIV) and others. (Rongo, 2002; 

Miyamoto and Fukunaga, 1996; Colbran and Brown, 2004). However, most 

experiments had investigated only early stages of LTP and LTD. With respect 

to candidate enzymes involved in maintaining LTP, in addition to PKA, the 

role of protein kinase C (PKC) has been suggested to be important 

(Angenstein et al., 1994; Matthies, Jr. et al., 1991;Reymann et 

al.,1988a;Fedorov et al., 1995;Reymann et al., 1988b;Bliss and Collingridge, 

1993;Linden and Routtenberg, 1989;Malenka and Nicoll, 1999;Malinow et al., 

1989).  

PKC has been shown to exist in the neuron in at least three forms 

differing with respect to their activation characteristics: free cytosolic, 

membrane-associated and membrane -inserted (Ohno and Nishizuka, 2002). 

PKC consists of a family of ~15 different isoforms that has been classified into 

three second messenger-dependent groups: conventional (Ca2+/diacylglycerol 

(DAG) dependent), novel (Ca2+ dependent, DAG independent) and atypical 

(Ca2+/ DAG-independent) (Nishizuka, 1995). Finally, the recently discovered 

PKC related kinases (PRKs) define a fourth group consisting of at least three 

members, PRKs 1 to 3. Like atypical PKCs, PRKs are insensitive to Ca2+, 

DAG and phorbol esters. (Hirai and Chida, 2003; Hirai et al., 2003). It has 

been reported that an isozyme of PKC called PKM-zeta (PKMζ) (Sacktor et 

al., 1993), is activated during LTP by a mechanism fundamentally different 

from that of the other kinases implicated in LTP (Osten et al., 

1996a;Hernandez et al., 2003) even though its role in LTD is not known 

except that it is down regulated during its maintenance (Hrabetova and 

Sacktor, 1996;Hrabetova and Sacktor, 2001) . Atypical full-length PKC 
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isoform consists of an N-terminal regulatory domain and a C-terminal catalytic 

domain (Hernandez et al., 2003). The regulatory domain contains binding 

sites for second messengers and a pseudo substrate sequence that inhibits 

the catalytic domain. Second messengers activate a full-length PKC by 

binding to the regulatory domain and causing a transient conformational 

change that releases the pseudo substrates inhibition. PKMζ, in contrast, 

consists of an independent catalytic domain of the atypical PKCζ isoform, and 

lacking inhibition from a regulatory domain, is persistently active without 

continual second messenger stimulation. Although PKM is usually thought of 

as a cleavage product of full-length PKC (Kishimoto et al., 1983). But recently 

Hernandez et al., (Hernandez et al., 2003) reported that PKMζ is formed in 

LTP not by proteolysis, but by a gene expression of a brain-specific PKMζ 

mRNA, which is generated from an internal promoter within the PKCζ gene. 

Tetanic stimulation induces protein synthesis from PKMζ mRNA, persistently 

increasing the amount of the independent, autonomously active ζ catalytic 

domain during LTP maintenance (Osten et al., 1996b;Hernandez et al., 2003). 

Phosphorylation by PKMζ potently enhances AMPA-receptor-mediated 

synaptic transmission (Ling et al., 2002). In addition, inhibition of PKMζ 

activity 1h after tetanization reverses the maintenance of AMPA-receptor-

mediated synaptic potentiation (Ling et al., 2002). PKMζ could potentially 

mediate synaptic enhancement in the early phase, in the transition from early- 

to late-, or in the late phases of LTP (Ling et al., 2002). 

More recently, the mitogen-activated protein kinase (MAPK) cascade 

that activates extracellular signal-regulated kinases (ERKs) has been 

implicated in LTP as well as in some forms of learning and memory (Sweatt, 
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2001;Sweatt, 2004;Thomas and Huganir, 2004). Tonegawa and colleagues 

(Kelleher, III et al., 2004a;Kelleher, III et al., 2004b) recently reported that, the 

conditional expression of a dominant-negative form of mitogen activated 

extracellular kinase-1 (MEK1) in the postnatal murine forebrain inhibited ERK 

activation and caused selective deficits in hippocampal memory retention and 

the translation-dependent, transcription-independent phase of hippocampal 

late-LTP. Two other kinases deserving of mention are phosphatidylinositol 3-

kinase (PI3 kinase) and the tyrosine kinase Src. PI3 kinase appears to be 

required for a form of LTP that involves the trafficking of AMPA-receptors to 

synapses in dissociated cultured hippocampal neurons (Man et al., 2003). 

Src, on the other hand, may serve to enhance NMDA-receptor function during 

the LTP induction protocol (Salter and Kalia, 2004). 

 

1.5.3. Role of protein synthesis and transcription factors in LTP and LTD 

Protein synthesis is assumed to be necessary for the cell to maintain 

synaptic changes over long time periods, which require constant molecular 

turnover and eventually leads to synaptic growth. It is hypothesized that late-

LTP requires the activation of transcription factors for sustaining prolonged 

periods of synaptic enhancement and finally making the synaptic change 

relatively permanent. Intraventricular application of anisomycin, a reversible 

translational inhibitor, prevents the long-term maintenance of LTP in the 

dentate gyrus, an effect that parallels the block of long-term memory in 

several learning tasks (Krug et al., 1984;Otani and Abraham, 1989). The 

application of anisomycin before, during, or immediately after tetanization 

produced a gradual decrease of potentiation after 4-6 h without affecting 
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early-LTP. Application of anisomycin 1 h after tetanization had no effect. A 

similar phenomenon was observed when LTP was induced in dendritic 

stumps of CA1 pyramidal cells of hippocampal slices in vitro (Frey et al., 

1989b). In these experiments the cell-body layer, the major site of protein 

synthesis was surgically removed from the apical dendrites. The isolated 

dendrites revealed a pronounced early-LTP in the fEPSP as is found in intact 

slices. However, the potentiation gradually decreased after about 4 h, thus 

showing the same lack of late-LTP as observed in complete CA1 neurons 

after inhibition of protein synthesis with anisomycin.  

It has been shown that, the transcription factor cAMP-responsive 

element binding protein (CREB) differs in its activation following the induction 

of either short or long form of LTP (Matthies et al., 1997;Impey et al., 

1998;Schulz et al., 1999). CREB is a member of the basic leucine zipper 

super family of transcription factors that modulate the transcription of genes 

by binding to a regulatory DNA promoter known as cAMP responsive element 

(CRE) (Brindle and Montminy, 1992;Mayr and Montminy, 2001). Nuclear 

CREB can be activated by several neural signaling pathways, including the 

cAMP and Ca2+ pathways which are known to be involved in memory and are 

activated or up-regulated by stimuli that induce LTP (West et al., 

2001;Deisseroth et al., 1998). A variety of kinases induced by these pathways 

have been shown to activate CREB by phosphorylating the Ser 133 site 

(Gonzalez and Montminy, 1989;Sheng et al., 1991;Bito et al., 1996;Deisseroth 

and Tsien, 2002;Ying et al., 2002). In contrast, CREB mutant mice showed 

normal LTP and intact learning in most hippocampus dependent tasks (see 

(Balschun et al., 2003)). 
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1.5.4. Heterosynaptic requirements: Role of dopamine for synaptic 

plasticity in hippocampal CA1 

In hippocampal slice preparations in vitro, there are many 

neuromodulatory afferents alongside the Schaffer collaterals from CA3 to 

CA1. It is likely that the multiple strong tetani used to induce late-LTP also 

activate these fibres. One candidate modulatory system is the mesolimbic 

dopaminergic pathway that, in addition to its many other projections, is 

afferent to the hippocampus from the ventrolateral tegmentum (Gasbarri et al., 

1994). Immunohistochemical localization of dopamine D1 and D5 receptors 

shows that there is heavy staining along pyramidal cells of the CA1 (Huang et 

al., 1992) and blockade of these receptors with SCH23390 inhibits the 

maintenance of late-LTP in hippocampal slices (Frey et al., 1990;Frey et al., 

1991b). It has been shown, however, that  to affect LTP, dopamine antagonist 

must be present at the time of induction (Frey et al., 1990;Frey et al., 

1991b;Frey et al., 1989a); application after induction had no effect. Dopamine 

has been shown to affect early- and late-LTP in the hippocampal CA1 

pyramidal cells (Frey et al., 1990;Frey et al., 1991b;Frey et al., 1993;Huang 

and Kandel, 1995;Otmakhova and Lisman, 1998;Otmakhova and Lisman, 

1996;Otmakhova et al., 2000) and both LTD and LTP in inhibitory striatal 

neurons (Calabresi et al., 1997).The normal role of this dopaminergic 

activation might be to activate second-messenger systems, such as the 

PKA/cAMP cascade or the ERK/MAPkinase pathway, and thereby regulate 

downstream gene transcription or translation (Frey et al., 1993;Ying et al., 

2002). 
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Dopamine plays an important role in both working (Goldman-Rakic, 

1995) and long-term memory. In long-term memory, dopamine is involved 

specifically in the mechanisms of reinforcement (Cooper et al., 1990;Schultz 

et al., 1993). Midbrain dopaminergic neurons respond to a reward and deliver 

dopamine to target brain structures, including the hippocampus (Gasbarri et 

al., 1994). The pivotal role for the hippocampal dopaminergic system has 

been demonstrated in several  types of learning: intrahippocampal injections 

of dopamine agonists enhances passive avoidance (Bernabeu et al., 1997) 

visual discrimination (Jork et al., 1982) and win-shift positive reinforcement 

learning (Packard and White, 1991). Dopamine depletion in the hippocampus 

impairs spatial navigation (Gasbarri et al., 1994).  

Activation of D1-like receptors enhances LTD, induced by low-

frequency stimulation in rat hippocampal CA1 neurons (Chen et al., 1995). 

Similarly, blockade of either D2- or D1-like receptors decreases the magnitude 

of late phases of LTP, which seems to involve cAMP-dependent mechanisms 

(Frey et al., 1990;Frey et al., 1991b;Frey et al., 1993). Slices perfused with 

high concentrations of D1-like agonists without any tetanus can itself mimic 

the late phases of LTP; the effect which is blocked by inhibitors of protein 

synthesis (Huang and Kandel, 1995). Interestingly, dopamine produces a 

synapse-specific enhancement of early-LTP through D1/D5 receptors and 

cAMP (Otmakhova and Lisman, 1996). 

Recent work has shown that D1/D5 dopamine receptors inhibit 

depotentiation (DP) at CA1 synapses via cAMP-dependent mechanism 

(Otmakhova and Lisman, 1998). In an another study, the importance of D2 

like receptors are also reported in depotentiation in vivo (Manahan-Vaughan 
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and Kulla, 2003). Together these data suggest the involvement of different 

dopamine-dependent mechanisms in the control of synaptic plasticity in 

various brain areas. 

 

1.6. Synaptic plasticity and subsequent activity at the same input: 

Depotentiation (DP) 

Depotentiation refers to the reversal of LTP by the application of low- 

frequency stimulation (LFS) shortly after LTP-induction (Staubli and Chun, 

1996a), first described in CA1-region of the hippocampus and is considered 

as a mechanism for forgetting at cellular level (Manahan-Vaughan and Kulla, 

2003). An important feature of depotentiation is its dependence on time, i.e. 

LFS is effective only if given within a distinct time window after LTP 

induction(Staubli et al., 1998;Staubli and Scafidi, 1999). Time-dependent 

depotentiation can effectively destabilize the putative mechanisms essential 

for the maintenance of LTP (Woo and Nguyen, 2003). Depotentiation in vivo 

was shown in the CA1 region as well as in the dentate gyrus (DG) (Staubli 

and Scafidi, 1999;Straube and Frey, 2003). However, LTP in the DG appears 

to be more resistant to depotentiation compared to CA1 region. In DG, only 

delays of 2 or 5 min-but not of 10 min-between LTP induction and LFS led to 

depotentiation. Brief 7 Hz stimulation (which is having  behavioral relevance,   

since oscillations at a frequency of about 7 Hz are the dominant events in the 

hippocampal EEG of rats responding to new sensory input and plays an 

important role for hippocampal information processing) of 100 stimuli  

repeatedly after LTP induction in DG of freely moving rats also effectively 

induce depotentiation (Straube and Frey, 2003).  
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In hippocampal CA1, a one minute episode of 5 Hz (theta frequency) 

stimulation beginning 1-3 min after LTP had no effect on the degree of 

potentiation measured 30 min later. However, in the presence of 

norepinephrine, 5 Hz stimulation reduced LTP by about 30% (Larson et al., 

1993). Theta frequency stimulation was only effective when administered with 

in 10 min of LTP induction and had no long lasting effects on non-potentiated 

synapses. Stimulation at 1 Hz did not reverse LTP and stimulation at 10 Hz 

was no more effective than 5 Hz stimulation. LTP could be nearly completely 

reversed by theta frequency stimulation when potentiation was induced by 

milder and more naturalistic stimulation patterns. Under these conditions, LTP 

reversal was blocked by an antagonist of adenosine A1-receptors. These 

results suggest that the hippocampal theta rhythm promotes both induction of 

LTP and its subsequent reversal with the latter processes involving activation 

of adenosine receptors. The importance of D2 like receptors are also reported 

in depotentiation in vivo (Manahan-Vaughan and Kulla, 2003). Agonist priming 

of D2 like receptors with a drug concentration which had no effect on synaptic 

transmission, inhibited depotentiation but did not affect LTP. The agonist 

effects on depotentiation were prevented by D2 like antagonist remoxipride. 

Remoxipride itself did not influence basal synaptic transmission or 

depotentiation. These results suggest a specific role for dopamine D2 like 

receptors in the regulation of depotentiation in vivo.  

 

1.7. ´Synaptic tagging´ during LTP  

A significant challenge for the neuroscience community is to fit the 

stock of ‘learning and memory’ molecules that have been identified so far with 
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the cellular and physiological observations that are associated with enduring 

synaptic changes. Single synapses or sets of synapses can undergo selective 

modifications when stimulated and although any given neuron receives 

thousands of synaptic contacts, each of them can potentially be modified in an 

independent manner for longer periods of time. Because this type of synaptic 

modification requires both transcription and translation, the problem of 

targeting gene products from the nucleus to the few activated synapses in a 

vast dendritic tree has been solved by the neuron in ways that we do not yet 

fully understand. The identity of the proteins responsible for stabilizing LTP 

has not been established, its occurrence raises a fundamental question: given 

that macromolecule synthesis occurs mainly in the cell body, how do these 

proteins find their way through the dendrites to the appropriate synapses 

which were activated by a weak stimuli ? In general there are considered to 

be four hypotheses about how the synapse specificity of late-LTP could be 

achieved (Frey and Morris, 1998a): the ‘mail’ hypothesis; the ‘local’ 

hypothesis; the ´synaptic tag´ hypothesis and the ‘sensitization’ hypothesis. 

The ‘mail’ hypothesis involves elaborate intracellular protein trafficking, where 

proteins, at the time of their synthesis, are given a ‘synaptic address’ to which 

they are destined. The mail hypothesis is intrinsically unlikely because the 

requirement of proteins to travel from the soma to a specific synapse in a cell 

that, in case of CA1 pyramidal cells, might have more than 10,000 synapses 

(Frey and Morris, 1998a). The local synthesis hypothesis predicts the 

relevance of local protein synthesis machinery which is activated due to 

stimulation of nearby synapses. The local synthesis idea is supported by the 

presence of spine associated poly ribosome. Input specificity is a straight 
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forward consequence of this cellular architecture. Recent findings by Kang 

and Schumann (Kang and Schuman, 1996) support local dendritic protein 

synthesis by neurotrophin-induced potentiation, but this form of plasticity is 

input non-specific. The ‘sensitization’ hypothesis entails distribution of 

plasticity related macromolecules to every synapses of the cell. These would 

have the effects of altering the threshold at which synaptic activation (or Ca2+ 

influx) gives rise to lasting synaptic changes. When few of these 

macromolecules are available, a high threshold prevails, and tetanization 

usually induces only early-LTP; when many macromolecules are available, it 

is much easier for late-LTP to be induced (Malinow et al., 2000). The 

sensitization hypothesis is supported by recent findings of a de novo protein 

synthesis dependent formation of protein kinase Mζ (Ling et al., 

2002;Hernandez et al., 2003;Muslimov et al., 2004) . 

The ´synaptic tagging´ hypothesis describes a mechanism, how input 

specificity is achieved during a protein synthesis-dependent stage (Frey and 

Morris, 1997;Frey and Morris, 1998a;Frey and Morris, 1998b;Martin and 

Kosik, 2002). Key experiments in two systems in rat (Frey and Morris, 1997) 

and in Aplysia (Martin, 2002) elucidated ´synaptic tagging´ in vertebrate and in 

invertebrate brain respectively.  

The synaptic tag hypothesis (Frey and Morris, 1997;Frey and Morris, 

1998a) proposed that the persistence of LTP is mediated by the intersection 

of two dissociable events. The first event involves the generation of a local 

‘synaptic tag’ at specific synapses in association with and perhaps causally 

related to the induction of LTP. The second involves the production and 

diffuse distribution of ‘plasticity related proteins’ (PRPs) that are captured and 
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utilized only at those synapses possessing a tag. A paradoxical but logical 

prediction of this hypothesis is that, in two pathway experiments, it should be 

possible to induce protein-synthesis-dependent late-LTP following tetanisation 

that either does not by itself trigger protein synthesis, or may even occur 

during the inhibition of protein synthesis. Such late-LTP induction could occur 

if synaptic tags set at the pathway that is tetanised weakly, or tetanised during 

the inhibition of protein synthesis, capture the PRPs induced by the strong 

tetanisation of other afferents. This prediction was tested by stimulating two 

independent inputs to a population of CA1 pyramidal cells in hippocampal 

slices. Late-LTP was induced on one pathway (S1), and the protein synthesis 

inhibitor anisomycin then bath applied just before the second pathway (S2) 

was tetanised. Normally, only early-LTP would be induced and late-LTP 

inhibited in the presence of anisomycin. However, the LTP induced on S2 

remained potentiated for up to 8 h post-tetanus (Frey and Morris, 1997). 

In addition to input-specificity, synaptic tagging is characterized by new 

late-associative properties which have been identified in an elegant study in 

hippocampal slices. The weak tetanic stimulation that normally induces only 

early-LTP could be ‘transformed’ into late-LTP heterosynaptically if a strong 

tetanus was delivered to an independent input to the same population of CA1 

pyramidal cells shortly before or shortly after the weak tetanus (Frey and 

Morris, 1998b). These results indicate that the weak stimulus created a 

‘synaptic tag‘ that could ‘hijack’ the proteins from the other synaptic input, 

resulting in persistent strengthening of synapses that would otherwise express 

only early-LTP. These experiments show  that the products of transcription 

are delivered through out the cell, and that they persist for a specific period, 
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during which they can be captured by sub threshold synaptic activity at 

another site in the cell (Frey and Morris, 1998a). 

´Synaptic tagging´ is also elucidated in invertebrate model such as 

Aplysia (Martin, 2002). In culture system, a single bifurcated Aplysia sensory 

neuron can form synaptic contacts with two spatially separated motor 

neurons. Delivery of five puffs of serotonin (5-hydroxy tryptamine or 5HT) to 

one contact selectively enhances synaptic efficacy at that synapses without 

altering the efficacy of the other contact (a phenomenon that has been termed 

branch specific facilitation). This increase in synaptic potency persists for 

more than 24 h and depends on transcription, as it can be blocked by the 

transcriptional inhibitor actinomycin D (Martin, 2002). ´Synaptic tagging´ can 

be shown in this experimental system when a single puff of serotonin is 

delivered to one contact and five puffs are applied to the other contact, the 

facilitation produced by single puff is long lasting. Importantly, to produce 

long-term facilitation (LTF), the single pulse of serotonin must be given within 

a discrete time window either 1-2 h before or 1-4 h after five pulses of 

serotonin were applied to the other connection. These observations indicate 

that long term synaptic changes at one synapse can trigger a cell wide 

process that is captured by another synapse that has experienced a level of 

activation that would otherwise produce only short term changes, furthermore 

they show that this phenomenon has a transient life time (Martin and Kosik, 

2002).  

The ‘sensitization’ hypothesis shares with the ´synaptic tag´ idea that 

the persistence of LTP can vary as a function of the recent history of 

activation of the neuron, but this variability would be strictly dependent on the 
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past history of activation, and uninfluenced by the immediate future history of 

activation. It also makes the false prediction that application of protein 

synthesis inhibitors shortly after LTP induction should have no effect on LTP 

persistence although effects later than eight hours cannot yet be excluded. 

The ´synaptic tag´ hypothesis permits greater flexibility and more intracellular 

co-operativity than any of the other ideas (Frey and Morris, 1998a) .  

 

1.8. Aims of the dissertation 

 The studies which will be presented here investigated: In a first series 

of experiments I studied whether electrically-induced long-term depression 

within rat hippocampal slices in vitro shares common cellular features with 

LTD in the intact animal, with particular emphasis being placed on 

mechanisms required for its late maintenance. Initial studies have led to the 

development of stimulation protocols which resulted in reliable induction of 

different forms of LTD, like protein synthesis-dependent late-LTD or -

independent early-LTD, depending on the stimulation protocols. These studies 

were important pre-requisites for investigating a second series of experiments 

which includes studying the mechanisms of ‘synaptic tagging’ and ‘late-

associativity’ during LTD. So far ‘synaptic tagging’ and processes of ‘late-

associativity’ were described only for LTP in vitro. Thus I was interested as to 

whether LTD is characterized by similar phenomena which also includes the 

search for possible heterosynaptic requirements for LTD and LTD-related 

tagging. 

 A third complex series of studies were undertaken to investigate a very 

interesting and exciting question: Can LTP and LTD interact in a single 
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neuronal population. This question was successfully studied in this thesis 

showing positive interactions of LTP and LTD, a property which we have 

named ´cross-tagging´. In the fourth series of experiments, I was interested in 

the search for the molecular nature, the physiological activation/deactivation 

of the putative ‘tag’ and plasticity-related proteins (PRPs) required for late-

LTP as well as for late-LTD. Thus, I have investigated the role of PKC isotype 

PKMζ. My results revealed that PKMζ can be considered as an LTP-specific 

PRP which plays an important role in LTP- and LTD-induction as well as in 

LTP-tagging but not in LTD-tagging. And finally, I have studied whether 

activated ‘tag’ or ‘tag complex’ can be reset in a time-dependent manner by 

using depotentiation. Thus, my main goal was to characterize processes of 

´synaptic tagging´ during LTD and its associative interactions. 
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2.0. Materials and methods 

2.1. Brain slice preparation and incubation 

All experiments were performed in right hippocampal slices (400 µm 

thick) prepared from 7 weeks old male Wistar rats (total number of animals: 

275). The animal was stunned by a blow behind the foramen magnum and 

decapitated immediately. Following decapitation, the skin and fur covering the 

skull were cut away and an incision was made on both sides. The bone 

covering the brain was prised away and dura removed before transfering the 

brain into cooled and carbogenated (carbogen: gas consisiting of 95% O2 and 

5% CO2) artifical cerebro spinal fluid (ACSF) (about 4°C). Cold solution was 

used to slow down the metabolism of the tissue, to limit the extent of 

excitotoxic and other kinds of damage occurring during the preparation of 

slices (Reymann et al., 1985). The hemispheres were separated mid-sagitally 

by a deep cut using a scalpel and the hippocampal commissure was cut and 

the right hippocampus was taken out on to the stage of McIIwain tissue 

chopper (Cambden,UK), and 400 µm slices were cut at 70° transverse to the 

long axis from the middle third of the right hippocampus. After sectioning, the 

slices were picked up by a wet artist’s brush, floated in a petri dish containing 

the cooled and carbogenated ACSF, and immediately transfered to the nylon 

net in the experimental chamber by a wide bored pipette. One of the critical 

points which elapses between the removal of the brain and the placing of the 

slices in the chamber, is that time should not exceed 4 min. Cooling of the 

brain and slices between the removal of the brain from the skull and the 

arrival in the chamber improves the viability of the slices. When slices are 

taken out with proper care the responses, observed on stimulation are similar 
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to those seen in intact animals. Slices were incubated within an interface 

chamber at 32°C (carbogenated incubation medium contained 124 mM NaCl, 

4.9 mM KCl, 1.2 mM KH2PO4, 2.0 mM MgSO4, 2.0 mM CaCl2, 24.6mM 

NaHCO3, 10 mM D-glucose). Supply of oxygen was achieved by controlling 

the gas flow over the surface of the slice (carbogen flow rate: 18 l/h) thus 

preventing the drying out of the slices (see Fig. 3). 

A     

  
         B                                                              C 

                  

 

  
Figure 3. Interface chamber and electrical set-up for long term extra cellular recording. 
(A) An overview of recording chamber and its electrical set-up. (B) Interface chamber with 

manipulators. (C) Microscopic view of a hippocampal slice located with electrodes. 
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In all experiments, two monopolar lacquer-coated, stainless steel 

electrodes (input resistance: 5 MΩ; AM-Systems, USA) were positioned within 

the stratum radiatum of the CA1 region for stimulating two separate 

independent synaptic inputs S1 and S2 (Fig. 4). 

 

Synaptic input S2

CA3

CA1

Area dentata

Synaptic input S1

P opula tion  sp ike

F ie ld  E P S P

Population spike

Field EPSP

Figure 4. Transversal hippocampal slice showing the positioning of the electrodes. Two 

independent synaptic inputs S1 and S2 to the same neuronal population and the recording 

sites for the population spike amplitude and the field EPSP as well as analog recording traces 

as representative examples of them are shown. 

 

For recording, two electrodes (5 MΩ; AM-Systems) were placed in the 

CA1 dendritic and cell body layer of a single neuronal population. Recorded 

potentials were amplified by a custom made amplifier (INH, Magdeburg, 

Germany). The analog signals were then digitized using a CED 1401 A/D 

converter and analyzed with custom-made software (PWIN, Magdeburg, 

Germany). Slices were preincubated for at least 4 h, a quite unusual long 

period, but it has been shown by the following reasons to be critical for a 

stable long-term recording as well as the study of late plasticity for up to 16 h, 

under conditions which resemble the functionality of studies in vivo. 
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This methodical issue of the required prolonged preincubation period 

for subsequent functional plasticity studies is very often overseen. 

Hippocampal slices in vitro are characterized by a very low spontaneous 

activity which may result from an almost ‘absolute rest’ during preincubation. 

Biochemical studies have shown that metabolic stability is reached in slices 

after 2-4 h, i.e., metabolite levels require 2-4 h to stabilize, and these levels 

are then maintained for at least 8 h of incubation (Whittingham et al., 1984). 

This includes parameters for the activity of enzymes, second messengers, 

pH, and others. Interestingly, the value for bio-active molecules which 

stabilizes then at a very low level, if strong electrical stimulation was not 

delivered to the tissue. We suppose that in addition to processes of the acute 

slice preparation, low electrical activity may result in the delayed but 

prolonged metabolic stability at a low level after about 4 h if no stimulation is 

applied to the tissue. This may lead to a reduction of PRPs to an amount near 

zero if the half life of the proteins is considered with about 2 h. Thus, starting 

with functional experiments after a preincubation time of 4-5 h, may rectify all 

slices and neurons to a low but very comparable basal metabolic and 

plasticity level. Tetanization for instance, would then activate a machinery of 

processes ‘from zero’ (a situation never occurring in behaving animals) which 

is mechanistically more useful to determine time constants during plastic 

events, than it would be the case by using freely behaving untreated rats. If in 

intact rats protein synthesis is blocked by a pharmacological reversible 

inhibitor a similar situation as in slices can be created revealing similar time 

constants for early-LTP in vitro. Unfortunately, currently available reversible 

protein synthesis inhibitors reduce the synthesis of macromolecules in the 
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intact animal for several hours, making this preparation probably unusable to 

directly study processes of synaptic tagging with the methods used so far. 

Thus, slice preparations represent an ideal, however also partially artificial 

model to determine properties of tagging and late-associativity. Although, 

most of the problems concerning brain slice incubation are known for a long 

time, most laboratories start their ‘physiological’ slice experiments after a very 

short preincubation period of even less than 1 h. Knowing the metabolic 

instability during that period we prolonged the preincubation of hippocampal 

slices to at least 4 h to obtain comparable and more physiological results in 

describing functional processes in slice preparations. This requirement is 

supported by additional data such as measuring basal endogenous protein 

phosphorylation patterns and the translocation of different protein kinase C 

isoenzymes (α, β and γ) to the membrane as markers of their activation in 

tissue obtained from hippocampal slices in vitro or from intact, untreated rats. 

Studies revealed that only slices incubated in the same way as described 

here showed comparable patterns of phosphorylation and enzyme 

translocation as detected in the intact animal (Angenstein and Staak, 1997). 

Although one could argue that specific modifications of slice preparation may 

circumvent distinct problems raised above, to maintain the complex slice 

physiology at a level which allows reliable studies of functional plasticity 

favors a more simple method: to wait (Sajikumar and Frey, 2004a). 

Following the preincubation period, the test stimulation strength was 

determined for each input to elicit a population spike of about 40 % (for LTD 

studies) or 25 % (for studies conducted to investigate LTP and the effect of 

dopamine application) of its maximal amplitude determined by slice specific 
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input-output relationship. For stimulation, biphasic constant current pulses 

were used. The baseline was recorded for at least 60 min before LTP/LTD 

induction. In the dopamine studies the baseline was recorded for at least 30 

min. Four 0.2 Hz biphasic, constant-current pulses (0.1 ms per polarity) were 

used for testing 1, 3, 5, 11, 15, 21, 25, 30 min post-tetanus or 21, 25, 30 min 

post-LFS and thereafter once every 15 min up to 8 h (30 min in dopamine 

series). Since the two recorded parameters showed either similar time course 

in the experiments (if the population spike was not abolished after induction of 

LTD at all), for clarity only the fEPSP data are shown. 

 All experiments were carried out in accordance with the European 

Communities Council Directive of 24th November 1986 (86/609/EEC). It is 

also certified that formal approval to conduct the experiments described has 

been obtained from the animal subjects review board of our institution/local 

government which can be provided upon request. All efforts were made to 

minimize the number of animals used and their suffering. 

 

2.2. Stimulation Protocols: Inuction of late-LTD, early-LTD, late-LTP, 
early-LTP and depotentiaton 

 

For inducing late-LTD, a strong low-frequency stimulation protocol 

(SLFS) which consisted of 900 bursts (one burst consisted of 3 stimuli at a 

frequency of 20 Hz, interburst interval=1 s, i.e. f=1 Hz, stimulus duration 0.2 

ms per half-wave; a total number of stimuli of 2700) was found to be the most 

effective protocol (Sajikumar and Frey, 2003;Sajikumar and Frey, 2004a). 

This stimulation pattern produced a stable LTD in vitro for at least 8 h. For 

inducing a transient early-LTD a weak low-frequency stimulation protocol 
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(WLFS) consisting of 900 pulses (f=1 Hz, impulse duration 0.2 ms per half-

wave, a total number of stimuli of 900) was determined to be the most efficient 

in inducing early-LTD (Sajikumar and Frey, 2003;Sajikumar and Frey, 2004a). 

Late-LTP was induced using three stimulus trains of 100 pulses (‘strong’ 

tetanus: f=100 Hz, stimulus duration 0.2 ms per polarity with 10 min intertrain-

intervals) (Frey and Morris, 1997;Frey and Morris, 1998b). In experiments with 

induction of early-LTP, a single tetanus with 21 pulses was used (`weak’ 

tetanus: f=100 Hz, stimulus duration 0.2 ms per polarity, population spike 

threshold stimulus intensity for tetanization) (Frey and Morris, 1997;Frey and 

Morris, 1998b). A protocol for depotentiation was used, which consisted of a 

low frequency stimulation of (LFS) of 250 impulses at a frequency of 1Hz 

(Sajikumar and Frey, 2004b).  

In the series investigating the action of dopamine, instead of a threefold 

tetanization, 3 stimuli were applied with doubled stimulus duration at time 

points where in LTP-experiments the tetani were applied. 

 

2.3. Pharmacology 

2-amino-5-phospho-valeric acid (APV; Sigma) was used at a 

concentration of 50 µM (dissolved in ACSF) to block the NMDA-receptor. 

Anisomycin (Sigma) (dissolved in ACSF), a reversible protein synthesis-

inhibitor, was used at a concentration of 25 µM (a concentration that blocks at 

least 85% of incorporation of 3H-leucine into hippocampal slices (for details 

see (Frey et al., 1991a)). A structurally different irreversible protein synthesis 

inhibitor, emetine (Tocris), was used at a concentration of 20 µM (dissolved in 

ACSF). Dopamine (10 or 50 µM; Tocris) was applied into the bath medium 
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three times for three min with an inter-application interval of 10 min. In these, 

and in the adequate control experiments the anti-oxidant ascorbic acid (1 mM) 

was added. Dopamine and ascorbic acid were dissolved in bath solution in a 

dark tube immediately before application. The selective dopaminergic D1/D5-

receptor antagonist SCH23390 was used at a concentration of 0.1 µM (Tocris; 

dissolved in ACSF). The myristoylated ζ pseudosubstrate peptide (myr-

SIYRRGARRWRKL-OH, Biosource) was used at a concentration of 1 µM. It 

was prepared by dissolving it in distilled water as a stock solution (10 µM) 

which was stored at -20°C. The required volume containing the final 

concentration of 1 µM was dissolved in ACSF immediately before bath 

application. The scrambled control peptide (myr-RLYRKRIWRSAGR-OH, 

Biosource, (Laudanna et al., 1998) was prepared in the same way as 

mentioned above. 

 

2.4. Statistics 
 

The averaged potential recalculated as percentage per time point ± 

SEM of slope function (mV/ms) of the field EPSP were then subjected to 

statistical analysis (Wilcoxon-signed-rank-test, when compared within one 

group or the Mann-Whitney-U-test when data was compared between groups 

(P<0.05 was considered as being statistically significant different)). 
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3.0. Results 

3.1. Protein synthesis- and NMDA-receptor-dependent late-LTD 
 

LTD induced by low-frequency stimulation can be maintained in the 

hippocampal structures of the intact animal, with a similar time course as LTP. 

However, with respect to underlying cellular mechanisms and in contrast to 

LTP, the long-lasting maintenance of LTD has so far been studied less 

extensively. The question arises as to whether, the prolonged maintenance of 

LTP and LTD share common cellular properties? To investigate this question 

we used hippocampal slices in vitro. First, late-LTD was induced in a synaptic 

input S1 by using a SLFS which resulted in a long-lasting late-LTD with a 

duration of up to 8 h (Fig. 5 A; filled circles). Control stimulation of an 

independent synaptic input S2 revealed stable potentials for the time course 

investigated (Fig. 5 A; open circles). The next experimental series tested 

whether the late-LTD requires NMDA-receptor activation and protein 

synthesis. Application of the NMDA-receptor antagonist AP-5 thirty min before 

until 30 min after SLFS in S1 prevented the induction of LTD (Fig. 5 E; filled 

circles). Responses obtained from S2 (open circles) remained stable 

potentials at control levels. These results support our hypothesis that late-LTD 

shares common properties like late-LTP. Application of the protein synthesis 

inhibitors anisomycin (25 µM) or emetine (20 µM), 30 min before SLFS in S1 

(Fig. 5 B and 5 C; filled circles) resulted in the prevention of late-phases of 

LTD and revealed a transient, short-lasting depression, i.e. early-LTD. The 

control input was not influenced by the drug (open circles; statistically 

significant difference between S1 and S2 was detected for the first 255 min 

after anisomycin application; P<0.05, U test).  
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In the next series, a transient and protein synthesis-independent form 

of LTD (early-LTD) was induced by using a WLFS (Fig. 5 D; filled circles). The 

depression reached the base line within 3 h after its induction (statistically 

significant different for 185 min when compared with control input S2, open 

circles, U- test, or for 210 min when compared with its baseline before WLFS, 

Wilcoxon test, P<0.05). 

In summary, protein syntesis and NMDA-receptor dependent late-LTD 

and a transient form of early-LTD can be induced in CA1 area of hippocampal 

slices in vitro by using appropriate stimulation protocols. 
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Figure 5. Protein synthesis and NMDA-receptor dependent late-LTD. (A) Induction of 

late-LTD in S1 (filled circles) using the repeated LFS protocol (i.e., strong low-frequency 

stimulation (SLFS; broken arrow). Late-LTD showed statistically significant difference for the 

8 h investigated when compared with the time course of potentials recorded from a control 

input S2 (open circles;P<0.05, U test). Control stimulation of S2 revealed relatively stable 
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potentials for the time course investigated. (B and C) Application of the protein synthesis 

inhibitors (box) anisomycin (25 µM) or emetine (20 µM), as a second structural different 

inhibitor, 30 min before until 30 min after SLFS in S1 (filled circles) revealed a transient early-

LTD. The control input S2 (open circles) was not influenced by the drug. Statistically 

significant difference between S1 and S2 was detected for the first 255 min after anisomycin 

application; P<0.05, U- test). The analog triplets next to the graph illustrate the initial and last 

three triplets of analog traces during the LTD-inducing trains (i.e., potentials obtained at the 

1st, 2nd, 3rd, and 898th, 899th or 900th second of one LFS-train). (D) A WLFS protocol 

(broken arrow) was used which elicited transient early-LTD of the field EPSP with a duration 

of 185-210 min in S1 (filled circles; statistically significant different for 185 min when 

compared with control input S2 (open circles)), U- test, or for 210 min when compared with its 

baseline before WLFS, Wilcoxon test, P<0.05). (E). Application of the NMDA-receptor 

antagonist AP-5 (box) 30 min before and until 30 min after SLFS in S1 prevented the 

induction of LTD (filled circles). Responses obtained from S2 (open circles) revealed relatively 

stable potentials at control levels.  

The analog examples given in the figures represent adequate potentials 30 min 

before (dotted line), 30 min after (broken line) as well as 8 h (solid line) after the induction of 

the event in input S1 and S2, respectively. Scale bar: 3 mV/3 ms (valid for all single analog 

examples presented; scale bar for triplets: 3 mV/50 ms) 

 

3.2. ´Synaptic tagging´ during LTD 
 

The NMDA-receptor-dependent induction and the protein synthesis- 

dependent maintenance of late -LTD allow us to speculate that late-LTD may 

also display common functional properties and consequences for information 

processing similar to LTP at the cellular level. This may include phenomena 

like 'synaptic tagging' and 'late-associativity'.  

For investigating ´synaptic tagging´ during LTD, late-LTD was induced 

in S1, 30 min later WLFS was applied in S2. Using such a stimulation protocol 

of two separate independent synaptic inputs revealed that early-LTD in S2 

was transformed into a late-LTD (Fig. 6 A; filled circles) (Wilcoxon test, 

P<0.05). In the next series of experiments, SLFS was applied to both inputs 

S1 and S2 with in an interval of 60 min, but the S2 was in presence of 

anisomycin (anisomycin applied 30 min before (a time period which will not 
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affect the S1) and after the induction of late-LTD in S2) (Fig. 6 B). Under 

these conditions late-LTD on S2 was still observed suggesting that protein 

synthesis initiated immediately after induction of LTD on S1 provided 

macromolecules that were still available for the establishment of late-LTD on 

S2. LTD in S1 or S2 were always statistically significant different from their 

adequate baselines (Wilcoxon test; P<0.05). Application of anisomycin (25 

µM) during the induction of late-LTD in S1 and S2 prevented late-LTD in both 

synaptic inputs (Fig. 6 C) (anisomycin was applied 30 min before induction of 

LTD in input S1 and was washed out 30 min after the induction of LTD in the 

second input S2). The next series investigated whether the early-LTD in S1 

has any effect on S2. Subsequent inductions of early-LTD in S1 and S2 alone 

had no effect on both inputs (Fig. 6 D). 

In summary, LTD in CA1 area of hippocampal slices shows the 

phenomenon of ‘synaptic tagging’. 
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Figure 6. Synaptic tagging during LTD. (A) Prior induction of late-LTD in S1 (open circles) 

30 min before WLFS in S2 transformed the early-LTD in S2 into a late-LTD (filled circles) 

(Wilcoxon test, P<0.05). Here the ‘tag’ set due to the early-LTD in input S2 hijacked the 

proteins synthesized by the synaptic input S1 (late-LTD), showing the paradoxical conversion 

of early to a late-LTD in input S2 (B)  Late-LTD was induced in S1 without drug application 

(open circles), 30 minutes after SLFS in S1 anisomycin was added (box) and 1 h after LTD of 

S1, input S2 was stimulated by the SLFS protocol but now under inhibition of protein 

synthesis (filled circles). Under these conditions late-LTD on S2 was still observed suggesting 

that protein synthesis initiated immediately after induction of LTD on S1 provided 

macromolecules that were still available for the establishment of late-LTD on S2. The 

depressions in S1 or S2 were always statistically significant different from their adequate 

baselines (Wilcoxon test; P<0.05). (C) Anisomycin (25 µM) (box) was applied 30 min before 

induction of LTD in input S1 (filled circles) and was washed out 30 min after initiation of LTD 

in the second input S2 (open circles). In both synaptic inputs late-LTD was prevented due to 

lack of protein synthesis (because of the presence of anisomycin at the time of the induction 

of late-LTD in both inputs). (D) Subsequent induction of early-LTD in S1 and S2 alone have 

no effect on both inputs (statistically significant different for 145 min in S1 (filled circles) and 

165 min in S2 (closed circles) when compared with its baseline before WLFS, Wilcoxon test, 

P<0.05). All values are presented as the mean ± SEM. Hatched arrows indicate application of 

SLFS or WLFS for inducing late-LTD or early-LTD on corresponding synaptic inputs.  
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The analog examples given in the figures represent adequate potentials 30 min 

before (dotted line), 30 min after (broken line) as well as 8 h (solid line) after the induction of 

the event in input S1 and S2, respectively. Scale bar: 3 mV/3 ms (valid for all single analog 

examples). 

 

3.3. Conversion of early- into late-LTD: ´late-associativity´ during LTD 
and the decay time course of the synaptic tagging during LTD. 
 

A weak-before-strong-protocol was used to determine the decay time 

course of the tag (Frey and Morris, 1998b). Thus, an early-LTD was induced 

in S1 followed by late-LTD in S2 at distinct time points thereafter, i.e. 30 min, 

(Fig. 7 A), 1 h (Fig. 7 B),2 h (Fig. 7 C) and 3 h (Fig. 7 D). Early-LTD in S1 

(filled circles in Fig. 5 A-D) was transformed into late-LTD if the induction of 

late-LTD in S2 occurred within 1-2 h after tetanization of S1. Thus, the decay 

time of the tag during LTD is about 1-2 h (Fig. 7 E), i.e., similar to the decay 

time for the tag during LTP, when measured in hippocampal slices at a 

temperature of 32 °C. 

In summary, LTD in CA1 area of hippocampal slices shows similar 

‘late-associative’ property like LTP and the decay time course of the LTD 

´synaptic tag´ is within 30-60 min. 
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Figure 7. Weak-before-strong induces late-LTD on the weakly stimulated WLFS input 
S1: when repeated SLFS and subsequent induction of late-LTD in input S2 (open circles) 

followed the weak single WLFS in S1 (filled circles), the early-LTD was transformed into late-

LTD in that input when ‘weak and strong’ LFS occurs within 30 min (A) to 60 min (B) 
(Wilcoxon test, P<0.05), but it declined as this interval lengthens to 2 h (C) (statistically 

significant difference retained up to 240 min in S1 (filled circles) when compared with its 

baseline before WLFS, Wilcoxon test, P<0.05) and is almost absent at 3 h (D), although a 

very small remaining depression of the potentials remained over time (statistically significant 

difference retained up to 125 min in S1 (filled circles) when compared with its baseline before 

WLFS, Wilcoxon test, P<0.05). (E) Decay time course of the LTD ´synaptic tag´: analysis of 

the slope of field EPSP measured 8 h after WLFS of S1 in (A-D) showed the magnitude of 

late-LTD to be a function of the weak-before-strong interval. Assuming the synthesis and 

distribution of PRPs to be relatively rapid, this function will approximate the decay time course 
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of a population of synaptic tags at 32°C in vitro. Hatched arrows indicate application of SLFS 

or WLFS for inducing late-LTD or early-LTD on corresponding synaptic inputs.  

The analog examples given in the figures represent adequate potentials 30 min 

before (dotted line), 30 min after (broken line) as well as 8 h (solid line) after the induction of 

the event in input S1 and S2, respectively. Scale bar: 3 mV/3 ms (valid for all single analog 

examples). 

 

3.4. Heterosynaptic requirements for ´synaptic tagging´ 
 

Electrical stimulation of afferent fibres with a field electrode always 

activates modulatory pathways in addition to glutamatergic ones. Thus, one 

can assume that in studies using field stimulation and recording electrodes, 

heterosynaptic events will occur. Thus the question arises: What is the role of 

these modulatory inputs? A three-fold short-lasting application of 10 µM 

dopamine results in a delayed onset, but long-lasting depression (Fig. 8 A; 

filled circles), while 50 µM results in a delayed onset long-lasting potentiation 

(Fig. 8 B; filled circles). Ascorbic acid, an antioxidant which was applied 

together with dopamine alone had no effect on baseline potentials (Fig. 8 A-

B). In the next series of experiments the role of dopamine during LTD 

induction and ´synaptic tagging´ was investigated. The application of the 

D1/D5-receptor antagonist SCH23390 (0.1 µM) during LTD-induction 

prevented its maintenance (Fig. 8 C; filled circles). Late-LTD was induced in 

both synaptic inputs, S1 and S2 in presence of SCH23390 (0.1 µM) which 

resulted in the prevention of late-LTD in both inputs (Fig. 8 D). For 

investigating its role during tagging, late-LTD was induced in input S1 followed 

by late-LTD in S2 but in presence of SCH23390 (Fig. 8 E). The role of 

dopamine during synaptic tagging in LTP was investigated by inducing late-

LTP in both synaptic inputs (ie, S1 and S2) but S2 was in presence of 
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SCH23390, paradoxically both inputs maintained a late-LTP showing the 

tagging interactions (Fig. 8 F). 

In summary, all these results supports our hypothesis that dopamine 

might be directly involved in processes required for late-LTP and late-LTD. 
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Figure 8. Heterosynaptic requirements for ´synaptic tagging´. (A) Threefold application of 

10 µM dopamine/1 mM ascorbic acid (arrows) revealed a delayed-onset LTD (filled circles). 

The anti-oxidant ascorbic acid alone had no effect on baseline potentials (open circles). (B) 
Application of 50 µM dopamine/1 mM ascorbic acid (arrows) resulted in a delayed-onset LTP 

(filled circles) when compared to the control series with ascorbic acid alone (open circles as in 

 57



(A)). (C) SLFS in inputs S1 (filled circles) after inhibition of dopaminergic D1/D5-receptors by 

SCH23390 (box) resulted in a transient early-LTD lasting about 165 min similar to the time 

course of LTD after the application of protein synthesis inhibitors (see Fig. 5 B and C) 

(stastiically significant difference in S1 (filled circles) up to 185 min when compared with 

control input S2, U test, and 205 min when compared with its baseline before SLFS, Wilcoxon 

test, P<0.05). Control potentials in S2 remained relatively stable at baseline levels (open 

circles). (D) SCH23390 (box) was applied 30 min before induction of LTD in input S1 (filled 

circles) and was washed out 30 min after induction of LTD in the second input S2 (open 

circles). Late-LTD was prevented by SCH23390 in hippocampal CA1 (duration of LTD: in S1 

210 and 165 min in S2 when compared to their baseline values before SLFS, Wilcoxon test, 

P<0.05). (E) Late-LTD was induced in S1 without drug application (open circles). Thirty 

minutes after SLFS in S1, SCH23390 was added (box) and 30 min after LTD of S1 SLFS was 

applied to input S2 but now under inhibition of D1/D5-receptors (filled circles). Under these 

conditions late-LTD on S2 was still observed suggesting that protein synthesis initiated 

immediately after induction of LTD on S1 by interaction with the activation of the 

dopaminergic D1/D5-receptor provided macromolecules that were still available for the 

establishment of late-LTD on S2 (Wilcoxon test, P<0.05). (F) The same experiment as in (E) 
was repeated but now by the induction of LTP in the two inputs S1 and S2 (solid 

arrows + STET). Late-LTP was observed in both inputs suggesting that similar as to LTD, 

LTP-specific tagging in CA1 requires dopaminergic receptor activation as well (Wilcoxon test, 

P<0.05). Hatched arrows indicate application of SLFS for inducing late-LTD on corresponding 

synaptic inputs. Triplets of filled arrows indicate a strong, threefold tetanization for inducing 

late-LTP in that input.  

 The analog examples given in the figures represent adequate potentials 30 min 

before (dotted line), 30 min after (broken line) as well as 8 h (Solid line) after the induction of 

the event in input S1 and S2, respectively. Scale bar: 3 mV/3 ms (valid for all single analog 

examples). 

 

3.5. Late-associative interactions between LTP and LTD: ‘Cross-tagging.’ 
 

Earlier results show that dopamine-receptor activation in hippocampal 

CA1 is required for the protein synthesis stage of LTP and LTD. We 

hypothesize that the role of such modulatory inputs in synergistic action with 

glutamatergic processes causes the synthesis of PRPs. If so, the question 

arises as to whether the activation of dopaminergic receptors during late-

LTP/-LTD induction regulates a general pool of PRPs with an unspecificity to 
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the particular process, i.e. LTP or LTD. However, the process-unspecific 

PRPs could then be used by LTP- or LTD-tags in a process-specific way. For 

investigating this, early-LTP was induced in input S1 (Fig. 9 A; filled circles) 

which was followed by the induction of late-LTD in S2 30 min later (open 

circles). Paradoxically, early-LTP in S1 was transformed into late-LTP by 

SLFS through a separate synaptic input S2. Similarly, early-LTP in S2 (Fig. 9 

B, filled circles) was transformed into late-LTP if the induction of late-LTD in 

S1 (Fig. 9 B; open circles) preceded WTET in S2. We named this positive 

late-associative interaction of LTP and LTD: synaptic ´cross-tagging´. The 

order of induction of LTP or LTD in ´cross-tagging´ is unimportant because 

induction of late-LTP in S2 (Fig. 9 C) converts the early-LTD in S1 to a late-

LTD or induction of late-LTP in S1 converts the early-LTD in S2 to a late-LTD 

(Fig. 7 D). The prior induction of late-LTP in one input will preclude the 

expression of late-LTP in that input (Fig. 9 E). Similarly the prior induction of 

late-LTD in one input will preclude the expression of late-LTP in same input 

(Fig. 9 E).  

In summary, the data provide evidence that LTP and LTD can interact 

in a positive manner in hippocampal slices in vitro. 
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Figure 9. Positive associative interactions of LTP/LTD: ‘Cross-tagging’. (A) Early-LTP in 

synaptic input S1 (filled circles) was transformed into a late-LTP, when late-LTD was induced 

by repeated SLFS in S2 (open circles) 30 min after the induction of early-LTP in S1. (B) Late-

LTD in S1 was able to affect early-LTP in S2, transforming the latter to late-LTP. (C) Early-

LTD was transformed into late-LTD in S1 by strong tetanization, i.e., induction of late-LTP in 

S2. Tetanization of input S1 8 h after LTD induction resulted in normal LTP with a duration of 

at least 30 min. The graphs on the right illustrate the shift of the input-output curve for LTP 

and LTD, respectively, 4 and 8 h after induction of the plastic process. (D) Induction of late-

LTP in S1 was followed by WLFS in S2. Here, early-LTD was transformed into late-LTD in S2. 

All forms of LTP or LTD in these experiments were statistically significant different from their 
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adequate baseline control potentials (Wilcoxon test, P<0.05). (E) Cross tagging experiments, 

however 1 h after LTP induction in S1 new stimulation parameters were determined for this 

input (open squares) in addition to test stimuli of LTP (open circles) in S1 which resembled 

pre-tetanus baseline values. After recording a new baseline for 30 min a STET was applied. 

Interestingly, the prior induction of late-LTP in this input precluded the expression of late-LTP 

in S1. Similarly, in input S2 a new baseline was determined (filled squares) 30 min after 

WLFS in this input. A baseline of 30 min was also recorded with the newly determined 

stimulus parameters irrespective of testing with the old stimulus intensity in the same input 

(filled circles). Then a SLFS was applied which normally produces late-LTD, however, the 

former transformation of early- into late-LTD by mechanisms of cross-tagging prevented the 

expression of LTD if SLFS was applied 60 min after the induction of early-LTD in this input. 

Filled arrows indicate the time point of WTET and hatched arrows indicate application of 

SLFS or WLFS to the corresponding synaptic inputs. Triplets of filled arrows indicate a strong, 

threefold tetanization for inducing late-LTP in that input.  

The analog examples given in the figures represent adequate potentials 30 min 

before (dotted line), 30 min after (broken line) as well as 8 h (solid line) after the induction of 

the event in input S1 and S2, respectively. Scale bar: 3 mV/3 ms (valid for all single analog 

examples). 

 

3.6. Depotentiation of early-LTP in S1 by LFS  

Control experiments revealed a transient early-LTP of synaptic input 

S1 decaying to baseline values about 3 h after WTET (Fig. 10 A; filled circles). 

A separate afferent synaptic input S2 to the same neuronal population 

remained at stable baseline levels during the investigated time period of 7 h in 

this set of control experiments (Fig. 10 A; open circles). Previous experiments 

have demonstrated that the weak tetanus in S1 which resulted in early-LTP 

activates a synaptic tag at the particular synapse S1. We had shown that the 

tag is transient and decays within about 1 h. The question arises as to 

whether the tag can also be reset in an activity-dependent manner. Thus, the 

next series investigated the effect of a LFS-protocol applied to the tetanized 

input S1, 5 min after WTET. As seen in Fig. 10 B (filled circles) early-LTP was 

totally reversed by the LFS whereas posttetanic potentiation was expressed at 
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normal levels. The control input S2 remained stable at baseline levels (Fig. 10 

B; open circles). Prolongation of the time interval between WTET and LFS 

from 5 to 10 min in S1 (Fig. 10 C; filled circles) resulted in PTP followed by a 

transient depotentiation to baseline levels and a recovery of early-LTP within 

2 h before early-LTP followed its normal transient maintenance, decaying to 

baseline after about 3 h. A similar transient partial depotentiation was 

observed when the time interval between WTET and LFS in S1 was 

prolonged from 10 to 15 min (Fig. 10 D; filled circles). It remains unclear why 

a tendentious prolonged early-LTP (however statistically significant) was 

observed under this regimen (early-LTP decayed to baseline only after 5 h 

and 15 min when compared to the control input S2; U-test). The control input 

S2 remained stable in the latter two sets of experiments.  

In summary, the data provide evidence that, a LFS-protocol can reset 

early-LTP, if LFS was applied 5 min after WTET. At later time points only a 

transient depotentiation was observed.  
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Figure 10. Depotentiation of early-LTP in S1 by LFS of S1. (A) Time course of early-LTP 

induced by a weak tetanus in S1 (filled circles). A statistically significant potentiation in S1 up 

to 210 min after the tetanus (U test, P<0.05) as compared to control input S2 (open circles). 

(B) LFS 5 min after WTET of S1 resulted in an immediate and complete depotentiation of 

early-LTP. LFS 10 min (C) or 15 min (D) after WTET of S1 was only able to transiently 

depotentiate early-LTP of S1. A transient potentiation recovered after depotentiation from 45 

to 180 min (C) or 45-315 min after WTET and LFS in S1 in (D) (compared with the 

corresponding control input S2; U test, P<0.05) before reaching baseline levels. Filled arrows 

indicate the time point of WTET and hatched arrows indicate application of LFS to the 

corresponding synaptic inputs. 

The analog examples given in the figures represent adequate potentials 30 min 

before (dotted line), 30 min after (broken line) as well as 8 h (solid line) after the induction of 

the event in input S1 and S2, respectively. Scale bar: 3 mV/3 ms (valid for all single analog 

examples). 
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3.7. Depotentiation of early-LTP in S1 and subsequent 'tagging' by 
3xTET of S2 
 

In the next series of experiments we investigated the hypothesis 

whether depotentiation of early-LTP by LFS is able to reset the 'synaptic tag' 

in this input originally set by the WTET. If so, induction of late-LTP in a second 

input S2 should not be able to influence the initially-induced and depotentiated 

LTP in input S1. Thus, a WTET protocol in S1 which normally induces early-

LTP and sets its 'tag' without the synthesis of PRPs. After 5 (Fig. 11 A), 10 

(Fig. 11 B) or 15 min (Fig. 11 D) a LFS was applied to the same input S1, 

similar as in the experiments represented in Fig. 10 B-D. As seen there LFS 5 

min after WTET resulted in a full depotentiation of early-LTP, whereas a time 

interval of 10 or 15 min was not sufficient to fully depotentiate early-LTP in S1. 

Using the same time intervals for the application of depotentiating stimuli, we 

have now applied subsequently 3×TET to S2 (open circles in Fig. 11 A-D), i.e. 

induced late-LTP in S2, 30 min after WTET of S1-and LFS 5 min thereafter-

was ineffective in influencing the time course of the depotentiated event in S1. 

It seems that the 'tag' in S1 was reset by LFS 5 min later, thus, being unable 

to bind PRPs provided by late-LTP of S2. In the next experiment this 

hypothesis is studied more thoroughly and have re-applied a WTET to S1 

again (Fig. 11 C; filled circles), i.e. 15 min after 3xTET of S2. Under these 

conditions the newly established 'synaptic tag' in S1 could benefit from the 

PRPs provided by late-LTP of S2, which could paradoxically transform its 

original early-LTP into late-LTP showing re-tagging  with a duration of at least 

8 h.  
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In experiments, where the LFS was applied 10 or 15 min after WTET of 

S1 and which was followed by the induction of late-LTP in S2 thirty min later, 

a transient depression in S1 was observed (similar as in Fig. 10 C and D) 

which was then followed by a rescued recovering early- and the subsequent 

paradoxical development of late-LTP in S1 (Fig. 11 B and D). It can be 

concluded that the latter two conditions were unable to reset the 'synaptic tag' 

in S1 which could then benefit from the PRPs provided by late-LTP of S2. 

 In summary, the resetted ‘tag’ or ‘tag complex’ in a synaptic input can 

be reactivated by inducing an early-LTP in the same input. 
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Figure 11. Depotentiation of early-LTP in S1 and tagging by 3xTET of S2. Panels (A), (B) 
and (D) illustrate the effect of subsequent induction of late-LTP in S2 (open circles) 30 min 

after WTET of S1 (filled circles) and LFS of S1 either 5 min (A), 10 min (B) or 15 min (D) after 

the latter. Fig A shows that LFS 5 min after WTET in S1 completely resets the 'tag' preventing 

'synaptic tagging' by induction of late-LTP in S2. Application of depotentiating stimuli to S1 

either 10 or 15 min after WTET resulted in a transient depotentiation of LTP in S1 
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(depotentiated for 5 min after LFS when compared to its own baseline, Wilcoxon-test, 

P<0.05). However, induction of late-LTP in S2 (open circles) 30 min after WTET of S1 

resulted in a transformation of recovered early- into late-LTP in S1, 'synaptic tagging' took 

place. (C) represents a novel setting of the 'tag' (re-tagging) in S1 after resetting it by LFS 5 

min after WTET (filled circles): On the background of depotentiated early-LTP of S1 (filled 

circles; using the 5-min-interval of depotentiation) late-LTP was induced in S2 (open circles) 

followed by a secondary induction of early-LTP in S1 15 min after strong TET of S2. As seen 

in (C) early-LTP in S1 was then paradoxically transformed into late-LTP by processes of 

'synaptic tagging'. Filled arrows indicate the time point of WTET and hatched arrows indicate 

application of LFS to the corresponding synaptic inputs. Triplets of filled arrows indicate a 

strong, threefold tetanization of S2 for inducing late-LTP in that input.  

The analog examples given in the figures represent adequate potentials 30 min 

before (dotted line), 30 min after (broken line) as well as 8 h (solid line) after the induction of 

the event in input S1 and S2, respectively. Scale bar: 3 mV/3 ms (valid for all single analog 

examples). 

 

3.8. Effects of the PKM-zeta (PKMζ) inhibitor, myr-ZIP, on LTP and LTD 

The next series of experiments investigated the putative role of one 

candidate protein which was assumed to stand as a synaptic tag molecule: 

PKMζ. Induction of late-LTP in synaptic input S1 (Fig. 12 A; filled circles) 

resulted in a long-lasting, statistically significant late-LTP (P<0.05, Wilcoxon-

signed rank test) with a duration of 8 h. A control input S2 remained stable at 

baseline levels for the entire experimental session (Fig. 12 A; open circles). It 

has been reported that this type of late-LTP is NMDA-receptor- and protein 

synthesis-dependent. Application of the myristoylated ζ-pseudosubstrate 

peptide inhibitor (myr-ZIP) 1h after the induction of late-LTP in S1 (drug 

application continued up to 5h) (Fig. 12 B; filled circles) prevented its late 

maintenance, returning to baseline responses 135 min after tetanization 

(P<0.05, Wilcoxon-signed rank test). Interestingly, the potentials further 

attenuated below baseline levels from 4 h onwards, expressing a lasting 

depression (P<0.05, Wilcoxon-signed rank test). Control recordings of S2 
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revealed stable potentials throughout the same period (Fig. 12 B; open 

circles).  

In the next series of experiments we investigated whether the myr-ZIP 

can reverse late-LTD in a similar way as it did during LTP. Fig. 12 C 

represents the time course of the fEPSP of input S1 in which myr-ZIP was 

applied 1h after induction of late-LTD. Application of the drug up to 5 h after 

SLFS did not influence early- or late-LTD, respectively (Fig. 12 C; filled 

circles) as compared to the control early and late-LTD (Fig. 5 A and D; filled 

circles). The control input S2 (Fig. 12 C; open circles) remained stable. Thus, 

in contrast to LTP, the maintenance of late-LTD seems to be independent of 

PKMζ activity. We then studied whether myr-ZIP has any effect on transient 

early-LTD induced by WLFS (Fig. 12 D; filled circles). Fig. 12 D shows no 

effects of myr-ZIP on early-LTD in S1 (filled circles) when compared to the 

early-LTD without drug application (Fig. 5 D, filled circles). In both cases the 

control input S2 (open circles) was stable for the entire experimental session. 

In summary PKMζ is necessary for the late maintenance of LTP but not 

for LTD. 
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Figure 12. Effects of the PKM-zeta (PKMζ) inhibitor, myr-ZIP, on LTP and LTD. 

(A) Induction of late-LTP in S1 (filled circles) using high-frequency stimulation (HFS) resulted 

in late-LTP that was significantly different for the 8 h, compared with the control input S2 

(P<0.05, U-test). Control stimulation of S2 revealed relatively stable potentials for the time 

course investigated (open circles). (B) Induction of late-LTP by applying HFS to S1 (filled 

circles) and application of the myristoylated -ζ pseudosubstrate peptide inhibitor ( myr-ZIP, 1 

µM) 1h after its induction reversed the late phase of LTP, while the potentials of the control 

pathway S2 remained stable throughout the recording period of 8 h (open circles). (C) 
Application of SLFS to S1 (filled circles) resulted in a significant depression of that input 

when compared to a control input S2 (open circles, P<0.05, U-test), bath application of myr-

ZIP (1 µM) 1h after its induction had no effect on the maintenance of late-LTD. (D) A WLFS 

showed a transient early-LTD of the fEPSP with a duration of 185-210 min (185 min when 

compared with control input S2,and 210 min when compared  with its baseline before WLFS, 

Wilcoxon test, P<0.05). This early-LTD was unaffected when the myr-ZIP was applied 1h 

after its induction. Control stimulation of S2 revealed relatively stable potentials for the time 

course investigated (open circles). Triplets of filled arrows indicate a strong, threefold 

tetanization for inducing late-LTP in that input and hatched arrows indicate application of 

SLFS or WLFS for inducing late-LTD or ealry-LTD on the corresponding synaptic inputs. The 

analog examples given in the figures represent adequate potentials 30 min before (dotted 
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line), 30 min after (broken line) as well as 8 h (solid line) after the induction of the event in 

input S1 and S2, respectively. Scale bar: 3 mV/3 ms (valid for all single analog examples). 

 

3.9. Effects of PKMζ inhibitor on processes of 'cross-tagging' 
 

As shown above, PKMζ plays an important role for the maintenance of 

LTP. In contrast, inhibition of PKMζ did not affect the maintenance of early- or 

late-LTD (Fig. 12 C and D). These data evoked the following question: Is 

there a specific role for PKMζ on the processes of ‘synaptic tagging’? And if 

so, is PKMζ specifically involved in ´synaptic tagging´ during LTP but not 

LTD? To investigate these questions we studied the effect of PKMζ inhibition 

on established ‘cross-tagging’. PKMζ inhibition after the application of STET 

to S1 and WLFS to S2 interferes with the processes of ´cross-tagging´. As 

shown in Fig. 13 A, late-LTP in S1 (filled circles) was reversed similarly as in 

the series presented in Fig. 12 B. However, although late-LTP was reversed 

in S1, ´cross-tagging´ took place since early-LTD was transformed into late-

LTD in S2 (Fig. 13 A; open circles). To verify a specific action of myr-ZIP, with 

an inactive scrambled sequence of ZIP (scr-myr-ZIP, 1µM) in a similar design 

as shown in Fig. 13 A was used, but with the exception that the drug was 

used at the time of induction of LTP and LTD in iputs S1 and S2 respectively. 

As presented in Fig. 13 B, no effects were observed on the induction and 

maintenance of LTP or LTD and subsequent processes of cross-tagging. In 

the next series of experiments (Fig. 13 C) STET was delivered in S1 (filled 

circles) followed by WLFS in S2 (open circles) but now under the influence of 

myr-ZIP (drug application: 2 h before the induction of late-LTP in S1 up to 2h 

after tetanization). LTP was blocked by myr-ZIP and additionally, no cross- 

tagging could be observed, i.e., no transformation of early- into late-LTD 
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occurred by such an intervention. Interestingly, early-LTD was also somewhat 

depressed when myr-ZIP was applied in conjunction with LTP-induction in S1. 

A similar picture emerged when SLFS in S1 was followed by WTET in S2 

(Fig. 13 D). Interestingly, inhibition of PKMζ in such an experimental design, 

i.e., application of SLFS in S1 followed by WTET in S2 under the influence of 

PKMζ inhibition also prevented late-LTD. Here, all lasting plasticity forms were 

prevented when myr-ZIP was applied during the induction of the events in S1 

and S2.  

In summary, PKMζ inhibition prevents the induction of ´cross-tagging´.  
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Figure 13. Effects of PKMζ inhibitor on processes of 'cross-tagging’. (A) Induction of 

late-LTP in S1 (filled circles) was followed by early-LTD in S2 (open circles) thirty min after 

STET of S1 (cross-tagging), bath application of myristoylated-ζ pseudosubstrate peptide 

inhibitor 1h after its induction prevented the maintenance of late-LTP in S1 (filled circles; a 
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statistically significant potentiation observed up to 130 min when compared to its base 

line,P<0.05, U-test), the early-LTD in S2 (open circles) was transformed into a late-LTD (a 

statistically significant depression observed up to 8 h compared to its base line,P<0.05, U-

test) irrespective of the blockade of late-LTP in S1. (B) Similar experiment as Fig. A, but with 

an inactive scrambled peptide (scr-myr-ZIP, 1 µm) instead of myr-ZIP (but with the exception 

that the drug was used at the time of induction of LTP and LTD in iputs S1 and S2 

respectively). No effect on ´cross-tagging´ was observed. (C) Application of myr-ZIP 2 h 

before and until 2 h after the tetanization of S1 prevented ´cross-tagging´, S1 (filled circles) 

tetanized with HFS, 30 min later WLFS was applied to S2 (open circles) to induce early-LTD. 

(D) Similar experiment as in C but in a reverse manner, i.e., S1 with late-LTD-induction (filled 

circles) and S2 with early-LTP (open circles). Analog traces as well as symbols similar to Fig. 

12. 
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4.0. Discussion 
 

 The presented results confirm and extend existing studies on LTP and 

LTD within the hippocampus and other brain regions and data obtained within 

the intact animal. Late-LTD depends on ongoing protein synthesis during its 

induction. Studies within the cerebellum and later in the hippocampus 

indicated that the prolonged maintenance of LTD may share similar cellular 

properties as LTP (Levenes et al., 1998;Linden, 1996;Manahan-Vaughan et 

al., 2000). These results, together with data describing the influence of novelty 

acquisition and recognition in freely moving animals (Manahan-Vaughan and 

Braunewell, 1999) allowed us to speculate that electrically-induced LTD may 

underlie processes of learning and memory formation in a similar manner as 

LTP (Bear and Abraham, 1996). My initial studies were conducted to 

investigate whether LTD within the hippocampal CA1 region in vitro shares 

similar properties as LTP. Different forms of LTD can be induced depending 

on the induction protocol, i.e. a transient protein synthesis-independent early-

LTD (Fig. 5 D) and a late-LTD (Fig. 5 A) which depends on ongoing protein 

synthesis during its induction. Furthermore, LTD in area CA1 is input-specific, 

i.e. the expression of LTD was observed only in those synaptic inputs 

specifically activated using a low-frequency stimulation protocol. Other 

synaptic inputs can thus react differentially to afferent stimulation, a necessary 

condition to investigate processes like ‘late-associativity’ and ‘synaptic 

tagging’. 

Early- and late-LTD were blocked if an NMDA-receptor antagonist 

(50 µM AP-5, Fig. 3 E) was applied during SLFS and late-LTD was prevented 
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if protein synthesis inhibitors (25 µM anisomycin or 20 µM emetine) were 

applied during SLFS (Figs. 5 B and C). These data support the hypothesis 

that NMDA-receptor-dependent late-LTD can also be induced in slices 

resembling results obtained in intact animals (Bear and Abraham, 

1996;Manahan-Vaughan et al., 2000). Unspecific effects could be excluded 

by using structurally different inhibitors and by analyzing the initial and last 

three triplets of analog traces during the LTD-inducing trains (i.e., potentials 

obtained at the 1st, 2nd, 3rd, and 898th, 899th or 900th s of one LFS-train). 

There was no non-specific action of the drugs used (Figs. 5 B-C) when 

compared with controls (Fig. 5 A). In addition, with respect to the the 

adequate and stable control inputs (Figs. 5 B and C, open circles), these data 

support a specific action of the inhibitors on protein synthesis 

4.1. ‘Synaptic tagging’ during late-LTD 

 
´Synaptic tagging´ describes a mechanism how input specificity is 

achieved during a protein synthesis dependent stage. Consecutive induction 

of late-LTD to S1 and S2 (at 1 h interval) was prevented by anisomycin, if the 

protein synthesis inhibitor was applied 30 min before initiation of LTD in input 

S1 until 30 min after initiation of LTD in S2 had elapsed (Fig. 6 C). The 

depression of the fEPSP in vitro recovered in both inputs in a similar manner 

as described in a previous study in vivo (Manahan-Vaughan et al., 2000). In a 

first key set of experiments, LTD was induced in input S1 (Fig. 6 B, open 

circles) and anisomycin added to the bath medium 30 min later (a time point 

where the protein synthesis-inhibitor was ineffective in influencing late-LTD in 

this input). Thirty minutes later (i.e., 1 h after LTD induction in S1), SLFS was 
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applied to input S2 under conditions of protein synthesis inhibition (Fig. 6 B, 

filled circles). Importantly, the establishment of late-LTD in S2 was normal, 

suggesting that proteins synthesized by LTD in S1 also enable the induction 

of late-LTD in S2. These results support the validity of the synaptic tag 

hypothesis established originally for LTP and also for LTD, in two ways: (a) 

induction of early-LTD appears to be a necessary condition for late-LTD to 

occur, it will not develop on an input without LFS and (b) protein synthesis-

dependent late-LTD can be induced during inhibition of protein synthesis 

under particular circumstances. While SLFS of a second input in the presence 

of a protein synthesis inhibitor is unable to induce its ‘own’ synthesis of 

macromolecules, it can still create its own local, protein synthesis-

independent ´synaptic tag´. This ´tag´ can bind proteins synthesized by the 

activation of the first input. Thus, the consolidation of LTD involves protein 

synthesis but this is insufficient to induce synapse-specific late-LTD. A 

´synaptic tag´ must also be transiently activated during the induction of early-

LTD. LFS must reach some critical threshold for the ‘tag’ to be activated. 

These data provide evidence for the selective catching of proteins by 

heterosynaptically activated synapses enabling late-LTD to have input-

specific properties without elaborate protein-trafficking and that the ´synaptic 

tag´ does not require somatic or local dendritic protein synthesis in the adult 

hippocampus (Martin et al., 2000;Steward and Falk, 1986). Interestingly, 

´synaptic tagging´ takes place during LTP (Barco et al., 2002;Frey and Morris, 

1997) and LTD (Kauderer and Kandel, 2000). 

Our data on ‘synaptic tagging’ during LTD in tissues from adult rats are 

quite similar to the phenomenon recently described in neuronal cultures from 
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juvenile tissue (Kauderer and Kandel, 2000). The authors had also described 

tagging during two-input-LTD in their system. However, whether the 

functionality of plasticity forms and their underlying cellular processes in 

juvenile versus adult nervous tissue is similar remains to be investigated. It 

has been shown that late-LTD in the intact adult rat does depend on protein, 

but not mRNA synthesis during the first 8 h of its maintenance (Manahan-

Vaughan et al., 2000). In neurons from juvenile tissue, in the above study a 

dependence on both-mRNA and protein synthesis-has been demonstrated 

suggesting severe differences in maintaining LTD in neurons of a different 

developmental age. However, a cross-synaptic interaction seems to play an 

important role in neuronal plasticity and its function in information processing 

in general. Data of behavioral and structural heterosynaptic reinforcement 

(Frey et al., 2001;Korz and Frey, 2003;Straube et al., 2003) in the intact 

animal support this hypothesis. Modulatory transmitter systems may result in 

the activation of various processes, e.g., the induction of the same ( Fig. 14 D) 

or different PRPs ( Fig. 14 C) in distinct brain structures as well as neuronal 

sub-regions. Thus, innervation of particular neuronal compartments by a 

specific modulatory transmitter may exert its explicit action, e.g., induction of 

distinct PRPs, etc. However, the better understanding of processes underlying 

the intriguing heterosynaptic induction of the synthesis of a single pool of 

PRPs in one neuronal population during plastic events in general, i.e., by LTP 

or LTD, and the putative benefit of the synapses of these PRPs-provided a 

plasticity-specific synaptic tag is set may result in new ways of thinking of how 

associative interactions during learning are accomplished between different 

neurons and structures. Thus, the described processes may also explain why 
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neuromodulatory events even with an emotional content, such as stress, pain, 

luck, etc., may lead under distinct circumstances to improved memory 

formation. 

4.2. The decay time course and the nature of the tag  

If the input-specificity of late-LTD is determined by the ´synaptic tag´ 

and its persistence by the availability of relevant proteins, the question arises 

whether early-LTD can be transformed into late-LTD by prior induction of late-

LTD in another input to the same neuronal population. Similar to LTP, 

different temporal forms of LTD can be induced by varying LFS-intensity. As 

late-LTD normally requires stronger LFS consisting of more impulses (here: 

2700), another stimulation paradigm was used (900 impulses, weak LFS 

(WLFS)) to identify early-LTD. The latter protocol led to LTD with a typical 

duration of about 2-3 h (Fig. 5 D, filled circles). The subsequent induction of 

early-LTD in the two inputs S1 and S2 (30 min interval) did not result in a 

prolongation of the transient depression in either of the inputs (Fig. 6 D). In 

contrast, prior induction of late-LTD in input S1 (Fig. 6 A, open circles) 

transformed early-LTD in S2 into late-LTD (Fig. 6 A, filled circles). Using the 

same protocol, i.e., induction of late-LTD and early-LTD in the two inputs but 

now in the opposite sequence can be used to determine the decay time 

course of the ´tag´ (Fig. 7 A-D) (Frey and Morris, 1998a). The decay time of 

the tag during LTD is about 1 h (Fig. 7 E), i.e., similar to the decay time for the 

´tag´ during LTP (Frey and Morris, 1998b). However, it must be considered 

that the LTP (Frey and Morris, 1998b) as well as LTD-experiments were 

performed in slices in vitro at an incubation temperature of 32 °C. Thus, it can 

be assumed that the decay time for the tag in the intact animal, at a 
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physiological temperature of around 38 °C, is shorter. Studies in vivo in which 

early-LTP was transformed into late-LTP either by direct stimulation of 

modulatory inputs or by behavioral manipulations suggest a decay time 

course for the tag of less than 30 min (Frey et al., 2001;Seidenbecher et al., 

1997).  

Any candidates with the following criteria are appropriate for fulfilling 

the function of a synaptic ‘tag’, particularly in the light of the findings that a 

´tag´ lasts at most 1-2 h at 32 °C. First, it should be spatially restricted (that is, 

it must be local). Second, it should be time limited and reversible. Third, it 

should be able to interact with cell wide molecular events that occur after 

strong stimulation to produce long-term, synapse specific strengthening. So 

from a broad perspective, anything that provides a spatially restricted trace of 

activity is a candidate for the ´synaptic tag´ or better: of the ‘tag complex’. One 

possibility is a change in spine neck diameter. Synapses which display early-

LTP are characterized by wider neck diameter than synapses that had not 

recently been potentiated. Access to the synaptic apposition zone might then 

be easier for the large macromolecules that we assume are responsible for 

stabilizing LTP (Frey and Morris, 1998a). Simulation studies have revealed 

that although changes in spine shape are not responsible for changes of 

synaptic efficacy, branching of spines and changes in their geometry could be 

more significant. A further, possibility is that persistently active kinases meet 

several of the criteria for a ‘tag’, as they allow a synapse to ‘remember’ 

previous activity in a spatially restricted and reversible manner. CaMKII, the 

atypical Protein kinase C isotype, PKMζ, (Martin and Kosik, 2002;Hegde, 

2004), Homer mediated insertion of the metabotropic glutamate receptor 
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mGluR5 into the membrane , and palmitate cycling on postsynaptic density 

protein 95 (PSD95) (Martin and Kosik, 2002) also may satisfy as a ´tag´ 

candidate. We have thus investigated one candidate molecule for which it was 

assumed by others (Martin and Kosik, 2002;Hegde, 2004) that it could fulfill 

the function of a synaptic tag: PKMζ.  

Our results demonstrate that PKMζ activation is essential for the 

immediate induction of LTP and LTD and for the prolonged maintenance of 

late-LTP but not late-LTD. Furthermore, it is required for processes of ´cross-

tagging´. These results have confirmed and extended the work by Ling and 

colleagues, who have shown a role of PKMζ on the maintenance of LTP (Ling 

et al., 2002). In addition the present studies have shown that PKMζ inhibition 

results in a delayed but long-lasting depression of the potentiated input during 

very late phases beyond 4 h (Fig. 12 B). Phosphorylation by PKMζ enhances 

AMPA-receptor-mediated synaptic transmission (Ling et al., 2002), and it was 

shown that AMPA-receptor function is attenuated during LTD (Gutlerner et al., 

2002;Hirai, 2001;Carroll et al., 1999). Thus, it can be suggested that 

continuous PKMζ inhibition results in a prolonged decrease of AMPA-

receptor-mediated synaptic transmission only in a prior tetanized input since 

the control input without the induction of plastic events remained stable. This 

suggests that LTP, induced by strong tetanization, may destabilize baseline 

responses, and that persistently increased PKMζ activity produced by the 

tetanization may maintain both baseline and enhanced AMPA responses 

specifically in the activated synaptic input at very late phases. Persistent 

changes in PKMζ levels triggered by low- or high-frequency stimulation can 

result in long-term dephosphorylation during LTD and increased 

 78



phosphorylation during LTP (Hrabetova and Sacktor, 2001). These results 

further support the extraordinary plasticity role for PKMζ in AMPA-receptor 

mediated events and may contribute to the better understanding of processes 

of metaplastic states of a synapse (Bortolotto and Collingridge, 2000). 

Although PKMζ inhibition did affect the induction of LTP and LTD if the 

inhibitor was present during the initiation of these events (Fig. 13 C and D), it 

was ineffective in blocking established late-LTD if applied after the induction 

procedure (Fig. 12 C). This is in contrast to LTP, where established late-LTP 

was prevented when the inhibitor was applied after strong tetanization (Fig. 12 

B). Thus continuous PKMζ activity seems to be required for LTP but not LTD 

maintenance.  

It is known that LTP as well as PKMζ activation can also be inhibited 

when protein synthesis is prevented (Osten et al., 1996b). Thus the following 

picture emerges: PKMζ activation is protein synthesis-dependent, its inhibition 

prevents both LTP and LTD initiation but only prevents late-LTP maintenance 

but not late-LTD maintenance (although both late forms require protein 

synthesis). The question now arose as to whether processes of cross-tagging 

might be influenced by inhibition of PKMζ. Inhibition of PKMζ after 

establishing the ‘cross-tagging’ (Fig. 13 A) supports the hypothesis that late 

plasticity forms initiate the synthesis of a pool of different (Fig.14 C) and, 

indeed, process-specific PRPs. This hypothesis was confirmed by showing 

that late-LTP was suppressed under the influence of PKMζ inhibition (in Fig. 

13 A), while early-LTD in the second input was nonetheless transformed into 

late-LTD. Since the induction of early-LTD is unable to initiate its synthesis of 

PRPs but sets its process-specific synaptic tags, the effecter processes most 
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likely the PRPs captured by the tags must be initiated by the strong 

tetanization in the separate synaptic input with suppressed LTP. Presumably, 

PKMζ is not directly involved in the induction of processes resulting in the 

synthesis of PRPs, but it is itself a PRP specific for LTP but not LTD. So the 

first process-specific PRP was identified. Thus, the hypothesis of the 

synthesis of a pool of relatively unspecific PRPs was extensively studied by 

the notion that PRPs include process-specific proteins. Thus, the pool 

consists of PRPs specific for either LTP or LTD, as well as process-

nonspecific proteins, such as the phosphodiesterase type-4B3 (PDE4B3), for 

which it has been recently shown a role during both LTP and LTD, without a 

specificity for that enzyme to a particular plasticity process (Navakkode et al., 

2004;Ahmed et al., 2004;Ahmed and Frey, 2003). In the latter case, the 

different role of PDE4B3 for LTP or LTD is determined by the level of its 

activation. However it is also involved in the expression of both forms, of late-

LTP and late-LTD, by a synergistic interaction of the PDE4B3 with the 

process-specific tags (Navakkode et al., 2004). Taken together, we can 

suggest that not only the process-specific tag consists of a complex 

machinery of molecules (Frey and Morris, 1998a), but also PRPs represent a 

highly specified pool of proteins expressing their effecter roles only in an 

unambiguous interaction with the process-specific tag complex. Interestingly, 

however, inhibition of PKMζ during the induction of either late-LTP or late-LTD 

also prevented the maintenance of both processes. Thus, one can assume 

that besides the role of PKMζ as an LTP-specific PRP it must have at least a 

second plasticity-process-unspecific function in the initiation of processes 

required for lasting plastic forms in general. One possibility is that PKMζ is 
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also crucially involved in the interplay of NMDA-receptor function (Hrabetova 

and Sacktor, 1996) and the induction of immediate processes during LTP and 

LTD, which maintain these phenomena during their earlier phases and that 

may be synergistically involved in the initiation of mechanisms required for 

prolonged maintenance.  

4.3. Depotentiation and ´synaptic tagging´ 

It has been studied whether the maintenance of LTP exclusively 

depends on the availability and the decay time course of 'synaptic tags' and 

PRPs or whether other processes, such as distinct activity, could also be part 

of a regulatory machinery of it. One possibility is the presentation of specific 

homosynaptic activity shortly after LTP-induction. It has been shown that LTP 

can be depotentiated if LFS is applied to the potentiated input shortly after its 

induction (Staubli and Chun, 1996b;Staubli et al., 1998;Martin, 1998). This 

study demonstrates that such a depotentiation could also reset a 'tag' or the 

synthesis of PRPs. For excluding the latter, it was examined in early-LTP - a 

transient form of LTP which sets 'synaptic tags' but which is unable to induce 

its own synthesis of PRPs (Frey and Morris, 1998b;Frey and Morris, 1998a). 

Recently, Woo and Nguyen (Woo and Nguyen, 2003) reported in mouse 

hippocampal slices, that multiple trains of high-frequency stimulation, i.e. 

strong tetanization, caused an immediate synaptic immunity to depotentiation. 

This immunity to depotentiation of synapse-specific LTP was prevented by 

inhibitors of protein synthesis. The authors suggested that local translational 

processes mediated the input-specific synaptic immunity against 

depotentiation. They also proposed that, in addition to translation, products of 

transcription can provide cell-wide immunity to depotentiation via a 
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heterosynaptic transfer of synaptic immunity between distinct pathways in 

area CA1. Translation and transcription may importantly regulate long-term 

storage of information by conferring synaptic immunity to depotentiation at 

previously potentiated synapses. The present study investigated the effect of 

depotentiation very shortly after early-LTP induction, i.e. 5, 10 or 15 min after 

a single tetanus. Thus the form of potentiation and the complete 

depotentiation of early-LTP by applying LFS 5 min after tetanization may be 

due to the lack of translational or transcriptional products as suggested by 

Woo.et.al., (Woo and Nguyen, 2003). It has been shown previously that early-

LTP is protein synthesis independent, however the rescue of early- and its 

transformation into late-LTP requires the synthesis of PRPs. Moreover, in 

contrast to the experiments from Woo and Nguyen (Woo and Nguyen, 2003) 

which were performed in mice, the present study investigated LTP in rat 

hippocampal CA1 region.  

The present study confirmed results from others (Staubli and Chun, 

1996a;Martin, 1998) that LTP can be reversed by LFS within a short time 

window after its induction. In CA1-neurons of hippocampal slices in vitro this 

effective period was less than 10 min when early-LTP was investigated. The 

LFS shortly but beyond 5 min, after LTP-induction resulted always in a 

transient depotentiation with a subsequent recovery of early-LTP. However, 

application of LFS 10 or 15 min after tetanization was unable to reset the 'tag' 

(Fig. 10 C and D). Only a very short time window of 5 min was able to 

effectively reset the 'tag' by subsequent LFS (Fig. 10 B).  

Resetting of the 'tags' or better of the 'tag-complex' (Frey, 2001) in an 

activity-dependent manner shortly after its induction did not prevent the 
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activation or setting of the 'tag' by a subsequent tetanization of the same 

synaptic input. As shown in Fig. 11 A, B, C the 'tag' can be reset by activity 

and re-activated (Fig. 11 C) by subsequent tetanization providing the system 

with a very dynamic functional tool in processing of information. 

This study provided evidence that the duration of LTP does depend on 

the decay time course of the 'tag', the availability of PRPs (Frey and Morris, 

1998a) and, in addition, on the presence of homosynaptic activity at the 

synaptic input tetanized at least shortly after its induction. Whether this 

activity-dependent resetting of the 'tag' contributes to metaplastic states of a 

neuron/synapse (Abraham and Bear, 1996) remains to be investigated. 

However, depotentiation with its property of resetting the 'tag' or the ‘tagging 

machinery’ may be considered as an active process in preventing the creation 

of a long-lasting memory trace and thus, may play an important role in 

processes of forgetting.  

4.4. Heterosynaptic, modulatory requirements 

It is known that the activation of dopaminergic receptors are required 

for late-LTP (Frey et al., 1990;Frey et al., 1991b;Frey et al., 1991a) and it can 

modulate the magnitude of LTD in area CA1 (Chen and Tonegawa, 1997). 

Here we conducted experiments to investigate whether dopamine alone can 

induce a long-lasting plastic changes similar to the direct activation of the 

D1/D5-receptors (Huang and Kandel, 1995) or after the activation of the PKA-

pathway by cAMP-analogs (Frey et al., 1993). Threefold short-lasting 

application of dopamine revealed a concentration-dependent effect: 10 µM 

resulted in a delayed-onset, long-lasting depression (Fig. 8 A) whereas a 

higher concentration, i.e., 50 µM, revealed a delayed-onset potentiation (Fig. 
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8 B). Application of the dopaminergic D1/D5-receptor antagonist SCH23390 

(0.1 µM) during electrically induced LTD induction prevented its maintenance 

(Fig. 8 C, filled circles) in a similar way as after the application of protein 

synthesis inhibitors in LTD or LTP studies (Frey et al., 1990;Frey et al., 

1991b;Frey et al., 1991a). It can be hypothesized that dopamine might be 

directly involved in processes required for synthesis of PRPs. It is known that 

late-LTP depends on the activation of the cAMP/PKA-dependent cascade 

activated presumably through the D1/D5-receptor in hippocampal CA1 

possibly in a complex, synergistic action with the glutamatergic NMDA-

receptor and subsequent activation of third messengers (Frey et al., 1993). 

The results with dopamine application support the hypotheses: (1) that the 

activation of dopamine receptors initiates processes directly related to the 

synthesis of plasticity proteins and in addition (2) they suggest that 

dopaminergic processes are also involved in the setting of and stabilizing the 

tag-complex (presumably if glutamatergic activity was present at the time of 

dopamine application) resulting in long-lasting plastic changes (see also 

(Otmakhova and Lisman, 1998)). Furthermore, a specific regulation of distinct 

AMPA-receptor phosphorylation sites by bidirectional plasticity (Lee et al., 

2000) has been suggested. Thus, the dual action of dopamine, i.e., the 

induction of either LTP or LTD, might be explained by a concentration-

dependent effect on different phosphorylation processes either resulting in 

LTD or LTP. PKA-activation is a necessary step at least to induce protein 

synthesis-dependent late-LTP and -LTD (Brandon et al., 1995;Frey et al., 

1993;Kameyama et al., 1998). Therefore the influences of the D1/D5-receptor 

antagonist on processes of tagging were investigated. As shown in Fig. 8 D 
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late-LTD was prevented in both inputs in presence of SCH23390. In another 

set of experiments late-LTD in S2 was seen even during the blockade of the 

D1/D5-receptors (Fig. 8 E), if late-LTD was induced in S1. These sets of 

experiments resemble the results obtained by anisomycin for LTD (Figs. 6 B 

and C) as well as for LTP described in the original tagging experiments(Frey 

and Morris, 1997). In addition, the main concern was, whether tagging during 

CA1-LTP does also depend on D1/D5-receptor activation. Thus, the 

experiment shown in Fig. 8 E was repeated, but now by applying a strong 

tetanization protocol instead of SLFS to the two synaptic inputs (see in(Frey 

and Morris, 1997)). As shown in Fig. 8 F, LTP is also characterized by 

heterosynaptic, late-associative interactions. In summary, these data offer 

strong support for a direct interaction of dopamine-receptor activation required 

for the synthesis of PRPs. 

4.5. Late-associative LTP-LTD-interactions 

Dopamine mediated heterosynaptic action is required for ´synaptic 

tagging´ during LTP and in LTD. So, the question now arises as to whether 

the activation of dopaminergic receptors during late-LTP/-LTD induction 

influences a general pool of PRPs relevant for the two processes? 

 For studying the late associative interactions of LTP and LTD, early-

LTP was induced in input S1 (Fig. 9 A, filled circles) which was followed by 

the induction of late-LTD in S2 30 min later (open circles). Paradoxically, 

early-LTP in S1 was transformed into late-LTP by SLFS through a separate 

synaptic input, S2. Similarly, early-LTP in S2 (Fig. 9 B, filled circles) was 

transformed into late-LTP if the induction of late-LTD in S1 (open circles) 

 85



preceded WTET in S2. Interestingly, associative interactions of the two inputs 

occlude the induction of late-LTP or late-LTD 60 min after its induction (Fig. 9 

E; squares), i.e., at a time point where the tags were still set or ‘occupied’ by 

the prior event. Figs. 9 C and D demonstrate that the order of weak or strong 

stimulation of the two inputs is unimportant if it occurs within a time interval of 

less than 2 h. In addition, such associative interactions reveal a normal shift in 

the corresponding input-output curves (Fig. 9 C) and still allows a normal 

reaction of the slices to further plastic changes at very late time points 

demonstrating the viability and responsiveness of the preparation to functional 

events (STET 8 h after WLFS in S2 resulted in a normal potentiation with a 

duration of at least 30 min, Fig. 9 C). These data shows a positive interaction 

of LTP and LTD, i.e., LTP can benefit from PRPs synthesized by LTD and 

vice versa, thus paradoxically expressing late-LTP or -LTD. This phenomenon 

is named as ‘cross-tagging’. However, as it was described by others (Muller et 

al., 1995), the two phenomena can also negatively influence each other. 

Interestingly, the time interval had to be increased between induction of late-

LTD in S1 and subsequent weak tetanization in S2 from 30 to 60 min to obtain 

the transformation of early- into late-LTP in S2 by associative interactions with 

S1 (Fig. 9 B). If the time interval was 30 min, LTP in S2 was prevented by 

prior SLFS in S1. The history of the synapses seems to be important for a 

distinct phosphorylation state of plasticity-related kinases such as calcium 

calmodulin kinase II (CAMKII), the ζ-isoform of protein kinase C (Hrabetova 

and Sacktor, 1996;Ling et al., 2002;Hernandez et al., 2003) and/or PKA (Lee 

et al., 2000) influencing the functional response of the synapse. Different 

kinetics as well as the specificity of the earlier activation of such cellular key 
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players may determine the form of plasticity induced by subsequent 

stimulation. 

Summarizing the results regarding the associative LTP-LTD 

interactions in a given neuron, the data suggest that the induction of a late 

form of plasticity-either late-LTD or late-LTP-sets its plasticity-specific ‘tag’ 

and activates the synthesis of plasticity unspecific PRPs, which can be used 

by either of the processes. Abraham and colleagues suggested earlier that 

the induction of homosynaptic LTP and heterosynaptic LTD in one neuronal 

population may activate process-specific immediate early genes 

(IEG)(Abraham et al., 1994). It is well known that LTP can cause an increase 

in IEG expression (Cole et al., 1989). However, whether these IEGs are 

identical with or fulfill the role of PRPs remains speculative. Similarly, whether 

PRPs of the same kind or process-specific pools of proteins are synthesized 

(Fig. 14) also still remains to be determined. Since the induction of early-LTP 

or early-LTD does not require heterosynaptic, modulatory activation, whereas 

the late maintenance of the two processes depends on it, so one can assume 

that early forms are carried by homosynaptic, glutamatergic events. In 

contrast, the late forms require heterosynaptic, modulatory transmitter 

activation during initial, early stages. Previous work favors a synergistic action 

of glutamatergic and non-glutamatergic inputs for the late phases to occur 

(Frey et al., 1993;Frey and Morris, 1998a). Together with the data presented 

here, it can be speculated that the setting of the plasticity-specific ´tag´ and 

the activation of the protein synthesis is due to a synergistic action of 

glutamatergic and heterosynaptic processes (including the possible 

interaction with metabotropic glutamate receptors (Fig. 14) (Lee et al., 2000).  

 87



4.6. The Nature of plasticity-related-proteins (PRPs) 

The nature of PRPs is still speculative. One possibility is the increased 

synthesis of AMPA-receptors 3 h after LTP induction. The synthesis of the 

AMPA-receptors are PKA-dependent (Nayak et al., 1998). These data are in 

accordance with the finding that late-LTP, as well as late-LTD, in the 

hippocampal CA1 requires the activation of dopaminergic D1/D5-receptors 

which subsequently lead to the activation of PKA. Although increased 

synthesis of AMPA-receptors could be a necessary step for LTP, it would not 

explain the expression of LTD. Supposing that the synthesis or the functional 

activation of AMPA-receptors is specifically regulated by other type of PRPs 

(other than functional, structural proteins like the AMPA-receptor) different 

molecules come into consideration. Thus, two possible candidates for 

process-specific PRPs could be: (1) protein kinases and (2) phosphatases- 

the first activating whereas the second down-regulating AMPA-function. In the 

first scenario late-LTP and in the second, late-LTD would be expressed. 

There is yet at least one further possibility: a single enzyme regulates the 

activity of the AMPA-receptor (or other ion-channel/receptor complexes). It 

has been reported recently that an LTP-specific regulation of a 

phophodiesterase (PDE4B3) occurs during late-LTP (Ahmed et al., 

2004;Ahmed and Frey, 2003). Although, it is not yet shown a regulation of that 

protein during late-LTD, the enzyme could fulfill the function of a general PRP 

for LTP and LTD. The substrate of the PDE4B3 is cAMP. Therefore, PDE4B3 

could regulate the activity of PKA which has been shown to be crucial for late-

LTP. Therefore, PDE4B3-dependent regulation of PKA might be responsible 

for the activation or deactivation of AMPA-receptors (or other effector 
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proteins) thus expressing late-LTP or late-LTD. However, whether the PKA-

dependent regulation of AMPA-receptor synthesis, as a putative effector 

protein, may be sufficient for the expression of LTP for more than 3-8 h 

remains unclear.  

 As already mentioned, modulatory transmitter systems may result in 

the activation of various processes, e.g., the induction of the same (Fig. 14 D) 

or different PRPs (Fig. 14 C) in distinct brain structures as well as neuronal 

sub-regions. Thus, innervation of particular neuronal compartments by a 

specific modulatory transmitter may exert its explicit action, e.g., induction of 

distinct PRPs, etc. However, the better understanding of processes underlying 

the intriguing heterosynaptic induction of the synthesis of a single pool of 

PRPs in one neuronal population during plastic events in general, i.e., by LTP 

or LTD, and the putative benefit of the synapses of these PRPs-provided a 

plasticity-specific ´synaptic tag´ is set-may result in new ways of thinking of 

how associative interactions during learning are accomplished between 

different neurons and structures.  
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Figure 14. Schematic illustration of the situation at two separate synaptic inputs S1 
and S2 of a CA1-pyramidal neuron during induction of LTP/LTD: Processes of ´synaptic 

tagging´ and late-associative interactions approximately 30 min after induction of a plastic 

event in S1. ‘Stimulation of S1 or S2’ always represents the heterosynaptic activation of 

glutamatergic and non-glutamatergic, i.e. dopaminergic receptors. 

(A) Tagging during LTP: The left cell represents a situation where a repeated strong 

tetanization in S1 leads to late-LTP by setting its transient ´synaptic tag´ and activating 

synapse-unspecific protein synthesis. If a weaker tetanization protocol (right neuron) is 
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applied to a second input S2 (within 1 h after strong tetanization in S1) which sets a ´synaptic 

tag´ but is unable to induce its own PRPs, it can benefit from PRPs provided by late-LTP 

induction of S1 thus paradoxically expressing late-LTP. (B) A similar situation occurs after the 

SLFS to input S1 and subsequent WLFS in S1. (C) and (D), the combination of the induction 

of either early-LTP in S1 with late-LTD in S2 or late-LTP in S1 and early-LTD in S2 revealed a 

new property of ´synaptic tagging´ which is named as ´cross-tagging´: The setting of the ´tag´ 

is process-specific, i.e. distinct tetanization sets a LTP-specific tag whereas distinct LFS 

results in setting of a LTD-specific tag (blue or red symbols at the synapses, respectively). 

However, the induction of the protein synthesis-dependent late phase of either LTP or LTD by 

dopaminergic D1/D5-receptors in hippocampal CA1 activates the synthesis of process-

unspecific PRPs which can be used by either the LTP- or the LTD-specific tags. Whether the 

same kind of PRPs bind to the different process-specific tags (D) or different LTP- and LTD-

specific PRPs are synthesized by the induction of a late phase plastic event, i.e. a pool 

containing diverse PRPs are synthesized (C).  
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5.0. Conclusions 

 The principal findings of this dissertation are as follows. 

1) A strong low-frequency stimulation protocol (SLFS) can reliably induce 

input specific late-LTD in hippocampal CA1 lasting at least 8 h and a 

weak-low frequency stimulation protocol (WLFS) can induce an early-

LTD lasting 2-3 h. 

2) Late-LTD induced by SLFS is dependent on protein synthesis and 

activation of D1/D5-receptor, while the early-LTD is independent of 

protein synthesis. 

3) ‘Synaptic tagging’ and ‘late-associative’ properties during LTD are 

similar to that observed for LTP.  

4) Dopamine at higher concentration by itself can induce a long-lasting 

potentiation while a lower concentration can induce a long-lasting 

depression. 

5) Activation of D1/D5-receptor during the induction of a long-lasting 

plasticity-event is essential for tagging during LTP and LTD in area 

CA1. 

6) The duration of the LTD-‘synaptic tag’ is 1 h, similar to the time course 

of the tag during LTP. 

7) Induction of LTP and LTD in separate synaptic inputs of one neuronal 

population can interact in a positive manner, a phenomenon which we 

named: ‘cross-tagging’. 

8)  Early-LTP in hippocampal slices in vitro can be depotentiated effectively 

if a LFS is applied after 5 min of its induction. A LFS 10 or 15 min after 

the induction of early-LTP results in a transient depotentiation. 
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9) ‘Synaptic tag’ can be reset by using a LFS in a time-dependent 

manner. 

10) The resetted ‘tag’ can again be set by inducing an early-LTP in the   

same synaptic input. 

11)  The PKC isotype, PKMζ is essential for the induction of both LTP and 

LTD. 

12)  The activity of PKMζ is essential for the maintenance of LTP but not      

for LTD. 

13)  The PKMζ seems to stand as an LTP-specific PRP. 

14)  The PKMζ inhibition prevents the maintenance of LTP in ‘cross-

tagging‘ while the early-LTD was transformed to a late-LTD showing 

the tagging interactions. 

15) The PKMζ specifically act as one of the PRPs in LTP tagging but not    

in LTD tagging. 
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APPENDICES 

I. ZUSAMMENFASSUNG DER DISSERTATION 

Prozesse funktionaler Plastizität wie hippokampale 

Langzeitpotenzierung (LTP) und Langzeitdepression (LTD) werden als 

zelluläre Mechanismen angesehen, die Lernen und der Gedächtnisformierung 

unterliegen. LTP und LTD werden daher als geeignete Modelle zur 

Untersuchung dieser Prozesse herangezogen. 

Eine Vielzahl von Eigenschaften der Langzeitpotenzierung wurden in 

den letzten Jahrzehnten bereits intensiv untersucht, während über 

Langzeitdepression und ihre Bedeutung für Lernprozesse weniger bekannt 

ist. In der vorliegenden Studie wurde untersucht, ob elektrisch induzierte LTD 

in der CA1-Region von Hippokampusschnittpräparaten von der Ratte ähnliche 

Eigenschaften aufweist wie LTD im intakten Tier, unter besonderer 

Berücksichtigung der Mechanismen der langfristigen Aufrechterhaltung von 

LTD. In initialen Experimenten wurden Stimulationsprotokolle entwickelt mit 

denen es möglich ist, zuverlässig verschiedene Formen von LTD in vitro zu 

induzieren. In Abhängigkeit vom Stimulationsprotokoll gelang es, entweder 

eine frühe, proteinsyntheseunabhängige Form (mit einer Dauer von 3 h-4 h) 

oder eine späte, de novo-proteinsyntheseabhängige langfristige Form (bis zu 

8 h) zu induzieren. Beide Formen sind abhängig von der Aktivierung von 

NMDA-Rezeptoren. Darüber hinaus ist die LTD durch Eingangsspezifität 

gekennzeichnet d.h. LTD wurde nur an den Synapsen induziert, die eine 

entsprechende niedrigfrequente Reizung erfuhren. Die Entwicklung dieser 

Protokolle führte demnach zu einer LTD in vitro, die phänotypisch analoge 

Induktionseigenschaften wie LTP aufweist.  
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In früheren Untersuchungen wurde gezeigt, das die Induktion einer 

frühen LTP einen synaptischen Marker (`synaptic tag’) an einer spezifisch 

aktivierten Synapse setzen kann, der dann in der Lage ist 

synapsenunspezifische plastizitätsrelevante Proteine, deren Synthese durch 

die Induktion einer späten LTP an einem zweiten, unabhängigen Eingang 

induziert wurde, einzufangen und zu prozessieren, so das auf diese Weise die 

LTP des ersten Eingangs langfristig aufrechterhalten werden kann. Meine 

Untersuchungen zeigen nun, das in vitro, dieser als `synaptic tagging’ 

bezeichnete Mechanismus ebenso für LTD gültig ist. Darüber hinaus konnte 

gezeigt werden, das die Induktion entweder von LTD oder LTP an zwei 

unabhängigen synaptischen Eingängen (S1 und S2) ebenso zu späten 

assoziativen Interaktionen zwischen den beiden Formen synaptischer 

Plastizität führen: eine frühe LTD in Eingang S2 wird in eine langfristige LTD 

überführt, wenn eine späte LTP in Eingang S1 derselben Neuronenpopulation 

innerhalb eines bestimmten Zeitfensters induziert wird. Die Synthese 

prozessunabhängiger plastizitätsrelevanter Proteine durch die Induktion einer 

späten LTP in S1 führte somit zu einer Transformation der frühen in eine 

späte LTD in S2 wenn prozessspezifische synaptische Marker gesetzt 

wurden. Wir haben diese neue späte assoziative Eigenschaft zellulärer 

Informationsverarbeitung `cross tagging’ genannt, da prozessunspezifisch 

plastizitätsrelevante Proteine durch entweder LTD- oder LTP-spezifische 

synaptische Marker verarbeitet werden können und zur langfristigen 

Ausprägung der beiden Formen synaptischer Plastizität führen können. 

Sowohl der synaptische Marker als auch die plastizitätsrelevanten 

Proteine sind durch eine relativ kurze Halbwertszeit von einigen Minuten bis 
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zu wenigen Stunden gekennzeichnet bevor sie, sehr wahrscheinlich durch 

Dephosphorylierung, zu inaktiven Formen degradieren. Dies führte zu der 

Frage, ob der Marker oder besser der molekulare `Markerkomplex’ in eine 

inaktive Form zurückgesetzt werden kann und auf diese Weise die 

Prozessierung plastizitätsrelevanter Proteine verhindert wird. Dies sollte dann 

zu der Ausbildung nur der frühen Formen synaptischer Plastizität, hier der 

untersuchten LTP führen. Es ergab sich, das eine niedrigfrequente Reizung 

sehr kurz (5 min) nach der Induktion einer frühen LTP den synaptischen 

Marker inaktiviert und zu keinerlei Ausprägung einer langfristigen LTP und 

somit zu keiner langfristigen zellulären Gedächtnisspur im tagging-Experiment 

führt.  

Der nächste Schritt war die Suche nach möglichen Kandidaten für 

synaptische Markerkomplexe oder plastizitätsrelevante Proteine. Über die 

Rolle einer PKC-isoform als ein mögliches Molekül für den Markerkomplex  

wurde bereits intensiv durch andere Autoren spekuliert. Daher untersuchten 

wir die Rolle der Proteinkinase M-zeta (PKMζ) für langfristige plastische 

Veränderungen, d.h. konkret für die Aufrechterhaltung der 

proteinsyntheseabhängigen Phasen von LTD/LTP, des synaptic tagging oder 

des cross-tagging Mechanismus. Die Inaktivierung von PKMζ nach Induktion 

einer späten LTP führte zu einer Umkehrung derselben und nachfolgend zu 

einer Depression der tetanisierten Inputs. Im Gegensatz hierzu war die 

Aufrechterhaltung einer induzierten späten LTD nicht beeinträchtigt, jedoch 

deren Induktion gehemmt. PKMζ-Inhibition verhindert synaptic tagging von 

LTP. Während cross tagging wird die späte LTP verhindert, während eine 

frühe LTD an einem unabhängigen zweiten synaptischen Eingang in eine 
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späte LTD transformiert wird. Dies lässt den Schluß zu, das PKMζ spezifisch 

in den synaptic-tagging- Mechanismus für LTP, jedoch nicht in LTD involviert 

ist, aber das die PKMζ sowohl für Induktionsprozesse der LTP als auch der 

LTD benötigt wird.  
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