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                                                                  ZZUUSSAAMMMMEENNFFAASSSSUUNNGG                       
         

         Durch elektrische Felder induzierte Instabilitäten von Erregungsfronten            
 

Chemische Wellen sind ein faszinierendes Phänomen, das in reagierenden Systemen auftreten 

kann, die sich weit entfernt vom Gleichgewicht entwickeln. Beispiele hierfür sind Pulswellen, 

die sich in sogenannten erregbaren Medien ausbreiten. In solchen Medien stehen  die 

nichtlinearen Reaktionen lokal miteinander in Kontakt durch den Transport ihrer Reaktionen, 

z.B. durch Diffusion. Nach der Erregung werden diese Elemente unempfänglich für Reize, 

solange bis sie allmählich wieder in den erregbaren Zustand zurückkehren.  

 

Belousov-Zhabotinsky Wellen (BZ Wellen) sind ein bekanntes Beispiel für Reaktions-

Diffusionswellen, die in räumlich verteilten chemischen Systemen mit autokatalytischen 

Reaktionen auftreten können. Ebenso ist bekannt, dass die Einwirkung von elektrischen 

Feldern, durch die Elektromigration der ionischen Reaktionspartner sowohl die Wellenform 

als auch die Ausbreitungsgeschwindigkeit wesentlich beeinflussen kann. BZ-Wellen breiten 

sich schneller gegen einen Gradienten des elektrischen Potentials aus und langsamer in 

Richtung des  Gradienten. Bei der Ausbreitung in einem Gradienten des elektrischen 

Potentials von überkritischer Größe treten bei BZ-Wellen Phänomene auf, die durch das 

globale elektrische Feld induziert werden. Darunter fallen (i) die Abspaltung neuer Wellen 

von der Rückseite der existierenden Welle, (ii) die Umkehrung der Richtung der 

Wellenausbreitung und (iii) Auslöschung von Wellen.  

 

Das Malonsäure-Ferroin-Schwefelsäure-Bromat-System (oder das klassische BZ-System) ist 

das verbreitetste System für Untersuchungen der Effekte von elektrischen Feldern auf 

chemische Wellen und Musterbildung. Ein wichtiger Nachteil dieses Systems ist jedoch die 

Bildung von Kohlendioxid bei der Reaktion, was die Bildung von Blasen und damit eine 

Störung der Reaktionsdiffusionsmuster zur Folge hat. Dadurch ist es unmöglich, das System 

über eine längere Zeitdauer zu untersuchen. Daher lohnt es sich, Malonsäure durch ein 

anderes Substrat, nämlich 1,2,3-Trihydroxybenzol (Pyrogallol, PG), zu ersetzen und damit die               
Blasenbildung zu vermeiden. Außerdem gehört das System ohne Ferroin zur Klasse der 

unkatalysierten Bromatoszillatoren (UBO), die auch Schwingungen in gut durchmischten 
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Systemen und Wellenausbreitung in ungerührten Systemen aufweisen. Denn Pyrogallol ist 

neben seiner Funktion als Substrat auch - genau wie Ferroin - an der Erzeugung von HBrO2 

beteiligt. Durch Zugabe von Ferroin (oder eines Metallionen-Katalysators) zum 

Pyrogallolsystem  wird eine interne Kopplung zwischen zwei Katalysatoren hergestellt, so 

dass neue dynamische Phänomene erwartet werden können, die verschieden von denen im 

klassischen, katalysierten BZ-System sind. Daher wurde in dieser Arbeit eine genaue 

experimentelle Untersuchung des Wellenverhaltens in diesem System unter dem Einfluss 

eines elektrischen Feldes durchgeführt, die helfen soll, den chemischen Mechanismus dieses 

komplizierten Systems besser zu verstehen. Damit wäre ein neues Reaktions-Diffusions-

System verfügbar, das gut geeignet für Untersuchungen von chemischen Schwingungen und 

Wellen ist.   

 

Die Versuche werden in einem Kapillarreaktor, der in einem Bad auf 15 oC thermostatisiert 

wird, durchgeführt. Der Reaktor ist mit einer Lösung gefüllt, die Schwefelsäure, 

Natriumbromat, Pyrogallol und Ferroin enthält. Die Ausbreitung der Pulswellen durch die 

Kuvette mit und ohne elektrisches Feld wurde  durch Ausnutzung der unterschiedlichen  

Absorption des sichtbaren Lichts durch Ferroin (den reduzierten Reaktionspartner) und 

Ferriin (den oxidierten Reaktionspartner) verfolgt. Die Untersuchungen erfolgten durch einen 

optischen Glasfilter bei einer Wellenlänge von 490 nm und wurden durch eine CCD (Charge 

Coupled Device) Kamera mit einer Auflösung von ca. 27 μm/Pixel aufgenommen. Die 

aufgenommenen Bilder wurden durch eine Bildaufnahmekarte (Data Translation, DT 3155) 

verbunden mit der LabVIEW Bilderfassungssoftware digitalisiert und weiter verarbeitet. Die 

Analyse erfolgte mit in IDL (Interactive Data Language) geschriebenen Programmen.  

 

Dies ist das erste Mal, dass über Untersuchungen zum Einfluss des elektrischen Feldes auf 

pseudo-eindimensionale Pulswellen im BZ-System mit Pyrogallol als Substrat und Ferroin als 

Katalysator berichtet wird. Die globalen Tendenzen der untersuchten elektrischen Feldeffekte, 

die für Beschleunigung, Verlangsamung, Auslöschung und Umkehr von Wellen 

verantwortlich sind, entsprechen denen, die bei der klassischen BZ-Reaktion mit Malonsäure 

als Substrat gefunden wurden. Ihr Auftreten hängt von der Intensität des Feldes und dem 

Verhältnis zwischen Pyrogallol und Ferroinkonzentration ab. Im Gegensatz zur klassischen 

BZ-Reaktion wurde hier jedoch eine Sättigung der Ausbreitungsgeschwindigkeit in Bezug auf 

die Stärke des elektrischen Feldes gefunden.  
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Die Wellen durchlaufen auch mehrfache Umkehrungen bei Umschaltung der Polarität des 

elektrischen Feldes. Während dieser mehrfachen Umkehrungen treten Asymmetrien auf: und 

zwar in (i) in den Ausbreitungsgeschwindigkeiten der umgekehrten Wellen, (ii) in den 

Ferroinkonzentrationen an der Front der umgekehrten Wellen kurz vor dem Umschalten der 

Polarität des elektrischen Feldes und (iii) an der Stelle, an der im Gebiet der ursprünglichen 

eine neue Welle entsteht. Die mehrfachen Umkehrungen treten in einem begrenzten Bereich 

der Steuerparameter auf und hängen von der Pyrogallolkonzentration ab.    
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________________________________________________________  

                                                                                            SSOOUUHHRRNN  

________________________________________________________ 
 

                   Nestabilita excitabilních vln indukovaná elektrickým polem.  

 
Chemické vlny patří mezi fascinující jevy, které nastávají v některých reakčních systémech 

vzdálených od termodynamické rovnováhy. Příkladem jsou pulsní vlny šířící se v tzv. 

excitabilních prostředích. V takových prostředích jsou lokální nelineární reakční elementy 

vzájemně propojeny pomocí transportních procesů, např. difúzí. Po excitaci prochází tyto 

elementy refakterní fází, během níž obnovují své excitabilní vlastnosti.  

 

Předložená práce se zabývá experimentálním studiem vlivů vloženého stejnosměrného 

elektrického pole na pseudo-jednorozměrné pulsní vlny šířící se podélně v tenké kapiláře 

naplněné Bělousov-Žabotinského (BŽ) reakční směsí obsahující pyrogalol jako substrát a 

ferroin jako katalyzátor. Některé pozorované vlivy elektrického pole, zejména zrychlení či 

zpomalení šíření vln, anihilace a obrácení pohybu vlny, jsou v souladu s efekty pozorovanými 

v klasické BŽ reakční směsi s kyselinou malonovou jako substrátem.  Novým jevem, 

nezjištěným v klasickém BŽ systému, je tzv. saturační průběh závislosti rychlosti šíření vlny 

na intenzitě elektrického pole. Bylo také zjištěno, že intenzita elektrického pole, při níž lze 

dosáhnout obrácení směru pohybu vlny, je závislá na koncentraci pyrogalolu a feroinu.  

 

Hlavním výsledkem předložené práce je zjištění, že přepínáním polarity vloženého 

elektrického pole opakovaně měnit směr pohybu vlny. Během opakovaného obracení směru 

pohybu vlny byla pozorována jistá asymetrie v následujících vlnových charakteristikách : (i) 

rychlosti šíření obrácených vln, (ii) koncentraci ferroinu v prostředí před obrácenou vlnou 

těsně před přepnutím polarity elektrického pole a (iii) ve vzdálenosti, v níž se zformuje 

obrácená vlna za vlnou původní. Opakované obracení směru pohybu vln se vyskytuje coby 

přechodový jev v omezeném rozsahu kontrolních parametrů, kterými jsou intenzita 

elektrického pole a interval přepínání jeho polarity.  Rozsah kontrolních parametrů je závislý 

na koncentraci pyrogalolu.  
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________________________________________________________  

                                              AABBSSTTRRAACCTT  

________________________________________________________ 
 

                    Instability of Excitation Waves Induced by Electrical Fields 

 
Chemical waves are a fascinating phenomenon that occurs in some reacting systems evolving 

far from thermodynamic equilibrium. Examples are pulse waves propagating in so-called 

excitable media. In such media the non-linear reactive elements are locally coupled with each 

other by transport processes, e.g. diffusion. These elements become refractory after excitation, 

slowly recovering to their receptive state, in which they can be excited again. 

 

This work presents an experimental investigation of the effects of imposed dc electric fields 

on pseudo-one-dimensional pulse waves propagating in a thin capillary tube containing the 

Belousov–Zhabotinsky (BZ) system, with pyrogallol as substrate and ferroin as catalyst. The 

global tendencies of the investigated electric field effects, accounting for acceleration,  

deceleration, annihilation, and reversal of waves, correspond to those found in the classical 

BZ reaction with malonic acid as substrate. As a new result unlike the classical BZ system, a 

saturation-type relationship  in the propagation velocity dependence on the electric field 

intensity has been found.  The occurrence of wave reversal depends on the pyrogallol and 

ferroin concentrations.  

 

The waves are also shown to undergo multiple reversals upon switching the polarity of an 

imposed dc electric field. During the multiple reversals an asymmetry arises in the following 

ways: (i) the propagation velocities of reversed waves, (ii) the ferroin concentrations in front 

of the reversed waves shortly before switching the electric field polarity, and (iii) the location 

at which a new wave emerges in the wake of the original one. Multiple reversals occur as a 

transient phenomenon in a limited range of control parameter values such as sizes of the 

medium and the electric field intensities  and depend on the pyrogallol concentration. 
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CChhaapptteerr  11  

IInnttrroodduuccttiioonn  aanndd  OObbjjeeccttiivvee  ooff  RReesseeaarrcchh  

________________________________________________________ 
 

Propagating waves of chemical or biological activity [Eps98, Fie85, Mur89, Wal00] are 

typical examples of spontaneous pattern formation in macroscopic systems driven far from 

thermodynamic equilibrium [Bab86, Cro93]. They may show complex  dynamics in time or 

both in  time and in space, and they are sustained by the interplay of non-linear, self-

accelerating reaction kinetics (autocatalysis), and local spatial coupling due to diffusion. 

Chemical reactions occurring at a particular point cause the concentrations of chemicals there 

to change, becoming higher or lower than they are at points nearby. At the same time, random 

thermal motion of molecules tends to degrade these differences by the process of diffusion. In 

essence, reactions build differences up, while diffusion washes them out.  Waves and patterns 

then emerge when non-linear chemical reactions and diffusion are out of  balance. Examples 

found in chemical systems are propagating concentration waves of intermediates in the 

Belousov-Zhabotinsky (BZ) reaction [Eps98, Fie85, Mur89, Pót98, Vid86] and in the 

catalytic oxidation of CO on single Pt crystal surfaces under high vacuum conditions [Eng96, 

Kap95], shrinking and expanding  spots, and lamellar  patterns observed in the Ferrocyanide-

Iodate-Sulphite (FIS) reaction [Lee94]. Other examples in biological systems [Mur89, Wal00] 

are waves of electrical activity in the heart muscle and the central nervous system [Pan97], as 

well as waves of the signal transmitter cyclic adenosine monophosphate (cAMP) in the 

aggregation phase of cell colonies in the slime mold, Dictyostelium discoideum. Recent 

reviews can be found in references [Mai97, Sag03]. 

 

For decades, the BZ reaction has been widely used as an experimental system to study 

oscillations, waves, and patterns. In general, the BZ reaction involves the oxidation of an 

organic substrate by bromate under the action of a catalyst (a metal-ion of redox potential 

between 1.0 and 1.6 V, e.g. Ce3+, Mn2+, Fe(phen)3
2+ (or ferroin), and Ru(bipy)3

2+) in an 

acidified aqueous medium. The intermediate HBrO2 (bromous acid) is the autocatalytic 

species which determines the propagation velocity of the wave according to its rate of 

production and its diffusivity. The recovery process in the wake of the wave front is 
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controlled by a reactive decrease in the bromide ion concentration, which brings the system 

from the oxidized or excited (i.e. refractory) state  back to the reduced (i.e. excitable) state of 

the catalyst. In the most studied, „classical“ version of the BZ reaction, malonic acid (MA) is 

used as a substrate. In this system, long term observations of spatial patterns and propagating 

waves are often damaged by CO2 bubbles arising as a product of the oxidation of malonic 

acid.  

 

Over the years, a variety of new substrates (mostly phenol or aniline based compounds 

[Orb78]) have been introduced to replace MA and to create a bubble-free medium. Although 

many substrate-analogues of the classical BZ system are known, only a few of them have 

been so far utilised for studies on propagating waves [Ada02, Orb80]. A system  containing 

1,4-cyclohexanedione (1,4-CHD) as a substrate  and  ferroin as a catalyst  was found to 

exhibit interesting non-linear phenomena that account for wave stacking and merging 

[Ham01], which was not observed in the classical BZ system. This indicates that the 

investigation of wave propagation in BZ systems containing new kinds of organic substrates 

can reveal new dynamical phenomena not observed previously in the classical BZ system.  

 

The variety of non-linear chemical wave phenomena largely increases when propagating 

waves are exposed to external forces like gravity, light, and a magnetic field or an electric 

field [Eps98 and references therein, Eva04, Wal00]. Under increasing gravity, the propagation 

velocity of the wave in 1,4-CHD system is increased by the effect of convection [Fuj01]. 

Furthermore, the photosensitivity of 1,4-CHD system  is stronger than the Ru(bipy)3
2+-

catalyzed classical  BZ system [Kur97]. In the classical BZ system, the waves under an 

external electric field are known to speed up when moving towards the positive electrode (in a 

negative field) and to slow down when moving towards the negative electrode (in a positive 

field). The positive field of an increasing magnitude evokes i) splitting of new waves in the 

wake of the existing one, ii) reversal of the direction of the wave propagation, iii) annihilation 

of waves. These phenomena were observed with planar waves propagating in narrow 

capillaries and with circular waves subjected to unidirectional dc electric fields both in liquid 

and gelled media [Fee81, Šev83, Šev84, Šev92, Šev96a, Šev96b,  Šev99]. Spiral waves were 

found to drift in the electric field [Ste92] and to become distorted with respect to their original 

Archimedean shape [Bel95]. Under sufficiently high electric field strength, spiral pairs 

annihilate mutually to form target patterns [Sch92]. By using  an alternating electric field of 

characteristic frequency and amplitude, the shape of the spiral waves becomes asymmetric 
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resulting in the appearance of the spiral wave of larger wavelength than the original wave 

(super-spirals) [Pér93], the spiral waves can be destroyed  (so-called spiral break up) [Tab94], 

or the wave front can display fluctuating wrinkles [Sei01]. 

 

In this thesis effects of an applied dc electric field on the propagation of waves are 

investigated in a spatially quasi-one-dimensional BZ system containing 1,2,3-

trihydroxybenzene (pyrogallol, PG) as a substrate and ferroin as a catalyst [Orb98, Sri98a]  

Without ferroin, this system  belongs to the class of uncatalyzed bromate oscillators (UBO) 

that perform oscillations in well stirred systems [Orb78, Sri98b] and support propagation of 

waves in non-stirred media [Ada04, Orb80]. In UBO systems, an organic intermediate of a 

quinone structure takes the role of the metal catalyst by both promoting the autocatalysis of 

HBrO2 [Orb79] and being recovered together with the bromide by the reaction with HOBr 

after the autocatalysis is terminated [Liu92a]. When a metal-ion redox catalyst is added, UBO 

systems become internally coupled with the classical BZ system (via oxybromine 

intermediates [Dut02, Gil92]), which leads to significant changes in the number and the form 

of oscillations in batch systems [Kör80, Tla83, Tla84]. Experimental and numerical studies of 

an open CSTR (Continuously Stirred Tank Reactor) pyrogallol system with ferroin [Gil92] 

have shown new  oscillatory waveforms resulting from the internal chemical coupling. The 

goal of the presented thesis is to investigate whether the increased complexity of the 

pyrogallol system with ferroin (compared to the classical BZ system) can give rise to novel 

dynamical phenomena, when the propagating waves are exposed to an electric field. We 

expect that the application of an electric field on the waves in this system can help us to better 

understand the role of two catalysts (PG and ferroin) in the chemical mechanisms.  

 

The thesis is organized as follows. Chapter 2 describes briefly literature overview on basic 

concepts of pattern formation in reaction-diffusion systems including the nature of chemical 

waves, wave reflection in excitable media, and the theory of chemical wave-electric field 

interactions. A review on the classical BZ system, electric field effects, and chemical 

mechanisms of the uncatalyzed BZ reaction mainly focused on the system with pyrogallol as 

substrate is also given. Chapters 3 and 4 present experimental methods and results, 

respectively. Attempts to explain the observed phenomena are given in the discussion part of 

chapter 5. Finally, the thesis is closed with chapter 6 presenting conclusions and perspectives.  
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The highlight of this work is the observation of multiple wave reversals being similar to wave 

reflection. Reflections of waves in a general reaction-diffusion system are rare due to the 

refractory period, i.e. the time needed to recover from an excitation, which inhibits such 

occurrences, i.e. excitable elements cannot be excited again within this period. The reflections 

occur at the interface between two excitable regions and they are numerically simulated and 

analysed  elsewhere [Ei02, Pet94]. In their study, the propagating pulse wave slows down 

when approaching the “no flux” boundary and then reverses its direction of propagation. In 

contrast, we  experimentally observed here such phenomena in the excitable BZ system with 

pyrogallol as substrate by means of external forcing with an applied electric field. The 

excitation pulse in this system actually disappears before the development of a new pulse at 

the tail of a parent pulse propagating to the opposite direction when approaching to the “mass-

flux” boundary where the polarity of electric fields is reversed, and this process can be 

repeated  many times. 
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CChhaapptteerr  22  
  
BBaacckkggrroouunnddss  ooff  RReesseeaarrcchh  
________________________________________________________ 

 

2.1 Basic concepts of  pattern formation in reaction-diffusion systems  

 
2.1.1 The nature of  chemical waves 

 

Chemical waves are changes in macroscopic variables (concentrations, temperature, pressure, 

voltage, etc.) which can propagate over long distances without attenuation. This distinguishes 

them from the evolution of a diffusion profile which gradually changes and loses its structure. 

Chemical waves involve the interaction of diffusion and some chemical reactions. 

Apparently, the chemical kinetic processes keep the wave profile from becoming increasingly 

smooth due to diffusion. These kinetic processes, which are effective in wave propagation and 

pattern formation, must be non-linear in the descriptive variables. In other words, they need to 

possess a feedback mechanism. Autocatalysis is the most common type of feedback 

mechanism. Generic representations of autocatalytic processes can be written in the form: 

quadratic autocatalysis: A  +  B   →    2B rate = kqab          or                                                                       

cubic autocatalysis:  A  +  2B   →  3B rate = kcab2                                                  

where a and b are the concentrations of the reactant A and the autocatalyst B. kq and kc  are the 

respective rate constants. The macroscopic description of reaction-diffusion systems is 

usually based on a pair of partial differential equations given by 

 

                                                                                                                                                                   

                                                                                                      (1)                                                                                                                                                    

 

where u and v  denote the concentrations of the activator (autocatalyst or propagator variable) 

and of the inhibitor (controller or recovery variable) as a function of time t and spatial 

coordinates, respectively. The first terms f(u,v) and g(u,v) describe non-linear reactions and 

the second terms arise from  Fick ’s 2nd law of diffusion, where 2∇  (or also written as ∆) is 
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the Laplacian operator in one, two or three spatial dimensions, Du and Dv  are diffusion 

coefficients of the species u and v, respectively. ε is a parameter that is proportional to the 

ratio of  the diffusion rate to the chemical reaction rate. These equations govern the dynamics 

of chemical wave propagation. If Du ≥  Dv (or long-range activator), the system supports 

propagating waves. In contrast, stationary spatial patterns are found in  systems with Du << Dv 

(or long-range inhibitor), e.g. Turing patterns found in the CIMA (Chlorite-Iodide-Malonic 

Acid) reaction [Kap95, Pót98, Sch03].  

 

 
(1.1) 

 
(1.2) 

 
 

 
Figure 1: Three kinds of active media.  

(1.1)  Schematic drawings of  u-v phase planes with (a) bistable, (b) excitable, and (c) oscillatory dynamics. 

Solid lines denote the nullclines, full (open) circles denote stable (unstable) fixed points. The dotted line 

illustrates in (b) a typical excitable trajectory and in (c) the limit cycle.   

(1.2)  Drawings  showing typical spatial  profiles of u in one spatial dimension (x) for each respective kind of 

active media: front wave-bistable media, pulse wave-excitable media, and periodic wave train-oscillatory media.  
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For such a two-component activator-inhibitor system, it is possible to elucidate general 

features of pattern-forming active media. There are two curves in a u-v phase plane called 

nullclines:  f(u,v) = 0,  f (or u)-nullcline  having a characteristic S-shape and g(u,v) = 0, g (or 

v)-nullcline increasing (or sometimes decreasing) monotonically. The intersections of  

nullclines determine the stationary states of the system [Bab86, Eps98]. Active media [Cro93, 

Eps98] can be mainly classified as bistable, excitable, or oscillatory. Wave profile and wave 

velocity in a spatially  extended system are uniquely determined by the properties of the 

active medium. In Fig. 1 the nullclines of typical bistable, excitable, and oscillatory media in 

the FitzHugh-Nagumo model [Cro93, Mur89] are shown.  

 

The nullclines of a typical bistable system (Fig. 1.1a) intersect three times, giving rise to two 

stable and one unstable fixed points. In the spatially extended system, the typical pattern of a 

bistable medium is a front, i.e. an interface that separates two domains where the system 

resides in the two different stationary states which are stable to sufficiently small 

perturbations. Stronger perturbations can cause transitions between these two states. 

 

The local dynamics of an excitable medium (Fig. 1.1b) is characterized by a stable fixed point 

[Mer92]. The fixed point is located at the left part of the f-nullcline. Small perturbations of 

that state decay immediately, while perturbations which overcome a certain threshold (the 

middle branch of the f-nullcline) increase and decay only after the system has performed a 

large loop in phase space. In this case, the system first goes to the right branch of the f-

nullcline (u quickly increases corresponding to an excitation), then moves along this branch 

and drops for large v from large to small values of u. Then it relaxes slowly to the fixed point 

on the left branch of the f-nullcline via a state from which new excitations cannot be 

performed, even when large perturbations are applied, i.e. refractory state. In the spatially 

extended system such a medium supports propagation of pulses. More complex patterns such 

as rotating spiral waves in two spatial dimensions and scroll waves (a two-dimensional 

surface that rotates around a one-dimensional axis called the wave filament) [Pan97, Win74] 

in three spatial dimensions are possible [Win84]. 
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Oscillatory media are characterized by a closed trajectory in phase space. In Fig. 1.1c, an 

unstable fixed point surrounded by a limit cycle is present. In a spatially extended medium 

governed by such relaxation oscillations, periodic wave trains are observed. The typical 

possible regular patterns in oscillatory systems are spiral waves and target patterns (expanding 

concentric circular waves).  

 

2.1.2 Wave reflection in excitable media 
 

In an excitable medium, e.g. the BZ medium, where we have separated time scales with fast 

activator (ε << 1, see Eqs. 1) and slow inhibitor, there is a pulse-like wave having large spatial 

gradients at the front and the back. The wave front is followed by a zone of excitation which is 

terminated by the wave back. Within the wave back, the medium is at first refractory to the 

propagation of another wave of excitation, but it gradually recovers excitability as it relaxes to 

the rest state that it can be excited again. Therefore, when two waves meet upon head-on 

collision, they do not reflect from each other but they do annihilate. Wave front travels into the 

refractory region of the other wave, where this region cannot respond to any perturbations. 

Hence, the propagating waves can no longer be sustained, and thus they vanish. For the same 

reason, they are absorbed by impermeable barriers. With this property of annihilation of 

chemical waves [Woo85] in active-dissipative media being due to a subtle interplay of 

activating and inhibiting components that may distribute in space because of diffusion and 

change in time, these waves differ markedly from acoustic waves, electromagnetic waves, and 

solitons which form in conservative (i.e. constant or not changing) media.  

 

                    

Figure 2: Solitons or stable solitary waves behave like "particles".  

1+2 1 

1 
2 

2 
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Solitons [Dra89, Fil00] or solitary waves are particle-like nonlinear waves,  e.g. waves formed 

on the surface of water. In Fig. 2, there are two waves (1 and 2)  located initially far apart, each 

of them traveling with a constant shape and propagation velocity. As two such solitary waves 

get closer, they gradually deform and finally merge into a single wave packet (1+2); this wave 

packet, however, soon splits into two solitary waves with the same shapes and velocities as 

they were before the "collision". The concept of a soliton has been applied to a vast and diverse 

range of situations, from the d.c. gas-discharge system [Bod02, Eng96]  to muscle contraction 

[Asl99 and references therein] in animals and humans.  

 

However recent investigations report on various cases about reflection of chemical waves 

[Ei02, Kos95, Mid93, Oer98, Pet94, Zha93a]. During the CO oxidation on Pt catalyst with 

surface defects (see Fig. 3.1) two oxygen waves were observed to pass through each other, as if 

they were solitons [Kap95, Oer98]. In experiments, reflection of a Belousov-Zhabotinsky (BZ) 

wave was found to occur at the boundary between two media with a stepwise changing 

thickness [Zha93a] as shown in Fig. 3.2.  
 

Pulses travelling through chemically reacting excitable media  can undergo wave splitting and 

reflection. In the former, the pulse proceeding in the forward direction sends out a pulse in the 

reverse direction, resulting in two pulses travelling in opposite directions. In the latter, the 

pulse, upon reaching the boundary of the reacting region, reverses its propagation direction, 

resulting in a single pulse travelling in the opposite direction.  In a reaction-diffusion model of 

an excitable medium with a cubic autocatalytic reaction one wave was observed to be reflected 

between no-flux boundaries like an elastic object, when the diffusivity of the reactant was 

significantly higher than that of the autocatalyst [Pet94]. For even higher diffusivity of the 

reactant, the waves were formed to subject repeatedly to splitting. The interaction between split 

waves led finally  to the formation of stationary spatial patterns [Pet94]. 
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(3.1)                         

             

                                                      
(3.2) 

                                            

                                            
 

Figure 3 : Two examples of the reflection of chemical waves.  

(3.1)  In the CO oxidation reaction on Pt (110) (adapted from [Oer98]): Simulation of a reflective collision of two 

oxygen waves (black crescent waves) in the two-into-two type. Time interval between two frames is 4 s.  Negative 

images. 

(3.2)  In the ferroin-catalyzed BZ-reaction (from [Zha93a]): (a) Polyacrylamide gel layer opened to air with 

stepwise thickness; time intervals  between frames 1 and 2, 2 and 3, 3 and 4 are 75 s, 130 s, and 200 s, 

respectively. (b) Schematic of frames 1 and 4. ab: boundary between regions I (0.45 mm) and S (0.75 mm); vi ,vs  , 

and  vr  are wave vectors of the incident, secondary circular, and reflected waves; ϕ i = 67.4o ± 3o and ϕ r = 54.0o ± 

2o  are angles of incidence and reflection.  
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The numerical simulations of the counter propagating reduction waves (i.e. a zone of a reduced 

catalyst (ferroin), propagating through an oxidized medium having high ferriin concentration)  

in the spatially one-dimensional BZ reaction [Kos95, see also Kaš95] have revealed that two 

waves do not annihilate but emerge after the collision with the size and shape unchanged as if 

they were solitons. One wave was found to  reflect at zero-flux surfaces (echo waves). Back 

and forth movement of a temperature wave has been numerically simulated also in a model of 

an electrically heated catalytic ribbon [Mid93] and two waves in a model system with  

exothermic reaction have been theoretically found to repel one another when their velocities 

were very low [Ei02]. The reversal of the wave motion was experimentally observed in a 

homogeneous excitable BZ medium with MA as substrate [Šev92], when a perturbation in the 

form of a d.c. electric field was applied to the system, which we will see again in Section 2.3.4.  
 

The following paragraphs describe in more detail some recent theoretical and numerical 

considerations of  the reflection of chemical waves in reaction-diffusion systems. 

 

Petrov et al. [Pet94] investigated the cubic autocatalator model in a reaction-diffusion 

configuration of a Continuously Fed Unstirred Reactor (CFUR),  

(1) A + 2B → 3B       rate = k1ab2 

(2) B → C                  rate =  k2b. 

The governing reaction-diffusion equations have the form: 
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where α and β represent dimensionless concentrations of the reactant A and  the autocatalyst 

B, respectively. τ and τres are dimensionless time and the residence time (the ratio of the 

reactor volume and the total flow rate). δ is the ratio of the diffusion coefficients, DA/ DB. β0 = 

b0/a0 and γ = k2/(k1a0
2) where a0 and b0 are initial concentrations of A and B. Two nullclines  

of the system along which f(α,β) = g(α,β) = 0 for τres = 315 are shown in Fig. 4. The stable  

fixed point (right) and the saddle point (left) where both nullclines  intersect each other, lie 

close to each other in the α-β phase plane.  
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Figure 4: α-β phase plane for τres = 315 (from [Pet94]). Solid curves show inset and outset of saddle point. 

Dotted curves show both nullclines.  

 

In one dimensional finite space region at the end-points of the interval for appropriate  

parameter values (τres = 315, β0 = 1/15, γ = 1/40, and δ = 7) they obtained waves that started 

from the vicinity of one endpoint, migrated to the vicinity of the other, gradually decreased 

their velocity to zero and, taking an oppositely directed velocity, returned to their starting 

position. After this the waves moved forward again and the whole process was repeated  

periodically as shown in Fig. 5.1. These bouncing waves can be explained relatively easily. A 

spatial B-impulse will propagate through the interval investigated decreasing the 

concentration of A behind and in front of its instantaneous position. The inflow of A at the 

appropriate end-point of the interval cannot compensate the amount diffused into and 

consumed in the reaction front, therefore, the concentration of A will decrease in front of the 

wave front, the wave slows down and eventually stops (see Fig. 5.2). By this time, however, a 

sufficiently great amount of A will be accumulated by diffusion at the back of the standing 

wave front, and B starts to react with A in this direction, its production predominates its 

spontaneous decay. In the development of a bouncing wave the ratio of diffusion coefficients 

(δ) plays an important role, it must be sufficiently high. Wave splitting occurs at δ = 17. 
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(5.1) 

                     
(5.2) 

               
  
Figure 5 : Results from numerical calculations of the reflection of a chemical wave at no-flux boundaries (i.e. 

0=
∂
∂

=
∂
∂

xx
βα

  for  x = 0.0  and  x = 3.0) in cubic autocatalator model (from [Pet94]).  

(5.1)  Space-time plot showing profiles of B with δ = 7 and DB = 1.0 x 10-5 cm2/s. Each profile corresponds to 

an increment of 100 dimensionless time units.   

(5.2)  Profiles of A (or α) and B ( or β) in wave reflected at boundary. (a) Wave propagating from left to right; 

(b) level of B is depleted between wave front and boundary; (c) profile of B becomes approximately 

symmetrical as propagation velocity reaches zero; (d) wave propagating from right to left. 
    
Ei et al. [Ei02] considered the following two-component excitable reaction-diffusion system: 
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where d is the ratio of the diffusion rates of u and v, ε the time constant between the dynamics 

of u and v. a, h, and v* are some positive constants. k(u) = exp[u/(1+(u/c))] with positive 

constant c, describes the exothermic reaction step, where u is the temperature and v the 

concentration of chemical reactant. The nullclines of the system are shown in Fig. 6a. They 

numerically showed that one-dimensional travelling pulses propagating very slowly, can repel 

one another when d is high enough, as shown in Fig. 6b. They also observed the same 

phenomenon as shown in Fig. 5.1 and they called it “rebounding”. 

                                                                 
 

(a) 

                    
(b) 

                                      
 

Figure 6 :  Results from numerical simulations of the repulsion or reflection of two closely approaching pulses 

(from [Ei02]). 

(a)  Nullclines of f(u,v) and g(u,v) in Eqs. (3) where ε = 0.001, a = 2.0, c = 5.0, h = 45.0, and  v* = 1.0. O is a 

stable  point. 

(b)  Time (t)-space (x) plot showing the repulsion of two travelling pulses where the parameters are the same as 

Fig. 6a with d = 4.5.                                                                                                                     
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2.2 Theory of chemical wave-electric field interactions: Summary  

       
The origin of spontaneous oscillations and spatial structures depends on the coupling between 

transport and transformation processes. In chemical systems, transformation processes are 

represented by chemical reactions which are time dependent. Transport processes are 

associated with change in location. Therefore coupling between the two might result in 

periodic oscillations in space and time. Turing [Tur52] was the first to show that coupling 

between autocatalytic chemical reaction and diffusion can result in oscillations and pattern 

formation, and this has been proposed as a key event in the evolution of biological structures. 

Diffusion was considered there as the only transport process. The character is broadened here 

in order to include electrical migration effects.  

 

Let us consider a homogeneous system of N chemical active species, i = 1, 2, 3,…, N. All the 

components may diffuse, and since some of them are ionic, they may migrate under the 

influence of an applied electric field. We ignore any convection by assuming a stagnant 

solution. At every location, the chemical species obey the conservation equation [Has97, 

Jor74, Ort92] for the ith component: 
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where Ci is the concentration of the ith species as a function of spatial coordinates and time t, 

Ri is the net rate of the ith species production by chemical reaction as a function of Ci and rate 

constants. Ji is the total flux density § defined by the Nernst-Planck equation [Old94]. JD,i is 

the flux density by diffusion given by Fick’s 1st law: 

 

iiiD CDJ ∇−=, ,                                                                                                                         (5) 

 

where Di is the diffusivity, and  JM,i is the flux density by electrical migration: 

 

UCJ iiiM ∇−= µ, ,                                                                                                                     (6) 
 
 

§ The flux density or simply “flux” is a measure of the number of moles ni of a solute species ith crossing unit 
area A of a specified surface in unit time, i.e. Ji = (1/A)(dni/dt). 
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where  U is the electrical potential and μi is the mobility of the ion defined by the Nernst-

Einstein relation [Kuh00, Old94]:  
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i ==µ .                                                                                                                    (7) 

 

zi is the number of electrical charge of the ion,  F is the Faraday constant, si is the ionic drift 

velocity, R is the gas constant, and T is the absolute temperature.  

 

The electric field E can be written as a gradient of electric potential  U: 

 

UE −∇= .                                                                                                                                (8)                                                                     

Gauss ’s law of electrostatics [Ger00]: εϕ /=∇ E , determines the  medium with a dielectric 

constant  ε   and charge density ϕ  [Old94] defined as,  
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For processes taking place on time scales greater than a millisecond, Eq. 8 reduces to the 

Poisson equation (a combination of Eq. 8 and Gauss’s law of electrostatics) for the voltage U, 

that is 

 

EU −∇=−=∇
ε
ϕ2 .                                                                                                                (10) 

 

For a medium containing an excess of supporting electrolyte we can assume that an applied 

electric field intensity E  is constant,  i.e. E∇  = 0 [Ort92], and thus after combining Eq. 4 

with Eqs. 5, 6, 8, and 10, Eq. 4 finally becomes 

 

iiiiiiiiiii
i CECDRUCCUCDR

t
C

∇−∇+=∇+∇∇+∇+=
∂

∂
µµ 222 )( .                               (11) 

 

 

 



 26 

An excitable activator-inhibitor reaction-diffusion system in one spatial dimension, for 

example, a planar chemical wave propagating parallel to an electric field, we have 
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where Du , Dv, and μu , μv are the diffusion coefficients and the electrical mobilities of  the 

activator u, the inhibitor v, respectively.   E is a constant electric field strength. We introduce 

a new spatial variable ξ  into Eqs. 12 and use a cycle rule to rewrite again those equations. 

These are 
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vE  is the wave velocity  with an imposed electric field E. Finally, we obtain 
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For small magnitudes of electric field intensities μv = μu = μ and vE  = v0 + μE [Góm97, 

Sch79, Vié96] where v0 is the field-free wave velocity.  

 

The most extensively studied chemical wave medium, the BZ system, involves ionic species. 

The propagation of chemical signals is due to the interrelationships among the composition 

profiles of the participating species, and these can be dramatically affected by electric fields 

[Fee81, Sch81, Sch83]. Composition gradients involving ionic species may lead to local 

departures from charge neutrality (i.e. the charge conservation law in the course of chemical 

reactions: ΣziRi = 0). Strong electrical forces try to minimize this charge neutrality; hence 

ionic migration is strongly correlated by the resulting so-called Planck fields driven by the 

ionic composition gradients [Ort92]. Such fields can tend to force reactants together or keep 

them apart, depending on ionic charges and diffusion coefficients, and hence can alter 

dramatically the nature of wave propagation. Since background electrolytes screen these 

(12) 

  (14) 
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fields, it is quite conceivable that as ionic strength is varied [Šni98], qualitatively new 

phenomena could arise due to wave-electric field interactions. 

                                                                           

In the context of the wave propagation the Planck field EPlanck [Ort92] is given by  
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where κ is the electrical conductivity. It has two interesting implications: 

a)  A Planck field propagates along with an electrochemical wave; this field increases with 

ionic concentration gradients iC∇ . 

b) Planck field and through current effects are strongest in systems with small conductivity κ 

defined [Kuh00, Old94] by  
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Electrical forces are strong and hence even small local deviations from charge neutrality lead 

to appreciable fields. These fields are always such as to import ions that tend to neutralize the 

local charge. Charge neutrality is well maintained in  most experimental situations involving a 

BZ medium having high conductivity or ionic strength Γ given by  
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Ortoleva et al. showed theoretically that the response of chemical waves to the through 

current  I depends strongly on the reaction mechanism [Sch77, Sch79, Ort92]. A most 

interesting set of phenomena are possible. The following predictions [Ort92] are given in 

terms of the wave velocity as a function of an applied electric field strength E for cases in 

which the medium is sufficiently conducting that the Planck fields do not contribute. 

 

1. Multiple types of waves can exist in the medium subjected to the through current (I ≅ 0) 

while the current –free system has only one type of wave. 
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2. A cut-off field EA may exist beyond which there are no waves; the effect is asymmetric in 

that waves started in the field-free system (E = 0) will be annihilated when a super-critical 

field is turned on only if the field and wave velocity  are parallel  or anti-parallel depending 

on the reaction mechanism.   

3. The effect of an applied current on the wave velocity may saturate as I (or E) becomes 

large. 

4. As the conductivity of the medium is reduced  (by reducing the concentration of ions 

having higher electrical charges and/or mobility (see Eq. 16) and being not essential to the 

wave-driving reaction), qualitatively different types of waves may arise as the Planck field 

becomes important. 

5. In an excitable one-dimensional medium, a pair of pulses propagating in opposite 

directions may be induced if a field  less than the annihilation field  (E < EA)  is applied. 

6. Static patterns may be made to propagate under an applied static electrical field. This 

prediction has been confirmed by experimental results in the CIMA reaction and the 

propagation velocity dependence on the electrical current of moving spots was found to be 

linear [Sch03]. 

 

Similarly, we expect that the response of reacting systems to applied electric fields should be 

quite interesting, since applied fields can force reactants into or away from each other. One 

expects that this additional transport could lead to interesting variations in the types of 

phenomena supported by a given reaction-diffusion system.  

 

2.3 The  Belousov-Zhabotinsky (BZ) reaction 

 

2.3.1 FKN mechanism and Oregonator model  

 
The mechanism of the BZ reaction was elucidated in 1972 by Field, Körös, and Noyes (FKN) 

[Fie72a]. The FKN mechanism is widely regarded as correct in its major features to describe 

this reaction. In 1974, Field and Noyes proposed a five-step, three-variable reduction of the 

FKN mechanism called the Oregonator [Fie74a, Fie75]. This model has been extremely 

successful over the years in providing a semi-quantitative description of the varied non-linear 

behaviour of the reaction. The basic features of the FKN mechanism are outlined below for 

ferroin (Fe(phen)3
2+) as the catalyst: 
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PROCESS A 

(A1) BrO3
-  +  Br -  +  2H + ↔   HBrO2  +  HOBr 

(A2) HBrO2  +  Br -  +  H +  ↔   2HOBr 

(A3) HOBr  +  Br -  +  H + ↔ Br2  +  H2O 

 

PROCESS B 

(B1)  BrO3
-  +  HBrO2  +  H +   ↔  2BrO2

 .  +    H2O 

(B2)  BrO2
 .  +   Fe(phen)3 2+ (red)  +  H +   ↔  HBrO2  +   Fe(phen)3 3+  (ferriin, blue)   

(B3)  2HBrO2  ↔  HOBr  +  BrO3
-   +   H +   

 

PROCESS C 

(C)  2Fe(phen)3 3+  + MA + BrMA →  2Fe(phen)3 2+  +  fBr -  + organic oxidation products,  

        e.g.   HCOOH, CO2, etc. 

 

Oscillations in the BZ reaction can be conveniently described in terms of three composite 

processes, A, B, and C. Bromide is slowly oxidized by bromate in reaction A1 when its 

concentration is high. The products of this step rapidly undergo further reactions with 

bromide in steps  A2 and A3 to yield bromine. The net reaction for process A is given by (A1) 

+ (A2) +3(A3): 

 

(A)     BrO3
-  +  5Br -  +  6H + → 3Br2   +  3H2O. 

 

As bromide is consumed in process A, it eventually reaches a critical concentration where the 

rate of its oxidation by HBrO2 in reaction A2 is comparable to the rate of HBrO2 oxidation by 

bromate ion in reaction B1. The BrO2
 . product of reaction B1 is rapidly reduced in reaction 

B2 to generate HBrO2, and the result is the autocatalytic sequence given by (B1)+2(B2): 

 

(B2´)  BrO3
-  +  HBrO2 + 2Fe(phen)3 2+   +  3H +   →  2HBrO2  +   2Fe(phen)3 3+   +    H2O. 

 

Thus, the quadratic autocatalysis is initiated when the production of bromous acid in the 

reaction B2´ is comparable in rate to its consumption in reaction A2. Bromous acid 

concentration increases autocatalytically with a concurrent oxidation of the catalyst. Bromide 

is rapidly driven to very low concentrations by its reaction with bromous acid and the rate of 
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process A becomes negligible. As HBrO2 concentration increases, its autocatalytic growth is 

eventually limited by the bimolecular disproportionation reaction B3. The net reaction of 

process B is given by 2(B1)+4(B2)+(B3): 

 

(B)      BrO3
-  + 4Fe(phen)3 2+   +  5H +   →  HOBr  +   4Fe(phen)3 3+   +    2H2O. 

 

The bromine product of process A reacts with malonic acid (CH2(COOH)2) to generate 

bromomalonic acid (BrMA), i.e. Br2 + MA → BrMA (or BrCH(COOH)2) + Br - + H+. The 

product HOBr of process B may brominate MA directly or react with bromide supplied later 

in the cycle to yield bromine, thereby also generating BrMA. This supply of BrMA is 

attacked by the oxidized catalyst, ferriin, to liberate bromide according to the composite 

reaction C. Process C is complex and not well understood, however, the net effect is the 

reduction of the catalyst and the regeneration of bromide. Recently, the mean rate constant 

value of  process C at 25 oC is reported to be (3.1 ± 0.2) x 10-5 s-1 for ferroin as the catalyst 

[Ung97]. These general features are represented by reaction C, where f is a stoichiometric 

factor determining the moles of bromide generated per mole of catalyst reduced. Thus, 

following the rapid autocatalytic growth of HBrO2 and concurrent oxidation of ferroin, 

bromide is generated by the ferriin catalysed oxidation of BrMA. The bromide concentration 

increases to a critical value where it competes for  HBrO2 in reaction A2, and the control of 

the system is switched from process B  to process A. Bromide is again slowly consumed in 

process A, and the sequence is repeated. The switch from process A to process B occurs when 

reaction rates A2 and B1 are roughly equal. As the bromate concentration remains virtually 

constant during a given oscillation, the switch to autocatalysis occurs when the bromide 

concentration has been reduced by process A to the critical bromide ion concentration [Br-]crit.  

[Fie72a, Fie86] given by 

kA2[HBrO2][Br-][H+]  =  kB1[BrO3
-][HBrO2][H+]   

[Br-]crit. =  (kB1 / kA2) [BrO3
-]  

             =  (42.0 M-2 s-1 / 3.0 x 106  M-2 s-1) [BrO3
-]  

             ≈  1.4 x10-5[BrO3
-] .                                                                                                   (18) 

With a reasonable FKN mechanism and the appropriate values for the reaction rate constants 

[Fie86], it should be possible not only to match individual experimental observations but also 

to predict more generally the experimental conditions. For this, it is especially convenient to 

use the Oregonator model derived from the FKN scheme. This is frequently written in the 
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standard form of five irreversible steps, whose rate constants are assumed to incorporate 

proton concentrations when appropriate,                                                                                      

                                                                                    Rate constants 

(O1) slow reaction:                A + Y  → X + P         k1 =   kA1[H+]2 = 2 M-3s-1[H+]2      

(O2) fast reaction:                 X + Y → 2P                k2 =   kA2[H+] =  3.0 x 106 M-2 s-1[H+]    

(O3) autocatalysis HBrO2:   A + X → 2X + Z         k3 =   kB1[H+]  =  42.0 M-2 s-1[H+]    

(O4) limitation HBrO2:        2X →  A + P                k4 =   kB3 = 3 x 103 M-1 s-1   
(O5) regeneration Br - :        B + Z → fY                  k5  =  1 M-1 s-1 [B] 

 

, where A = BrO3
- , B = all oxidizable organic species (MA+BrMA), P = HOBr, X = HBrO2, 

Y = Br - , and Z = Fe(phen)3
3+. The concentrations of the major reactants, A and B, are treated 

as constants.  The reaction rate equations for the intermediate species X, Y, and Z are 

 
 
d[X/]dt = k1[A][Y] - k2[X][Y] + k3[A][X]- 2k4[X]2                                                              (19) 

d[Y]/dt = -k1[A][Y] - k2[X][Y] + fk5[B][Z]                                                                           (20) 

d[Z]/dt = k3[A][X] -k5[B][Z].                                                                                                 (21)  

 

These rate equations can be simplified by transforming them to dimensionless equations given 

by  
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where the dimensionless variables are x = 2k4[X]/k3[A], y = k2[Y]/k3[A], z = 

k5k4[B][Z]/(k3[A])2 , and τ = t/k5[B]. The three dimensionless parameters that remain have 

typical values of ε = k5[B]/k3[A]  ≈ 10-2 , ε* = 2k5k4[B]/k2k3[A] ≈ 10-5 , and q = 2k1k4/k2k3 ≈ 

10-4. Note that the genuine autocatalytic non-linear term x(1-x) is clearly identified. ε*  is very 

small and much less than 1, thus the concentration of bromide ion (y)  will change quickly in 

time because dy/dτ is large, so we now use the steady state approximation ε*(dy/dτ) = 0 to 

obtain a steady state of bromide concentration y = yss = fz/(q+x). Substituting this result into 

Eqs. 22 and 24, we get 

 

 

                    (22)                 

                    (23) 

                     

                    (24) 
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                                                                                                    (25) 

 

Written in this way, the reduced Oregonator model has the typical form of reaction rate of an 

activator-inhibitor model [Mur89, Pót98, Sag03, Wal00], with x = u = HBrO2 the activator or 

autocatalytic species and z = v = ferriin the consuming species (inhibitor), and the 

corresponding reaction-diffusion-electrical migration equations  are  
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where Du, μu and Dv, μv  are the diffusion coefficients, the electrical mobilities of bromous 

acid and ferriin, respectively. E is an applied electric field intensity. Typical values of Du and 

Dv [Šev96a, Šev96b]  are 2.0 x 10-5 cm2/s and 0.603 x 10-5 cm2/s, respectively. Note that 

bromide ion (y) is also referred as the inhibitor species, Dy = 2.084 x 10-5 cm2/s [Šev96a, 

Šev96b]. It may be unreasonable to use an uncharged component HBrO2 to describe 

electrically induced flux. But in fact, because of the reaction kinetics, the dynamical 

behaviour of Br - is closely related to that of HBrO2 [Fie85] thus we can use conventionally μu 

= μy = 8.096 x 10-4 cm2/V.s and μv = 7.041 x 10-4 cm2/V.s obtained from the Nernst-Einstein 

relation (see Eq.7). Diffusion coefficients and ion mobilities given  are tabulated values at 

room temperature 25 oC, extreme dilution in water. Equation 26 represents generally a two-

variable Oregonator model used for simulating the effect of an imposed electric field on the 

BZ  spiral waves [Pér93, Tab94] in which diffusion and electrical migration terms of the 

variable v are always omitted (i.e. the catalyst is immobilized). 

 

A recent extension of the Oregonator model to ZBKE (Zhabotinsky, Buchholtz, Kiyatkin, 

Epstein) model [Zha93b] has been proposed in order to fit experimental observations of the 

BZ waves for which the original Oregonator did not seem to give satisfactory results. Electric 

field effects on BZ oxidation waves were also successfully simulated with this model 

[Šev96a, Šev96b]. The general features of the ZBKE mechanism are more complicated in 

oxybromine species than the original FKN mechanism, as shown in the reaction schemes  

[Šev96a], 
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(A1/ZBKE 1)    HBrO3
  +  Br -  +  H + ↔   HBrO2  +  HOBr 

 

(A2/ZBKE 2)    HBrO2  +  Br -  +  H +  ↔   2HOBr 

 

(B1/ZBKE 3.1)  BrO3
-  +  H +   ↔  HBrO3

   

(B1/ZBKE 3.2)  HBrO2  + HBrO3
  +  H +  ↔ HBrO2

+
  + BrO2

 .  +   H2O 

(B1/ZBKE 3.3)  BrO2
 .  +   H +   ↔  HBrO2

+
   

 

(B2/ZBKE 4)     HBrO2
+

   +  cat(n)+    ↔   HBrO2  + cat(n+1)+  

 

(B3/ZBKE 5.1)  2HBrO2  ↔  HOBr  +  HBrO3
   

(B3/ZBKE 5.2)  HBrO2  
 +  H +  ↔  H2BrO2

+
   

(B3/ZBKE 5.3)  H2BrO2
+

  + HBrO2 ↔ HOBr  +  HBrO3  +   H +    
  

(C/ZBKE 6.1)    cat(n+1)+ + B ↔ cat(n)+ + B . +   H +    

(C/ZBKE 6.2)    B . →  jBr - + products 

(C/ZBKE 6.3)    B  → Br - 

 

Here cat(n)+/cat(n+1)+  is reduced/oxidized form of the catalyst,  B = MA + BrMA, and the  

stoichiometric factor, j, is allowed to vary from 0.5 to 1. 

 

2.3.2 Excitability of the BZ reaction  
 

The nature of the response of the system depends crucially on the  parameter  f - the number 

of bromide ions produced in process C. Oscillations occur for values of the parameter f  

specifically lying in the range ½ < f <1 + √2 [Eps98]. The system switches control between 

the three processes ( A, B and C) giving rise to periodic variations in the intermediate species 

(Br -, HBrO2, ferriin) concentrations as a function of time or space. For conditions just outside 

those required for spontaneous oscillatory behaviour - for instance for systems with f slightly 

larger than 1 + √2 - the BZ system shows a property known as excitability [Eps98]. 
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Figure 7: Schematic representation of important features of an excitable BZ system. (a) subcritical perturbation 

and (b) supercritical perturbation. 

 

An excitable system is characterised by (i) having a steady state SS; (ii) the steady state is 

stable to small perturbations; (iii) if the perturbation exceeds some critical or threshold value, 

the system responds by exhibiting an excitation event. For the BZ system, this excitation 

event is the oxidation of the  catalyst, corresponding to process B with a local colour change 

in the vicinity of the perturbation (initiation) site. This response is typically large compared to 

the critical stimulus – so the system acts as a ‘non-linear amplifier’ of the perturbing signal. 

Following the excitation, the system eventually returns to the initial steady state and recovers 

its excitability. There is, however, a finite period, the refractory period, between the excitation 

and the recovery during which the system is unresponsive to further stimuli. These basic 

characteristics are summarised in Fig. 7. 

                            
      
2.3.3 Properties and behaviour of waves 
 

A variety of behaviour of an oxidation wave (i.e. a narrow region consisting of an oxidized 

form of a catalyst, propagating through a reduced medium) is exhibited by the BZ reaction in 

a thin film of the unstirred solution. There are three types of waves observed in such a 

medium [Ros88, Win74]. They are  

1. Phase waves (Kinematic waves or Pseudo-waves): these are high-velocity waves little 

influenced by diffusion. A phase wave, however, owes its existence to a gradient in the phase 

(or state, in mathematical description:  ζ = x-vt where ζ is phase, x is position, v is velocity, 

and t is time [Ros88]), i.e. from reduced phase to oxidized phase (bulk oscillations), rather 

than the period of oscillation. Thus, a reaction mixture of a single composition and 

temperature oscillating at a single period, but with the phase of oscillation as a function of 

[ferriin] 
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spatial coordinates, exhibits apparent wave behaviour like  the moving lights of  a neon 

advertising sign. The speed at which such waves travel is determined primarily by the 

underlying concentration of phase gradients and so can be tuned to almost any values.  

2. Trigger waves: these waves may occur in an oscillatory reaction mixture but are usually 

observed in a non-oscillatory excitable medium, because the reaction mixture becomes 

oscillatory at the surface of a particle of dust or at a scratch  on the surface of the container or 

by slightly tilting the silver wire, because  a momentary depletion of bromide allows bromous 

acid autocatalysis to proceed to a sufficient extent to initiate a wave. They propagate with 

constant velocity. Here, reaction (autocatalysis)  and diffusion are intimately linked. These 

waves are oxidation waves (high ferriin concentration) travelling in the reducing environment 

with  high concentrations of bromide ions and ferroin. Trigger waves in one dimension are 

called pulses and  a series of them is a wave train. Field and Noyes were first to semi-

quantitatively explain trigger wave propagation in the BZ reaction [Fie72b, Fie74b].   

3. Phase diffusion waves [Ros88]: this kind of wave occurs also in an oscillatory medium. It 

appears only if concentration gradients are smaller or more shallower than trigger wave. The 

velocity of phase diffusion wave is nearly constant for a limited time interval, when exceeds 

that of the trigger wave (of essentially constant velocity), then a phase wave and not a trigger 

wave propagates in the solution.  

 

The trigger wave movement mechanism has been explained in the following way: the 

concentration of bromide ions decreases at the beginning below a critical value  and the 

oxidation stage takes place; the leading edge of the wave or wave front (sharp blue boundary) 

with high concentration of bromous acid, ferriin, and low concentration of bromide ions is 

formed as shown in Fig. 8. 
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Figure 8: Schematic representation of a pulse wave in an excitable BZ system showing important intermediate 

concentration profiles (adapted from [Šev83]).  Note that Fe3+ represents ferriin.  A marked star  (*) is the critical  

point of  bromide ion concentration.  

 

The reducing stage takes place behind the boundary (dashed line) and the reacting medium 

becomes red again due to process C. In the region with a high concentration of bromide ions a 

new wave cannot be initiated  This region is called refractory. HBrO2 diffuses in front of  the 

wave front and consumes bromide ion in reaction A2. Bromous acid autocatalysis is initiated 

as the bromide ion concentration decreases below  its critical value, thus a new start of the 

oxidation process, and the result is a wave that triggers its own propagation.  

 

Trigger waves propagate with constant velocities, and the wave velocity v is proportional to 

the square root of the product of bromate and hydrogen ion concentrations expressed in the 

linear function defined by  Tyson [Fie85, Sho87, Til74]: 

 

2
1

31 ])][[(2
2

−+≥ BrOHkDv BHBrO  .                                                                                             (27) 
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The  diffusion coefficient of bromous acid DHBrO2 is 2.0 x 10-5 cm2/s at room temperature (25 
oC) and kB1 is the rate constant of reaction step B1, i.e. 42 M-2s-1 in FKN mechanism. A major 

approximation of Eq. 27 is the neglect of the reaction between bromous acid and bromide ions 

ahead of the wave (reaction step A2). The velocities predicted by this equation are compared 

with the experimentally measured velocities [Fie74b, Nag89a]. Quantitative studies of ferriin  

[Mor91] and cerium ion [Nag89b] concentration profiles and dependences of wave 

propagation velocities on temperature [Kuh85], depth of solution and initial reactant 

concentrations [Fie74b, Nag89a, Woo85] were reported. The propagation velocity was  found 

to depend on the cerium ion concentration [Nag89a] but not depend on the MA concentration 

and the ferroin concentration [Fie74b, Woo85]. Generally for a given recipe of initial reactant 

concentrations, the increasing temperature mainly increases the value of the autocatalytic rate 

constant and thus the propagation velocity of trigger waves [Kuh85, Šev83]. Wave 

propagation velocity also depends on the catalyst type. The experimental data [Nag88a, 

Nag88b] have shown that the propagation velocity of the waves decreases in the order: ferroin 

> cerium > manganese catalysed BZ systems, respectively.  

 

Trigger waves in  two dimensional media of the BZ reaction also give rise to outward 

propagating target waves (a series of concentric circular waves). The larger the separation 

between waves in a given target pattern, the longer the solution has to recover. Rotating spiral 

waves (see Fig. 9) generated by mechanically shearing one or more target waves [Win74] can  

occur in the media. 

 

 

                    
 
Figure 9: Left: Target waves and spiral wave pairs in the thin layer of BZ solution spread in a petri dish. White, 

grey, and black zones are excited (high [ferriin]), recovery, and stationary (but excitable) regions (high [ferroin]), 

respectively. Right: Three shapes of the wave front (see more detail in the text). 

Circular                Planar                      Cusp 
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There is also a relationship between the wave velocity (speed)  and the wave period or the 

wavelength (the spacing between successive wave fronts) of the periodic trigger waves. This 

is known as the dispersion relationship [Tys88]. The three quantities are related by the simple 

condition, i.e.  velocity = (1/period) x (wavelength) = (frequency) x (wavelength). A typical 

dispersion relationship has the form sketched in Fig. 10. 

 

  

                                   
 
Figure 10: Drawing showing  the general character of the dispersion relation curve  for BZ-waves (see details in 

the text).  

 

According to Fig. 10,  if the wave period is too short (< τmin) no waves propagate. For short 

wave periods (high frequencies), waves can propagate, but have low velocity. As the period 

increases (frequency decreases), the wave speed increases, getting to a limit at very long  

periods. This limit corresponds to the speed c0 of a solitary wave propagating in the solution 

that has completely recovered to the resting steady state composition.  

 

Recently, there is a search for universal dispersion relationship of the BZ waves. Flesselles et 

al. [Fle98] obtained an approximate analytical expression linking the wave speed v(T)  

(mm/min) to the wave period T (min) for a given excitable medium in the following form of a 

hyperbolic tangent function: 

 

v(T)  =  c0[tanh(T/T*)] ,                                                                                                          (28) 

 

where c0  is the speed for the solitary wave (i.e. for waves sufficiently far apart for the system 

to return to its steady state between oxidation events) and T* is a characteristic period that is 

closely equal to the rotation period of a spiral wave in the same medium.  It is clear that Eq. 

28 fits well with the experimental dependence of the wave speed on the wave period [Fle98]. 
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The velocity of a circularly curved wave front (see also Fig. 9) is lower than that of a planar 

wave in the same system. The dependence of the speed of a wave on the curvature (K = 1/r) 

of the front is given by the eikonal equation [Tys88, Zyk87], which has the linear form: 

 

v(K)  =  v(0) - DuK .                                                                                                               (29) 

 

Here v(K) is the normal velocity of the curved wave front, v(0) is the speed of the 

corresponding planar wave front,  and r is the radius of curvature of the wave segment. Du is 

the diffusion coefficient of the autocatalytic species, in this case, in the BZ medium, Du = 

DHBrO2. 

 

For a circular front, the curvature is positive and its radius is simply equal to the radius of the 

circle. Because of this, the wave speed is reduced from the planar wave speed. Furthermore, 

the smaller the circle, the greater the reduction in the velocity. In fact, if equation holds for 

very low curvature, there will be a critical radius rcrit (in order of  ≈ 20 μm for BZ-waves 

[Foe89]) such that v(K) = 0 for r = rcrit =  Du /v(0) and a wave with this curvature would not 

propagate. This then predicts a minimum size for the wave initiation site (or the pacemaker), 

as waves will fail to propagate unless r > rcrit. Cusp-shaped regions where waves collide (see 

Fig. 9) are curved towards their direction of propagation and so have negative curvatures.  

The eikonal equation indicates that the wave speed will enhance relative to the planar wave 

speed in these cases. With high curvatures, the dilution due to diffusion spreading of the 

autocatalyst into the region ahead of the wave is much enhanced compared to the planar wave  

having an infinite curvature (r = 0). 
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Figure 11: Two consequences in time and positions of the V-shaped wave (θ = 60o at the vertex) moving to the 

right in the light sensitive BZ reaction looking through a CCD camera with the interference filter of 450.6 nm  

(adapted from [Bra99a]).  This pattern was generated by illuminating the V –shaped light of intensity 24 W/m2 

only on a portion of the silica gel matrix including the BZ solution. White corresponds to  the excited (oxidized) 

state of the green coloured Ru(bipy)3
3+, black to the reduced state of  the orange coloured Ru(bipy)3

2+, and gray 

to the recovery state. The time between two pictures is  1 min 51 s. 

 
Recent experimental observations of V-shaped waves in the light sensitive Ru(bipy)3

2+ 

catalysed BZ reaction [Bra99a] have shown that these waves (see Fig. 11) appear as the result 

of oblique collision of two planar waves-the colliding parts of the fronts annihilate, and after a 

corner of an angle θ = 2arcsin[v(0)wing /v(K)vertex ] between the planar waves (or between two 

wings of V-shaped wave) becomes smooth, a stationary propagating wedge with finite 

negative curvature at its vertex appears. The modified eikonal equation for these V-shaped 

waves with small curvatures [Bra99b] is given as 
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2.3.4 Survey of electric field effects  

                                   

The key species of the BZ reaction, identified in the Oregonator model, are HBrO2, Br -
 , and 

the metal ion catalyst. We see that these species are all of different charge types; therefore, an 

applied electric field should affect the propagation of BZ wave. Ortoleva and co-workers 

[Fee81] first recognized that the high ionic strength of the typical BZ reaction mixture would 

result in a large conductivity with unacceptable heating. Therefore, a modified low ionic 

strength recipe was developed in which bromic acid (HBrO3) was substituted for the usual 

bromate salt and sulphuric acid. The system was studied using a reagent-saturated membrane 

filter between two electrodes. In Feeney’s experiments [Fee81]  a circular two-dimensional 

BZ wave showed an increased velocity with respect to the  absence of a field when it 

propagated toward the positive electrode (that is, in the negative electric field) and a 

decreased velocity when it propagated toward the negative electrode (that is, in the positive 

electric field). The local depletion of the bromide ions in front of the wave is either enhanced 

in  a negative field or suppressed in a positive field by the action of ionic migration. These 

effects are then reflected in either the increase or the decrease of the autocatalysis rate and 

thus the propagation velocity of the wave. Wave propagation perpendicular to the electric 

field was little affected. The most dramatic observation in these experiments was the 

formation of a crescent wave from a circular wave in the presence of the electric field. Upon 

switching off the field, the free ends of the crescent wave formed oppositely rotating spiral 

waves. Anyway, the effects observed are also due to evaporation, heating, and the presence of 

the products from electrolysis. More refined experiments with the same effects were done by 

Hasal et al. [Has97]. Application of a d.c. electric field to spiral wave structures  was found to 

cause a drift of the spiral core toward the anode [Ste92] by action of electro-migration of 

bromide ion in the spiral core. It is shown in Fig. 12.1 that there is a drift component that 

increases the distance between the cores of a pair of spirals with opposite chirality. On the 

other hand, if the field direction is reversed, the same spiral pair will follow a reversed drift 

pattern, that is the two spirals forming the pair will be forced to collide with each other. This 

results in mutual annihilation [Sch92]. When a sinusoidal alternating electric field is applied 

perpendicularly to the membrane saturated with the ferroin catalysed-BZ reagent in an open 

unstirred reactor, target wave patterns undergo a transition to complex spiral wave patterns. 

This transition results from periodically changing excitability and the bromide ion 

concentration in the membrane at the reversed polarity. In addition, the number of the spiral 

cores depend on  frequency and amplitude of the field [Sei01], as shown in Fig.12.2. 
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(12.1) 

 

                                   ( - )                                                            

                                        
                                   ( + )                                                             ( + ) 

 
                                       (a)                                                                           (b) 

 

(12.2) 

                             
 

Figure 12 : BZ-spiral waves in the electric field. 

(12.1) Electric field induced drift and strong deformation from Archimedean geometry of spiral waves in the 

agar gel BZ medium (to eliminate the role of induced hydrodynamic convective flow) at E = 5 V/cm, I = 35 mA 

(from [Ste92]). (a) A snap-shot of drifting spiral pair. (b) Unresolved trajectories of the spiral centres (or spiral 

tips). The drift direction to the positive electrode is also influenced by the sense of  rotation (or chirality): in (a) 

clockwise for the left hand spiral wave;  anticlockwise for  the right hand  spiral wave. 

(12.2) Average number of spiral centers N depending on the alternating electric field of amplitude U0 and 

frequency ν   (from [Sei01]). The maximum number of spiral cores is at U0 = 2.0 V and ν = 8.3 mHz. 
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Quantitative data on the propagation velocity in an imposed d.c. electric field have been 

obtained for  planar BZ waves propagating along  a spatially quasi-one-dimensional system 

[Šev83, Šev84, Šev92, Šev99]. The non-linear dependence of the propagation velocity on 

electric field intensity was found and depended on the polarity of the field, as shown in Fig. 

13. A thermostated capillary tube was connected through membranes to two electrolytic cells 

as electrophoresis method, effectively eliminating undesirable effects from heating and 

electrolysis products. 

 

         
Figure 13: Dependence of the normalized wave velocity vN = vE/v0 (where vE and v0 are the wave velocities 

with and without an electric field, respectively) on the imposed electric field intensity E for a pulse wave in the 

BZ medium (adapted from [Šev84]). The experiments were performed in 0.6 mm (circular diameter) capillary 

reactor bath thermostated at 15 oC. Initial composition (Γ = 0.37 M and κ = 0.069 S/cm at 18 oC [Šev83] ): 0.05 

M MA, 0.205 M bromic acid, 7 mM KBr, and 4 mM ferroin; v0 (by average) = 2.25 ± 0.07 mm/min. The electric 

field is negative when the wave propagates to the positive electrode and is positive when the wave propagates to 

the negative electrode. 

 
 

In Ševčíková experiments [Šev83] when a field of 16.7 V/cm is applied, the forward progress 

of a wave propagating toward the negative electrode  is greatly reduced, and the wave back 

serves to initiate waves in the opposite direction, i.e. they observed wave splitting (so-called 

back firing). The new waves propagate at a higher velocity and are initiated at a higher 

frequency than waves in a field-free environment. The life time of this wave source (and 

hence the number of emitted waves) depends on the magnitude of the electric field intensity. 

Wave splitting occurring at high positive fields, the positively charged ferroin and ferriin 

migrate ahead of the wave front, and the bromide ions build up in the refractory region behind 

it until the low bromide ion region is spread out and wide enough for a new wave to form and 

propagate (see Fig. 14.1). 
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(14.1) 

                                                
 

(14.2)  

                                           
                                                (a)                                                                     (b) 

 

 

Figure 14: BZ-wave splitting. 

(14.1)  Schematic one-dimensional concentration profiles of three important intermediates in BZ system during 

the course of the wave splitting  (from [Šev83]). [Fe3+] represents the ferriin concentration. 

(14.2)  (a)  Two dimensional pattern of five split waves in agar gel BZ medium after the electric field intensity E 

= 8.59 V/cm was switched on for 2.3 min (from [Šev96a]).  Image area 1.35 x 3.16 cm2.  (b) Light intensity 

profile corresponding to [ferriin] along the AB line of (a). v+  and v- show the direction of the wave propagation 

toward positive and negative electrodes, respectively; v+  > v-  . 
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At E = 20 V/cm, a wave is annihilated  after initiating another wave propagating in the 

opposite direction. Thus, the applied electric field results in reversal propagation. Wave 

splitting (see Fig. 14.2) and wave reversal have also been observed in a spatially two-

dimensional BZ-system [Šev96a, Šev96b]. The wave annihilation occurs  at E > 20 V/cm , 

when a sufficient amount of bromide ion migrates into the wave front, increasing the rate of 

reaction step A2 (bromide-bromous acid reaction) and  preventing the autocatalytic oxidation 

of ferroin. 

 

In the course of the reversal, the migration of the bromide ions toward the anode-that is, in the 

direction opposite to that of the wave propagation, slows down the propagation of the wave 

front. On the other hand, it helps to decrease the bromide concentration in the refractory tail 

below the critical value, and consequently the wave’s trailing edge turns into  a sharp wave 

front that moves in a direction opposite to that of the original wave annihilated at the same 

time, as shown in Fig. 15. 
 
 

                                    
    
  
 
Figure 15: Electric field-induced S-shaped front deformation caused by the convective flows and  wave reversal 

of a pulse wave in liquid BZ medium at 100 V in 0.7 mm (rectangular diameter) capillary reactor (from 

[Šev99]). Numbers given are the time in seconds elapsed after switching the voltage on. Figures shown are 

observed from the side view of the capillary. The portion of the cuvette shown is 0.85 cm in length. 

 

 
One can conclude that the bromide ion is an important key reaction intermediate of the 

reaction to understand the electric field effects on BZ oxidation waves [Has97]. Bromide 

depletion leads to wave acceleration, and bromide supply to wave deceleration. The migration 

supply of bromide ions increases when increasing the field intensity, and implies the 

following sequence of phenomena: 1. deceleration of wave propagation 2. wave splitting  3. 
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wave reversal and  4. wave annihilation (i.e. the wave is first stopped propagating then the 

wave front get dispersed and the oxidation zone is finally disappeared), where the propagation 

velocity is parallel to the electric field. 
 
The effects arising when the electric field is applied on propagating chemical waves can be 

taken as a prototype of non-linear phenomena due to applied fields. These studies (especially 

in one-dimensional case) are also important with respect to the fact that propagation of 

information along the nerve axons has both electrical and chemical nature [DeF97, Fer85]. 

 

2.4 The uncatalyzed BZ reaction with pyrogallol as substrate 

  

2.4.1 Plausible chemical mechanisms  

 
The oxidation of pyrogallol (PG) or 1,2,3-trihydroxybenzene [Rap03] by bromate ions is an 

example of an uncatalyzed bromate oscillator controlled by the concentration of bromide ions 

[Orb79]. The mechanism [Sha85] is not as well understood as that of the classical BZ 

reaction. There should, however, be many similarities, at least in the chemistry of the oxy 

bromine species. It can proceed by processes which are similar to the processes involved in 

the bromate oxidation of malonic acid in the classical BZ reaction, as described in the former 

parts of this chapter. When the bromide ion concentration reaches a sufficiently high level, 

process A (steps A1-A3) occurs (see Section 2.3.1). The bromine produced in the step A3 

may react with pyrogallol, liberating bromide ions, as indicated by  

 

(D)    Br2  +  C6H3(OH)3  →  BrC6H2(OH)3  (BrPG) +   H +  +  Br - . 

 

The three adjacent hydroxy groups on the benzene ring in pyrogallol (see Fig.16) activate the 

ring towards electrophilic attack by bromine, whereby hydrogen on the benzene ring is 

replaced with bromine. Actually, two of the hydrogen atoms on either side of the three 

hydroxy groups can be readily replaced by bromine atoms.  

 

One of the effects of process A is a reduction in the concentration of bromide ion. As the 

concentration of the bromide ion decreases, the rate of process A diminishes, and process B 

takes over.  
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PROCESS B: 

 

(B1)      BrO3
-  +  HBrO2  +  H +  →   2BrO2

 .  +    H2O 

(B2.1)    BrO2
 .  +  PG   →  HBrO2  +   PG .   

(B2.2)    BrO2
 .   +  PG .   →  HBrO2  +  Q 

(B2.3)    BrO2
 .  +  Q  →   HBrO2 +  Q . 

(B3)       2HBrO2  → HOBr  +  BrO3
-   +   H +   

 

These steps are similar to steps in process B of the classical BZ-reaction. Here, in step B2.1, 

the role of  a metal-ion catalyst is taken over by pyrogallol, i.e. the BrO2
 .  radical oxidizes the 

pyrogallol  to  form a radical  PG .. This radical can react with another BrO2
 .  radical (see step 

B2.2) to form a quinonoid derivative Q [Jwo89, Liu92a, Nag99, Orb95] which can be 

oxidized again to a quinone radical Q . by another BrO2
 .  radical. 

 

 
 
Figure 16: Chemical structures of the intermediates formed in the uncatalyzed BZ reaction with pyrogallol as 

substrate. From left to right: PG, PG-radical showing two resonance structures [Rap03], Q (3-hydroxy-1,2-

benzoquinone [Per06, see also Dictionary of Organic Compounds, 6th Ed., Chapman & Hall , Cambridge,  vol. 4, 

yr. 1996, p. 3588]) and Q-radical. 

 

Furthermore, PG . can also react with HOBr to produce a bromine atom Br ., which is rapidly 

reduced to a bromide ion, as represented in process C. 

 

PROCESS C:  

 

(C1)    HOBr  +  PG .  →  Q  +  Br . + H2O 

(C2)    Br .  +   PG .   →   Q +  Br -  +  H +                                         

(C3)    Br .  +   PG    →   PG . +  Br -  +  H +  
 

OH
OH

OH

O
O

OH

OH

OH

OOH
OH

OH

O
O

OH

 .     
   . 

 . 



 48 

Therefore, process C increases the concentration of bromide ions, so that eventually the rate 

of process A will increase to the point where it dominates again. This switching back and 

forth between processes A and C via process B is what leads to the oscillations in the colour 

of the solution being due to  the formation and consumption  of Q formed in the reaction (see 

reaction steps B2.3 and C2), as shown in Fig. 17.           
                          

                 
                                         
Figure 17: Temporal oscillatory behaviour of the PG-uncatalyzed BZ reaction in a well-stirred batch system at 

30.0 ± 0.1 oC (from [Sri98b]). [PG] = 25 mM, [H2SO4] = 2.0 M, and [KBrO3] = 0.06 M. During an induction 

time (from point A to point B), the colour of the solution is dark red-brown of Q. During the oscillatory period, 

the colour of the solution changes between pale yellow of the brominated and coupled products of Q [Jwo89] at 

the peak (point C, low [Br - ] and [Q]/[PG]) and orange at the base (point D, high [Br -] and [Q]/[PG]).  

(a) Potentiometric profile  recorded  by a Pt-electrode vs. a SCE (Saturated Calomel Electrode) corresponds to 

different redox couples [Liu92a, Nag99, Orb78] in the solution.  

(b) Spectrophotometric profile recorded at 420 nm being due to the light absorption of [Q]/[PG]. 
 

Adding silver ions can induce complex - high frequency  oscillations in this system arising 

from bromide ion consumption by silver ions [Var85]. 

                       

2.4.2 The coupled system: ferroin catalyzed + pyrogallol uncatalyzed 
 

The ferroin  is used as a redox indicator, rendering the oscillations between process B and 

process C visible through oscillations in the colour of the solution. Because ferroin is a one-

electron reductant, it can enter  the reaction mechanism, and  it appears to do so, because the 

periods and the oscillatory wave forms are more complex [Dut02, Gil92] or even the 

oscillations can be terminated [Kör80] when ferroin is present. Furthermore, the presence of  

a catalyst, e.g. ferroin, makes the contours of the waves more clear and pronounced [Orb98] 
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than in the absence of the catalyst. The mechanism proposed in  references [Gil92, Liu92b] of 

the UBO system with PG including  ferroin as the catalyst is given in Table 1. We can see that 

Q and ferroin are the  main reacting species involved in the bromous acid autocatalysis. 

 
Reaction Number  
(f = forward reaction, b = backward reaction) 

Rate Constant 

1f BrO3
-  +  Br -  +  2H +  →    HBrO2  +  HOBr 

 
2.0 dm9mol-3s-1 
 

1b HBrO2  +  HOBr  →  BrO3
-  +  Br -  +  2H +   

 
3.2 dm3mol-1s-1 

 
2f HBrO2  +  Br -  +  H +  →    2HOBr 3.0 x 106 dm6mol-2s-1 

2b 2HOBr → HBrO2  +  Br -  +  H +   2.0 x 10-5 dm3mol-1s-1 

3f BrO3
-  +  HBrO2 +  H + →  2BrO2

 .  +   H2O 42.0 dm6mol-2s-1 
(at 20 oC) [Fie86] 

3b 2BrO2
 .  +   H2O →  BrO3

-  +  HBrO2 +  H + 4.2 x 107 dm3mol-1s-1 
4f 2HBrO2  →  HOBr  +  BrO3

-   +   H +   3.0 x 103 dm3mol-1s-1 

4b HOBr  +  BrO3
-   +   H +  → 2HBrO2   1.0 x 10-8 dm6mol-2s-1 

5 BrO2
 .  +  Q  →   HBrO2 +  Q . 5.0 x 106 dm3mol-1s-1 

6 2Q . +   H2O →  products + Q 2.0 x 109 dm3mol-1s-1 

7 BrO3
-  +  PG  +  H +  →   HBrO2 +  Q   +  H2O 

= (B1) + (B2.1) + (B2.2)   
0.15 dm6mol-2s-1 

8 HOBr + PG →  Br -   +  Q  +  H +  +  H2O 
= (C1) + (C3)    

0.071 dm3mol-1s-1 

9f ferroin2+ + BrO2
 .  +  H + →   HBrO2 + ferriin3+ 8.0 x 104 dm6mol-2s-1  

9b HBrO2 + ferriin3+ →  ferroin2+ + BrO2
 .  +  H +   8.9 x 103 dm3mol-1s-1 

10 HOBr  → products 1.0 x 105 dm3mol-1s-1 

11 HOBr  →  Br -   10.0 dm3/2 mol-1/2 s-1 

12 ferriin3+ →  ferroin2+ 1.0 x 10-3 s-1 

 
 

Table 1: Mechanism and rate constants with [H+] kept as a constant value of 1 M  for coupled UBO with PG as 

substrate and ferroin as the catalyst (adapted from [Gil92] and [Liu92b]).  It should be noted that  rate constants  

of reactions 9f and 9b in the ferroin-catalysed BZ system with MA as substrate are reported to be 1.0 x 109 

dm6mol-2s-1 and 33 dm3mol-1s-1, respectively [Fie86, Zha93b]. The values given in Table 1 are “actually” valid 

for the cerium-catalysed BZ system.   
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The reaction 7 is responsible for the induction period of the uncatalyzed reaction (without 

ferroin) and the possible mechanism was  proposed in [Ada04],   

 

(7.1)    BrO3
-  +  2 H +  ↔   H2BrO3

+  

(7.2)    . 

 

Dutt [Dut02] proposed that complex and aperiodic oscillations in the ferroin catalyzed gallic 

acid (GA, 3,4,5-trihydroxybenzoic acid) reaction in a CSTR are presumably due to coupling 

of the uncatalyzed component dominated by gallic acid and the catalyzed component 

dominated by ferroin that can be described in the same way as that for pyrogallol [Gil92, 

Sri98b],  i.e. the catalyzed step  9f  (see Table 1) is coupled to the uncatalyzed step B2.1 to 

enhance the autocatalytic production of  HBrO2. The stoichiometric reaction [Dut02]:  

 

(E)    6ferriin3+ +  BrPG (from reaction D)  +  3H2O  →  6ferroin2+  +  Br - +  Q  +  7H+                   

 

combines with the uncatalyzed steps: 8 (see Table 1), C2, and the bromination reaction of PG 

(the reaction D) to accelerate the regeneration of bromide ions to switch the system from low 

bromide concentration state (process A) to high bromide concentration state (process C) and 

thus the oscillatory cycle is then established. 

 

Tlaczala and Bartecki [Tla84] studied effects of Mn2+ on chemical oscillations in the closed 

PG-BrO3
--H2SO4 system. They found that one oscillating system undergoes transformation 

from pure PG-uncatalyzed system into a Mn2+- catalysed system (see also [Kör80]) via double 

oscillations that arise from mutual interactions between two oscillators, as shown in Fig. 18.  

The number of double oscillations decreases with the increasing Mn2+ concentration and 

increases with the increasing PG concentration [Tla83].  
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Figure 18: Oscillations observed in the well-stirred batch  Mn2+-PG-BrO3
--H2SO4 system at the room 

temperature (from [Tla84]). [PG] = 0.050 M, [KBrO3] = 0.104 M, [H2SO4] = 1.97 M, and [MnSO4] = 2.5 mM. 

% and t denote the  percentage light transmittance at 470 nm being due to the light absorption of Mn3+ and time 

in minute, respectively. Phase I : the uncatalysed system: PG-BrO3
- -H2SO4,  is characterized by high amplitudes 

and  rather short oscillatory periods, phase II: the coupled uncatalysed and catalysed systems showing double 

oscillations, and phase III: the catalysed system Mn2+- PG - BrO3
- -H2SO4 having low amplitudes and longer 

oscillatory periods. 

 

2.4.3 Properties and behaviour of waves in the coupled system 
 

The mechanism of wave propagation can be interpreted analogously as the classical 

Belousov-Zhabotinsky spatial system [Fie72b]. The development of trigger waves [Ada04, 

Orb80] is due to the oxidative bromination of pyrogallol coupled with diffusion. When the 

reagents (pyrogallol, bromate, and sulfuric acid) are mixed, the solution immediately changes 

to a dark colour (red-brown). This dark colour gradually becomes lighter  to yellow. At a 

certain phase of the colour change light yellow pacemaker centers appear from which 

chemical waves start to propagate into a region of darker colour (orange-brown). Available 

color photographs can see in [Ada04]. In the dark region the bromide concentration is above a 

critical value and here bromate reacts with bromide and the stoichiometry of the reaction is 

generated by the net reaction U1: 
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(U1) = (A1)+(A2):  BrO3
-  +  2Br -  +  3H +  →  3HOBr.        

                                                           

At the front of the moving band the concentration of bromide ion drops below a critical value. 

The autocatalytic formation of  HBrO2  is switched on, and this is realized by the net reaction: 

 

(U2) = 2(B1)+4(B2.1)+(B3):  BrO3
-   +  4PG  +  H +  →  HOBr   +  4PG .  +  2H2O.                     

                                                            
At the boundary of the reducing and the oxidizing zone a sharp concentration gradient exists: 

the bromide concentration is at its minimum and the HBrO2 is at its maximum. Species 

formed in reaction U2 undergo further reaction  and regenerate bromide ion, the control 

intermediate in the net reaction U3: 

 

(U3) = (C1)+(C2):   HOBr + 2PG .  →  2Q  + Br -  +  H +  + H2O. 
          
By the accumulation of bromide ions, the reaction U1 is switched on again; a new wave can 

start to propagate from the pacemaker center. The propagation velocity of this trigger wave 

[Orb80] is 5-6 mm/min  for initial compositions: 2.0 M  H2SO4 , 87 mM NaBrO3, and 52 mM 

PG at the room temperature of 24-25 oC.  Stationary mosaic pattern was also observed in  an 

unstirred thin film of solution [Ada04, Orb80]. 

 

A detailed investigation of the wave behaviour in the PG system with ferroin has been done 

recently. Sridevi et al. [Sri98a] performed the experiments at 30.0 ± 0.1 oC and found target 

waves (the green coloured oxidizing bands move into the bright red coloured reduced 

medium) and spiral waves in the petri dish.  

 

Depending upon the initial concentrations of reactants, they have the following properties: 

1. The whole solution undergoes bulk colour change (red to green and vice versa), these are 

phase waves. 

2. Waves are generated periodically with a constant velocity around a heterogeneous center, 

these are trigger waves. 

3. The medium developed phase waves for the first few minutes and subsequently formed 

trigger waves brought about by diffusion. 
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Figure 19: Plots of the wave velocity v dependences on the initial reactant concentrations (extracted and adapted 

from [Sri98a]). Initial concentrations of reactants: (a) [H2SO4] = 1.0 M, [ferroin] = 1.5 mM, [KBrO3] = 0.12 M,  

[PG] is varied. v increases as [PG] decreases. (b) [H2SO4] = 1.0 M, [PG] = 0.048 M, [ferroin] = 1.5 mM,  

[KBrO3] is varied (see details in the text). 

 

4. As in the case of classical malonic acid-ferroin-sulphuric acid-bromate system, the wave 

velocity depends strongly on the concentration of acid and bromate, and is almost 

independent of the ferroin concentration [Fie74b, Woo85]. 
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5. The wave velocity depends markedly on the pyrogallol concentration (Fig. 19a), see also in 

[Ada04] (without ferroin). This is because pyrogallol is also involved in the generation of 

HBrO2 which is not the case with malonic acid [Fie74b, Nag89a, Woo85]. 

 

The kinetics of the classical BZ reaction in solution is reflected by the velocity of circular 

trigger waves, v, which is mainly determined by the autocatalytic reaction step coupled by 

diffusion. Based on the slope of the linear dependence in Fig. 19b, the HBrO2 autocatalysis 

rate constant k of the reaction 3f in Table1 in liquid aqueous solution  at 30.0 ± 0.1 oC,  was  

(49.02 ± 4.65) M-2 s-1 obtained from v2  =  4kDHBrO2[H+ ][BrO3
-] (see Eq. 27) by using  DHBrO2 

= 2 x 10-5 cm2/s  = 0.12  mm2min-1. 

 

Recently, Hamik et al. [Ham01] studied in more detail another UBO system with 1,4-

cyclohexanedione (1,4-CHD) as substrate including ferroin as the catalyst. They showed that 

oxidation waves in this modified reaction obey anomalous dispersion relation that is not 

known from the classical BZ reaction, as shown in Fig. 20. This behaviour could arise from 

the chemical reactions taking place in the refractory tail of the wave, i.e. the inhibiting action 

of ferriin in the intermediate vicinity of the HBrO2  pulse and the activating effect of a 1,4-

CHD derived intermediate (1,4-dihydroxybenzene) produced continuously but brominated 

and oxidized to 1,4-benzoquinone in an autocatalytic manner at a farther distance from the 

HBrO2  pulse. 

 

                                        
 
Figure 20:  Experimental anomalous dispersion relation curve (non-monotonic non-oscillatory type) observed in 

the BZ reaction with 1,4-CHD as substrate (from [Ham01]). The velocity of the solitary wave is 4.0 mm/min. 
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________________________________________________________ 
 
CChhaapptteerr  33  

EExxppeerriimmeennttaall  pprroocceedduurreess  

________________________________________________________ 
 

3.1 Capillary reactor 
 

The capillary reactor used in the experiment is made of Plexiglas (see Fig. 21). Its 

components are the following: 

 

 

Abbreviation                                                Description 

GC 

 

Rectangular quartz  glass (Suprasil) cuvette with inner cross section   

0.5 x 0.5 mm2, outer cross section  6 x 6 mm2, and length  84 mm. 

Custom made by Hellma® company. 

EC Electrolytic cells with circular diameter of 3 cm and 4.5 cm high. 

FC Filling chambers 

SP Silicone packings 
TM Hydrophobic microporous ion permeable membranes made of Teflon, 

(-CF2-CF2 -)n, the electrical conductivity κ =  10-11 μS/cm at 298 K [Old94]. 

This membrane prevents possible hydrodynamic flow, the products of 

electrolysis do not affect the reaction medium inside the cuvette.  

PE Planar platinum electrodes, 3 x 3 cm2 and 0.3 mm thick. The distance 

between two electrodes (d) is 16.0 cm. 

ST Plexiglas stoppers. Their sizes used are about 0.9 cm and 2.9 cm long.  
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→

E  
 

                          
     
 
 
Figure 21: Drawing showing the components of the capillary reactor (adapted from [Šev99], see details in the 

text).  
→

E denote the electric field vector. 
 
 
 
A counter-flux of oppositely charged ions which is attained by electrophoresis including  

diffusion and electro-migration may also create non-equilibrium conditions suitable for 

instability and non-linear phenomena when the reactant is, for example, the aqueous BZ 

medium. Application of a voltage between electrolytic cells (EC) can cause charged species to 

enter the reaction zone in the capillary cuvette (GC) at a constant controlled rate. 
 
                                                                        
One of the practical problems encountered in electro-separations is the generation of heat 

from  dissipation of energy in the resistive medium. The generation of heat (Joule heating) is 

given by  

 

HJ  = IU  = I2R ,                                                                                                                      (31)                                                                                                    

 

where HJ  is the electrical power in W or J/s, I  the electrical current through the medium in 

Ampere (A),  U the electrical potential difference applied in Volt (V), and R the electrical 

resistance of the medium in Ohm (Ω). The current and the electric field strength E = U/d  in  

V/cm are related via the electrical conductivity κ in S/cm or Ω-1cm-1 of the medium by Ohm’s 

law (U = IR, see also APPENDIX 2B): 

TOP 



 57 

 

κ = I/EA ,                                                                                                                               (32) 

 

where A is the inner cross section area of the medium (i.e the capillary cuvette). 

 

The higher the conductivity of the medium, the more difficult capillary electrophoresis 

becomes because highly conductive solutions mean a higher current density I/A  for a given 

field strength E  (see Eq. 32), and the heat load on the system increases, as there is a square 

dependence on the current (see Eq. 31). Heating in electrophoresis causes changes in viscosity 

and density of the medium. The possibility to remove heat from electrophoretic systems by 

cooling is severely limited, by the maximum capacity of these systems in terms of how large 

or thick a system can be. In the BZ medium, two important factors exist which act against 

electrical field effects being observed [Fee81], (a) the high conductivity (and current) of the 

solution causes the disruption of chemical kinetics of the systems due to heat and evaporation; 

(b) the relatively high wave velocity compared to a typical ionic drift velocity induced by 

field of reasonable strength.  

 

The electrodes are typically constructed from platinum. One result for BZ medium is the 

water electrolysis reactions: 

 

Cathode (-):   2H2O  +  2e-  →  2OH-  +  H2 

Anode (+):     H2O →  2H+  +  0.5O2  +  2e- . 

                       

The hydrogen gas produced at the cathode can be hazardous, especially because it is in the 

vicinity of an electrode that is also producing heat. For this reason, electrode chambers are 

usually open to the atmosphere so that gases can vent. The negative electrodes produces base 

OH- and the positive electrode produces acid H+ so that there is a possibility of an acidity (and 

also the temperature) gradient throughout the electrophoresis medium. 

 

3.2  The solution mixtures and their preparation  
 

The following stock solutions were prepared by dissolving weighted amounts of chemicals in 

0.75 M H2SO4 (diluted from 5.0 M H2SO4 Riedel-de Haën standard solution): 1.0 M NaBrO3 

(F.W. = 150.90, Fluka; Riedel-de Haën (purity min. 98%)), 1.0 M pyrogallol (PG, M.W. = 
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126.11, Merck), 0.025 M ferroin (using 0.3712 ± 0.0001 g 1,10-phenanthroline.H2O (F.W. = 

198.23, Fluka) and 0.1738 ± 0.0001 g FeSO4.7H2O (F.W. = 278.02, Merck) for a 25 ml 

solution). All reagents were of the highest commercially available grade (purity above 99 %) 

and were used without further purification. All stock solutions were freshly prepared in 

deionized water with an electric conductivity κ = 0.055 µS cm-1 at 22 ± 1 oC. 

 

Solution Mixture 
Number 

[H2SO4] (M) [NaBrO3] (M) [PG]  
(mM) 

[ferroin]  
(mM) 

[PG] / [ferroin] 

I (reference) 0.15 0.10 8 0.5  16 
II 0.15 0.10 5 0.5  10 
III 0.15 0.10 11 0.5  22 
IV 0.15 0.10 14 0.5 28 
V 0.15 0.10 8 0.28  28.6 
VI 0.15 0.10 8 0.8  10 

 
 
Table 2:  Initial concentrations of chemicals in the solution mixtures used for study. 
 

The concentrations of reactants in  all solution mixtures used in this study are given in Table 

2. They have the ionic strength Γ ≈ 0.55 M (PG is considered as a non-ionic species) and the 

conductivity κ  ≈ 0.11 S cm-1 for the reference solution mixture (see also APPENDIX 2B). 

They are prepared for each experimental run mostly at room temperature of 22 ± 1 oC from 

fresh stock solutions. The main purpose of this study is to see how the two catalysts 

concentrations (PG and ferroin) affect the behaviour of  waves with and without an electric 

field.  

                      
Table 3: Partial volumes of the stock solutions withdrawn  by using automatic pipettes (Gilson Pipetman P)  for  

the 50 ml  solution mixture.    

     

The general method for the preparation of the solution mixture was as follows (see Table 3): 

first,  required volumes of 1.0 M NaBrO3 and 1.0 M PG were mixed together in a 50 ml 

volumetric flask. When the colour had changed from dark red-brown to clear yellow (but 

clear orange for IV) after a  time t1, then required volumes of 0.75 M H2SO4, 0.025 M ferroin, 

Stock  Solution  I II III IV V VI 
(a) 1.0 M NaBrO3 (μl) 5,000 5,000 5,000 5,000 5,000 5,000 
(b) 1.0 M PG  (μl) 400 250 550 700 400 400 
(c) 0.75 M H2SO4 (μl) 3,600 3,750 3,450 3,300 4,040 3,000 
(d) 0.025 M ferroin (μl)  1,000 1,000 1,000 1,000 560 1,600 
Total (ml) 10 10 10 10 10 10 
H2O (ml) 40 40 40 40 40 40 
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and the deionized water were added in this order. The colour immediately changed from clear 

yellow to the colours of oxidized state, i.e. blue (for II, VI) or blue-green (for I and sometimes 

III also) or green (for III, IV, V) depending on [PG] and [ferroin]. After a time interval t2, 

when the colour had changed to red-brown again (reduced state), the solution mixture was 

immediately put into the well-cleaned capillary reactor. Note that this red-brown colour later 

can change again to red-orange, when the solution mixture is left for a certain time which, 

however, was not measured. After putting the whole reactor, including the solution mixture, 

into the water bath at 15 oC (the levels of the solution mixture in both electrode chambers 

should be approximately the same and should be under the level of  water in the water bath), 

the oxidation pulse waves  spontaneously generated at both ends of the cuvette, caused by 

some heterogeneous centers and some surface defects inside the filling chambers, with the 

initiation time t3 , and then propagated into the cuvette. Times t1, t2, and t3 can be longer or 

shorter from one batch experiment to another. This strongly depends on many factors, e.g. the 

room temperature, mixing and aging of the stock solutions, oxygen-sensitivity of the PG 

solution, the purity of chemicals. Approximate ranges of t1, t2, and t3  for different solution 

mixtures are given in Table 4. 

 
 

Solution Mixture 
Number 

I II III IV V VI 

t1 (s) 13-17 8-12 16-20 25-30 13-17 13-17 

t2 (min) 4 6-7 2-3 (immediately) 2 3-5 

t3 (min) 10-20 6-14 22-34 35-45 16-24 4-8 

     
Table 4 : Approximate ranges  of  t1, t2, and t3  of the solution mixtures.  

 
It should be noted how to clean the reactor and activate the Teflon membrane inside. First,  

rinse the whole reactor with “diethyl ether” 2 times and then with “absolute ethanol”  2 times. 

Finally, rinse the whole reactor with “the deionised water” 3 times. Let  the deionised water 

stay in the reactor overnight before the experiments to make sure that the membranes are 

saturated with the water. The glass capillary should be cleaned sometimes by putting  it into 

concentrated sulphuric acid, let it stay in overnight, and rinse it with the deionised water 

several times before fitting it to the reactor. 
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3.3 Experimental set-up and methods 
 

The experimental set-up including the capillary reactor (see Section 3.1) is the same as 

described in [Šev99]. The whole reactor including the solution mixture was bath-thermostated 

at 15 oC (Julabo LABORTECHNIK  F12-MV Digital Refrigerant). 

         

 
                                                                                         

 

 

Figure 22 : Experimental set-up. See details in the text. 
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The cuvette was illuminated from the bottom of the water bath made of Plexiglas by a  light 

source: Hama 1634 White Light Box (2 x 15 W), illumination area  3 cm x 10 cm. To avoid 

the disturbance from the external light source, the experiments were always performed in the 

dark room. Wave propagation in the cuvette was followed from the top (see Figs. 21 and 22) 

by measuring the difference in the transmitted visible light absorption between ferroin (the 

reduced part) and ferriin (the oxidized part) of the wave at the  wavelength λ = 490 nm (green 

, see also APPENDIX 1B) by utilizing optical glass interference filter (SCHOTT 50 mm in 

circular diameter, 6 mm in thickness, about 47 % transmittance at λ = 490 nm ) providing 

maximum contrast between the reduced region and the oxidized region of the wave and was 

monitored by a Charge Coupled Device (CCD) camera (Hamamatsu C3077) with a spatial 

resolution of about 27 µm per pixel. The recorded images were digitized at rates of either 3 

s/frame or 5 s/frame by a frame grabber card (Data Translation, DT 3155) controlled by the 

LabVIEW (National Instruments Corp., version 5.1) image acquisition software. The images 

were further processed and analyzed by programs developed in IDL (Interactive Data 

Language, Research Systems Inc., version 5.2) in order to calculate the propagation velocities 

and evaluate changes of longitudinal wave profiles in an applied electric field (see also 

APPENDIX C). 

                                                      

To investigate effects of an electric field on the waves two sets of experiments were   

performed. In the first set, the wave was allowed to propagate about 3 min without the electric 

field being switched on. Then a constant voltage was applied to the platinum electrodes 

immersed in the reaction solution in the electrode chambers, and the propagation of the wave 

towards either the positive or negative electrode was recorded for another 3 min. From these 

measurements the dependence of the wave velocity on the electric field intensity was 

determined. In the second set of experiments, the wave was again allowed to propagate about 

3 min without electric field and then the constant voltage was switched on with the positive 

electrode facing the wave. After  the wave was allowed to propagate another 3 min towards 

the positive electrode,  the polarity of the electrode was changed and the wave was further 

followed. In both sets of experiments, only the first wave entering the cuvette was subject to 

observation. Voltages up to 150 V were examined.  

 

 

 

 



 62 

For the evaluation of the electric field effects the following definitions are used throughout 

the text (see Fig. 21): a negative field means that the wave propagates towards the positive 

electrode (in the opposite direction to the electric field vector). A field is positive if the  wave 

propagates towards the negative electrode (in the same direction as that of the electric field 

vector). The magnitude of the electric field intensity (E) was calculated as  E = U/d, where U 

is the applied voltage (in V), and d is the fixed distance between the electrodes, d  = 16.0 cm. 

The current (I in mA) passing through the system was measured (Voltcraft Digital Multimeter 

MXD-4660A) during each experimental run and was found to be constant at each voltage. 

 

In experiments on multiple reversals (Section 4.3), the same experimental set-up and  

capillary reactor are used. The reacting media  for this study are solution mixtures: I and III to 

see the role of pyrogallol concentration. At the beginning of each experiment, the propagation 

velocity at zero field is evaluated. The effects of switching the polarity of the electric field is 

then investigated as follows: an observation window of size d is applied on the cuvette by 

selecting the corresponding pixel area for image recording (a frame grabber board 768 pixels 

(2.07 cm) in width or X-direction  and  576 pixels (1.56 cm)  in height or Y-direction, area ≈ 

3.23 cm2). When the first wave enters the observation window, an electric field of the chosen 

magnitude is switched on with the positive electrode facing the first wave. At the same time 

the grabbing of images starts with a digitization rate of 5 s/frame. When the wave reaches the 

end of the observation window, the polarity of the electric field is reversed within 2 s by a 

home-made switch (Moeller easy 618-AC-RC) connected to the power supply (Elektro-

Automatik EA-PS 7150-004 A, maximum voltage 150 V and current 400 mA). If the wave 

reversal occurs, the propagation of the reversed wave is followed further. The reversed wave 

propagates again towards the positive electrode, and when it reaches the end of the 

observation window, the polarity of the electric field is again reversed. The changes of the 

polarity of the electrodes continue until the reversed wave is annihilated upon changing the 

field polarity. The window sizes d = 0.4, 0.8, 1.2, 1.6, and 2.0 cm are chosen for this study. 

The voltages used are in the range  from 50 to 120 V.  
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________________________________________________________ 
 

CChhaapptteerr  44  

EExxppeerriimmeennttaall  rreessuullttss  

________________________________________________________ 
 

4.1 Field-free waves 

 
The waves entering the cuvette in the absence of an electric field were observed to have either 

planar, U-, or V-shaped wave front, as shown in Fig. 23. We will focus in more details on 

these shaped wave fronts in Section 4.4 of this chapter. The propagation velocities of the 

planar wave front in zero field for different solution mixtures are given in Table 5. 

 

(a) 

 
(b)      

 
(c) 

 
 
 

Figure 23: Three different shapes of the wave front observed in the  “reference” solution mixture  in the absence 

of an applied electric field : (a) planar, (b) U-shape, (c) V-shape. Waves propagate from left to right. Dark region 

corresponds to the unreacted reduced medium with low ferriin concentration, light region corresponds to the 

oxidized region with high concentration of ferriin. The portion of the cuvette shown is 0.6 cm in length. 
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Data given in Table 5 show that the propagation velocity for a given excitability determined 

by [H2SO4] = 0.15 M and [NaBrO3] = 0.10 M is almost independent of the ferroin 

concentration but depends on the pyrogallol concentration as we can clearly see  from the 

solution mixture  I  compared to the solution mixtures  II and IV.  
 
 

Solution Mixture 
Number 

[PG] (mM) [ferroin] (mM) v0 (mm/min) 

I (reference) 8 0.5  0.69 ± 0.09 (79) 
II 5 0.5  0.95 ± 0.09 (15) 
III 11 0.5  0.62 ± 0.09 (32) 
IV 14 0.5 0.34 ± 0.02 (3) 
V 8 0.28  0.72 ± 0.06 (13) 
VI 8 0.8  0.76 ± 0.07 (8) 

 

 

Table 5: Average field-free propagation velocities v0 of the planar wave front in different solution mixtures. The   

number in parenthesis is the number of experiments done.   

 

Ferriin concentration profiles of the first planar waves without an applied electric field  in the 

solution mixtures of  different [PG] and [ferroin] are shown in Fig. 24. The slope of the wave 

front after excitation (i.e. the sudden growing part of the grey level) does not change 

significantly with [PG] and [ferroin]. The refractory tail of the wave drops faster (i.e the  

decaying part of the grey level is steeper) and the wave propagates slower when [PG] is 

increased. The system with [PG] = 5 mM recovers the slowest and forms the broadest 

excitation region but still the front propagates faster. The amplitude of the wave increases 

when [ferroin] is increased. The grey or [ferriin] level of the excitation region of the wave in 

the solution mixture consisting of [ferroin] = 0.28 mM is slightly higher than the solution 

mixtures consisting of [ferroin] = 0.5 mM and 0.8 mM and there is no significant difference in 

the slope of the refractory tail of the wave when [ferroin] is increased. 
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(a) 

                        
        

 

(b)            

                         
  

                                   

Figure 24: Ferriin concentration profiles represented by grey levels in Arbitrary Units (A. U.) of the  field-free 

planar waves. Solution mixtures consist  of  [H2SO4] = 0.15 M, [NaBrO3] = 0.10 M, and varied [PG] and 

[ferroin]. L denotes the portion of the cuvette in cm. 

(a) [ferroin] = 0.5 mM,  [PG]: 5 mM (thin line), 11 mM (medium line), and 14 mM (thick line).  
(b) [PG] = 8 mM, [ferroin]: 0.28 mM (thin line), 0.5 mM (medium line), and 0.8 mM (thick line).  
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4.2 The interaction of an  electric field with waves 

 

4.2.1 The measured velocity response to the electric field intensity 

 
The effects of applied electric fields on the propagation velocities of the waves for all solution 

mixtures were investigated in the range of electric field intensities  from –9.38 Vcm-1 to +1.88 

Vcm-1. The data are given in Table 6.   

 
                                                            vE  (mm/min) U (V) E  (V/cm) 

I  

(reference) 

II 

5mM PG 

III   11mM PG 

 

IV  {14mM PG} 

V 

0.28mM ferroin 

VI 

0.8mM ferroin 

+30 +1.88 SA  SA SA 

{No data}  

SA SA 

+15 +0.94 SA No data No data 

{ No data } 

No data No data 

+10 +0.62 0.5 ± 0.11 (6) 0.86 ± 0.09 (3) 0.48 ± 0.05 (5) 

{ SA } 

0.52 ± 0.06 (3) 0.64 ± 0.11 (2) 

+5 +0.31 0.64 ± 0.1 (4) No data No data 

{No data} 

No data No data 

-5 -0.31 0.88 ± 0.04 (2) No data No data 

{No data} 

No data No data 

-10 -0.62 0.87 ± 0.07 (7) 1.02 ± 0.08 (6) 0.76 ± 0.07 (6) 

{0.56 ± 0.01 (2)} 

0.89 ± 0.02 (4) 0.84 ± 0.09 (4) 

-15 -0.94 0.9 ± 0.1 (5) No data No data 

{No data} 

No data No data 

-30 -1.88 

 

1.12 ± 0.1 (5) 1.16 ± 0.11 (5) 0.97 ± 0.05 (4) 

{0.84 ± 0.02 (2)} 

1.14 ± 0.04 (4) 1.02 ± 0.09 (3) 

-50 -3.12 

 

1.31 ± 0.1 (5) 1.27 ± 0.12 (5) 1.12 ± 0.04 (7) 

{1.00 ± 0.04 (2)} 

1.29 ± 0.07 (2) 1.14 ± 0.13 (3) 

-70 -4.38 1.24 ± 0.12 (16) 1.39 ± 0.1 (5) 1.26 ± 0.03 (7) 

{1.14 ± 0.06 (2)} 

1.38 ± 0.06 (2) 1.23 ± 0.11 (3) 

-90 -5.62 1.39 ± 0.1 (15) 1.42 ± 0.09 (4) 1.4 ± 0.07 (6) 

{1.22 ± 0.04 (2)} 

1.47 ± 0.03 (3) 1.28 ± 0.1 (3) 

-100 -6.25 1.29 ± 0.17 (9) 1.48 ± 0.1 (4) 1.39 ± 0.05 (4) 

{1.38 ± 0.06 (2)} 

1.48 ± 0.08 (3) 1.34 ± 0.08 (3) 

-120 -7.5 1.5 ± 0.03 (6) No data No data 

{1.37 (1)} 

No data No data 

-150 -9.38 1.62 ± 0.15 (2) No data No data 

{1.56 (1)} 

No data No data 

 

Table 6: Average propagation velocities vE  of the planar wave front under electric field intensities E in different 

solution mixtures. The number in parenthesis is the number of experiments done. SA means wave Stopping and 

Annihilation 
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 The average propagation velocities  vE : X  ±  σn-1  given in Table 6 are calculated from  
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where  X is average or mean, xi  is the ith data point, n is  the number of data points or the 

number of experiments done, and σn-1  is the  standard deviation. 

 

The dependencies of the propagation velocity on the electric field intensity for planar waves 

shown in Fig. 25 are non-linear. Waves in all solution mixtures are accelerated in the negative 

field. For field intensities lower  than –3 V cm-1 the propagation velocities for planar waves in 

the solution mixture I (reference) reach an approximately constant value, that is 1.31 ± 0.06 

mm/min, however, this saturation effect is no longer valid at very high field intensities. For 

example, in the experiment done at  –300 V or –18.75 V/cm (I ≈ 5.8 mA) we found that the 

propagation velocity of the wave increased from  0.64 mm/min to 2.55 mm/min. Positive 

electric fields decelerate the wave propagation and this deceleration is progressive upon 

increasing the value of the field intensity.  

 

Intensities equal to or higher than 1.88 Vcm-1 were found to annihilate the planar  waves.  The 

existence of  an annihilation field is strong evidence for a true electrical effect on the BZ 

waves.  Feeney et al. [Fee81] proposed that the annihilation field EA is obtained when ferriin 

of electrical mobility M is driven by the field at an ionic drift velocity MEA equal to that of the 

field-free propagation velocity of the wave v0. We estimate theoretical EA ranges by using  M 

calculated from Eq. 7 at 25 oC and extreme dilution in aqueous solution, i.e. 0.0007041 cm2 V-

1s-1, and using v0 given in Table 5 we obtain theoretical EA ranges for solution mixtures, they 

are I: 1.63 ± 0.21 V/cm; II: 2.25 ± 0.21 V/cm; III: 1.47 ± 0.21 V/cm; IV: 0.80 ± 0.05 V/cm; 

V: 1.70 ± 0.14 V/cm; VI: 1.80 ± 0.16 V/cm. We can see that experimental values of EA given 

in Table 6 lie closely to the theoretical EA ranges. 
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Figure 25: The dependences of the average propagation velocity vE  on the electric field intensity E plotted from 

the data in Table 6 for planar waves in  different solution mixtures: (a) for [ferroin] = 0.5 mM, different [PG]; (b) 

for [PG] = 8 mM, different [ferroin]. Point A denotes the annihilation field intensity, beyond which  planar 

waves do not exist.  At  A = + 0.62 V/cm for solution mixtures IV (14 mM PG) was also observed.  
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4.2.2 The determination of the mobility of the bromide ion 

 
Following theoretical considerations (see Section 2.2) we approximated the measured 

dependencies of propagation velocities for planar waves in the reference solution mixture in 

the range of  small electric field intensities from – 0.94 V cm-1 to +0.62 V cm-1 by a linear 

relation vE = v0 + µE, where vE and v0 are the wave velocities with and without imposed field, 

respectively, as shown in Fig. 26. Generally, for a chemical excitable system, the quantity µ 

plays the role of an “effective mobility” in that the effect of a small field on the wave velocity 

is the same as if “all ions” had a mobility µ and the field-induced change in the velocity was 

just shifted by the ionic speed μE [Sch79]. In the work [Góm97, Vié96] the two-variable 

Oregonator model for the classical BZ reaction was considered to describe the chemistry, and 

it was shown that the quantity μ can be associated with the mobility of bromide ions. The 

measurement of the electric field dependence of the propagation velocity was suggested and 

tested on the BZ waves as a method to determine the mobility of the activator species HBrO2 

that is equal to the bromide ion mobility. They found that µ = (2.14 ± 0.08) x 10-4 cm2 V-1 s-1  

[Vié96] in a silica gel medium at 20 oC with [H2SO4] = 0.17 M, [NaBrO3] = [MA] = 0.15 M, 

and [ferroin] = 8 mM  (Г = 1.126 M ≈ 2 times of Г of the solution mixtures employed for this 

study) in the field intensity from –1 V/cm to +1 V/cm. 
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Figure 26:  Approximation of the planar wave velocity dependence on small E by the linear relationship vE = v0 

+ μE. The correlation coefficient of the linear fit is 0.8791 (or linearity is  87.91%). Solution mixture I. 
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With the linear fit of the above equation to our velocity data for planar waves shown in Fig. 

26, the  value of bromide mobility in the reference solution mixture is (4.54 ± 1.23) x 10-4 cm2 

V-1 s-1 (This value is slightly different from the value given in Table 7 below because of more 

data points.) and Dbromide ion / T = (3.91 ± 1.06) x 10-8 cm2 s-1 K-1 (calculated from Eq. 7). The 

experimentally found value is in the same order of magnitude as the tabulated value of 

bromide ion mobility in an infinitely diluted aqueous solution at 25 oC, i.e. 8.09 x 10-4 cm2 V-1 

s-1 [Atk98]. Considering that the ionic mobilities decrease with increasing concentration of 

ions (and also viscosity of the medium [Kuh00, Old94]) because the ionic interactions 

become more important [Ham98], the agreement between experimental and tabulated values 

is reasonably good.  

 
Solution Mixture 

Number 

[PG] (mM) 

 

[Ferroin] (mM) 

 

v0  (mm/min) µbromide ion  

(x 10-4 cm2/V.s) 

R 

I (reference) 8 0.5 0.687 ± 0.002 4.954 ± 0.076 0.9999 

II 5 0.5 0.943 ± 0.005 2.141 ± 0.149 0.9976 

III 11 0.5 0.62 3.764 1 

V 8 0.28 0.708 ± 0.006 4.903 ± 0.174 0.9994 

VI 8 0.8 0.750 ± 0.01 2.634 ± 0.379 0.9898 

 
Table 7: Bromide ion  mobilities in different solution mixtures obtained from slopes of  the linear relationship: 

v0 + μE  = vE   in Section 2.2 at E = 0, -0.62, and +0.62 V/cm (data from Table 6).  R  is the correlation 

coefficient of linear regression.  

 

Comparison with the reference solution mixture in Table 7 shows that either decreasing [PG] 

or increasing [ferroin] significantly decreases the bromide ion mobility. Possible causes are 

not only the ionic interactions but also the increasing viscosity of the solution mixture 

(however, was not measured) since the Stokes-Einstein relation [Kuh00, Old94] (see also Eq. 

7) which accurately describes the behaviour of ions migrating through liquids having the 

viscosity coefficient η (in kg.m-1s-1 ) and it is given by   

,
6 E

s
a
ez i

i

i
i ==

πη
µ                                                                                                                     (34)   

where ai  is the hydration radius of the ith ion, i.e. the thickness of a sheath of water molecules 

surrounding  the ion and e is the fundamental charge of electron. Calculated abromide ion  is ≈ 

117 pm for ηpure water = 8.937 x 10-4 kg.m-1s-1 [Old94] and  the electrical mobility of bromide 

ion at 25 oC [Atk98] mentioned above. 
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4.2.3 Wave behaviour in the electric field  
 

The effects of applied electric fields on the spatial longitudinal profile of the planar wave in 

terms of the intensity of the light transmitted through the cuvette are illustrated in Fig. 27. The 

wave propagates from left to right, converting the unreacted medium from the reduced state 

(low ferriin concentration) to the oxidized or excited state (high ferriin concentration) and 

then back to the reduced state in the refractory region.  

 

 
                                          (a)                                      

                                                                       (b) 

                             
 
                             
  
       
Figure 27: Comparison of the spatial longitudinal profiles of waves in the reference solution mixture 

propagating (a) in the zero (solid line) and negative (U = -10 V, E = -0.62 V cm-1, I ≈ 0.2 mA, dashed line) and 

(b) in the zero and positive (U = 10V, E = 0.62 V cm-1, I ≈ 0.2 mA, dotted line) fields. F denotes the wave front, 

the labels ur, exc, and rf denote the unreacted, excited and refractory regions, respectively. The grey level 

corresponds to the ferriin concentration.  

 
 

                                       rf                     exc        ur     

F 
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The maximum of the ferriin concentration in the excited region was observed to be 

approximately the same for zero and negative fields and a little lower for positive fields. 

There was no significant difference observed in the slopes of the wave fronts. The most 

pronounced differences occur in the refractory regions: there the ferriin concentration of the 

wave propagating in the negative field lies above the ferriin concentrations of the zero and 

positive field waves. The difference between the level of the ferriin concentration of  the zero 

and the negative field refractory regions was observed to be more significant at larger 

negative fields.  
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Figure 28:  Phase diagram showing  the observed dynamical phenomena induced by the positive electric field. 

D: Deceleration, A: Annihilation, and R: Reversal.  Scenario 1: applying the positive field only. Scenario 2 {in 

brackets}: applying the negative field for the first 3 min and then changing the field polarity.  

 

When a propagating wave is exposed directly to the positive field, one observes its slowing 

down or its annihilation depending on the magnitude of the electric field intensity. When we 

first expose the propagating  wave to the negative field and then switch the polarity to the 

positive one then, after changing the polarity, the wave can also undergo a reversal of its 

direction of propagation. The changing of [PG] or [ferroin] affects the occurrence of the wave  

reversal in the positive field. As seen in Fig. 28, by increasing [PG] and keeping [ferroin]  

constant (0.5 mM) at [PG]/ferroin] = 22, the wave reversals can occur at low U (equal to or 
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higher than 50 V), while at lower U (30 V) the wave always annihilates without a new wave 

emerging from its refractory tail. By decreasing [ferroin] and keeping [PG] constant (8 mM) 

at [PG]/[ferroin] = 28.6, the wave reversal can occur without applying the negative field 

before, but U must be high enough (equal to or higher than 90 V but less than 150 V because 

we found that the scenarios: A{R} appear again at U = 150 V). Scenarios observed at 

[PG]/[ferroin] = 10 are the same as scenarios observed at [PG]/[ferroin] = 16 (the reference 

solution mixture). In addition, we do believe that  the scenarios: A{A} would be the last 

scenarios observed again after the scenarios: A{R} in all solution mixtures at higher  U  

because we observed  the scenarios: A{A} in the reference solution mixture at U = 150 V, 

200 V, 250 V, and 300 V. (It should be noted that  wave annihilation  for the scenario 2 has 

occurred in some cases, in some others  wave reversal at an intermediate voltage of 50 V and 

150 V occurred.)  Positive electric field effects on the waves in the solution mixture IV were 

not studied in detail.  

 

The process of  wave reversal observed at U = 70 V or E = 4.38 V cm-1 is illustrated in the 

series of images of Fig. 29.1a and the corresponding spatial profiles of the wave (Fig. 29.1b). 

Time t = 0 shows the wave at the moment, when the field polarity was changed from negative 

to positive. Since the field used is above the annihilation value, the original wave vanishes, 

i.e. its front becomes more and more dispersed. At the same time the ferriin concentration in 

the refractory region decreases from the level it had in the negative field to the new level 

corresponding to the positive field (according to Fig. 27b). During this process, a new wave 

front emerges (at some time instant between t = 55 s and 155 s) in the refractory tail, close 

behind the excited region of the original wave. At time t = 155 s the front of a new wave is 

quite well defined and this new wave adopts progressively a “normal” spatial profile, as it 

propagates to the left. In fact, we can look at the process of reversing the direction of the wave 

propagation as a “back firing” of a new wave from the refractory tail of the original one that is 

simultaneously vanishing. A time-space plot showing reversal of the planar wave in the 

solution mixture V is illustrated in Fig. 29.2. Reversal occurs by direct application of the 

positive field intensity  of  6.25 V/cm. The reversed wave propagates to the positive electrode 

, while the original wave annihilates. 
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(29.1) 

 
                          (a) 
 
                                   (1)  t  =  0      

                                                                       (2)  t  =  55 s     

                                                                       (3)  t  =  155 s      

                                                                       (4)  t  =  305 s    

                                    
 
                      (b) 

                           

(29.2)                                    

 

                  

 

 

 

Figure 29:  Reversal of the direction of wave propagation of the planar wave. 

(29.1) The reference solution mixture at E = 4.38 V cm-1 (I  ≅ 1.2 mA). (a) Time series of images, the portion of 

the cuvette shown is 1.0 cm. (b) Spatial profiles of ferriin concentration (expressed in grey level) corresponding 

to the images in (a). 

(29.2) The solution mixture V at E = 6.25 V cm-1 (I  ≅ 1.8 mA).  Time-space plot is shown.  Time runs from the 

top (0 s) to the bottom  (595 s) of the figure. Space runs from the left end (0 cm)  to the right end  (2.0 cm) of the 

figure. 
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4.3 Effect of switching the field polarity: multiple reversals 
 

In this section a perturbation to the planar wave in the form of the alternating electric field of 

very low frequency by switching the polarity of D.C. electric fields is studied.  The summary 

of our results is given in Fig. 30.  

                                                                                                                                                                                                                                                        

                  
 

Figure 30: Number of reversed waves as a function of the window size (d) and the applied voltage (U) obtained 

in each experimental run for 8 mM PG (or 11 mM PG).  

 

We found that multiple reversals of a wave are possible for a limited range of control 

parameters, i.e. the voltage applied and the size of the observation window. For the 8 mM PG 

reaction medium, the multiple reversals of a wave occur in observation windows of sizes 0.8 

cm and 1.2 cm and in the range of voltages from 70 to 100 V. In either shorter or longer 

windows and at higher voltages only one reversal has been observed. The voltages U ≤ 50 

V cause the first wave to annihilate upon changing the electric field polarity, but no reversal 

occurs. The number of reversals is mostly three (10 experiments); in one experiment  four 

reversals were observed. A slightly different range of values of the control parameters was 

found to be suitable to evoke multiple reversals for the 11 mM PG reaction medium. The 

range of voltages is narrower (from 60 to 80 V) and shifted towards lower values, whereas the 

range of observation window sizes is broader including the 0.4 cm window in addition to the 

0.8 and 1.2 cm windows.  
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As we can see from Fig. 30 the number of reversals observed in different experimental runs 

under the same values of control parameters is not well reproducible, most likely due to the 

batch experimental arrangement. The consumption of reactants during a batch experiment is 

probably responsible for the limited number of reversals observed. 

 

 
                                      vU (mm/min) U (V) I (mA) 

 

HJ (mW) 

0 1 2 3 

0 0 0 0.69 ± 0.09 (57) 

0.60 ± 0.09 (20) 

- 

- 

 - 

- 

- 

- 

50 0.8 40 1.11 ± 0.04 (3) 1.12 ± 0.15 (3) - - 

60 1.0 60 1.23 ± 0.12  (11)  

1.18 ±  0.03 (5) 

1.11 ± 0.08  (5) 

1.22 ± 0.08 (5) 

- 

1.09 (1) 

- 

1.09 (1) 

70 1.2 84 1.19 ± 0.13  (9) 

1.28 ± 0.04 (3) 

1.30 ± 0.14  (9) 

1.24 ± 0.10 (3) 

1.14 ± 0.08  (2) 

1.15 (1) 

1.32 ± 0.15  (2) 

1.15 (1) 

80 1.4 112 1.23 ± 0.10  (14) 

1.32 ± 0.04 (2) 

1.34 ± 0.17  (14) 

1.36 ± 0.12 (2) 

1.23 ± 0.02  (3) 

1.06 (1) 

1.41 ± 0.02  (3) 

1.14 (1) 

90 1.6 144 1.37 ± 0.09  (13) 

1.37 ± 0.14 (3) 

1.34 ± 0.15  (13) 

1.35 ± 0.12 (3) 

1.23 ± 0.21 (2) 

- 

1.45 ± 0.23  (2) 

- 

100 1.8 180 1.27 ± 0.16  (8) 

1.46 ± 0.16 (3) 

1.37 ± 0.17  (8) 

1.52 ± 0.19 (3) 

1.2 ± 0.17 (4) 

- 

1.5 ± 0.14  (4) 

- 

120 2.1 252 1.5 ± 0.04  (5) 1.47 ± 0.14  (5) 

 

 -  - 

 

 

Table 8: Average propagation velocities vU (i.e. vE ) of the first waves (0) and the first (1), second (2), and third 

(3) reversed waves propagating to the positive electrode (i.e. in the negative field) for different applied voltages 

U.  Medium with 8 mM PG and medium with 11 mM  PG (bold numbers). [ferroin] = 0.5 mM. The number in 

parenthesis is the number of experiments (data) done. The approximate electrical current  I  is constant during 

the experiments and HJ denotes the electrical power or Joule heating (see Eq. 31). 
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 (a)            

                           
(b) 

                          
                            

Figure 31: (a) Time-space plot showing zigzag pattern of four reversed waves in the medium with 8 mM PG. U 

= 80 V (I ≅ 1.4 mA),  d = 1.2 cm. The polarities of the electrodes are marked on the time axis. The dark region 

ahead of the first (0) wave is the unreacted medium with high ferroin concentration. The numbers shown denote 

the first (0) and four reversed (1-4) waves and their  propagation velocities (in mm/min) are 1.18 (0), 1.47 (1), 

1.21 (2), 1.39 (3), 0.97 (4), respectively. The zero field propagation velocity of the first wave is 0.68 mm/min.  

(b) Profiles of transmitted light intensity represented by grey levels extracted from the time-space plot (a) at the 

positions: 0.1 cm (dotted line), 1.1 cm (solid line). T0,1, T0,2, T1,3, and T2,4 are the excitation periods between two 

respective waves.  T0,1 = 17.1 min, T0,2 = 19.8 min, T1,3 = 20.0 min, and T2,4 = 20.8 min. 
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When we investigate closely the course of the experiment with four reversals, illustrated in 

Fig. 31, we can detect an asymmetry in the system behaviour. First, the propagation velocities 

of odd reversed waves (propagating to the left) are larger than those of even waves 

(propagating to the right). This tendency was observed in all cases with multiple reversals of a 

wave as documented in Table 8. (Note that the propagation velocity of reversed waves was 

found to be constant throughout the observation window, although the ferroin concentration 

in front of the wave had been continuously changing  in time.) 
 

Second, there is a certain asymmetry in the transmitted light data, corresponding to the   

concentration of ferriin (and ferroin) in front of the waves propagating to the left and right, as 

shown in Fig. 31, at locations close to the ends of the observation window. The sharp increase 

in the grey level corresponds to the excitation of the medium at the chosen location, i.e. to the 

excitation front of the wave just passing through that location. The recovery of the medium 

from the excitation (indicated by the slope of the decaying parts of the grey level profiles) 

begins at both chosen locations with the same rate, but a fast jump downward occurs at 1.1 

cm later during the recovery period. Thus, close to the ends of the observation window, the 

ferroin concentration in front of the even reversed waves is much higher than that in front of 

the odd reversed waves.  This may be due to the electro-migration and diffusion flows of 

ferroin to the reversed wave fronts. 
 

Third, an asymmetry was also found in the location at which the excitation fronts of reversed 

waves emerge in the wake of the wave that has arrived at the end of the observation window. 

The new excitation fronts become visible at a location around 1.0 cm for the reversed waves 

propagating to the left and at a location around 0.15 cm for those propagating to the right.   

 

The dependence of the excitation periods  on the voltages applied to the system in the case of 

three reversals, is shown in Fig. 32 (see also Table 9). The definition of period T0,1 is different 

from the definition of periods T0,2 , T1,3, and T2,4  since T0,1 is the period between the first  

wave passing from the left to the right and the first reversed wave  passing from the right to 

the left, while other periods are measured between reversed waves propagating in the same 

direction.      
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U (V) T0,1 (min) T0,2 (min) T1,3 (min) 

70 12.0, 16.3 

- , 16.0 

14.7, 18.8 

- , 18.8 

15.2, 19.6 

- , 20.0 

80 10.5, 16.1 

9.6 ,  - 

12.6, 18.7 

12.6 ,  - 

12.6, 19.5 

13.2 ,  - 

90 8.9, 14.2 10.5, 16.4 11.5, 16.9 

100   1st Experiment 

  2nd Experiment 

9.9, 16.4 

9.9, 15.8 

12.3, 19.3 

12.3, 17.9 

12.6, 19.8 

12.6, 18.5 

 
Table 9: Excitation periods of three reversals for 0.8 cm window size, 1.2 cm window size. Periods T0,1 and T1,3 

of both window sizes were evaluated from  profiles extracted from the time-space plots at the reversal position: 

0.1 cm.  T0,2  for 0.8 cm and 1.2 cm window sizes were evaluated from  profiles extracted from the time-space 

plots at the reversal positions: 0.7 cm and 1.1 cm, respectively.  Medium with 8 mM PG (the reference solution 

mixture). The bold numbers are the values for medium with 11 mM PG (the solution mixture III). 

 

The tendency: T1,3 > T0,2 > T0,1 is assumed to result from  the consumption of reactants in the 

solution mixture (or aging effect) in the closed system. At a longer period of switching the 

electric field polarity, as defined by the window sizes, the excitation periods  are also longer. 

The excitation periods drop down to the lowest value at 90 V in both window sizes. 
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Figure 32: Excitation periods Texc. as a function of the applied voltage U plotted from the data in Table 9 for the 

medium with 8 mM PG. Open and full symbols are for 0.8 cm and 1.2 cm window sizes, respectively, up 

triangle: T0,1 square: T0,2 , and down triangle: T1,3. Note that excitation periods of the first experiment at 100 V 

for 1.2 cm-window size are plotted. 
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The influence of the ferroin concentrations on multiple wave reversals is not studied in detail 

but in one experiment done at U = 90 V and d = 0.8 cm for the solution mixture V ([ferroin] = 

0.28 mM), we found three reversals without previous acceleration of the first wave by the 

negative field. 

 

4.4  Influence of front shapes 
 

The behaviour of wave fronts with different shapes is very complicated. Here are some of 

their properties which we observed in the experiments,  

 

1. The generation of shaped waves was random and uncertain and depended on the pyrogallol 

concentration. When we used short stoppers (see Sections 3.1 and 4.1), V-shaped wave fronts 

were more often found at 5 mM PG, as shown in Table 10. Planar fronts prevail at higher 

pyrogallol concentration.  

 
                                          v0 (mm/min)  [PG] mM n 
Planar shape U-shape V-shape 

5 37 0.75 ± 0.05 (24%) 
 

- 2.99 ± 0.55 (76%) 
 

8 (reference) 
 

91 0.67 ± 0.08 (61%) 
 

1.03 ± 0.13 (30%) 
 

1.66 ± 0.29 (9%) 
 

11 34 0.59 ± 0.08 (76%) 
 

- 1.94 ± 0.37 (24%) 
 

 
 

Table 10: Percentage found  for different shapes of the wave fronts and the average zero-field propagation 

velocities v0  related to the pyrogallol concentrations. n denotes the number of experiments done. [H2SO4] = 0.15 

M, [NaBrO3] = 0.10 M, and [ferroin] = 0.5 mM. 

 

The influence of ferroin concentrations on the occurrence of the shaped wave fronts is not 

known in detail, but we found V-shaped wave fronts in the solution  mixture VI ([ferroin] = 

0.8 mM) in some experiments, too. 

 

2. The refractory part of the V- shaped wave front is  shallower than that of the planar wave 

front (i.e. the system recovers more slowly) and the slope of the wave front  (between 0.85 cm 

and 0.9 cm) is also less steep, as shown  in Fig. 33. 
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Figure 33: Ferriin concentration profiles represented by grey level of V-shaped wave ( v0 = 3.19 mm/min, dot 

line) and planar wave (v0 = 0.77 mm/min, solid line) observed in solution mixture II ([PG] = 5 mM).  Short 

stoppers are used.  

 

3. In some experimental runs, a U- or V-shaped wave can become planar during the 

propagation, as illustrated in Fig. 34. The change of the shape is accompanied by a 

pronounced decrease of the propagation velocity. The change to the planar shape was 

observed both with and without applied electric fields. The opposite phenomenon, the change 

from a planar to a  U- or V-shaped wave, was never observed.  

  
 
                                       (1)  t  =  0           

                                                                                                                                                                                
                                     (2)  t  =  40 s         

                                 
                                     (3)  t  =   80 s                                                                                                              

                                                                 (4)  t  =  120 s       

                                 
                                                                                                                                                        
 

Figure 34:  Transformation of the U-shaped wave (t = 0, vE = 1.82 mm min-1) to the planar wave (t = 120 s,  vE 

= 1.17 mm min-1) in negative field of intensity E = - 4.38 V cm-1, I ≈ 1.2 mA. The portion of the cuvette shown 

is 0.4 cm in length. 

   ⊝                                                                                                 ⊕  
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4. These shaped wave fronts behave the same way as the planar wave front both in the 

negative and the positive field,  and the propagation velocity for a given electric field and 

without an electric field vary in a very broad range. It is rather difficult to identify the exact 

relationship between the propagation velocity and the electric field intensity  (especially the 

V-shaped wave front observed in the solution mixture  II ([PG] = 5 mM)). However, the 

saturation-type relationship was observed for the U-shaped wave front as shown in Fig. 35. 

Propagation velocity is almost constant  at 1.63 ± 0.12 mm/min for  E <  -3 V/cm and the 

annihilation field (point A) occurs at E = +0.94 V/cm (the same as planar waves, see Table 6). 
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Figure 35:  The dependence of the propagation velocity on the electric field intensity of the U-shaped wave 

front . 

 

5. The reversal of the V-shaped wave front is also very complicated. At t = 1 min, the V-

shaped wave partially annihilates at its wings [Góm97, see also Fig. 11] but  it continues  

propagating and therefore it looks like splitting phenomenon, as illustrated in Fig. 36. The  V-

shaped reversed wave is obtained after changing the field polarity (see also Fig. 29.1). In 

some experiments this reversed wave was found to be transformed again to the planar wave 

with increasing its velocity when the field was applied long enough. 

 

 

 

 

A 
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(1)  t = 0 min 

 
(2)  t = 1 min 

 
(3)  t = 3 min 

 
(4)  t = 5 min 

 
(5)  t = 7 min (original figure) 

 
(5)  t = 7 min (after  adjusting contrast and brightness) 

 
 
Figure 36: The reversal of the V-shaped wave in the positive  field of intensity  E = 4.38 V cm-1 , I ≈ 1.2 mA. 

Solution mixture  II ([PG] = 5 mM). The portion of the cuvette shown is 1.0 cm in length. The propagation 

velocities of the original V-shaped wave and the reversed V-shaped wave to the positive electrode are 3.84 

mm/min and 0.47 mm/min, respectively.   

 

6. Multiple reversals of these shaped wave fronts observed in the reference solution mixture 

vary from 2 to 5 reversals. At 90 V, U-shaped wave and V –shaped wave were transformed to 

the planar waves in the negative field (see Fig. 34) and then  performed 6 reversals in 1.2 cm 

window size (see also APPPENDIX C) and  5 reversals in 0.4 cm window size, respectively. 

 

7. No U and V-shaped wave fronts were observed, if the long stoppers (see Sections 3.1 and 

4.1) were used. 

 
 
  

   ⊕                                                                                                                                                                                                      ⊝    
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________________________________________________________ 
 

CChhaapptteerr  55  

DDiissccuussssiioonn 

________________________________________________________ 
 
 

At first of experimental results, we measured the dependence of the wave velocity on the 

concentrations of pyrogallol and ferroin. As in the case of the classical BZ system with 

malonic acid as organic substrate [Fie74b, Woo85],  the propagation velocity for a given 

excitability determined by [H2SO4] = 0.15 M and [NaBrO3] = 0.10 M, is almost independent 

of the ferroin concentration but depends on the pyrogallol concentration [Sri98a, cf. Table 5], 

because pyrogallol is involved in the generation of HBrO2 also, which is not the case with 

malonic acid in the classical BZ system. The qualitative properties of the waves in the 

pyrogallol system, such as dependence of the amplitude on the ferroin concentration and 

dependence of the degree of recovery behind the excitation region on the pyrogallol 

concentration (see Fig. 24) appear to be the same as in the classical BZ system, when either 

[MA] or [catalyst] is varied and other reactant concentrations are kept constant [Mor91, 

Nag89b]. The investigated system with pyrogallol substrate forms a medium of very low 

excitability, in which a pulse wave is characterized by the flat maximum of ferriin 

concentration [Mor91, Zha93b] in the oxidized region and the very slow decay back to the 

reduced state (cf. Fig. 27).   

 

Before turning to the discussion of the major electric field-induced effects on the waves in the 

pyrogallol system, we wish to comment on  intriguing features of wave fronts of different 

shapes: planar, U-, and V-shapes (cf. Fig. 23) which they were observed in the experiments 

with long and short stoppers, and it is  suggested that the global convection in the capillary 

tube plays an important role and that the electric field can overcome the convective effect in 

the sense that the qualitative influences of the field on U and V shaped waves (see Section 

4.4) are the same as the qualitative influences of the field on planar waves. U and V shaped 

waves are caused by the gradient of hydrostatic pressure Ph behind the wave front. This 

pressure Ph (in  N/cm2) = ρC(gh) comes from the average density ρC of the solution caused by 

the chemical composition of the reaction solution below the short stopper at both vertical 

filling chambers (see Fig. 21), where g is the standard acceleration of free fall under gravity, 
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980 cm.s-2 , and h is the solution height ( ≈ 2.0 cm). Generally, the ferroin catalysed  BZ 

solution in the oxidized state has a higher density than that of the reduced state in order of 10-5 

g/ml [Poj90], because of differences in the molar volumes of intermediates, catalysts, and 

products formed in the solution. Furthermore, a periodic change of the viscosity and the 

density of the BZ solution  was also recently found [Yos04]. It was shown that the viscosity 

of the BZ solution containing high ferriin concentration is also high [Yos04], because the 

change of the electric charge of the catalyst induces the variation of the interaction between 

the catalyst and its surrounding water on the molecular scale and this change is then 

propagated to the bulk scale. The average convective flux density  <JC,i>  of the ith chemical 

species in the capillary is given by Poiseuille ’s Law [Old94]:  

 

,
8, dx

dPAC
CvJ hi

ixiC πη
−

==                                                                                                     (35) 

 

where vx is the fluid flow velocity along the x-coordinate; it is usually negative, Ci is the 

concentration of the ith chemical species,  A (or A mentioned in the former text ) is the inner 

cross section of the capillary =  0.5 x 0.5  mm2, and η is the viscosity coefficient of the 

solution. dPh/dx is the pressure gradient causing the global hydrodynamic convective flow in 

the capillary tube. Poiseuille ’s Law is obeyed only if dPh/dx is sufficiently small that so-

called “laminar flow” (or streaming flow) occurs [Old94], see also [Lec03]. The slope of the 

wave front shown in Fig. 33 of the V-shaped wave that appears to be lower than that of the 

planar wave, is one clue showing that there is a force or a pressure exerting on the solution 

behind the wave front  and thus the wave front is deformed to V-shape and the propagation 

velocity is higher. When we decrease [PG]  (see Table 10), this effect is more pronounced. 

The U-shaped wave may be somewhat lying between the V-shaped  and the planar wave 

(depending on the magnitude of dPh/dx ?). Numerical simulations also show that convection 

always plays a role in increasing  the speed of  BZ waves propagating in  a horizontal slab of 

0.5 mm width [Wu95].  

 

Another possibility is that the V-shaped wave is a kind of  phase wave or  phase-diffusion 

wave [Ros88], because of its very rapid propagation and the fact that the ferriin concentration 

gradient behind the wave front is shallower than in the case of the planar trigger wave (cf. 

Fig. 33). However, the arguments in this work referring to the effects of the substrate on the 

electric field-induced phenomena on propagating waves are not  predominantly affected by 
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these different shapes of the wave front, but should be considered as a major topic for further 

research. 

 

The effects of applied electric fields on the propagation velocity of PG waves account for 

acceleration in the negative field and deceleration in the positive field which can be explained, 

as in classical BZ system, by the crucial role of bromide ions [Dut02, Gil92, Orb78, Orb79]  

in switching between oxidizing and reducing reaction steps. In the negative field the Br- is 

removed from the region ahead of the wave, which enhances the wave propagation, whereas 

in the positive field the bromide migrates from the unreacted region to the medium just ahead 

of the wave front. Thus, the start of autocatalysis is suppressed and hence the propagation 

speed is lowered. When the migration flow of the Br- exceeds the critical value (at the critical 

positive field intensity), the onset of autocatalysis is suppressed completely and the wave 

annihilates.  

   

From a qualitative point of view, the effects of  imposed electric fields on the propagation 

velocities are principally similar to what has been observed in the classical BZ reaction 

[Fee81, Šev83]. A difference arises in that for the classical BZ waves the propagation velocity 

increases progressively with increasing negative field [Šev83], while in the PG system the 

propagation velocity reaches a constant value (cf. Fig. 25). Such a saturation effect as 

observed in the PG system was already proposed by Ortoleva, who associated different 

possible effects of applied fields to the differences in reaction mechanisms [Ort92]. 

 

We can also notice the remarkable differences in the effects of positive fields both on the 

propagation velocity and other electric field-induced properties of BZ and PG waves. While 

positive fields were observed to affect the propagation velocity of BZ waves only slightly in a 

quite large range of magnitudes of intensities (up to 20 V cm-1 when the wave annihilates) 

[Šev83], the velocity of PG wave propagation is very sensitive to positive fields and 

annihilation occurs at very low fields (cf. Table 6 and Figs. 25, 28). 

 

Numerical results of scenarios observed under direct application of the increasing positive 

electric field intensity in the ZBKE model [Šev96a]  are the same as scenarios  observed in 

our PG system (cf. Fig. 28), i.e. they are  the transitions: Deceleration → Annihilation  for j = 

0.50 and Deceleration → Annihilation → Reversal for j = 0.40 and 0.45, where j is the 

number of moles of bromide ions produced (see also Section 2.3.1). A wave reversal in the 
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PG system was observed, when the wave was first accelerated in the negative field and then 

exposed to the positive field. The wave reversal was observed for relatively high values of the 

field intensities, while for small intensities wave annihilation occurred (cf. Fig. 28). In the 

classical BZ system with malonic acid and ferroin, single wave reversal (and the wave 

splitting and wave annihilation) was also observed under the condition that a wave was first 

accelerated in the negative field and then exposed to the positive field [Šev92]. However, the 

occurrence of  wave reversal and annihilation, upon increasing the electric field intensity was 

in opposite order as compared to the PG system: the wave reversal was observed at lower 

field intensities than the wave annihilation. 

                       

Based on the chemical mechanism of the PG-ferroin coupled system shown in Table 1, the 

important autocatalytic steps of both activating species are  

 

BrO2
 .  +  Q  →   HBrO2 +  Q .  

 
ferroin2+ + BrO2

 .  +  H + ↔ HBrO2 +  ferriin3+ 

 

Rate constant  =  5.0 x 106  dm3mol-1s-1  
 
Equilibrium constant  =  8.99  dm3mol-1. 
  

We can see  that Q is a neutral molecule, whereas ferroin is a charged ion. Thus, Q cannot 

migrate under the influence of an  electric field. Furthermore, Q should be dominant in the  

autocatalytic production of bromous acid  because of its irreversible reaction and larger rate 

constant (cf. Table1). Its concentration (derived from the pyrogallol concentration) is higher 

than the ferroin concentration used for this study. These differences between both species may 

play an important role in the electrical field effects which we observed. Since the PG-ferroin 

coupled system has two annihilation points (see Fig. 28), it is most likely  that the system is 

mainly controlled by the pyrogallol-uncatalyzed kinetics at lower positive electric field 

intensities, because the first  wave annihilation point occurs after wave deceleration. There is  

also a question, whether the PG-ferroin coupled system is mainly controlled by the ferroin-

catalyzed kinetics at higher electric field intensities, because the second wave annihilation 

occurs  after wave reversal (as in the classical BZ system with MA as substrate). Therefore, 

we can conclude that the waves in the solution mixtures I, II, III, and VI show dominantly the 

character of the pure PG-uncatalyzed system. The applied negative field shifts the system to 

the new system showing more the character of the pure ferroin-catalyzed system by speeding 

up bromous acid autocatalysis of ferroin. The waves in the solution mixture V show a 

character having equally features of the  uncatalyzed system and the catalyzed system (see 

also Fig. 18).   
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The reaction medium used in this study belongs to the class of “internally” or “chemically” 

coupled systems composed of a “classical” BZ system and of a so-called uncatalyzed bromate 

oscillator (UBO) [Dut02, Gil92]. The system as a whole is still controlled by the 

concentration of bromide that acts as an inhibitor of the excitation and must be reactively 

removed during the recovery phase to make the medium receptive to another excitation. Other 

than in the classical BZ system there are two components activating the autocatalysis in the 

excitation phase - ferroin (as in the classical BZ system) and an intermediate of the quinone 

structure Q [Jwo89, Liu92a, Nag99, Orb95] arising from oxidation of pyrogallol. During the 

refractory phase, both ferroin and the quinone−like intermediate must be recovered [Dut02, 

Gil92] (cf. Table1). 

                    

When an electric field is applied, the voltage used and the duration of the field application 

control the extent of differential mass flow of ionic reaction species by electro-migration and, 

consequently, the spatial redistribution of concentrations of these species. The altered local 

species concentrations change the local course of the reaction and thus can facilitate the 

recovery of the medium and the onset of a new excitation in the wake of an existing wave.  

The difference between the conditions of the occurrence of one wave reversal in the classical 

and in the PG-containing BZ reaction can result from the interplay between the two activating 

species in the latter medium. The coexistence of the same two activating species was assumed 

to be the reason for  the anomalous dispersion curves measured in an UBO system with 1,4 –

cyclohexanedione [Ham01] (see Fig. 20). Since the shape of dispersion curve resides also in 

the state of the refractory phase, it is reasonable to conclude that the quinone-like intermediate 

Q plays an important role in the wave reversal, too. During the wave reversal, as it occurs in 

the classical BZ-system with MA as substrate, the electro-migration of bromide ions from 

behind the excited region towards the positive electrode helps to speed up the recovery of the 

reaction medium behind the excited region by reactions: 8 (cf. Table1) and E  (see Sections 

2.4.1 and 2.4.2),  favour the conditions (reaction 2f, cf. Table 1) for the onset of autocatalysis 

(reactions: 5 and 9f, cf. Table 1) and formation of a new excited front in the wake of the 

propagating wave (see also Section 2.3.4). The supply of bromide ions to the excited region of 

the original wave from the medium in front of it stops the autocatalysis by reaction: 2f (cf. 

Table 1), and causes the excitation front of the original wave to annihilate.  
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In this experimental study we have also shown that a planar wave in the pyrogallol variant of 

the BZ reaction can be reversed multiple times by switching repeatedly the polarity of an 

applied electric field. Multiple reversals were observed in a limited range of the values of 

control parameters: the applied voltage and the size of observation window (cf. Fig. 30). They 

could arise in a similar way as  single wave reversal, but the multiple activating actions are 

controlled by Q as well as ferroin recovered repeatedly (see  reactions:  6 and 8 (cf. Table 1),  

E) at certain distances in the refractory tail of the wave.  

 

                        
       
Figure 37: Spatial profiles of the first reversed waves propagating to the positive electrode. U = 60 V, d = 0.4 

cm, thin line - 8 mM PG, bold line - 11 mM PG.  F denotes the wave front; rc, exc, and rf denote recovered, 

excited, and refractory regions, respectively. 

 

The initial amount of PG (and, consequently, the amount of quinone-like intermediate) affects 

also the range of the control parameters, in which the multiple reversals of a wave can occur. 

This suggests that a fine tuning of the redistribution of reaction species has to be achieved in 

the refractory zone by applying an electric field of both polarities. The spatial profiles of the 

first reversed waves for two different concentrations of PG (see Fig. 37, cf. Fig. 24a) indicate 

that the system with 11 mM PG recovers faster than the system with 8 mM PG.  Thus, under 

these experimental conditions, three reversals could occur in the 11 mM PG system, while in 

the 8 mM PG system the first reversed wave annihilated upon changing the field polarity (cf. 

Fig. 30). 
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________________________________________________________ 

 

CChhaapptteerr  66  

CCoonncclluussiioonn  aanndd  ppeerrssppeeccttiivveess  

________________________________________________________ 

 

Although the main, general tendencies of electric field effects on waves, such as speeding up  

wave propagation by negative fields and slowing down or annihilating waves by positive 

fields, remain the same for both the classical BZ system with malonic acid as a substrate and 

the PG system studied in this thesis, some details in the differences of the dependencies of the 

propagation  velocity and of the occurrence of complex behaviour (wave reversal, splitting 

and annihilation) induced by positive electric fields point to the importance of details in the 

reaction mechanisms involved [Ort92]. 

In the PG system the catalytic pathway of the classical BZ reaction  mediated by ferroin is 

coupled with the „uncatalyzed“ pathway, mediated by pyrogallol. These pathways compete 

not only for the autocatalytic production of HBrO2  but also for the bromide production and 

the relaxation processes acting behind the oxidized region [Gil92, Liu92a, Orb79]. The effects 

of this type of competitive processes in the refractory tail of the wave were assumed to give 

rise to the anomalous dispersion relation in the system with ferroin and the 1,4-CHD as 

organic substrate [Ham01]. Since wave reversal and splitting in applied electric fields occur in 

the refractory region, it is reasonable to assume that the competition between catalytic and 

„uncatalyzed“ pathways can also play a significant  role in the different manifestation of these 

phenomena, when comparing the classical BZ reaction with the PG system investigated here. 

It is interesting to ask, whether this competition for autocatalysis can have an effect on the 

dependence of the propagation velocity on the electric field intensity. These mechanistic 

details should be further investigated by changing appropriately the concentrations of either 

ferroin or pyrogallol, which could shift the system either to the one controlled by ferroin (like 

in the classical BZ system with malonic acid) or to the one fully controlled by the UBO 

mechanism. A first step in this direction has been done (see Discussion).  
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One can conclude from this study that this coupled system has two oscillators, i.e. the PG-

uncatalyzed system and the ferroin-catalysed system. These two existing systems interact 

independently and sometimes mutually, depending on the concentrations of both species and 

the electric field intensity applied to the system. 

     

This study also shows that multiple reversals by switching the polarity of d.c. electric fields 

appear to be similar to the reflection of a reaction-diffusion wave [Ei02, Mid93, Pet94], as 

demonstrated in  Section 2.1.2.  This finding is interesting not only from a scientific point of 

view but also as a new perspective model for the design of electronic systems controlling the 

direction of signal transmission [Tót94]. It is tentative to speculate about any application also 

in other fields of data transmission and data processing [Ger00, Was03]. Although the system 

employed for this study is closed, relatively easily set up, transported, and operated, the 

reactant consumption, however, limits the reproducibilty of the system. During the course of 

each oscillation in the intermediate concentrations, small but nonzero amounts of the reactants 

are consumed, thus providing the overall driving force for the reaction. Therefore, each 

oscillation occurs against a slightly different background concentration of reactants, i.e each 

oscillation is inevitably slightly different from its predecessor and from subsequent excursions. 

It would be worth to design an open (CFUR) [Eps98] capillary reactor [Stö95], since we do 

conjecture that waves arising from this system can keep moving back and forth between the 

ends of the observation window, where the polarity is changed, as long as the fresh reactants 

are  fed into the reactor. 

 

Experimental findings on multiple reversals of pulse waves in  the BZ system with pyrogallol 

as substrate suggest that dissipative systems of the reaction-diffusion type may behave like 

particles under proper conditions. This behaviour reminds properties of solitons in conservative 

systems, but on the other hand, dissipation is crucial for stabilization; we would call them  

“dissipative solitons” [Bod02]. They are supposed to be a practical importance in biology as 

nerve impulses [Asl99, deF97, Fer85]. 
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APPENDIX A : Some Properties of Pyrogallol and Ferroin 
 

Pyrogallol (Pyrogallic Acid, PG) [1] 

IUPAC Chemical Name: 1,2,3-trihydroxybenzene  

Molecular Formula: C6H6O3 

Structural Formula: 

                                             
 
Molecular Weight: 126.11 g/mole 

Properties: White, odorless crystals, melting point 131-133 oC, boiling point 309 oC. 

Becomes grayish on exposure to air and light. Poisonous. Density 1.45 g/ml at 20 oC. 

Sublimes when slowly heated. Solubility in water: 0.4 g/ml (20 oC) [2],  0.6 g/ml (25 oC). 

Strong reducing agent. The aqueous solution darkens or is oxidized on exposure to air, quite 

rapidly when alkaline* [10]. Pyrogallol has 3 acidic protons [3,4] at 3 hydroxyl groups with 

dissociation constants ka, Pka = -log(ka), in aqueous solution at 25 oC : C6H3(OH)3 ↔ 

C6H3(OH)2O- + H+, Pka1 = 8.94; C6H3(OH)2O- ↔ C6H3(OH)O2
2- + H +, Pka2 = 11.08; 

C6H3(OH)O2
2- ↔ C6H3O3

3- + H +, Pka3 = 14 (less reliable). λmax = 240 nm (molar absorptivity 

(εmax) = 907.52 M-1cm-1 (0.638 mM in ethanol or methanol)) [5]. Diffusion coefficient DPG at 

infinite dilution in water [6] follows this relation: log [DPG (cm²/s)] = -1.5655 – (1,068.441/T), 

where T is the absolute temperature in K. DPG(25 °C) = 0.709 x 10-5 cm2/s, DPG(15 °C) = 

0.533 x 10-5 cm2/s.  PH of 5% solution or 0.4 M in water = 4-5 at 20 oC [2]. 

Note [3,4] : Phenol C6H5(OH), Pka = 9.89; Catechol (1,2-dihydroxybenzene, C6H4(OH)2), 

Pka1 = 9.40, Pka2 = 12.8;  MA, Pka1 = 2.847, Pka2 = 5.696. 
*It has been found that the solution of PG in distilled water becomes darkened (yellow-brown) faster than in  
aqueous sulphuric acid when  let the solution stayed overnight. 
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Ferroin [7] 
 
IUPAC Chemical Name: tris(1,10-phenanthroline)iron(II) ion 

Molecular Formula: [C36H24FeN6]2+    (or  Fe(phen)3
2+) 

Structural Formula:  

 
Molecular Weight: 596.4 g/mole  

Properties: Red coloured aqueous solution. This complex  is difficult to be extracted by 

using organic solvents. The standard reduction potentials [4,7,8] for FeL3
3+ + e-   ↔ FeL3

2+ , 

where L is 1,10-phenanthroline (ortho-phenanthroline) in 1.0 M H2SO4 solution and in 

aqueous solution at 25 oC, are reported to be 1.06 V  and  1.18 V, respectively.  

 

 
 
 
 

 
 
 
 

The equilibrium  constant Keq at 25 oC in aqueous solution [8]: 
 
Fe2+ + 3 phen  ↔ ferroin,  Keq = 1020.7 

Fe3+ + 3 phen  ↔ ferriin,   Keq = 1013.8. 
 
Diffusion coefficients  at infinite dilution in water at 25 oC [Šev96a, Šev96b]: 

Ferroin: 0.718 x 10-5  cm2/s; Ferriin: 0.603 x 10-5  cm2/s. 

Corresponding ionic mobility from the Nernst-Einstein relation (see Eq. 7 in Section 2.2):   

Ferroin: 5.589 x 10-4 cm2/Vs; Ferriin:  7.041 x 10-4 cm2/Vs. 

Ferroin: λmax = 510 nm in water, molar absorptivity  εmax = 11,100 cm2/mol [9]. 

Ferriin: λmax = 602 nm in concentrated sulphuric acid, εmax = 870  cm2/mol  [9]. 
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APPENDIX 1B :  
UV-VIS (200-700 nm) Absorption Spectra and Temporal Oscillation 

Profiles 
 

Spectra shown are given for the solution mixture I (reference). Absorbance (Abs) is shown in 

Arbitrary Units (AU). 0.15 M H2SO4  is blank. 
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                                                λmax = 280 nm, Absmax. = 0.67954 = εmaxbc  

                                                εmax = 0.67954/(1cm x 0.008 M)  =  84.94 M-1cm-1 
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0.15 M H2SO4, 0.10 M NaBrO3, 8 mM PG    

(1) : Dark red-brown state. 
(2) : Clear pale yellow state. 

(1) – (2) : Absorbance difference.  
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0.15 M H2SO4, 0.10 M NaBrO3 , 8 mM PG, 0.5 mM ferroin    

(3) :  Clear blue-green oxidized state.  The absorption peak  of ferriin is maximum at around 

600 nm.  

(4) : Clear red-orange reduced state changed from clear red-brown reduced state at the 

beginning. The absorption peak  of ferroin is  maximum at around 510 nm. 

(4) – (3)  :  Absorbance difference.  
 

200 250 300 350 400 450 500 550 600 650 700
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(3) :   
(4) :   
(4) - (3) :   

Ab
s 

(A
U

)

Wavelength (nm)

 

 

 

 

 

 

 



 107 

The reference solution mixture used in the capillary experiments does not show temporal 

oscillations, i.e it is excitable. We detected spectrophotometrically (A) [Q]/[PG] at the violet 

light 420 nm [Sri98b], (B) [ferroin] at the green  light 490 nm, and (C) [ferriin] at the orange 

light 600 nm in a 2.5 ml well-stirred batch system (using PMMA cuvette, 1.25 cm light path 

length) at 15.1 ±  0.1 oC without open surface to the air.  Typical temporal oscillatory profiles 

(in time, t (s) ) of the modified solution mixture with the same value of [PG]/[ferroin] = 16 

consisting of 1.0 M  H2SO4 , 0.10 M NaBrO3, 28 mM PG, and 1.75 mM ferroin are given 

below. The average  induction time and the first three oscillatory periods obtained from 2 

experiments are 14.12 ± 0.64  min and  3.68 ± 0.08 min, respectively. 
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(C)   

                         

0 200 400 600 800 1000 1200 1400 1600 1800

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ab
s 60

0 
nm

 (A
U

)

t (s)

                       
                             

 

We can see from these profiles that 1) ferriin concentration profiles in space (cf. Fig. 24b) and 

time (the profile (C)) are approximately the same shape characterized by the broad band of 

excited region and 2) the dynamic of ferroin and Q are the same during the recovery period 

(see profiles  (A) and (B)), supporting the chemical mechanism in Section 2.4.2. In addition, 

[Q]/[PG] oscillates and decreases continuously in time, corresponding to the aging and the 

consumption of reactant in the solution mixture, as seen in the base line of the profile (A), see 

also Fig. 17b. 
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APPENDIX 2B : Determination of the Electrical Conductivity  
 
 

 
 

Electrical conductivity of a material  [Ham98, Kuh00, Old94] measures the ability of a 

material to carry an electrical current  or electrons, when placed between terminals having a 

difference of electrical potential U in a steady direct-current electric field E = U/l (in V/cm).  

The amount of current flow I (in A) depends on both the electrical potential U (in V) and the 

resistance R (in Ω) by Ohm’s law, 

I  =  U / R .                                                                                                                                 (i) 

The resistance of a sample of isotropic (i.e. direction independent) conducting material is 

dependent on both the geometry and the intrinsic resistivity of the material to conduction of 

current. For a conductor of resistivity ρ, the resistance will increase as the length l (or d), of 

the current path increases, and the resistance will fall as the cross sectional area, A, of the 

conductor increases, i.e. 

R  =  ρ( l) / A .                                                                                                                           (ii) 

Alternatively, the reciprocal of resistivity is a measure of the ease with which current flows in 

a conducting medium; it is quantitated as conductivity κ (in Ω-1cm-1  or  S/cm), 

κ  =  1 / ρ = ( l ) / RA  =  I( l ) / UA  =  I / EA   =  σ / E .                                                   (iii) 

σ is the current density or charge transported per unit cross section area of the conductor (in 

A/cm2). The existence of a finite resistance means that the energy delivered but the electric 

field to the current carriers (electrons) is dissipated, being converted to heat (mostly energy 

from particle vibrations). The rate of dissipation per volume is given by and is called Ohmic 

heating HO,  

HO =  κE2  =  σE .                                                                                                                     (iv) 

 

 

 

        e-     -   U   + 

A 
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In our case, the conductor is the BZ aqueous solution containing  mixed electrolytes: 0.15 M 

H2SO4, 0.10 M, NaBrO3,  8 mM PG, and 0.5 mM Fe(phen)3SO4 in the capillary reactor (l  = 
16.0 cm, A = 0.05 x 0.05 cm2, total volume = 0.04 cm3 ) bath thermostated at 15 oC.  The 

solution’s density at 15.00 oC is about 1.02 g/ml. Calculated parameter values from Eqs. iii 

and iv and the current-voltage plot of the solution mixture are given below. The average 

electrical conductivity κ of the solution mixture is 0.1144 ± 0.0023 S/cm (κ/F = 1.1855 

μmol.cm-1s-1 V-1 , see Eq. 16). The linear regression of the current-voltage plot gives I (mA)  

= -0.01389 + 0.01818 [U (V)] with the correlation coefficient R = 0.9995.  Ohm’s law  yields 

R  =  55  kΩ from the slope. 
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U (V) E (V/cm) I (mA) σ  (mA/cm2) κ  (S/cm) HO (W/cm3) 
10 0.62 0.18 72 

 
0.1152 0.045 

15 0.94 0.26 104 0.1109 
 

0.098 
20 1.25 0.36 144 0.1152 0.18 
25 1.56 0.45 180 0.1152 

 
0.281 

30 1.88 0.53 212 
 

0.1131 
 

0.398 
40 2.5 0.69 276 

 
0.1104 
 

0.69 
50 3.12 0.88 352 0.1126 1.1 
60 3.75 1.1 440 

 
0.1173 1.65 

65 4.06 1.18 472 0.1162 1.918 
70 4.38 1.23 492 0.1125 2.152 
80 5 1.45 580 0.116 

 
2.9 

90 5.62 1.6 640 0.1138 3.6 
100 6.25 1.77 708 0.1133 4.425 
120 7.5 2.22 888 

 
0.1184 6.66 

150 9.38 2.71 1,084 0.1156 10.162 
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APPENDIX C :  
Data Evaluation Procedures from Image Analysis with IDL 

IDL Version 5.2 (Win32 x86). Research Systems, Inc. 

To contact Research Systems: 

Email: info@rsinc.com Web site: http://www.rsinc.com/ 

To run an overview of IDL's capabilities. To search and run (demo) over 3000 pages of IDL 

documentation insight. 

 
1) Time-Space Plot 

 
;==========================================================================
= 
;===== 
;===== Programm zur Erstellung eines Timespace-Plots 
;===== 
;==========================================================================
= 
 
FUNCTION read_all_lines,unit 
 
 ; Muss man leider so machen in IDL. 
 scenes = [""] 
 WHILE ( NOT EOF(unit) ) DO BEGIN 
  ; Siehe oben, Sonst wird die Zeile zu einer Zahl konvertiert. 
     scene = "" 
     READF,unit,scene,FORMAT="(A)" 
  ; Haenge Zeile an bisherige Zeilen an. 
  scenes = [scenes,scene] 
 ENDWHILE 
   ; Die Kruecke von oben wieder beseitigen. 
    nroflines = size(scenes) 
    nroflines = nroflines(1)-1 
 IF (nroflines GE 1) THEN BEGIN 
     scenes = scenes(1:nroflines) 
     ; Gelesene Zeilen zurueck an Absender. 
     RETURN,scenes 
 ENDIF ELSE BEGIN 
     RETURN,[""] 
 ENDELSE 
END 
 
PRO timespace_methasit 
 
dir = 'd:\temp\1.2cm_90V\' ;directory of the images 
timespacenumber = 'tsp'  ;index for the timespaceplot 
;framenumber     = 1000      ;number of frames for the timespaceplot 
 
outdir  = strcompress(dir+'_'+timespacenumber+'.tif') 
 
file_in = Pickfile(/READ,FILTER='*.tif', PATH=dir) 
 
bild = READ_TIFF(file_in) 
 
dim    = size(bild, /DIMENSIONS) 

mailto:info@rsinc.com
http://www.rsinc.com/
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width  = dim[0] 
height = dim[1] 
 
CD,dir,CURRENT=old_dir 
 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    ;; Create list of all TIFF-Movies 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    temppfad = filepath("",/TMP) 
    SPAWN,"dir /B /L /ON *.tif > "      +temppfad+"filelist.txt" 
    OPENR,unit,temppfad+"filelist.txt",/GET_LUN 
    scenes = read_all_lines(unit) 
    ; Tifffilenames should be loaded here. 
    s=size(scenes) 
    CLOSE,unit 
    ;SPAWN,"del "+temppfad+"filelist.txt" 
 
    CD,old_dir 
 
framenumber = s[1] 
name        = strmid(file_in,strlen(dir),(strlen(file_in)-strlen(dir)-4)) 
timespace   = FLTARR(width,framenumber) 
 
bild = READ_TIFF(file_in) 
 
WINDOW, 0, XSIZE=width, YSIZE=height, TITLE=name 
 
TVSCL, bild 
XYOUTS,10 ,10,'Please select the y-value for the timespace 
plot',COLOR=[255,0,0],/DEVICE 
CURSOR,x0,ycut,3, /device  ;--- Einlesen der Koordinate 
bild(0:width-1,ycut)=0*bild(0:width-1,ycut) 
TVSCL, bild 
 
window,1, XPOS = 500, YPOS = 300, xsize=width, ysize = framenumber, 
TITLE='timespace plot' 
 
FOR n = 0, framenumber-1 DO BEGIN 
   temp1 = STRCOMPRESS(dir+'\'+STRING(scenes(n)),/REMOVE_ALL) 
   bild1 = READ_TIFF(temp1) 
   bild2 = sobel(bild1) 
   timespace(0:width-1,n)=bild1(0:width-1,ycut)-bild2(0:width-1,ycut) 
   bild(0:width-1,ycut)=0*bild(0:width-1,ycut) 
   frame_num = STRCOMPRESS(STRING(n),/REMOVE_ALL) 
   IF (((n+1) MOD 10) EQ 0) THEN BEGIN 
   wset,0 
   wshow,0 
      TVSCL, bild1-sobel(bild1) 
      print, n 
      XYOUTS,10 ,10,frame_num,COLOR=[255,0,0],/DEVICE 
      wset,1 
      wshow,1 
      tvscl, timespace 
   ENDIF 
   wset,0 
  WSHOW, 1 
ENDFOR 
 
wset,1 
tvscl, timespace 
 
xshift = 0 
yshift = 2 
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timespace1 = timespace-SHIFT(timespace,xshift,yshift) 
timespace1 = SMOOTH(timespace1,3) 
 
window,2, XPOS = 500, YPOS = 300+framenumber+30, xsize=width, ysize = 
framenumber, TITLE='timespace plot' 
tvscl, timespace1 
wshow,0 
wshow,1 
wshow,2 
write_tiff, outdir, timespace 
 
END 
 
RESULT:  1.2cm_90V_tsp.tif 
 

                                             
 
444  pixels  x 1,000 pixels = 1.2 cm x (999 x 5 s) = 1.2 cm x 4,995 s 

plotted from 1,000 images: imgs0000.tif -imgs0999.tif obtained from the LabVIEW Image Acquisition 

software with a time delay between two images = 5 s. 
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2) Determination of Propagation Velocity and Profile Plots 
 
IDL commands  step by step. 
 
IDL Version 5.2 (Win32 x86). Research Systems, Inc. 
For basic information, enter "IDLInfo" at the IDL> prompt. 
 
IDL> a = read_tiff("d:\temp\1.2cm_90V_tsp.tif") 
% Loaded DLM: TIFF 
IDL> b = median(a,5)  [This command is used for smoothing , i.e. noise can be removed from the picture by applying a 
median filter of 5 x 5 pixels] 
IDL> shade_surf, b, shade = bytscl(b), ax = 90, az = 0, background = 255, color = 0, xstyle = 1, ystyle = 1, xticklen = -
0.02, yticklen = -0.02, xtitle = 'Space (pixel)', ytitle = 'Time (pixel)', yminor = 10 
IDL> !order = 1 
IDL> c = tvrd(0) 
IDL> tvscl, c 
IDL> write_tiff, '1.tif', c 
 
RESULT:  1.tif 
 

   
 
 

We already know a spatial resolution of 370 pixels/cm and a resolution in time: 1,000 pixels/4,995 s = 

0.2 pixels/s. We can approximately evaluate the propagation velocities (Space/Time = ∆x/∆t) by 

linearization with a ruler and calculating the slopes from seven lines in the time-space plot showing  3 

wave fronts moving to the left  and 4 wave fronts  moving to the right, this results in  

a) three left lines for three reversed waves: 1st  =  1.21 mm/min,  3rd  =  5th  = 1.18 mm/min.   

b) four right lines for an original wave: 1.53 mm/min and three reversed waves:  2nd  =  4th  =  6th  =  

1.33 mm/min. Note that 1 cm/s  =  600 mm/min  = 10,000 µm/s. 
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DL> plot, b(*,400), xstyle = 1, xtitle = 'Space (pixel)', ytitle = 'Grey Level (au)', yrange = [0,250] 
IDL> oplot, b(*,800), linestyle = 1 
IDL> !order = 1 
IDL> d = tvrd(0) 
IDL> tvscl, d 
IDL> write_tiff, '2.tif', d 
Changing black colored background image to white colored background image by using a program: IrfanView32 (free 
download from http://www.irfanview.com/ ). In the program, open this file 2.tif, choose image and then negative, and 
save it again. 
 
RESULT:  2.tif  
 

    
 
 
Spatial profiles: Solid profile is taken at 400th pixel or 2,000 s and dotted profile is taken at 800th pixel 

or 4,000 s. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.irfanview.com/


 116 

 
 
 
 
 
 
 
IDL> plot, b(37,*), xstyle = 1, xtitle = 'Time (pixel)', ytitle = 'Grey Level (au)', yrange = [0,250] 
IDL> oplot, b(407,*), linestyle = 1 
IDL> !order = 1 
IDL> e= tvrd(0) 
IDL> tvscl, e 
IDL> write_tiff, '3.tif', e 
Changing black colored background image to white colored background image by using a program: IrfanView32 (free 
download from http://www.irfanview.com/ ). In the program, open this file 3.tif, choose  image and then negative, and 
save it again. 
 
RESULT:  3.tif 
 

   
                                    
 
          
Temporal profiles: Solid profile is taken at 37th pixel or 0.1 cm and dotted profile is taken at 407th 

pixel or 1.1 cm. 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.irfanview.com/
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