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Abstract

This thesis describes a novel approach to microwave imaging. The proposed methods
are based on the spectral representation of the object. Regularization schemes for the
solution of electromagnetic inverse problems are addressed. An iterative algorithm
for the solution of the nonlinear least-squares problem arising in iterative image re-
construction is developed. The application of this algorithm to one-dimensional and
three-dimensional imaging of high-contrast lossy objects is examined. The proper-
ties of the imaging systems designed to implement the algorithms are verified by
simulation and actual measurements. The algorithms proposed in this work are
computationally more expensive but accuracy and stability are superior compared
to other microwave imaging methods.

Zusammenfassung

Die vorliegende Dissertation beschreibt neuartige Verfahren zur Erzeugung tomo-
grafischer Bilder mittels Mikrowellen. Basis für diese Verfahren ist die spektrale
Darstellung des Untersuchungsobjekts mittels orthogonaler Funktionen. Eine Meth-
ode zu regularisierten Lösung inverser elektromagnetischer Probleme wird vorgestellt
und in die bekannten Standardverfahren eingeordnet. Das Untersuchungsobjekt
wird in einem iterativen Verfahren aus den Messdaten berechnet. Ein speziell für
diesen Anwendungsfall entwickelter Algorithmus zur effizienten Lösung des nicht-
linearen Problems der kleinsten Fehlerquadrate wird vorgestellt. Der Nachweis
der Funktionstüchtigkeit dieser Ansätze erfolgt mittels Simulations- und Messdaten
von eindimensionalen Profilen und dreidimensionalen Untersuchungsobjekten mit
starkem Kontrast. Ein komplettes und weitgehend automatisiertes Messsystem,
welches nach den vorgeschlagenen Algorithmen arbeitet, wird detailliert beschrieben
und die Testergebnisse werden vorgestellt. Das in dieser Arbeit entwickelte System
erfordert im Vergleich zu anderen Verfahren einen höheren Rechenaufwand, kann
aber Untersuchungsobjekte mit hohem Kontrast stabil und mit ausgezeichneter Ab-
bildungsqualitt rekonstruieren.
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Chapter 1

Introduction

1.1 Definition of Microwave Tomography

Microwave imaging aims on the reconstruction of the material properties of an ob-
ject by measuring the scattering of an electromagnetic signal it is illuminated with.
The parameters to be imaged can be all properties that have an influence on the
propagation of microwaves in the object. This can be dielectric constant, dielectric
loss, conductivity, permeability and magnetic loss. The use of microwaves for the
purpose of imaging allows nondestructive and non-contacting evaluation of mate-
rials and biological tissues. Possible applications are material testing, biomedical
applications, environmental measurements and remote sensing.

Microwave imaging systems are usually active systems which means that the
illumination signal is generated by the measuring system. Passive systems only
receiving radiation from the object to be imaged are not widely used as there is only
weak radiation in the microwave frequency range from most objects. An exception
is passive millimeter-wave imaging that uses very short wave microwave radiation
[1]. This part of the spectrum is neighboring the infrared region and works similar
to infrared cameras. The frequencies used for active microwave imaging are ranging
from below 1 GHz to 40 GHz, where most applications work in the range from
2 GHz to 8 GHz. This range is expected to give a good tradeoff between resolution
and penetration. The aim for most microwave imaging systems is to image the
distribution of the material parameters through the object, with emphasis on the
non-accessible inner parts. This requires longer wavelengths due to their lower
attenuation. Millimeter-wave imaging methods obtain very good resolution but
lack tomographic abilities.

A typical active microwave imaging system is shown in figure 1.1. The transmit-
ter generates a microwave signal and radiates it to generate the illuminating field.
The illuminating field is scattered by the object. The scattered field is measured by
the receiver. Multiple transmitters and receivers can be used or single transmitter
or receiver configurations can illuminate the object and sample the scattered fields
at multiple positions.

The illuminating field can be monochromatic or swept frequency when measuring
in frequency domain. Narrow pulses are used in time domain measuring schemes
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Figure 1.1: Active microwave imaging system

to achieve a large signal bandwidth which results in high resolution. Frequency
domain measurements have the advantage that the measuring accuracy is usually
better compared to time domain methods. A typical Vector Network Analyzer
(VNA) used for frequency domain measurements has a dynamic range of 80 dB
compared to only 40 dB for a standard Time Domain Reflectometer (TDR) [2],[3].
As measuring accuracy is a key element to good image quality most microwave
imaging methods rely on frequency domain measurements. The measured data are
then processed to form the image which is the distribution of the electromagnetic
material parameters as a function of position in space.

The inner material parameter distribution of highly conductive objects is gener-
ally not accessible to microwave imaging. This is because of the strong attenuation
of microwave signals in conductive media. The penetration depth is therefore very
small and the measuring data contains no information about the sections not pene-
trated. There is another branch of microwave imaging which solves the problem of
determining the shape and location of a non-penetrable, highly conducting object.
This inverse obstacle problem [4] is not considered in this work.

The application of microwave imaging methods to three-dimensional objects is
also often referred to as microwave tomography. This comes from the most used
methods for three-dimensional imaging today computed X-ray tomography (CT)
and magnetic resonance tomography (MRT). Because of the success of these, all
methods which allow to visualize the inside of an object are entitled tomography.
Tomography is a Greek word for ‘representing an object by slices’. CT and MRT
actually obtain slices of the object and form a three-dimensional model by combining
them. In microwave imaging the image acquisition is not carried out in terms of
slices. The whole object must be imaged as a three-dimensional distribution because
microwaves do not propagate like pencil beams as X-rays and therefore there is
strong interaction in all dimensions which makes it impossible to separate the object
into slices which can be imaged independently of each other. Although the term
tomography is therefore incorrect in a strict sense it is still used for most microwave
imaging methods allowing to acquire three-dimensional images by convention.
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1.2 Electromagnetic Material Parameters

When using microwaves for imaging an object the distribution of the electromagnetic
material parameters is reconstructed and used for the image formation. These are
the permittivity ε, the permeability µ and the conductivity σ. The permittivity
of a medium is defined by the total displacement current when an external field is
applied. The total displacement current in the frequency domain consists of the
vacuum displacement current

D0 = ε0E (1.1)

and the polarization current
P = ε0χeE, (1.2)

where the electric susceptibility χe is a dimensionless proportionality factor that
accounts for the polarization current in multiples of the free-space displacement
current for the same electric field strength. The polarization current can be caused
by electronic polarization, ionic polarization and orientational polarization or any
combination of these [5]. The total displacement current in a medium then becomes

D = ε0E + P = ε0(1 + χe)E = ε0εrE, (1.3)

where the relative permittivity εr is introduced to avoid accounting for the polar-
ization separately. The relative permittivity of the medium is also called its relative
dielectric constant. When dielectric loss is present in the medium the permittiv-
ity becomes a complex quantity with a negative imaginary part representing the
dielectric loss [6].

ε = ε0(ε
′
r − jε′′r) (1.4)

Another quantity often used to describe dielectric loss is the dielectric loss tangent

tan δD =
ε′′r
ε′r

. (1.5)

The dielectric quality factor is defined by ratio of the average electric energy stored
in a volume filled with the dielectric and the dissipated power due to dielectric loss
in the same volume.

QD =
2ω dWe

dV
dPlD

dV

= 2ω
1
4
ε′E2

0
1
2
ωε′′E2

0

=
1

tan δD

(1.6)

Here E0 is the electric field magnitude. When the material is conductive the con-
ductivity contributes to the losses also as can be seen from the magnetic field curl
equation.

∇×H = jωε0(ε
′
r − jε′′r)E + σE (1.7)

For the case of both dielectric and conduction losses the loss tangent is given by

tan δ =
ε′′r + σ

ωε0

ε′r
. (1.8)
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The effects of conduction loss and dielectric loss are indistinguishable at a single
frequency and one can always be absorbed into the other. This leads to the concept
of dielectric conductivity σD.

σD = ωε0ε
′′
r (1.9)

The magnetic polarization can be taken into account in a similar way. Using
analogy between B and D the total magnetic flux density is given by

B = µ0(H + M), (1.10)

where M = χmH is the magnetic polarization, µ0M is the magnetic moment per
unit volume and χm is the magnetic susceptibility. This gives

B = µ0H + µ0χmH = µ0(1 + χm)H = µ0µrH, (1.11)

where the relative permeability

µr = µ′r − jµ′′r (1.12)

has been introduced. As in the electric case the relative permeability will become
complex with negative imaginary part whenever the magnetic polarization is con-
nected with damping forces causing losses.

As the inverse problem of calculating the image from the measuring data is
very difficult to solve, such a high number of parameters would lead to increased
ambiguity. Therefore a restriction to two important cases is usually made. The first
case is the determination of the complex permittivity under the assumption of free
space permeability µ = µ0 and vanishing conductivity σ = 0. The assumption of
free space permeability can be done with good accuracy as virtually all materials
accessible with microwave imaging methods are either diamagnetic or paramagnetic
and exhibit a relative permeability very close to unity. The second important case
is the imaging of the real part of the permittivity ε = ε0ε

′
r and the conductivity

σ 6= 0 with vanishing dielectric losses ε′′r = 0 and free space permeability µ = µ0.
This means that a suitable model for the losses which can either be dielectric or
resistive must be selected prior to the imaging process itself. Each of these material
properties can be functions of three base vectors describing a three-dimensional
space. As the electromagnetic properties of the object are imaged and the properties
of the material surrounding the object are usually known, the shape of the object
can also be determined.

The value of the relative permittivity is generally changing with frequency due
to the different polarization mechanisms. For multi-frequency and time-domain
microwave imaging methods this frequency dependence must be taken into account.
A constant permittivity over the measuring frequency band is often assumed which
can be done for many materials with good accuracy in the microwave frequency
range. If the permittivity changes with frequency are non-negligible a suitable model
fitting the expected frequency behavior must be selected which requires a-priori
information. When using frequency domain solvers arbitrary permittivity frequency
dependence can be modelled as this requires only multiplication with the value at the
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current frequency according to equation (1.3). For the solution of a direct scattering
problem in the time domain the electric flux density is given by the convolution of
the impulse response of the permittivity εr(τ) and the electric field [7].

D(t) = ε0

∫ t

τ=0

εr(τ)E(t− τ)dτ (1.13)

The repeated evaluation of this convolution integral can be a very time consuming
task and therefore only a few models that allow easy evaluation of (1.13) are used.
For an microwave imaging system employing time domain solvers this means that
one is limited to certain dispersion characteristics that can be modelled. In addition
this model must be selected a priori.

It is always assumed that the materials to be imaged are linear. The relations be-
tween electric field and total displacement as given by equations (1.3) and (1.11) can
be expressed by multiplication with a constant independent of the electric or mag-
netic field amplitudes. Most materials can be modelled as being linear. Examples
for exceptions are ferroelectric and ferrimagnetic materials. A third assumption to
be made is that the materials are isotropic. From this follows that the displacement
is directed along the field and the permittivity and permeability can be described
by a scalar in contrast to a tensor formulation required for anisotropic media. This
excludes anisotropic media such as ferrites which again is acceptable.

1.3 Motivation

Microwave imaging methods have attracted much attention since the first proposals
for such systems in the late 1970’s [8], [9]. Imaging methods using microwave signals
are considered to have a high potential for providing a useful addition to established
methods for medical imaging and nondestructive testing. The propagation of mi-
crowave signals in non-conducting materials allows to resolve two major problems
associated with the currently used imaging methods. CT scans have the disadvan-
tage that the absorption of X-Rays is similar for a large number of tissues. As the
primary measuring data in a CT scan is the absorption of X-Rays along line inte-
grals through the object, the resulting images of tissues having similar absorption
have very little contrast. This low contrast is the reason that approximately 20 %
of breast cancers are missed in X-ray mammography screening [10]. The advantage
of using microwave radiation is that there are many soft tissues that show similar
absorbtion of X-rays but show great contrast in the interaction with microwaves.
By using microwave methods a high contrast is to be expected for images of such
tissues problematic for X-ray imaging.

Microwave imaging systems work without possibly harmful ionizing radiation
which is another major drawback of CT imaging. The danger of ionizing radiation
has also been recognized by the public and led to a low acceptance of screenings
using X-rays. Although the effects of electromagnetic radiation are also discussed
because of the fast growing use of wireless communications, microwave imaging is
safe. The microwave power level can be chosen very low and must only be sufficient
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to allow for field measurements above the noise floor of the measuring system. As
accurate measuring systems are readily available in form of automatic vector network
analyzers (VNA) which are capable of performing accurate scattering parameter
measurements at power levels measured in milliwatts the imaging process will not
even lead to measurable heating of the imaged tissue. An exception to this is only
the thermoacoustic CT [11] that uses high energy pulses from a radar transmitter
for breast cancer detection.

MRT imaging offers high soft tissue contrast and is capable of delivering high-
contrast and high-resolution images perfectly suited for many medical imaging ap-
plications. MRT images are generated based on physical parameters as relaxation
times which are not tumor specific. This makes it for example difficult to distin-
guish between benign and malignant breast lesions based on MRT images [12]. This
classification could be done using microwave radiation as malignant tissues are char-
acterized by a much higher water content and the dielectric constant and the loss
tangent are both much increased [10].

The major contribution to the cost of a microwave imaging system will be the
VNA or the TDR instrument. The cost of a microwave imaging system would
therefore be lower compared to CT systems and only a fraction of a very expensive
($5,000,000) MRT system. This is another reason why microwave imaging systems
would be perfectly suited for mass screening. It could provide a safe and low-cost
imaging system.

Ultrasonic imaging is very well suited for many biomedical applications as it is
non-ionizing and also lower cost compared to MRT. It has the disadvantage that
the imaging results acquired are not reproducible in all cases and an experienced
physician is needed to collect and evaluate the data [13]. Also the acoustic reflective
data collected is sometimes not well correlated to the tissue imaged. There are
attempts to improve ultrasonic imaging in order to gain quantitative information
but the current state of the art systems do not yield this kind of information yet.

Microwave imaging methods also have the potential to provide quantitative in-
formation of the dielectric properties of the object. This quantitative information
makes it possible to identify materials and tissues. If a known tissue is imaged the
quantitative information can be used to determine its condition, which is mainly de-
termined by its water content. This gives further possibilities in medical diagnostics
[10] and non-destructive testing as well as in environmental applications [14], [15].

Despite of the possible advantages of microwave imaging no practically usable
systems for three-dimensional microwave imaging are available today. There are
several difficulties that have not been resolved yet. The propagation of microwave
signals is very complex and is not as easy to model as the beam propagation of an X-
ray along a straight line. The algorithm for obtaining the image from the measuring
data is therefore more complicated. While fairly simple filtered backprojection algo-
rithms based on the radon transform [16] can be applied on CT measuring data no
such algorithms exist for microwave imaging systems. Microwave imaging methods
can be derived by applying simple models and linearization algorithms comparable
to those used in CT. Unfortunately these fail in practice as these models are not ac-
curate enough. Most models are valid for the case of weakly scattering and low-loss
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objects only. These limitations could be avoided by using full wave analysis instead
of employing linearized models. The solution of three-dimensional scattering prob-
lems is possible today due to the increase in available computing power during the
last two decades. While the solution of direct scattering problems has been possible
at an acceptable computational cost for several years, microwave imaging using it-
erative schemes requires the repeated solution of the scattering problem which did
lead to unacceptable computing time in the past. Only recently efficient finite differ-
ence time domain (FDTD) software in conjunction with high-performance low-cost
computers is available that allows the application of iterative schemes. Due to these
advances iterative schemes applying full wave analysis can be used and achieve ac-
ceptable computing time. Iterative schemes using simple models in the solution of
the direct problems are still computationally much cheaper but must accept strong
limitations in their applicability due to the limited validity of the underlying models.

1.4 Inverse Problems

Many of the difficulties in solving microwave imaging problems arise because retriev-
ing the object that cause the measured fields is an electromagnetic inverse problem.
The problem of finding the object corresponding to a set of measured scattering
parameters or field strengths can be formulated as follows: Consider two Euclidian
spaces X and Y . The mapping of elements of X into elements of Y is performed by
an operator A. The subset in X which contains possible arguments to the operator
is its domain D(A). The subset in Y which contains the mappings of the elements
of the domain is the range of the operator R(A). If f is an element of X and g is
its mapping into Y then the direct problem can be written as

Af = g. (1.14)

This mapping is shown in figure 1.2 and is a well-posed problem under the following
conditions.

1. The mapping depends continuously on the data.

2. The mapping is unique.

3. There exists a mapping for arbitrary input data.

These conditions were formulated in [17] and are widely used for the definition of
well-posedness and ill-posedness [18], [19] and [20]. In an electromagnetic direct
scattering problem the operator A describes the creation of scattered fields and
corresponding measured field samples or scattering parameters by the object. It is
called the direct one because it is directed along a cause-effect line, while the decision
which operator is direct and which is inverse seems arbitrary from the mathematical
point of view. The task in microwave imaging is now to find the object f that caused
the measured set of field samples g which is clearly directed opposite the cause-effect
line.

A−1g = f. (1.15)
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Figure 1.2: Well-posed direct problem

Figure 1.3: Ill-posed inverse problem

The solution of (1.15) involves finding the inverse operator A−1. This inverse op-
erator is usually not known and even if it was known its application to the set of
measured samples would hardly give the object f . This is because the inverse opera-
tor does not fulfil the above conditions for well-posedness. The first problem is that
the objects found by using the inverse operator do not depend continuously on the
data. This undesired property of the inverse operator is shown in figure 1.3. Small
measurement errors which are unavoidable in any practical set-up will cause large
deviations in the object found. If an object f1 created the field g1 and this field is
measured adding a small error resulting in an image g2, the solution of the inverse
problem with that measured field as input data will lead to the entirely different
object f3. The second problem is connected to non-uniqueness. As there are many
objects creating the same fields the solution found is only one of the possible even
with perfectly noiseless input data as the solutions f1 and f2 in figure 1.3 for the
image g1. There might also be measured fields which do not have a solution at all
as g3 in figure 1.3 because they are outside the range of the operator due to the
measurement noise.

The only way to cure ill-posedness is the use of additional information to min-
imize the number of possible solutions of (1.15). This is known as regularization
and covered in detail in section 3.1. The additional information needed must be
incorporated into the imaging algorithm and must therefore be known a-priori.
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1.5 Outline

This work deals with the imaging of objects for medical imaging and nondestructive
testing purposes. After a review of the current state of the art a novel object
representation suitable for three-dimensional microwave imaging will be introduced.
Based on that object representation a novel regularization scheme and a suitable
iterative algorithm will be developed. The following chapters show the application
of these concepts to one-dimensional and fully three-dimensional microwave imaging
problems. The performance of the new algorithms is assessed by simulation and
measurements. The design of suitable devices and systems needed for these imaging
applications is described. These include dielectrically loaded waveguide to coax
adaptors, calibration kits, multi-port resonators for three-dimensional microwave
imaging and a multi-port vector network analyzer with novel optimized two-tier
error correction.



Chapter 2

State of the Art in Microwave
Tomography and Imaging
Methods

2.1 One-Dimensional Profile Inversion

In one-dimensional profile reconstruction methods it is assumed that the material
properties vary along the direction of the propagation only. An illuminating wave is
created by the imaging system and because of the transverse homogeneity a reflected
wave will be created by the object travelling in the opposed direction. This profile
inversion is the first electromagnetic inverse problem investigated and is the basis
for many concepts also found in algorithms for two- and three-dimensional imaging.
Such a profile reconstruction problem is shown in figure 2.1. The input reflection
coefficient Γin is measured at the starting point of the region of unknown permittivity
x = 0 over some frequency band. The material parameters are considered to vary
along x only and to be constant in the transverse plane.

The relation between the reflection coefficient and the permittivity profile is given
by the nonlinear Ricatti differential equation [20].

dΓ(x)

dx
= 2j

√
εr(x)k0Γ(x) +

(
1− Γ(x)2

) 1

4εr(x)

dεr(x)

dx
(2.1)

There is no known analytic solution to this equation, but it can be linearized by
dropping the quadratic term in the reflection coefficient Γ.

dΓ(x)

dx
= 2j

√
εr(x)k0Γ(x) +

1

4εr(x)

dεr(x)

dx
(2.2)

The solution of this linearized differential equation is

Γin(k0) = −
∫ ∞

x=0

1

4εr(x)

dεr(x)

dx
e−2j

√
εr(x)k0xdx. (2.3)
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Figure 2.1: One-dimensional profile inversion problem

Here Γin(k0) is the measured input reflection coefficient as a function of wavenumber.
Using a variable substitution introducing a virtual time variable t

t = 2

∫ x

x′=0

√
εr(x′)dx′ (2.4)

and
dt = 2

√
εr(x)dx, (2.5)

equation (2.3) can be interpreted as a Fourier transform of the permittivity profile
from the virtual time domain to the wavenumber domain. It can be inverted to
obtain the permittivity profile in terms of the measured reflection coefficient as a
function of frequency [21].

− 1

8εr(x)
√

εr(x)

dεr(x)

dx
=

∫ ∞

−∞
Γin(k0)e

jk0tdk0 = Γ̃(t) (2.6)

Here Γ̃(t) is the inverse Fourier transform of the measured reflection coefficient.
Multiplication of (2.6) with (2.5) and integrating yields

− 1

4
ln εr(x) =

∫ t

0

Γ̃(t)dt. (2.7)

Using the boundary condition at x = 0 to calculate the integration constant to εr(0)
this finally gives the looked for permittivity profile in terms of the inverse Fourier
transform of the measured data and the permittivity value at the surface.

εr(x) = εr(0)e
−4

∫ t
0 Γ̃(t)dt (2.8)

Equation (2.8) allows the inversion of measured data for the permittivity profile.
This inversion is unique and avoids the problem usually connected with the solution
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of inverse problems. Unfortunately it has been obtained by dropping the nonlinear
term which is only possible conserving accuracy when the reflection coefficient is
small (Γ2 � 1), which is just the application of the theory of small reflections [6].
This is only valid for weak scattering and virtually lossless objects as this is also
based on the assumption that the incident wave is not attenuated as it propagates
through the profile section. The permittivity profile is reconstructed in terms of
the value at x = 0. If this is unknown it can be determined using the method
described in [22]. The approach outlined above is used in [23] for permittivity
profiles and in [24] for permittivity or pure conductivity profiles. The results of
these works are only exact near the surface of the object to image. The case of
profiles having both permittivity and conductivity variation which is encountered
most often in practice is not treated. Later in [25] and [26] the method was improved
and simplified by developing a microwave network technique to solve the inverse
profile problem. Good accuracy for pure permittivity profiles is obtained for analytic
profile inversions and numerical simulations, but no measuring examples of materials
are given. The application for the reconstruction of pure weakly conductive media
has been presented in [27]. The accuracy is again declining with rising penetration
depth even for very weak conducting cases and simulated noiseless input data.

The accuracy of the profile reconstruction has been improved by introducing a
nonlinear renormalization of the reflection coefficient which extends the applicabil-
ity of the method to stronger scatterers [28]. This renormalization approach first
renormalizes the measured reflection coefficient using a nonlinear renormalization
function in order to minimize the error introduced by the linearization. The renor-
malization originally proposed in [29] is

Γ̂ = arctanhΓ = Γ +
Γ3

3
+

Γ5

5
. . . , (2.9)

where Γ is the reflection data measured and Γ̂ is the renormalized reflection data.
When this renormalized reflection data is used in (2.2), the derivative under the
condition |Γ| < 1 which is always true for permittivity profiles gives

dΓ̂

dx
=

1

1− Γ2

dΓ

dx
. (2.10)

The series expansion of equation (2.9) and the derivative in equation (2.10) can now
be inserted into the linearized Ricatti equation (2.2) which yields

dΓ

dx
= 2j

√
εr(x)k0

(
Γ +

Γ3

3
+

Γ5

5
. . .

)
(1− Γ2) + (1− Γ2)

1

4εr(x)

dεr(x)

dx
(2.11)

The second term on the right hand side of (2.1) has been restored exactly using the
nonlinear renormalization (2.9) in (2.2). The first error term is proportionate to Γ3

as can be seen from the series expansion. Compared to dropping a term quadratic in
Γ as in the simple linearization this leads to a much smaller error. The advantage is
evident when the above method is applied to profiles having a stronger contrast and
the assumption Γ2 � 1 is not accurate. The nonlinear renormalization approach has
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been further improved in [30] by using linear combinations of two renormalization
functions. The improved method is also applicable to other coordinate systems [31]
but still fails when applied to lossy objects.

Time domain methods for the one-dimensional profile reconstruction have also
been studied [24], but the performance is always inferior to frequency domain tech-
niques.

The solution of (2.1) is a simple integration along the profile from the starting
plane where the reflection coefficient is measured to the end of the profile. This can
computationally be treated effectively as the direct problem solution does not re-
quire full-wave analysis but only the integration of the nonlinear Ricatti differential
equation along the object. This fact allows fast treatment of this problem using iter-
ative schemes. However, the straightforward application of a nonlinear optimization
routine to calculate the function εr(x) by matching the measured reflection data
Γin(k0) will fail due to the nature of this inverse problem as will be discussed in
section 3.1. The use of iterative methods for the one-dimensional profile inversion is
proposed in [32], where stability is achieved by linearizing (2.1) around a permittiv-
ity profile known a-priori. Good accuracy is demonstrated for numerical examples.
The drawback of this approach is the large amount of a-priori knowledge about the
object required, as accuracy and stability entirely depend on a good initial guess.

2.2 Diffraction Tomography

Diffraction tomography was the first method proposed to use microwave scattering
data for obtaining cross-sectional images of three-dimensional objects [33], [9]. It is
based on the idea of adopting the same principles successful in the computed X-ray
tomography (CT) which are the radon transform [16] and the Fourier slice theorem
[34] for a system using microwave radiation instead of X-rays. By applying approx-
imations which are mainly the Born or the Rytov approximations [35] an algorithm
can be developed which replaces the Fourier slice theorem. The result is the Fourier
diffraction theorem [36] which is taking into account the different propagation of
microwaves in the object which is characterized by scattering effects. A typical
diffraction tomography set-up is shown in figure 2.2. The object is illuminated us-
ing a plane wave and the scattered field is recorded at M receiver positions along a
line behind the object. This measurement is repeated using L illumination angles
Θl. A circular antenna array is used in the circular setup to synthesize a plane
wave in the object domain. This avoids the need for mechanical rotation while the
imaging algorithm remains unchanged.

Algorithms for diffraction tomography depend on the solution of the wave equa-
tion. The wave equation must be linearized and inverted in order to reconstruct the
object. The approximations needed for the linearization limit the applicability of
the diffraction tomography. All of these assume that the scattering is weak and the
signal is not attenuated considerably as it propagates through the object. The most
used approximation is the Born approximation. The object is illuminated with a
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Figure 2.2: Diffraction tomography measuring schemes: receiver line (left), circular
receiver array (right)

source field E0(r) that fulfils the homogenous Helmholtz equation.

∇2E0(r) + k2
0E0(r) = 0 (2.12)

Here k0 = 2π
λ

is the free space wavenumber. Free space is considered to be the
background medium. The total field Et is the superposition of the incident field E0

and the scattered field Es.

Et(r) = E0(r) + Es(r) (2.13)

This total field is a solution of the wave equation in inhomogeneous media.(
∇2 + k(r)2

)
Et(r) = 0, (2.14)

where k(r) = k0n(r) is the local wavenumber and n =
√

εr is the index of refraction
of the object. The background as well as the object are considered to be virtually
lossless. The index of refraction is therefore a real quantity. Inserting (2.13) in
(2.14) and comparing with (2.12) shows that the scattered field is the solution of
the inhomogeneous Helmholtz equation.(

∇2 + k2
0

)
Es(r) = −O(r)Et(r) (2.15)

Here O = k2
0 (n(r)2 − 1) is the object function. The concept of object function is

based on the idea of replacing the object by its equivalent free-space current. Equiv-
alent free-space currents where originally used to calculate the effect of electromag-
netic radiation on biological tissues [37]. The source term of (2.15) is the change in
wavenumber caused by the object with respect to the background medium, which
reflects the fact that the scattered field is caused by the object. Equation (2.15) can
be solved for the scattered field using Green’s function.

G(r, r0) =
e−jk0R

4πR
, (2.16)
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where R = |r− r0| is the distance from the source point r0 to the observation point
r. The scattered field caused by the object may now be expressed as the integration
over all source points.

Es(r) =

∫
G(r− r0)O(r)Et(r0)dr0 (2.17)

The calculation of the scattered field using scalar Green’s functions is possible be-
cause the receiver array is located in the same plane as the cross section imaged
and the object is assumed to be homogenous in the third dimension. The scattered
fields caused by the object have a component in the direction of the incident field
only and all fields can be expressed by scalars. Equation (2.17)can generally not be
solved for the object function as the scattered field contributes to the total field on
the right hand side of (2.17). The Born approximation replaces the total field as
given in equation (2.13) by

Et(r) ≈ E0(r). (2.18)

This is similar to the theory of small reflections used for linearizing the nonlinear
Riccati type equation in the previous section. Approximating the total field by
the incident one allows the calculation of the scattered field in terms of the known
illuminating field which is the first order Born approximation for the scattered field.

Es(r) =

∫
G(r− r0)O(r)E0(r0)dr0 (2.19)

Equation (2.19) is a linearized version of (2.17) and is the basis for the derivation of
the Fourier slice theorem which is the inversion of the linearized integral equation for
the object. The Fourier slice theorem relates the Fourier transform of the measured
data along a line to the two-dimensional spatial Fourier transform of the object along
a circular arc [36]. Plane wave illumination is required in order to apply the Fourier
diffraction theorem. The fields along the receiver lines must be measured using
several illumination angles in order to acquire enough information to retrieve the
spatial Fourier transform of the object accurately enough. The Fourier slice theorem
is only valid when Es(r0) � E0(r0), a condition implying that the scattering is weak.
The total field at each point in the object must basically be equal to the incident
wave used for illumination with no object present. This limits the range of objects
to very weak scattering ones which additionally have to be virtually lossless. This
prohibits the application of systems based on the diffraction tomography approach
to any objects of practical interest.

This was pointed out in [36] as early as 1984. This paper also compares the
accuracy of image reconstruction using the Born and the Rytov approximation. Both
yield the same results when applied to very weak scattering objects. In addition to
the weak scattering requirement the object must also be small in size when the
Born approximation is applied which further limits the applicability. The Rytov
approximation does not have this additional restriction as only the relative change
of phase over one wavelength should be small. This only limits to weak scattering
objects but is independent of object size. A comparative study shows that imaging
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using diffraction tomography fails for refractive indices larger than n ≥ 1.1. This
study was carried out on simple homogenous cylinders and the reconstruction failed
regardless of what approximation was used.

The devastating effect of losses on the results of diffraction tomography is as-
sessed in [38]. In this paper cylinders with a relative permittivity of 1.01 with
respect to the background are imaged using Born approximation diffraction tomog-
raphy. The loss tangent of the homogenous cylinders is varied. While the image of
this very low contrast object is acceptable for the lossless case the reconstruction
fails for small loss tangents as 4%.

The use of multi-frequency data in combination with the Born approximation
is proposed in [39]. Good results are achieved for simple geometries and weakly
scattering low-loss objects. The authors conclude that an extension to the case of
stronger scatterers is only possible by adopting nonlinear models. Also the need for
accurate measurements and the requirement for accurate measuring system calibra-
tion is emphasized.

An experimental set-up for applying diffraction tomography to humans is pre-
sented in [40]. It uses a novel cylindrical antenna array for illuminating and receiving
simultaneously. Although the basic imaging algorithm remains unchanged it avoids
the problem of mechanically rotating the object or antenna array which is needed to
collect the multi-view data. The system achieves a good spatial resolution at a quite
low operating frequency of 2.45 GHz due to the use of distilled water as background
medium. Because of the high permittivity of distilled water (εr = 77−j9) the wave-
length is only approximately one ninth of the free-space wavelength. Although the
system is capable of forming images of a human arm in vivo, the images are severely
distorted. Reasons for this are again the weak scattering, low-loss assumptions.

Another prototype system for three-dimensional imaging of biological tissues
is described in [41]. The system is capable of imaging phantoms that are close
to human tissues in their complex permittivity. Replacing air by distilled water
as a background medium is keeping the dielectric contrast low (10%) because the
permittivity of the tissues is assumed to be in the same range. The images obtained
are distorted due to the Born approximation approach and because of difficulties to
obtain accurate measurements with the experimental set-up.

Another application of microwave imaging is temperature imaging of biological
tissues as suggested in [42]. Assuming a known homogenous tissue its permittivity
will depend on the temperature. The behavior of biological tissues is determined
by the water content mainly. However, the change in permittivity over temperature

is only ∆ε′/ε′(200C)
∆T

= −3.9876 · 10−3K−1 for water. It is questionable if a biological
tissue will be homogenous enough to measure such a small permittivity variation
and trace it back to a temperature distribution. Consequently only simulations
are given, where quite good accuracy is achieved as this really is a weak scattering
problem. An useful aspect of this work is that the temperature dependence of the
permittivity can be neglected for other microwave imaging applications.

As no algorithms for diffraction tomography which can be derived without us-
ing approximations are available, diffraction tomography is not considered to be a
method which can be applied to problems of practical interest.
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2.3 Iterative Methods

Several iterative approaches to three-dimensional microwave imaging have been pro-
posed. All are based on the solution of the wave equation using Green’s function
for the solution for the scattered field (2.17)as it was shown in the previous section.
The experimental set-up is the same as for diffraction tomography in figure 2.2.
The object is illuminated using a number of L illumination angles equally spaced
Θl = 2π(l−1)

L
, with l = 1 . . . L. The M receivers are arranged along a line or circularly

around the object under test. Contrary to diffraction tomography plane wave illu-
mination is not necessary as the Fourier diffraction theorem is not applied. Only one
element is radiating at a time. The scattered fields El

s(slm) at the observation point
slm can be calculated from the measured total fields at the receivers El

t(slm) and the
known incident field El

0(slm) where l is the illumination angle and m = 1 . . . M is
the receiver location.

El
s(slm) = El

t(slm)− El
0(slm) (2.20)

The direct problem is given by two coupled equations. The first is describing the
coupling between total fields and incident fields. It holds for the object domain as
well as the observation points but is evaluated over the object domain only.

El
t(r) = El

0(r) +

∫ ∫
S

G(r− r0)O(r0)E
l
t(r0)dr0 (2.21)

The scattered fields are given by the observation equation which is evaluated at the
observation points.

El
s(slm) =

∫ ∫
S

G(slm − r0)O(r0)E
l
t(r0)dr0 (2.22)

For the representation of the object the contrast function

c(r) =

{
εr(r)− 1 if r ∈ S
0 if r 3 S

(2.23)

is used. The background medium is again assumed to be free space. The object
function O(r) = k2

0c(r) is the same as for diffraction tomography. The discrete
equivalents of equations (2.21) and (2.22) are formed by dividing the object domain
in N usually rectangular unit cells in which the material parameters are constant.
The object function must be zero outside the object domain. The fields in the unit
cells are also assumed to be constant. Equation (2.21) can then be written in matrix
notation.

el
t = el

0 + GDOel
t (2.24)

el
t, el

0 are N element vectors containing the total and incident fields at the N cells the
object is located at. These can be represented by scalars because the object cross
section to image and the receivers are in the same plane. The scattered field caused
by the object has a component in the same direction as the incident one under this
condition. GD is an NxN matrix containing the integrated Green’s functions with
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both source and observation points in the object domain and O is the NxN diagonal
matrix containing the values of the object function in the cells Oii = oi when o is
an N element vector containing the values of the object function in the unit cells.
The observation equation (2.22) reads in matrix notation

el
s = GMOel

to. (2.25)

Here GM is an MxN matrix containing the integrated Green’s function with source
points in the object domain and observation points at the measuring receiver lo-
cations. el

s is an M element vector containing the scattered field at the receiver
locations. Rearranging (2.24) yields

el
t =

(
I −GDO

)−1
el
0, (2.26)

where I is the NxN identity matrix. This gives the total field in terms of the
unknown object function, the Green’s functions and the known illuminating field.
The solution of the direct problem is obtained by using the total fields from (2.26)
to compute the scattered ones at the receivers using (2.25).

el
s = GMO

(
I −GDO

)−1
el
0 (2.27)

The process of solving the direct problem and finding the scattered fields for a
given object can be written shortly as

es = A(O) (2.28)

where all L views have been included and A is a nonlinear vector function given
by equation (2.27). A cost function containing the distance between the result of
(2.28) and the measured scattered fields emeas

s is defined. The solution of the inverse
problem is searched by minimizing that cost function.

min Φ = ‖emeas
s − A(o)‖ (2.29)

This approach is common to most of the iterative schemes found in the literature.
Only the iterative method used for the resulting nonlinear least-squares problem, the
method for solving for the scattered field or the regularization methods are varied.
The step in the object function 4O at each iteration using Gauss-Newton is given
by

4O =
(
JT J

)−1
JT (emeas

s − A(O)) , (2.30)

where J is the Jacobian of A at the current object iterate and JT is its conjugate
transpose matrix. The condition number of JT J is very large and therefore the cal-
culate step 4O from the current object iterate to the next is very sensitive to errors
in the measured data. Therefore the Levenberg-Marquardt method is preferred over
the Gauss-Newton method for iterative imaging purposes. It solves for the step

4Oµ =
(
JT J + µI

)−1
JT (emeas

s − A(O)) (2.31)
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instead of using (2.30). The regularization parameter µ is a real positive number
that weights the identity matrix that is added to the ill-conditioned JT J in order
to improve the condition number and cure noise sensitivity. The iterative scheme
as outlined above is used in most of the iterative imaging methods suggested [43],
[44], [45] and [46].

It is equivalent to the second-order Born or distorted Born method [47]. These
methods solve the linearized inverse problem first to obtain an object estimate. This
is equivalent to first-order diffraction tomography (2.19). Then the direct scattering
problem is solved to approximate the total field not by the rough estimate of being
equal to the incident one, but as the total field in presence of the current object
iterate. With this new and better estimate of the total field the next iteration is
started until the residual error is reduced to the desired limit. By iteratively solving
the linearized inverse problem (diffraction tomography) and the direct scattering
problem the range of allowable contrasts can be increased by a factor of ten [48].

The difficulties to find a good choice for the regularization parameter are assessed
in [46]. Because a regularization parameter chosen to small might lead to instability
while a too large one will smooth the result and reduce resolution the proper selection
of the parameter is crucial for the performance of the Levenberg-Marquardt method.
Several strategies for the choice of the parameter are suggested while none of them
works satisfactory for a sufficiently wide range of initial guesses and noise levels in
the measuring data.

In [49] the simulated annealing technique and a Levenberg-Marquardt algorithm
are used to reconstruct a simple 2D model of the human arm consisting of only
25 cells. The simulated annealing method is a stochastic optimization method in-
troducing slightly modified estimates at each iteration. By doing so it can avoid
getting trapped in local minima like deterministic optimization methods. Because
this reminds of the physical annealing of an hot solid to an monocrystal of minimum
energy the method is called simulated annealing. For iterative microwave imaging
simulated annealing is found to require a very large number of iterations (25.000),
while the Levenberg-Marquardt algorithm might not converge at all, especially when
the initial guess is not close to the actual object. The divergence problem occurs for
noiseless data. Therefore serious convergence problem for noisy measuring data are
anticipated. The high number of iterations required makes the simulated annealing
method computationally expensive.

The noise sensitivity of Levenberg-Marquardt and modified gradient iterative
methods is investigated in [45]. In this work the data is collected at several frequen-
cies in order to gain more information for the image reconstruction. For noiseless
data both methods gave satisfactory images with some distortion and quite low
resolution. The Levenberg-Marquardt method diverged completely for noisy input
data, while the modified gradient method was able to retrieve a noisy image. All
images obtained do not indicate that any of the iterative methods proposed may be
suitable for practical applications.

A different approach for the regularization is suggested in [50]. The weak mem-
brane model [51] and a non-negativity constraint are used as a weighted contribu-
tions to the cost function. The weak membrane model is approximating a two-
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dimensional function by continuous sections when the tension of the membrane is
weak while at the same time allowing steps by cutting the membrane when the ten-
sion on it is to large. The result looks like if a weak membrane was spanned over
the original function giving the method its name.

The results obtained using this approach are of much better quality than the ones
with the Levenberg-Marquardt method for scatterers consisting of several homoge-
nous regions. This is expected as the weak membrane model is an image processing
technique originally developed to detect edges by separating homogenous regions.
Depending on the model parameters the result will be homogenous regions, but
gradually changes are not imaged adequately. The algorithm is therefore tailor
made for a specific problem. This is not considered to be a useful approach as al-
gorithms only working for specific objects will not contribute to an improvement
of microwave imaging techniques. The tasks of image acquisition and image pro-
cessing should be clearly separated until algorithms for certain technical or medical
tasks are developed. When working towards a technology to implement microwave
imaging based systems for specific applications using image processing algorithms
will further enhance the image quality, target recognition etc. as is done for CT and
MRT images today.

The problem of general applicability has also been recognized by the community
of researchers working in the field. As a result common data sets were provided to
test algorithms using the same real measuring data known as the Ipswich data set
[52]. This has lead to some improved diffraction tomography methods still failing for
stronger contrasts [53] and also iterative imaging methods where the basic approach
outlined above is used [54].

The limitations encountered with the iterative procedures described above are
due to the nature of the inverse problems. As the direct problem can be solved
without approximations the divergence and noise sensitivity are completely due to
ill-posedness. This can be cured by improved iteration schemes and by collecting
more independent and exact measuring data.

2.4 Confocal Imaging

The difficulties encountered with the algorithms outlined in the above two sections
are due to the complex propagation of microwaves in inhomogeneous bodies. There
are methods aiming on avoiding these complex propagation by focussing the signal
to a point in the object. By doing this a local scanning effect can be achieved.
The term confocal is used because the illuminating signal is focussed to a point in
the object domain and the scattered signals generated at that point are focussed to
the measurement receiver location also. This approach is also referred to as double
focussing [55]. This is similar to a ray optics approach where a single object domain
point located at the focal point of a lens system is scanned. In microwave confocal
systems the scanning is achieved in the lateral plane by using highly directive an-
tennas, microwave lens systems or by forming a synthetic aperture. Several physical
set-ups can be used depending on how the focussing is achieved.
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Figure 2.3: Confocal microwave imaging system

The one closest to confocal microscopy is the lens system as in [55]. Two lenses
are located two focal lengths apart from each other while one is focussing the incident
field E0 radiated by a primary antenna. The second lens is collecting and refocussing
the fields to the receiving primary antenna. The authors claim that they can achieve
a narrow channel the signal is propagating along and by scanning the object in the
transverse plane and recording the fields for each position a projection of the object
can be obtained. As in the CT parallel beam protocol this is repeated for a number
of illumination angles. The Fourier slice theorem can be applied to the data as line
propagation is assumed. Obviously, this is only a valid assumption for the weak
scattering case. While microwave radiation can be focussed in a single point in the
absence of an object the focussing is not achieved when strongly scattering objects
are placed in the search domain. The application examples show the limitations
of this approach. The method is shown to work properly on styrofoam cylinders
(εr = 1.05) only. In the presence of strong scatterers it is expected that the field
is scattered and multiple reflections occur destroying the focussing effect. This
also explains why confocal imaging is successful in optics but fails for microwave
applications. The beam propagation model is valid in the optical case but not for
microwave propagation in the strong scattering case.

The same measuring set-up and parallel beam protocol for the image calculation
are also used in [56]. A method for the estimation of the point spread function
(PSF) of a confocal microwave imaging system is suggested based on measurements
of a reference object. While the accuracy of the image is improved by deconvoluting
the measured data with the estimate of the PSF the weak scattering limitations of
confocal systems are not addressed in this work. The examples given are for very
weak conductivity contrast.

The other imaging method using a localized focussing effect is adopting princi-
ples originally developed for ground penetrating radar (GPR) [57]. Ultrawideband
signals are irradiated by single antennas that are scanned over the search domain
and a synthetic aperture is formed from the measurements at the different locations
[10]. The lateral spatial resolution is given by the radiation pattern of the physical
or synthetic aperture used for lateral scanning. The depth resolution is determined
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by the pulse width used for illumination. This requires ultrawideband antennas
which should additionally be highly directive if a lateral scanning effect in the single
measurements is to be achieved. These are high demands on the antenna system
that are not fully met by current designs.

The focussed imaging approaches work satisfactory when applied to single scat-
terers in homogenous or weakly heterogenous backgrounds [58]. Besides the GPR
this is promising for the detection of scatterers in weakly scattering background
as breast tumor detection. Most confocal systems suggested are targeting this ap-
plication [10], [58], [59] and [60]. In more complex situations when several strong
scatterers causing multiple reflections the detection is not reliable any more and
even the rough location of the strong scattering object becomes difficult. The clut-
ter created by inhomogeneous backgrounds is also causing severe problems. Confocal
methods are not aiming on quantitative information about the permittivity of an
object. The focus in these methods is on detection and classification of scattering
objects which is sufficient for mine or tumor detection problems.

2.5 Conclusion

None of the microwave imaging methods mentioned above is capable of stable quan-
titative imaging of strongly scattering and lossy objects. The common reason for
this are unrealistic linear models and difficulties caused by the nature of inverse
problems.

From the previous considerations can be concluded that a successful microwave
imaging system will incorporate the following features:

1. Use of multi-frequency information.

2. Use of many transmitter and receiver positions.

3. Exact solution of the direct problem and usage of an iterative scheme.

4. Use of efficient regularization schemes to achieve stable convergence.

5. Measuring set-up allowing highly accurate vectorial measurements.



Chapter 3

Regularization and Iterative
Algorithm for Imaging of Strongly
Scattering and Lossy Objects

3.1 Regularization

3.1.1 Iterative Regularization Methods

As mentioned in section 1.4 microwave imaging is an inverse problem. It is exhibit-
ing the properties of ill-posed problems as non-uniqueness, noise sensitivity caused
by ill-conditioning of the corresponding linear systems and instability of iterative
algorithms applied to it.

Figures 3.1 and 3.2 give an idea of that behavior of inverse electromagnetic
problems. It is the problem of reconstructing a layered media from the reflection
coefficient. The object consists of two layers, one consists of acrylic the other of air,
each 1.5 cm long. The scattering matrix of this two layer object has been measured
using a Vector Network Analyser (VNA). The measuring accuracy is good as can
be seen by the good agreement between measured and simulated input reflection in
figure 3.2. Although the start value for the permittivity profile is already very close
to the actual one the solution found is entirely different. This is surprising as one
would expect quick convergence to the actual solution if the initial guess is so close
to the solution. But the ill-posedness of this problem causes a different behavior.
The scattering parameters of the reconstructed object do match the measured ones
very well (figure 3.2). However, the solution obtained is not acceptable because the
reconstructed permittivity profile is entirely different compared to the actual one. It
is characterized by large oscillations, the relative permittivity is even smaller than
one or even negative. Thus a regularization must be applied in order to avoid such
solutions.

The task is to reconstruct the object described by a number of n parameters from
measurements of scattered fields or scattering parameters where the illumination
signal is known. The number of measured field samples m is in most cases much
larger than the number of parameters describing the object n. The obtained task is

29
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Figure 3.1: Unregularized solution of a layered media problem.
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therefore the solution of a nonlinear least-squares problem. Using operator notation
as introduced in section 1.4 this can be written as

min
f∈X

‖Af − g‖. (3.1)

Because the solution of this problem corresponds to an inverse problem it is ill-
posed. To obtain a solution of (3.1) despite of the difficulties mentioned above a
regularization is applied. A regularization can be introduced by formulating addi-
tional constraints on possible solutions of (3.1). To achieve this, a suitable subset
Ω ⊂ X is defined and it is required that all physically acceptable solutions of (3.1)
fall within that subset. The resulting problem is

min
f∈Ω⊂X

‖Af − g‖. (3.2)

Because this constrained problem is very difficult to treat and no sufficiently verified
algorithms are available, it must be reformulated to the structure of an unconstrained
one. This is usually achieved by the method of penalty functions [61]. The problem
can be shown to be equivalent to minimizing a new cost functional

min
f∈X

Φ = ‖Af − g‖+ µh, (3.3)

where µ is the positive regularization parameter and h is the stabilizing penalty
function. The penalty function forms a linear combination with the unconstrained
functional weighted by the regularization parameter and assures the unconstrained
problem to converge to a solution in Ω by making outside solutions very expensive.
Several penalty functions have been suggested and tested for applicability in inverse
scattering problems [18]. All have in common that a priori information is used to
confine the range of mathematically possible solutions to the subset of physically
acceptable ones. The most used constraints are Tikhonov penalty function

h = ‖f‖ (3.4)

where h simply represents the energy of the object and the solution of the uncon-
strained minimization will lead to the object with minimum energy minimizing the
functional (3.3) to the desired limit. The justification for this is that physically
acceptable solutions should have a limited energy. The Phillips penalty function,
which is also refered to as second order Sobolev term, is defined by

h = ‖f ′′‖ (3.5)

and requires that the object should be reasonably smooth. This is also a physically
very reasonable choice and appears to be particulary useful for inverse scattering
problems as many solutions obtained by solving the unregularized problem (3.1) are
characterized by large oscillations of the object as seen in the example above.

Other regularization methods use a linear combination of the object energy and
the 1st derivative to obtain a smooth object with low energy [18]. Recently the weak
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membrane model [51] has been successfully adapted to inverse scattering problems
in [50]. It uses a more complex membrane model to achieve a smooth object and
at the same time allows for sharp boundaries at object interfaces. However, none of
these regularization methods is applicable to a wide range of inverse electromagnetic
problems.

3.1.2 Regularization and Bandlimiting

If the mapping operator was known it could be attempted to solve an inverse problem
by inverting the direct one. For all practical cases the direct problem is given by

Af + δ = g∗ (3.6)

where δ is the noise and g∗ is the noisy measuring data. The resulting equation for
the object f ∗ found from noisy data is

f ∗ = A−1g∗. (3.7)

The maximum acceptable error in the reconstructed object is emax. For an inverse
problem (3.7) will generally not give the desired solution ‖f ∗ − f‖ < emax due to
the ill conditioning of A. The bad condition will cause strong noise amplification.
The reasons for this can be identified using singular value decomposition (SVD) of
A [62]. When A is a mapping of n object parameters to m data points it is an m×n
matrix.

A = USV T (3.8)

Here S = diag(si) is an m × n diagonal matrix containing the singular values of
A on the diagonal and with zero elements elsewhere. The columns of the square
m × m matrix U are the orthogonal left singular vectors and the columns of the
n× n square matrix V the right ones. The inverse of A is then given by

A−1 = V diag(s−1
i )UT , (3.9)

where diag(s−1
i ) is a n ×m left diagonal matrix. This can be applied to equation

(3.7). Using (3.6) for the measuring data yields

f ∗ = f + V diag(s−1
i )UT δ. (3.10)

Obviously, the small singular values are the source for the noise amplification as can
be seen from (3.10). To eliminate this undesired behavior suitable weights on the
singular values must be introduced. These should fulfill the condition

lim
s→0

ws−1 = 0 (3.11)

An intuitive choice would be to set a threshold.

wα(s2) =

{
1 if s2 > α
0 if s2 ≤ α

(3.12)
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Figure 3.3: Image reconstruction example: The point spread function of the system
(a). The original object(blue), the input collected by the system (green) and the
unregularized reconstructed data(red)(b). The singular values of the system (c).
Plots of the right singular vectors over the space variable (d). Reconstructed image
using TSVD regularization (e). Reconstructed image using Tikhonov regularization
(f).
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The object reconstruction is then performed by

f ∗α = V diag(wα(s2)s−1
i )UT g∗ (3.13)

This algorithm is known as the truncated SVD (TSVD) regularization. Its prop-
erties are assessed on the following example. An imaging system has the Gaussian
sampling function a(x − x′) depicted in figure 3.3(a). This kind of sampling func-
tion is often observed in optical systems but is also a realistic choice for microwave
imaging systems. This sampling function is called the point spread function (PSF)
of the system. The object function f to image is the stepped pulse function shown
by the blue line in figure 3.3(b). This object is sampled at N=80 discrete points
by the system resulting in the matrix representation of the mapping operator A.
The sampling process is basically a convolution of the object with the point spread
function.

g∗(x) =

∫ 1

x′=0

a(x− x′)f(x′)dx′ + δ, 0 < x < 1 (3.14)

This convolution type sampling gives the blurred image shown by the green line
in figure 3.3(b). For this example the noise level is just the limited accuracy of
the floating point representation, so the data is virtually noiseless. Still the result
obtained by applying (3.7) on the data is not satisfactory as depicted by the red line
in figure 3.3(b). Despite the noiseless input data the reconstructed object is highly
distorted. The reason for this can be seen from the plot of the singular values of A in
figure 3.3(c). As A is a real valued matrix it has positive monotonically decreasing
singular values. The rank of the discrete PSF is only 74 given the calculation
tolerance. Consequently using (3.7) will cause great noise amplification even for
virtually noiseless input data.

By applying the TSVD filter the inverse values of those small singular values are
set to zero which avoids multiplying the noise with very large numbers in (3.10).
The introduction of this weighting can be shown to be equivalent to bandlimiting
the reconstructed object when observing the singular vectors of A. Three of the
singular vectors are plotted in figure 3.3(d). The singular vector v1 corresponds to
the largest singular value of A. It is slowly varying in space and corresponds to the
lowest part of the spectrum of A. The second and 5th order singular vectors have
increasing spatial frequency. The singular vectors corresponding to the very small
singular values are consequently oscillating with very high frequency. The TSVD
filter cancels those highly oscillatory singular vectors. The TSVD regularization is
therefore equivalent to bandlimiting the reconstructed object. This effect is shown
in figure 3.3(e). The distortion of the unregularized solution can be removed but
the edges of the pulse show Gibbs phenomenon due to the limited band. The result
obtained by a regularized reconstruction will depend on the regularization parameter
α. If it is to small noise amplification might occur, if it is to large the solution found
will be smoothed due to the strong low-pass filtering.

The TSVD filter requires the SVD decomposition of A which is not necessary
when applying the Tikhonov regularization. It uses the weight function

wα(s2) =
s2

s2 + α
. (3.15)
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Figure 3.4: Reconstructed objects from data with 80 dB SNR: unregularized recon-
struction(a), Tikhonov reconstruction(b).

This satisfies (3.11) also and has the additional advantage that that the SVD does
not need to be computed explicitly. The object can instead be reconstructed using

f ∗ =
(
AT A + αI

)−1
AT g∗. (3.16)

Additionally the results achieved using Tikhonov regularization are frequently su-
perior to those obtained using TSVD. The proof of the equivalence of (3.16) and
(3.13) is given in appendix A.

In the presence of noise the importance of a suitable regularization increases
as in practical cases the distortion of the unregularized solution caused by noise
amplification often is several orders of magnitude larger than the object itself. This
effect is shown in figure 3.4. The same object as in the previous example is imaged
using the same system but noise has been added to the measuring data. Although
the signal to noise ratio is better than 80 dB which is more than one can expect for
practical imaging applications the reconstruction of the object fails. The behavior
of inverse problems in microwave imaging and optical imaging is similar. Again
the object found by unregularized reconstruction is corrupted by strong oscillations
as in the microwave profile reconstruction example in figure 3.1. The Tikhonov
regularization with α = 1 × 10−5 avoids the noise amplification and the result
obtained in figure 3.4(b) is essentially identical to the previous noiseless case.

As equation (3.14) is basically a convolution of the object in the space domain
the frequency domain equivalent can be used to show the necessity of bandlimiting
the reconstruction. The equivalent of (3.7) reads

f ∗ = F−1

{
F(g∗)

F(a)

}
. (3.17)

The Fourier transform of the system PSF is the transfer function F(a). The re-
constructed object is not defined from (3.17) if the transfer function is zero for any
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frequency point. For small values the noise in the measuring data will be amplified
as discussed above.

3.1.3 Spectral Expansion of the Object Function

In microwave imaging applications the direct mapping operator is generally not
known. Additionally it is not space invariant as required to apply an inverse solution
as on the previous optical example. Iterative algorithms involving the solution of
the linearized direct problem or the solution of the nonlinear direct problem are
used. As outlined in section 2.3 all iterative approaches to inverse electromagnetic
scattering developed so far represent the object by a number of discrete samples.
These samples are the material parameters of usually rectangular unit cells. The
material properties of these homogenous blocks are then optimized in the iterative
algorithm. There exists no relation between one sample to the neighboring ones
in the unconstraint problem. This relation is established by adding constraints on
the smoothness which means one tries to find an object which has minimum change
from one sample to the next and still matches the measured data to the desired
accuracy. Obviously this is not the most efficient way to formulate the regularization.
Also the solution found will strongly depend on the choice of the regularization
parameter while the optimum choice for it is not known in advance and can at
best be estimated [63]. As the value of the regularization parameter can vary over
several decades, it has been found empirically in most known examples by carrying
out experimental reconstructions and selecting the result most reasonable. This is
called the interactive method and is still used for many problems [18]. To overcome
these drawbacks a new regularization scheme based on the spectral expansion of the
object is proposed here. The permittivity distribution is expanded into a complete
set of orthogonal functions. The permittivity is used here as it is the mostly imaged
electromagnetic parameter but the same approach can be used for conductivity and
permeability also.

ε(x, y, z) =
N∑

n=0

dnfn(x, y, z) (3.18)

Completeness must be given in order to be able to expand arbitrary objects into
the set. Orthogonality is favorable because a finite series will always represent the
object with the best possible accuracy and coefficients will remain unchanged while
increasing the number of expansion functions. The orthogonality condition is given
in (3.19) where N(i) is the norm of the function fi.

(fifj) =

∫
V

fi · fjdV =

{
0 for i 6= j
N(i) for i = j

(3.19)

For the expansion cosine or sine functions as well as orthogonal polynomials can be
used. For the purpose of solving the inverse electromagnetic scattering problems the
expansion into a set of cosine functions (3.20) is most favorable for the following rea-
sons. The expansion of a unknown three-dimensional object in cartesian coordinates
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in terms of a cosine-series reads:

εr(x, y, z) =
N∑

n=0

M∑
m=0

L∑
l=0

dnml cos (kxnx) cos (kymy) cos (kzlz) , (3.20)

where kxn = nπ
a

, kym = mπ
b

and kzl = lπ
c

are the spatial frequencies along the x, y
and z direction. The object is now represented by the expansion coefficients dnml

which are the parameters for the optimization. The reason to favor cosine over sine
functions is simply that in the above expansion only the coefficient with zero spatial
frequency in all directions d000 will carry information about the average permittivity
in the object while all others are free of contributions to the mean value. In the
sine case all coefficients having an odd index will contribute to the mean value. As
will be shown it is favorable to separate the average material parameters from the
higher coefficients. The benefit of harmonic functions over other orthogonal sets of
polynomials is the special relation to the measured data. This can be shown on the
example of a one-dimensional layered media problem. The expansion of a layered
media along z which is homogenous along the transverse plane is

εr(z) =
N∑

n=0

dn cos
(nπz

c

)
(3.21)

The layered media is lossless so only the real part of the relative permittivity is
considered. By solving the Riccati differential equation for the reflection coefficient
and linearizing by dropping the quadratic term as in section 2.1 one obtains equation
(2.3) which is repeated here for convenience.

Γin(k0) = −1

4

∫ c

z=0

1

εr(z)

d(εr(z))

dz
e−2jk0

√
εr(z)zdz (3.22)

This is a Fourier transform of the permittivity profile into the frequency domain.
Although this has been obtained by neglecting the quadratic term in the reflection
coefficient, from this result it can be seen that for a harmonic variation in permit-
tivity a reflection coefficient over frequency function is obtained which resembles
the spectrum of a pulse modulated carrier. This is a sinc function where the center
frequency is proportional to the carrier frequency which is the spatial frequency of
the permittivity change. This function has a region of maximum magnitude when
the average propagation constant throughout the object is

β̄ =
nπ

2c
(3.23)

This allows to assign a certain frequency range to each expansion coefficient dn in
(3.21) where it will have its strongest effect on the scattering data. Therefore it is
now possible to relate each parameter describing the object to a certain subset in the
measured data set. This is not possible in the standard iterative approaches using
discrete blocks. This beneficial effect of the spectral expansion is shown in figure 3.5.
The magnitude of the reflection for profiles created by a homogenous background
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and the expansion coefficients d2, d4 and d8 were calculated using numerical solution
of the Riccati equation. The region of maximum magnitude of the reflection data
is shifting to higher frequencies for increasing order of expansion coefficient. This
frequency range is later used in the iterative algorithm to optimize exactly the
corresponding expansion coefficient.

3.1.4 Formulation of the Smoothness Constraint

A further benefit of the spectral object representation introduced in the previous
section is that it also allows easy formulation of smoothness. No additional stabiliz-
ing functions of the type (3.5) are required to limit the search domain to reasonably
smooth objects. This can now be done by limiting the number of expansion terms.
The second derivative of the expansion (3.21) with respect to z is derived in appendix
C.

d2εr(z)

dz2
= C1 +

N∑
n=1

(
C2 − dnk

2
n

)
cos (knz) . (3.24)

Here C1 and C2 are two constants determined by the values of the first derivative of
the permittivity function at the borders of the interval at z = 0 and z = c. According
to equation (3.24) the maximum of the second derivative in the expansion region
along z is depending quadratically on the spatial frequencies of the terms used
for the expansion. This allows to require smoothness by limiting the number of
expansion coefficients N. By doing this the occurring spatial frequencies kn can be
limited kn < kN . All objects with finite expansion coefficients have a smoothness
quadratically dependent on the number of functions used for the expansion. This
number is now the number of dimensions of the spectral object representation. The
subset defined by the regularization in (3.2) is therefore

ΩN = RN (3.25)

All objects in this N-dimensional domain are sufficiently smooth and the problem
reduces to a nonlinear least squares problem.

min
f̃∈ΩN

‖Ãf̃ − g‖, (3.26)

where Ω is defined by equation (3.25) and f̃ is the spectral object representation.
Note that the operator A has been replaced by a new operator Ã which maps
the spectral object representation to the measuring space. Equation (3.26) gives
the remarkable result that by transforming the object using (3.20) a constrained
optimization problem can be formulated without explicitly formulating a subset
as in (3.2) or using regularization parameters and penalizing functions as in (3.3).
There is no bound on the expansion coefficient dn or dnml in the three-dimensional
case which can be proven rigorously.

The spectral object representation by a limited number of expansion terms shows
similarities to the TSVD and Tikhonov regularization. Limiting the dimension of
the object space is equivalent to cancelling the highly oscillatory singular vectors
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Figure 3.5: Permittivity functions and corresponding magnitude of reflection: per-
mittivity profile with d2 = 0.5 (a), permittivity profile with d4 = 0.5 (c), permittivity
profile with d8 = 0.5 (e), and the corresponding magnitudes of the input reflection
coefficient as function of frequency (b),(d),(f)
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by weighting their corresponding singular values in (3.13). Although the effect
is equivalent the regularization using spectral expansion is suitable for iterative
methods when the mapping operator A and its SVD are not known.

The measuring frequency band can now be related to the object reconstruction
prior to the start of the iterative algorithm. A maximum number of expansion
coefficients can be selected due to the known measuring frequency band. Only those
expansion terms that have their frequencies of maximum effect in the measuring
band according to (3.23) are included in the regularized solution. Ill-conditioning
by exceeding the system bandwidth in (3.17) can so be avoided as can also be
verified by numerical simulation. In microwave imaging iterative schemes this is
not possible with any other known method as the system transfer function is not
known. Consequently it is also not known in advance for what number of cells the
reconstruction will get ill-posed. It has been observed that the ill-conditioning is
getting worse with the number of cells used in the reconstruction [63], but no explicit
rules can be given to select it in advance. Being able to estimate the resolution
achievable is the major advantage of the proposed regularization over microwave
imaging schemes using the discrete cell approach.

3.1.5 The Successively Relaxed Smoothness Constraint

As the ill-posedness of the microwave image reconstruction is now cured the con-
vergence of the iterative process to the desired solution is addressed. Experimental
work shows that the smoothness constraint described in the previous section leads to
a problem which is not ill-posed as an unconstrained discrete problem but still does
not reliably converge to the desired solution. The regularization avoids solutions
showing large oscillations but does not cure a problem connected to many nonlinear
problems: non-uniqueness.

The observation that at low frequencies rather the averaged permittivity through-
out the object is measured while details are detected at higher measuring frequencies
leads to the method of the successively relaxed smoothness constraint. This is a sub-
space method which solves for the best solution in a given resolution while using a
measuring frequency band which corresponds to the expansion coefficients currently
determined. By applying condition (3.23) which gives a useful relation between each
expansion coefficient and its frequency range of maximum effect this observation can
be incorporated into the iterative imaging algorithm.

The algorithm first solves for a very smooth object which fits the data in the
low frequency range. Smoothness of the object is obtained by represented it by a
small number of expansion functions. When this object is found the smoothness
constraint is relaxed and a new object which is not as smooth and fitting the data
over a wider frequency band is searched. That means that the dimension of the
image space is also increasing while the object space is increasing its dimension.
When starting from an initial guess sufficiently close the current object will always
be very close to the actual one in the given resolution. This process is started with
N = 1 which means that only a guess for the average permittivity is needed. An
initial guess good enough can always be found in practical applications as will be
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shown in chapters 4 and 5. This consideration suggests to leave the simultaneous
equations nonlinear least squares problem and to reformulate to

min
f̃n∈ΩN

‖Ãf̃n − gn‖ for N = 1, 2 . . . Nmax. (3.27)

The solution f̃n ∈ ΩN found for a number of N expansion terms is the start guess
for the new problem in the object space ΩN+1, where the new expansion coefficient
is always initialized to zero. The number of m scattering parameters that form the
data set gn ∈ Rm is much larger than the number of optimization parameters n. The
maximum achievable resolution is limited by the number of expansion coefficients
determinable Nmax. This number depends on the measuring frequency range and on
the measuring accuracy. These dependencies are examined by numerical experiments
in chapter 4.

This regularization scheme puts special requirements on the iterative algorithm
used to implement it. A suitable iterative method is developed in the next section.



Regularization and Iterative Algorithm 42

3.2 Iterative Algorithm

3.2.1 Nonlinear Least-Squares

In an inverse electromagnetic problem one deals with the problem of fitting m data
points which represent measured field samples or scattering parameters with the
exact or approximate solution of the direct problem which are the simulated field
samples or scattering parameters. The direct problem is the mapping of the n param-
eters describing the unknown object to the measurement space. These parameters
are the expansion coefficients of the permittivity distribution according to (3.20).
Usually the number of measured quantities is much larger than the number of pa-
rameters describing the unknown object which leads to the nonlinear least-squares
problem:

F : Rn → Rm, m > n (3.28)

min
x∈Rn

1

2
F T (x)F (x) =

1

2

m∑
i=1

(fi(x))2,

where the residual function F is nonlinear and fi is the ith component of F. F T (x)
is the conjugate transpose vector of F (x). This can be considered to be a special
case of the unconstrained minimization problem

f : Rn → R (3.29)

find x∗ ∈ Rn for f(x∗) < f(x) for every x ∈ Rn

Both problems are closely related when f is defined as

f(x) =
1

2
F T (x)F (x) =

1

2

m∑
i=1

(fi(x))2. (3.30)

However, the iterative algorithm should take into account the special structure of
(3.28) and not use one of the standard algorithms for unconstrained minimization
[64]. The corresponding unconstrained minimization problem (3.29) is used for the
development of a strategy for global convergence. The definition of global conver-
gence is in accordance to [64] and [65] and means the convergence to a local minimizer
from an arbitrary starting point. Methods for constrained minimization [66] need
not to be reviewed as the problem has been reformulated to an unconstrained one
in section 3.1.

The standard Newton method for unconstrained minimization reads

xk+1 = xk −
∇f(xk)

∇2f(xk)
. (3.31)

Here xk is the current iterate, xk+1 is the next iterate, ∇f(xk) is the gradient

∇f(x) =

[
∂f(x)

∂x1

. . .
∂f(x)

∂xn

]T

(3.32)
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of the cost function f and ∇2f(xk) is its Hessian. The elements of the Hessian are
by definition

∇2f(x)ij =
∂2f(x)

∂xi∂xj

. (3.33)

Using the cost function according to (3.30) yields the gradient

∇f(x) = JT (x)F (x) (3.34)

where J(x) is the Jacobian at the current point.

J(x)ij =
∂fi(x)

∂xj

(3.35)

The Hessian of f is
∇2f(x) = J(x)T J(x) + S(x) (3.36)

with

S(x) =
m∑

i=1

fi(x)∇2fi(x). (3.37)

The derivation of these expressions for the gradient and the Hessian are given in
appendix B. Using (3.34),(3.36) and (3.37) in the Newton method for unconstrained
minimization yields

xk+1 = xk −
(
J(xk)

T J(xk) + S(xk)
)−1

J(xk)
T F (xk) (3.38)

This is the method most efficient for the considered problem when J(x) and S(x)
are available as it will converge quadratically to a minimizer of (3.28). By definition
of quadratic convergence the sequence of iterates will satisfy for constant C

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2, C > 0. (3.39)

In many practical problems J(x) is available but S(x) is not. Additionally it is
very expensive to approximate S(x) by finite differences. For these reasons (3.38)
is not frequently used to solve nonlinear least-squares problems in practice. A more
practical algorithm is obtained by using a linear model of F (x) around the current
point.

Mk(x) = F (xk) + J(xk)(x− xk) (3.40)

This model can be minimized using its linear least-squares solution.

xk+1 = xk −
(
J(xk)

T J(xk)
)−1

J(xk)
T F (xk). (3.41)

This method selected for the solution of (3.28) is the Gauss-Newton method. If
F (x) is linear it will give the minimizer x∗ in the first iteration. For nonlinear
problems (3.41) is applied subsequently to determine the next iterate. Equations
(3.38) and (3.41) are only different in the term S(x). If it is negligible compared to
J(xk)

T J(xk) the Gauss-Newton method will converge quadratically as the Newton
method. If S(x) is large it might not converge. The Gauss-Newton method should
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therefore only be applied to zero-residual or small-residual problems. In case the
residual function fi are small S(x) will also be small and can be neglected without
threatening convergence.

For microwave imaging problems using noiseless data quadratic convergence is
assured as it is theoretically a zero residual problem. When using measured data the
problem will transform to a small residual problem due to the measurement errors.
As these residuals are expected to be small for reasonably accurate measurements
and direct problem solutions the Gauss-Newton method will converge quadratically
or at least linearly [64].

A drawback of the Gauss-Newton algorithm is that the step is not well-defined
if J(xk) does not have full column rank. The resulting linear problem for the step s

JT Js = JT F (3.42)

is badly conditioned in that case and would lead to errors in the calculation of
the step s. This case should not occur as the physical set up and the frequency
range assignment have been made to achieve a well-conditioned system. This can
be verified by simulation also. When the measurement frequency range is chosen
properly, J(xk) is well-conditioned for the whole iterative process. When it is too
small, the condition is getting worse when higher order expansion coefficients are
included into the optimization process. The condition of the Jacobian is a measure
for how strong the measured data depends on the parameters. When parameters
are included into the optimization which do not have any effect on the measured
data the condition of the Jacobian will get worse.

The Levenberg-Marquardt method [65] does not have the drawback of being as
sensitive to the condition of J(xk). This is achieved by adding a weighted unity
matrix to the Jacobian prior to its inversion. Due to that approach it shows slower
convergence in most cases [67]. As all computational effort is negligible compared
to function evaluations, a low total number of function evaluations is the main
goal in the development of the iterative algorithm. It is therefore preferred to use
the fast Gauss-Newton Method and assure a well conditioned system by properly
designing the measurement system and parameters. Search algorithms like Nelder-
Mead algorithm [65] with the benefit of not requiring derivatives are not applicable
because of the high number of parameters describing the object. This would lead
to a search requiring a very high number of function evaluations. The same applies
to genetic algorithms which would require a very large population for the problem
considered here [68].

3.2.2 Hybrid Jacobian Approximation

Some modifications to the standard algorithms are necessary for the solution of the
inverse problem. The first is that the nonlinear function F is not known analytically
and its numerical evaluation is computationally very expensive. The Gauss-Newton
algorithm requires the calculation of the Jacobian

J(x) ∈ Rm×n (3.43)
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at every iteration step. An evaluation of the Jacobian using the finite difference
method takes one calculation of the direct problem per parameter with finite differ-
ences.

J(x)ij =
∂fi(x)

∂xj

≈ fi(x + hej)− fi(x)

h
(3.44)

Here h is the step width and ej is the j th column of the identity matrix. This requires
a total of n direct problem solutions. The advantage of using a finite difference time
domain (FDTD) solver for the solution of the direct problem is here that it yields
all m functions, which are the scattering parameters at different frequencies in one
direct problem solution. The direct problem solution can require more than one
FDTD solver run as each solver run gives one column of the scattering matrix [69].
Frequency domain solvers would need one run for each frequency point. The more
exact central difference approximation

J(x)ij =
∂fi(x)

∂xj

≈ fi(x + hej)− fi(x− hej)

2h
(3.45)

cannot be used as it will consume twice as much calculation time and is therefore
too expensive to obtain. The largest error contribution in the calculation of the
Jacobian is the error of the evaluation of the direct problem. As exact solutions of
full 3D structures are computationally very expensive, a compromise between speed
and accuracy of the direct problem solution must be made. The error introduced by
the finite difference approximation can therefore be neglected compared to the one
introduced by the solution of the direct problem itself. No improvement justifying
the additional computational expense is expected from using (3.45).

Also the special needs of the iterative imaging of the object using the spectral
expansion and the regularization must be met. From the regularization follows that
not all parameters are included in the optimization at the beginning. They are
included in the order of their corresponding frequency of maximum effect on the
scattering parameters. At the same time, the number of functions included in the
minimization functional is increased. This means that the size of the Jacobian is
constantly increasing during the iteration process. The known methods for the op-
timization of computationally expensive functionals are for simultaneous nonlinear
equations only. In contrast to that the dimensions of the object space n and the
image space m are constantly increasing for the problem considered here.

These special requirements for the minimization problem lead to the following
strategy: As the Gauss-Newton method gives fast local convergence a method based
on it should be applied to achieve convergence in a small number of iteration steps.
These methods require the Jacobian J(xk) at the current object xk. The calculation
of the Jacobian needs one solution of the direct problem per optimization parameter
for the finite difference approximation (3.44) which is unacceptable. When the
number of parameters and equations remains unchanged between two iteration steps,
Broyden’s method [70] can be used. This method is based on trying to minimize the
change to an already known Jacobian J or its Broyden approximation J̃ and still
satisfying the secant equation of the current iteration step. The current step in the
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parameters is denoted
sk = xk+1 − xk, (3.46)

where xk+1 is the new object and xk is the starting object in the current iteration
step. The difference in the corresponding images is the yield

yk = F (xk+1)− F (xk). (3.47)

The Jacobian approximation J̃ for the next step must fulfil

J̃k+1sk = yk, (3.48)

which is the secant equation for the current iteration step k. The looked for Jacobian
approximation for the next step is not uniquely defined by the secant equation. The
additional condition used in a Broyden update is that the difference between the
current Jacobian or its approximation to the next should be minimized. J̃k+1 can
then be uniquely determined using this condition. The idea of trying to minimize the
change between two subsequent Jacobian approximations is based on the fact that
some initial Jacobian has been obtained for the first iteration and as much of it as
possible should be preserved for the next iterations. When a number of subsequent
iterations is carried out, the Broyden approximation of the Jacobian may become
inaccurate and the convergence will slow down. In this case it must be reset to
good approximation at the current point. For this purpose the finite difference
approximation can be used. Because there is new information in the direction of the
current step sk only, it is required that J̃k+1 and J̃k agree for all vectors t orthogonal
to the current step sk. For all these vectors

tT sk = 0 (3.49)

holds. The difference between the two subsequent Jacobian approximations fulfils(
J̃k+1 − J̃k

)
t = 0 (3.50)

for all those vectors t. This implies that (J̃k+1 − J̃k) is a rank one matrix. Every
column of (J̃k+1 − J̃k) can be expressed as a multiple of a common vector u. The
difference between the two Jacobians is then given by

J̃k+1 − J̃k = uvT . (3.51)

Using (3.51) in (3.50) yields
uvT t = 0. (3.52)

This requires tT v = 0 and can only hold for v = sk or an multiple of it by definition
of t in equation (3.49). The difference between the Jacobians can now be written as

J̃k+1 − J̃k = usT
k , (3.53)

where u is still unknown. Subtracting J̃ksk from the secant equation (3.48) yields(
J̃k+1 − J̃k

)
sk = yk − J̃ksk (3.54)
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By combining this with (3.53) the unknown vector u can be determined.

u =
yk − J̃ksk

sT
k sk

(3.55)

Substituting u in (3.53) gives the result for the minimum change update to the
current Jacobian fulfilling the secant equation.

J̃k+1 = J̃k +
yk − J̃ksk

sT
k sk

sT
k (3.56)

This method can be used to update the Jacobian for a set of simultaneous equa-
tions where the number of parameters as well as the number of equations remains
unchanged between iteration steps. For the regularization applied here this is not
true. Therefore a different method must be used. The number of parameters n is
increased by one at each iteration step, while the number of equations m is kept
constant for a small number of subsequent iterations. We can now use the up-
dated Jacobian approximation J̃k+1 ∈ Rm×n from (3.56) and the finite difference
approximation for the Jacobian column of the new optimization parameter xn+1

J̄k+1 =
F (x + hen+1)− F (x)

h
, J̄k+1 ∈ Rm×1 (3.57)

to form a hybrid Jacobian approximation for the next iteration step. Here en+1 is
the n + 1th column of the identity matrix. The dimension of the parameter vector
x is increased from n to n + 1 when using (3.57). This requires to provide an initial
guess for this parameter. In this algorithm implementation the new parameters are
set to zero.

Ĵk+1 = [J̃k+1 J̄k+1], Ĵk+1 ∈ Rm×n+1. (3.58)

That hybrid Jacobian approximation does only require one solution of the direct
problem. The effect of that method on the number of function evaluations is shown in
figure 3.6. Here it has been assumed that the hybrid Jacobian approximation is reset
once for every ten optimization parameters and that two subsequent iterations are
carried out with the same settings. The substantial savings in function evaluations
are crucial in order to obtain a solution in acceptable time.

In all iterative schemes using Broyden updates the Jacobian is reset to an an-
alytical or finite difference approximation when the improvement between iterates
gets to small. In our algorithm this is done after a number of iterations using (3.58).
At this point the number of equations m is increased and the full Jacobian is ap-
proximated using (3.44). As this is recommended anyway in order to avoid inexact
Jacobian approximations [64] no function evaluations are unnecessarily carried out.
The convergence of this method is quadratical for the full finite difference iterations
as these are Gauss-Newton iterations using a Jacobian on a very small residual prob-
lem, which have the same convergence as the Newton method. For the iterations
using the hybrid Broyden approximation at least superlinear convergence as for the
standard Broyden approximation is expected. The convergence of the algorithm
using (3.58) cannot be shown rigorously due to its hybrid structure.
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Figure 3.6: Number of required FDTD solver runs using the full finite difference
Jacobian or the hybrid Jacobian approximation
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3.2.3 Step Acceptance and Line Search

The Gauss-Newton algorithm above will give fast convergence with a minimum
number of function evaluations if the current iterate is close to the minimizer but
is not guaranteed to converge from arbitrary starting points. To obtain a globally
convergent version of the Gauss-Newton algorithm, the outer iteration is combined
with a line search. The step in the object is multiplied with a suitable factor λ.
This gives the damped Gauss-Newton method which is globally convergent.

xk+1 = xk − λk

(
J(xk)

T J(xk)
)−1

J(xk)
T F (xk). (3.59)

As the full step according to (3.41) will always be tried first this strategy is also
referred to as backtracking. The corresponding unconstrained minimization problem
(3.29) is used to derive the algorithm. After the calculation of the full Gauss-Newton
step s according to (3.42) the function value at the new iterate xk+1 = xk + s is
evaluated. The decision wether to accept the step s is based on the Armijo rule [64].
It is used here in the form

f(xk + λs) < f(xk) + αλ∇f(xk)
T s. (3.60)

It requires that the average decrease in function value is at least a portion α of the
initial function decrease in the descent direction at xk. This rule effectively avoids
taking to large steps. If the initial rate of decrease at the current iterate is large
and a step is taken in this direction resulting in a minor decrease of function value
the step was too large. For the test of the full Gauss-Newton step λ is set to unity.
The value of α is chosen quite small to accept all steps which lead to an acceptable
decrease in function value. When the current step is not acceptable the information
gained by evaluating the function at xk+1 can be used to calculate a good choice for
the step length factor λ. The function to minimize is given by (3.30). This function
is modelled in one dimension by a line through xk in the search direction pk = s
given by (3.42).

f̂(λ) = f(xk + λpk) (3.61)

The value of this function in λ at λ = 0 is known as this is the function value at the
current point.

f̂(λ = 0) = f(xk) (3.62)

The slope of the function is

f̂ ′(λ = 0) = ∇f(xk)pk (3.63)

which is also known as the gradient of the function can be calculated from the
Jacobian at the current iteration and the function values ∇f(xk) = F (xk)

T J(xk).
The third piece of information is the value of the function at the full step, as this is
the function value for the full Gauss-Newton step which has already been evaluated
in order to decide whether a line search is necessary or not.

f̂(λ = 1) = f(xk + pk) (3.64)
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From these three pieces of information it is possible to set up a quadratic model
m = aλ2 + bλ + c for (3.61). The coefficients of this model are calculated from
(3.62), (3.63) and (3.64). This gives

m = (f(xk + pk)−∇f(xk)pk − f(xk)) λ2 +∇f(xk)pk λ + f(xk) (3.65)

The minimum of that function is at

λmin =
−∇f(xk)pk

2(f(xk + pk)−∇f(xk)pk − f(xk))
. (3.66)

From the information about the function the minimum is expected to be at this
point for λ. This must be verified again by a function evaluation for the new
value of xk+1 = xk + λminpk. If f(xk+1) is sufficiently decreased according to (3.60)
the new iterate is accepted and the next iteration will start. If that step is again
unsatisfactory many strategies for global convergence of Newton type methods use
this point to establish a cubic model of the function f and select a new λ to minimize
that model. Because of the very high cost of function evaluations this is omitted here.
The iteration is stopped because it is very unlikely that the calculated direction is
leading to a successful step if it cannot be modelled by a quadratic model. Therefore
the next iteration incorporating new parameters for the optimization is started. This
approach is very successful when tested computationally and avoids wasting function
evaluations on the line search which will at most lead to very small improvements
of the iterate.

The object representation by its material parameters and the measurement data
are both complex quantities. These are transformed to real valued ones by treat-
ing real and imaginary parts as separate quantities which doubles the number of
parameters and equations. The representation in the real/imaginary part format
is favored over the magnitude/phase format because the problem is scaled much
better. The scattering parameter representation is very well suited as 0 ≤ |S| ≤ 1.
Scaling problems can so completely be avoided.

The regularization scheme and the iterative algorithm developed in this chapter
provide a very efficient and easy to use method for solving inverse electromagnetic
problems. The regularization allows the estimation of the achievable resolution
prior to the imaging process and avoids the uncertainties of selecting a suitable
regularization parameter. The regularized problem can be formulated as a simple
unconstrained nonlinear least-squares problem without penalty functions and regu-
larization parameters. Additionally the object parameters can be related to certain
subsets of the data which gives better save convergence to the solution regardless
of non-uniqueness. The iterative algorithm is aimed on minimizing the number of
very expensive function evaluations. The performance of these concepts is assessed
on one-dimensional and three-dimensional imaging problems in the following.



Chapter 4

Reconstruction of Lossy
One-Dimensional Permittivity
Profiles

4.1 Imaging System Design

4.1.1 Measuring System

The application of the regularization and iterative algorithm to the one-dimensional
layered media problem is straightforward from the numerical point of view. The
looked for material parameters are expanded according to equation (3.21). The
simulation examples and measurements are solved either for the complex permittiv-
ity ε′r − jε′′r or ε′r and the conductivity σ. The regularization and iterative scheme
employed are as described in the previous chapter. The direct problem is solved us-
ing integration of the Ricatti equation (2.1) along the object. However, the imaging
system requires a special measuring set-up which is shown in figure 4.1.

The inhomogeneous material under test (MUT) to image is placed in a wave-
guide section. The MUT is assumed to be homogenous in the transverse plane. The
scattering parameters of the waveguide section of known length loaded with the
MUT are measured using a vector network analyzer. Standard rectangular wave-
guide operating in the fundamental TE10 mode [6] is used for the measurements.
Ultra-wideband measurements are possible using coaxial lines. Especially 7 mm
airlines are well suited for the task [71] with the drawbacks of being fragile and re-
quiring samples fitting the transverse dimensions of the coaxial line exactly. Special
coaxial to waveguide transitions are needed for the waveguide measurements. This
is because it is necessary to acquire low frequency information about the object.
As shown in figure 3.5 the lower order expansion coefficients will have the greatest
impact on the measured scattering parameters in the low frequency range. This
low frequency range information can not be measured using standard set-ups due
to the different cutoff frequencies in the measuring system and in the object loaded
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Figure 4.1: Measuring set-up for the one-dimensional layered media reconstruction

section. The propagation constant in air filled rectangular waveguide is

β =
√

k2
0 − k2

c . (4.1)

The cutoff wavenumber of the dominant TE10 mode is kc = π
a

for an waveguide with
dimensions width = a, height = b, a > b. The average propagation constant in the
dielectrically loaded waveguide section is

β̄ =
√

ε̄rk2
0 − k2

c (4.2)

where ε̄r is the average relative permittivity in the object under test. Because of
the material with ε > ε0 the wavenumber k′c at which the fundamental TE10 mode
starts propagating is lower in the section loaded with the object.

k′c =
kc√
ε̄r

(4.3)

The average effective permittivity εr is defined by the equality√
εrk2

0 − k2
c =

1

L

∫ L

z=0

√
εr(z)k2

0 − k2
cdz. (4.4)

The inequality between average effective permittivity and the average permittivity
can be shown using (4.4).

εr =
1

k2
0

((
1

L

∫ L

z=0

√
εr(z)k2

0 − k2
cdz

)2

+ k2
c

)
6= 1

L

∫ L

z=0

εr(z)dz (4.5)
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To obtain a stable solution of the inverse problem low frequency measurements of
the object are required. The different cutoff frequencies do not allow low frequency
measurements. For the measurement of high average permittivity objects dielectri-
cally loaded waveguide to coaxial transitions are needed. Using such transitions the
propagation constant in the feeding lines can be adjusted to be approximately the
same as in the object. Experimental work shows that only objects having an average
relative permittivity up to εr < 2 can be reliably imaged using standard air filled
transitions. Waveguide to coaxial transitions having lower cutoff are designed for
measuring objects with higher permittivity. The use of dielectrically loaded wave-
guide to coax transitions has the additional benefit of achieving a matching effect.
By this the sensitivity of high permittivity object measurements can be improved
as the high surface reflection is lowered.

4.1.2 Design of Dielectrically Loaded Waveguide to Coax
Transitions

As dielectrically loaded waveguide to coaxial transitions are not available as stan-
dard components a set of such transitions was designed and manufactured. The fill
permittivities used are ranging from εr = 2 to εr = 15. The main design goal is to
achieve a good input match over the whole waveguide band. As the waveguide to
coaxial transitions are absorbed into the error boxes in the calibration procedure an
input match of -15 dB is considered to be sufficient. This will assure that a suffi-
ciently large portion of the signal is actually transmitted to the object and enable
good accuracy measurements using a calibrated VNA. The waveguide band is shifted
downwards according to (4.3). For a WR 90 standard rectangular waveguide the
band given by the monomode condition is 6.56 GHz to 13.11 GHz. Using adaptors
having a relative permittivity of εr = 4 measurements in WR 90 waveguide can now
be carried out in the frequency range from 3.28 GHz to 6.56 GHz.

The absolute bandwidth is decreasing with higher filling permittivity. High per-
mittivity objects must be measured using several adaptors and combining the mea-
surements in order to achieve high resolution images. The design chosen for the
adaptors is given in figure 4.2. The adaptors use a tapered ridge to achieve the de-
sired bandwidth. The center conductor of a female SMA connector holds a metallic
disc which also enables large bandwidth. The whole inner space is filled with low-
loss dielectrics having the desired permittivity [72]. By optimizing this design a very
good input match can be achieved when simulating the adaptors. The measured
reflection of the device is not as good as shown in figure 4.3. Here the results for
an adaptor filled with a low loss dielectric having a permittivity of εr = 3.82 are
shown. Manufacturing tolerances and dielectric loss not considered in the design
are identified as the sources for the deviations. This can be verified by remeasur-
ing the geometry of the manufactured components and adapting the measures for
the simulation which leads to a very good agreement between measurement and
simulation.

Although the measured performance of the adaptors is not as good as expected
from simulations it is still sufficient to allow for accurate measurements as the errors



One-Dimensional Imaging 54

Figure 4.2: Model and photo of the dielectrically loaded waveguide to coax transition

8 Vergleich: Simulation - Messung 44
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Aufgrund des nicht Erreichens der Anforderungen muss noch einmal auf die Simulationen ge-

blickt werden. Da die Untersuchung der dielektrisch gefüllten Übergänge nur mit zwei direkt

gekoppelten Adaptern durchgeführt werden können, wurden hierfür noch Simulationen von je-

weils zwei miteinander verbundenen Übergängen durchgeführt. Diese werden im folgenden mit

den Messergebnissen verglichen. Im direkten Vergleich, der hier im Bild 34 beispielhaft für den

mit AK4 gefüllten Adapter dargestellt wird, ist sehr deutlich eine große Differenz zu sehen.
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Abbildung 34: Vergleich zwischen Simulation und Messung von S11 zweier gekoppelter mit AK4

gefüllter Adapter

Selbst unter Berücksichtigung der im vorigen Abschnitt getroffenen Annahme, dass die Adap-

ter einzeln eine um etwa 3 dB niedrigere Reflexion aufweisen, kann man mit dem Ergebnis nicht

zufrieden sein. Aufgrund der enormen Abweichungen ist es notwendig, eine ausführliche Betrach-

tung der möglichen Ursachen vorzunehmen.

Figure 4.3: Simulated and measured input match for a dielectrically loaded wave-
guide to coax transition
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introduced by the adaptors can be removed using error correction [73]. The concept
of dielectrically loaded waveguide components can also be used for the evaluation
of homogenous materials over wide frequency bands. Only one material sample
needs to be machined to fit exactly the transverse waveguide dimensions and can
then be measured using waveguides having the same dimensions but different fill
permittivities.

4.1.3 Design of Dielectrically Loaded TRL Calibration Kits

When measuring the scattering matrix of a loaded waveguide section using the
dielectrically loaded transitions the VNA must be calibrated accordingly. The
impedance of the filled waveguide is the system reference impedance in this case.
For a two-port calibration the Trough-Open-Short-Match (TOSM) calibration or
the Through-Reflect-Line (TRL) calibration methods are widely used. While both
methods are in principle applicable for full two-port error correction the TRL method
has the considerable advantage of not requiring a match. This is important here
as a dielectrically loaded match would need a high aspect ratio wedge or pyramid
consisting of absorber. Additionally the negative shape of that absorber must be
machined in the low loss dielectric which is extremely difficult to manufacture. The
TRL method is therefore favored for the calibration in dielectrically loaded wave-
guide. It only requires a highly reflective device where a standard waveguide flush
short can be used. The through connection is simply the connection of the waveguide
to coax transitions face to face and the line standard consists of two homogenously
filled sections of transmission line.

The minimum requirement for the line standards is to fulfil the phase condition
30◦ < ϕ < 150◦. It is important to obey this condition in order to avoid that
the measurements of the line standard are linearly dependent on the ones of the
through standard. In that case the resulting linear system for the error terms would
be badly conditioned and unnecessary errors in the calculation of the error terms
will occur. If only one line standard was used this phase condition would still be
fulfilled for a standard waveguide band. However, two standards are used to achieve
the maximum accuracy possible.

The optimum phase for the line standard is ϕ = 90◦ which will give the most
accurate calibration. The optimum calibration kit therefore has a minimum devia-
tion θ from 90◦. The through standard is a line of length L0, although its length is
chosen to be zero whenever possible. This leads to conditions

β1L1 − β1L0 =
π

2
− θ (4.6)

β2L1 − β2L0 =
π

2
+ θ (4.7)

β2L2 − β2L0 =
π

2
− θ (4.8)

β3L2 − β3L0 =
π

2
+ θ (4.9)

where L1 and L2 are the lengths of the line standards and β1 and β3 are the prop-
agation constants at the lower and upper waveguide band limit. The propagation
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waveguide line 1 line 2 f start f cross f stop Θ
WR90 12.3 mm 8.4 mm 8.2 GHz 9.8 GHz 12.5 GHz 17.1◦

WR62 8.5 mm 5.8 mm 11.9 GHz 14.1 GHz 18.0 GHz 16.8◦

WR42 5.7 mm 3.9 mm 17.6 GHz 20.9 GHz 26.7 GHz 16.9◦

WR28 3.8 mm 2.6 mm 26.4 GHz 31.4 GHz 40.1 GHz 17.0◦

Table 4.1: Optimum line lengths for waveguide TRL calibration kits

constant at the crossover frequency from the long line standard to the short one is
β2. The ratio of the line lengths can be calculated from (4.6)-(4.9).

L1 − L0

L2 − L0

=
π
2

+ θ
π
2
− θ

=

√
β3

β1

(4.10)

This can be used to calculate the deviation angle.

θ =
π

2

√
β3

β1
− 1√

β3

β1
+ 1

(4.11)

Using this angle in the starting conditions (4.6) and (4.9) yields the lengths for the
line standards.

L1 =
π
2
− θ

β1

+ L0 (4.12)

L2 =
π
2

+ θ

β3

+ L0 (4.13)

The crossover frequency is given by (4.7) and (4.8).

β2 =
π
2

+ θ

L1 − L0

=
π
2
− θ

L2 − L0

(4.14)

As the frequency range is scaled accordingly to the permittivity the optimum lengths
are independent of the fill permittivity. The crossover frequency for the transition
from the long line standard to the short one as well as the band limits are given for air
filled waveguide and L0 = 0 in table 4.1. These frequencies must be scaled with the
square root of the permittivity. The optimum calibration kits described here can also
be used for air filled standard waveguide and will give the best possible accuracy
as they represent the optimum design for a fixed number of line standards. The
design procedure can also be used for coaxial calibration kits. For very broadband
calibration kits more than two lines might be required.

4.2 Experimental Results

4.2.1 Noise Sensitivity

One of the undesired properties of inverse problems is the noise sensitivity. Small
deviations in the measured data can lead to huge deviations in the calculated object.



One-Dimensional Imaging 57

The desired behavior is to avoid noise amplification, instability and divergence. A
stable algorithm should yield a noisy image with comparable signal to noise ration
as in the input data and must not diverge. The regularization and the corresponding
iterative scheme must therefore be examined regarding their noise behavior. This
is done on the example of a step function shown as true permittivity profile. The
step in the real part is from ε′r = 4 to ε′r = 6. The step in the imaginary part is
from ε′′r = 0 to ε′′r = 0.5. The object is reconstructed using simulated noiseless data,
data corrupted by white additive uniformly distributed noise giving a signal to noise
ratio of 40 dB and 20 dB in the worst case. A signal to noise ratio of only 20 dB
exceeds the noise level to be expected in a properly calibrated scattering parameter
measurement by far. The results plotted over the number of iteration steps are
given in figure 4.4. The iteration starts at the back of the figures with the result of
the determination of the average permittivity. The final result is the reconstructed
profile for the maximum number of 15 coefficients.

For the case of noiseless input data the solution found is the best possible for
the number of coefficients and is equal to the result one obtains by expanding the
object into a cosine series directly. For the reconstruction affected by noise the
convergence to the searched solution is retained. Oscillations are introduced on
the object because higher order expansion coefficients are determined incorrectly
because of the noisy input data. This convergence type is called semi-convergence
[64]. Due to the frequency separation effect only the higher order coefficients are
affected. The effect of noise is stronger on the imaginary part of the permittivity
than it is on the real part. The absolute contrast in the dielectric loss is much
smaller. Its contribution to the reflection is small compared to the contrast in the
real part. Therefore it is distorted much stronger from the noise in the input data.
The insertion loss of the MUT is influenced stronger by the loss. However, it is
difficult to localize the loss as only the integrated loss through the whole object is
influencing the measurements.

The remarkable result of this study is that the noise introduced on the scatter-
ing data does not lead to stability problems or to physically unacceptable solutions.
The noise does not even affect the accuracy of the lower order expansion coefficients
much. In figure 4.4 the results are virtually the same up to the 10th iteration. Only
the higher order expansion coefficients are affected by the noise. This is in agree-
ment with information theory as noise does always limit the achievable resolution
of the system. Figure 4.5 shows the errors introduced on the expansion coefficients
depending on the input data noise level.

The error of the calculated expansion coefficients is increasing with rising order
of the coefficient. The errors for the noiseless case and the 40 db SNR case are
negligible. The error increases drastically for the 20 dB SNR case. This emphasizes
that good measuring accuracy is the key to low distortion images. The setup de-
veloped in the previous section provides the possibility for accurate measurements.
No problems when reconstructing images from actual measuring data are therefore
expected. However the algorithm is still semi-convergent on noisy input data. It
will always give the best possible result for a certain quality of the input data. Noise
amplification will only take place if it is attempted to increase the resolution over the
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Figure 4.4: Effect of the input data SNR on the reconstructed objects: Real (a)
and imaginary (b) part of reconstructed permittivity using noiseless data, real (c)
and imaginary (d) part of reconstructed permittivity using data with 40 dB SNR,
real (e) and imaginary (f) part of reconstructed permittivity using data with 20 dB
SNR.
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Figure 4.5: Effect of input data noise level on calculated expansion coefficients

limit given by the measuring accuracy. Compared to iterative regularization schemes
depending on regularization parameters the method does not require to repeat the
whole imaging process. The iteration steps introducing the noise amplification may
simply be removed a-posteriori.

The effect of noise in an expansion into an orthogonal set can be limited by
weighting the coefficients depending on their expected accuracy [74]. From the fact
that the higher order coefficients are more likely to be affected by noise than are the
lower order ones, the higher order coefficients are windowed by a suitable window
function. The functions

w1 =

{
1 n = 0 . . . N

2

cos
(

2n−N
N

· π
2

)
n = N

2
. . . N

(4.15)

and

w2 =

{
1 n = 0 . . . N

2

cos2
(

2n−N
N

· π
2

)
n = N

2
. . . N

(4.16)

were tested. Figure 4.6 compares the RMS permittivity errors for the case of the
reconstruction of the step object from the 20 dB SNR data set. The results for
different numbers of expansion coefficients and using weighting functions according
to equations (4.15) and (4.16) are compared. From the results obtained for different
numbers of expansion coefficients ranging from 10 to 15 the result using 10 coef-
ficients only is most accurate. The higher order coefficients are affected strongly
by noise and are distorting the reconstructed profile by causing oscillations. The
results obtained using the weighting functions on the result obtained after 15 iter-
ations show that the cos2-function gives best results in terms of the RMS error in
the imaged permittivity. The weighting functions are plotted in Figure 4.7.
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Figure 4.8: Reconstruction results for 10 expansion coefficients (a) and 13 expansion
coefficients (b)(right). The actual object is shown in the upper half for comparison.

Figure 4.8 emphasizes that it is difficult to judge an image by its RMS error
compared to the actual object. The results of the previous example are plotted
in two dimensions. The upper half of both images shows the actual object for
comparison. Although the 10 expansion coefficients profile gives the lowest RMS
error it appears to have lower resolution to the human viewer. Also the actual size
of the object cannot be extracted as accurately as from the image obtained from 13
coefficients. As a consequence image processing and filtering should not be included
in the standard image acquisition procedure. Image processing and enhancement
techniques can be applied later to the raw image data when a specific task is to be
fulfilled by the imaging system. The performance can then be measured effectively
on task performance [75].

4.2.2 Feasibility of Tumor detection

One of the applications microwave imaging is most promising for is tumor detection
in mass screening [59], [60], [10], [58], [12] and [11]. Here the X-ray based methods
work unreliable because of the low soft tissue contrast. The reason for the high
potential of microwave based detection is the high dielectric contrast encountered
in this application. This high contrast is also the reason why methods obtained
using weak scattering assumptions fail. To show the applicability of the suggested
method in this field simulations of human tissue were carried out. As an example a
tumor in fat tissue has been considered. According to [10] the permittivities in the
measurement frequency range are approximately εr = 9 − j4 for the fat tissue and
εr = 50 − j45 for the tumor region. The permittivity is assumed to be frequency
independent and is replaced by its mean value in the measurement band. To the
best of the authors knowledge, such a permittivity distribution is not accessible
for quantitative reconstruction with any known microwave imaging method. The
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Fig. 2. Convergence of the iterative method. 
 
 

 
Fig. 3. Comparison of actual and reconstructed complex object function. 
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Fig. 4. Comparison of actual and reconstructed permittivity function. 

 

Figure 4.9: Images (real and imaginary part of the permittivity) of a tumor phantom
embedded in fat tissue

result obtained using the successively relaxed smoothness constrained is given in
figure 4.9. From the simulated noiseless measuring data 16 expansion coefficients
were calculated. The result is a bandlimited image of the original profile. This
shows that the method can quantitatively image objects showing a dielectric contrast
c = (εmax − εmin)/εmin of more than 450% in the real and 1000% in the imaginary
part of the permittivity. Microwave imaging applications in the medical field using
the proposed algorithm appear to be feasible according to this experiment.

4.2.3 Measuring Results

The measurements where carried out on a Agilent 8722D VNA. This instrument is
not capable of a full TRL calibration. Because it does not use a fourth receiver a
TRL* calibration [2] is used instead. The error model assumes symmetry of some el-
ements of the error boxes. These symmetry assumptions are not exactly fulfilled by
the physical set-up. This leads to increased measuring errors especially when mea-
suring highly reflective devices but is a good test for the robustness of the imaging
algorithm. All measurements are carried out in WR-90 waveguide using standard
and dielectrically loaded waveguide to coax transitions and TRL calibration kits.
The first object reconstructed consists of two layers. The first is acrylic with a
permittivity of εr = 2.54 and the second layer is just air. Because the average per-
mittivity is low it can be imaged using standard waveguide to coaxial transitions
and a full two-port error correction using the through open short match (TOSM)
method. This gives very accurate scattering parameter measurements indistinguish-
able from simulation data. The reconstruction was carried out successfully using 7
and 10 expansion coefficients. The attempt to calculate more than 10 expansion
coefficients from the measuring frequency band leads to instability. Using equa-
tion (3.23) the maximum number of expansion coefficients that can be calculated
from the frequency range can be estimated. The measuring frequency band is from
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Figure 4.10: Reconstruction of acrylic / air object

7.5 GHz to 13 GHz. The average effective permittivity in the object is according
to (4.4) ε̄′r = 1.66. The maximum propagation constant in the measuring frequency
range is βmax =

√
ε̄′rk

2
0max − k2

c . Using this in (3.23) yields the maximum number
of coefficients

Nmax =
2βmaxc

π
(4.17)

where c is the length of the object section. For the acrylic / air object this gives
a number of 6 expansion coefficients from the measuring frequency range. The
value of 10 found by evaluating the measurements using different settings exceeds
the number anticipated from (4.17) by far. This is expected as for calculating an
optimization parameter is not necessary that the frequency of maximum effect is
within the measuring frequency band. It is sufficient if the optimization parameter
has an effect that is measurable. The effect of each parameter on the frequency
domain measuring data has the sinc-function shape depicted in figure 3.5. The
range of measurable effect is extending quite far over the frequency range around
the point of maximum effect. The number of coefficients that can be reconstructed
obtained from (4.17) is an estimate that is rather pessimistic and should frequently
be exceeded for high accuracy measurements.

The next object imaged consisted of three layers. To show the applicability of the
imaging system to biological tissues fat tissue of a pig is used. The permittivities
of the layers used to compose the inhomogeneous object were determined using
measurements of homogenous samples of the materials. These measurements were



One-Dimensional Imaging 64

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2

−1

0

1

2

3

4

5

x /cm

ep
s

Reconstruction Result

recon. real
recon. imag
true real  
true imag. 

Fat Tissue PVC air 

Figure 4.11: Reconstruction of an fat / air / PVC object

evaluated using a high-precision dielectric measurement software developed for that
purpose [76]. The values are given as true profile in the plot for comparison. The
measurement of the three layer object was carried out using adaptors filled with
low loss dielectric of permittivity εr = 3.82. The measuring frequency range is from
3.5 GHz to 7 GHz. The resolution achieved is that expected from (4.17) for this
example. The reason for this is the lower measuring accuracy of these measurements.
Due to the TRL* calibration the measurements are noisy as shown in figure 4.12.

However, this is to our knowledge the first quantitative measurement of an in-
homogeneous object consisting of biological tissue and showing such high loss and
contrast. The dielectric contrast is as high as 350%. The real and imaginary part
are imaged simultaneously which gives in fact two images of the object. Due to the
limited resolution the air gap cannot be reconstructed accurately, but it is possible
to distinguish between the lossy fat tissue and the low loss air and PVC regions. The
overshoot in the real part is due to Gibbs phenomenon at the large step caused by
the air gap. The reconstructed real part shows that the air gap has been detected
but cannot be imaged using the given measuring accuracy and bandwidth. This
emphasizes again the need for accurate broadband measurements. The measuring
accuracy limitations are completely due to the VNA. Replacing it by a four receiver
instrument capable of full TRL calibration the resolution can be improved as verified
preciously for the acrylic / air object.

The results obtained in the simulation and measuring examples show that the
algorithm developed in chapter 3 is superior to the methods observed in the state
of the art in many aspects. The range of dielectric contrasts and losses allowable
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Figure 4.12: Comparison of simulated and measured reflection of the three layer
object in figure 4.11: The noise on the measured plots is due to the simplified TRL*
error model.

is much higher. This allows quantitative imaging of high contrast and lossy inho-
mogeneous objects such as biological tissues. The noise sensitivity is good. The
stability of the algorithm is excellent. The amount of a priori knowledge required is
very little as only a rough guess for the average permittivity in the object is needed.
This initial guess can deviate up to a factor of 4 from the actual value without
threatening convergence. This has been tested by starting the iterative imaging
process with several initial guesses and testing for convergence. The algorithm is
computationally more expensive than the profile inversions outlined in section 2.1.
Because the direct problem solution can be obtained by one-dimensional integration
the iterative algorithm is still very efficient. The results for the one-dimensional
profile inversion show that the imaging algorithm introduced here gives consider-
able advantages over established methods. The concepts are therefore now applied
to fully three-dimensional microwave imaging.



Chapter 5

Three-Dimensional Microwave
Resonator Tomography

5.1 Microwave Resonator Tomography System

5.1.1 System Concept

The application of the space harmonics representation of the object with resulting
regularization and iterative scheme has been proven very successful for the one-
dimensional profile inversion. The concepts are applied to full three-dimensional
imaging now. The spectral expansion uses the length of the profile section in the
one-dimensional case in order to define the spatial frequencies used for the expansion.
The natural extension of this concept is to place the object in a volume with known
dimensions. This leads to the novel concept of microwave resonator tomography.
The object is placed in a microwave cavity. The space occupied by the object
is imaged for its distribution of material parameters. The use of a cavity gives
several advantages. The properties of the cavity without object are known exactly.
Changes in the behavior can be traced back to the object. The measuring accuracy is
expected to be much better than in free space schemes. The cavity can be described
by scattering parameters at its ports. These scattering parameters of the waveguide
ports can be measured accurately using a VNA calibrated in the same waveguide
type. This allows convenient high-accuracy measurements.

In order to obtain sufficient information to uniquely image the object the cavity
is equipped with several ports. This gives the possibility for a local scanning effect
by measuring the reflection at the ports in the off-resonance state. The reflection and
transmission parameters, the resonance frequencies and the quality of the resonances
contain information about the distribution of the material parameters throughout
the entire object.

The solution of the direct problem was easily carried out for the one-dimensional
profile reconstruction. For the three-dimensional case no such straightforward algo-
rithms exist. While the main iterative algorithm may remain unchanged compared
to the one-dimensional case the solution of the direct problem requires advanced
techniques. The full-wave analysis of three-dimensional structures can be done by

66
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Figure 5.1: Microwave Resonator Tomography System

frequency domain analysis or the finite difference time domain method (FDTD)
[69], [77], [78]. For wideband scattering parameter calculations the FDTD method
is favorable because it is capable to yield the scattering parameters over the whole
frequency band in just one calculation. Although FDTD is the most suitable and
efficient method it still requires a considerable amount of computing power.

The cavity is equipped with a number of ports that is in the range from 6-12
for the first experimental prototypes. This would make measuring the scattering
matrix an extensive task. A multi-port scattering parameter measuring system is
required for fast data acquisition. A schematic of the measuring system used for
the Microwave Resonator Tomography is shown in figure 5.1. The PC controls the
system via the GPIB bus. The GPIB bus is used for this task as it is available in
all VNA’s. The switch matrix connects the ports of the multi-port resonator to the
ports of the VNA. It is also connected to the GPIB bus via an interface unit. The
scattering parameters of the resonator loaded with the object are measured by the
VNA and transferred to the PC for the imaging process. The components of this
system are described in detail below.

5.1.2 Resonator Design

The cavities designed for testing the imaging system all use a rectangular geometry.
This allows ease of manufacture and good geometrical approximation by the usually
rectangular FDTD mesh. For imaging of three-dimensional structures test cavities
with 6 to 12 ports and measures of 6 to 10 cm are used. For imaging two-dimensional
objects in form of slices flat cavities with similar sizes in the transverse plane but only
5 mm high are used. The flat cavities for the imaging of slices have the advantage
that testing the capabilities of the resonator imaging system is numerically not as
expensive as the three-dimensional ones.

There are three possible ways to couple microwave power from coaxial feed lines
into the cavity. The first and most simple is probe coupling where the inner con-
ductor of a coaxial feed line acts as a small antenna. The second is loop coupling
where the inner conductor of a coaxial line is connected to a wall of the cavity and
the coupling is done by the magnetic field. The third possibility is aperture cou-
pling. Because this is most difficult to use and would also need additional coaxial
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Figure 5.2: Probe-coupled 3D imaging resonator and loop-coupled 2D imaging res-
onator prototypes

to waveguide transitions as the feeding from the VNA is coaxial this seems not to
be a beneficial solution and is therefore not further investigated. The cavities for
three-dimensional imaging are probe coupled. It is difficult to use probe coupling
in a flat structure when the coupling can only be done at the circumference. The
resonators used for two-dimensional imaging are therefore loop-coupled. This leads
to more complex coupling structures but works equally well in practice.

Once the coupling type is fixed the number and position of ports must be se-
lected. The ports should be distributed evenly over the surface of the investigation
volume. This will ensure that the resolution of the system is not strongly varying
as a function of position within the cavity. The number of ports has been deter-
mined using simulation. A number of 6 to 12 ports has been found sufficient for
the examples tested. When imaging objects having a high contrast and very com-
plex structure the maximum number of ports is used. For simple objects it is not
necessary to use the entire scattering matrix. The unused ports can be terminated
with their characteristic impedance in that case. Termination using matched loads
is preferred here because of the practical implementation of the measuring system
as outlined later in section 5.1.4. Using another termination than a match would
cause difficulties obtaining a well-defined termination during the measurement pro-
cess because this is not done at the cavity ports directly but vi an automated switch
system. Two of the resonators designed accordingly to the above considerations are
shown in figure 5.2.

The resonator is operating loaded with the object over a wide frequency band
typically ranging over several GHz. At a large number of frequency points a sub-
stantial part of the power will already be reflected at the coupling structure and is
not going to penetrate the object itself. This occurs at all off-resonance frequencies
for a high quality factor resonator. This can be beneficial because it provides the
possibility of locally scanning the object as shown in figure 5.3(a). However, not
much information is gained about the entire object. Using a high quality factor cav-
ity the field distribution is concentrated locally in the vicinity of the excited port.
This may lead to an image matching the material parameters close to the ports very
well but is distorted in the regions close to the walls that are not directly adjacent
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(a) (b)

Figure 5.3: Distribution of field energy off-resonance (a) and at resonance (b)

to a port. In these regions virtually no field is present in the off-resonance mode.
In addition in all high quality resonators the field is weak even in the resonance
state as these regions are close to perfectly conducting walls as the top and bottom
sections in figure 5.3(b).

Although the quality factor of the cavities is not very high because of the large
number of coupling ports the off-resonance behavior of the cavity can be optimized
by adjusting the boundary conditions at the resonator walls accordingly. The res-
onator walls should not be perfectly conducting as this will lead to fields essentially
zero close to the walls. This results in a very uneven distribution of power with
very low field energy close to the walls. As this leads to poor sensitivity for the
permittivity in that region the imaged permittivity will show large errors in such
regions. This can be avoided by coating the walls with a dielectric absorber. The
electric fields will increase quickly from the zero at the metallic resonator wall to
the inner side. Because of the loss the electric field will rise through the absorber.
Obviously the best field at the object volume would be obtained by a very thick,
very high dielectric constant wall coating. In that case the field at some frequencies
would be in form of modes that do not have any field in the object volume but
only in the wall coating. As measurements under that condition will not give any
information about the object this must be avoided. Therefore a medium dielectric
constant, lossy material is preferred. Losses are beneficial as the decay of the field
through the layer will allow the field to assume stronger values in the regions close
to the walls. Such a material will damp the resonances but gives better measuring
results off-resonance. This is shown in figure 5.4. Without absorber wall coating the
incident signal is fully reflected at off-resonance frequency points. With the lossy
dielectric the quality factor of the resonances of the cavity is lowered so that at most
frequencies the signal penetrates the cavity. In the frequency range below 4 GHz in
this example no signal can be coupled into the cavity. This frequency range would
not be used for imaging purposes.

The beneficial effect of a lossy wall coating is also shown by the plots in figure 5.5.
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(a) (b)

Figure 5.4: S11 of a cavity with no wall coating (a) and with walls coated with a
lossy dielectric (b)

(a) (b)

Figure 5.5: Magnitude of the electric field distribution in a cavity with no wall
coating (a) and with walls coated with a lossy dielectric (b)

These present the distribution of the electric field magnitude inside the cavity. It is
the same cavity as in figure 5.4 where the field has been calculated at a frequency of
6 GHz which is clearly off-resonance. Without wall coating the field is concentrated
around the coupling point only. The measurements of the transmission to the other
ports do not contain any information about the object. In the case with wall coat-
ing the field in the cavity is stronger and more evenly distributed throughout the
cavity. Here both reflection and transmission measurements do contribute useful
information to the imaging process. The excited port is radiating into the cavity
similar to a free space measurement. That combination of resonator measurements
and absorber chamber like measurements combines the advantages of both.
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5.1.3 Absorber Materials for Resonator Wall Coating

Material Development

From the previous considerations follows that the inner walls of the cavity should
be coated with an absorbing material. The permittivity of the coating must not be
too large as this will lead to modes which have fields not leaving the space close to
the walls. Measurements in the range of the resonance frequency of those modes
will not be sensitive to the object placed in the resonator.

Commercially available absorber materials having a low to medium permittivity
come in the form of absorber foams. These foams have several serious drawbacks.
They are not closed cell structures so they will be very sensitive to humidity and
liquids generally. The coarse cell structure of absorber foams causes inhomogeneity.
While this is negligible for frequencies where the wavelength is much bigger then the
cell size the inhomogeneities are influencing the scattering parameter measurements
at frequencies above 10 GHz. This makes it impossible to characterize the foam
exactly. As the absorbing wall coating will be part of the measuring setup it will be
necessary to characterize it exactly by a complex permittivity. As this is impossible
for an inhomogeneous material which also shows a great mechanical sensitivity due
to its compressibility other materials must be found. A frequency dependence of
the material is allowable but it should be easy to model. Available rubber based
materials which have the desired mechanical properties [79] show very high permit-
tivity εr > 20 and also show strong deviations in their losses with varying frequency.
These complex frequency dependence cannot be modelled by any of the common
dispersion models [80].

As there are no suitable materials commercially available, it is necessary to de-
velop a suitable material. As basis a silicone rubber casting compound was chosen.
This has the advantage of high flexibility, it is weatherproof and non-sticking. It is
available in a low viscosity form and can easily be casted into place. The electrical
properties are also very suitable. The permittivity was measured to be nearly fre-
quency independent in the range from 7-13 GHz at a value of εr = 3.02−j0.05. Since
this loss is insufficient it must be increased by a lossy filler material. A modification
of carbon is well-suited for this purpose. Carbon is used in two modifications for in-
troducing losses in compounds. The most frequently used one is carbon black which
is available in numerous different qualities each showing different properties. The
carbon blacks most suitable for introducing losses in polymer substrates are highly
structured conductivity rubber blacks. They were originally developed to introduce
a small conductivity in compounds and rubber in order to avoid electrostatic dis-
charge problems. These carbon blacks have highly structured particles consisting
of pure carbon and having sizes of approximately 50 nm. For the purpose of intro-
ducing losses into the silicone rubber the Printex XE 2 carbon black is elected as it
proved to be very well suited for similar tasks in epoxy resins [81]. The problem with
rubber blacks can be that the conductivity rises very quickly from low loss states to
a conductive state [82], where both are not useable for absorbing microwave power.
This property of carbon blacks in epoxy resins makes epoxy resins unsuitable for
the purpose of designing an absorber for the resonator wall coating.
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The second available carbon modification graphite has also been examined for
its behavior as a filler in silicone rubber compounds. Compared to carbon blacks
graphite has a much higher permittivity (usually 12 to 15) and also higher con-
ductivity. The structure of graphite is regular and graphite available for technical
purposes has a particle size larger than 1µm. The different structures lead to a
completely different behavior in the compound with the silicone rubber. Graphite
materials with up to 40% graphite have been tested. For the carbon black the max-
imum mass percentage was only 2%. The reasons for this are the low specific mass
of the carbon black, so that only two percent mass result in a large volume of carbon
filler. The second is the strong impact of the carbon black on the viscosity. With a
content larger than 2% it is not possible to conveniently cast the absorber with the
desired accuracy and material homogeneity.

For the evaluation of the electrical properties samples of all materials have been
measured in a WR-90 waveguide using the transmission/reflection technique [76].
The results are given in figure 5.6. The mean values in the frequency band are given
in the graphs. This shows the excellent properties of the high conductivity carbon
black for introducing losses. While the real part of the relative permittivity rises
approximately linear with the mass added, the losses rise very quickly. This effect
occurs at and above the percolation threshold, where the carbon black particles
form a weakly conductive network throughout the material. For the graphite this
effect does not even occur at a content of 40% and both real and imaginary part
of the permittivity depend almost linearly on the content. The material consisting
of silicone rubber with 2% Printex XE2 carbon black is chosen for the resonator
tomography as its properties εr = 5.2 − j0.95 at a frequency of 10 GHz are very
well-suited for this application.

Material Modelling

For the use of the material it is crucial that it can be modelled easily by the FDTD
solver. The selected silicone rubber with 2% carbon black shows almost frequency
independent loss (figure 5.7). For modelling such a behavior the first order Debye
model is most suitable. It models the frequency dependent complex permittivity by

ε(ω) = ε∞ +
εs − ε∞
1 + jωτ

, (5.1)

where εs is the static relative dielectric constant ε∞ is infinite relative dielectric
constant, and τ is the relaxation time constant. The maximum loss occurs at the
relaxation frequency ωr = 1

τ
. Around this frequency the loss is least frequency

dependent. The relaxation constant is therefore chosen to be the center frequency
ωc of the band in which the constant loss material is to be modelled.

τ =
1

ωc

(5.2)

Separating real and imaginary parts of (5.1) yields

ε′ = ε∞ +
εs − ε∞
1 + ω2τ 2

(5.3)
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Figure 5.6: Measured real and imaginary part of permittivity as function of added
percentage of carbon modification.
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and

ε′′ =
ωτ(εs − ε∞)

1 + ω2τ 2
. (5.4)

Equations (5.3) and (5.4) can be used to determine the two remaining model pa-
rameters from the desired real and imaginary parts of the dielectric constant at the
center frequency.

εs = ε′(ωc) + ε′′(ωc) (5.5)

ε∞ = ε′(ωc)− ε′′(ωc). (5.6)

Figure 5.7 shows the application of the model to the silicone absorber. The fit is very
good for the loss and acceptable for the real part. The Debye model shows a stronger
decline of the real part due to the large loss of the material which causes a large
difference of static and infinite dielectric constant as expected from equations (5.5)
and (5.6). This must be accepted as the 1st order Debye model is the only model
which is usable for the modelling of frequency independent losses and implemented in
available FDTD solvers at the moment. However, more exact modelling of arbitrary
frequency dependent material would be desirable.
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Figure 5.7: Comparison of measured real and imaginary part of permittivity and
1st order Debye model.



3D Resonator Tomography 76

5.1.4 Automated Multi-Port S-Parameter Measurement Sys-
tem

System Design

The resonators used for microwave resonator imaging are devices having a number
of ports which makes measuring the device using a conventional two-port network
analyzer an extensive work. A multi-port device is defined as a device having a
number of ports N, where N > 2. The standard measuring procedure for such a
device would be to connect two of the ports of the device under test (DUT) to
the VNA test ports and terminate the remaining N-2 ones by connecting them to
well-matched terminations. This procedure is very time consuming and can lead to
errors because of the high operator involvement. Thus the task of measuring the
scattering matrix of the multi-port cavity must therefore be automated.

Two basic approaches to the design of such an automated multi-port scattering
parameter measuring system are possible. The first is to extent the VNA by adding
additional test ports and additional receivers. This will give the most accurate and
fastest system. As the test set including the receivers contributes a substantial part
to the cost of a VNA this approach will lead to an expensive system especially when
a large number of ports is to be measured. Therefore this VNA extension is currently
only applicable to 3-port and 4-port VNA’s.

The second approach is the multiplexing of the VNA test ports to the N ports
of the device under test. This solution will ultimately decrease measuring accuracy
as additional error sources are introduced to the system. Furthermore the speed
of the system will be reduced since parts of the measuring sequence that can be
done simultaneously with a multi-receiver VNA must be carried out sequentially. In
addition the control of the system becomes more complex. Despite these drawbacks
this solution allows for a large number of ports at an acceptable cost.

The switching system can be designed as a full crossbar system capable of switch-
ing each port of the DUT to both of the VNA test ports or to a termination. Reduced
systems requiring fewer switches can also be used if one is interested in measuring
certain scattering parameters only. Reduced systems are preferred in production
environments where the proper operation of a multi-port device can be assured
by measuring a few of its scattering parameters only. However, for the microwave
imaging system a full crossbar switching system is used, which gives the flexibility
of being able to measure the entire scattering matrix. A standard VNA is capable
of measuring only two ports at a time. Therefore a switching matrix connecting the
selected ports to the VNA and terminating the remaining with the characteristic
line impedance is needed. The schematic of this matrix is shown in figure 5.8.

The ports of the DUT are connected to single-pole three-throw (SP3T) switches.
These connect the port to one of the second stage switches or to a matched ter-
mination. This design allows immediate connection of the port of the DUT to a
termination and avoids accumulation of return loss of several switches and junc-
tions. The second stage consists of SPNT switches where N is the number of ports
of the DUT. The switching matrix is designed to be reconfigurable. All interconnec-
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Figure 5.8: Switch matrix layout

tions are made externally using semi-rigid coaxial lines and SMA connectors. The
use of semi-rigid line assures sufficient phase stability of the system.

In all states the signal only has to pass two switches which assures low insertion
loss and also low reflection of the whole switching system. A standard two-port
calibration with reference planes directly at the ports of the DUT is used when
measuring. All errors in the paths connecting the device under test to the VNA ports
are corrected. These errors include imperfect amplitude flatness of the switching
system and phase distortion. Crosstalk between the channels is at an unmeasurable
level for the designed system and is usually not corrected. If stronger crosstalk occurs
the error introduced can be removed by a two-port calibration including isolation
terms.

Mechanical switches are used instead of semiconductor ones for the system be-
cause of their superior electrical properties. The switching time of about 10 ms is
acceptable for this application. The performance of the switches must be verified
to ensure good operation of the system. A good ratio between on- and off-state
isolation is important in order to yield accurate measurements and a low return loss
of the switches must be achieved to minimize errors due to the mismatch seen by
the DUT at the ports not connected to the VNA.

The performance of a typical switch is presented in figure 5.9. The transmission
of the switches is close to a perfect switch with transmission better than -0.15 dB for
the whole switching system bandwidth from DC to 18 GHz. The measured off-state
isolation is the same order of magnitude as the noise floor of the VNA. The input
match of the switch is better than -27 dB up to 14 GHz with degradation above.
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Figure 5.9: On- and off-state transmission of a switch (left), input match of a switch
and accumulated input match of a switch with SMA termination at output (right)

The input match of the switch terminated with a standard 50Ω SMA termination is
slightly worse due to the contribution of the necessarily imperfect load to the overall
reflection.

Correction for Imperfect Terminations

The remaining mismatch at the ports which are terminated by matched loads is
not corrected by the two-port calibration. This causes errors in the measurement
which can be minimized by using switches with low VSWR rating and good quality
matches. Although the return losses of the switch itself and the used terminations
are quite good as shown in figure 5.9, the resulting reflection seen by the device
under test when connected as in actual measurements is much larger because of
several additional connections. The actual input match seen by the DUT at three
ports of the multi-port measuring system is depicted in figure 5.10. These could still
be neglected for highly reflective lossy devices but may cause errors when measuring
well-matched and low-loss devices.

For the system shown in figure 5.8 a correction method is used to remove errors
caused by the imperfect terminations. It is based on the idea of scattering matrix
reference impedance transformation given in [83], [84] and [85]. Although these
transformations do not preserve the well-known unitary and symmetry properties
of the scattering matrix of a lossless reciprocal device, the concept of reference
impedance transformation has turned out to be very useful. It is therefore applied
together with a novel transformation.

In each measurement a 2x2 scattering matrix is obtained where the measured
parameters are normalized to the system impedance of the measuring system (usu-
ally 50 Ω) while the remaining N-2 ports are normalized to the impedances seen at
the reference planes looking into the measuring system. In order to form the full
NxN scattering matrix with consistent port impedances, the measured scattering
parameters are normalized to the impedance of the imperfect terminations. These
transformed scattering parameters are exactly the same as the elements of the full



3D Resonator Tomography 79

2 4 6 8 10 12 14 16 18

x 10
9

−60

−50

−40

−30

−20

−10

0
Measured Input Match at Reference Planes

f / Hz

dB

port 1
port 2
port 3

Figure 5.10: Input match as seen by the DUT

NxN matrix as all N-2 ports are perfectly matched now because the port reference
impedances are now the impedances of the imperfect terminations. The port ref-
erence impedances must be known for the normalization and can be obtained by
measuring the reflection seen by the DUT as in figure 5.10.

The procedure for transforming a set of scattering parameters to a new set of
known port impedances can be developed from generalized scattering parameter
description [6]. The voltages and currents at the terminals of a N-port device can
be defined by

U = [Z]1/2(A + B) = [Z̄]1/2(Ā + B̄) = [Z]1/2 ([I] + [S]) A (5.7)

I = [Z]−1/2(A−B) = [Z̄]−1/2(Ā− B̄) = [Z̄]1/2 ([I]− [S]) A. (5.8)

Here [Z] and [Z̄] are the diagonal matrices containing the old and new port reference
impedances, A and B are the incident and reflected wave amplitudes for the old
reference impedances, Ā and B̄ are the incident and reflected wave amplitudes for the
new reference impedances, [I] is the N x N identity matrix and [S] is the scattering
matrix for the old set of reference impedances. The reflected waves in the old
reference impedance system are eliminated using the measured scattering matrix.
Equations (5.7) and (5.8) can be used to express the incident wave

A = ([I] + [S])−1[Z]−1/2][Z̄]1/2(Ā + B̄) (5.9)

A = ([I]− [S])−1[Z]1/2][Z̄]−1/2(Ā− B̄) (5.10)
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Figure 5.11: S11 of a directional coupler measured with port combinations 1-2 and
1-3 before (left) and after (right) reference impedance transformation

Using the equality of (5.9) and (5.10) to eliminate the incident waves in the old
reference impedance system and reorganizing terms yields

B̄ =
(
([I] + [S])−1 [Z]−1/2[Z̄]1/2 + ([I]− [S])−1 [Z]1/2[Z̄]−1/2

)−1
(5.11)(

− ([I] + [S])−1 [Z]−1/2[Z̄]1/2 + ([I]− [S])−1 [Z]1/2[Z̄]−1/2
)
Ā.

This gives the looked for scattering matrix with the new set of port reference
impedances [Z̄].

After transforming the measured 2x2 scattering matrices to the mismatch refer-
ence impedances the full NxN matrix may be formed. At this point a consistency
check can be applied to the diagonal elements of the full NxN scattering matrix.
These elements are measured in N-1 two-port measurements. Prior to the appli-
cation of equation (5.11) each of the N-1 measurements will give a different result
due to the different terminations at each port. After the transformation the diago-
nal elements are the same from N-1 two-port measurements indicating that the full
NxN matrix may be formed consistently from the transformed measurement results.
This is shown on measurements of the input match of a directional coupler in figure
5.11. The measurements show differences in the measured reflection coefficient S11

for measurements with different port combinations due to the different termination
at the remaining ports of the coupler in each measurement. These differences are
removed by the application of the reference impedance transformation as expected.

Equation (5.11) is again applied to the full NxN scattering matrix to calculate
the DUT scattering matrix normalized to 50 Ω port impedances. The role of [Z̄]
and [Z] is interchanged at this step. This procedure allows for full error correction
of the scattering parameter measuring system. The error in the signal paths of the
two ports currently measured are corrected by the two-port error correction of the
VNA while errors caused by the mismatch at the remaining N-2 ports are corrected
by the reference impedance transformation procedure.

Because the mismatch seen by the DUT at the N-2 terminated ports can be re-
moved by the above procedure the question arises whether it is necessary to use high
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quality switches and terminations. The reason for using well-matched terminations
is the accuracy of the reference impedance transformation (5.11). The condition
number of the first term which is to be inverted is rising quickly when the port
reference impedances assume values close to short or open. The numerical accuracy
of the correction procedure which applies the reference impedance transformation
twice will therefore decline for this case. The highest accuracy is achieved when the
port impedances are close to each other and close to 50 Ω as the term [Z]−1/2[Z̄]1/2

will approach the identity matrix and will give optimum condition of the system of
equations to solve.

Calibration of the Multi-Port System

The multi-port measuring procedure described above requires N(N − 1)/2 2-port
measurements. This also requires that N(N−1)/2 port combinations are calibrated
using a standard 2-port calibration. Because of its wideband capability and few me-
chanical work involved the Through Reflect Match (TRM) calibration method is
preferred. Each two-port calibration requires 4 measurements of one-port standards
and one measurement of the two-port through standard which needs two mechanical
connections. Therefore a total of 6N(N − 1)/2 mechanical connections is needed to
calibrate the whole system. This would lead to a high amount of mechanical work
involved as for a 4-port measurement 36 connection must be made in the calibration
process. However, a large number of the one-port measurements is redundant as the
one-port standard measurements are the same regardless of the second port in the
calibration. Therefore use of the built-in calibration procedures of the VNA is not
recommended. The raw receiver data should be transferred to a PC and the whole
error correction carried out externally. The algorithms in [86] are used for this pur-
pose. The saved receiver readings of the measurements of the one-port calibration
standards can then be used for N − 1 two-port calibrations. The trough measure-
ments require 2N(N − 1)/2 connections while the one-port standard measurements
account for 2N mechanical connections. The total number of connections is reduced
to N(N−1)+2N = N(N +1). For a 4-port measurement the number of connections
is reduced to 20 which is a substantial reduction. This approach allows for quick and
convenient calibration of the multi-port scattering parameter measuring system.

There are optimized multi-port calibration methods capable of correcting for
the mismatch errors [87] but are available for 4-port measurements only. The gen-
eralization of this algorithm for an arbitrary number of ports leads to optimum
calibration methods requiring a minimum number of standard two-port calibrations
as presented in [88].

Experimental Verification of the Multi-Port System

Measurements of a 6 dB directional coupler have been carried out to show the validity
of the proposed reference impedance transformation and to verify the performance
of the multi-port test set. One of the ports of the coupler is equipped with a fix
matched load by the manufacturer. The measurements for the coupling and insertion
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Figure 5.12: Measured coupling of a 6 dB coupler before and after correction for
imperfect terminations

loss are virtually the same before and after the correction due to the good properties
of the switching test set as shown in figures 5.12 and 5.13.

The isolation measurement is more sensitive to the mismatch at the through
arm of the coupler and shows considerable improvement when the correction for
the imperfect termination is carried out (figure 5.14). To compare the performance
of the multi-port system with the present standard multi-port measuring method
which is the mechanical connection of a load to the unmeasured ports, the coupler
has been measured using a conventional two-port calibration and several loads. The
results in figure 5.15 show that the isolation measured using the switching test set
is the same as the one measured with a high precision calibration standard load.
The measurement using a standard SMA termination is degraded by the imperfect
match of the load. This proves the excellent accuracy of the system which is the
same as if high precision calibration standards were connected to all unmeasured
ports.

There is somewhat more noise compared to the calibration standard measure-
ment because the wiring of the multi-port system could not be done using phase
stable cables only for economic reasons. The system is not only more convenient
to use it does also enhance the accuracy of the measurement as in standard mea-
surement environments one would hardly use high precision calibration standards
to terminate all ports. The system design aiming for almost perfect behavior of the
switching matrix and removing the small remaining errors by additional correction
methods has led to a high precision multi-port VNA system. In its current set-up
6 ports can be measured. The system firmware and error correction software is ca-
pable of using up to 18 ports. To the author’s best knowledge this is the first fully
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Figure 5.13: Measured insertion loss of a 6 dB coupler before and after correction
for imperfect terminations

error corrected multi-port VNA system featuring such a high number of ports.
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Figure 5.14: Measured isolation of a 6 dB coupler before and after correction for
imperfect terminations
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Figure 5.15: Isolation of a coupler measured with the multi-port test set, a high
precision load and a standard SMA load
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5.1.5 Software Architecture

Because the direct problem solution of finding the scattering parameters for a three-
dimensional structure is a difficult task itself, commercial software is used for this
purpose. The FDTD software CST Microwave Studio is selected because of its
superior speed compared to other, non-commercial software. This software package
must be integrated into the iterative process which is implemented in MATLAB. As
the FDTD package is available for the Windows operating system only, a suitable
technology for the interaction of applications of different vendors must be used.
The ActiveX technology [89], [90] supplies the features needed. It allows software
components to communicate via a standardized interface and using their functions.
Because this happens at runtime it is more flexible than the former Dynamic Link
Library approach.

The microwave imaging software operates as shown in figure 5.16. The error
corrected scattering parameters from the multi-port measuring system are passed
to the imaging algorithm via a file interface. The widely used industrial standard
Touchstone file format available on all commercial VNA’s is used for that purpose.
The iterative algorithm as developed in chapter 3 is implemented in a MATLAB
program. This main program controls the settings of the direct problem solver
and updates the current object model. This is done via the ActiveX interfaces
supplied by both Microwave Studio and MATLAB. The MATLAB program acts as
a client and accesses the full functionality of the FDTD software via its standardized
ActiveX interface. The function calls are confirmed so that synchronization between
the software components is assured.

The Visual Basic macro interpreter integrated in Microwave Studio can indirectly
be accessed via the Microwave Studio application object interface. The macro lan-
guage is used to automate repeatedly occurring modelling tasks like material layer
definitions and creation of modelling objects. The results of the FDTD solver are
not passed via the ActiveX interface. This is again done via files which are ASCII
files in a Microwave Studio specific format. Using this architecture a system for
iterative three-dimensional imaging can be integrated with very little programming
work. The software layout is basically a system for nonlinear optimization of three-
dimensional structures. Here the material parameters of the volume enclosed by
the resonator are optimized to match the measurements. The same software design
can also be used to optimize arbitrary microwave components. This is achieved by
effectively using the functionality of verified software components which was one of
the motivations for the development of the ActiveX technology.

The computing time required for the calculation of one column of the scattering
matrix is about 100 s for the prototypes described in section 5.1.2. 40 seconds of
this total time are used for the verification of the model. This clearly is redundant
as the FDTD model of the cavity is not changed in between the calculation runs.
There are efficient parallelization schemes for FDTD algorithms. In [78] savings of
up to 95 % were achieved using a cluster of 24 PC’s. The parallelization could be
used in a similar way for microwave imaging resonators. This can reduce the time
required for a high resolution image from 1 day to approximately 1 hour on a 2 GHz
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Figure 5.16: Software architecture of the microwave resonator tomography imaging
system

PC. First attempts to develop FDTD software incorporating the special features
needed for microwave imaging were made using the Maya FDTD code [91] and code
developed especially for the simulation of resonators [92]. Although only absolutely
necessary features are integrated both codes are currently not sufficiently advanced
and are considerably slower compared to commercial packages.
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Figure 5.17: Comparison of measured and calculated reflection at port 4 and trans-
mission between ports 1 and 4 of the unloaded cavity

5.2 Imaging System Operation

5.2.1 System Calibration

This section covers some aspects of the operation of the microwave resonator imag-
ing system described in the previous sections. Because of the system complexity
and the numerous possible error sources the measuring set-up and the FDTD model
must be verified. Measurements and simulations of the empty cavity are used for
that purpose. This is equivalent to an additional step of system calibration. The
properties of the manufactured cavity are verified by comparison of the measure-
ments of the empty resonator with an high accuracy simulation. Possible errors in
the cavity or in the rest of the system can easily be identified by comparing measure-
ments, simulation and by using the symmetry properties of the cavity. In addition
the cavity is a reciprocal device, a fact that can also be used to check the validity
of the measured scattering parameters. For the iterative process a very accurate
parameter setting would result in unacceptable time consumption. A trade-off be-
tween time and accuracy must be found here. The FDTD parameters which can
be adjusted and have the greatest influence on time consumption are the number of
mesh cells and the steady state limit. The geometry of the structure is approximated
more accurately when the number of mesh cells is increased. The steady state limit
determines the level of power at which the RF energy in the calculation volume is
considered to be completely decayed.

The calculated and measured scattering parameters should match very well when
these parameters are adjusted for high accuracy. An RMS error of better than 20 dB
between measured and calculated scattering parameters is considered to be sufficient.
Figure 5.17 shows the resulting scattering parameters after a system calibration. The
mesh density is set to 15 lines per wavelength and a steady state limit is -30 dB in
this example. The oscillation of the transmission phase from 2 GHz to 4 GHz is due
to the very low transmission magnitude below the first resonance.
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5.2.2 Avoiding Undesired Constraints

While the non-negativity constraint for the dielectric contrast function c = εr − 1 is
often used in iterative regularization schemes as an additional penalty function [50],
it is undesired for the regularization using the spectral object expansion. The image
of the object will exhibit Gibbs phenomenon at sharp steps when expanded into a
limited number of cosine terms. When this step is at an air interface the relative
permittivity will assume values smaller than unity at the air side. This cannot be
avoided when the expansion coefficients are calculated sequentially starting with
lower order. For the one-dimensional profile reconstruction it can be shown that the
convergence is better if permittivities smaller than in vacuum are accepted as long
as the residual function is decreased.

However, the case of a relative permittivity smaller than one (e.g. in plasma) is
not provided in most of the computer codes. To overcome this undesired constraint
a scaling factor is introduced. The material parameters are all multiplied by this
factor F .

ε̃ = Fε (5.12)

µ̃ = Fµ (5.13)

σ̃ = Fσ (5.14)

It is now required that all properties of the scaled system used to describe it from
outside are equal to the ones of the original system. The intrinsic impedance is
invariant to the scaling factor.

Z̃0 =

√
µ̃

ε̃
=

√
µF

εF
= Z0 (5.15)

while the wave velocity is by a factor of F lower.

c̃ =
1√
µ̃ε̃

=
c

F
(5.16)

The wavenumber of a plane wave in the scaled system is

k̃0 =
2πf

c̃
= Fk0 (5.17)

In order to preserve the phases ϕ for all signals transmitted through or reflected
from the scaled system the dimensions s must be scaled down by F.

s̃ =
s

F
(5.18)

ϕ̃ = k̃0s̃ = ϕ (5.19)

Permittivity and permeability values up to 1/F can be used in the direct problem
solution when this scaling is applied. The resonator model will be scaled down by
a factor of 1/F and all material parameters are multiplied by F as they are passed
from the imaging algorithm to the FDTD solver. Numerical testing of this approach
shows that the scattering parameters calculated using scaled models are virtually
equal to the ones obtained for the original model.
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5.2.3 Initial Guess

The determination of a suitable initial guess is a critical part of the solution of a
nonlinear problem as it will decide wether the sequence of iterates will converge
or not. In the microwave resonator tomography a good initial guess can directly
be calculated from the scattering matrix measurements. The method is based on
evaluating low-frequency information. The input reflection of the cavity loaded
with the object is measured at one of the ports. The first resonance frequency f1 is
determined from this measurement. In the rectangular cavity with the measures a,
b and c along the x, y and z axis respectively and a > b > c, the lowest resonance
is the TE110 mode at which

ε̄rk
2
0 ≈

(π

a

)2

+
(π

b

)2

. (5.20)

The looked for initial guess is the zeroth order expansion coefficient d000 in (3.20)
which is equal to the average permittivity ε̄r in (5.20). This can be used to directly
calculate the initial guess from the measured resonance frequency.

d000 = ε̄r ≈
(

1

a2
+

1

b2

)
c2
0

4f 2
1

(5.21)

This works very well in practice giving the average permittivity always better than
±10% and typically ±3%. From an initial guess so close to the actual value the it-
erative scheme using successively relaxed smoothness constrained converges reliably
in all observed cases.

5.2.4 Imaging Process

The imaging process uses the iteration method which has been presented in detail
in chapter 3. It starts with the initial guess for the average permittivity calculated
as above. The number of expansion coefficients that can be determined is calculated
using the same concept as in the one-dimensional case, see (3.23). This number is
estimated using the condition that the frequency of maximum effect f̂nml should
be within the measuring frequency interval. For the expansion coefficient dnml this
frequency is given by

f̂nml =
c0

4
√

ε̄r

√(n

a

)2

+
(m

b

)2

+

(
l

c

)2

. (5.22)

The condition for the inclusion into the imaging process is simply

f̂nml ≤ fmax. (5.23)

The number of parameters in the iterative optimization is now given by the average
permittivity and the measuring frequency range. The measuring frequency range is
divided into a fixed number of equally sized intervals in order to use the hybrid Ja-
cobian approximation effectively. Each expansion coefficient is assigned to a certain
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frequency interval using equation (5.22). Then the iterative algorithm is entered.
The average permittivity is further improved in the first iteration. The smoothness
constraint is relaxed and a further expansion coefficient is calculated in the next
iteration step. The frequency range used for the matching of the direct problem
solution and the measurements is increased also after a number of iterations. At
this point the Jacobian is reset by a full finite differences approximation. This con-
tinues until the full measurement frequency range is used and the imaging process
has reached its maximum resolution. The pseudo code for the imaging algorithm is
given in the following:

• read measurements

• find lowest resonance frequency of object loaded resonator

• calculate initial guess according to equation (5.21)

• estimate number of expansion coefficients determinable Nmax using condition
(5.23)

• divide measuring frequency range into intervals

• assign each coefficient to one of the frequency intervals

• for n = 1 to Nmax

– calculate next iterate using algorithms presented in chapter 3, solve direct
problem using FDTD

– if n = Nmax break

– increase number of expansion coefficients

– if coefficient n is assigned to next frequency interval increase frequency
range and calculate full FD- Jacobian

• display results

This algorithm is tested on several simulation and measuring examples in the next
section.
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5.3 Experimental Results

5.3.1 Sensitivity Distribution within the Cavity

Some properties as the noise sensitivity and the effect of weighting of the expansion
coefficients were evaluated for the one-dimensional case already. Other properties
are special to microwave resonator imaging. This applies to the distribution of the
sensitivity of the measured scattering parameters for material changes as a function
of position within the cavity. The quality of the image depends on the sensitivity of
the scattering parameters of the loaded cavity to changes of dielectric constant and
loss. The aim is to achieve an evenly distributed sensitivity. This can be obtained
by evenly distributing the coupling ports of the cavity over its surface.

As the electric field strength of all cavity modes decreases towards the nearly
perfectly conducting resonator walls the sensitivity is expected to be lower at the
walls. Very low field strengths are expected in the corners of the cavity. This is
confirmed by the sensitivity of scattering parameters for material changes of the 6
port cavity shown in figure 5.18(a) which is basically the electric field distribution
of the TE210 mode. The sensitivity shown is the mean value over the frequency
range from 2.5 GHz to 9.5 GHz where only the port at the right hand side has been
excited. When this resonator is used for imaging the results obtained are distorted
towards the corners of the cavity. Trying to achieve a more homogenous distribution
by exciting all ports leads to slight improvements of the sensitivity along the walls.
The TE210 mode still dominates and leads to low sensitivity especially in the corners
as shown in figure 5.18(b).

By redesigning the cavity and placing four additional ports in the corners the
sensitivity can be much improved as shown in figure 5.18(c). This design also shows
better imaging performance compared to the 6 port design. Errors of the imaged
permittivity in the corners occurred in almost every case while the 10 port cavity
does not show that undesired behavior and gives correct results for the whole cavity
volume. A similar result can be achieved using the absorbing wall coating. The
sensitivity distribution is slightly improved compared to the previous case but not
clearly superior as can be seen by comparison of figures 5.18(c) and (d). However,
the resonator using absorbing wall coating performs much better for all imaging
examples evaluated.

5.3.2 Effect of measuring Frequency Range

The effect of the measuring frequency range is to be checked again for the three-
dimensional case. It is expected that the measuring frequency range determines the
resolution achievable for a fixed measuring accuracy. This is assessed on simulations
of a reference object consisting of two rectangular blocks depicted in figure 5.19(a).
The background material is teflon with εr = 2.04, which is assumed to be lossless
and the object consists of two blocks of silicone rubber with εr = 3.02− j0.05. The
blocks are only 10 mm× 6 mm in size.

The result obtained using a frequency range from 2.5 GHz to 9.5 GHz is shown
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Figure 5.18: Sensitivity distribution in an imaging resonator: (a) 6-port cavity with
1 port excited,(b) 6-port cavity with all ports excited, (c) 10-port cavity with all
ports excited, (d) 10-port cavity with absorber wall coating and all ports excited
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in figure 5.19(c). The two blocks are clearly detected and can also be separated.
The resolution of the system is obviously in the mm-range. This is surprising as the
shortest wavelength is about 3 cm and it would not be possible to achieve such a
high resolution using any free-space set-up. The use of resonators allows much better
resolution because of the near field measurements. Also the shift of resonances by
the permittivity and the lowering of the quality factor are not bound to the condition
that the obstacle must be at least a certain fraction of wavelength in size.

When increasing the measuring frequency the resolution can be further improved
as can be seen from figure 5.19(d). While the shape of the blocks was not clearly
reconstructed in the 9.5 GHz example the rectangular shape of the two blocks can
be imaged by adding further 3 GHz of bandwidth. The information contained in
this band is fully exploited as the scattering parameters at the last iteration match
the ones of the actual object almost perfectly as shown in figure 5.19(b). As the
residual function is almost zero already any attempt to further increase resolution
by adding more parameters to the optimization must fail. The images obtained for
the dielectric loss are not as good as the ones for the real part which is mainly due
to the low loss contrast.

The same windowing functions as in the one-dimensional case are applied to two
and three-dimensional objects too. The error is again reduced best by applying the
cos2-filter as shown in figure 5.20. The images obtained after filtering again lack
resolution despite their lower RMS error. The effect of the measuring frequency
band is much stronger than the improvements that can be achieved by expansion
coefficient weighting.

5.3.3 Effect of cavity wall coating

The importance of selecting a suitable material for the resonator wall coating is
evident from the following reconstruction example. The same reference object in
5.19(a) is reconstructed. The result in figure 5.19(d) was obtained using the material
described in section 5.1.3. The object is now imaged using different materials for the
wall coating. Attempting to image the object with air surrounding the object fails.
The result reconstructed using a 4 mm thick teflon material layer matched to the
object background which also consists of teflon is given in figure 5.21(a). The image
is severely distorted. The result can be somewhat improved using an unmatched
lossy layer as in figure 5.21(b) but is still inferior to the result obtained using the the
absorber proposed in section 5.1.3 as is obvious from comparison of figures 5.21(b)
and 5.19(d).

5.3.4 FDTD model accuracy

Table 5.1 is showing the effect of the number of discrete materials in the FDTD
model. Comparison of columns 2 and 4 reveals that the error in the image is de-
creased with more materials. Clearly, a separate material having the parameters
given by the current object expansion for each mesh cell would be the optimum
for the iterative algorithm. An increase of the number of materials above approxi-
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Figure 5.19: Effect of measurement frequency range on 3D tomography: (a) actual
permittivity, (b) comparison of scattering parameters, (c) imaged permittivity for
2.5 GHz to 9.5 GHz measuring frequency range, (d) imaged permittivity for 2.5 GHz
to 12.5 GHz measuring frequency range
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Figure 5.21: Effect of the material used for wall coating: (a) matching layer, (b)
lossy unmatched layer
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experiment 1 2 3 4
f/GHz 2.5-9.5 2.5-9.5 2.5-7.5 2.5-9.5
iterations 1 2 2 2
blocks 8 x 6 x 1 8 x 6 x 1 10 x 8 x 1 10 x 8 x 1
residual S-parameter 0.006688 0.003466 0.001953 0.001920
RMS error ε 0.2567 0.1883 0.2562 0.1674
relative error ε 10 % 7.5 % 10 % 6.7 %

Table 5.1: Effect of several parameters on imaging accuracy

mately 100 leads to a very complex model of the cavity and very large overhead in
the computational process.

The number of iterations in table 5.1 gives the repetition of iteration steps with
the same number of parameters in the optimization. Due to the quick convergence
of the Gauss-Newton algorithm an number of 2 is sufficient. A higher number of
iterations is not improving results measurably but increases time consumption. As
already pointed out above increasing the frequency range for measuring scatter-
ing parameters leads to improved resolution and image accuracy as indicated by
comparison of columns 3 and 4.

5.3.5 Error functions

The error function of the algorithm is the residual error between measured scatter-
ing parameters and simulated ones of the current object iterate. Each iteration step
using the successive relaxation iteration scheme is essentially a one-dimensional non-
linear optimization problem. This is because the expansion coefficients determined
previously are already very close to the actual value and are only altered by small
values in the subsequent iteration steps.

To evaluate the convergence behavior of the algorithm the error functions are
evaluated as a function of one expansion coefficient. The average permittivity is
a crucial parameter as it is the starting point for the whole iterative process. It
is optimized in the first iteration steps using low-frequency measuring data. The
initial guess produced by (5.21) is always closer than 10% to the actual value. As
seen from figure 5.22(a) convergence is always assured from a value in that range.
The dip of the error function at a permittivity value of εr = 7.6 is caused by shifting
the second resonance of the cavity to the fundamental one.

The convergence range for the expansion coefficients d100 in figures 5.22(b) and
d220 in 5.22(b) is again sufficiently large. It remains large when an higher order
coefficient is calculated while the ones determined previously are still erroneous
as in figure 5.22(d). Only the minimum is shifted. As all expansion coefficients
currently included are improved in the subsequent iteration steps stable convergence
is expected for this case also. These very well-behaved error functions are the reason
for the good convergence in all cases.

To observe the convergence behavior of the iterative algorithm the residual error
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Figure 5.22: Error functions of the nonlinear least squares problem as a function of:
(a) average permittivity d000, (b) expansion coefficient d100, (c) expansion coefficient
d220, (d) expansion coefficient d220 with error in average permittivity
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Figure 5.23: Residual error as a function of iteration for the imaging process of the
object in figure 5.19

per frequency point average over all scattering parameters is plotted as a function of
iteration steps. The algorithm converges fast and stable. The step increases of the
residual error occur whenever the frequency interval included in the optimization is
increased. The last frequency interval increases do not cause a considerable increase
of the residual error function which means that the scattering parameters can be
matched very well for the entire measuring frequency range with the current object.
This indicates that the maximum resolution of the imaging process has been achieved
and that it is not possible to extract more information about details of the object
from the measuring data.
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Figure 5.24: Imaging results: (a) two blocks with εr = 6− j0.02 and εr = 8− j0.02
in PTFE background, (b) image of the two block object object, (c) staircase profile
εr = 2 and εr = 3− j0.02, (d) image of the staircase object

5.3.6 Imaging results

Several objects having different dielectric contrast and geometrical shapes were im-
aged to validate general applicability of the algorithm. The algorithm is capable
of reliably imaging all test objects. The results given here were obtained using ab-
solutely no a-priori knowledge and algorithm adjustments. The measurements or
simulation data for the true object are sufficient to calculate the algorithm param-
eters as outlined in section 5.2.

The images in the previous examples are cross sectional ones of three-dimensional
objects having an only two-dimensional permittivity distribution. The imaging pro-
cess is two-dimensional as the permittivity is assumed to be homogenous in the third
dimension. A fully three-dimensional imaging example is given in the following. A
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block of silicone rubber is embedded in a PTFE background. The iso-surface value
for the plots is 2.5 which is half distance between background and object.
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(a)

(b)

Figure 5.25: 3D Imaging: (a) true permittivity for a silicone rubber block in PTFE
background, (b) image of the object
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5.3.7 Measuring Results

The microwave resonator imaging system is tested on a reference object consisting
of an air section and a teflon block. The permittivity is a function of one dimension
only for this object. This fact was not incorporated into the imaging as a-priori
knowledge. The imaging of the object was therefore a three-dimensional reconstruc-
tion. The measuring data obtained with the multi-port VNA is shown in figure
5.26 (a) and (b). It is compared to a high accuracy simulation. Both transmission
and reflection measurements show declining accuracy in the high frequency range.
This is caused by the phase instability of the cables as discussed in section 5.1.4.
Non-repeatability due to switch wear was identified as an additional error source.
While the switches are still within specification their repeatability drops. The worn
switches do not give the same scattering parameters when switched backed to the
same state. As repeatability is required for error correction this errors cannot be
removed by calibration.

The cross-sections in the xy-plane of the actual object and its image are given in
figure 5.26(c) and (d). The air to teflon transition is blurred due to the band limiting.
This measurement was carried out without absorbing layer or matching layer because
this is the most critical case as discussed in section 5.3.3. The noise in the measuring
data causes substantial deviations of the measuring data from simulation as shown
in figures 5.26(a) and (b). Despite the noise the images obtained from both data
sets are virtually identical. The RMS error in the imaged permittivity is only 15%
for both the reconstruction from measuring and from simulated data. It can be
improved by using absorbing resonator wall coating. The fact that the system gives
equal results for noisy measuring and simulation data proves its excellent robustness.
As this is a high-contrast object the quantitative information gained is far better
than what is possible using any of the methods discussed in the state of the art. From
these measurements it can be concluded that the application of microwave resonator
imaging for three-dimensional imaging in real world applications is feasible.
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Figure 5.26: Imaging from measuring data: (a) comparison of measured and simu-
lated S11, (b) comparison of measured and simulated S41, (c) cross section of actual
teflon / air object , (d) cross sectional image of the object



Chapter 6

Summary and Conclusion

The microwave imaging method presented in this work has several aspects that
make it favorable over other microwave imaging methods. This has been achieved
by adopting entirely new approaches in every aspect of the imaging system. It uses
an expansion of the object into an orthogonal set of functions. This is the basis for
a very efficient iterative regularization. In addition, a subset in the measuring data
can be connected to each object parameter. The successively relaxed smoothness
constraint starting from an initial guess that is derived from low frequency data gives
global convergence to the desired solution. The iterative algorithm developed to
implement this regularization is efficient because a suitable Jacobian approximation
method was developed.

The one-dimensional measuring setup uses waveguide sections loaded with the
object to image for collecting highly accurate vectorial measurements. Dielectri-
cally loaded waveguide to coaxial transitions enable the collection of necessary low
frequency information. The three-dimensional measuring setup using resonators in-
stead of a free-space setup allows for convenient high-accuracy measurements. The
use of a FDTD solver enables accurate solution of the direct problem where the only
limitation is the trade-off between accuracy and time consumption.

The algorithm is verified by imaging examples using both simulated and mea-
suring data. The weak scattering limitation of other microwave imaging methods is
avoided and quantitative results are obtained. The results show that the proposed
method is capable of accurately reconstructing high contrast and lossy objects that
cannot be imaged by any other microwave imaging method.

Several novel devices were developed to practically implement and test the pro-
posed imaging system. These include dielectrically loaded waveguide to coaxial tran-
sitions and optimized TRL calibration kits for the one-dimensional inverse profile
problem. In order to conveniently carry out the measurements using the multi-port
resonators used for three-dimensional imaging an automated multi-port VNA was
developed. Algorithms for the calibration and error correction of this instrument
were also developed. Special microwave absorber materials exhibiting a low real part
of the permittivity and high dielectric loss were developed. These side products of
this work may well be very useful for many other purposes in the field of microwave
engineering.
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The foundations for the application of microwave imaging to one-dimensional
and three-dimensional problems are given in this work. Further improvement is
needed in the speed of the direct problem solution. As there is strong demand for
the solution of other large electromagnetic problems a lot of research is devoted to
this topic presently. Using parallelization in the direct problem solution could reduce
the time required for the image reconstruction considerably. When these issues are
solved real world applications in the field of medical imaging, environmental imaging
and nondestructive material testing can be targeted.



Appendix A

Proof of the Tikhonov
Reconstruction Formula

The basic expression for the regularized solution of an inverse problem is

f ∗α = V diag(wα(s2)s−1
i )UT g∗ (A.1)

as outlined in section 3.1. The weights applied to the singular values for Tikhonov
regularization are given by

wα(s2) =
s2

s2 + α
. (A.2)

This yields the final regularized solution using Tikhonov regularization.

f ∗α = V diag

(
si

s2
i + α

)
UT g∗ (A.3)

As this requires the computationally expensive calculation of the SVD an alternative
reconstruction equation (3.16) was introduced in section 3.1.

f ∗α =
(
AT A + αI

)−1
AT g∗ (A.4)

This has the considerable advantage of beeing able to find the solution from the
operator A and its transpose only. The equivalence of A.3 and A.4 can be shown
using the SVD of A which is given by

A = USV T . (A.5)

The transpose of the matrix product is

AT = V ST UT . (A.6)

The left and right singular vectors are orthonormal which is a property of the SVD
[62].

UT U = I (A.7)

V T V = I (A.8)
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From this follows that the transpose matrices of U and V are identical to the inverses.

UT = U−1 (A.9)

V T = V −1 (A.10)

Replacing the mapping operator A in (A.4) using its SVD yields

f ∗α =
(
V ST UT USV T + αI

)−1
V ST UT . (A.11)

Using (A.7) and ST S = S2 this can be written as

f ∗α =
[
V
(
S2V T + V −1α

)]−1
V ST UT . (A.12)

This can be further simplified using (A.10).

f ∗α =
(
S2V T + V T α

)−1
ST UT . (A.13)

f ∗α =
[(

S2 + αI
)
V T
]−1

ST UT (A.14)

f ∗α = V
(
S2 + αI

)−1
ST UT (A.15)

Combining the inner terms to one matrix yields

f ∗α = V diag

(
si

s2
i + α

)
UT , (A.16)

which is just (A.3).



Appendix B

Calculation of the Gradient,
Jacobian and Hessian for
Nonlinear Least-Squares

In the nonlinear least-squares problem one tries to find the minimizer x∗ of the cost
function

f(x) =
1

2
F T (x)F (x) =

1

2

m∑
i=1

(fi(x))2. (B.1)

For the algorithm discussed in section 3.2 the gradient ∇f(x) is required frequently.
It is given by

∇f(x) =

[
∂f(x)

∂x1

. . .
∂f(x)

∂xn

]T

(B.2)

Another basic matrix in multivariable calculus is the Jacobian J . Its elements are
by definition

J(x)ij =
∂fi(x)

∂xj

. (B.3)

The gradient of a nonlinear lest-squares problem at the point x can be calculated
using

∇f(x) = ∇
(

1

2
F T (x)F (x)

)
= ∇

(
1

2

m∑
i=1

(fi(x))2

)
(B.4)

=
m∑

i=1

∇fi(x)f(x) (B.5)

From (B.2) and (B.3) it can be seen that the rows of the Jacobian are equal to
the gradient of the function fi. Applying this to B.5 gives a useful expression for
obtaining the gradient from the Jacobian and the residual function itself.

∇f(x) = JT (x)F (x) (B.6)
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This is employed in step-acceptance algorithms where the gradient of the corre-
sponding minimization problem is needed to decide whether to accept or reject a
step in the Gauss-Newton Algorithm as in section 3.2.3.

A similar expression can be derived for the Hessian. The elements of the Hessian
are given by

∇2f(x)ij =
∂2f(x)

∂xi∂xj

. (B.7)

Using (B.1) this yields

∇2f(x) = ∇2

(
1

2
F T (x)F (x)

)
= ∇2

m∑
i=1

1

2
fi(x)2 (B.8)

=
m∑

i=1

∇ (∇fi(x)) =
m∑

i=1

∇fi(x)∇fT
i (x) +∇2fi(x)fi(x)

This gives the final expression for the Hessian of a nonlinear least-squares problem.

∇2f(x) = J(x)T J(x) + S(x), (B.9)

where S(x) is given by

S(x) =
m∑

i=1

fi(x)∇2fi(x). (B.10)
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Derivatives of a Series Expansion

The basis for the regularization introduced in section 3.1 is the object representation
by the expansion into a set of orthogonal functions. To compare this with the
standard smoothness constraint (3.5) the derivatives of the expansion are required.
For the one-dimensional case using cosine-function the object expansion reads

f(z) =
∞∑

n=0

dn cos (knz) , (C.1)

where the spatial frequency kn = nπ/c is introduced. The first derivative of the
function f(z) is expanded into a set of sine-functions.

df(z)

dz
=

∞∑
j=1

aj sin (kjz) (C.2)

with kj = jπ/c. The expansion coefficients an are given by

Njaj =

∫ c

z=0

sin(kjz)
df(z)

dz
dz. (C.3)

The norm of the jth function is denoted by Nj.

Nj =

∫ c

z=0

sin2(kjz)dz =
c

2
(C.4)

The expansion coefficients aj can be calculated using partial integration.

c

2
aj = |sin(kjz)f(z)|cz=0 −

∫ c

z=0

kj cos(kjz)f(z)dz (C.5)

The first term vanishes and using (C.1) in (C.5) yields

c

2
aj = −kj

∫ c

z=0

cos(kjz)
∞∑

n=0

dn cos (knz) dz (C.6)
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Because of the orthogonality property all terms of the sum except the one with n = j
are zero which gives the looked for expansion terms of the first derivative.

aj = −2

c
kj

∫ c

z=0

dj cos2(kjz)dz = −kjdj (C.7)

The first derivative is obtained by replacing aj in (C.2).

df(z)

dz
= −

∞∑
j=1

kjdj sin (kjz) (C.8)

This result is identical to the one that would be obtained by differentiating (C.1)
term by term.

The second derivative of the object function is expanded into cosine terms.

d2f(z)

dz2
=

∞∑
l=0

bl cos (klz) (C.9)

The coefficients bl are now given by

Nlbl =

∫ c

z=0

cos(klz)
d2f(z)

dz2
dz, (C.10)

where Nl is the norm of the lth function. The norm can be calculated using

Nl =

∫ c

z=0

cos2(klz)dz =

{
c
2

for l 6= 0
c for l = 0

Partial integration of (C.10) yields

Nlbl =

∣∣∣∣cos(klz)
df(z)

dz

∣∣∣∣c
z=0

+

∫ c

z=0

kl sin(klz)
df(z)

dz
dz. (C.11)

Using the expression for the first derivative obtained above together with the or-
thogonality property gives

Nlbl =

∣∣∣∣cos(klz)
df(z)

dz

∣∣∣∣c
z=0

− k2
l

c

2
dl (C.12)

= (−1)l df(z)

dz

∣∣∣∣
z=c

− df(z)

dz

∣∣∣∣
z=0

− k2
l

c

2
dl

The final expressions for the expansion coefficients of the second derivative are then

bl =
2

c

[
(−1)l df(z)

dz

∣∣∣∣
z=c

− df(z)

dz

∣∣∣∣
z=0

]
− k2

l dl for l 6= 0 (C.13)

b0 =
1

c

[
df(z)

dz

∣∣∣∣
z=c

− df(z)

dz

∣∣∣∣
z=0

]
(C.14)
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The first terms on the right hand side of (C.13) and (C.14) are needed in order to
avoid impulse functions at the borders of the expansion interval. These would oth-
erwise occur because the first derivative is expanded into sine terms that necessarily
have zeros at z = 0 and z = c. All nonzero values of the first derivative at the
borders of the interval will cause a very large slope of the first derivative and conse-
quently an impulse in the second derivative. However, these terms are determined
only by the slope of the function at the borders of the interval. The second term in
(C.13) is the only one caused by the variation of the function itself. The magnitude
of the second derivative within the object is therefore rising quadratically with the
number of spatial frequencies used for the object representation.

d2f(z)

dz2
=

1

c

[
df(z)

dz

∣∣∣∣
z=c

− df(z)

dz

∣∣∣∣
z=0

]
(C.15)

+
∞∑
l=1

(
2

c

[
(−1)l df(z)

dz

∣∣∣∣
z=c

− df(z)

dz

∣∣∣∣
z=0

]
− k2

l dl

)
cos (klz)



Bibliography

[1] L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE
Microwave Magazin, vol. 4, pp. 39–50, September 2003.

[2] Agilent Technologies, “HP 8722D VNA users guide,” 1996.

[3] Agilent Technologies, “Agilent 54753A/54754A TDR plug-in modules users
guide,” 2000.

[4] D. L. Colton and R. Kress, Inverse Electromagnetic and Acoustic Scattering
Theory. Springer, 1998.

[5] R. S. Elliot, Electromagnetics: History, Theory and Applications. IEEE Press,
1993.

[6] R. E. Collin, Foundations for Microwave Engineering. McGraw-Hill, second ed.,
1992.

[7] R. C. Tupynamba, Analyse und Entwurf von passiven Hochfrequenzschaltungen
mit Hilfe der FDTD-Methode. Dissertation, TU Hamburg-Harburg, 1997.

[8] L. E. Larsen and J. H. Jacobi, “Microwave scattering parameter imagery of an
isolated canine kidney,” Med. Phys., vol. 6, pp. 394–403, 1979.

[9] J. C. Bolomey, A. Izadnegahdar, L. Jofre, C. Pichot, G. Perronet, and
M.Soalaimani, “Microwave diffraction tomography for biomedical applica-
tions,” IEEE Trans. MTT, vol. 30, pp. 1998–2000, November 1982.

[10] S. C. Hagness, A. T. Taflove, and J. E. Bridges, “Two-dimensional FDTD
analysis of a pulsed microwave confocal system for breast cancer detection:
Fixed-focus and antenna-array sensors,” IEEE Trans. Biomed. Eng., vol. 45,
pp. 1470–1479, December 1998.

[11] R. A. Krueger, “Thermoacoustic CT,” IEEE-MTT-Symposium, June 2000.
Boston.

[12] Y. Huo, R. Bansal, and Q. Zhu, “Breast tumor characterization via complex
natural resonances,” IEEE MTT-S Symp. Dig., pp. 387–390, June 2003.

113



Appendix 114

[13] M. Krueger, A. Pesavento, H. Ermert, K. Hiltawsy, L. Heuser, H. Rosenthal,
and A. Jensen, “A new system for quantitative ultrasonic breast imaging of
acoustic and elastic parameters,” Acoustical Imaging, vol. 24, pp. 253–259, 2000.

[14] A. E. El-Rouby, F. T. Ulaby, and A. Y. Nashashibi, “MMW scattering by
rough lossy dielectric cylinders and tree trunks,” IEEE Trans. Geosc. Rem.
Sens., vol. 40, pp. 871–879, April 2002.

[15] S. Hadjiloucas, L. S. Karatzas, and J. W. Bowen, “Measurements of leaf water
content using terahertz radiation,” IEEE Trans. MTT, vol. 47, pp. 142–149,
February 1999.

[16] H. H. Barret, “Fundamentals of the radon transform,” NATO ASI Series,
vol. F39, pp. 105–125, 1988.

[17] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential
Equations. Yale University Press, 1923.

[18] M. Bertero and P. Boccacci, Inverse Problems in Imaging. IOP Publishing,
1998.

[19] L. v. Wolfersdorf, Inverse und schlecht gestellte Probleme. Akademie Verlag,
1994.

[20] K. I. Hopcraft and P. Smith, An Introduction to Electromagnetic Inverse Scat-
tering. Kluwer Academic Publishers, 1992.

[21] T. Meyer and A. S. Omar, “Efficient isolation of the nonlinearity in reconstruc-
tion problems,” 55th ARFTG Conference, June 2000. Boston.

[22] K. I. Hopcraft and P. R. Smith, “Geometrical properties of backscattered ra-
diation and their relation to inverse scattering,” J.Opt. Soc. Amer. A, vol. 6,
pp. 508–516, April 1989.

[23] W. Tabbara, “Reconstruction of permittivity profiles from a spectral analysis of
the reflection coefficient,” IEEE Trans. AP, vol. 27, pp. 241–244, March 1979.

[24] J.-C. Bolomey, D. Lesselier, C. Pichot, and W. Tabarra, “Spectral and time
domain approaches to some inverse scattering problems,” IEEE Trans. AP,
vol. 29, pp. 206–212, March 1981.

[25] T. J. Cui and C. H. Liang, “Inverse scattering method for one-dimensional in-
homogenous lossy medium by using a microwave networking technique,” IEEE
Trans. MTT, vol. 43, pp. 1773–1781, August 1995.

[26] T. J. Cui and C. H. Liang, “Reconstruction of the permittivity profile of an
inhomogenous medium using an equivalent network method,” IEEE Trans. AP,
vol. 41, pp. 1719–1726, December 1993.



Appendix 115

[27] D. B. Ge and L.-J. Chen, “A direct profile inversion for weakly conducting
layered medium,” IEEE Trans. AP, vol. 39, pp. 907–909, July 1991.

[28] H. D. Ladouceur and A. K. Jordan, “Renormalization of an inverse scattering
theory for inhomogenous dielectrics,” J. Opt. Soc. Am. A, vol. 2, pp. 1916–1921,
November 1985.

[29] D. L. Yaggard and Y. Kim, “Accurate one-dimensional inverse scattering using
a nonlinear renormalization technique,” J. Opt. Soc. Amer., vol. A-2, pp. 1922–
1930, 1985.

[30] M. J. Akhtar and A. S. Omar, “Reconstructing permittivity profiles using inte-
gral transforms and improved renormalization techniques,” IEEE Trans. MTT,
vol. 48, pp. 1385–1393, 2000.

[31] M. J. Akhtar and A. S. Omar, “Reconstruction of permittivity profiles in
cylindrical objects illuminated by higher order modes,” in Proc. IEEE MTT-S
Symp., pp. 1085–1088, 2000.

[32] V. A. Mikhnev and P. Vainkainen, “Two-step inverse scattering method for
one-dimensional permittivity profiles,” IEEE Trans. AP, vol. 48, pp. 293–298,
February 2000.

[33] C. Pichot, J. Jofre, G. Peronnet, A. Izadnegahdar, and J.-C. Bolomey, “An
angular spectrum method for inhomogenous bodies reconstruction in microwave
domain,” IEEE AP-S Symp. Dig., pp. 664–667, May 1982.

[34] C.-N. Chen and D. I. Hoult, Biomedical Magnetic Resonance Technology. In-
stitute of Physics Publishing, 1995.

[35] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging.
IEEE Press, 1988.

[36] M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first
first-order diffraction tomography,” IEEE Trans. MTT, vol. 39, pp. 860–874,
Aug. 1984.

[37] D. E. Livesay and K.-M. Chen, “Electromagnetic fields induced inside arbi-
trarily shaped biological bodies,” IEEE Trans. MTT, vol. 22, pp. 1273–1280,
December 1974.

[38] F. J. Paolini, “The effects of attenuation on the born reconstruction procedure
for microwave diffraction tomography,” IEEE Trans. MTT, vol. 34, pp. 366–
368, March 1986.

[39] E. Salerno, “Microwave tomography of lossy objects from monostatic measure-
ments,” IEEE Trans. MTT, vol. 47, pp. 986–994, July 1999.



Appendix 116

[40] A. Broquetas, J. Romeu, J. M. Rius, A. R. Elias-Fuste, A. Cardama, and
L. Jofre, “Cylindrical geometry: A further step in active microwave tomogra-
phy,” IEEE Trans. MTT, vol. 39, pp. 836–844, May 1991.

[41] S. Y. Semenov et al., “Three-dimensional microwave tomography: Experimen-
tal prototype of the system and vector born reconstruction method,” IEEE
Trans. Biomed. Eng., vol. 46, pp. 937–945, August 1999.

[42] J. M. Rius, C.Pichot, L. Jofre, J. C. Bolomey, N. Joachimowicz, A. Broquetas,
and M. Ferrando, “Planar and cylindrical active microwave temperature imag-
ing: Numerical simulations,” IEEE Trans. Biomed. Eng., vol. 11, pp. 457–469,
December 1992.

[43] N. Joachimowicz, J. J. Mallorqui, J.-C. Bolomey, and A. Broquetas, “Conver-
gence and stability assessment of newton-kantorovich reconstruction algorithms
for microwave tomography,” IEEE Trans. Med. Imag., vol. 17, pp. 562–570, Au-
gust 1998.

[44] A. Franchois, A. Joisel, C. Pichot, and J.-C. Bolomey, “Quantitative microwave
imaging with a 2.45-GHz planar microwave camera,” IEEE Trans. Med. Imag.,
vol. 17, pp. 550–561, August 1998.

[45] K. Belkebir, R. E. Kleinmann, and C. Pichot, “Microwave imaging - location
and shape reconstruction from multifrequency scattering data,” IEEE Trans.
MTT, vol. 45, pp. 469–476, April 1997.

[46] A. Franchois and C. Pichot, “Microwave imaging-complex permittivity recon-
struction with a levenberg-marquardt method,” IEEE Trans. AP, vol. 45,
pp. 203–215, February 1997.

[47] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity
distribution using the distorted born iterative method,” IEEE Trans. Med.
Imaging, vol. 9, pp. 218–225, 1990.

[48] Y. M. Wang and W. C. Chew, “An iterative solution of the two-dimensional
electromagnetic inverse scattering problem,” Int. Journ. of Imaging Systems
and Technology, vol. 1, pp. 100–108, 1989.

[49] L. Garnero, A. Franchois, J.-P. Hugonin, and N. Joachimowicz, “Microwave
imaging - complex permittivity reconstruction by simulated annealing,” IEEE
Trans. MTT, vol. 39, pp. 1801–1807, November 1991.

[50] A. Baussard and D. Premel, “Inverse scattering with experimental microwave
data using the weak membrane model and a positivity constraint,” Proc. IEEE
AP-S Symposium, vol. 1, pp. 288–291, 2002.

[51] A. Blake and A. Zissermann, Visual Reconstruction. MIT Press, 1987.



Appendix 117

[52] R. V. McGahan, “Special session on image reconstruction using real data,”
IEEE AP Magazin, vol. 38, pp. 39–59, June 1996.

[53] J. B. Morris, R. V. McGahan, J. L.Schmitz, R. M. Wing, D. A. Pommet, and
M. A. Fiddy, “Imaging of strongly-scattering tragets from real data,” IEEE AP
Magazin, vol. 39, pp. 22–26, April 1997.

[54] R. D. Murch and D. G. H. Tan, “Reconstructing objects from the ipswich data
set,” IEEE AP Magazin, vol. 39, pp. 26–29, April 1997.

[55] V. P. Yakubov and M. L. Masharuev, “Method of double focussing for mi-
crowave tomography,” Microwave and Opt. Techn. Letters, vol. 13, no. 4,
pp. 187–189, 1996.

[56] M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani,
“Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans.
Biomed. Eng., vol. 47, pp. 690–698, May 2000.

[57] M. Fritzsche, Anwendung von Verfahren der Mustererkennung zur Detektion
von Landminen mit Georadaren, vol. 30 of Forschungsberichte aus dem Institut
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[92] F. Löbner, “Entwicklung einer FDTD-Routine zur breitbandigen Berechnung
der Streuparameter von in der Mikrowellen-Tomographie eingesetzten Res-
onatoren,” Master’s thesis, O.-v.-Guericke Universität Magdeburg, IESK, 2003.



Appendix 120

Lebenslauf

Name: Tobias Meyer
Geburtsdatum: 6.10.1972
Geburtsort: Lauchhammer
Familienstand: verheiratet, 2 Kinder

Schulausbildung
9 / 79 bis 7 / 85 Polytechnische Oberschule W. Wander Magdeburg
9 / 85 bis 7 / 92 Sportgymnasium Magdeburg

Abschluß: Allgemeine Hochschulreife

Studium
9 / 92 bis 7 / 94 O.-v.-Guericke Universität Magdeburg

Studiengang Elektrotechnik
Abschluß: Vordiplom

9 / 94 bis 7 / 95 University of Wales
Studium Elektrotechnik, Betriebswirtschaft und Englisch

9 / 95 bis 2 / 99 O.-v.-Guericke Universität Magdeburg
Studienrichtung: Nachrichtentechnik
Abschluß: Dipl.- Ing. Elektrotechnik
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