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Kurzfassung

Im heutigen Informationszeitalter steht der Mensch einer Flut von Informationen gegen-
über. Informationsfilterung hat zum Ziel, die Informationslast seiner Anwender bezüglich
ihrer Interessengebiete zu reduzieren. Dabei werden nicht relevante Dokumente eines
Stroms von Informationen entfernt, so dass den Anwendern nur relevante Dokumente
präsentiert werden. Wir beschränken uns hier auf Textdokumente und behandeln Informa-
tionsfilterung als ein bin̈ares Textklassifikationsproblem, das sich mit Hilfeüberwachter
Lernverfahren l̈osen l̈asst. Anhand von Beispielen mit bekannten Klassenzugehörigkeiten
lernen diese Verfahren Klassifikatoren, die dann für die Klassifikation neuer Dokumente
verwendet werden.

In realen Anwendungen von Informationsfiltern treffen wir auf drei Probleme. Erstens
ben̈otigt man zum Lernen effektiver Klassifikatoren in der Regel eine große Menge klas-
sifizierter Beispiele. F̈ur komplexe Textklassifikationsaufgaben wird die Bereitstellung
dieser Lernbeispiele schnell zu einem sehr kostspieligen und auch unüberwindbaren Prob-
lem, weil sie von Menschen gelesen und klassifiziert werden müssen. Zweitens setzen
viele g̈angige Lernverfahren homogene Klassen voraus. Die beim Informationsfiltern zu-
grundeliegenden Klassen sind jedoch oft heterogen. Das dritte Problem liegt in der An-
nahme, dass die beim Lernen verwendeten Beispiele und die zu klassifizierenden Daten
von derselben Quelle stammen. Dokumentquellen können sich aber mit der Zeitändern,
so dass mit dynamischen Aspekten umgegangen werden muss.

In dieser Dissertation wird untersucht, wie stark eine zu kleine Menge an Lernbeispie-
len, heterogene Klassen sowie sich mit der Zeit verändernde Datenquellen die Klassifika-
tionsleistung beim Informationsfiltern beeinflussen. Für die dabei beobachteten Probleme
entwickeln wir geeignete L̈osungen. Insbesondere reduzieren wir die Menge benötigter
Lernbeispiele durch die Verwendung halbüberwachter Lernalgorithmen. Diese lernen
anhand weniger klassifizierter Beispiele und einer größeren Menge nicht klassifizierter
Beispiele, die meist sehr kostengünstig zur Verf̈ugung stehen. Weiterhin untersuchen wir
Lösungsans̈atze zum Erlernen heterogener Klassen. Um gezielt mit den dynamischen
Aspekten beim Information Filtering umgehen zu können, verwenden wir Methoden der
statistischen Qualitätskontrolle. Dadurch versuchen wir, Veränderungen in Informations-
strömen ohne zus̈atzlichen Benutzeraufwand zu erkennen, um dann die Anwender zu
benachrichtigen, dass die verwendeten Filter anzupassen sind. Empirische Auswertungen
zeigen, dass die in dieser Arbeit vorgestellten Ideen zur Lösung der beim Informationsfil-
tern beobachteten Probleme beitragen können.
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Abstract

Today’s information age overloads users with a flood of information. The objective of
information filtering is to reduce the users’ information load with respect to their areas of
interest. The filter is supposed to remove any non-relevant documents from an incoming
stream, so that only relevant documents are presented to users. Taking into account only
textual documents, we view information filtering as a binary text classification problem.
Classification problems can be solved by applying supervised learning algorithms. These
learn from a set of examples with known class labels classifiers that predict the class labels
of new documents.

In practice, we typically face three problems. First of all, accurately learning classifiers
often necessitates a large number of labeled training examples. And, for complex text
classification tasks, providing these may easily become prohibitive because training doc-
uments are commonly hand-labeled by humans. Second, some of the most frequently
applied learning algorithms for constructing text classifiers require homogeneous class
definitions. Yet, the two relevance classes in information filtering are often heterogenous.
And third, supervised learning is based on the assumption that both the training docu-
ments and the new documents to be classified come from the same source. In a long-term
application, however, document sources tend to change over time and we have to deal
with dynamic aspects.

In this dissertation, we evaluate the extent to which the three problems outlined above
impact classification performance. In addition, we present some solutions to remedy the
difficulties observed. In particular, we try to reduce the need for labeled training exam-
ples by using semi-supervised learning algorithms. These learn from a small number
of labeled documents in addition to a large number of unlabeled documents, which are
often inexpensive and readily available in large quantities. Subsequently, we investigate
the severity of problems inherent to dealing with heterogeneous classes. In order to cope
with the dynamic nature of the information filtering task, we employ quality control meth-
ods which enable detection of changes in document streams without expensive user feed-
back and which alert users that their filtering system requires adaptation to these changes.
Experimental evaluations performed on several real-world text collections show that the
ideas developed in this dissertation are indeed useful to alleviate some of the difficulties
encountered in information filtering.
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Chapter 1

Introduction

1.1 Motivation

The promise of the information age entails making information available to
people any time, any place, and in any form. Realizing such a promise de-
pends on innovations in areas that impact the creation of information services
and their communication infrastructures. However, this realization can easily
become a mixed blessing without methods to filter and control the potentially
unlimited flux of information from sources to their receiving end-users.1

The proliferation of information available on the World Wide Web, corporate intranets and
databases, electronic news wires, and other media is overwhelming. However, while the
amount of information available to us is continually increasing, our ability to digest this
information remains constant. Moreover, the creation and dissemination of information
is supported by a growing number of tools, while we are only insufficiently supported
in processing and assimilating this information. We are often experiencinginformation
overloadwhen we fail to follow critical news, events, and trends.2 Common effects of
this are, for example, attention deficit disorder, increased cardiovascular stress, weakened
vision, confusion, and impaired judgement.3

At this point, the application of tools that automatically assist a user in organizing and
managing thisinformation glutshould come into consideration.4 For instance, these tools
could filter interesting or relevant from non-relevant information according to a specified
user interest. Information could be summarized and visually presented in such a way
that it is more easily accessible. Also, identifying hidden knowledge within the available
data is a crucial issue. Goals and ideas which are common in the field of knowledge
discovery and data mining must be applied to little or even unstructured data, such as text
or multimedia data.

1From Loeb and Terry (1992), p. 27.
2See Sheridan and Ferrell (1974), pp. 133–134, for an early reference to information overload.
3See Shenk (1997), pp. 37–38.
4Information overload is also referred to as information glut, see Shenk (1997), for example.

1



2 CHAPTER 1. INTRODUCTION

1.2 Problem Description

The objective ofinformation filteringis to reduce the users’ information load with respect
to their areas of interest. The filter is supposed to remove any non-relevant documents
from an incoming stream, so that only relevant documents are presented to users. There-
fore, information filtering can be described as a binary classification problem.5 In this
work, we limit the space of possible documents to textual documents and regard infor-
mation filtering as a specific instance of text classification. Note that, in information
filtering, documents are generally classified immediately, online, as they arrive. Instead,
documents could be processed and presented in batches. This would allow ranking of
documents according to their estimated degree of relevance, which is often misleadingly
referred to asinformation routing.6

Classification problems can be solved by applying supervised learning algorithms. These
learn from a set of examples with known class labels classifiers that predict the class labels
of new, previously unseen observations. Such learning algorithms are studied in depth
in the machine learning community. Bymachine learning, we understand the study of
computer algorithms that improve automatically through experience, based on concepts
from artificial intelligence, probability theory, statistics, information theory, and other
disciplines.7 A variety of text learning algorithms has been studied and compared in the
literature.

There are several assumptions that must hold in order to achieve reasonable results when
applying supervised learning algorithms to the task of text classification. We identify
three major assumptions that tend to be violated in practice:

1. Availability Assumption.In order to learn reasonably accurate classifiers, we must
be provided with enough labeled training examples. For text classification tasks,
this usually requires a person to read numerous documents and to decide on the
class label to be given to each of these documents: a tedious and extremely time
consuming process. And for complex learning tasks, providing sufficiently large
sets of labeled training examples easily becomes prohibitive. Thus, we generally
cannot assume that we are provided with enough labeled training examples.

2. Homogeneity Assumption.Depending on the domain, the two relevance classes may
be very broad. For example, when filtering news stories, there are typically several
different topics which a user either likes or dislikes. Hence, the classes defined
by the filtering task tend to be heterogeneous, so that the associated documents
may be difficult to classify. Moreover, some of the learning algorithms which are
most commonly applied to solve text classification problems require that classes be
homogenous.

3. Stationarity Assumption.Effectively using information filters, or text classifiers
in general, requires that the distributions of training documents and new documents

5See Lewis (1997), p. 75.
6See Hull (1998), p. 45.
7For example, see Langley (1996) or Mitchell (1997) for a general introduction.



1.3. RESEARCH GOALS 3

are the same, or at least similar.8 Assuming that both the training documents and the
new documents are generated by class-specific document sources, the application
of classifiers that were learned from examples requires that the document sources
be time invariant. Yet, even though this stationarity assumption may hold initially,
it is likely to become invalid in a long-term application. For various reasons, both
the topics and contents of new documents can be expected to change over time.
The document sources aredynamic, or non-stationary, rather than stationary. With
time, this may cause a classifier to become less effective than expected.

Under these circumstances, the primary task of designing information filtering systems
which are to be employed in real-world settings can be described as follows:

The application goal of this dissertation is to provide techniques that

1. learn reasonably accurate information filtering systems and

2. maintain classification performance in a long-term application

while minimizing the user effort required.

Note that the constraint regarding the user effort takes the difficulty of providing labeled
training examples into account. This affects both learning a classifier and trying to main-
tain its classification effectiveness in a long-term application. Furthermore, the possible
heterogeneity of the relevance classes may hinder a learning algorithm from inducing an
effective classifier.

There are other general assumptions in the supervised learning setting which we do not
address in this dissertation. For instance, examples are commonly represented by a set of
features that are assumed to be sufficient in order to distinguish among classes. Also, the
training examples are assumed to be independent. We are not aware of applications where
violations of these assumptions cause serious problems in the context of text classification.

1.3 Research Goals

With this application goal and the assumptions described above in mind, we derive the
following three research challenges:

1. Explore methods which will reduce the need for labeled training documents in order
to relax theavailability assumption.

2. Evaluate the extent to which violations of thehomogeneity assumptionaffect clas-
sification performance.

3. Provide methods which indicate that thestationarity assumptionhas been violated
and which can thus help to maintain classification performance.

These challenges lead to three extensions of basic text classification which will be dealt
with in the second part of this dissertation as described in the following overview.

8See Scḧurmann (1996), p. 309.



4 CHAPTER 1. INTRODUCTION

1.4 Overview

This dissertation is structured in three parts which comprise eight chapters altogether. The
first part, Chapters 1 through 3, covers some preliminaries of this dissertation. The second
part, Chapters 4 through 6, addresses text classification enhancements which deal with the
research issues motivated and stated above. Finally, by providing an empirical evaluation
and the conclusions, the third part discusses the key results and contributions of this work.

In Chapter 2, we formally define the task of information filtering and introduce possible
filtering variants. Focusing on content-based filtering of textual documents, we iden-
tify information filtering as a special case of text classification. Having reviewed com-
mon measures for performance evaluation of information filtering systems, we move on
to some historical background on the development of information filtering. Finally, we
briefly review several well-known filtering projects before we compare related tasks.

Chapter 3 introduces text classification: we define the task of text classification and show
its relationship to the task of information filtering. Our goal is to use machine learning
techniques for automatic text classification. Hence, we identify two basic subtasks which
we examine closely: representing textual documents in a way that is appropriate as input
for machine learning algorithms and the application of these learning algorithms proper.

Supervised learning algorithms typically require enormous amounts of training data to
learn reasonably accurate classifiers. Yet, in many text classification tasks, labeled train-
ing documents are expensive to obtain, while unlabeled documents are often readily avail-
able in large quantities. In Chapter 4 we develop a semi-supervised learning framework
which allows us to learn from both labeled and unlabeled data to mitigate the violation
of theavailability assumption. Also, we provide a thorough empirical evaluation of the
approach proposed.

Some of the learning algorithms which are commonly applied to automate text classifica-
tion require that classes be homogeneous. In Chapter 5, we evaluate the extent to which
violations of thehomogeneity assumptionaffect classification performance of two fre-
quently used classifiers. In addition, we briefly discuss approaches that could remedy this
problem.

In order to cope with the violation of thestationarity assumptionin a long-term applica-
tion, we favor a quality control methodology that attempts to detect changes and adapts
the applied information filter only if classification performance needs to be maintained.
Therefore, our prime interest in Chapter 6 is to detect changes in a text stream either with
little or with no user feedback.

In Chapter 7, we integrate the semi-supervised learning framework and the quality control
component introduced in Chapters 4 and 6. The system resulting is evaluated based on a
new text corpus which was not used previously during the process of this work.

Finally, Chapter 8 concludes with a summary of the main contributions of this dissertation.
In addition, we describe possible issues for future work.



Chapter 2

Information Filtering

In this chapter, we formally define the task of information filtering and shed some light
on possible filtering variants. We focus on content-based filtering of textual documents,
which turns out to be a special case of text classification. Techniques involved in text
classification are covered in detail in the following chapter. In addition, we describe
a general framework for an information filtering system and review some measures for
performance evaluation. We then give some historical background on the development
of information filtering and briefly review several well-known filtering projects before we
compare related tasks.

2.1 Definition and Terminology

The objective of information filtering is to reduce the users’ information load with respect
to their areas of interest. Information filtering is an information seeking process in which
non-relevant documents from an incoming stream are rejected according to a specific
long-term user interest in such a way that only the relevant documents are presented to
the user. More precisely, we formally pose the filtering problem as follows.1

Definition 2.1.1 (Information Filtering)
Assume a space of documentsD. With respect to a specific long-term user interest, ψ, we
define information filtering as a mapping, fψ : D 7→ {0, 1}, from the document space onto
either zero or one, which corresponds to rejecting or accepting a document, respectively.
Alternatively, information filtering can be defined as a mapping from the document space
onto the unit interval, f ?ψ : D 7→ [0, 1], such that f ?ψ(d) reflects the relevance of a document
d with respect to the user interest ψ. Note that this notation further requires thresholding
of the relevance scores if the documents are to be explicitly rejected or accepted.

Information filtering is a process actively conducted by humans, with or without the as-
sistance of a machine,2 in order to cope with information overload. The goal of aninfor-
mation filtering systemis to automate this process. Understanding information filtering

1See Mostafaet al. (1997) or Hull (1998) for similar definitions.
2See Oard (1997) p. 142.

5



6 CHAPTER 2. INFORMATION FILTERING

Detection PresentationCollection

Information Sources

Figure 2.1: The three subtasks of an information seeking process (following Oard (1997), p. 142).

as an information seeking process leads to three subtasks for such a system: collecting
documents, detecting relevant documents, and presenting the results to the user.3 This
subdivision is depicted in Figure 2.1.

It is arguable whether or not information collection should be part of the filtering system.
This probably depends on whether we are considering filtering systems with an active
or passive initiative of operation.4 In early descriptions of information filtering systems,
the passive collection of documents such as incoming electronic mail was commonly
assumed.5 However, due to an ever increasing amount of electronically accessible infor-
mation, actively collecting documents is gaining in popularity. For instance, a collection
of agents could be used to crawl the World Wide Web looking for relevant information.6

In this dissertation, we do not further address the aspect of information collection. In-
stead, we assume a stream of documents as input to a filtering system. Detecting relevant
documents from a stream of incoming documents is the core of any information filtering
system. Essentially, this concerns finding a mapping,fψ or f ?ψ, to estimate the relevance
of documents according to Definition 2.1.1. We will have more to say on this subtask
in the sections that follow. The final subtask is responsible for presenting the documents
selected according to their relevance to the user. As a filtering system is unlikely to be
perfect, even if the remaining documents are predicted to be relevant, the means of presen-
tation can further enhance the users’ ability to identify what really meets their information
needs. These issues involve the study of fields like human-computer interaction and infor-
mation visualization, which we will not discuss in this dissertation. To summarize, we see
an information filtering system with an emphasis on detecting relevant information as is
presented in the following.

Definition 2.1.2 (Information Filtering System)
An information filtering system automates the process of information filtering with the
objective to reduce information overload. It either generates or accepts a stream of doc-
uments, estimates the relevance of each document, and provides either only the relevant
documents or a relevance score for each document for presentation to the user with respect
to the user’s interest.

There are several basic points that need to be put in concrete terms and in which specific
information filtering systems may differ. In the following we analyze four specifications:

3See Oard (1997), p. 142.
4See Shapiraet al. (1997).
5For example, see Denning (1982)
6For example, see Balabanovic̀ (1997), or Pazzani and Billsus (1997).
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the type of input to the system, i.e. the space of documents, requirements for the output,
profile construction, and the concept of relevance. At this point, we do not consider the
location of operation. Note that a filtering system can be located at the user’s site, on spe-
cial intermediate servers ‘between’ the information provider and the users, or directly at
the information sources.7 Also, we do not discuss any details concerning the architecture
or implementation of an information filtering system.

Input

We assume that we are given a stream of documents as input. What is the nature of
these documents? Generally, we can filter any type of information that can be represented
digitally. On the one hand, this could be in the form of traditional textual documents,
like electronic mail, Usenet newsgroups articles, or other online news. On the other hand,
new media such as images, audio, video, and multimedia documents in general might be
used. In this dissertation, we limit the input space of documents totextual documents.
Hence, we always mean textual documents when talking about documents in subsequent
chapters.

Output

Once a filter has estimated the relevance of documents from the incoming stream, the
results have to be presented to the user. The presentation of information does not belong
to the scope of this work. Note, however, that it may impose some requirements for the
output of a filtering system. A primary issue is when and in what form the results are
presented to the user. We focus on two common alternatives to show this. One way
is to classify documents as they arrive, online, and present them directly to the user, if
so decided. Hence, the decision whether to reject or accept a new document is made
independent of other incoming documents. Alternatively, documents could be classified
asynchronously and a personal report of interesting documents could be created at regular
intervals. This batch processing allows ranking of documents according to their estimated
degree of relevance, which is often misleadingly denoted asinformation routing.8 We
choose to classify documents online as they arrive because it is the more common variant
of information filtering.

Profile Construction

Knowing what a user is actually interested in is a fundamental issue in any information
seeking task. In information filtering, we are typically concerned with a long-term user
interest. The compromised representation of this information need is usually referred to as
theuser profile. In the information retrieval and database community, this is also known

7See Shapiraet al. (1997).
8This terminology is commonly used in the Text REtrieval Conference (TREC) environment. See Hull

(1998), p. 45, for example.
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as aquery. However, since the user’s interests may be manifold, the profile may actually
be a set of queries. In this sense, we use the term query to refer to distinct parts of users’
interests within their profile.

How do we construct a profile? Two main directions come into mind: human and machine
design. First, users could hand-code their own filters, for instance by specifying some
simple rules that satisfy their needs. Or, professional knowledge engineers could pro-
vide specific profiles. While the first approach is often particularly time-consuming and
tedious, the second lacks the potential for personalization according to a user’s own spe-
cial needs. The second direction, which we follow in this dissertation, tries to avoid
both of these imputations by automatically constructing profiles using machine learning
techniques. Typically, these learn profiles from a set of training documents for which
relevance judgements are given. Note that describing how a profile can be constructed
does not yet specify how the profile will be represented. Matching a document to a user
profile to obtain a measure of similarity corresponds to the relevance mapping described
in Definition 2.1.1.

The Concept of Relevance

A crucial open question remaining is what is relevant or interesting for a user? In the
literature, there are currently three filtering paradigms that differ in the criteria used to
select relevant documents:9

• Content-based filtering, or cognitive filtering. This technique makes the deci-
sion upon the relevance of a document based solely on features that can be ex-
ploited from its content, whereby each user is assumed to operate independently.
For textual documents, common features are n-grams, words, or phrases.10 This
paradigm is probably the best-known and most commonly applied technique. See
Section 2.4 for some well-known research projects founded on the principle of
content-based filtering.

• Collaborative filtering, or social filtering. This paradigm assumes that an effective
way to find interesting or relevant documents for one user is to find other people
who have similar interests.11 Automating the ‘word-of-mouth’ metaphor, by which
individuals recommend products or services to one another,12 collaborative filter-
ing can select documents for one user based on usage, preferences, annotations, or
opinions of other users. This feedback can be given explicitly for a document by
the users. However, they often tend to refrain from doing so. Rather than asking for
explicit feedback, a system might use implicit feedback in order to remedy this.13

For instance, simply observing how frequently a document is read could be used
as a characteristic in analogy to the tendency of a often-read paper document.14

9See Maloneet al. (1987), pp. 391.
10See Subsection 3.2.2 for more details.
11See Breeseet al. (1998), p. 1.
12See Shardanand and Maes (1995).
13See Nichols (1997).
14See Hillet al. (1992) for the concept of ‘read wear’.
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An early collaborative filtering approach is the Information Tapestry project devel-
oped by Goldberget al. (1992). The system filters electronic mails by exploiting
other peoples’ annotations. Another well-known example of this technique is the
GroupLense project described by Resnicket al. (1994) and Konstanet al. (1997).
This system has been implemented for filtering Usenet news postings. Similar to
this is the music recommendation system Ringo by Shardanand and Maes (1995),
which is the predecessor of the commercial Firefly system.

• Economic filtering. Economic filtering approaches are based on cost-benefit assess-
ments which consider information as a commodity in economic markets.15 Based
on explicit or implicit pricing mechanisms, the decision on documents is made in
such a way that cost and value are balanced. Note that the costs of a document
need not correspond to monetary units. For instance, the decision to read or ig-
nore a newspaper article may be based solely on its length, i.e. the expense of time
required to peruse it.

While there is only very little work on economic filtering to be found in the literature as
yet, a great deal of research has been done on content-based and collaborative filtering.
The following outlines the relationship between the latter two filtering paradigms.

Depending on the application, one paradigm is likely to be more valuable than the other.
For example, if the objective is to collect information on a certain topic, content-based
filtering may be suitable. Yet, if the aim is to gather information in order to keep up to
date with a certain community, collaborative filtering is more appropriate.16 Obviously,
a collaborative filtering system is good at identifying novelty because it is guided by hu-
mans.17 However, this technique can only succeed when the users are not overloaded with
information. If this should be so, content-based filtering could assist users in managing
information overload as content-based filtering systems are designed to find relevant doc-
uments according to their similarity to documents that a user had found relevant before.
So, the core technique tends to fail if something novel is to be found. A remedy could
be to identify novelty by means of a change detection technique that would alert a user
whenever it hypothesizes that there is a change in the input document stream that would
require that the filtering system be adapted. More on this issue is found in Chapter 6. At
this point, note that both content-based and collaborative filtering “can contribute to the
other’s effectiveness, potentially allowing an integrated system to achieve both reliability
and serendipity.”18 Since humans and machines base their decisions on different features,
a hybrid approach can be a promising solution.19

Because we intend to use supervised machine learning algorithms to construct user pro-
files, we must be provided with training examples. For content-based filtering, these are
documents labeled either relevant or non-relevant by the user the filter is to be built for.
Hence, giving feedback is for a user’s own benefit. In the collaborative setting, in contrast,

15See Ferguson and Karakoulas (1996).
16See Sheth (1994), p. 14.
17See Oard (1997), p. 172.
18From Oard (1997), p. 172.
19For example, see Mock and Vemuri (1997), Delgadoet al. (1998), or Shapiraet al. (1999).
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users are asked to give feedback not for their own but for the benefit of others. Obviously,
somebody is required to ‘consume’ a document first. Fast and early readers will frequently
give feedback while receiving little or no support in return.20 In addition, providing ex-
pert rather than peer annotations for documents requires effort that has economic value.
Hence, these annotations may not be freely available. Considering that costs of com-
puting and communications resources are continously decreasing, content-based filtering
can provide a competitive source of information on which further selections can be based.
Thus, “the effectiveness and efficiency of content-based selection techniques have the po-
tential to significantly influence the price of the annotations on which social filtering is
based.”21 The bottleneck of collaborative filtering systems is to achieve a ‘critical mass’ of
participants, which is necessary to obtain reliable recommendations. In a large, publicly
accessible system, however, privacy can become a critical social issue. While protecting
users’ data in a content-based filtering system is possible especially if the filtering system
is located at the user’s site, it is much more complicated in a collaborative system since it
builds on sharing annotations among different users. Note that the “tension between the
desire for privacy and the benefit of free exchange of information may ultimately limit the
applications to which social filtering can be applied.”22

Delimitation of Thesis

Above, we have described several information filtering variants. In this dissertation, we
focus on content-based filtering of textual documents. Therefore, we always refer to the
content-based paradigm when talking about information filtering. Relevant documents
are presented to the user independent of other incoming documents, based only on their
degree of relevance. Our objective is to automatically learn user profiles by using machine
learning techniques. Mapping textual documents onto a predefined set of categories—
here accept and reject, or relevant and non-relevant, respectively—is commonly known
as text classification.23 We give a detailed introduction to the techniques involved in text
classification in Chapter 3.

2.2 General Framework

As will be discussed in Section 2.5, information filtering is strongly related to the well
established research area of information retrieval. Here, we describe a general information
filtering model derived from information retrieval as depicted in Figure 2.2.

Recall Definition 2.1.1 and assume a document spaceD and a particular user with an
information needψ from a fictitious user interest spaceN . The process of information
filtering is a mappingfψ : D 7→ {0, 1} where the values zero and one correspond to re-

20See Kilanderet al. (1997) for a discussion of this issue.
21From Oard (1997), p. 172.
22From Oard (1997), p. 171.
23See Lewis (1997), p. 75.
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Figure 2.2: A general framework for an information filtering system (following Oard (1997), p. 160).

jecting and accepting a document, respectively.24 Now, let us further analyze this process
as it is conducted by a human without the assistance of a machine. The user tries to apply
an information need to a set of documents with the objective of detecting some relevant
documents. The user interest may be multifaceted and thus be based on different aspects.
Let there bel different aspects that can be measured onl numeric scales. For instance,
there could be a set of values reflecting the similarities between a document and different
topics that a user likes or dislikes. We formalize the user’s judgement of the relationships
between the user’s interest and a document as a comparison functionκh : N×D 7→ [0, 1]l

(top of Figure 2.2). Based on the result of this comparison, the user can then decide, even
though usually subconsciously, whether to reject or accept a document. This corresponds
to a mappingτh : [0, 1]l 7→ {0, 1}. In terms of Definition 2.1.1, we see that

fψ(d) = (τh ◦ κh)(ψ, d) (2.1)

for a given information needψ ∈ N and any documentd ∈ D.

24Note that we do not consider mapping documents onto a degree of relevance which would allow ranking
of a set of documents according to their degree of relevance.
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Every approach to automate this process must have four basic components:25

• A technique for representing documents, denoted as the document representation
function ρ : D 7→ R. This function maps a natural document onto its document
representation, also known as a document surrogate, in the document representation
spaceR.

• A technique for representing the user’s information need, denoted as the profile
acquisition functionπ : N 7→ P. This function maps a user interest onto a profile
in the user interest or profile spaceP. Note that a profile may consist of several
queries, which may be represented in the same space as the documents. In this
case, we haveP = Rq, whereq is the number of distinct queries that form the
profile and correspond to topics that the user likes or dislikes.

• A technique for matching the representation of the user’s information need against
the document representations, denoted as the comparison functionκs : P × R 7→
[0, 1]l. Again, the range[0, 1]l reflects different aspects of the user interest which
are measured onl numeric scales, similar to the range of the human judgement
functionκh. For example, in the case ofq queries that form the profile, we could
havel = q similarities between a document and each of the queries.

• A technique for using the results of this comparison, denoted as the system decision
function τs : [0, 1]l 7→ {0, 1}. This function may be very similar to the human
decision functionτh. Yet, in reality, a human typically decides subconsciously, and
the system decision function is a means of formalizing this action. For instance,
if the profile consists ofl = q queries reflectingl topics which the user likes or
dislikes, this function could simply respond with one if the corresponding document
is most similar to a topic that the user likes. Otherwise, the function would respond
with zero. Note that this component could be considered as a part of the presentation
task in the information seeking process as depicted in Figure 2.1.

According to this very general model, the four system functionsρ, π, κs, andτs must be
implemented in order to build the core of an information filtering system. Recall that we
focus on content-based filtering of textual documents and thus see information filtering
as a binary text classification problem. In Chapter 3, we will introduce text classification
techniques that permit the construction of these functions.

An obvious objective for a filtering system is that the human decisionτh based on the
result of the human judgement functionκh be equivalent to the system decisionτs based
on the result of the comparison functionκs in the representation spaces:26

(τh ◦ κh)(ψ, d) = (τs ◦ κs)(π(ψ), ρ(d)) ∀ψ ∈ N ,∀d ∈ D (2.2)

We see that formulating an objective function for an information filtering system is
straightforward. However, evaluating a system’s performance with respect to this ob-
jective is not trivial. We will discuss this issue in the following section.

25See Oard (1997), p. 159.
26See Oard (1997), p. 159, for a similar formulation.
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2.3 Performance Evaluation

Having built an information filtering system, we would like to know how well it per-
forms. Evaluating a system concerns measuring the ability of the system to satisfy the
user.27 Typically, this involves the system’sefficiencyandeffectiveness. Effectiveness is
a measure of the system’s ability to accept relevant documents while at the same time
rejecting non-relevant ones. “It is assumed that the more effective the system, the more it
will satisfy the user.”28 However, only an effective system that does not put too much ef-
fort on the user can actually satisfy the user. This is where efficiency comes in. Efficiency
is a measure of the performance in relation to the resources that are consumed to produce
the filtering output. As a rule, there are computer resources such as computation time and
more notably, in the context of supervised learning, the user effort for providing labeled
training data. Because of continually increasing computing capabilities, we ignore effi-
ciency issues related to computer resources for now. Yet, the effort that is demanded of
the user will be a key issue in the chapters that follow because the goal of this dissertation
is to provide techniques for learning an information filtering system and for maintaining
classification effectiveness in a long-term application, while minimizing the required user
effort. At this point, however, we focus on the system’s effectiveness only.

How do we measure effectiveness? Recall that we view information filtering as a binary
text classification problem. The classification decision is whether or not a document is
relevant for a certain user. In the previous section, we saw that building a filtering system
corresponds to constructing the functionsρ, π, κs, andτs so as to imitate a specific human
judgement,κh, as depicted in Figure 2.2, together with the subsequent decisionτh. This
objective is based on the assumption that a document can unambiguously be considered
relevant or non-relevant according to a certain information need. In reality this assump-
tion does not always hold, because ‘relevance’ is a subjective notion: the judgements of
different users about the relevance of particular documents may differ significantly.29 And
even the judgements of the same user given at different times may differ. Hence, assess-
ing the effectiveness of an information filtering system is not as straightforward as many
standard classification tasks in which each object to be classified has exactly one class
label which is to be returned by a classifier. In filtering, the assignment of a class label
depends on human judgement, so that effectiveness measures of a filtering system are not
as objective as in standard classification tasks. Despite this fact, we will use standard
measures from machine learning and information retrieval to evaluate the effectiveness
of information filtering systems as described below. Nevertheless, note that the problem
of contradictory human judgements can be expressed in a probabilistic framework by re-
ferring to the posterior probabilities of classes given a document rather than to the plain
classification decision.30

Recall again that the classification decision in information filtering is whether or not a
document is relevant for a particular user. This is a hard classification decision obtained

27See van Rijsbergen (1979), p. 145.
28From van Rijsbergen (1979), p. 145.
29See van Rijsbergen (1979), p. 146.
30See Subsection 3.3.4 (pp. 75 ff.) for a brief introduction of this probabilistic notation.
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Relevant? User saysyes. User saysno.

System saysyes. a b

System saysno. c d

Table 2.1: Contingency table forn = a+ b+ c+ d relevance judgements.

by applying some decision functionτs to the classification scores representing the rele-
vance judgements for a particular document. For the purpose of evaluation, assume that a
set ofn documents has been classified by an information filtering system as eitherreject
or acceptand the true class labels are provided by the user. The relationship between the
classification decisions and the true class labels can be summarized in a contingency table
as shown in Table 2.1. For example, entrya is the number of documents that the informa-
tion filter accepts for presentation to the user and that are, in fact, relevant. Note that the
values given by the contingency table may vary depending on the decision functionτs. It
is often possible to provide a parameterized decision function, such as a threshold func-
tion, which depends on some free parameter of the system. Consequently, we can obtain
an operating characteristic curve for an effectiveness measure as a function of this pa-
rameter instead of just a single effectiveness score. For the following definition of the
common effectiveness measures, we assume that the decision function and the resulting
contingency table are fixed.

Common performance measures in machine learning areaccuracyanderror rate, orerror
for short. While the error estimates the probability of misclassification, accuracy esti-
mates the probability that a document is classified correctly, independent of the class
label assigned. Note that the sum of error and accuracy is always one. In terms of the
contingency table, they are defined for a non-zero total number of documents as31

error =
b+ c

n
(2.3)

accuracy =
a+ d

n
= 1− error (2.4)

In many information filtering tasks, the non-relevant documents by far outnumber the rel-
evant documents. Thus, the trivial approach of rejecting all documents usually yields
high classification accuracy, but does not reflect the user’s need. Moreover, the at-
tempt to select relevant documents often degrades accuracy when compared to the trivial
approach. Hence, building a filtering system with the objective of maximizing classifica-
tion accuracy may not yield the desired effectiveness.

To account for this problem, an alternative to traditional accuracy and error rate is to use a
more evolved approach that assigns different rewards or penalties for each pair of system
response and user judgement as depicted in the contingency table. This leads to the family
of utility measures defined as32

utility = aua + bub + cuc + dud (2.5)
31For example, see Yang (1999).
32Utility measures are used in the TREC filtering track, e.g. see Lewis (1997).
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Choosing appropriate values foru· allows weighting of any of the four combinations of
human judgement and system decision. Note that withua = ud = 1 andub = uc = 0,
maximizing utility is equivalent to maximizing classification accuracy.

The problem of the skewed relevance distribution among the documents is also very com-
mon to information retrieval. This field has produced measures such asrecall, precision,
andfallout, which are insensitive to the total number of documents and can thus abstract
from the relevance distribution and better reflect effectiveness. Put in words,recall is an
estimate of the probability that the filter lets through relevant documents to the user. Like-
wise, precisionis an estimate of the probability that a document being presented to the
user is indeed relevant, whereasfallout is an estimate of the probability that a document,
in spite of being non-relevant, is presented to the user. In terms of the contingency table,
these measures are defined for non-zero denominators as33

recall =
a

a+ c
(2.6)

precision =
a

a+ b
(2.7)

fallout =
b

b+ d
(2.8)

Given the parameter calledgenerality, g = a+c
n

, which is a measure of the density of
relevant documents in the set of all documents, we can observe the following functional
relationship:34

precision =
g · recall

g · recall + (1− g) · fallout
(2.9)

Therefore, we shall not consider fallout any further but continue to look at the relationship
between recall and precision.

As shown in Figure 2.3, recall and precision co-vary in a loosely specified way.35 Obvi-
ously, accepting most documents yields a high recall at low precision, whereas rejecting
most documents typically yields low recall at high precision. Choices in between these
extremes require some trade-off between recall and precision. In fact, either one of these
measures may be misleading when examined in isolation. In information retrieval, it is
assumed that “precision and recall are sufficient for the measurement of effectiveness.”36

So, recall and precision should be used in combination to ensure a non-trivial evaluation
of a system’s effectiveness.37

The dissatisfaction with having a pair of numbers required to measure effectiveness in
information retrieval led to the proposal of composite measures. One common measure
that is frequently used in cross-system comparisons is the recall-precisionbreak-even
point.38 The idea is to tune the parameters of the system in such a way that the recall of

33For example, see Lewis (1995) or Yang (1999).
34See van Rijsbergen (1979), p. 149. Note that, in statistical terms, generality is equivalent to the prior

probability of relevant documents.
35See van Rijsbergen (1979), p. 154.
36From van Rijsbergen (1979), p. 145.
37See Lewis (1991).
38See Lewis (1992a).
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Figure 2.3: Recall and precision operating characteristic curves as interpolated functions of a filtering system’s free parameter. Here,
this parameter is the valueθ, at which classification scores assigned to new documents by a particular classifier are thresholded in
order to obtain hard classification decisions. Generally, high recall can be obtained at the expense of low precision, and vice versa.

the system is the same as its precision; see Figure 2.3. And, the objective when building a
filtering system is to maximize this value. A problem with this approach is that recall and
precision cannot always be made equal. Therefore, recall and precision values often have
to be interpolated, which can yield a break-even point that actually cannot be achieved by
the system. Furthermore, Schapireet al. (1998) state that the break-even point is “neither
a desirable nor an informative target from a user’s perspective.”

Van Rijsbergen introduced a family of measures which are parameterized by a valueβ ∈
[0,∞) which reflects the relative importance a user assigns to recall and precision:39

Fβ =
(β2 + 1) · recall · precision
β2 · precision+ recall

(2.10)

Note that, forβ = 0, the resulting measureF0 is the same as precision, whereas the
measure corresponds to recall withβ → ∞. For instance, a common choice isβ = 1,
which gives the same weight to both recall and precision, yielding

F1 =
2 · recall · precision
precision+ recall

(2.11)

All the effectiveness measures described above require that we have knowledge about the
true class labels, i.e. the user’s judgements, of all the documents involved in the eval-
uation. For this reason, the available set of labeled documents is commonly split into
independent training and test sets for an experimental evaluation. Doing this allows us
to estimate the expected effectiveness of the filtering system. It is assumed that a system

39See van Rijsbergen (1979), pp. 168–176.
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which performs well under a large number of experimental conditions is likely to per-
form well in an operational situation where we do not know whether or not a document is
relevant for a particular user.40

Nevertheless, we know that the document stream is likely to change in a long-term appli-
cation and we cannot guarantee that a filtering system will maintain its effectiveness as
time progresses. This issue calls foradaptiveinformation filtering systems.41 We there-
fore decide to monitor the performance of the system while it is in operation. To do so, we
need to constantly evaluate some of the effectiveness measures suggested, which requires
the true class labels for at least some of the classified documents. Even if it is possible to
obtain feedback for documents that are presented to the user, the objective of information
filtering, namely to reduce information overload, generally rules out getting feedback for
documents that the system has rejected. This is a serious problem that has to be tackled in
the context of quality control for information filtering. We will have more to say on this
issue in Chapter 6.

2.4 Background and State of the Art

We briefly outline the research history of information filtering and review some well-
known content-based filtering projects. See Oard (1997) for a more detailed overview
on the research history and a discussion of content-based and social filtering projects.
Furthermore, Oard and Kim (2000) maintain an excellent web page on information filter-
ing resources.

The concept of information filtering first appeared in the original work of Luhn (1958a).
At that time it was calledselective dissemination of information (SDI). In Luhn’s concept
of a “Business Intelligence System”, library workers would create profiles for individual
users. Lists of new documents for each user would then be produced, using these profiles
with an exact-match text selection system. Requests for specific documents would be
recorded and used to automatically update the corresponding user’s profile. With increas-
ing interest in SDI, a special interest group on this subject (SIG-SDI) was created at the
American Society for Information Science in the late 1960’s.

The need for information filtering and condensation was further discussed by Ackoff
(1967). He noted that the two most essential functions of information systems are filtra-
tion and condensation in order to prevent information overload. In his ACM President’s
Letter, Denning (1982) coined the terminformation filtering. His objective was that not
only the generation of information, but also the reception of information be discussed.
Denning described the need to filter electronic mail in order to separate messages of vary-
ing importance.

Since the late 1980’s, several papers on information filtering applications with varying
information sources such as electronic mail, newswire articles and Usenet news have ap-
peared in the literature. For example, Maloneet al. (1987) worked on the Information

40See van Rijsbergen (1979), p. 147.
41See Hull (1998), pp. 50–51, for a discussion of this issue.
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Lens project employing rule-based user profiles to filter email messages that match key-
words in mail fields and identified the three filtering paradigms described above, namely
content-based, collaborative, and economic filtering. Allen (1990) concluded that the
user’s reading history can be used to suggest possible future selections and to further use
these selections to retrieve additional relevant articles. Foltz (1990) investigated the use of
latent semantic indexing in information filtering. And Foltz and Dumais (1992) analyzed
different information filtering methods for personalized information delivery.

The Infoscope project developed by Stevens (1992) investigated the use of agents to main-
tain models of user interest for sorting Usenet messages. The system consists of rule-
based agents which observe usage patterns and make suggestions to the user. The agents
monitor the contents of those messages which are deemed interesting or uninteresting,
make statistical correlations, and suggest changes to the user.

Sheth (1994) proposed the personalized information filtering system News Tailor (Newt)
for Usenet newsgroups. The system uses genetic algorithms to control a population of
user profiles which represent a user’s interest in different topics. The profiles are evaluated
on the basis of relevance feedback provided by the users.

Yan and Garcia-Molina (1995) developed the Stanford Information Filtering Tool (SIFT),
which provides a service for content-based filtering of Usenet news articles. Users can
subscribe to this service by submitting profiles in terms of keywords that describe their
interests. They then passively receive new, filtered information geared to their profiles.
SIFT offers a further option: updating of user profiles by giving relevance feedback to
interesting articles.

Lang (1995) implemented the NewsWeeder system for filtering Usenet news articles. The
systems lets users rate their interest levels for each article being read. It then uses text
classification algorithms to automatically learn user profiles based on these ratings.

Lieberman (1995) developed Letizia, which acts as an advance scout for Web browsing by
watching a user browsing the Web and trying to learn which topics the user is interested
in. While the user is reading a Web page, Letizia searches adjacent pages and attempts to
anticipate pages the user might be interested in. The agent automates a browsing strategy
consisting of a breadth-first search augmented by heuristics inferring user interest from
browsing behavior.

Armstronget al.(1995) implemented a system called WebWatcher, which assists users in
locating information on the Word Wide Web by taking keywords from the users, suggest-
ing hyperlinks, and receiving evaluation. The idea is to automatically customize the sys-
tem to individual users by taking each user interaction as a training example. WebWatcher
thus learns by observing the links a user follows on the Web and suggests interesting hy-
perlinks whenever it is confident enough of its success. Personal WebWatcher, described
by Mladenìc (1996), avoids involving the user in its learning process. It does not request
any keywords or user opinions about web pages. The idea proposed for WebWatcher is
further automated.

Moukas (1996) proposed the information discovery and filtering system Amalthaea. It is
a co-evolution model of information filtering agents that adapt to different user interests
and of information agents that monitor and adapt to various online information sources.
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Pazzani and Billsus (1997) developed Syskill & Webert, a software agent that learns to
rate pages on the Web, deciding which pages might interest a user. The user rates explored
pages on a three-point scale, and Syskill & Webert learns a user profile by analyzing the
information on each page.

Mostafaet al.(1997) developed a system based on smart information filtering technology
for electronic resources (SIFTER). This system focuses on efficiently handling uncertain-
ties associated with changing interests of the user and the dynamic document stream. The
system automatically learns to filter documents according to a specific user interest with
only limited user intervention in the form of optional relevance feedback for documents.

Balabanovìc (1997) introduced the adaptive web page recommendation service Fab. This
multiagent system tries to take advantage of both content-based and collaborative filter-
ing. Collaborative properties are achieved through interactions between content-based
filtering agents. A list of top-ranked recommendations for web pages is presented to users
according to their profile upon request. Any feedback provided by the users is then used
to refine the corresponding profiles.

Mock and Vemuri (1997) designed the intelligent news filtering organizational system
(INFOS) to reduce the user’s search burden while browsing a large number of messages
by automatically classifying data as relevant or non-relevant based upon user interests.
The system is founded on a hybrid technique that learns on the basis of both features
taken from input articles and collaborative features derived from other users.

Billsus and Pazzani (1999) developed the personal news agent News Dude, which is
designed to become part of a system that uses synthesized speech to read news stories
to a user who does not have access to a computer. The system can adapt to the user’s
preferences and interests based on voice feedback. Long-term and short-term interests of
users are modeled by two different approaches. Also, the system gives explanations why
it has presented certain news stories. Users can also review these explanations in order to
tailor the system to their needs.

2.5 Comparison of Related Tasks

Marchionini describesinformation seekingas a general process “in which humans pur-
posefully engage in order to change their state of knowledge.”42 As such, it is used as an
overarching term to describe “any processes by which users seek to obtain information
from automated information systems.”43 Following Oard (1997), we compare informa-
tion filtering to other common information seeking processes for which the decomposi-
tion into an information collection, detection, and presentation component as depicted in
Figure 2.1 (p. 6) is also appropriate. These processes are summarized in Table 2.2.

The two prime distinguishing characteristics we consider are the users’ information needs
and the nature of the documents, or their sources. One key feature of both information
need and information sources is whether or not they tend to remain unchanged over a

42From Marchionini (1997), p. 5.
43From Oard (1997), p. 141.
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Process Information Need Information Sources

Information Filtering stable & specific dynamic & unstructured

Alerting stable & specific dynamic & structured

Data Mining stable & specific stable

Information Retrieval dynamic & specific stable & unstructured

Database Access dynamic & specific stable & structured

Exploration broad varied

Table 2.2: Examples of information seeking processes as taken from Oard (1997), p. 145.

longer period of time, i.e. whether they are stable or dynamic. Another central feature
pertaining to the information sources is the way the data is formatted: Whether data is
available in a structured or unstructured form has a great impact on the techniques that can
be used for seeking relevant information. Whether the user is actually seeking information
to satisfy a specific need or is just looking around with no concrete goal is another issue
vital to information need.

Closely related to information filtering is the established research area ofinformation
retrieval. “Information retrieval is concerned with the processes involved in the repre-
sentation, storage, searching, finding, and presentation of information which is relevant
to a requirement for information desired by a human user.”44 At the abstract level of
information seeking, both information retrieval and information filtering are concerned
with selecting relevant information from a large source of documents with respect to a
particular user interest. In fact, when considering information retrieval as a very general
information selection technique, information filtering can be viewed as a special case in
which the information space is very dynamic. Belkin and Croft (1992) provide a useful
description of the difference between information filtering and information retrieval. In
information retrieval, the collection of documents is assumed to be relatively static, while
the user submits queries that often change, i.e. are dynamic. In contrast, in information fil-
tering, the ‘query’ is relatively stable, while the collection of documents is assumed to be
an incoming stream of documents and, hence, to be dynamic. Consequently, information
filtering is concerned more with thedistribution of documents to groups or individuals,
while information retrieval is concerned rather with thecollection and organizationof
documents. Thus, information filtering and information retrieval can be considered to
be “two sides of the same coin. They work together to help people get the information
needed to perform their tasks.”45 Figure 2.4 illustrates this relationship.

The process ofalerting is also very similar to information filtering. Here, the information
need is assumed to be relatively stable with respect to the rate at which the information
changes. The difference is that, in an information filtering process, the documents change
rather than the information itself, e.g. in the form of structured attribute-value pairs. Thus,
alerting can be considered as the database analogue of information filtering. A typical
example is a system that monitors a complex machine and gives an alarm whenever a

44From Ingwersen (2000), also see Ingwersen (1992), p. 49.
45See Belkin and Croft (1992), p. 32.
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Figure 2.4: The relationship between information filtering and information retrieval based on the change rate of a user’s information
need and the collection of documents (following Oard (1997), p. 143).

certain parameter exceeds pre-specified limits. For instance, this idea can be applied in
an information filtering system to inform a user whenever an email from a specific user
arrives. We will use similar techniques for detecting whether there is a change in the
document stream which the user should know about. This is an issue of quality control in
information retrieval and will be discussed in Chapter 6.

Data miningis another research area that is closely related to information filtering. Data
mining, or more generallyknowledge discovery in databases, is “the nontrivial process
of identifying valid, novel, potentially useful, and ultimately understandable patterns in
data.”46 Classical data mining tasks are classification, regression, clustering, segmenta-
tion, concept description, data description and summarization, deviation detection, and
dependency analysis. We view information filtering as a text classification problem. And
with text classification being a special kind of classification problem, namely one where
the data is text, information filtering can also be considered as a data mining task in a very
general sense. And, in fact, information filtering and data mining share many common
techniques from feature selection to learning algorithms for classification. Note, how-
ever, that data mining traditionally considers structured data residing in relatively stable
databases. In contrast, information filtering involves the classification of multi-media and,
hence, only partially structured or even unstructured data. For text domains, this fact can
be emphasized by using the termtext mining.

Retrieving information from a database is another well-known information seeking pro-
cess. Information filtering and information retrieval select documents which contain infor-
mation that is potentially relevant for a user. Thedatabase accessprocess, however,
actually responds with information. Another difference is that database access involves
querying from structured and rather stable data tables. For instance, querying an online
library catalog database to find the author of a particular book is a database access pro-
cess. Yet, occasionally using the same database “to discover whether any new books on a
certain topic have been added to the collection by searching for keywords in the title field
would be an information filtering process.”47 Applying database systems in this sense can
support information filtering.

46From Fayyad, Piatetsky-Shapiro and Smyth (1996), p. 6.
47From Oard (1997), p. 145.
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Finally, exploration is a less well-structured process and rather loosely defined term.
According to Oard (1997), users may choose to explore either static or dynamic informa-
tion sources. Hence, exploration has similarities to both information filtering and infor-
mation retrieval. “‘Surfing the World Wide Web’ is an example of exploring relatively
static information, while reading an online newspaper would be an example of exploring
relatively dynamic information.”48 Oard mentions as a main distinguishing feature that
the users’ interests in exploration are assumed to be broader than for information filtering
or retrieval processes. However, a precise definition of ‘broader’ is often just a matter of
judgement and is, hence, difficult to give.

2.6 Summary

The objective of information filtering is to reduce the user’s information load with respect
to their areas of interest. Hence, an information filtering system should automatically
screen out documents which are not relevant to a user’s interest, thereby presenting only
relevant documents to the user. In this dissertation, we focus on content-based filtering
of textual documents. This turns out to be a binary text classification problem where the
classification decision is whether or not a document is relevant for a particular user. We
will cover techniques for text classification in the following chapter.

48From Oard (1997), p. 146.



Chapter 3

Text Classification

This chapter gives an introduction to text classification. We define the task of text clas-
sification and show its relationship to the task of information filtering. Our goal is to use
machine learning techniques for automatic text classification. In this context, we identify
two basic subtasks which we examine closely: representing textual documents in a way
that is appropriate as input for machine learning algorithms and the application of these
learning algorithms proper.

3.1 Definition and Terminology

The task oftext classificationis to classify documents into a fixed number of two or more
predefined classes.1 A class is considered a semantic category that groups documents that
have certain properties in common. Generally, a document can be in multiple, exactly one,
or no classes. Yet, with the task of information filtering in mind, i.e. the classification of
documents as either relevant or non-relevant, we assume that each document is assigned
to exactly oneclass. More precisely, we pose the text classification problem as follows.

Definition 3.1.1 (Text Classification)
Assume a space of textual documents D and a fixed set of k classes C = {c1, . . . , ck},
which implies a disjoint, exhaustive partition of D. Text classification is a mapping,
h : D 7→ C, from the document space onto the set of classes.

With the enormous growth of online information available through sources such as the
World Wide Web, the problem of automatically classifying text documents into prede-
fined classes is of eminent importance in many information organization and management
tasks, and information filtering is one of these tasks. Our goal is to use machine learning
techniques to automate the process of text classification. Typically, these techniques learn

1This task is also referred to astext categorization. Please note that ‘classification’ is an ambiguous
term in machine learning, applied statistics, information retrieval, and other fields and commonly refers to
processes that group entities. See Lewis (1992b) for a discussion about different text classification tasks. In
this work, we consider text classification and text categorization to be synonymous.

23
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classifiers that can predict the class labels of new, previously unseen documents, if given
a set of training examples for which the class labels are known. This problem is known
as supervised learning. Formally, we define the learning task in text domains, which we
refer to astext learning, as follows.2

Definition 3.1.2 (Text Learning Task)
Assume a set of n labeled training documents D? = {d1, . . . , dn} ⊂ D and a fixed set of
k classes C = {c1, . . . , ck} as above. Let T : D 7→ C be the target function that assigns
each training document d ∈ D? its true class label T (d). The objective of the text learning
task is to induce a classifier, the hypothesis h : D 7→ C, from D?, which approximates the
target function T well with respect to a given effectiveness measure.

According to theinductive learning hypothesis, any classifier “found to approximate the
target function well over a sufficiently large set of training examples will also approximate
the target function well over other unobserved examples.”3 In other words, the classifier
can be used to predict the class labels of new, previously unseen examples, i.e. documents
in the context of text classification.

In this setting, the problem of automatically classifying documents falls into two phases.
First, we apply supervised learning algorithms to construct a classifier in thelearning
or adaptation phaseas posed in Definition 3.1.2. The classifier constructed can either
represent each class simultaneously or, in particular if we are dealing with more than two
classes, treat each class as a separate binary classification problem, where each binary
problem answers the question of whether or not a document should be assigned to the
corresponding class. Finally, we can use this classifier to predict the class label of new
documents in theclassification phase. In the following, we focus mainly on the learning
phase and only note that the subsequent classification of new documents is straightforward
with the techniques involved in the learning phase.

The learning phase is further divided into two subtasks as follows. Because plain textual
documents are generally not suitable as input for machine learning algorithms, we, first,
need some way of preprocessing that transforms text into a format appropriate as input
for machine learning algorithms. We will look at techniques for representing textual
documents in Section 3.2. Second, provided with a suitable representation for documents,
in Section 3.3 we turn to learning algorithms that are particularly well suited for text
domains. We will refer to these astext learning algorithms, or text learnersin short.

Recall Definition 2.1.1 (p. 5) for information filtering. For the two-class problem (k = 2),
with c1 ≡ non andc2 ≡ rel corresponding to rejecting non-relevant and accepting rel-
evant documents, respectively, we observe thath = fψ with respect to a particular user
interestψ. That is, information filtering is an instantiation of text classification with two
classes. Furthermore, in Section 2.2 (pp. 10 ff.), we presented a general framework for
information filtering from an applicational point of view, where the core of a filtering
system essentially consists of a document representation functionρ, a profile acquisition
functionπ, a comparison functionκs for matching a profile against document representa-

2For example, see Joachims (1997a).
3From Mitchell (1997), p. 23.
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tions, and a decision functionτs for mapping classification scores onto hard decisions.

In the light of machine learning, we actually try to construct these four functions during
the learning phase. In the classification phase, however, these functions are applied to
new, unseen documents. In particular, representing text corresponds to finding a suitable
functionρ, and learning a classifier subsumes functionsπ, κs, andτs.

3.2 Text Representation

The aim of the text representation task is to transform a textual document into a for-
mat that is suitable as input for machine learning algorithms.4 We use thevector space
model5 to represent documents because it is widely recognized as an effective represen-
tation for documents in the information retrieval community.6 Also, it can be tailored
to mimic other well-known indexing models such as binary or probabilistic indexing as
we will see in Subsection 3.2.4. In the vector space model, each document is identified
by a feature vector in a space in which each dimension corresponds to a distinct index
term. Note, therefore, that we will use the termsfeatureandindex terminterchangeably.
Generally, the set of index terms can be provided either manually by a human indexer
or automatically by a program based on a specific document collection. In this disser-
tation, we consider only automatic indexing, and, typically, the document collection on
which this indexing is based is the set of training examples that will serve as input for
the learning algorithms. A given document vector has, in each component, a numerical
value to indicate its importance. This value is commonly determined as a function of how
often the corresponding term appears in the particular document and how often it appears
in total in the document collection. By varying this function, we can produce different
term ‘weightings’ which can then be interpreted as different indexing models. The re-
sulting representation of text is equivalent to the attribute-value representation, which is
commonly used in machine learning.7

Definition 3.2.1 (Vector Space Model)
Let d ∈ D be a textual document. The representation of d is the document vector d =
ρ(d) = (w1, . . . , wm)T ∈ R = IRm

+ , where each dimension corresponds to a distinct term
in the document collection and wi denotes the weight of the i-th term. The set of these m
index terms, V = {t1, . . . , tm}, is referred to as the vocabulary.

The vector space representation abstracts from the sequence in which index terms appear
in a document. Note, however, that we have not yet defined what is to be considered as
index terms.This issue will be treated in Subsection 3.2.2. Only note at this point that
plain words are frequently used as index terms. Figure 3.1 shows the steps involved in
transforming the training documents and a new document into feature vectors when plain

4See Lewis (1992b) for a thorough survey about research on text representation.
5See Salton, Wong and Yang (1975).
6See Yan and Garcia-Molina (1994).
7See Joachims (1997a).
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Figure 3.1: The steps that are involved in transforming textual training documents into feature vectors (top). During this step, the
set of index terms, which is also referred to as thevocabulary, is constructed. Only index terms occurring in the vocabulary are used
when transforming a new document into a feature vector (bottom).

words independent of the order of their appearance are used as index terms. For training
documents, these steps are as follows.

1. Text normalization.

2. Term extraction.

3. Dimensionality reduction.

4. Vector generation.

The text normalizationstep transforms any type of document into a sequence of word
tokens, from which a sequence of possible index terms is created for each document
during theterm extractionstep. How the output of the term extraction step is used depends
on whether or not new documents or training documents are processed. Note that, in the
latter case, we still need to construct the vocabulary. Consequently, all distinct index
terms of the training documents are merged to generate a set of candidate index terms
which may potentially be used as vocabulary. This is sometimes referred to asterm or
feature generation. Since the resulting set of index terms tends to be very large, we aim at
reducing the size of the vocabulary in thedimensionality reductionstep. The index terms
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in the reduced vocabulary finally correspond to the vocabulary as given in Definition 3.2.1.
In case the vocabulary is already established, i.e. when new documents are processed, the
term extraction step is assumed to output only index terms which exist in the vocabulary.
Finally, thevector generationstep evaluates weights for all index terms of any given
document. These four preprocessing steps are discussed in more detail in the following
subsections.

3.2.1 Text Normalization

In general, input to a filtering system and, thus, to the text learning algorithm and the
resulting classifier can be regarded as a file representing text. The objective of thetext
normalizationstep is to convert the input files into a sequence of linguistic items, which
are referred to as wordtokens. In the subsequent term extraction step, these tokens will
be used to generate meaningful features, the so-called index terms. There are two steps in
the text normalization process.

First, textual components from different file formats have to be recognized. The definition
of the file format must be known in order to extract the textual components. For instance,
files may be electronic mails, USENET newsgroup articles, TEX, postscript, or HTML
documents. When processing electronic mails, for example, usually the subject field and
the text body are extracted and, for HTML documents, all tags are removed from the
input. On the basis of the text components extracted, the text is parsed into a sequence
of tokens which are strings of characters delimited by whitespace.8 For this dissertation,
we assume that we are provided with suitable parsers that can transform a given file into
a sequence of tokens.

Second, the resulting sequence of tokens can further be normalized depending on the
application.9 As a rule, all letters are converted to lower-case to avoid capitalization con-
straints and punctuation marks at the end of tokens are removed. In addition, tokens
that contain any non-alphanumeric characters may be deleted. Even tokens containing
numeric characters are often omitted. Alternatively, all digits could be mapped onto a
predetermined digit, for instance onto ‘1’. Following another approach to text normal-
ization, named entities such as people, locations, organizations, and product names could
be identified and marked as individual tokens. For instance, the text fragment “At160”
could be identified as a certain type of car. In this case, the digits contained would not
be normalized or removed as described above. Note that such a normalization step would
generally require domain- and application-specific knowledge and will therefore not be
considered any further in this dissertation.

3.2.2 Term Extraction

Assume a sequence of normalized tokens for a document is provided by the text normal-
ization step. The task of theterm extractionstep is to produce a sequence of index terms

8Whitespace characters are, for instance, space, tab, and newline.
9For example, see Fox (1992), pp. 103–104.
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based on these tokens. The way this sequence of index terms is used depends on whether
or not we are processing training documents and still need to construct the vocabulary.

If, on the one hand, the vocabulary has already been created, any index terms extracted
which are not in the vocabulary are omitted during term extraction and, for each document
dj under consideration, the term frequency vectordtf = (tfd(t1), . . . , tfd(tm))T is created,
wheretfd(t) denotes the number of times termt ∈ V appears in documentd. Given these
vectors, we might apply some technique for the purpose of dimensionality reduction and
can then proceed with the vector generation step.

On the other hand, i.e. when the vocabulary has not yet been established, the outputs
of the term extraction step for all training documents are merged to generate a set of
distinct index termŝV = {t̂1, . . . , t̂m̂}, which may potentially constitute the vocabulary
V. Depending on the term definition and on the size and domain of the collection of
training documents, it is quite common that the numberm̂ of these preliminary index
terms is on an order of103 to 106 after term generation. Since the application of machine
learning algorithms is often impractical when the number of features is very large, we aim
at reducing the final vocabulary size in the subsequentdimensionality reductionstep.

According to Definition 3.2.1, the dimensions of the vector space correspond to distinct
index terms in the document collection under consideration. But exactly what do we
consider to be anindex term? A fundamental challenge in natural language processing
and understanding is that information or meaning conveyed by language always depends
on context. Words per se, for example, may already have different meanings. Moreover,
language cannot always be taken literally. One and the same phrase may have different
meanings depending on the context in which it is used. These examples show that trying
to represent natural language documents by means of a set of index terms is a challenging
task. Different linguistic approaches to this try to capture, or ignore, to a certain extent
meaning with respect to context. We divide these approaches into five levels:10

1. Graphemic level:analysis on a sub-word level, commonly concerning letters.

2. Lexical level:analysis concerning individual words.

3. Syntactic level:analysis concerning the structure of sentences.

4. Semantic level:analysis related to the meaning of words and phrases.

5. Pragmatic level: analysis related to meaning regarding language-dependent and
language-independent, e.g. application-specific, context.

Note that the first two levels operate solely on plain statistical facts about text, i.e. basi-
cally on frequencies of letter combinations or words, which we refer to as term frequen-
cies. Text representations based on these term frequencies cannot completely capture the

10This division is certainly not complete. For instance, a morphological level for an analysis concerning
the structure of words or a phrasal level for an analysis of groups of words on a sub-sentence level could be
considered. Furthermore, there may be interchanges between different levels. For example, ambiguities at
one level might be resolved with approaches from a higher level.
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meaning of documents. In fact, there is only a weak relationship between term occur-
rences and document content, the term frequencies of a document are assumed to merely
hint at its content.11 In contrast, higher levels of text analysis try to capture more se-
mantic content by exploiting an increasing amount of contextual information such as the
structure of sentences, paragraphs, or documents. In general, natural language process-
ing techniques can provide a much richer representation through a syntactic and semantic
analysis of documents.

Intuitively, it seems reasonable to assume that more complex text representations as ob-
tained from higher levels of text analysis would lead to more effective text classifiers.12

With an infinite amount of text revealing information about the index terms to be ex-
tracted, this may actually be true. In real-world problems, however, the number of docu-
ments available for text analysis is limited. Moreover, as more complex term definitions
lead to more complex text representations, the dimensionality of the feature space in-
creases correspondingly. And, with a limited number of training documents, inducing an
accurate classifier is much harder. The problem of having too many features relative to
the number of training data is usually referred to as the‘curse of dimensionality’.13 Re-
search in information retrieval shows that “[...] all reasonable text representations have
been found to result in very similar effectiveness on the retrieval task.”14 Lewis refers to
this as theEqual Effectiveness Paradox.

Nevertheless, this finding builds on results that are mainly achieved with documents in
English. For other languages, deeper linguistic analysis may be more beneficial. In
German, for instance, there are many compound words, such as ‘Textklassifikationsver-
fahren’, which can cause an enormous increase in the number of features. Hence, tech-
niques that recognize these compounds and split them into smaller parts could remedy this
problem.15 We conclude that the benefit we may get from linguistic analysis is strongly
domain- and language-dependent.

From the above discussion we see that choosing a suitable level of text analysis on which
to base the term definition is always a trade-off between semantic expressivity and rep-
resentational complexity. This choice will have a wide impact on a learning algorithm’s
ability to generalize, as we will further discuss in Section 3.3. Simple term definitions
are dominant in information retrieval.16 Typically, these involve text analysis approaches
from the first two levels, and, at times, some syntactical information may also be incor-
porated. In the following, we describe three widely used term definitions which basically
just exploit plain statistical facts about text.17 The first approach depends onletter n-
gramsand, thus, corresponds to text analysis at the graphemic level. The remaining two
approaches, namely singlewords and wordphrases, are best described as lexical text
analysis. Note, though, that the latter may also use some syntactic information.

11See Blair (1992), p. 203.
12For example, see Blair (1992), p. 203.
13See Subsection 3.2.3 for more details.
14See Lewis (1992b), pp. 6–7.
15See Neumann and Schmeier (1999), for example.
16For example, see Aptéet al. (1994), p. 236.
17In Subsection 3.2.3, we will consider some reparameterization techniques for dimensionality reduction

which actually try to capture semantic information within document collections.
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• Letter n-grams.Overlapping, contiguousn letter subsequences of words are known
as n-grams, wheren is a positive integer.18 Note that sometimes the term ‘n-gram’
is used to refer to sequences of words of lengthn.19 Below, we will refer to these
multi-word terms as phrases. In n-gram analysis, trigrams or quadgrams, i.e.n = 3
or n = 4, are commonly used, but other values are also possible. For instance, the
word ‘token’ consists of the trigrams ‘tok’, ‘oke’, and ‘ken’. Note that it is also
possible to include a space to the left and the right of a word when generating n-
grams. In the case of the word ‘token’, we would additionally obtain the trigrams
‘tto’ and ‘ent’. Taking into account only the26 letters of the English alphabet,
there are263 = 17576 distinct trigrams and264 = 456976 quadgrams. “The larger
n, the more accurately the distances between n-gram vectors correspond with the
semantical distances of the original documents.”20 However, higher values ofn
lead to a huge number of possible terms, whereas n-grams withn < 3 do not
provide sufficient word-syntactical information.21 The advantage of n-grams is that
the set of possible terms is fixed and known in advance. Furthermore, n-grams are
language-independent and are quite robust to both morphological variations and
spelling variations and mistakes. N-grams are easy to calculate, but the resulting
representation is difficult to analyze by humans.

• Words. Information retrieval research shows that single words work well as fea-
tures.22 Thus, a very common approach is to use each token, i.e. generally each
word, as it is. Since the vector space model does not consider the sequence in
which words appear in a document, we actually treat a document as a “bag of
words”.23 Therefore, the vector space representation based on words as features
is also referred to as thebag-of-wordsmodel. Obviously, this term definition is
language-independent and computationally very efficient. However, a disadvantage
is that each inflection of a word is a possible feature and the number of possible fea-
tures can thus be unnecessarily large. Moreover, morphological variants of a word
are not recognized as being similar. A remedy is to reduce each word to itsword
stemin order to conflate morphological variants. However, note that this makes
term extraction language-dependent and less efficient. We will discuss stemming
as a means to reduce the dimensionality of the feature space in the next subsection.

• Phrases.Combinations of tokens are referred to as phrases. Using phrases is jus-
tified by the observation that, especially in English, many expressions are in fact
multi-word terms such as ‘data mining’ or ‘information filtering’. Typically, only
domain-specific phrases are considered, because, otherwise, the number of pos-
sible terms would increase drastically. Multi-word terms could be identified as
frequently co-occurring sequences of words,24 or they could be detected through

18See de Heer (1982), or Cavnar and Trenkle (1994).
19See F̈urnkranz (1998).
20See Tauritzet al. (2000).
21See Teufel and Schmidt (1988).
22See Salton and Buckley (1988), p. 515. Also see Dumaiset al. (1998) for text classification.
23See Lewis and Ringuette (1994), p. 82.
24See Fagan (1987), pp. 36–73, or Cohen and Singer (1996).
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the application of natural language processing, which is then also referred to as
syntactic phrase indexing.25 Another approach to phrase identification is to man-
ually provide a set of phrases for a particular domain.26 Obviously, using phrases
tends to be domain-dependent. Results with using phrases as index terms are differ-
ing: some researchers report an improvement in classification accuracy when using
phrases,27 whereas others do not achieve more effective classifiers in comparison
to just using single words.28 Sahami argues that “some of this discrepancy can be
accounted for by the expressivity of the models used for learning. For example,
models that do not capture co-occurrence information between words may stand to
benefit from multi-word features which explicitly express such dependencies. On
the other hand, models capable of learning word co-occurrence information may
not gain anything from the inclusion of multi-word phrases and may actually be
hindered by having to estimate additional parameters for such terms.”29 Note that
this argument supports the aforementionedEqual Effectiveness Paradox. Since us-
ing phrases does not consistently lead to more effective classifiers, we will not use
phrases as index terms in this dissertation.

In the experiments to be conducted in this dissertation, we will primarily use single words
as index terms. Note that single words independent of the order in which they appear in a
document are frequently used as index terms for two reasons. First, this text representa-
tion can be implemented very efficiently. Second, and even more crucial, the representa-
tion does not build on domain- or language-specific knowledge and can, thus, be directly
applied to any document collection.

3.2.3 Dimensionality Reduction

The bulk of the dimensionality reduction step is applied only in case the vocabulary needs
to be constructed, i.e. when the training documents are being processed. Recall that the set
of possible index termŝV = {t̂1, . . . , t̂m̂} resulting from the initial term extraction step for
the training documents is usually very large. The objective of the dimensionality reduction
step is to reduce the number of features that are finally used to represent documents, under
the constraint that the resulting set of features should still discriminate the different classes
well. As a result, we obtain a smaller set of index terms, the vocabularyV = {t1, . . . , tm},
wherem ≤ m̂ denotes the number of index terms that remain.

Controlling the dimensionality of the vector space is essential for two reasons. The com-
plexity of many learning algorithms depends crucially not only on the number of training
examples but also on the number of features. Thus, reducing the number of index terms
may be necessary to make these algorithms tractable.30 Also, although more features can

25See Fagan (1987), pp. 74–182, Lewis (1992a), Lewis (1992b), pp. 46–55, or Fürnkranzet al. (1998).
26See Spertus (1997) and Sahamiet al. (1998).
27See Cohen and Singer (1996), for example.
28See Dumaiset al. (1998), for example.
29From Sahami (1998), p. 21.
30See Dash and Liu (1997), for example.
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be assumed to carry more information and should, thus, lead to more accurate classifiers,
a larger number of features with possibly many of them being irrelevant may actually
hinder a learning algorithm constructing a classifier.31 The problem of having too many
features is often referred to as the‘curse of dimensionality’.32 Given a fixed number of
training examples, theoretical and empirical results in machine learning show that there is
often “a maximum number of features beyond which effectiveness of an induced classifier
will begin to decline.”33 Hence, removing less informative features may actually increase
classification performance.

We use the termdimensionality reductionto subsume any techniques that aim at control-
ling the dimensionality of the vector space. This includesfeature selectiontechniques
which attempt to find a suitable subset of the given feature set by explicitly including
particular index terms in the vocabulary or excluding them. Note that feature selection
is applied only in case the training documents are being processed. It affects the repre-
sentation of new documents in that only terms existing in the vocabulary are taken into
consideration. In addition, we consider techniques based onreparameterization, which
is the process of constructing new features by taking combinations and transformations
of the original features.34 Hence, these techniques actually replace existing index terms
by new terms in order to reduce the dimensionality of the vocabulary. Note that the map-
ping which reparameterizes the feature space is constructed on the basis of the training
documents. Yet, this mapping is then applied not only to training documents but also
to new ones. Both feature selection and reparameterization can be further divided into
linguistic and thus language-dependent approaches and language-independent statistical
approaches. Typically, some of these approaches are used in combination.

Feature Selection

Selection techniques for dimensionality reduction take as input a set of features and output
a subset of these features, which are relevant for discriminating among classes.35 Ideally,
we would like to find the subset among all possible subsets that allows a particular learn-
ing algorithm to induce the best possible hypothesis with respect to a given effectiveness
measure.36 So, feature selection can be regarded as an optimization problem where the
search space corresponds to the power set of the set of allm̂ features, i.e. where there are
2m̂ candidate subsets to look at.37 Obviously, this renders an exhaustive search intractable
since the number of features is usually very large in text domains. Therefore, feature se-
lection must be guided by heuristics.38 Langley (1994) identifies four dimensions along
which search heuristics can vary, namely the starting point, the organization of the search,
the evaluation strategy, and the halting criterion. With the subsequent learning task in

31See Lewis (1992b), p. 14.
32See Duda and Hart (1973), p. 95.
33From Lewis (1992b), p. 41.
34See Scḧutze, Hull and Pedersen (1995).
35See Dash and Liu (1997) for a survey on feature selection for classification.
36See Kohavi and John (1997), p. 276, for the notion of an optimal feature subset.
37See Blum and Langley (1997).
38See Scḧurmann (1996), p. 270.
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mind, especially the evaluation scheme is of great importance. Johnet al. (1994) dis-
tinguish filter and wrapper approaches as two general alternatives with respect to subset
evaluation. In this, filter approaches are independent of the learning algorithm, whereas
wrapper approaches utilize the learning algorithm proper as part of the evaluation scheme.
With respect to classification effectiveness, wrapper approaches should generally be pre-
ferred to filter approaches because the usefulness of features crucially depends on the
bias of the learning algorithm.39 In contrast, it is computationally expensive to apply the
learning algorithm once, or evenv times in case effectiveness is estimated by means of
v-fold cross-validation on the training documents,40 for each subset being considered.41

Note that, in text classification, this disadvantage is particularly serious because of the
large number of features. In the following, we therefore focus on a simple filter approach
on which most feature selection techniques are based in text domains.42

In this simple filter approach, each feature is treated independently. For each feature, we
evaluate a score on the basis of which we can decide whether to include a feature in the
vocabulary or to exclude it. The final vocabulary is established either by selecting all
features whose score is above or below a predetermined threshold or by selecting them
best features, i.e. either them largest or smallest features according to score magnitude.
Determining an appropriate threshold or the target numberm of features, remains an open
issue. Note that, in a general sense, empirically determining these parameters based on
the effectiveness on some, possibly held-out, training documents actually resembles a
wrapper approach.

We start with a widely applied linguistic approach known asstop word elimination. Then,
we discuss several frequently used numerical measures for evaluating term quality with
respect to its ability to discriminate among classes as discussed above.43 The first four
measures ignore the class labels of the documents under consideration, whereas the others
crucially depend on the class labels in order to identify promising features. Typically, all
measures are based on some frequencies in which terms occur in documents, classes,
or the entire document collection. Table 3.1 gives an overview of the document numbers
and term frequencies used for the evaluation of the numerical term quality measures. Note
that the term frequencies (tf ) reflect the actual number of term occurrences in particular
documents, whereas the other document numbers depending on terms are based on binary
indicators of term presence or absence in the corresponding documents.

The following functional relationships hold among the document numbers for the entire
document collection and the partitioning intok classes:

n =
k∑
i=1

nci (3.1)

n(t) =
k∑
i=1

nci(t) (3.2)

39See Johnet al. (1994).
40See Breimanet al. (1984), pp. 75–77.
41See Blum and Langley (1997).
42See Mladenìc (1998).
43For example, see Yang and Pedersen (1997), and Mladenic̀ and Grobelnik (1998).
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n Number of documents in the training setD?

nci Number of documents with class labelci

n(t) Number of documents in which termt appears at least once

n̄(t) Number of documents in which termt does not appear

nci(t) Number of documents with class labelci in which termt appears at least once

n̄ci(t) Number of documents without class labelci in which termt does not appear

tf Number of occurrences of all terms in all documents

tf (t) Number of occurrences of termt in all documents

tfdj (t) Number of occurrences of termt in documentdj

Table 3.1: Document numbers and term frequencies used for evaluating term quality measures.

The complement document numbers,n̄(t) andn̄ci(t), are defined as:

n̄(t) = n− n(t) (3.3)

n̄ci(t) = nci − nci(t) (3.4)

Finally, we observe the following relationships among the term frequencies:

tf =
m̂∑
i=1

tf (ti) (3.5)

tf (t) =
n∑
j=1

tfdj(t) (3.6)

wherem̂ denotes the number of potential features in the vocabularyV̂ before any partic-
ular dimensionality reduction step.

Stop Word Elimination. When analyzing a language, we can often observe that there
are many words which occur in all documents without regard to classes and, thus, have
little or no inherent topical content.44 These high frequency words are commonly referred
to asstop words.45 Typically, these are function words such as articles, prepositions,
conjunctions, and pronouns, which provide structure in language rather than content.46

Since stop words lack discriminative power, it is reasonable to eliminate these words
from the set of possible index termŝV and, as a result, to reduce the dimensionality of
the associated vector space. Note that in case of n-gram based index terms, stop word
elimination should, if desired, take place before the term extraction step based on the
normalized word tokens.

44See Salton and McGill (1983), p. 71, or van Rijsbergen (1979).
45For example, see van Rijsbergen (1979), p. 17.
46See Sahami (1998), p. 26.
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a be each if last near that
about but else in late no the
all by is like they
an for it of to
and did from into many often
are do further itself much on with
as down more once which
at during get just must or whether

Table 3.2: Excerpt from a list of frequently used stop words.

There are two ways to obtain a list of stop words, or astop list for short. One common
approach is to manually establish a stop list. Many stop lists for English text can be found
on the Internet47 and in the literature.48 Typically, these lists contain several hundred stop
words. Table 3.2 shows an excerpt from a list of frequently used English stop words. In
some applications, it may be useful to provide domain-dependent stop lists in addition to
or even instead of a general stop list. Note that removing words on the basis of a stop list
does not properly fit in with the notion of the filter approach. Yet, this kind of stop-word
removal can easily be cast as a filter approach, simply by defining a function that responds
to each termt with a certain value indicating whether or nott is considered a stop word.
Stop words would then be eliminated according to this value.

A second approach to stop-word elimination is to construct the stop list automatically
based on the document collection under consideration. To do so, a common approach is
to consider as stop words—and to eliminate from the feature set—either thei, say, most
frequent terms or all terms with a frequency above a given threshold.49 The threshold
can be defined either manually in advance or based on the frequency histogram of the
term distribution. This approach eliminates stop words that are specific to the document
collection under consideration and is, therefore, domain-specific. So, not only commonly
accepted stop words, but also other words such as nouns, verbs, and adjectives may be
eliminated. Note that automatically identifying stop words corresponds to term frequency
thresholding with an upper threshold, which we will discuss next.

Term Frequency Thresholding and Zipf’s Law. A very simple selection heuristic is to
eliminate all the terms whose frequencies are either above a pre-specified upper threshold
or below a pre-specified lower threshold. The assumption that the frequency of term
occurrences is an appropriate measure of term significance originates from the following
observation made by Luhn:50

The justification of measuring word significance by use-frequency is based on
the fact that a writer normally repeats certain words as he advances or varies
his arguments and as he elaborates on an aspect of a subject. This means of
emphasis is taken as an indicator of significance.

47For example, seeftp://ftp.cs.cornell.edu/pub/smart/english.stop .
48See van Rijsbergen (1979), pp. 18–19, or Fox (1992), pp. 114–115, for example.
49See Lang (1995), for example.
50From Luhn (1958b), p. 119.
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So, terms that rarely appear in a document collection will have little discriminative power
and can be eliminated.51 In contrast, high frequency terms are assumed to be common and
thus not to have discriminative power either. Removing these terms in fact corresponds
to eliminating stop words where the stop list is automatically constructed from the given
document collection based on the term frequency histogram. In the following, we give a
justification for thresholding low frequency terms.

Based on empirical studies, Zipf observed over 50 years ago that many words in a doc-
ument collection appear very infrequently.52 Zipf’s observation about the frequency of
word occurrences in a document collection is referred to asZipf ’s Law, although it is
rather an approximate mathematical phenomenon.53 In spite of the fact that Zipf’s anal-
ysis and Luhn’s observation are originally based on words, they can also be applied to
other index terms, such as word stems, phrases, or n-grams.54 Thus, we formally describe
Zipf’s Law referring to terms rather than words. Assume all index terms in the prelimi-
nary vocabulary,t ∈ V̂, are sorted in decreasing order according to their total number of
occurrences in the document collection,tf (t). Let rank(t) denote the position of termt
in the sorted list. Zipf’s Law states that

rank(t) · tf (t) ≈ const (3.7)

This relationship is demonstrated by the hyperbolic curve denotedterm frequencyin Fig-
ure 3.2. On the basis of the analysis of various document collections, Callan (1997)
reports that the constant tends to be abouttf

10
in English text, wheretf is the total num-

ber of terms in a document collection as introduced above. Following Sahami’s anal-
ysis of Zipf’s Law, we try to estimate the fraction of distinct termst in a document
collection whose total frequency equals a given value, saytf (t) = β.55 Let term ti
be the lowest ranked term, withtf (ti) = β, and tj be the lowest ranked term, with
tf (tj) = β+ 1. The rank of the terms can be expressed approximately asrank(ti) ≈ const

β

andrank(tj) ≈ const
β+1

, respectively. Subtracting the latter expression from the first yields

rank(ti)− rank(tj) ≈
const

β
− const

β + 1
=

const

β (β + 1)
(3.8)

Further, note that the term with the highest rank,tmax, generally appears once in a docu-
ment collection, and thus

rank(tmax) ≈ const

1
= const (3.9)

Dividing Equation (3.8) by Equation (3.9), we obtain1
β·(β+1)

as an approximation to the
fraction of terms that appearβ times in a document collection. Hence, Zipf’s Law shows
that a large fraction of terms is accounted for by those terms that occur most infrequently.
For instance, about half of all distinct terms appear only once. Sahami concludes that

51See van Rijsbergen (1979), p. 16.
52See Zipf (1949), pp. 22–27.
53See Sahami (1998), p. 27.
54See van Rijsbergen (1979), p. 16.
55See Sahami (1998), pp. 27–29.
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Figure 3.2: Luhn’s application of Zipf’s Law (following Luhn (1958b), p. 120).

even if Zipf’s Law is “only a loose approximation, it still provides compelling evidence
that we can eliminate a significant number of terms [...] by simply eliminating the terms
with the lowest frequency of occurrence” in the document collection.56

Figure 3.2 illustrates Luhn’s application of Zipf’s Law. The frequency of the terms in
order of their rank is indicated by the hyperbolic curve in Figure 3.2. The vertical lines
demonstrate possible cut-offs for high and low frequency terms. While both high and low
frequency terms lack discriminative power, the remaining words of medium frequency
are considered significant for discriminating among classes. It is assumed that term sig-
nificance peaks somewhere between the two cut-off points as sketched by the bell-shaped
curve in Figure 3.2.57 By thresholding non-significant high and low frequency terms, the
dimensionality of the feature space can be reduced by up to 50 per cent.58 Note that find-
ing appropriate thresholds remains on open issue and should be tackled empirically based
on the document collection and the application at hand.

Document Frequency Thresholding. The number of documents in a document collec-
tion in which a particular termt appears at least once,n(t), is also somewhat misleadingly
referred to as the document frequency of termt. A very simple selection heuristic is to
exclude all terms from the vocabulary whose document frequency is less than some prede-
termined threshold.59 This is based on the assumption that terms that occur in only very
few documents are unlikely to carry general class-specific information and sometimes
even tend to be noise, e.g. spelling mistakes. Furthermore, using infrequently occur-

56From Sahami (1998), p. 28.
57See Salton and McGill (1983), p. 62.
58See van Rijsbergen (1979), p. 17.
59See Yang and Pedersen (1997).
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ring terms is not statistically reliable.60 Hence, removing these terms not only maintains
discriminative power, it can also improve classification effectiveness. Yet, note that, in
information retrieval, a term that occurs in only a single document may be especially use-
ful for identifying this document. Typically, document frequency thresholding is applied
prior to further, more elaborate feature selection, removing terms that occur, for instance,
only once or twice in the document collection.61

Inverse Document Frequency and TFIDF. As stated above, rarely occurring terms are
unlikely to be relevant for characterizing a certain class. In contrast, terms that occur in
a large portion of the document collection might not be discriminative either. That is,
term importance is assumed to be inversely proportional to the number of documents a
particular term appears in. A possible measure for this is the inverse document frequency
for termt, which is typically defined as62

idf(t) = log
n

n(t)
(3.10)

such that terms with higher values are preferred. Having removed common stop words,
we here assume that the importance of a term increases with its use-frequency. Combing
these ideas leads to theterm frequency/inverse document frequency(tfidf) measure:

tfidf(t) = tf (t) · idf(t) (3.11)

which assigns higher values to terms that are considered more important. Note that the
evaluation of this measure does not depend on the true class labels of the training docu-
ments. Also, a similar combination of term frequency and inverse document frequency is
often used to assign weights to terms in the vector generation step, which will be covered
in Subsection 3.2.4. For term weighting, however, the term frequency of a term in a single
document rather than in the entire document collection is considered.63

Signal-to-Noise Ratio. In communication theory, the signal-to-noise ratio measures the
strength of a signal relative to background noise. Abstracting from its technical meaning,
the signal-to-noise ratio of a particular term measures the discriminative power conveyed
by that term.64 For the purpose of dimensionality reduction, terms with larger values are
preferred. The evaluation of the background noise is based on the information-theoretic
measure of entropy, which we will introduce next.

Information can be considered as reduction in uncertainty. The amount of information
conveyed by a message depends on its probability of occurrence and can be measured as
minus the logarithm of that probability. Typically, a logarithm of base 2 which measures

60See Apt́eet al. (1994), p. 237.
61For example, see Joachims (1997b), p. 2.
62See Salton and Buckley (1988), p. 516, or Salton (1989), p. 280, for example. Another common

definition isidf(t)=1 + log n
n(t) , which was originally proposed by Sparck Jones (1972), pp. 17–18.

63See Salton and Buckley (1988), p. 516.
64See Salton and McGill (1983), pp. 63–66.
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the amount of information in bits is assumed. Obviously, receiving a rarely occurring
message is more informative than receiving a frequently occurring message. Considering
each presentation of a discrete random variable as a message, we can generally define
entropy as a measure of average uncertainty in a discrete probability distribution.65

Definition 3.2.2 (Entropy)
The entropy of a discrete random variable X that can take on c different values with
probabilities pi, i = 1, . . . , c, is defined by

Entropy(X) = −
c∑
i=1

pi log pi (3.12)

So, entropy can be evaluated as the amount of information that we can expect to receive on
average when observing the particular random variable. Notice that0 log 0 is defined to be
0 for the evaluation of entropy.66 The range of the entropy function is[0, log c]. Entropy
is zero when one outcome of the random variable occurs with certainty, i.e.pi = 1 for an
arbitraryi andpj = 0 for j 6= i. In this case, we do not receive any information when
knowing about the outcome of the random variableX. The more uniform a distribution,
the larger is its entropy. Hence, entropy takes on its maximum valuelog c if all outcomes
of X are equally likely.

A term should be concentrated in only a few documents. A measure for this, here referred
to as ‘noise’, can be evaluated as the entropy of the probability distribution of termt
among the documents:

Noise(t) = −
n∑
j=1

P(dj, t) log P(dj, t) (3.13)

where the probability that a particular documentdj and termt co-occur is estimated by

P(dj, t) =
tfdj (t)

tf(t)
. The range of the noise function is[0, log n]. According to the definition

of entropy, noise is zero when termt appears in one document only, whereas it takes on
its maximum valuelog n if term t occurs with the same frequency in all documents.

Furthermore, it is assumed that the more frequently a termt occurs, the more discrimina-
tive it is. This corresponds to the ‘signal’ and is measured aslog tf (t). The signal-to-noise
ratio is now expressed as the difference of these logarithms, yielding67

SNR(t) = log tf (t)− Noise(t) (3.14)

The range of the signal-to-noise ratio is[0, log tf (t)]. The ratio is zero when termt appears
exactly once in each document, whereas it takes on the maximum valuelog tf (t) if term t
occurs in one document only.

Note that the signal-to-noise ratio is class-independent since the evaluation of neither the
signal nor the noise term depend on the class labels of the training documents. Similar

65See Cover and Thomas (1991), pp. 12–15.
66See Cover and Thomas (1991), p. 13.
67See Salton and McGill (1983), p. 65.
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to thetfidf measure, the signal-to-noise ratio prefers terms that frequently occur in only
some of the training documents. And if these documents do, in fact, belong to the same
class, the signal-to-noise ratio can be helpful in identifying promising features.

Information Gain. The information-gain criterion is frequently used as a feature selec-
tion technique in machine learning, particularly for constructing decision trees.68 It mea-
sures the statistical dependence between a term and the class labels and is also based on
entropy. For dimensionality reduction, terms with small information gain are discarded.69

Note that information gain is also known asaverage mutual informationbetween a term
and the class labels.70

Rather than evaluating the entropy of a term distribution among a set of documents as is
done for the signal-to-noise ratio, we now consider the entropy of the class distribution.
Let C denote a random variable used for observing thek possible class labels for the
training documents. Here, entropy measures the homogeneity of the training setD? with
respect to the class distribution which governsC:71

Entropy(C) = −
k∑
i=1

P(ci) log P(ci) (3.15)

whereP(ci) =
nci
n

denotes the probability of observing a training document with class
labelci. Note again that0 log 0 is defined to be0 for all entropy evaluations.

Based on this interpretation of entropy, we can measure the discriminative power of a
particular index term as follows. Lett and t̄ denote the presence and absence of termt,
respectively, andT be a binary random variable taking on the valuest andt̄. The condi-
tional entropy of the random class variableC givenT is defined as72

Entropy(C|T ) = P(t) Entropy(C|t) + P(t̄) Entropy(C|t̄) (3.16)

= − P(t)
k∑
i=1

P(ci|t) log P(ci|t)− P(t̄)
k∑
i=1

P(ci|t̄) log P(ci|t̄) (3.17)

whereP(t) = n(t)
n

andP(t̄) = n̄(t)
n

denote the proportions of training documents in which
term t is present and absent, respectively. The conditional probabilities are estimated by
P(ci|t) =

nci (t)

n(t)
andP(ci|t̄) =

n̄ci (t)

n̄(t)
. Finally, we define the information gain of termt as

the expected reduction in entropy caused by partitioning the set of training examplesD
according to the presence or absence of termt, yielding73

Gain(t) = Entropy(C)− Entropy(C|T ) (3.18)

68For example, see Quinlan (1993), pp. 20–22, or Mitchell (1997), pp. 57–58.
69See Yang and Pedersen (1997).
70See McCallum (1996).
71See Mitchell (1997), pp. 55–57.
72See Cover and Thomas (1991), p. 16.
73See Mitchell (1997), pp. 55–60.
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which can be transformed into

Gain(t) =
k∑
i=1

P(ci, t) log
P(ci, t)

P(ci)P(t)
+

k∑
i=1

P(ci, t̄) log
P(ci, t̄)

P(ci)P(t̄)
(3.19)

by using elementary probability calculus. The probabilities that a classci and a termt do
or do not co-occur can be derived from the probabilities introduced above asP(ci, t) =
nci (t)

n
andP(ci, t̄) =

n̄ci (t)

n
, respectively.

Mutual Information. Note that information gain is an averaged performance score that
measures the mean discriminative power of a term over all classes. Hence, it cannot take
into account that a particular term may predict only one of the classes well while perform-
ing less well on the other classes.74 Albeit important to describe a certain class, such a
term may not be selected using the information-gain criterion. Obviously, this problem
can only arise if there are more than two classes. Note that classification problems with
k > 2 can always be decomposed intok binary problems, as can the task of evaluating
class-dependent measures. Thus, we proceed by evaluating the mutual information bet-
ween a termt and each classc ∈ C individually instead of averaging over all classes. Let
ĉ1 ≡ c be a particular class and̂c2 ≡ c̄ be its complement, i.e.̂c2 labels all documents that
are not in classc. Applying Equation (3.19) to these artificially introduced classes yields
the mutual information betweenc andt:75

MI(c, t) =
2∑
i=1

P(ĉi, t) log
P(ĉi, t)

P(ĉi)P(t)
+

2∑
i=1

P(ĉi, t̄) log
P(ĉi, t̄)

P(ĉi)P(t̄)
(3.20)

We thus obtain scores for each combination of terms and class labels. Based on these,
we can selectk, possibly overlapping feature subsets, which are subsequently merged to
establish the final vocabulary.

Chi-Square Statistic. The χ2 statistic measures the degree of association between a
term and the class labels. Its application is based on the assumption that a term whose
frequency strongly depends on the class label of the document in which it occurs will be
useful for discriminating among the classes. For the purpose of dimensionality reduction,
terms with smallχ2 values are discarded.

Assume again the two-class classification problem wherec1 ≡ non andc2 ≡ rel denote
non-relevant and relevant documents, respectively. Note that in case there arek > 2
classes, we can split the feature selection problem intok subtasks as described above.
The numbers that reflect the co-occurrence of a termt and the class labels, that isnci(t)
andn̄ci(t) for both class labelsnon andrel , can be regarded as the entries in the two-way
contingency table. Based on this, theχ2 statistic for termt is defined as76

χ2(t) =
n [nrel(t) n̄non(t)− n̄rel(t)nnon(t)]2

nrel nnon n(t) n̄(t)
(3.21)

74See Scḧurmann (1996), p. 258.
75See Dumaiset al. (1998).
76See Scḧutzeet al. (1995), for example.
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for terms that do not occur in all documents, i.e. ifn(t) < n. Theχ2 statistic is normalized
in the range[0, n]. The value is zero if termt occurs independent of the class labels, and it
becomes larger the more frequently it occurs in only one of the classes. The extremeness
of the resulting value can be judged by comparison to theχ2 distribution with one degree
of freedom.77 If a term occurs in all documents, i.e. ifn(t) = n, theχ2 statistic can be
defined as0 since termt occurs independent of the class labels. For low-frequency terms,
a comparison betweenχ2 values may not be accurate. And, if these terms are essential
for discriminating among classes, theχ2 statistic may not be appropriate.78

Reparameterization

Reparameterization techniques for dimensionality reduction take as input a set of features
derived from the training documents and construct a new set of features that contains
fewer features by taking combinations and transformations of the existing features, while
maintaining or even enhancing discriminative power. Note that this mapping is applied
not only to training documents but also to any new document, if reparameterization is
chosen as a means of dimensionality reduction. Also, note that the resulting features
may be artificial and may thus not correspond to the index terms that can be found in the
documents. We start by examining two linguistic transformation techniques:stemming
andusing a thesaurus. Then, we briefly turn tolatent semantic analysis.

Stemming. As discussed in Section 3.2.2, using plain words as index terms often leads
to an unnecessarily large number of features since morphological variants of a word are
not recognized as being similar and each inflection of a word is a potential feature. “Word
stemming is a crude pseudo-linguistic process which removes suffices to reduce words
to their word stem.”79 For example, the words ‘classifier’, ‘classified’ and ‘classifying’
would all be reduced to the word stem ‘classify’. Consequently, the dimensionality of
the feature space can be reduced by mapping morphologically similar words onto their
word stem. A widely applied stemming algorithm is the suffix stripper developed by
Porter (1980). Note that stemming algorithms are commonly based on heuristics and
may thus conflate words that are actually not similar. For example, the Porter stemmer
maps the word ‘is’ to ‘i’. Frakes (1992) describes various stemming algorithms and gives
an overview of several studies comparing different stemming methods for the information
retrieval task. Based on this comparison, Sahami states that both stemmed and unstemmed
representations lead to roughly equal performance.80 Obviously, stemming is language-
but not domain-dependent. It is rather straightforward to specify simple heuristics for
stemming English words, whereas providing stemming rules for other languages, such as
German or French, can be much more difficult. Finally, note that in case of n-gram-based
index terms, stemming should, if desired, take place before the term extraction step based
on the word tokens output by text normalization step.

77See Yang and Pedersen (1997).
78See Dunning (1993), pp. 62–63.
79From Smeaton (1997), p. 122.
80See Sahami (1998), p. 20.
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Using A Thesaurus. While stemming aims at conflating morphological variants of
words, the objective of using a thesaurus in the context of dimensionality reduction is
to conflate synonyms, i.e. words of the same or similar meaning. Generally, a thesaurus
is a collection of words that are grouped by likenesses in their meaning rather than in
alphabetical order. For example, a thesaurus may contain semantic relations between
words such as ‘is similar to’, ‘is more specific than’, or ‘is more general than’ to describe
synonyms, hyponyms, or hypernyms, respectively. These relations can be used to group
words in semantic equivalence classes. The dimension of the vector space can thus be
reduced by mapping all the index terms onto the equivalence class to which they belong.
Note that another common way of using a thesaurus is to expand rather than conflate
the set of index terms. This idea is similar to a technique known asautomatic query
expansionin information retrieval and refers to adding semantically related words to a
set of keywords which form a query.81 Obviously, a thesaurus is domain- and language-
dependent, and often manually constructed thesauri are used. Yet, there are also attempts
to automatically construct thesauri based on document collections.82 In fact, we consider
latent semantic analysis as a statistical technique for automatically uncovering semantic
structure in a document collection, which can be used to reduce the set of features instead
of a manually constructed thesaurus.83

Latent Semantic Analysis. Latent semantic analysis builds on statistical techniques
for estimating semantic associations among terms across the document collection.84 Ex-
ploiting these associations can solve the synonym problem (see above) and reduce the
dimensionality of the feature space. The primary assumption of latent semantic analysis
is that “there is some underlying or latent structure in word usage that is partially obscured
by variability in word choice.”85 In information retrieval, latent semantic analysis is orig-
inally based onsingular value decomposition.86 More common in the pattern recognition
community is the application ofprincipal component analysisto find directions in feature
space which maximally explain variance.87 An alternative method for uncovering seman-
tic structure in documents automatically isterm clustering. Term clustering attempts to
find groups of terms with related meaning through cluster analysis.88

Method Combination

So far, we have discussed several techniques which enable control of the dimensional-
ity of the vocabulary whose elements correspond to the dimensions of the vector space
in which we represent documents. Rather than applying just one of these techniques,
in many applications, some of them are used in combination. For instance, it is quite

81For example, see Xu and Croft (1996).
82For example, see Salton and McGill (1983), pp. 77–81, or Salton (1989), pp. 299–303.
83See Dumais (1994).
84See Deerwesteret al. (1990), for example.
85From Berryet al. (1995).
86See Deerwesteret al. (1990).
87See Scḧurmann (1996), pp. 270–275, for example.
88See Lewis and Croft (1990). Also see Sparck Jones (1971) for early work on term clustering.
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common to, first, eliminate stop words based on a manually provided stop list. Then, the
remaining words are often reduced to their words stems. After that, rarely occurring terms
are removed, for example, by either thresholding their term frequency or the correspond-
ing document frequency. Finally, a more elaborate method such as the information-gain
criterion is applied to further reduce the number of features.89

3.2.4 Vector Generation

Given the term frequency statistics of all training documents, the task of thevector gener-
ationstep is to create a weighted vectord = (w(d, t1), . . . , w(d, tm))T for any documentd
based on its term frequency vectordtf = (tfd(t1), . . . , tfd(tm))T , which commonly results
from the term extraction step. Each weightw(d, t) expresses the importance of termt in
documentd with respect to its frequency in all training documents. The objective of using
a term weight rather than plain frequencies is to enhance classification effectiveness.90

As mentioned above, term importance is commonly determined as a function of how often
a particular term appears in a certain document and how often it appears in the entire
document collection. By varying this function, we can produce different term weightings,
which can then be interpreted as different indexing models, as we will see in the following.
Salton and Buckley (1988) identify three main weighting components in determining term
importance, which we refer to as the local, global, and normalization factors.91 Based on
these three weighting factors, the term weight is evaluated as

w(d, t) =
wlocal(d, t) wglobal(t)

wnorm(d)
(3.22)

Some common choices for the three weighting components are listed in Table 3.3. The
three factors are motivated as follows:

• Local component.The local weighting factorwlocal(d, t) reflects the importance
of term t within a particular documentd. Recall from Section 90 that the term
frequency is considered as a reasonable indicator of term importance. Information
retrieval research suggests that broad, high-frequency terms be emphasized in order
to enhance effectiveness in terms of recall.92

Typically, the local weighting factor is obtained by applying a transformation func-
tion f to the term frequency in case termt should appear in documentd:

wlocal(d, t) =

{
f(tfd(t)) if tfd(t) > 0

0 otherwise
(3.23)

Note thatwlocal(d, t) is defined to be 0 and, thus,w(d, t) = 0 independent of the
global weighting factor if termt does not appear in documentd.

89For example, see Joachims (1997b), pp. 1–2, Dumaiset al. (1998), or Nigamet al. (2000).
90See Salton and Buckley (1988), p. 516.
91For example, see Dumais (1991) for the terminology of local and global term weighting.
92See Salton and Buckley (1988), p. 516.
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Two straightforward transformation functions are, for instance, the identity func-
tion, which does not change the given term frequencies, and the binary indica-
tor function, which returns one for a non-zero term frequency and zero otherwise.
More elaborate functions could normalize the term frequencies through division by
the largest term frequencytfd(tmax) within documentd. Another common choice
is to apply a logarithm to the term frequency such that an additional occurrence of
termt in documentd is considered more important at smaller term frequency levels
than at larger levels.

• Global component.The global weighting factorwglobal(t) takes into account the
importance of termt within the entire set of training documents. As discussed
in Section 90, a term is considered more important if it is concentrated in only
a few documents. A measure for this is often referred to as theinverse document
frequency.93 Giving more weight to narrow, highly specific terms allows us to better
reject non-relevant documents and can enhance precision.94

For example, a widely applied global weighting factor is the inverse document fre-
quency defined in Section 90 aslog n

n(t)
. Recall thatn denotes the total number of

training documents, whereasn(t) denotes the number of documents in which term
t appears. In a probabilistic context where no relevance feedback is available, the
inverse document frequency could be defined aslog n̄(t)

n(t)
, wheren̄(t) = n − n(t)

denotes the number documents in which termt does not appear.95

• Normalization component.The denominator in Equation (3.22)wnorm(d) is a nor-
malization factor. Normalizing the weight vector of a documentd permits abstrac-
tion from varying document lengths. Typically, the weighted vectors are normalized
to unit length, which is also referred to as cosine normalization. In a probabilistic
context, it is also common to normalize by the sum of the weighted vector compo-
nents of a document.96

Note that longer documents often tend to contain more distinct index terms. And
with a larger number of index terms present in a document, the chance of find-
ing terms that match those in other documents is higher. Consequently, longer
documents have a higher chance of being similar to other documents if they are
not normalized.97 Also, many similarity calculations such as the cosine similar-
ity normalize the weight vectors, as we will see in Section 3.3. Hence, it may be
computationally more efficient to normalize the weight vectors once prior to these
calculations rather than each time a document is involved in a similarity calculation.

The codes for the weighting components given in Table 3.3 correspond to the notation
used in the information retrieval system Smart.98 A particular term weighting scheme can

93See Harman (1992), pp. 373–376.
94See Salton and Buckley (1988), p. 516.
95See Croft and Harper (1979).
96See Salton and Buckley (1988), p. 517.
97See Salton and Buckley (1988), p. 517.
98The Smart system is publicly available atftp://ftp.cs.cornell.edu/pub/smart .
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Code Description Expression

Local component for termt in documentd: wlocal(d, t) = (if tfd(t) > 0)

n no conversion (plain term frequency) tfd(t)

b binary term indicator 1

m normalize by most frequent termtmax
tfd(t)

tfd(tmax)

a augmented normalized term frequency 1
2 + 1

2
tfd(t)

tfd(tmax)

l logarithm of term frequency 1 + log tfd(t)

Global component for termt: wglobal(t) =

n no global weighting 1

t tfidf style inverse document frequency log n
n(t)

p probabilistic inverse document frequencylog n̄(t)
n(t)

Normalization component for documentd: wnorm(d) =

n no normalization 1

s normalize by sum of all term weights
∑m
i=1 wlocal(d, ti) wglobal(d, ti)

c cosine normalization
√∑m

i=1(wlocal(d, ti) wglobal(d, ti))2

Table 3.3: An overview of common term weighting components.

be characterized by specifying a three-letter code in which the first letter corresponds to
the local factor, the second letter to the global factor, and the third letter to the normaliza-
tion component.

For example, using the ‘nnn’ weighting scheme leaves the term frequency vectors un-
changed,wtf (d, t)= tfd(t), whereas the weighting scheme ‘ntn’ produces the well-known
tfidf weights:99

wtfidf(d, t) = tfd(t) log
n

n(t)
(3.24)

For ‘bnn’ we obtain a simple binary representation of documents, in which each compo-
nent of the document vector denotes whether or not the corresponding term appears in the
document. This is equivalent to

wbin(d, t) =

{
1 if tfd(t) ≥ 1
0 otherwise

(3.25)

Note that a binary indicator of term presence or absence in a document is widely applied
in many learning algorithms such as decision tree induction or the naı̈ve Bayes classifier,
as we will see in the following section. Combined with an appropriate similarity mea-
sure, this representation can also be used to mimic Boolean indexing, which many infor-
mation retrieval systems operate on.100 Other well-known retrieval models are based on

99See Salton and McGill (1983), p. 63, for example.
100See Salton and Buckley (1988), p. 517.
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probabilistic indexing.101 For instance, the weights used under the binary independence
assumptions for terms can be obtained by the ‘bpn’ weighting scheme:102

wprob =

{
log n̄(t)

n(t)
if tfd(t) ≥ 1

0 otherwise
(3.26)

Retrieval as for the vector space model is originally based on the cosine similarity bet-
ween documents with simpletfidf style weights, which is equivalent to using the ‘ntc’
weighting scheme.103 Derivatives like the ‘mtc’, ‘atc’, and ‘ltc’ weighting schemes were
proposed to enhance retrieval effectiveness. In the similarity-based learning algorithms
to be discussed in the following section for the task of text classification, we will use the
‘ltc’ weighting scheme, which is also preferred by Yang (1999) in a comparative study
of different text learning algorithms. In this case, the weight of termt in documentd is
defined as

wltc(d, t) =
f(tfd(t)) · log n

n(t)√∑m
i=1 f(tfd(ti)) · log n

n(ti)

(3.27)

with f(ξ) = 1 + log ξ if ξ > 0 and otherwisef(ξ) = 0, as discussed previously.

3.2.5 Summary

With the techniques described above, we are now able to map any documentd ∈ D onto
its vector representationd = ρ(d) = (w1, . . . , wm)T ∈ R = IRm

+ with respect to the term
frequency statistics of a given document collection. We, thus, carry out the mappingρ :
D 7→ R from the space of actual documents onto the document representation space. The
resulting document vectord is suitable as input for the learning algorithms to be covered
in the following section. For the sake of simplicity, we will use the terms document
and document vector synonymously and refer to the actual documents by means of their
vector representation. Specifically, we refer to the set of training documents through their
representations asD = {d ∈ IRm

+ | ∃d ∈ D? : d = ρ(d)}.

Consequently, we assume that a documentd can be uniquely identified by its document
vectord = ρ(d). Although chances seem low in real-world text classification problems,
two distinct documents may, in fact, be mapped onto the same document vector. Assume,
for example, that two electronic mails are sent to two different newsgroups and are thus
considered to belong to two different classes. Furthermore, let both mails express a user’s
intention to be subscribed to a particular mailing list in such a way that each mail contains
solely the subject information ‘subscribe’ and no additional text body. Both mails are then
likely to be mapped onto the same document vector. Nonetheless, we assume throughout
this dissertation that we can uniquely identify a document by its document vector.

101See Harman (1992), pp. 367–370, for example.
102See Croft and Harper (1979), p. 287.
103See Harman (1992), pp. 366–367.
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3.3 Text Learning

3.3.1 The Supervised Learning Task Revisited

In Section 3.1, we have formally defined the supervised text learning task as follows.
Assume a fixed set ofk classesC = {c1, . . . , ck} and a set ofn training documents from
the document spaceD? = {d1, . . . , dn} ⊂ D, for which the true class labels are given
by the target functionT (d) for eachd ∈ D?. The text learning task is to induce from
D? a classifier, the hypothesish : D 7→ C, that approximates the target functionT well
with respect to a given effectiveness measure. In accordance with theinductive learning
hypothesis, this classifier can then be used to predict the class labels of new, previously
unseen documents.

With respect to the document representation introduced in the previous section, the text
learning task is now formulated as inducing from the set of training document vectors
D = {d1, . . . ,d2} ⊂ R a classifier, the hypothesisH : R 7→ C, that approximates the
target functionT : R 7→ C well with respect to a given effectiveness measure. Note that
we again denote the target function byT . Yet, this time the domain is the document
representation spaceR instead of the document spaceD proper. Nevertheless, there
should be no risk of confusing these notations since the intended meaning should become
clear from their context.

Note that the hypothesesH andh are connected by the document representation function
ρ, sinceh(d) = H(ρ(d)) = H(d) for d ∈ D. As mapping a documentd onto its surrogate
representationd is fixed prior to learning a classifier, we will stick to the representation
space of documents in the remainder of this chapter. That is, we refer to documents in
terms of the document vector as if these representations were the actual documents.

For the sake of notational simplicity, in some formulae we will also denote the class label
of training documentd by y ≡ T (d) ∈ C. Furthermore, for some learning algorithms
introduced in this section, it will be convenient to introduce a notation for grouping all
training documents into subsets according to their class labels. In Definition 3.1.1 we
noted that the class labels given to documents imply an exhaustive and disjoint partition
of the document space. We now denote the set of those training documents belonging to
classci ∈ C asDci = {d ∈ D |T (d) = ci}, such thatD =

⋃
ci∈C Dci. Also, recall that

nci = |Dci| is the number of training documents belonging to classci ∈ C as previously
defined in Section 3.2. Specifically, for information filtering,Drel andDnon denote the
subsets of thenrel relevant and thennon non-relevant training documents, respectively.

The Document Source

So far, we have talked about training documents and new documents that are to be classi-
fied. In a theoretical framework, it is often assumed that all these documents come from
some hypothetical source. The application of this framework is two-fold. On the one
hand, it can be used explicitly to derive probabilistic classifiers as we will do below. On
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the other hand, the concept of a general document source can serve as a means to de-
scribe different properties and assumptions of learning algorithms as is commonly done
in computational learning theory.104 As for now, we focus on the latter point.

The document sourceis a stochastic model which describes the general setting of the
learning task.105 In particular, the document source is assumed to be capable of gener-
ating unlimited numbers of documents of different classes. For the document generation
process, we can assume that, first, a class-specific distribution is selected, and a docu-
ment is then generated according to this distribution. So, each document generated is
associated with a particular but unknown class label. The document source can more pre-
cisely be considered as a mixture model which comprises a finite number of class-specific
document sources, each associated with a specific distribution for generating documents.

The training setD is a randomly drawn sample from the document source, for which
the true class labelsT (d) ∈ C for all d ∈ D are known. A classifier is learned from the
training documents and subsequently applied to predict the class labels of new documents,
which are also assumed to be generated by this same document source. And this is exactly
the fundamentalstationarity assumption, which entitles us to employ the inductive learn-
ing hypothesis as described above. For all learning algorithms introduced subsequently, it
is generally assumed that the distributions which fully determine the document source be
stationary. In other words, the class-specific document sources do not change over time.
We discuss the issue ofdynamic, i.e. non-stationary, document sources in Chapter 6.

In addition to this basic stationarity assumption, there are usually further assumptions
associated with a learning algorithm. For example, some learners require that there be
exactly one mixture component for each class, enabling a one-to-one correspondence
between mixture components and classes. Assumptions of this kind are part of the general
idea ofinductive biasas we will discuss next.

Inductive Bias

The objective of the learning task is to infer a hypothesis from training data which can
subsequently be used to classify previously unobserved examples. Classifying new exam-
ples requires generalizing beyond the provided training data. How can this inductive leap
be logically justified? The idea of theinductive biascaptures “the policy by which the
learner generalizes beyond the observed training data, to infer the classification of new
instances.”106 Without inductive bias, there is no rational basis for classifying any new
examples.

In general, it cannot be proven that the hypothesis inferred by a learner is correct. In other
words, the class label predicted for a new example need not follow deductively from the
training data and the representation of the new example. Inductive bias can thus be defined
more precisely as follows.107

104See Kearns and Vazirani (1994), for example.
105See Scḧurmann (1996), pp. 20–21, for a more general definition of a pattern source for pattern recog-

nition tasks.
106See Mitchell (1997), p. 42.
107See Mitchell (1997), p. 43.
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Definition 3.3.1 (Inductive Bias)
The inductive bias of a learner can be defined as any minimal set of assertions subject to
which the learner’s inductive inferences follow deductively.

Originating from work in artificial intelligence, the process of learning from examples
is often considered as asearchthrough an implicit or explicit hypothesis space for the
hypothesis that best fits the training data.108 To make it efficient, the search through the
space of possible hypotheses must be limited or directed in some way.109 These issues
greatly determine the study of learning algorithms.

One key factor that limits the hypothesis space a learner explores is the set of features
used to describe examples.110 As set out in Section 3.2, deciding upon a suitable docu-
ment representation always involves a trade-off between semantic expressivity and repre-
sentational complexity. Too many features may unnecessarily increase the set of possible
hypotheses, whereas too small a feature set may not provide enough information to sepa-
rate classes. Hence, the choice of representation has a strong impact on a learner’s ability
to induce an effective hypothesis.

Besides this restriction due to the representation of examples, limiting and directing the
search through the space of possible hypotheses corresponds to two types of inductive
bias: restriction or language biasand searchor preference bias.111 On the one hand,
the restriction bias restricts the space of possible hypotheses by limiting the language by
which hypotheses are expressed. For example, the hypothesis space could be defined as
the set of conjunctions over Boolean variables. “It is important to note that by select-
ing a hypothesis representation, the designer of the learning algorithm implicitly defines
the space of all hypotheses that the program can ever represent and therefore can ever
learn.”112 So, if the restriction bias is too strict, the hypothesis space may not contain
suitable hypotheses. The preference bias, on the other hand, employs a specific order on
the set of possible hypotheses which provides a basis for deciding which hypothesis to
choose if there are two or more that fit the training data equally well.

When we introduce different learning algorithms in the following, describing their induc-
tive bias will help to better characterize these algorithms and gain some understanding
whether the application of a particular algorithm is appropriate for a given problem set-
ting. Certainly, this will greatly depend on the nature of the document source which is
assumed to generate the documents as described above.

Text Properties

Before starting to discuss some commonly applied text learning algorithms, let us look
more closely at the properties of text being represented as document vectors. Analyzing

108See Mitchell (1982).
109See Langley (1996), p. 18.
110See Lewis (1992b), p. 13.
111See Mitchell (1997), p. 64.
112See Mitchell (1997), p. 23.
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text properties can help to find out in general what methods are promising for text learning
tasks. We characterize data properties in text domains by the following four points:113

• High-dimensional feature space.As we have seen in Section 3.2, there are com-
monly some ten thousand index terms which are used to represent text, despite the
fact that we chose to use a rather simple representation. It is known from compu-
tational learning theory, that usually the number of training examples should be a
multiple of the number of features if reasonable results are to be guaranteed.114 For
a large number of features, however, obtaining a reasonable number of training doc-
uments easily becomes intractable, even when ignoring the fact that a person usually
has to hand-label the training documents for the supervised learning task. Solutions
that aim to remedy the latter point will be dealt with in Chapter 4. Nonetheless,
the problem of a reasonable training set size remains and will have a great impact
on the choice of the learning methodology. In fact, we will see that several of the
commonly applied learning algorithms to do not iteratively optimize the parameters
of the hypothesis. So, often there is no proper search process but a straightforward
computation of parameters based on the training documents.

• Sparse document vectors.Even though the number of possible index terms is usu-
ally very large, only very few actually occur in a particular document. We are there-
fore dealing withsparsedocument vectors. The high-dimensional feature space in
which documents are represented is therefore mostly empty. This makes the prob-
lem of supervised learning in a high-dimensional feature space even more severe.115

• Few irrelevant features.The dimensionality reduction techniques presented in Sub-
section 3.2.3 aim at reducing the number of features used to represent documents
under the constraint that the remaining set of features should still discriminate the
different classes well. Hence, dimensionality reduction tacitly assumes that some of
the features are irrelevant for the classification problem. Experiments show, how-
ever, that even those features that are discarded as they are assumed less informative
according to a given feature selection measure often bear some information based
on which classes can be discriminated better than random.116 We can thus conclude
that there are only few irrelevant features in text classification. The class descrip-
tions are therefore said to bedense.

• Linearly separable classes.Experiments with some commonly used text corpora
show that many classes are linearly separable.117 Two classes are said to be linearly
separable if they can be separated by a single hyperplane. In many cases, linear sep-
arability may be facilitated by the high-dimensional feature space. Nevertheless, it
also greatly depends on the class definitions. In information filtering, the relevance
classes are generally rather broad and thus may not be linearly separable. As this

113See Joachims (1997b), pp. 3–4.
114See Lewis (1992b), p. 14.
115See Jimenez (1998) for discussion of supervised classification in high-dimensional space.
116See Joachims (1997b), p. 3.
117See Joachims (1997b), pp. 3–4, and Tong and Koller (2000), p. 1006.
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issue is related to the homogeneity of classes, it will be discussed in more detail in
Chapter 5.

The fact that classes are often linearly separable and generally only few training examples
relative to the high-dimensional feature space are available suggests that rather simple
learning algorithms be used. And as we will see below, some of the most widely used
text learners are indeed simple but still provide surprisingly effective classifiers. Two
approaches, namely the naı̈ve Bayes classifier and the instance-averaging prototype-based
classifiers, can be characterized asadditive, which makes them especially well suited
for learning dense classes from sparse input vectors.118 Another learning paradigm that
appears particularly appropriate for this kind of data is the support vector machine.119

3.3.2 Learning Algorithms

A variety of text learning algorithms have been studied and compared in the literature.120

In the following, we describe some widely applied supervised learning algorithms which
are based on different learning paradigms. We consider three different types of classifiers.
First of all, a very prominent kind are similarity or distance classifiers such as the nearest-
neighbor rule which we refer to as prototype-based classifiers. Second, also very common
to text classification are probabilistic classifiers such as the naı̈ve Bayes classifier. The
third type deals with support vector machines. Finally, we give a brief overview of further
approaches. Note that the subsequent subsection deals with ensembles of classifiers by
discussing frameworks for learning and combining multiple classifiers.

Prototype-based Classifiers

Prototype-based classifiers represent each class in terms of prototypes, thus using the
same representational language for the classification model as for the examples.121 Here,
this corresponds to the vector space of distinct index terms as introduced in Section 3.2,
typically in combination with atfidf-style term weighting scheme.

Having generated a set of prototypes based on the training documents, classifying a new
document by means of prototypes is a two-step process. First the similarity of the new
document to each prototype is computed.122 These similarity scores are then used to
determine the class label of the new document.

118See Kivinen and Warmuth (1995), p. 290.
119See Joachims (1997b), p. 4.
120For example, see Dumaiset al. (1998), Yang (1999), and Yang and Liu (1999).
121Langley (1996), pp. 96–101, describes these methods as instance-based classifiers.
122In information retrieval and text classification, similarity measures are applied more frequently than

distance measures. Note, however, that distance can also be interpreted as dissimilarity between two items
and is, thus, in some way inversely related to similarity. Therefore, when we refer to similarity measures in
the following, this can likewise refer to distance measures in combination with an appropriate transforma-
tion function.
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This brief description suggests that there be three prime components to any prototype-
based classifier, namely a means of generating prototypes from training examples, an
appropriate similarity measure that measures the degree of resemblance between two ob-
jects in feature space, and a classification scheme for determining the class label of a new
example based on its similarity scores to the prototypes:

• Prototype generation.Prototype-based classifiers vary greatly in how the set of pro-
totypes is generated. The prototypes may either be true examples as they are pro-
vided with the training set or be artificially constructed. A whole span of techniques
which transform training examples into suitable prototypes can be considered with
two very simple approaches falling at opposite ends of this spectrum.123

At the one end, each training example is assumed a prototype. At this point we ig-
nore the fact that a training document need not necessarily be prototypical. Without
any preprocessing or learning step, all training examples are retained and used for
comparison with new examples. Typically, the instance-storing approach leads to
the family of nearest-neighbor rules which we will discuss shortly. On the other
end, each class is represented by a single prototype computed as the average of
all training examples assigned to it, which can thus be referred to as aninstance-
averagingapproach.

In between these simple instance-storing and instance-averaging approaches, there
are techniques that use either multiple prototypes to represent each class or—
depending on the side you look at it from—techniques that use an edited, i.e. usually
condensed or reduced, set of training examples to represent classes. The family of
instance-based learningalgorithms proposed by Ahaet al. (1991) comprises some
well-known examples of this type. Note that we consider approaches which try to
handle heterogeneous class definitions by means of multiple prototypes per class in
Chapter 5. At this point, we concentrate on the simple instance-averaging methods.

In terms of the generative document source, the inductive bias of instance-averaging
approaches can be described as follows. The assumption is that there is a one-to-one
correspondence between classes and mixture components with uni-modal distribu-
tions so that each class can be represented by a single prototype. So, at a severe
cost in representational and learning power, the simple instance-averaging method
is very efficient and elegant.124 Its decision boundaries are determined by single
hyperplanes, so that only linearly separable and singly connected classes can be
distinguished. Using the vector space model of distinct index terms as representa-
tional language theoretically allows even the instance-averaging method to model
arbitrary hyperplanes. Note, however, that decision boundaries cannot be learned.
In other words, the hyperplanes constructed by the instance-averaging method are
completely determined by the average values of the training examples. There is no
optimization process with respect to a given effectiveness measure involved in the
prototype generation step. Hence, other simple methods that at least try to adapt

123See Langley (1996), p. 139.
124See Langley (1996), pp. 100–101.
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decision boundaries generally seem to compare favorably to the simple instance-
averaging method.125 Simple instance-averaging methods are therefore seldom ap-
plied in general classification tasks. Nevertheless, originating from information
retrieval, some straightforward and often successfully applied approaches to text
classification problems are based solely on this simple instance-averaging idea.

• Similarity measure.The similarity measure is used to determine the degree of re-
semblance between two document vectors. To achieve reasonable classification
results, a similarity measure should generally respond with larger values to doc-
uments that belong to the same class and with smaller values otherwise. In the
following, we describe several similarity measures with a focus on those that are
frequently used in information retrieval and text classification.126

The most well-known distance measure is the distance between two points in Eu-
clidean space. It is a preferred choice in many applications because of its simple
geometric interpretation. To evaluate the Euclidean distance between two docu-
ments, we consider their document vectors as points in them dimensional feature
space, yielding

dist(d1,d2) =

√√√√ m∑
j=1

(w1,j − w2,j)2 (3.28)

wherewi,j is the weight of termtj in documentdi. The range of the Euclidean
distance function is[0,∞) with dist(d1,d2) = 0 ⇐⇒ d1 = d2. A major disad-
vantage of the Euclidean distance for text classification tasks is that two document
vectors may have a large degree of similarity even though they do not have any
terms at all in common.127 Therefore, it is not widely used in the context of text
classification. However, in some cases we will use Euclidean distance to better
illustrate the fundamental ideas of some classifiers to be described subsequently.

The dominant similarity measure in information retrieval and text classification is
the cosine similaritybetween two document vectors. Geometrically, the cosine
similarity evaluates the cosine of the angle between two document vectorsd1 and
d2 and is, thus, based on angular distance. This allows us to abstract from varying
document length. The cosine similarity can be calculated as the normalized dot
product, yielding128

simcos(d1,d2) = cos(6 (d1,d2)) =
d1 · d2

‖d1‖ · ‖d2‖
(3.29)

=

∑m
j=1 w1,j · w2,j√∑m

j=1 w
2
1,j

√∑m
j=1 w

2
2,j

(3.30)

125See Langley (1996), p. 101.
126See Salton and McGill (1983), pp. 201–204, Wanget al. (1992), or Losee (1998), pp.45–62.
127See Willett (1988).
128For example, see Salton and McGill (1983), p. 124 and p. 203.
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wherewi,j again denotes the weight of termtj in documentdi. The range of the co-
sine similarity is the unit interval[0, 1] for non-negative vector components129 with
simcos(d1,d2) = 0 ⇐⇒ d1 ⊥ d2 andsimcos(d1,d2) = 1 ⇐⇒ d1 = λd2. Note
thatd1 andd2 are perpendicular so that their degree of similarity is zero only if they
do not have any terms at all in common. The computation of the cosine similarity
simplifies to the dot product of the involved documents if the document vectors
are normalized to unit length. Furthermore, for normalized document vectors, the
following monotonic relationship holds between cosine similarity and Euclidean
distance:

dist(d1,d2) =
√

2 (1− simcos(d1,d2)) (3.31)

Two other similarity measures common to information retrieval are the Dice and
Jaccard coefficients, which are defined as130

simDice(d1,d2) =
2
∑m

j=1 w1,j · w2,j∑m
j=1 w1,j +

∑m
j=1 w2,j

(3.32)

simJaccard(d1,d2) =

∑m
j=1 w1,j · w2,j∑m

j=1 w1,j +
∑m

j=1 w2,j −
∑m

j=1 w1,j · w2,j

(3.33)

Note that the three similarity measures introduced in (3.30), (3.32), and (3.33) are
in some way normalized by vector length. This type of normalization was found
to be significant in information retrieval research.131 Furthermore, they are com-
pelling since they are easy to calculate and often found as effective as other more
complicated measures.132

In the following, sim(d1,d2) denotes any similarity function for measuring the
degree of resemblance between two documents. Notice, however, that throughout
this dissertation, we generally assume that the cosine similaritysimcos is applied
when prototype-based classifiers are used.

• Classification scheme.Two interpretive methods are typically used to determined
the class label of a new document based on its similarity scores to each of the
generated prototypes, namely the threshold and the more common competitive in-
terpretation.133

Thresholding a similarity score to decide upon the class labels may be used for
binary classification tasks when only one of the classes is represented by a single
prototype. Also, if multiple assignments of documents to class labels are desired,
thresholding similarity scores would be a straightforward interpretation.

129Using the text representation introduced in the previous section, a naturally occurring document is
represented by a vector with componentswi ≥ 0. For artificially constructed documents, however, this
property has to be established by setting components with negative values to zero.

130See Salton and McGill (1983), pp. 202–203.
131See Willett (1983), p. 142.
132See Willett (1988), and Salton and McGill (1983), p. 204.
133See Langley (1996), p. 14, who further considers logical interpretation.
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Yet, when assigning new documents to exactly one of two or more classes, the com-
petitive interpretation is commonly applied. A simple competitive decision scheme
is to predict the class associated with the nearest prototype. In the prototype-based
framework, thiswinner-take-allprinciple is often referred to asnearest-prototype
classification. More elaborate schemes could take a simple or weighted vote among
theK, say, nearest prototypes. This may be useful when the set of generated proto-
types is not truly prototypical, for example due to outliers in the training set. And
this may be the case for the nearest-neighbor rules as we will see below.

In the following, we describe some realizations of simple prototype-based classifiers. The
Rocchio algorithm and its variants such as the single-prototype classifier are instance-
averaging methods, while nearest-neighbor rules are typical instance-storing methods.

The Rocchio Algorithm. The Rocchio algorithm was originally developed as a method
for relevance feedback in information retrieval.134 As such, it is commonly used to auto-
matically optimize queries initially formulated by a user on the basis of relevance judge-
ments for retrieved documents.135 Slightly modified variants of this algorithm are fre-
quently applied and often serve as benchmark classifiers in text classification tasks.136 In
this paragraph, we first describe Rocchio’s original method before we look at its variants
tailored to address text classification tasks.

Relevance feedback is an iterative information retrieval process. Assume a retrieval sys-
tem which returns a ranked list of documents to a query representing a particular user
interest. Users are supposed to mark a subset of these documents as either relevant or
non-relevant according to their interests. Rocchio’s method provides a formula for incor-
porating these relevance judgements into the original query, yielding a refined query. Let
q denote the representation of the initial query. The refined queryq′ is obtained by adding
the relevant documents to the original query and subtracting the non-relevant documents:

q′ = αq + β
1

n+

∑
d∈D+

d− γ 1

n−

∑
d∈D−

d (3.34)

whereD+ is the set ofn+ documents marked relevant by the user, andD− is the set
of n− documents marked non-relevant by the user. Notice that the document vectors
are assumed to be normalized to abstract from different document lengths. By varying
the parametersα, β, andγ, the relative importance of both the initial query vectorq
and the relevant and non-relevant documents can be adjusted. Note that negative vector
components of the resulting queryq′ are set to zero.137 By repeating this query refinement
step, a user can automatically be supported in finding relevant documents without the need
for manually providing additional query terms.

134See Rocchio (1971), pp. 313–323.
135See Salton (1971).
136For example, see Joachims (1997a), Joachims (1997b), p. 8, and Dumaiset al. (1998).
137See Rocchio (1971), p. 317.
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The Rocchio algorithm can easily be adapted for binary text classification tasks.138 Note,
however, that in information retrieval a query is associated with one specific topic. In text
classification, on the other hand, a class may comprise more than one topic. Hence, recall
the assumption for simple instance-averaging approaches, which states that classes can
be represented by a single prototype. Whether this restriction will cause problems in the
case of broad class definitions will be investigated in Chapter 5.

Without loss of generality, letrel andnon denote the two classes. And particularly in
Equation (3.34), we replace the setsD+ andD− of documents marked relevant and non-
relevant by the user with the sets of relevant and non-relevant training documents,Drel

andDnon , respectively. Recall that the document vectors are assumed to be normalized.
Since there is no initial queryq, we obtain the following modification:

prel = β
1

nrel

∑
d∈Drel

d− γ 1

nnon

∑
d∈Dnon

d (3.35)

Here, negative vector components of the resulting prototypeprel of the relevant class are
set to zero as well. The remaining parametersβ andγ are used to control the relative
importance of relevant and non-relevant documents. The classification of new documents
requires further consideration. While in information retrieval a collection of documents
is ranked according to a specific query, in the context of binary text classification we have
to decide upon one of the two class labels for each new document. Thus, we threshold
documents according to their similarity to the relevant prototype, yielding the following
binary decision rule:

HRocchio(d) =

{
rel if sim(d,prel) > θ
non otherwise

(3.36)

whereθ denotes the threshold parameter which can either be manually provided by the
user or be automatically determined based on the training documents. In the latter case,
we could applyv-fold cross-validation to obtain unbiased similarity scores for each train-
ing document. On the basis of these scores, the thresholdθ could then be set so as to
optimize a given effectiveness measure. Note that the similarity scoresim(d,prel) bet-
ween the new document and the relevant prototype can be used as a confidence value for
the relevant class.

For classification tasks with two or more classes, the following modification of the
Rocchio algorithm can be used. Instead of evaluating only one prototype for the rele-
vant class, we now evaluate a prototypepci for each classci ∈ C:139

pci = α
1

nci

∑
d∈Dci

d− β 1

n− nci

∑
d∈D\Dci

d (3.37)

Again, negative components ofpci are set to zero. The resulting set of prototypes{pci},
ci ∈ C, represents the classifier, which is also known as thetfidf classifier owing to

138See Joachims (1997b), p. 8.
139See Ittneret al. (1995), p. 303. Also see Cohen and Singer (1996), Lewiset al. (1996), and Joachims

(1997a) for text classification applications of the Rocchio classifier.
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the tfidf weighting scheme typically used for document and classifier representation in
this context. A new document is assigned to the class whose prototype has the largest
similarity to the new document:140

Htfidf(d) = arg max
ci∈C

sim(d,pci) (3.38)

wherearg maxx∈X f(x) returns the value ofx that maximizesf(x).

A probabilistic analysis of thetfidf classifier leads to a probabilistic variant of the Rocchio
algorithm, which is known as the PrTFIDF classifier.141 This approach provides theoret-
ically motivated settings for the term weighting scheme, the similarity measure, and the
parametersβ andγ for combining the class-specific document averages, which are often
more effective than the plaintfidf classifier.

Note that the learning phase for variants of the Rocchio algorithm only involves simple
computations of document vector averages. In fact, there is no explicit optimization pro-
cess with respect to a given effectiveness measure. In assuming that a single prototype
is sufficient to represent a class, these algorithms have a strong search bias in addition
to their restrictive preference bias. For this reason, these algorithms can be implemented
extremely efficiently with a time complexity linear in the number of training examples
n and the number of index termsm, i.e. learning time is bounded byO(nm). Further,
classifying a new document is linear in the number of classesk and the number of index
termsm; hence, running time for classification is bounded byO(km).

The Single-Prototype Classifier. Thesingle-prototype classifier(SPC) is another vari-
ant of the Rocchio algorithm. Moreover, it truly corresponds to the simple instance-
averaging approach to prototype generation described above. It is only described sepa-
rately in this paragraph because we will make extensive use of this algorithm in this work.
Recall that it is assumed as above that each class can be represented by a single prototype.
This accords this algorithm just like all Rocchio variants a very efficient implementation.
In Chapter 5, we will examine whether using more than one prototype per class can help
to improve classification effectiveness, especially when class definitions are broad and
classes are likely to be heterogeneous.

In particular, the single-prototype classifier is an instantiation of thetfidf classifier intro-
duced above with parameters fixed toα = 1 andβ = 0, yielding142

pci =
1

nci

∑
d∈Dci

d (3.39)

as a prototype for each classci ∈ C. Hence, each prototypepci is the plain average
(centroid) of all training documents belonging to classci. The decision rule for a new
document is the same as for thetfidf classifier:

HSPC(d) = arg max
ci∈C

sim(d,pci) (3.40)

140See Joachims (1997a).
141See Joachims (1997a).
142The same parameter setting is used by Lang (1995), p. 333, and Dumaiset al. (1998).
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Figure 3.3: The single-prototype classifier exemplified with Euclidean distance (left) and cosine similarity (right). The solid square
and circle labeledpnon andprel are the prototypes of the two relevance classes. The solid triangle denotedd is a new document to
be classified. According to Euclidean distance,d is closer toprel , sinceδrel < δnon . According to cosine similarity,d is also more
similar toprel , sinceϕrel < ϕnon and, thus,cosϕrel > cosϕnon . Consequently,sim(prel , d) > sim(pnon , d), andd would be
labeledrelevantin both cases.

Figure 3.3 exemplifies a classification decision of the single-prototype classifier for a new
documentd using both Euclidean distance and cosine similarity for a two-class problem,
where documents are represented by only two index terms. Each index term corresponds
to one dimension in the plane as described in Definition 3.2.1.

Nearest-Neighbor Rules. The nearest-neighbor concept is one of the most obvious and
well-known statistical approaches to classification.143 It has been intensively studied in
the pattern recognition community for over 40 years. Nearest-neighbor rules are widely
applied not only to general classification tasks but also to text classification.144

As stated in the introduction to prototype-based classifiers, nearest-neighbor rules simply
store all training documents. In other words, there is no effort in terms of learning from
these examples. Generalization beyond the training examples takes place at classifica-
tion time. Therefore, nearest-neighbor rules are sometimes calledlazy learningmethods.
The inductive bias of all nearest-neighbor rules corresponds to the fundamental assump-
tion that examples which are close together in feature space according to an appropriate
similarity measure will have the same class label. In order to predict the class label of
a new document, the closest documents must be determined. Hence, the new document
must generally be compared to every stored training document. So, time complexity for
classifying a new document is linear in the number of stored training documentsn and in
the number of index termsm, i.e. it is bounded byO(nm). For a large number of stored
training documents, applying the nearest-neighbor rule can be very inefficient computa-
tionally, particularly when compared to instance-averaging methods. Note, however, that
the process of finding the nearest neighbors can be speeded up dramatically by using effi-
cient indexing techniques such askd-trees, which store the training examples at the leaves
of a tree with similar examples at the same or at nearby nodes.145

143For example, see Dasarathy (1991) for an overview.
144See Masandet al. (1992), Li and Jain (1998), or Yang and Liu (1999).
145See Mitchell (1997), pp. 230–247.
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Figure 3.4: Classification decision for a new documentd according to theK-NN rule with K = 1 (left) andK = 5 (right),
using Euclidean distance. Thej-th nearest neighbor is denoted bynj . If only the nearest neighborn1 is involved in the decision
(left), d would be labelednon-relevant. However, if more neighbors are considered, sayK = 5, d would be labeledrelevant. This
demonstrates, that the1-NN rule is generally more sensitive to outliers.

Classifying a new documentd according to the simple nearest-neighbor rule is accom-
plished by comparing the new document to each document in the training set and assign-
ing the class label of the closest document. This leads to a decision surface determined by
the combination of convex polygons surrounding each training example, which is often
illustrated by aVoronoi diagramof the feature space.146 The decision rule can simply be
written as

H1-NN(d) = T (arg max
d′∈D

sim(d,d′)) (3.41)

In regions where the class-specific distributions of training examples overlap, the simple
one-nearest-neighbor rule commonly leads to a futile over-partition of the feature space.
In particular, even though each training document is taken as a prototype, a certain docu-
ment does not actually have to be prototypical for any of the classes. For example, there
may be outliers in the training set, which can cause misclassifications. It is easy to see
that the simple nearest-neighbor rule is very sensitive to noise. Figure 3.4 exemplifies
this problem, which can often be solved by considering theK nearest neighbors rather
than just the one nearest neighbor. ForK � 1, this approach is less sensitive to noise
within the training data since noisy training examples are usually outnumbered by more
representative examples.147

This idea leads to a generalization of the simple nearest-neighbor rule, which is known as
theK-nearest-neighbor rule (K-NN).148 Performance greatly depends on the choice ofK.
While, as mentioned above, the simple one-nearest-neighbor rule (K = 1) may lead to a
futile over-partition of the feature space; too large a value forK relative to the training
set size may lead to a partition that is too coarse. The value forK could be optimized by
using leave-one-out cross-validation on the training set, which would be rather efficient
since there is no learning effort. Typically,K is chosen so as to avoid ties. For example,
for two-class problems,K is chosen to be odd. TheK-NN decision rule is given by

HK-NN(d) = arg max
ci∈C

Kci (3.42)

146See Mitchell (1997), p. 233.
147See Mitchell (1997), p. 234.
148For example, see Cover and Hart (1967).
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whereKci denotes the number of documents among theK nearest neighbors belonging
to classci. In statistical terms, the fractionKci

K
amounts to a local estimate of the posterior

probability of classci (see below). It may, therefore, be used as a confidence value for the
corresponding class.

Instead of considering solely the plain number of documents in each class among theK
neighbors, a further refinement to the nearest-neighbor concept is to weight each neighbor
by its similarity to the document to be classified. This approach is known as thedistance-
weightedK-nearest-neighbor rule.149 Note that this relaxes the problem of finding a
suitable value forK. In fact, at the cost of larger computational effort, we could even
consider using all training documents (K = n) when determining the class label of a new
document.150 The modified decision rule can be formulated as

HK-NN′(d) = arg max
ci∈C

K∑
j=1

sim(d,nj) δ(ci, T (nj)) (3.43)

wherenj denotes thej-th nearest neighbor with respect to the particular documentd
andδ(x, y) is the Kronecker delta function (identity operator), which returns 1 if its two
arguments are the same, i.e. in this case if the training documentnj belongs to classci,
and 0 otherwise. Here, the sum of the similarity scores for each class can be used as a
confidence value. The scores could be further normalized through division by the sum of
the similarity scores of allK nearest neighbors.

Bayesian Probabilistic Classifiers

Bayesian classifiers build on Bayes’ decision theory as a fundamental statistical approach
to the problem of pattern recognition. It is based on the assumption that the decision
problem can be formulated in probabilistic terms according to a specific model which
describes the problem setting. When the relevant probabilities are known, classification
decisions will be optimal with respect to classification accuracy.151

In the following, we first identify the relevant probabilities and show how they are con-
nected by Bayes’ theorem. Then, we present suitable decision rules. Since the relevant
probabilities are generally unknown, the main part deals with the problem of parameter
estimation. Here, we primarily focus on the naı̈ve Bayes classifier, which allows efficient
computation of the relevant probabilities by making the simplifying assumptions that all
index terms in a document occur conditionally independent given the class label. Al-
though this assumption obviously does not hold in real-world domains, the naı̈ve Bayes
classifier is among the most effective text learning algorithms known.152 Also, this simple
Bayesian classifier has been found to perform well across a variety of domains.153

149See Dudani (1976), for example. Note that in general classification problems distance measures are
more commonly applied than similarity measures.

150See Mitchell (1997), p. 234.
151See Duda and Hart (1973), pp. 10–11.
152See Mitchell (1997), p. 155 and pp. 180–184.
153See Langleyet al. (1992), p. 224., or Domingos and Pazzani (1997).
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The Bayesian Framework. The following probabilities are primarily involved in the
context of Bayesian text classification:

• P(ci), the prior probability of a classci ∈ C

• P(d|ci), the likelihood of observing documentd belonging to classci

• P(ci|d), the posterior probability of a classci having observed documentd

The framework for Bayesian classification is based on Bayes’ theorem, which is used
to express the posterior probability of a class given a document in terms of the prior
probability of a class and the likelihood of a document given a class, yielding

P(ci|d) =
P(d|ci) P(ci)

P(d)
(3.44)

where
P(d) =

∑
ci∈C

P(d|ci) P(ci) (3.45)

is the likelihood of documentd. In particular, Bayes’ theorem shows how the observation
of a documentd changes the prior probabilityP(ci) to the posterior probabilityP(ci|d).154

The Bayesian approach to classifying a new document is to predict the most probable class
given the document vectord, which yields the maximum a posteriori (MAP) decision
rule:155

HMAP(d) = arg max
ci∈C

P(ci|d) (3.46)

= arg max
ci∈C

P(d|ci) P(ci)

P(d)
(3.47)

= arg max
ci∈C

P(d|ci) P(ci) (3.48)

Since it is constant for any particular documentd, the likelihoodP(d) can be omitted
when simply deciding upon the class labels. Its only purpose is to normalize the posterior
probabilities so that they add up to one and it is, therefore, only relevant when confidence
values are desired for the classification decision.

In some cases, assuming uniform class priors may be more appropriate. Generally, vary-
ing the class priors is a straightforward way to respect class-specific misclassification
costs. In particular, using uniform class priors suggests that the cost of misclassifying
an example be inversely related to the actual probability of observing an example of a
particular class. Note that, with uniform priors, the decision rule selects the class which
maximizes the likelihoodP(d|ci) and is, thus, referred to as themaximum likelihood(ML)
hypothesis:156

HML(d) = arg max
ci∈C

P(d|ci) (3.49)

154See Duda and Hart (1973), p. 11.
155See Mitchell (1997), p. 157.
156See Mitchell (1997), p. 157.
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Parameter Estimation. Through Bayes’ theorem, the problem of determining a class
posterior probability is translated to finding the class prior probability and the likelihood
of a document given a class. The advantage of this transformation is that the latter proba-
bilities can be estimated from the training data. Note that these probabilities are generally
computed on the basis of document and term frequencies within the training set.

Assuming that documents are generated according to a probabilistic mixture model as
introduced above, the learning task can be posed as estimating the parameters of this
document source.157 Let the set of parameters describing the mixture model be denoted
by θ. We assume that there is one mixture component for each class so that there is a
one-to-one correspondence between mixture components and classes. Each component is
parameterized by a disjoint subset ofθ. In addition to these parameters, each component
is associated with a mixture weightθci = P(ci), which corresponds to the class prior
probability of classci. When generating a document, the model first randomly selects
one of the class-specific mixture components, sayc, according to the mixture weights.
In a second step, the selected mixture component creates the document according to its
parameters with distributionP(d|c).

Given the training data, the prior probability of a classci is typically determined by the
maximum likelihood estimate as the fraction of documents in it, giving

θ̂ci =
nci
n

(3.50)

wheren is the total number of training documents andnci = |Dci| is the number of
examples belonging to classci.

What still remains to be done is to estimate for all classes the likelihood of a document
given a class. Assuming the generative model, these probabilities certainly depend on the
distributions which govern the generation of the index terms by the class-specific mixture
components. However, the generally large number of index terms and the complex de-
pendencies among them, e.g. due to grammar and topicality, render its direct computation
intractable unless some simplifying assumptions are made. And this is what the following
well-known approach does with respect to the dependencies among the index terms.

The Näıve Bayes Classifier. The näıve Bayes assumption is that the index terms in a
document occur conditionally independent given the class label. In other words, the as-
sumption is that, given the class label of a document, the probability of observing the
conjunction of its index terms can be expressed as the product of the probabilities for the
individual index terms.158 This drastically reduces the number of parameters that must
be estimated from the training data to the number of index termsm times the number
of classesk. Let these parameters for the class-conditional term probabilities be written
θt|c = P(t|c). Clearly, this assumption is generally not true. Yet, the naı̈ve Bayes clas-
sifier often performs well in practice. This behavior can be explained by the fact that,

157The description of the document source is based on Nigamet al. (2000), p. 107.
158See Mitchell (1997), p. 117.
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although the näıve Bayes classifier generally produces poor approximations to the distri-
bution of the posterior probabilities,159 it often predicts class labels effectively since the
classification decision is only a function of sign with an appropriate bias parameter.160

There are, in fact, two distinct classifiers which build on the naı̈ve Bayes assumption: the
multivariate Bernoulli and the multinomial approaches. Both abstract from the order of
index terms in a document, which permits use of the vector space representation. The
difference lies in the term weighting scheme which specifies the event model underlying
term probability estimation.

The Multivariate Bernoulli Model.161 This model considers binary features which indicate
the presence or absence of a term in a particular document. Hence, index term frequencies
are not significant. Letwbin(d, t) ∈ {0, 1} be one, if termt occurs in documentd, i.e. if
tf d(t) > 0, and zero otherwise. With the naı̈ve assumption that each term is conditionally
independent given the class label, the likelihood of a document given the class is computed
as the product of class-dependent term probabilities in closed form by162

P(d|c) =
∏
t∈V

P(t|c)wbin(d,t)(1− P(t|c))1−wbin(d,t) (3.51)

such that, with respect to the generative model, a document can be seen as a collection
of multiple independent Bernoulli experiments. And there is exactly one experiment for
each index term with parameterθt|c = P(t|c). Note that this approach explicitly includes
the non-occurrence probability of index terms in a document.

For each classc ∈ C and each index termt ∈ V, the parameterθt|c is computed from
the training data as the Laplace corrected maximum likelihood estimate which avoids
probabilities of zero or one:163

θ̂t|c =
1 + nc(t)

2 + nc
(3.52)

wherenc(t) denotes the number of documents belonging to classc in which termt appears
at least once, andnc is the total number of documents in classc. Note that the Laplace
priors supplement each of the two possible outcomes of the Bernoulli experiment, namely
the presence or absence of an index term, with a count of one.

This approach has frequently been used for text classification problems.164 It can be con-
sidered as a Bayesian network without dependencies among the index terms, so that the
presence or absence of an index term depends solely on the class label of a document.
The simple multivariate Bernoulli approach and the approach that tries to capture all de-
pendencies among index terms lie at the two ends of a wide spectrum of dependency that
can be modeled by a Bayesian network. In between these extremes, there are approaches
that consider a limited number of dependencies among index terms.165

159The term independence assumption causes naı̈ve Bayes to produce extreme, i.e. almost zero or one,
class posterior estimates, see Nigamet al. (2000), p. 110.

160See Domingos and Pazzani (1997), and Friedman (1997), pp. 63–64.
161This description follows McCallum and Nigam (1998a).
162Also see Scḧurmann (1996), p. 76.
163See Ristad (1995) for a study on different smoothing priors.
164See Maron (1961), Lewis (1992a), Larkey and Croft (1996), or Dumaiset al. (1998).
165See Sahami (1998), pp. 124–142, and Dumaiset al. (1998).
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The Multinomial Model.166 In contrast to the binary term weights used for the multivariate
Bernoulli model, the multinomial model uses plain term frequencies in a document. Let
the term frequency of termt in documentd be denoted bytf d(t). A document is consid-
ered as an ordered sequence of index terms, which are drawn from a fixed vocabulary by
the generating component. We make the simplifying assumption that the length of a doc-
ument is independent of its class. In addition, the naı̈ve Bayes assumption states that the
term probabilities are independent of a term’s context and position. Hence, a document
is considered to be drawn from a multinomial distribution of index terms with as many
independent trials as the length of the document. In statistical language modeling, this
approach is known as auni-gram language model. Now, the likelihood of documentd
given its class is given by the multinomial distribution as

P(d|c) = P(‖d‖1) ‖d‖1!
m∏
i=1

P(ti|c)tf d(ti)

tf d(ti)!
(3.53)

where‖d‖1 =
∑m

i=1 tf d(ti) denotes theL1 norm of documentd and, thus, expresses
length in terms of the sum of index term occurrences. Furthermore,P(‖d‖1) denotes the
probability of observing documentd with the specified length. However, this probability
has no effect on the class decision and could therefore be omitted since it is assumed to
be independent of the class and is a constant for any given document.

The parameters of the class-specific mixture component for each class are the term prob-
abilities denoted byθt|c = P(t|c). Again, for each classc ∈ C and each index termt ∈ V,
the parametersθt|c are computed as the Laplace corrected maximum likelihood estimate,
yielding

θ̂t|c =
1 +

∑
d∈Dc tf d(t)

m+
∑m

i=1

∑
d∈Dc tf d(t)

(3.54)

This time, the Laplace supplement for the denominator ism rather than2 as above, since
there arem possible outcomes for each trial, i.e. each possible index term.

The multinomial approach has also frequently been applied to text classification tasks.167

An empirical comparison of several commonly used text corpora shows that the multi-
nomial approach generally outperforms the multivariate Bernoulli approach due to the
additional term frequency information provided.168

Learning both the multivariate Bernoulli and the multinomial model corresponds to esti-
mating thekm parameters for the term probabilities in addition to the class priors. For
this reason, both approaches can be implemented extremely efficiently; time complex-
ity is bounded byO(nm) as, basically, it just requires aggregation of class-specific term
statistics over alln training documents. To classify a new documentd, the maximum a
posteriori rule is applied as introduced above:

HNB(d) = arg max
ci∈C

P(d|ci) P(ci)∑
c∈C P(d|c) P(c)

(3.55)

166This description follows McCallum and Nigam (1998a).
167See Lewis and Gale (1994), Joachims (1997a), Mitchell (1997), pp. 180–184, or Nigamet al. (2000).
168See McCallum and Nigam (1998a).



66 CHAPTER 3. TEXT CLASSIFICATION

w

support vectors

Figure 3.5: The solid lines illustrate two possible decision lines with small margin (left) and maximal margin (right) for training
examples of two classes which are linearly separated without error. The dashed lines parallel to the solid lines show how far the
decision lines can be moved without causing misclassifications. The distance between a solid decision line and any of the parallel
dashed lines is referred to as themargin. The support vector learning task is to find the decision line with maximal margin. Training
examples on the dashed lines (right) are termedsupport vectors.

Hence, classification time is linear in the number of classesk and the number of index
termsm, i.e. it is bounded byO(km).

Support Vector Machines

Support vector machines (SVMs) were proposed by Vapnik in 1979 and have gained
much popularity in the learning community within the last decade.169 They have only
recently been successfully applied to text classification problems.170 Note that support
vector machines can only solve binary classification problems. To handle problems with
k > 2 classes, these could be composed ofk binary decisions. In the following, we
assume a two-class problem and, without loss of generality, we denote the two classes by
c1 ≡ −1 andc2 ≡ +1, respectively.

Support vector machines are defined over a vector space where the problem is to find a
decision surface thatbestseparates the examples of two classes. To illustrate this basic
idea, we assume that the examples of the two classes are linearly separable without error.
A decision surface for a linearly separable problem is a hyperplane. We can thus formulate
the decision rule for the SVM in its basic form as a threshold function

HSVM(d) = sign{w · d + b} =

{
+1 if w · d + b > 0
−1 otherwise

(3.56)

whered is a document to be classified, and the weight vectorw and the biasb are learned
from training examples. The distance between the decision surface and the closest training
examples is referred to as themargin. We define thebestseparation in terms of themargin
between the training examples of the two classes. Hence, the support vector machine
learning task is to find the decision surface that maximizes the margin between the training
examples. Figure 3.5 illustrates this idea for linearly separable examples with only two
dimensions.

169See Vapnik (1995).
170For example, see Dumaiset al. (1998), Joachims (1997b), and Yang and Liu (1999).
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The following paragraph motivates why separating examples with maximal margin af-
fords support vector machines the ability to generalize well beyond the training examples.
Subsequently, we formulate the support vector learning task as an optimization problem
for classification tasks that can be linearly separated without error. In the end, however,
we drop these constraints and consider more realistic learning tasks. Note that the subse-
quent description follows Joachims (1997b).

The Structural Risk Minimization Principle. Why is the separation of examples with
maximal margin considered to be best? Originating from computational learning theory,
support vector machines are based on the structural risk minimization principle for which
error-bound analysis has been theoretically motivated.171 The idea is to find a hypothesis
H for which the lowest true error can be guaranteed. The true error of a hypothesisH
is the probability that it will misclassify a previously unseen and randomly selected test
example. Our objective is to provide an upper bound for the true error in terms of training
error and complexity of the hypothesis space.

In order to measure complexity of a hypothesis spaceH in terms of its expressiveness,
we introduce the Vapnik-Chervonenkis (VC) dimension ofH as follows.172

Definition 3.3.2 (VC Dimension)
The VC dimension of hypothesis spaceH, VC (H), is defined as the maximum number ξ
of examples that can be shattered byH. A set of ξ examples is shattered byH if and only
if it can be separated into two classes in all 2ξ possible ways by some hypothesis H ∈ H.
The VC dimension is equal to infinity if arbitrarily large finite sets of examples can be
shattered.

For instance, the set of linear threshold functions inr-dimensional space has a VC dimen-
sion of r + 1, since, by using hypotheses from this set, at mostr + 1 examples can be
shattered.

Assume the error of a hypothesisH on the set ofn training examples and the VC dimen-
sion of the hypothesis spaceH containingH. The true error ofH is bounded from above
with probability of at least1− η by173

error true(H) ≤ error train(H) + 2

√
VC (H)(log 2n

VC (H)
+ 1)− log η

4

n
(3.57)

Inequality (3.57) expresses the well-known trade-off between the complexity of the hy-
pothesis space and the training error.174 On the one hand, a simple hypothesis space
(small VC dimension) is unlikely to contain good approximations to the target function
and will, therefore, lead to high training and also to true error. On the other hand, too rich
a hypothesis space (large VC dimension) is likely to contain good approximations to the
target function, but the second term of the upper bound in (3.57) will be large. So, in spite

171See Cortes and Vapnik (1995), and Vapnik (1995).
172See Vapnik (1995), pp. 76–78.
173See Joachims (1997b), p. 4.
174See Vapnik (1995), p. 91.
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of a low training error, the true error may be large. This problem is generally known as
overfitting.175

We see that deciding on a hypothesis space with an appropriate complexity is a crucial
issue. But how do we determine what is appropriate? The structural risk minimization
principle provides an answer to this problem. We define a structure of hypothesis spaces
Hi in such a way that their VC dimensions increase:

H1 ⊂ H2 ⊂ . . . ⊂ Hi ⊂ . . . and ∀i : VC (Hi) ≤ VC (Hi+1) (3.58)

Now, with respect to this structure, the objective is to find the indexi? which minimizes
the upper bound for the true error given in (3.57). For examples that can be separated
without error, this means finding the hypothesis that has the lowest VC dimension and
correctly classifies all examples.

As mentioned previously, we are considering linear decision surfaces for separation of
the two classes. Recall that the VC dimension of linear threshold functions increases
linearly with the number features. Therefore, instead of building the structure based on
the number of features by using a feature selection strategy, support vector machines use
a refined structure which takes into account that most features in text classification are
relevant.176 This structure is based on the following lemma.

Lemma 3.3.1 (Vapnik (1982))
Consider hyperplanes of the form H(d) = sign{w ·d+b} as hypothesis spaceH. If all n
examples di are contained in a sphere of radius R and it is required that, for all examples,

|w · di + b| ≥ 1, with ‖w‖ = A (3.59)

then the VC dimension of this hypothesis space is bounded by

VC (H) ≤ min([R2A2], n) + 1 (3.60)

The lemma shows that the VC dimension of particular subsets of linear threshold func-
tions does not necessarily depend on the number of features but rather on the Euclidean
length‖w‖ of the weight vectorw. Consequently, it is possible to achieve good general-
ization in high dimensional spaces, if the resulting hypothesis has a small weight vector.
Note that the hyperplane which has the smallest weight vector is the one separating the
two classes with maximal margin, since the distance between the hyperplane and any
exampled is w·d+b

‖w‖ .177

The Optimization Problem. As posed above and justified by the structural risk min-
imization principle, the SVM problem in its basic form is to find the hyperplane that

175For example, see Mitchell (1997), pp. 66–69.
176See Joachims (1997b), p. 4.
177See Boseret al. (1992), p. 145.
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separates the linearly separable training examples with maximal margin. This problem
can be transformed into the following optimization problem.178

Minimize: ‖w‖ (3.61)

subject to: ∀ni=1 : yi [w · di + b] ≥ 1 (3.62)

whereyi ∈ {−1,+1} denotes the true class of the training documentdi ∈ D. The con-
straints given in (3.62) require that all training documents be classified correctly. Training
examples for whichyi [w · di + b] equals one are calledsupport vectors. Note that these
examples are the ones with minimal distance to the separating hyperplane as shown in
Figure 3.5. And only support vectors determine the location of the hyperplane. Note-
worthy is the fact that the number of support vectors is generally much smaller than the
number of training examples.179

Since the above optimization problem is hard to solve numerically, we use Lagrange mul-
tipliers to further transform the SVM problem into an equivalent quadratic optimization
problem:180

Maximize:
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαj yiyj (di · dj) (3.63)

subject to:
n∑
i=1

αiyi = 0 and ∀ni=1 : αi ≥ 0 (3.64)

For the solution of this type of optimization problem even in large-scale domains such
as text classification, there are efficient optimization algorithms which guarantee that the
optimum is found in polynomial time.181 Let the coefficientsα?i denote the solution that
maximizes (3.63).182 On the basis of these coefficients, the two components of the hyper-
plane specified by (3.61) and (3.62) can be constructed as:

w · d = (
n∑
i=1

α?i yi di) · d =
n∑
i=1

α?i yi (di · d) (3.65)

and b =
1

2
(w · d+ + w · d−) (3.66)

According to Equation (3.65), the weight vectorw of the resulting hyperplane is a linear
combination of the training documents. Obviously, a training documentdi contributes to
the weight vector only if the corresponding coefficientα?i is greater than zero. Note that
these are equivalent to the examples identified above as support vectors. Since all support
vectors are equidistant to the separating hyperplane, only one support vector of each class
is needed to compute the biasb. In Equality (3.66),d− andd+ denote any two support
vectors of the two classes−1 and+1, respectively.

178See Joachims (1997b), p. 5.
179See Cortes and Vapnik (1995), p. 275.
180See Vapnik (1995), pp. 129–131.
181For example, see Platt (1999), or Joachims (1999a).
182See Boseret al. (1992), pp. 147–148, for a discussion on the properties of this solution.
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Non-Linear Hypothesis Spaces. Support vector machines are able to learn not only lin-
ear but also non-linear hypotheses. To do this, examples are transformed by a non-linear
mappingΦ : IRm 7→ IRm̂ from the originalm-dimensional document representation space
into anm̂-dimensional feature space, where commonlym̂ > m. In this new document
representation space, it is then possible to find a separating hyperplane as described above.

Arbitrary types of hypotheses can be constructed by simply replacing the dot products in
(3.63) and (3.65) by different dot productsK(d1,d2).183 These general forms of the dot
product, which are referred to askernelor convolutionfunctions, have to satisfy Mercer’s
theorem such that they compute the dot product of the examplesd1 andd2 after they have
been mapped into the new feature space by the chosen non-linear mappingΦ:184

Φ(d1) · Φ(d2) = K(d1,d2) (3.67)

For example, the following convolution functions could be used to learn polynomial clas-
sifiers, radial basis function (RBF) networks, or neural networks with one hidden layer
and sigmoid activation functions:185

Kpolynomial(d1,d2) = (d1 · d2 + 1)d (3.68)

KRBF(d1,d2) = exp(γ (d1 − d2)2) (3.69)

Ksigmoid(d1,d2) = tanh(s (d1 · d2) + c) (3.70)

Note that using convolution functions typically introduces new parameters such as the
polynomial degreed or the varianceγ for the RBF networks. A straightforward and
efficient approach to finding the best parameter values is based on the upper bound for the
true error (3.57).186 The idea is to learn SVMs for different parameter values and, then, to
select that one with the lowest VC dimension.187

Non-Separable Problems. So far, we have described the support vector learning task
under the constraint that the training examples be separable without error. In reality,
however, this constraint is often violated. Therefore, we now assume that some training
examples may be misclassified. In this case, the learning task can be described as finding
the hyperplane which minimizes the number of errors on the training set and separates the
remaining training examples with maximal margin.188

In order to handle non-separable classes, Cortes and Vapnik propose that slack vari-
ables be introduced into the constraints (3.62).189 This necessitates adapting the objective
function (3.61) and also the transformed optimization problem (3.63) with its constraints
(3.64). A simpler approach is to monitor the coefficientsαi while optimizing (3.63).190

183See Cortes and Vapnik (1995), pp. 282–284.
184See Vapnik (1995), pp. 135–136.
185See Joachims (1997b), p. 6.
186See Vapnik (1995), pp. 137–141.
187See Joachims (1997b), pp. 6–7.
188See Cortes and Vapnik (1995), p. 281.
189See Cortes and Vapnik (1995), pp. 280–282.
190See Boseret al. (1992), p. 147, or Joachims (1997b), p. 7.
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Figure 3.6: A simple decision tree that identifies the topic ‘E-Commerce’ as relevant (following Sahami (1998), p. 37). Leaf nodes
are depicted as rectangles labeled with the class that they indicate. Ellipses correspond to decision nodes which test a document for
the presence or absence of the index terms with which they are labeled. The outcomes of each test are denotedyes andno depending
on whether the respective index term does or does not occur in a particular document.

Training examples which correspond to coefficients with large values are identified as
those close to the decision boundary and, thus, difficult to separate from examples of the
other class. If the valueαi of training documentdi exceeds a predefined threshold, this
document would be removed from the training set and the support vector machine would
then be learned from the remaining examples.

Further Approaches

Above, we have described some of the most commonly used text learning approaches.
Yet, there are numerous other approaches which have been successfully applied to text
classification tasks. Below, we briefly summarize some of these approaches.

Decision tree and rule set induction methods have been extensively studied in the machine
learning literature, and they have been successfully applied to a broad range of learning
tasks.191 For instance, Lewis and Ringuette (1994), Joachims (1997b), and Dumaiset al.
(1998) describe applications of decision trees to classify text documents. Figure 3.6 shows
a very simple decision tree that identifies the topic ‘E-Commerce’ as relevant. Several
propositional rule learning methods have been successfully applied to text classification
tasks, see Apté et al. (1994), Moulinieret al. (1996), and Cohen and Singer (1996), for
example. Cohen (1995a) and (1995b) has applied relational rule induction algorithms to
classify text documents.

We have seen that simple instance-averaging approaches such as variants of the Rocchio
algorithm describe linear decision surfaces in feature space. Since the corresponding
parameters are merely calculated, rather than optimized with respect to a given effective
measure, approaches that actually learn linear threshold functions are often preferred. For
example, Lewiset al. (1996) applied the Widrow-Hoff algorithm and the exponentiated-

191For example, see Mitchell (1997), pp. 52–80 and pp. 274–306, for a general overview.
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gradient algorithm to learn linear text classifiers which outperformed a simple Rocchio
variant on several tasks. Daganet al. (1997) present further mistake-driven text learners
which are based on Littlestone’s Winnow family of algorithms.192 The application of
linear, and also non-linear, polynomial classifiers to the information routing and filtering
task is described by Bayeret al. (1998). They state that the linear polynomial classifier
is similar to the linear least-square fit classifier proposed by Yang and Chute (1993). For
further successful applications of approaches from statistics such as linear discriminant
analysis or logistic regression, see Schützeet al. (1995) and Hullet al. (1996).

Learning linear threshold functions as above can also be formulated in a neural network
framework. Apart from this and the support vector machines with sigmoid convolution
functions, we did not consider neural networks approaches for text classification. Nev-
ertheless, several neural networks have been evaluated on text domains, for example, see
Scḧutzeet al. (1995), Wieneret al. (1995), Nget al. (1997), and Yang and Liu (1999).

3.3.3 Ensembles of Classifiers

In the preceding, we have described various approaches for learning text classifiers from
training documents. Each of these classifiers has its very own characteristics, which we
broadly described by its inductive bias. Because of these characteristics, distinct parame-
ter settings, and different views on the training data, classifiers generally vary in predicting
the class labels of documents. So, an interesting issue is the discussion of frameworks for
combining multiple classifiers. This usually involves integrating the responses of a set
of different classifiers, which is also known as acommitteeor anensemble of classifiers,
into a final classification decision so that the resulting entity behaves like a single classi-
fier. As a rule, the objective of combining classifiers is to improve overall classification
effectiveness.193 The idea behind this has its analogy in consulting several experts when
dealing with a difficult problem. Nevertheless, in some cases the objective is simply to
make classification tasks with more than two classes tractable for binary classifiers.194

The key distinguishing factor of ensemble learning approaches is the issue of whether
each of the classifiers involved treats the same classification task or whether each clas-
sifier is tailored towards solving a special subtask. Note that while there are numerous
approaches to learning ensembles of classifiers in the literature, we focus on those devel-
oped in the context of text classification in the following.

Ensembles of Classifiers Developed for the Same Task

The crucial factor in designing an ensemble of classifiers where each classifier solves the
same classification task is the strategy pursued to generate the set of diverse classifiers.
We will consider two different approaches: applying different learning algorithms and
manipulating the training data while using the same base learner.195

192See Littlestone (1988).
193See Dietterich (2000a), pp. 1–4, for explanations why combining classifiers can improve effectiveness.
194See Scḧurmann (1996), pp. 330–356, for example, for a general discussion on combining classifiers.
195See Dietterich (2000a) for a discussion on methods for constructing ensembles of classifiers.
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Given the ensemble of classifiers, the remnant task is to find a method for combining
the individual classification decisions. The most straightforward and often applied tech-
nique is to use either simple or weighted majority voting. Weighted votes are typically
based on a function of the classifiers’ effectiveness on the training data or the classifica-
tion scores. These scores commonly measure some degree of certainty or confidence for
a particular classification decision. Note, however, that the scores may require normal-
ization to make them comparable across different classifiers. This normalization step is
often referred to asconfidence mappingand will be discussed in Subsection 3.3.4. An
alternative approach is to treat classifier combination as a separate learning task.196 Yet,
simple voting approaches are often preferred since they are less prone to overfitting.

Using Different Learning Algorithms. Except for the confidence mapping approach
set out in Section 3.3.4, learning an ensemble of classifiers with different learning al-
gorithms is straightforward. Each individual classifier is learned independent from the
other classifiers by means of a particular learning algorithm. As mentioned above, clas-
sification decisions are often combined by voting techniques. Successful applications of
classifier ensembles constructed by different learning algorithms are described by Hull
et al. (1996), Larkey and Croft (1996), and Li and Jain (1998).

Modifying the Training Set. Two very popular ensemble learning paradigms that build
on inducing multiple classifiers from modified versions of the training set are known as
bootstrap aggregating, orbaggingfor short, andboosting. While bagging evolved in the
statistics community,197 boosting has its roots in computational learning theory.198 Note
that some approaches referred to asclassifier iterationin the field of pattern recognition
are very similar to the idea of boosting.199 The crucial factor for the success of these
approaches is the instability of the base learning algorithm: decision tree learning al-
gorithms, for instance, produce instable classifiers, whereas nearest-neighbor rules are
considered stable. Classification accuracy can be improved if changes in the training data
can cause significant changes in the classifier induced.200

Bagging modifies the training set by generating replicated bootstrap samples. That is,
each classifier in the ensemble is induced from an individual training setD′, which is
randomly sampled with replacement from the original training setD, so that both the new
and the original training set are of the same size. Generally,D andD′ differ as some
of the training examples fromD might not appear inD′ while others might occur more
than once. On average, about63% of the original training examples are found in the new
sample. The individual classifiers are combined by simple voting.201

The basic concept of boosting is that many rather weak classifiers can be combined into
a single highly effective classifier. While there are several variants of boosting, we focus

196See Scḧurmann (1996), pp. 338–341.
197See Breiman (1996).
198See Schapire (1990) and Freund and Schapire (1996).
199See Scḧurmann (1996), pp. 183–186.
200See Breiman (1996).
201See Breiman (1996).
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on the AdaBoost family of algorithms.202 AdaBoost iteratively creates classifiers from
modified versions of the training data. Yet, unlike bagging, these modifications are not
independent. Instead, they depend on the classification accuracy of previously induced
classifiers. In particular, AdaBoost maintains a weight for each training example, which
is adapted after each classifier is induced so as to give misclassified examples more weight
in the next iteration. If a learning algorithm can make use of weighted training examples,
the influence of an example increases with its weight. To use the weights otherwise, a
classifier can be learned from a new training set sampled from the original training set
with a probability distribution corresponding to the weights. In both cases, the resulting
classifiers are combined by weighted voting. The weights are determined on the basis of
the individual classification accuracies on the weighted training sets. Note that AdaBoost
is capable of making much larger changes in the training set than bagging, for example by
placing large weights on only a few of the training examples. Therefore, it may require
less instability in the learning algorithm than bagging.203 See Schapireet al. (1998) and
Schapire and Singer (2000) for applications of boosting in text domains.

Ensembles of Specialized Classifiers

When there are more than two classes, we may consider decomposing the classification
task into smaller subtasks for two reasons. On the one hand, the base classifier might
only be capable of handling binary tasks such as the support vector machine. Then the
problem has to be decomposed into binary subtasks and a classifier learned for each of
these subtasks. On the other hand, there might be some hierarchical structure defined on
the classes from which specialized classifiers may benefit. Generally, the same learning
algorithm is used to learn each of the specialized classifiers.

Binary Decomposition. In order to apply a binary classifier to a classification problem
with k > 2 classes, the problem could be split intok binary subtasks.204 A separate clas-
sifier is then learned for each subtask. When predicting the class label of a new document,
the responses of thek binary classifiers must be combined to obtain a final classification
decision. When allowing multiple class labels for a document, the classification decision
of each classifier could be used unchanged as provided. However, as we defined text clas-
sification as mapping documents onto exactly one class, we have to agree upon a single
class label, given the responses of the individual classifiers. To prefer any of the suggested
class decisions, we require that a classifier provide a measure of certainty or confidence
for its decision. From all the responses, the most confident is then selected. Note that
this simple decision rule requires that the confidence values be comparable across the dif-
ferent classification subtasks. As above, this also requires applying confidence mapping
techniques, which will be discussed in the following subsection.

202See Freund and Schapire (1996).
203See Dietterich (2000b), pp. 140.
204This is a special case of learning classifier networks, see Schürmann (1996), pp. 350–356.
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Class Hierarchy. In many text classification problems, in particular when the number
of classes is large, classes can be organized in a hierarchy of increasing specificity.205

Such class hierarchies are typically found, for instance, in internet guides or directories
such as Yahoo! (2000). For the sake of simplicity, we assume that this class hierarchy can
be represented in the form of a tree. The benefit from exploiting this structure is two-fold.

First, the complex classification problem may be decomposed into a set of much simpler
subtasks according to the splits in the classification hierarchy. So, at each node of the tree,
there is a classifier which must distinguish only a small number of classes. Noteworthy
is that this classification decision can often be made on the basis of only very few index
terms. With appropriate feature selection and learning algorithms, it is therefore possible
to focus solely on the relevant index terms for each particular classification subtask. Due
to this integration of feature selection with the hierarchical structure, the resulting classi-
fier is more robust and less prone to overfitting. A final classification decision is achieved
by sorting a document down the tree until a leaf node is reached.206

Aside from this, there are other learning approaches that do not construct ensembles of
classifiers but can still benefit from utilizing information from the class hierarchy. Specif-
ically, parameter estimation such as that for learning a naı̈ve Bayes classifier can be im-
proved by adding information about ancestors of sparsely populated classes. This statis-
tical smoothing technique is known asshrinkage.207

3.3.4 Confidence Mapping

So far, we have discussed several learning algorithms for inducing text classifiers. These
classifiers respond to a document with classification scores which vary greatly. For ex-
ample, probabilistic classifiers try to estimate the posteriori probabilities of classes given
a document. Others, such as the Rocchio variants, may respond with similarity scores
commonly in the set of real numbers between zero and one. By contrast, support vector
machines return a real number according to the position of a document relative to the sep-
arating hyperplane in Euclidean space. As these examples show, not only the ranges of
classification scores may differ, but depending on the classifier and the domain also the in-
terpretations of scores within the same range may also vary. Consequently, classification
scores are generally not comparable across different classifiers. Note that this is true not
only for classifiers induced by different learning algorithms but also for classifiers induced
by the same learning algorithm for different classification tasks. As discussed previously,
this is of great importance for learning ensembles of classifiers. Either when combining
different classifiers learned for the same classification task or when learning specialized
classifiers for the decomposition of a particular problem, classification scores are required
to be comparable across the individual classifiers. To make them comparable, scores have
to be normalized. Doing this is commonly referred to asconfidence mapping.208

205See Scḧurmann (1996), pp. 343–350, for a detailed discussion on hierarchical classifiers.
206See Koller and Sahami (1997).
207See McCallumet al. (1998).
208See Scḧurmann (1996), pp. 151–165, for a detailed treatment of confidence mapping.
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In the preceding, we loosely referred to classification scores as a measure for the degree
of certainty or confidence of particular classification decisions. In this context, larger
scores were associated with more confident decisions. We now interpret the concept
of confidence more narrowly. A confidence value is assumed to be a real number in
the range between zero and one. Also, it is required to be reliable and coherent with
statistical experience. So, if a classification decision is based on a confidence score of
0.8, say, then this decision should be correct in80% of the cases within a larger sample of
decisions made with similar confidence values.209 The objective of confidence mapping
is, therefore, to transform classification scores into confidence values.

In the following, we assume that a classifier solves a classification task by, first, providing
a classification score for each possible class and, then, applying a decision rule to these
scores. For the purpose of confidence mapping, we treat each of these scores individually.
For a particular class, lets denote the corresponding classification score which can be
used to separate that class from the remaining classes inC. This is a two-class problem
which can be posed for each of thek classes. To distinguish the two new classes, let
eigen ≡ c denote a particular class andfremd indicate the membership to any class butc.

The confidence value of deciding in favor of classeigen given scores is equivalent to the
posterior probabilityP(eigen|s). According to Bayes’ theorem, we obtain

cnf(s) ≡ P(eigen|s) =
P(s|eigen) P(eigen)

P(s|eigen) P(eigen) + P(s|fremd) P(fremd)
(3.71)

The class prior probabilities can be computed based on class frequencies as described for
the Bayesian classifiers (p. 63). Note thatP(fremd) = 1 − P(eigen). It is possible to
consider class-specific misclassification costs by using different class priors. For example,
when the cost of misclassifying a document of any class is inversely proportional to class
frequency, then uniform class priors are appropriate. Below, we will discuss how the
class-specific distributions of score values given the class,P(s|eigen) andP(s|fremd),
can be estimated from class-specific histograms. Note that using uniform class priors is
equivalent to recovering the distributions from histograms that are normalized through
division by the number of examples belonging to the corresponding class.

A class-specific histogram of classification scores describes the characteristic behavior of
a classifier given a class. Figure 3.7 shows two typical histograms of scores provided by a
single-prototype classifier as similarities to the prototype representing the classeigen. To
construct a histogram, ideally, unbiased classification scores of labeled examples which
have not been used for training are distributed among a given number of histogram bins.
At this point, we assume that examples presented to a classifier belong to exactly one
of the legitimate classes and obey the statistical laws governing the document source.
This is known as the closed-world assumption.210 Situations in which the closed-world
assumption is violated will be discussed in the context of quality control in Chapter 6.

Each histogram count for a particular class corresponds to the product of class prior and
class-specific probability density function for scores falling in the respective histogram

209See Scḧurmann (1996), p. 153.
210See Scḧurmann (1996), p. 158 and p. 290.
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bin. If the histograms are normalized through division by the total number of exam-
ples distributed among all histograms so as to ignore the class priors, they provide sam-
pled approximations to the probability density functionsP(s|eigen) andP(s|fremd). Let
hist(i|eigen) andhist(i|fremd) denote the histogram counts for classification scores of
documents in the respective class falling in the histogram bini. An estimate for the con-
fidence of all scores falling into bini is given by211

cnf[i] =
hist[i|eigen]

hist[i|eigen] + hist[i|fremd ]
(3.72)

Note that bins which are empty in both histograms are ignored to avoid divisions by zero.
Since each score can be mapped onto the corresponding bin indexi, confidence mapping
can be implemented as simple table look-up operations.

Figure 3.7 further illustrates the idea of confidence mapping. For each bin, confidence
values are estimated from theeigen andfremd histograms of classification scores. The
sampled confidence values are plotted linearly interpolated. The curve shows that the
confidence estimates are distorted by random error caused by the finiteness of samples
per histogram bin. Thus, especially scarcely populated bins provide uncertain confidence
estimates. In the following, we describe a technique for deriving a smooth approximation
to the confidence function in order to remedy this deficiency.

We use prior knowledge to decide upon the basic form of the confidence functioncnf(s).
In particular, a confidence function typically converges to its extreme values zero and
one towards the ends of the domain determined by the range of the classification scores.
Furthermore, a confidence function often increases monotonically with its input, and its

211See Scḧurmann (1996), pp. 158–159.
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slope is steeper where the class-specific histograms strongly overlap. With respect to
these characteristics, using asigmoid functionseems appropriate, giving212

cnf(s) =
1

1 + exp(−α(s− β))
(3.73)

whereα controls the steepness of the sigmoid curve andβ its position on the score scale.

Fitting the sigmoid function through the sampled confidence valuescnf[i] at scoresi,
wheresi is typically the score at the center of the histogram bin with indexi, can be
posed as a least mean square approximation problem with respect to the parametersα and
β. Thus, the objective is to minimize the target function213

F (α, β) =
∑
i

hist[i](cnf(si)− cnf[i])2 (3.74)

wherehist[i] = hist[i|eigen] + hist[i|fremd ] represents a weight that allows focusing on
strongly populated bins since these provide more confident points. The resulting smooth
approximation to the confidence function is also shown in Figure 3.7.

Note that, as required, the individual confidence values thus obtained are in the range of
real numbers between zero and one and are, to a great extent, coherent with statistical
experience. When looking at the set ofk confidences values now available for the actual
k-class problem, however, these confidence values generally will not add up to one. Yet,
this property can be established by dividing each confidence value by the total sum of
confidence values.

3.3.5 Summary

This section covered the problem of learning a text classifier from a set of labeled training
documents. We first analyzed some general characteristics of the text learning task and
derived desirable properties for text learning algorithms. We then described several com-
monly applied learning algorithms in detail: variants of the Rocchio algorithm, nearest-
neighbor rules, two variants of the naı̈ve Bayes classifier, and support vector machines.
Subsequently, we discussed frameworks for combining classifiers either to improve classi-
fication effectiveness or to make problems with more than two classes tractable for binary
classifiers. Finally, we introduced confidence mapping as a general technique for trans-
forming raw classification scores returned by any kind of classifier into confidence values
reflecting the posterior probabilities of the classes.

In the course of this section, we also pointed out issues related to common assumptions
which are violated in practice. As previously discussed in Chapter 1, this basically in-
volved the availability of labeled training examples, problems with heterogeneous class
definitions, and changes in the distributions governing the components of the hypothetical
document source. The following three chapters discuss these issues in depth.

212See Ittneret al. (1995), and Dumaiset al. (1998).
213See Scḧurmann (1996), p. 161. Note, however, that Schürmann describes a more general model for

generating a smooth approximating function to the sampled confidence function.



Chapter 4

Semi-Supervised Text Learning

Supervised learning algorithms typically require large amounts of training data to learn
reasonably accurate classifiers. Yet, in many text classification tasks, labeled training
documents are expensive to obtain, while unlabeled documents are often readily available
in large quantities. As a rule, unsupervised learning methods are employed to discover
structure in unlabeled data. Yet, learning solely from unlabeled documents cannot be
used to classify new documents into predefined classes because knowledge about the
classes is missing. Learning from either labeled or unlabeled data through supervised or
unsupervised learning, respectively, may be regarded as two extremes of a wide spectrum
of learning approaches. In between these extremes, the aim would be to learn from both
labeled and unlabeled examples. This allows taking advantage of the strengths of both
extremes, i.e. to learn accurate classifiers and to exploit unlabeled data, while getting rid
of common drawbacks. Aside from the enormous need for labeled data on the supervised
side, common drawbacks of unsupervised approaches are, for instance, the inability to
identify known classes and the difficulty in choosing a suitable number of clusters. In this
chapter, we propose a general framework for extending any type of learning algorithm
to make use of both unlabeled documents and labeled documents, which we refer to as
semi-supervised learning.

4.1 Introduction

This section revisits the problem associated with theavailability assumptionthat arises
in many supervised learning tasks: providing a sufficient number of labeled training ex-
amples. To stress practical relevance, we illustrate the effect of a small training set size
by showing the learning curves of different learning algorithms on several real-world text
learning tasks when the amount of training data is varied. Having, by that, motivated the
need to reduce the amount of training data required, we give arguments for the use of
unlabeled data in addition to labeled data. Then, we describe several general methodolo-
gies for combining both sources of information. Further related work will be discussed in
the subsequent section.

79
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4.1.1 Problem Description

In the preceding chapter, we have described several supervised learning algorithms that
are widely applied to induce text classifiers from a set of labeled training documents. In
the last two decades, much progress has been made in solving text classification tasks, in
particular by applying machine learning techniques. In the traditional supervised learning
setting, we seem to have reached a reasonably high plateau with respect to classification
effectiveness. Current state-of-the-art approaches based on different learning paradigms
achieve acceptably high overall performance, and many of them perform about equally
well.1

To achieve these results, however, supervised learning algorithms commonly require large
numbers of labeled training documents. In other words, for the successful application of
supervised learning to solving classification tasks, it is assumed that there is a sufficient
amount of labeled data. We have previously referred to this as theavailability assump-
tion. Why does this resemble a problem? To assign a class label to an example, i.e. for
a document in the context of text learning, a human has to peruse this document first.
Obviously, this hand-labeling of documents is not only error prone, but also a tedious
and time-consuming process. Consequently, provision of labeled data requires expensive
human resources, making it the bottleneck in the supervised learning setting.

But, the severity of the availability assumption can only be understood to its full extent
when we realize how large a training set must be in order to achieve reasonable results.
Therefore, it is crucial to know just when a training set may be deemed large enough. It is
known from computational learning theory that, usually, the number of training examples
should be at least a multiple of the number of features if reasonable results are to be
guaranteed.2 Recall that, often, several thousand features are used to represent text. So,
for complex classification tasks, obtaining a reasonable number of training documents
easily becomes intractable.

4.1.2 The Effect of a Small Training Set Size

Computational learning theory may give some insight as to what is learnable and can
provide worst-case bounds on the number of training examples required. For practical
problems, however, we generally have to find out empirically how large the training set
should be.3 As we have seen above, providing as many training examples as theoretical
considerations suggest is generally not possible in text domains. The high dimensional
feature space is the reason for this. Thus, the vital question is how well can we do with
less than the recommended amount of training data? In the following, we examine the
classification accuracy of some common text learning algorithms when varying the num-
ber of training examples for classification tasks on three frequently used real-world text
corpora.

1See Liere and Tadepalli (1996).
2See Lewis (1992b), p. 14.
3See Scḧurmann (1996), p. 310.
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Datasets and Experimental Setups

To run the experiments, we use an enhanced version of therainbow system originally
written by McCallum (1996).4 We choose to employ the Rocchio variant termed single-
prototype classifier (SPC), the multinomial naı̈ve Bayes classifier (NB), a linear support
vector machine (SVM), and the one-nearest-neighbor (1-NN) rule as four of the most
frequently applied learning algorithms.5 We use the20 Newsgroups dataset, theWebKB
dataset, and a subset of theTREC dataset as text corpora.6 For the20 Newsgroups and
theWebKB dataset, we basically follow the setups described by Nigamet al. (2000).

The20 Newsgroups dataset consists of about 20,000 articles divided almost evenly among
20 different UseNet discussion groups. The task is to classify an article into the one of
the twenty newsgroups to which it was posted. When tokenizing the documents, UseNet
headers are skipped, and tokens are formed from contiguous alphabetic characters. We
remove common stop words and all words that occur only once. For all experiments, we
use as possible vocabulary the entire set of remaining features. We create a test set of
4,000 documents by selecting by posting date the last20% of the articles from each news-
group. Next, an unlabeled set of 10,000 documents is randomly selected and set aside for
later use. Labeled training sets are formed by partitioning the remaining 6,000 documents
into non-overlapping sets. All sets are created with an equal number of documents per
class. Where applicable, up to ten trials with disjunct labeled training sets are run for each
experiment. Results are reported as averages over these trials.

The WebKB dataset contains 8,230 web pages gathered from different university com-
puter science departments, including the entirety of four departments and, in addition,
an assortment of pages from other universities. Only the 4,199 documents of the classes
course, faculty, project,andstudentare used. The number of documents in each class
varies from 504 in classproject up to 1,641 documents in classstudent. The task is to
classify a web page into the most appropriate one of the four classes. We do not apply
stop-word removal. Numbers are converted into special tokens. The potential vocabulary
consists of all words found in the text corpus more than once. We create four test sets,
each containing all pages from one of the four entire departments. Corresponding to each
test set, the pages remaining are randomly split into different non-overlapping labeled
training sets and an unlabeled set of 2,500 pages for later use. Results are obtained in
leave-one-university-outfashion and are reported as averages over the four test sets.

From the largeTREC dataset, we select a subset of five classes:001, 003, 006, 128,
and142. For the sake of homogeneity, we consider only articles published by theWall
Street Journal, yielding a total of 1,494 documents. The number of documents in each
class varies from 234 in class001 up to 386 documents in class003. The task is to
classify documents into the most appropriate one of the five classes. We apply stop-word

4See Appendix A for more details on this software.
5See Section 3.3 for a description of common text learning algorithms. Recall from Section 3.2.4 that

we use ‘ltc’ style weighting of documents for all classifiers but naı̈ve Bayes. According to Nigamet al.
(2000), for the näıve Bayes approach on the20 Newsgroups dataset, the term frequencies of each document
are scaled in such a way that each document has constant length, with potentially fractional frequencies.

6See Appendix B for detailed information about these text corpora.
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Figure 4.1: The curve shows average vocabulary sizes when varying the training set size for each of three text corpora used. That is to
say, the average numbers of distinct features remaining after dimensionality reduction in a set of ten randomly selected training sets,
each with the indicated number of documents per class, are shown. Note that, after the rudimentary dimensionality reduction step,
there are 57,044 distinct terms in the entire20 Newsgroups dataset, 23,830 distinct terms in the entireWebKB dataset, and 45,424
distinct terms in theTREC subset.

removal and discard all words that appear only once. The remaining words are used as
possible index terms. From each class, 70 documents are randomly selected to create
non-overlapping training sets of different sizes. The remaining documents are split into
a test set of 350 documents and an unlabeled set of 700 documents for later use. Where
applicable, up to ten trials with non-overlapping labeled training sets are run for each
experiment. Results are reported as averages over these trials.

Except for removing stop words and words that occur only once in a text corpus, we do
not apply any further dimensionality reduction. In any particular trial, only the subset of
distinct terms that occur in any of the selected training documents are effectively used as
vocabulary. Terms that do not occur in the training set are considered unknown to the
learner since we construct the vocabulary on the basis of the training data. So, vocabulary
size increases with the number of training documents as shown in Figure 4.1. Note that, in
some cases, performance could be improved by further reducing the size of the vocabulary
as described in Section 3.2.3. As experiments show, however, this has no crucial effect on
the availability problem. That is to say, we need a sufficiently large number of index terms
to adequately represent text in such a way that classes can be discriminated. And with the
learning algorithms applied here, the performance degradation caused by using too many
features—an effect that is often referred to as the curse of dimensionality (see p. 32)—is
smaller than that due to using too small a vocabulary.7 Also, note that applying class-
specific feature selection techniques when only very few training examples are available
may turn out not to be statistically reliable.

Experimental Results

Figure 4.2 shows the classification accuracies of the four supervised text learning algo-
rithms on the three text corpora selected when the number of labeled training documents
is varied.8 The horizontal axes indicate the number of labeled training documents on a
log scale. Note, for instance, that a total of 20 training documents for the20 Newsgroups

7See Lanquillon (2000a) for experiments showing this effect.
8See Section 2.3 (pp. 13 ff.) for the definitions of common performance measures such asaccuracy.
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dataset corresponds to one document per class and, for theWebKB dataset, a total of four
training documents corresponds to one document per class. The vertical axes indicate the
average classification accuracies on the test sets. Note the different magnifications of the
vertical scales.

On the20 Newsgroups dataset, the single-prototype classifier (SPC) and the linear sup-
port vector machine (SVM) achieve the best results. In the depicted range, their learning
curves are almost identical. Only towards the right side of the curve with many training
examples available, is the support vector machine superior to the single-prototype classi-
fier. While the näıve Bayes classifier (NB) yields comparable results only when the num-
ber of labeled training examples is large, the simple one-nearest-neighbor rule (1-NN) rule
is clearly outperformed by the three other algorithms. On theWebKB dataset, the support
vector machine yields the best results. This time, the single-prototype classifier performs,
on average, a few points worse than the support vector machine, whereas the naı̈ve Bayes
classifier is outperformed on average by almost 10 points by the top-performing support
vector machine. The one-nearest-neighbor rule performs substantially worse than any of
the three other approaches. On theTREC subset, the nearest-neighbor rule, again, per-
forms much worse than the other three approaches, which achieve very accurate results.

Notably, only the support vector machine is consistently among the best performing
approaches. This finding is in accordance with results described in other studies on text
classification tasks.9 Furthermore, the nearest-neighbor rule performs substantially worse
than the three other approaches. A possible explanation for this finding is the inability of
nearest-neighbor rules to exploit co-occurrence patterns across documents and, thus, to
generalize beyond the training data provided. Moreover, the available number of training
examples may not be sufficient to cover the feature space in such a way that documents
of the correct class can be found near new documents. Note that the generalK-nearest-
neighbor rule withK > 1 does not yield better results than the simple nearest-neighbor
rule in these settings.

Notice that the accuracies achieved vary greatly across different datasets and different
amounts of labeled data. A reason for this lies not only in the separability of classes,
but also in the number of classes per se. For a particular dataset, however, the learning
curves of all learners but the one-nearest-neighbor rule are quite similar. Even though at
different levels, all learning curves illustrate that learning reasonably accurate classifiers
requires many labeled training documents. Generally, the more labeled data there is,
the better the performance achieved. Labeled examples have an exponential value in
reducing the probability of error.10 In particular, additional examples yield substantial
improvements in classification accuracy when training data is scarce. In contrast, only
marginal improvements are gained through the provision of additional training examples
when many training examples are available already. For the text corpora examined, the
learning curves begin to converge to a certain dataset-specific level when the training sets
contain some hundred examples per class. Although this critical training set size is much
smaller than theoretically suggested, providing the labeled training data is still a tedious
and time-consuming task.

9See Joachims (1997b), and Dumaiset al. (1998), for example.
10See Castelli and Cover (1995), p. 110.
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(a) 20 Newsgroups dataset
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Figure 4.2: The effect of the training set size on the classification accuracy of the single-prototype classifier (SPC), a linear support
vector machine (SVM), the multinomial naı̈ve Bayes classifier (NB), and the simple one-nearest-neighbor rule (1-NN) on three com-
mon text corpora. The horizontal axes indicate the number of labeled training documents on a log scale. The vertical axes indicate the
average classification accuracies on the test sets. Note the different magnifications of the vertical scales.
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4.1.3 Argument for the Use of Unlabeled Documents

As the discussion above has shown, if not intractable, it is at least expensive to provide
a sufficient amount of labeled training data. Hence, a key issue is the question of how to
reduce the need for labeled data.

This question can be rephrased as follows. What other sources of information can we
exploit in order to partly substitute the need for labeled training data? We consider the
following two types of information:

• Unlabeled data. In many text learning tasks, documents can be extracted from
online sources at very low cost. So, while providing class labels for converting plain
examples into labeled training examples is expensive, collecting the data is typically
cheap. Hence, unlabeled documents can be considered to be readily available in
large quantities. Note that we assume that both labeled and unlabeled data come
from the same source, so that the only difference between the two sources is the
class labels assigned.

• Background knowledge.Aside from information in form of examples, we consider
background knowledge to be any type of useful information about the problem that
is to be solved.11 For instance, this might be knowledge about the class struc-
ture such as relations among classes in the form of a class-hierarchy,12 semantic
knowledge about words and their co-occurrence patterns, or, in general, some do-
main theory. Typically, background knowledge is domain or application-specific.
As such, it usually requires human effort to be engineered and provided and may,
therefore, be considered expensive, just like labeled data.

Although helpful in reducing the need for labeled data, relying on background knowledge
often merely shifts the problem from providing class labels to providing other types of
manually engineered information about a particular problem. Since reducing human ef-
fort is the true goal in minimizing the need for labeled data, exploiting background know-
ledge is often not a remedy. Also, utilizing background knowledge makes any approach
domain- or application-dependent. It would thus be difficult, if not impossible, to apply
any approach which depends on background knowledge to other text learning tasks. In
the following, we therefore focus on using unlabeled data to partly substitute labeled data
so as to reduce the need for labeled data.

A natural way to make use of unlabeled data is through unsupervised learning. A typical
unsupervised learning task is to automatically discover groups of examples in data which
are similar in some way, when there is no hint about actually existing classes. This process
is known as clustering.13 Note that the previously discussed classification task amounts
to describing a finite set of predefined classes so as to be able to classify new examples

11Nevertheless, unlabeled data might also be referred to as background knowledge as in Emde (1994).
We refrain from doing so because we do not consider raw data as knowledge.

12See Section 260 (pp. 75 f.).
13For example, see Jain and Dubes (1988) for a description of common clustering algorithms.
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Document Type t1 t2 t3 t4 Class

d1 labeled × rel

d2 labeled × non

d3 unlabeled × × ?

d4 unlabeled × × ?

d5 new × ?

Table 4.1: An example of a text classification problem for which exploiting co-occurrence patterns is helpful. The rows correspond
to documents; crosses mark the occurrence of a particular termti in documentdj . Without unlabeled documents, there is no basis in
terms of term occurrences in the labeled documentsd1 andd2 for assigning either one of the two relevance class labelsrel andnon
to the new documentd5. In the presence of unlabeled documents, however, the co-occurrence of termst1 andt2 in documentd3

provides some evidence thatd5 should be considered relevant even though we do not know the class label of documentd3.

into the predefined classes, whereas clustering aims at identifying a finite set of classes in
the data by itself without the ability to classify new examples. Although other learning
tasks can be defined, in the following we will use classifier design synonymously with
supervised learning and clustering synonymously with unsupervised learning.14

Note that learning from unlabeled dataaloneis generally insufficient if class assignments
that are better than random are to be yielded.15 In particular, clustering may be able to
discover the classes desired and, thus, to construct meaningful decision regions. How-
ever, associating these regions with the correct class labels cannot be done without any
information about the classes such as labeled data.16 Castelli and Cover (1996) determine
the relative value of labeled versus unlabeled examples in a Bayesian analysis. They con-
clude that labeled examples are exponentially more valuable than unlabeled examples.
This is a very pessimistic view of the value of unlabeled data. Although labeled data is,
admittedly, more valuable than unlabeled data for the classification task because of the ad-
ditional class information provided, the fact that decision regions can be recovered given a
sufficient amount of unlabeled data shows that unlabeled data carry valuable information.
And exploiting this should be considered as a means to reduce the need for labeled data.17

Early empirical results in text learning tasks show that approaches exploiting unlabeled
documents are particularly promising.18

How can using unlabeled data help when learning a text classifier? It is well known in
information retrieval research that words in natural language do not occur independently
but rather in strong co-occurrence patterns.19 While some words are likely to co-occur in
certain documents, others are not. In fact, the differences in class-specific co-occurrence
patterns, i.e. the class-specific word distributions, help to discriminate among classes.
Consequently, exploiting co-occurrence information can enhance classification accuracy.
Yet, to exploit co-occurrence patterns to a large extent, it is necessary that documents be
represented by a sufficiently large number of terms. Unlike in standard classification tasks

14Regression learning, for instance, is another supervised task, whereas association rule generation is
another unsupervised task.

15See Castelli and Cover (1995).
16In fact, clustering does not even mean to relate its clusters with predefined class labels.
17Also see O’Neill (1978) for results that support this in the context of linear discriminant analysis.
18For example, see Nigamet al. (1998), and Joachims (1999b).
19See van Rijsbergen (1977), for example.



4.1. INTRODUCTION 87

with structured data, however, the feature set used to describe text is not very well defined
and is not limited but by combinatoric constraints. So, because we commonly construct
the vocabulary based on the training data, the number of potential features increases with
the size of the training set as previously shown in Figure 4.1. When labeled training
data is scarce, the resulting vocabulary might be too small to adequately represent text.
Thus, additional unlabeled training documents can provide information about other pos-
sible features, in general, as well as information about their co-occurrence patterns with
features that occur in the labeled documents, in particular. This is illustrated in the small
example given in Table 4.1. Correctly classifying the new document is solely supported
by means of term co-occurrence information from the unlabeled documents.

4.1.4 Methodologies for Learning from Labeled and Unlabeled Data

Above, we motivated the use of unlabeled data in addition to labeled data. At this point,
the principal question is how to combine both sources of information. Note that any
methodology which integrates learning from labeled and unlabeled data could generally
be described as partially or semi-supervised since the supervision in terms of the given
class labels is available only for a certain subset of the data. Nevertheless, we will refer to
only those approaches which combine supervised and unsupervised techniques as semi-
supervised. As we will see below, the mere fact of combining labeled and unlabeled data
does not require that use be made of elements from both types of learning directions.

The following description is split into two parts. First, and primarily, we focus on general
methodologies for integrating labeled and unlabeled data. Typically, these methodologies
can be used in combination with any supervised learning algorithm. Subsequently, we
briefly review some approaches that call for specific learning algorithms.

General Methodologies

Figure 4.3 gives an overview of some common methodologies that are generally applic-
able to any supervised learning algorithm. Admittedly, this taxonomy is not complete,
nor is it exclusive. In many situations, the dividing line between methods or technologies
is fuzzy at best. In particular, it is possible to define hybrid approaches along the tree by
combining typical elements of different branches.20

In order to benefit from unlabeled data in a supervised setting, a learner must augment
unlabeled examples by class labels in some way. The key distinguishing feature for com-
bining labeled and unlabeled is whether or not an approach is allowed to query the class
labels of selected unlabeled examples. This results in a distinction betweenpool-based
active learningandbootstrapping classifiersas follows.

• Pool-based active learning.Most supervised learning algorithms arepassivein that
they receive as input a set of labeled training examples from which they have to in-
duce a classifier. In contrast,active learningis the study of how to use the ability to

20See Nigam and Ghani (2000) for some examples.
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Bootstrapping Classifiers

Learning from Labeled and Unlabeled Data

Pool-Based Active Learning

Querying class labels?

Semi-Supervised Learning

Example Processing

Number of Hypotheses

Co-Training

Incremental Bootstrapping

Self-Training

yes no

Figure 4.3: A taxonomy of approaches that aim to learn from both labeled and unlabeled data. The key distinguishing feature is
whether an approach is allowed to query true class labels of selected examples from the given pool of unlabeled examples. Approaches
that do so and subsequently learn a new classifier based on the augmented training set are commonly known asactive learning. In
contrast, approaches that do not receive feedback from the user are often referred to asbootstrappingapproaches. Whileco-training
andself-trainingmethods incrementally enlarge the training set by adding unlabeled examples augmented by class labels that were
predicted by any of the underlying supervised learning algorithms,semi-supervised learningis based on iteratively clustering the
unlabeled data and then using information based on the cluster partition to enhance the training data for a supervised learner.

interact with the environment defining the learning task.21 Particularly in the super-
vised learning setting is an active learner given the opportunity to query the true
class labels of selected data. Thus, the promise of active learning is that the need
for labeled training examples can be significantly reduced when the learner itself is
responsible for selecting its training data. Typically, an active learner aims to select
exactly those examples which would maximally improve classification effective-
ness if the true class labels were known. A well-known approach to heuristically
determining these examples is thequery-by-committeeconcept, which examines
the disagreement among the class labels assigned by an ensemble of classifiers.22

Generally, the active learning setting allows the learner either to synthetically create
query examples or to select query examples from an incoming data stream. These
approaches are inappropriate in text domains because the first approach might gen-
erate awkward documents, whereas the latter one would only inefficiently model the
data distribution.23 In pool-basedactive learning, however, the learner has access to
a pool of unlabeled data in addition to the labeled training set and can iteratively re-
quest the true class labels for some selected examples in this pool.24 This approach
naturally fits in the text learning setting and, thus, provides a straightforward way
to combine sets of labeled and unlabeled data.

21See Cohnet al. (1996), p. 129.
22See Seunget al. (1992), and Freundet al. (1997).
23See McCallum and Nigam (1998b).
24For example, see Lewis and Gale (1994), Lewis and Catlett (1994), McCallum and Nigam (1998b),

and Tong and Koller (2000).
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Although put on the same level as the general bootstrapping framework in Fig-
ure 4.3, active learning components may actually be added to each of the bootstrap-
ping variants to be described below.25 In fact, we must assume that an approach
that can actively query class labels is superior to an approach without this abil-
ity. The reason for this is simple: the reduction of uncertainty in the information
about the class labels. Numerous empirical studies show that active learning sub-
stantially reduces the need for labeled examples.26 However, this advantage always
comes at the expense of additional user effort. Therefore, we focus on plain boot-
strapping approaches since they do not require any user interaction. Note, though,
that we should consider adding an active learning component to otherwise passive
approaches whenever the user is willing to interactively label data.

• Bootstrapping classifiers.In the supervised learning setting, bootstrapping is a gen-
eral framework for combining labeled and unlabeled data.27 Bootstrapping a clas-
sifier basically amounts to iteratively generating additional training data through
the classifier’s own effort and learning a refined classifier based on the augmented
training set. More precisely, the set of labeled examples is generally used as seed
information to learn an initial classifier.28 Then, a bootstrapping iteration consists
of two steps. First, the current classifier is used to estimate the class labels for the
unlabeled data. On the basis of these labels, additional training examples are gener-
ated. Then, a refined classifier is learned from the augmented training set. Typically,
this iteration stops either when a given convergence criterion is fulfilled or after a
certain number of steps have been carried out to prevent endless oscillations.

The general bootstrapping framework leaves many essential design choices open. In cur-
rent research, two key choices are the number of hypotheses, or classifiers, used in the
framework and the way additional training examples are incorporated, yielding the fol-
lowing distinction among approaches as depicted in Figure 4.3:

• Incremental bootstrapping.The incremental feature of these approaches refers to
the way the unlabeled examples are incorporated as new training examples into the
training set. Generally, only one or very few unlabeled examples that were labeled
with high confidence are added to the training set at each bootstrapping iteration.
The decision to convert an unlabeled example into a labeled training example is
always considered final. Typically, the bootstrapping process terminates when all
unlabeled examples have been converted into labeled training examples. Below we
briefly describe two incremental bootstrapping approaches that differ in the number
of underlying hypotheses learned from the current training data, namelyco-training
andself-training.

25For example, see McCallum and Nigam (1998b) for such a hybrid approach.
26See McCallum and Nigam (1998b), Schohn and Cohn (2000), and Tong and Koller (2000) for examples

of active learning approaches to text classification.
27For example, see Yarowsky (1995), Blum and Mitchell (1998), and Joneset al. (1999). In statistical

terms, however, bootstrapping typically refers to a resampling method, see Section 256 (p. 73).
28It is also possible to use other types of seed information depending on which initial classifiers are

generated, McCallum and Nigam (1999), for example, use class-specific keywords.
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Blum and Mitchell (1998) originally proposed a co-training algorithm. Their co-
training setting assumes that there are two redundantly sufficient sets of features
for representing examples. Such redundant representation naturally occurs, for
instance, when classifying web pages. For this task, page contents, on the one
hand, and anchor texts from links pointing to the particular page, on the other hand,
might define two representations. The inherent redundancy in the features allows
learning of two distinct classifiers and, then, them to be used to train each other
over unlabeled data. Recent co-training approaches explore settings with only one
representation. In order to benefit from the co-training setting, they either artifi-
cially split the feature set29 or they apply different learners while using the same
features.30 Thus, the key ingredient of co-training strategies is essentially to exploit
variability in predicting class labels due to differences in example representation or
inductive bias.31

A self-training approach is probably the most straightforward bootstrapping
approach to combining labeled and unlabeled data. Having learned an initial clas-
sifier from the labeled data, this approach iteratively adds self-labeled examples to
the current training set and refines the current classifier.32

• Semi-supervised learning.The objective of semi-supervised learning is to bene-
fit from both supervised and unsupervised learning when combining labeled and
unlabeled data. The promise in the approach lies in the fact that we can utilize
the strengths of either approach while getting rid of common drawbacks. Specifi-
cally, supervised learning can produce accurate classifiers but has an enormous need
for labeled training examples, whereas the ability to exploit cheap unlabeled data
through unsupervised learning methods is accompanied by a difficulty in choosing
a suitable number of clusters and generating an appropriate starting solution for the
clustering task plus the inability to associate clusters with classes in the absence of
labeled data.33

With unsupervised learning, we focus on partitional clustering approaches. In
this setting, the fundamental difference to incremental bootstrapping is that semi-
supervised learning algorithms generally use all unlabeled examples when learn-
ing a refined classifier, while allowing the class label of each unlabeled example
to change after each iteration. Consequently, decisions about the class labels of
unlabeled examples are never considered final. Partitional clustering methods gen-
erate a single partition of the data in an attempt to recover natural groups present in
the data. With the guidance of labeled data, the hope is that these groups will better
match the underlying class structure. See Section 4.3 for a thorough discussion.

When discussing learning from labeled and unlabeled data, the focus of this work is on
semi-supervised learning. Yet, depending on the underlying learning algorithms used, the

29See Nigam and Ghani (2000).
30See Goldman and Zhou (2000).
31These aspects also motivated learning ensembles of classifiers as discussed in Section 3.3.3 (pp. 72 ff.).
32See Nigam and Ghani (2000), for example.
33See Bensaidet al. (1996), for example.
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boundary between semi-supervised learning and self-training is not always clear. In fact,
both approaches can be considered as opposite ends of a whole spectrum of choices of
how to relabel and incorporate unlabeled data. As already noted above, hybrid approaches
can often be found.

Approaches for Specific Learning Algorithms

So far, we have not considered approaches that address particular learning algorithms
only. For example, an interesting and very promising direction of research is to learn
similarity functions, which can be employed instead of the commonly used measures
described in Section 3.3. Hofmann (2000) develops a general method for learning the
similarity between documents in terms of a general dot product based on information-
geometric principles. The derivation of this dot product, which is known as the Fisher
kernel, is based on a latent class decomposition of the document by term matrix and
is therefore similar to latent semantic indexing as described in Section 134. Since this
approach does not require the true class label of the documents, it can be used prior to both
unsupervised and supervised learning. In particular, provision of this advanced similarity
measure can be regarded as a means of incorporating unlabeled data into any supervised
learning technique that can make use of generalized dot products such as similarity-based
classifiers, like the Rocchio variants, and support vector machines.

Bennett and Demiriz (1998) describe work on semi-supervised support vector machines.
This approach, as well as the transductive support vector machine applied to text classifi-
cation by Joachims (1999b), uses the unlabeled test data in addition to the labeled training
data to better adjust the parameters of the support vector machine. Although designed for
classifying the examples of just this test set, the resulting support vector machine might
also be applied to classify new, unseen examples as assumed in this work. However, there
is as yet no empirical evidence of how well this works. In a probability analysis on the
value of unlabeled data for classification problems, Zhang and Oles (2000), in fact, show
that support vector machines in their current forms are not suitable if benefit is to be drawn
from additional unlabeled data in a semi-supervised bootstrapping framework.

Zelikovitz and Hirsh (2000) describe an approach for combining labeled and unlabeled
data that is different from what we have discussed so far. They consider the problem of
classifying short text strings. An unlabeled document source of larger documents that
does not come from the same source but reflects common background knowledge on
the underlying domain is used to improve classification performance. The idea is to use
co-occurrence information in the unlabeled documents in an intermediate step to assess
document similarity. Rather than evaluating the similarity between any two short text
strings directly, it is assessed on the basis of the individual similarities of the two strings
to any one unlabeled document. Consequently, this approach does not attempt to assign
labels to the unlabeled data in order to utilize the unlabeled data. Finally, note that the
classification of short text strings is distinct from the classification of documents. The
difficulty in classifying short text strings is that there are only a small number of match-
ing terms across different strings. In this context, the use of each unlabeled example as
background knowledge can be seen as a kind of implicit query expansion.
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4.2 Related Work

This chapter deals with learning from both labeled and unlabeled data in a semi-
supervised fashion that aims at combining elements from supervised and unsupervised
learning. In the previous section, semi-supervised learning has been put in context with
other state-of-the-art methodologies for learning from labeled and unlabeled data such
as pool-based active learning and co-training. These related methodologies will not be
covered again here.

The concept of semi-supervised learning is neither unambiguous nor new. Below, we first
shed some light on approaches that are legitimately referred to as semi-supervised but
which are distinct from the notion of partial supervision employed in this work. Second,
we focus on approaches which follow the same basic idea, namely combing supervised
and unsupervised learning for classification tasks.

Contrast to Approaches Named Alike

Supervised learning (classification) and unsupervised learning (clustering) can be referred
to precisely as approaches that learn in the presence or absence, respectively, of a target
variable (class label). Hence, supervised and unsupervised learning can be considered as
the two ends of a whole continuum of learning approaches, in which information about
the class labels is only partly available. These approaches can all be described as partially
or semi-supervised.

Recall that our understanding of semi-supervised learning is that the class information
is only given for a subset of the training data, so that a labeled and an unlabeled set
of examples are available for training. Furthermore, we require from a semi-supervised
learner that it combine elements from both supervised and unsupervised learning. In this
sense, pool-based active learning or co-training, though combining labeled and unlabeled
data, are not referred to as semi-supervised because they do not employ any unsupervised
learning strategy.

Jeon and Landgrebe (1999), for instance, propose a partially supervised classification
method for coping with learning tasks where labels for only one class of interest are
given. Assuming a sufficient number of positive training examples, negative examples
must be determined from an unlabeled dataset. Note that, in our work, we assume that
there is an insufficient number of labeled examples for any class and an unlabeled dataset
can be used to obtain additional training examples.

In their work on semi-supervised clustering, Pedrycz (1984), Bensaidet al. (1996), and
Bensaid and Bezdek (1998) employ the same definition of partially labeled data as we do:
that the training data fall into a labeled and an unlabeled subset. However, their goal is to
improve clustering rather than classifier design. We will have more to say on this in the
following section and in the following chapter.

Building on the framework ofprobably approximately correctlearnability developed in
computational learning theory,34 Board and Pitt (1989) propose a theoretical framework of

34See Valiant (1984).
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semi-supervisedlearnability. They consider the situation in which a collection of disjoint
concepts, i.e. classes, is to be simultaneously learned with only partial information about
class memberships available to the learning algorithm. Rather than assuming that class
labels are given, Board and Pitt assume in their notion of partial supervision that for any
two examples the learner only knows whether or not these examples belong to the same
class. Obviously, this is distinct from the notion of partial supervision employed in this
work, namely that the class labels are given for a subset of the training data only.

Overview of Similar Approaches

Admittedly, the idea of learning from both labeled and unlabeled data is not new. Yet,
only recently is it gaining in popularity in the field of text classification, where it appears
to be particularly beneficial. A simple reason for this interest is that the performance
achieved by supervised methods has reached a certain plateau and that, rather than by
marginally enhancing effectiveness, progress is made with respect to efficiency by, for
instance, reducing the enormous need for labeled data.

We identify two key perspectives on combining supervised and unsupervised learning.
First, learning from labeled and unlabeled data is viewed as a type of problem with miss-
ing or incomplete data, where the class labels of the unlabeled data are considered the
missing items. Rather than discarding examples with missing values, the goal is to impute
class labels and proceed in a supervised fashion as if all data were labeled. Many sophis-
ticated imputation approaches solve the missing-value problem by using the Expectation-
Maximization (EM) algorithm.35 The family of EM algorithms and their application to
classification is broadly studied in the statistics literature. Among the published responses
to the original EM paper by Dempsteret al.(1977), Little (1977) mentions the idea of us-
ing an EM-based approach to improve a classifier by treating the class labels of unlabeled
data as missing values. This idea was meant to extend work on using unlabeled data in
discriminant analysis by McLachlan (1975). And McLachlan and Ganesalingam (1982)
propose an approach for the same problem using the EM algorithm.

Typically, EM-based approaches to learning from labeled and unlabeled approaches are
based on probabilistic mixture modeling.36 More recent approaches on combining labeled
and unlabeled data via the EM approach and their application to real-world problems can
be found in Shahshahani and Landgrebe (1992) and (1994) and Miller and Uyar (1997).

Similar to these approaches—but with respect to text classification based on a multinomial
näıve Bayes classifier—is the work by Nigamet al. (1998) and (2000). In further work,
McCallum and Nigam (1999) use keywords instead of labeled examples as seed informa-
tion to initialize their bootstrapping approach.37 The work described in this dissertation
is, in fact, a generalization of Nigam’s seminal work on combining labeled and unlabeled
data via the EM algorithm. Rather than depending on the naı̈ve Bayes classifier, however,
our approach permits use of any type of supervised learning algorithm.

35See Ghahramani and Jordan (1994), for example.
36See McLachlan and Basford (1988), p. 28, for further references.
37Also see Joneset al. (1999).
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In the other perspective, combining supervised and unsupervised learning so as to solve
classification tasks is regarded straightforwardly as a two-step process.38 In a first step,
any unsupervised learning algorithm can be applied to uncover groups in the data. As we
have seen above, this does not yet allow classification of new examples. In a second step,
the clusters discovered are associated with class labels by means of a supervised learning
technique. On the basis of these relations between clusters and classes, it is possible to
classify new data. Although the practical significance of this type of learning problem
to reduce the need for expensive labeled example was already recognized by Lippmann
(1989), only little work has been done on this particular problem since then. For instance,
some approaches that are similar to this scheme are described by Greenspanet al.(1991),
Pao and Sobajic (1992), and Emde (1994).

Generally, these approaches differ greatly in the degree that information inherent to the
labeled data is incorporated into the unsupervised learning step. For instance, determining
a suitable number of clusters or generating an appropriate starting solution might be sup-
ported by using labeled data.39 Depending on the degree of supervision in terms of using
the labeled data during the unsupervised learning step, both perspectives on combining
labeled and unlabeled data described above can, in fact, be very similar. In particular,
note that the EM algorithm can be regarded as probabilistic clustering algorithm, akin to
fuzzy c-means clustering.

4.3 The Semi-Supervised Learning Framework

This section describes a family of semi-supervised learning algorithms for integrating
labeled and unlabeled documents, extending the approach proposed by Nigamet al.
(1998) and (2000). The promise of semi-supervised learning is that it will take advantage
of the strengths of both supervised and unsupervised techniques, while avoiding common
drawbacks. Specifically, supervised learning can learn accurate classifiers, given a large
amount of labeled data.40 Yet, where provision of labeled data is expensive, unlabeled
data is abundant and cheap. However, learning from unlabeled data alone cannot pro-
duce a classifier since class information is missing. Furthermore, determining a suitable
number of clusters and generating an appropriate starting solution for the clustering pro-
cess together create a challenge in unsupervised learning. To sum up, combining a small
amount of labeled data and a large set of unlabeled data in a semi-supervised fashion can
yield an accurate classifier at greatly reduced cost.

4.3.1 Integrating Supervised and Unsupervised Learning

Extending Definition 3.1.2 (p. 24) for the supervised text learning task, the problem of
learning a classifier from labeled and unlabeled data can be described as follows. Given

38See Lippmann (1989), p. 48, for example.
39See Bensaidet al. (1996), for example.
40If an accurate classifier cannot be learned, i.e. classes cannot be separated effectively, adding unlabeled

data would not help. So, we assume that an accurate classifier can be learned, given enough labeled data.
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a set of training documentsD, for some subset of the documentsdj ∈ Dl, we know the
class labelyj = T (dj) and, for the rest of the documentsdj ∈ Du, the class labels are
unknown. Thus, we have a disjoint partitioning of the training documents into a labeled
set and an unlabeled set of documents, i.e.D = Dl ∪Du. Let nl = |Dl| andnu = |Du|
denote the number of labeled and unlabeled documents, respectively. The task is to build
a classifier based on the training documentsD for predicting the class label of unseen
unlabeled documents.

The concepts to be presented in this section are general enough so as to be applicable
for any type of data. So, instead of employing the terminology for text classification
introduced in the previous chapter, we use a terminology that is less specific. In particular,
we refer to datasets consisting of data points or patterns rather than documents. Hence, let
X = {x1, . . . ,xn} denote a set ofn patternsxj ∈ IRm. This dataset is split into a labeled
and an unlabeled subsetX l andXu, respectively, such thatX = X l ∪ Xu. Again, let
nl = |X l| andnu = |Xu| denote the number of labeled and unlabeled patterns. For each
labeled patternxj ∈ X l the true class labelyj is given. In Section 4.3.2 we shall return to
the terminology peculiar to text classification tasks.

We proceed in four steps to introduce our general semi-supervised learning framework.
First, we briefly describe the concept of unsupervised partitional clustering in its most
basic form and identify some of its major drawbacks. Then, we turn to semi-supervised
clustering with the objective of guiding clustering by labeled data. In the third step, we
use the labeled data to associate the identified clusters with the predefined class labels
of the supervised learning task so as to allow the classification of new patterns. Finally,
we generalize this approach with respect to finding appropriate cluster representations to
obtain our semi-supervised learning framework.

Unsupervised Partitional Clustering

The most straightforward way to make use of unlabeled data is through unsupervised
learning. This is typically known as clustering. In the following, we outline the essentials
of common partitional clustering algorithms. The description is, of course, not complete;
many variants and extensions can be found in the literature.41 Algorithm 4.1 shows a
common scheme of a partitional clustering algorithm in pseudo code.

Input to the clustering algorithm is a datasetX of patterns.42 There is no labeled data,
i.e. X l = ∅, so thatX = Xu andn = nu. Determining the numberc of clusters to
be identified inX is a crucial issue. Here, choosingc is listed as the first step of the
algorithm. Alternatively, it might also be given as input to the algorithm. The goal of
partitional clustering is to find a partition ofX into c non-empty clusters in such way that
patterns within the same cluster are as similar as possible and patterns in different clusters
are as dissimilar as possible. This is often referred to as the within-cluster homogeneity
and between-cluster heterogeneity. Typically, the clustering algorithm outputs the set of
representations for thec clusters,V = {v1, . . . ,vc}, and the cluster membership matrix

41For example, see Jain and Dubes (1988) for a description of common clustering algorithms.
42Albeit essential, we do not consider any preprocessing issues such as appropriate scaling at this point.
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Algorithm 4.1 Partitional Clustering
Input: datasetX

1: choose number of clustersc, c ∈ {2, . . . , n− 1}
2: initialize cluster membershipsU randomly
3: compute initial cluster representationsV
4: repeat
5: re-compute cluster membershipsU
6: re-compute cluster representationsV
7: until cluster membershipsU do not change significantly

Output: cluster representationsV and class membershipsU

U which describes how the unlabeled data is partitioned among thec clusters. Note,
however, that often either the partition or the representations are desired as output only.

The notation of cluster memberships is vital for any clustering algorithm. Typically, mem-
bership degrees of patterns in clusters are represented by a (c × n) matrix U = (uij),
whereuij ∈ [0, 1] reflects the membership degree of patternxj ∈ X in clusteri. As a
rule, the constraint

∑n
j=1 uij > 0, for i = 1, . . . , c, ensures that the clusters are non-empty.

According to the terminology for classification tasks, membership degrees are sometimes
also referred to as labels. In general, two types of labels can be distinguished:43

• Hard or crisp labels describe the most traditional type of membership degree. A
patternxj either does (uij = 1) or does not (uij = 0) belong to a certain clusteri,
so thatuij ∈ {0, 1}. Typically, the constraint

∑c
i=1 uij = 1, j = 1, . . . , n, ensures

that any patternxj belongs to exactly one cluster.

• Soft or fuzzylabels, in contrast, permit graded memberships. This is often more
appropriate when a pattern cannot be clearly assigned to one of the clusters. In
soft labeling, the membership degrees are commonly within the unit interval,
i.e. uij ∈ [0, 1]. Depending on the constraints put on the membership degrees
for a particular pattern, we can further distinguishpossibilisticor unconstrained
fuzzyandprobabilistic or constrained fuzzylabels.44 Possibilistic labeling allows
any combination of membership degrees except for the degenerate case where all
values are zero for a particular pattern, making it the least restrictive form of label-
ing. Probabilistic labeling requires that the membership degrees for any particular
patternxj be normalized in such a way that they sum to unity.

Another fundamental notation is that of cluster representation. Commonly, the represen-
tationvi of clusteri is evaluated as the centroid, or mean, of the patterns assigned to that
particular cluster. These cluster representations are often referred to ascluster prototypes.
Obviously, their computation depends on the membership degrees, yielding

vi =

∑n
j=1(uij)

p xj∑n
j=1(uij)p

∀i ∈ {1, . . . , c} (4.1)

43See Bensaid and Bezdek (1998), for example.
44Often, constrained fuzzy labels are simply referred to as fuzzy labels.
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where the parameterp ∈ [1, . . . ,∞) controls the fuzziness of the clusters if applicable.45

Note that, for hard labeling, i.e.uij ∈ {0, 1}, the parameterp can be ignored. Many
extensions to this simple cluster representation can be considered.46 Later in this section,
we discuss an alternative approach to representing clusters which will lead to the general
semi-supervised learning framework.

Given the fundamental notation of the cluster representationsV and membershipsU, the
partitional clustering task can be formulated as minimizing the objective function47

Jp(U, V ;X) =
c∑
i=1

n∑
j=1

(uij)
p ‖xj − vi‖2 (4.2)

subject to constraints onU according to the labeling type employed. Again, the parameter
p ∈ [1,∞) controls the fuzziness of the clusters, where applicable. Any norm can be used
to evaluate the distance between patternxj and cluster representationvi. Frequently,
Euclidean distance is employed, i.e.‖xj − vi‖2 = (xj − vi)

T (xj − vi).

Note, for example, that settingp = 1, enforcing hard labels, and using Euclidean distance
amount to the well-known hard c-means clustering algorithm.48 An arbitrary norm and
setting ofp in combination with constrained fuzzy labeling leads to the family of fuzzy
c-means clustering algorithms.49

A solution that minimizes functionJp can be approximated by alternating optimization.
As shown in Algorithm 4.1 (lines 4 to 7), this amounts to iteratively updating the mem-
bership matrixU based on the current cluster representationsV and updatingV based
on the current state ofU . In particular, updating the cluster representations is carried out
according to Equation (4.1). Updating the memberships depends strongly on the under-
lying labeling type. Using hard labels, for instance, typically requires that the following
update scheme be used for each patternxj ∈ X l:50

uij =

{
1 if i = arg mini′∈{1,...,c} ‖xj − vi′‖
0 otherwise

∀i ∈ {1, . . . , c} (4.3)

Ties are resolved arbitrarily. For constrained fuzzy labels, in contrast, the relative dis-
tances between patterns and cluster representations are taken into account.

Generally, the optimization process stops when the difference between two successive
membership matrices is below a predefined threshold. Under certain conditions pertaining
to the label types and the updating schemes, convergence—and thus termination—after
a finite number of steps can be proven. Otherwise, a maximum number of steps could
be set so as to prevent endless oscillations. As a rule, the solution obtained is only a
local optimum but not a global optimum.51 As such, it crucially depends on the starting

45Commonly this parameter is termedm. This, however, would clash with the number of features.
46For example, see Bensaid and Bezdek (1998), pp. 627–628, and the references therein.
47See Bezdek (1981), pp. 43–93, for a treatment of objective function clustering.
48See MacQueen (1967).
49See Bezdek (1981) for details on fuzzy c-means clustering.
50See Bezdek (1981), p. 55.
51Note that in some cases the solution might only be a saddle point; see Bezdek (1987).
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solution. Without prior knowledge, a common choice is to initializeU randomly subject
to the constraints imposed by the labeling type. The initial cluster representationsV are
then evaluated based on the random initialization ofU; see Algorithm 4.1 (lines 2 and 3).

As this brief description of a general partitional clustering algorithm shows, the solution
is largely determined by the number of clusters chosen and by the starting solution, es-
pecially in high-dimensional feature space as is in the context of text classification. Of
course, different choices ofc and different random initializations of the membership ma-
trix may be tried out. Given an appropriate function for assessing cluster validity, the best
setting can then be selected. This, however, is a time-consuming process. Also, provision
of appropriate measures for cluster validity is not trivial.52 An alternative approach to
ensuring more meaningful solutions is to exploit background knowledge such as labeled
data to guide the clustering algorithm.

Guiding Unsupervised Learning by Labeled Data

To ensure meaningful solutions, labeled data can be used as background knowledge to
choose a suitable number of clusters and to appropriately initialize the membership ma-
trix. In particular, since we are ultimately interested in classification tasks, we desire the
clustering algorithm to automatically identify the class structure of the underlying clas-
sification task. Hence, labeled data might be used to set the clustering algorithm on the
right track towards a local minimum that is more likely to correspond to what we hope to
find with respect to the classification task than a solution that is achieved by starting off
from random initialization with a possibly inappropriate number of clusters. This kind of
clustering can be described as semi-supervised;53 see Algorithm 4.2 for a general outline.

To exploit the knowledge inherent to the labeled data, we assume that the classes to which
the labels correspond are homogeneous, so that they may be described by the simple
cluster representations introduced above. Under this assumption, it is reasonable to set
the number of clusters to the number of classes, i.e.c = k. This eliminates the first major
difficulty in partitional clustering tasks, namely to choose the number of clusters.

Let us turn to the problem of achieving solutions that are local minima. To increase the
chances that the solution obtained will match our interest, it is reasonable to set the initial
cluster representations to the centroids of the class-specific patterns. This is based on the
assumption that the labeled data, though not fully representative for the classes because of
their scarcity, roughly describe the classes and, therefore, resemble awell-seededinitial
solution.54 To initially ignore the unlabeled data, the initial cluster representations are
computed solely from the labeled data.

For the sake of notational simplicity, we denote the labeled patterns byxlj ∈ X l with
corresponding labelsylj ∈ C , for j = 1, . . . , nl, and the unlabeled patterns byxuj ∈ Xu,
for j = 1, . . . , nu. So, the entire dataset is denoted byX = {xl1, . . . ,xlnl ,x

u
1 , . . . ,x

u
nu}.

Furthermore, we introduce separate membership matricesUl andUu for the labeled and

52See Bezdek (1981), pp. 95–154, for a treatment of cluster validity.
53See Pedrycz (1984), and Bensaidet al.(1996) for some similar semi-supervised clustering approaches.
54See Bensaidet al. (1996), p. 863.
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Algorithm 4.2 Semi-Supervised Partitional Clustering

Input: datasetX = X l ∪Xu consisting of non-empty labeled and unlabeled subsets
1: set number of clustersc to number of classesk
2: initialize cluster membershipsUl andUu

3: compute initial cluster representationsV based on labeled data only
4: repeat
5: re-compute cluster membershipsUu

6: re-compute cluster representationsV
7: until cluster membershipsUu do not change significantly

Output: cluster representationsV and cluster membershipsUu

unlabeled documents, respectively. Specifically,Ul is a (c × nl) matrix for the cluster
membership degrees of thenl labeled patternsxlj ∈ X l, andUu is a(c × nu) matrix for
the cluster membership degrees of thenu unlabeled patternsxuj ∈ Xu. Note that, since
there is no labeled data in the traditional clustering approach, the membership matrixUu

of the unlabeled data corresponds to the aforementioned matrixU. Now, the complete
membership matrix may be written as the(c× n) block matrixU = (Ul|Uu).

The memberships for the labeled data are fixed according to the class labels provided.
With c = k andylj ∈ C = {c1, . . . , ck} for xlj ∈ X l, we define

ulij =

{
1 if yj = ci
0 otherwise

∀i ∈ {1, . . . , c}, j ∈ {1, . . . , nl} (4.4)

Note that this notation assumes that the class labels of the labeled data are hard. Although
this is a reasonable assumption with respect to the supervised classification task, it is not
necessary. Instead, any type of labeling might be employed, assuming thatU l be defined
accordingly.

Since the membershipsUu do not affect the initial cluster representations, they should be
initialized in such a way that the subsequently updated matrix differs significantly from
the initialization. Typically, all entries are set to zero, i.e.uuij = 0, while ignoring that,
for the initial iteration, this violates the constraints imposed by any of the labeling types
introduced above.

Now, according to Equation (4.1), the formula for the initial cluster representations based
on the labeled data only is given by

vi =

∑nl
j=1(ulij)

p xlj∑nl
j=1(ulij)

p
∀i ∈ {1, . . . , c} (4.5)

Algorithm 4.2 shows the pseudo code of a partitional clustering scheme which is guided
by labeled data. The alternating optimization process (lines 4 to 7) carried out after the
modifications pertaining to the initialization phase just described (lines 1 to 3) is similar
to that of the traditional partitional clustering scheme. The difference is that the member-
ships of the labeled dataUl remain fixed during the optimization process. Therefore, the
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updating procedure for the cluster representations can be formulated as

vi =

∑nl

j=1(ulij)
p xlj + λ ·

∑nu

j=1(uuij)
p xuj∑nl

j=1(ulij)
p + λ ·

∑nu

j=1(uuij)
p

∀i ∈ {1, . . . , c} (4.6)

so that the first sum regarding the labeled data introduces a constant bias towards the
starting solution. The parameterλ ∈ [0, 1] allows the relative weight of the unlabeled
data to be adjusted with respect to the labeled data.55 At this point, however, we will
not further consider this weighting factor and, thus, assumeλ = 1. Only note that it is
also possible to introduce pattern-specific weights so as to tailor the computation to agree
more or less with any particular labeled pattern according to its importance or quality.56

Finally, note that treating labeled data as a constant bias assumes that their labels are
correct. This is a reasonable assumption, since labels are only required for very few
patterns. Nevertheless, if the labeled data were noisy or partly incorrect, it would be
better to permit memberships of the labeled data to change as well during the optimization
process.

Associating Clusters with Class Labels

The guidance of the clustering algorithm by labeled data increases the chances that the
resulting solution resembles what we are looking for: a class structure which matches
the classes already given by means of the labeled data. As discussed previously, however,
clustering may find meaningful clusters, while it will not provide any association between
these clusters and predefined classes. Hence, they cannot be used to assign class labels to
new documents. With the help of labeled data, this drawback can easily be fixed.

A common approach to associating clusters with class labels is through supervised learn-
ing on the basis of some labeled data. The idea is to learn a simple classifier fromX l

and, then, use this classifier to assign class labels to the cluster representations. The
most straightforward approach to doing exactly this is to assign class labels inK-nearest-
neighbor fashion. LetT (vi) denote the label of cluster representationvi. TheK-NN rule
yields57

T (vi) = arg max
c∈C

Kc ∀i ∈ {1, . . . , c} (4.7)

whereKc denotes the number of labeled patterns among theK nearest neighbors that
belong to classc. Recall thatC denotes the set of classes of the supervised classification
task. Note that this approach is, in fact, independent of prior guidance by the labeled
data. Hence, it is applicable to the result of any type of clustering algorithm. Nonetheless,
note that this approach cannot guarantee that each of the predefined classes actually exists
among the class labels assigned to the cluster representations.

On the basis of the aforementioned guidance by labeled data, clusters and class labels
are, in fact, already associated. In particular, according to Equation (4.5), each cluster

55See Nigamet al. (2000).
56See Bensaidet al. (1996), p. 363.
57See Section 203 (p. 60) for a description of theK-nearest-neighbor rule.
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representationvi is initialized as the centroid of all patterns belonging to classci, yielding

T (vi) = ci ∀i ∈ {1, . . . , c} (4.8)

where the number of clusters equals the number of classes, i.e.c = k. Unless the subse-
quent incorporation of unlabeled data causes the cluster representations to change in such
a way that their resemblance to the labeled patterns would yield different class assign-
ments, the initial associations between clusters and class labels are reasonable. Note that
this approach guarantees that each of the predefined classes is represented by a cluster. In
the following, we assume that the associations between clusters and class labels as given
by the labeled-data-guided initialization are used.

Once associations between clusters and class labels are established, the clustering out-
put can be used to design a classifier. We distinguish two ways of doing so: utilizing
either the membership matrix or the cluster representations. A common approach to clas-
sification based on the cluster representations is through application of the one-nearest-
neighbor rule. Yet, since the cluster representations are prototypical patterns rather than
true patterns, this rule is often referred to as theone-nearest-prototype(1-NP) rule.58 The
classification of a new patternx is given by

H1-NP(x) = T (arg min
v∈V
‖x− v‖) (4.9)

where‖ · ‖ is typically the same norm employed during the clustering process.

Note that this one-nearest-prototype rule is similar to the single-prototype classifier set out
in Section 197 (pp. 58 ff.). Albeit based on different learning techniques, both classifiers
model each class by exactly one prototype. Yet, while the nearest-prototype rule is formu-
lated based on a general norm and returns the class label of the prototype with minimal
distance to a new pattern, the single-prototype classifier, in the context of text classifi-
cation, is formulated on the basis of the cosine similarity measure and, thus, returns the
class labels of the prototype with maximum similarity to a new document. Nevertheless,
recall that distance and similarity are in some way inversely related.59

Rather than using the cluster representations as the basis for a nearest-prototype classi-
fier, the second approach to classifying new data based on clustering results exploits the
final partition of the unlabeled data through supervised learning. For now, assume that
supervised learning requires hard class labels. So, we assign hard class labelsyuj to the
unlabeled patternsxuj on the basis of the final membership matrixUu. Note that in case
soft labels were used, the labels need to be hardened. This can be accomplished simply
by assigning the class label of the cluster to which the particular pattern has maximum
membership, which is known asmaximum membership conversion.60 So, the following
rule can generally be used to set the class labels of the unlabeled data:

yuj = arg max
i∈{1,...,c}

uuij ∀j ∈ {1, . . . , nu} (4.10)

58See Bezdek (1981), p. 228.
59See Section 176 (p. 52).
60See Bensaidet al. (1996), p. 861.
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Ties are resolved arbitrarily. Now, the unlabeled patterns with the imputed class labels
in addition to the labeled patterns may serve as a training set for any supervised learning
algorithm. The classifier learned from this augmented training set may subsequently be
used to classify new data. This idea leads directly to the final step in the approach to our
general semi-supervised learning framework. Also, note that the approach presented so
far fits in with the perspective of combining supervised and unsupervised learning in a
two-step process as set out in Section 4.2.

Using Supervised Learning to Describe Clusters

Most common clustering algorithms represent their clusters as centroids, or means, of the
associated patterns as formulated in Equation (4.1). Instead of this point-prototype rep-
resentation, more sophisticated representations might be used to better describe clusters.
For instance, this might allow taking cluster size and shape into account. Common ex-
tensions are representations that are linear varieties, hyperspherical shells, and regression
models.61 We consider an alternative approach that explicitly uses supervised learning to
describe clusters. Nevertheless, note that the computation of the cluster representations
carried out at each iteration based on the current state of the membership matrix follows,
in fact, a simple and implicit supervised learning scheme. In the description of the gen-
eral semi-supervised learning framework, we explicitly formulate this concept of using
supervised learning to describe clusters.

Consider that the objective of supervised learning is to construct from a set of labeled
patterns a classifier that can identify a finite set of classes so as to be able to assign class
labels to new patterns. In this sense, supervised learning will produce descriptions of the
predefined classes in the form of classifiers. The representation language used for these
descriptions varies greatly among different learning algorithms.62 Without regard to the
form of the class descriptions, the classifiers obtained through supervised learning from
the current state of the class labels may be used to represent clusters. Note, however, that
using any type of supervised learning comes with all the common pitfalls. In particular,
there is the problem of overfitting. Clearly, it is possible to find a particular learner that
perfectly fits the training data if it does not contain any errors. But as we know, this may
lead to poor generalization ability. Albeit crucial when choosing an appropriate learning
algorithm, this issue is highly data-dependent and will not be discussed here.

The idea of the general semi-supervised learning framework is to replace computations
of cluster representations through any supervised classifier design. The underlying learn-
ing algorithm will be referred to as thebase learner. Rather then applying unsupervised
learning and supervised learning in a two-step process as described above, this frame-
work amounts to interweaving supervised and unsupervised learning to yield an integrated
approach. Algorithm 4.3 shows the pseudo code of this integrated framework.

Note that, so far, we have used different labeling notations for supervised and unsuper-
vised learning. Specifically, in the supervised task, we have denoted the class labels of a

61See Bensaid and Bezdek (1998), pp. 627–628, and the references therein.
62See Section 3.3 for some common text learning algorithms and their representations.
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Algorithm 4.3 Semi-Supervised Learning Framework

Input: datasetX = X l ∪Xu consisting of non-empty labeled and unlabeled subsets
1: set number of clustersc to number of classesk
2: initialize cluster membershipsUl andUu

3: learn initial classifierH fromX l with true labelsUl

4: repeat
5: use classifierH to evaluate classification scores for unlabeled dataXu

6: transform classification scores into cluster membershipsUu

7: re-learn classifierH fromX l with true labelsUl andXu with imputed labelsUu

8: until stopping criterion is fulfilled
Output: classifierH

pattern by a scalar value indicating its class. To denote labels in the unsupervised task,
we have introduced the concept of the membership matrix which represents the degree of
association between each pattern and each cluster by a specific value. Above, we have
transformed the membership notation to scalar class labels to make use of the clustering
output in supervised fashion. Yet, to integrate supervised and unsupervised learning, we
require that both learning approaches use the same labeling notation. Hence, we aim at
adjusting the notation of the class labels employed for the supervised learning task to that
employed for the unsupervised task.

Assume a labeled patternx belonging to classci′ ∈ C. Rather than using the scalar class
labely = ci′, we now use the label vectory = (y1, . . . , yi, . . . , yk)

T ∈ [0, 1]k, wherek is
the number of classes and

yi =

{
1 if i = i′

0 otherwise
∀i = 1, . . . , k (4.11)

Note that, for hard labels, both the scalar and the vector notation are equivalent. Yet,
the vector notation corresponds to the notation of membership degrees as employed to
express labels in unsupervised learning. In particular, if the number of clusters equals the
number of classes, the label vectorylj of patternxlj ∈ X l, j = 1, . . . , nl, corresponds to
the column vectorulj in the aforesaid membership matrixUl = (ulj).

Due to the correspondence between class label vectors and the columns of a membership
matrix, provided that the number of clusters equals the number of classes, we can use the
membership matricesUl andUu as class labels for the labeled and unlabeled datasetsX l

andXu, respectively. Typically, the true labelsUl are hard as they are given by the user.
For the unlabeled data, however, the possible types of the imputed labels depend on the
supervised learning algorithm to be used: hard labels can always be used, whereas soft
labels may only be used if the underlying supervised learner can incorporate soft labels;
see Section 4.3.3.

Now, let us turn to the semi-supervised framework as set out in Algorithm 4.3. As in-
troduced previously, the number of clusters is set to the number of classes as given in
terms of the supervised learning task. Furthermore, the membership matrixUl of the
labeled patterns is initialized according to the class labels given in Equation (4.4). The
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membership matrixUu of the unlabeled patterns is initialized so as to ensure a significant
difference to the subsequent update. The remainder of the algorithm reads as follows.

First, rather than computing initial cluster representations, an initial classifierH is built
based solely on the labeled dataX l with the true labels inherent toUl (line 3). Note that
the homogeneity assumption pertaining to the classes may be relaxed if the base learner
can handle heterogeneous class definitions. Then, the semi-supervised algorithm iterates
three steps, which make up a bootstrapping iteration (see p. 89) as described below, until
the membership degreesUu given to the unlabeled dataXu do not change significantly
from one iteration to the next or until a predefined maximum number of iterations has
been exceeded. Note that the additional condition pertaining to the maximum number of
iterations is introduced here to prevent endless oscillations. This may be necessary as we
can no longer ensure convergence when using an arbitrary learning algorithm to describe
clusters.63 Finally, the classifierH resulting after the last iteration is returned.

The three steps making up a bootstrapping iteration, which is the core of an approach to
bootstrapping a classifier as introduced in Section 295 (p. 89), are as follows:

1. The current classifierH is used to obtain classification scores for each unlabeled
pattern (line 5). Note that there is no constraint on the response of the classifier. As
a rule, classification scores are hard, probabilistic, or possibilistic by nature.

2. To abstract from the classifier’s response, the classification scores obtained are
transformed into the membership matrixUu, so that they are appropriate for the
underlying learning algorithm (line 6).64

3. On the basis of both the labeled patternsX l with their known class labelsUl and
the unlabeled patternsXu with their imputed class labelsUu, a refined classifierH
is built (line 7).

Note that through the integration of supervised and unsupervised learning, the semi-
supervised framework outputs a classifier that can be used to assign the class label to
any new pattern. Hence, this framework is to be characterized as an approach to classifier
design rather than clustering. So, this contrasts with the semi-supervised clustering algo-
rithm obtained at an intermediate step (Algorithm 4.2) and described in a similar way by
Pedrycz (1984) and Bensaidet al. (1996).

Also, this integration has turned the two-step process of combining supervised and un-
supervised learning into an approach which is—although not in a probabilistic context—
very similar to the basic idea of the EM algorithm when learning in the presence of miss-
ing class labels. To see this, consider that, in the EM algorithm, two steps are iterated: the
expectation step(E-step) and themaximization step(M-step). In the E-step, probabilities
for each unlabeled pattern belonging to any of the possible classes are estimated. Clearly,
this corresponds to the first step (line 5) in our semi-supervised framework, which com-
putes classification scores for each of the unlabeled patterns. In the M-step, a new model

63See Section 4.3.3 for further discussions on this issue.
64See Section 4.3.3 for more details.
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for estimating the probabilities of unlabeled patterns belonging to any of the classes is de-
termined through maximum likelihood or maximum a posteriori estimation on the basis of
the currently imputed probabilistic class labels. This corresponds to the third step (line 7)
of the semi-supervised framework, which designs a classifier based on the training data
with respect to the current state of imputed class labels. As a result, the semi-supervised
framework described here can be considered as an EM-like approach to classifier design.

4.3.2 The Semi-Supervised Text Learning Framework

In the preceding, we have derived a framework for semi-supervised learning from labeled
and unlabeled data using a general terminology. Now, we return to the terminology used
in the context of text classification, yielding a semi-supervised text learning framework as
proposed in Lanquillon (2000b). In addition, we summarize the assumptions which have
been made during the construction of this learning framework. Particular instantiations of
the semi-supervised learning framework will be discussed in the next section.

Input to the algorithm is a set of training documentsD. For some subset of the documents
dlj ∈ Dl, we know the true class labels and, for the rest of the documentsduj ∈ Du, the
class labels are unknown. Thus we have a disjoint partitioning of the training documents
into a labeled set and an unlabeled set of documents, so thatD = Dl ∪ Du. The task is
to build a classifierH based on the training documentsD which would predict the class
labels of new, previously unseen documents.

The assumption that should hold to allow application of the semi-supervised text learning
framework are as follows:

• Labeled and unlabeled documents come from the same source.Each document,
labeled or unlabeled, is assumed to be drawn from the same document source. So,
the only difference between labeled and unlabeled documents is the class labels
given the labeled documents by the user. Furthermore, each document belongs
to any one of thek predefined classes. This is also known as theclosed-world
assumption. As a consequence, this justifies classifying the unlabeled document
into the same classes as the labeled documents and, then, using them as additional
training data. Note, of course, that we still assume that the document source is
stationary.

• Each class is represented by at least one labeled document.The set of labeled
documents may be small. Yet, we require that there be at least one labeled training
document per class so as to ensure that some seed information is available for each
class. Otherwise, it may not be possible to assign the correct class labels to the
unlabeled documents.

• Labeled documents allow better-than-random classification.Because of their
scarcity, the labeled documents may not be fully representative of the classes. Yet,
we assume that they provide a rough description that allows learning a classifier
which performs better than random. This allows bootstrapping the classifier based
on its own effort, namely the assignment of class labels to unlabeled documents.



106 CHAPTER 4. SEMI-SUPERVISED TEXT LEARNING

• The base learner can distinguish among classes.Just as for the plain supervised
task, the underlying supervised learning algorithm must be able to learn the classes.
So, obviously, the same assumption made for the base learner must also hold in
the semi-supervised learning framework. For instance, some common classifiers
such as the naı̈ve Bayes classifier or the Rocchio variants require that the classes be
homogeneous, so that a single prototype is sufficient to represent a class.

• Labeled documents are correctly labeled.The class labels of the labeled documents
will remain fixed during the iterations of the semi-supervised learning framework.
This assumes that the class labels given by the user are correct. This is reasonable
because we require only a relatively small number of documents to be labeled. This
is, in fact, no additional assumption imposed by semi-supervised learning; rather,
class labels are also assumed to be correct in supervised learning.

The semi-supervised text learning framework as shown in Algorithm 4.4 reads as follows:

1. The number of clusters is the same as the number of classes, i.e.c = k, since
learning thek classesC = {c1, . . . , ck} is to be supported through unlabeled data.
To emphasize this, we will use the parameterk rather thanc in the following.

2. The (k × nl) membership matrixUl = (ulj), for j = 1, . . . , nl, holds the true
class labels of the labeled documents in the form of label vectors, i.e.ulj = ylj.
A label vectoryl is obtained from the scalar class labelyl = T (dl) according to
Equation (4.11). Note that the class labels of the labeled documents are assumed
to be correct and, therefore, the membership matrixUl will remain fixed. The
(k × nu) membership matrixUu = (uuj ), for j = 1, . . . , nu, holds the imputed
class labels of the unlabeled documents in the form of label vectors as above. The
class labelsuuj = yuj may change at each iteration, indicating the current partition
of the unlabeled documents among thek classes. Each entry ofUu is initially set
to zero to emphasize that the initial classifierH will be learned solely from labeled
data. Also, this initialization ensures that the subsequent update ofUu may differ
significantly fromUu so as not to cause the process to terminate early.

3. The set of labeled documentsDl with class labelsUl serves as seed information.
So, an initial classifierH is learned from the labeled documents only. Note that any
supervised learning algorithm might be used. This base learner, however, is then
assumed to be used throughout the semi-supervised framework.

4. The remaining three steps are repeated until the class labelsUu of the unlabeled
documents do not change significantly from one iteration to the next or until a
predefined maximum number of iterations has been exceeded. The condition per-
taining to the membership matrix of the unlabeled documents typically checks con-
vergence of a clustering algorithm. The additional condition pertaining to the max-
imum number of iterations is introduced to prevent endless oscillations as we can
no longer ensure convergence when using an arbitrary base learning algorithm. We
will have more to say on this in the following subsection.



4.3. THE SEMI-SUPERVISED LEARNING FRAMEWORK 107

Algorithm 4.4 Semi-Supervised Text Learning Framework

Input: datasetD = Dl ∪Du consisting of non-empty labeled and unlabeled subsets
1: set number of clustersc to number of classesk
2: initialize cluster membershipsUl andUu

3: learn initial classifierH fromDl with true labelsUl

4: repeat
5: use classifierH to evaluate classification scores for unlabeled dataDu

6: transform classification scores into cluster membershipsUu

7: re-learn classifierH fromDl with true labelsUl andDu with imputed labelsUu

8: until stopping criterion is fulfilled
Output: classifierH

5. The current classifierH is used to classify the unlabeled documents. We assume
that, for each unlabeled document, the classifier responds with a classification score
for each class. Depending on the classifier, these scores may be hard, probabilistic,
or possibilistic by nature. Typically, a classification decision is made by selecting
the class with maximum score. In the context of semi-supervised learning, however,
the way in which the classification scores are processed depends on the base learner.

6. To abstract from the classifier’s response, the scores obtained are transformed into
the class labelsUu, so that they are appropriate for the base learner. Note that using
hard labels will work with any learning algorithm as these resemble conventional
class labels. Some classifiers may be able to learn from examples with soft class
labels. Yet, whether learning from examples with soft labels is superior to learning
from examples with hard labels is to be validated carefully, as is done below.

7. The classifierH is re-learned from both the labeled documentsDl with true class
labelsUl and the unlabeled documentsDu with the current state of the imputed
class labelsUu. As a rule, all unlabeled documents are considered when refining
the classifier.65 Yet, we exclude an unlabeled document from the training set if its
classification scores are all zero. This might occur when the number of labeled
documents is very small and the unlabeled document does not have any terms in
common with any of the labeled documents. Typically, the number of unlabeled
documents which are excluded for this reason decreases as the algorithm precedes,
because, then, more co-occurrence information will have been exploited and more
index terms can be associated with particular classes.

4.3.3 Instantiations

To apply the semi-supervised text learning framework to actually solve classification
tasks, two things must be specified: the base learning algorithm and the function which

65Recall that this contrasts with self-training approaches (see p. 90), which add only a small number of
confidently classified unlabeled documents to the current training set.
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transforms classification scores into class labels. In the following we discuss the use of
three different base learners in the semi-supervised setting: the single-prototype classifier,
the multinomial näıve Bayes classifier, and the support vector machine. Results for these
semi-supervised classifiers will be presented in Section 4.4. Note that initial experiments
showed that nearest-neighbor rules do not qualify for semi-supervised learning as they
do not generalize beyond the training documents and, thus, cannot exploit co-occurrence
patterns, which, however, has been identified as the key to success in exploiting unlabeled
data in addition to labeled data.66

Semi-Supervised Single-Prototype Classifier

The most straightforward instantiation of the semi-supervised text learning framework
is by use of the single-prototype classifier, yielding thesemi-supervised single-prototype
classifier(ssSPC). Using the single-prototype classifier as base learner is the most natural
choice, since it is the supervised variant of representing clusters, i.e. classes, by a single
prototype. So, in its basic form, the single-prototype classifier may, in fact, be seen as the
underlying learning algorithm of conventional hard c-means clustering.

A central issue is the choice of the transformation function to convert classification scores
into class labels. Undoubtedly, the single-prototype classifier may be used in combina-
tion with any labeling type; Equation (4.6) illustrates this. But which labeling type is
most appropriate? As text classification experiments with soft labels show, all class pro-
totypes produced by the semi-supervised single-prototype classifier tend to converge to
the same prototype. Clearly, this will not permit meaningful classification of new docu-
ments. As a consequence, the choice of an appropriate transformation function is simple:
classification scores should be converted into hard labels.

Algorithm Details. The classification scores are obtained as similaritiessim(du,pi)
between a particular unlabeled documentdu ∈ Du and the prototypespi, i = 1, . . . , k,
of the current single-prototype classifier. Note that the class prototypes of the single-
prototype classifier are used as cluster representations, i.e.pi = vi.

A hard class label vectoruu = (uui ), akayu, is obtained by hardening with respect to the
maximum classification score, yielding

uui =

{
1 if i = arg maxi′∈{1,...,k} sim(du,pi′)
0 otherwise

∀i ∈ {1, . . . , k} (4.12)

Based on the current class label vectorsUu for the unlabeled documentsDu and the
fixed class label vectorsU l for the labeled documentsDl, the prototypespi are computed
according to Equation (4.6), yielding67

pi =

∑nl

j=1 u
l
ij dlj + λ ·

∑nu

j=1 u
u
ij duj∑nl

j=1 u
l
ij + λ ·

∑nu

j=1 u
u
ij

∀i ∈ {1, . . . , k} (4.13)

66See Lanquillon (2000a).
67Note that we have dropped the fuzziness paramterp here.
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Recall that the first sum pertaining to the labeled documents introduces a constant bias
towards the initial class prototypes. The parameterλ ∈ [0, 1] allows the relative weight of
the unlabeled documents to be adjusted with respect to the labeled documents.68 At this
point, however, we will not further consider this weighting factor and assumeλ = 1.

Proof of Convergence. As the description of the semi-supervised single-prototype clas-
sifier has shown, it is a generalization of hard c-means clustering. The key difference to
the well-known c-means clustering algorithm is that the memberships of some documents,
namely the labeled documents, remain fixed during the clustering iterations. The tradi-
tional c-means algorithm is certain to converge to a local minimum after a finite number
of iterations. But what about the semi-supervised single-prototype classifier?

The proof of convergence for the traditional c-means algorithm is based on the fact that
there is only a finite number of hard partitionings of training patterns into classes and also
that the sum of squared distances between cluster representations and training patterns—
previously introduced as the objective functionJ—does not increase while iteratively
updating the membership matrix and the cluster representations.69 Hence, the algorithm
must converge after a finite number of steps.70

The calculation of cluster representations based on training documents and their hard class
labels is the same for the semi-supervised single-prototype classifier. Hence, this step
does not increaseJ . As mentioned above, the update rule for the membership matrixU
differs from the traditional c-means algorithm. The label vectors of the labeled documents
remain fixed, while the unlabeled documents are always assigned to the most similar
cluster representation. The latter is equivalent to the traditional c-means algorithm and,
thus, also does not lead to an increase inJ . Furthermore, note that fixed class labels
cannot causeJ to change. Hence, the semi-supervised single-prototype classifier will
also converge to a local minimum after a finite number of steps.

Semi-Supervised Näıve Bayes Classifier

Like the single-prototype classifier, the naı̈ve Bayes classifier is an instance-averaging
approach to learning classes. As such, it is particularly well suited to represent clusters
in the semi-supervised text learning framework. Here, we consider using the multinomial
näıve Bayes classifier as the base learning algorithm, yielding thesemi-supervised naı̈ve
Bayes classifier(ssNB).

Formulated in a probabilistic framework, the naı̈ve Bayes classifier is doomed to be used
in combination with probabilistic class labels. Hence, the classification scores returned by
the näıve Bayes classifier, i.e. the class-specific posterior probabilities given a document,
need not be transformed; they can be used directly as probabilistic labels. As experiments
will show, the näıve Bayes classifier—unlike the single-prototype classifier—performs

68Nigamet al. (2000) use this weighting parameter to augment their EM-based naı̈ve Bayes classifier.
69Note that, here, we have dropped the subscriptp from the objective functionJp, as the corresponding

parameterp has no effect on the outcome of hard c-means clustering.
70See Selim and Ismail (1984).
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very well when employing soft labels. The reason for this might be that the naı̈ve Bayes
classifier typically responds with probability estimates which are extremely close to zero
or one. As a consequence, the resulting class labels can almost be considered hard rather
than soft.

Note that this instantiation of the semi-supervised text learning framework is, in fact,
equivalent to the EM-based naı̈ve Bayes classifier for learning from labeled and unlabeled
documents proposed by Nigamet al. (1998) and (2000). As a matter of fact, our semi-
supervised text learning framework is meant to generalize Nigam’s EM-based approach
so that any learning algorithm may be used in place of the naı̈ve Bayes classifier.

Algorithm Details. Assume probabilistic class labels. Hence, the entries of the mem-
bership matrixUl represent the true probabilities of class membership for each labeled
document in the predefined classes:

ulij = P(ci|dlj) ∀i ∈ {1, . . . , k},∀j ∈ {1, . . . , nl} (4.14)

As a rule, these probabilities take on integer values zero or one as they are provided by
the user. The entries of the membership matrixUu are interpreted as estimates of the
probabilities of class membership for each unlabeled document, yielding

uuij = P̂(ci|duj ) ∀i ∈ {1, . . . , k},∀j ∈ {1, . . . , nu} (4.15)

Naturally, the class-specific probabilities for each document, both labeled and unlabeled,
are required to sum up to unity. As a consequence, we observe the following relationships:

nl∑
j=1

k∑
i=1

ulij = nl and
nu∑
j=1

k∑
i=1

uuij = nu (4.16)

Recall that the näıve Bayes classifier combines class prior probabilities and the proba-
bilities of a document given each of the possible classes by Bayes’ theorem to obtain
posterior probabilities of the classes given the document.71 Below, we present modified
formulae to estimate the probabilities involved according to Nigamet al. (2000).

On the basis of both labeled and unlabeled documents, the class priorsθci are computed
as Laplace corrected maximum likelihood estimates, yielding

θ̂ci =
1 +

∑nl
j=1 u

l
ij + λ ·

∑nu
j=1 u

u
ij

k + nl + λnu
∀i ∈ {1, . . . , k} (4.17)

Note that the Laplace priors supplement each of thek possible classes with a count of
one. This type of smoothing is introduced here so as to avoid difficulties with inaccurate
estimates when only very few labeled documents are available. As introduced for the
semi-supervised single-prototype classifier, the parameterλ ∈ [0, 1] allows adjusting of
the relative weight of the unlabeled documents with respect to the labeled documents. For
now, we assumeλ = 1. Yet, we will have more to say on this later in this chapter.

71See Section 206 (pp. 61 ff.)
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Under the näıve Bayes assumption, estimating the probability of a document given a
class requires estimates of the probabilities of all terms given the class. Let these term
probabilities be denoted byθt|ci = P(t|ci) for each classci, i = 1, . . . , k, and each
index termt ∈ V. As a modification of Equation (3.54) (p. 65), the parametersθt|ci are
computed as the Laplace corrected maximum likelihood estimate based on both labeled
and unlabeled documents, yielding

θ̂t|ci =
1 +

∑nl
j=1 u

l
ij tf dlj

(t) + λ ·
∑nu

j=1 u
u
ij tf duj

(t)

m+
∑m

s=1

∑nl
j=1 u

l
ij tf dlj

(ts) + λ ·
∑m

s=1

∑nu
j=1 u

u
ij tf duj

(ts)
(4.18)

wheretf d(t) denotes the number of occurrences of termt in documentd,m is the number
of index terms, and the parameterλ ∈ [0, 1] is used as described above.

Proof of Convergence. Note that this instantiation of our semi-supervised learning
framework has a strong probabilistic framework. In fact, it is an application of the EM
algorithm using the naı̈ve Bayes classifier to learn the underlying model parameters. “In
its maximum likelihood formulation, EM performs hill-climbing in data likelihood space,
finding the classifier parameters that locally maximize the likelihood of all the data—both
the labeled and the unlabeled.”72 At each iteration, the EM algorithm is guaranteed to find
parameters which have equal or higher likelihood than that at the previous iteration. As
the likelihood is naturally bound above, the EM algorithm—and, as a result, the semi-
supervised näıve Bayes classifier—is guaranteed to converge. As a rule, convergence is
determined when observing a below-threshold change in the parameters involved in the
optimization process. Finally, note that, in most applications, the solution obtained by
the EM algorithm is a local maximum. Yet, in some rare cases, we might also observe
convergence to a saddle point or even a local minimum.73

Semi-Supervised Support Vector Machine

Both the single-prototype classifier and the naı̈ve Bayes classifier are similar in that they
produce class descriptions by aggregating class-specific information as given by the train-
ing examples. To contrast with this, we now consider the support vector machine, which
is currently one of the most successful text learning algorithms, to be applied as the base
learner, yielding thesemi-supervised support vector machine(ssSVM). As previously, we
will use linear support vector machines only.

In its current form, the optimization problem to be solved for the support vector machine
requires that the class labels of the unlabeled data be hard. Hence, class label vectors are
obtained by hardening classification scores with respect to the maximum classification
score as described for the semi-supervised single-prototype classifier.

Learning the support vector machine from the combined set of labeled documents with
their true class labels and the unlabeled documents with their imputed class labels works

72From Nigamet al. (2000), pp. 104–105.
73See McLachlan and Krishnan (1997), p. 33.
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in the known supervised manner. Note that, in the context of support vector learning,
problems withk > 2 classes require splitting into binary subtasks. The same applies to
the semi-supervised support vector machine.

Note that, for the single-prototype and naı̈ve Bayes instantiations, we have introduced
a parameterλ to adjust the relative weight of the unlabeled documents with respect to
the labeled documents. For the support vector machine, we do not have this facility.
Nevertheless, a way to adjust the importance of unlabeled data during the optimization
process might be to adapt the behavior by which non-separable examples are punished or
excluded from the training set.74

Despite the hard class labels and the thus finite number of possible partitions, we cannot
guarantee that the semi-supervised support vector machine will converge after a finite
number of steps. Instead, we may observe oscillations between particular states of the
hard membership matrixUu for the unlabeled documents. To ensure termination anyhow,
a maximum number of iterations should be specified.

4.3.4 Augmented Framework

In the preceding, we have developed our semi-supervised text learning framework in its
basic form. The next section will provide empirical evidence of how effective the three
instantiations proposed perform in real-world text classification tasks. Although superior
in many applications, in some situations the semi-supervised learning algorithms perform
worse than the underlying supervised base learner.75 The following discussion concerns
the instantiations based on the single-prototype classifier and the naı̈ve Bayes classifier
and provides an augmentation to the basic semi-supervised learning framework.

As pointed out by Nigamet al. (2000), some of the performance degradation observed
may be accounted for by violations of the assumptions made for the semi-supervised
learning framework. In particular, it is assumed that classes are learnable by the base
learner. So, depending on the base learner, this may require homogeneous classes. The
issue of having heterogeneous classes, which the base learner may not be able to learn,
will be discussed in Chapter 5. Another assumption states that both labeled and unlabeled
documents come from the same source. This assumption may be violated in real-world
problems. In addition, even the assumption that each document is generated by a par-
ticular document source with class-specific parameters may not be adequate to describe
the problem setting. If these assumptions are not true, the partition in the unlabeled data
identified through clustering might not be in correspondence with the classes of the super-
vised learning task.76 As a consequence, exploiting unlabeled data might degrade classi-
fication performance. In the following, we address the problem of having a partition in
the unlabeled data which does not fully support classification.

Violations of some assumptions may cause the correspondence between clusters and
classes to become impaired. Yet, a degradation in classification performance has also

74See Section 243 (p. 70).
75Also, see Nigamet al. (2000) and Lanquillon (2000a) and (2000b).
76See Nigamet al. (2000), p. 114.
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been observed in situations in which the assumptions are presumably true, as both the
labeled and the unlabeled sets were artificially created based on the same document col-
lection. Hence, there ought to be further reasons accounting for performance degradation.
Assume that the labeled and unlabeled document sources are similar enough to permit
application of the semi-supervised learning framework. Still, empirical results show that
the benefit we may get from the unlabeled documents largely depends on the number of
labeled documents and the number of unlabeled documents available for training.77 As the
analysis in the subsequent section suggests, this may be accounted for by the uncertainty
inherent to unlabeled documents in combination with their imputed class labels. Predicted
by a classifier rather than provided manually by a user, the class labels of unlabeled docu-
ments are error prone and, therefore, uncertain. Just like violated assumptions pertaining
to the document source, usage of incorrectly classified unlabeled data in the learning
process may cause an impaired correspondence between clusters and classes. And, this
becomes particularly apparent by causing performance degradation when a reasonably
accurate classifier can already be learned from labeled documents only.78

We might argue that there is no need to use unlabeled data when the set of labeled training
documents is large. Yet, typically we do not know just when this training set is deemed
large enough and, hence, when to better learn without unlabeled data. So, to remedy
the problem caused by an impaired correspondence between clusters and classes—due to
either incorrect class labels or violated assumptions pertaining to the document source—
the influence of the unlabeled data on the semi-supervised learner should be modulated.79

The parameterλ ∈ [0, 1] introduced previously for the semi-supervised single-prototype
classifier and the semi-supervised naı̈ve Bayes classifier allows the relative weight of
the unlabeled documents to be adjusted with respect to the labeled documents. When
settingλ = 1, we obtain the semi-supervised learning framework in its basic form as
labeled and unlabeled data are given the same weight. Choosingλ < 1, in contrast,
allows discounting unlabeled data, yielding an augmented version of the semi-supervised
learning framework.

Now, the key issue is to find a suitable value forλ. Nigamet al. (2000) determineλ on
the basis of leave-one-out cross-validation and show that performance no longer degrades
when discounting unlabeled documents in this way. Also, they observe an inverse rela-
tionship between the number of labeled documentsnl and the best weighting factorλ. To
abstract from the number of classesk, we heuristically determine the weighting factor as

λ =
1

1 + log(nl
k

)
(nl ≥ k) (4.19)

The logarithmic relationship betweenλ and the average number of labeled documents per
class accounts for the fact that, on a log scale, accuracy often increases linearly with the
number of labeled training examples before reaching a plateau.80 Note thatλ takes on
its maximum, i.e.λ = 1, when learning from only one labeled document per class and it
approaches its minimum, i.e.λ→ 0, as the number of labeled documents increases.

77See Lanquillon (2000b).
78Also, see Nigamet al. (2000) and Lanquillon (2000a) and (2000b).
79See Nigamet al. (2000), p. 114.
80See Section 276 (p. 84).
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4.4 Experimental Evaluation

This section provides empirical evidence that learning from both labeled and unlabeled
documents through the semi-supervised variants of the single-prototype classifier, the
näıve Bayes classifier, and the linear support vector machine as set out above often out-
perform the traditional supervised learners, which learn from labeled documents only. We
present experimental results on the three text corpora based on which the effect of a small
training set size has been demonstrated in Section 276 (p. 82 ff.): the20 Newsgroups
dataset, theWebKB dataset, and a subset of theTREC dataset.

Particularly when labeled training data is scarce, results show substantial improvements
in accuracy. For example, learning from only one labeled training document per class
for the 20 Newsgroups dataset, the traditional single-prototype classifier achieves only
22% accuracy, whereas the semi-supervised single-prototype classifier reaches about52%
accuracy when adding 10,000 unlabeled training documents. Put in other words, semi-
supervised learners may achieve a specific level of classification accuracy with much less
labeled training data than their supervised variants. Yet, sometimes—especially when
the number of labeled training examples is large—the instantiations of the basic semi-
supervised framework perform worse than their plain supervised base learners. In these
cases, the augmented framework can often yield a remedy. In the following, we closely
examine the behavior of the semi-supervised learners in various settings.

4.4.1 Datasets and Experimental Setups

As previously, we use the enhanced version of therainbow system to run the experiments
on the three text corpora.81 We employ the experimental setups as set out in Section 276
(pp. 82 ff.). This time, however, we make use of the unlabeled sets held aside. In par-
ticular, for the20 Newsgroups dataset, there are 10,000 unlabeled documents which may
be used during training in addition to the labeled training documents. For theWebKB
dataset, there is a total of 2,500 additional unlabeled documents, while there are 700
unlabeled documents available for theTREC dataset.

When using both labeled and unlabeled documents, we have to clarify how the additional
use of unlabeled data affects the techniques applied during the text representation phase.
As we consider both labeled and unlabeled data as training examples, any of these tech-
niques must take both types of training data into account. In particular, term generation
and dimensionality reduction necessitate special processing of training data. Term gen-
eration amounts to identifying index terms in all the training documents whether labeled
or unlabeled. As it is carried out independent of the actual class of a document, term
generation is not a problem. Yet, with respect to dimensionality reduction, incorporating
unlabeled training data may not be feasible as some feature selection techniques such as
the frequently used information-gain criterion require that the class labels be known. To
be able to use them anyway, computation of class-dependent measures might be restricted
to only the labeled data, thereby accepting loss of information inherent to the unlabeled

81See Appendixes A and B for more details on the software and the text corpora, respectively.
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20 Newsgroups WebKB TREC
Learner

min max min max min max

SPC 21.78% 77.63% 42.43% 81.36% 65.23% 95.14%

NB 20.32% 80.13% 37.34% 83.73% 69.49% 96.20%

SVM 22.18% 78.18% 41.61% 89.20% 64.43% 97.14%

Table 4.2: Minimum accuracy obtained when learning with one labeled document per class and greatest expected accuracy when
learning from both labeled and unlabeled documents as if the true class labels for the unlabeled documents were known for all three
supervised base learners on each of the three text corpora.

data. Note, however, that class-dependent feature selection tends to be statistically unre-
liable as we typically consider situations in which labeled data is scarce. Hence, if not
stated otherwise, we apply only the rudimentary, class-independent feature selection tech-
niques as set out above: stop-word removal and elimination of words that occur only once
in the training data. Any index terms remaining are used as vocabulary.

Before presenting results obtained with the semi-supervised text learners, let us consider
what we can expect to achieve at most when learning from unlabeled data in addition to
some labeled documents. We know that labeled data is more valuable than unlabeled data
in classifier design. So, to determine the greatest achievable performance, we assume
that the true class labels of all the unlabeled documents are known. Table 4.2 shows the
maximally achievable accuracy of the three base learners on each of the three text corpora.
In addition, these results are contrasted with the performance achieved when a minimal
training set consisting of only a single labeled document per class is available. Note that
these result are obtained without substantial dimensionality reduction. In some cases, we
observed, if at all, only marginally enhanced performance when reducing vocabulary size.
Only for theWebKB dataset, could accuracy of the naı̈ve Bayes classifier and the single-
prototype classifier be enhanced substantially by as much as10% for certain amounts of
labeled training data when using only some top hundred features selected according to
the information-gain criterion.

4.4.2 Results

There is an abundance of settings for which semi-supervised learning might be evaluated.
We will consider some variations along the dimensions shown in Table 4.3.

Dimension Range

Datasets 20 Newsgroups, WebKB, TREC

Base learning algorithms SPC, NB, SVM

Labeled training set size various numbers

Unlabeled training set size various numbers

Vocabulary size various numbers

Number of bootstrapping iterationsvarious numbers

Table 4.3: Dimensions and their variations along which experiments are set up.
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The behavior of the semi-supervised text learning approaches is examined as follows:
First, we present results for the three instantiations of the semi-supervised text learning
framework in its basic form on the three text corpora selected when the number of labeled
training data is varied. Then, we provide additional results to analyze operating charac-
teristics and to identify drawbacks, enabling us to understand when learning from both
labeled and unlabeled documents helps and when it degrades performance. In particular,
we analyze the effect of the number of unlabeled documents and the effect of the vocab-
ulary size. Also, performance as a function of the number of iterations will be studied. A
comparison between the performance on the unlabeled training data and test data sheds
some light on the issue of overfitting. Having studied the basic semi-supervised frame-
work, we turn to its augmented variant as a remedy for some cases of performance degra-
dation. Finally, we compare our semi-supervised learners to self-training approaches.

Results for Basic Semi-Supervised Text Learning Framework

Semi-Supervised Single-Prototype and Naı̈ve Bayes Classifiers. Figure 4.4 shows
the classification accuracies of the semi-supervised single-prototype classifier (ssSPC)
and the semi-supervised naı̈ve Bayes classifier (ssNB) on the three text corpora selected
when the number of labeled training documents is varied.82 Note that the semi-supervised
learners have access to the set of unlabeled documents held out. The results are contrasted
with the learning curves of the corresponding supervised learners, which learn from only
the labeled training documents, as described in Section 276. The horizontal axes indicate
the number of labeled training documents on a log scale. Note, for instance, that a total
of 20 training documents for the20 Newsgroups dataset corresponds to one document per
class and a total of five training documents corresponds to one document per class for the
TREC dataset. For theWebKB dataset, a total of four training documents corresponds to
one document per class. The vertical axes indicate the average classification accuracies
on the test sets. Note the different magnifications of the vertical scales.

In all experiments, the semi-supervised learners perform substantially better than their
supervised counterparts when the number of labeled training documents is small. Or,
put in other words, semi-supervised learning can achieve a specific level of classification
accuracy with much less labeled training data. For instance, with only 100 labeled training
examples for the20 Newsgroups dataset (five documents per class), ssSPC reaches67%
classification accuracy, while the traditional single-prototype classifier (SPC) achieves
only 42%. This represents a43% reduction in classification error. For the same labeled
training set size, accuracy of the naı̈ve Bayes classifier increases from37% to 56%, repre-
senting a30% reduction in classification error. In other words, to reach65% classification
accuracy, for example, SPC requires about500 and ssSPC only70 labeled training docu-
ments. Similarly, NB requires about900 and ssNB only250 labeled training documents
to yield 65% classification accuracy. For theWebKB dataset, the performance increase
is smaller but still substantial. For instance, for 20 labeled training examples (five docu-
ments per class), SPC obtains56% accuracy and ssSPC70%, reducing classification error

82The results presented for the semi-supervised naı̈ve Bayes classifier on the20 Newsgroups dataset have
been replicated from Nigamet al. (2000).
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by 32%. For the same number of labeled documents, NB achieves50% accuracy and
ssNB61%, which represents a22% reduction in classification error. Note that ssNB can
reach about the same performance as ssSPC if the vocabulary is reduced drastically. The
effect of the vocabulary size on classification performance will be evaluated below. On
theTREC dataset, even though augmented with much less unlabeled data, both ssSPC and
ssNB substantially enhance accuracy when labeled data is scarce. The learning curves of
both semi-supervised learners are very similar. Yet, since SPC is outperformed by NB,
the performance increase of ssSPC is more remarkable than that of ssNB. For instance,
with 10 labeled training documents (two documents per class), ssSPC increases accuracy
from 76% to 90%, representing a61% reduction in classification error. In contrast, ssNB
increases accuracy from79% to 89%, representing a50% reduction in classification error.
Altogether, ssSPC is superior to ssNB when the amount of labeled training data is small.

The performance gain achieved by the semi-supervised learners decreases as the num-
ber of labeled training documents increases. The reason for this is that more accurate
classifiers can be learned from the labeled data alone. As the accuracy obtained through
plain supervised learning approaches a dataset-specific plateau, we barely benefit from
incorporating unlabeled documents through semi-supervised learning. In fact, note that
the accuracy of ssSPC also degrades when the number of labeled training documents is
very large. For instance, with 400 labeled training examples (100 documents per class)
on theWebKB dataset, classification accuracy decreases from79% to 76%, represent-
ing a10% increase in classification error. Finally, note that other experiments also show
performance degradation for ssNB when using different vocabulary sizes.83

To summarize, the results for the semi-supervised single-prototype classifier and the semi-
supervised näıve Bayes classifier show that the benefit we may achieve from the use of
unlabeled documents strongly depends on the number of labeled training documents. Of
course, performance of semi-supervised learning also crucially depends on the number of
unlabeled documents as we will see below. Obviously, we can enhance learning accuracy
as the number of labeled training documents increases. So, when the number of labeled
training documents is small, the learning algorithm is badly in need for help. Hence, the
learner benefits from the additional unlabeled documents even though their imputed class
labels are uncertain. Note that the imputed labels are uncertain because many of them
tend to be incorrect as they are predicted by a typically weak classifier and, therefore,
may not match a user’s judgement. With a large labeled training set, however, it is the
uncertainty which is inherent to the imputed class labels of the unlabeled documents that
may cause performance degradation in some cases. To better illustrate this, assume a
labeled training set in which the class labels of a certain fraction of the examples have
been altered at random, so that it contains some errors. Then, a classifier learned from
the altered training set is typically less accurate than a classifier learned from the original
training set.

Semi-Supervised Support Vector Machine. Figure 4.5 shows the classification accu-
racies of the semi-supervised linear support vector machine (ssSVM) on the20 News-

83See Nigamet al. (2000).
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40%

50%

60%

70%

80%

90%

4 10 20 50 100 200 400

A
cc

ur
ac

y

Number of Labeled Training Documents

ssSPC
ssNB
SPC

NB

(b) WebKB dataset

60%

70%

80%

90%

100%

5 10 20 50 100 200 500

A
cc

ur
ac

y

Number of Labeled Training Documents

ssSPC
ssNB
SPC

NB

(c) TREC dataset

Figure 4.4: Results for the basic semi-supervised learning framework instantiated with the single-prototype classifier (ssSPC) and the
näıve Bayes classifier (ssNB) compared to their supervised variants on three common text corpora. The horizontal axes indicate the
number of labeled training documents on a log scale. The vertical axes indicate the average classification accuracies on the test sets.
Note the different magnifications of the vertical scales.
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Figure 4.5: Classification accuracy of the semi-supervised learning framework based on the linear support vector machine (ssSVM) in
comparison to its plain supervised counterpart (SVM), a transductive linear support vector machine (TSVM), and the semi-supervised
single-prototype classifier (ssSPC) on the20 Newsgroups dataset and theTREC dataset. Note the different magnifications of the
vertical scales.

groups dataset and theTREC dataset when the number of labeled training documents is
varied. The results are compared to the plain linear support vector machine (SVM) and
the top-performing semi-supervised single-prototype classifier. Results of the transduc-
tive linear support vector machine are also depicted for the20 Newsgroups dataset.84

The performance of ssSVM differs from that of ssSPC and ssNB. In particular, when the
number of labeled training documents for the20 Newsgroups dataset is small, adding
unlabeled documents degrades performance substantially compared to plain SVM. With
the addition of more labeled data, however, ssSVM starts to outperform SVM and even
ssSPC. Though at a different level, the results obtained on theWebKB dataset (not de-
picted) are similar to those on the20 Newsgroups dataset. The transductive support vector
machine cannot compete at all: it starts as badly as ssSVM and never does perform better
than plain SVM. This finding is, in fact, in line with theoretical considerations.85 Nev-
ertheless, note that the transductive SVM is actually designed to enhance performance
on the unlabeled data proper rather than on new, previously unseen documents. And,
in fact, further experiments have shown that TSVM outperforms SVM on the unlabeled
dataset in the presence of many labeled training examples. On theTREC dataset, results
are different: at all times, ssSVM outperforms SVM by a few points. Yet, the benefit
obtained through incorporating unlabeled data is rather modest when compared to ssSPC
and ssNB. For instance, with 10 labeled training examples (two documents per class),
ssSVM obtains84% accuracy and SVM obtains78%, representing a27% reduction in
classification error.

As a result, we see that ssSVM seems to benefit from unlabeled data only if the accuracy
of the initial classifier learned from only the labeled data is already high. On theTREC
dataset, SVM achieves reasonably high classification accuracy with only a few labeled
training documents. On the20 Newsgroups dataset (and also on theWebKB dataset), in
contrast, classification accuracy achieved with only a few labeled training documents is

84See Section 289 (p. 91).
85Zhang and Oles (2000) show that support vector machines in their current form are unlikely to benefit

from the use of additional unlabeled data; also see Section 289 (p. 91).
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(a) Semi-supervised single-prototype classifier
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(b) Semi-supervised naı̈ve Bayes classifier

Figure 4.6: Classification accuracies of the semi-supervised single-prototype classifier (ssSPC) and the semi-supervised naı̈ve Bayes
classifier (ssNB) with five different numbers of labeled training documents on the20 Newsgroups dataset when the number of
unlabeled training documents is varied. The results for ssNB have been replicated from Nigamet al. (2000). Note that ssSPC is
superior to ssNB when the number of labeled documents is small. In particular, accuracy of ssNB even degrades if the amount of
unlabeled data added is too small.

rather low; see Figure 4.5. Despite initially low accuracy on the unlabeled documents,
both ssSPC and ssNB could benefit from unlabeled data. So, how do the single-prototype
classifier and the naı̈ve Bayes classifier differ from support vector machines? Both single-
prototype and näıve Bayes are instance-averaging classifiers, i.e. each class is modeled
through aggregation of class-specific information from the training data. In contrast, sup-
port vector machines try to find separating hyperplanes with maximal margin between
classes. This involves a complex search which is susceptible to incorrectly labeled train-
ing examples. And, as we have seen above, the additional set of unlabeled training ex-
amples in combination with their imputed class labels contain many incorrectly labeled
training examples. Although ssSVM does indeed benefit from unlabeled data in some
situations, it typically struggles when labeled training data is scarce. For this reason, we
do not consider support vector machines in the following.

Effect of Unlabeled Set Size

Above, we have seen that the extent to which we may benefit from unlabeled documents
depends on the number of labeled training documents available. Naturally, our benefit will
also depend on the number of unlabeled documents. To get an impression of this behavior,
we now examine the effect of the unlabeled set size. Figure 4.6 shows the classification
accuracies of ssSPC and ssNB with five different numbers of labeled training documents
on the20 Newsgroups dataset when the number of unlabeled documents is varied. In most
cases, ssSPC is superior to ssNB.

As observed above, adding unlabeled data often helps learning more effective classifiers.
Generally, performance gain increases as the amount of labeled data decreases. Also,
performance gain increases with the number of unlabeled documents until it reaches
a plateau. Only when the amount of labeled data is large may performance degrade.
This becomes particularly apparent for ssSPC. Obviously, incorporating a larger set of
unlabeled documents amounts to a larger number of incorrectly labeled examples, which
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Figure 4.7: Classification accuracies of the semi-supervised and plain single-prototype classifier and naı̈ve Bayes classifier for the
20 Newsgroups dataset when vocabulary size is varied for two amounts of labeled training documents. Performance gain of semi-
supervised learning strongly depends on the number of features used to represent text. In particular, performance increases with the
number of features. Yet, note that performance of ssNB may degrade when using too large a feature set.

may deteriorate ssSPC’s class prototypes. As observed by Nigamet al. (2000) for ssNB,
adding a small number of unlabeled documents to a small amount of labeled documents
actually hurts classification performance. Nigamet al.hypothesize that the reason for this
is the overly confident estimates of the posterior probabilities of the classes given a doc-
ument, which effect an almost crisp partition in the unlabeled documents.86 Also, they
argue that this problem disappears when the number of unlabeled documents increases
because the unlabeled set then provides a large enough sample to smooth out the sharp
discreteness in the predicted class labels. Nevertheless, note that crisp class labels do not
keep ssSPC from enhancing performance even when both labeled and unlabeled training
set sizes are small.

Effect of Vocabulary Size

In Section 4.1.3 we have argued that classification accuracy may be enhanced through
exploiting co-occurrence patterns among index terms in unlabeled data. Hence, perfor-
mance of semi-supervised learning approaches should depend on the number of features
used to represent text. In the following we examine classification accuracy of ssSPC and
ssNB on the20 Newsgroups dataset and theWebKB dataset as a function of the number
of features.

Smaller vocabulary sizes are obtained by selecting the particular numbers of the most
informative features according to the information-gain criterion.87 Note that this feature
selection technique is class-specific and can, therefore, only be applied to those features
that occur in the labeled training data. Features occurring only in the unlabeled data are
selected in an arbitrary order, which is greatly determined by the sequence in which they
have been generated from the training data. Applying more elaborate selection techniques
for these features should be an issue for future research.

86Due to the word independence assumption, the probabilistic class labels obtained by the naı̈ve Bayes
classifier are often extremely close to zero and one; see Section 213 (p. 63 ff.).

87See Section 123 (p. 40) for a description of the information-gain criterion.
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Figure 4.8: Classification accuracies of the semi-supervised and plain single-prototype classifier and naı̈ve Bayes classifier for the
WebKB dataset when vocabulary size is varied for two amounts of labeled training documents. Typically, performance gain of
semi-supervised learning increases with vocabulary size. Yet, when the base learner is more effective at smaller vocabulary sizes,
incorporating unlabeled data does not help a lot. We hypothesize that the benefit from using unlabeled data that might be achieved
only with a reasonably large vocabulary set is canceled out by the performance degradation caused by using too large a feature set.

Figure 4.7 shows learning curves of ssSPC and ssNB and their supervised variants on
the20 Newsgroups dataset with two fixed labeled training set sizes when the number of
features is varied from 100 to the maximum of 57,944. The learning curves illustrate
that performance gain depends on vocabulary size: as a rule, performance gain increases
with the number of features. When using too few features, semi-supervised learning
hardly benefits from unlabeled data. In particular, for ssSPC with 1000 labeled training
documents, incorporating unlabeled documents may not help a lot; the learning curves of
SPC and ssSPC are very similar. Nevertheless, ssSPC improves slightly as vocabulary size
increases. Performance gain of ssNB over NB is somewhat larger and also increases with
the number of features. In contrast, when using only 100 labeled training documents, both
ssSPC and ssNB may substantially outperform their supervised variants when the number
of features is large enough. Note that performance of SPC and NB reaches a plateau
when using 2000 or more features with 100 labeled training documents. The reason for
this is that there are, on average, about 2000 distinct features in the labeled documents.
Having access to unlabeled documents, however, the number of possible index terms is
much larger. Again, performance gain increases with the number of features. Yet, note
that performance of ssNB degrades when using too large a feature set. At this point,
employment of class-independent feature selection techniques should be considered.

The operating characteristics of semi-supervised and plain single-prototype classifiers and
näıve Bayes classifiers are different on theWebKB dataset; see Figure 4.8. The learn-
ing curves obtained with eight labeled training documents when the number of features
is varied from 100 to the maximum of 23,830 again show that performance gain typi-
cally increases with the number of features. With a small amount of training data avail-
able for training, performance of SPC and NB does not vary greatly with the number of
features. In contrast, when more labeled training data is available, performance of the
semi-supervised learners does not vary greatly with vocabulary size. This time, however,
performance of SPC and NB decreases substantially as the number of features increases.
We hypothesize that the benefit from using unlabeled data which is achievable with a rea-
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Figure 4.9: Classification accuracies of the single-prototype classifier as a function of the number of bootstrapping iterations with four
different numbers of labeled training documents for the20 Newsgroups dataset and with one fixed labeled training set each for the
TREC dataset and theWebKB dataset. Performance at the first seven iterations after learning the initial classifier is reported. Note
that at iteration zero, performance corresponds to that of the plain single-prototype classifier. In addition, the standard error is shown
for some learning curves, indicating that, at the worst, dispersion increases slightly.

sonably large vocabulary set is canceled out by the performance degradation caused by
using too large a feature set. So, ssSPC and ssNB actually outperform their supervised
variants when text is represented through a large number of features. Yet, compared to the
performance obtained by SPC and NB when using a more appropriate vocabulary size,
ssSPC and ssNB yield hardly any performance gain.

To summarize, results show that performance of semi-supervised learning greatly depends
on vocabulary size. Typically, performance gain over plain supervised learners increases
with the number of features. Yet, we may only benefit from this performance gain if it
is not blotted out by a performance degradation caused by using too large a feature set.
As a consequence, semi-supervised learning is especially suitable for datasets on which
performance of plain supervised learners does not degrade substantially as vocabulary
size increases.

Effect of Number of Iterations and Overfitting

The results presented so far show that semi-supervised learning may help to reduce the
need for unlabeled documents. But to what extent does clustering in the unlabeled data
contribute to this? Put in other words: Does performance gain increase with the number
of iterations? Related to this is the issue of overfitting. Does the semi-supervised learner
generalize well beyond the training data or does it only fit the labeled and unlabeled
training data well? To find answers to these questions, we now analyze the performance
of ssSPC as a function of the number of iterations carried out in the semi-supervised
framework. In addition, we compare performance on the unlabeled set and the test set.

Figure 4.9 shows the classification accuracies of ssSPC on all three text corpora at the
first seven bootstrapping iterations after the initial classifier has been learned from only
the labeled data at iteration zero. For the20 Newsgroups dataset, learning curves with
four different amounts of labeled training data are plotted. For both theTREC dataset
and theWebKB dataset, learning curves with only one fixed amount of labeled training
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20 Newsgroups WebKB TREC
nl
k Learner

unlabeled test unlabeled test unlabeled test

SPC 23.43% 21.78% 43.59% 42.43% 61.28% 65.23%
1

ssSPC 51.38% 50.67% 65.59% 63.27% 84.25% 83.63%

SPC 55.07% 51.72% 65.59% 65.12% 87.41% 88.37%
10

ssSPC 71.02% 68.75% 77.61% 73.67% 92.21% 92.82%

SPC 74.21% 69.92% 80.36% 75.89% 94.71% 95.43%
50

ssSPC 76.21% 71.97% 80.57% 75.42% 94.86% 94.29%

Table 4.4: Comparison of classification accuracies of both the semi-supervised and the plain supervised single-prototype classifier on
the unlabeled set and the test set for all three text corpora with three different numbers of labeled training documents per class,nl

k
.

Results show that performance on both unlabeled data and test data is very similar, indicating that there is no overfitting problem.

data each are shown. When the number of labeled documents is small, accuracy increases
substantially. The gain achieved is largest at the first iteration, i.e. when unlabeled data
is incorporated for the first time. Yet, performance is further enhanced at subsequent it-
erations. So, we see that clustering in the unlabeled data does, in fact, support classifier
design. In addition, note that the standard error depicted for some learning curves in-
dicates that, at the worst, dispersion increases slightly compared to the plain supervised
learner. As a consequence, variation in the averages reported for the semi-supervised
learners is roughly within the same bounds as that for the supervised approaches.

As shown only for the20 Newsgroups dataset—but as applies likewise for the other two
datasets—performance gain tends to be limited to the first bootstrapping iteration when
the number of labeled training documents becomes larger. Obviously, with an increasing
amount of labeled training data, the initial classifier itself becomes capable of produc-
ing a reasonable partition of the unlabeled data. Finally, when the number of labeled
documents is large enough to accurately learn a classifier, we have already seen that per-
formance may degrade when incorporating unlabeled data. The learning curve obtained
with 3000 labeled documents for the20 Newsgroups dataset illustrates this effect again.
Note that performance degradation increases slightly with the number of bootstrapping
iterations, showing that incorrectly labeled examples may yield further misclassifications
at subsequent iterations just as correctly labeled examples may enhance performance.

As they do not perform a proper search in hypothesis space but rather aggregate class-
specific information, both the single-prototype classifier and the naı̈ve Bayes classifier are
not prone to overfitting. To validate their generalization ability anyhow, Table 4.4 shows
classification accuracies of ssSPC and SPC for three fixed numbers of labeled training
documents per class on the unlabeled training set and the independent test set for all three
text corpora. In general, performance on both unlabeled and test data is very similar,
indicating that the issue of overfitting does not pose a problem for ssSPC.

Note that plain SPC does not make use of the unlabeled data during the learning pro-
cess. So, the unlabeled set may be regarded as another independent test set. Nevertheless,
note the specific relationship between the labeled training set and the unlabeled set for
the 20 Newsgroups dataset and theWebKB dataset. In particular, as the test set for the
20 Newsgroups dataset is created by selecting the last20% of the articles from each news-
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group by posting date, unlabeled documents are closer in time to the labeled training
documents than the test documents. For theWebKB dataset, the four test sets are created
in leave-one-university-out fashion. So, while each test set is formed on the basis of web
pages from one of the four universities, the corresponding labeled and unlabeled sets are
created from web pages of the remaining three universities. As a consequence, unlabeled
documents for theWebKB dataset tend to be more similar to the labeled documents than
the test documents. For theTREC dataset, there are no such relationships between the
labeled and unlabeled training documents.

The aforesaid relationships between the labeled and unlabeled sets reveal themselves in
the results shown in Table 4.4: for the20 Newsgroups dataset and theWebKB dataset,
accuracy on the unlabeled sets is on average a few points higher than accuracy on the test
sets. For theTREC dataset, accuracies on both unlabeled and test sets are very similar;
only for those experiments with one labeled training document per class is accuracy on the
test set higher. The reason for this might be the slightly different fractions of documents
within the classes, which becomes particularly apparent when the number of labeled train-
ing documents is small. In spite of these differences, the results show that performance
on both unlabeled sets and test sets is very similar. Hence, semi-supervised learning does
not overfit the unlabeled training data. Rather, it generalizes well beyond the training data
and yields comparable performance on independent test data.

Results for Augmented Framework

Above, we have provided evidence that learning from both labeled and unlabeled data
may enhance classification performance substantially when the amount of labeled training
data is small. Only when the amount of labeled data becomes too large may performance
degrade. As we have discussed earlier, it is unlikely that we will be provided with enough
labeled data to actually observe this behavior in practice. So, this type of performance
degradation should not pose a serious problem. Still, we typically do not know just when
a training set is deemed to be large enough. In the following, we describe results per-
taining to the augmented semi-supervised framework which deal with this problem.88 We
instantiate the augmented framework with the single-prototype classifier. The resulting
weighted semi-supervised learner, which we refer to asweighted ssSPC, is then applied
to the20 Newsgroups dataset.

Figure 4.10 (left) shows the classification accuracy of weighted ssSPC when the weight-
ing parameterλ is varied within its range[0, 1]. Recall thatλ controls the relative weight
of the unlabeled data with respect to the labeled data. So, weighted ssSPC corresponds to
SPC and basic ssSPC for the extreme valuesλ = 0 andλ = 1, respectively. The learn-
ing curves show that weighted ssSPC is not very sensitive to variations of the weighting
parameter. Only values close to zero hinder weighted ssSPC from taking advantage of
unlabeled data when labeled data is scarce. Any other value is sufficient to yield substan-
tial performance gain just like plain ssSPC. More interesting is the situation in which the
labeled set becomes larger and performance degradation is observed for ssSPC. For ex-
ample, this is so when learning from unlabeled data in addition to 4,000 labeled training

88See Section 4.3.4 (pp. 112 ff.).
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Figure 4.10: Classification accuracies of weighted ssSPC on the20 Newsgroups dataset when the weighting parameterλ is varied
for five amounts of labeled training data (left). The circles mark the values ofλ determined heuristically as a function of the average
number of labeled training documents per class as introduced earlier in this chapter. Also, classification accuracy of weighted ssSPC
using the heuristically determined weighting parameterλ is compared to basic ssSPC and SPC on the20 Newsgroups dataset when
the number of labeled training documents is varied. Results illustrate that weighted ssSPC mitigates the drawback of ssSPC when
learning from many labeled training documents: compared to SPC, performance does not degrade any more.

documents. The corresponding learning curve illustrates that performance degradation
can be mitigated when given less weight to the unlabeled data. A central problem is how
to set the weighting parameterλ. We heuristically determine the weighting parameter as
a function of the average number of labeled documents per class available for training as
set out in Section 4.3.4. The circles in Figure 4.10 (left) mark the heuristically determined
values forλ. Note that all values lie in regions with performance close to the optimum.

Figure 4.10 (right) shows the classification accuracy of weighted ssSPC with heuristically
set weighting parameter when the number of labeled training documents is varied. Re-
sults are contrasted against plain ssSPC and traditional SPC. When labeled data is scarce,
weighted ssSPC shows the same superior results as plain ssSPC. Yet, as the number of
labeled documents increases, performance does not degrade. Rather, weighted ssSPC can
compete with traditional SPC. Nigamet al. (2000) have successfully applied weighted
ssNB on theWebKB dataset with weighting parameters determined on the basis of leave-
one-out cross-validation. Results with both weighted ssSPC and weighted ssNB show
that adjusting the relative weight of unlabeled data with respect to the labeled data allows
mitigating of the aforementioned performance degradation.

Comparison to Self-Training

So far, we have studied the behavior of the three instantiations of our semi-supervised
learning framework and found that it outperforms the corresponding supervised learners
in many cases. But how does semi-supervised learning compare with other approaches
to bootstrapping classifiers? As has been shown in Section 4.1.4, a direct competitor of
semi-supervised learning is self-training.89 In the following we review the idea of self-
training and contrast it with semi-supervised learning.

89See Nigam and Ghani (2000), for example.
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Figure 4.11: Classification accuracies of self-training applied to the single-prototype classifier for the20 Newsgroups dataset and
theWebKB dataset with different number of examples per class added to the training set at each iteration. The results are contrasted
with those of the semi-supervised single-prototype classifier and the plain single-prototype classifier.

Self-training is the most straightforward bootstrapping approach to learning from labeled
and unlabeled data. Starting with an initial classifier learned from only the labeled data,
self-training iterates two steps until all of the unlabeled documents have been converted
into training documents. First, the current classifier is used to classify all the unlabeled
documents which have not yet been put into the training set. Then, for each class, the
topα most confidently classified documents are converted into training documents.90 As
experiments will show, the performance of self-training largely depends onα.

Note that once an unlabeled document is put in the training set for the self-training
approach, its imputed class label is not allowed to change in subsequent iterations. In
contrast, a semi-supervised learner as set out above uses, at each iteration, all unlabeled
documents for which class labels have been imputed, but it allows relabeling of unlabeled
documents in subsequent iterations. In this way, both approaches provide a means to avoid
misclassifying unlabeled documents: self-training through choosing only the most con-
fidently classified documents and semi-supervised learning by allowing relabeling. So,
self-training and semi-supervised training can be considered as opposite ends of a whole
spectrum of choices of how to relabel and incorporate unlabeled data.

Figure 4.11 shows classification accuracies of the self-trained single-prototype classifiers
with different values of the parameterα on the20 Newsgroups dataset and theWebKB
dataset when the number of labeled training documents is varied. The results are con-
trasted with ssSPC and SPC. For the20 Newsgroups dataset, the learning curves show
that self-trained SPC achieves about the same performance as ssSPC whenα is chosen
optimally. With sub-optimal choices, ssSPC clearly outperforms self-training. For the
WebKB dataset, self-trained SPC performs worse than ssSPC in all experiments but one.
Again, ifα is chosen sub-optimal, performance of self-trained SPC may be as bad as SPC.
In any way, the results reveal the advantage of semi-supervised learning over self-training:
performance is competitive without parameter tuning.

90Instead, we might use class-specific parametersαi, for eachci ∈ C, where eachαi is a multiple of
the respective class prior. Yet, we refrain from doing so because class prior estimates tend to be unreliable
when labeled data is scarce.
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Figure 4.12: Classification accuracies of self-training applied to the naı̈ve Bayes classifier for the20 Newsgroups dataset using
all features and the 10000 most informative features according to the information-gain criterion. As above, different numbers of
examples per class are added to the training set at each iteration. The results are contrasted with those of the semi-supervised naı̈ve
Bayes classifier and the plain naı̈ve Bayes classifier.

Experiments with the naı̈ve Bayes classifier on the20 Newsgroups dataset show that self-
trained NB can outperform ssNB and NB whenα is set to an optimal value; see Fig-
ure 4.12.91 The reason for this behavior—in contrast to self-trained SPC and ssSPC—is
that self-trained NB is less sensitive to using too large a feature set than ssNB. In par-
ticular, self-trained NB incrementally increases the training set which effects a gradual
increase in the number of features. In contrast, ssNB is confronted with the complete
set of features at any bootstrapping iteration. So, self-trained NB learns with fewer fea-
tures on average and may therefore produce more accurate classifiers. Note that ssNB is
superior to self-trained NB when reducing vocabulary size to 10,000 index terms.92

4.5 Conclusions

In this chapter, we have presented a general framework for semi-supervised learning from
labeled and unlabeled documents. This is a crucial issue when hand-labeling documents
is expensive, but unlabeled documents are readily available in large quantities, as is often
the case for text classification tasks. The following summarizes the results of the empirical
evaluation:

• Semi-supervised learning approaches can be used to learn accurate classifiers from
a large set of unlabeled data in addition to a small set of labeled training documents.
Some semi-supervised learners substantially outperform their supervised variants;
in other words, they often require less labeled training data to achieve the same level
of classification accuracy.

• Instance-averaging approaches such as the single-prototype classifier and the naı̈ve
Bayes classifier are particularly suitable as base learners in the semi-supervised
learning framework since they are extremely robust to incorrectly labeled data.

91Similar results are reported by Nigam and Ghani (2000).
92In this case, performance of ssNB does not degrade because too many features are used; see Figure 4.7.
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• In addition, more elaborate learning algorithms such as support vector machines
may also benefit from the use of unlabeled data. Yet, performance gain shows only
when the initial performance of the base learner applied to the labeled data alone is
reasonably high. The reason for this is perhaps the complex search involved, which
makes support vector machines more susceptible to incorrectly labeled data than
the simple instance-averaging approaches.

• Typically, instance-storing approaches such as nearest-neighbor rules do not benefit
from semi-supervised learning framework because they do not generalize beyond
the training data and, thus, cannot exploit co-occurrence patterns in unlabeled data.

• Some semi-supervised approaches show performance degradation when labeled
training data becomes abundant. This drawback can be mitigated by the augmented
framework, which allows the weight of the unlabeled data to be discounted.

• Semi-supervised learning is particularly suitable for learning tasks in which larger
feature sets do not hinder a learning algorithm from accurately learning a classifier.
If too large a feature set causes substantial performance degradation, incorporating
unlabeled data may be less useful.

• The semi-supervised framework shows up favorably compared to self-training
approaches with the same base learner. In particular, semi-supervised learners
achieve similar or even better results without critical parameter tuning.

The semi-supervised learning framework yields to further experimentation. For example,
some relevant issues for future research are:

• So far, we have considered the single-prototype classifier, the naı̈ve Bayes classifier,
support vector machines, and nearest neighbor rules as base learners in the semi-
supervised learning framework. How do other supervised learners such as decision
tree induction algorithms perform in the semi-supervised framework?

• In some cases, we have observed performance degradation from using too large a
feature set. Yet, the application of class-specific feature selection techniques like
the information-gain criterion, which is often used in text classification, may not be
statistically reliable when labeled training data is scarce. Using class-independent
techniques, such as selecting features with high signal-to-noise ratio,93 might help
to mitigate this drawback. Although initial experiments haven not yet shown any
improvement, class-independent feature selection techniques which are common in
unsupervised learning should be evaluated in this context.

• So far we have studied semi-supervised learning and self-training. Both approaches
to learning from labeled and unlabeled data can be seen as two extremes of a whole
spectrum of approaches to converting unlabeled data into labeled training exam-
ples and dealing with incorrectly labeled examples. Now, can we combine ideas

93See Section 119 (p. 38).
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from these approaches so as to further enhance classification performance? For ex-
ample, does it help to incrementally put unlabeled data into the training set as in
self-training and to permit class labels of formerly unlabeled examples to change
in subsequent iterations as in semi-supervised learning? Or, is it better to reject
unlabeled documents and exclude them from the training set in the semi-supervised
learning framework if their classification confidence is low?



Chapter 5

Learning Heterogeneous Classes

Some of the most frequently and successfully applied text learning algorithms have a com-
mon drawback: they require that the classes to be learned be homogeneous. In some text
classification tasks like information filtering, however, classes tend to be heterogeneous.
The violation of thehomogeneity assumptionmay hinder accurate learning of the classes.
In this chapter, we empirically evaluate the extent to which heterogenous class definitions
affect classification performance of some common text learners.

5.1 Introduction

In this section, we take a close look at the heterogeneous nature of the binary relevance
class definition in information filtering, and we discuss why this may pose a problem.
Subsequently, we introduce the concept of subclasses which allow division of classes into
more homogeneous groups of documents. Based on this, we address approaches aimed
at exploiting subclass structure. References to related work will be given in the following
section.

5.1.1 Problem Description

Supervised learning is based on the underlying assumption that like examples belong to
the same class.1 Yet the fact that similar examples belong to the same class does not imply
that all examples of a particular class are similar. Rather, a class may be heterogeneous,
consisting only of groups of similar documents. Although in many standard text classi-
fication tasks we may assume that the class structure is defined in such a way that the
classes are homogenous, especially in information filtering we often find heterogenous
class definitions.

To see this, consider that information filtering involves the separation of relevant from
non-relevant documents according to a particular user interest as introduced in Chapter 2.

1See Quinlan (1999). In information retrieval, this is often formulated as thecluster hypothesis: “closely
associated documents tend to be relevant to the same requests.” (from van Rijsbergen (1979), p. 45).
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Depending on the domain, this implies rather broad class definitions, which are prone to
be heterogeneous. For example, when filtering news stories, there is often a great number
of different topics which a user might like or dislike, i.e. which are either relevant or non-
relevant. Assume that each topic describes a homogeneous subset of documents, namely
those covering a particular subject. Obviously, as any user-specific grouping of topics
may form the two relevance classes, these are unlikely to be homogeneous.

Why does a heterogeneous class structure hinder some text learners from constructing ac-
curate classifiers? We consider learning simple instance-averaging approaches such as the
näıve Bayes classifier and the single-prototype classifier, which represent each class by
a single entity. These classifiers are among the most frequently and successfully applied
approaches to automating text classification. The reason for this is their simplicity, which
makes them particularly well suited for learning from a limited amount of sparse docu-
ment vectors in high-dimensional feature space. Nevertheless, it is also their simplicity
which severely compromises class representations and, thus, requires that the classes to
be learned be homogenous.2

How do simple instance-averaging approaches perform when classes are heterogeneous?
Figure 5.1 illustrates the problem of having heterogeneous classes when using a simple
instance-averaging approach. We easily see that a certain—though often unknown—level
of granularity is necessary to achieve homogeneous classes. For complex topic structures,
the two relevance classes of information filtering will not suffice to form homogeneous
groups of documents. If the homogeneity assumption is violated, documents may be
difficult to classify.

Note that the relevant class of an information filtering task often consists of a small num-
ber of topics, whereas the non-relevant class typically consists of a large variety of topics.
So, as the non-relevant class tends to be much more heterogeneous, the learning task
may be simplified by modeling only the relevant class explicitly. And, in fact, doing
so frequently suffices to solve the underlying binary classification task. As for the issue
of quality control in information filtering, however, modeling both the relevant and the
non-relevant class explicitly is vital; see Chapter 6. Below, we introduce the concept of
subclasses to better describe complex text classification problems.

5.1.2 The Concept of Subclasses

A predefined class may be heterogeneous. Yet, typically such a class consists of homo-
geneous subclasses. And, within these subclasses, the resemblance between documents
is relatively high, whereas it may vary greatly between documents belonging to the same
class but to different subclasses.3

2Other classifiers such as nearest-neighbor rules or decision tree learning algorithms are less restrictive
with respect to assumptions pertaining to the class structure and may, therefore, better cope with hetero-
geneous classes. Nevertheless, in our experiments with homogeneous classes, these classifiers did not show
themselves to be superior to the naı̈ve Bayes classifier and the single-prototype classifier. See Section 3.3
for a detailed description of common text learning algorithms.

3Also see de Kroonet al. (1996) and Hsu and Lang (1999) for the concept of subclasses in information
filtering and text classification.
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Figure 5.1: When using an instance-averaging approach which represents each class through a single prototype, classifying a new
documentd may be difficult (left). Even thoughd is more similar to documents of the relevant class (circles), the prototypepnon

of the non-relevant class (squares) is closer tod than the prototypeprel of the relevant class. Representing homogeneous subclasses
through individual prototypes (right) may remedy this problem.

The objective of text classification is to assign documents to their true class as set out
in Definition 3.1.1 (p. 23). The introduction of subclasses allows division of classes into
more homogeneous groups of documents and provides a more realistic picture of the
classification task. Note that the concept of subclasses may be regarded as a type of class
hierarchy. Yet, in contrast to exploiting a class hierarchy when learning a classifier as
mentioned in Section 260 (p. 75), here we do not assume any topical relationship among
subclasses—as a rule, the only common feature among subclasses is that they may belong
to the same class. We now extend the definition of text classification so as to include the
concept of subclasses:4

Definition 5.1.1 (Text Classification with Subclasses)
Assume a space of documents R, a fixed set of k classes C = {c1, . . . , ck}, and a fixed
set of q subclasses S = {s1, . . . , sq}, where q ≥ k. Both subclasses and classes imply a
disjoint, exhaustive partition ofR. As above, text classification is a mapping H : R 7→ C
from the document space onto the set of classes. The mapping H can be written as the
composition of two mappings, H(d) = (Hc ◦ Hs)(d), for d ∈ R, where Hs : R 7→ S
maps any document onto a subclass and Hc : S 7→ C associates each subclass s ∈ S with
exactly one class c ∈ C. Subclasses are assumed to be homogeneous.

Figure 5.2 illustrates the concept of subclasses, dividing the heterogeneous relevance
classes into homogeneous groups of documents. Also, it shows the decomposition of
the text classification mapping. Note that this concept actually corresponds to the general
information filtering framework set out in Section 2.2 (pp. 10 ff.). In this framework, the
user interestψ ∈ N is represented by the profile acquisition functionπ : N 7→ P, which
permits capturing of various topics. A comparison functionκs(π(ψ),d) is used to yield a
decision vector, which is then mapped by a system decision functionτs onto zero or unity,
representing the non-relevant and relevant classes, respectively. Now, in the notation of
Definition 5.1.1, the mappingHc from the subclasses onto the classes corresponds to the
decision functionτs when assuming a two-class problem, whereas the mappingHs from

4In contrast to Definition 3.1.1, here we use the space of document representationsR instead of the
space of actual documentsD, i.e. we use the mappingH rather thanh. The reason for this is that we
assume that documents and their representations can be used interchangeably; see Section 3.2.5 (p. 47).
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Figure 5.2: The classes defined in information filtering, hererel andnon for the relevant and non-relevant documents, are often
heterogeneous. So, different kinds of documents from spaceR may be mapped onto the same class from spaceC (left). Introducing
subclassessi ∈ S allows formation of homogeneous groups, which may then be mapped onto the known classes (right). This reflects
the situation of many text classification tasks more realistically.

the document representation space onto the subclasses corresponds to the comparison
functionκs. Note the different meaning of the indexs in τs andκs as opposed toHs.

Note that in terms of the hypothetical document source set out in Section 3.3.1 (p. 48),
the concept of subclasses may be interpreted as follows. Instead of assuming a one-to-one
correspondence between classes and class-specific document sources, there may now be
multiple class-specific document sources per class. So, the assumed document generation
process consists of two steps: first, a generative model would pick any of the classes and,
second, any of the respective class-specific document sources, which would then create a
particular document.

5.1.3 Exploiting Subclass Structure

How can we exploit knowledge about the homogeneous subclass structure? Possible
answers certainly depend on whether we merely know that there are homogeneous sub-
classes or whether subclass labels are actually provided.

If, on the one hand, subclass labels are given, we may actually consider a classifier which
learns the subclasses rather than the classes. When predicting the class label of a new
document, the classifier’s response at the subclass level is then mapped onto the classes
in a separate step. Yet, so far we have seen that hand-labeling documents is tedious
and expensive. We argue that this becomes even worse with increasing fineness of the
granularity of the predefined classes. Therefore, we assume that the user provides labels
only at the class level but not at the subclass level. As a consequence, we will consider
supervised learning of the subclasses only as a benchmark approach.

On the other hand, if subclass labels are unknown, a common way of exploiting subclass
structure anyhow would be to make use of unsupervised learning approaches to discover
subclasses automatically. In contrast to traditional clustering, however, note that we may
make use of the given class labels during the clustering process. In particular, the known
relevance classes might be used to decide on the fineness of the granularity of the clusters
generated, i.e. basically on the number of subclasses to be discovered. References to this
kind of approach will be given in the subsequent section.
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5.2 Related Work

Several approaches to learning heterogeneous classes through the aid of unsupervised
learning can be found in the literature. Some of them have been developed specifically in
the domain of text classification, whereas others have a more general character.

Makoto and Takenobu (1995) use hierarchical Bayesian clustering to find clusters which
most likely describe a set of documents. These clusters are then used to support text
classification tasks. In their information filtering approach, de Kroonet al. (1996) also
use a Bayesian clustering approach to automatically discover subclasses corresponding
to different interests of users. Similarly, Hsu and Lang (1999) use k-means clustering to
discover subgroups within documents of the same class. The resulting clusters are used
as prototypes for the predefined classes. Merkl (1998) and Kloseet al. (2000) explore
self-organizing maps to find clusters in document collections. These clusters are used to
ameliorate document retrieval. However, they might also be used to enhance text classifi-
cation when the introduction of subclasses helps to form homogeneous classes.

The issue of learning heterogeneous classes is relevant not only in supervised learning
but also in a semi-supervised learning framework. In their semi-supervised naı̈ve Bayes
approach, Nigamet al.(2000) propose that subclasses be identified automatically so as to
deal with the situation of having multiple document sources per class, which violates the
assumed one-to-one correspondence between document sources and classes.

A different approach is followed by Bensaid and Bezdek (1998). Given some labeled
training data in addition to a set of unlabeled data, their semi-supervised clustering
approach is designed to purposefully over-partition unlabeled data in as many groups
as there are labeled training examples. The idea behind over-partitioning is that it is better
to have too many than too few prototypes to represent heterogeneous classes. Through
subsequent merging and labeling of cluster representations according to the class labels of
the labeled training data, this semi-supervised clustering approach also permits discovery
of multiple prototypes for each class, which might then be used to classify new data.

Bezdeket al. (1996) and (1998) compare several approaches to multiple-prototype clas-
sifier design. In general, these approaches try to find sets of class representatives through
clustering and exploiting the given class labels at the same time. As enhancements to the
single-prototype classifier, applying these approaches to text classification tasks seems to
be a promising solution to learning heterogeneous classes. However, initial experiments
have not yet shown significant improvements over the single-prototype classifier.

5.3 Experimental Evaluation

We have seen above that heterogeneous class definitions may hinder learning accurate
classifiers. Examples in low-dimensional feature space clearly illustrate this problem. The
experiments presented below give some examples that learning accurate classifiers with
simple instance-averaging approaches in the face of heterogeneous classes can be done.
We compare the single-prototype classifier and the naı̈ve Bayes classifier learned from
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Topic Description Newsgroups Documents

1 Politics talk.politics.* 3, 000
2 Sciences sci.* 4, 000
3 Computing comp.* 5, 000
4 Recreation rec.* 4, 000
5 Religion alt.atheism, *.religion.* 2, 997

Table 5.1: Categories derived from the20 Newsgroups dataset and the number of documents assigned to them. Note that only 19 of
the 20 newsgroups are used, omitting the newsgroupmisc.forsale.

examples at the heterogeneous class level to classifiers learned at the more homogeneous
subclass level as set out in Section 5.1.3. Based on the provision of subclass labels, the
latter approach enables representing a class not only by one entity but by as many entities
as there are subclasses within the respective class. Finally, note that we may certainly find
or construct classes which cannot be learned accurately with a simple instance-averaging
approach. Yet, the examples will show that the problem of learning heterogeneous classes
in high-dimensional feature space may not be as severe as examples in low-dimensional
feature space suggest.

5.3.1 Datasets and Experimental Setups

As in Chapter 4, we employ the enhanced version of therainbow system for the learning
and classification task. In particular, we use the single-prototype classifier and the naı̈ve
Bayes classifier because they are the two most popular instance-averaging approaches in
text classification. The results are obtained for some modification of the20 Newsgroups
and theTREC datasets.5 The modifications are made so as to address the problem of
learning heterogeneous classes.

For the20 Newsgroups dataset, we define five broader categories as shown in Table 5.1.
Although they consists of several newsgroups each, the new categories are to a great extent
homogeneous because the particular newsgroups grouped together cover related topics.
For the filtering task, these categories are seen as subclasses. Categories 1 and 2 make up
the relevant class, whereas the non-relevant class consists of categories 3 through 5. So,
the two relevance classes tend to be heterogeneous.

For theTREC dataset, categories001 and003 constitute the relevant class. Hence, we
assume that there are two homogeneous relevant subclasses. To investigate the effect of
the number of subclasses making up a class, we conduct experiments with an increasing
number of categories put in the non-relevant class. These categories are added in order of
decreasing number of documents assigned to them.6

For document representation, we remove stop words and also words which occur fewer
than five times in the training set. With theTREC dataset, we use all the features remain-
ing as vocabulary. For the20 Newsgroups dataset, the number of features is varied so
as to examine the effect of vocabulary size on the separability of heterogeneous classes.

5See Appendixes A and B for more details on the software and text corpora, respectively.
6See Table B.5 (p. 194) for the categories and the number of documents assigned to them.
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Figure 5.3: Classification accuracies of the single-prototype classifier and naı̈ve Bayes classifier for the modified20 Newsgroups
dataset learned at the class level and at the subclass level when vocabulary size is varied. Note the magnified vertical scale. Clearly,
exploiting subclass labels yields more accurate classifiers. Although statistically significant in most cases, the performance gain
achieved is rather small and may hardly justify the larger amount of user effort required for the provision of subclass labels. Note that
accuracy decreases slightly as the number of features increases. But, choosing a large vocabulary size might still be preferable as it
typically yields higher recall, which does not show in this graph.

In particular, features are added in decreasing order of information gain values. When
conducting the experiments,10% of the documents are used as training set and90% as
test set. The results reported are averages over ten trials with randomly generated training
and test sets.

5.3.2 Results

Figure 5.3 shows the performance of the single-prototype classifier (SPC) and the naı̈ve
Bayes classifier (NB) trained at the class and subclass levels on the modified20 News-
groups dataset when the number of features is varied. Note that the classifiers trained at
the class level represent each relevance class with exactly one entity, whereas the classi-
fiers trained at the subclass level represent each relevance class through as many entities as
there are subclasses assigned to the respective class. For the subclass level classifiers, note
that any misclassification made between subclasses assigned to the same relevance class
is not considered an error since the classifiers’ response at the subclass level is mapped
onto the corresponding relevance class.

The learning curves show that classification accuracies of both the class level and the sub-
class level approaches are very similar. In all experiments, learning at the subclass level
is superior to learning at the class level. Note that all results for the single-prototype clas-
sifier and most results for the naı̈ve Bayes classifier are statistically significant.7 But, the
performance gain achieved is rather small and may hardly justify the need for the larger
amount of user effort for the provision of the subclass labels. To summarize, we see that,
in this case, the heterogeneous class definition does not hinder learning accurate classi-
fiers with simple instance-averaging approaches. Also, we hardly benefit from exploiting
extra knowledge about the subclass structure.

7With a two-sided test for the difference of two proportions at a 0.05 significance level. See Dietterich
(1998) for some statistical tests for comparing supervised classification learning algorithms.
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Figure 5.4: Classification accuracies of the single-prototype classifier and naı̈ve Bayes classifier for the modifiedTREC learned at the
class level and at the subclass level when the number of non-relevant subclasses increases. Vocabulary size is fixed for all experiments.
Note the magnified vertical scale. Again, exploiting subclass labels yields more accurate classifiers. For learning both at the class and
subclass levels, performance decreases as the number of subclasses increases. Yet, this shows to a larger extent when each class is
represented by only a single prototype. Still, the results of the class level classifiers are fairly accurate.

Figure 5.4 shows the performance of the single-prototype classifier and the naı̈ve Bayes
classifier trained at the class and subclass levels on the modifiedTREC dataset when the
number of non-relevant subclasses increases. Note that there are exactly two relevant
subclasses in all experiments.

When there is just one non-relevant topic, the classifiers learned at the subclass level
only slightly outperform the class level classifiers in terms of accuracy. The existence of
two relevant subclasses explains this difference. As the number of subclasses increases,
at first, the performance gap between the subclass level and the class level classifiers
widens. Then, for a larger number of non-relevant subclasses, this gap seems to remain
constant. Note that the learning curves strongly depend on the order at which the non-
relevant subclasses are added. This may explain not only the volatile behavior midway
through the experiments but also the fact that the gap does not widen any further for larger
numbers of subclasses. Irrespective of this order, we observe a tendency towards less
effective classifiers as the number of subclasses increases. Yet, despite this tendency, the
class level classifiers achieve reasonable performance. So, we see that simple instance-
averaging approaches may cope fairly well with heterogeneous class definitions.

The difference between the classifiers learned at the class level and those learned at the
subclass level gives an impression as to the extent to which automatically discovering
subclasses and exploiting this subclass structure for classification tasks might enhance
classification performance. In fact, assuming that the subclasses considered in the experi-
ments described above are homogeneous, the performance of the classifiers learned at the
subclass level with user-provided subclass labels might be seen as an upper performance
bound for approaches that attempt to find subclasses automatically and then represent
classes with multiple entities rather than one. Although the class level classifiers achieve
reasonably accurate results, the classifiers learned at the subclass level show that there is
some room for improvement. It is doubtful whether the performance gain justifies the ad-
ditional user effort needed for providing subclass labels. So, using clustering approaches
to automatically discover subclass structure should be considered instead.
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Figure 5.5: Classification accuracy, recall, and precision of the single-prototype classifiers learned at the class and subclass levels for
the modifiedTREC when the number of non-relevant subclasses increases. Note the magnified vertical scale. The class level classifier
struggles with precision, whereas the subclass level classifier has lower recall.

Above, we have seen that classification accuracy decreases as the number of subclasses
increases. Yet, especially when the number of non-relevant documents is large, accuracy
may characterize filtering performance only insufficiently, as described in Section 2.3
(pp. 13 ff.). So, let us take a look at recall and precision, which are shown in addition
to classification accuracy for both the class level and the subclass level single-prototype
classifiers in Figure 5.5.

For the class level classifier, recall remains quite high as the number of non-relevant sub-
classes increases. It declines more slowly than classification accuracy. Precision, on the
other hand, decreases considerably. For the subclass level classifier, recall and preci-
sion behave differently: precision, like accuracy, hardly decreases at all, whereas recall
drops substantially. This behavior can be explained by looking at the similarity scores
of new documents to their true class or subclass prototypes. Table 5.2 shows the aver-
age similarities of all relevant and non-relevant test documents obtained from both the
single-prototype classifier learned at the class and subclass levels.

When representing a heterogeneous class which consists of several homogeneous sub-
classes by only one prototype, the similarity of a new document to this prototype will
typically be smaller than the similarity to a prototype which represents only a single sub-
class. So, the average similarity of documents to the non-relevant prototype decreases as
the number of non-relevant subclasses increases. Since the number of relevant subclasses

SPC (class level) SPC (subclass level)
qnon rel non rel non

1 0.186 0.215 0.232 0.210
2 0.184 0.203 0.231 0.212
4 0.187 0.196 0.235 0.218
8 0.183 0.187 0.235 0.230

Table 5.2: Effect of the heterogeneous class definition on the average similarity scores of relevant and non-relevant test documents to
their true class prototypes when the number of non-relevant subclassesqnon increases. Concerning the subclass level classifier, only
the similarity score to the most similar subclass prototype is considered. Note that the similarity scores of the class level classifier tend
to decrease slightly as the number of subclasses increases. When allowing for multiple prototypes per class, the similarity scores do
not decrease; rather, they may increase.
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remains constant, there is an increasing number of documents which will be classified as
relevant. For this reason, we observe a large drop in precision and only a small change in
recall for the classifier trained at the class level. For the subclass level classifier, the aver-
age similarities to the most similar non-relevant subclass prototype in fact increases. This
explains why recall declines, while precision and accuracy remain almost unchanged.
Hence, we see that explicit modeling of subclasses while resulting in high accuracy and
precision classification of documents may compromise recall.

5.4 Conclusions

In this chapter, we have studied some examples based on two text collections to evaluate
the extent to which heterogeneous class definitions affect text classification with simple
instance-averaging classifiers. This is a key issue as the relevance classes of the filtering
task tend to be heterogeneous. The following summarizes the empirical results.

Typically, heterogeneous class definitions cause classification accuracy of instance-
averaging classifiers to degrade. This performance decrease shows that there is some
room for enhancing text classification if classes are heterogeneous. Nevertheless, the
examples have also shown that instance-averaging approaches may still learn accurate
classifiers even though the homogeneity assumption is violated.

Learning at the subclass level rather than at the class level is a means to enhance classifi-
cation accuracy in the face of heterogeneous classes, as it allows representation of classes
with multiple entities. But, these classifiers may compromise recall in case there is a
large number of non-relevant subclasses. So, while learning at the subclass level might be
suitable for some applications, it is, in its current form, most likely not acceptable for the
filtering task. Yet, note that confidence mapping or adjusting the classification thresholds
for the classification scores may remedy this problem.

So far, we have assumed that subclass labels are provided by the user. This enabled
us to evaluate the extent to which representing classes by as many prototypes as there
are homogeneous subclasses helps enhance classification performance. Yet, in practical
applications, we often cannot assume that subclass labels are provided. Thus, an issue
for future research is to apply clustering approaches in order to automatically uncover
subclass structure. This is certainly a challenging task because documents are typically
represented by high dimensional and also sparse vectors: a situation which often causes
clustering approaches to struggle when trying to find meaningful clusters.

Clustering algorithms may find groups of documents which are to some extent similar.
And, these similarities among documents may actually support browsing through large
document collections. Yet, whether these document clusters also enhance classification
performance, is another issue. Generally, we cannot guarantee that the clusters discovered
will correspond to what we are looking for: homogeneous groups of documents within
the existing class structure which make learning classes easier or even possible. A sim-
ilar problem has already been encountered in Section 4.3.1 (pp. 94 ff.) and has led to
the development of semi-supervised learning approaches. So, likewise, existing cluster
algorithms should be modified so that they exploit the predefined class structure.



Chapter 6

Quality Control

Effectively employing information filters, or classifiers in general, requires that the new
documents which are to be classified come from the same set of class-specific document
sources from which the training documents have been obtained. However, in a long-term
application, these document sources tend to change over time for various reasons. With
time, dynamic aspects may cause a classifier to become less effective than expected and
may, thus, necessitate its adaptation to the changing environment. Since obtaining new
training data is expensive, we aim at adapting a classifier only if necessary. So, coping
with dynamic aspects falls into two subtasks: detecting that changes have occurred and
adapting to these changes accordingly. This chapter focuses on detecting changes in a
document stream which is filtered either with little or with no user feedback through
application of techniques taken from the field of quality control.

6.1 Introduction

This section discusses in detail problems associated with thestationarity assumption,
which justifies classifying new data through application of classifiers learned from train-
ing examples observed beforehand. Having realized that document streams are dynamic
rather than stationary, we describe different types of changes which we may observe in
a real-world application and discuss how these changes may affect classification perfor-
mance. Finally, we consider methodologies for coping with dynamic aspects.

6.1.1 Problem Description

In the preceeding, we have studied learning algorithms which allow construction of clas-
sifiers to predict the class labels of new documents. Irrespective of the learning approach,
the application of classifiers to determine the class label of new documents is based on
the essential assumption that training documents and new documents come from the same
source, or distribution, in statistical terms.1 In other words, assuming that training and

1See Scḧurmann (1996), p. 309.

141



142 CHAPTER 6. QUALITY CONTROL

new documents are both generated by class-specific document sources, the application
of classifiers learned from examples requires that these hypothetical document sources
bestationary.2 By stationary we understand the fact that new documents to be classified
at different points in time are similar to the classes as initially defined through training
data. That is, the distributions of documents as given by the class-specific document
sources are assumed to be time invariant. Yet, even though this stationarity assumption
may hold initially, it is likely to become invalid in a long-term application. For various
reasons, both the topics and contents of new documents can be expected to change over
time. The document sources aredynamic, or non-stationary, rather than stationary.3 As
time progresses, any changes in the learning scenario may cause a classifier to become
less effective than expected. Then, a classifier should be adapted accordingly in order to
maintain classification performance.

6.1.2 Dynamic Aspects

Take the task of information filtering, which amounts to separating relevant from non-
relevant documents according to a particular user interest. Living in a dynamic world, we
know that this classification task is subject to change. Changes in the learning scenario
are often referred to asconcept drift.4 The problem of concept drift is ubiquitous. But
what do conceptual changes look like?

In the supervised learning setting, the concept that describes the filtering task is repre-
sented through examples. So, we must distinguish between changes to a concept proper
and changes in the concept representation. Note that we do not consider learning a differ-
ent concept per se. The concept to be learned in information filtering will always be the
documents that a user likes to read. Any concept change that we do consider will show
up in the training examples, yielding the following two different types of concept change,
which might be observed in a long-term application:5

• Class labels of examples change.Differently labeled examples amount to changes
in the user interest. This is, perhaps, what is most commonly understood as concept
change. Of course, we are still trying to learn to identify documents that a user likes
to read. Yet, the topics that the user is interested in are changing. For instance, a
user might become interested in other topics because of particular news-breaking
events or a new job. As a consequence, the mapping from documents onto the two
relevance classes will change, necessitating adaptation.

2See Russell and Norvig (1995), p. 553, or Mitchell (1997), p. 203, for example. Note, however, that
in time series analysis, the notion ofstationarity for stochastic processes is used in a precisely defined
statistical context, e.g. see Hamilton (1994), pp. 45–46, or Greene (1997), pp. 827–830.

3In addition, note that not only are the document sources dynamic, but also user interests might change
over time. However, we focus on changes within the document sources.

4According to Mitchell (1997), p. 21, learning a concept means inferring a boolean-valued function from
training examples of its input and output. So, an exhaustive binary classification problem, where each item
to be classified is mapped onto exactly one of two possible classes, corresponds to learning a concept. As
for information filtering, the concept may be defined as ‘documents that a user finds interesting’, yielding
the two classesrelevantandnon-relevantdepending on a particular user interest.

5Also see Lamet al. (1996), pp. 318–319, for a similar distinction among changes.
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• Distributions of examples change.Training examples represent what a user is inter-
ested in. As the space of documents is huge and the number of training examples
is limited, they generally only partly cover the concept. Owing to changes in the
environment, the distributions of documents may change over time. For instance,
because of social or engineering progress or political events, the content of new
documents is constantly evolving. Even the meaning of single words may evolve
over time. In addition, we may observe words which have not been used before
in a particular text corpus. Accordingly, the use of words in specific topics may
change, causing a commensurate change in word distribution which, in turn, affects
topic-specific document distributions. Here, we refer to these types of changes as
content change. As a result, we may obtain documents from regions in feature space
that have previously not been populated. Hence, it may be difficult to classify new
documents. Also, the concept representation would differ when training examples
were gathered at different points in time. In this sense, content change may also be
regarded as concept change. However, this is arguable because content change does
not imply that the topics a user is interested in have changed. Rather, new training
documents only reveal information about the concept that was unknown before. In
any case, the current classifier requires adaptation.

Irrespective of the type of change that we have discussed so far, we may characterize
changes by the rate at which they occur. We distinguish gradual changes (concept drift)
and sudden changes (concept shift). Typically, content changes are gradual, whereas
changes in user interests may also be abrupt. The rate at which changes occur affects
the ability to detect changes. We will have more to say on this later in this chapter.

Changes in user interest and content changes are a crucial issue in information filtering
because they may substantially deteriorate classification performance. Therefore, coping
with these changes is a key challenge. Note that content changes typically concern all the
users involved in a particular domain. In contrast, evolving interests are always a user’s
own concern.

Most likely, users will know when they are interested in different topics. So, when pro-
vided with user feedback in the form of class labels for new documents,6 the difficulty of
coping with changing user interests is to implement an adequate adaptation strategy rather
than detecting concept change. In contrast, perceiving changes in a constantly evolving
environment is a different issue. Many users will fail to notice changes and may miss
essential information. So, a challenging task will be to detect changes in the environment
and alert the user to be able to trigger an appropriate adaptation strategy.

As we will see in the following section, much work has been done concerning changes
in user interests in information filtering. Yet, much less work addresses coping with
content changes due to changes in the environment. In the following, we focus on content
changes, i.e. on changes within the set of topics which a user may either like or dislike
and their respective distributions. At the same time, we assume that user interest remains
constant.

6Recall that we do not address human-machine interaction in this dissertation. Rather, we assume that
we are provided with appropriate means to present documents to users and receive feedback upon request.
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Figure 6.1: The effect that content change may have on the set of topics. Initially, there are four topics: topics1 is relevant and
topicss2 throughs4 are non-relevant (left). After some change has occurred, the relevant topics1 has drifted somewhat to the right,
the non-relevant topics4 has vanished, and another non-relevant topics5 has emerged. Owing to the changes, relevant documents
of topic s1 may be confused with the non-relevant topics3. Also, non-relevant documents of the new topics5 may be classified as
relevant because of their similarity to documents of topics1 before the changes occurred.

A Taxonomy of Content Changes

As set out in Chapter 5, the two relevance classes of the filtering task tend to be heteroge-
nous and typically consist of more homogeneous subclasses, which we will also refer to
astopics. As previously, we make the simplifying assumption that each document can be
uniquely associated with exactly one topic. Also, each topic belongs to either the rele-
vant or non-relevant class. With regard to these topics, we now consider possible changes
which, in combination, describe the dynamic nature of the information filtering task.

Now, looking at a stream of documents, we may observe the following changes with
respect to the set of topics:

• Existing topics change.

• Existing topics vanish.

• New topics emerge.

Figure 6.1 shows the impact that content change may have on the set of topics. Note that
a changing topic may be considered as the superposition of two similar topics with one of
them vanishing and the other just emerging. Hence, it suffices to consider vanishing and
emerging topics.

Impact on Classification Performance

Having realized that the set of topics is subject to change in the manner set out above, the
next step is to analyze how these changes affect classification performance.

We consider vanishing and emerging topics. In general, vanishing topics should not pose
a serious problem with regard to classification performance as there will not be any more
documents belonging to this topic that can be misclassified. Only when an old topic
hinders a classifier from predicting class labels of other documents because of their re-
semblance to other topics, should action be taken to allow accurate classification of the
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remaining topics. In addition, note that due to a large number of topics which have van-
ished, a classifier may become too complex. In this case, eliminating the related training
examples should be considered. Nonetheless, as some old topics might revive after a
while, we might be better off keeping some training examples of the currently out-dated
topics.

Dealing with emerging topics, on the other hand, is a much greater challenge with regard
to classification performance. How do emerging topics affect classification performance?
A classifier may predict the class labels of documents which belong to a new topic either
correctly or incorrectly based on their resemblance to existing topics. If the majority of
the new documents is classified correctly, the appearance of a new topic will probably not
be recognized. And, with respect to classification performance, this is not necessary. So,
more crucial are documents that are misclassified. Assuming forced recognition, i.e. each
document must be assigned to any one of the predefined classes, two types of errors may
be observed: a non-relevant document may be classified as relevant or a relevant document
may be classified as non-relevant.

If, on the one hand, documents of a new non-relevant topic are presented to users, we may
assume that they will complain. Although this is annoying for users, we will most likely
receive feedback in the form of some true class labels. Subsequently, adaptation of clas-
sifiers may be based on this feedback. If, on the other hand, documents of a new relevant
topic are erroneously withheld from users, they might miss essential information unless
they are informed otherwise. This problem is crucial to the application of information
filters. How can we make sure that relevant documents are not permanently misclassified
because of changes?

Assume that, under the stationarity assumption, we are capable of estimating classifica-
tion performance of a filtering system. This performance estimate will become useless
if changes occur. Hence, it is essential to continuously evaluate performance in order to
guarantee a specific level of classification performance in a long-term application. Yet,
without the knowledge of the true class labels for all or at least some of the new docu-
ments, this poses a difficult problem, as we will further dicuss in the following section.

6.1.3 Coping with Dynamic Aspects

In a long-term application, a classifier may require adaptation to a changing environment
to cope with violations of thestationarity assumption. As a rule, we do not know how and
when changes will occur: they occur while a filtering system is already in operation. So,
anticipating change and considering possible changes during training of classifiers is not
feasible. For this reason, we consider the following two methodologies for coping with
dynamic aspects:7

• Adaptation at regular intervals.A straightforward approach to handling dynamic
aspects is to update or relearn a classifier at regular intervals irrespective of whether
changes have really occurred. Undoubtedly, this methodology enables us to deal

7See Lanquillon and Renz (1999) and Lanquillon (1999b).
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with a changing environment. Especially for information filtering, however, this
methodology is not practical for two reasons. First, any form of adaptation requires
that new training examples be available. Yet, regular provision of new training data
is tedious and expensive.8 In fact, requiring the true class label of each new docu-
ment after it has been classified reduces the task of information filtering to absurdity
because its aim is to reduce a user’s information load. So, we cannot assume that
we have enough new training data to permit frequent adaptation of a classifier. As
the amount of new training data required depends on the frequency with which a
classifier is adapted, the need for new training data may be reduced by choosing a
suitably large interval between two successive adaptations. But, choosing an ap-
propriate interval length is a difficult task. As we typically do not know how the
document stream will change, any choice of the interval length—reaching from not
adapting at all and, thus, completely ignoring changes to continuously updating
after each new document (incremental learning)—appears arbitrary. To sum up, we
may regard adaptation of a classifier at regular intervals as a brute-force approach
to coping with dynamic aspects because it wastes human resources. Consequently,
this methodology is not feasible where labeled data is scarce and expensive.

• Adaptation only if need be.A more elaborate methodology for handling dynamic
aspects is to adapt a classifier to changes only if classification performance needs
to be maintained. Deciding whether adaptation is necessary requires being able to
detect changes. Hence, coping with dynamic aspects falls into two subtasks: de-
tecting changes and adapting to these changes accordingly. As we have seen above,
we always require some user feedback in form of class labels for new documents
for adaptation. The reason for this is that we cannot otherwise know how to cor-
rectly classify new documents from regions in feature space which have not been
populated previously. However, as we aim at adapting a classifier only if neces-
sary, the amount of new training data may be greatly reduced. So, the benefit of this
methodology largely depends on the amount of feedback required to detect changes.
Clearly, we may easily detect changes when provided with true class labels for the
new documents after they have been classified. But as this is not feasible in prac-
tice, the challenge is to detect changes either with little or with no feedback. Note
that generally the risk of failing to recognize changes and the risk of false alarms,
i.e. erroneously predicting that a change has occurred, increase as the amount of
available feedback decreases. To sum up, attempting to detect changes and adapting
only if necessary may make coping with dynamic aspects feasible. Yet, feasibility
is achieved at the risk of failing to detect change and, thus, withholding relevant
documents from the user.

As it allows minimization of the user feedback required and is, therefore, feasible, we
favor the methodology that attempts to detect changes and adapts the information fil-
ter only if necessary to maintain classification performance. We primarily focus on the
change detection task; see Section 6.3. In Section 6.4 we briefly address approaches to
adapting to changes.

8Also see Section 4.1.1 (p. 80).
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6.2 Related Work

In machine learning, changing concepts are often handled by time windows of fixed or
adaptive size on the training data, i.e. by learning from only a certain number of the
most recent examples.9 Another approach to dealing with concept changes is by weight-
ing training examples or parts of the hypothesis according to their age or usefulness for
the classification task.10 Note that most approaches to dealing with concept changes
assume that the feedback for the examples classified becomes available after classifica-
tion. Though absolutely necessary to handle changes in user interests, providing feedback
for a large number of documents is still prohibitive. So, applications of these approaches
may fail to work in practice when true class labels are not available. Our approach to
treating changes in the environment will try to do with little or no feedback. Below, we
briefly discuss some approaches to dealing with dynamic aspects when learning a concept,
focusing mainly on approaches applied to the information filtering task.

Kuh et al. (1991) extend computational learning theory to include concepts that can
change or evolve over time. They conclude that, for some concept classes, learning
changing concepts is provably efficient, if the rate or the extent of change is limited in
particular ways. Also, Helmbold and Long (1994) show that a window of a certain mini-
mal fixed size allows learning of concepts for which the extent of change is appropriately
limited. Note, however, that concept changes of real-world problems may not obey the
restrictions imposed. For instance, user preferences for reading news articles may change
almost arbitrarily often and radically.11 Also, note that the window sizes theoretically
suggested are typically very large and, thus, impractical. So, applications based on time
windows usually rely on much smaller window sizes.12

The choice of the window size is perhaps the most crucial issue for any approach which
learns from only some of the most recent training examples. Typically, we cannot deter-
mine an appropriate constant window size for all possible situations. As using a small
window permits fast adaptability to changes and a larger window leads to enhanced gen-
eralization ability in phases without concept change, adjusting the window size to the
current extent of change is, in general, superior to a fixed window size. Most approaches
apply simple heuristics to determine the current window size as a function of classifica-
tion performance. Typically, window size decreases if changes might allow discarding of
out-dated examples. In contrast, window size may increase when the concept is stable, so
as to provide a more representative training set. In any case, detecting changes is the first,
and probably most important step, towards coping with dynamic aspects. We will have
more to say on this in the following section.

Allan (1996) explores relevance feedback techniques for automatic correction of user
profiles so that they more accurately reflect user interests. To better cope with changing
user interests, he downweights training documents according to their age. Note that this
approach follows the methodology of adapting a classifier at regular intervals irrespective

9See Mitchellet al. (1994) or Widmer and Kubat (1996), for example.
10See Maloof and Michalski (1995) or Nakhaeizadehet al. (1998), for example.
11See Klinkenberg and Joachims (2000).
12See Widmer and Kubat (1996), Klinkenberg and Renz (1998), or Lanquillon (1999a), for example.
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of whether changes have actually occurred. For his adaptive web page recommendation
service, Balabanovic̀ (1997) follows a similar approach: existing user profiles are dis-
counted through an aging factor in order to cope with changing user interests.

Other approaches are in line with the methodology of adapting to changes only if nec-
essary to maintain classification performance. For example, Lamet al. (1996) propose a
two-level learning approach to coping with non-stationary user interests. While a lower
level is responsible for learning user profiles, a higher level uses Bayesian analysis to
detect shifts in user interests. Once a shift is detected, the lower-level learning algorithm
is suitably adapted.

Klinkenberg and Renz (1998) describe an adaptive information filtering system which
permits dealing with changes in user interests. Their approach tries to cope with dyna-
mic changes by, first, detecting changes and, then, adapting the information filter only if
necessary through learning from some of the most recent training documents. To detect
changes, they monitor performance measures, which requires that the true class labels
of new documents become available in order to be evaluated. To mitigate this problem,
Klinkenberg (1999) tries to operate his adaptive filtering system with only partial user
feedback. For adaptation, Klinkenberg employs simple heuristics to determine appropri-
ate window sizes. Klinkenberg and Joachims (2000) propose a method for recognizing
and handling concept changes with support vector machines which is both theoretically
well-founded and, at the same time, effective and efficient in practice. Nevertheless, note
that their approach still requires the true class labels of new documents to become known
after they have been classified.

Tauritz and Sprinkhuizen-Kuyper (1999) and Tauritzet al. (2000) present an adaptive
information filtering system which is concerned with filtering in changing environments
and considers changes in user interests as well as content changes in the document stream.
They employ the concept of evolutionary computation to cope with a changing envi-
ronment. Although results are promising with respect to classification performance, in
its current form, their approach suffers from the same drawback as the aforementioned
approaches: it requires the user to provide feedback for the documents classified.

In his work on autonomous text classification systems, Lewis (1995) suggests continously
monitoring the performance of a classifier and adapting to changes if necessary. This
corresponds to the approach that we will follow later in this chapter for handling dynamic
aspects. Lewis focuses on estimation of performance measures for probabilistic classifiers
without user feedback. However, he does not provide any evaluation for a dynamically
changing document stream. In our work, we will try, among other things, to make use of
these estimates to detect changes in a real-world application.

A fairly new field of study istopic detection and tracking (TDT), which aims at finding
and following news events in a stream of news stories. The task is divided into three key
subtasks: segmenting a stream of recognized speech into distinct stories, identifying those
news stories which are the first to discuss a new event occurring in the news, and, given
a small number of sample news stories about an event, finding all the follow-up stories
in the stream.13 Although the TDT task and our work appear similar in that they attempt

13See Allanet al. (1998).
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to discover novelty, i.e. changes in a document stream, they do, in fact, differ in several
respects. In the TDT task, events are defined as clusters localized in space and time and
associated with some specific action. This contrasts with the definition of a topic in text
classification, which refers to a cluster of documents about the same subject. For example,
’the election of the president of the United States of America in the year 2000’may be
seen as an event, whereas’presidential elections’in general might be a topic. Another
distinction is that TDT is defined as an unsupervised learning problem: classes are not
known and fixed in advance. As a consequence, there are no relevance classes with respect
to particular user interests which are to be learned. While TDT aims at detecting events as
early as they occur, we focus on detecting changes when they have a significant effect on
classification performance. The tracking of events once they have been discovered shows
some similarities to the issue of learning classes when labeled training data is scarce. It is
different, though, since events are much more short-lived, and several distinct events may
be similar to the same topic but may still have to be separated.14

6.3 Detecting Changes

In the preceeding, we have seen that continuously adapting a classifier so as to cope with
a changing environment is typically not feasible. In contrast, trying to detect changes
first and, then, adapting to them if necessary is practical. Only this methodology allows
comprehensive minimization of the user effort required. Detecting changes necessitates
continuous observation of characteristic values of the filtering process such as classifica-
tion performance or document properties. We focus on performance indicators which can
be evaluated either with little or with no user feedback. We propose to use techniques
from statistical quality control to detect changes in terms of deviations from the expected
values of the indicators observed.

6.3.1 Statistical Quality Control

In order to detect any concept change within a stream of data, at least one characteristic
value should be observed and compared to previous values regularly. We refer to this
process asmonitoring. Regarding the change detection problem from a statistical per-
spective, the sequence of observed characteristics represents a discrete random process
which has some inherent variation. Now, the key difficulty is to distinguish between nor-
mal variation caused by stochastic fluctuations—usually called noise—and variation due
to real concept changes. If the data stream is noisy, it may contain inconsistent examples,
so-called outliers, which do not fit in the current concept but are spurious and may never
appear again. Note, though, that examples which seem to be outliers might also herald
concept change. However, in a classification system learned from examples, it typically
takes more than one new example to change the concept.

14For example, see Yanget al. (1999) and Yanget al. (2000) for some approaches to the TDT task.
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Methods designed to react quickly to the first signs of concept drift may
be misled into overreacting to noise. This results in unstable behavior and
low predictive accuracy. On the other hand, an incremental learner that is
designed primarily to be highly robust in the face of noise runs the risk of not
recognizing real changes in the target concepts and may adjust to changing
conditions very slowly, or only when the concepts change radically.15

The problem of distinguishing between noise and real change is broadly studied in the
statistical literature about quality and process control.16 There, this problem is known as
distinguishing between chance causes and assignable causes of variation. We employ two
well-known techniques to monitor quality indicators for the information filtering process:
a variant of theShewhart control chartand thecumulative sum control chart.

A control chart is defined as a plot of a certain characteristic value, such as the sample
mean or a measure of variability, which is taken sequentially in time.17 In addition, control
charts include bounds, or control limits, which help to determine whether a particular
sample is within acceptable limits of random variation. Through these limits, control
charts try to distinguish between variation caused by expected stochastic perturbations
and variation caused by unexpected changes. If the plotted characteristic is outside the
limits, we conclude that something has happened to the process observed: possibly some
concept change has occurred. In this case, some action should be taken to cope with this
change. For classification problems, concept changes typically require adaptation of the
classifier used; see Section 6.4.

Shewhart Control Chart

In 1924, Walter A. Shewhart developed the statistical control chart concept as a change
detection method for the continuous inspection of the quality of a manufactured product.18

His approach is known as theShewhart control chart.Below, we describe a variant of this
approach as applied later in this chapter for the detection of changes in document streams.

Suppose that a characteristic valueνt, computed at different pointst ∈ IN in time, is
monitored as time progresses. Typically, the characteristic describes samples of the data
stream taken from particular periods of time, such as the classification accuracy of some
recent documents classified. Let the meanµ be the expected value for the characteris-
tic value with standard deviationσ. For the moment, assume that bothµ andσ can be
estimated on the basis of some historical data. The valuesνt are plotted in time-series
fashion versus time with appropriate warning and action limits indicating that the process
has changed.19 See Figure 6.2 for an illustration of the Shewhart control chart.

The action limits are equivalent to the classical control limits and are basically suitable
for the detection of grave changes, i.e. concept shift. Typically, there is an upper action

15From Widmer and Kubat (1996), p. 82.
16See Montgomery (1997) for a thorough introduction to statistical quality control.
17See Hogg and Ledolter (1992), pp. 187–196, for example.
18See Montgomery (1997), p. 9.
19See Montgomery (1997), pp. 132–138, for some basic principles of the Shewhart control chart.
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Figure 6.2: Illustration of a Shewhart control chart (left) and a cusum control chart (right). In both charts, the dots show the values of
the characteristic observed at timet. Typically, these points are connected to better visualize trends. Initially, the characteristic falls
around the mean value, which is also referred to as the center line. About halfway through the chart, we observe an upward drift in the
characteristic values. The upper action limit of the Shewhart control chart recognizes this change att = 18. If warning limits were
used, the change might be detected earlier. The upper cusum shown as impulses in the cusum control chart exceeds its action limit
even earlier than the warning limits of the Shewhart control chart. Note that the number of consecutive non-zero cusum values may be
used to determine the time point at which the change might have started. Here, the change is likely to have started att = 12.

limit and a lower action limit, which are often set atµ + 3σ andµ − 3σ, respectively.20

The theoretical explanation for the choice of these action limits is as follows. Suppose
that the characteristic valuesνt follow a normal distribution with meanµ and variance
σ2. Then, the probability that anyνti falls between the action limits is extremely close to
unity, namely about0.9973. Hence, it is very rare that anyνti would fall outside the action
limits if the process is stable. If, on the other hand,νti falls outside the action limits, this is
taken as evidence that there is some change in the data stream. Although the distribution
of the characteristic around its mean value is often unknown, in many practical situations,
such as those addressed in the following, it may be considered approximately normal
according to thecentral limit theorem.21 Therefore, the three-sigma action limits are
often a reasonable choice. Nonetheless, we may choose any other confidence level at
which to suspect change. So, in general, we may set the action limits atµ ± ασ, with
α > 0. Settingα = 2.33, for example, corresponds to a one-sided99% confidence
interval for observing values either smaller or greater than the action limits, assuming that
the characteristic values approximately follow a normal distribution. In general, note that
smaller values ofα increase the risk of a false alarm, i.e. indicating change when there is
none, whereas larger values ofα increase the risk of failing to recognize changes.

That small and persistent changes often remain undetected is a well-known drawback of
the basic Shewhart control chart with its control limits. The reason for this is that the
Shewhart control chart considers only the current value of the characteristic observed and
ignores any information given by its entire sequence.22 Below, we discuss another control
chart which may help remedy this problem. To increase sensitivity of the Shewhart control

20For some characteristic values, we might only use one of the action limits. When observing classifica-
tion accuracy, for example, a lower control limit may suffice since deviations beyond the upper action limit
are certainly acceptable and would not require adaptation.

21See Box and Lucẽno (1997), p. 27, and Montgomery (1997), p. 62.
22See Montgomery (1997), pp. 313–314.
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chart, warning limits may be used in addition to the action limits. Warning limits are set
somewhat closer to the mean than the action limits, for example atµ ± σ or µ ± 2σ. In
general, we may set the warning limits atµ ± β σ with 0 < β < α. If the characteristic
value falls outside the warning limits but is still inside the action limits, the process might
still be in control. Yet, the situation might also indicate a trend towards a conceptual
change. To make use of the warning limits, the position of successive characteristic values
is often considered. For example, a certain number of warnings in a row might indicate
that the process is out of control and thus trigger an action. In this work, we use one-sigma
warning limits in addition to the action limits and also suspect conceptual change if the
characteristic observed falls outside the same warning limit three times in a row.23

Having determined the probability distribution governing the characteristic values to be
monitored, a key difficulty in using Shewhart control charts is to estimate appropriate
values forµ andσ. In general, these values are unknown: they can only be estimated
on the basis of historical data. Yet, when a process is begun, there may not be enough
historical data available. To mitigate this problem, we might collect additional data while
the characteristic is monitored and adaptµ andσ accordingly. Note that this may be
a drawback when we are already in a phase of concept drift: the change may not be
detected as the action and warning limits may adapt with the change. Note that any
problem concerning the estimation ofµ andσ largely depends on the characteristic value
monitored and will, thus, be deferred until Section 6.3.2.

Cumulative-Sum Control Chart

A cumulative-sum(or cusum) control chartconsiders the entire sequence of characteristic
values. In particular, the cusum chart accumulates deviations from the expected value over
time and may, thus, detect small changes which occur successively. A similar approach
to detecting small changes is the exponentially weighted moving-average control chart.24

As previously, assume that we monitor the characteristicνt over timet with meanµ and
standard deviationσ. The cusum control charts accumulates deviations from the mean
which are above target with one statisticC+ and deviations from the mean which are
below target with another statisticC−. The statisticsC+ andC− are called the one-sided
upper and lower cusum, respectively. At timet, they are defined recursively as25

C+
t = max[0, νt − (µ+ δ σ) + C+

t−1] (6.1)

C−t = max[0, (µ− δ σ)− νt + C−t−1] (6.2)

where the starting values areC+
0 = 0 andC−0 = 0. The termδ σ is often referred to as

slack value or allowance and allows us to ignore deviations from the mean to some small
extent. So, in effect, the upper and lower cusums accumulate deviations from the mean
which are greater than the allowance, with both statistics reset to zero upon becoming
negative.

23See Tayloret al. (1997), for example. Also, see Box and Luceño (1997), p. 62, for more action rules.
24See Box and Lucẽno (1997), pp. 71–74, or Montgomery (1997), pp. 313–341.
25See Montgomery (1997), p. 318.
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We assume that a change has occurred at timeti if either one of the cusums exceeds the
action limitγ σ, i.e. ifC+

ti > γ σ orC−ti > γ σ.26 Typically, δ is set to0.5. Yet, there seems
to be only small grounds for selectingγ in the literature. In this work, we chooseγ = 4.27

For example, this would signal change for two observations in a row with a deviation of
at least two and a half times the standard deviation from the mean. In addition, note that
the cusum chart is not only able to detect changes but also allows us to determine when
the particular change might have begun to occur: we just have to find the time point at
which the cusum rose above zero for the last time prior to exceeding the action limit. See
Figure 6.2 for an illustration of the cusum control chart using only the upper cusum.

Combined Cusum-Shewhart Control Chart

As we have seen above, the cusum control chart permits detection of concept drift. Yet, it
is less effective than the Shewhart control chart in detecting concept shift. In an attempt
to make use of the individual strengths, we will also consider using both control charts in
combination so as to enhance change-detection ability. In particular, we apply both the
Shewhart control chart and the cusum control chart and suspect concept change if either
one or both charts signal change.28

6.3.2 Quality Indicators for Text Classification

In the preceeding, we have introduced approaches to monitoring characteristics so as to
detect changes in some underlying process. Now, we derive quality characteristics from
the information filtering process. Specifically, the key challenge is to define indicators
which do not just allow detection of changes but whose computation is also feasible.

Batch Processing

In information filtering, we are concerned with classifying documents from an incoming
stream according to a given concept, i.e. documents which a user likes to read. As we
have discussed previously, it typically takes more than a single document to change a
concept. Hence, we cannot detect changes with indicators based on a single document.
Rather, we require computation of indicators on the basis of sets of documents which
are clustered in time. In particular, we assume that the document stream is divided into
batches of documents with respect to their chronological order. Then, for each batch, any
quality indicator for the information filtering process may be computed on the basis of
all documents in the respective batch. Note that this batch processing will average single
observations, thus reducing noise, so that the influence of outliers is only slight.

26Again, for some characteristics, it will suffice to use either the upper or the lower cusum. For example,
when monitoring classification accuracy, we are interested solely in the lower cusum because enhanced
accuracy typically does not require adaptation to concept change.

27See Montgomery (1997), p. 322.
28See Montgomery (1997), p. 325.
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Even if information filtering is regarded as an online process, where each document is
classified as it arrives,29 constructing batches is quite natural since, for example, all doc-
uments arriving in the course of a day or a week could be grouped together. Note that
the computation of indicators with respect to the batches does not conflict with the online
presentation of documents to the user: both processes can be carried out independently.

Obviously, batches may differ in the number of documents they contain. For the sake of
simplicity, we assume that all batches have the same size. Note, though, that determining
an appropriate batch size is not at all trivial. If the batch size is chosen too small, some
indicators observed might still be biased and, thus, inaccurate. Yet, if it is too big, the
reaction to concept changes might be too slow. In fact, choosing a suitable batch size
depends on the composition and the behavior of the data and on the application at hand.

A Taxonomy of Quality Indicators

Our quality indicators will be derived from batches of documents. But what kind of
quality indicators shall we use? We consider three categories of characteristics:30

• Text properties:The quality indicator characterizes the current batch of documents
from the stream, e.g. through class distributions or term frequencies. For example,
concept changes might affect the average number of index terms occurring in a
document. Basically, indicators based on text properties concern the preprocessing
of documents, i.e. the transformation of plain text into feature vectors as set out in
detail in Section 3.2. For this reason, they allow detection of changes even before
documents are actually classified. So, a user may be alerted that the upcoming
classification decisions may be uncertain. Unless they require the true class labels
to be known, the computation of this type of quality indicator is feasible.

• Classifier properties:The quality indicator characterizes the classifier or, in other
words, the concept representation which has been established on the basis of the
current batch of documents as training data.31 These indicators require new classi-
fiers to be learned at regular intervals. Yet, as we have seen above, this is generally
not feasible because new training documents are often not available. Therefore, we
will not further consider indicators based on classifier properties.

• Classification properties:The quality indicator is based on final or intermediate
classification results, e.g. performance measures such as classification accuracy.
Naturally, making use of performance measures is the most straightforward
approach to assessing the quality of the underlying filtering process, unless effi-
ciency plays a major role. The computation of most performance measures is not
practical as it typically requires the true class labels of the documents classified.
Hence, we will have to use alternative performance measures.

29See Section 15 (p. 7).
30See Klinkenberg and Renz (1998), Lanquillon and Renz (1999), and Lanquillon (1999b).
31See Risslandet al. (1995) for an approach to measuring structural change in concept representations.
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The discussion above has already ruled out the use of classifier properties since our pri-
mary goal is to avoid building new classifiers at regular intervals unless changes in the
concept have actually occurred. This leaves us with indicators based on text or classifi-
cation properties. In this work, we confine ourselves to using indicators based on clas-
sification properties, i.e. on general forms of performance measures. The reason for this
is that any concept change which significantly affects the document representation and,
thus, any indicator based on text properties should also affect indicators based on clas-
sification properties because classifiers are trained to distinguish among classes through
class-specific differences in the document representations. So, in fact, we may see exploit-
ing classification properties as a particular means to spotting differences in text properties.

Assessing Performance Indicators

We consider general forms of performance measures as quality indicators for the informa-
tion filtering process. In Section 2.3 (pp. 13 ff.), we have described some of the most com-
mon performance measures used in text classification and information filtering:accuracy,
error rate, precision, andrecall.

To reiterate, recall is the probability that a relevant document will be presented to the user.
Accuracy and error rate express the probability that a document will be classified correctly
and incorrectly, respectively. For their computation, these performance measures require
the true class labels of the documents classified. As provision of true class labels is
often not feasible, we cannot in general evaluate these performance measures. Only the
computation of precision, i.e. the probability that a document presented to the user is
indeed relevant, may be feasible as it requires feedback solely for documents presented
to the user. Yet, precision as a single performance measure does not suffice to fully
characterize classification performance. The reason for this is that precision does not
recognize relevant documents which are withheld from users. Therefore, we may be
able to detect that a particular topic is vanishing, but we may not recognize that a new
relevant topic is emerging. To cope with this problem, we would have to evaluate further
performance measures like recall.32 As this reflection shows, we have to derive alternative
quality indicators to overcome the evaluation problem pertaining to the computation of
most of the common performance measures.

Below, we discuss performance measures which can be evaluated both with little and with
no user feedback. In particular, we first consider computing common performance mea-
sures on the basis of samples of the documents classified rather than on all the documents
classified. Next, we dicuss an approach to estimating expected performance based on pos-
terior probabilities of class membership. Finally, we propose a method which observes the
uncertainty in classification decisions. Although these approaches assume the two-class
information filtering task, they may easily be extended to more than two classes.

Estimation of Performance Measures from Document Samples.Direct computation
of many common performance measures is not feasible as it requires the true class labels

32See Section 42 (p. 15).
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of the documents classified. Similar evaluation problems may arise when controlling the
quality of a manufacturing process. For example, inspecting each item produced may
not be practical either because it is too expensive to check each item in large volume
production or because the items produced might be destroyed upon inspection. To assess
quality in these cases, typically, a random sample is drawn from the population of all items
produced. Any quality indicator evaluated on this sample is then used as an estimate for
the quality indicator pertaining to the entire population.

Concerning information filtering, we may draw a sample of documents from each batch
and require feedback from the user only for the documents in this sample. Since we
may assume that feedback for documents presented to the user will be obtained, it may
suffice to draw a sample only from documents which, being classified as non-relevant,
have been withheld from users. Now, any performance measure may be evaluated on
the basis of partial user feedback and, then, be used as an estimate for the performance
measure evaluated for all documents of a batch.

Assume that we evaluate, for each batch, the error rateesample on the document sample
drawn from the respective batch. To monitor the sample error, we consider the values
obtained for different batches as the characteristic for the filtering process at different
points in time. For the application of the Shewhart and the cusum control charts, we have
to determine appropriate estimates for the mean and the standard deviation of the sample
error. A document can be classified either correctly or incorrectly. Hence, the error rate
follows a binomial distribution. Suppose we are givenq sample errors evaluated on earlier
batches. Fori = 1, . . . , q, let ni denote the number of documents in the batch at timei.
We estimate the target value of the sample error by the weighted mean of the previous
sample error ratese(i)

sample, giving33

ēsample =
1∑q
i=1 ni

q∑
i=1

ni e
(i)
sample (6.3)

For the batch at timet with sizent, the standard deviation is estimated by

sesample
=

√
ēsample (1− ēsample)

nt
(6.4)

With these estimates, the action and warning limits of the control charts can be drawn
accordingly. For example, the upper warning and action limits of the Shewhart control
chart are set at̄esample + sesample

andēsample + 3 sesample
, respectively.

Typically, the difficulty of this approach lies in providing sample error rates of earlier
batches. This becomes particularly apparent when setting up the monitoring process:
there may be no batches prior to the first one observed. As a remedy,p-fold cross-
validation with the training data might be applied in order to estimate the target value
ēsample. In this case, the error rates on each of thep held-out sets of the cross-validation
procedure can be used in place of the sample error on previous batches. Also, we may
consider adapting the mean and the standard deviation according to the sample error rates

33See Lanquillon (1999a), for example.
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Relevant? User saysyes. User saysno.

System saysyes. A =
∑n
i=1 si Zi B =

∑n
i=1(1− si)Zi

System saysno. C =
∑n
i=1 si (1− Zi) D =

∑n
i=1(1− si) (1− Zi)

Table 6.1: Contingency table forn documents with random variables as relevance judgements (following Lewis (1995), p. 248).

on recently processed batches so as to obtain more accurate estimates. For the estimation
of mean and standard deviation, we will consider the sample error rates on recent batches
only if they are within the warning limits of the Shewhart control chart.

To sum up, monitoring the sample error rate instead of the true error rate allows substantial
reduction in user feedback. Yet, users must still read and hand-label documents which
they are not interested in. Clearly, smaller samples require less feedback from the user.
Note, though, that sample size is inversely related to the ability to detect change: choosing
a small sample size increases the risk of false alarms or failing to recognize changes.
Below, we dicuss performance measures which do not require any user feedback.

Estimation of Expected Performance. Now, assume that we do not have any user
feedback at all, i.e. we do not have any true class labels for the documents classified. In
addition, assume for now that a classifier responds to a new document with estimates of
the posterior class probabilities, based on which classification decisions are made. If we
use a non-probabilistic classifier, we can transform the classifier’s response into posterior
probabilities through confidence mapping.34

To estimate the expected performance of a classifier on new data, Lewis (1995) models the
unknown user judgement, i.e. the unknown true class labels, by a Bernoulli (0/1) random
variableZi with parameterpi giving the probability thatZi will take on the value 1 for
each documentdi classified by the filtering system. The eventZi = 1 occurs if the current
document is actually relevant, andZi = 0 otherwise. It is assumed that each document
is judged independently of all others. In addition, the value of eachpi is assumed to be
the classifier’s estimate of the posterior probability of the relevant class for documentdi.
In other words, we assume that the more confident the classifier is in its classification
decision, the larger the probability will be that the user would make the same decision.
Yet, in reality, this assumption if often violated: the classifier’s estimates of the posterior
class probabilities may be rather poor; otherwise it would not yield any classification
errors.

While the true class labels for new documents are unknown, we certainly know the class
assigned to a new document by the classifier. So, rather than using a random variable,
let the simple Boolean variablesi denote this classification decision withsi = 1 if the
classifier considers documentdi as being relevant, andsi = 0 otherwise.

In Section 2.3 (pp. 13 ff.), we have expressed common performance measures in terms
of the entries of a contingency table. With the true class labels unknown, we cannot di-
rectly construct the contingency table. Nevertheless, for a set ofn documentsdi, we may
define its entries in terms of random variables based on the classification decisionsi and

34See Section 3.3.4 (pp. 75 ff.).
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the random variablesZi, which replace the relevance judgements of a user; see Table 6.1.
Rather than based on the entriesa, b, c, andd of the normal contingency table, a perfor-
mance measure is now expressed in terms of the random variablesA,B, C, andD.35 For
example, for a set ofn documents, the expression for the error rate is given by

ERROR =
B + C

n
=

∑n
i=1(1− si)Zi +

∑n
i=1 si (1− Zi)

n
(6.5)

To apply these expressions to the monitoring process, we have to get rid of the random
variables. Letg(s,Z) be a function to evaluate an arbitrary performance measure in terms
of the system decisionss = (s1, . . . , sn) and the user judgementsZ = (Z1, . . . , Zn) for
then documents. Lewis (1995) provides a general expression for the expected perfor-
mance measureE[g(s,Z)] as the sum of performance values that would be obtained for
each of the2n possible combinations of the user judgements for alln documents, weighted
by the probability of each judgement as determined by the classifier, yielding

E[g(s,Z)] =
∑

z∈{0,1}n
P(Z = z) g(s, z) (6.6)

=
∑

z∈{0,1}n
(
n∏
i=1

pzii (1− pi)1−zi)g(s, z) (6.7)

For a large numbern of documents, it may not be feasible to directly evaluate this ex-
pression. Yet, for the expected error rate, for example, a simpler expression is given by36

eexpected =
1

n

n∑
i=1

((1− 2si) pi + si) (6.8)

With si ∈ {0, 1} andpi ∈ [0, 1], the values of the summands in this expression can be
written in a simpler form as

(1− 2si) pi + si =

{
pi if si = 0

1− pi otherwise
(6.9)

= |si − pi| (6.10)

As a result, this summand quantifies the uncertainty in each classification decision by
measuring the difference between the class assigned and the posterior probability based on
which the classification decision has been made. For the two-class filtering problem, this
difference is minimal if the classification decision is made by thresholding the posterior
probability at0.5, which corresponds to the maximum a posteriori decision rule.37

Note that this expression has some obvious similarity to theRAD reject-criterion com-
monly applied in pattern recognition, which rejects decisions if the distance between the
class predicted and the classification scores exceeds a predefined thresholdθ:38

RAD2
i = |si − pi|2 > θ (6.11)

35See Lewis (1995).
36See Lewis (1995).
37See Section 210 (p. 62).
38See Scḧurmann (1996), pp. 293–298, and Schürmann (2000).
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We will have more to say on rejecting classification decisions due to uncertainty for the
quality indicator described next.

For the monitoring process, consider that the expected error rate is a measure of the aver-
age uncertainty of a set of classification decisions rather than an error rate. Hence, we do
not suppose a binomial but a normal distribution for this characteristic. As above, let there
beq expected error ratese(i)

expected on earlier batches with sizeni for i = 1, . . . , q. The tar-
get value for the expected error rate is evaluated as the weighted mean of the previous
expected error rates, yielding

ēexpected =
1∑q
i=1 ni

q∑
i=1

ni e
(i)
expected (6.12)

with a standard deviation estimated by

seexpected
=

√√√√ 1

q − 1

q∑
i=1

(e
(i)
expected − ēexpected)2 (6.13)

Warning and action limits of the control charts are plotted according to these estimates.
For the provision of values for the expected error rate on earlier batches, consider the
same reflections as made for the sample error rate.

To summarize, expected performance measures permit evaluation of quality indicators
without user feedback. Yet, the values obtained will typically differ significantly from the
traditional performance measures, which are based on complete user feedback for all doc-
uments classified. The reason for this behavior is the fact that the classifier’s estimates of
the posterior class probabilities given a document are often not very reliable. An expected
performance measure may well be used as a quality indicator of a filtering system. As we
are not interested in accurate estimates of performance measures but in change detection
instead, we may consider applying this indicator to non-probabilistic classifiers without
confidence mapping. For example, assume similarity-based classifiers: the classification
scores received from such a classifier might be used in place of the posterior probabilities.
In this case, Equation (6.8) could be formulated to express the average dissimilarity of
new documents to the class assigned rather than the average uncertainty.39

Virtual Rejects: Observing Uncertainty in Classification Decisions. Again, we
assume that we do not have knowledge of the true class labels for the documents classi-
fied. Yet, instead of measuring the average uncertainty of a set of classification decisions
as done above for the expected error rate, we now quantify uncertainty through counting
decisions made with a confidence below a certain threshold. In other words, we take into
account decisions that should be rejected for reasons of uncertainty. Nevertheless, as we
assume forced recognition, i.e. each new document must be classified as either relevant
or non-relevant, we talk aboutvirtual rejects: documents whose classification decisions
would be rejected if forced recognition were not assumed.

39See Lanquillon (1999b).
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Assume that a classifier responds to a new document with classification scores for each
class based on which the classification decision is made. Hence, we require that each
class of the classification task is appropriately represented. Note that we have seen in
Section 364 (p. 132) that the learning task in information filtering may be simplified by
modeling only the relevant class explicitly since the non-relevant class is often hetero-
geneous and, thus, difficult to represent. To detect changes, however, we have to model
both the relevant and the non-relevant classes explicitly. This is “because to recognize a
thing as new, one must be able to distinguish it from what is old. But to be distinguish-
able, some of the things we perceive must be similar enough as classes or patterns for us
to compare with another thing to tell if it is the same or different.”40 Put in other words,
we cannot recognize a document as new solely through the dissimilarity to the relevant
class. We also need to know the resemblance to the non-relevant class.

In addition, the application of the reject indicator to be introduced below is based on the
assumption that changes in the document stream cause classification decisions to become
more uncertain as the resemblance of new documents to the known classes decreases.
Otherwise, we would not be able to recognize changes. For the evaluation of the reject
indicator, we focus on classifiers which respond to a new document with a classification
score in the unit interval. It is essential that these scores are not normalized so that they
add up to unity. The reason for this is that normalization will hinder the reject indicator
from identifying uncertain classification decisions as they may appear more confident
than they actually are. So, we may use, for example, any type of similarity-based classifier
such as the single-prototype classifier. Also, the naı̈ve Bayes classifier might be used if the
estimates of the posterior probabilities of the classes given a document are not normalized.

Equipped with classification scores for each class, assume that we classify a new doc-
ument as belonging to the class which yielded the maximum classification score. This
decision rule remains unchanged. However, we also introduce a reject-criterion which
signals that a classification decision is too uncertain. In particular, letc = H(d) ∈ C de-
note the class predicted for documentd by some classifierH. We virtually reject the clas-
sification decision if the classification scoresc for the class predicted is below a certain
threshold.41 Note that the threshold parameter may be class-dependent. So, the reject-
criterion is defined by the predicate function%(d) which evaluates as one if documentd
should be rejected, and otherwise zero:

%(d) =

{
1 if sc < θc
0 otherwise

(6.14)

The key challenge is to define the threshold parametersθci for each possible classci ∈ C.
We will derive class-dependent threshold values based on the following motivation. Let
H be a classifier that explicitly models each relevance class and consequently responds to
a new document with a classification score for each class. By individually thresholding
the scores for the relevant and the non-relevant classes, we can obtain two new classifiers
Hrel andHnon . The idea is to measure the disagreement betweenH and eitherHrel or

40From Klapp (1986), p. 81.
41This reject-criterion is similar to theRAD reject-criterion, which is often applied in pattern recognition;

see Scḧurmann (1996), pp. 293–298.
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Algorithm 6.1 Computation of Reject Thresholds for Filtering Task
Input: set of training documentsD = Dnon ∪Drel , learning algorithmL

1: perform leave-one-out orp-fold cross-validation withL onD so as to obtain unbiased
classification score vectorssi = (s

(i)
non , s

(i)
rel) for each training documentdi ∈ D

2: split score vectors into two setsSnon = {si|di ∈ Dnon} andSrel = {si|di ∈ Drel}
3: for all c ∈ {non, rel} do
4: define subsetsS

<

c̄ (θc) = {s ∈ Sc̄|sc < θc} andS
>

c (θc) = {s ∈ Sc|sc ≥ θc}
5: determineθc such that

|S<c̄ (θc)|
|Sc̄|

≈ |S
>

c (θc)|
|Sc|

6: end for
Output: class-specific reject thresholdsθnon andθrel

Hnon , depending on the decision ofH. That is, ifH predicts the relevant class, we
would look at the response ofHrel . On the other hand, ifH predicts the non-relevant
class, we would consider the response ofHnon . The classification of any document for
which the two classifiers considered disagree is virtually rejected. So, the main task is to
determine threshold parametersθrel andθnon which would permit reasonable classification
of documents if the classifiersHrel andHnon are used in isolation.

According to the aforementioned motivation, determining class-specific threshold values
is straightforward. For each class, we have to apply confidence mapping so as to trans-
form any type of classification scores into confidence values as set out in Section 3.3.4
(pp. 75 ff.). Based on these confidence maps, the threshold values can be determined as
those classification scores which yield a confidence value of 0.5 when trying to separate
the respective class from the other classes. Note that confidence mapping yields not only
the threshold values which we require but also a complete mapping from the range of
classification scores onto the unit interval. Hence, it is more complex and expensive than
actually necessary. In the following, we describe a simpler approach to determining only
the class-specific threshold parameters.

Following the concept of confidence mapping, a confidence value of 0.5 corresponds to
a classification threshold for which the odds of classifying a document as either relevant
or non-relevant are even. Since in many filtering tasks the non-relevant documents by
far outnumber the relevant documents, we will consider relative numbers of documents
rather than absolute numbers. In other words, we assume that misclassifying a document
is inversely proportional to class frequency.42 As a consequence, finding the classification
threshold which yields a confidence of 0.5 corresponds to finding the point of intersec-
tion of the density functions of the two overlapping distributions of classification scores.
Algorithm 6.1 outlines how these threshold values can be approximated.43

To achieve reasonable results, it is essential to obtain some unbiased classification scores
for documents which have not been used for training. For this reason, we apply either

42This is equivalent to using normalized histograms for confidence mapping; see Section 3.3.4 (p. 76).
43See Lanquillon (1999b).
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leave-one-out orp-fold cross-validation on the training data.44 Then, having split the
classification scores into two subsets according to the true class labels of the respec-
tive documents, we proceed separately to determine the thresholdsθnon andθrel for the
non-relevant and the relevant classes, respectively. For example, consider the evaluation
of θnon .45 Now, the objective is to find a valueθnon which yields the best separation
between relevant and non-relevant documents with regard to the relative number of doc-
uments in each class. In other words, we require that the largest fraction of documents
with non-relevant classification scores belowθnon is indeed relevant and that the largest
fraction of documents with non-relevant classification scores aboveθnon is indeed non-
relevant. Note that the number of relevant documents with a non-relevant score belowθnon

increases and the number of non-relevant documents with a non-relevant score aboveθnon

decreases asθnon increases. Hence, there will be a point at which the fractions of these
documents become approximately equal. The value of the classification score at this point
best separates the relevant and non-relevant classes with respect to the relative numbers
of documents and is, thus, used as the reject thresholdθnon .

Having determined the threshold parameters for the reject-criterion, we can evaluate a
quality indicator based on the virtual rejects on each batch of documents, i.e. based on the
fraction of classification decisions which should be rejected due to uncertainty. Note that
this is similar to monitoring the fraction of non-conformities in a manufacturing process,
seeing a document whose classification should be rejected as non-conforming with some
specified standards.46 For a set ofn documents, the reject characteristicνreject is evaluated
as the fraction of those documents which should be rejected, yielding

νreject =
1

n

n∑
i=1

%(di) (6.15)

With regard to the change detection process, we can evaluate the target valueν̄reject as
weighted mean from earlier batches as described above for the sample error rate and the
expected error rate. Since the classification of a document should be either rejected or
accepted, we assume a binomial distribution of the reject indicator. Hence, the standard
deviation for the current batch of sizent is estimated by

sνreject
=

√
ν̄reject (1− ν̄reject)

nt
(6.16)

With the estimates̄ν andsνreject
for the target value and standard deviation for the reject

indicator, the action and warning limits of the control charts can be drawn as described
above. The reflections pertaining to the initialization phase of the monitoring process for
the sample error also apply for the reject indicator.

44For the extreme case, withn training documents, performing leave-one-out cross-validation is the same
asn-fold cross-validation. If leave-one-out cross-validation is computationally not feasible,p-fold cross-
validation withp� n is preferred.

45For the evaluation ofθrel , we would proceed similarly.
46See Montgomery (1997), pp. 251–275, for more details on this type of control chart.
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To sum up, the reject indicator monitors the fraction of classification decisions which
should be rejected due to uncertainty. Therefore, it permits monitoring of the filtering
process without user feedback. Unlike the expected performance measures discussed
above, note that this indicator requires that the reject thresholds be determined empirically
for each situation. The reason for this is that the thresholds depend on the document
stream and the classifier applied. As a consequence, we see that the ability to detect
changes largely depends on the choice of the classifier: classifiers with poor estimates
of the posterior class probabilities given a document, such as the naı̈ve Bayes classifier,
may yield poor change recognition ability. In contrast, similarity-based classifiers like
the single-prototype classifier are more suitable as their response realistically reflects the
resemblance of new documents to the predefined classes.

6.4 Adapting to Changes

An information filtering system must be adapted to concept changes in order to maintain
classification performance. Once changes have been detected, there are basically two
methodologies for adapting a classifier used to filter documents: the existing classifier
can be updated on the basis of some recent examples, or a new classifier can be learned
from scratch based solely on a currently representative set of training examples.

Note that, irrespective of the methodology chosen, we assume that the classifier can only
be adapted at discrete time points, namely between two batches of documents. Hence, the
classifier remains unchanged while processing the documents of any given batch.

6.4.1 Updating an Existing Classifier

This methodology brings up the question of how to combine the knowledge inherent to
the existing classifier with new training examples so as to yield a more effective classifier.
Often, this is done byincremental learning algorithms. Note, though, that the design
goal in incremental learning is typically to produce a classifier which does not depend
on the sequence in which the training examples are presented to the learning algorithm.47

For our problem, however, the design goal is different: the chronological order of the
training documents should have an effect on the result of a learning algorithm because the
sequence in which training documents become available may reveal essential information
about their relevance and validity. Nevertheless, principles from incremental learning
approaches might be adopted so as to cope with a changing environment.

Approaches to updating a classifier crucially depend on the learning algorithm used to
produce that classifier, i.e. they are classifier-dependent. When using nearest-neighbor
learning approaches, for example, updating is as simple as adding new training exam-
ples and possibly deleting some out-dated examples from the training set. In this case,
updating should rather be viewed as learning a new classifier from scratch because the
focus is on providing a more representative training set, which is not trivial, as we will

47See Utgoff (1989) or Utgoff (1994).
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see below. Updating those approaches which simply aggregate class-specific information
into prototypes for each class, such as the naı̈ve Bayes classifier and the single-prototype
classifier, is also straightforward: the class prototypes can be updated incrementally by
adding information about new documents whenever they become available. Also, old
examples may be removed simply by subtracting information pertaining to the respec-
tive documents. For other classifiers, by contrast, updating can be more difficult a task.
For example, consider a support vector machine, which tries to find a decision surface
with maximal margin between the two classes to be separated.48 Changes in the class
structure expressed through new training examples may require a decision surface which
differs drastically from the one learned previously. So, depending on the extent of change,
learning a classifier from scratch may be easier than updating an existing classifier.

Also, note that changes in the document stream may necessitate updating not only a classi-
fier but also the document representation. If changes in the document preprocessing phase
are required so as to better cope with the changing environment, the classifier learned
based on the out-dated document representation may no longer be valid. In this case,
learning a new classifier rather than updating an existing classifier might be preferable.
For the sake of simplicity and classifier-independence, we focus on learning a new clas-
sifier from scratch as discussed in the following. Yet, note that updating approaches may
provide more ground for further minimization of user effort and should, thus, be taken
into account in future research.

6.4.2 Learning from Scratch

This methodology avoids the problems related to updating an existing classifier and the
document representation by running through the entire learning process from scratch.
Hence, the difficulty is shifted from processing updating strategies to providing a truly
representative set of training examples each time a classifier is to be adapted to changes.

Provision of a representative set of training examples is certainly not trivial. As introduced
in Section 6.2, many machine learning approaches try to solve this problem either by using
a time window or by weighting training examples according to their age or usefulness with
respect to the classification task and removing out-dated examples. Most approaches,
theoretically or heuristically motivated, assume that the true class labels are available for
all new examples once they have been classified. Clearly, we cannot assume that we have
obtained the true class labels for documents which have been withheld from users. Hence,
most approaches are not practical for the filtering task.

A simple approach, which is often very effective in practice, is to assume that the exam-
ples of the most recent batch are representative of the current situation. Then, it suffices
to use the current batch as the training set based on which the new classifier is learned.
When learning a new classifier so as to adapt to changes, we use the current batch of doc-
uments as training examples and require that the user provide true class labels for these
documents. At this point, we assume that only plain supervised learning algorithms are
used. Below, we also consider the application of semi-supervised learning.

48See Section 224 (pp. 66 ff.).
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6.4.3 Further Minimization of User Effort

Trying to detect changes through quality indicators which do not require expensive user
feedback and adapting to the changes recognized may greatly reduce user effort. But still,
each learning phase requires new labeled documents which users must provide. Is there
more potential to minimize user effort in the learning step?

Obviously, at this point, further minimization of user effort concerns the availability of
labeled training data. So, all the approaches to reducing the need for labeled training data
described in Chapter 4 may be considered. Instead of plain supervised learning from the
most recent batch of documents, we may label only a small fraction of the most recent
documents and apply semi-supervised learning. Also, we may consider using further
batches of documents as unlabeled data.

When requesting class labels for the new documents of the most recent batch, the user
need not start from scratch and hand-label all documents. Instead, the current classifier’s
response may be used to support labeling of documents. In particular, we require the
true class labels for at least those documents whose classification decisions are uncertain.
In case the reject indicator is used, for example, all documents which would be rejected
could be hand-labeled. Note that this approach can be regarded asactive learning.49 Also,
document clusteringmay assist users in providing class labels: labels may be required
only for some prototypical documents rather than for each document.

As the main focus of this chapter is on change detection, we confine ourselves to adapting
to changes through learning a new classifier from scratch based on labeled documents
from the most recent batch. Yet, the combination of quality control approaches with
semi-supervised learning will be an issue in Chapter 7.

6.5 Experimental Evaluation

This section provides empirical evidence that applying quality control techniques to detect
changes and adapting a filtering system to changes only if necessary allows maintenance
of classification performance in changing environments with greatly reduced user effort.
We present experimental results on a subset of theTREC dataset and on theReuters
dataset with the single-prototype classifier.50 Further results, also with other text corpora,
are reported in Lanquillon and Renz (1999) and Lanquillon (1999b) and (1999c).

6.5.1 Datasets and Experimental Setups

As previously, we employ the enhanced version of therainbow system for the learning
and classification task of the filtering system. In addition, we use a script to simulate
the batch processing, including the monitoring process, and the adaptation of the filtering

49See Section 289 (pp. 87 ff.). Also see Lewis and Catlett (1994) and McCallum and Nigam (1998b).
50See Appendix B for more details on the text corpora used.
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Figure 6.3: Framework of an adaptive information filtering system based on a standard filtering system and a quality control unit. The
quality control unit tries to detect changes in the document stream and can trigger adaptation of the filtering system.

system.51 Figure 6.3 shows a general framework of an adaptive filtering system based on
a standard filtering system and a quality control unit which controls change detection and
adaptation of the filtering system. The figure also depicts the interactions between the two
components and the environment, i.e. the document stream and the user.

The standard filtering system is the core of the adaptive filtering framework because it
carries out the main task of the system: classifying documents from a stream as either rel-
evant or non-relevant for a particular user. First, the filtering system is learned based on
some initial training data. When it is in operation, its performance is checked by monitor-
ing quality indicators derived from the filtering process as set out in Section 6.3. Relevant
documents are presented immediately to the user. Yet, for the monitoring process, the
document stream is divided into batches of documents according to their chronological
order. For the evaluation of some quality indicators and if changes are suspected, the mon-
itoring process may require feedback from the user in terms of true class labels for some
or all of the documents of the current batch. A representative training set is maintained
through storage of new documents for which the true class labels have been provided by
the user. If the monitor has detected some change, the filtering system is adapted based
on the current training set as described in Section 6.4.

In Chapter 7, we will look at a dataset which may contain some real changes as it has
been gathered over a longer period of time. At this point, however, we prefer simulated
changes over real changes because they permit controlled evaluation of the quality control
unit. So, in particular, we consider two artificial change scenarios: a concept shift on the
subset of theTREC dataset and a concept drift on theReuters dataset.

For the first experiment with concept shift, we use all ten of the categories contained in
the subset of the TREC dataset; see Appendix 429 (p. 194). Categories 001 and 003 are
defined to be relevant, while the remaining 8 categories represent non-relevant topics. The
documents are split randomly into 21 batches. Each batch contains 331 documents with
some of the documents being discarded. The first batch serves as the initial training set

51See Appendix A for more details on the software.
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while the remaining 20 batches represent the temporal development. Concerning relevant
documents, batches 0 to 13 contain only documents of topic 003. Batch 14 comprises
documents of both relevant topics. From batch 15 on, there are only documents of topic
001. Each batch contains the same composition of documents of the non-relevant topics.
So, there are 58 relevant and 273 non-relevant documents of different topics in each batch.

For the second experiment with concept drift, we use a subset of theReuters collection;
see Appendix 428 (p. 193). Two of the largest categories,corporate acquisitions (ACQ)
andearnings (EARN), are used as relevant topics. All other categories are combined to
represent the non-relevant class. The text corpus is split randomly into 41 batches, each
containing about 500 documents. In all batches, a constant number of relevant documents
of topic ACQ is present. Starting from batch 15, a gradually increasing number of doc-
uments from the other relevant topic EARN is added. Documents from the non-relevant
class are distributed among the batches in such a way that the batch sizes are approx-
imately equal. Again, the first batch serves as the initial training set and the batches
remaining represent the temporal development of the document stream.

For document representation, we remove stop words and also words which occur fewer
than five times in the training set. From the remaining set, the2, 000 most informative
words according to the information gain measure are selected as vocabulary. Initial exper-
iments have shown that this is a reasonable choice: as a rule, using more words slightly
increases precision but decreases recall on the datasets provided. As learning algorithm
we choose the single-prototype classifier not only because it is effective and efficient but
also because the similarity scores based on which it assigns class labels to new documents
are very suitable for the change detection task; see Section 415 (p. 162).

In the following, we present results on both change scenarios with five approaches. The
first approach,no adaptation, serves as baseline approach. It is learned only once when
the filtering system is set up and is then left unchanged throughout the whole process.
Second, we pretend to have user feedback for all documents classified and werelearnthe
classifier of the filtering system after each batch, irrespective of whether changes have
occurred or not. Since provision of the class labels is intractable, the relearn approach is
only a theoretical benchmark: ideally, a feasible adaptive approach should be as effective
as the relearn approach but require much less user effort. So, the other three adaptive
approaches are feasible as they try to detect changes and adapt the classifier only if nec-
essary to maintain classification performance. As quality indicators, the three alternative
performance measures described in Section 6.3.2 are used: sample error, expected error,
and virtual rejects. The indicators are monitored with the combined cusum-Shewhart
control chart set out in Section 6.3.1. All results reported are averages over ten trials with
batches created with different random seeds.

6.5.2 Results

Concept Shift on theTREC Dataset. Figure 6.4 shows the performance of the baseline
and the benchmark approaches with no adaptation and with adaptation after each batch,
respectively. At first, the performance of both approaches is acceptable. After the change
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Figure 6.4: Performance of the baseline and benchmark approaches for concept shift on theTREC dataset.

has occurred, however, the performance of the no adaptation approach decreases signifi-
cantly because it cannot identify documents of the new topic as relevant. The performance
of the relearn approach quickly recovers from the performance decrease in batch 14. Note
that, after the change, precision is higher than before because the new relevant topic 001
can be separated more effectively from the non-relevant class than the old relevant topic
003. Also, the results show that it suffices to use the documents of only the most recent
batch as training set. Obviously, coping with changes is simple when new labeled training
data is available to learn a new classifier at regular intervals.

Figure 6.5 shows the performance of the three feasible adaptive approaches. With greatly
reduced user effort, these approaches recover to some extent from the performance de-
crease caused by the concept shift at batch 14. The sample error rate is evaluated based
on a randomly drawn subset of5% of the documents per batch. Adaptation to the concept
shift is almost as effective as that of the relearn approach. When monitoring the expected
error rate, which does not require any user feedback, adaptation to the concept shift is
much slower: concept shift is detected only with a delay of several batches. Also without
user feedback, the reject indicator detects the concept shift very reliably and achieves fast
adaptation, which can compete with the relearn approach. In most trials, monitoring the
reject indicator signals change either when the change actually occurs or with a delay of
one batch, i.e. when the change has reached its full extent.

Table 6.2 compares, for all five approaches, the average performance per trial over all
batches. Also, it shows the average number of adaptations made per trial while processing
the entire set of batches and the average fraction of documents for which user feedback in
terms of class labels has been required in order to detect changes and to adapt to changes.

Approach Recall Precision Error Adapted Feedback

No adaptation 69.21% 56.03% 13.05% 0.0 0%
Relearning after each batch 93.20% 73.40% 7.52% 20.0 100%
Monitoring sample error rate 91.22% 70.91% 8.36% 2.6 17%
Monitoring expected error rate 80.32% 64.94% 10.30% 1.2 6%
Monitoring reject indicator 89.80% 70.85% 8.33% 1.3 6%

Table 6.2: Average results per trial over all batches for the concept shift on theTREC dataset.
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Figure 6.5: Performance of the adaptive approaches for concept shift on theTREC dataset.
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Figure 6.6: Classification scores before and after the concept shift on theTREC dataset. The diagonal line indicates the decision
boundary as obtained from classifying documents according to the maximum classification score. Documents in the bottom left corner
below the reject thresholds should be rejected. Owing to the concept shift, the similarity of new documents to the relevance prototypes
decreases. This causes a significant increase in the number of documents which fall within the reject region.

No adaptation and relearning after each batch are two extremes which require no or com-
plete user feedback, respectively. On average, monitoring the sample error rate signaled
more than twice as many changes per trial than monitoring the expected error rate or the
reject indicator. Although it requires some user feedback, monitoring the sample error rate
causes a large number of false alarms. The larger number of adaptations and the small
amount of user feedback for each batch yield a relatively high fraction of documents for
which feedback is required. As a consequence, monitoring the sample error rate is not as
much of a remedy in reducing user effort as the other two adaptive approaches. Monitor-
ing both the expected error rate and the reject indicator requires only a small amount of
feedback in order to obtain new training documents. For this change scenario, monitoring
the reject indicator yields faster adaptation than monitoring the expected error rate.

To further justify the application of the reject indicator in detecting changes, we now
take a closer look at the functionality of the reject indicator. The results presented so far
have shown that monitoring the reject indicator allows effective change detection without
user feedback. Figure 6.6 shows the classification scores of a batch of documents to the
relevance prototypes before and after the simulated concept shift on theTREC dataset.
For this change scenario, the figure illustrates that the classification scores returned by the
classifier decrease because of the change. Hence, the number of uncertain classification
decisions, which should be rejected, increases. As a result, we see that the assumption
concerning the application of the reject indicator, namely that documents belonging to a
new topic yield lower classification scores, is indeed reasonable.

Figure 6.7 depicts the operating characteristics of the reject indicator when the reject
thresholdθnon for the non-relevant class and the number of features is varied. For the
variation of the non-relevant reject threshold, note that only documents which are classi-
fied as non-relevant with a score below the threshold are considered as rejects; decisions in
favor for the relevant class are not considered. The operating characteristic forθnon shows
that the value determined by Algorithm 6.1 yields an acceptable threshold parameter: the
deviation of the reject indicator from the mean is above the three-sigma action limit of
the Shewhart control chart. Ifθnon is chosen too small, too few uncertain classification
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Figure 6.7: Operating characteristics of the reject indicator after the concept shift on theTREC dataset as occurred when the reject
thresholds (here only the thresholdθnon for the non-relevant class) and the number of features are varied. The vertical axes indicates
the deviation of the reject indicator from the mean in multiples of the standard deviation (sigma). Both mean and standard deviation
are estimated based on values of the reject indicator observed prior to the concept shift. For example, the Shewhart control chart
would signal that a change has occurred when the deviation is above the three-sigma action limit. Algorithm 6.1 yields a value of
aboutθnon = 0.17, which falls within the acceptable range, i.e. the deviation of the reject indicator caused by the concept shift is
above the three-sigma action limit. Using the algorithmically determined thresholds, the ability to detect changes through monitoring
the reject indicator tends to decrease when the number of features increases. Note that the curves are fairly erratic because the data
points are obtained from a single trial only.

decisions are considered as rejects. In contrast, when using too large a value ofθnon ,
the deviation decreases because too many correct classification decisions fall in the reject
region. In both extreme cases, the reject indicator cannot be used to detect changes.52

The ability to detect changes through monitoring the reject indicator depends not only on
the choice of the reject thresholds but also on the number of features used to represent text.
The reason for this is that vocabulary size affects the classification scores returned by the
classifier. In particular, when increasing vocabulary size by adding words in decreasing
order of information-gain values, the chance of finding words in documents which are less
specific for any of the classes increases. So, an increasing number of words which also oc-
cur in any document of a new topic may emerge because of concept changes. As a result,
classification scores assigned to documents of a new topic may differ to a smaller extent
from the classification scores assigned to documents of the known topics, and change de-
tection may be more difficult. As illustrated in Figure 6.7 (right), the deviations of the
reject indicator from the mean tend to decrease as the number of features increases.

Concept Drift on the Reuters Dataset. The performance of the baseline and the
benchmark approaches with no and complete user feedback, respectively, are shown in
Figure 6.8. At first, acceptable recall can be achieved only at relatively low precision.
Both approaches reach a higher level of precision when the second relevant topic EARN
arises. The reason for this behavior is that the fraction of non-relevant documents per
batch decreases and, consequently, there are fewer documents which can be misclassified
as relevant. Again, in the presence of concept change, the relearn approach manages to
maintain an acceptable level of recall, while the performance of the non-adaptive approach
is not acceptable.

52Also see Lanquillon and Renz (1999).
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Figure 6.8: Performance of the baseline and benchmark approaches for concept drift on theReuters dataset.

Figure 6.9 shows the performance of the three adaptive approaches when monitoring the
alternative performance measures. All of them can cope to some extent with the concept
drift beginning at batch 15. For monitoring the sample error, we again draw a5% sample
of documents per batch. Adaptation to the concept drift is fast and effective: performance
is similar to relearning after each batch. Yet, the sample error rate is very volatile and,
thus, causes the filtering system to be adapted frequently. As a consequence, this approach
requires too much feedback to be practical. Increasing the sample size would reduce
volatility. This would, in turn, reduce the need for user feedback concerning adaptation.
With respect to change detection, however, the user feedback required would increase.
When monitoring the expected error or the reject indicator, adaptation to the concept drift
is slower: it takes several batches for the gradual concept change to be recognized. From
a statistical perspective, this is acceptable as the concept change has to reach a specific
level of significance before becoming distinguishable from noise. Similar to the concept
shift scenario, the reject indicator allows faster adaptation than the expected error rate. It
signals more changes and, thus, requires more user feedback for the adaptations triggered.
In particular, monitoring the reject indicator suggests that the filtering system be adapted
twice per trial. Yet, note that only very few of the changes detected are actually false
alarms. Most of them are detected along the period of concept drift and are acceptable.

Table 6.3 compares the average performance over all batches, the average number of adap-
tations, and the average fraction of the documents for which feedback has been required
for all five approaches. With respect to both effectiveness and efficiency, monitoring the
reject indicator outperforms the other approaches for this change scenario.

Approach Recall Precision Error Adapted Feedback

No adaptation 61.98% 55.58% 21.94% 0.0 0%
Relearning after each batch 87.40% 65.96% 13.02% 40.0 100%
Monitoring sample error rate 87.76% 65.38% 13.24% 13.3 37%
Monitoring expected error rate 84.67% 64.30% 13.89% 1.4 4%
Monitoring reject indicator 86.56% 64.50% 13.51% 2.0 5%

Table 6.3: Average results per trial over all batches for the concept drift on theReuters dataset.
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Figure 6.9: Performance of adaptive approaches for concept drift on theReuters dataset.
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6.6 Conclusions

This chapter was geared at providing techniques which allow efficient maintenance of
classification performance in a long-term filtering application. We favor a methodology
which adapts a filtering system to changes only if necessary because it permits compre-
hensive minimization of user effort. This methodology falls into two subtasks: change
detection and appropriate adaptation. We have focused on detecting changes with little
and no user feedback. Below, we summarize the results of the empirical evaluation:

• Both concept shift and drift in a document stream can be detected reliably with
either little or no user feedback when monitoring any of the alternative performance
measures presented: sample error rate, expected error rate, and virtual rejects.

• In particular, detecting changes with the reject indicator yields fast adaptation to
changes with no user feedback for the detection process. Only adaptation of the
classifier requires feedback for the provision of new training documents. In con-
trast, using the sample error rate, which requires some small amount of user feed-
back per batch, also yields fast adaptation but at the expense of some false alarms.
In these cases, the adaptive filtering system is less efficient.

• In order to detect changes without user feedback, it is essential that the documents
of a new topic differ in some recognizable way from the existing topics. As the
non-relevant class of the filtering task is often heterogeneous, documents of a new
relevant topic may have too much resemblance to the non-relevant class to be rec-
ognized as new. Then, changes may remain undetected.

With the aforementioned methodology, we have applied a framework for coping with
dynamic aspects, which are inherent to many real-world classification tasks. We have
carried out some basic experiments. Some relevant issues remain for future research:

• Derive quality indicators based on text properties to permit classifier-independent
change detection which is, for example, insensitive to problems pertaining to class
representations when classes are heterogeneous.

• Evaluate the quality control approach proposed with other classifiers such as the
näıve Bayes classifier or support vector machines.

• Implement more elaborate adaptation strategies such as active learning to further
reduce the need for user feedback. Note that semi-supervised learning with the
single-prototype classifier will be considered in the following chapter.

• Analyze the effect of varying the batch size. Also, study alternatives to batch pro-
cessing, such as evaluating quality indicators on the basis of a moving window of
the most recently classified documents.

In this dissertation, we have confined ourselves on detecting changes in the content of
document streams. Yet, it is also of paramount importance to recognize changes in user
interests. Hence, the ultimate goal should be to cope with both types of changes.



Chapter 7

Empirical Evaluation

The aim of this chapter is two-fold. On the one hand, we evaluate the quality control
approach set out in Chapter 6 on a new text collection, which was not used previously
in this work. In contrast to the experiments with artificial change scenarios conducted so
far, we now consider changes which occur naturally over time. On the other hand, we
integrate the quality control approach with the semi-supervised text learning framework
introduced in Chapter 4. Here, the objective is to further minimize the user effort needed
to adapt a classifier to changes in the environment so as to maintain its classification
performance. The integrated system is also evaluated using the new text collection.

7.1 System Integration

In Chapter 6, we have discussed methodologies for coping with dynamic aspects in classi-
fication tasks. We favor the approach which attempts to detect changes and adapts a clas-
sifier only if necessary to maintain classification performance since solely this approach
permits comprehensive minimization of the user effort required. Experiments with sim-
ulated change scenarios have shown that changes can be detected reliably without user
effort. Yet, adapting to changes still requires the provision of true class labels for some
new documents. So far, we have considered only plain supervised learning approaches
which learn a new classifier from scratch if changes have been detected: a solution which
typically requires many labeled training examples. Hence, as already discussed in Sec-
tion 6.4.3, there is enhanced potential to further reduce the user effort required. At this
point, we consider deploying the semi-supervised learning framework from Chapter 4 to
reduce the need for labeled training data.

As in the previous chapters, we use the enhanced version of therainbow system and the
Perl script, which implements the quality control unit of the adaptive filtering system as
set out in Section 420 (p. 166).1 Our rainbow version includes an implementation of the
semi-supervised learning framework. And, since the quality control unit usesrainbow as
the core classification unit, it has access to the semi-supervised learning framework.

1See Appendix A for more details on this software.
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Using semi-supervised learners within the adaptive filtering system poses a new problem:
the number of labeled training examples may be too small to allow cross-validation for
the estimation of parameters needed to set up the monitoring process.2 To remedy this
problem, we use the same set of labeled documents in all the runs of the cross-validation
process and split only the unlabeled training data into disjunct subsets. Since we do not
know the true class labels of the unlabeled training examples, we evaluate the monitoring
parameters on the basis of the predicted instead of the true class labels.

7.2 Datasets and Experimental Setup

To enable evaluation of the quality control approach with both plain supervised and semi-
supervised learning on data containing changes which occur naturally over time, we have
collected a new dataset over a period of almost one year. This text collection, referred to
as theYahoo!Dailynews dataset, consists of news articles from eight different categories.3

For the filtering task, we consider four of the eight categories as relevant: health, science,
sports, and technology news. The remaining four categories, business, entertainment,
politics, and world news, form the non-relevant class. Admittedly, this division hardly
reflects common user interest. Users are typically not interested in broad categories such
as health or science in their entirety. Rather, they are more likely to be interested in
subtopics from these categories. Note, however, that division of the documents into cate-
gories according to subtopics requires labels which are not naturally available at the news
source. We therefore stick to the division at the broad category level.

Our quality control methodology requires that performance measures be evaluated on
batches of documents. We split the document stream into batches on a weekly basis. As
the dataset was gathered over a period of 51 weeks, we obtained 51 batches, each contain-
ing, on average, nearly 500 documents, which are distributed almost evenly between the
two relevance classes. The first batch of documents serves as the initial training data, from
which all approaches are initially learned. Over the remaining 50 batches, classification
performance is expected to decrease for reason of naturally occurring changes.

When tokenizing the news articles, HTML tags are skipped. For document representation,
we remove stop words and words which occur fewer than five times in the training set or
in less than three training documents. From the remaining set of features, the3, 000 most
informative words according to the information gain measure are selected as vocabulary.
Initial experiments have shown that this yields reasonable results in terms of both recall
and precision for the single-prototype classifier, which is used as the core text learner in
all experiments to be conducted in this chapter.

As in Chapter 6, we evaluate both the baseline approach,no adaptation, which remains
unchanged after the initial learning phase, and the benchmark approach, which relearns
the classifier after each batch. Concerning the adaptive approaches, we only consider the
approaches which monitor the expected error rate and the virtual reject indicator as set out

2See Section 6.3 (pp. 149 ff.).
3See Appendix B for more information on this dataset.
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Figure 7.1: Performance of the baseline and benchmark approaches on theYahoo!Dailynews dataset using the plain single-prototype
classifier. As the results with the baseline approach show, we observe a slight decrease of recall over time, while precision increases
slightly. This behavior is very likely due to concept drift in the stream of news articles. Note that the curves are fairly erratic as the
results are obtained from only a single trial.

in Section 6.3.2 (pp. 153 ff.). Note that we do not evaluate the adaptive approach which
monitors the sample error rate as this approach did not prove to be practical. Whenever
a classifier is learned, we consider training documents from only the most recent batch.
This is certainly the most simple adaptation strategy; see Section 6.4 (pp. 163 ff.).

When using the plain single-prototype classifier learned from all the documents of a batch,
we conduct only one trial per approach. The reason for this is that, in this case, the batches
can be created according to only a single chronological order. For approaches with the
semi-supervised single-prototype classifier, however, the results presented are averages
over ten trials. Here, we run multiple trials to decrease the influence of the random selec-
tion of the labeled training set on the classification performance. We randomly select10%
of the documents per batch as labeled training data. The remaining90% of the documents
per batch are used as unlabeled training data. Also, we run ten trials of theno adaptation
approach with the plain single-prototype classifier with only10% of the documents per
batch as training data to evaluate the extent to which semi-supervised learning enhances
filtering performance when labeled training data is scarce.

7.3 Results

Figure 7.1 shows the performance of the baseline and the benchmark approaches with
the plain supervised single-prototype classifier. The performance of the approach with
no adaptation after the initial learning phase reveals that the concept changes slightly
over time: while precision barely increases, recall gradually decreases by some points.
Specifically, within the first 15 batches, recall falls within a range of about80% to 85%.
Then, it decreases to about72% over the next ten batches. Except for some phases with
higher recall between batches 25 and 35 and towards the end, we observe recall values
which are, on average, about ten points below the initially achieved performance. The
reason for the drop in recall is a slight concept drift which occurred naturally over time.
For example, between May and July 2000, i.e. around batches 17 through 29, there is
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Figure 7.2: Performance of the adaptive approaches for naturally occurring concept change on theYahoo! Dailynews dataset using
the plain single-prototype classifier. Batches at which change are suspected and adaptation is triggered are marked by solid triangles.
In most of the cases in which the adaptive approaches recommended adaptation, we actually observe a decrease in recall. Monitoring
the reject indicator outperforms monitoring the expected error rate in terms of recall, but at the expense of precision.

an exceptionally large number of articles on HIV and AIDS in the health and science
categories. And, the initial training data does not contain any documents related to this
topic. Nonetheless, the concept change in theYahoo! Dailynews dataset is much less
radical than the simulated changes examined in Chapter 6.

As it is relearned after each batch, the benchmark approach enhances recall for most of
the batches. The improvement shows towards the end in particular, whereas between
batches 10 and 27, the relearn approach struggles with learning the two relevance classes:
in a few cases, recall is slightly worse than that of the baseline approach. The precision
of the baseline and the benchmark approaches is very similar. Although the benchmark
approach generally outperforms the baseline approach, the results also show that learning
from only the most recent batch may not always be appropriate. So, additional training
documents from older batches might be worth considering when adapting classifiers.

Figure 7.2 shows the performance of the two adaptive approaches which monitor the
expected error rate and the virtual reject indicator, respectively. The adaptive approaches
both detect changes quite reliably when performances deteriorates. Compared to the base-
line approach, recall is enhanced through adaptation to the concept drift. With respect to
the benchmark approach, the adaptive approaches achieve similar results. Yet, the user
effort required has been reduced substantially. In terms of recall, monitoring the reject
indicator is superior to monitoring the expected error rate: faster adaptation is achieved
with fewer learning phases. Yet, monitoring the reject indicator deteriorates precision by
some points on average when compared to the other three approaches; also see Table 7.1.

Note that the adaptive approach which monitors the expected error rate struggles when
learning the relevance classes between batches 10 and 27. The same problem was ob-
served for the benchmark approach in Figure 7.1. As a consequence, monitoring the
expected error rates cannot be charged with this deficiency. Rather, the poor performance
in this period is due to the simple adaptation strategy: the training documents in the most
recent batch are not always fully representative of the documents to be classified subse-
quently. Unlike the benchmark approach and monitoring the expected error rate, moni-
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Figure 7.3: Performance of the baseline approach for naturally occurring concept change on theYahoo! Dailynews dataset using the
plain supervised single-prototype classifier (SPC) and the semi-supervised single-prototype classifiers (ssSPC) when only10% of the
training data are labeled.

toring the reject indicator does not seem to have this difficulty in classifying documents
in the aforesaid or any other period. As both adaptive approaches are able to recognize
changes, monitoring the reject indicator very likely adapted to changes at batches whose
documents were more representative for the situations at hand.

So far, we have learned classifiers in the quality control framework with plain supervised
learning approaches. In the following, we turn to semi-supervised learning of classifiers.
Figure 7.3 shows the performance of the baseline approach, i.e. no adaptation to changes
after the initial learning phase, in combination with the plain supervised single-prototype
classifier (SPC) and the semi-supervised single-prototype classifier (ssSPC) when only
10% of the documents in a batch are labeled by the user. Note that only ssSPC uses the
remaining90% of the documents per batch as unlabeled training data. As expected, the
performance of the baseline approach with SPC decreases substantially when the number
of labeled training documents is reduced to only10% of the documents per batch; also see
Figure 7.1 and Table 7.1. Semi-supervised learning helps increase performance in terms
of recall, while precision and error rate hardly deteriorate at all. But, we do not reach the
level of performance achieved by SPC with the entire batch as labeled training data.

Figure 7.4 shows the performance of the benchmark approach and the two feasible adap-
tive approaches which monitor the expected error rate and the virtual reject indicator
when using the semi-supervised single-prototype classifier with10% of the documents
per batch being labeled. Relearning after each batch outperforms the baseline approach
in terms of recall most of the time. Similar to the benchmark approach with the plain
supervised single-prototype classifier, the relearn approach struggles with learning the
relevance classes from only the most recent batch, especially around batches 15 through
30. In this period, the documents of a batch are not as representative for the learning sce-
nario as at other times. Obviously, semi-supervised learning cannot remedy this problem.
Precision and error rate of the benchmark approach are similar to those of the baseline
approach. So, recall can be enhanced while only slightly detracting from precision and
accuracy; also see Table 7.1. Only towards the end does the precision of the benchmark
approach drop substantially below baseline precision.
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Figure 7.4: Performance of the benchmark approach and the adaptive approaches for naturally occurring concept change on the
Yahoo! Dailynews dataset using the semi-supervised single-prototype classifier. Note that, here, we cannot mark the points of
adaptation for the adaptive approaches because the curves are drawn from average results over ten trials, and the adaptation in each
particular trial may have taken place at different batches.
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As in the supervised case, monitoring the expected error rate with the semi-supervised
learner is similar to the benchmark approach in that it struggles with learning the classes
around batches 15 through 30. Although it adapts to changes nearly ten times per trial
and enhances recall at the end, the overall performance is hardly superior to the baseline
approach; see Table 7.1. We draw the same conclusion as in the supervised setting: the
documents of some batches are not representative enough to enable reasonably accurate
learning of classifiers. Therefore, finding a more representative training set by incorpo-
rating training examples not only from the most recent batch but also from even older
batches may help enhance classification performance.

With only about two adaptations per trial, the adaptive approach which monitors the vir-
tual reject indicator copes well with concept drift and maintains recall at a fairly constant
level. Yet, maintaining recall is achieved at the expense of lower precision. In most trials,
one of the adaptations takes place at either batch 11 or batch 12. Looking at the per-
formance of the relearn approach reveals that this is the time at which the other approach
begin to struggle. Through effective detection of changes and efficient adaptation fostered
by semi-supervised learning, this approach handles the naturally occurring concept drift
with exceptionally little user feedback; see Table 7.1.

Table 7.1 summarizes the results of all quality control methodologies—no adaptation,
relearning, and the adaptive approaches which monitor the expected error rate and the vir-
tual reject indicator—with both the supervised and the semi-supervised single-prototype
classifiers as core text learner. In addition to the common performance measures, the
table shows the fraction of training documents per batch for which true class labels are
required, the number of adaptations triggered after the initial learning phase, and the total
amount of user feedback necessary to realize each approach depending on the fraction of
labeled training documents and the number of adaptations performed. As they are trained
with much more labeled data, the first four supervised approaches outperform the other
approaches. Semi-supervised learning helps enhance classification performance when
labeled data is scarce. In both cases, the feasible adaptive approaches enable us to cope
with the naturally occurring concept drift through a limited number of adaptations.

The performance curves which illustrate the approaches with only10% labeled training
documents are fairly deceptive. That is to say, the performance achieved varies greatly
around the average values depicted. For example, average recall per trial of the baseline

Approach Learner Labeled Recall Precision Error Adapted Feedback

No adaptation SPC 100% 77.83% 93.60% 12.80% 0.0 0.0%
Relearning SPC 100% 84.48% 94.09% 9.72% 50.0 100.0%
Expected error rate SPC 100% 82.33% 94.64% 10.40% 9.0 18.0%
Reject indicator SPC 100% 84.87% 89.99% 11.45% 5.0 10.0%
No adaptation SPC 10% 60.47% 89.17% 22.70% 0.0 0.0%
No adaptation ssSPC 10% 67.49% 88.95% 20.61% 0.0 0.0%
Relearning ssSPC 10% 71.62% 86.86% 19.51% 50.0 10.0%
Expected error rate ssSPC 10% 68.97% 88.67% 19.75% 9.9 2.0%
Reject indicator ssSPC 10% 70.33% 85.87% 20.63% 2.1 0.4%

Table 7.1: Average results over all batches on theYahoo! Dailynews dataset for all approaches.
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approach may lie more than20% below or above the mean. The reason for this is the
randomly drawn training set, which is not large enough to always provide a sufficient
number of examples for all the categories contained in the relevance classes. In partic-
ular, a10% training sample contains nearly 50 documents. So, on average, each of the
eight categories is represented by about six documents. Since these documents are drawn
randomly, there may very well be training sets which contain hardly any documents of
a specific category. Depending on whether such a category is relevant or non-relevant,
either recall or precision may be low. Yet, if each category is sufficiently represented by
training examples, recall and precision may both reach reasonably high levels.

7.4 Conclusions

In the following, we summarize the results of the empirical evaluation with both the plain
supervised and the semi-supervised single-prototype classifiers on theYahoo! Dailynews
dataset, which contains naturally occurring concept drift.

Reducing training set size so that hand-labeling the training documents is practical causes
classification performance to decrease substantially. Clearly, there is always a trade-off
between the performance attainable and the willingness to provide feedback in terms of
class labels. Semi-supervised learning helps narrow the gap between the two extreme
performance levels achieved when only very few or a sufficient number of labeled training
examples—which is often not feasible—are provided.

With both supervised and semi-supervised learning, monitoring the expected error rate
and monitoring the virtual reject indicator enables efficient and fairly reliable detection of
concept changes. On average, monitoring the reject indicator triggers fewer adaptations
and should therefore be preferred.

Through systematic adaptation to changes, the adaptive approaches can cope with concept
drift and enhance classification performance in terms of recall with substantially reduced
user effort. Yet, the gain achieved is much smaller than that of the results with the sim-
ulated change scenarios examined in Chapter 6. The reason for this is that the naturally
occurring concept change shown here is much more subtle than the artificial changes.

The performance curves of the relearn approach and the approach which monitors the
expected error rate illustrate that the most recent batch is not always truly representative
for learning the relevance classes. Hence, an essential issue for future research is to study
more elaborate adaptation strategies which learn from training documents taken not only
from the most recent batch but also from even older batches.

The results obtained with the semi-supervised learners show that performance varies
greatly depending on the random selection of the training set. Although the average
performance over several trials may be acceptable, it may not be so for any particular
trial. And, when actually employing semi-supervised learners in practice, we only have
a single trial. So, to ensure provision of a representative set of labeled training docu-
ments which would guarantee a higher level of classification performance, the training
documents should be selected with care instead of being drawn randomly.



Chapter 8

Conclusions

In this chapter, we briefly summarize the main contributions of this dissertation to the
areas of text classification and information filtering. Also, we discuss some of the open
issues and possible future developments of our work in particular and of information
filtering as a whole.

8.1 Contributions

In this work, we have viewed information filtering as a binary text classification problem,
which is typically solved by means of supervised learning algorithms. We have identified
the following three assumptions, which are often violated in real-world applications:

1. Constructing accurate classifiers through supervised learning algorithms typically
requires a large number of labeled training examples, whose manual provision may
easily become prohibitive.

2. Some of the most frequently applied text learning algorithms require that classes
be homogeneous, so that each class can be represented by a single entity. Yet, in
reality, the two classes of the filtering task tend to be heterogeneous.

3. Predicting the class labels of new examples through classifiers learned from some
given training data assumes that the data sources do not change over time. In a
long-term application, however, document sources are prone to change.

In the course of this dissertation, we evaluated the extent to which violations of these
assumptions affect classification performance. In addition, we provided some solutions
to remedy the problems observed.

With respect to the application goal of this dissertation set out in Chapter 1, compared
to standard approaches, the techniques proposed enable both construction of reasonably
accurate filtering systems and maintenance of classification performance in a long-term
application at substantially reduced user effort.
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Semi-Supervised Learning

Chapter 4 was dedicated to reducing the need for labeled training examples in supervised
learning. Providing a sufficient amount of labeled training data for text learning problems
is often prohibitive since users have to read and hand-label many documents: a tedious and
time-consuming task. Having surveyed methodologies for reducing the amount of labeled
training data needed to accurately learn text classifiers, we proposed a general framework
for semi-supervised learning from both labeled and unlabeled training data. In contrast
to labeled documents, unlabeled documents are often inexpensive and readily available
in large quantities. Nigamet al. (2000) have previously studied semi-supervised learning
with the näıve Bayes classifier. Our work generalizes this approach so that it can be used
in combination with any learning algorithm. Empirical evaluations with three real-world
text collections showed that, by additionally using unlabeled data, some semi-supervised
learners require less labeled training data than their supervised variants to achieve the
same level of classification performance. The semi-supervised framework proved to be
especially suitable for simple averaging approaches like the single-prototype classifier and
the näıve Bayes approach. Specifically, the semi-supervised single-prototype classifier
outperformed the semi-supervised naı̈ve Bayes classifier in most cases. Semi-supervised
learning with support vector machines was only successful when performance of the plain
support vector machine learned initially from only the labeled data was reasonably high.
Simple instance-storing approaches like nearest-neighbor rules did not benefit from the
semi-supervised learning framework because they do not generalize beyond the training
data during the learning phase.

Learning Heterogeneous Classes

In Chapter 5, we shed some light on the learnability of heterogeneous classes by means
of simple instance-averaging approaches. As they represent each class through a single
entity, these approaches require that the classes to be learned be homogeneous. Certainly,
homogeneity of classes is a matter of the granularity at which they are defined. In infor-
mation filtering, we deal with extremely coarse-grained relevance classes: documents a
user either likes or dislikes. Hence, the classes to be learned tend to be heterogeneous.
But, how do instance-averaging approaches perform when the homogeneity assumption is
violated? Empirical results on two text collections showed that, for common text learning
tasks, the simple text learners considered may accurately learn heterogeneous classes. As
a rule, classification performance decreased only slightly compared to that of more elab-
orate approaches, which exploit additional knowledge about the homogeneous subclass
structure. This finding was confirmed in the information filtering experiment conducted
in Chapter 7. Consequently, violations of the heterogeneity assumption for problems
in high-dimensional feature space need not be as severe as examples in low-dimensional
feature space suggest. And, using simple instance-averaging approaches to learn text clas-
sifiers should be considered even for complex learning tasks with heterogeneous classes.
But, we can enhance classification performance through approaches which automatically
uncover homogeneous subclasses in a heterogeneous class structure and which utilize the
subclasses discovered in order to learn more effective classifiers.
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Quality Control in Information Filtering

Chapter 6 dealt with dynamic aspects in the long-term application of information filtering
systems. We proposed techniques which enable efficient maintenance of classification
performance in the face of a changing environment. In particular, our methodology for
quality control in information filtering attempts to detect changes without expensive user
feedback and adapts a filtering system only if necessary to maintain classification perfor-
mance. Therefore, this approach permits comprehensive minimization of the user effort
required. Experiments with artificial change scenarios showed that concept drift and shift
in a document stream can be detected reliably. And, subsequent learning of a new classi-
fier with new training data enhances performance. In addition, experiments with naturally
occurring changes conducted in Chapter 7 proved that our change detection approach also
works reliably in a more realistic setting.

8.2 Limitations and Future Work

In the course of this dissertation we conducted many experiments so as to empirically
evaluate the approaches proposed. Yet, these approaches call for further experimentation:

• In Chapter 4, we carried out experiments with the semi-supervised learning frame-
work in combination with the single-prototype classifier, the naı̈ve Bayes classifier,
support vector machines, and the nearest-neighbor rule. How do other supervised
learners such as decision tree or rule set induction algorithms perform in the semi-
supervised framework?

• In Chapters 6 and 7 our quality control framework was evaluated only with the
single-prototype classifier. How do other learning algorithms perform in this set-
ting?

Although our work provides some solutions to the problems outlined above, it, in turn,
raises other issues which could be explored in future research:

• In some experiments with the semi-supervised learning framework, we observed
performance degradation from using too large a feature set. Yet, the application of
class-specific feature selection techniques like the information-gain measure, which
is often used in text classification, may not be statistically reliable when labeled
training data is scarce. In addition, they cannot be applied to features which occur
only in the unlabeled data. So, an essential issue is to explore class-independent
feature selection techniques which are common in unsupervised learning.

• Our semi-supervised learning framework describes a certain way of learning from
both labeled and unlabeled data. As there are other approaches to doing this, such
as self-training, an interesting issue is to evaluate whether hybrid approaches can
further enhance classification performance.
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• Although we have seen that heterogeneous classes can be learned with simple
instance-averaging approaches, there is still potential to improve classification per-
formance through more elaborate approaches. In particular, representing each class
by multiple entities rather than a single entity could be studied. Here, clustering
approaches could be applied to uncover homogeneous subclasses in the hetero-
geneous class structure. Knowledge about the subclasses could then be incorpo-
rated into learning a classifier so as to enhance classification performance.

• So far, in the experiments with our quality control framework, we only considered
learning a new classifier from scratch on the basis of a certain set of the most recent
examples. Specifically the results in Chapter 7 showed that this adaptation strategy
does not always suffice to accurately learn a new classifier. So, a vital issue is to
implement more elaborate adaptation strategies which may incorporate a larger set
of examples and may build on existing classifiers.

• In Chapter 7, we employed semi-supervised learning to further reduce the amount
of user feedback needed for an adaptive filtering system. Here, the heterogeneous
class structure caused a problem when the randomly selected labeled training set
was not large enough to ensure that each subclass was represented by at least a
few examples. In these cases, performance substantially deteriorated compared to
plain supervised learning with a sufficiently large training set. Therefore, to ensure
provision of a representative training set, which is necessary to guarantee a high
level of classification performance, the training documents should be selected with
care rather than drawn randomly.

In this dissertation, we have confined ourselves to enhancing some relevant aspects of text
classification to improve information filtering. The following issues for future research
aim at broadening this restricted view of adaptive information filtering:

• Our quality control approach enables detection of changes in the document stream,
i.e. in the environment. Yet, it is also of paramount importance to recognize changes
in user interests. Hence, the ultimate goal should be to create an adaptive filtering
system that can cope with changes both in the environment and in user interests.

• Rather than considering only textual documents and viewing information filtering
as a binary text classification task, we will have to process general multi-media
documents. This necessitates generation of classifiers for different types of infor-
mation, which may be seen as a task of the emerging field ofmulti-media mining.



Appendix A

Software

The experiments conducted in the course of this dissertation were carried out with an
enhanced version of therainbow text classification system. The conventionalrainbow
system and also thelibbow library on which it is based were written by McCallum
(1996). Ourrainbow version includes, among other things, an implementation of the
single-prototype classifier and an interface to theSVMlight implementation of support vec-
tor machines written by Joachims (1999a). Also, we have added implementations of the
semi-supervised learning and self-training frameworks as set out in Chapter 4. The source
code of all components of ourrainbow version is written in C and has been compiled and
tested on Linux and Solaris platforms. In addition to our enhancedrainbow system, we
provide a Perl script which implements the adaptive classification environment for coping
with dynamic aspects in classification tasks as set out in Chapter 6. In the following, we
describe the programs and components in more detail.

Libbow

Thebag-of-words library, libbow, is useful for writing statistical language modeling, text
retrieval, classification, and clustering programs.1 The sources are publicly available from
Andrew McCallums’s home page athttp://www.cs.cmu.edu/ ∼mccallum/bow .
We have implemented our system based onlibbow Version 0.95 dated November 26, 1999.

The library provides many facilities which are essential for implementing text classifica-
tion systems. For example, this includes very efficient data structures and functions for
reading and parsing text files, generatingbag-of-words-style vector representations of the
text files according to several different methods, pruning the vocabulary by word counts
or information gain and removing common English stop words, learning different clas-
sification models from training documents such as aK-NN classifier, atfidf classifier,
or a näıve Bayes classifier with various different options, and classifying both test doc-
uments and new documents with the classifiers generated. A complete overview of the
functionality can be found at thelibbow home page.

1See McCallum (1996).
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Rainbow

Therainbow front-end is a program for performing statistical text classification based on
libbow. Its source code, as well as that of other front-ends for document retrieval and
document clustering, is included in thelibbow distribution. A brief tutorial for using
rainbow is available athttp://www.cs.cmu.edu/ ∼mccallum/bow/rainbow .
Online information on how to use therainbow features with their command-line options
can be obtained by invokingrainbow with the--help option.

As a rule, usingrainbow to perform text classification tasks is a two-step process: first
a set of documents is read and written to disk as a compact model containing document
statistics and, second, this model is used to output diagnostics of the documents read or to
perform text classification of test or new documents.Rainbow provides the entirelibbow
functionality relevant for text classification through command-line options. To evaluate
therainbow output, thelibbow package provides some Perl scripts for access of different
classification performance measures.

SVM–Light

SVMlight is an implementation of support vector machines written by Joachims (1999a),
which is geared for pattern recognition problems. It is publicly available at Thorsten
Joachims’s home page athttp://ais.gmd.de/ ∼thorsten/svm light . We are
usingSVMlight version 3.01 dated October 26, 1999.

With the author’s permission, we have slightly modified the source code ofSVMlight so
that its output conforms with that of therainbow system. Basically, this involved writing
all output to the error stream rather than to the standard output. In addition, we have
changed the main functions of the learning and classification modules to general functions
which can be invoked from within other programs. In particular, the entire functionality
of theSVMlight package is compiled into a library which is linked to ourrainbow system.

Rainbow Enhancements

The rainbow version used for the experiments in this dissertation consists mainly of four
new features: an implementation of the single-prototype classifier, an interface to the
SVMlight package, and implementations of the semi-supervised learning and the self-
training frameworks. Information on how to use these features can be obtained online
by invoking ourrainbow system with the--help option.

Implementation of the Single-Prototype Classifier

We have implemented the single-prototype classifier as set out in Section 197 (pp. 58 ff.),
basically building on existing parts of therainbow source code. In particular, we used the
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document vector weighting options of theK-NN classifier implementation, which follows
the weighting scheme of the Smart information retrieval system as set out in Section 3.2.4
(pp. 44 ff.). The learning and classification facilities of the single-prototype classifier are
based on the implementation of thetfidf classifier.

Interface to SVM-Light

We provide an interface to theSVMlight package which enables us to use its learning and
classification modules from within therainbow system. TheSVMlight section ofrainbow’s
online help lists the command-line options which can be used for learning support vector
machines with theSVMlight package. Please refer to theSVMlight documentation for more
details on using its core learning and classification modules.

In particular, therainbow facilities for indexing documents are used to construct docu-
ment vectors according to the same weighting options employed for the single-prototype
classifier. The interface invokes theSVMlight learning and classification modules with
suitably modified data structures. The return values are, in turn, appropriately modified
so that they can be processed withinrainbow.

Note that ourSVMlight interface enhances the basicSVMlight functionality as it permits
handling classification problems withk > 2 classes through composition intok binary
classification tasks. For the combination of the binary classifiers’ responses, we provide
a module for confidence mapping as set out in Section 3.3.4 (pp. 75 ff.).

Implementation of the Semi-Supervised Learning Framework

We have implemented the semi-supervised learning framework introduced in Chapter 4
based on Kamal Nigam’s implementation of his semi-supervised naı̈ve Bayes algorithm,2

which is included in thelibbow source code as theemclassifier. As a generalized version
of the em classifier, the semi-supervised learning framework is referred to as theemx
classifier within ourrainbow system. The corresponding section ofrainbow’s online help
provides detailed information on how to use the semi-supervised learning framework.

The main difference between theemxclassifier and the basicemclassifier is that, instead
of being hard-wired to the naı̈ve Bayes classifier,emxpermits any classifier registered in
therainbow system to be specified as the base learning algorithm. In addition, it provides
different options for converting the base classifier’s responses for the unlabeled data into
either hard, probabilistic, or possibilistic class labels as set out in Section 312 (p. 96).

Implementation of the Self-Training Framework

For comparison with the semi-supervised learning framework, we have also implemented
the self-training framework as set out in Section 300 (p. 90). Like the semi-supervised

2See Nigamet al. (2000).
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learning framework, the self-training framework allows any other classifier to be used
as base learning algorithm. Unlike semi-supervised learning, however, unlabeled data
is always given hard labels. The number of unlabeled examples which are converted
to labeled training examples at each iteration can be specified through a command-line
option. Refer to the section of theself classifier inrainbow’s online help for further
information on how to use the self-training framework.

ACE: The Adaptive Classification Environment

The adaptive classification environment,ACE, is a Perl script that implements the quality
control unit of the adaptive information filtering framework as set out in Section 420
(p. 166). The goal ofACE is to enable experiments for the evaluation of the quality
control techniques introduced in Chapter 6. Note that, in its current form,ACE is not
designed to be used as a part of an adaptive filtering system for everyday use.

ACE uses the enhancedrainbow system as the underlying core classification unit. As set
out in Section 420 (p. 167), text classification problems can be solved with three differ-
ent methods: no adaptation after the classifier as been learned initially, relearning after
each batch irrespective of whether changes have occurred, and adapting to changes only
if necessary to maintain classification performance. The adaptive approach necessitates
the detection of changes. For this purpose,ACE allows continuous monitoring of perfor-
mance characteristics as described in Section 6.3 (pp. 149 ff.). In addition to the common
performance measures recall, precision, and error rate,ACE permits computation of the
alternative performance measures introduced in Section 6.3.2 (pp. 153 ff.): sample error
rate, expected error rate, and virtual rejects.

For the evaluation of the quality control unit,ACE assumes that batches of documents are
provided rather than accepting documents from a real document stream. A batch is simply
a file which contains references to documents together with their true class label. Note
that the true class labels are used solely for the purpose of evaluation. They are not used
for monitoring purposes within the quality control unit unless theoretical benchmarks are
considered.

Batches can be either constructed manually or generated automatically according to a
configuration script which determines how relevant and non-relevant subclasses are mixed
over time to form sets of relevant and non-relevant documents. As a rule, automatic
batch generation is used to set up experiments with simulated change scenarios as in
Chapter 6, whereas manual batch provision is used to run experiments with naturally
occurring changes as in Chapter 7.
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Text Corpora

In the course of this work, we have used five different text corpora: the20 Newsgroups
dataset, theWebKB dataset, a modification of theReuters dataset, a subset of theTREC
dataset, and theYahoo! Dailynews dataset. The collections contain documents in English.
The first four datasets have been widely used to evaluate approaches to automating text
classification and related tasks. The fifth dataset has been collected especially for this
work over a longer period of time so as to evaluate the extent to which the ability of
coping with dynamic aspects is essential in real-world applications. Note that only the
first three datasets are publicly available. Table B.1 summarizes the main characteristics
of the five text corpora. Below, the datasets are described in more detail.

Name Document Type Classes Documents Unique Words

20 Newsgroups newsgroups articles 20 19, 997 119, 504

WebKB university web pages 7 8, 282 91, 503

Reuters business news articles 3 21, 559 42, 520

TREC business news articles 10 7, 026 76, 971

Yahoo! Dailynews various news articles 8 25, 042 94, 352

Table B.1: Overview of the five text corpora used for experiments in this dissertation.

The 20 Newsgroups Dataset

The 20 Newsgroups dataset, assembled by Ken Lang, is a collection of approximately
20, 000 newsgroup articles divided almost evenly among the 20 different UseNet discus-
sion groups shown in Table B.2. The dataset is publicly available from Jason Rennie’s
home page athttp://www.ai.mit.edu/ ∼jrennie/20 newsgroups.html .
It has been widely used for experiments in text learning applications.1

Except for a small fraction of the document collection, each article belongs to exactly one
newsgroup. So, the task is typically to classify an article into the one of the 20 newsgroups

1The dataset was first cited by Lang (1995).
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comp.graphics alt.atheism
comp.os.ms-windows.misc soc.religion.christian
comp.sys.ibm.pc.hardware talk.religion.misc
comp.sys.mac.hardware
comp.windows.x talk.politics.guns

talk.politics.mideast
sci.crypt talk.politics.misc
sci.electronics
sci.med rec.autos
sci.space rec.motorcycles

rec.sport.baseball
misc.forsale rec.sport.hockey

Table B.2: UseNet newsgroups used as categories in the20 Newsgroups dataset grouped by related topics.

to which it was posted. About4% of the articles were cross-posted among two of the
newsgroups. For the sake of simplicity, we ignore this fact. Note that when processing
the newsgroup articles, the newsgroup headers should be removed because they contain
the correct class labels and would lead to perfect classification of the articles.

The WebKB Dataset

TheWebKB dataset was collected by the text learning group at the Carnegie Mellon Uni-
versity as part of an effort to create a crawler that explores previously unseen computer
science departments and classifies web pages into a knowledge-base ontology.2 It is pub-
licly available athttp://www.cs.cmu.edu/ ∼webkb/ .

The text corpus contains8, 282 web pages gathered from university computer science
departments, including the entirety of four departments, and also an assortment of pages
from other universities. The pages are divided into seven categories:student, faculty,
staff, course, project, department,andother. Table B.3 gives an overview of the seven
categories and the number of documents assigned to them. Typically, the task is to classify
a web page into the appropriate one of the seven categories. Yet, in the experiments
conducted in this dissertation, only the four most populous non-other categories are used:
student, faculty, staff,andcourse.

Category 4 Universities Miscellaneous Total

student 558 1, 083 1, 641
faculty 153 971 1, 124
course 244 686 930
project 86 418 504
staff 46 91 137
department 4 178 182
other 3, 071 693 3, 764
Total 4, 162 4, 120 8, 282

Table B.3: Categories of theWebKB collection of university web pages and the number of documents they contain.

2See Cravenet al. (1998).
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The Reuters Dataset

The well-known and frequently used Reuters-21578 (1997) text categorization test col-
lection, distribution 1.0, is available from David D. Lewis’s professional home page at
http://www.research.att.com/ ∼lewis/reuters21578.html .

The conventional Reuters-21578 collection contains21, 578 news stories. Originally,
there are different sets of categories according to, for example, organizations, people,
places, and topics. Each document is assigned to one or more of these categories. Note
that in many evaluations of text classification applications and related tasks, only some of
the most populous categories are actually learned.3

Although it is recommended that the predefined splits into test and training sets be em-
ployed, we use a modified version of the Reuters-21578 collection—in this work referred
to as theReuters dataset—to evaluate approaches which aim at coping with dynamic as-
pects. In particlar, we consider only two of the predefined categories: acquisitions (ACQ)
and earnings (EARN). Note that 19 documents belong to both of these categories. These
documents are omitted since we focus on text classification tasks where each document is
assigned to exactly one class. All documents which are not assigned to either of the two
aforementioned categories are combined to form a third category, referred to asOTHERS.
Hence, we obtain a text corpus with21, 559 documents, each belonging to exactly one of
the three categories shown in Table B.4.

Category Description Documents

ACQ acquisitions 2, 429
EARN earnings 3, 968
OTHERS all other categories 15, 162

Total 21, 559

Table B.4: Categories of the modifiedReuters dataset. Note that 19 documents assigned to both ACQ and EARN have been omitted.

The TREC Dataset

The TREC dataset used in this dissertation is, in fact, a subset of the data used for different
tasks at theSixth Text REtrieval Conference (TREC-6).4 We have obtained access to the
data by taking part in the TREC-6 filtering track.5

The TREC-6 data volumes consist of several gigabytes of English business news from
various sources such as the Associated Press newswire (AP), the Foreign Broadcast Infor-
mation Service (FBIS), and the Wall Street Journal (WSJ). For the filtering task, articles
have been assigned to none, one, or more of 47 different topics. In the experiments con-
ducted in this dissertation, we consider only articles which have been assigned to exactly
one of the ten topics shown in Table B.5, yielding a text corpus with7, 026 documents.

3For example, see Joachims (1997a).
4See Voorhees and Harman (1998).
5See Bayeret al. (1998).
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Category Description Documents

001 Antitrust Cases Pending 400
003 Joint Ventures 842
004 Debt Rescheduling 355
005 Dumping Charges 483
006 Third World Debt Relief 528
054 Satellite Launch Contracts 343
100 U.S. Protectionist Measures 808
128 Privatization of State Assets 635
142 Impact of Gov. Regulated Grain Farming on Intl. Relations 2, 422
180 Ineffectiveness of U.S. Embargoes/Sanctions 210

Total 7, 026

Table B.5: Categories selected from theTREC dataset for experiments in this dissertation and the number of documents they contain.

The Yahoo! Dailynews Dataset

We have assembled theYahoo! Dailynews dataset from Reuters news articles provided at
http://dailynews.yahoo.com for the news categoriesbusiness, entertainment,
health, politics, science, sports, technology,andworld. The aim of providing this dataset
is to enable evaluation of the extent to which real-world changes in data streams affect the
classification performance of the filtering task.

The articles were gathered daily over a period of 51 weeks from Monday, January 3,
2000, until Sunday, December 24, 2000. On regular working days, there were about
ten articles per category and day. On weekends and holidays, some categories contained
fewer articles. In total, theYahoo! Dailynews dataset contains some more than25, 000
news articles, which are distributed among the eight categories as shown in Table B.6.

Category Description Documents

bs business news 3, 394
hl health news 2, 754
pl politics news 3, 458
re entertainment news 3, 013
sc science news 2, 561
sp sports news 3, 557
tc technology news 2, 747
wl world news 3, 558

Total 25, 042

Table B.6: News categories contained in theYahoo! Dailynews dataset and the number of documents they contain.



Notation

Abbreviations

1-NN One-nearest-neighbor rule
1-NP One-nearest-prototype rule
EM Expectation-Maximization
K-NN K-nearest-neighbor rule
MAP Maximum a posteriori
ML Maximum likelihood
NB Näıve Bayes classifier
SPC Single-prototype classifier
ssNB Semi-supervised naı̈ve Bayes classifier
ssSPC Semi-supervised single-prototype classifier
ssSVM Semi-supervised support vector machine
SVM Support vector machine

Symbols

| · | Cardinality of a set
‖ · ‖ Euclidean length of a vector
aT The transpose of vectora
arg maxx∈X f(x) Returns the value ofx ∈ X that maximizesf(x)
c Class label or, in unsupervised learning, number of clusters
ci Class label for thei-th class
C+
t One-sided upper cumulative sum at timet

C−t One-sided lower cumulative sum at timet
C = {c1, . . . , ck} Set of class labels
d ∈ D Document (in naturally occurring textual form)
d = ρ(d) ∈ R Document vector, representation of documentd
dtf = (tf d(tj))

T Term frequency vector of documentd
dl In semi-supervised learning, labeled document vector
du In semi-supervised learning, unlabeled document vector

195
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D = {d1, . . . ,dn} Set of training document vectors
D? = {d1, . . . , dn} Set of training documents
Dc ⊂ D Subset of training document vectors with class labelc
Dnon , Drel Subsets of non-relevant and relevant training document vectors as

used in the information filtering task
Dl, Du In semi-supervised learning, labeled and unlabeled sets of training

document vectors
D Document space (in naturally occurring textual form)
dist(d1,d2) Euclidean distance between two document vectors
eexpected In quality control, expected error rate
esample In quality control, sample error rate
E[x] The expected value ofx
fψ : D 7→ {0, 1} Information filtering with respect to a given user interestψ
Gain(t) Information gain measure of termt
h : D 7→ C Text classification: mapping from the document space onto the

set of class labels
H : R 7→ C Text classification: mapping from the document representation

space onto the set of class labels; typically refers to the hypothesis
(classifier) constructed by a learning algorithm

H(d) Class label predicted by hypothesis (classifier)H for document
vectord

Hs : R 7→ S Text classification with subclasses (first step)
Hc : S 7→ C Text classification with subclasses (second step)
H Hypothesis space
idf(t) Inverse document frequency of termt
k Number of classes
K Number of documents considered inK-NN classification rule
MI(c, t) Mutual information between classc and termt
m Vocabulary size, i.e. the number of index terms used to represent

documents
m̂ Size of unpruned vocabulary (prior to dimensionality reduction)
n Number of documents in a given set, e.g. the training set
nci Number of documents with class labelci
n(t) Number of documents in which termt appears at least once
n̄(t) Number of documents in which termt does not appear
nci(t) Number of documents with class labelci in which termt appears

at least once
n̄ci(t) Number of documents with class labelci in which termt does not

appear
nl In semi-supervised learning, number of labeled documents
nu In semi-supervised learning, number of unlabeled documents
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nj The j-th nearest neighbor to some query document
non Class label for non-relevant documents
N User interest space
IN The set of natural numbers (including 0)
O(·) Notation for asymptotic complexity analysis
pci Prototype vector for classci
P(x) The probability of eventx
P(x|y) The probability of eventx giveny
P Profile space
q Number of homogeneous subclasses or queries
rel Class label for relevant documents
R Document representation space
IR The set of real numbers
IR+ = {x ∈ IR|x ≥ 0} The set of non-negative real numbers
si Subclass label
S = {s1, . . . , s1} Set of subclass labels
sim(d1,d2) Similarity measure between two document vectors; typically the

cosine similarity is assumed
sign(x) Returns 1 ifx > 0 and -1 otherwise
SNR(t) Signal-to-noise ratio of termt
t ∈ IN Point in time
t ∈ V Index term
tf Number of occurrences of all terms in all documents within a

given text collection
tf (t) Number of occurrences of termt in all documents within a given

text collection; term frequency
tf d(t) Number of occurrences of termt in documentd
tfidf(t) Term frequency/inverse document frequency measure of termt
T : D 7→ C Target function, defined for training documents
T : R 7→ C Target function, defined for training document vectors
uij Membership degree of patternxj or documentdj in clusteri
U = (uij) Membership matrix for all patterns or document vectors
Ul = (ulij) In semi-supervised learning, membership matrix for labeled data
Uu = (uuij) In semi-supervised learning, membership matrix for unlabeled

data
vj Representation for clusterj
V = {v1, . . . ,vc} Set of cluster representations
V = {t1, . . . , tm} Vocabulary, set of index terms used to represent documents
V̂ = {t̂1, . . . , t̂m̂} Unpruned vocabulary (prior to dimensionality reduction)
VC (H) Vapnik-Chervonenkis dimension of hypothesis spaceH
wj Weight of index termtj
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wi,j Weight of index termtj in document vectordi
w(d, t) Weight of index termt in documentd
w Weight vector
x ∈ IRm Pattern (used in a more general context than text classification)
xl In semi-supervised learning, labeled pattern
xu In semi-supervised learning, unlabeled pattern
X = {x1, . . . ,xn} Set of training patterns
X l, Xu In semi-supervised learning, labeled and unlabeled sets of pat-

terns
y = T (d) Target class label of document vectord
ylj In semi-supervised learning, known class label of patternxj or

document vectordj
yuj In semi-supervised learning, predicted class label of patternxj or

document vectordj
y Label vector
α, β, γ, δ Parameters (context-dependant)
δ(·, ·) Identity operator, returns 1 if its two arguments are the same and

0 otherwise
κh : N ×D 7→ [0, 1]l Human comparison function between user interest and document
κs : P ×R 7→ [0, 1]l System comparison function between user interest representation

(profile) and document vector
λ ∈ [0, 1] In semi-supervised learning, weight of unlabeled data
π : N 7→ P Profile acquisition function
ψ ∈ N Information need, user interest
ρ : D 7→ R Document representation function
τh : [0, 1]l 7→ {0, 1} Human decision function, applied to the response ofκh
τs : [0, 1]l 7→ {0, 1} System decision function, applied to the response ofκs
θ Threshold parameter
θc Threshold parameter for classc
θc = P(c) In probabilistic models, prior probability of classc
θ̂c = P(c) Estimate of the prior probability of classc
θt|c = P(t|c) Probability of observing termt given classc
θ̂t|c = P(t|c) Estimate of the probability of observing termt given classc
θ In probabilistic models, parameter vector comprising all required

probabilities
ν In quality control, characteristic value to be monitored
νreject In quality control, reject indicator
χ2(t) Chi-squared statistic of termt
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Mladenìc, D. and Grobelnik, M. (1998). Feature selection for classification based on
text hierarchy. InWorking Notes of Learning from Text and the Web, Conference on
Automated Learning and Discovery (CONALD98).

Mock, K. J. and Vemuri, V. R. (1997). Information filtering via hill climbing, wordnet,
and index patterns.Information Processing & Management 33(5), 633–644.

Montgomery, D. C. (1997).Introduction to Statistical Quality Control(3rd ed.). New
York: Wiley.

Mostafa, J., Mukhopadhyay, S., Lam, W., and Palakal, M. (1997). A multilevel approach
to intelligent information filtering: Model, system, and evaluation.ACM Transac-
tions on Information Systems 15(4), 368–399.

Moukas, A. (1996). Amalthaea: Information discovery and filtering using a multiagent
evolving ecosystem. InProceedings of the Conference on Practical Applications of
Agents and Multiagent Technology, London.
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