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Abstract

The topic of this thesis belongs to the broad field of algal biotechnology. This thesis

presents a holistic approach for the analysis, optimization and design of microalgal

bioprocesses from the systems engineering point of view. This is motivated by the

fact that engineering of biosystems is accompanied by many hurdles in the biological

and experimental field due to limited mechanistic knowledge and their inherent vari-

ability and complexity. The experimental foundations of this work were accelerated

by recent advances in systems biology that led to new accurate and quantitative ex-

perimental techniques for the characterization of biosystems on the cellular level. A

synergistic approach facilitating the combination of experimental and mathematical

methods will provide a systems-level understanding of the microalgal metabolism

under fluctuating environmental conditions and thereby drive the development of

sustainable and economically-feasible phototrophic processes.

This thesis presents a systematic methodological framework for analysis and design

of microalgal bioprocesses illustrated by the example of β-carotene production in

Dunaliella salina in a lab-scale photobioreactor setup. For this purpose, an integrative

approach is used that applies sophisticated experimental methods of systems biol-

ogy to microalgal biosystems to predict how they change over time under varying

input conditions. The approach combines flow cytometry, pulse amplitude modu-

lation (PAM) fluorometry and fourier transform infrared (FTIR) spectroscopy with

classical biochemical methods to enable a coherent view on the metabolism during

the adaptational stress response of Dunaliella salina under carotenogenic conditions.

It is shown that the approach is able to identify critical process parameters such as

cell vitality and can provide implications for the optimal harvesting time point based

on productivity and culture state.

In the next step, the experimental data is used to formulate mathematical models

on various descriptional scales. First, a dynamic-kinetic reactor model is formulated

that covers the effects of light and nutrient availability on biomass growth, internal

nutrient status and pigment fraction in the biomass. A profile likelihood analysis

is performed to ensure the identifiability of the model parameters and to point out

targets for model reduction. The predicitivity of the proposed model is proven by

validation against independently conducted experiments under different cultivation

conditions.

Second, the kinetic parameters obtained from the dynamic-kinetic growth model are

used to formulate a dynamic flux balance analysis (DFBA) model that allows for pre-

dicting intracellular metabolites by incorporating biological knowledge. It is shown

that the DFBA model is predictive and several model-based process strategies in fed-

batch and continuous operation mode with the objective to maximize β-carotene pro-

ductivity are suggested and validated experimentally. In this setup, the model-based

design outperforms the classical batch process significantly in terms of biomass and

β-carotene productivity (+187 % and +36 % for the fed-batch and +1120 % and +849 %

for the continuous process).

Furthermore, the applicability of the interdisciplinary workflow composed of exper-

iments and mathematical modeling is applied to Dunaliella parva to investigate the

interspecies variability between the two close relatives in the Dunaliella genus. The

results of the experimental and computational investigations indicate significant vari-
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ability between Dunaliella salina and Dunaliella parva in terms of morphological dif-

ferences, the biomass and β-carotene productivity as well as differences in photoac-

climation and photoinhibition.

The integrative work flow of systematic experiments and predictive mathematical

models is shown to be an effective approach to better apprehend for complexity of

microalgal metabolism under dynamically changing environmental conditions lead-

ing to a progressive improvement of phototrophic bioprocesses.
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Zusammenfassung

In der vorliegenden Arbeit wird ein hollistischer Ansatz für die Analyse, die Op-

timierung und das Design von mikroalgalen Bioprozessen aus der ingenieurwis-

senschaftlichen Perspektive präsentiert. Diese Vorgehensweise wird durch die Tat-

sache motiviert, dass die Optimierung von Biosystemen durch fehlendes mechanis-

tisches Wissen, die inhärente Variabilität und Komplexität sowie von vielen biol-

ogischen und experimentellen Hürden beeinträchtigt wird. Dank jüngst erzielter

methodischer Fortschritte in der quantitativen experimentellen Systembiologie wer-

den neue Möglichkeiten für die akurate Analyse und Charakterisierung von Biosys-

temen auf der zellulären Ebene eröffnet. Das synergetische Konzept, welches exper-

imentelle und mathematische Methoden kombiniert, führt zu einem tiefgreifenden

Verständnis zellulärer Prozesse auf der Systemebene.

In dieser Arbeit wird die Herangehensweise für die Analyse und das Design von pho-

tosynthetischen Bioprozessen genutzt, welches am Beispiel der β-Carotin-Produktion

in Dunaliella salina in einem Laborphotobioreaktor illustriert wird. Zu diesem Zweck

wird ein systematisch, methodischer Ansatz verwendet, welcher anspruchsvolle ex-

perimentelle Methoden der Systembiologie auf mikroalgale Biosysteme anwendet,

um deren dynmaisches Verhalten unter flukturienden Umweltbedingungen zu un-

tersuchen. Diese Methodik verbindet Durchflusszytometrie, Pulsamplitudenmod-

ulation (PAM) und Fourier-Transform-Infrarotspektrometrie (FTIR-Spektrometrie)

mit klassischen biochemischen Verfahren, die eine kohärente Sicht auf metabolische

Prozesse während der adaptiven Stressantwort von Dunaliella salina unter carotino-

genen Bedingungen ermöglichen. Es wird demonstriert, dass mit Hilfe dieses Ver-

fahrens kritische Prozessparameter wie z.B. Zellvitalität überwacht werden können,

um somit wichtige Indikatoren für die Bestimmung von optimalen Erntezeitpunkten

basierend auf Produktivität und Kulturstatus zu liefern.

Im nächsten Schritt werden die experimentellen Daten genutzt um mathematische

Modelle verschiedener Größenordnungen zu formulieren. Dafür wird zunächst

ein dynamisch-kinetisches Wachstumsmodell präsentiert, welches den Effekt an

veränderlichen Licht- und Nährstoffbedingungen auf das Biomassewachstum, den

intrazellulären Nutrientenstatus und den Pigmentgehalt in der Biomasse beschreibt.

Weiterhin liefert eine Profile-Likelihood-Analyse wichtige Anhaltspunkte über die

Identifizierbarkeit der Modellparameter und zeigt damit auch potentielle Ziele für

Modellreduktion auf. Die Prädiktivität des Modells wird durch unabhängige Exper-

imente mit unterschiedlichen Kultivierungsbedingungen validiert.

Basierend auf den Parameterwerten des dynamisch-kinetischen Modells wird nach-

folgend ein metabolisches Modell für dynamische Flussbilanzanalyse (DFBA) fo-

rumliert, welches durch die Einbindung von biologischem Wissen auch intrazel-

luläre Metabolitkonzentrationen vorhersagen kann. Es wird demonstriert, dass das

DFBA-Modell einen prädiktiven Charakter aufweist und sowohl modellbasierte

Prozessführungsstrategien für den Fed-Batch als auch für den kontinuierlichen Be-

trieb bei maximaler β-Carotin-Produktivität experimentell validiert werden kon-

nten. In der modellbasierten Versuchsanordnung konnte sowohl der Fed-Batch-

Prozess als auch die kontinuierlichen Kultivierungen signifikant höhere Biomasse-

und β-Carotin-Produktivitäten erzielen (+187 % und +36 % für den Fed-Batch sowie

+1120 % und +849 % für die kontinuierliche Kultivierung).
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Desweiteren wird die Anwendbarkeit der interdisziplinären Vorgehensweise von

Experimenten und Modellierung auf die Untersuchung der interspezies-spezifische

Variabilität zwischen Dunaliella salina und der nah verwandeten Art Dunaliella

parva demonstriert. Die Ergebnisse der experimentellen und theoretischen Unter-

suchungen zeigen, dass trotz der nahen Verwandtschaft der Organismen, eine große

interspezies-spezifische Variabilität, vor allem im Bezug auf morphologische Un-

terschiede, Biomasse- und β-Carotin-Produktivität sowie Photoakklimierung und

Photoinhibition auftritt.

Der integrative Ansatz aus systematischen Experimenten und prädiktiven math-

ematischen Modellen wird als effektives Werkzeug genutzt um die Komplexität

metabolischer Prozesse in photosynthetischen Mikroorganismen unter fluktuieren-

den Umweltbedingungen besser zu erfassen, was schließlich zu einer schrittweisen

Verbesserung von phototrophen Bioprozessen führt.
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support for the reactor operation and the optimization of the flow cytometric

staining procedure was provided by Tobias Fries and Markus Janasch during

their Bachelor theses. The FTIR measurements have been optimized by Maria

Hentrich and Isabel Harriehausen during a research project and a Bachelor the-

sis.

• The dynamic-kinetic growth model for Dunaliella salina presented in Chapter 7

is a modification of the equation system published in Fachet et al. (2014). The

simulation and the profile likelihood analysis was conducted as described in

Fachet et al. (2014). However, the equations contain minor modifications and

the experimental data as well as the simulation results differ from the published

version.

• In Chapter 8, the dynamic flux balance model for Dunaliella salina is intro-

duced. The work flow and the majority of the model structure is taken from

Flassig et al. (2016). If applicable, the values for kinetic parameters were set to

the estimates obtained in Chapter 7. As already stated above, the equations

contain minor modifications and the experimental data as well as the simula-

tion results differ from the published version. Support in the implementation

and the simulations was provided by Steffi Gladebeck in her Master thesis.

• In Chapter 9, an interspecies comparison between Dunaliella salina and Dunaliella

parva is presented. The applicability of the interdisciplinary work flow com-

posed of experiments and mathematical modeling as presented in Chapter 6

and 7 is applied to Dunaliella parva by using experimental data already pub-

lished in Fachet et al. (2016) and submitted as Fachet et al. (2017).
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Notation

Greek symbols

γmax Max. intracell. chlorophyll to nitrate ratio g Chl g−1 N

θeff Photon efficiency -

λ Duration of the lag phase d

µ Specific growth rate d−1

µmax Maximal growth rate d−1

µnet Net specific growth rate d−1

ν Wavenumber cm−1

ρChl Chlorophyll density in the reactor g Chl m−3

ρN,ext Extracellular nitrogen density g N m−3

ρX Biomass density on dry weight basis g dw m−3

Φ Description of the lag phase -

ΦPSII,eff Effective quantum yield of PSII -

ΦPSII,max Maximum quantum efficiency of PSII -

ωC Carbon content of biomass g C g−1 dw

ωChl Chlorophyll fraction of the biomass g Chl g−1 dw

ωChl,N Chlorophyll-nitrogen ratio in the biomass g Chl g−1 N

ωN Cell quota for nitrogen g N g−1 dw

ωN,crit Crit. nitrogen cell quota for β-carotene synthesis g N g−1 dw

ωN,max Maximal cell quota for nitrogen g N g−1 dw

ωN,min Minimal cell quota for nitrogen g N g−1 dw

Latin symbols

a∗ Optical cross section of chlorophyll a m2 g−1 Chl

a Absorption coefficient of chlorophyll m2 g−1 Chl

b Absorption coefficient of β-carotene m2 g−1 Car

c Backscattering coefficient of the biomass m−1

E Average photon flux density in the reactor mol photons m−2 d−1

E0 Photon flux density at the reactor surface mol photons m−2 d−1

Eabs Absorbed photon flux mol photons d−1

Ecar,crit Crit. light int. for β-carotene synthesis µmol photons g−1 dw h−1

Esat Saturation light int. for chlorophyll to nitrate ratio µmol photons m−2s−1

Eout Transmitted photon flux density mol photons m−2 d−1



xvi Notation

EX,dw Light intensity per biomass mol photons m−2 d−1 g−1 dw

ETR Relative electron transport rate µmol electrons m−2 s−1

F
′

Light-adapted fluorescence steady-state -

F0 Minimal fluorescence of dark-adapted samples -

F
′

0 Minimal fluorescence of light-adapted samples -

Fm Maximal fluorescence of dark-adapted samples -

F
′

m Maximal fluorescence of light-adapted samples -

Fv Variable fluorescence of dark-adapted samples -

F
′

v Variable fluorescence of light-adapted samples -

k Hill coefficient -

Ks,E Half saturation coeff. for photosynthetic growth mol photons m g−1 dw d−1

Ki,Chl,N Inhibition coeff. for chlorophyll to nitrate ratio µmol photons m−2s−1

Ki,E Light inhibition coeff. for photosynthetic growth mol photons m g−1 dw d−1

Ks,N Halfsaturation coeff. for nitrogen uptake g N m−3

ngam Non-growth associated maintenance mmol g−1 dw h−1

NPQ Non-photochemical quenching -

rcar,E Light stress-induced β-carotene synthesis rate g Car g−1 dw d−1

rcar,N Nutrient stress-induced β-carotene synthesis rate g Car g−1 dw d−1

rN Nitrogen uptake rate g N g−1 dw d−1

rN,max Maximal nitrogen uptake rate g N g−1 dw d−1

rP Photosynthesis rate g C g−1 Chl d−1

rP,max Maximal theoretical photosynthesis rate g C g−1 Chl d−1

rR Respiration rate d −1

sPBR Illuminated reactor surface m2

vcar,E Light stress-induced β-carotene synthesis rate mmol g−1 dw h−1

vcar,N Nutrient stress-induced β-carotene synthesis rate mmol g−1 dw h−1

vNO3,max Max. nitrogen uptake rate g NO3 g−1dw h−1 L−1

vNO3,met,max Max. nitrogen assimilation flux mmol g−1 dw h−1

VPBR Reactor volume m3

YX,E Biomass yield on light energy g dw mol−1 photons

z Thickness of the reactor m
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AU Arbitrary units

BSA Bovine serum albumin

CAM Crassulacean acid metabolism

CCAP Culture Collection of Algae and Protozoa

DAD Diode array detector

DFBA Dynamic flux balance analysis

DMAPP Dimethylallyl pyrophosphate

DRUM Dynamic reduction of unbalanced metabolism

EC Enzyme commission

EFM Elementary flux mode

ETR Electron transport rate

FACS Fluorescence-activated cell sorting

FBA Flux balance analysis

FC Flow cytometry

FCA Flux coupling analysis

FLD Fluorescence detector

FSC Forward scatter

FTIR Fourier transform infrared spectroscopy

FVA Flux variance analysis

GC Gas chromatography

GDS Gene deletion studies

GGPP Geranylgeranyl pyrophosphate

GPP Geranyl pyrophosphate

HL High light

HL-ND High light and nitrogen-depleted

HPLC High performance liquid chromatography

IC Ion chromatography

IPP Isopentyl pyrophosphate

KEGG Kyoto Encyclopedia of Genes and Genomes

LED Light-emitting diode

LL Low light

LL-ND Low light and nitrogen depletion

LL-NL Low light and nitrogen limitation

LP Linear program

MEP Methylerythriol phosphate

NPQ Non-photochemical quenching
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ODE Ordinary differential equation

PAM Pulse amplitude modulation

PAR Photosynthetically active radiation

PBR Photobioreactor

PCA Principle component analysis

PL Profile likelihood

PLS Partial least square

PPP Pentose phosphate pathyway

PSII Photosystem II

PSY Phyotene synthase

RFU Relative fluorescence units

ROS Reactive oxygen species

SSC Side scatter

TAG Triacylglyceride
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Chapter 1

Introduction

1.1 Motivation

Microalgae are a diverse group of phylogenetically unrelated photosynthetic mi-

croorganisms and are among the most important primary producers of organic

matter on the planet. The exact number of algal species remains uncertain, but

estimates vary between 30000 to several million species (Guiry, 2012). The diver-

sity of microalgae results from an adaption to the diverse habitats they are found

in. Microalgae have evolved to tolerate a wide range of environmental conditions

and consequently have proven to be a rich source of genetic and chemical diversity,

comprising among others green algae (Chlorophyta), yellow-green algae (Xantho-

phyta), golden algae (Chrysophyta) and red algae (Rhodophyta) (Andersen, 1992).

Some microalgal species show a remarkable degree of phenotypic plasticity to ex-

tend their tolerance against a wide range of environmental conditions, while other

species specifically adapted to a smaller range (Stengel et al., 2011). Microalgal habi-

tats range from freshwater (e.g.: Chlorella vulgaris (Mallick et al., 2011)) to hypersaline

water (e.g. Dunaliella salina (Oren, 2010)), at negative temperatures (e.g. Chlamy-

domonas nivalis (Morgan-Kiss et al., 2006)), above 70 ○C (e.g.: Synechococcus lividus

(Meeks and Castenho, 1971)), at pH lower than 2 (Dunaliella acidophila (Pick, 1999))

to alkaline conditions above pH 10 (e.g. Arthrospira platensis (Sanchez-Luna et al.,

2007))(Baroukh, 2014).

Currently, a minority of roughly 20 microalgal species has been used for produc-

tion of biomass and high-value products demonstrating a large deficit of knowl-

edge to fully exploit their potential (Barra et al., 2014). They have the ability to syn-

thesize a remarkable amount of bioactive compounds of industrial relevance such

as carotenoids, poly-unsaturated fatty acids, phytosterols, industrial enzymes and

amino acids (Gimpel et al., 2015). In addition, their capacity to grow in saline water

as well as wastewater is particularly interesting, since they do not necessarily com-

pete with agriculture neither for land nor for water.

Although microalgae are a promising feedstocks for light driven biosynthesis of com-

modities and high-value products, advances in reactor optimization and strain en-

gineering are needed to achieve profitability on industrial scale. Techno-economic

analyzes have revealed that the three main influencing factors that significantly con-

tribute to the overall production costs of microalgal metabolites are i) product con-
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tent, ii) growth rate and iii) biomass density (Davis et al., 2011). These biological

outputs are determined by a number of constraints including light intensity, nutrient

supply and the unique metabolism of individual species. Improvements in all these

areas are major drivers to create economically feasible and sustainable bioprocesses

with photosynthetic microorganisms.

In order to identify the crucial factors influencing the profitability of microalgal pro-

cesses, accurate measurement of a wide range of physiological parameters in depen-

dence of the present input conditions (e.g. light and nutrients) are required. This goal

will be supported by the recent advances in spectroscopic and fluorescent measure-

ment techniques which aim at characterizing (among others) biomass density, con-

tent and composition of high value products and metabolic indicators for the cellular

stress response. Although the potential productivities of phototrophic processes seem

promising, many optimization steps are still necessary to achieve sustainable pro-

duction and compatible prices at commercial scale (Hannon et al., 2010; Gangl et al.,

2015). Mathematical modeling is beneficial for understanding the nonlinear behav-

ior and organization of complex biosystems. Besides, mathematical models support

rational process design and optimization due to their ability to predict unknown or

non-measurable parameters, productivities in terms of biomass and high-value prod-

ucts and their influence on system performance and profitability.

1.2 Aim of this work

The understanding of the complex interaction between microalgal metabolism in the

course of dynamically changing environmental conditions is an important prereq-

uisite for the knowledge-based improvement of phototrophic bioprocesses. In the

present thesis, this task is addressed by a new interdisciplinary approach for the sys-

tematic analysis and optimization of microalgal processes. The approach combines

detailed experimental investigations with mathematical modeling on different levels

of detail. As a model organism to demonstrate the applicability of the aforemen-

tioned approach, the halotolerant green microalga and commercial β-carotene pro-

ducer D. salina is considered.

Within this approach advanced spectroscopic and fluorometric methods were applied

together with fluorescent and colorimetric indicators to systematically track the mor-

phological and metabolic changes of Dunaliella during carotenogenesis under various

environmental conditions and in a dynamic manner. These properties were linked

with biomass characteristics and economically relevant parameters for biomass and

high-value products such as final densities, yields on absorbed light and volumetric

productivities. Furthermore, mathematical modeling on different descriptional lev-

els (macroscopic and metabolic models) were formulated and their predictions were

validated against experimental data. Together, the combination of these approaches

demonstrated that predictive mathematical models are powerful tools to improve

bioprocesses significantly and provide new production strategies for photosynthetic

organisms. The applicability of the phototrophic process characterization and design

methodology has been demonstrated for carotenoid production in D. salina but has a

large potential for application to uncharacterized algal strains and their products of
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interest. The experimental and theoretical methods applied in this work are schemat-

ically illustrated in Fig. 1.1.

Figure 1.1.: Schematic outline of the thesis. The lower panel depicts the cultivations in flat-
plate reactors as a basis to carry out experiments under reproducible conditions. The reac-
tors were operated in different operation modes such as batch, fed-batch and continuous
mode. The biomass obtained in this cultivations is subjected to various advanced experi-
mental techniques for monitoring the abiotic stress response on different cellular levels (as
illustrated in the middle panel). The experimental data obtained in the previous two levels
were used to find a mathematical representation of the system on different descriptional
scales.

The thesis consists of ten Chapters. Chapter 2 introduces the biological foundations

of pigment accumulation in photosynthetic organisms. Starting with the biosynthesis

of carotenoids in green microalgae, the physiological role of photosynthetic pigments

such as carotenoids and chlorophylls in photoprotection and energy dissipation is

introduced. Moreover, the mechanisms of photosynthetic pigment acclimation under

fluctuating light conditions are explained. With the biological fundamentals in mind,

the most important producers of primary and secondary carotenoids are presented.

The last part of Chapter 2 focuses on the morphology and physiology of D. salina and

its unique ability to accumulate large amounts of β-carotene.

Chapter 3 presents an overview of the spectroscopic and fluorescent techniques to

characterize microalgal metabolism during carotenogenesis. Of course, this is done

in view of later applications. Therefore, the fundamentals and measuring principles

of flow cytometry, pulse amplitude modulation (PAM) fluorometry and fourier trans-

form infrared (FTIR) spectroscopy are introduced and their benefit for monitoring of

phototrophic processes are discussed.

In Chapter 4, existing modeling frameworks for microorganisms are introduced. Due

to the scope of this thesis, a special focus is laid on stoichiometric network models and

dynamic-kinetic models based on ordinary differential equations. The mathematical

representation of the system are shown as well as an extensive overview of recent

contributions in this field especially with regard to microalgae is given. In the last

part of the chapter, the concept of dynamic flux balance analysis is introduced, which

combines the approaches of stoichiometric and dynamic-kinetic modeling.
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The experimental methods used to analyze the microalgal metabolism are presented

in Chapter 5.

Chapter 6 presents a systematic experimental investigation of the adaptational stress

response of D. salina under carotenogenic conditions in batch cultivations. In partic-

ular, the influence of light and nutrients on growth, biomass composition and phys-

iological parameters such as cell granularity is studied in a dynamic manner. The

photosynthetic performance under abiotic stress is derived from maximum and effec-

tive quantum yield as well as non-photochemical quenching analyzed by PAM flu-

orometry. In addition, the applicability of FTIR spectroscopy for biomacromolecule

composition analysis in D. salina is demonstrated.

In Chapter 7, a dynamic-kinetic reactor model is introduced which was formulated

based on biological knowledge and the experimental data presented in Chapter 6.

The application of mathematical modeling enables the determination of unknown

kinetic parameters from the experimental data. Special attention was devoted to

the analysis of parameter identifiability which is studied using the profile likelihood

method. The proposed model is validated against independently conducted experi-

ments under different cultivation conditions and verifiable predictions are given.

Chapter 8 illustrates the application of a metabolic network reconstruction to pre-

dict biomass composition using dynamic flux balance analysis (DFBA). The core idea

of the approach, its assumptions and its justification are discussed. In addition, a

metabolic network reconstruction of the central carbon metabolism of D. salina is pre-

sented based on genomic data. The accuracy of the model predictions is validated

through independent experimental data followed by a subsequent model-based fed-

batch optimization where the biomass and β-carotene density were increased by fac-

tors of about 2.5 and 2.1, respectively. In the last part of Chapter 8, two model-based

continuous operation strategies with a fixed dilution rate D were predicted and ex-

perimentally validated. The continuous operation mode, where biomass and pig-

ment content are in steady-state may lead to a major improvement in volumetric

productivity due to the avoidance of the unproductive lag- and early exponential

phase. The desired operation mode, where the dilution rate D equals the growth rate

µ leads to a constant biomass and β-carotene density in steady-state and cannot be

calculated on an empirical basis due to the complex interplay of light and nutrient

stress on the growth rate µ. The experimental verification of the model-based contin-

uous operation again led to a significantly improved biomass productivity by 3.3-fold

and pigment productivity by 6-fold compared to the already optimized fed-batch op-

eration.

Chapter 9 aims at a comparative evaluation between D. salina and a closely related or-

ganisms in the Dunaliella genus, namely Dunaliella parva. The interdisciplinary work

flow composed of experiments and mathematical modeling as presented in Chapter

6 and 7 is applied to D. parva to demonstrate its applicability to other species in the

Dunaliella genus. A special emphasis is placed on the morphological differences, the

productivity in terms of biomass and β-carotene, the adaptational stress response as

well as differences in photoacclimation and photoinhibition.

Finally, the thesis is summarized and concluded in Chapter 10. Furthermore, an out-

look is given and future perspectives are discussed.



Chapter 2

Phototrophic pigment production

This chapter provides an overview about the physiological role of carotenoid pig-

ments in light harvesting and photoprotection. Beside, the process of photoaccli-

mation and their physiological relevance for optimal photosynthetic growth is ex-

plained. Furthermore, an overview about the most important commercial sources for

microalgal carotenoids is given. This chapter is concluded by introducing the alga

D. salina as a producer for β-carotene.

2.1 Carotenoid biosynthesis in photosynthetic
organisms

Carotenoids are natural pigments belonging to the group of lipophilic isoprenoids.

Most of the 600 carotenoid derivatives consist of 40 carbon atoms composed from

eight isoprene units. Carotenoids can be divided into two groups: carotenes and

xanthophylls. Carotenes (such as α-carotene and β-carotene) are pure hydrocarbons,

whereas xanthophylls (such as lutein and zeaxanthin) contain additional oxygen

atoms either as hydroxyl groups and/or by homolytic hydrogen substitution of

carotenes or xanthophylls leading to the formation of epoxides (e.g. violaxanthin).

Since carotenoid pigments primarily absorb light in the violet, blue and green wave-

length region (400-550 nm,) their color ranges from yellow to red. Beside higher

plants, some bacteria and funghi, all microalgae are capable of carotenoid biosyn-

thesis. In general, carotenoid synthesis in photosynthetic organisms occur either

via the cytosolic mevalonate pathway or the plastidial methylerythriol phosphate

(MEP) pathway. However, there is no evidence that cytosolic mevalonate pathway is

present in green microalgae (Lichtenthaler, 1999; Schwender et al., 2001).

The metabolites isopentyl pyrophosphate (IPP) and dimethylallyl pyrophosphate

(DMAPP) are precursors for carotenoid synthesis in photosynthetic organisms.

Initially, one molecule IPP and DMAPP are linked through a condensation reac-

tion to form geranyl pyrophosphate (GPP). A further condensation reaction of two

molecules IPP to GPP catalyzed by the enzyme geranylgeranyl pyrophosphate syn-

thase leads to the formation of geranylgeranyl pyrophosphate (GGPP). GGPP is the

building block for the synthesis of diterpenes (C20). Subsequently, the formation of
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phytoene catalyzed by the enzyme phyotene synthase (PSY) occurs through conden-

sation of two GGPP molecules. Phytoene represents the precursor for synthesis of

tetraterpenes (C40) and is the first lipophilic compound in the carotenoid pathway. A

sequence of desaturation reactions of phytoene results in the formation of ζ-carotene

and lycopene. Subsequently, the carotenoid pathway splits into two branches. One

branch leads to the formation of the yellow colored xanthophyll pigment lutein.

The second branch leads to the formation of the orange-colored β-carotene. The

enzymatic reaction converting β-carotene into zeaxanthin is catalyzed by β-carotene

hydroxylase and is part of the violaxanthin cycle.

The violaxanthin cycle is a photoprotective mechanism that allows a reversible switch

of the antenna of photosystem II (PSII) depending on the light conditions present.

Under light limiting conditions PSII is in its light harvesting state. Consequently, vi-

olaxanthin is converted in a two-step de-epoxidation reaction to zeaxanthin with an-

theraxanthin being an intermediate (Jahns et al., 2009). Under over-saturating light

conditions, PSII switches into a dissipative state where a reverse epoxidation reac-

tion from violaxanthin to zeaxanthin is taking place. The two enzymes catalyzing

this cycle are located on different sites of the thylakoid membrane. Violaxantin de-

epoxidase is present in the thylakoid lumen whereas zeaxanthin epoxidase is located

in the chloroplast stroma. Furthermore, neoxanthin can be formed by an isomeriza-

tion reaction from its precursor violaxanthin. The above mentioned pathways for

carotenoid synthesis in microalgae have been studied intensively and a schematic

representation is given in Fig. 2.1.

Phytoene

Geranylgeranyl pyrophosphate

Phytoene synthase

Phytoene desaturase

ζ-carotene

ζ-Carotene desaturase

Lycopene

β-carotene

Lycopene β-cyclase

α-carotene

β-carotene hydroxylase

Violaxanthin de-epoxidase

Neoxanthin synthase

Zeaxanthin epoxidase

Zeaxanthin

Violaxanthin

Neoxanthin

Lutein

Lycopene β- and ε-cyclase

β- and ε-carotene hydroxylase

Figure 2.1.: Scheme of carotenoid biosynthesis pathway in microalgae. Direct (one-step)
enzymatic reactions are depicted by bold arrows, whereas multi-step reactions with inter-
mediate metabolites are depicted by dashed arrows. Adapted from Lamers et al. (2008)
and Jin and Polle (2009).
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The physiological functions of carotenoids are diverse and comprise accessory pig-

ments for light harvesting, mediators of photosynthetic energy transfer and non-

photochemical quenching as well as in the protection against photooxidative dam-

age due to scavenging of reactive oxygen species (ROS) (reviewed in Mulders et al.

(2014)). Due to their numerous conjugated double bonds, carotenoids are able to

quench the triplet chlorophyll (3Chl∗) and singlet oxygen (1O2
∗) in the reaction center

of photosystem II and in the antenna system (Krieger-Liszkay, 2005). The photopro-

tective mechanism of action of carotenoids is illustrated in Fig. 2.2.

Car3O2
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*Car3

1O2
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Chl*3

1

ROS

Cell damage

Heat

Heat
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*Car3
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Reverse
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Singlet-
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Figure 2.2.: Schematic overview of quenching mechanisms of carotenoid pigments. Ex-

cited states such as singlet oxygen (1O2
∗), singlet chlorophyll (1Chl∗) and triplet chloro-

phyll (3Chl∗) are marked in blue. The specific mechanisms of action are colored in gray,
whereas the cellular response and dissipation reactions are colored in purple. Adapted
from Varela et al. (2015).

Carotenoid pigments can be divided into two subgroups, primary and secondary

pigments, depending on their physiological role. Primary pigments are functionally

and structurally related to the photosystem where they facilitate light harvesting as

well as photoprotective roles due to quenching and scavenging mechanisms (see

Fig. 2.2). In contrast, secondary pigments are neither functionally nor structurally

bound to the photosynthetic apparatus and their photoprotective role results from

a filtering mechanism preventing the formation of triplet chlorophyll (3Chl∗) by

absorbing oversaturating light. Since secondary pigments are not bound to the

photosystem, they are usually accumulated in lipid globules in the interthylakoid

space of the chloroplasts. According to the current state of knowledge, astaxanthin

and β-carotene are the only known secondary carotenoids present in microalgae

(Mulders et al., 2014).

2.2 Photoacclimation and photoinhibition

The light harvesting of all phototrophic algae is facilitated by chlorophylls (in the

forms chlorophyll a and chlorophyll b present in Chlorophyta) and various accessory
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pigments in the antenna complex which differ in a species-specific manner where a

distinction is made between the presence phycobilins and carotenoids (Stengel et al.,

2011). According to Stengel et al. (2011), all algal pigments can be classified based on

their chemical structure as follows:

• Chlorophyll a and b: closed tetrapyrroles

• Phycobilipigments: open tetrapyrroles

• Carotenoids (carotenes and xanthophylls): isoprenoids with terminal cyclohex-

ane rings.

Photoacclimation describes the phenotypic response of microalgae in which they

adapt their photosynthetic pigment content to the particular light environment.

Specifically, the number and size of the antenna complexes as well as the pigment

composition in the antenna is adjusted to the present light conditions. Under optimal

light conditions, all absorbed light is used for photochemistry and dissipating mech-

anisms are inactive. In this state, size of the antenna is large and mainly packed with

chlorophylls and primary carotenoids. When the cell is exposed to over-saturating

light conditions, the photosystem receive more light than required for photosynthe-

sis. Consequently, the cell dissipates this energy as heat by emission as chlorophyll

fluorescence. This process is referred to as non-photochemical quenching (NPQ),

which protects the cell against oxidative damage from free radicals. In addition to

the dissipating mechanisms, the cell adapts its pigment composition to the high light

conditions. The pigment content in cells subjected to oversaturating light decreases

to minimize light absorption and thereby photooxidation processes (MacIntyre et al.,

2002). Specifically, the ratio of chlorophyll a to carbon is reduced by 60 % com-

pared to its maximal value. Beside, accessory pigments for light harvesting show

the same tendencies (MacIntyre et al., 2002). Since chlorophyll b molecules are lo-

cated on the outer part of the antenna complex, their decline is the initial step in

pigment degradation. Chlorophyll a is the core pigment of the antenna complex but

their content is also reduced in the course of exposure to over-saturating light. The

light-induced damage of the photosystems is called photoinhibition and results in a

decreasing photosynthetic efficiency. The photoinhibited reaction centers of PSII are

continuously repaired via degradation and synthesis of the D1 protein. To reduce the

damaging effect of high irradiance, the cell accumulates photoprotective pigments

such as β-carotene as explained in Section 2.1.

2.3 Carotenoid production in photosynthetic
microorganisms

The largest fraction of the current carotenoid production is manufactured by chemical

synthesis of petroleum derivatives. Although synthetic carotenoids can be produced

much cheaper compared to natural pigments, the consumer demand for natural pig-

ments is rising (Wichuk et al., 2014). The global carotenoid market is expected to

reach $1.4 billion with an annual growth rate of 2.3 % by 2018 (Research, Research).

One main application area of carotenoids is the food and feed industry, where they

are primarily used as colorants. Extensive studies have demonstrated a beneficial

effect of carotenoids on health due to its anti-oxidant and anti-inflammatory proper-
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ties (Bai et al., 2005; Choi et al., 2008; Xu et al., 2013), which has resulted in various

applications of carotenoids for nutraceutical purposes. Beside the positive effects

of carotenoids on human health, some studies also claimed that carotenoid treat-

ment had no effect on the therapy of e.g. cardiovascular diseases (as reviewed in

Zhang et al. (2014)). However, this outcome might be attributed to certain design

aspects of the underlying clinical studies (Fassett and Coombes, 2012).

The pigment composition present in the organism depends on the metabolic path-

ways and their physiological role for adaption to the environmental conditions of the

natural habitat. Table 2.1 summarizes several carotenoid-rich microalgal species with

industrial relevance. For biotechnological applications, the amount of primary pig-

ments in the biomass is usually too low to be economically feasible if considered as

the main product. However, secondary carotenoids are present to a much higher ex-

tend compared to primary pigments and astaxanthin from Haematococcus pluvialis as

well as β-carotene from D. salina are already produced at industrial scale. In addition

to the species-specific pigment composition, advances in strain engineering, photo-

bioreactor design and identification of metabolic pathways are required to further

improve the organisms performance.

Table 2.1.: Carotenoid content of different carotenoid-rich microalgae. Adapted from
Lamers et al. (2008).

Carotenoid Strain Carotenoid content
(mg g−1 dw)

Reference

β-carotene Dunaliella salina 100 Ben-Amotz et al. (1982)

Canthaxanthin Coelastrella striolata
var. multistriata

48 Abe et al. (2007)

Astaxanthin
Haematococcus pluvialis 77 Kang et al. (2007)

Chlorella zofingiensis 6 Orosa et al. (2001)

Lutein
Muriellopsis sp. 8 Blanco et al. (2007)

Scenedesmus almeriensis 6 Sanchez et al. (2008)

2.4 Dunaliella salina as a producer of natural
β-carotene

The halotolerant green microalga D. salina is among the most important production

organisms for natural β-carotene. Up to 10 % of the total dry mass of D. salina can

consist of β-carotene. The pigment is composed of eight isoprene units and eleven

linearly arranged conjugated double bonds in the chemical structure form the light

absorbing part of the β-carotene, also known as chromophore and causes its orange

color. The accumulation of the pigment is an adaption upon the exposure to extreme

environmental conditions such as high light intensity, high salinity and nutrient star-

vation as illustrated in Fig. 2.3. The overaccumulation of carotenoid pigments is due

to a stress response which enables Dunaliella to survive in hypersaline environments.

Therefore, hypersaline Dunaliella sp. occur in saline shallow lakes and evaporation

ponds all over the world (Polle et al., 2009). Beside hypersaline species in the genus

Dunaliella several euryhaline species of Dunaliella (e.g. D. tertiolecta, D. primolecta have
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been reported, which grow in marine water. However, only hypersaline species of the

Dunaliella genus (e.g. D. parva, D. viridis and D. salina) play an important role in algal

mass cultivation. Large scale facilities of Dunaliella for the production of β-carotene

are operated in various countries (e.g. Australia, India, Israel, Spain, United States)

(Ben-Amotz et al., 1991).

Pyrenoid

Chloroplast

Nucleus

Carotenoid-containing lipid globules

Cytoplasm

Starch granules

non-carotenogenic

"green" phenotype

carotenogenic

"orange" phenotype

NO3

-

Figure 2.3.: Simplified representation of morphological changes in D. salina during
carotenogenesis.

The cell shape of Dunaliella varies between ellipsoidal, ovoid, cylindrical and spher-

ical with large differences in size (1 - 15 µm in length and 2 - 28 µm in width)

(Polle et al., 2009). Hypersaline species of Dunaliella have the ability to survive in

medium containing a wide range of NaCl concentrations from about 0.05 M to sat-

uration (around 5.5 M) (Chen and Jiang, 2009). The optimal salinity for growth is

considered to be in the range from 1.5 - 2 M NaCl (Vo and Tran, 2014).

Figure 2.4.: Microscopic pictures of carotenogenic (right) and non-carotenogenic (left)
D. salina cells.

Even though, the overaccumulation of β-carotene in D. salina has been investigated

extensively, only little is known about the cellular response and the regulatory mech-

anisms involved in the underlying adaptational stress response (Ben-Amotz et al.,

1982; Lamers et al., 2010). Exposure of the cells to high irradiance is the main trigger
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that induces photooxidative processes, which initiate the enrichment of photoprotec-

tive carotenoid pigments. The underlying photoprotective mechanisms of β-carotene

are the prevention of oxidative damage by scavenging reactive oxygen species and

the absorption of UV light, avoiding direct damage of cellular targets (Mulders et al.,

2014). The overaccumulated β-carotene, which is mainly composed of the two iso-

mers, 9-cis and all-trans, is stored in TAG-containing lipid globules in the interthy-

lakoid space of the chloroplast (Ben-Amotz et al., 1982). Results from previous stud-

ies pointed out that TAG synthesis and β-carotene formation are interlinked, creating

a metabolic sink avoiding end-product inhibition in the carotene biosynthesis path-

way (Rabbani et al., 1998; Mendoza et al., 1999). This coincides with the fact, that

massive carotene accumulation is enhanced with increasing abiotic stress, e.g. nutri-

ent deprivation.

Thus, the ability to grow in hypersaline environments in combination with the high

carotene content makes Dunaliella a excellent candidate for molecular farming of high

value products. Since the impact of the abiotic stress response on biotechnological

production parameters (such as volumetric biomass and carotene productivity) is not

fully understood, further experimental and theoretical characterization are required

to improve the process efficiency. These insights might also contribute to improve-

ments in bioprocess development of other carotenogenic species.





Chapter 3

Systematic analysis of microalgal
metabolism

A large variety of commercially interesting microalgal products, such as primary

and secondary metabolites are nowadays produced in biotechnological processes

(Koller et al., 2014). The recent advances in new analytical techniques for algal

cell biology, which require only a minimal sample amount and enable fast prepa-

ration allow for a more detailed and comprehensive bioprocess characterization

(Wagner et al., 2010; Havlik et al., 2013; Biller and Ross, 2014). A profound and ex-

tensive understanding of the process enables the determination of critical process

parameters and set points, which strongly influence process stability and perfor-

mance (Bohnen and Brück, 2013). Among other factors, the reactor setup, the nutri-

ent composition in the growth medium and the environmental conditions, especially

the light intensity, play the most important role to obtain a desired product content

and quality. Unfavorable environmental conditions, such as high light intensity, high

salinity or nutrient depletion can lead to metabolic imbalances and cause a complex

adaptive physiological stress response (Mulders et al., 2014).

In the course of their evolution, microalgae have developed efficient strategies to

tolerate and adapt to various types of abiotic stress. The sensing of abiotic stress

induces a signaling cascade in the cell that leads to the activation of stress-responsive

genes, the up-regulation of antioxidant pathways and the accumulation of secondary

metabolites resulting in an adjustment of the cellular state to the new physiological

conditions (Pérez-Clemente et al., 2013). Since most commercially relevant high value

products, such as triacylglycerides (TAGs) and carotenoids, are accumulated under

abiotic stress, changes in the cellular properties during the adaptational response can

affect control strategies and process stability (Hyka et al., 2013). Therefore, a detailed

characterization of these phenomena is necessary as a basis for robust process design

for large scale cultivation systems. This chapter focuses on the recent progress in an-

alytical methods including advanced fluorometric and spectroscopic techniques that

facilitate the development of robust bioprocesses by providing a coherent picture of

the microalgal metabolism under stress conditions. In the following, special attention

is paid to the following methods:
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Figure 3.1.: Measuring principle of flow cytometry.

• Flow cytometry for detection of morphological and physiological changes dur-

ing carotenogenesis.

• PAM fluorometry for the analysis of photosynthetic performance during ad-

verse growth conditions.

• Fourier transform infrared (FTIR) spectroscopy for investigation of changes in

biomass composition during the metabolic switch.

3.1 Flow cytometry

Flow cytometry is a widely used method in marine ecosystems research to inves-

tigate the structure and distribution of phytoplankton in natural seawater samples

(Olson et al., 1985). The recent interest in oleaginous microalgae for the production of

biofuels and edible oils has extended the application of flow cytometry to the stain-

ing of microalgal lipid bodies with lipophilic dyes, such as Nile Red and BODIPY

(Chen et al., 2009; da Silva et al., 2009; Brennan et al., 2012). In addition, flow cy-

tometry provides information about population heterogeneity and can therefore be

used for fluorescence-activated cell sorting (FACS) to separate cells overproducing a

target compound (Bougaran et al., 2012; Xie et al., 2014). Moreover, flow cytometry

also supports the analysis of various morphological and biochemical features refer-

ring to physiological state of the cell (Mendoza Guzmán et al., 2012; de Winter et al.,

2013). Depending on the environmental conditions, the cell cycle stage or the age of

a cell, intrinsic light scattering and fluorescence emission properties of the biomass is

changing. These changes in the cellular properties (e.g. cell size, granularity, pigmen-

tation, vitality) have a large impact on the process performance and flow cytometry

has therefore the potential to contribute to the rapid development of feasible biopro-

cesses.
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A flow cytometric system as depicted in Fig. 3.1 consists of three parts:

1. The fluidic part: Alignment of the cells in the measurement stream by dilution

of the sample with sheath fluid.

2. The optical part: Excitation of fluorescence with single or multiple lasers and

detection of light scattering or fluorescence emission in appropriate detectors.

3. The electronic part: Conversion of light signals into electronic signals for data

processing and analysis.

An overview of fluorescent dyes used to characterize physiological properties in mi-

croalgae is given in Table 3.1.

Table 3.1.: Selection of fluorescent dyes used for characterization of physiological proper-
ties in microalgae. Adapted from Hyka et al. (2013).

Property Dye Aim Microalgae Reference

Neutral lipid content Nile Red Identify lipid-rich strains Chlorophyta (Chen et al., 2009)

Identify carotenoid-
overproducing strains

Dunaliella salina (Mendoza Guzmán et al., 2012)

Identify lipid-
overproducing mutants

Isochrysis affinis galbana (Bougaran et al., 2012)

Chlamydomonas reinhardtii (Xie et al., 2014)

Lipid particle release
Cell integrity

Dunaliella viridis (Davis et al., 2015)

BODIPY 505/515 Identify lipid-rich strains Ophiocytium maius
Chrysochromulina sp.
Mallomonas splendens

(Cooper et al., 2010)

Dunaliella teteriolecta
Tetraselmis suecica
Nannochloropsis oculata
Nannochloris atomus

(Brennan et al., 2012)

Lipid oxidation C11-BODIPY
591/581

Determination of oxidative
stress

Chlamydomonas reinhardtii (Cheloni and Slaveykova, 2013)

Membrane potential DiOC6(3) Analysis of cellular respi-
ration

Dunaliella tertiolecta (Gregori et al., 2002)

DiBAC4(3) Viability analysis of cells
embedded in a hydrogel

Chlamydomonas reinhardtii
Chlorella sorokiniana

(Krujatz et al., 2015)

ROS DHR123 Impact of cadmium expo-
sure on ecotoxicity

Chlamydomonas reinhardtii (Jamers et al., 2009)

Cell viability SYTOX blue Viability analysis with
minimal
autofluorescence overlap

Emiliania huxleyi (Dashkova et al., 2016)

Cell vitality Fluorescein diacetate
(FDA)

Impact of milking caro-
tenoids on vitality

Dunaliella salina (Hejazi et al., 2004)

Cell integrity
DNA content

SYTOX green Investigate stages of
cell death

Phytoplankton (Veldhuis et al., 2001)

DNA content Propidium iodide
(PI)

Impact of cell cycle
on biomass composition

Neochloris oleoabundans (de Winter et al., 2013)

Hoechst 33342 Analysis of cell cycle Gonyaulax polyedra (Vicker et al., 1988)

DAPI
SYBR Green I

Analysis of cell cycle Euglena sp.
Porphyridium purpureum
Haematococcus pluvialis
Chlamydomonas reinhardtii
Scenedesmus obliquus
Scenedesmus quadricauda

(Vitova et al., 2005)

In summary, the use of flow cytometry for monitoring and optimization of pho-

totrophic processes has great potential and benefits and is now slowly beginning to

emerge. The majority of studies applying flow cytometry to microalgae focus only

on single properties (e.g. lipid fluorescence) at a single time point rather than uncov-

ering relationships in algal metabolism as an response to its dynamically changing

environment.

Although the large scale production of natural β-carotene in D. salina is of high indus-

trial relevance, a systematic and detailed analysis of cellular features corresponding

to its physiological state during storage molecule accumulation under abiotic stress

conditions is missing. Therefore, this thesis provides a unique resource for the dy-

namic exploration of the abiotic stress response in D. salina and its link to important
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Figure 3.2.: Principle of PAM fluorometry.

bioprocess parameters, e.g. growth parameters, metabolic stress indicators, morpho-

logical properties and productivity.

3.2 Pulse amplitude modulation (PAM)

PAM fluorometry is a non-invasive analysis tool that monitors chlorophyll fluores-

cence as an indicator for the activity of photosystem II (PSII) and has broad appli-

cation areas in algal and plant physiology (Schreiber, 1983). The activity of PSII is

an indicator for the effect of fluctuating environmental conditions on the photosyn-

thetic performance and the mechanisms leading to the adaptation of the photosyn-

thetic machinery under adverse growth conditions. When photons are absorbed by

chlorophyll molecules they can be valorized in the following ways: (i) drive pho-

tosynthetic electron transport; (ii) re-emission as heat; or (iii) re-emission as light

(chlorophyll fluorescence) (Murchie and Lawson, 2013). Since the aforementioned

processes compete with each other, an increase in one process results in a decreasing

efficiency of the remaining ones. Hence, from the chlorophyll fluorescence signal re-

lationships about photosynthetic efficiency and dissipation processes can be derived

(Maxwell and Johnson, 2000). Although only a minor fraction of incident light can

be used as measurement signal, the obtained signal/noise ratio of the measurement

signal high and the derived system properties can be estimated accurately.

The photosynthetic performance of the cells are calculated based on the fluorescence

peak ratios observed during the illustrated time course (Fig. 3.2) where the cells are

exposed to presence or absence of light in different durations and intensities such

as constant actinic light (i.e. light that is absorbed by the photosynthetic machin-

ery and will drive electron transport) or saturation light pulses. This procedure en-

ables to distinguish between photochemistry and energy dissipation (e.g. due to non-

photochemical quenching). The measurement usually starts with a dark-adaptation

process of 5 to 10 min where the absence of actinic light leads to a stagnation in the
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photosynthesis. In this period, all reaction centers of the photosystem are in an open

state and the plastoquinone pool (QA) is fully oxidized. The basal fluorescence in

the dark-adapted state is also referred to as F0 and is detectable due to the presence

of a low intensity measuring light, which is sufficient to induce fluorescence emis-

sion but too lower to start photosynthesis. At the end of the dark-adapted period, at

short saturation pulse is applied to the culture which is able to fully saturate all re-

action centers in the photosystem, which will change their state into the closed mode

and the plastoquinone pool is in the reduced state. This saturation pulse induces the

maximal fluorescence termed Fm. The difference between the maximal and minimal

fluorescence Fm and F0 is also called the variable fluorescence Fv. Numerous stud-

ies demonstrated the ratio between Fv and Fm represents a robust indicator for the

maximum quantum efficiency of PSII (Eq. 3.1) (Butler, 1978).

ΦPSII,max =
Fv

Fm
=

Fm − F0

Fm
(3.1)

The presence of abiotic stress conditions such as high irradiance results in an

light-induced decrease in the photosynthetic capacity due to inactivation of PSII

(Long et al., 1994). This process is also referred to as photoinhibition. Cells which

are exposed to photoinhibitory conditions shown a significantly lowered Fv/Fm ratio

making it a suitable indicator for the detection of a light-induced physiological stress

response (Demmig-Adams and Adams, 2006).

Subsequently, the actinic light is turned on to determine the photosynthetic pa-

rameters of the light adapted state. This phase is initiated by an instantaneous rise

in the chlorophyll fluorescence which slowly declines until it reaches a steady-state

value after several minutes (> 10 min) (Murchie and Lawson, 2013). The decline

phase is caused by competing photochemical and non-photochemical quenching

mechanisms. After the light-adapted fluorescence signal F
′

reached steady-state, a

saturation pulse is applied to the culture which induces the closure of all reaction

centers and the value for light-adapted maximal fluorescence F
′

m is achieved. Note

that the maximal fluorescence in the light-adapted state F
′

m is always lower compared

to the dark-adapted state F
′

m due to the presence of quenching mechanisms. The dif-

ference of the maximum light-adapted fluorescence F
′

m and the steady-state value of

fluorescence in actinic light F
′

normalized to F
′

m is defined as the effective quantum

yield of PSII (ΦPSII,eff) as shown in Eq. 3.2:

ΦPSII,eff =
F
′

q

F
′

m

=
F
′

m − F
′

F
′

m

(3.2)

Hence, ΦPSII,eff is a measure of the efficiency of photochemistry under the present

light conditions. The multiplication of ΦPSII,eff with the average light intensity (E)

and the default ETR factor 0.42 leads to the derivation of the electron transport rate

(ETR) which is given in Eq. 3.3:

ETR = 0.42 ⋅ΦPSII,eff ⋅ E (3.3)

The default ETR factor originates from a ”model” leaf and describes the fraction of

the incident light intensity in the PAR region that is absorbed in PSII. The value of
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0.42 originates from a study of Bjorkman and Demmig (1987) where 50 % of the PAR

have been distributed to PSII and 84 % of the PAR was absorbed by photosynthetic

pigments in a standard leaf (Schreiber et al., 2011).

NPQ is a mechanism to protect algae and plants from cellular damage due to over-

saturating radiation by quenching singlet chlorophyll (1Chl∗) as shown in Fig. 2.1

leading to the dissipation of excess energy as heat. As NPQ only occurs in light-

adapted cells, its presence leads to a reduction of energy that can be converted into

fluorescence. Therefore the fraction of NPQ in a sample can be estimated from the

difference of the maximum fluorescence in the light-adapted state F
′

m and the dark-

adapted state Fm normalized to the light-adapted state (Eq. 3.4).

NPQ =
Fm − F

′

m

F
′

m

(3.4)

Finally, the minimal fluorescence F
′

0 can be estimated after turning of the actinic light.

All parameters that can be derived from the chlorophyll fluorescence time course

that is depicted in Fig. 3.2 are summarized in Table 3.2.

Table 3.2.: Frequently used parameters in PAM analysis and their physiological relevance.
Adapted from Baker (2008).

Symbol Definition Physiological relevance

F0

F
′

0

Minimal fluorescence of dark- and
light-adapted samples

Level of fluorescence when QA is maximally
oxidized and PSII centers are open

Fm

F
′

m

Maximal fluorescence of dark- and
light-adapted samples

Level of fluorescence when QA is maximally
reduced and PSII centers are closed

Fv

F
′

v

Variable fluorescence from dark- and
light-adapted samples

Demonstrates the ability of PSII to perform
photochemistry (QA reduction)

Fq Difference in fluorescence between
F
′

m and F
′

Photochemical quenching of fluorescence by
open PSII centers

Fv/Fm Maximum quantum efficiency of PSII
photochemistry

Maximum efficiency at which light absorbed
by PSII is used for reduction of QA

F
′

q/F
′

m PSII operating efficiency Estimates the efficiency at which light absorbed
by PSII is used for QA reduction

F
′

v/F
′

m PSII maximum efficiency Relates the PSII maximum efficiency to the
PSII operating efficiency

NPQ Non-photochemical quenching Monitors the apparent rate constant for heat loss
from PSII

3.3 Fourier transform infrared (FTIR) spectroscopy

FTIR spectroscopy is a promising method for bioprocess characterization which com-

bines several advantages. It is a rapid and non-invasive method which provides

information on all molecules in the sample absorbing infrared light. In addition,

the measurement is characterized by a high spectral resolution over a wide wave-

length range. Due to the small sample amounts required (in the range of µg), the

method enables highly flexible measurements with multiple replicates or short sam-

pling times which makes it an excellent tool for bioprocess monitoring (Burgula et al.,
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2007). Hence FTIR spectroscopy has gained significant importance in the field of

biotechnology for identification and quantification of macromolecules, species com-

parison and analysis of biomass composition. Moreover, methods of multivariate

data analysis (such as partial least square (PLS) analysis or principal component anal-

ysis (PCA)) promoted the interpretation of highly complex IR spectra of microorgan-

isms with various IR-active molecules (Wagner et al., 2010).

The energy of a photon is defined by the product of its frequency ν and a proportion-

ality factor h known as the Planck constant as described in Eq. 3.5.

E = h ⋅ ν (3.5)

As the frequency ν and the wavelength λ are are inversely proportional following

equation can be derived:

ν =
c

λ
(3.6)

where c is the speed of light.

Therefore Eq. 3.5 leads to:

E =
hc

λ
(3.7)

implying that shorter wavelength (or higher frequency) corresponds to higher energy.

The frequencies in a IR spectrum are usually expressed in wavenumbers ν (cm−1)

which is typically used for infrared light and is the inverse of the wavelength. This

has the advantage that the correlation between wavenumber and energy is directly

proportional (the higher the wavenumber, the higher the energy).

ν =
1

λ
(3.8)

Infrared spectroscopy makes use of the property of a compound to absorb character-

istic wavelengths of infrared light which correspond to the functional groups present

in the molecule. The absorbed light energy in the specific wavelength regions, is also

called resonant frequencies and refers to the transition energy of the bond during vi-

bration. Infrared light only induces vibrations if the bond is IR-active, meaning that a

change in the dipole moment occurs (Berthomieu and Hienerwadel, 2009). Different

vibrational modes such as stretching, bending, wagging and twisting can be present

in a molecule (Carbonaro and Nucara, 2010). Therefore, IR spectroscopy is frequently

applied to identify molecules or determine species based on the intensity and position

of their characteristic bands in the IR spectrum. However, due to numerous different

bonds in complex molecules, the resulting IR spectrum has many peaks which can

render interpretation and quantification difficult. The positions of these characteris-

tic bands is summarized in Table 3.3. The presence of a functional group is usually

detected at higher wavenumbers (4000 - 1600 cm−1), whereas the wavelength region

below 1500 cm−1 is referred to as ”fingerprint” region (Bakker et al., 2003). Vibrations

in this region are often complex and hard to assign to a specific functional group of

the molecule.
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Table 3.3.: Band assignment for major biomacromolecules found in FTIR spectra of mi-
croalgae. Adapted from Giordano et al. (2001) and Liu et al. (2013).

Wavenumber
(cm−1)

Band assignment Biomacromolecule

∼ 3600-3300 symmetric O-H and N-H stretch Water, protein

∼ 3000-2800 asymmetric C-H stretch Lipids (Methylene groups)

∼ 1740 symmetric C=O stretch Membrane lipids and fatty acids

∼ 1650 symmetric C=O stretch Proteins (Amide-I)

∼ 1540 symmetric deformation of N-H and
stretch of C-N

Proteins (Amide II)

∼ 1245 asymmetric P=O stretch Nucleic acids (DNA/RNA backbones)

∼ 1200-900 symmetric C-O-C stretch Polysaccharides

∼ 1080-980 symmetric C-O stretch Carbohydrates and polysaccharides

In summary, the quick and reliable estimation of the biomacromolecular composi-

tion is an indispensable step in the full exploitation and valorization of microalgal

biomass towards the development of sustainable biorefineries. However, FTIR spec-

troscopy has been only rarely applied in algal biotechnology, mostly to prove the

presence of lipids (e.g. by Giordano et al. (2001) for the diatom Chaetoceros muellerii,

by Dean et al. (2010) for Chlamydomonas reinhardtii and Scenedesmus subspicatus, by

Laurens and Wolfrum (2011) for Nannochloropsis sp., Chlorococcum sp. and Spirulina

sp. and by Liu et al. (2013) for D. salina). A large proportion of the studies moni-

tored the lipid accumulation only on a qualitative basis or as macromolecular ratios

(lipid:protein or lipid:carbohydrates). Only very few studies addressed the quantifi-

cation of FTIR spectra with respective standard molecules as done by Wagner et al.

(2010) where the protein, lipid and carbohydrate content of C. reinhardtii has been

measured and compared with conventional biochemical methods.

In the present work, a quantitative protocol for FTIR spectroscopy in D. salina has

been developed and applied to link the morphological properties from the flow cy-

tometric analysis and the photosynthetic performance derived from PAM measure-

ments with the biomass level to get a consistent picture of β-carotene synthesis and

its role in stress tolerance of the photosynthetic microorganisms.
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Modeling of microalgal metabolism

This chapter gives a comprehensive overview of the existing modeling frameworks

for microalgae, their mathematical foundations and outline their applications in mi-

croalgal biotechnology. Mathematical modeling has become an essential tool to un-

derstand the complex organization of biological systems. Nevertheless, the applied

methods of computational biology are very diverse and one single method is not able

to cover the different temporal and spatial scales observed in a biological system. In

order to get a coherent understanding of an organisms behavior under dynamically

changing conditions the combination suitable computational approaches is required

(Steuer et al., 2012).

4.1 Microalgal metabolism

Cellular systems perform a series of biochemical reactions where metabolites are con-

verted from one compound into another. Metabolic networks and the underlying

pathways link these reactions to fulfill physiological functions of the organism such

as growth, respiration and adaptation to the environment. Studying metabolic net-

works can provide insights into the behavior of the system and provide useful targets

for bioengineering strategies.

There is consensus regarding the fact that the carbon core metabolisms of green mi-

croalgae (Chlorophyta) is relatively conserved across the species and that the result-

ing metabolic networks show a large similarity (Reijnders et al., 2015). However,

across different algal classes (e.g. diatoms and green microalgae) the structural or-

ganization of the central carbon metabolism is highly variable (Wilhelm et al., 2006;

Hildebrand et al., 2013). The essential pathways in the central carbon metabolisms of

green microalgae can be schematically represented as shown in Fig. 4.1.

The carbon core metabolism of microalgae covers the following pathways:

• Photosynthesis: Conversion of light energy into chemical energy, which is pro-

duced from the precursor molecules carbon dioxide and water and stored in

form of carbohydrate molecules (e.g. starch).



22 Chapter 4. Modeling of microalgal metabolism

O2

2

ATP+NADPH

Calvin

cycle
GAP

G6P

Carbohydrates DNA, RNA

NADH
FADH

NADPH

Protein

Glutamate

Chlorophyll

ATP

NO3

-

PPP

Electron

Transport

Chain

O2

CO2

TCA

cycle

Carotenoids

Neutral

lipidsPhoto-

synthesis
h ν.

Excess energy

dissipation

Polar

lipids

Figure 4.1.: Simplified graphical representation of the central carbon metabolism in
D. salina. Adapted from Kliphuis et al. (2011).

• Glycolysis: Conversion of glucose into pyruvate to release energy in form of

ATP or reducing equivalents (NADH) and generate precursor metabolites.

• Citric acid cycle (TCA): Generation of energy through the oxidation of acetyl-

CoA derived from various sugar compounds, fatty acids or amino acids into

carbon dioxide and energy.

• Oxidative phosphorylation: Formation of ATP due to electron transfer from

donors to acceptors (NADH or FADH2 to O2) by a series of electron carriers.

• Pentose phosphate pathway (PPP): Generation of reductive power such as

NADPH and C5-sugars as precursors for DNA and RNA synthesis.

• Carbohydrate and fatty acid synthesis: Supply of building blocks for formation

of cell wall components and carbon storage.

• Carotenoid biosynthesis: Formation of pigments to fulfill the physiological

requirements of photosynthetic light harvesting, photoprotection and energy

sinks.

• In-cooperation of inorganic nutrients (e.g. nitrate): Supply of precursor molecules

for the synthesis of nucleotide, amino acids and chlorophyll.

4.2 Reconstruction of metabolic networks

Due to large research investments in genome projects and the rapid advancement in

sequencing technologies, the number of sequenced genomes is growing exponen-

tially (Koussa et al., 2014). These sequences have great potential for the develop-

ment of metabolic models, but their use is limited by the large time and effort re-

quired to annotate a genome. However, an annotated genome is an important pre-

requisite to link the present genes with metabolic reactions at the biochemical level

(Thiele and Palsson, 2010). Metabolic network reconstructions aim at providing a
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more comprehensive picture of the biochemical reactions taking place in an organ-

isms. The reconstruction procedure follows a standardized protocol which has been

described in detail by Thiele and Palsson (2010). After the metabolic network has

been reconstructed, it needs to be translated into a mathematical model, which can

be interpreted and analyzed using various software packages for network analysis

such as MetaFluxNet (Lee et al., 2003), Cell Net Analyzer (Klamt et al., 2007) or the

COBRA toolbox (Becker et al., 2007). The common format to facilitate the conversion

of metabolic reaction networks into a mathematical network model is the Systems

Biology Markup Language (SBML) (Hucka et al., 2003).

Currently, these approaches led to 10 studies that proposed 11 metabolic networks

for 6 different algal species as summarized in Table 4.1 (Baroukh et al., 2015).

Table 4.1.: Existing metabolic networks for microalgae. Adapted from Koussa et al. (2014)
and Baroukh et al. (2015)

Specie References Type of modeling
framework

Scale Reac-
tions

Meta-
bolites

Compart-
ments

Chlorophyta

Chlorella protothecoides (Wu et al., 2015) C13 metabolic flux
analysis and FBA

Carbon core 272 270 4

Chlorella sorokiniana (Yang et al., 2000) FBA Carbon core 67 61 1

Chlorella sp. FC2 IITG (Muthuraj et al., 2013) FBA and DFBA Carbon core 161 114 1

Chlamydomonas reinhardtii (Manichaikul et al., 2009) Network reconstruction Carbon core 259 467 6

(Boyle and Morgan, 2009) FBA Carbon core 484 458 3

(Kliphuis et al., 2011) Calculation of energy
requirements

Carbon core 160 164 2

(Cogne et al., 2011) FBA with thermo-
dynamic and
energetic constraints

Carbon core 280 278 1

(Chang et al., 2011) FBA Genome-scale 2190 1068 9

(Dal’Molin et al., 2011) FBA Genome-scale 1725 1869 3

Ostreococcus tauri (Krumholz et al., 2012) Microarray analysis
and FBA

Genome-scale 871 1014 1

Ostreococcus lucimarinus (Krumholz et al., 2012) Microarray analysis
and FBA

Genome-scale 964 1100 1

Haptophyta

Tisochrysis lutea (Baroukh et al., 2014) Dynamic Reduction
of Unbalanced
Metabolism (DRUM)

Carbon core 162 157 3

Diatoms

Phaeodactylum tricornutum (Kim et al., 2016) FBA Genome-scale 849 587 4

The reasons why the existing metabolic networks differs in the number of reactions

and metabolites are manifold. They mainly differ in level of detail used for descrip-

tion of the key metabolic pathways as extensively discussed in Baroukh (2014) and

listed below:

I. Photosynthetic reaction step (e.g. photophosphorylation, photorespiration)

II. Biomacromolecule synthesis (e.g. lipids, carbohydrates, biomass)

III. Synthesis of secondary metabolites (e.g. chlorophyll, carotenoids)

IV. Compartmentalization and related exchange reactions

V. Definition of reversible reactions (e.g. as two irreversible forward reactions in

(Boyle and Morgan, 2009))

VI. Consideration of isomeric forms (e.g.: α-D-glucose and β-D-glucose in Chang et al.

(2011))

Still it remains questionable, if the different degree of detail for the representation of

the metabolites and the biochemical reactions has a large impact on the accuracy of
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the model predictions. Since the macroscopic reactions have a large similarity, it may

therefore be concluded that the level of detail has only a minor impact on the sim-

ulation results (Baroukh, 2014). The incorporation of secondary metabolites is han-

dled very different in metabolic models. Typically secondary metabolites contribute

only to a very small fraction to the whole biomass and the presence varies greatly

between the species. The majority of metabolic networks only include the synthesis

of chlorophyll (Cogne et al., 2011; Kliphuis et al., 2011), whereas some studies con-

sider detailed synthesis pathways of different pigment compounds and non-essential

lipids (Chang et al., 2011). In most cases, secondary metabolites are not essential for

growth and represent only a marginal fraction of the biomass. Though the fluxes re-

lated to their formation are supposed to be negligible compared to those of the carbon

core metabolism and their impact on the prediction accuracy is estimated to be small

(Baroukh, 2014). However, the analysis and optimization of secondary metabolite

content is an important target in biotechnology since they are considered as high-

value products or fine chemicals. Though, depending on the modeling task, their

incorporation might be beneficial.

4.3 Stoichiometric modeling frameworks

This section introduces methods for stoichiometric network analysis of metabolic

models. Such models rely only on structural aspects (stoichiometry) of the underly-

ing reaction network and do not require kinetic information of the involved reactions.

Despite of the limited predictive power, stoichiometric modeling allows deriving im-

portant functional and topological network properties and thus leading to a better

understanding of metabolic network architecture. The metabolic network of a mi-

croorganism can be fully described by all biochemical reactions taking place in its

metabolism. The dynamic changes in the concentration of a certain metabolite can be

expressed by its stoichiometric coefficient and the reaction rate expressed by a set of

ordinary differential equations (ODEs) as given in Eq. 4.1:

dx(t)
dt

= N ⋅ v(x(t), u(t), p) (4.1)

where N is the stoichiometric matrix (with the dimension m x n), m corresponds to

the number of metabolites and n corresponds to the number of reactions taking place

in the metabolic network. The vector v is composed of the entries of all reaction fluxes

contained in the network which depend on the state variables x, the input u and the

kinetic parameters p as well as t representing the cultivation time.

As the reaction rates and turnover number of intracellular metabolites are usually

higher compared to those of regulatory processes (e.g. cellular growth rate or adap-

tation to changing environmental conditions), the quasi-steady state assumption is

typically made, which relies on the fact that under constant external conditions and

at longer time-scales, the metabolite concentrations and reaction rates are constant

(Klamt et al., 2014). The steady-state of the metabolic network is described in terms

of mass balance equation. This kind of assumption opens up the possibility to cal-
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culate otherwise unknown internal fluxes of the reactions involved. Applying the

steady-state assumption to Eq. 4.1 leads to the following expression:

dx(t)
dt

= N ⋅ v = 0 (4.2)

Besides, biochemical conversion reactions, transport reactions can be present in flux

vector v which account for substrate uptake and shuttle of metabolites between cer-

tain compartments. Consequently, metabolites participating can be classified as intra-

cellular or extracellular metabolites (e.g. substrate or excreted product) as depicted in

Fig. 4.1. The entries in the stoichiometric matrix N correspond to the stoichiometric

coefficients of the reactions v, where the i-th metabolite participates in the j-th reac-

tion. The sign of the stoichiometric coefficient Ni,j depends on its role in the reaction

vj (Baroukh, 2014). The relationship is as follows:

• Ni,j = 0 if metabolite i does not participate in reaction j

• Ni,j > 0 if metabolite i is an educt of reaction j

• Ni,j < 0 if metabolite i is a product of reaction j

The underlying biochemical reactions of the network can be distinguished between

irreversible (→) or reversible (↔) reactions. In general, each reaction is macroscopic

and summarizes a set of elemental reactions involving enzyme complexes. As a con-

sequence, the metabolic network (and its size) can vary depending on the description

level.

In the problem formulation reversible reactions are not considered, but there are mul-

tiple ways to include them. First, reversible reaction can be represented by two irre-

versible reactions covering forward and backward reaction. Second, a reversibility

vector can be introduced where the corresponding entry of an reaction j is zero if the

reaction is irreversible or 1 if the reaction is reversible. Third, the reversibility can

be coupled to the vectors accounting for the upper and lower bound where the the

corresponding entry of a reaction j is zero if the reaction is irreversible and negative

if the reaction is reversible.

The frameworks for functional analysis of stoichiometric networks cover the follow-

ing objectives along with the corresponding methods (Baroukh, 2014):

• Elementary flux modes (EFMs): Identification of all minimal functional path-

ways or sub-networks linking substrate uptake to biomass production inherent

in a metabolic network (e.g. (Schuster et al., 1999)).

• Flux coupling analysis (FCA): Identification of coupled (directional, partial or

full coupling) or blocked fluxes (e.g. Burgard et al. (2004)).

• Flux balance analysis (FBA): Determination of flux distribution under given in-

put conditions by maximization of an objective function (e.g. Orth et al. (2010)).

• Flux variance analysis (FVA): Determination of variability in fluxes under given

input conditions (e.g. Mahadevan and Schilling (2003)).

• Gene deletion studies (GDS): Study influence of gene deletion on flux distribu-

tion (e.g. Burgard et al. (2003)).
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Flux balance analysis

The null space of the stoichiometric matrix N gives important insights into the

metabolic capabilities of a biochemical network and is a common step in the analysis

of metabolic networks such as FBA or elementary mode analysis. In metabolic net-

works, the resulting system of linear equations is often underdetermined meaning

that there are more unknown fluxes than equations (Klamt et al., 2002). Conse-

quently, these systems do not have a unique solution because the defined constraints

are not sufficient (Maarleveld et al., 2013). However, the definition of a reason-

able objective function enables to find biologically relevant solutions by means of

linear programming (Winterbach et al., 2011). A biological and evolutionary con-

sistent objective is that the organism attempts to maximize its biomass growth rate

and/or minimizes the formation of secondary products (Varma and Palsson, 1994;

Schuetz et al., 2007). A biomass reaction that consumes precursor metabolites ac-

cording to fixed stoichiometric coefficients is used to describe biomass production

and predict the specific growth rate µ. However, also slightly sub-optimal flux dis-

tributions have been observed in biological systems giving rise to an easier transition

under fluctuating environmental conditions.

To make the stoichiometric model more consistent with biological or thermodynam-

ical knowledge of the organism, inequalities are often added to the equation system

that define boundary conditions to the reaction fluxes v (Orth et al., 2010). In addi-

tion, upper and lower bounds are introduced that specify the maximum and mini-

mum reaction flux v as given in Eq. 4.3. According to these constraints, the attainable

region of flux space distribution is defined as

vlb (x(t)) ≤ v ≤ vub (x(t)) (4.3)

where vlb and vub are the lower and upper bounds of the reaction fluxes. The defini-

tion of inequalities and the objective function leads to a considerable reduction of the

attainable region in the solution space.

The mathematical problem formulation of FBA is as follows:

v (x(t)) = arg max c⊺v (4.4)

s.t.

⎧⎪⎪⎨⎪⎪⎩
N ⋅ v = 0

vlb (x(t)) ≤ v ≤ vub (x(t)) (4.5)

where c⊺v is the objective function defined by the cost vector c.

Most of the metabolic modeling efforts were devoted to organisms growing het-

erotrophically, especially to model organisms such as Escherichia coli. The questions

they are aiming at are manifold and include:

1. Quantitative prediction of growth rates (Edwards et al., 2001; Ibarra et al.,

2002).

2. Maximizing fluxes towards a certain product of interest by studying the in-

fluence of intervention strategies (e.g. gene knock-outs or overexpression)

(Burgard et al., 2003; Trinh et al., 2008; Hädicke and Klamt, 2010).
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3. Coupling of growth and formation of secondary products by means of inter-

vention strategies (Klamt and Mahadevan, 2015).

The reason why stoichiometric network analysis and FBA only barely addresses pho-

tosynthetic organisms is based on the fact that dynamics in environmental fluctua-

tions (e.g. light, temperature, nutrients etc.) cannot be addressed properly in this

framework. Furthermore, the mathematical representation of light in this modeling

framework is complex due to various regulatory levels in photosynthesis as described

in Section 2.1 and 2.2. The photon flux is typically modeled as a constant input that is

transformed into chemical energy according to stoichiometric constraints where the

wavelength distribution of the light source or regulation (e.g. scattering of light from

the algal surface and energy dissipation mechanisms) are not taken into account.

4.4 Dynamic-kinetic modeling frameworks

4.4.1. Macroscopic bioreactor modeling

The most common approach to formulate a dynamic mathematical model for biosys-

tems is a macroscopic model using a set ODEs to describe the biochemical processes

taking place. Similar to chemical processes, mass balance equations account for the

concentration changes over time that include kinetic reaction parameters which ac-

count for biomass growth, substrate uptake and formation of secondary products.

The main challenge in this modeling approach is to obtain a predictive model with

reliable parameter estimates. Due to the large efforts necessary for generating suitable

experimental data and the limited amount of measurable metabolic reaction rates this

goal is often difficult to achieve, especially to represent the transient dynamics of in-

tracellular metabolites. Nevertheless, constructing and solving of dynamic-kinetic

models is relatively easy and computationally inexpensive making them an indis-

pensable component for computational process optimization.

The ODE system, which general form is given in Eq. 4.6, is derived from a mass

balance equation.

dx(t)
dt

= f (x(t), u(t), p) (4.6)

where x represents the state variables, u the input and p the kinetic parameters.

The biomass growth in a batch reactor given in Eq. 4.7:

dρX

dt
= µ ⋅ ρX (4.7)

where µ is the specific growth rate (in d−1) and ρX is the biomass density in (in g L−1).

The specific growth rate µ depends on the availability of its limiting substrate S and

the relationship is usually expressed using the Monod equation as follows:

µ =
µmax ⋅ S
KS + S

(4.8)
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Figure 4.2.: Dynamic behavior of the photosynthesis-irradiance curve under various light
regimes quantified by the oxygen evolution rate or the carbon fixation rate.

where S is the density of the limiting substrate (in g L−1), µmax is the maximum

growth rate (in d−1) and KS is the half-saturation coefficient (in g L−1). The Eqs. 4.7

and 4.8 represent growth under heterotrophic conditions where one limiting sub-

strate determines the value of the specific growth rate µ. Here, concentrations are

expressed in terms of volumetric mass density, which is not always the case in litera-

ture. In the following, all concentrations are expressed as densities in g L−1.

For photoautotrophic growth conditions commonly present in microalgal cultiva-

tions, Eq. 4.8 needs to be adjusted to account for light as ”substrate”. However,

the relationship between photon flux density and growth rate is not straightforward

since the photosynthesis rate is not directly proportional to the light absorption. The

so-called P-E (also referred to as P-I) curve illustrates the relationship between pho-

tosynthesis rate and light intensity (E). As illustrated in Fig. 4.2, the P-E curve is

characterized by the following four phases:

1. Dark respiration: The photosynthesis rate is zero due to absence of light until

the compensation point (EC) is reached and carbon storage is used to perform

cellular respiration.

2. Light limitation: The photosynthesis rate increases linearly with increasing light

intensity until a saturating light intensity (Esat) is reached.

3. Light saturation: The photosynthesis rate is constant and at its maximal value

meaning that a further increases in light does not lead to a higher photosyn-

thesis rate. Above the saturation point, the light dependent reactions produce

more ATP and NADPH than the light independent reactions consume to fix

CO2.

4. Photoinhibition: A light intensity above the saturation point (Esat) often leads

to destruction of the photosynthetic apparatus (e.g. due to formation of ROS)

and an impaired photosynthesis.

It should be noted that phototrophic batch cultivations under outdoor conditions but

even lab-scale cultivations under constant incident light conditions lead to experience



4.4. Dynamic-kinetic modeling frameworks 29

of different light regimes in the system and can have either positive or negative influ-

ence on the growth rate. In some species, especially when adapted to high irradiance,

photoinhibitory effects are not present or only of minor impact for the growth. All the

aforementioned phenomena should be covered in the mathematical representation of

the light-depend growth rate. A simple relationship between µ and the incident light

intensity can be described by the following equation:

µE = µmax ⋅ Eav

Eav +KS,E + E2
av

Ki,E

(4.9)

However, there are many other equation systems dealing with a mechanistic descrip-

tion of photosynthesis (Han, 2002; Rubio et al., 2003; Garcia-Camacho et al., 2012).

Beside the dependency of light on the growth rate, the absence of several nutri-

ent can have an inhibitory effect on growth. In 1968, the researcher M. R. Droop

developed a simple mathematical relationship for Vitamin B12 uptake in the ma-

rine phytoplankton Monochrysis lutheri which is still valid for various algal species

and nutrients (Droop, 1968). Therefore, Eq. 4.10 is also often referred to as Droop

equation. Since the accumulation of secondary metabolites such as carotenoids and

TAG occur mostly under nitrogen starvation, this relationship is frequently applied

to describe the growth reduction in dependence on the nitrogen availability in the

medium as shown below:

µ = µE ⋅ (1− wN,min

wN
) (4.10)

where wN,min and wN are the minimal and actual nitrogen quota of the biomass.

Dynamic-kinetic modeling has been successfully applied to various algal strains and

substrate regime (autotrophic, mixotrophic and heterotrophic) to predict growth and

the accumulation of metabolites (Packer et al., 2011; Quinn et al., 2011; Mairet et al.,

2011; Blanken et al., 2016). A comprehensive overview on growth kinetic models of

microalgae is presented in Lee et al. (2015).

4.4.2. Dynamic flux balance analysis

Depending on the degree of detail mathematical modeling approaches can be distin-

guished between models on macroscopic scale and intracellular scale. Macroscopic

models use a reduced description of the biological reality to apprehend intrinsic phe-

nomena and cellular dynamics. As explained in Sec. 4.4.1, such approaches use a

system of ODEs to describe the evolution of state variables over time. Due to the

limited amount of suitable experimental data, they are usually restricted to a small

part of the metabolism or uses a simplified description of it. They are particularly

well suited to describe biomass growth and nutrient uptake over time but can hardly

be used for optimization of intracellular molecules of interest. In contrast, intracel-

lular models are powerful approaches to unravel complex interactions and provide

a mechanistic understanding of the cellular metabolism. In addition, they open up

new possibilities for optimized production strategies for molecules of interest. How-
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Figure 4.3.: Graphical representations of the DFBA approach taking into account intracel-
lular and extracellular effects that influence microalgal metabolism.

ever, they rely on the availability of high-quality metabolic network reconstructions

of annotated genetic data as explained in Section 4.2.

Since mass balance equations do not give insights into flux distributions, the anal-

ysis of metabolic networks is often carried out under steady-state conditions using

constraint-based models. Within this framework the optimization objective is chosen

in order to satisfy single or multiple optimality criteria. However, the cell population

is constantly adapting its metabolism to fluctuating environmental conditions and

steady-state models cannot account for temporal changes in biomass composition

due to physiological adaptation processes. This exceptional property of biological

organisms emerges from complex regulatory interactions between metabolism and

enables the survival under harsh environmental conditions and prolonged starvation

periods. The consideration of dynamic effects in metabolic networks is therefore of

crucial importance to gain a mechanistic insights in metabolic adaptation and predict

the accumulation of stress-related secondary metabolites, which are often of commer-

cial interest due to its high value.

A method linking these two modeling approaches by adding additional dynamic con-

straints to metabolic network models is called dynamic flux balance analysis (DFBA).

This framework is able to combine the aforementioned advantages of dynamic and

steady-state frameworks to simulate growth transitions and predict the accumula-

tion of commercially important metabolites. Therefore the system is divided into

two parts: the dynamically changing environment and the intracellular metabolism,

which is still in quasi steady-state (see Fig. 4.3). The FBA problem formulated in

Eq. 4.4 is recalculated in quasi-steady state for each time step in the dynamic system

(Fig. 4.4). Due to the introduction of dynamics in the FBA formulation, kinetic param-

eters (as mentioned in Section 4.4.1) need to be determined from experimental data

in order to achieve high predictability. One major advantage of the DFBA approach

is the possibility to include accumulation of storage molecules in a structured way by

introduction of suitable kinetic equations.

To conclude, mathematical modeling is increasingly recognized as an indispensable

research tool to understand the organization of biological systems. Nevertheless, the
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Figure 4.4.: Mathematical illustration of the DFBA workflow covering extracellular effects
such as cell and reactor dynamics as well as intracellular stoichiometric of the underlying
metabolic network.

methods and practices of mathematical modeling are highly diverse and no single

methodology alone is able to cover the diverse temporal and spatial scales observed

in biological systems. Therefore, the future of modeling resides in the utilization of

a combination of methods, each suited to describe a particular aspect of biological

reality giving rise to the challenge to combine these diverse conceptual and compu-

tational pictures into a coherent whole.
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Experimental methods

5.1 Strain, growth medium and pre-cultivation

The strains of D. salina and D. parva used in this work were obtained from the Cul-

ture Collection of Algae and Protozoa (Windermere, United Kingdom). Both strains

were ordered as D. salina CCAP19/18 in 2011 and 2014. Since the cells showed pro-

nounced differences in cell size and cellular dry weight, a 18S rRNA sequencing was

performed by Cecilia Rad Menendez from CCAP. The sequence coverage of the sam-

ple ordered 2011 had a 100 % Query coverage (99 % Max. ID) with D. parva, whereas

the sample ordered in 2014 had a 100 % Query coverage (99 % Max. ID) with D. salina.

Therefore, the strains used in this work were named according to the sequencing re-

sults.

The growth of both stock cultures was performed in 500 mL shaking flasks containing

150 mL of the growth medium previously described by Lamers et al. (2010) on a ro-

tary shaking incubator (Multitron, Infors AG, Switzerland) in air enriched with 3.5 %

CO2, at 26 ○C, 100 rpm, with a light intensity of 30 µmol photons m−2 s−1 and alternat-

ing day/night cycles (16 h/8 h). The growth medium was composed of 1.50 M NaCl,

37.75 mM KNO3, 22.50 mM Na2SO4, 4.87 mM K2SO4, 1.00 mM NaH2PO4, 0.37 mM

MgCl2, 19.35 mM Na2EDTA, 18.9 mM CaCl2, 11.25 mM NaFe EDTA, 1.89 mM MnCl2,

1.48 mM ZnSO4, 0.67 mM CuSO4, 10.95 nM Na2MoO4, and 9.95 nM CoCl2.

5.2 Cultivation experiments in flat-plate
photobioreactors

Fermentations were performed in flat-plate photobioreactors either with 1 L cultiva-

tion volume (FMT 150, Photon Systems Instruments, 5 cm path length) equipped with

white and red LEDs or with 1.8 L cultivation volume (Labfors Lux, Infors HT, 2 cm

path length) equipped with warm white LEDs (Figs. 5.1 and 5.2). Both reactors were

aerated with a gas mixture of 97 % air and 3 % CO2 at a flow rate of 500 mL min−1

controlled by mass flow controllers. The pH was adjusted to 7.5 by automated ad-

dition of 1 M HCl and 1 M KOH and the temperature was maintained at 24 ○C. Dis-

solved oxygen was measured using an optical pO2 electrode (Visiferm DO, Hamil-
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ton Messtechnik GmbH, Switzerland). For inoculation, a stock culture grown un-

der nitrogen-replete conditions was diluted to approximately 2× 105 cells mL−1 for

D. salina and 1× 106 cells mL−1 for D. parva with the appropriate medium. The trans-

mitted light intensity was measured by averaging the light intensity on the backside

of the reactor using a light sensor (ULM-500, Walz or Infors HT).

Table 5.1.: Reactor constants of INFORS Labfors Lux and PSI FMT-150.

Constant INFORS Labfors Lux PSI FMT-150

Cultivation volume (L) 1.8 1

Reactor thickness (cm) 2 5

Illuminated surface area (m2) 0.09 0.024

Figure 5.1.: Photographic pictures of the photobioreactor setup INFORS Labfors Lux (left)
and PSI FMT-150 (right). (Courtesy of I. Harriehausen).

5.3 Dry weight determination

The determination of the cellular dry weight was performed according to Zhu and Lee

(1997). Briefly, 5 mL of the cell suspension was filtered onto dry glass fiber filters

(GF/F, 0.7 µm, Whatman, UK) and washed with 0.5 M ammonium formate to re-

move remaining salts. The filter were dried in an oven (24 h, 70 ○C) until a constant

weight was reached. Alternatively, samples of the cell suspension were transferred

into 15 mL reaction tubes and were centrifuged for 10 min at 1,000 g. The super-

natants were discarded and the cell pellets were washed with 0.5 M ammonium

formate. Finally, the pellets were freeze-dried and the weights were determined on a

balance.
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Figure 5.2.: Schematic view of INFORS Labfors Lux photobioreactor (A) side view and (B)
front view. Adapted from Mulders et al. (2014) and Infors HT operation manual.

5.4 Carbon and nitrogen fraction in the biomass

The carbon fraction and the nitrogen cell quota of the inoculum were measured with

a C/H/N analyzer from 3 mg freeze-dried biomass (Currenta, Germany).

5.5 Ion chromatography

Extracellular nitrogen density was measured using an ion chromatography system

(Dionex ICS 1100, Thermo Scientific Dionex, USA) equipped with an Ion Pak AS22

column (Thermo Scientific Dionex, USA) with 4.5 mM sodium carbonate and 1.4 mM

sodium bicarbonate as mobile phase, at a flow rate of 1.2 mL min−1 and with an

injection volume of 50 µL.

5.6 Spectrophotometrical determination of
chlorophyll and carotenoid content

The chlorophyll and carotenoid fractions were determined using UV/VIS spec-

trophotometry. Depending on the cell density and the pigment fraction, a 3 - 10 mL

sample was taken from the culture suspension. The cell suspension was filtered

onto glass microfiber filters (GF/F, 0.7 µm, Whatman, UK) using a vacuum pump

(Fig. 5.3). Afterwards, the cells were washed with 0.5 M ammonium formate, fol-

lowed by 6 mL of 90 % acetone. The acetone-pigment extract was transferred into a

15 mL reaction tube. The suspension was incubated for 1 h at 4 ○C in a mixing block

at 100 rpm. In order to separate the cell debris from the pigment extract, the mixture

was centrifuged 5 min at 3,000 g. The supernatant was collected and measured using

a UV/VIS spectrophotometer (Specord S600, Analytik Jena, Germany) at the follow-
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ing wavelengths (470, 645 and 661.5 nm). The pigment densities of the sample were

calculated according to Lichtenthaler (2001).

Figure 5.3.: Filtered carotenogenic (right) and non-carotenogenic (left) D. salina biomass.
(Courtesy of I. Harriehausen).

ρChla = (11.24 ⋅ A661 − 2.04 ⋅ A645) ⋅ ρAcetone = AA ⋅ ρAcetone (5.1)

ρChlb = (20.13 ⋅ A645 − 4.19 ⋅ A661) ⋅ ρAcetone = AB ⋅ ρAcetone (5.2)

ρCar =
(1000 ⋅ A470 − 1.9 ⋅ AA − 63.14 ⋅ AB)

214
⋅ ρAcetone (5.3)

5.7 Determination of pigment composition using
HPLC

Pigment extraction

Samples of the cell suspension were centrifuged for 10 min at 1,000 g. The super-

natant was discarded and the cell pellet was washed with 0.5 M ammonium formate.

The sample volume was adapted to result in a biomass dry weight of approximately

3 mg. The pellet was freeze-dried and stored at -20 ○C until extraction. The extrac-

tion of the microalgal pigments was performed according to the method proposed by

Lamers et al. (2010).

Analysis of pigment composition

The content of β-carotene, chlorophyll a and chlorophyll b in the biomass was quan-

tified by High Performance Liquid Chromatography (HPLC) (Agilent 1100, Agilent

Technology, USA), using a Reversed-Phase C18 column (Zorbax Eclipse Plus, 1.8 µm

pore size, 100 mm x 2.1 mm). An injection volume of 2 µL was used for analysis.

The elution was performed by a linear gradient from 100 % A (84 % acetonitrile, 2 %

methanol, 14 % Tris buffer (0.1 M, pH 8.0)) to 10 % A and 90 % B (68 % methanol,

32 % ethyl acetate) for 2 min followed by elution with 100 % B for 3 min at a flow

rate of 0.5 mL min−1 (Polle et al., 2001). Detection of the pigments was performed

with a diode array detector (DAD) and a fluorescence detector (FLD) in a range from

400 to 800 nm. The pigments were identified by comparing retention time and spec-
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tral properties with commercial pigment standards (Sigma Aldrich, USA). The pig-

ment content in the biomass was quantified by constructing a calibration curve with

the respective standard.

5.8 Calculation of the optical cross section of
chlorophyll a

The optical cross section of chlorophyll a was measured with a spectrophotometer

(V-670, JASCO, United States) equipped with a 60 mm integrating sphere (ISN 723,

JASCO, United States). The chlorophyll a specific absorption coefficient a∗ was de-

termined in baseline-corrected spectra at a wavelength of 664 nm. Using Eq. 5.4, the

optical cross section of chlorophyll a was calculated (Wagner et al., 2006):

a∗ =
2.3 ⋅ A(λ)

d ⋅ ρChl
(5.4)

5.9 Pulse amplitude modulation (PAM) fluorometry

The maximum photochemical quantum yield of PSII ΦII was analyzed using a Dual-

PAM 100 fluorometer (Walz, Germany). For this propose, 1.5 mL culture suspension

was dark adapted in a glass cuvette for 10 min at 26 ○C. Afterwards, the minimal

fluorescence level (F0) and maximal fluorescence level (Fm) induced by a saturating

actinic light pulse (635 nm, 2000 µmol photons m−2 s−1, 0.5 s) were determined with a

measuring radiation of 5 µmol m−2 s−1. The maximal photochemical quantum yield

of PSII was calculated according to the following equation:

ΦPSII,max =
Fm − F0

Fm
(5.5)

For the saturation pulse analysis, the actinic light intensity was manually adjusted

to the average incident light present in the reactor at the sampling time point. Prior

measurement, the cells were subjected to a dark adaptation period of 10 min where

the culture is only illuminated by the non-actinic measurement light that was used

to determine the basal chlorophyll fluorescence level. A magnetic stirrer ensured a

homogeneous distribution within the sample.

5.10 Flow cytometric analysis

All samples were diluted with cultivation medium to a cell density of approximately

1× 106 cells mL−1 prior to the analysis. The cell density was monitored in diluted

samples using volumetric counting of 200 µL cell suspension. Intrinsic cellular prop-

erties, such as cell integrity and granularity were monitored in unstained cell samples

using the light scattering properties of the biomass in the forward (FSC) and side scat-

ter (SSC) channels.
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Instrument settings, data acquisition and analysis

The analysis of the above mentioned cellular properties was carried out in a flow cy-

tometer (CyFlow Space, Sysmex-Partec, Germany) equipped with a blue argon solid

state (488 nm) excitation laser. The signal intensities were calculated from the geo-

metric mean values of the histograms and were displayed as arbitrary units (AU) per

particle for the FSC and SSC signals or as relative fluorescent units (RFU) per particle

for the different fluorescence emission channels FL1 - FL3 (see Table S1 for emission

ranges). The sample flow rate was adjusted to 1 µL s−1, which corresponds to ap-

proximately 1,000 particles/s measured in a degassed 1.5 M NaCl solution as sheath

fluid. Discrimination between the cellular signal and the background signal was per-

formed by applying a gate on the red chlorophyll fluorescence emission signal (FL3)

corresponding to the cellular signal. The algal cell populations inside the gate range

were the dominant type of event detected. Data acquisition, gating and analysis were

performed with FloMax software (Version 2.70). For further information regarding

the instrument settings and data acquisition, please see the documentation according

to the MIFlowCyt standard in the Supplementary material.

Fluorescence microscopy

The flow cytometric measurements were validated using a light and epifluorescence

microscope (Axio Imager A1, Carl Zeiss, Germany) equipped with a digital camera

system.

5.11 Analysis of macromolecular biomass
composition using FTIR spectroscopy

The determination of the microalgal biomass composition was conducted using the

Nicolet 6700 FTIR spectrometer (Thermo Scientific, Germany) equipped with a X-Y-

Autosampler (Pike Technologies, USA).

Preparation of standards and samples

For all major biomass compounds in the microalgal biomass (proteins, carbohydrates

and lipids), calibration curves with a appropriate reference substance according to

Wagner et al. (2010) were recorded. The standards used for this calibration are listed

in Table 5.2 together with their appropriate solvents. bovine serum albumine (BSA)

was used as a standard for proteins and the polysaccharide laminarin for carbohy-

drates. The TAG molecule glycerol tripalmitate was shown to be a suitable standard

for polar lipids. In initial experiments conducted with laminarin the distribution of

the standard on the plate surface was very heterogeneous and due to that the corre-

sponding peak heights for calibration had a high relative standard deviation. This

problem has been overcome by dissolving laminarin in a mixture of 6 µg µL−1 BSA in

water as shown in Table 5.2.
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Table 5.2.: Concentration of standards for FTIR spectroscopy.

Macromolecular group Substance Solvent Density range
(µg µL−1)

Proteins BSA Water 1 - 10

Carbohydrates Laminarin Water/BSA mix 4 - 14

Lipids Glycerol tripalmitate Trichloromethane 0.5 - 8

The measurement of the FTIR spectra was conducted on a 96-well microplate using

2 µL of cell suspension adjusted to a cell density 1× 108 cells mL−1 (Fig. 5.4). The

optimal cell density per spot was tested in a prior optimization step and was a trade-

off between a high signal/noise ratio and a low sample volume. In order to reduce

measurement and handling errors, 12 replicates were measured for each sampling

time point. Subsequently, the microplate was placed in a incubator chamber at 40 ○C

for 10 min to allow drying of the samples. In addition, the solvents listed in 5.2 were

applied on the plate to serve as blank as well as for baseline correction.

Figure 5.4.: FTIR plate with blank and cell suspensions dissolved in water and
trichloromethane/methanol. Row A1: Blank with water, Row B1-12: cells solved in wa-
ter, Row C1-12: cells solved in trichloromethane:methanol, Row D1-12: lipids extracted in
trichloromethane:methanol. (Courtesy of I. Harriehausen).

Device settings and measurement procedure

To acquire the FTIR spectra of the samples, the microplate was inserted into the XY

autosampler. The measurements were conducted using the following settings (32

scans per spot, spectral resolution of 4 cm−1, wavenumber region from 3000 cm−1 to

750 cm−1). The device and sample settings were set in the corresponding software

(AutoPro Control and OMNIC (Thermo Scientific, Germany). Afterwards, the spectra

were baseline-corrected manually based on the blank measurements. The analysis

of the resulting spectra was done with the TQAnalyst software (Thermo Scientific,

Germany) by examining area and relative or absolute height of the absorption peaks.
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5.12 Analysis of macromolecular biomass
composition using biochemical assays

Protein determination using the Lowry method

The protein determination was conducted according to the protocol described by

(Lowry et al., 1951). Briefly, the following solutions were prepared: solvent A (1 M

NaOH), solvent B (5 % Na2CO3), solvent C (0.5 % CuSO4 and 1 % sodium-potassium-

tartrate) and solvent D (mixture of 2 mL solvent C and 50 mL solvent B). Solvent E

was the Folins reagent. Subsequently, 1-2 mg algal dry mass were solved in 0.5 mL of

bidistilled water and 0.5 mL solvent A. The mixture was heated at 60 ○C for 10 min.

After cooling the solution down to room temperature, 2.5 mL of solvent D was added

and the mixture incubated for additional 10 min at room temperature. Afterwards,

0.5 mL of solvent E was added and followed by 15 min incubation at room temper-

ature. Finally, the formation of the blue complex (due the reaction copper ions with

the peptide bonds) can be determined by measuring the absorption at 595 nm using

a UV/VIS spectrophotometer (Specord S600, Analytik Jena, Germany). The protein

amount in the sample was calculated based on a calibration curve recorded with BSA.

Carbohydrate determination using the phenol-sulphuric ac id
method

The total carbohydrate fraction in the biomass was determined using the phenol-

sulfuric acid method. Therefore, 0.5 - 1 mg dry biomass were dissolved in 400 µL

bidistilled water. Afterwards, 400 µL of 90 % phenol solution was added to the so-

lution. Subsequently, 2 mL concentrated sulphuric acid was added and the mixture

was incubated for 30 min. The resulting absorption at 488 nm was determined using

a UV/VIS spectrophotometer (Specord S600, Analytik Jena, Germany). The carbo-

hydrate amount in the sample was calculated based on a calibration curve recorded

with starch.

Lipid determination using the soxhlet extraction

The lipid content was determined using the soxhlet extraction based on a protocol

described by Wang and Weller (2006). Prior to extraction, 5 - 10 g dry algal biomass

was placed in a thimbleholder. Subsequently, 200 mL of n-hexane was filled into a

pre-weighted solvent flask. The flask was then heated to 70 ○C for 5 h. Afterwards,

the n-hexane was vaporized at 30 ○C and at 335 mbar in a rotary evaporator (Büchi,

Switzerland) at 85 rpm until all n-hexane was evaporated. The algal lipid extract was

dried in a climate chamber MKF 240 (Binder, Germany) at 70 ○C overnight. Finally,

the weight of lipid extract was determined on a balance.
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5.13 Calculation of biomass and β-carotene yield on
absorbed light

For the evaluation of the process performance, the biomass and β-carotene density

as well as the volumetric productivity of biomass (g dw L−1 d−1) and β-carotene (mg

dw L−1 d−1) were calculated as a function of cultivation time:

Pav,P =
ρP(t) − ρP(0)

t
(5.6)

where t represent the cultivation time (d) and ρP is the product density (g dw L−1 or

mg dw L−1). Furthermore, the time-averaged yields of biomass YX,E and β-carotene

on absorbed light energy Yβ,E were calculated by dividing the time-averaged produc-

tivity (mg L−1 d−1) by the volumetric photon absorption rate of the evaluated time

period (mol PAR photons L−1 d−1) according to Mulders et al. (2014):

YP,E =
Pav,P

Eabs ⋅ sR

VR

(5.7)

where Eabs is the absorbed light (mol PAR photons m−2 d−1), sR is the reactor surface

(m2) and VR is the reactor volume (L).





Chapter 6

Analysis of abiotic stress response
during carotenogenesis

Although the large scale production of natural β-carotene in D. salina is of high indus-

trial relevance, a systematic and detailed analysis of cellular features corresponding

to its physiological state during storage molecule accumulation under abiotic stress

conditions has not been analyzed in detail. The goal of this Chapter is to systemati-

cally explore the influence of abiotic stress on important bioprocess parameters, e.g.

growth parameters, metabolic stress indicators, morphological properties and pro-

ductivity in batch cultures of D. salina in a fully controlled flat-plate bioreactor setup.

6.1 Flow cytometric characterization of the cell
population

D. salina was cultivated in the INFORS flat-plate photobioreactor system in batch

mode under three different cultivation conditions (Table 6.1). The adaptational abi-

otic stress response and their influence on the bioprocess performance represented by

the biomass and β-carotene yield on absorbed light was analyzed under the presence

of high light and nutrient stress.

Table 6.1.: Overview of experimental conditions for batch cultures of D. salina under abiotic
stress conditions.

Reactor system Condition Abbr. Light intensity per biomass
(µmol m−2 s−1 g−1 dw L)

Extracellular nitrogen
density (g N L−1)

Infors Labfors Lux Low light LL 300 0.51

High light HL 3000 0.51

High light and
nitrogen deprivation

HL-ND 3000 0.05
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6.1.1. Cell growth

The most important parameter for growth monitoring is the determination of the

cell density. Absolute cell counting with a flow cytometer is a rapid and statistically

reliable method to monitor the number of cells in a culture.

The cell densities of the batch cultures were monitored until the early stationary

growth phase was reached using true volumetric cell counting in samples diluted

to approximately 1× 106 cells mL−1. The forward scatter signal collected from 488 nm

excitation was corrected for the non-algal background by applying a manual gate on

the chlorophyll signal for all analyzed samples. Under control conditions, the algal

cell population is the dominant type of event (>90 %) detected compared to the back-

ground signal.

 -carotene
P

ig
m

en
t f

ra
ct

io
n

(g
 g

-1
 d

w
)

0.02

0.04

0.06

P
ig

m
en

t f
ra

ct
io

n
(g

 g
-1
 d

w
)

LL

HL-ND

HL

LL

HL

HL-ND

0 3 6 9 12 15 18

0.02

0.04

0.06

0.08

P
ig

m
en

t f
ra

ct
io

n
(g

 g
-1
 d

w
)

 

 

Figure 6.1.: Effect of abiotic stress type on the cell growth and pigment composition of
D. salina. a) Cell density growth curves and b) Mass fractions of chlorophyll a, b and β-
carotene for the three investigated cultivation conditions; LL - low light, HL - high light,
HL-ND - high light and nitrogen depletion. The symbols represent the mean values and the
error bars correspond to the deviation from the average value of duplicate measurements.

The time series for the biomass growth is shown in Fig. 6.1a. Comparing all three

cultivation conditions, the low light culture (LL) reached the highest final cell density,

1.4× 107 cells mL−1. The final cell density reached in the stationary growth phase for

the cultivation under high light (HL) was only slightly lower compared to the LL con-
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ditions, namely 8.4× 106 cells mL−1. The stationary cell density under high light and

nitrogen depletion (HL-ND) was 1.3× 106 cells mL−1 and 10 times lower compared to

the LL conditions (Fig. 6.1a). All cultures had an initial lag phase of approximately

two days until they entered the exponential growth phase. Depending on the cul-

tivation conditions, the early stationary phase was reached at different time points.

In the HL-ND culture, the stationary growth phase was reached at day 6, three days

after the depletion of the extracellular nitrogen source. The nitrogen-replete cultures

reached the stationary phase at day 13 and 14 for the LL and HL culture, respectively.

Since the light intensity of the reactor was adjusted to the biomass growth (accord-

ing to the specifications in Table 6.1), the determination of the extracellular nitrogen

density confirmed that the growth under all three conditions was always nutrient-

limited. In terms of biomass density on dry weight basis, the LL cultivation resulted

in 7.2 g dw L−1, the HL cultivation in 6.5 g dw L−1 and the HL-ND in 1.1 g dw L−1

(Fig. 6.2a).
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Figure 6.2.: Effect of abiotic stress type on the a) biomass density on dry weight basis and
b) β-carotene density for the three investigated cultivation conditions.

6.1.2. Abiotic stress related adaptation of pigment conten t

Fig. 6.1b illustrates the time course of the pigments β-carotene, chlorophyll a and b

as a function of cultivation time. The presence of high light conditions (HL, HL-ND)

led to an instantaneous accumulation of light-stress induced β-carotene (Fig. 6.1b).

At day 1 after light-stress induction the β-carotene fraction was already 3 to 4 times

higher compared to the basal level. The highest β-carotene fraction has been detected

under HL-ND conditions. When nutrient limitation started at day 3 after inoculation,

a β-carotene level of 8.0 % (w/w) at day 8 was achieved. The maximal β-carotene frac-

tion under HL conditions was achieved at day 3 with 4.3 % (w/w) and was constantly
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high until the fixed light stress of 3000 µmol m−2 s−1 g−1 dw L could be maintained.

At day 7, the physical limitation of the light panel with a maximum light intensity

of 3000 µmol m−2 s−1 has been reached since the biomass density achieved 1 g dw

L−1. Due to the decreased light stress, the β-carotene fraction lowered from 3.0 to

1.6 % (w/w). When the nutrient starvation of the HL culture occurred the β-carotene

fraction increased again to 2.3 % (w/w) in the stationary phase. Under LL conditions,

the β-carotene fraction was low and at its basal level of 0.7 % (w/w) under nitrogen-

replete conditions. When nitrogen becomes limited at day 11, the β-carotene fraction

increased to 2.6 % (w/w) in the stationary phase which is comparable to the level

obtained in the HL culture. Although the β-carotene fractions under LL and HL con-

ditions are low compared to the HL-ND cultivations, the β-carotene density is signif-

icantly higher due to the high biomass densities achieved under this conditions. The

maximum β-carotene density was reached under LL conditions with 175 mg L−1, fol-

lowed by 120 mg L−1 under HL conditions and 76 mg L−1 under HL-ND conditions

(Fig. 6.2b).
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Figure 6.3.: Effect of abiotic stress type on the a) chlorophyll a/b ratio and b) β-
carotene/chlorophyll ratio.

The stock cultures used as inoculum for batch cultivations were in late exponential

phase and after inoculation they photoacclimate to the light conditions in the flat-

plate photobioreactor. Under all three cultivation conditions (LL, HL and HL-ND),

the amount of absorbed light energy in the initial cultivation phase is higher than

the energy required for growth. This imbalance led to a reduction in the chlorophyll

pigment fraction due to photoacclimation processes (Fig. 6.1b). Since, chlorophyll b

is located in the upper layer of the antenna complex the degradation occurs faster

compared to chlorophyll a, especially under high light conditions. During high light

stress and nutrient depletion (HL-ND) the rate of chlorophyll b degradation is higher

compared to that of chlorophyll a leading to a higher chlorophyll a/b ratio (Fig. 6.3a).

Under low light conditions, the chlorophyll a/b ratio remains high, which is in agree-
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ment with previous studies from Webb and Melis (1995). The simultaneous reduction

in the chlorophyll fraction and accumulation of β-carotene led to a significant increase

in the carotene/chlorophyll ratio (Fig. 6.3b).

6.1.3. Formation of carotenoid-containing lipid globules led to
increased granularity of the cells

The accumulation of neutral lipid globules is a prerequisite for β-carotene accumu-

lation. During the environmental stress response, an increased intracellular granu-

larity has been observed in microalgal cultures making this property a potentially

useful marker for the physiological state of a cell (Hyka et al., 2013). The presence

of abiotic stress often leads to the accumulation of storage molecules such as starch,

neutral lipids and β-carotene, resulting in a more complex internal structure and a

larger proportion of scattered light. The variations in the cell granularity were ana-

lyzed using the geometric mean value of the side scatter signal in the flow cytometric

analysis. The dynamics of cell granularity correlate with the β-carotene accumulation

in a linear manner (Fig. 6.4). Upon exposure to abiotic stress an increase of the cell

granularity up to 4-fold compared to the basal level was detected. This finding il-

lustrates that the formation of neutral lipid globules results in more complex internal

structure of the cell detected by a higher proportion of side-scattered light.
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Figure 6.4.: Relationship between cell granularity (SSC) and β-carotene fraction in the
biomass.

6.2 Biotechnological parameters

The most productive cultivation conditions in terms of volumetric biomass produc-

tivity was the LL culture with a maximal value of 0.56 g dw L−1 d−1 followed by the

HL culture with 0.45 g dw L−1 d−1, whereas the HL-ND culture reached only 0.15 g

dw L−1 d−1 (Fig. 6.5a). Especially the pronounced photoinhibitory effects on growth

under high light conditions led to the lowered volumetric productivities compared

to the light limiting conditions. For the biomass yield on absorbed light energy YX,E

the LL culture clearly outperforms the high light cultures (HL and HL-ND). Due to

the lower incident light on biomass ratio the highest YX,E of 0.12 g dw mol−1 photons
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was calculated, whereas the HL and HL-ND cultures had only 0.016 and 0.010 g dw

mol−1 photons (Fig. 6.5c).

The highest volumetric β-carotene productivity has been reached in the HL-ND cul-

ture with 12.8 mg L−1 d−1, followed by the LL culture with 12.0 mg L−1 d−1 and the

HL culture with 8.3 mg L−1 d−1 (Fig. 6.5b). Although the β-carotene density under

HL-ND conditions is significantly lower compared to the LL and HL conditions, the

shorter batch time of only 10 days led to the highest volumetric productivity. The

β-carotene yield on absorbed light reached its maximum value in the initial phase

of the light-stressed culture (Fig. 6.5d), namely 2.1 and 1.3 mg mol−1 photons. The

β-carotene yield on absorbed light for the LL culture was almost constant during the

whole cultivation period at a value around 0.6 mg mol−1 photons.

The yield of secondary carotenoids on absorbed photons is an important process pa-

rameter in order to estimate the performance and to optimize large scale systems,

but has only rarely been addressed in previous studies. Mulders et al. (2014) pub-

lished a comparable secondary carotenoid yield on absorbed light of 2.75 mg mol−1

photons for Chlorella zofingiensis cultivated under nitrogen-depleted conditions. The

detailed studies performed by Lamers et al. (2010) and Lamers et al. (2012) cultivat-

ing D. salina under high light conditions (1400 µmol photons m−2 s−1 incident light)

as well as under low light (200 µmol photons m−2 s−1 incident light) and nutrient-

limited conditions in a turbidostat achieved higher volumetric β-carotene productiv-

ities (37 mg L−1 d−1 under HL conditions, 18.5 mg L−1 d−1 under LL conditions) and

β-carotene yield on light (4.6 mg mol−1 under HL conditions, 16.2 mg mol−1 under

LL conditions) compared to this study using batch operation mode. This outcome

clearly indicates that innovative process design approaches have a large potential to

optimize the performance of biotechnological production systems.
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Figure 6.5.: Effect of abiotic stress type on a) the biomass productivity on dry weight basis,
b) the β-carotene productivity, c) the time-averaged biomass yield on absorbed light and d)
the time-averaged β-carotene yield on absorbed light.



6.3. Photosynthetic performance 49

Table 6.2.: Performance of the batch cultivations.

Property Unit LL HL HL-ND

Max. biomass density g dw L−1 7.22 6.55 1.02
Max. biomass productivity g L−1 d−1 0.55 0.45 0.15
Max. β-carotene density mg L−1 175.18 120.04 76.42
Max. β-carotene fraction mg g−1 dw 26.86 43.28 80.30
Max. β-carotene productivity mg L−1 d−1 12.05 7.90 12.88

6.3 Photosynthetic performance

In order to regulate their photosynthesis, algae have developed mechanisms to adapt

to fluctuating light conditions by regulating light absorption and efficiency of light

conversion into chemical energy. When comparing the content of light-harvesting

pigments with the photosynthetic light curve, conclusions on the physiological

changes in different light-adapted states can be drawn. For this purpose, addi-

tional cultivations in batch operation mode under static light conditions (constant

incident light intensity) were carried out as shown in Table 6.3.

Table 6.3.: Overview of experimental conditions for PAM and FTIR measurements.

Reactor system Condition Abbr. Light intensity
(µmol m−2 s−1)

Extracellular nitrogen
density (g N L−1)

PSI FMT-150 Low light LL 180 0.52

High light HL 1500 0.49

Infors Labfors Lux High light and
nitrogen deprivation

HL-ND 1500 0.12

6.3.1. Effective PSII quantum yield in low- and high-light
acclimated cells

The effective PSII quantum yield (ΦPSII,eff) is a qualitative measure for efficiency at

which the incident light is absorbed and used for photochemistry. The photon up-

take rate correlates with the number of photosystems and the efficiency at which

they operate. Consequently, under high irradiance conditions the photosystems op-

erate at low efficiency. Fig. 6.6 shows the dependency of the effective PSII quantum

yield on the average light intensity. In both, the low light and high light acclimated

cells, the initial effective quantum yield was around 0.55 which is in agreement with

Herrmann et al. (1997). With increasing illumination, the fraction of photons used

for photochemistry declined linearly for low- and high-light acclimated cells. At

1300 µmol photons m−2 s−1, the effective quantum yield reached a constant value

of 0.1.

6.3.2. Electron transport rate in low- and high-light acclim ated
cells

The relative electron transport rate (ETR) is an indicator for the photosynthetic ca-

pacity of the cells and therefore the ability to provide energy for cell growth and

metabolism. It is calculated as described in Eq. 3.3 by multiplication of the average
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Figure 6.6.: Relationship between effective quantum yield of PSII and average light inten-
sity for cells acclimated to low-light and high-light conditions.

light intensity with the effective PSII quantum yield and the default ETR factor of 0.42

(Schreiber et al., 2011). The default ETR factor originates from a ”model” leaf and de-

scribes the fraction of the incident light intensity in the PAR region that is absorbed in

PSII. The value of 0.42 originates from a study of Bjorkman and Demmig (1987) where

50 % of the PAR have been distributed to PSII and 84 % of the PAR was absorbed by

photosynthetic pigments in a standard leaf (Schreiber et al., 2011). Though the calcu-

lated value for the relative ETR is only an estimate without detailed knowledge about

of PSII content and the PSII absorption cross-section (Schreiber et al., 2011). Thereby,

the relative ETR does not dependent on the chlorophyll content of the sample but

since the ETR curves were recorded with the same light source and the same wave-

length of actinic light they are still comparable to each other.
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Figure 6.7.: Relationship between relative electron transport rate and average light intensity
for cells acclimated to low-light and high-light conditions.

The relationship between relative ETR and average light intensity is shown in Fig. 6.7.

As already illustrated in Fig. 4.2, the curve shows three characteristic phases (light

limitation, light saturation and photoinhibition). Under both conditions (low- and

high-light acclimated cells), the ETR increased linearly until a light intensity of

550 µmol photons m−2 s−1 was reached. In this light regime, the light intensity
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directly correlates with the rate of photosynthesis. Both cultures reached a maxi-

mal ETR value of 6.9 to 8.3 µmol electrons m−2 s−1. The light saturation range for

the low light-acclimated culture was from 550 - 860 µmol photons m−2 s−1, whereas

the high light-acclimated culture showed a prolonged light saturation phase from

550 - 1070 µmol photons m−2 s−1. The light saturation phase was followed by a pho-

toinhibition phase where the ETR declined to about 4 µmol electrons m−2 s−1 at

2200 µmol photons m−2 s−1.

6.3.3. Photosynthetic capacities under abiotic stress cond itions

Low light conditions

Fig. 6.8 illustrates how the photosynthetic performance of D. salina changes for cul-

tivation under low light conditions presented by the time course of the three photo-

synthetic parameters: operating efficiency of the photosystem II (ΦPSII,eff), maximum

quantum yield of PSII (ΦPSII,max) and non-photochemical quenching (NPQ). The time

course for maximum and effective quantum yield showed comparable trends over

the whole cultivation period as both increase from 0.42 to 0.67. This indicates that the

photochemistry works effective under LL conditions since effective and maximum

quantum yield of PSII show only low deviations from each other. In addition, the

value for NPQ remained at a relatively low level over the cultivation period, namely

0.2 from day 1 to day 3 and decreased to 0.1 from day 4 until the end of the cultiva-

tion period. This is in agreement with the trends observed for ΦPSII,eff and ΦPSII,max

as under conditions were photosynthesis works effectively, dissipation mechanisms

such as NPQ are inactive. However, the lower maximum quantum yield of 0.42 in

the initial cultivation stage illustrates the photosynthetic performance was not fully

exploited at this time. Possible explanations for the lowered ΦPSII,eff could be nutrient

limitations in the inoculum culture which led to an impaired photosynthetic poten-

tial. Moreover, the turbulent flow regime in the flat plate reactor might have induced

a lag phase in the culture affecting metabolic activity and growth after inoculation.

After recoverage, the quantum yield remained high until the end of the cultivation

and reached the maximal values for the quantum yield of 0.65 reported for D. salina

by Herrmann et al. (1997).

High light conditions

In comparison to the LL cultivation, the photosynthetic parameters for HL cultiva-

tion show pronounced fluctuations as illustrated in Fig. 6.9. Effective and maximum

quantum yield of PSII was at 0.6 in the initial cultivation phase and close to its max-

imal value determined under LL conditions and reported by Herrmann et al. (1997).

The NPQ value for inoculum was 0.23 and is low as the stock culture was grown

under LL conditions. In the course of the cultivation when the light stress becomes

persistent the decrease of the effective quantum yield to 0.15 - 0.3 is accompanied by a

simultaneous increase of the NPQ from 0.23 to 1.4. In the early exponential phase, the

maximum quantum yield decline in the same way as observed for the effective quan-

tum yield. However from day 4 on, the maximal quantum yield increased again and

reached its maximal value again at day 5. The drop in the quantum yield under HL

conditions was caused by two adaptational process: photoinhibition and photoac-
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Figure 6.8.: Photosynthetic performance expressed as maximum (ΦPSII,max) and effective
quantum yield of PSII (ΦPSII,eff) as well as non-photochemical quenching (NPQ) under LL
conditions in correlation to the incident light per cell.

climation as already observed for D. salina by Herrmann et al. (1997) and Ghetti et al.

(1999). First, the presence of over-saturating light in the culture led to photoinhibitory

effects. Secondly, the cell adjusted its pigment composition in the antenna by degra-

dation of chlorophyll pigments and truncates its size, as explained in Section 2.2 and

observed by Neidhardt et al. (1998). As a consequence, photon absorption and pho-

tochemistry work less efficient protecting the cell from oxidative stress. To further

increase the photoprotective response, the accumulation of carotenoids assist the ab-

sorption of oversaturating light and the quenching of ROS which explains the contin-

uous increase of the NPQ value over the cultivation time. On day 1 after inoculation

the NPQ value was still low although the light stress was already pronounced lead-

ing to overexcited chlorophyll states in the photosystem as explained in Section 2.1.

This observation could be attributed to the presence to the xanthophyll cycle where

an epoxidation mechanisms leads to the conversion of violaxanthin to zeaxanthin,

which is an alternative dissipative path compared of non-photochemical quenching

(see Section 2.1). The xanthophyll cycle acts on the time scale of minutes and its role

in D. salina was investigated in detail by Jin et al. (2003). The simultaneous acting of

xanthophyll cycle and non-photochemical quenching are effective in photoprotection

of D. salina as the recovery of the maximum PSII quantum yield to its maximal value

demonstrated.

High light and nutrient-depleted conditions

The observations made for the cultivation under HL-ND conditions are similar to

the HL conditions to a large degree. The maximal quantum yield of the inoculum

is 0.62 and close to the maximal literature value (Herrmann et al., 1997). The effec-

tive quantum yield was 0.56 and just slightly lower than the maximal quantum yield.

One day after induction of the light stress, maximal as well as effective PSII quantum

yield dropped significantly to 0.38 and 0.29. In the further course of the cultivation,

the effective quantum yield remains at a stable level of 0.26 - 0.30, whereas the maxi-

mum quantum yield declined slightly to 0.36 until day 2 and started to recover to 0.48

on day 4. When the extracellular nitrogen in the medium was completely depleted,
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Figure 6.9.: Photosynthetic performance expressed as maximum (ΦPSII,max) and effective
quantum yield of PSII (ΦPSII,eff) as well as non-photochemical quenching (NPQ) under HL
conditions in correlation to the incident light per cell.

the maximum quantum yield dropped again to 0.29 in the stationary phase of cell

growth. Except of day 5, for the effective and maximum quantum yield showed simi-

lar trends as under HL conditions. In contrast to the HL cultivation, no significant rise

in the NPQ level was detected under HL-ND conditions. The initial NPQ value was

with 0.43 already twice as high as under LL or HL conditions. Surprisingly, the pres-

ence of light stress does not correlate with an increasing NPQ value. It rather follows

the same tendency as observed for the maximum quantum yield. The signal-to-noise

ratio for the PAM measurement under HL-ND as relatively low compared to the cul-

tivations under nitrogen-replete conditions due to the very low chlorophyll content

in the biomass. Since the measuring principle of PAM is the emission of chlorophyll

fluorescence, the detection in diluted cell suspension with low chlorophyll content

is more challenging and error-prone than in biomass with higher chlorophyll con-

tent. However, the observed behavior should still adequately reflect the changes in

photosynthetic performance.
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Figure 6.10.: Photosynthetic performance expressed as maximum (ΦPSII,max) and effective
quantum yield of PSII (ΦPSII,eff) as well as non-photochemical quenching (NPQ) under
HL-ND conditions in correlation to the incident light per cell.
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6.4 Macromolecular biomass composition

The content of high-value products, such as carotenoids or polyunsaturated fatty

acids, in the biomass is typically below 10 % and a large fraction of residual biomass

mainly composed out of carbohydrates and proteins remains unused. In contrast, the

economic feasibility of microalgal processes is often difficult to achieve because of

energy and cost-intensive harvesting and extraction steps. Therefore, microalgal pro-

cess design requires tailor-made biorefinery approach to valorize most of the biomass

fractions. An important prerequisite is the fast characterization of the macromolecu-

lar biomass composition since conventional biochemical assays are time-consuming

and often require large sample amounts. Therefore, the following section presents

infrared spectroscopy as a fast and reliable method to determine the macromolecular

biomass composition of D. salina under various abiotic stress conditions.

Algae biomass is mainly composed out of three biomacromolecules; proteins, carbo-

hydrates as well as polar and apolar lipids. Commonly their amount in the biomass

is quantified by single biochemical methods (see Chapter 5). FTIR spectroscopy is

able to analyze several IR-active compounds in a multi-component mixture (such as

biomass) in one sample and in a short time (see Section 3.3). In the following section,

the applicability of FTIR spectroscopy to biomass composition analysis of D. salina is

discussed.

6.4.1. Optimization and validation of FTIR spectroscopy fo r
analysis of biomass composition

The main requirement for a standard substance is that it possesses the same character-

istic atomic bonds and consequently peaks at the same characteristic wavenumber, as

the macromolecule it represents. In Table 3.3, the most important atomic bonds that

were confirmed by Giordano et al. (2001) and Liu et al. (2013) are shown with the

characteristic wavenumbers at which they absorb and the macromolecule they are

assigned to. Previous research by Wagner et al. (2010) demonstrated the applicability

of BSA as protein standard, glycerol tripalmitate for lipids and laminarin for carbohy-

drates for microalgae biomass. Therefore, absorption spectra for the aforementioned

standards were collected and depicted in Fig. 6.11. The absorption spectra of BSA,

laminarin and glycerol tripalmitate agree in wavenumber and relative height of the

characteristic absorption peaks with Wagner et al. (2010). A comparison of the char-

acteristic wavenumbers is shown in Table 6.4.

Table 6.4.: Characteristic wavenumbers identified for D. salina in this work compared to
Wagner et al. (2010).

Macromolecular group Substance Wavenumber (cm−1)
in this study

Wavenumber (cm−1)
by Wagner et al. (2010)

Carbohydrates Laminarin 1157 1150

Proteins BSA 1545 1545

Lipids Glycerol tripalmitate 1736 1740

The protein standard BSA showed two major peaks corresponding to the amide I and

II bands at 1545 and 1658 cm−1. Glycerol tripalmitate has been proven to be an appro-

priate standard for lipids due to its characteristic peaks at 2849 and 2915 cm−1, which
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can be assigned to the C-H bond of saturated carbons and at 1736 cm−1 for symmetric

C=O stretch of membrane lipids and fatty acids. The polysaccharide laminarin con-

sists of 23 - 25 glucose units. Its absorption spectrum is comparable to glucose in sev-

eral wavenumber regions, e.g in the characteristic area for the symmetric C-O stretch

of monosaccharides from 1100 - 1000 cm−1. Beside, laminarin also show characteris-

tic bands in the region of 1200 - 1100 cm−1 which can be assigned to the symmetric

C-O-C stretch of polysaccharides. The laminarin absorption spectrum exhibits a local

maximum at 1157 cm−1.
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Figure 6.11.: FTIR absorption spectra for the three macromolecular standards: a) BSA, b)
laminarin and c) glycerol tripalmitate as well as the algal cells diluted in d) water and e) a
trichloromethane:methanol mixture.

In order to evaluate whether the above mentioned standards are appropriate to en-

able a quantification of Dunaliella biomass, the characteristic peaks identified in Table

6.4 were tested for various cell densities of D. salina ranging from 0.5 - 1× 108 cells

mL−1 grown under low light and nutrient-replete conditions (see Table 6.3 for cul-

tivation conditions). Fig. 6.11 shows that all characteristic peaks identified in Table

6.4 for the chosen macromolecular standards were also present in the cellular spectra.

However, as already found by Wagner et al. (2010) there is a spectral overlap with

the amide I band at 1650 cm−1 and the symmetric C=O stretch at 1736 cm−1 which is

characteristic for fatty acids.

Subsequently, a calibration curve for the selected standards was constructed to en-

able a quantification of the cellular macromolecule content based on the height of the

characteristic peaks listed in Table 6.4. The coefficient of determination (R2) was 0.99

for BSA and glycerol tripalmitate and 0.98 for laminarin which indicates a good linear

correlation between the peak height and the molecular density in the sample.
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6.4.2. Application of FTIR spectrometry for relative
macromolecular changes under abiotic stress

Based on the identified characteristic peaks (see Table 6.4), the macromolecular com-

position of D. salina under abiotic stress conditions was investigated (see Table 6.3 for

cultivation conditions). Fig. 6.12 depicts the changes in biomass composition when

cultivated under LL, HL and HL-ND conditions compared to the inoculum. A visual

comparison of the peak heights of the at the characteristic wavenumbers already pro-

vide insights about the relative changes in the biomacromolecules. The results of the

macromolecular ratios calculated for the stationary phase compared to the inoculum

grown under low light and nutrient-replete conditions is shown in Fig. 6.13.
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Figure 6.12.: FTIR absorption spectra for the three macromolecular standards: a) BSA, b)
laminarin and c) glycerol tripalmitate) as well as algal cells of the inoculum and stationary
phase cultivated under the following conditions: d) LL, e) HL and f) HL-ND.

It is clearly visible that the macromolecular composition under nitrogen-replete con-

ditions (LL and HL) showed only minor changes compared to the inoculum. Only

under prolonged nutrient-starvation a significant effect on the biomass composition

was detected (Fig. 6.12). In the HL-ND cultivation, the peak height of the amide-I

band at 1650 cm−1 (symmetric C=O stretch) corresponding to the protein fraction de-

creased significantly. This is in line with current knowledge where biochemical anal-

ysis of D. tertiolecta by Fabregas et al. (1989) already revealed a positive correlation

between nitrate density in the medium and protein fraction in the biomass. Addi-

tionally, an unknown peak was detected between the amide I and amide II peak at

1600 cm−1. According to Günzler and Gremlich (2003), the strong absorption at this

wavenumber is (among others) characteristic for the carbon double bond (C=C) of

aromatic compounds. Another explanation for the peak at 1600 cm−1 could be a struc-

tural change in the protein structure as a consequence of prolonged nitrogen starva-

tion. Günzler and Gremlich (2003) names a substitution of a neighboring atom of the

amide band or a mesomeric effects as a possible reason for the peak shift as already

shown in Halverson et al. (1991), where a shift of the amide I band from 1640 cm−1 to

1610 cm−1 is caused by an isotopic replacement of a C atom in an anti-parallel β-sheet.
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 Carbohydrates:Lipids

Figure 6.13.: Macromolecular ratios of carbohydrates, protein and lipids in the inoculum
and stationary phase of batch cultivations.

Based on the peak heights of the characteristic peaks, the macromolecular ratios

of protein:carbohydrate, protein:lipid and carbohydrate:lipid were calculated and

shown in Fig. 6.13. The protein:carbohydrate ratio ranges from 1.23 in the inoculum

to 2.3 under LL conditions. The higher protein:carbohydrate ratio under LL condi-

tions was caused by a higher protein fraction and lower carbohydrate fraction in the

stationary phase compared to the inoculum. The protein:lipid ratio decreases under

all three cultivation conditions from 4.14 to 3.20 under HL-ND conditions indicat-

ing a slightly higher lipid fraction in the stationary phase compared to the inoculum.

The carbohydrate:lipid fraction indicates that the highest fraction was achieved in

the inoculum with a ratio of 3.36, where the starch is the preferred short term stor-

age energy sink which provide energy for cell growth and division. In the stationary

cultures, the carbohydrate:lipid ratio increases with increasing abiotic stress. The LL

culture had a ratio of 1.59, the HL culture of 1.74 and the HL-ND culture 2.47. The

relatively high carbohydrate:lipid ratio under HL-ND conditions indicates that un-

der nutrient depletion where protein synthesis is strongly impaired starch is a good

energy sink beside carotenoid-containing lipid globules.

6.4.3. Comparison of quantitative biomass analysis using F TIR
spectroscopy with conventional biochemical methods

After proving that FTIR spectroscopy is able to determine relative changes in biomacro-

molecules under abiotic stress, its ability to provide quantitative information about

biomass composition was investigated. Therefore, the biomass was analyzed with

conventional biochemical methods for protein, carbohydrate and lipid determination

and compared with FTIR spectroscopy calibration based on peak height. The results

of this comparison are shown in Table 6.5. The biochemical biomass analysis was

Table 6.5.: Comparison of quantitative biomass analysis using FTIR spectroscopy with con-
ventional biochemical methods.

Macromolecular group Protein
(% w/w)

Carbohydrates (Starch)
(% w/w)

Lipids
(% w/w)

Biochemical methods 43 4 9

FTIR spectroscopy 38 3 7

conducted with conventional assays as described in Section 5.12 and the results are
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depicted in Table 6.5. Additionally, the biomass was measured by FTIR spectroscopy

and a calibration curve with the above mentioned standards was measured. The

quantification of the cellular macromolecule content was calculated based on the

peak height. The protein determination revealed a close match between the values

for the Lowry method and FTIR method, namely 43 % (w/w) and 38 %. The same

applies to the carbohydrate determination, where almost comparable values for the

phenol-sulfric acid method (3 % (w/w) of starch) and the FTIR method (4 % (w/w) of

polysaccharides) were measured. Finally, the results for the lipid-extracted biomass

analyzed with conventional soxhlet extraction with a lipid content of 9 % (w/w) con-

firmed the value of 7 % lipids measured by FTIR spectroscopy. When comparing the

results of biochemical assays with FTIR spectroscopy it is evident that there is only

a minor deviation between the two methods and FTIR spectroscopy is well suited to

evaluate microalgal biomass composition in a fast and reliable way.



Chapter 7

Dynamic-kinetic modeling

Mathematical models can help identifying new details of the metabolism for eco-

nomically feasible production of added-value compounds. Detailed knowledge from

laboratory scale cultivations can support operating and controlling large-scale culti-

vation systems. Here, a reliable mathematical model is an important prerequisite for

understanding effects of various cultivation conditions on growth and pigmentation.

Some successful approaches to model microalgal metabolism on the basis of nutrient

uptake and light utilization linked to biomass growth and storage molecule accumu-

lation have been reported in literature. The majority of published microalgal growth

models consist of ODEs to describe the dynamic changes in the biomass in a kinetic

manner for different green microalgal species (Mairet et al., 2011; Packer et al., 2011;

Quinn et al., 2011; Klok et al., 2013; Adesanya et al., 2014).

These kind of models offer the advantage of providing a flexible platform for includ-

ing biochemical knowledge of the metabolism and provide the opportunity to predict

cellular properties for different cultivation scenarios and operation modes. This is of

particular advantage since it allows for extrapolation inside or even outside of the ex-

perimental region and reduces the number of further time-consuming experiments.

The crucial issue of predictivity covers two important aspects in mathematical model-

ing. First, a valid model structure based on mechanistic model equations formulated

with biochemical knowledge of the system and secondly well determined and identi-

fiable model parameters. Only few of the previously published studies addressed the

importance of parameter identifiability on predictivity and model state uncertainties.

This is a crucial modeling task, since depending on the detail of the proposed equa-

tion system, all presented growth models share a high number of model parameters

needed to describe the complex phenomena of nutrient uptake and light adaption

finally leading to biomass growth and product formation. Parameter identifiability

and related predictive power of the model is a crucial issue towards model-based ap-

plication for large scale cultivation scenarios and robust microalgal process design as

it analyzes the reliability of the parameter estimates and thus model predictions in

the light of the given data (Muñoz-Tamayo et al., 2014).

This chapter aims at formulating a predictive model for growth and pigmentation of

D. salina that includes the utilization of light and nitrogen as the primary influencing

factors. A special focus was directed towards a potential parameter reduction, the
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estimation of the model parameters from measured data points and the analysis of

their identifiability.

Table 7.1.: Summary of experimental conditions of D. salina cultivated in batch mode used
to calibrate the dynamic-kinetic growth model.

Purpose Reactor Abbr. Light intensity per biomass
(µmol m−2 s−1 g−1 dw L)

Duration of
lag phase (d)

Extracellular nitrogen
density (g N L−1)

Model calibration INFORS LL 408 3 0.51

HL 2124 4 0.51

HL-ND 3870 1 0.05

Model validation LL-ND 372 1 0.04

LL-NL 372 2 0.09

7.1 Model formulation

In the following section, the important factors affecting microalgal growth are briefly

described. After that the essential assumptions and equations of the model to provide

all necessary information for understanding and assessing the simulation results are

given. The model equations formulated to describe the state variables for the cellular

processes in D. salina during growth are subdivided into two categories. Firstly, the

dynamic changes in the state variables are represented by ordinary differential equa-

tions. Secondly, the kinetic expressions and microalgal biomass characteristics are

expressed by algebraic equations. The presented dynamic model equations consider

the following five state variables:

- Biomass density ρX (g dw m−3)

- Extracellular nitrogen density ρN (g N m−3)

- Intracellular nitrogen fraction ωN (g N g−1 dw)

- Chlorophyll fraction ωChl (g Chl g−1 dw)

- β-carotene fraction ωCar (g Car g−1 dw)

7.1.1. Light attenuation in the photobioreactor

The absorption and scattering of light by microalgal biomass are major determinants

for the efficiency of growth in photosynthetic cultivation systems. Therefore, it is

important to describe the light attenuation in the photobioreactor in an appropriate

manner. The amount of absorbed light is mainly determined by the fraction of photo-

synthetic pigments such as chlorophylls and carotenoids in the biomass. Beside light

absorption, light scattering acts as an important phenomenon in light harvesting in

a biomass-dependent manner leading to a reduction in the photosynthetic efficiency.

The incident light falling on the reactor surface E0 decreases exponentially along the

optical path coordinate L according to the law of Lambert-Beer.

E (L) = E0 ⋅ exp [− (a ⋅ ρChl + b ⋅ ρCar + c) ⋅ L] (7.1)
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where a, b and c represent the absorption and scattering coefficients of the biomass

and ρChl and ρCar are the pigment densities in the reactor. Given a PBR with the opti-

cal path length L=z, the transmitted photon flux density Eout is calculated as follows:

Eout = E (L = z) = E0 ⋅ exp [− (a ⋅ ρChl + b ⋅ ρCar + c) ⋅ z] (7.2)

The average photon flux density E in the photobioreactor is calculated by integration

of E (L) /L between L = 0 and the optical path length L = z:

E =
E0(a ⋅ ρChl + b ⋅ ρCar + c) ⋅ z ⋅ (1− exp [− (a ⋅ ρChl + b ⋅ ρCar + c) ⋅ z]) (7.3)

The absorbed photon flux Eabs is calculated from the difference of incident and trans-

mitted photon flux density normalized to the reactor surface sPBR:

Eabs = (E0 − Eout) ⋅ sPBR (7.4)

The light intensity per biomass EX,dw is calculated from the ratio of average photon

flux density E and the biomass density ρX normalized to the reactor volume VPBR:

EX,dw =
E

ρX ⋅VPBR
(7.5)

7.1.2. Nitrogen uptake rate

The uptake rate of inorganic nitrogen rN from the medium was assumed to follow

Michaelis-Menten kinetics (Eq. 7.6). By including the Droop function into the up-

take rate, the expression ensures that nitrogen uptake is terminated under nitrogen-

repleted conditions (Droop, 1968):

rN = rN,max ⋅ ρN,ext

ρN,ext +KS,N
⋅ (1− ωN

ωN,max
) (7.6)

where rN,max and KS,N represent the maximal uptake rate and the half-saturation co-

efficient for nitrogen as well as ωN,max which is the maximal nitrogen quota in the

biomass.

7.1.3. β-carotene synthesis rate

The synthesis of β-carotene mainly depends on the presence and intensity of light and

nutrient stress. Therefore, the equation for its synthesis couples a light-dependent

and nutrient-dependent synthesis term as formulated below (Eq. 7.7):

rCar = rCar,E ⋅ Ek
X,dw

Ek
car,crit + Ek

X,dw

+ rCar,N ⋅⎛⎝1− ωk
N

ωk
N,crit +ωk

N

⎞
⎠ (7.7)

where rCar,E and rCar,N represent the maximal synthesis rate under light and nutrient

stress. The half saturation coefficients for light and nutrient stress are denoted as

Ecar,crit and ωN,crit. The Hill coefficient is represented by k. The dependency of the
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light intensity per biomass (EX,dw) and nitrogen cell quota (ωN) on the β-carotene

synthesis rate (rCar) is illustrated in Fig. 7.1.
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Figure 7.1.: Dependency of the light intensity per biomass (EX,dw) and nitrogen cell quota
(ωN) on the β-carotene synthesis rate (rCar).

7.1.4. Photosynthesis rate

The carbon-specific, light-limited photosynthesis rate can be expressed using Eq. 7.8:

rP = rP,max ⋅ (1− ωN,min

ωN
) ⋅ (1− exp [−a ⋅YX,E ⋅ E

rP,max
]) (7.8)

where rP,max is the maximal photosynthesis rate, ωN,min is the minimal nitrogen quota

of the biomass and YX,E is the biomass yield on light energy. This relationship devel-

oped by Geider et al. (1998) includes the dependencies on the average photon flux

density, the light absorption properties, the photon efficiency and the nutrient status

of the biomass.

7.1.5. Growth rate

Since pronounced photoinhibitory effects were observed under HL and HL-ND con-

ditions, a growth rate approach containing an inhibition term has been formulated to

describe the specific biomass growth rate µ (Mairet et al., 2011). In addition, a Droop
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term has been added to the equation to ensure growth arrest under nitrogen depletion

as shown in Eq. 7.9:

µ = µmax ⋅ EX,dw

EX,dw +Ks,E ⋅ ρX

ρChl
+ E2

X,dw

Ki,E

⋅ (1− ωN,min

ωN
) (7.9)

The dependency of the light intensity per biomass (EX,dw) and nitrogen cell quota

(ωN) on the maximal growth rate (µmax) is illustrated in Fig. 7.2. Since the cells need
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Figure 7.2.: Dependency of the light intensity per biomass (EX,dw) and nitrogen cell quota
(ωN) on the maximal growth rate (µmax).

to adapt to the conditions in the photobioreactor, at time t = 0 an initial lag phase was

observed in the experimental data. Therefore, the specific growth rate was adjusted

using a Hill function:

Φ =
tk

λk + tk
(7.10)

to estimate the lag phase Φ where k is the exponential factor describing the transition

from lag to exponential phase and λ is the duration of the lag phase. Taking the

respiration rate into account, the following equation for the net specific growth rate

µnet was derived:

µnet = Φ ⋅ (µ − rR) (7.11)

The biomass yield on light energy YX,E is calculated according the following expres-

sion:

YX,E =
µ ⋅ ρX ⋅VPBR

Eabs
(7.12)
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where VPBR is the reactor volume.

After the formulation of the kinetic expressions, Eqs. 7.2 - 7.12, the following five

dynamic equations are deduced in order to describe biomass growth, chlorophyll

and β-carotene fraction, extracellular nitrogen density and nitrogen quota:

dρX

dt
= µnet ⋅ ρX (7.13)

dρN,ext

dt
= −rN ⋅ ρX (7.14)

dωN

dt
= rN − µ ⋅ωN (7.15)

dωChl

dt
=

ωChl,N ⋅ µ ⋅ rN

rP ⋅ (ωChl

ωC
)
− µnet ⋅ωChl (7.16)

dωCar

dt
= rCar − µnet ⋅ωCar (7.17)

The model equations contain nine parameters (optimization variables) and eleven

biomass and three reactor constants (see Table 7.2). The presented model equations

were formulated with special emphasis on limiting the number of model parameters

to a minimum, e.g. the biomass yield on light energy YX,E (Eq. 7.12) was calculated

from the state variables instead.

The proposed model was implemented in MATLAB (MathWorks) and solved by

using CVODES (Hindmarsh et al., 2005). The model simulations were compared

with experimental data of D. salina grown under different cultivations conditions (Ta-

ble 7.1) in a flat-plate photobioreactor in batch mode. The nine model parameters

were estimated using the nonlinear optimization algorithm fmincon initialized with

parameter values taken from literature and experimental data. This algorithm at-

tempts to find a set of parameters that minimizes the objective function defined in

Eq. 7.18.

7.1.6. Profile likelihood analysis of model parameters

In most cases the model parameters Θ are unknown and need to be estimated nu-

merically from experimental data and proposed model equations. During parameter

identification, the agreement of experimental data yk(ti) with the simulation results

yk(ti, Θ) is evaluated by the weighted sum of squared residuals χ2(Θ) as an objective

function:

χ2(Θ) = m

∑
k=1

dk

∑
i=1

1

σ2
ki

(yk(ti)− yk(ti, Θ))2 , (7.18)

where m is the number of measured outputs, dk is the number of measurement times,

yk and ŷk are the k-th measured output variable and corresponding model prediction

and σ2
ki is the variance in the measured data. For independent, normally distributed,

additive measurement noise, χ2(Θ) is proportional to the negative log-likelihood

function. In this case, parameter estimation based on minimizing the residual sum
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of squares is equivalent to maximizing the likelihood function and can therefore be

used instead.

An often used method to proof the reliability of an estimated parameter set is the anal-

ysis of parameter identifiability. In this work, an approach proposed by Raue et al.

(2009) using constrained likelihood profiles was applied. The strength of the ap-

proach is to systematically explore the high-dimensional parameter space for each

parameter individually (Kreutz et al., 2013). In detail, for each parameter Θi a section

along the least increase in χ2(Θ) with respect to all other parameters Θj≠i is com-

puted:

χ2
PL (Θi) =min

Θj≠i

[χ2 (Θ)] (7.19)

The shape of χ2
PL (Θi) can be used to assess the identifiability of each parameter for

given data. Identifiable parameters have a parabolically shaped profile likelihood

χ2
PL (Θi). Given that χ2

PL (Θi) follows a χ2 distribution, one may derive a critical

value χ2
PL for a confidence level of typically 95 %, which can be used to derive the

corresponding confidence interval for the respective parameter.

In case of non-identifiability, one can distinguish between structural and practical

non-identifiability. Non-identifiability is indicated by a flat shape of χ2
PL either in

direction of one confidence bound (practical non-identifiability) or in direction of

both confidence bounds (structural non-identifiability). Structural non-identifiability

arises from the model structure, whereas practical non-identifiability results from a

lack in the amount and quality of experimental data. For model parameters which are

non-identifiable, a change of the parameter value has no significant influence on the

likelihood value and hence does not influence observed model outputs. However, in-

ternal non-observed model states can vary significantly, rendering model predictions

on internal states questionable.

The MATLAB implementation of the profile likelihood algorithm was based on a

pseudocode provided by Raue et al. (2009) and was parallelized by Robert J. Flassig.

Absolute and relative tolerances have been set to 10−7 and 10−6, respectively.

7.2 Determination of biomass-specific parameters

In order to achieve a high predictability of the model and to reduce the number of

estimated parameters, biomass-specific constants were directly determined from ex-

perimental data.

Duration of the lag phase

The duration of the lag phase λ was estimated from the cell density growth curve

(see Table 7.1). According to Baty and Delignette-Muller (2004), the Hill coefficient

was set to k = 4.
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Elemental biomass composition

The minimal and maximal nitrogen quota (ωN,min and ωN,max) as well as the carbon

fraction ωC in the biomass were determined C/H/N analysis as described in Chap-

ter 5.

Absorption properties of the biomass

The chlorophyll content in the microalgal biomass is strongly dependent on the light

conditions in the photobioreactor and consequently is subject to substantial fluctua-

tions during the cultivation. The optical cross section of chlorophyll a (a∗) is an im-

portant variable describing the packaging of this pigment in the PSII. As depicted in

Fig. 7.3 a - c, a∗ is subject to significant variations under fluctuating light conditions.

The values for the optical cross section of chlorophyll a range from 6.8 to 19.8 m2 g−1

Chl under low light conditions (LL), from 9.6 to 21.2 m2 g−1 Chl under high light

conditions (HL)and from 6.8 to 11.1 m2 g−1 under high light and nitrogen-depleted

conditions (HL-ND). In order to keep the kinetic model as simple as possible, the

optical cross section of chlorophyll a (a∗) was fixed to 11.84 m2 g−1 Chl a according

to the average measurement value under the three tested cultivation conditions as

shown in Fig. 7.3. The pigment specific absorption and backscattering coefficients (a,

b and c) were estimated by maximizing the match between the measured values of

incident and transmitted light intensity.
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Figure 7.3.: Effect of various cultivation conditions on the time-variant input variables,
optical cross section of chlorophyll a. Optical cross section of chlorophyll a for cultivation
under LL (a), HL (b) and HL-ND conditions (c). The dashed line represents the cubic spline
interpolation between the experimental data points (symbols).

According to the measurement results the values for the biomass-specific parameters

were set as shown in Table 7.2.

7.3 Parameter estimation

The presented model was used to estimate a set of nine model parameters for the

equation system, which describes the dynamic changes in the biomass density, the

chlorophyll and β-carotene fraction as well as the extracellular nitrogen density in
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Table 7.2.: Summary of biomass-specific parameters for D. salina derived from experiments
and literature data.

Description Symbol Value Unit Source

Optical cross section of chloro-
phyll a

a∗ 11.84 m2 g−1 Chl a Average of experimental data

Absoption coeff. of chlorophyll
a and b

a 5.134 m2 g−1 Chl Fitting of absorption model to exp. data

Absoption coeff. of β-carotene b 2.202 m2 g−1 Car Fitting of absorption model to exp. data

Backscattering coeff. of the
biomass

c 16.591 m−1 Fitting of absorption model to exp. data

Hill coefficent k 4 - Literature (Baty and Delignette-Muller, 2004)

Duration of the lag phase λ variable d Estimation from exp. data (see Table 7.1)

Maximal theoretical photosyn-
thesis rate

rP,max 1526 g C g−1 Chl d−1 Estimation from exp. data

Carbon fraction ωC 0.49 g N g−1 dw Direct measurement

Maximal cell quota for nitrogen ωN,max 0.03 g N g−1 dw Direct measurement

Minimal cell quota for nitrogen ωN,min 0.10 g N g−1 dw Direct measurement

Critical N cell quota for
β-carotene synthesis

ωN,crit. 0.08 g N g−1 dw Estimation from exp. data

Reactor thickness z 0.02 m Reactor constant

Reactor volume VPBR 0.0018 m−3 Reactor constant

Reactor surface sPBR 0.09 m−2 Reactor constant

largest agreement to the experimental data. For this purpose, the objective function

was defined to minimize the weighted sum of squared residuals (Eq. 7.18) for ρX,

ωChl, ωCar and ρN,ext for three experimental conditions (see LL, HL and HL-ND in

Table 8.2). During parameter estimation, box constraints were imposed on the pa-

rameters. The box bounds have been chosen according to bio-physical limitations,

e.g. the respiration rate rR can not be smaller than zero. The measurement variances

were parameterized as σ2
ki = 0.1 max(yk(t)), i.e. each measurement is assumed to

have a variance of 10 % from the maximal value of the respective time course. This

variance parameterization most likely overestimates the true variance but should at

least give an upper bound on the true variance levels. The parameter set Θ̂ obtained

from the constrained least squares fit is given in Table 7.3. At the optimal param-

eter vector, a χ2
= 950 was calculated for a total number of measurement points of

ny = 172.

Table 7.3.: Summary of the obtained optimal parameter values Θ̂ as well as the individual
confidence intervals [σ−i ; σ+i ] corresponding to a confidence level of 95 % from constrained
non-linear optimization and profile likelihood analysis for D. salina.

Symbol Θ̂ σ−i σ+i Identifiability

rN,max 0.346 0.249 0.531 Structurally and practically identifiable

Ks,N 0.05 0.0003 3.591 Structurally and practically identifiable

µmax 1.708 1.406 2.130 Structurally and practically identifiable

Ks,E 0.033 0.018 0.055 Structurally and practically identifiable

Ki,E 68.719 48.186 97.744 Structurally and practically identifiable

Ecar,crit 77.718 74.102 80.138 Structurally and practically identifiable

rcar,E 0.032 0.022 0.041 Structurally and practically identifiable

rcar,N 0.005 0.0045 0.0055 Structurally and practically identifiable

rR 0.142 0.131 0.152 Structurally and practically identifiable
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7.3.1. Biomass growth under fluctuating light and nutrient
conditions

The simulation results shown in Fig. 7.4 a - c demonstrate that the model describes

the dynamics of biomass growth under various light and nutritional conditions with

the estimated parameter set Θ̂ (Table 7.3) in a good manner. The maximum biomass

density from all three experimental conditions was achieved in the cultivation un-

der low light (LL), namely 7.2 g dw L−1. This corresponds to a final cell density of

1.4× 107 cells mL−1 cultivation volume. The final biomass density reached in the sta-

tionary phase for the cultivations under high light (HL) is 6.5 g dw L−1 and almost

comparable to the low light condition (LL). Under high light and nitrogen depletion

(HL-ND) the biomass growth was significantly lowered due to nutrient abundance

and only 1.1 g dw L−1 biomass was achieved.
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Figure 7.4.: Model simulations for the effect of various cultivation conditions on the
biomass density ρX,dw (a-c), the extracellular nitrogen density ρN,ext (d-f) and the β-
carotene fraction ωCar (g-i). Comparison of the simulated time course (lines) with experi-
mental data (symbols).
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7.3.2. Extracellular nitrogen uptake

The simulated time course for the extracellular nitrogen density agreed well with the

experimental data (Fig. 7.4 d-f). The results revealed that the growth under all three

conditions was always nutrient and never light-limited. As expected, the growth

under nutrient-depleted conditions (HL-ND) was governed by the lowest external

nutrient availability and the internal nutrient status of the cells. The external nitrogen

was totally depleted four days after inoculation in the nitrogen starved culture (HL-

ND). The simulation results clearly indicate, that nitrogen uptake is strongly reduced

in the lag phase under nitrogen-repleted conditions (LL, HL), since the nitrogen cell

quota is close to its maximal value ωN,max (Fig. 7.4 d-f).

7.3.3. β-carotene fraction in the biomass

The model simulations agree well with the experimental data for the β-carotene frac-

tion ωCar in the cells (Fig. 7.4 g - i). The data clearly indicate that light and nutrient

stress alone are able to induce the accumulation of the photoprotective pigments.

However, when both stress conditions are combined under HL-ND conditions the

β-carotene synthesis exceeds the fractions achieved under LL or HL conditions. The

highest β-carotene fraction was detected in the HL-ND culture with 8.0 % (w/w), fol-

lowed by the HL culture with 4.3 % (w/w) at day 3 and 2.7 % (w/w) in the stationary

culture under LL conditions. Under HL conditions the initially high β-carotene accu-

mulation induced by the presence of light stress declined as soon as the incident light

intensity fell below the fixed light stress of 3000 µmol m−2 s−1 g−1 dw L due to the

physical limitation of the LED light panel to a maximal light intensity of 3000 µmol

m−2 s−1. Under LL conditions, the β-carotene synthesis started when a critical nitro-

gen quota of approximately 0.075 g N g−1 dw was reached.

7.3.4. Total chlorophyll fraction in the biomass

The model simulations agree reasonably well with the experimental data for the

chlorophyll fraction ωChl, which is crucial for predicting the light attenuation in the

reactor (Fig. 7.5 a - c). During the initial cultivation period more light energy is sup-

plied per cell than is required for growth, resulting in a considerable decline of the to-

tal chlorophyll fraction under all three conditions. The minimal total chlorophyll con-

tent in the biomass is almost comparable under three cultivation conditions, namely

0.004 g Chl g−1 dw.

7.4 Model predictions

The estimated parameter set (Table 7.3) was used to predict dynamic changes of the

non-measured dynamic state, namely the internal nitrogen cell quota ωN for the mea-

sured experimental conditions (LL, HL, HL-ND) as presented in Fig. 7.5 d-f.
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Figure 7.5.: Model simulations for the effect of various cultivation conditions on the the
chlorophyll fraction ωChl (a-c) and the nitrogen quota in the biomass ωN (d-f). Comparison
of the simulated time course (lines) with experimental data (symbols).

7.4.1. Nitrogen cell quota and the nitrogen uptake rate

In this study, the nitrogen cell quota of the inoculum grown under nitrogen-repleted

conditions was set to 0.10 g N g−1 dw, which has been determined by C/H/N anal-

ysis and corresponds to the maximal nitrogen quota in the biomass ωN,max (see Ta-

ble 7.2). Experimental data for minimal and maximal cell quota have been published

for the closely related species Dunaliella tertiolecta (Goldman and Peavey, 1979). The

reported minimal nitrogen cell quota was 0.03 g N g−1 dw and the maximal nitro-

gen cell quota was 0.08 g N g−1 dw, which is close to our experimentally determined

values.

The predicted maximal nitrogen uptake rate is 0.346 g N g−1 dw d−1. The value

for the calculated nitrogen uptake rate rN, (see Eq. 7.6) under all three conditions is

approx. 0.05 g N g−1 dw d−1, which is in good agreement with measurements rang-

ing from 0.05 - 0.015 g N g−1 dw d−1 measured for several green microalgal species

by Hein et al. (1995). However, it is lower than measured nitrogen uptake rates for

the same strain used in this study, namely D. salina CCAP 19/18, grown in a low

light turbidostat culture (0.085 g N g−1 dw d−1) measured by Lamers et al. (2012) and

0.08 g N g−1 dw d−1 from Lomas and Glibert (2000) measured for the closely related

organism D. tertiolecta.
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7.5 Model validation

The proposed model with the estimated parameter set was validated with two inde-

pendent cultivation experiments in batch operation mode under low light and nutri-

ent limited or depleted conditions (LL-ND and LL-NL) as illustrated in Table 7.1. The

time courses for biomass density, external nitrogen density, β-carotene and chloro-

phyll fraction are in good agreement with the experimental data (Fig. 7.6 and 7.7).

Both cultures were nutrient limited indicated by an β-carotene synthesis at day 6 of

the LL-ND culture and day 8 of LL-NL culture. Due to the higher initial nitrogen den-

sity (0.09 g N L−1 compared to 0.04 g N L−1) in the LL-NL culture, the final biomass

density achieved in the stationary phase was also higher 1.7 g dw L−1 compared to

1.0 g dw L−1. The β-carotene fraction was almost similar to the cultivation under LL

conditions (2.3 % (w/w) under LL-ND and 2.9 % (w/w) under LL-NL compared to

2.7 % (w/w)).
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Figure 7.6.: Model validation for the effect of various cultivation conditions on the cell
density ρX,dw (a-b), the extracellular nitrogen density ρN,ext (c-d) and the β-carotene frac-
tion ωCar (e-f). Comparison of the simulated time course (lines) with experimental data
(symbols).
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Figure 7.7.: Model simulation for the effect of various cultivation conditions on the the
chlorophyll fraction ωChl (a-b) and the nitrogen quota in the biomass ωN (c-d). Comparison
of the simulated time course (lines) with experimental data (symbols).

7.6 Identifiability analysis using the profile likelihood

The results of the identifiability analysis of all model parameters using likelihood

profiles are presented in Fig. 7.8. This approach allows distinguishing between struc-

turally non-identifiable, practically non-identifiable and identifiable parameters de-

pending on the shape of χ2
PL (Section 7.1.6). The lower and upper bounds of the 95 %

confidence intervals are given in Table 7.3. All nine model parameters are identifiable

indicated by the shape of the χ2
PL curve and the finite size of the derived confidence

intervals (Fig. 7.8 a - i, black solid line and Table 7.3). Besides profile likelihood, likeli-

hood analysis is frequently performed to evaluate the predictive power of a proposed

model. In contrast to the profile likelihood, where one parameter Θi is varied and all

other parameters Θj≠i are re-optimized, for likelihood analysis only the parameter

value for Θi is changed and the remaining parameters Θj≠i are kept constant. Due

to this fact, the parameter identifiability analysis using the likelihood function is less

strict than the profile likelihood based identifiability analysis. This is illustrated in

Fig. 7.8 (gray dashed lines vs. black solid lines). Still, likelihood analysis is useful to

identify potentially non-identifiable parameters.

The likelihood of the nine identifiable model parameters seem to be in an asymp-

totic setting indicated by the parabolic shape with finite size of the 95 % confidence

interval (Fig. 7.8 a - i). Due to the negligence of the parameter interdependencies,

the confidence interval derived for each parameter are significantly smaller for the
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Figure 7.8.: Profile likelihood-based identifiability for all model parameters: a) Maximal
nitrogen uptake rate rmax, b) Halfsaturation coefficient for nitrogen uptake Ks,N, c) Maximal
growth rate µmax, d) Half saturation coefficient for photosynthetic growth Ks,E, e) Light
inhibition coefficient for photosynthetic growth Ki,E, f) Critical light intensity for β-carotene
synthesis Ecar,crit, g) Light stress-induced β-carotene synthesis rate rcar,E, h) Nutrient stress-
induced β-carotene synthesis rate rcar,N and i) Respiration rate rR. The profile likelihood-
based sensitivity curve, where Θi is varied and all other parameters Θj≠i are kept constant,
is indicated by the dashed gray line. The profile likelihood-based identifiability curves are
indicated by the black solid line. The blue dotted horizontal line indicates the threshold
utilized to assess likelihood-based 95 % confidence interval and the asterisk corresponds to
the optimal parameter value.
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likelihood-based derivation compared to the profile likelihood. This example illus-

trates the strength of the identifiability analysis based on profile likelihoods leading

to detailed information about parameter interdependencies and reliable confidence

intervals. Non-identifiability of model parameters originate from either unknown

functional dependencies between different parameters - in such a case, a change in a

model parameter can be compensated by several other model parameters - or struc-

tural non-observability. In order to overcome this limitation, additional system out-

puts need to be quantified. The application of optimal experimental design (OED)

approaches could be beneficial in order to determine the measurement signal with

the highest information content (Muñoz-Tamayo et al., 2014; Flassig et al., 2015).

In summary, a dynamic-kinetic model has been proposed, which describes growth

and the pigmentation of D. salina under fluctuating light and nutritional conditions

with nine model parameters. The results revealed that model simulation describes

the experimental data accurately. The identifiability analysis using the profile likeli-

hood indicated that all nine parameters are structurally and practically identifiable.

The resulting predictive growth model allows the prediction of biomass productiv-

ity and pigmentation under different cultivation conditions and bioreactor operation

modes.



Chapter 8

Dynamic flux balance analysis

The construction of dynamic-kinetic bioreactor models using ODEs is a well-established

formalism in bioprocess engineering. These models allow for prediction of biomass

growth, nutrient uptake and metabolite production and enable the identification

of bottlenecks in the process setup. These simplified growth models as presented

in Chapter 7 are robust and computationally inexpensive but might be only valid

for a certain range of environmental conditions and thus have limited predictive

capabilities for extrapolation outside the experimental region (Höffner et al., 2013).

The limitations in dynamic-kinetic models are attributed to a variety of reasons

such as model non-linearity, parameter identifiability, estimability and uncertainty

(Srinivasan et al., 2015).

It is known that metabolic processes are based on complex reaction pathways

throughout different subcellular compartments and its integration into a metabolic

model is a prerequisite to get insight into the formation and regulation of metabolites

(Grafahrend-Belau et al., 2013). Although the methodological progress in quantita-

tive biology is advancing quickly, it is still not possible to fully parametrize a dynamic

model of a microorganisms’ metabolism at genome scale (Wu et al., 2016). Usually,

methods such as FBA are used to determine the flux distribution in a metabolic net-

work under given input conditions by maximization of an objective function (see

Chapter 4). However, FBA methods only account for growth under balanced condi-

tions and are limited to predicting steady state flux distributions. DFBA is an exten-

sion of classical FBA that allows the dynamic effects of the extracellular environment

on intracellular metabolism to be predicted and optimized (Henson and Hanly, 2014).

This enables exploration of metabolic flux distributions consistent with stoichiomet-

ric and thermodynamic constraints as well as constraints formulated according to

experimental data (Wu et al., 2016).

The present chapter introduces an extension of the DFBA formulation to stress-

induced β-carotene accumulation in D. salina. The objective is to develop and validate

a detailed and structured model for D. salina with focus on quantitative prediction

of stress-induced β-carotene production dependent on different external cultivation

conditions. An important prerequisite for the formulation of the DFBA model is the

reliable parametrization of the dynamically changing reactor environment (as pre-

sented in Chapter 7) since the large number of reactions in a genome-scale metabolic
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network (see Table 4.1) results in a bi-level optimization problem that is computa-

tionally expensive and challenging to solve.

Existing modeling formulations for dynamic prediction of microalgal metabolism fo-

cus on lipid production, as a feedstock for the next generation of biofuels and do

not include stress-induced accumulation of other metabolites. DRUM (Dynamic Re-

duction of Unbalanced Metabolism) is a dynamic metabolic modeling framework

which includes accumulation of intracellular metabolites Baroukh et al. (2014). This

approach relies on the definition of subnetworks and EFM analysis of each of the

subnetworks. Since EFM analysis can become computationally expensive, this may

not be applicable to large (genome-scale) networks. Furthermore, prior knowledge

regarding the division into subnetworks must be available and kinetic expressions

have to be assigned to each of the subnetworks. In contrast, the current formulation

does not require EFM and therefore can be applied to genome-scale networks. An-

other approach that has been presented recently is MetDFBA (Willemsen et al., 2015).

This extension of DFBA assumes that metabolic measurements are available. Such an

assumption may not be feasible for large-scale production systems. The derivation of

the model presented in this work also takes advantage of existing detailed metabolic

models. The recent advances in development of genome-scale metabolic network

reconstructions for microalgae have been outlined in Chapter 4.

8.1 Metabolic network analysis of the central carbon
metabolism

8.1.1. Recent advances in genome sequencing of D. salina

Algae and higher plants possess three different DNA-containing compartments: the

nucleus, the plastid and the mitochondrion. The nomenclature of the respective

genomes is derived from the compartment they originate from. Therefore, the genetic

information in the nucleus is called the nuclear genome, whereas the mitochondrial

and plastidal genomes are located inside the mitochondrion and the plastid. Col-

lectively, they are referred to as organelle genomes (Del Vasto, 2015). The majority

of genes in the organelle genome are attributed to metabolic functions in respective

organelle such as cellular respiration in the mitochondrion and plastidal photosyn-

thesis. Beside photosynthesis, many other metabolic functions are associated with the

plastid such as fatty-acid biosynthesis, nitrogen assimilation, amino acid and starch

biosynthesis (Del Vasto, 2015).

The sequencing of the organelle genomes of D. salina CCAP19/18 isolated from the

Hutt Lagoon in Western Australia was completed in 2010 (Smith et al., 2010). Un-

expectedly, the mitochondrial and plastidal genome of D. salina were with 28 kb and

269 kb quite large and more than half of it consisted of non-coding DNA and introns

(Smith et al., 2010).

Moreover, researchers around Jon Magnuson completed the sequencing of the nu-

clear D. salina CCAP 19/18 genome funded by the Department of Energy Joint

Genome Institute (http://genome.jgi.doe.gov/DunsalCCAP1918/DunsalCCAP1918

.info.html). However, the assembly of the nuclear genome is challenging since it



8.1. Metabolic network analysis of the central carbon metabolism 77

contains a high number of introns and extensive palindromic repeats preventing

the assembly of larger sets of overlapping DNA segments and hindering its as-

sembly (Del Vasto et al., 2015). Since, the annotated genes for all enzymes in the

Dunaliella metabolism are not available, the reconstruction of a metabolic network

map could not have been achieved so far. Though it might be adequate to make use

of a metabolic network reconstruction of a close relative. As listed in Table 4.1, for

the green alga C. reinhardtii various carbon core and genome-scale network models

have been developed. Moreover algae of the genus Dunaliella and Chlamydomonas

both belong to the order of Volvocales (Gonzalalez et al., 2009). In addition, there

is a broad consensus that the carbon core metabolisms of green microalgae is con-

served along several lineages since almost 90 % of the functional annotated proteins

of C. reinhardtii and of other microalgal proteins are homologs of Arabidopsis thaliana

proteins (Reijnders et al., 2015).

8.1.2. Comparison of enzymes in the carbon core metabolisms of
D. salina and C. reinhardtii

Although the central carbon metabolism is generally assumed to be conserved, a com-

parison of annotated enzymes in the Calvin cycle, the carbon-core metabolism and

the isoprenoid biosynthesis of D. salina were compared with a reconstruction of the

central carbon metabolism of C. reinhardtii published by Kliphuis et al. (2011). The ba-

sis for this comparison with D. salina is formed by a collection of annotated enzymes

in the respective pathways was provided by Prof. Jürgen Polle (Brooklyn College,

New York), a collaborator of the above mentioned D. salina nuclear genome project.

Fig. 8.1, 8.2 and 8.3 show the network map for the cytosol, the chloroplast and the

mitochondrium. The summarized network map containing all three considered com-

partments in one figure can be found in Appendix C (Fig. S1).

As can be seen in the following figures, there is a high degree of similarity in the

metabolic pathways for the calvin cycle, the photorespiration, the glycolysis, and

the pentose phosphate pathway between C. reinhardtii and D. salina. In addition,

the reaction pathways highlighted in green were added to the network because the

corresponding enzymes have been identified in D. salina, specifically the carotenoid

biosynthesis, the crassulacean acid metabolism (CAM) and the starch synthesis.

However, this pathways also occur in C. reinhardtii but have been neglected by

Kliphuis et al. (2011) for reasons of simplicity. A prediction tool called PredAlgo,

developed by Tardif et al. (2012) was designed to determine the subcellular local-

ization of nuclear-encoded enzymes in C. reinhardtii. For that, PredAlgo differs

between the following three compartments: the mitochondrium, the chloroplast and

the cytosol. The study of Tardif et al. (2012) showed that application of PredAlgo

led to an improved discrimination between plastidal and mitochondrial-localized

proteins. As stated by the authors, PredAlgo works most accuratere for the genus of

Chlamydomonas and related green algal species (Chlorophyta). The algorithm of this

program was applied to the annotated enzymes in the nuclear genome of D. salina

by Prof. Jürgen Polle. The a comprehensive list of reactions and compounds in the

metabolic network can be found in Appendix C (Table S1 and S2). All entries in the

list of reactions (see Table S1) carrying an EC number (Enzyme commission number)
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Figure 8.1.: Network map of carbon core metabolism in the cytosol. The arrows display
the direction and reversibility of the reactions. The reaction arrows in highlighted in green
correspond to reactions that have been added to the network. The blue font color refers to
metabolites modeled as biomass compounds and the red font color refers to key reaction
components such as energy and reduction equivalents. Key reaction compounds differing
from the proposed central carbon metabolism for C. reinhardtii published by Kliphuis et al.
(2011) were highlighted in red. The magenta colored EC numbers belong to enzymes where
the corresponding genes were absent but which are necessary to connect the metabolites of
the previous and following reactions. For reasons of simplicity, the shuttling of metabolites
between the cytosol and chloroplast as well as the mitochondrium is not considered in this
graph.
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and KEGG ID (Kyoto Encyclopedia of Genes and Genomes) are annotated enzymes

of the D. salina genome according to the compilation provided by Prof. Jürgen Polle.

Light_ex

Figure 8.2.: Network map of carbon core metabolism in the chloroplast. The arrows indi-
cate the direction and reversibility of the reactions. The gray boxes indicate shuttling of
metabolites between the considered compartments. The reaction arrows in highlighted in
green correspond to reactions that have been added to the network. The blue font color
refers to metabolites modeled as biomass compounds and the red font color refers to key
reaction components such as energy and reduction equivalents. The magenta colored EC
numbers belong to enzymes where the corresponding genes were absent but which are
necessary to connect the metabolites of the previous and following reactions.

The subcellular localization of some of the annotated enzymes differed from the ex-

pectations. For instance, the enzyme glyceraldehyde 3-phosphate dehydrogenase

(EC 1.2.1.9) which is part of the calvin cycle was predicted to be localized in the

cytosol rather than in the chloroplast. Furthermore, also cytosolic forms of glycer-

aldehyde 3-phosphate dehydrogenase (EC 1.2.1.13/1.2.1.12) acting in the glycolysis

have been identified in the genome. For the triose-phosphate isomerase enzyme (EC
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5.3.1.1), PredAlgo predicted a chloroplast localization, although usually a cytosolic

localization is assumed.

Acetyl-CoA

Oxaloacetate

Malate

Fumerate

Succinate

Succinyl-CoA

a-Ketoglutarate

Citrate

FADH2

FADH2

ATP

NADH

NADH+CO2

NADH+CO2

Pyruvate

1.1.5.4
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O2

ATPNADH
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NADH + NADPNAD + NADPH

2 Pi + H+H2O + PPi2 ADPATP + AMP

2 ADP + Pi + H+ATP + H2O

NAD + CDPNADH + CMP

Figure 8.3.: Network map of carbon core metabolism in the mitochondrium. The arrows
indicate the direction and reversibility of the reactions. The gray boxes indicate shuttling of
metabolites between the considered compartments. The blue font color refers to metabo-
lites modeled as biomass compounds and the red font color refers to key reaction compo-
nents such as energy and reduction equivalents.

In some essential parts of the metabolism such as the pentose phosphate path-

way and the photorespiration also missing enzymes were found, namely ribulose-

phosphate 3-epimerase (EC 5.1.3.1) and glyoxylate reductase (EC 1.1.1.26). According

to Cordwell (1999), the occurence of missing enzymes can have various reasons such

as failed identification due to low sequence similarity, the reaction is performed by

an yet unknown enzyme, multi-enzyme complexes that catalyze different reactions,

incorrect assignment of gene identities in genome databases or known enzymatic

reactions which have not been assigned to a gene sequence so far. Since the enzymes

acting in the up-stream and down-stream reactions are present and the catalyzed re-

action is of physiological significance, it was not excluded from the reaction network.

8.2 Dynamic flux balance model

In FBA, models are based on the assumption that the intracellular reaction network

has reached a quasi-steady state (balanced-growth assumption). In DFBA, it is as-

sumed that the intracellular dynamics are fast compared to extracellular dynamics

such that the quasi-steady state approximation for the FBA model remains valid.

For photosynthetic organisms that undergo constant environmental fluctuation this
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assumption is not justifiable. Indeed, dynamic intracellular accumulation and con-

sumption are essential in the metabolism of the cells. Therefore, in the current formu-

lation, this is modeled by introducing intracellular dynamic states. The DFBA model

developed here consists of two main components, a metabolic model of the microalga

and a dynamic model of the photobioreactor environment. The dynamic state vari-

ables of the model are the extracellular dynamic states, which are the biomass con-

centration on dry weight basis ρX and the extracellular nitrate concentration ρNO3
,

in addition to the intracellular dynamic states, which are the chlorophyll fraction of

total biomass ωChl, the β-carotene fraction of total biomass ωCar, and the nitrogen cell

quota ωN .

8.2.1. Flux balance model

Since a genome-scale metabolic network representation of D. salina is not avaiblable,

a metabolic network reconstruction of the green fresh water alga C. reinhardtii is

used to demonstrate the applicability of this network for prediction of the pigment

production of D. salina under different abiotic stress conditions (Chang et al., 2011;

Dal’Molin et al., 2011). A key aspect of this study is the prediction of light- and

nitrogen-dependent growth and production of β-carotene. The stoichiometric net-

work of the FBA model is extended to account for the accumulation of chlorophyll

and β-carotene. In particular, reversible accumulation fluxes are added to the mass

balance of these metabolites. Their upper and lower bounds are determined by the

regulatory models described below. The newly defined fluxes are conceptually the

same as the exchange fluxes, except that they describe exchange with an intracellular

storage.

8.2.2. Exchange fluxes

In addition to the modification of the FBA model, the upper and lower bounds on the

exchange and accumulation fluxes are specified as follows and are derived from the

dynamic-kinetic model described in Chapter 7.

Light attenuation

The average photon flux density E in the photobioreactor is calculated as described in

Eq. 7.3. The optical depth is determined as the product of absorption coefficients and

densities of the major light absorbing pigments chlorophyll and β-carotene. The av-

erage biomass specific light intensity that is the input to the FBA model is determined

as follows.

EX,dw =
θdimθeff

ρX ⋅ z E, (8.1)

where θdim is a unit conversion factor such that the unit of EX,dw is consistent

with existing FBA model input unit and θeff is dimensionless efficiency factor as

in Chang et al. (2011) and ρX ⋅ z is the biomass density per surface area of the bioreac-

tor in g dw m−2. Finally, the upper and lower bound on the light exchange flux are
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set to the average biomass specific light intensity.

Nitrate metabolization flux

The rate at which the internal nitrate storage is metabolized is denoted by vNO3,met.

As with all other exchange fluxes, the sign convention implies that a negative values

indicates a consumption of nitrate. In analogy with 7.6 of the dynamic-kinetic model,

the lower bound on nitrate metabolization rate is given by

vLB
NO3,met = −vNO3,met,max (1− ωN,min

ωN
) , (8.2)

where the maximal flux value vNO3,met,max is considered as a model parameter. The

metabolization is inhibited as the nitrogen cell quota ωN reaches its minimal value

ωN,min. Furthermore, it is assumed that no nitrate is synthesized through this flux

and therefore the upper bound of the nitrate metabolization flux is set to zero.

Chlorophyll accumulation flux

An empirical model for the chlorophyll accumulation is developed based on the ob-

servation that the ratio between chlorophyll and nitrogen in various photosynthetic

microorganisms can be approximated by a simple inhibition function of the incident

light (Thompson et al., 1990; Mairet et al., 2010). Specifically, it is assumed that the

ratio is given by

γ(E) = γmax
Ki,Chl,N

E +Ki,Chl,N

, (8.3)

where γmax is the maximal ratio and Ki,Chl,N is an inhibition constant. Furthermore,

since the data in Thompson et al. (1990) is collected under low and medium light

conditions, it is assumed that the ratio is constant for irradiance higher than a crit-

ical value Esat. The synthesis of chlorophyll in the metabolic network is enforced

by varying the bounds on the chlorophyll accumulation flux. If the lower bound is

greater than zero, only flux distributions with positive chlorophyll accumulation flux

are feasible in the FBA model. This redirects part of the metabolic activity towards

chlorophyll synthesis. Hence, to model the regulation of chlorophyll synthesis the

lower bound on the chlorophyll flux is assumed to be of the form

vLB
Chl = (γ(E)− ωChl

ωN
) . (8.4)

If
ωChl
ωN
< γ(E), then the lower bound is greater than zero, which enables accumulation

of chlorophyll. If
ωChl
ωN
> γ(E), then the lower bound is less than zero, which enables

metabolization of chlorophyll. This regulation can be considered as a proportional

control structure with the aim to track the ratio between chlorophyll and nitrogen.

The analogy between biochemical regulation and control structures is illustrated in

detail in Cloutier and Wellstead (2010). The maximal chlorophyll to nitrogen ratio
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γmax was determined based on experimental data, whereas the inhibition constant

Ki,Chl,N and the saturation light intensity are model parameters.

Carotene exchange flux

The photoprotective pigment β-carotene is produced in algae to increase the dissipa-

tion of energy at high photon flux densities. Under these conditions the microorgan-

isms cannot utilize all light energy in the photosystem and the excess is harmful to

the cell. Furthermore, the mechanism is energetically preferable only if the amount

of available nitrogen is low. If sufficient nitrogen (and carbon) is available, then the

light energy is used to generate more biomass.

As already stated in Chapter 7 (Eq. 7.7), it is assumed that for high photosynthesis

rates, which are measured by average biomass specific light intensity, the biosynthe-

sis of β-carotene as a secondary carotenoid and energy sink is induced, while for low

light limiting conditions no accumulation occurs. In addition to the light dependent

regulation, the dependency on intracellular nitrogen availability has to be taken into

account. At high nitrogen quota, the β-carotene synthesis rate is down regulated since

sufficient nitrogen is available for biomass synthesis. Combining these two mecha-

nisms yields that the lower bound of the β-carotene exchange flux in the FBA model

is similar to the equation presented in Chapter 7 (Eq. 7.7).

vLB
Car = vcar,E ⋅ Ek

X,dw

Ek
car,crit + Ek

X,dw

+ vcar,N ⋅⎛⎝1− ωk
N

ωk
N,crit +ωk

N

⎞
⎠ (8.5)

Similar to the chlorophyll flux, a positive value for this lower bound implies the ac-

cumulation of β-carotene. The upper bound on the β-carotene accumulation flux is

set to be infinite. The upper and lower bounds of all exchange fluxes including the

flux for non-growth associated ATP maintenance are multiplied by the Hill function

Φ such that all metabolic activities are effected during the lag phase.

8.2.3. Dynamic photobioreactor model

The flat-plate photobioreactor environment is assumed to be well-mixed such that

there are no gradients in nutrients or biomass concentration in the reactor volume.

The mass balance for nitrate as an extracellular metabolite is explicitly included in

the reactor model. Dissolved CO2 is provided in excess and is assumed to be not

growth-limiting, hence the exchange flux for CO2 in the FBA model is unbounded

and the CO2 mass balance is not included in the dynamic model. Furthermore, it is

assumed that the dissolved O2 concentration is constant and at equilibrium with the

environment, hence the exchange flux for O2 is unbounded and the O2 mass balance

is not included in the dynamic model.

Nitrogen quota

The Droop model is a widely used formulation to represent limitation of substrate

uptake due to internal accumulation (Droop, 1968). The model promotes the idea

that growth depends on the stored intracellular pool of nutrients and not directly on
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the extracellular concentration. The nitrogen quota ωN is described by the following

ordinary differential equation

ω̇N =
mN

mNO3

vNO3
− µωN, (8.6)

where vNO3
in the first term is the nitrate uptake rate determined by Michaelis-

Menten kinetics, and µ is the growth rate, which is determined by the solution of

the FBA model. The Michaelis-Menten kinetic uptake model is formulated similar to

Eq. 7.6 and given by

vNO3
= vNO3,max

ρNO3

KS,N + ρNO3

(1− ωN

ωN,max
) , (8.7)

where the second term models the saturation, i.e. when the nitrogen quota reaches

its maximum value ωN,max. It is assumed that the intracellular nitrogen is stored in

form of nitrate. The maximal nitrogen quota is a biomass specific constant and given

in Table 7.2.

The complete equation system for the dynamic photobioreactor model is given by:

dρX

dt
= µ ⋅ ρX (8.8)

dρNO3

dt
= −vNO3

⋅ ρX (8.9)

dωN

dt
=

MN

MNO3

⋅ vNO3
− µ ⋅ωN (8.10)

dωChl

dt
= mChl ⋅ vChl − µ ⋅ωChl (8.11)

dωCar

dt
= mCar ⋅ vCar − µ ⋅ωCar (8.12)

where µ, vCar, vChl and vNO3,met are determined by the FBA model via lexicographic

optimization as described in Gomez et al. (2014). Specifically, DFBAlab requires the

specification of lexicographic optimization objectives to avoid the common problem

of nonunique exchange fluxes that render the ODE system impossible to integrate.

The hierarchy (or lexicographic ordering) chosen is shown in Table 8.1. The order-

ing is motivated by the assumption that the primary objective is the maximization of

growth, then the remaining resources prioritized based on their importance to main-

tain metabolic activity and finally minimizing the uptake of nutrients under the con-

straints that all previous objectives are met.

Table 8.1.: Priority list order for the lexicographic linear programs

Level Objective
1 Maximize biomass production (autotrophic)
2 Minimize chlorophyll accumulation
3 Minimize β-carotene accumulation
4 Minimize nitrate metabolization flux

The numerical solution of the proposed model involves the use of DFBAlab, a MAT-

LAB code that performs reliable and efficient DFBA simulations (Gomez et al., 2014).
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Widespread implementation of DFBA has been hindered by numerical complications

resulting from linear programs (LPs) becoming infeasible and having nonunique so-

lution vectors. Infeasible LPs cause simulation failure as the right-hand side of the

ODEs becomes undefined, and nonunique solution vectors cause this same right-

hand side to be nonunique, producing an ODE system that integrators are unable

to solve. DFBAlab is a MATLAB implementation of the DFBA simulator presented

in Höffner et al. (2013) that avoids infeasibilities and lexicographic optimization to

provide unique exchange fluxes. It reformulates the LP locally as an algebraic sys-

tem and integrates a differential-algebraic equation system instead of ODEs with LPs

embedded to increase speed.

Parameter estimation is performed by minimizing the cost function

J(p) = χ2(p)+ αΘ(p)2 (8.13)

where the residual sum of squares χ2 is given by Equation 8.13, Θ is a penalty func-

tion and α is a positive weighting factor. The output variables are the biomass den-

sity, the extracellular nitrogen density, the chlorophyll and β-carotene fractions of the

biomass.

The penalty function is included such that the optimal solution of the parameter esti-

mation is a feasible DFBA simulation. It is possible that for arbitrary parameter val-

ues, the linear programs embedded in the DFBA model are not feasible at every time

instance during a batch simulation. DFBAlab provides a penalty value that is zero

if the simulation is feasible and strictly great than zero otherwise (see Gomez et al.

(2014) for further details). Hence, a large weighting factor ensures that infeasible

DFBA simulations are penalized in the optimization problem. Heuristic optimization

algorithms for the parameter estimation problem that are not based on gradient infor-

mation were able to provide a good solution, even though no guarantee of optimality

could be issued. The best solution was found by a genetic algorithm using the ga

function in MATLAB.

8.2.4. Model simulation

The DFBA approach was applied to simulate biomass growth, nutrient uptake and

pigment fraction in a more structured manner than the dynamic-kinetic growth

model presented in Chapter 7. The time evolution of the model solutions, with

parameters values given in Table 8.2, compared to the experimental data under dif-

ferent light and nutrient conditions are illustrated in Figs. 8.4 and 8.5. The model

simulations agree very well with the experimental data for all measured outputs.

The biomass constants and parameter values were taken from Chapter 7 (7.3) and the

units were converted in order to be compatible with the DFBA model (see Table 8.2).

The total number of model parameters is ten, where five parameters originate from

the dynamic-kinetic growth model in Chapter 7 which were proven as identifiable

and five DFBA-specific parameters.
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Figure 8.4.: Model simulation for the effect of various cultivation conditions on the biomass
density ρX (a-c), the extracellular nitrogen density ρN,ext (d-f) and the β-carotene fraction
ωCar (g-i) in the DFBA model. Comparison of the simulated time course (lines) with exper-
imental data (symbols).
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Table 8.2.: Biomass constants and parameter values for the DFBA model. The values for
the biomass constants and model parameters were taken from Chapter 7.

Symbol Description Value Unit
Biomass constants

γmax Max. intracell. chlorophyll to nitrate ratio 0.33 g Chl g−1 N
λ Duration of the lag phase d

ωN,crit Crit. nitrogen cell quota for β-carotene synthesis 0.08 g N g−1dw

ωN,min Min. nitrogen cell quota 0.03 g N g−1dw

ωN,max Max. nitrogen cell quota 0.10 g N g−1dw
k Hill coefficient 4 -
Dynamic-kinetic model parameters

Ecar,crit Crit. light int. for β-carotene synthesis 1.94 ×105 µmol photons g−1 dw h−1

Ks,N Michaelis-Menten coeff. for NO3 uptake 6.82 ×10−4 g NO3 L−1

vcar,E Light stress-induced β-carotene synthesis rate 4.64 ×10−3 mmol g−1 dw h−1

vcar,N Nutrient stress-induced β-carotene synthesis rate 4.11 ×10−4 mmol g−1 dw h−1

vNO3,max Max. nitrogen uptake rate 0.0167 g NO3 g−1dw h−1 L−1

DFBA specific parameters

Esat Saturation light int. for chlorophyll to nitrate ratio 75.5 µmol photons m−2s−1

Ki,Chl,N Inhibition coeff. for chlorophyll to nitrate ratio 12.5 µmol photons m−2s−1

vNO3,met,max Max. nitrogen assimilation flux 0.19 mmol g−1 dw h−1

ngam Non-growth associated maintenance light and nutrient
dependent

mmol g−1 dw h−1

for LL conditions 0.915
for HL conditions 1.00
for HL-ND conditions 1.28
for LL-ND conditions 0.915
for LL-NL conditions 1.28

θeff Photon efficiency light dependent -

for LL conditions 3.0 ×10−4

for HL conditions 9.0 ×10−5

for HL-ND conditions 4.3 ×10−5

for LL-ND conditions 2.2 ×10−4

for LL-NL conditions 2.0 ×10−4
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Figure 8.5.: Model simulation for the effect of various cultivation conditions on the the
chlorophyll fraction ωChl (a-c) and the nitrogen quota in the biomass ωN (d-f) in the DFBA
model. Comparison of the simulated time course (lines) with experimental data (symbols).
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8.2.5. Model validation

The model predictions are validated through comparison with an independent set of

experimental data that was not used for the parameter estimation. The experiments

were performed under light light and nitrogen depletion (LL-ND) and light light and

nitrogen limitation (LL-NL). The model prediction and validation data are illustrated

in Figs. 8.6 and 8.7.
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Figure 8.6.: Model validation for the effect of various cultivation conditions on the cell den-
sity ρX (a-b), the extracellular nitrogen density ρN,ext (c-d) and the β-carotene fraction ωCar

(e-f) in the DFBA model. Comparison of the simulated time course (lines) with experimen-
tal data (symbols).

8.2.6. Model-based optimization for fed-batch operation

As can be seen from Figs. 8.4 and 8.5, D. salina grows well for low to high light condi-

tions at sufficient supply of nitrate. In the stress condition of high light and nutrient

depletion, a strong β-carotene accumulation was observed, however, the growth rate
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Figure 8.7.: Model validation for the effect of various cultivation conditions on the the
chlorophyll fraction ωChl (a-b) and the nitrogen quota in the biomass ωN (c-d). Comparison
of the simulated time course (lines) with experimental data (symbols).

is considerably smaller than for nutrient-replete conditions. Given a validated com-

putational model of D. salina, an optimal fed-batch cultivation to trade-off growth and

β-carotene accumulation optimally was designed based on the model structure pub-

lished in Flassig et al. (2016), where two input variables (i) light intensity per biomass

and (ii) nitrogen feeding rate were optimized.

As can be seen in Eq. 8.5, there is an interplay between light and nutrient stress that

drives β-carotene accumulation. Therefore, the optimization can be simplified in a

first step via exertion of a fixed light stress per cell. After inoculation an initial 1

day adaptation phase at incident light intensity E0 = 100 µmol photons m−2s−1 was

performed followed by the light intensity profile

E0,opt(t) = I0 ⋅ ρX. (8.14)

The factor I0 = 3000 µmol photons m−2s−1 g−1 dw L was motivated by natural sun-

light conditions in open pond operation systems. Note that until a ρX of 1 g L−1,

the light intensity profile can sustain a fixed incident light stress per cell. With

this light feed, an optimal nitrogen feeding profile based on the model published in

Flassig et al. (2016) was identified. The nitrogen feeding profile was parameterized as

a Hill function with the Hill coefficient nD and nitrogen fraction ratio ωN,min/ωN(t),

N f eed,opt(t) = ND

(ωN,min/ωN(t))nD

1+ (ωN,min/ωN(t))nD
. (8.15)
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The parameters were set as follows: nD = 10 and ωN,min = 0.02. Other parameteriza-

tions are of course possible. However, firstly the S-shape of the Hill function seems

natural for a growing culture, and secondly, for a fixed light stress the nitrogen quota

at its minimal value is the most dominating factor for β-carotene synthesis in combi-

nation with cell growth.

Given these two feed parametrizations, the model was used to simulate the behav-

ior of biomass growth and β-carotene accumulation for a fed-batch time of 9 days

with the model structure given above. As can be seen in Fig. 8.8 regimes for optimal

growth are suboptimal for β-carotene accumulation and vice versa. Fig. 8.8 also indi-

cates the β-carotene density in the reactor (ρCar = ωCar ⋅ ρX). The optimal design point

can be chosen along a line of different combinations of internal nitrogen and nitrogen

feeding factor ND. Since the internal nitrogen at the beginning of the fed-batch culti-

vation is determined by the inoculation, the nitrogen feeding factor was determined

to ND=0.02 gN L−1h−1.

Figure 8.8.: Influence of inoculum nitrate concentration and nitrogen feeding factor ND

on biomass (top), β-carotene fraction (middle) and β-carotene density (bottom). For the

experiment, the inoculum nitrate concentration was at 0.08 g L−1. Thus ND =0.02 gN L−1h−1

was chosen.

The resulting input profiles were realized in an experimental run, where both pro-

files have been discretized in daily integrated applications (Fig. 8.9). Seven days

after inoculation, the culture reached a saturation in the maximal light stress and

the β-carotene amount started to decline (Fig.. 8.9). Inducing an additional stress

via nitrogen depletion, the β-carotene fraction could again be raised. At the optimal

harvesting time point, a β-carotene density of 0.140 g L−1 at a fraction of 0.06 g Car

g−1 dw and a biomass density of 3.4 g dw L−1 was achieved. This is about 83 % more

β-carotene and 233 % more biomass compared to the standard batch (see Tab. 8.3).
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Figure 8.9.: Simulation results of the optimized fed-batch cultivation. Simulations results
of c) biomass density, d) β-carotene fraction , e) chlorophyll fraction, f) nitrogen density
and g) nitrogen cell quota (lines), experimental data (symbols) and error bars. The two top
panels show the applied a) light and b) nutrient profile.



92 Chapter 8. Dynamic flux balance analysis

Table 8.3.: Performance of the fed-batch cultivation compared to the batch cultivation. The
percentage of increase to the HL-ND batch is given in brackets.

Property Unit LL HL HL-ND Opt. Fed-Batch

Max. biomass density g dw L−1 7.22 6.55 1.02 3.40 (+233 %)

Max. biomass productivity g dw L−1 d−1 0.56 0.46 0.15 0.43 (+187 %)

Max. β-carotene density mg L−1 175.18 120.04 76.42 140.06 (+83 %)

Max. β-carotene fraction mg g−1 dw 26.86 43.28 80.30 59.53 (-26 %)

Max. β-carotene productivity mg L−1 d−1 12.05 7.90 12.88 17.48 (+36 %)

8.2.7. Model-based optimization for continuous operation mode

A major reason for the low biomass and pigment production and batch- and fed-

batch cultivations is the long lag- and early exponential phase which accounts to al-

most one third of the overall cultivation time. Continuous reactor operation, where

biomass and pigment accumulation are in steady-state may lead to a significant in-

crease in volumetric productivity. In order to test this hypothesis, the validated DFBA

equation system was extended from batch to continuous operation mode by adding

the dilution rate D to the biomass equation. The desired operation mode, where the

dilution rate D equals the growth rate µ leads to a constant biomass and β-carotene

density in steady-state and cannot be calculated on an empirical basis due to the com-

plex interplay of light and nutrient stress on growth. Therefore, the model-based op-

timization approach presented for the fed-batch cultivation was extended to the con-

tinuous operation mode. Two different steady-state conditions were chosen, namely

1 g dw L−1 at a dilution rate of 0.46 d−1 and a fixed light stress of 3000 µmol m−2 s−1

g−1 dw and 3 g dw L−1 at a dilution rate of 0.55 d−1 and a fixed light stress of 1000

µmol m−2 s−1 g−1 dw. Thus, under both light conditions the maximal light intensity

of the reactor panel is 3000 µmol m−2 s−1. The corresponding nitrogen feeding rate

was calculated based on Eq. 8.15. The experimental conditions for the model-based

continuous cultivations are given in Table 8.4.

Table 8.4.: Overview of experimental conditions for model-based continuous cultivations
of D. salina.

Name Steady state light intensity per biomass
(µmol m−2 s−1 g−1 dw)

Dilution rate
(d−1)

Nitrogen feeding rate
(g N L−1 d−1)

Continuous I 3000 0.46 0.008

Continuous II 1000 0.55 0.04

Similar to the model-based fed-batch cultivation, the computed input profiles were

experimentally realized in daily integrated applications. Again, the experimental

data and the simulation results agree to a large extend (Figs. 8.11 and 8.12) demon-

strating the validity of the suggested model. Although both cultivations used the

maximal light intensity of the reactor panel, the volumetric β-carotene productivity

differed significantly (Table 8.5). The high light continuous process with a fixed light

stress 3000 µmol m−2 s−1 g−1 dw is almost comparable with the fed-batch process in

terms of biomass- and β-carotene productivity. Thereby, not only the fed-batch but

also the high light continuous process significantly outperformed the HL-ND batch.

However, when comparing to the second continuous process with a fixed light stress

of only 1000 µmol m−2 s−1 g−1 dw at 3 g dw L−1 biomass, a tremendous increase in

productivity was observed. Compared to the already optimized fed-batch process a
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3.2-fold increase in biomass productivity and a 6-fold increase in β-carotene produc-

tivity was achieved. Compared to the HL-ND batch the increase in productivity is

even more pronounced, namely 11.2-fold increase in biomass and 8.5-fold increase in

β-carotene productivity. As can be seen in Figs. 8.11 and 8.12, the nitrogen cell quota

was in both culture at its minimal value of 0.03 g N g−1 dw indicating the validity of

our parameterization approach (Eq. 8.15) and the predicitivity of the nitrogen metab-

olization in the DFBA model.

Table 8.5.: Performance of the continuous cultivations in steady-state compared to the opti-
mized fed-batch cultivation. The percentage of increase to the optimized fed-batch is given
in brackets.

Property Unit Opt. Fed-Batch Continuous I Continuous II

Biomass density g dw L−1 3.40 0.75 (-78 %) 3.30 (-3 %)

Biomass productivity g dw L−1 d−1 0.43 0.35 (-35 %) 1.83 (+326 %)

β-carotene fraction mg g−1 dw 59.53 62.30 (+5 %) 66.80 (+12 %)

β-carotene productivity mg L−1 d−1 17.48 21.18 (+21 %) 122.24 (+600 %)

Finally, to illustrate the ”process” routes in which β-carotene is synthesized under dif-

ferent cultivation conditions, a state space representation is given in Fig. 8.10, where

the β-carotene density is plotted over the biomass density.
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Figure 8.10.: State space diagram depicting the β-carotene density over the biomass density
of all cultivation experiments in batch, fed-batch or continuous mode.

In conclusion, Chapter 7 and 8 illustrate the advantages and drawbacks of this two

modeling approaches for the construction of predictive growth and product accumu-

lation. However, to the best of our knowledge, there is no direct comparison of results

obtained from classical ODE models and DFBA models.
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Figure 8.11.: Simulation results of the continuous cultivation at 3000 µmol m−2 s−1 g−1 dw.
Simulations results of c) biomass density, d) β-carotene fraction , e) chlorophyll fraction, f)
nitrogen density and g) nitrogen cell quota (lines), experimental data (symbols) and error
bars. The two top panels show the applied a) light and b) nutrient profile.



8.2. Dynamic flux balance model 95

Figure 8.12.: Simulation results of the continuous cultivation at 1000 µmol m−2 s−1 g−1 dw.
Simulations results of c) biomass density, d) β-carotene fraction , e) chlorophyll fraction, f)
nitrogen density and g) nitrogen cell quota (lines), experimental data (symbols) and error
bars. The two top panels show the applied a) light and b) nutrient profile.





Chapter 9

Interspecies variations in the genus
Dunaliella

Unicellular green microalgae of the genus Dunaliella are among the most studied

members of the Chlorophyceae (Polle et al., 2009). The lack of a rigid cell wall is

common to all of them. The majority of the species in the Dunaliella genus can be

found in salt water habitats all around the world. According to a re-evaluation of

the Dunaliella genus published by Borowitzka and Siva (2007) 22 species were classi-

fied, including 17 halophilic organisms with salt optima between 6 and 12 % (w/w)

and comprises among others D. salina, D. parva, D. viridis, D. minuta, D. gracilis and D.

bioculata.

There have been very few studies dealing with a comparative evaluation of phys-

iological and biochemical differences among microalgal strains or species. How-

ever, when they exist they generally indicate a significant intra- and interspecies

variability (Gonzalalez et al., 2009). Although this variability makes comparison of

results and deduction of valuable conclusions challenging among different strains,

this strategy will promote the ”survival of the fittest” in outdoor cultures subjected

to significant environmental fluctuations. Physiological variability within D. salina

was observed in numerous publications (Cifuentes et al., 1992; Markovits et al., 1993;

Gomez and Gonzalez, 2005) and the major outcomes and conclusions are summa-

rized in Gonzalalez et al. (2009). In general, the results of the previously mentioned

studies investigating growth and β-carotene content of D. salina isolates from differ-

ent geographical regions found tremendous physiological variability. Since this vari-

ability has also been observed under controlled and comparable lab conditions, the

origin of the variability must be related to the genome.

The ability to grow in hypersaline habitats make algae of the genus Dunaliella an at-

tractive candidate for algal mass culture. Due to its high β-carotene content, the ma-

jority of the studies focused on the biotechnological potential of D. salina. This chap-

ter aims at investigating the interspecies differences between D. salina and D. parva.

A special emphasis is placed on the morphological differences, the productivity in

terms of biomass and β-carotene, the adaptational stress response as well as differ-

ences in photoacclimation and inhibition. Furthermore, the applicability of the in-

terdisciplinary workflow composed of experiments and mathematical modeling as

presented in Chapter 6 and 7 is applied to D. parva.
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9.1 Strain identification of D. salina and D. parva

Various culture collections located across the world provide an important repository

for different algal strains collected from diverse natural habitats. Their task to protect

and maintain the biodiversity and thus the genetic material are of inestimable value

for algal research. As it holds true for all living organisms, it is inevitable that the

genome of all species is subject to constant modifications and mutations. In addition

due to the handling of thousands of different strains in the laboratories of culture

collections, the samples are prone to contamination by different algae, bacteria or

fungi.

Both strains were ordered as D. salina CCAP19/18 in 2011 and 2014 at the Culture

Collection of Algae and Protozoa (CCAP). Since the cells showed pronounced dif-

ferences in cell size and cellular dry weight, a 18S rRNA seqencing was performed

by Cecilia Rad Menendez from CCAP. The sequence coverage of the sample ordered

2011 had a 100 % Query coverage (99 % Max. ID) with D. parva, whereas the sample

ordered in 2014 had a 100 % Query coverage (99 % Max. ID) with D. salina. The dis-

tinction between D. salina and D. parva was done on the basis of the 18S rRNA gene

sequences, where D. salina contained only one intron compared D. parva which con-

tained two introns (Olmos et al., 2000).

9.2 Experimental analysis of interspecies variability

9.2.1. Morphological variability between D. salina and D. parva

Beside D. salina, D. parva and D. pseudosalina are known to belong to the carotenogenic

species of the Dunaliella genus (Borowitzka and Siva, 2007). Like D. salina, D. parva

is a hypersaline alga tolerating NaCl fractions from 3 % (w/w) NaCl to saturation

and an optimal salinity range from 6 to 8 % (w/w) (Borowitzka and Siva, 2007). In

contrast to D. salina, the maximum carotenoid fraction reported for D. parva is about

5 % (w/w) (Borowitzka and Siva, 2007).

The most distinctive features between D. salina and D. parva were the cell size and the

dry weight. The results of the comparison are shown in Table 9.1 and showed a high

morphological and physiological variability among the studied species. The length

of a single D. parva cell was only half the cell length of D. salina and the cell width was

only one third of D. salina. The significant differences in the cell size also translated

into the cellular dry weight. An average D. parva cell had a weight of only 33.5 pg

cell−1, whereas the D. salina cell had a weight of 520 pg cell−1 when cultivated under

low-light and nutrient-repleted conditions. The size measurements were in line with

the values published by Borowitzka and Siva (2007) and are given in Table 9.1 for

comparison.
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Table 9.1.: Size and weight comparison for D. salina and D. parva. The size determination
was performed by manual length and width measurement of 30 representative cells from
light microscopic images acquired with the Axio Imager A1 (Carl Zeiss, Germany).

Species Av. length (µm) Av. width (µm) Av. cellular dry
this work literature this work literature weight (pg cell−1)

D. parva 7.6 8 - 10 3.8 3 - 5 33.5
D. salina 14.7 10 - 15 11.6 5 - 10 520

9.2.2. Biotechnological parameters for D. parva under abiotic
stress

Batch cultivations of D. parva were carried out in order to identify interspecies differ-

ences in biomass formation and pigment accumulation (Table 9.2). The biotechnolog-

ical parameters are listed in Table 9.3 and the percentage decrease or increase is given

in brackets behind. In almost all cases D. salina outperformed D. parva. The highest

content of β-carotene was observed with 4.9 % (w/w) under HL-ND conditions and

is in line with the 5.0 % (w/w) reported by Borowitzka and Siva (2007). Although the

initial nitrate density of the HL-ND batch of D. parva was lower compared to the HL-

ND batch of D. salina (0.017 g N L−1 compared to 0.05 g N L−1), the incorporation into

the biomass seems to be more efficient since the final biomass density for D. parva was

35 % higher. Indeed, the elemental composition analysis revealed a minimum nitro-

gen cell quota of 0.02 g N g−1 dw for D. parva whereas 0.03 g N g−1 dw was measured

for D. salina.

Table 9.2.: Overview of experimental conditions for batch cultures of D. parva.

Abbreviation Description Light intensity
(µmol m−2 s−1)

Duration of
lag phase (d)

Extracellular nitrogen
density (g N L−1)

LL Low light 175 3 0.5

HL High light 1950 3 0.5

HL-ND High light and
nitrogen depletion

1950 2.5 0.017

Table 9.3.: Biotechnological performance of D. parva compared to the percentage of increase
or decrease measured for D. salina for cultivations under abiotic stress in batch operation
mode. Details on the cultivation conditions of D. parva are given in Fachet et al. (2014).

Property Unit LL HL HL-ND

Max. biomass density g dw L−1 1.50 (-79%) 4.45 (-32%) 1.38 (+35%)
Max. biomass productivity g L−1 d−1 0.16 (-71%) 0.50 (+8%) 0.22 (+47%)
Max. β-carotene density mg L−1 4.48 (-97%) 15.92 (-87%) 67.73 (-11%)
Max. β-carotene fraction mg g−1 dw 3.0 (-89%) 24.4 (-44%) 49.1 (-39%)
Max. β-carotene productivity mg L−1 d−1 1.41 (-88%) 1.82 (-76%) 11.53 (-11%)

9.2.3. Photosynthetic performance of D. parva

Beside the differences in morphology and biotechnological parameters, further vari-

ability compared to D. salina was observed in the response upon exposure to oversat-
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urating light conditions as illustrated in Fig. 9.1, where the dependency of the ETR on

the average light intensity is given. In the case of D. salina, photosaturation occurred

between 550 - 860 µmol photons m−2 s−1 and the photoinhibitory phase was reached

from 1070 µmol photons m−2 s−1 on (Fig. 6.7). In contrast, a pronounced saturation

and photoinhibitory phase could not be observed, neither for low light nor for high

light-acclimated D. parva cells (Fig. 9.1). Due to the absence of a photoinhibition phase

in D. parva, the maximal ETR of 25 µmol electrons m−2 s−1 is 3 times higher compared

to the maximal ETR achieved for D. salina.
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Figure 9.1.: Relationship between electron transport rate and average light intensity in
D. parva.

9.2.4. Correlation matrix for measured features of D. salina and
D. parva

In order to present the results of the multiparametric biomass analysis in a structured

way, correlation matrices of the various measured biomass features of D. parva and

D. salina were constructed and shown in Fig. 9.2. The correlation matrices were calcu-

lated with the Matlab functions cov and corrcov, where in an intermediate step the

covariance matrix was calculated from which the final correlation matrix was com-

puted (Davis et al., 2015). In Fig. 9.2, the various parameters are grouped by category

from left to right and bottom to top: input conditions, biomass-related parameters,

flow cytometric parameters and PAM parameters. Correlations among members of

the same category are boxed along the diagonal of the matrix and data points reflected

across the diagonal are redundant (Davis et al., 2015). In general, the biomass features

of D. parva exhibit a higher correlation intensity compared to D. salina, although the

correlation pattern show a high degree of similarity. In principle, the PAM param-

eters (ΦPSII,max, ΦPSII,eff and NPQ) and flow cytometry parameters (Debris content,

FSC and SSC) are well correlated, whereas the biomass-related parameters show only

weak correlation.

The positively correlated biomass features for D. parva and D. salina can be summa-

rized as follows:

• Incident light per biomass and β-carotene content with debris content and cell

granularity
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• Chlorophyll content with nitrogen density

• Maximum and effective quantum yield of PSII with chlorophyll content

• Maximum quantum yield of PSII and NPQ with cell density and biomass den-

sity on dry weight basis

Noteworthy, among the features with highly negative correlation coefficients (less

than -0.8) are the β-carotene content and the external nitrogen density.

Figure 9.2.: Correlation matrix for the measured biomass features of D. salina (left) and
D. parva (right). Black boxes indicate groupings of related parameters, i.e., along the diago-
nal from lower left to upper right: Input conditions, biomass-related parameters, pigments,
flow cytometric parameters and PAM parameters. Diagonal elements (from lower left to
upper right) of the matrix represent correlation of each parameter with itself.

9.3 Dynamic-kinetic growth model for D. parva

In the following section, the interspecies variability between D. salina and D. parva

was analyzed with a model-based approach, namely the dynamic-kinetic growth

model presented in Chapter 7. The experimental data for the simulations were ob-

tained as specified in Table 9.2.

Due to the large degree of similarity in the model structure, the model equations

and biomass-specific constants (Table S2) are given in Appendix B. Similar to the re-

sults for D. salina, the simulation results for D. parva are in good agreement with the

experimental data (Figs. 9.3 and 9.4). The observed growth behavior under HL con-

ditions confirmed the result of the PAM analysis that D. parva showed no pronounced

photoinhibitory effects (Fig. 9.1). The maximum biomass density from all three ex-

perimental conditions was achieved in the cultivation under HL conditions, namely

4.9 g dw L−1. The maximal biomass densities reached in the stationary phase for the

cultivations under LL conditions as well as under HL-ND conditions are almost com-

parable, namely 1.5 g dw L−1 and 1.4 g dw L−1.
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Figure 9.3.: Model simulations for D. parva for the effect of various cultivation conditions
on the biomass density ρX (a-c), the extracellular nitrogen density ρN,ext (d-f) and the β-
carotene fraction ωCar (g-i). Comparison of the simulated time course (lines) with experi-
mental data (symbols).
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The simulated time course for the extracellular nitrogen density agreed well with

the experimental data (Fig. 9.3). The results revealed that the growth under nitrogen-

repleted conditions (LL, HL) was always light limited. As expected, the growth under

nutrient-depleted conditions (HL-ND) was governed by the external nutrient avail-

ability and the internal nutrient status of the cells. The external nitrogen was totally

depleted four days after inoculation in the nitrogen starved culture (HL-ND). The

simulation results clearly indicate that nitrogen uptake is strongly reduced in the

early exponential and late stationary growth phase under nitrogen-repleted condi-

tions (LL, HL), since the nitrogen cell quota is close to its maximal value ωN,max.

The light and nutrient dependency on the β-carotene synthesis works in the same

way for D. parva as observed for D. salina (Eq. 7.7). The highest β-carotene fraction

was achieved during a combination of light- and nutrient stress. However, the max-

imal mass fraction for D. parva is with 4.9 % (w/w) significantly lower compared to

that of D. salina with 8.0 % (w/w).

The model simulations agree very well with the experimental data for the chloro-

phyll fraction ωChl, which is crucial for predicting the light attenuation in the reactor

(Fig. 9.4). During the initial cultivation period more light energy is supplied per cell

than is required for growth, resulting in a considerable decline of the total chlorophyll

fraction under all three conditions. The extent of the initial decrease in chlorophyll

strongly depends on the applied photon flux density. For cells acclimated to low pho-

ton flux densities, the chlorophyll reduction was more intense during growth under

high irridiance (HL) compared to growth under low irridiance (LL). Under nitrogen-

repleted conditions (LL, HL), cells start to synthesize chlorophyll when they enter

the exponential growth phase, because the enhanced growth led to a reduced aver-

age photon flux density in the reactor. Due to the fact, that growth and chlorophyll

synthesis are strongly hindered during nitrogen-depleted conditions, the chlorophyll

fraction in the biomass steadily declines from 42 mg g−1 dw to 5 mg g−1 dw.

The optimal parameter estimates and the identifiability of the nine model parame-

ters for D. parva are given in Fig. 9.5 and Table 9.4. Whereas in the D. salina growth

model all parameters were identifiable, in the D. parva growth model one parame-

ter was practical non-identifiable, namely the light inhibition coefficient for photo-

synthetic growth Ki,E. Since D. parva showed no pronounced photoinhibitory effects

it is biologically plausible that the corresponding parameter Ki,E is not identifiable

indicated by the flat profile likelihood in direction of the upper confidence bound.

The halfsaturation coefficient for nitrogen uptake KS,N was fixed to a value of 0.155 g

m−3, which was recalculated from experimental data for Dunaliella tertiolecta from

Lomas and Glibert (2000) and has already been used for the growth model published

by Fachet et al. (2014).

In agreement with the PAM measurements (Figs. 6.7 and 9.1) were D. parva showed a

significantly higher ETR compared to D. salina, the better photosynthetic growth po-

tential is also reflected by the parameter estimates for the maximal growth rate (µmax)

and the half saturation coefficient for photosynthetic growth (Ks,E) as shown in Table

9.4. The optimal parameter estimates obtained for D. parva are notably higher com-

pared to D. salina, namely 6.980 to 1.708 d−1 for µmax and 0.396 to 0.033 mol photons

m g−1 dw d−1 for Ks,E. Due to the small cell weight of D. parva (Table 9.1), the higher

photosynthetic growth potential does not translate into a more productive cultivation

process since the biomass productivity of D. parva is considerably lower compared to
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Figure 9.4.: Model simulations for D. parva for the effect of various cultivation conditions
on the the chlorophyll fraction ωChl (a-c) and the nitrogen quota in the biomass ωN (d-f).
Comparison of the simulated time course (lines) with experimental data (symbols).

Table 9.4.: Summary of the obtained optimal parameter values Θ̂ as well as the individ-
ual confidence intervals [σ−i ; σ+i ] corresponding to a confidence level of 95 % from con-
strained non-linear optimization and profile likelihood analysis for D. parva in comparison
with D. salina.

Symbol Θ̂ for D. salina Θ̂ for D. parva σ−i σ+i Identifiability

rN,max 0.346 0.058 0.049 0.069 Structurally and practically identifiable

Ks,N 0.05 0.155 0 7.832 Structurally and practically identifiable

µmax 1.708 6.980 6.176 8.533 Structurally and practically identifiable

Ks,E 0.033 0.396 0.272 0.682 Structurally and practically identifiable

Ki,E 68.7190 499 328.078 +∞ Practically non-identifiable,
biologically plausible

Ecar,crit 77.718 70.202 53.564 101.429 Structurally and practically identifiable

rcar,E 0.032 0.016 0.012 0.026 Structurally and practically identifiable

rcar,N 0.005 0.036 0.029 0.043 Structurally and practically identifiable

rR 0.142 0.327 0.200 0.531 Structurally and practically identifiable
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D. salina (see Table 9.3). However, the strain selection of D. parva for an outdoor cul-

tivation process might be beneficial because of its absence of photoinhibition under

high irradiance.

In this work, the β-carotene content under HL-ND conditions for D. salina was with

80 mg g−1 dw 63 % higher than the 49 mg g−1 dw measured for D. parva. Therefore,

also the parameter for the light stress-induced β-carotene synthesis rate rcar,E is 2-

fold higher for D. salina (0.032 g Car g−1 dw d−1 to 0.016 g Car g−1 dw d−1 for D.

parva). However, the critical light intensity for β-carotene synthesis (Ecar,crit) is almost

comparable (70 mol photons g−1 dw d−1 for D. parva and 78 mol photons g−1 dw d−1

for D. salina).
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Figure 9.5.: Profile likelihood-based identifiability for all model parameters: a) Maximal
nitrogen uptake rate rmax, b) Halfsaturation coefficient for nitrogen uptake Ks,N, c) Maximal
growth rate µmax, d) Half saturation coefficient for photosynthetic growth Ks,E, e) Light
inhibition coefficient for photosynthetic growth Ki,E, f) Critical light intensity forβ-carotene
synthesis Ecar,crit, g) Light stress-induced β-carotene synthesis rate rcar,E, h) Nutrient stress-
induced β-carotene synthesis rate rcar,N and (i) Respiration rate rR. The profile likelihood-
based sensitivity curve, where Θi is varied and all other parameters Θj≠i are kept constant,
is indicated by the dashed gray line. The profile likelihood-based identifiability curves are
indicated by the black solid line. The blue dotted horizontal line indicates the threshold
utilized to assess likelihood-based 95 % confidence interval and the asterisk corresponds to
the optimal parameter value.





Chapter 10

Summary, Conclusion and Outlook

10.1 Summary

The topic of this thesis belongs to the wide field of algal biotechnology. The the-

sis presents a systematic methodological framework for the optimization of pho-

totrophic bioprocesses from the engineering point of view. However, the task of

biosystems engineering is associated with many theoretical, biological and experi-

mental challenges due to our limited mechanistic knowledge and its inherent vari-

ability and complexity. The foundations of the multidisciplinary approach presented

in this thesis have been driven by recent advances in accurate, quantitative experi-

mental approaches in the field of systems biology. An integration of experimental

and computational methods provide synergy for a systems-level understanding of

photosynthetic organisms and thereby facilitate the development of sustainable and

economically-viable algae processes.

In this thesis, a holistic approach for analysis and design of a microalgal bioprocesses

with the case study of β-carotene production in D. salina in a lab-scale photobioreac-

tor setup is presented. The task is addressed in an integrative manner by applying

sophisticated experimental techniques of systems biology to microalgal biosystems

to predict how they change over time and under varying input conditions. The ex-

perimental data was used to formulate mathematical models on various scales. The

major outcomes of this thesis are (i) robust and predictive models for β-carotene pro-

duction in D. salina that enable model-based process analysis and design and (ii) a

modular and interdisciplinary framework coupling experiments and modeling that

can be transferred to other green algal species. A detailed summary of the results

obtained in this thesis is given below.

The systematic experimental approach with special focus on the adaptational stress

response of D. salina under carotenogenic conditions was developed and presented in

Chapter 6 supported by the methodological foundations explained in Chapter 3. The

approach was applied to cells cultivated under batch conditions to monitor morpho-

logical changes during carotenogenesis in a dynamic manner.

Based on the experimental results obtained in Chapter 6, a dynamic-kinetic reactor

model was formulated and presented in Chapter 7. The ordinary differential equation

system accounted for biomass growth, nutrient uptake and pigment fraction in the
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biomass. The proposed model structure was a tradeoff between the justification of

the experimentally observed behavior under various abiotic stress conditions with

a minimal number of parameters. The identifiability of the model parameters was

investigated using profile likelihood giving implications for model reduction. The

proposed model is validated against independently conducted experiments under

different cultivation conditions and verifiable predictions are given.

The derived parameters from the dynamic-kinetic growth model in Chapter 7 were

included into a dynamic flux balance model presented in Chapter 8 and validated

against experimental data obtained from batch cultivations. The dynamic part of

the DFBA model considers the same dynamic states as in the dynamic-kinetic model

presented in Chapter 7, namely biomass growth, nitrogen uptake, internal nitrogen

status as well as chlorophyll and β-carotene fraction in the biomass. Thus, the DFBA

formulation allows for predicting intracellular metabolites by incorporating biologi-

cal knowledge in a structured manner. The DFBA model was further used to predict

a model-based fed-batch and two model-based continuous operation strategy with

the objective to maximize β-carotene productivity. In this setup, the biomass and

β-carotene productivity was significantly increased compared to the empirically op-

erated batch process.

Furthermore, the applicability of the interdisciplinary workflow composed of experi-

ments and mathematical modeling as presented in Chapter 6 and 7 was applied to

D. parva to investigate the interspecies variability between the two close relatives

in the Dunaliella genus. The results of the experimental and computational investi-

gations presented in Chapter 9 indicate significant variability between D. salina and

D. parva in terms of morphological differences, the biomass and β-carotene produc-

tivity as well as differences in photoacclimation and photoinhibition.

The achievements of this thesis can be summarized as follows:

• Development and employment of an experimental platform to systematically

analyze the abiotic stress response in D. salina with innovative spectroscopic

and fluorometric techniques.

• Flow cytometry and FTIR spectroscopy have only been scarcely used for algal

process monitoring and this work can provide a reference for their successful

application in future studies.

• First comprehensive dynamic-kinetic growth model for D. salina and D. parva

covering nutrient uptake, light attenuation and pigmentation.

• Parameter identifiability analysis using profile likelihood approach to charac-

terize model state uncertainties.

• Connection of the metabolic network level with the dynamic reactor environ-

ment to a dynamic flux balance model.

• First dynamic flux balance model for green microalgae, which is calibrated and

validated against experimental data.

• Model-based operation strategies in fed-batch and continuous mode were ex-

perimentally validated and confirmed.
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• Optimized design outperformed the classical batch process significantly in

terms of biomass and β-carotene productivity (+187 % and +36 % for the fed-

batch and +1120 % and +849 % for the continuous process).

10.2 Conclusion

The main objective of this thesis was to gain a systems-level understanding of

carotenogenesis in D. salina to identify promising operation strategies for their pro-

duction. The major conclusions that can be drawn from this work are:

I. Recent advances in sophisticated experimental techniques for systems-level

characterization of biosystems improved bioprocess monitoring. These meth-

ods take advantage of:

• Small amount of sample required for analysis

• Fast and reliable analysis with high statistical significance

II. Improved possibilities for process monitoring lead to robustification of biopro-

cesses due to:

• Fast identification of critical process parameters such as cell vitality

• Detection of population heterogeneity

• Optimal harvesting time point determined based on productivity and cul-

ture state

III. Sophisticated experimental approaches from systems biology and the low sam-

ple amount required for them promote shorter sampling intervals resulting in

more experimental data of higher quality and finally leading to the development

of models with higher predictivity.

IV. The model-based fed-batch and continuous operation strategies aiming at high

carotenoid-productivity clearly outperformed the batch process operated on an

empirical basis.

Clearly, this thesis is able to contribution to the final goal of profitable, sustainable and

highly productive microalgal processes. The integrative work flow illustrated here

strengthens the iterative approach of modeling and experiments to better apprehend

for cellular complexity under fluctuating environmental conditions.

Doubtlessly, the ongoing methodological advances in the experimental as well as the

computational area will further broaden our knowledge on the metabolic adaption

of microalgae and lead to a progressive improvement of mathematical models. This

task includes the investigation of unknown and non-validated gene and protein func-

tions, the extension of sequencing projects for industrially relevant strains, the recon-

struction of genome-scale metabolic models and coupling with other -omics data e.g.

from transcriptomics or proteomics. Thereby, the engineering of industrially valuable

strains is accelerated and provides the basis for effective biotechnology, metabolic en-

gineering and even synthetic biology with green microalgae.
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10.3 Outlook

Once an annotated algal genome is available, a genome-scale metabolic model can

be reconstructed and its topology can be analyzed (Reijnders et al., 2014). As stated

in Chapter 8, the genome of D. salina is already sequenced but annotation is not com-

pleted so far. Owing to the lack of the Dunaliella genome-scale metabolic network, the

stoichiometric network was apprehended by the metabolism of the model green algae

C. reinhardtii. A genome-scale of metabolic model of D. salina is expected to increase

the predictive power of the DFBA model. Beside of autotrophic growth, the model

might be used to simulate and validate the flux distribution, β-carotene and biomass

productivity under mixotrophic or heterotrophic growth conditions. Significant con-

tributions in the field of metabolic engineering can only be achieved by studying (i)

the influence of gene knock-outs on the production of certain metabolites and (ii) the

interlinkages of algal metabolic networks to the networks of associated bacteria to

unravel the growth-promoting or growth-inhibiting effect in algal-bacterial consor-

tia.

The production of biofuels, commodities and fine chemical requires the cultivation

in large-scale photobioreactors. The majority of this cultivation systems are operated

outdoor in open raceway ponds, shallow lakes or closed photobioreactor systems.

These systems are subjected to significant spatiotemporal variations in environmen-

tal conditions during the day, week, month or even year. The daily light intensity is

highly variable and is influenced by the day/night cycle, the solar radiation angle and

the percentage of cloud coverage. Furthermore, the biomass productivity strongly de-

pends on the cultivation temperature which themselves is influenced by the ambient

temperature, the solar irradiance, the wind speed as well as reactor design. Mixing

of large-scale photobioreactors is another critical issue to avoid photoinhibition and

growth arrest through CO2 gas-liquid mass transfer limitations. The complex inter-

play of environmental fluctuations in outdoor cultivations makes it very challenging

to estimate reliable parameters from these systems. This thesis used controlled lab-

scale cultivations to estimate kinetic growth parameters of Dunaliella to calibrate and

validate the models presented in Chapter 7 and 8. As the availability of multifacto-

rial experimental data for outdoor systems is expected to increase rapidly in the next

years for a variety of industrially-relevant strains. Thus, the proposed model could be

extended to predict growth in large-scale photobioreactors or to facilitate a rational

selection of appropriate strains for a certain geographic location.

The omnipresent imperfections discussed above might lead to the presence of pop-

ulation heterogeneity in large-scale cultivation systems. Microbial heterogeneity is

not only influenced by the stochastic nature of gene expression, it is also caused by

variations in intracellular compounds such as regulatory proteins and transcription

factors. Since microbial heterogeneity affects bioprocess performance, it can be a tar-

get for future metabolic engineering strategies for microalgae.

The content of high-value products, such as carotenoids or polyunsaturated fatty

acids, in the biomass is typically low (below 10 %) and a large fraction of residual

biomass remains unused. In contrast, the economic feasibility is often difficult to

achieve because of energy and cost-intensive harvesting and extraction steps. There-

fore, microalgal process design requires tailor-made downstream processing strate-

gies and a biorefinery approach to valorize most of the biomass fractions. The FTIR
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spectroscopy and the DFBA approach presented in this thesis are valuable synergis-

tic tools for a model-based description of biomass composition and can contribute

to the design an optimal algae-based biorefinery and/or to improve performance of

existing bioproduction processes for achieving an economic feasible overall process

operation under the consideration of all essential up- and downstream steps.

In summary, it remains to be stated that the tools of this work ought to be used in the

future for the optimization and design of microalgal processes. This can involve the

adaption of the methods to different algae species, the development of systematic op-

eration strategies for photobioreactors such as tailor-made light profiles or optimized

nutrient and media feeding strategies. Concerning the model structure, a further

development towards the incorporation of fluctuating input conditions without ne-

glecting the effects of light/dark cycles, imperfect mixing and variable temperature

on biomass productivity is a challenging task. However, this is not straightforward

due to the inherent complexities of the different processes and time scales involved in

photosynthesis and acclimation. But first and foremost, the maximization of the pho-

tosynthetic carbon capture efficiency and advanced metabolic engineering strategies

is the field in which successful methodologies and techniques will have the largest

impact.





Appendix A

Supplementary information for
experimental analyses

A.1 Description of experimental information
according to MIFlowCyt

A.1.1. Experimental overview

A.1.1.1. Purpose

The purpose of the experiment was to analyze changes in the cellular properties of

Dunaliella salina during β-carotene accumulation under the presence of abiotic stress

using flow cytometry.

A.1.1.2. Keywords

Dunaliella salina, β-carotene, flow cytometry, cellular properties

A.1.1.3. Experiment Variables

The presence of high light intensity and nitrogen deprivation were chosen to be suit-

able inducers of carotenogenesis and their effect on cell growth, granularity, vitality

and neutral lipid fluorescence was studied in a time-dependent manner.

A.1.1.4. Organization

Max Planck Institute for Dynamics of Complex Technical Systems

Sandtorstrasse 1

39106 Magdeburg, Germany
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A.1.1.5. Primary contact

Melanie Fachet (fachet@mpi-magdeburg.mpg.de), Dr. Dana Hermsdorf (hermsdorf@mpi-

magdeburg.mpg.de)

A.1.2. Quality control measures

To verify the performance and system alignment, Calibration Beads of 3 µm diameter

(Catalogue number: 05-4018) were measured before each batch cultivation.

A.1.3. Flow sample

A.1.3.1. Biological sample

The algae Dunaliella salina (strain CCAP 19/18) and Dunaliella parva used in this study

were obtained from the Culture Collection of Algae and Protozoa (Windermere,

United Kingdom).

A.1.3.2. Sample characteristics

The alga is known to accumulate high amounts of β-carotene upon exposure to abi-

otic stress conditions.

A.1.3.3. Sample treatment description

All samples were diluted with cultivation medium to a cell density of approximately

1× 106 cells mL−1 prior to the analysis. The vitality staining was performed by adding

20 µL of the FDA stock solution (2 mg mL−1) to 1 mL of cell suspension leading to a

final concentration of 40 µg mL−1. For the neutral lipid determination, the cell sus-

pension was stained with a final concentration of 0.5 µg mL−1 Nile Red and incubated

for 15 minutes in the dark.

A.1.3.4. Fluorescence reagent description

• Nile Red: N3013, Sigma Aldrich

• Fluorescein diacetate: F1303, Invitrogen

A.1.3.5. Characteristics being measured

• Unstained cells:

– SSC: Population identification

– SSC: Cell granularity

– FL3: Chlorophyll fluorescence, population identification

• Stained cells:
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– FL1: Cell vitality

– FL1: Nile Red

A.1.4. Instrument details

A.1.4.1. Instrument manufacturer

Sysmex-Partec GmbH (www.sysmex-partec.com)

A.1.4.2. Instrument model

CyFlow Space

A.1.4.3. Instrument configuration and settings

Flow cell and fluidics

The instrument has not been altered; fixed-alignment cuvette flow cell.

Light sources

The instrument has not been altered:

• 488 nm blue argon solid state laser (20 mW)

• 375 nm ultra-violet diode laser (16 mW)

Excitation optics configuration

The instrument has not been altered.

Optical filters

The instrument has not been altered, all filters are original and came with the instru-

ment (March 07, 2012).

Optical detectors

The instrument has not been altered. Detector voltages have been set to: FSC=140V;

SSC=200V; FL1=380V; FL2=416V; FL3=400V; FL4=450V; FL5=660V.

Optical paths

The instrument has not been altered. The following table shows the filter configura-

tion:
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Table S1.: Configuration of the emission ranges for the flow cytometric detector channels

Laser Detector channel Filter Fluorochrome detected

Blue (488 nm) FL1 536/40 Nile Red, Fluorescein, BODIPY 505/515

FL2 590/40 Nile Red

FL3 675/20 Nile Red, Chlorophyll autofluorescence

FL4 >748 -

UV (375 nm) FL5 455/50 -

A.1.5. Data analysis

A.1.5.1. List-mode data files

FCS data files can be obtained by contacting Melanie Fachet or Dr. Dana Hermsdorf.

A.1.5.2. Data transformation details

Purpose of data transformation

Visualization and gating.

Data transformation description

FlowMax (Sysmex-Partec GmbH, Version 2.7) default visualization settings have

been used for gating. The calculation of the geometric mean values for light scatter-

ing and fluorescenece emission was conducted with FloMax.

A.1.5.3. Gating details

The same gating strategy has been used for all data files.

Gating description

The gating strategy involves the following gates:

• FSC-FL3 gate to define the intact algal cell population (Fig. 1a) in data files of

stained and unstained cells

• For Nile Red-stained cells: FL1 gate to determine mean fluorescence intensity

(Fig. 3)

• For FDA-treated cells: FL1 gate to define the number of vital algal cells (Fig. 5)

The following figure illustrates the gating strategy of unstained cells:
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Figure S5.: Gating strategy for unstained cells
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A.2 Supplementary information for FTIR analysis
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Figure S6.: Calibration curve for FTIR analysis with respective standards. a) BSA, b) Glyc-
erol tripalmitate (GTP) and c) Laminarin.
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Supplementary information for profile
likelihood analysis

B.1 List of model parameters

Table S1.: Overview of parameters from dynamic-kinetic model.

Symbol Description Unit

λ Duration of the lag phase d

µ Specific growth rate d−1

µmax Maximal growth rate d−1

µnet Net specific growth rate d−1

ρChl Chlorophyll density in the reactor g Chl m−3

ρN,ext Extracellular nitrogen density g N m−3

ρX Biomass density on dry weight basis g dw m−3

Φ Description of the lag phase -

ωC Carbon content of biomass g C g−1 dw

ωChl Chlorophyll fraction of the biomass g Chl g−1 dw

ωChl,N Chlorophyll-nitrogen ratio in the biomass g Chl g−1 N

ωN Cell quota for nitrogen g N g−1 dw

ωN,max Maximal cell quota for nitrogen g N g−1 dw

ωN,min Minimal cell quota for nitrogen g N g−1 dw

a∗ Optical cross section of chlorophyll a m2 g−1 Chl

a Absorption coefficient of chlorophyll m2 g−1 Chl

b Absorption coefficient of β-carotene m2 g−1 Car

c Backscattering coefficient of the biomass m−1

E0 Photon flux density at the reactor surface mol photons m−2 d−1

Eabs Absorbed photon flux mol photons d−1

Ecar,crit Crit. light int. for β-carotene synthesis mol photons g−1 dw d−1

EX,dw Light intensity per biomass mol photons m−2 d−1 g−1 dw

Eout Transmitted photon flux density mol photons m−2 d−1

E Average photon flux density in the reactor mol photons m−2 d−1

k Hill coefficient -

Ks,E Half saturation coeff. for photosynthetic growth mol photons m g−1 dw d−1

Ki,E Light inhibition coeff. for photosynthetic growth mol photons m g−1 dw d−1
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Ks,N Halfsaturation coeff. for nitrogen uptake g N m−3

rcar,E Light stress-induced β-carotene synthesis rate g Car g−1 dw d−1

rcar,N Nutrient stress-induced β-carotene synthesis rate g Car g−1 dw d−1

rN Nitrogen uptake rate g N g−1 dw d−1

rN,max Maximal nitrogen uptake rate g N g−1 dw d−1

rP Photosynthesis rate g C g−1 Chl d−1

rP,max Maximal theoretical photosynthesis rate g C g−1 Chl d−1

rR Respiration rate d −1

sPBR Illuminated reactor surface m2

VPBR Reactor volume m3

YX,E Biomass yield on light energy g dw mol−1 photons

z Thickness of the reactor m
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B.2 Model equations for the dynamic-kinetic growth
model of D. parva

The model equations formulated to describe the state variables for the cellular pro-

cesses in D. parva during growth are subdivided into two categories. Firstly, the dy-

namic changes in the state variables are represented by ordinary differential equa-

tions. Secondly, the kinetic expressions and microalgal biomass characteristics are

expressed by algebraic equations. The presented dynamic model equations consider

the following four state variables:

- Biomass density ρX (g dw m−3)

- Extracellular nitrogen density ρN (g N m−3)

- Intracellular nitrogen fraction ωN (g N g−1 dw)

- Chlorophyll fraction ωChl (g Chl g−1 dw)

- β-carotene fraction ωCar (g Car g−1 dw)

Light attenuation in the photobioreactor

The incident light falling on the reactor surface E0 decreases exponentially along the

optical path coordinate L according to the law of Lambert-Beer.

E (L) = E0 ⋅ exp [− (a ⋅ ρChl + b ⋅ ρCar + c) ⋅ L] (B.1)

where a, b and c represent the absorption and scattering coefficients of the biomass

and ρChl as well as ρCar are the pigment densities in the reactor. The transmitted

photon flux density Eout is given by:

Eout = E (L = z) = E0 ⋅ exp [− (a ⋅ ρChl + b ⋅ ρCar + c) ⋅ z] (B.2)

The average photon flux density E in the photobioreactor is calculated by integration

of E (L) /L between L = 0 and the optical path length L = z:

E =
E0(a ⋅ ρChl + b ⋅ ρCar + c) ⋅ z ⋅ (1− exp [− (a ⋅ ρChl + b ⋅ ρCar + c) ⋅ z]) (B.3)

The absorbed photon flux Eabs is calculated from the difference of incident and trans-

mitted photon flux density normalized to the reactor surface sPBR:

Eabs = (E0 − Eout) ⋅ sPBR (B.4)

The photon flux density EX,dw per biomass is calculated from the ratio of average

photon flux density E and the biomass density ρX normalized to the reactor volume

VPBR:

EX,dw =
E

ρX ⋅VPBR
(B.5)
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Nitrogen uptake rate

The uptake rate of inorganic nitrogen rN from the medium was assumed to follow

Michaelis-Menten kinetics. By including the Droop function into the uptake rate,

the expression ensures that nitrogen uptake is terminated under nitrogen-repleted

conditions (Droop, 1968):

rN = rN,max ⋅ ρN,ext

ρN,ext +KS,N
⋅ (1− ωN

ωN,max
) (B.6)

where rN,max and KS,N represent the maximal uptake rate and the half-saturation co-

efficient for nitrogen as well as ωN,max which is the maximal nitrogen quota in the

biomass.

β-carotene synthesis rate

The synthesis of β-carotene mainly depends on the presence and intensity of light and

nutrient stress. Therefore, the equation for its synthesis couples a light-dependent

and nutrient-dependent synthesis term as formulated below:

rCar = rCar,E ⋅ E
k

Ek
car,crit + E

k
+ rCar,N ⋅⎛⎝1− ωk

N

ωk
N,crit +ωk

N

⎞
⎠ (B.7)

where rCar,E and rCar,N represent the maximal synthesis rate under light and nutrient

stress. The half saturation coefficients for light and nutrient stress are denoted as

Ecar,crit and ωN,crit. The Hill coefficient is represented by k.

Photosynthesis rate

The carbon-specific, light-limited photosynthesis rate can be expressed as follows:

rP = rP,max ⋅ (1− ωN,min

ωN
) ⋅ (1− exp [−a ⋅YX,E ⋅ E

rP,max
]) (B.8)

where rP,max is the maximal photosynthesis rate, ωN,min is the minimal nitrogen quota

of the biomass and YX,E is the biomass yield on light energy. This relationship devel-

oped by Geider et al. (1998) includes the dependencies on the average photon flux

density, the light absorption properties, the photon efficiency and the nutrient status

of the biomass.
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Growth rate

The equation for the light- and nutrient-dependent effects on the specific growth rate

is expressed in the following equation:

µ = µmax ⋅ EX,dw

EX,dw +Ks,E ⋅ ρX

ρChl
+ E2

X,dw

Ki,E

⋅ (1− ωN,min

ωN
) (B.9)

Since the cells need to adapt to the conditions in the photobioreactor, at time t = 0 an

initial lag phase was observed in the experimental data. Therefore, we adjusted the

specific growth rate using a Hill function:

Φ =
tk

λk + tk
(B.10)

to estimate the lag phase Φ where k is the exponential factor describing the transition

from lag to exponential phase and λ is the duration of the lag phase. Taking the

respiration rate into account, the following equation for the net specific growth rate

µnet was derived:

µnet = Φ ⋅ (µ − rR) (B.11)

The biomass yield on light energy YX,E is calculated according the following expres-

sion:

YX,E =
µ ⋅ ρX ⋅VPBR

Eabs
(B.12)

where VPBR is the reactor volume.

After the formulation of the kinetic expressions, the following five dynamic equa-

tions are deduced in order to describe biomass growth, chlorophyll and β-carotene

fraction, extracellular nitrogen density and nitrogen quota:

dρX

dt
= µnet ⋅ ρX (B.13)

dρN,ext

dt
= −rN ⋅ ρX (B.14)

dωN

dt
= rN −Φ ⋅ µ ⋅ωN (B.15)

dωChl

dt
=

ωChl,N ⋅ µ ⋅ rN

rP ⋅ (ωChl

ωC
)
− µnet ⋅ωChl (B.16)

dωCar

dt
= rCar − µnet ⋅ωCar (B.17)
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Table S2.: Summary of biomass-specific parameters for D. parva derived from experiments
and literature data.

Description Symbol Value Unit Source

Optical cross section of Chl a a∗ 11.84 m2 g−1 Chl a Average of experimental data

Absoption coeff. of Chl a and b a 5.134 m2 g−1 Chl Fitting of absorption model to exp. data

Absoption coeff. of β-carotene b 2.202 m2 g−1 Car Fitting of absorption model to exp. data

Backscattering coeff. of the biomass c 16.591 m−1 Fitting of absorption model to exp. data

Hill coefficent k 4 - Literature (Baty and Delignette-Muller, 2004)

Duration of the lag phase λ 2 d Estimation from exp. data

Maximal theoretical photosynthesis rate rP,max 2000 g C g−1 Chl d−1 Estimation from exp. data

Carbon fraction ωC 0.49 g N g−1 dw Direct measurement

Maximal cell quota for nitrogen ωN,max 0.10 g N g−1 dw Direct measurement

Minimal cell quota for nitrogen ωN,min 0.015 g N g−1 dw Direct measurement

Crit. cell quota for β-carotene synthesis ωN,crit 0.02 g N g−1 dw Estimation from exp. data

Reactor thickness z 0.05 m Reactor constant

Reactor volume VPBR 0.001 m−3 Reactor constant

Reactor surface sPBR 0.024 m−2 Reactor constant
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B.3 Interdependencies between model parameters

Growth model for D. salina
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Figure S1.: Profile likelihood of rN,max and its dependencies on the remaining parameters
in terms of relative change of each kinetic parameter for D. salina.
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Figure S2.: Profile likelihood of Ks,N and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. salina.

1.4 1.6 1.8 2.0 2.2
0.005

0.006
 

max (d
-1)

(c)

1.4 1.6 1.8 2.0 2.2
0.3

0.4

 

 

max (d
-1)

(a)

1.4 1.6 1.8 2.0 2.2
0.02

0.04

0.06

(d)

 

 

max (d
-1)

1.4 1.6 1.8 2.0 2.2
40

60

80

100

(e)

  

 

max (d
-1)

1.4 1.6 1.8 2.0 2.2
77

78

(f)

 

 

max (d
-1)

1.4 1.6 1.8 2.0 2.2

0.03

0.04
(g)

 

 

max (d
-1)

r N
,m

ax
 (g

 N
 g

-1
 d

w
 d

-1
)

r R
 (d

-1
)

K s,
N
 (g

 m
-3
)

K s,
E
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

K i,E
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

E ca
r,c

rit
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

r ca
r,E

 (g
 c

ar
 g

-1
 d

w
 d

-1
)

r ca
r,N

 (g
 c

ar
 g

-1
 d

w
 d

-1
)

1.4 1.6 1.8 2.0 2.2
0.004

0.006
(h)

 

 

max (d
-1)

1.4 1.6 1.8 2.0 2.2

0.14

0.15
(b)

 

 

max (d
-1)

Figure S3.: Profile likelihood of µmax and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. salina.
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Figure S4.: Profile likelihood of Ks,E and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. salina.
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Figure S5.: Profile likelihood of Ki,E and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. salina.
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Figure S6.: Profile likelihood of Ecar,crit and its dependencies on the remaining parameters
in terms of relative change of each kinetic parameter for D. salina.
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Figure S7.: Profile likelihood of rcar,E and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. salina.



B.3. Interdependencies between model parameters 129

0.0045 0.0050 0.0055
1.64

1.74

 

rcar,N (g car g-1 dw d-1)

(c)

0.0045 0.0050 0.0055
0.332

0.371

 

 

rcar,N (g car g-1 dw d-1)

(a)

0.0045 0.0050 0.0055
0.032

0.034
(d)

 

 

rcar,N (g car g-1 dw d-1)
0.0045 0.0050 0.0055

68

70
(e)

  

 

rcar,N (g car g-1 dw d-1)
0.0045 0.0050 0.0055

77

78
(f)

 

 

rcar,N (g car g-1 dw d-1)

0.0045 0.0050 0.0055
0.031

0.033
(g)

 

 

rcar,N (g car g-1 dw d-1)
0.0045 0.0050 0.0055

0.136

0.148

r ca
r,E

 (g
 c

ar
 g

-1
 d

w
 d

-1
)

E ca
r,c

rit
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

(h)

 

 

rcar,N (g car g-1 dw d-1)

r N
,m

ax
 (g

 N
 g

-1
 d

w
 d

-1
)

r R
 (d

-1
)

K s,
N
 (g

 m
-3
)

m
ax

 (d
-1
)

K s,
E
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

K i,E
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

0.0045 0.0050 0.0055
0.0052

0.0056
(b)

 

 

rcar,N (g car g-1 dw d-1)

Figure S8.: Profile likelihood of rcar,N and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. salina.
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Figure S9.: Profile likelihood of rR and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. salina.
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Growth model for D. parva
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Figure S10.: Profile likelihood of rN,max and its dependencies on the remaining parameters
in terms of relative change of each kinetic parameter for D. parva.
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Figure S11.: Profile likelihood of µmax and its dependencies on the remaining parameters
in terms of relative change of each kinetic parameter for D. parva.
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Figure S12.: Profile likelihood of Ks,E and its dependencies on the remaining kinetic param-
eters in terms of relative change of each kinetic parameter for the dynamic-kinetic model
of D. parva.



132 Appendix B. Supplementary information for profile likelihood analysis

200 400 600 800 1000

6

8

10

 

KiE (mol m g-1 dw d-1)

(c)

200 400 600 800 1000
0

2

4

6

8

 

KiE (mol m g-1 dw d-1)

(b)

200 400 600 800 1000
0.05

0.06
(a)

KiE (mol m g-1 dw d-1) 

200 400 600 800 1000

0.3

0.4

K sE
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

m
ax

 (d
-1
)

K sN
 (g

 m
-3
)

r N
m

ax
 (g

 N
 g

-1
 d

w
 d

-1
)

(d)

r R
 (d

-1
)

 

 

KiE (mol m g-1 dw d-1)
200 400 600 800 1000

0.2

0.4

0.6
(e)

  

 

KiE (mol m g-1 dw d-1)
200 400 600 800 1000

60

80

E ca
r,c

rit
 (m

ol
 m

 g
-1
 d

w
 d

-1
) (f)

 

 

KiE (mol m g-1 dw d-1)

200 400 600 800 1000
0.015

0.016

r ca
r,N

 (g
 c

ar
 g

-1
 d

w
 d

-1
)

r ca
r,E

 (g
 c

ar
 g

-1
 d

w
 d

-1
)

(g)

 

 

KiE (mol m g-1 dw d-1)
200 400 600 800 1000

68

70

72
(h)

 

 

KiE (mol m g-1 dw d-1)

Figure S13.: Profile likelihood of Ki,E and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. parva.

40 60 80 100
6.8

7.0

7.2
 

Ecar,crit (mol m g-1 dw d-1)

(c)

40 60 80 100

0

2

4

6

8

 

Ecar,crit (mol m g-1 dw d-1)

(b)

40 60 80 100
0.05

0.06

0.07
(a)

Ecar,crit (mol m g-1 dw d-1)

40 60 80 100
0.32

0.34

K sE
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

m
ax

 (d
-1
)

K sN
 (g

 m
-3
)

r N
m

ax
 (g

 N
 g

-1
 d

w
 d

-1
)

(d)

r R
 (d

-1
)

 

 

Ecar,crit (mol m g-1 dw d-1)
40 60 80 100

0.35

0.45
(e)

  

 

Ecar,crit (mol m g-1 dw d-1)
40 60 80 100

200

1000

K iE
 (m

ol
 m

 g
-1
 d

w
 d

-1
)

(f)

 

 

Ecar,crit (mol m g-1 dw d-1)

40 60 80 100
0.01

0.03

r ca
r,N

 (g
 c

ar
 g

-1
 d

w
 d

-1
)

r ca
r,E

 (g
 c

ar
 g

-1
 d

w
 d

-1
)

(g)

 

 

Ecar,crit (mol m g-1 dw d-1)
40 60 80 100

0.033

0.039
(h)

 

 

Ecar,crit (mol m g-1 dw d-1)

Figure S14.: Profile likelihood of Ecar,crit and its dependencies on the remaining parameters
in terms of relative change of each kinetic parameter for D. parva.
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Figure S15.: Profile likelihood of rcar,E and its dependencies on the remaining parameters
in terms of relative change of each kinetic parameter for D. parva.
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Figure S16.: Profile likelihood of rcar,N and its dependencies on the remaining parameters
in terms of relative change of each kinetic parameter for D. parva.
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Figure S17.: Profile likelihood of rR and its dependencies on the remaining parameters in
terms of relative change of each kinetic parameter for D. parva.



Appendix C

Supplementary information for
metabolic network reconstruction

C.1 List of pathways and reaction

Table S1.: List of reactions in the carbon core metabolism. The arrows indicate the direction
and reversibility of the reactions. Metabolites in the chloroplast are notated with a c and
metabolites in the mitochondrium are notated with a m before the abbreviation.

No. ID Reaction E.C. KEGG

ID

R001 Light1 8 Light + 3 ADP + 3 Pi + H[+] + 2 cNADP→

O2 + H2O + 2 cNADPH + 3 ATP

- -

R002 Cal1 CO2 + H2O + cRu15DP→ 2 c3PG + 2H[+] 4.1.1.39 R00024

R003 Cal2 ATP + c3PG→ ADP + H[+] + c13DPG 2.7.2.3 R01512

R004 Cal3 H[+] + NADPH + c13DPG↔NADP + H2O + cGAP 1.2.1.9 R01058

R005 Cal4 cGAP↔ cDHAP 5.3.1.1. R01015

R006 Cal5 cDHAP + cGAP↔ cF16P 4.1.2.13 R01068

R007 Cal6 H2O + cF16P↔ Pi + cF6P 3.1.3.11 R00762

R008 Cal7 cF6P + cGAP↔ cE4P + cX5P 2.2.1.1 R01067

R009 Cal8 H2O + cE4P + cGAP↔ Pi + cS7P 3.1.3.37

4.1.2.13

R01845

R01829

R010 Cal9 cGAP + cS7P↔ cR5P + cX5P 2.2.1.1 R01641

R011 Cal10 cX5P↔ cRu5P 5.1.3.1 R01529

R012 Cal11 cR5P↔ cRu5P 5.3.1.6 R01056

R013 Cal12 ATP + cRu5P→ ADP + cRu15DP 2.7.1.19 R01523

R014 Gluc1 cG6P + H2O + NADP↔ c6PG + NADPH + H[+] 1.1.1.49

3.1.1.31

R00835

R02035

R015 Gluc2 c6PG + NADP↔ CO2 + NADPH + cRU5P + H[+] 1.1.1.44 R01528

R016 Gluc3 cF6P↔ cG6P 5.3.1.9 R00771

R017 Gluc4 cG6P↔ cG1P 5.4.2.2 R08639

R018 Gluc5 ATP + cG1P→ cADP-G + PPi 2.7.7.27 R00948

R019 Gluc6 cADP-G→ ADP + Starch 2.4.1.21 R06049

R020 Gluc7 Starch+ Pi→ cG1P 2.4.1.1 R06185

R021 CAM1 AMP + cPEP + PPi↔ ATP + cPYR + Pi 2.7.9.1 R00206

R022 CAM2 cMAL + NAD↔ cPYR + CO2 + NADH 1.1.1.39 R00214

R023 CAM3 cMAL + NADP↔ cPYR + CO2 + NADPH 1.1.1.40 R00216

R024 CAM4 cMAL + NAD↔ cOXA + NADH + H[+] 1.1.1.37 R00342
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R025 CAM5 cMAL + NADP↔ cOXA + NADPH + H[+] 1.1.1.82 R00343

R026 CAM6 ATP + cOXA↔ ADP + CO2 + cPEP 4.1.1.49 R00341

R027 CAM7 CO2 + H2O + cPEP→H[+] + cOXA + Pi 4.1.1.31 R00345

R028 CAM8 cASP + cAKG↔ cOXA + cGLU 2.6.1.1 R00355

R029 CAM9 MAL + NAD↔ PYR + CO2 + NADH 1.1.1.39 R00214

R030 CAM10 MAL + NADP↔ PYR + CO2 + NADPH 1.1.1.40 R00216

R031 CAM11 ATP + OXA↔ ADP + CO2 + PEP 4.1.1.49 R00341

R032 CAM12 CO2 + H2O + PEP→H[+] + OXA + Pi 4.1.1.31 R00345

R033 CAM13 ATP + CO2 + H2O + PYR→ ADP + OXA + Pi + 2 H[+] 6.4.1.1 R00344

R034 Pres1 cRu15DP + O2→ c3PG+ cGLYCOL2P 4.1.1.39 R03140

R035 Pres2 cGLYCOL2P + H2O→ cGLYCOL + Pi 3.1.3.18 R01334

R036 Pres3 GLYCOL + NAD→ GLYOX + NADH + H[+] 1.1.1.26 R00717

R037 Pres4 SER + GLYOX→ GLY + HydPyr 2.6.1.45

2.6.1.51

R00588

R038 Pres5 H[+] + HydPyr + NADH→ GLYCA + NAD 1.1.1.29 R01388

R039 Pres6 ATP + GLYCA→ ADP + 3PG 2.7.1.31 R01514

R040 Pres7 GA + NAD + H2O→

GLYCA + NADH + H[+]

1.2.1.3 R01752

R041 Pres8 GLYC + NAD→ GA + NADH + H[+] 1.1.1.21 R01036

R042 Pres9 GLYC + NADP→ GA + NADPH + H[+] 1.1.1.2 R01041

R043 Pres10 GLY + H2O + METHF↔ SER + THF - -

R044 Pres11 GLY + NAD + THF↔CO2 + METHF + NADH + NH4[+] - -

R045 Pres12 GLY + H[+] + PYR↔ ALA + GLYOX - -

R046 Gly1 G6P↔ G1P 5.4.2.2 R08639

R047 Gly2 F6P↔ G6P 5.3.1.9 R00771

R048 Gly3 ATP + F6P→ ADP + F16P 2.7.1.11 R00756

R049 Gly4 F16P + H2O→ F6P + Pi 3.1.3.11 R00762

R050 Gly5 DHAP + GAP↔ F16P 4.1.2.13 R01068

R051 Gly6 DHAP↔ GAP 5.3.1.1 R01015

R052 Gly7 GAP + NADP+Pi 13DPG + H[+] + NADPH 1.2.1.13 R01063

R053 Gly8 13DPG + ADP↔ 3PG + ATP 2.7.2.3 R01512

R054 Gly9 3PG↔ 2PG 5.4.2.12 R01518

R055 Gly10 2PG↔H2O + PEP 4.2.1.11 R00658

R056 Gly11 ADP + PEP→ ATP + PYR 2.7.1.40 R00200

R057 Gly12 ATP + GLUC↔ ADP + G6P 2.7.1.1 R00299

R058 Gly13 G1P↔ CARB + Pi - -

R059 PP1 G6P + H2O + NADP↔ 6PG + NADPH + 2 H[+] 1.1.1.49

3.1.1.31

R00835

R02035

R060 PP2 6PG + NADP↔ CO2 + NADPH + RU5P + H[+] 1.1.1.44 R01528

R061 PP3 RU5P↔ R5P 5.3.1.6 R01056

R062 PP4 RU5P↔ X5P 5.1.3.1 R01529

R063 PP5 R5P + X5P↔ GAP + S7P 2.2.1.1 R01641

R064 PP6 GAP + S7P↔ E4P + F6P 2.2.1.2 R08575

R065 PP7 F6P + GAP↔ E4P + X5P 2.2.1.1 R01067

R066 TCA1 CoA + NAD + mPYR→mAcCoA + CO2 + NADH - -

R067 TCA2 mAcCoA + H2O + mOXA↔mCIT + CoA + H[+] - -

R068 TCA3 mCIT + NAD↔mAKG + CO2 + NADH - -

R069 TCA4 mAKG + CoA + NAD→ CO2 + NADH + mSUCCoA - -

R070 TCA5 ADP + Pi + mSUCCoA↔ ATP + CoA + mSUC - -

R071 TCA6 FAD + mSUC↔ FADH2 + mFUM - -

R072 TCA7 mFUM + H2O↔mMAL - -

R073 TCA8 FAD + mMAL↔ FADH2 + mOXA 1.1.5.4 R01257

R074 Glyc1 DHAP + ADP↔ DHA + ATP 2.7.1.29 R01011

R075 Glyc2 DHA + H[+] + NADPH↔ GLYC + NADP 1.1.1.156 R01039

R076 Glyc3 ADP + cGLYC3P→ ATP + cGLYC 2.7.1.30 R00847

R077 Glyc4 GLYC3P + FAD↔ DHAP + FADH2 1.1.5.3 R00848

R078 Glyc5 cGLYC3P + NAD↔ cDHAP + H[+] + NADH 1.1.1.8 R00842

R079 Glyc6 ADP + GLYC3P→ ATP + GLYC 2.7.1.30 R00847
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R080 NS1 H[+] + NADH + NO3↔H2O + NAD + NO2 - -

R081 NS2 5 H[+] + 3 NADPH + NO2↔NH4[+] + 2 H2O + 3 NADP - -

R082 NS3 ATP + SO4→ APS + PPi - -

R083 NS4 APS + NADH→ AMP + NAD + SO3 - -

R084 NS5 5 H[+] + 3 NADPH + SO3↔H2S + 3 H2O + 3 NADP - -

R085 Ox1 1.5 ADP + 1.5 H[+] + 1.5 Pi + FADH2 + 0.5 O2→

FAD + 1.5 ATP + 2.5 H2O

- -

R086 Ox2 3.5 H[+] + 2.5 ADP + 2.5 Pi + NADH + 0.5 O2→

NAD + 2.5 ATP + 3.5 H2O

- -

R087 Ox3 NAD + NADPH→NADH + NADP - -

R088 Ox4 H2O + PPi→H[+] + 2 Pi - -

R089 Ox5 AMP + ATP→ 2 ADP - -

R090 Ox6 ATP + H2O→ ADP + H[+] + Pi - -

R091 Ox7 1 NADH + 1 CMP→ 1 NAD + 1 CDP - -

R092 AA1 AKG + H[+] + NADPH + NH4[+] → GLU + H2O +

NADP

- -

R093 AA2 ATP + GLU + NH4[+]→ ADP + GLN + H[+] + Pi - -

R094 AA3 AKG + GLN + H[+] + NADPH↔NADP + 2 GLU - -

R095 AA4 3PG + GLU + H2O + NAD↔

AKG + H[+] + NADH + Pi + SER

1.1.1.95

2.6.1.52

3.1.3.3

R01513

R04173

R00582

R096 AA5 SER→NH4[+] + PYR - -

R097 AA6 AcCoA + H2S + SER↔ Ace + CYS + CoA + H[+] - -

R098 AA7 ATP + Ace + CoA→ ADP + AcCoA + Pi - -

R099 AA8 GLU + PYR→ AKG + ALA - -

R100 AA9 H[+] + THR↔ 2OXOB + NH4[+] 4.3.1.19 R00996

R101 AA10 2OXOB + GLU + H[+] + NADPH + PYR↔

AKG + CO2 + H2O + ILE + NADP

- -

R102 AA11 2 H[+] + ALA + NADPH + PYR↔

CO2 + H2O + NADP + VAL

- -

R103 AA12 2 PYR + AcCoA + GLU + H[+] + NAD + NADPH↔

AKG + CoA + LEU + NADH + NADP + 2 CO2

- -

R104 AA13 2 PEP + ATP + E4P + NADPH→

ADP + CHO + NAD P + 4 Pi

- -

R105 AA14 CHO↔ PRE - -

R106 AA15 GLU + H[+] + PRE↔ AKG + CO2 + H2O + PHE - -

R107 AA16 GLU + NAD + PRE↔ AKG + CO2 + NADH + TYR - -

R108 AA17 CHO + GLN↔ ANTH + GLU + H[+] + PYR - -

R109 AA18 ANTH + H[+] + PRPP + SER↔

CO2 + GAP + PPi + TRYP + 2 H2O

- -

R110 AA19 3 H2O + 2 NAD + ATP + GLN + PRPP→

AICAR + AKG + HIS + Pi + 2 NADH + 2 PPi + 5 H[+]

- -

R111 AA20 GLU + OXA↔ AKG + ASP 2.6.1.1 R00355

R112 AA21 ASP + ATP + GLN + H2O→ ADP + ASN + GLU + H[+]

+ Pi

- -

R113 AA22 2 ATP + 2 H2O + CO2 + GLN→

CaP + GLU + Pi + 2 ADP + 3 H[+]

- -

R114 AA23 2 GLU + ASP + ATP + CaP + NADH→

AKG + AMP + ARG + FUM + H2O + NAD + PPi + Pi

- -

R115 AA24 3 H[+] + 2 NADH + GLU↔ PRO + 2 H2O + 2 NAD - -

R116 AA25 AKG + O2 + PRO↔ CO2 + HydPro + SUC - -

R117 AA26 ASP + ATP + H[+] + NADPH→ ADP + ASA + NADP +

Pi

- -

R118 AA27 2 H[+] + ASA + GLU + NADH + PYR↔

AKG + DAP + H2O + NAD

- -

R119 AA28 DAP↔ CO2 + H[+] + LYS - -

R120 AA29 ASA + H[+] + NADPH↔HSER + NADP - -

R121 AA30 ATP + H2O + HSER→ ADP + H[+] + Pi + THR - -

R122 AA31 AcCoA + CYS + H2O + HSER↔

Ace + CoA + HCYS + H[+] + NH4[+] + PYR

- -
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R123 AA32 HCYS + MTHF↔H[+] + MET + THF - -

R124 AA33 4.306 ATP + 3.306 H2O + 0.111 ALA + 0.094 GLY + 0.093

LEU + 0.059 PRO + 0.059 VAL + 0.058 LYS + 0.057 THR

+ 0.055 SER + 0.05 GLN + 0.05 GLU + 0.047 ARG + 0.047

ASN + 0.047 ASP + 0.045 PHE + 0.036 ILE + 0.031 TYR

+ 0.022 MET + 0.017 HIS + 0.013 HydPro + 0.012 CYS +

0.001 TRYP → PROTEIN + 4.306 ADP + 4.306 Pi + 4.314

H[+]

- -

R125 THF1 ATP + R5P→ AMP + H[+] + PRPP - -

R126 THF2 5FTHF + H[+]↔H2O + MYLTHF - -

R127 THF3 H2O + MYLTHF↔H[+] + N10FTHF - -

R128 THF4 ATP + FORM + THF→ ADP + N10FTHF + Pi - -

R129 THF5 MYLTHF + NADPH↔METHF + NADP - -

R130 THF6 H[+] + METHF + NADPH↔MTHF + NADP - -

R131 THF7 5FTHF + ATP + H2O→ ADP + H[+] + N10FTHF + Pi - -

R132 THF8 FORM + H[+] + THF↔H2O + N10FTHF - -

R133 THF9 DHF + H[+] + NADPH↔NADP + THF - -

R134 PA1 ACP + AcCoA + H[+]↔ AcACP + CoA - -

R135 PA2 ATP + AcCoA + CO2 + H2O→ADP + H[+] + MalCoA +

Pi

- -

R136 PA3 ACP + MalCoA↔ CoA + MalACP - -

R137 PA4 10 H[+] + 10 NADPH + 5 MalACP + AcACP↔

C12:0ACP + 5 ACP + 5 CO2 + 5 H2O + 10 NADP

- -

R138 PA5 12 H[+] + 12 NADPH + 6 MalACP + AcACP↔

C14:0ACP + 6 ACP + 6 CO2 + 6 H2O + 12 NADP

- -

R139 PA6 14 H[+] + 14 NADPH + 7 MalACP + AcACP↔

C16:0ACP + 7 ACP + 7 CO2 + 7 H2O + 14 NADP

- -

R140 PA7 C160ACP + H[+] + NADH + O2↔ C16:1ACP + NAD +

2 H2O

- -

R141 PA8 C161ACP + H[+] + NADH + O2↔ C16:2ACP + NAD +

2 H2O

- -

R142 PA9 C162ACP + H[+] + NADH + O2↔ C16:3ACP + NAD +

2 H2O

- -

R143 PA10 16 H[+] + 16 NADPH + 8 MalACP + AcACP↔

C18:0ACP + 8 ACP + 8 CO2 + 8 H2O + 16 NADP

- -

R145 PA11 C180ACP + H[+] + NADH + O2↔ C18:1ACP + NAD +

2 H2O

- -

R146 PA12 C181ACP + H[+] + NADH + O2↔ C18:2ACP + NAD +

2 H2O

- -

R147 PA13 C182ACP + H[+] + NADH + O2↔ C18:3ACP + NAD +

2 H2O

- -

R148 PA14 GLYC3P + 0.474 C16:0ACP + 0.446 C18:3ACP + 0.276

C18:2ACP + 0.253 C16:3ACP + 0.16 C18:1ACP + 0.148

C16:2ACP + 0.104 C12:0ACP + 0.051 C14:0ACP + 0.048

C18:0ACP + 0.04 C16:1ACP↔ PA + 2 ACP + 2 H[+]

- -

149 PA15 H[+] + O2 + NADH + C16:3ACP → 2 H2O + NAD +

C16:4ACP

- -

R150 TAG1 0.0186 C14:0ACP + 0.1275 C16:0ACP + 0.0387 C16:1ACP

+ 0.0137 C16:2ACP + 0.0191 C16:3ACP + 0.0019

C18:0ACP + 0.0753 C18:1ACP + 0.0967 C18:2ACP + 0.357

C18:3ACP + 0.2515 C16:4ACP→ ACP + FA

- -

R151 TAG2 GLYC3P + FA→ AG3P - -

R152 TAG3 AG3P + FA→ DAG3P - -

R153 TAG4 H2O + DAG3P→ DAG - -

R154 TAG5 DAG + FA→ TAG - -

R155 TAG6 0.3349 TAG→ TAGp - -

R156 TAG7 0.3185 DAG→ DAGp - -
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R157 Chl1 12 H[+] + 8 ATP + 8 GLU + 8 NADPH + 2.5 O2 → PPor-

phyrin + 4 NH4[+] + 6 CO2 + 8 AMP + 8 NADP + 8 PPi

+ 13 H2O

- -

R158 Chl2 18 H[+] + 15 NADPH + 8 ATP + 4 GAP + 4 PYR→ Phytyl-

PP + 4 ADP + 4 AMP + 4 CO2 + 7 PPi + 8 H2O + 15 NADP

- -

R159 Chl3 ATP + H2O + MET→ AdMET + H[+] + PPi + Pi - -

R160 Chl4 AdHCYS + H2O↔Ad + HCYS - -

R161 Chl5 ATP + Ad→ ADP + AMP + H[+] - -

R162 Chl6 4 NADPH + 2.5 O2 + 2 ATP + AdMET + Mg2[+] + PPor-

phyrin + Phytyl-PP→ AdHCYS + Chlorophyll + PPi + 2

ADP + 2 H2O + 2 Pi + 3 H[+] + 4 NADP

- -

R163 NA1 4 ATP + 2 GLN + 2 H2O + ASP + CO2 + GLY + N10FTHF

+ PRPP→AICAR + FUM + PPi + THF + 2 GLU + 4 ADP

+ 4 Pi + 7 H[+]

- -

R164 NA2 ASP + CaP + H[+] + O2 + PRPP↔

CO2 + H2O + H2O2 + PPi + Pi + UMP

- -

R165 NA3 2 H2O2↔ O2 + 2 H2O - -

R166 NA4 ATP + UMP→ ADP + UDP - -

R167 NA5 ATP + UDP↔ ADP + UTP - -

R168 NA6 ATP + GLN + H2O + UTP→

ADP + CTP + GLU + Pi + 2 H[+]

- -

R169 NA7 ATP + CDP↔ ADP + CTP - -

R170 NA8 AICAR + N10FTHF↔H2O + IMP + THF - -

R171 NA9 ATP + H2O + IMP + NAD + NH4[+]→

AMP + GMP + NADH + PPi + 3 H[+]

- -

R172 NA10 ATP + GMP→ ADP + GDP - -

R173 NA11 ATP + GDP↔ ADP + GTP - -

R174 NA12 ASP + GTP + IMP↔ AMP + FUM + GDP + Pi + 2 H[+] - -

R175 NA13 ATP + H[+] + METHF + NADPH + UDP→

ADP + DHF + H2O + NADP + dTTP

- -

R176 NA14 ATP + CDP + H[+] + NADPH→

ADP + H2O + NADP + dCTP

- -

R177 NA15 ATP + GDP + H[+] + NADPH→

ADP + H2O + NADP + dGTP

- -

R178 NA16 ATP + H[+] + NADPH↔H2O + NADP + dATP - -

R179 NA17 2.372 H2O + 1.372 ATP + 0.18 dATP + 0.18 dTTP + 0.32

dCTP + 0.32 dGTP→ DNA + PPi + 1.372 ADP + 1.372 Pi

+ 2.372 H[+]

- -

R180 NA18 1.4 H2O + 0.56 ATP + 0.34 GTP + 0.16 UTP + 0.34 CTP→

0.4 ADP + 0.4 H[+] + 0.4 Pi + PPi + RNA

- -

R182 Car1 cGAP + cPYR→ CO2 + cDXP 2.2.1.7 R05636

R183

R184

Car2

Car3

ATP + H[+] + 2 NADPH + CTP + cDXP→

2 H2O + ADP + 2 NADP + PPi + CMP + cIPP

ATP + H[+] + 2 NADPH + CTP + cDXP→

2 H2O + ADP + 2 NADP + PPi + CMP + cDMAPP

1.1.1.267

2.7.7.60

2.7.1.148

4.6.1.12

1.17.7.1

1.17.1.2

R05688

R05633

R05634

R05637

R08689

R05884

R07219

R184 Car4 cIPP↔ cDMAPP 5.3.3.2 R01123

R185 Car5 cDMAPP + cIPP→ PPi + cGPP 2.5.1.1 R01658

R186 Car6 2 cIPP + cGPP→ 2 PPi + cGGPP 2.5.1.10

2.5.1.29

R02003

R02061

R187 Car7 2 cGGPP→ 2 PPi + cPHYT 2.5.1.32 R07916

R188 Car8 H2O + NAD + cPHYT→H[+] + NADH + cZCAR 1.3.5.5 R04787

R189 Car9 2 O2 + 2 NADH + cZCAR→ 4 H2O + 2 NAD + cLYC 1.3.5.6 R04798

R04800

R190 Car10 cLYC→ cBCAR 5.5.1.19 R03823

R191 Car11 2 H[+] + 2 O2 + 2 NADPH + cBCAR→

2 H2O + 2 NADP + cZEA

1.14.13.129 R09747
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R192 Car12 2 H[+] + 2 O2 + 2 NADH + cZEA↔ 2 H2O + 2 NAD +

cVIO

1.14.13.90 R06956

R06947

R193 Car13 cLYC→ cACAR 5.5.1.18

5.5.1.19

R06963

R06962

R194 Car14 cACAR→ cLUT 1.14.13.129

1.14.99.45

R07530

R07531

R195 Car15 0.1863 BCAR→ 1 BCARp - -

R196 mu 32.687 ATP + 32.687 H2O + 0.6417 PROTEIN + 0.2713

CARB + 0.0453 PA + 0.0305 RNA + 0.0102 Chlorophyll

+ 0.0011 DNA → Biomass + 32.687 H[+] + 32.687 ADP +

32.687 Pi

- -

R197 Glob 0.771 cBCAR + 0.075 TAG + 0.154 DAG→ Globule - -

R198 T1 cDHAP↔ DHAP - -

R199 T2 cGAP↔ GAP - -

R200 T3 cPYR↔ PYR - -

R201 T4 cPEP↔ PEP - -

R202 T5 cMAL↔MAL - -

R203 T6 cASP↔ ASP - -

R204 T7 cGLYCOL↔ GLYCOL - -

R205 T8 cGLYC3P↔ GLYC3P - -

R206 T9 cGLYC↔ GLYC - -

R207 T10 mPYR↔ PYR - -

R208 T11 mMAL↔MAL - -

R209 T12 mOXA↔ OXA - -

R210 T13 mAKG↔ AKG - -

R211 T14 3PG→ c3PG - -

R212 T15 cAKG↔ AKG - -

R213 T16 cGLU↔ GLU - -

R214 Ex1 Lightex → Light - -

R215 Ex2 CO2ex↔ CO2 - -

R216 Ex3 O2↔ O2ex - -

R217 Ex4 SO4ex → SO4 - -

R218 Ex5 NO3ex →NO3 - -

R219 Ex6 NH4ex →NH4[+] - -

R220 Ex7 Mg2ex →Mg2[+] - -

R221 Ex8 Piex↔ Pi - -

R222 Ex9 H2Oex↔H2O - -
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Table S2.: List of compounds in the carbon core metabolism.

No. Symbol Name

C001 13DPG 1,3-diPhosphoglycerate

C002 2OXOB 2-Oxobutanoate

C003 2PG 2-Phosphoglycerate

C004 3PG Glycerate-3-phosphate

C005 5FTHF 5-Formyl-THF

C006 6PG 6-Phosphogluconate

C007 AcACP Acetyl-ACP

C008 AcCOA Acetyl-CoA

C009 Ace Acetate

C010 ACP Acetyl-carrier protein

C011 Ad Adenosine

C012 AdHCYS S-Adenosyl-L-homocysteine

C013 AdMET S-Adenosyl-L-methionine

C014 ADP Adenosine diphosphate

C015 ADP-G ADP-Glucose

C016 AICAR 5-Aminoimidazole-4-carboxamide ribonucleine

C017 AKG 2-Oxoglutarate (alpha-ketoglutarate)

C018 ALA Alanine

C019 AMP Adenosine monophosphate

C020 ANTH Anthranilate

C021 APS Adenylyl sulfate

C022 ARG Arginine

C023 ASA L-Aspartic semialdehyde

C024 ASN Asparagine

C025 ASP Aspartate

C026 ATP Adenosine triphosphate

C027 Biomass Biomass

C028 Biomassex Biomass (g)

C029 C12:0ACP Dodecanoyl-ACP (Lauric acid)

C030 C14:0ACP Tetradecanoyl-ACP (Myristic acid)

C031 C16:0ACP Hexadecanoyl-ACP (Palmitic acid)

C032 C16:1ACP Trans-Hexadec-2-enoyl-ACP (Palmitoleic acid)

C033 C16:2ACP Hexadecadienoic acid

C034 C16:3ACP Hexadecatrienoic acid

C035 C18:0ACP Octadecanoyl-ACP (Stearic acid)

C036 C18:1ACP Cis-11-ocadecanoate-ACP (Oleic acid)

C037 C18:2ACP Linoleic acid

C038 C18:3ACP Alpha-linoleic acid

C039 CaP Carbamoyl phosphate

C040 CARB Carbohydrate

C041 CDP Cytidine diphosphate

C042 Chlorophyll Chlorophyll

C043 CHO Chorismate

C044 CIT Citrate

C045 CMP Cytidine monophosphate

C046 CDP Cytidine diphosphate

C047 CTP Cytidine triphosphate

C048 CO2 Carbon dioxide

C049 CO2ex Carbon dioxide (extracellular)

C050 CoA Coenzyme A

C051 CTP Cytidine triphosphate

C052 CYS Cysteine

C053 DAP Diaminopimelate

C054 dATP Deoxy ATP

C055 dCTP Deoxy CTP

C056 dGTP Deoxy GTP

C057 DHA Dihydroxyacetone (Glycerone)

C058 DHAP Dihydroxyacetone-P
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C059 DHF Dihydrofolate

C060 DMAPP Dimethylallyl-pyrophosphate

C061 DNA Deoxyribonucleic acid

C062 dTTP Deoxy TTP

C063 DXP Deoxy-xylulose 5-phosphate

C064 E4P Erythrose 4-phosphate

C065 F16P Fructose 1,6-bisphosphate

C066 F6P Fructose 6-phosphate

C067 FAD Flavin adenine dinucleotide oxidized

C068 FADH2 Flavin adenine dinucleotide reduced

C069 FORM Formic acid

C070 FUM Fumarate

C071 G1P Glucose 1-phosphate

C072 G6P Glucose 6-phosphate

C073 GA Glyceraldehyde

C074 GAP Glyceraldehyde 3-phosphate

C075 GDP Guanosine diphosphate

C076 GGPP Geranylgeranyl-pyrophosphate

C077 GLN Glutamine

C078 GLU Glutamate

C079 GLUC Glucose

C080 GLY Glycine

C081 GLYC Glycerol

C082 GLYC3P Glycerol 3-phosphate

C083 GLYCA Glycerate

C084 GLYCex Glycerol (extracellular)

C085 GLYCOL Glycolate

C086 GLYCOL2P Glycolate-2P

C087 GLYOX Glyoxylate

C088 GMP Guanosine monophosphate

C089 GTP Guanosine triphosphate

C090 H[+] Proton

C091 H[+]ex Proton (extracellular)

C092 H2O Water

C093 H2O2 Hydrogen peroxide

C094 H2Oex Water (extracellular)

C095 H2S Hydrogen sulfide

C096 HCYS Homocysteine

C097 HIS Histidine

C098 HSER Homoserine

C099 HydPro Hydroxyproline

C100 HydPyr 3-Hydroxypyruvate

C101 ILE Isoleucine

C102 IMP Inosine monophosphate

C103 IPP Isopentyl-pyrophosphate

C104 LEU Leucine

C105 Light Photons

C106 Lightex Photons (extracellular)

C107 LYC Lycopene

C108 LYS Lysine

C109 MAL Malate

C110 MalCoA Malonyl-CoA

C111 MET Methionine

C112 METHF 5,10-Methylene-THF

C113 Mg2[+] Magnesium

C114 Mg2[+]ex Magnesium (extracellular)

C115 MTHF Methyl-THF

C116 MYLTHF 5,10-Methenyl-THF

C117 N10FTHF 10-Formyl-THF

C118 NAD Nicotinamide oxidized

C119 NADH Nicotinamide reduced
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C120 NADP Nicotinamidephosphate oxidized

C121 NADPH Nicotinamidephosphate reduced

C122 NH4[+] Ammonium

C123 NH4[+]ex Ammonium (extracellular)

C124 NO2 Nitrite

C125 NO3 Nitrate

C126 NO3ex Nitrate (extracellular)

C127 O2 Oxygen

C128 O2ex Oxygen (extracellular)

C129 OXA Oxaloacetate

C130 PA Phosphatidic acid

C131 PEP Phosphoenolpyruvate

C132 PHE Phenylalanine

C133 PHYT Phytoene

C134 Phytyl-PP Phytyl-diphosphate

C135 Pi Orthophosphate

C136 Piex Orthophosphate (extracellular)

C137 PPi Pyrophosphate

C138 PPorphyrin Protoporphyrine

C139 PRE Prephanate

C140 PRO Proline

C141 PROTEIN Protein

C142 PRPP Phosphorybosylpyrophosphate

C143 PYR Pyruvate

C144 R5P Ribose 5-phosphate

C145 RNA Ribonucleic acid

C146 Ru15DP Ribulose 1,5-bisphosphate

C147 RU5P Ribulose 5-phosphate

C148 S7P Sedoheptulose 7-phosphate

C149 SER Serine

C150 SO3 Sulphite

C151 SO4 Sulphate

C152 SO4ex Sulphate (extracellular)

C153 STARCH Starch

C154 STARCHex Starch (extracellular)

C155 SUC Succinate

C156 SUCCoA Succinyl Coenzyme A

C157 THF Tetrahydrofolate

C158 THR Threonine

C159 TRYP Tryptophan

C160 TYR Tyrosine

C161 UDP Uridine diphosphate

C162 UMP Uridine monophosphate

C163 UTP Uridine triphosphate

C164 VAL Valine

C165 VIO Violaxanthin

C166 X5P Xylulose 5-phosphate

C167 ZCAR Zeta-carotene
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C.2 Metabolic network map of central carbon
metabolism

Figure S1.: Network map of carbon core metabolism in the three considered comparte-
ments: Cytosol, chloroplast and mitochondrium.
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Hädicke, O. and S. Klamt (2010). CASOP: A computational approach for strain opti-

mization aiming at high productivity. Journal of Biotechnology 147(2), 88–101.

Halverson, K. J., I. Sucholeiki, T. T. Ashburn, and P. T. Lansbury (1991). Location

of β-sheet-forming sequences in amyloid proteins by FTIR. Journal of the American

Chemical Society 113(17), 6701–6703.

Han, B. P. (2002). A mechanistic model of algal photoinhibition induced by photo-

damage to Photosystem-II. Journal of Theoretical Biology 214(4), 519–27.

Hannon, M., J. Gimpel, M. Tran, B. Rasala, and S. Mayfield (2010). Biofuels from

algae: Challenges and potential. Biofuels 1(5), 763–784.

Havlik, I., P. Lindner, T. Scheper, and K. F. Reardon (2013). On-line monitoring of

large cultivations of microalgae and cyanobacteria. Trends in Biotechnology 31(7),

406–414.

Hein, M., M. F. Pedersen, and K. Sand-Jensen (1995). Size-dependent nitrogen uptake

in micro- and macroalgae. Marine ecology progress series. Oldendorf 118(1), 247–253.

Hejazi, M. A., E. Holwerda, and R. H. Wijffels (2004). Milking microalga Dunaliella

salina for β-carotene production in two-phase bioreactors. Biotechnology and Bio-

engineering 85(5), 475–81.

Henson, M. A. and T. J. Hanly (2014). Dynamic flux balance analysis for synthetic

microbial communities. IET Syst Biol 8(5), 214–29.
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