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1. Introduction

1.1. Challenges of modern crystal growth

The manufacture of crystalline materials is an ancient craft. But only in the past
decades has it been possible to gain a deeper understanding of crystal growth
processes and the relationship between the microscopic structure of materials and
their macroscopic properties. Today, at a time when we are faced with an ever
growing need for new materials with any desired characteristic, the science of
crystallization is an active field of research, both in experiments and in theory.

With the advent of microelectronics and the challenge to create smaller circuits
and gadgets with novel electronic and optical properties, it has become necessary
to control the structure and chemical composition of crystals even on the atomic
scale. Modern crystal growth techniques like molecular beam epitaxy (MBE) or
organometallic vapour phase epitaxy (OMVPE) allow to fine-tune the deposition
flux so that even fractions of a monolayer can be deposited onto a crystal sample.
Thus it becomes possible to construct complex epitaxial architectures. MBE, for
example, has been successfully applied to create nanostructures, such as quantum
wires and quantum dots [57].

1.2. Molecular beam epitaxy and step flow

The basic principle of MBE is easy to grasp. A sample is placed inside a vacuum
chamber, where it is subjected to a beam of particles (molecules or atoms). This
beam can be produced by thermal heating of a bulk material, which may or may
not have the same chemical composition as the sample. If the bulk has the same
chemical composition, one speaks of homoepitaxy, otherwise of heteroepitaxy.

The samples used in MBE are usually single crystals with high-quality surfaces
and well-defined crystallographic orientation. Often these surfaces are vicinal
surfaces, which are obtained by cutting a crystal under a small angle θ with
respect to a high-symmetry plane. The resulting surface geometry on the atomic
scale is a sequence of terraces, which are separated by steps of monoatomic height
(see Fig. 1.1).

Step flow is one of the growth modes in MBE. It allows for a controlled layer-
by-layer growth. The growth conditions are adjusted such that the atoms which
land on the surface do not nucleate on the terraces (to produce islands), but rather
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1. Introduction

θ

Figure 1.1.: Schematic of a crystal with an ideal vicinal surface. The surface geom-
etry, consisting of wide terraces and monoatomic steps, results from
a small miscut (at angle θ) with respect to a high-symmetry crystal
plane.

diffuse until they attach to a step. The crystal thus grows thanks to the movement
of the steps.

In an ideal situation, all terraces collect the same amount of matter and each
point of the steps moves at the same velocity so that the geometry of the surface
does not change. In practice, however, there are a number of factors that inter-
fere with this scenario. The surface suffers morphological instabilities, which are
expressed through a roughening of the surface. This roughening, which depends
on certain growth parameters like temperature or the intensity of the deposition
flux, can be observed in situ with the help of RHEED spectroscopy or even with
the help of advanced imaging techniques like STM. Several types of morphological
instabilities can be distinguished. They are briefly presented in the next section.

1.3. Morphological instabilities

The roughening of the surface that is observed in MBE during growth can occur
due to a variety of physical mechanisms and the precise ingredients are often not
well understood. In the past decades, many models have been suggested with the
aim of describing surface roughening in MBE [4].

One source of roughening can be sought in stochastic processes. Even if a
vicinal surface is left to itself, at finite temperature, the steps will roughen due
to thermodynamic fluctuations. A crystal step is a one-dimensional object, which
can be deformed at minimal energy cost. In fact, TR = 0 is the roughening
temperature of an isolated step [3].

During growth, there are additional stochastic influences. The atomic beam
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1.3. Morphological instabilities

is not fully homogeneous (shot noise), which leads to an unequal distribution of
matter on the terraces. There is also noise in the diffusion process. These effects
can contribute to the roughening of the surface [4].

Another source of roughening is found in deterministic growth instabilities.
They are linked to inherent nonlinearities and only need an initial perturbation of
ideal step flow in order to develop. Step flow may suffer three basic deterministic
instabilities: meandering, bunching, and island formation.

a) b)

c) d)

Figure 1.2.: Three morphological instabilities that can occur during step flow
growth. A perfect vicinal surface (a) may be unstable with respect to
step meandering (b), step bunching (c), and island formation (d).

In step meandering [Fig. 1.2 b)], initially straight steps develop a large meander.
One of the physical reasons for this instability is an energy barrier, the so-called
Ehrlich-Schwoebel barrier, at the step edges, which can prevent adatoms from
descending the steps. In the presence of an Ehrlich-Schwoebel barrier, the pro-
truding parts of the steps receive more amount of matter per unit length than
the receding parts: The amplitude of the step meander grows in time. The me-
andering instability leads to the formation of ripples in the direction of the step
train.

In step bunching [Fig. 1.2 c)], initially equidistant steps form step bunches (or
macrosteps), which are separated by terraces that are much wider than the original
interstep distance `. This instability leads to the emergence of ripples perpendicu-
lar to the step train direction. Step bunching is often observed when a DC heating
current is applied to the sample.

Island formation [Fig. 1.2 d)] occurs if the typical distance between nucleation
centres is smaller than the interstep distance: Adatoms meet on the terraces before
they attach to a step, forming a dimer and thus a seed for a new layer on top of the
terrace. If nucleation also occurs on top of newly formed islands, mound formation
sets in and a rapid transition to three-dimensional growth takes place.

9



1. Introduction

It is a great goal of theoretical crystal physics to understand the precise mecha-
nisms that lead to a roughening of the surface, so that one can either avoid them
or use their features to grow surfaces with a desired surface pattern. An idea of
such an application is illustrated in Fig. 1.3: The meandering steps give rise to
a ripple structure, whose troughs might be a preferred place for the creation of
pyramidal structures of foreign atoms.

Figure 1.3.: Schematic of a vicinal surface with a meandering pattern. A ripple
structure is formed, which may stimulate the ordered growth of foreign
atoms into pyramidal structures (dark spheres).

This dissertation contributes to the understanding of the meandering instability.
With the help of a continuum model of step flow growth, we study the effects of
crystalline anisotropy on the meandering dynamics.

It is shown that under certain conditions the lateral size of the meandering
ripples is the outcome of a compromise between the diffusive instability and surface
anisotropy, which tends to pin the crystal steps along preferred orientations. The
resulting scenario is called interrupted coarsening : The wavelength of the meander,
which is first close to the wavelength favoured by the instability, increases up to
a critical wavelength, whose magnitude depends on surface anisotropy. At this
point the coarsening process is interrupted.

We show that the scenario of interrupted coarsening originates from the anisot-
ropies of various surface properties and provide formulas to calculate the expected
wavelength.

10



2. Fundamental concepts

In this chapter we provide the physical and mathematical background that we
need for our study of anisotropic meandering steps. We first explain the Ehrlich-
Schwoebel effect, which is the physical reason for the meandering instability. Then
we provide a brief introduction to the Burton-Cabrera-Frank (BCF) theory, a well-
established continuum theory of step flow growth.

2.1. Ehrlich-Schwoebel effect

A single adatom may diffuse freely on a vicinal surface until it reaches a step.1

There it has a finite probability to actually cross the step. This is referred to as
step transparency [41]. But we want to consider cases where it is more likely that
the adatom is “reflected” or becomes incorporated into the step.

Usually an adatom has a smaller probability to get incorporated if it approaches
the step from the upper terrace. This is due to the so-called Ehrlich-Schwoebel
effect, which can be explained by an energy barrier at the step edge (see Fig. 2.1):
If an adatom that comes from the upper terrace is to be incorporated into a
step, additional energy is required to break bonds. Two basic mechanisms are
conceivable. The adatom can either hop across the step edge, whereby it breaks
some next-nearest-neighbour bonds, or it can fill the gap that is created by a step
atom that moves one lattice site towards the terrace in front of the step.

An adatom on the lower terrace need not cross an additional energy barrier
before it can be incorporated into the step, which explains the higher probability
of this process.

It should be mentioned that the precise attachment mechanisms can be far
more complex. In particular, the attachment probabilities depend on the local
kink configuration, which is a function of the step orientation and the curvature.
Thus, attachment kinetics are often highly anisotropic. There are even materials,
in which the Ehrlich-Schwoebel barrier is inverted for some step orientations.
In Chapter 4 we shall analyse the effects of anisotropic attachment on the step
dynamics.

1We assume that there is no desorption of adatoms into the vacuum and that the probability
of nucleation on the terraces is negligible.
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2. Fundamental concepts

D D’

A’
B

A

C

Figure 2.1.: The Ehrlich-Schwoebel effect. Atom A attaches to the step with a
lower probability than atom B, because atom A has to pass through
poorly coordinated site A’. Attachment from above can also take place
by an exchange mechanism: Step atom D moves to position D’ so that
atom C can be incorporated into the top layer. This process also has
a smaller probability than the attachment of atom B.

2.2. Burton-Cabrera-Frank model

A vicinal surface is characterized by a sequence of terraces, which are separated
by monoatomic steps (see Fig. 2.2). In step flow growth, the crystal grows due to
the movement of these steps. This process is conveniently described within the
BCF theory [8], which has recently been extended to include additional effects like
attachment asymmetry [3], line diffusion along the step edge [20, 25], and elastic
step-step interactions [39].

The fundamental objects of the BCF theory are terraces, steps, and adatoms.
Steps are represented by continuous lines. Adatoms are atoms that are adsorbed
on the terraces and are free to diffuse until they attach to a step. Instead of track-
ing individual adatoms, the BCF theory describes their motion using a diffusion
field c(r, t), which is continuous on the terraces and usually discontinuous at the
steps.2 The vector r = (x, y) specifies a point on the surface.

During growth, and this is the situation of interest in the present context, atoms
arrive on the surface with a given rate F and diffuse on the terraces [diffusion
current j(r, t)], until they reach a step [attachment currents j±(s), where s is the
arc length along the step]. Once these atoms are incorporated into the step, they

2In the original BCF theory, where steps are assumed to act as perfect sinks for diffusing
adatoms, the diffusion field is continuous at the steps. The discontinuity is due to the
attachment asymmetry at the steps, which results from the Ehrlich-Schwoebel barrier.
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2.2. Burton-Cabrera-Frank model

F

jL

j

j
−

j+

x

y

Figure 2.2.: Sketch of a vicinal surface. The fundamental processes that occur
during growth are shown: attachment to the surface (F ), diffusion on
the terraces (j), attachment to the steps from the lower terrace (j+)
as well as from the upper terrace (j−), and diffusion along the step
(jL).

can still move along the step [relaxational current jL(s)], following a gradient of
the step chemical potential µ.

Now that we have presented the basic ingredients of the model, we are ready to
give the equations that govern the dynamics of the diffusion field and the motion
of the steps.

On the terraces, the concentration of adatoms obeys the diffusion equation

∂tc = F −∇ · j, (2.1)

where the current j(r, t) is driven by the concentration gradient according to Fick’s
law:

j = −D∇c. (2.2)

D is the diffusion constant. It is a scalar if terrace diffusion is isotropic, otherwise
it is a matrix of the form

D =

(
D11 D12

D12 D22

)
. (2.3)

It is common practice [3, 5] to take the quasistatic limit of the diffusion equa-
tion (2.1) by setting the left-hand side zero, since the relaxation of the diffusion
field is usually much faster than the motion of the steps. Moreover, we have as-
sumed vanishing desorption (detachment of adatoms from the terraces into the
vacuum), which is often the case in step flow growth [20]. Also, we have not
included stochastic contributions, since we are interested in an instability that is
deterministic in origin and only needs an initial perturbation of ideal step flow in
order to develop.

13



2. Fundamental concepts

At equilibrium there is a certain concentration ceq of adatoms directly in front
of a step. It is related to the equilibrium concentration c0

eq for a straight step and
to the local chemical potential µ via

ceq = c0
eq eµ/kBT , (2.4)

where kB is the Boltzmann constant and T the temperature. For small departure
from equilibrium, this equation can be linearized:

ceq = c0
eq (1 + µ/kBT ). (2.5)

The step chemical potential is given by

µ =

(
δN

δζ

)−1
δF
δζ

. (2.6)

F [{ζm}] is the step free energy, which, in the general case, is a functional of the
configuration of all steps, and N is the number of particles that are incorporated
into the step (as compared to an arbitrary reference state).

Without elastic interactions between the steps, the chemical potential is only
determined by curvature effects, as described by the Gibbs-Thomson relation:

µ = Ωγ̃κ. (2.7)

Here γ̃(θ) is the step stiffness, which is related to the free energy density γ(θ) of
the step via γ̃(θ) = γ(θ) + γ′′(θ). Both quantities depend on the local orientation
of the step (angle θ between the step normal and a fixed direction). Ω is the
atomic area and κ the local curvature of the step.

It is useful to introduce Γ(θ) = Ωγ̃(θ)/kBT , so that the equilibrium concentra-
tion can be written in a compact form:

ceq = c0
eq[1 + Γ(θ) κ]. (2.8)

At thermodynamic equilibrium, there is no net attachment to the steps. The
attachment currents j± are thus related to the local departure from equilibrium.
Following previous studies [3, 20], we assume a linear relationship with kinetic
coefficients ν±(θ):

j+ = ν+(θ) [c− ceq]|+, (2.9)

j− = ν−(θ) [c− ceq]|−. (2.10)

As indicated in Fig. 2.2, the “+” refers to the ascending side of the step and the
“−” to the descending side of the step.

14



2.2. Burton-Cabrera-Frank model

Furthermore, the attachment currents can be evaluated from the local concen-
tration gradient perpendicular to the steps. With the step normal n (pointing to
the lower terrace) the attachment currents can be written as

j+ = n ·D∇c|+, (2.11)

j− = −n ·D∇c|−. (2.12)

Equating the relations (2.9, 2.10) with (2.11, 2.12), we obtain the desired boundary
conditions for the diffusion equation:

n ·D∇c|+ = ν+(θ) [c− ceq]|+, (2.13)

−n ·D∇c|− = ν−(θ) [c− ceq]|−. (2.14)

If there is an Ehrlich-Schwoebel effect, attachment to the step from the upper
terrace is slower and we have ν− < ν+.

The evolution of the step curve is determined by the normal velocity vn, which
is obtained from mass conservation at the step:

vn = Ω (j+ + j−) + a ∂sjL, (2.15)

where a is the lattice constant. This equation contains the attachment currents
j+ and j− and the divergence of a relaxational current jL along the step. The
current jL is driven by differences of the chemical potential:

jL = DL(θ) ∂s

(
µ

kBT

)
= DL(θ) ∂s[Γ(θ) κ], (2.16)

where DL(θ) is the anisotropic line diffusion coefficient [20].
At this point the mathematical formulation of the model is complete. We can

now use these equations to study the meandering dynamics of crystal steps during
growth. In the next chapter we shall first perform a linear stability analysis of
straight steps with respect to meandering and then derive an evolution equation
for the step meander by means of a multiscale expansion.

15
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3. Evolution equation

In this chapter we shall use asymptotic expansion techniques to derive an evo-
lution equation for the step meander. Following previous works on this topic
[20, 45], we shall first review the linear stability problem, then identify the scal-
ing of characteristic quantities with the deposition flux, and finally perform an
asymptotic expansion of the model equations in the small-flux (long-wave) limit
to derive an evolution equation. At the end of this chapter we shall make an
explicit comparison with a numerical integration of the full BCF equations.

3.1. Linear stability analysis

An ideal vicinal surface is characterized by straight steps and a constant interstep
distance `. In ideal step flow, all steps receive the same amount of matter, and from
mass conservation it follows that all steps move at the same velocity V0 = ΩF`.
Except for the translation of the steps, the surface geometry does not change in
time.

It is a well-known fact, however, that for a positive Ehrlich-Schwoebel effect
(ν+ > ν−), the surface is subject to the meandering instability [3]: A small per-
turbation of the steps is amplified so that the steps do not remain straight but
instead display a large meander. In order to assess the stability of the moving
steps with respect to meandering, we perturb the steps with small sinusoidal
modulations and determine from the BCF equations whether the amplitude of
these modulations grows or decays in time. As these perturbations are to be
small, we can linearize the problem and treat every mode separately.

Let the meander of the mth step around its average position be ζm(x, t). We
can now perform a Fourier transformation of the whole surface with respect to
step number (m), space (x), and time (t):

ζ̂(φ, q, ω) =
∞∑

m=−∞

∫ ∞

−∞

∫ ∞

−∞
ζm(x, t) e−i(φm+qx+ωt) dx dt. (3.1)

Here φ is the phase shift between neighbouring steps, q the wave number of the
step modulation and iω the complex growth rate of the perturbation.

As the various Fourier modes decouple in the linearized problem, we can plug
a single mode,

ζm(x, t) = ε ei(φm+qx+ωt), (3.2)

17



3. Evolution equation

into the model equations and linearize in ε. For simplicity we shall first assume
isotropic terrace diffusion (i. e. D is scalar) and a strong attachment asymmetry:
Adatoms do not descend the steps due to an infinite Ehrlich-Schwoebel effect
(ν− = 0), whereas the steps act as perfect sinks for adatoms that come from
the lower terrace (ν+ → ∞). We then obtain from the condition that mass
be conserved at the steps, a relationship iω = iω(q, φ), the so-called dispersion
relation, whose complex components are given by

Re(iω) =
ΩF

cosh q`
[q` sinh q`− cosh q` + cos φ]

− Γ(0) q2

cosh q`

[
qDS sinh q` + q2aDL(0) cosh q`

]
, (3.3)

Im(iω) =
ΩF

cosh q`
sin φ. (3.4)

Here we have introduced the macroscopic terrace diffusion constant DS = c0
eqΩD

[20].

The real part Re(iω) is the growth rate, whose sign determines whether the per-
turbation grows (+) or decays (−) in time. The imaginary part Im(iω) describes
propagative effects [20].

From the real part Re(iω) we readily conclude that the most unstable mode is
the in-phase mode (φ = 0). As it is known that the synchronization of the steps
happens at an early stage of the instability [20], we shall from now on concentrate
on in-phase meandering, where all steps display the same meander ζ(x, t).

q
0

Re
 (i

ω
)

qm qc

Figure 3.1.: The dispersion relation of the meandering instability. The wave num-
ber qm of the most unstable mode and the critical wave number qc

are shown. A positive Re(iω) signals that the corresponding mode is
linearly unstable, a negative Re(iω) that it is linearly stable.
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3.2. Multiscale analysis

Expanding Eq. (3.3) in powers of q`, we obtain for φ = 0:

Re(iω) =
ΩF`2

2
q2 − [DS` + DL(0) a] Γ(0) q4, (3.5)

Im(iω) = 0. (3.6)

Here we have neglected terms in Fq4, which is permissible if the flux is sufficiently
small so that the condition F � (DS` + DLa) Γ/Ω`4 is satisfied.

From the structure of the dispersion relation we conclude that we have a IIS-
type instability in the terminology of Cross and Hohenberg [11], where the real
part of the dispersion relation has the typical shape shown in Fig. 3.1. During
growth (F > 0), all modes with a wave number q < qc are unstable and all modes
with a wave number q > qc are stable. For F = 0, we have qc = 0 and no unstable
modes exist.

From the simplified growth rate (3.5) we can evaluate the critical wave number:

qc =

(
ΩF`2

2Γ(0) [DS` + DL(0) a]

)1/2

. (3.7)

The wave number of the most unstable mode is given by qm = qc/
√

2. One usually
assumes that the fastest growing mode quickly dominates all other unstable modes
so that the wavelength of the pattern is finally given by

λm =
2π

qm

= 4π

(
Γ(0) [DS` + DL(0) a]

ΩF`2

)1/2

. (3.8)

In the following we shall concentrate on situations, where the meander wavelength
λm is large in comparison to the interstep distance `. For example, growth on a
Cu(1, 1, 17) surface under typical MBE conditions gives rise to a meander wave-
length of about 400 Å [20], but the interstep distance on this surface is only 21.7 Å.

In this section we presented an outline of the linear stability analysis and only
gave results for the one-sided model. A detailed derivation of the dispersion rela-
tion, which also covers the two-sided model, is performed in App. A.

3.2. Multiscale analysis

The solution of the linear stability problem provided us with an expression for the
wavelength of the fastest growing mode, and it turned out that this wavelength
can be much larger than the interstep distance. We now use these two length
scales to define a dimensionless parameter

ε ≡ 2 (qc`)
2 ∼ F, (3.9)
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3. Evolution equation

which under the conditions of interest is small in comparison to one. This pa-
rameter ε is directly proportional to the deposition flux F and thus describes the
strength of the instability. The idea is to use ε to perform a series expansion of
the model equations with the aim of a simpler analytical treatment.

To do this in a consistent way, we introduce new space and time coordinates
that remain of order one. From the wavelength of the most unstable mode we
conclude that the relevant length scale behaves like

x ∼ ε−1/2 (3.10)

and from the real part of the dispersion relation we find that the time scale for
the development of the instability behaves like

t ∼ ε−2 (3.11)

with the deposition flux (Fig. 3.2). We thus introduce new space and time coor-
dinates, X = ε1/2 x and T = ε2 t, which are of order 1.

q
0

Re
 (i

ω
)

ε2

ε1/2

qm qc

Figure 3.2.: The dispersion relation of the meandering instability. The wave num-
ber qm of the most unstable mode is of the order ε1/2 and its growth
rate is of the order ε2.

In the previous section we mentioned that after a brief period of synchronization,
all steps display the same meander ζ(x, t). It immediately follows that the diffusion
field is the same on all terraces. The problem becomes one-dimensional.

We now seek solutions for the unknown step meander ζ(x, t) and the unknown
reduced concentration field u(x, y, t) = (c− c0

eq) Ω in the form

ζ = ε−1/2 H, (3.12)

u = ε1/2 U, (3.13)

20



3.2. Multiscale analysis

where the functions H and U are expanded in Taylor series in ε1/2 [20]:

H = H(0) + ε1/2 H(1/2) + ε H(1) + ε3/2 H(3/2) + . . . , (3.14)

U = U (0) + ε1/2 U (1/2) + ε U (1) + ε3/2 U (3/2) + . . . . (3.15)

The model equations can now be solved in successive orders of ε1/2, and to leading
order one obtains the following highly nonlinear evolution equation for the step
meander:

∂tζ = −∂x

[
ΩF`2

2

∂xζ

1 + (∂xζ)2

−
(

DS`

1 + (∂xζ)2
+

DL(θ) a

[1 + (∂xζ)2]1/2

)
∂x[Γ(θ) κ]

]
. (3.16)

This equation is formally equivalent to the evolution equation for isotropic sys-
tems [20], but in our case the step stiffness Γ and the line diffusion coefficient DL

depend on the local step orientation θ.
It should be noted that the evolution equation (3.16) can be interpreted as a

conservation law,

∂tζ + ∂xj = 0, (3.17)

where

j =
ΩF`2

2

∂xζ

1 + (∂xζ)2
−
(

DS`

1 + (∂xζ)2
+

DLa

[1 + (∂xζ)2]1/2

)
∂x(Γκ) (3.18)

is a mass current along the step. Integrating Eq. (3.17) over one wavelength λ of
a periodic meander, we obtain

∂t

∫ x0+λ

x0

ζ(x, t) dx + j(x0 + λ, t)− j(x0, t) = 0. (3.19)

As j is a periodic function in x, the contributions of j vanish and we arrive at

∂t

∫ x0+λ

x0

ζ(x, t) dx = 0. (3.20)

The total area under the step curve is conserved. This result is not surprising
since the evolution equation describes the meander in a frame that moves at the
average step velocity V0. The important point here is that the step normal velocity
vn = ∂tζ/[1+(∂xζ)2]1/2 can be derived from the divergence of a mass current along
the step. This is illustrated in Fig. 3.3.

In this section we have only provided a brief review of the derivation of the
evolution equation. The full calculation can be found in App. B.
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3. Evolution equation

vn

j

Figure 3.3.: Mass current along the step. The step normal velocity vn can be
derived from a mass current j along the step. Now the instability can
be explained by a mass transport from the lower parts to the higher
parts of the meander.

3.3. Numerical integration

A first idea of the meandering dynamics is gained by a numerical integration
of the evolution equation (3.16). To this end we closely follow a previous work
[19, 20] and express the step curve in intrinsic coordinates: The step curve is now
represented by θ(s), where θ = arctan ζ(x) is the local angle with respect to the x
axis and s is the arc length along the step. L(t) =

∫
ds is the total length of the

step curve.
The temporal evolution of the angle θ depends on the normal velocity vn and

on an arbitrary tangential velocity vt [20]:

∂θ

∂t
= vt κ−

∂vn

∂s
. (3.21)

We choose vt such that the relative arc length s/L is constant in time [20]:

vt =
s

L

∫ L

0
ds′ κ(s′) vn(s′)−

∫ s

0
ds′ κ(s′) vn(s′). (3.22)

This choice is well-suited for the subsequent discretization of the problem. It
guarantees that equidistant points on the curve remain equidistant.

The normal velocity is determined by the evolution equation and takes the
following form in intrinsic coordinates (assuming isotropic steps):

vn = −∂s

[
cos θ sin θ − β + cos θ

β + 1
∂sκ

]
. (3.23)

Here time t has been rescaled by 4`4/ε2Γ(DS` + DLa) and the spatial variables x
and ζ by

√
2`/
√

ε. Furthermore we have introduced the parameter β = DLa/DS`,
which describes the dominant stabilization mechanism: For β = 0 there is no line
diffusion along the step (DL = 0) and stabilization is due to terrace diffusion. For
β →∞ stabilization is only due to line diffusion.
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3.4. Step dynamics in the isotropic model

We also need to keep track of the total length L(t) of the step curve, which
evolves according to [20]:

∂L

∂t
=
∫ L

0
ds′ κ(s′) vn(s′). (3.24)

In order to implement a numerical scheme we first discretize the step curve θ(s)
along s by introducing a mesh of n points si = i/n·L and the corresponding angles
θi ≡ θ(si). Derivatives with respect to s are approximated by finite differences.
The resulting system of ordinary differential equations for θi(t) and L(t) can now
be solved with a standard ODE solver [50].

3.4. Step dynamics in the isotropic model

In this section we want to recapitulate the features of the isotropic evolution
equation that are relevant to our study of anisotropic step meandering. A full
description of the isotropic problem and its solution can be found in the literature
[19, 20, 45].

Fig. 3.4 shows results of a numerical integration of the evolution equation in a
box with periodic boundary conditions and a horizontal extent of 8λm. Initially
straight steps (with small-amplitude random perturbation) develop a cellular pat-
tern, whose wavelength is close to the wavelength λm = 2π

√
2 of the most unsta-

ble mode. The amplitude of the meander first increases exponentially with time,
which is in agreement with the prediction of the linear stability analysis. Later
the growth of the amplitude slows down but there is no saturation. Instead, the
amplitude grows asymptotically like t1/2.

In stark contrast to the behaviour of the amplitude, which develops indefinitely,
the wavelength of the emerging pattern is frozen at the wavelength λm of the most
unstable mode. The pattern does not exhibit coarsening.

At late time the meander is characterized by the formation of plateaus, which
are separated by steep slopes. In fact, the maximum slope diverges in time, so
that locally the distance between neighbouring steps approaches zero [20].

Furthermore, the meander enjoys the up-down (or front-back) symmetry. This
symmetry is broken for large enough flux if higher-order terms in the ε expansion
are taken into account [20]. This symmetry breaking is confirmed by lattice gas
simulations of the BCF model [45].

In the presence of elastic step-step interactions, this simple scenario changes.
The amplitude still behaves asymptotically like t1/2, but now the wavelength also
develops. Instead of a fixed meandering wavelength, persistent coarsening is ob-
served. In the asymptotic regime, the average wavelength 〈λ〉 increases like t1/4

if line diffusion is present, without line diffusion it increases like t1/6. Also, the
meander does not exhibit plateaus, but instead assumes a triangular shape [39].
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Figure 3.4.: Simulation of the evolution equation in a periodic box with horizontal
size 8λm. The left panel shows the meander at different times (the
time between subsequent snapshots is 50), the right panel shows the
development of the amplitude A (solid line). The dotted line indicates
the predicted asymptotic behaviour A ∼ t1/2.

In the following chapter we shall contrast these two basic scenarios (no coars-
ening vs endless coarsening) with a very different scenario that arises from crystal
anisotropy. But before we proceed in this direction, we want to compare the pre-
diction of the isotropic evolution equation with a numerical integration of the full
BCF model.

3.5. Solving the full isotropic model

The numerical integration of the full BCF model is difficult due to the free-
boundary character of the problem. For this reason, lattice gas simulations were
employed to check the predictions of the evolution equation [45]. The predicted
asymptotic behaviour of the amplitude, the absence of coarsening, and the front-
back symmetry breaking of the meander were indeed confirmed by lattice gas
simulations of the BCF model [45].

However, in order to perform a quantitative comparison of the evolution equa-
tion with the full model, a non-stochastic numerical integration with standard
PDE solvers is useful. Here we try to take this approach, but we have to make
strong restrictions in order to arrive at a problem whose numerical solution is

24



3.5. Solving the full isotropic model

feasible. We assume in-phase meandering and restrict the lateral size of the sim-
ulated system to the wavelength of the most unstable mode. Our main aim is to
check the asymptotic behaviour of the amplitude.

To this end, we first write the quasistatic BCF equations in dimensionless form:

0 = ∇2u + ε, (3.25)

u|+ = κ, (3.26)

∂nu|− = 0, (3.27)

vn = ∂nu|+. (3.28)

Here u is the reduced concentration of adatoms, κ is the dimensionless curvature,
and ε ≡ ΩF`3/ΓDS is consistent with our previous definition of the small param-
eter. The distance between neighbouring steps is 1. Space is measured in terms
of `, time in terms of `3/ΓDS, and concentration in terms of c0

eqΓ/`. We have
assumed that stabilization is due to terrace diffusion only (DL = 0).

In order to avoid the need of tracking a free boundary, we employ a time-
dependent coordinate transformation that maps the terrace onto a rectangular
(and time-independent) domain. At the same time we can employ the known scal-
ing of the wavelength and of the amplitude to obtain a meander that is compatible
with the one from the evolution equation. Thus, our coordinate transformation
takes the form

x → ξ = ε1/2 x, (3.29)

y → η = y − ζ(x, t)− V0 t, (3.30)

t → τ =
1

2
ε2 t, (3.31)

and the step curve is now written as

Z(ξ, τ) = ε1/2 ζ(x, t). (3.32)

As the adatom concentration u also scales with the deposition flux, we have to
introduce

U(ξ, η, τ) =
1

2
ε−1/2 u(x, y, t). (3.33)

Under the above transformation the diffusion equation becomes

0 =
[
ε ∂ξξ + (1 + Z ′2) ∂ηη − 2ε1/2 Z ′ ∂ξη − ε1/2 Z ′′ ∂η

]
U + 2ε1/2 (3.34)

and the boundary conditions take the form

U |η=0 = − Z ′′

(1 + Z ′2)3/2
, (3.35)[

(1 + Z ′2) ∂η − ε1/2 Z ′ ∂ξ

]
U
∣∣∣
η=1

= 0. (3.36)
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3. Evolution equation

Finally, the equation for the meander Z(ξ, τ) reads

∂τZ =
[
(1 + Z ′2) ∂η − ε1/2 Z ′ ∂ξ

]
U
∣∣∣
η=0

. (3.37)

Up to this point we have merely followed the steps that are taken in the deriva-
tion of the evolution equation. But here we do not perform an ε expansion that
we truncate at some order, instead we seek a full numerical solution of Eqs. (3.34–
3.37).

In order to set up a numerical scheme, we first discretize the step curve Z(ξ, τ)
and the concentration field U(ξ, η, τ) in the ξ direction. Hence we introduce a mesh
of n lines with coordinates ξi = i/n·λm, where λm = 2π

√
2 is the wavelength of the

most unstable mode. Partial derivatives with respect to ξ are replaced by finite
differences. This procedure reduces the (2 + 1)-dimensional1 partial differential
equation (3.34) for the diffusion field U(ξ, η, τ) to a system of n coupled (1 + 1)-
dimensional partial differential equations for the functions Ui(η, τ) ≡ U(ξi, η, τ).

The dynamics of the step curve is now described by the evolution of the functions
Zi(τ) ≡ Z(ξi, τ), which are governed by n ordinary differential equations that stem
from the discretization of Eq. (3.37).

We now have to integrate a system of n partial differential equations which
are coupled to a system of n ordinary differential equations. Problems of this
sort are common: General solvers, which perform the time integration for given
initial conditions can be found in numerical libraries. For our simulations we chose
routine D03PHF from the NAG library [36].

Fig. 3.5 shows results of a simulation with ε = 0.01. The characteristic shape
of the meander with steep slopes and plateaus is confirmed. Also, the meander
displays the up-down symmetry, which is due to the small value of ε. At late time
the formation of plateaus is observed and the meander amplitude approaches the
predicted t1/2 behaviour.

Our numerical method was able to integrate the dynamical equations up to
t ≈ 300, where the meander amplitude A is about 25. At this point, further
integration became difficult due to numerical inaccuracy and high demand of
computing time. Later we shall see that important anisotropy effects are observed
long before a meander amplitude of 25 is reached. It thus seems safe to use the
amplitude equation to study the meandering of anisotropic crystal steps.

1Two space dimensions and the time dimension.
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Figure 3.5.: Simulation of the quasistatic BCF model with an infinite Ehrlich-
Schwoebel barrier. The left panel shows the meander at different times
(the time between subsequent snapshots is 20), the right panel shows
the development of the amplitude. Here the solid line corresponds to
the full simulation and the dashed line to the numerical integration
of the evolution equation. The dotted line indicates the predicted
asymptotic behaviour. The expansion parameter is given by ε = 0.01
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4. Anisotropic step meandering

The high structural order of crystals gives rise to anisotropic physical properties.
Here we are concerned with crystal growth, which is a surface process, and the rel-
evant anisotropies stem from the structure of the surface. There is much evidence
from experiments and from theoretical studies that all material parameters which
enter into the BCF equations are anisotropic: the line stiffness, the line diffusion
coefficient, the kinetic coefficients, and the terrace diffusion coefficient.

In many previous theoretical studies on step meandering, crystalline anisotropy
has been neglected. Bales and Zangwill, who did the first analysis, pointed out
that anisotropy does not lead to qualitative changes of the results that are ob-
tained for the isotropic model [3]. While this is true within the scope of linear
analysis, we shall here show that anisotropy leads to nontrivial nonlinear effects
that influence the observed meandering pattern. In particular, the ripple wave-
length can be drastically affected by anisotropy, which must be taken into account
when comparing the step-flow model with experimental data.

As the precise form of anisotropies is seldom known, we must rely on model
anisotropies but we shall show that our results do not depend on the precise
anisotropy form. Also, the analysis is easily adapted to any kind of anisotropy.

4.1. Step stiffness and line diffusion

For simplicity and in order to make clear the basic strategy, we start our analysis
of anisotropic meandering steps within the one-sided model. Furthermore we
assume isotropic terrace diffusion. This simplified model still allows us to study
the influence of Γ and DL anisotropy on the meandering instability. Later we
shall generalize our results and show that the basic features remain valid within
the two-sided model.

4.1.1. Modelling anisotropy

As we pointed out at the beginning of this chapter, the precise anisotropies of
surface quantities are seldom known. The results that we present in this chapter
are generic in the sense that their qualitative features do not depend on the precise
form of the anisotropies but mainly on their strength and orientation.
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4. Anisotropic step meandering

Nevertheless, in order to give some definite results we have to introduce model
anisotropies. To this end we write the stiffness Γ and the line diffusion coefficient
DL as

Γ(θ) = Γ0 AΓ(θ), (4.1)

DL(θ) = DL0 AL(θ), (4.2)

with the anisotropy functions

AΓ(θ) = 1 + εΓ cos [4(θ − θΓ)] , (4.3)

AL(θ) = 1 + εL cos [4(θ − θL)] . (4.4)

Each anisotropy function is characterized by two parameters, the strengths εΓ

and εL (which lie in [0, 1]) and the reference angles θΓ and θL, which are determined
by the average orientation of the steps on the surface. In Fig. 4.1 we show the
form of the anisotropy for various values of εΓ,L and θΓ,L.

Figure 4.1.: Polar plot of the anisotropy function AΓ,L for different strengths and
orientations. In the left panel, θΓ,L = 0 and in the right panel, θΓ,L =
π/4. In both plots the anisotropy strengths εΓ,L are as follows: 0
(solid line), 0.25 (dashed line), 0.5 (dotted line), 0.75 (dot and dash
line). The arrow points in the direction of the step train.

These model anisotropies have a fourfold symmetry. We shall give quantitative
results only for this type of symmetry but we shall briefly discuss the case of other
symmetries.

4.1.2. Steady-state analysis

A systematic analysis of the effect of anisotropy on the meandering dynamics
can start with an analysis of steady-state solutions of the evolution equation, i. e.,
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4.1. Step stiffness and line diffusion

solutions that satisfy ∂tζ = 0. From the evolution equation (3.16) it is obvious that
there is always a trivial (unstable) steady state (ζ ≡ 0), regardless of anisotropy.
In the following we are interested in non-trivial periodic steady states.

In order to find periodic steady-state solutions of the evolution equation (3.16)
we take advantage of the fact that this equation assumes the form of a conservation
law,

∂tζ + ∂xj = 0, (4.5)

where

j =
ΩF`2

2

∂xζ

1 + (∂xζ)2
−
(

DS`

1 + (∂xζ)2
+

DLa

[1 + (∂xζ)2]1/2

)
∂x(Γκ) (4.6)

is a mass current along the step.
For the moment we shall assume that θΓ,L is 0 or π/4, so that the evolution

equation enjoys the x → (−x) symmetry, and seek steady-state solutions that
satisfy j = 0. Due to translational invariance, the flux j does not depend on ζ
but only on derivatives of ζ with respect to x. It is thus useful to introduce the
“slope”

m = sin θ =
∂xζ

[1 + (∂xζ)2]1/2
(4.7)

and to express ∂xζ and higher derivatives in terms of m. After performing a
change of the spatial variable x,

x → y =
x

αΓAΓ

(4.8)

with αΓ = Γ0/Γ(0), we can write the condition j = 0 in the form

2

(
λm

4π

)2

∂yym = −∂V

∂m
, (4.9)

which is analogous to Newton’s equation of motion for a particle of mass 2(λm/4π)2

in the one-dimensional potential

V (m) =
∫ m

m0

αΓAΓ(m′) m′ dm′

β̃
√

1−m′2 + (1− β̃) αLAL(m′)
. (4.10)

For brevity we have set β̃ = DS`/[DS` + DL(0) a] and αL = DL0/DL(0).
In the same way as one can obtain the period of an oscillator in an anharmonic

potential [33], we can here obtain the wavelength λ0 of the steady-state solution
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4. Anisotropic step meandering

by evaluating

λ0 = 2
∫ λ0/4

−λ0/4
dx = 2

∫ m0

−m0

αΓAΓ(m)

∂ym
dm

=
λm

2π

∫ m0

−m0

αΓAΓ(m)

[V (m0)− V (m)]1/2
dm. (4.11)

The family of steady-state wavelengths λ0 is parameterized by m0, which is the
value of m that corresponds to the highest slope in the step meander (and the
analogue to the amplitude in the oscillator picture).

Now it is an easy task to compute the branches of steady-state solutions for
specific anisotropies. In Fig. 4.2 we show λ0(m0) for a system that has only Γ
anisotropy and for another system that has only DL anisotropy. It can be seen
that for θΓ,L = 0 the wavelength λ0 of steady-state solutions is below (or equal to)
λc, the critical wavelength of linear instability. The same qualitative behaviour is
observed for isotropic systems.
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Figure 4.2.: Wavelength λ0 of steady-state solutions as a function of parameter
m0. Solid lines are for Γ, dashed lines for DL anisotropy. In both
cases from lower to upper curve: εΓ,L = 0.7 with θΓ,L = 0, εΓ,L = 0,
and εΓ,L = 0.7 with θΓ,L = π/4.

However, for θΓ,L = π/4, steady-state solutions exist whose wavelength is larger
than λc. The wavelength reaches a local maximum λ̃, which increases with in-
creasing strength of the anisotropy. From Eq. (4.11) one can conclude that the
maximum behaves with the anisotropy strength like

λ̃Γ,L

λc

∼ 1

(1− εΓ,L)1/2
for εΓ,L → 1. (4.12)
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4.1. Step stiffness and line diffusion

4.1.3. Interrupted coarsening

For θΓ,L = 0 (left panel in Fig. 4.1) the structure of the steady-state branch is
similar to the one for an isotropic system: All available wavelengths λ0(m0) are
smaller than the critical wavelength λc (lower curves in Fig. 4.2). This observation
suggests that the meandering dynamics of anisotropic steps with θΓ,L = 0 does
not differ qualitatively from isotropic systems. Indeed, this is what we find from
numerical integrations of the evolution equation (3.16). The meandering pattern
is similar to the one in Fig. 3.4, which was obtained for the isotropic model; due to
anisotropy there is only a slight modification of the step shape. But most impor-
tantly, there is no coarsening and the amplitude of the steps grows asymptotically
like t1/2.
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Figure 4.3.: Schematic of the meandering dynamics in the λ0-m0 plane for an-
isotropy orientation θΓ,L = 0 (a) and for orientation θΓ,L = π/4 (b).
Thick white and grey arrows indicate the meandering dynamics, small
black arrows the stability of steady-state solutions (see text).

It is instructive to visualize the meandering dynamics in the λ0-m0 plane [13], as
shown in Fig. 4.3 a). Small m0 corresponds to small amplitude (initial conditions:
m0 ≈ 0), large m0 corresponds to large amplitude. As the maximum amplitude
always increases, the direction of time is from left to right.

At an early stage of the instability (m0 ≈ 0), the wavelength λm of the most
unstable mode is selected. The instability drives the meander towards larger and
larger amplitudes (white arrows). As there are no periodic steady-state solutions
whose wavelength is close to λm, the meandering wavelength does not change in
time.

This scenario is changed completely if θΓ,L = π/4 and the anisotropy is strong
enough so that λ̃ exceeds λm. In Fig. 4.4 we show the simulation of a system
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4. Anisotropic step meandering

with a lateral extent of 15 λm, starting from random step fluctuations of small
amplitude. The snapshots of the meander clearly show that the system undergoes
a coarsening process. The interesting point is that this coarsening process does
not continue forever but is interrupted when the number of cells is reduced from
the initial number of 16 to the final number of four. In this example, λ̃ ≈ 3.1 λm

and the final width of all cells is larger than λ̃.
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Figure 4.4.: Interrupted coarsening. In this example, steps are stabilized by
anisotropic line diffusion (DS = 0) with εL = 0.92 and θL = π/4.
The left panel shows the meander at different time steps, the right
panel shows the amplitude (solid line) and the average wavelength
(dashed line) as a function of time. The meander snapshots have
been arbitrarily rescaled for better visibility of the small undulations.

In the λ0-m0 picture, this observation is explained as follows [Fig. 4.3 b)]. At
first, linear instability selects the pattern wavelength λm of the most unstable
mode. As the meander amplitude (m0) increases, the system approaches the
steady-state branch (first grey arrow). These steady states are stable with respect
to amplitude perturbation, so that the meander amplitude should saturate. How-
ever, the instability still drives the meander towards larger amplitude. In order
to increase the amplitude further, the meandering step also increases its wave-
length. Coarsening takes place (second grey arrow). After the maximum λ̃ of the
steady-state branch is reached, there is no further need to change the wavelength.
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4.1. Step stiffness and line diffusion

Coarsening is interrupted at λ̃ and the amplitude increases without bound (third
grey arrow).
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Figure 4.5.: The dynamics of interrupted coarsening. First the wavelength λm of

the most unstable mode is selected. The amplitude of the cells grows
until it comes close to the steady-state solution (thick black line in
the left panel), where coarsening sets in. The wavelength increases
until the average wavelength is larger than λ̃. Thereafter the aver-
age wavelength remains unchanged and the amplitude grows without
bound. The right panel shows a calculated steady-state branch (full
line, parameters c0

eq = 0, εL = 0.92, θL = π/4), the crosses are from a
numerical simulation. The size of the error bars corresponds to the
standard deviation of m0 and λ0 in the finite simulation box.

We can relate this discussion to the numerical simulation from Fig. 4.4. For this
purpose we identify λ0 with the average wavelength 〈λ〉 of the simulated meander
and m0 with the mean value 〈m0〉 of the maximum slopes in the cells. At selected
points we add the numerical values to the plot of the steady-state branch (see
Fig. 4.5). The size of the error bars results from the standard deviation of λ0

and m0. They are comparatively large due to finite-size effects. Nevertheless, the
plot clearly shows that, during the critical period, the dynamics is guided by the
steady-state branch.

It should be stressed that the scenario of interrupted coarsening only takes place
if anisotropy is strong enough. If λ̃ < λm, the dynamics is not affected by the
presence of steady-state solutions above λc. The wavelength is then fixed (white
arrows in Fig. 4.3 b).
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4. Anisotropic step meandering

In summary, we have found the following two scenarios for anisotropic mean-
dering steps:

1. If θΓ,L = 0, or θΓ,L = π/4 and λ̃ < λm, the average pattern wavelength is λm

according to linear instability and there is no coarsening.

2. If θΓ,L = π/4 and λ̃ > λm, the pattern undergoes a coarsening process that
is interrupted when the width of all cells has reached λ̃.

Our explanation of interrupted coarsening with the help of the steady-state
branch of the step evolution equation rests on plausibility arguments and numeri-
cal evidence. Recently the supposed link between steady states and the coarsening
dynamics has been proven analytically for two special classes of one-dimensional
evolution equations: the generalized Ginzburg-Landau equation and the general-
ized Cahn-Hilliard equation [49]. A rigorous proof for the step evolution equation
(3.16) is still missing but there is now little doubt that the scenario of interrupted
coarsening is correct.

We have seen that there are two very different scenarios for the meandering
dynamics and that it depends mainly on the orientation of the anisotropy, which
scenario becomes relevant. An intuitive understanding of the fact that coarsening
occurs for the orientation θΓ,L = π/4 and not for the orientation θΓ,L = 0 can
be gained from Fig. 4.6. Steps tend to develop “facets” along the directions of
maximum line stiffness or line diffusion. In the case of θΓ,L = π/4, the direction of
the facets promotes a horizontal displacement of the curved regions and thus cell
coalescence. For θΓ,L = 0 the directions of the facets coincide with the directions
of the plateaus and of the high slopes, and coarsening is suppressed.

At the end of this section on interrupted coarsening we want to discuss the case
where the x → (−x) symmetry of the evolution equation is lost, i. e., where the
orientation of the anisotropy is not 0 or π/4.

As there is interrupted coarsening for θΓ,L = π/4 but not for θΓ,L = 0, there
must be a critical angle θ∗ below which interrupted coarsening does not occur.
This angle depends on the strength of the anisotropy.

In order to find the critical angle θ∗ as a function of the anisotropy strength,
we have integrated the evolution equation for a given εΓ,L in a periodic box of
width λm. If the step meander approaches a steady-state solution, interrupted
coarsening is to be expected in an extended system, otherwise there will be no
coarsening. Varying θΓ,L, we found an approximation of θ∗ by means of nested
intervals. The resulting critical angles are plotted in Fig. 4.7. It can be seen that
there is both a minimum anisotropy strength and a minimum angle below which
interrupted coarsening does not occur.
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4.1. Step stiffness and line diffusion

Figure 4.6.: An intuitive explanation why there is coarsening for θΓ,L = π/4 (upper
figure) and not for θΓ,L = 0 (lower figure). The step develops facets
along the directions of maximum line stiffness or line diffusion. In
the first case, the horizontal displacement of the curved regions is
enhanced and cell coalescence takes place; in the second case it is
suppressed.

4.1.4. Drifting patterns

In the previous section on interrupted coarsening we were mainly concerned with
anisotropies whose orientation is 0 or π/4. Only at the end we addressed the
case of different orientations where the evolution equation loses its x → (−x)
symmetry. We now continue at this point and raise the question whether the
breaking of this symmetry leads to drifting meandering patterns.

Surprisingly, numerical solutions of the evolution equation (3.16) for θΓ,L 6=
0, π/4 do not reveal a drift of the step meander. This observation is explained by
the fact that the evolution equation for the slope ∂xζ always possesses the x →
(−x) symmetry, regardless of (fourfold) anisotropy. It is a consequence of the fact
that the evolution equation for the meander ζ always enjoys the (x, ζ) → (−x,−ζ)
symmetry.

If the expansion with respect to ε is carried out to subdominant order, the
evolution equation takes a more complicated form:

∂tζ = −∂x

{
ΩF`2

2

∂xζ

1 + (∂xζ)2

[
1− κ`

3

3 + (∂xζ)2

[1 + (∂xζ)2]1/2

]

−
[(

DS`

[1 + (∂xζ)2]1/2
+ DL(θ) a

)
− DS`

2κ

2

]
∂x[Γ(θ) κ]

[1 + (∂xζ)2]1/2

}
. (4.13)
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Figure 4.7.: The critical angle θ∗ as a function of the anisotropy strength. The
solid line is for Γ, the dashed line for DL anisotropy. The region of
interrupted coarsening is indicated by I.C, the region without coars-
ening by N.C.

In particular, the (x, ζ) → (−x,−ζ) symmetry of the leading-order equation (3.16)
is now lost. Simulations of Eq. (4.13) indeed reveal a drift if θΓ,L 6= 0, π/4.

A simple scaling law that describes the drift velocity vd as a function of the
incoming flux F can be derived (see App. C). In dimensionless units it takes the
form

vd = ε1/2 f(β̃, AΓ, AL, λ0). (4.14)

Here f is a function that depends on the precise form of the anisotropies and on
the wavelength λ0 of the steady-state solution.

We have checked the ε1/2 dependence numerically by solving the evolution equa-
tion in a periodic box of size λ0. The results are shown in Fig. 4.8. In the same
figure we also give the dependence of the drift velocity on λ0.

Expressed in physical units, the drift velocity reads:

vd =
Ω2F 2`4

4DSΓ(0)
g(β̃, AΓ, AL, λ0). (4.15)

Here we see that the drift velocity scales like F 2, whereas the average step velocity
behaves like F . Thus, it should be possible to control the drift of the structures
by choosing the appropriate flux rate.
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Figure 4.8.: Drift velocity vd as a function of the expansion parameter ε and as
a function of the wavelength λ0/λc of steady-state solutions. Both
graphs are for the case where stabilization is due to line diffusion only
(DS = 0). The anisotropy is given by εL = 0.5 and θL = 0.8 π/4. In
the right graph: ε = 1.

4.1.5. Interplay with elasticity

Coarsening of the meandering pattern is not only due to anisotropy, it can also be
due to elastic step-step interactions [39]. In this case the step chemical potential
is modified as follows (to first order in our expansion):

µ = Ω

(
γ̃(θ) κ + 3A

κ

`2
⊥

[
1 + 2 (∂xζ)2

])
, (4.16)

where `⊥ = `/[1 + (∂xζ)2]1/2 is the effective local step distance. In Eq. (4.16) the
first term (with γ̃) stems from the Gibbs-Thomson effect and the second term
from elasticity. A measures the strength of the elastic interaction.

Without anisotropy the following is observed [39]: The system exhibits perpet-
ual coarsening and the average wavelength behaves asymptotically like tα, where
α = 1/4 if line diffusion is present and α = 1/6 if it is not. The typical behaviour
of the amplitude is not affected by elasticity, asymptotically it still grows like t1/2.

In the λ0(m0) picture, the emergence of perpetual coarsening with diverging
maximum slope is related to the divergence of the branch of steady states at
m0 = 1. Doing a steady-state analysis similar to the one without elasticity, we
can write the wavelength λ0 of steady-state solutions as

λ0 =
λm

2π

∫ m0

−m0

F (m)

(1−m2)2
dm,
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4. Anisotropic step meandering

F (m) =
(1−m2)2 αΓAΓ(m) + C1 (1 + m2)

(1 + C1) [V (m0)− V (m)]1/2
, (4.17)

where the potential V (m) is now defined by

V (m) =
1

1 + C1

∫ m

m0

G(m′)

(1−m′2)2
dm′,

G(m) =
(1−m2)2 αΓAΓ(m) + C1 (1 + m2)[
(1−m2)1/2β̃ + (1− β̃) αLAL(m)

] m, (4.18)

and C1 = 3A/[γ̃(0) `2] is a constant that determines the strength of the elastic
interaction.
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Figure 4.9.: Step meander with elastic step-step interactions and anisotropic DL.
The parameters are as follows: c0

eq = 0, εL = 0.5, θL = π/4, and
A = γ̃(0) `2/30. The left panel shows snapshots of the meander (with
rescaled amplitude) and the right panel the corresponding steady-
state branch and the dynamics of the simulated system. The di-
vergence of the steady-state branch at m0 = 1 shows that endless
coarsening is restored.

Again, the shape of the steady-state branch gives a first idea about the coars-
ening dynamics. The right panel of Fig. 4.9 shows the steady-state branch of a
system, for which one would expect interrupted coarsening due to anisotropy and
perpetual coarsening due to elasticity. For small slope (m0 not too close to 1) the
curve is reminiscent of the case without elasticity and exhibits a local maximum
λ̃. But for high slope elasticity restores steady states for arbitrary wavelength
λ0 > λc.
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4.1. Step stiffness and line diffusion

The dominance of elasticity for m0 ≈ 1 can be understood from the form of the
chemical potential, which for high slope (∂xζ → ∞) is dominated by the elastic
contribution.

The shape of the steady-state branch suggests that at an early stage of the
instability the dynamics is dominated by anisotropy effects and that later, when
the lateral cell size has reached λ̃, elasticity becomes more important and the
known scenario of perpetual coarsening is reestablished.

We have checked the correctness of this scenario by a numerical integration of
the corresponding evolution equation. Fig. 4.9 gives the results of a simulation
with the following parameters: c0

eq = 0, εL = 0.5, θL = π/4, and A = γ̃(0) `2/30.
The right panel of Fig. 4.9 shows that the results of this simulation are in good
agreement with the predictions that were derived from the shape of the steady-
state branch: As in the case without elastic interactions, the meandering dynamics
is governed by the steady-state branch.

4.1.6. Discussion

We now want to discuss possible consequences of these findings for MBE experi-
ments. For a qualitative statement it is sufficient to know the ratio of the largest
value of Γ or DL to the smallest value; the precise form of the anisotropy does not
matter here.

For example, the Cu(100) surface can be modelled by a square lattice with
nearest-neighbour interactions. The anisotropy of the step stiffness thus has a
four-fold symmetry. At room temperature we find [18]

ηΓ =
Γ[110]

Γ[100]

≈ 86 (4.19)

for the ratio of the largest stiffness (attained for [110] steps) to the smallest stiffness
(for [100] steps).

Using our model anisotropy as a first approximation to the real anisotropy, we
can infer from the structure of the steady-state branch the minimum ratio ηΓ, at
which interrupted coarsening becomes relevant (λ̃ reaches λm):

ηc
Γ =

1 + εc
Γ

1− εc
Γ

≈ 5. (4.20)

As ηΓ from the above example is much larger than the critical value ηc
Γ, it is likely

that interrupted coarsening plays a role in the wavelength selection of meandering
ripples on Cu(100) surfaces.

We can do a similar comparison for DL anisotropy. Here it is known from kinetic
Monte-Carlo simulations that, in the presence of a kink-rounding barrier, the ratio
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4. Anisotropic step meandering

of the line diffusion coefficients for [110] and [100] steps is [34]

ηL =
D[110]

D[100]

≈ 10. (4.21)

The critical value obtained from our analysis (assuming isotropic stiffness) is

ηc
L =

1 + εc
L

1− εc
L

≈ 2.13. (4.22)

Here also, the critical ratio is much smaller than the ratio from our example, so
that interrupted coarsening might be observed.

In our discussion of Γ and DL anisotropy, we have concentrated on 4-fold
anisotropies. On many crystal surfaces, however, anisotropies are 3-fold or 6-fold.

A repetition of the analysis for 3-fold and 6-fold anisotropies reveals no qualita-
tive differences. If Γ or DL attains its minimum value in the direction of the step
train, then the steady-state branch has a maximum λ̃ > λc. If the anisotropy is
strong enough, λ̃ is larger than λm and there is interrupted coarsening. But if Γ
or DL attains its maximum value in the step train direction, we find that λ0 < λc

for every steady-state solution, regardless of the strengths of the anisotropies. It
follows that there is no interrupted coarsening in this case.

4.2. Attachment kinetics

4.2.1. Two-sided model

So far, we have only been concerned with the one-sided model, where, due to an in-
finite Ehrlich-Schwoebel barrier, adatoms do not descend the steps. Furthermore,
the steps acted as perfect sinks. This amounted to setting

ν− = 0, ν+ →∞ (4.23)

in the boundary conditions (2.13, 2.14) of the diffusion equation.
Now we want to consider surfaces with an arbitrary Ehrlich-Schwoebel effect,

which may depend on the local step orientation. There are many examples from
experiments and theory alike that suggest a strong anisotropy of the Ehrlich-
Schwoebel barrier. On some metal surfaces, the energy barrier may even be in-
verted for certain step orientations [1].

In the following we shall use the attachment lengths d+ and d−, which are
related to the kinetic coefficients via

d+ = D/ν+, d− = D/ν−, (4.24)

as the fundamental quantities to describe the Ehrlich-Schwoebel effect and its
anisotropy.
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4.2. Attachment kinetics

Our programme starts with the linear stability analysis, which is performed
along the same lines as the calculation for the one-sided model (see App. A). As
the central result we obtain the following dispersion relation:

Re(iω) = ΩF
q

D
d− − d+

` + d+ + d−

[
(d− + d+)(q` sinh q`− cosh q` + cos φ)

+
`

2
q` (sinh q` + S0 sin φ)

]
− Γq2

[
DS

q

D
{2(cosh q`− cos φ)

+ q (d+ + d−) sinh q`}+ aDL q2
]
, (4.25)

Im(iω) = ΩF
q

D

[
(` + d+ + d−) sin φ

+
1

2
q` {S1 (cos φ− cosh q`)− S2 q` sinh q`}

]
(4.26)

with

D = (d+ + d−) q cosh q` +
(
d+d−q2 + 1

)
sinh q`. (4.27)

For brevity we have dropped the arguments of anisotropic model parameters. They
have to be evaluated at the orientation of the unperturbed step (i. e., θ = 0).

If we compare the dispersion relation of the anisotropic model with the corre-
sponding dispersion relation for an isotropic surface [20], we notice the emergence
of three additional terms, which are due to the anisotropies of the attachment
lengths d+ and d−. These terms are recognized by the following prefactors:

S0 =
(d′+ − d′−) ` + 2 (d′+d− − d′−d+)

(d− − d+) `
, (4.28)

S1 =
d′+ (` + 2d−) + d′− (` + 2d+)

` + d+ + d−
, (4.29)

S2 =
d′+d− (1 + 2d−/`) + d′−d+ (1 + 2d+/`)

` + d+ + d−
. (4.30)

S0, S1, and S2 depend on the first derivatives of the attachment lengths d+ and
d− with respect to the angle (denoted by the prime) and vanish if d+ and d− enjoy
the θ → (−θ) symmetry.

Attachment anisotropy is the first anisotropy that enters at the linear level.
The reason for the emergence of new terms is quite transparent: The step per-
turbation εζ leads to a correction of the kinetic coefficients, which is of order ε.
In the boundary conditions (2.13, 2.14) this first-order correction of the kinetic
coefficients couples to the unperturbed concentration field at zeroth order, which
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4. Anisotropic step meandering

leads to a correction of the attachment currents j+ and j−. If the kinetic coeffi-
cients do not enjoy the θ → (−θ) symmetry, the attachment currents will not be
in phase with the step perturbation and the meander will drift sideways. This is
indicated by the two new terms in the imaginary part of the growth rate, which
do not vanish for the in-phase mode (φ = 0).

The additional term in the real part of the growth rate has a different conse-
quence: The most unstable mode may no longer be the in-phase mode. Attach-
ment anisotropy can induce out-of-phase meandering, which gives rise to tilted
meandering ripples.

It is important to point out why Γ and DL anisotropy do not intervene in the
dispersion relation. The reason is that Γ and DL do not enter at all into the
steady-state solution. Hence, at first order there are only contributions of Γ(0)
and DL(0). Contrary to that, the values of ν+(0) and ν−(0) do enter into the
steady-state solution, and ν ′+(0), ν ′−(0) appear at first order.

For simplicity, we shall now assume that the attachment lengths enjoy the
θ → (−θ) symmetry. In this case the prefactors S0, S1, S2 in the dispersion
relation vanish and the steps meander in phase.

We have seen that, in the two-sided case, the dispersion relation assumes a more
complicated form, but the qualitative features of the instability are preserved. As
the Ehrlich-Schwoebel barrier is the physical reason for the meandering instability,
a change of the attachment lengths d+ and d− leads to a change of the length and
time scales on which the instability takes place. Thus, the parameter

fS =
d−(0)− d+(0)

` + d+(0) + d−(0)
, (4.31)

which describes the strength of the Ehrlich-Schwoebel effect, now enters into the
critical wave number:

qc =

(
ΩF`2fS

2Γ(0) [DS` + DL(0) a]

)1/2

. (4.32)

The most unstable mode is still the in-phase mode since we assumed that the
anisotropies of the attachment lengths enjoy the θ → (−θ) symmetry.

Performing the multiscale analysis for the two-sided model (see App. B), we
find the following evolution equation for the step meander:

∂tζ = −∂x

[
ΩF

2
∂xζ

`2
⊥(d− − d+)

d+ + d− + `⊥

−
(
DL a + DS

`2 + `⊥(d+ + d−)

d+ + d− + `⊥

)
∂x(Γκ)

[1 + (∂xζ)2]1/2

]
, (4.33)

where d+, d−, Γ, and DL depend on the step orientation and `⊥ is the effective
interstep distance, defined by `⊥ = `/[1 + (∂xζ)2]1/2.
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This evolution equation is formally equivalent to the evolution equation of the
isotropic model. That is to say, there are no additional terms due to attachment
anisotropy.

4.2.2. Modelling attachment anisotropy

As in the case of Γ and DL anisotropy, we are interested in qualitative results and
do not rely on any actual anisotropy form. Again, we introduce model anisotropies:

d±(θ) = d±,0 A±(θ) (4.34)

with the anisotropy functions

A±(θ) = 1 + ε± cos [4(θ − θ±)] , (4.35)

which have the same characteristic shape as our model anisotropies for the stiffness
and the line diffusion coefficient (see Fig. 4.1). The desired θ → (−θ) symmetry
is obtained for θ± = 0, π/4.

4.2.3. Steady-state analysis

As in the one-sided case, the evolution equation (4.33) takes the form of a conser-
vation law, ∂tζ = −∂xj, and stationary solutions can be found from the condition
j = 0.

With the help of the potential

V (m) =
1

fS

∫ m

m0

(d̃− − d̃+) m′ dm′

(1− β̃) f(m′) + β̃ g(m′)
, (4.36)

where d̃± = d±/` are the reduced attachment lengths and

f(m′) = d̃+ + d̃− + (1−m′2)1/2, (4.37)

g(m′) = 1 + (d̃+ + d̃−)(1−m′2)1/2, (4.38)

we can write the wavelength of stationary solutions in the form:

λ0 =
λm

2π

∫ m0

−m0

dm

[V (m0)− V (m)]1/2
. (4.39)

Now the steady-state branch can be plotted for any given attachment anisotropy.
In the following sections we shall concentrate on two simple special cases, which
give rise to different coarsening scenarios.
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4.2.4. Interrupted coarsening

Before we start our discussion of attachment anisotropy, it should be mentioned
that the scenario of interrupted coarsening which was found for Γ, DL anisotropy
in case of an infinite Ehrlich-Schwoebel barrier survives in case of a finite barrier.
There are only quantitative changes of the steady-state branch, e. g., the precise
value of λ̃ and thus the wavelength of the meandering ripples depends on the
values of both attachment lengths.

Now we want to concentrate on cases that involve only attachment anisotropy,
which is a good starting point for surfaces where this anisotropy is dominant.

The first interesting example that we want to study is a surface, where attach-
ment from the lower terrace is instantaneous (d+ = 0) and where attachment from
the upper terrace is governed by an anisotropic finite attachment length d−(θ).
Now the scenario depends on only two anisotropy parameters, the strength ε− of
the d− anisotropy and its orientation θ− ∈ {0, π/4}.

A study of the steady-state branch gives the following result: If the Ehrlich-
Schwoebel barrier is enhanced in the step train direction and reduced for step
orientations along the π/4 direction (i. e., θ− = 0), stationary solutions above λc

exist, regardless of whether the steps are stabilized by terrace or line diffusion.
The steady-state branch is non-monotonic and assumes a local maximum λ̃, which
behaves like

λ̃

λc

∼ 1

(1− ε−)1/4
for ε− → 1. (4.40)

Numerical simulations of the evolution equation confirm that interrupted coars-
ening takes place (if λ̃ > λm) and that the final wavelength is approximately λ̃.
These simulations also show that the asymptotic behaviour of the amplitude is
not affected by attachment anisotropy; the t1/2 law remains valid.

If, however, the Ehrlich-Schwoebel barrier is reduced in the step train direction
(θ− = π/4), we do not find steady-state solutions above λc. From this we conclude
that coarsening does not occur, which is supported by numerical integrations of
the evolution equation.

4.2.5. Logarithmic coarsening

Now we turn to the second interesting case that we want to study in detail. It is
known that on some metal surfaces [e. g., Cu(001)] the Ehrlich-Schwoebel barrier
is inverted for certain step orientations [1]. In this case, adatoms attach to the
step more easily if they approach it from the upper terrace.

In order to model this situation we assume isotropic but finite d+ and anisotropic
d−. For definiteness we set d̃+ = 1, ε+ = 0, θ− = 0 and just vary ε− and d̃−.
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Figure 4.10.: Polar plot of the attachment lengths d̃+ (solid line in the left panel),
d̃− (broken lines in the left panel), and a plot of the corresponding
steady-state branches (right panel). The arrow indicates the direc-
tion of the step train. The strength ε− of the d̃− anisotropy is as
follows: 0.25 (dashed line), 0.5 (dotted line), 0.75 (dot and dash
line).

Fig. 4.10 shows the attachment lengths and the corresponding branches of
steady-state solutions for different anisotropy strengths. The average attachment
length for the upper side of the step is given by d̃−,0 = 2.

For ε− = 0.25 there is a positive Ehrlich-Schwoebel barrier for all step orienta-
tions and the steady-state branch reaches a maximum λ̃. The resulting coarsening
dynamics does not differ qualitatively from the one that we have discussed in the
previous section. For slightly larger ε− we have λ̃ > λm and there is interrupted
coarsening.

In the case of ε = 0.5 the Ehrlich-Schwoebel barrier vanishes for step orientations
along θ = ±π/4 and the steady-state branch diverges at the corresponding finite
slope m0,S.

For ε = 0.75 there are step orientations for which the Ehrlich-Schwoebel barrier
is inverted. The steady-state branch now consists of two parts, which are separated
by a band of forbidden maximum slopes.

Fig. 4.11 gives results of a simulation with partially inverted Ehrlich-Schwoebel
effect. The meander closely follows the diverging steady-state branch, whereby
the maximum slope of the meander is limited by m0,S. Due to the occurrence
of an upper bound for the slope, the development of the amplitude and of the
wavelength are now coupled. The meander assumes a characteristic triangular
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shape.

0 0.2 0.4 0.6
m0

0

1

2

3

λ 0/λ
m

0 250 500 750 1000
x

0

5

10

15

20

m0,S

Figure 4.11.: Logarithmic coarsening in a system where the Ehrlich-Schwoebel
barrier is partially inverted. The left panel shows the meander at
different time, the right panel shows the steady-state branch (solid
line) and the dynamics of the meander (crosses). Parameters are as
follows: d̃+ = 1, d̃− = 1.4, ε+ = 0, and ε− = 0.43.

If we plot the slope m = ∂xζ/[1 + (∂xζ)2]1/2 instead of the meander ζ(x, t), we
obtain a graph, in which one can distinguish two domains: one where the curve is
close to m0,S and another where it is close to −m0,S. These domains are separated
by domain walls, or kinks and anti-kinks (Fig. 4.12). In this picture, coarsening
is related to the annihilation of kinks and anti-kinks.

Our problem is thus akin to the well-studied problem of phase separation, as
described by the one-dimensional Cahn-Hilliard equation. In dimensionless units
it can be written as

∂tp = ∂xx [W ′(p)− ∂xxp] , (4.41)

where p(x, t) is the order parameter and W (p) = −p2/2+p4/4 a symmetric double-
well potential with minima at p = ±1, corresponding to the values of the order
parameter for the pure phases [2].

Starting from a homogeneous state p ≡ 0, first a structure is formed that consists
of small domains where the order parameter is 1 or −1. This structure undergoes
a coarsening process, in which the typical domain size develops logarithmically
with time [2, 59]. Coarsening occurs through the mutual attraction of kinks and
anti-kinks, whose coupling decays exponentially with their distance.
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Figure 4.12.: Amplitude and meander in the scenario of logarithmic coarsening.
The left panel shows the development of the amplitude (solid line).
Its temporal evolution differs clearly from t1/2 (dashed line). The
right panel shows part of the meander (dashed line) and the corre-
sponding slope (solid line). In the slope curve, two domains can be
distinguished, which are separated by kinks and anti-kinks. Simula-
tion parameters as in Fig. 4.11.

The Cahn-Hilliard equation (4.41) is variational since it can be written in the
form

∂tp = ∂xx
δF [p]

δp
, (4.42)

where

F [p] =
∫

dx

[
−p2

2
+

p4

4
+

(∂xp)2

2

]
(4.43)

is a Lyapunov functional. The evolution equation for the slope h(x, t) ≡ ∂xζ(x, t)
of the step meander has the form

∂th = ∂xx [A(h)−B(h) ∂xxm(h)] . (4.44)

It is similar to the Cahn-Hilliard equation (4.41), but it introduces a non-constant
mobility B(h) in the stabilizing term. In general, it cannot be reduced to Eq. (4.41)
and it is not variational. Nevertheless, for partially inverted Ehrlich-Schwoebel
effect, our potential

V (m) =
∫ m

m0

A(m′)

B(m′)
dm′ (4.45)
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4. Anisotropic step meandering

meets the requirements for the potential W in the Cahn-Hilliard equation: V is a
symmetric double-well potential with minima at m = ±m0,S, which also describes
kink solutions with exponential coupling.

It is likely that the coarsening dynamics depends only on the set of steady
states and not on the variational character of the equation. We can thus speculate
that the dynamics of the step evolution equation is similar to the Cahn-Hilliard
equation and that the exponential coupling of kinks and anti-kinks results in a
coarsening process, where the average wavelength increases like ln t.

We do not want to investigate this question more deeply, since logarithmic coars-
ening is a rather academic case. Logarithmic coarsening is known to break down
in the presence of noise, where the kink positions undergo random fluctuations.
Then, coarsening obeys a power-law behaviour [30].

Our numerical simulation (Fig. 4.12) cannot prove the occurrence of logarithmic
coarsening, but it clearly shows that the growth of the meander amplitude is slower
than t1/2.

4.3. Terrace diffusion

In the first parts of this chapter we were concerned with the meandering dy-
namics of crystal steps under the influence of anisotropic step properties, such
as anisotropic stiffness Γ(θ). It was found that for certain step orientations and
strong enough anisotropy the dynamical scenario is changed: Instead of a fixed
meandering wavelength, interrupted coarsening is observed. We now turn to the
case where diffusion on the terraces is anisotropic. This is often due to surface re-
constructions and dimer row formation, which gives rise to slow and fast diffusion
along different directions (Fig. 4.13).

4.3.1. Modelling anisotropic terraces

On anisotropic terraces the diffusion law (2.2), j = −D∇c, retains its form, but
D is now a tensorial quantity. To make this difference clear, we now write

j = −D∇c, (4.46)

where the diffusion tensor is defined by

D =

(
D11 D12

D12 D22

)
. (4.47)

This tensor is symmetric and can thus be diagonalized: In its eigensystem
(which is rotated by an angle φD with respect to our standard system), the tensor
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Figure 4.13.: Sketch of a vicinal surface with anisotropic terrace diffusion. The
diffusion ellipsoid indicates the slow and fast directions of surface
diffusion. For an explanation of the other processes, see Fig. 2.2.

reads

D′ = D0

(
α1/2 0
0 α−1/2

)
. (4.48)

For convenience we have introduced D0 = [D11 D22 − D2
12]

1/2. The parameter α
measures the ratio of the diffusion coefficients along the eigendirections.

4.3.2. Geometrical mapping

In principle it is now possible to adapt the calculation from Sect. 3.2 to obtain
the step evolution equation for anisotropic terrace diffusion. There is a different
approach, however, that saves us from re-doing a lengthy calculation and that
may also be applicable to other problems.

In App. D we show that step meandering on anisotropic terraces can be mapped
to a problem where diffusion is isotropic, if one writes the problem in suitable coor-
dinates and performs a change of the metrics. The only side-effect is a modification
of the step properties Γ, DL, and ν± along with some other model parameters.
But the equations assume their original form with scalar D so that we can directly
apply the analysis from the previous sections.

So far we have used Cartesian coordinates (x, y). The new coordinates (x̄, ȳ),
which are not to be confused with the eigensystem of the diffusion tensor, are
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4. Anisotropic step meandering

given by the affine transformation

x̄ = x− D12

D22

y, (4.49)

ȳ =
D0

D22

y. (4.50)

We also introduce the new metrics ēi · ēj = δij. This is necessary in order to obtain
the desired formal equivalence of the transformed model with the isotropic model.

In the transformed system, the diffusion equation takes the form

∂tc = D̄0 ∇̄2c + F (4.51)

with D̄0 = D2
0/D22 and the gradient operator ∇̄ ≡ ēx̄ ∂x̄ + ēȳ ∂ȳ.

The boundary conditions read

D̄0 n̄ · ∇̄c|+ = ν̄+ (c− ceq)|+, (4.52)

−D̄0 n̄ · ∇̄c|− = ν̄− (c− ceq)|−, (4.53)

where n̄ is the unit normal to the step in the transformed system.
The step properties of the transformed model are anisotropic even if the corre-

sponding physical quantities do not depend on the step orientation. After intro-
ducing the local angle along the transformed step,

θ̄ = arctan

(
D0 tan θ

D22 −D12 tan θ

)
, (4.54)

we can write the new step properties as

Γ̄(θ̄) =
D22

D0

f(θ̄)3 Γ, (4.55)

D̄L(θ̄) =
D0

D22

f(θ̄) DL, (4.56)

ν̄±(θ̄) =
D0

D22

1

f(θ̄)
ν± (4.57)

with the common function

f(θ̄) = D0[(D0 cos θ̄ + D12 sin θ̄)2 + D2
22 sin2 θ̄]−1/2. (4.58)

In Fig. 4.14, we show the resulting effective anisotropies Γ̄(θ̄) and D̄L(θ̄) for
steps with constant Γ and DL. It can be seen that these anisotropies have a
twofold symmetry instead of the fourfold symmetry that we assumed for most of
our discussion on anisotropic steps.
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4.3. Terrace diffusion

Figure 4.14.: Polar plot of the effective anisotropies Γ̄(θ̄) (left panel) and D̄L(θ̄)
(right panel) for φD = π/4. The strengths of the anisotropies are as
follows: α = 1 (solid line), α = 0.75 (dashed line), α = 0.5 (dotted
line), and α = 0.25 (dot and dash line). The arrow points in the
direction of the step train.

If the original quantities Γ, DL, and ν± are themselves anisotropic, they have
to be evaluated at the angle θ corresponding to θ̄ via Eq. (4.54). The effective
anisotropies then have a more complicated form, as they mix the influence of
different physical anisotropies.

With the given transformation (4.55) of the line stiffness, the Gibbs-Thomson
law retains its form and the equilibrium concentration can be written as

ceq = c0
eq[1 + Γ̄(θ̄) κ̄], (4.59)

where κ̄ is the curvature in the transformed system.

Finally, the transformed normal velocity of the steps is given by

v̄n = ΩD̄0[n̄ · ∇̄c|+ − n̄ · ∇̄c|−] + a ∂s̄[D̄L ∂s̄(Γ̄κ̄)], (4.60)

where s̄ is the arc length in the transformed system.

The moving boundary problem is now fully specified. In principle all one has to
do now is to plug the transformed model parameters into the solutions that have
been obtained for isotropic diffusion and to map the results back to Cartesian
coordinates.
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4. Anisotropic step meandering

4.3.3. Linear instability

First we have to review the linear stability problem. For the one-sided model, the
dispersion relation takes the form:

Re(iω) =
ΩF

cosh q ¯̀

[
q ¯̀sinh q ¯̀− cosh q ¯̀+ cos φ̄

]
− Γ̄(0) q2

cosh q ¯̀

[
qD̄S sinh q ¯̀+ q2aD̄L(0) cosh q ¯̀

]
, (4.61)

Im(iω) =
ΩF

cosh q ¯̀ sin φ̄. (4.62)

Here, φ̄ is the phase shift between neighbouring steps in the transformed system,
¯̀= D0/D22 ` is the effective interstep distance, and D̄S = c0

eqΩD̄0.
The maximum growth rate is obtained for φ̄ = 0, i. e., for the in-phase mode

in the transformed system. This corresponds to a phase shift in the Cartesian
system if the diffusion tensor is not diagonal:

φ = φ̄− D12

D22

q`. (4.63)

This is the first important difference as compared to isotropic terrace diffusion,
where steps usually meander in phase. An out-of-phase meander gives rise to
tilted meandering ripples. The ripples then form an angle of

φR = arctan(D12/D22) (4.64)

with respect to the step train (Fig. 4.15).
Another important result concerns the wavelength of the most unstable mode.

In the long-wave limit it can be written as

λm = 4π

[
Γ(DS

¯̀+ DLa)

ΩF ¯̀2

]1/2

. (4.65)

Comparing this result to the wavelength on an isotropic terrace [Eq. (3.8)], one
realizes that at this point the anisotropy of terrace diffusion only enters into the
interstep distance. If diffusion along the y axis is faster, then according to ¯̀ =
D0/D22 `, the effective interstep distance is smaller than the physical distance,
otherwise it is larger.

Furthermore, we can conclude that the ripple wavelength λm is larger as com-
pared to an isotropic system with the same mean diffusion coefficient D0 if the
angle between the fastest direction and the step train direction is smaller than a
critical angle θc. For small anisotropy, θc = π/4; as the anisotropy gets larger,
θc → π/2. Strong anisotropy has a stabilizing effect, almost regardless of its
orientation.
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Figure 4.15.: Meandering on a vicinal surface. Left panel: isotropic terrace diffu-
sion; right panel: anisotropic terrace diffusion. Anisotropic terrace
diffusion may lead to tilted meandering ripples, where the ripple
forms an angle φR with respect to the step train.

In an experiment one might be less interested in the wavelength λm and more
in the ripple width λR, which is observed directly. These quantities differ if the
ripple is tilted:

λR = λm cos φR. (4.66)

Here we have assumed, of course, that the final pattern width is set by linear
instability. As we already know, the pattern width can change through coarsening.
Nevertheless, in Fig. 4.16 we show the ripple width according to the linear stability
analysis as a function of the orientation of the anisotropy.

4.3.4. Interrupted coarsening

The evolution equation for the transformed step meander ζ(x̄, t) becomes:

∂tζ = −∂x̄

[
ΩF ¯̀2

2

∂x̄ζ

1 + (∂x̄ζ)2

−
(

D̄S
¯̀

1 + (∂x̄ζ)2
+

D̄L(θ̄) a

[1 + (∂x̄ζ)2]1/2

)
∂x̄[Γ̄(θ̄) κ̄]

]
. (4.67)

It is equivalent to the equation for the isotropic meander, except for the substi-
tution of the transformed model parameters and effective anisotropies.

At this point we want to assume isotropic steps and concentrate on the effect
of anisotropic terrace diffusion. Now our analysis will proceed along the same
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Figure 4.16.: The width of meandering ripples corresponding to the most unstable
mode as a function of the orientation of the anisotropy for α = 1,
10, 30, and 100 (from lower to upper curve).

lines as the one for anisotropic step properties. We shall first discuss the steady-
state branches for the effective anisotropies Γ̄(θ̄), D̄L(θ̄) to predict the coarsening
scenario and then use numerical simulations of the evolution equation to check
our prediction.

For simplicity we concentrate on cases where the principal axes of the diffusion
tensor are aligned with the average step direction and the direction of the step
train. Then, the diffusion tensor reads:

D = D0

(
α1/2 0
0 α−1/2

)
. (4.68)

If α < 1, that is, diffusion is faster in the y direction, we do not find steady-state
solutions with wavelength λ0 > λc. According to our previous argument, coars-
ening should not take place. This is indeed confirmed by numerical simulations.
These simulations also confirm that the known asymptotic behaviour, where the
amplitude of the meander behaves like t1/2, is not affected by terrace anisotropy.

For the case α > 1, where diffusion is faster in the x direction, we find stationary
solutions above λc, if there is line diffusion along the steps.

Fig. 4.17 shows the steady-state branch of the evolution equation and the corre-
sponding development of the meander according to a numerical simulation. Ter-
race diffusion anisotropy gives rise to a steady-state branch which reaches its
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Figure 4.17.: Interrupted coarsening in the presence of terrace anisotropy. The left
panel shows snapshots of the meander at different times. The right
panel displays the dynamics of the system in the λ0-m0 plane. The
solid line depicts the steady-state branch of the evolution equation;
the crosses refer to the evolution of the meander in the numerical
simulation. Error bars indicate the standard deviation of λ0 and m0.
Parameters are α = 11 and DS = 0 (line diffusion limit).

maximum λ̃ at the interval boundary m0 = 1. In principle, coarsening might now
take infinite time as m0 = 1 corresponds to infinite amplitude. But practically, the
scenario of interrupted coarsening does not change in finite systems. Correspond-
ingly, in the numerical simulation, coarsening stops when the meander wavelength
is larger than λ̃. As expected from the analysis of the similar problem of Γ, DL

anisotropy, the amplitude keeps to develop and increases asymptotically like t1/2.
It is interesting to see how λ̃ behaves with the anisotropy strength α. An

asymptotic analysis of the λ0 integral (4.11) for α � 1 and DS = 0 (line diffusion
limit) provides us with

λ̃

λc

∼ α1/2. (4.69)

4.3.5. Discussion

Surface diffusion can be highly anisotropic. On Si(001), for example, diffusion
along dimer rows may be 1,000 times faster than diffusion across dimer rows [35].
As in the case of Si(001), high terrace diffusion anisotropy is mostly due to surface
reconstructions, and for many crystals, the direction of dimer rows alternates
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4. Anisotropic step meandering

between terraces, so that two types of terraces (A and B) must be distinguished.
A generalization of the geometrical mapping to tackle problems with alternating

terraces seems to be of little benefit. One would have to deal not only with two
types of steps but also with two new coordinate systems, and a link with existing
theories might be hard to establish. There are, however, situations where the
geometrical mapping can be applied directly. On reconstructed Si(100) surfaces
at growth temperatures around 775K, biatomic steps are formed, so that one
type of terrace predominates [58]. Furthermore, pure step flow growth due to the
movement of the biatomic steps has been observed [58].

Apart from step meandering there are other interesting questions, where the
mapping can be employed directly. One concerns submonolayer epitaxy and the
formation of denuded zones.

In submonolayer epitaxy only a small amount of matter is deposited on a (singu-
lar) surface. This leads to the formation of small islands and large denuded zones,
where the substrate is not covered. The areal densities of islands and also the
linear densities along fast and slow directions have been measured experimentally
[35]. From these results one can compute the aspect ratio Wfast/Wslow (typical
width in the fast diffusion direction vs. width in the slow direction) of denuded
zones.

There is some disagreement between recent computer simulations, which yield
a fixed aspect ratio (Dfast/Dslow)1/2 and some older dimensional arguments, which
predict exponents ranging from 1/6 to 1/4, depending on the strength of the
anisotropy [16].

Starting from our geometrical mapping, we can easily derive an argument in
favour of the more recent study. In the transformed system, diffusion is isotropic
and the denuded zones should have an aspect ratio of 1/1 if we assume that
the islands are sufficiently small. Going back to the physical frame, we obtain
an aspect ratio of (Dfast/Dslow)1/2, which is in agreement with the results from
Ref. [16].

Another application of the mapping might be the study of step fluctuations,
which is useful for the experimental determination of step properties [25]. With
the help of the geometrical mapping it is straightforward to incorporate the effects
of anisotropic terrace diffusion into existing models.
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We have described a new dynamical scenario for meandering crystal steps. On
surfaces where step meandering is due to the Ehrlich-Schwoebel effect, the wave-
length of the meandering pattern may not correspond to the most unstable mode
from linear instability. Instead, the nonlinear dynamics is characterized by a pro-
cess of interrupted coarsening, which selects a wavelength that is determined by
the precise form and orientation of relevant crystalline anisotropies.

This wavelength selection mechanism must be taken into account when con-
fronting a step-flow model with experimental data. We have proven the scenario
of interrupted coarsening by numerically integrating a step evolution equation,
whose correctness has been assessed in the long-wave limit. Furthermore, we have
established a link between the coarsening dynamics and the steady-state solutions
of the step evolution equation. From this starting point we have derived formulas
that can be used to determine the final pattern wavelength from the actual form
of the anisotropies.

In summary, there are three dynamical scenarios: (i) No coarsening; the pattern
wavelength is set by linear instability and corresponds to the wavelength of the
most unstable mode. (ii) Interrupted coarsening; the wavelength is fixed at a later
stage of the instability and depends on crystal anisotropy. (iii) Endless coarsening,
where the pattern wavelength increases indefinitely.

Our method deals with anisotropic step properties (stiffness, line diffusion, and
attachment kinetics). With the help of a geometrical mapping, a model with
anisotropic terrace diffusion can be reduced to a model with isotropic diffusion
and modified step properties. Terrace diffusion anisotropy can thus be treated
within the same framework. In addition to that, the geometrical mapping is
useful in other contexts, where terrace diffusion anisotropy is to be incorporated
into existing models.
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A. Linear stability analysis

On a perfect vicinal surface the steps are straight and the interstep distance `
is constant. In ideal step flow growth, the steps remain straight and their dis-
tance does not change. Thus, all steps move at the same velocity, which by mass
conservation is found to be V0 = ΩF`.

In this appendix we perform the linear stability analysis of a step train during
growth with respect to step meandering.

A.1. Ideal step flow

We first seek the full solution of the model equations for the unperturbed growth
of equidistant straight steps. The dynamics of the surface is described by the
quasistatic diffusion equation

0 = D∇2c + F (A.1)

with the boundary conditions

D ∂nc|+ = ν+ [c− ceq]|+, (A.2)

−D ∂nc|− = ν− [c− ceq]|− (A.3)

and the step normal velocity

vn = ΩD [∂nc|+ − ∂nc|−] + a ∂s[DL ∂s(Γκ)]. (A.4)

The equilibrium concentration at the steps is given by

ceq = c0
eq (1 + Γκ). (A.5)

As the adatom concentration is usually discontinuous at the steps, we introduce
new functions cm(x, y, t) which are valid on the mth terrace only and write the
global concentration field as

c(x, y, t) =
+∞∑

m=−∞
cm(x, y, t) Θ(y − ym(x, t)) Θ(ym+1(x, t)− y), (A.6)

where Θ(y) is the Heaviside function and ym(x, t) the position of the mth step.
In a uniform step train, the position of the mth step is given by ym(x, t) = y0

m(t)
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with y0
m(t) = m` + V0 t, which we shall use later on to refer to the position of the

unperturbed steps.
In ideal step flow the adatom concentration is uniform in the x direction and

the diffusion equation on the mth terrace reduces to

D ∂yyc
0
m + F = 0. (A.7)

It has the general solution

c0
m = − F

2D
(y − y0

m)2 + A0
m (y − y0

m) + B0
m (A.8)

with the integration constants A0
m and B0

m. The boundary conditions dictate

A0
m D = ν+ (B0

m − c0
eq), (A.9)

F`− A0
m D = ν− (−F`2/2D + A0

m` + B0
m − c0

eq), (A.10)

whereby the integration constants are obtained as

A0
m =

ν+F` + ν+ν−F`2/2D

(ν+ + ν−) D + ν+ν−`
, (A.11)

B0
m = c0

eq +
DF` + ν−F`2/2

(ν+ + ν−) D + ν+ν−`
. (A.12)

The equation for the normal velocity vn gives the expected velocity of the uniform
step train: V0 = ΩF`.

A.2. Linear perturbation

We now perturb the steps with a small-amplitude meander ε ζm, so that the po-
sition of the mth step is given by

ym(x, t) = y0
m(t) + ε ζm(x, t). (A.13)

The meander ζm(x, t) is written in the form of a Fourier mode:

ζm = ei(mφ+qx+ωt), (A.14)

where φ is the phase shift between neighbouring steps, q the wave number, and
iω the complex growth rate of the perturbation [19].

As the step properties depend on the local orientation of the step, we have to
expand them about the orientation θ = 0 of the unperturbed step. The linearized
stiffness, for example, reads

Γ(θm) = Γ(0) + ε ζm Γ′(0). (A.15)
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There are analogous expressions for the line diffusion coefficient DL and for the
kinetic coefficients ν+ and ν−.

The step perturbation results in a perturbed concentration field, which takes
the form [19]:

cm(x, y, t) = c0
m(y) + ε ζm(x, t) c1

m(y). (A.16)

Inserting the ansatz (A.16) for the perturbed concentration field into the diffu-
sion equation, we obtain

0 = D∇2c0
m(y) + F︸ ︷︷ ︸
=0

+ ε D∇2[ζm(x, t) c1
m(y)]. (A.17)

With ∂xxζm = −q2 ζm we find the equation for c1
m(y),

∂yyc
1
m(y)− q2 c1

m(y) = 0, (A.18)

which has the general solution

c1
m(y) = A1

m eq (y−y0
m) + B1

m e−q (y−y0
m). (A.19)

In order to determine A1
m and B1

m we have to evaluate the kinetic conditions at
the perturbed steps. At the ascending step we have

D ∂ncm|y=ym = ν+ (cm − ceq,m)|y=ym . (A.20)

To linear order the normal derivative on the left-hand side of Eq. (A.20) can be
expressed as

∂ncm = (∂y − ε ∂xζm ∂x) cm. (A.21)

With the linearized curvature κm = −∂xxζm we find the expansion of the equi-
librium concentration on the right-hand side of Eq. (A.20):

ceq,m = c0
eq (1− ε Γ ∂xxζm). (A.22)

Finally, we expand the concentration field about y0
m,

cm|y=ym = c0
m(y0

m) + ε ζm ∂yc
0
m(y0

m) + ε ζm c1
m(y0

m) + O(ε2), (A.23)

which is also inserted into Eq. (A.20). As expected, we find that the boundary
condition is satisfied at O(1). At O(ε) we get the following relation:

∂yCm(y0
m) = k+(0)

[
Cm(y0

m)− c0
eq Γ q2

]
+ iq k′+(0)

[
c0
m(y0

m)− c0
eq

]
. (A.24)
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Here we have used the abbreviations Cm = ∂yc
0
m + c1

m and k+ = ν+/D. Inserting
the general solutions of the concentration field at zeroth and first order, we find
the first condition for A1

m and B1
m:

[q − k+(0)] A1
m − [q + k+(0)] B1

m = α (A.25)

with

α =
F

D
+ k+(0)

[
A0

m − c0
eqΓq2

]
+ iq k′+(0)

[
B0

m − c0
eq

]
. (A.26)

The kinetic condition at the descending step reads:

−D ∂ncm|y=ym+1 = ν− (cm − ceq,m+1)|y=ym+1 . (A.27)

Expanding this equation about y0
m+1, we obtain at O(ε):

∂yC
∗
m(y0

m+1) = −k−(0)
[
C∗

m(y0
m+1)− c0

eq Γ q2 eiφ
]

− iq k′−(0) eiφ
[
c0
m(y0

m+1)− c0
eq

]
(A.28)

with C∗
m = eiφ ∂yc

0
m + c1

m and k− = ν−/D. Inserting the general solutions of the
diffusion equation, we find the second condition for A1

m and B1
m:

[q + k−(0)] eq` A1
m − [q − k−(0)] e−q` B1

m = eiφβ (A.29)

with

β =
F

D
− k−(0)

[
A0

m − F`/D − c0
eqΓq2

]
− iq k′−(0)

[
−F`2/2D + A0

m` + B0
m − c0

eq

]
. (A.30)

The solution of the linear system (A.25, A.29) gives the sought-after integration
constants:

A1
m =

1

Q

{
[q + k+(0)] eiφ β − [q − k−(0)] e−q` α

}
, (A.31)

B1
m =

1

Q

{
[q − k+(0)] eiφ β − [q + k−(0)] eq` α

}
(A.32)

with

Q = 2
[
q2 + k+(0) k−(0)

]
sinh q` + 2q [k+(0) + k−(0)] cosh q`. (A.33)
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A.3. Dispersion relation

Now that we have obtained the perturbed concentration field, we can use the mass
balance at the steps to calculate the dispersion relation.

At O(ε), the contributions to the step normal velocity are as follows. The
current from the lower terrace is

j1
+ = D

[
−F/D + q A1

m − q B1
m

]
ζm (A.34)

and the current from the upper terrace is

j1
− = −D

[
−F/D + q e−iφ eq` A1

m − q e−iφ e−q` B1
m

]
ζm. (A.35)

We also have the divergence of the current along the step, which is given by

∂sjL = ε q4 Γ(0) DL(0) ζm. (A.36)

Summing up the three contributions to the step normal velocity and observing
that ε ∂tζm = ε iωζm = vn − V0 at linear order, we first get

iω = ΩD
[
(A1 −B1)− e−iφ (eq`A1 − e−q`B1)

]
q − a DL(0) Γ(0) q4. (A.37)

Plugging in the coefficients and simplifying, we finally obtain

Re(iω) = ΩF
q

D
d− − d+

` + d+ + d−

[
(d− + d+)(q` sinh q`− cosh q` + cos φ)

+
`

2
q` (sinh q` + S0 sin φ)

]
− Γq2

[
DS

q

D
{2(cosh q`− cos φ)

+ q (d+ + d−) sinh q`}+ aDL q2
]
, (A.38)

Im(iω) = ΩF
q

D

[
(` + d+ + d−) sin φ

+
1

2
q` {S1 (cos φ− cosh q`)− S2 q` sinh q`}

]
. (A.39)

Here we have introduced the abbreviations

D = (d+ + d−) q cosh q` +
(
d+d−q2 + 1

)
sinh q` (A.40)

and

S0 =
(d′+ − d′−) ` + 2 (d′+d− − d′−d+)

(d− − d+) `
, (A.41)

S1 =
d′+ (` + 2d−) + d′− (` + 2d+)

` + d+ + d−
, (A.42)

S2 =
d′+d− (1 + 2d−/`) + d′−d+ (1 + 2d+/`)

` + d+ + d−
. (A.43)
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A. Linear stability analysis

For brevity we have dropped the arguments of the model parameters. All of them
have to be evaluated at the orientation of the unperturbed step (θ = 0).

As compared to the dispersion relation of the isotropic model, the anisotropic
relationship has some new terms, which are due to attachment anisotropy. They
are recognized by the prefactors S0, S1, and S2. Attachment anisotropy is the only
anisotropy that contributes new terms to the dispersion relation. The emergence
of these new terms is discussed in Sect. 4.2.1.
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B. Multiscale analysis

In this appendix we derive the evolution equation for steps which meander in
phase. Our calculation closely follows Ref. [20], but we take special care that
anisotropy effects are taken into account.

B.1. Asymptotic expansion

The first step is the identification of a small parameter. We use

ε = 2(qc`)
2, (B.1)

which is small in comparison to one, since the linear stability analysis showed that
under relevant MBE conditions λc � `.

The linear stability analysis also provides us with information on the typical
length and time scales. They behave like

x ∼ ε−1/2, t ∼ ε−2 (B.2)

with the deposition flux. Following Ref. [45], we adopt the following scaling for
the meander ζ and the reduced concentration field u ≡ (c− c0

eq) Ω:

ζ ∼ ε−1/2, u ∼ ε1/2. (B.3)

We now perform a coordinate transformation,

X = ε1/2 x/`, (B.4)

Y = (y − V0t− ζ)/`, (B.5)

T = ε2 D/`2 · t, (B.6)

such that the new variables X, Y , and T remain of order 1. Furthermore, we
introduce

H(X, T ) = ε1/2 ζ(x, t), (B.7)

U(X, Y, T ) = ε−1/2 u(x, y, t) (B.8)

to take the known scaling of the meander and of the concentration field into
account.
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B. Multiscale analysis

In new coordinates the diffusion equation becomes

ρ2 ∂Y Y U + ε1/2 [η − ∂XXH ∂Y U − 2 ∂XH ∂XY U ] + ε ∂XXU = 0, (B.9)

where we have introduced

η =
ΩF`2

ε D
, ρ =

√
1 + (∂XH)2. (B.10)

The boundary conditions read

d̃+

[
ρ2 ∂Y U − ε1/2 ∂XH ∂XU

]∣∣∣
Y =0

= ρ [U + γ̄K]|Y =0 , (B.11)

−d̃−
[
ρ2 ∂Y U − ε1/2 ∂XH ∂XU

]∣∣∣
Y =1

= ρ [U + γ̄K]|Y =1 (B.12)

with the dimensionless attachment lengths

d̃±(θ) =
d±(θ)

`
, (B.13)

the dimensionless stiffness

γ̄(θ) =
c0
eqΩ

`
Γ(θ), (B.14)

and the dimensionless (negative) curvature:

K =
∂XXH

ρ3
. (B.15)

Finally, we rewrite the mass balance at the steps in the form

ε1/2 η + ε ∂T H =
(
ρ2 ∂Y U − ε1/2 ∂XH ∂XU

)∣∣∣
Y =0

−
(
ρ2 ∂Y U − ε1/2 ∂XH ∂XU

)∣∣∣
Y =1

− ε ∂X

[
β̄(θ)

1

ρ
∂X {γ̄(θ) K}

]
(B.16)

with the dimensionless line diffusion coefficient

β̄(θ) =
DL(θ) a

DS `
. (B.17)

We now expand H and U in power series of ε1/2:

H = H(0) + ε1/2 H(1/2) + ε H(1) + . . . , (B.18)

U = U (0) + ε1/2 U (1/2) + ε U (1) + . . . . (B.19)
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B.2. Solution at order 0

For consistency we also expand all anisotropic model parameters:

γ̄(θ) = γ̄(θ(0)) + ε1/2 γ̄′(θ(0)) ∂XH(1)/(ρ(0))2 + . . . , (B.20)

β̄(θ) = β̄(θ(0)) + ε1/2 β̄′(θ(0)) ∂XH(1)/(ρ(0))2 + . . . , (B.21)

d̃±(θ) = d̃±(θ(0)) + ε1/2 d̃′±(θ(0)) ∂XH(1)/(ρ(0))2 + . . . , (B.22)

where θ = arctan(∂XH), θ(0) = arctan(∂XH(0)), and the prime denotes differenti-
ation with respect to the angle.

We are now able to solve the system of dynamical equations for successive orders
of ε1/2.

B.2. Solution at order 0

At O(1) the diffusion equation reads

∂Y Y U (0) = 0. (B.23)

It has the general solution

U (0) = A(0) Y + B(0). (B.24)

The boundary conditions at this order require

A(0) = 0, B(0) = −γ̄K(0). (B.25)

Mass conservation at the steps is automatically fulfilled, since no O(1) terms
remain in Eq. (B.16).

B.3. Solution at order 1/2

At O(ε1/2) the diffusion equation becomes

∂Y Y U (1/2) = − η

(ρ(0))2
. (B.26)

The general solution can be written as

U (1/2) = − η

2(ρ(0))2
Y 2 + A(1/2) Y + B(1/2), (B.27)
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B. Multiscale analysis

and the integration constants are determined by the boundary conditions at this
order:

A(1/2) =
η + 2ρ(0)

[
d̃−η − (d̃+ + d̃−) ∂X(γ̄K(0)) ∂XH(0)

]
2(ρ(0))2

[
(d̃+ + d̃−) ρ(0) + 1

] , (B.28)

B(1/2) =
1

2ρ(0)
[
(d̃+ + d̃−) ρ(0) + 1

] ×
[
η d̃+ + 2d̃+ ∂XH(0) ∂X(γ̄K(0))

+ 2 (d̃+d̃− η − γ̄K(1)) ρ(0) − 2 (d̃+ + d̃−) γ̄K(1) (ρ(0))2
]
. (B.29)

Once again, mass conservation at the steps is automatically fulfilled. At this
order, the total flux at the steps does not depend on X and is compatible with
the average step velocity V0.

B.4. Solution at order 1

At O(ε) the diffusion equation reads

∂Y Y U (1) =
1

(ρ(0))2

[
∂XXH(0) ∂Y U (1/2) + 2 ∂XH(0) ∂XY U (1/2)

− (ρ(1/2))2 ∂Y Y U (1/2) − ∂XXU (0)
]
. (B.30)

Its solution takes the form

U (1) = C
(1)
3 Y 3 + C

(1)
2 Y 2 + A(1) Y + B(1), (B.31)

where C
(1)
3 and C

(1)
2 are determined by the diffusion equation and A(1) and B(1)

by the boundary conditions.
At this order the mass balance at the steps gives a solvability condition in the

form of a closed partial differential equation for H0:

∂T H(0) = −∂X

[
η

2

d̃− − d̃+

[(d̃+ + d̃−) ρ(0) + 1] ρ(0)
∂XH(0)

+

(
β̄ +

d̃+ + d̃− + ρ(0)

(d̃+ + d̃−) ρ(0) + 1

)
∂X

(
γ̄K(0)

)
ρ(0)

]
. (B.32)

This equation does not differ from the evolution equation which was derived for the
isotropic model [20]. At this point, anisotropy is introduced by simply evaluating
γ̄, β̄, and d̃± at the orientation θ(0) ≡ arctan(∂XH(0)).
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B.5. Solution at order 3/2

Expressing the evolution equation in physical units, we obtain

∂tζ = −∂x

[
ΩF`2

2

(
d− − d+

d+ + d− + `⊥

)
∂xζ

1 + (∂xζ)2

−
(
DLa + DS

(d+ + d−) `⊥ + `2

d+ + d− + `⊥

)
∂x(Γκ)

[1 + (∂xζ)2]1/2

]
, (B.33)

where we have introduced the effective interstep distance `⊥ = `/[1 + (∂xζ)2]1/2.

B.5. Solution at order 3/2

At O(ε3/2) the diffusion equation reads:

∂Y Y U (3/2) =
1

(ρ(0))2

[
∂XXH(1/2) ∂Y U (1/2) + ∂XXH(0) ∂Y U (1)

+ 2 ∂XH(1/2) ∂XY U (1/2) + 2 ∂XH(0) ∂XY U (1)

− (ρ(1))2 ∂Y Y U (1/2) − (ρ(1/2))2 ∂Y Y U (1) − ∂XXU (1/2)
]
. (B.34)

Its solution takes the form

U (3/2) = C
(3/2)
4 Y 4 + C

(3/2)
3 Y 3 + C

(3/2)
2 Y 2 + A(3/2) Y + B(3/2), (B.35)

where C
(3/2)
4 , C

(3/2)
3 , and C

(3/2)
2 are determined by the diffusion equation and A(3/2)

and B(3/2) by the boundary conditions at this order.
For simplicity, we now restrict ourselves to the one-sided model where d+ = 0

and d− → ∞. Then, at this order, mass conservation at the steps provides the
following differential equation for H(1/2):

∂T H(1/2) = −∂X

[
η

2

∂XH(1/2)

(ρ(0))2
+

η

(ρ(0))2

(
1

(ρ(0))2
− 1

)
∂XH(1/2)

+
∂X(γ̄K)(1/2)

(ρ(0))2
− 2

(ρ(0))4
∂XH(0) ∂XH(1/2) ∂X

(
γ̄K(0)

)
+

β̄

ρ(0)
∂X (γ̄K)(1/2) +

(
β̄′ ∂XH(1/2)

(ρ(0))3
− β̄ ρ(1/2)

(ρ(0))2

)
∂X

(
γ̄K(0)

)
+

1

2(ρ(0))4
∂XXH(0) ∂X

(
γ̄K(0)

)
+

η

3(ρ(0))6
∂XH(0) ∂XXH(0) +

η

6(ρ(0))4
∂XH(0) ∂XXH(0)

]
. (B.36)

Here we have used the abbreviation

(γ̄K)(1/2) = γ̄K(1/2) + γ̄′
∂XH(1/2)

(ρ(0))2
K(0) (B.37)
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B. Multiscale analysis

for the O(ε1/2) coefficient in the ε expansion of γ̄K.
By introducing

H̃ = H(0) + ε1/2 H(1/2), (B.38)

K̃ = K(0) + ε1/2 K(1/2), (B.39)

ρ̃ = ρ(0) + ε1/2 ρ(1/2), (B.40)

we can rewrite the equations for H(0) and H(1/2) as a single equation for H̃:

∂T H̃ = −∂X

{
η

2

∂XH̃

ρ̃2

[
1 + ε1/2 ∂XXH̃

3ρ̃3

(
ρ̃ +

2

ρ̃

)]

+

[
1

ρ̃2
+

β̃

ρ̃
+ ε1/2 ∂XXH̃

2ρ̃4

]
∂X

˜(γ̄K)

}
. (B.41)

Here β̃ and ˜(γ̄K) denote expansions of β̄ and γ̄K that are truncated at O(ε1/2).
In physical units the evolution equation (B.41) becomes:

∂tζ = −∂x

{
ΩF`2

2

∂xζ

1 + (∂xζ)2

[
1− κ`

3

3 + (∂xζ)2

[1 + (∂xζ)2]1/2

]

−
[(

DS`

[1 + (∂xζ)2]1/2
+ DL(θ) a

)
− DS`

2κ

2

]
∂x[Γ(θ) κ]

[1 + (∂xζ)2]1/2

}
. (B.42)

This equation is equivalent to the one obtained for the isotropic model [20], that
is to say, there are no additional terms due to Γ and DL anisotropy at this order.
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C. Drift velocity

In this appendix we derive a scaling law for the drift velocity of steady-state
solutions that travel in the x direction.

If one takes the first subdominant contribution into account, the evolution equa-
tion for the step meander ζ(x, t) becomes

∂tζ = −∂x

{
ΩF`2

2

∂xζ

1 + (∂xζ)2

[
1− κ`

3

3 + (∂xζ)2

[1 + (∂xζ)2]1/2

]

−
[(

DS`

[1 + (∂xζ)2]1/2
+ DL(θ) a

)
− DS`

2κ

2

]
∂x[Γ(θ) κ]

[1 + (∂xζ)2]1/2

}
. (C.1)

In our context it is useful to have the dimensionless equation as well (see App. B),
which makes the ε dependence explicit:

∂T H̃ = −∂X

{
η

2

∂XH̃

ρ̃2

[
1 + ε1/2 ∂XXH̃

3ρ̃3

(
ρ̃ +

2

ρ̃

)]

+

[
1

ρ̃2
+

β̃

ρ̃
+ ε1/2 ∂XXH̃

2ρ̃4

]
∂X

˜(γ̄K)

}
. (C.2)

These equations have solutions that drift sideways at a constant velocity vd.
In order to find them we consider the function h(x) = ζ(x − vdt, t), which is
a steady-state solution in the co-moving frame. This function h(x) satisfies the
equation

∂th = ∂x

[
A + B ∂x

(
δF
δh

)]
+ vd ∂xh = 0, (C.3)

where A and B are abbreviations for complicated functions in Eqs. (C.1, C.2),
which depend on ∂xh and higher derivatives. F is the step free energy; the varia-
tional derivative of F with respect to h gives rise to the Gibbs-Thomson correction
term.

Integrating Eq. (C.3) with respect to x, we obtain:

A + B ∂x

(
δF
δh

)
= −J − vd h, (C.4)

where J is an integration constant that describes a constant current along the
step.
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C. Drift velocity

Our task is now to find J and vd as a function of the steady-state solution h(x).
To this end we first point out that

∫ x1

x0

dx ∂x

(
δF
δh

)
= 0, (C.5)

∫ x1

x0

dx h(x) ∂x

(
δF
δh

)
= 0, (C.6)

where x1 − x0 ≡ λ0 is the wavelength of the steady-state solution. The first
integral (C.5) vanishes because δF/δh is a periodic function. The second integral
(C.6) vanishes because it can be written (after repeated integration by parts) as
an integral over the derivative of a periodic function.

Integrating over one period both (C.4) and the equation that is obtained by
multiplying (C.4) with h(x), we obtain the following linear system for J and vd:

J
∫ x1

x0

dx

B
+ vd

∫ x1

x0

dx
h

B
= −

∫ x1

x0

dx
A

B
, (C.7)

J
∫ x1

x0

dx
h

B
+ vd

∫ x1

x0

dx
h2

B
= −

∫ x1

x0

dx
A h

B
. (C.8)

Eq. (C.2) shows that A and B can be decomposed in the following way:

A = A0 + ε1/2 A1, (C.9)

B = B0 + ε1/2 B1. (C.10)

The same holds for h(x) = h0(x) + ε1/2 h1(x), which was just the definition of H̃
in App. B.

If we now expand the linear system (C.7, C.8) with respect to ε, we find that
there is no contribution to the drift velocity at zeroth order. To leading order the
drift velocity vd is thus written as:

vd = ε1/2 f(A0, A1, B0, B1, h0, h1). (C.11)

Going back to physical units, we find:

vd =
Ω2F 2`5

Γ(0) [DS` + DL(0) a]
g(β̃, AΓ, AL, λ0). (C.12)

The functions f and g are not easy to obtain. In particular, they depend on
the precise form of the anisotropies and on the wavelength λ0 of the steady-state
solution. This dependence can be found in numerical simulations, as shown in
Fig. 4.8. In the same figure we present numerical results that confirm the relation
vd ∼ ε1/2.
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D. Geometrical mapping

Here we give a detailed description of the geometrical mapping that we have used
to reduce terrace diffusion anisotropy to anisotropic step properties. The first
section is mathematical and deals with geometrical aspects of the transformation,
the second section explains the application to the BCF model.

D.1. Coordinate transformation

Transformation equations

We consider the affine transformation

x̄ = x− d12

d22

y, (D.1)

ȳ =
1

d22

y (D.2)

with its inverse

x = x̄ + d12 ȳ, (D.3)

y = d22 ȳ. (D.4)

This transformation maps the curve r = x ex + y ey to the curve r̄ = x̄ ēx̄ + ȳ ēȳ.
Using matrix notation, we can also write r̄ = Ar.

Along with the coordinate transformation we perform a change of the metrics
by requiring that ēi · ēj = δij. Without changing the metrics, ēx̄ · ēȳ = d12. In
order to make this difference clear we shall now write (·, ·) for the scalar product if
it is evaluated in the Cartesian metrics and (·, ·)′ if the scalar product is evaluated
in the redefined metrics.

Angles

We define the angle of a line element dr = (dx, dy) or dr̄ = (dx̄, dȳ) with respect
to the x or x̄ axis via

tan θ =
dy

dx
, tan θ̄ =

dȳ

dx̄
. (D.5)
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D. Geometrical mapping

Using these equations and the coordinate transformation (D.1, D.2), we find the
relationship between the angles θ and θ̄:

tan θ̄ =
1

d22

dy

dx− d12/d22 dy
=

tan θ

d22 − d12 tan θ
. (D.6)

Arc length

For an element of the arc length we have the simple relation ds =
√

dx2 + dy2. Due
to the redefinition of the metrics, the analogous relation holds in the transformed
system: ds̄ =

√
dx̄2 + dȳ2.

The arc lengths s and s̄ are related via α = ds/ds̄, which can be expressed in
terms of θ,

1

α
=

ds̄

ds
=

√
dx̄2 + dȳ2

√
dx2 + dy2

(D.7)

=
1

d22

√
(d22 cos θ − d12 sin θ)2 + sin2 θ, (D.8)

or in terms of θ̄,

α =
ds

ds̄
=

√
dx2 + dy2

√
dx̄2 + dȳ2

(D.9)

=
√

(cos θ̄ + d12 sin θ̄)2 + d2
22 sin2 θ̄. (D.10)

Normals and tangents

The Cartesian tangent is t = tx ex + ty ey. Using the transformation equations
(D.1, D.2), we obtain the unit tangent in the transformed system:

tx̄ = α

(
tx −

d12

d22

ty

)
, (D.11)

tȳ =
α

d22

ty. (D.12)

The prefactor α ≡ ds/ds̄ stems from the normalization of the tangent vector.
From the redefined metrics we find the following normal:

nx̄ = − α

d22

ty =
α

d22

nx (D.13)

nȳ = α

(
tx −

d12

d22

ty

)
= α

(
d12

d22

nx + ny

)
. (D.14)
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D.2. Application to the BCF model

Curvature

In both coordinate systems we can find the curvature from the derivative of the
unit tangent with respect to the arc length:

dt

ds
= κn,

dt̄

ds̄
= κ̄ n̄. (D.15)

We now insert the transformation of the tangent into the second equation and
apply the chain rule for differentiation with respect to the arc length:

κ̄ n̄ =
dt̄

ds̄
=

ds

ds̄

d

ds
(αAt) = αAt

dα

ds
+ α2A

dt

ds
. (D.16)

With t̄ = αAt and dt/ds = κn, this result can also be written as

κ̄ n̄ = t̄
dα

ds
+ α2κAn. (D.17)

If we now multiply this equation with n̄, we obtain the formula that gives the
transformed curvature as a function of the Cartesian curvature:

κ̄ = α2(n̄, An) κ =
α3

d22

κ. (D.18)

Partial derivatives

In the following we often need the transformation of the partial derivatives:

∂x = ∂x̄, (D.19)

∂y =
1

d22

∂ȳ −
d12

d22

∂x̄, (D.20)

∂2
x = ∂2

x̄, (D.21)

∂2
y =

1

d2
22

∂2
ȳ −

2d12

d2
22

∂x̄ȳ +
d2

12

d2
22

∂2
x̄, (D.22)

∂xy =
1

d22

∂x̄ȳ −
d12

d22

∂2
x̄. (D.23)

D.2. Application to the BCF model

On an anisotropic terrace, the diffusion equation takes the form

∇ ·D∇c + F = 0, (D.24)

where

D =

(
D11 D12

D12 D22

)
= D0

(
d11 d12

d12 d22

)
(D.25)
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D. Geometrical mapping

is the symmetric diffusion tensor. D0 is given by D0 = [D11D22−D2
12]

1/2 and d11,
d22, d12 are consistent with the parameters in the transformation (D.1, D.2).

Evaluating Eq. (D.24), we first obtain

D0 [d11 ∂xxc + d22 ∂yyc + 2d12 ∂xyc] + F = 0, (D.26)

and after expressing the partial derivatives in terms of x̄ and ȳ, we arrive at

D0

[
1

d22

∂x̄x̄c +
1

d22

∂ȳȳc
]

+ F = 0. (D.27)

In the new coordinate system, terrace diffusion is isotropic. We now set D̄0 =
D0/d22 and write this equation in a more compact form:

D̄0∇̄2c + F = 0. (D.28)

We have chosen the transformation such that the adatom concentration is un-
changed in the new system. Due to ceq = c0

eq(1+Γκ) and the given transformation
(D.18) of the curvature κ, the modified step stiffness reads

Γ̄(θ̄) =
κ

κ̄
Γ =

d22

α3
Γ. (D.29)

The boundary conditions at both sides of the step are given by

± (n, D∇c)|± = ν±(c− ceq)|±. (D.30)

Evaluating the left-hand side of this equation, we first obtain

(n, D∇c) = nx (D11 ∂xc + D12 ∂yc) + ny (D22 ∂yc + D12 ∂xc). (D.31)

Replacing the partial derivatives according to Eqs. (D.19, D.20), we arrive at

(n, D∇c) = D0

[
nx

d22

∂x̄c +

(
d12

d22

nx + ny

)
∂ȳc

]
. (D.32)

With (D.13, D.14), we can here identify the components of the transformed nor-
mal, so that we have the following identity:

(n, D∇c) =
D0

α
[nx̄ ∂x̄c + nȳ ∂ȳc] , (D.33)

or with the definition of the scalar product in the transformed system:

(n, D∇c) =
D0

α
(n̄, ∇̄c)′. (D.34)
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Plugging this relation into (D.30), we finally obtain the correct boundary condi-
tions in the transformed system:

± D̄0 (n̄, ∇̄c)′|± = ν̄±(c− ceq)|± (D.35)

with the modified kinetic coefficients

ν̄±(θ̄) =
α

d22

ν±. (D.36)

In order to complete the mathematical description of the moving-boundary
problem we need to find the transformation of the step velocity. The Cartesian
normal velocity is given by

vn = Ω (n, D∇c|+ −D∇c|−) + a ∂s [DL ∂s(Γκ)] . (D.37)

y
ȳ

x, x̄

vnn
v̄nn̄

t ∝ t̄

Figure D.1.: Transformation of the normal velocity. A part of the step curve
(shaded region) and the axes of the coordinate systems are shown.
Due to the redefinition of the metrics in the transformed system, the
magnitudes of the tangents t and t̄ differ in general. The normals n
and n̄ also differ in direction. The dashed line must be parallel to
the step tangent, so that both velocities describe the same growth of
a (planar) front. It now follows that vn = (n, n̄) v̄n, where the scalar
product (n, n̄) is evaluated in the Cartesian metrics.

From the drawing in Fig. D.1 it can be concluded that the normal velocities in
the two coordinate systems are related via

v̄n (n̄,n) = vn, (D.38)
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where the scalar product (n̄,n) = d22/α is evaluated in the Cartesian metrics.
This result is consistent with

v̄n = vn (n, n̄)′, (D.39)

where the scalar product (n, n̄)′ = α/d22 is evaluated in the metrics of the trans-
formed system.

Combining Eq. (D.37) with Eqs. (D.34,D.38), we find the transformed normal
velocity

v̄n = Ω D̄0 (n̄, ∇̄c|+ − ∇̄c|−)′ + a ∂s̄[D̄L ∂s̄(Γ̄κ̄)] (D.40)

with the modified line diffusion coefficient

D̄L(θ̄) =
DL

d22 α
. (D.41)
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Zusammenfassung

Die Molekularstrahlepitaxie (MBE) ist ein verbreitetes Verfahren zur Herstellung
von Nanostrukturen auf Kristalloberflächen. Hierbei wird eine Probe im Hochva-
kuum einem Atom- bzw. Molekülstrahl ausgesetzt, der durch Verdampfung des
abzuscheidenden Materials in einer Effusionszelle erzeugt wird. Da das Wachstum
des Kristalls vergleichsweise langsam erfolgt, hat man eine sehr gute Kontrolle
über die Menge des abgeschiedenen Materials, die man bis auf den Bruchteil einer
Monolage genau einstellen kann. Auf diese Weise lassen sich komplexe epitaktische
Strukturen erzeugen.

MBE-Wachstum wird häufig an vizinalen Kristalloberflächen durchgeführt. Das
sind Oberflächen, die man erhält, wenn man einen Kristall unter einem kleinen
Winkel gegenüber einer seiner Netzebenen aufschneidet. Vizinale Oberflächen be-
stehen daher aus einer Folge etwa gleich großer Terrassen, die durch monoatomare
Stufen voneinander getrennt sind.

Eine besondere Wachstumsform an vizinalen Oberflächen ist das Stufenwachs-
tum (step flow growth). Durch geeignete Wahl der Wachstumsbedingungen wird
erreicht, daß alle an der Oberfläche auftreffenden Atome durch Diffusion an die
Stufen gelangen, wo sie sich in den Kristall einbauen. Das heißt, es findet keine
Nukleation auf den Terrassen statt; der Kristall wächst geordnet Atomlage für
Atomlage durch die Bewegung dieser Stufen.

Für viele Zwecke wäre es günstig, wenn die Oberfläche während des Wachstums
ihre perfekte vizinale Geometrie behalten würde. In der Praxis beobachtet man
jedoch oft ein Aufrauhen der Oberfläche, das mit der Depositionszeit zunimmt.
Mittlerweile sind viele physikalische Mechanismen identifiziert, die zum Aufrauhen
der Oberfläche beitragen. Eine herausragende Rolle dabei spielen deterministische
Instabilitäten wie die Mäanderinstabilität.

Als Mäandern bezeichnet man die Exkursion der Stufen um ihre mittlere Lage,
was zur Bildung von Rippeln in Richtung des Stufenzugs führt. Eine physikalische
Ursache der Mäanderinstabilität ist der sogenannte Ehrlich-Schwoebel-Effekt. Da-
bei handelt es sich um eine Energiebarriere an den Stufen, die den Einbau eines
Atoms in den Kristall erschwert, wenn sich das Atom der Stufe von der oberen
Terrasse nähert.

Der Mäanderinstabilität wurden in der Vergangenheit eine Reihe von theore-
tischen Arbeiten gewidmet. Insbesondere wurde aus einer Kontinuumstheorie für
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das Stufenwachstum, dem Burton-Cabrera-Frank-Modell (BCF), eine Amplitu-
dengleichung abgeleitet, mit deren Hilfe sich die zeitliche Entwicklung des Mäan-
ders beschreiben läßt.

Der Einfluß von Kristallanisotropie auf die Dynamik der mäandernden Stufen
wurde in diesem Rahmen bislang nicht untersucht. Das ist Gegenstand der vorlie-
genden Dissertation.

In den ersten Kapiteln dieser Arbeit wird das BCF-Modell eingeführt, die Sta-
bilität der Stufen beim Wachstum in Hinblick auf das Mäandern untersucht und
die Ableitung der Amplitudengleichung nachgezeichnet. Eine numerische Integra-
tion des vollen BCF-Modells wird mit den Aussagen der Amplitudengleichung
verglichen, wobei sich eine sehr gute quantitative Übereinstimmung ergibt.

Der sich daran anschließende Hauptteil im Kapitel 4 ist der Untersuchung der
Mäanderinstabilität unter Berücksichtigung von Anisotropie gewidmet. Aufgrund
ihrer Fernordnung weisen Kristalle einen hohen Grad an Anisotropie auf. Alle
Größen, die in die Kontinuumstheorie eingehen, sind mehr oder weniger aniso-
trop: die Linienspannung Γ der Stufen, der Liniendiffusionskoeffizient DL, die ki-
netischen Koeffizienten ν+ und ν− sowie der Terrassendiffusionskoeffizient D. In
drei Unterabschnitten werden nun die Folgen dieser Anisotropien untersucht.

Dabei zeigt sich zunächst im einseitigen Modell (unendlich starker Ehrlich-
Schwoebel-Effekt), daß eine Anisotropie von Γ oder DL ein neues Vergröberungs-
szenario zur Folge hat: die unterbrochene Vergröberung (interrupted coarsening).
In Abhängigkeit von der Gestalt und Orientierung der Anisotropie kommt es zu
einer Vergröberung der Rippelstruktur, die jedoch endet, sobald eine kritische
Wellenlänge erreicht ist. Die experimentell beobachtete Wellenlänge ist also nicht
allein durch die lineare Instabilität bestimmt und daher nicht mit der Wellenlänge
der instabilsten Mode identisch. Dieser Effekt muß berücksichtigt werden, wenn
man ein Modell für Stufenwachstum mit experimentellen Ergebnissen vergleichen
möchte.

In der Arbeit wird gezeigt, daß diese Vergröberung im wesentlichen dann auf-
tritt, wenn Γ oder DL für die Orientierung der ungestörten Stufe (oder in einer
gewissen Umgebung) ein Minimum annimmt. Darüber hinaus werden Formeln ab-
geleitet, die die Berechnung der zu erwartenden Wellenlänge erlauben. Dazu wird
ein Zusammenhang zwischen der Vergröberungsdynamik und den möglichen Wel-
lenlängen stationärer Lösungen der Amplitudengleichung hergestellt. In diesem
Kontext gehen wir auch auf das Zusammenspiel von Kristallanisotropie und elasti-
scher Stufenwechselwirkung ein. Es ist bekannt, daß elastische Wechselwirkungen
zwischen den Stufen zu endloser Vergröberung führen. In der vorliegenden Arbeit
wird gezeigt, daß eine vorhandene elastische Stufenwechselwirkung die asympto-
tische Entwicklung dominiert und damit das Vergröberungsverhalten bestimmt.

Der folgende Abschnitt ist dem zweiseitigen Modell gewidmet, mit dem die
Auswirkungen einer Anisotropie des Ehrlich-Schwoebel-Effektes untersucht wer-
den können. Hier ist zunächst hervorzuheben, daß sich die Anisotropie der kineti-
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schen Koeffizienten bereits in der linearen Dispersionsrelation widerspiegelt. Für
Anisotropien, die nicht die Rechts-links-Spiegelsymmetrie aufweisen, ergeben sich
nach der linearen Theorie Lösungen, die driften. Des weiteren stellt sich zwischen
den Mäandern benachbarter Stufen ein Phasenunterschied ein.

Die nichtlinearen Untersuchungen beschränken sich auf den Fall mit besagter
Spiegelsymmetrie. Hier kann gezeigt werden, daß das Szenario der unterbroche-
nen Vergröberung auch als Folge einer Anisotropie des Ehrlich-Schwoebel-Effekts
auftritt, und zwar dann, wenn der Ehrlich-Schwoebel-Effekt in Richtung der un-
gestörten Stufe maximal ist. Darüber hinaus gibt es ein weiteres Szenario in Fällen,
wo der Ehrlich-Schwoebel-Effekt für bestimmte Stufenorientierungen das Vorzei-
chen wechselt. Dann findet eine endlose Vergröberung statt, allerdings auf einer
sehr langsamen Zeitskala (logarithmische Vergröberung in Analogie zur Cahn-
Hilliard-Dynamik).

Der letzte Abschnitt des Hauptteils beschäftigt sich mit den Folgen anisotro-
per Diffusion auf den Terrassen. Hierzu wird zunächst eine geometrische Abbil-
dung vorgestellt, die es gestattet, das Problem mit anisotropen Terrassen auf ein
Problem mit isotropen Terrassen zurückzuführen. Dabei bleibt die Struktur der
Grundgleichungen erhalten. Die Anisotropie der Terrassendiffusion erscheint jetzt
als Modifikation der Anisotropien der Stufeneigenschaften. Der wesentliche Vorteil
dieses Ansatzes besteht darin, daß die zuvor benutzten Techniken auch in diesem
Fall anwendbar sind. Mit Hilfe der geometrischen Abbildung ist es darüber hinaus
möglich, anisotrope Terrassendiffusion in andere Modelle einzubauen, in denen
bislang nur die Anisotropie der Stufeneigenschaften berücksichtigt wurde.

Auch Terrassenanisotropie kann zu unterbrochener Vergröberung führen. Da-
zu muß die Diffusion senkrecht zu den ungestörten Stufen langsamer sein als in
Richtung dieser Stufen. Eine mögliche Besonderheit, die im Gegensatz zu Γ- und
DL-Anisotropie auftreten kann, sind Rippel, die gegenüber der Wachstumsrich-
tung geneigt sind. Das ist dann der Fall, wenn die Eigenrichtungen des Diffu-
sionstensors nicht mit der Richtung des Stufenzuges bzw. mit der Richtung der
ungestörten Stufen zusammenfallen.
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faces vicinales hors de l’équilibre, Ph.D. thesis, Université Joseph Fourier,
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[54] H. Stöcker (ed.), Taschenbuch der Physik, Verlag Harri Deutsch, 1994.

88



Bibliography

[55] R. Stumpf and M. Scheffler, Ab initio calculations of energies and self-
diffusion on flat and stepped surfaces of Al and their implications on crystal
growth, Phys. Rev. B 53 (1996), 4958–4973.

[56] Alessandro Torcini and Paolo Politi, Coarsening process in one-dimensional
surface growth models, Eur. Phys. J. B 25 (2002), 519–529.

[57] Charles W. Tu, Electronic materials growth: A retrospective and look forward,
J. Vac. Sci. Technol. A 21 (2003), S160.

[58] Bert Voigtländer, Thomas Weber, Pavel Ŝmilauer, and Dietrich E. Wolf,
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auf magnetischen Flüssigkeiten

seit 2000 Wissenschaftlicher Mitarbeiter am
Institut für Theoretische Physik der
Otto-von-Guericke-Universität Magdeburg

91


	Introduction
	Challenges of modern crystal growth
	Molecular beam epitaxy and step flow
	Morphological instabilities

	Fundamental concepts
	Ehrlich-Schwoebel effect
	Burton-Cabrera-Frank model

	Evolution equation
	Linear stability analysis
	Multiscale analysis
	Numerical integration
	Step dynamics in the isotropic model
	Solving the full isotropic model

	Anisotropic step meandering
	Step stiffness and line diffusion
	Modelling anisotropy
	Steady-state analysis
	Interrupted coarsening
	Drifting patterns
	Interplay with elasticity
	Discussion

	Attachment kinetics
	Two-sided model
	Modelling attachment anisotropy
	Steady-state analysis
	Interrupted coarsening
	Logarithmic coarsening

	Terrace diffusion
	Modelling anisotropic terraces
	Geometrical mapping
	Linear instability
	Interrupted coarsening
	Discussion


	Conclusion
	Linear stability analysis
	Ideal step flow
	Linear perturbation
	Dispersion relation

	Multiscale analysis
	Asymptotic expansion
	Solution at order 0
	Solution at order 1/2
	Solution at order 1
	Solution at order 3/2

	Drift velocity
	Geometrical mapping
	Coordinate transformation
	Application to the BCF model

	Summary in German
	Bibliography
	Curriculum vitae

