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1. Introdution
The �eld of nonlinear dynamis has attrated muh attention during the past entury

sine the seminal work of Poinaré [1℄ who studied the stability of planetary motions

in the framework of lassial Newtonian mehanis. Already at the end of the 19th

entury he notied that small perturbations of integrable Hamiltonian systems may lead

to unpreditable long-time behavior due to `small divisor' resonant terms showing up

in a perturbation series approah. The work of Poinaré marked the beginning of a

period during whih the pereption began to prevail that irregular behavior in onser-

vative systems is the rule rather than the exeption. This period ulminated in the

works of Kolmogorov [2℄, Arnold [3℄ and Moser [4℄ who ame up with the elebrated

KAM theorem. For the ase that the integrable, and therefore regular motion, ours

on a 2-torus where the frequenies are su�iently inommensurable, the theorem ba-

sially says that the torus will persist under small perturbations. In the ase that the

frequenies are ommensurable, small perturbations will ause the torus to deompose

into smaller tori whih again may be stable aording to the KAM theorem. However,

the motion in phase spae between the tori is ompletely irregular and for su�iently

large perturbations all tori and therefore all regular behavior is destroyed.

Unlike onservative systems, where the total energy is a onstant of motion, many real

world systems belong to the lass of so-alled dissipative systems sine they permanently

dissipate energy into heat, for example, or rely on a steady exhange of energy and/or

matter with the environment in order to operate properly. It has been a mystery for a

long time how living organisms irumvent the seond law of thermodynamis. Now we

know that they represent open systems that ontinuously maintain a ertain distane to

thermodynamial equilibrium and thus, the seond law is not appliable to them in the

usual sense.

The distane to equilibrium an usually be ontrolled by parameters or boundary

onditions modeling the environmental surrounding of the system under investigation.

In partiular, it is possible to bar an open system from reahing the thermodynamial

equilibrium. Close to the equilibrium, the dynamis of the system follows linear rela-

tions among generalized �uxes and fores that ause the system to approah a unique

stable nonequilibrium state. The states, lose to the equilibrium, form the so-alled

thermodynamial branh (f. Fig. 1.1) sine it emanates ontinuously from the state

of thermodynamial equilibrium. However, Niolis and Prigogine [5℄ showed that when

open systems are driven farther away from thermodynamial equilibrium, nonlinear pro-

esses may destabilize the thermodynamial branh giving rise to new stable nonequi-

librium states whih they termed dissipative strutures. They further showed that for

suh strutures to our, a ertain ritial distane to equilibrium must be exeeded.
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Figure 1.1.: Dissipative strutures emerge far away from thermodynamial equilibrium

as a ritial parameter value is exeeded. Beyond that point the thermo-

dynamial branh is unstable and nonlinear phenomena drive the system

towards new stable nonequilibrium states. (stable states ↔ solid lines, un-

stable states ↔ dashed lines)

Today we know that the nonlinear behavior of a system is a further neessary ondi-

tion for the ourrene of dissipative strutures. The mathematial language in whih

nonlinear phenomena are frequently formulated is that of dynamial systems theory,

i.e. one has to speify a suitable phase spae X together with an evolution law for the

state of the system. In the ase that the evolution law is deterministi, the state of the

system at time t is ompletely determined by a one-parameter group of transformations

ϕt : X → X aording to xt = ϕtx0 one the initial state x0 ∈ X of the system is known.

In general, one distinguishes two kinds of dynamial systems � ontinuous-time systems

with t ∈ R being a ontinuously varying parameter and disrete-time systems where

t ∈ Z is an integer. In the ontinuous-time ase, the one-parameter group of transfor-

mations is also alled a �ow whih is typially obtained as a solution of an initial value

problem of a system of ordinary or partial di�erential equations depending on whether

the system under onsideration is spatially homogeneous or not.

Dissipative strutures are frequently observed as a result of self-organizing proesses

in spae or time where the individual entities of an ensemble spontaneously begin to

at in a ooperative manner as soon as a relevant parameter of the system exeeds a

2



ertain ritial value. As a result, new properties of the system as a whole emerge

whih were not yet seen in the individual entities. These new system-theoretial aspets

were ombined by Haken [6℄ with the methods of nonlinear dynamis to establish a new

�eld of researh alled Synergetis. Here the new emergent marosopi features of a

omplex system, onsisting of many subunits eah of whih follows a ertain mirosopi

dynamis, are desribed lose to the transition from individual to olletive behavior

by only very few degrees of freedom, so-alled order parameters. As an example for

temporal self-organization, onsider an optial resonator ontaining an ative medium

whose atoms are exited by an external energy supply. Below a ertain energy pump-

rate, all atoms emit light just randomly resulting in a low power output of the system.

However, above a ertain threshold, the atoms start to synhronize their osillation

phases and the power output is high � the system works as a laser.

A distint feature of dissipative systems, as ompared to onservative ones, is that in

the former bounded regions in phase spae may shrink during the temporal evolution

in whih ase all trajetories starting in that region are attrated by lower dimensional

phase spae objets suh as points, urves or tori whih would result in a regular motion

of the system. In addition, it was found that the long-time dynamis of a dissipative

system may our on quite ompliated sets in phase spae. These sets an be of fratal

nature whih is the reason why they were alled strange attrators. The behavior of

trajetories on suh an attrator is highly irregular or haoti. For example, trajetories

whose initial onditions on a haoti attrator vary only slightly will diverge exponen-

tially fast from eah other in the ourse of the temporal evolution and thus, may lead

after �nite time to ompletely di�erent behavior. As a onsequene, it is pratially im-

possible to foreast the long-time behavior of real world haoti system sine its initial

onditions are only known with �nite auray.

One of the �rst numerial evidenes for the existene of a haoti attrator was re-

ported by Lorenz [7℄ in 1963 who studied a nonlinear three variable system of ordinary

di�erential equations that was derived from a 2-dimensional onvetive �uid system by

a Galerkin projetion of suitable Fourier modes. In the same year, Smale [8℄ onstruted

his famous horseshoe map whih is a simple 2-dimensional map that expands small phase

spae volumes in one diretion while it ontrats them in the orthogonal diretion. Suh

maps may be indued by the �ow of a ontinuous-time dynamial system on a suitable

Poinaré setion where they an our in onjuntion with a homolini orbit of the

Poinaré map [9℄. The horseshoe map has a very ompliated invariant set exhibiting

the struture of a diret produt between two Cantor sets. If the dynamis is only on-

sidered on the invariant Cantor set, one �nds the essential properties of haoti behavior

suh as the `sensitve dependene on the initial onditions' mentioned above. In addition,

the invariant set of the horseshoe map ontains a ountable in�nity of periodi points

whih are all of saddle-type, a ountable in�nity of homolini and heterolini orbits

and a nonountable in�nity of nonperiodi points. Thus, the typial (i.e. for almost all

initial onditions) behavior of trajetories on the invariant set is highly irregular.

Although the invariant Cantor set of the horseshoe map is not an attrator, the

map has an important property whih is the reason why it is still onsidered as the

prototypial example of a haoti system: that is its strutural stability. This means

3



1. Introdution

that if the horseshoe map is slightly perturbed, the invariant Cantor set as well as

the properties of the dynamis on this set will persist. In this sense, the notion of

strutural stability an be used to de�ne the phenomena of a system that are observable

in numerial or real experiments whih are always subjet to small perturbations. Thus,

a natural question to ask is: What is the `typial' behavior of trajetories in a given

dynamial system and how does it hange as parameters in the system are varied? In

this ontext, `typial' means that the orresponding behavior is observed for a large set of

initial onditions and/or parameter values. For example, a system ould have a haoti

attrator for parameter values that form a set of Lebesque measure zero in parameter

spae whih, therefore, would not be observable in experiments. On the other hand,

it is often the regular periodi behavior of a system whih is of muh more pratial

relevane than to know that a system has an invisible haoti attrator.

Of partiular interest are omplex osillatory states suh as mixed-mode or bursting

osillations whih are frequently observed in hemial and biologial systems where they

are of potential relevane for signal transdution proesses. These periodi states exhibit

a speial waveform whih an be desribed as a repeating pattern of L large amplitude

osillations that are followed by S small ones. Due to this property, mixed-mode or

bursting states are labeled by the nomenlature LS. Mixed-mode osillations (MMOs)

were �rst observed in hemial reation systems suh as the Belousov-Zhabotinsky (BZ)

[10, 11, 12℄ and the peroxidase-oxidase (PO) reation system [13, 14, 15℄, while bursting

dynamis was predominantly reported for biologial proesses suh as nerve signal on-

dution [16, 17℄, signal transdution dynamis in the ell involving alium ions as seond

messengers [18, 19℄ and the seretion of insulin by panreati β-ells [20, 21, 22℄. Thus,
the distintion between mixed-mode and bursting osillations is somewhat arbitrary and

seems to re�et the ontext in whih they were found experimentally.

Bursting behavior an be alternatively lassi�ed by a slow-fast analysis following

Rinzel and Ermentrout [23℄. Systems exhibiting bursting osillations typially involve

a fast osillatory subsystem whih is oupled to a slowly evolving variable whih ats

as a quasi-stati bifuration parameter for the fast subsystem. Aordingly, one an

lassify the bursting behavior by the type of bifurations ouring in the fast subsystem,

that lead to the emergene and disappearane of the bursting state [24℄. MMOs are

frequently enountered in the transition region from simple periodi or quasi-periodi to

haoti behavior where they either appear in periodi-haoti or as (inomplete) Farey

sequenes (f. Table 1.1). The latter often arise from phase-loked states on an invariant

2-torus as, for example, in the BZ [11, 25, 26℄ and in the PO system [14, 15, 27℄. How-

ever, Hauser and Olsen [13℄ found MMOs in the PO system whih were assoiated with a

saddle-fous homolini orbit instead of a 2-torus. Similarly, Koper [28℄ observed MMOs

in a three-variable extension of the Boissonade-DeKepper model [29℄ whih emerge from

a neutrally twisted homolini orbit in a odimension two bifuration.

Another possible senario was put forward by Ringland et. al. [30℄ who showed that

a one-parameter family of two-extremum maps may (in a ertain limit) equally aount

for the ordering of MMOs into Farey sequenes without the neessity of involving a

2-torus. Goryahev et. al. [31℄ found a onrete realization of this map in terms of a

Poinaré map assoiated with the 3-dimensional �ow of another three-variable exten-
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Fn Elements in Fn

F1 {0
1
, 1

1
}

F2 {0
1
, 1

2
, 1

1
}

F3 {0
1
, 1

3
, 1

2
, 2

3
, 1

1
}

F4 {0
1
, 1

4
, 1

3
, 1

2
, 2

3
, 3

4
, 1

1
}

Table 1.1.: The general Farey sequene Fn is de�ned for any positive integer number n.
It ontains the set of irreduible rational numbers a/b with 0 ≤ a ≤ b ≤ n
arranged in inreasing order. Eah three suesive terms in a Farey sequene

obey Farey arithmeti, i.e. the middle term in the sequene p/q, p′/q′, p′′/q′′

is the `sum' of the neighbors aording to
p′

q′
= p

q
⊕ p′′

q′′
≡ p+p′′

q+q′′
.

sion of the Boissonade-DeKepper model whih aounts for a qualitative desription of

transient MMOs in the BZ reation. They reported that the MMOs are embedded into

a horseshoetype attrator.

In the present thesis, we investigate the bursting osillations in the hemin � hydrogen

peroxide � sul�te system (hemin system) [32, 33, 34℄ whih represents a so-alled pH

osillator (Fig. 1.2) sine it indues periodi hanges in the proton onentration of

the reation medium. Thus, the prodution and onsumption of H+ ions are essential

steps in the reation mehanism of a pH osillator. A large family of pH osillators

is based on the autoatalyti oxidation of HSO
−
3 by H2O2 [35℄ while they di�er in the

H+-onsuming speies that provides for a negative feedbak to allow for an osillatory

dynamis [35, 36, 37, 38, 39℄. One of the main motivations to study pH osillators is

their potential relevane for biologial systems sine hanges in the pH value a�et many

physiologial parameters in the environment of the system, e.g. in the permeability of

membranes or the ativity of enzymes.

So far, most of the known pH osillators involve only inorgani substanes whih learly

limits their biologial relevane. Therefore, Hauser et. al. [32℄ developed a new pH

osillator based on the well-known pH-dependent oxidation of HSO
−
3 by H2O2 [35℄ whih

involves hemin as an enzyme model ompound that provides for the required negative

feedbak step in order to generate osillatory dynamis. Sine hemin is onsidered as

a bioompatible mimik of heme-ontaining enzymes [40, 41, 42℄, the hemin reation

system represents a �rst step towards a biologially more realisti pH osillator.

The dynamial properties observed in the family of pH osillators is very rih. Exper-

imental and numerial investigations revealed a period doubling route to haos [36, 37℄

as well as omplex osillatory patterns suh as bursting osillations [43, 44℄. However,

a detailed bifuration analysis revealing the nature of the omplex osillatory patterns

in pH osillator systems has, to our knowledge, not yet been performed. Therefore, we

devote one part of the present thesis to a detailed study of bursting osillations in the

5



1. Introdution
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Figure 1.2.: Time series obtained from a numerial simulation of the bursting pH os-

illations in the hemin system (left image): 4 large amplitude osillations

alternate with 19 small ones. The retangular region is magni�ed in the

right image showing the small amplitude osillations.

hemin system where we are partiularly interested in the bifurations involved in the

transition from simple periodi to bursting osillations as well as in the eluidation of the

underlying bursting mehanism. A thorough understanding of the nonlinear behavior

exhibited by simple reation shemes, suh as that of the hemin system, whih only on-

sists of reations involving the enzyme speies hemin and its substrates, may essentially

failitate the omprehension of the dynamis in more omplex reation networks.

A seond major issue, that will be addressed in the ourse of the thesis, is how omplex

reation networks, suh as those desribing metabolism [45, 46℄, atmospheri hemistry

[47, 48℄, and ombustion reations [49, 50℄, an be simpli�ed while keeping their essential

dynamial properties. For example, the realisti modeling of large sale systems, suh as

a detailed desription of ombustion reations [50℄ or the Belousov-Zhabotinsky reation

[51℄, usually requires the integration of large systems of ordinary di�erential equations

(ODE systems). Moreover, one is usually interested in the system's behavior as one or

more externally tunable parameters are ontinuously varied. Thus, it is highly desirable

from a pratial point of view to be able to identify the essential dynamial degrees of

freedom in a given reation network in order to obtain redued systems whih are muh

easier to investigate, but still show the relevant dynamis of the original system.

A redution of omplex reation mehanisms may also be useful for other, more theo-

retial reasons: For example, one would like to know those reation steps and hemial

speies in a given mehanism that are neessary to generate a ertain type of dynam-

is. This information ould then be used to design dynamial systems with desired

properties. While a general answer to this problem is still missing, there are promising

results about bistable [52℄, osillatory [53, 54℄ and a ertain lass of haoti systems [55℄.

The main tools of investigation in this �eld are stoihiometri network analysis [56℄ and

6



sensitivity analysis [57℄. Both theoretial approahes have been suesfully ombined

with prinipal omponent analysis to identify essential reation steps in diverse systems

suh as the metabolism of red blood ells [58℄ and the well-known Belousov-Zhabotinsky

reation [59℄.

There are basially two reasons why hemial reation networks often show redun-

danies, whih an be used for an e�etive model redution: First, hemial reations

our in �xed stoihiometries. This results in mass onservation relations for ertain

atoms and thus, not all hemial speies in a given network at as independent degrees

of freedom. Seond and more importantly, hemial reations naturally evolve on dif-

ferent time sales. Aordingly, their temporal evolution an be deomposed into a fast

transient relaxation to lower dimensional invariant slow manifolds and a subsequent evo-

lution on the union of these manifolds, whih often still aptures the interesting type

of dynamis on experimentally aessible time sales. The mathematial desription of

suh reation networks leads to singularly perturbed systems for whih a well developed

theory [60, 61℄ exists. As a result, one obtains a lower dimensional approximation on

the slow manifold of the original system.

In the ourse of the years, several methods exploiting singular perturbation tehniques

have been proposed to simplify omplex hemial reation networks suh as lumping

shemes [62℄ or the approximation of the invariant manifold based on a funtional equa-

tion [63℄. However, before these tehniques may suessfully be applied, one still needs

to identify the di�erent time sales in the system whih is often the hardest task. The

presene of di�erent time sales is usually indiated by small dimensionless parameters

in front of time derivatives of some of the phase spae variables whih indiates that

these variables vary signi�antly only on very short time sales and thereafter follow

instanteneously (algebraially) the dynamis of the slow degrees of freedom.

The onventional strategy to searh for small parameters in a system is to introdue

new dimensionless variables suh that some ombination of intrinsi parameters beomes

su�iently small and subsequently may be used as a singular perturbation parameter.

Clearly, this proedure beomes a formidable task in more omplex reation networks

and other methods are required; as for example the method of omputational singular

perturbation proposed by Lam [64℄. Furthermore, the resaling proedure is not free

of ambiguity in hoosing the 'right' sales [65℄ and if the resaled variables are not

bounded from above and below, then the resaled kineti parameters do not provide any

indiation, whether the orresponding reation step is slow or fast. Thus, one is often

guided by hemial intuition or experimental expertise to group the individual reations

aording to slow and fast steps. One the di�erent time sales of a system are known,

it is more or less straight forward to apply singular perturbation tehniques in order to

redue the dimensionality of the original system.

In view of the above mentioned problems to identify the relevant time sales in a

system, we shall introdue a new method that allows to systematially �nd slow man-

ifolds in a ertain lass of reation networks (inluding those following a mass-ation

kinetis) whih neither relies on a priori knowledge about the time sales nor requires a

sophistiated resaling proedure to identify small parameters in a system. Instead, we

diretly use the solution urves from a numerial integration routine to hek whether

7



1. Introdution

ertain nonlinear funtions of the phase spae variables, whih we all quasi-integrals, are

approximately onstant along the numerially obtained solution urves. Quasi-integrals

de�ne nonlinear algebrai onstraints among some of the phase spae variables and thus,

may be used to eliminate dynamial degrees of freedom in the reation network; for ex-

ample, by a quasi-steady-state approximation (QSSA) [66, 67℄. In this sense, the method

of quasi-integrals may serve as a supplement to existing methods whih rely on a priori

knowledge of time sales.

In the next Setion, we introdue the hemin system in some detail sine it represents

the main objet of study in this thesis. Afterwards, we give a detailed outline of the

thesis and thereby onlude the introdution.

1.1. The hemin � hydrogen peroxide � sul�te system

The hemin � hydrogen peroxide � sul�te system belongs to a family of pH osillators

whih are based on the pH-dependent oxidation of HSO
−
3 by H2O2 sine this reation

produes H
+
ions in an autoatalyti fashion [35, 36, 37, 38, 39℄. In order to prevent the

unbounded prodution of protons, H
+
-onsuming reations are required, whih play the

role of a negative feedbak step and thus, open the possibility for an osillatory dynamis

of the pH value in the reation medium. In earlier studies of pH osillators, inorgani

ompounds suh as hexayanoferrate [36, 35℄, thiosulfate [43℄, sul�de [68℄, or hydrogen

arbonate [37℄ have been used to aomplish the negative feedbak. However, due to

the use of purely inorgani substanes, the orresponding pH osillator systems are not

neessarily physiologially ompatible. To this purpose, Hauser et. al. [32℄ developed

a pH osillator where hemin provides for the H
+
-onsuming reation steps and thus,

represents a �rst step towards a biologially more realisti pH osillator.

The hemin system was studied experimentally under open onditions in a ontinuous-

�ow stirred tank reator to whih the neessary reatants are ontinuously supplied at

a ertain rate k0 and from whih all produts are ontinuously removed at the same

rate. Thus, there is a onstant matter �ow through the system keeping it away from

thermodynamial equilibrium.

With inreasing �ow rate k0, the following sequene of nonequilibrium states was

observed: aidi (pH∼ 6.5) stationary state → relaxational osillations → bursting

osillations → alkaline (pH∼ 7.6) stationary state. The bursting osillations onsist of

one large amplitude osillation and a ertain number of small amplitude osillations per

period.

A �rst reation mehanism was proposed in [32, 33℄ based on the well established

oxidation of HSO
−
3 by H2O2 whih involves the autoatalyti reation step. In addition,

two pH-dependent equilibria between di�erent forms of hemin were onsidered as soures

for the negative feedbak step. However, we showed in a reent publiation [34℄ that

one of these two equilibria, the pH-dependent dimerisation of hemin, provides only a

minor ontribution to the onset of osillations and may therefore be negleted, sine we

are aiming at a minimal reation mehanism whih only ontains the essential reation

steps in order to reprodue the observed dynamis.
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1.1. The hemin � hydrogen peroxide � sul�te system

Instead, it beame neessary to take the degradation of hemin by H2O2 into aount

whih is known to our at high H2O2 onentrations exeeding 8 × 10−3mol l
−1

[69℄.

In this degradation proess, the porphyrin ring of hemin is oxidatively leaved by a yet

unknown agent. This reation was found to be of �rst order with respet to hemin

[70℄. Due to the unertainty onerning the oxidising agent and in order to keep the

mehanisti model as simple as possible, we proposed the following reation sheme for

the hemin system [34℄

SO2−
3 + H+

k5,k4

⇋ HSO−
3 (1.1)

H2O2 + SO2−
3

k1→ SO2−
4 + H2O

H2O2 + HSO−
3

k2→ SO2−
4 + H+ + H2O

H2O2 + HSO−
3 + H+ k3→ SO2−

4 + 2H+ + H2O

A+
k6,k7

⇋ A + H+

A
k8→ produts

where the degradation proess is taken into aount by an unspei� deomposition of

hemin aording to A
k8→ produts. The produts are assumed not to take part in any

further reation of the system.

The �rst four reation steps in (1.1) represent the well established oxidation of HSO
−
3

by H2O2 [35, 36, 37, 38℄. The autoatalyti step is ontained in the fourth reation

where H+ produes 2H+. The rate onstants k1, . . . , k5 were measured in dependene

on the temperature in [38℄. The �fth reation step in (1.1) denotes the pH-dependent

H2O

H2O

H2O

OH

R1

R1

R1

R1

R2

R2

R2

R2

Fe Fe

N

N N

N N

N N

N

A+ A

R1 : CH = CH2 R2 : CH2CH2COOH

Figure 1.3.: The hemin moleule onsists of a entral iron atom FeIII and a porphyrin

ring whih may either oordinate with two aquo ligands (A+) or to one

hydroxy and one aquo ligand (A).
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1. Introdution

equilibrium between two forms of hemin whose porphyrin ring may either oordinate

with two aquo ligands in whih ase it is denoted as A
+
or to one hydroxy and one aquo

ligand abbreviated as A (Fig. 1.3). The orresponding rate onstants k6, k7 have been

measured in [71℄.

The only rate onstant whose value has not been preisely determined yet is that of

the hemin deay, i.e. k8. Consequently, we shall regard it, in addition to the �ow rate

k0, as a seond variable parameter in our model .

In order to model the dynamial behavior of the reation system (1.1) we assume

the individual reation steps to follow a mass-ation kinetis, i.e. we assume that the

frequeny of ollisions leading to a reation between two hemial speies is proportional

to their onentration. This is a valid assumption if [65, 72℄ (i) the onentrations

of the involved atoms/moleules are not too high suh that a doubling of the initial

onentration for one speies results in a doubling of e�etive ollisions leading to a

hemial reation, (ii) the reation medium is homogeneous whih is assured by stirring

and (iii) the temperature is held onstant during the experiment suh that the parameters

ki are truly onstant (the experiments for the hemin system were arried out at 25◦C).
We derived a 6-dimensional ODE system from the reation mehanism (1.1) to model

the bursting behavior of the hemin system [34℄:

ẋ1 = −k1x1x2 + k4x3 − k5x1x4 + k0(x
0
1 − x1) (1.2)

ẋ2 = −k1x1x2 − k2x2x3 − k3x2x3x4 + k0(x
0
2 − x2)

ẋ3 = −k2x2x3 − k3x2x3x4 − k4x3 + k5x1x4 − k0x3

ẋ4 = k2x2x3 + k3x2x3x4 + k4x3 − k5x1x4 + k6x6 − k7x4x5 + k0(x
0
4 − x4)

ẋ5 = k6x6 − k7x4x5 − k8x5 + k0(x
0
5 − x5)

ẋ6 = −k6x6 + k7x4x5 − k0x6

where the pH value is given as the negative deadi logarithm of the proton onentration

H+ (x4) and the `dot' denotes derivatives with respet to time t. To simplify notation,

we assigned the following abbreviations to the hemial speies:

x1 ↔ SO
2−
3 (1.3)

x2 ↔ H2O2

x3 ↔ HSO
−
3

x4 ↔ H
+

x5 ↔ A

x6 ↔ A
+.

The terms proportional to k0 in (1.2) desribe the matter �ow through the ontinuous-

�ow stirred tank reator to whih the four speies SO
2−
3 (x0

1), H2O2(x
0
2), H

+(x0
4) and

A(x0
5) are supplied at the variable rate k0 while all six hemial speies are removed

from the reator at the same rate. The numerial values of the rate konstants k1, . . . , k8

and the onentrations in the external reservoirs x0
i that were used in the numerial sim-

ulations, are ompiled in Table B.1 of the Appendix B.2. Aording to the experimental

10



1.1. The hemin � hydrogen peroxide � sul�te system

situation, the �ow rate k0 is used as the prinipal bifuration parameter ranging in the

interval k0 ∈ [1 · 10−4s−1, 4.5 · 10−4s−1].
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1. Introdution

1.2. Outline of the thesis

The thesis onsists of two main Parts and an Appendix. In the main Parts, we investigate

two thematially distint aspets of the dynamial properties of the hemin � hydrogen

peroxide � sul�te system: In the �rst Part, the method of quasi-integrals is developed

as a general proedure to identify the essential dynamial degrees of freedom in a given

reation network. In partiular, this method will be used to derive a 3-dimensional ODE

system as an approximation to the 6-dimensional hemin system (1.2). In the seond

Part, we exploit the slow-fast struture of the hemin system to analyze the origin of its

bursting behavior by a suitable (slow-fast) bifuration analysis. As a result, we identify

the bursting mehanism of the hemin system as a subHopf/fold-yle burster aording

to a lassi�ation sheme that has been introdued by Izhikevih [24℄ to lassify the

bursting behavior of neural systems. A systemati two-parameter bifuration analysis

reveals a transition in the bursting behavior of the hemin system from subHopf/fold-

yle to fold/subHopf type. In addition, the slow-fast analysis provides an explanation

for the origin of quasi-periodi behavior in the hemin system, even though the underlying

mehanism might be of more general importane.

Part I

Chapter 2 gives a short introdution into the theory of singularly perturbed systems.

It begins with a simple motivating example using a singularly perturbed algebrai

equation. Afterwards, we introdue the main ideas of the geometrial approah

to singular perturbation theory for ODE systems due to Fenihel [60℄, sine this

theory serves as the mathematial basis for the method of quasi-integrals.

Chapter 3 introdues the onept of quasi-integrals and reveals its relation to the theory

of singularly perturbed systems. First, we exemplarily show how to �nd quasi-

integrals in the hemin system and further, how they an be used to redue the

number of dynamial degrees of freedom in that system. In partiular, we derive a

3-dimensional approximation to the 6-dimensional ODE system (1.2). In a seond

step, we outline how the method of quasi-integrals an be extended to a large lass

of reation networks. The results of this Chapter have been published in [73℄.

Chapter 4 ompares the dynamial properties of the 6-dimensional hemin system (1.2)

with those of its 3-dimensional approximation. To this purpose, loal one- and

two-parameter bifuration diagrams are alulated whih demonstrate that both

systems are virtually idential.

Chapter 5 summarizes the results of the �rst Part and gives a short outlook.

Part II

Chapter 6 desribes how the bursting osillations arise in the 3-dimensional hemin sys-

tem subsequent to a period doubling asade and the formation of a haoti at-

trator. We list some of the bursting states that were found by diret numerial

12



1.2. Outline of the thesis

integration and disuss their bifuration sequenes in terms of Farey progressions.

In addition, we introdue the total onentration of hemin speies as a new variable

sine it evolves on a slower time sale than the remaining variables; an observation

that will be essential when we analyze the bursting osillations in Chapter 8.

Chapter 7 exempli�es the slow-fast analysis introdued by Rinzel and Ermentrout [23℄

with a artoon of the slow-fast struture of the 3-dimensional hemin system. In

partiular, we demonstrate how a slow variable may at as a quasi-stati bifura-

tion parameter for the remaining 2-dimensional fast subsystem. In addition, we

mention a lassi�ation sheme for bursting mehanisms that has been introdued

by Izhikevih [24℄ to lassify the bursting behavior of neural systems.

Chapter 8 is devoted to a detailed study of the slow-fast struture of the hemin system.

First, we show that at a �xed value of the �ow rate k0, the bursting osillations

are aused by a saddle-node bifuration of periodi orbits in onjuntion with a

subritial Hopf bifuration, both of whih our in the fast subsystem for nearby

values of the slow variable that was introdued in Chapter 6. By a systemati

two-parameter ontinuation in the �ow rate and the slow variable, we identify a

transition in the bursting behavior from subHopf/fold-yle to fold/subHopf type

whih an be attributed to a homolini bifuration in the fast subsystem. Finally,

we perform a slow-fast analysis of the hemin system in a parameter region where

a 2-torus is stable. This analysis shows that the rather unusual phase �ow on

the torus is due to a oupling of an osillator in the fast subsystem with the slow

variable and thus, is a result of the slow-fast struture of the hemin system.

Chapter 9 summarizes and disusses the results of the seond Part.

The Appendix onsists of three Chapters:

Chapter A provides the basi notions of dynamial systems theory and gives an intro-

dution to bifuration theory as far as it appears neessary to understand the ideas

and arguments in the remainder of the thesis. Therefore, this Chapter should be

used as a referene. In partiular, Setions A.3 and A.4 should be onsulted for

details about loal odimension one and two bifurations, respetively, whih will

be frequently referred to throughout the work. Global (homolini) bifurations

are disussed in Setion A.5.

Chapter B gives an introdution to numerial ontinuation proedures and strategies.

Furthermore, it provides the parameter settings for the hemin and the peroxidase-

oxidase system whih are neessary to setup the numerial simulations.

Chapter C ontains a seond example for the appliation of the method of quasi-

integrals developed in Chapter 3. The reation mehanism of the peroxidase-

oxidase reation is investigated whih exlusively ontains irreversible reation

steps and therefore, poses a nontrivial appliation of the method of quasi-integrals.

Nevertheless, we identify three possible quasi-integrals two of whih lead to redued

systems that quantitatively agree quite well with the original 10-dimensional one.
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2. Singular Perturbation Theory
The method of quasi-integrals is mainly inspired by the singular perturbation theory for

ODE systems. Therefore, we give a brief outline of that theory in the present Chapter

and thereby lay the mathematial foundation for the redution method using quasi-

integrals in Chapter 3.

In perturbation theory, one studies how small disturbanes of a system a�et its

behavior whih is assumed to be known under isolated onditions, i.e. without the

disturbanes. For onreteness, onsider a perturbed system Sε whih is, for example,

desribed by algebrai, di�erential, or integral equations, or ombinations thereof. Then

a natural, though by no means neessary assumption (otherwise there was no singular

perturbation theory), is that the solution xε of the perturbed system is in some sense

`lose' 1 to the solution x0 of the unperturbed problem S0 provided the perturbation

parameter ε is su�iently small. If this assumption holds over the entire domain of

de�nition, the aording perturbation problem is alled regular and one an �nd a so-

lution of the perturbed problem in terms of a (asymptoti) power series expansion in

ε. However, it may happen that the unperturbed problem S0 (i) has no solution or (ii)

has a solution that is not uniformly valid in the domain of de�nition or (iii) has many

solutions. In these ases, the perturbation problem Sε is alled singular.

2.1. A motivating example

A hallmark of singularly perturbed systems is that they model proesses whih our on

at least two di�erent sales suh that a solution of the unperturbed problem is usually

only valid at one of the two sales.

To illustrate this statement, onsider the solutions of the algebrai equations

f(x, ε) ≡ x2 − 2x + ε = 0, 0 < ε ≪ 1 (2.1)

f(x, 0) = lim
ε→0

f(x, ε) = x2 − 2x = 0

whih are given by

x1,2
ε = 1 ±

√
1 − ε (2.2)

x
1,2
0 = lim

ε→0
x1,2

ε = {2, 0}.

Obviously, the solutions x1,2
ε of the perturbed problem f(x, ε) = 0 oninuously deform

into the solutions x
1,2
0 of the unperturbed equation. In partiular, the solutions x1,2

ε have

1In order to ompare two solutions, one an, for example, introdue an appropriate norm in the spae

where the system is de�ned.
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2. Singular Perturbation Theory

power series expansions near ε = 0 starting as

x1
ε = 2 − 1

2
ε − O(ε2) and (2.3)

x2
ε = 0 +

1

2
ε + O(ε2), (2.4)

respetively, whih shows that they are lose to the unperturbed solutions x1,2
0 for ε

su�iently small. Thus, ε is a regular perturbation parameter for f(x, ε) = 0.
In a next step we shift the position of the small parameter suh that it ours in front

of the monomial of highest degree and onsider the following (singular) perturbation

problem (f. Chapter 9 in [65℄):

g(z, ε) = εz2 − 2z + 1 = 0 (2.5)

whose solutions are now given by

z1,2
ε =

1

ε
(1 ±

√
1 − ε). (2.6)

Up to the sale fator 1/ε, these are the same solutions as in (2.2). However, the sale

fator has a huge impat on the power series expansions sine we now have:

z1
ε =

2

ε
− 1

2
− O(ε) and (2.7)

z2
ε =

1

2
+ O(ε). (2.8)

Hene, in the limit ε → 0, z1
ε beomes unbounded while z2

ε remains �nite.

If, on the other hand, one naivly performs the limit ε → 0 in (2.5), one obtains the

�rst order equation −2z + 1 = 0 whih has only one solution: z0 = 1/2. Thus, from the

unperturbed problem, one only gets the regular solution (2.8) of the perturbed problem:

lim
ε→0

z2
ε = 1/2 = z0;

the singular solution (2.7) is missing.

The singular nature of the perturbation problem (2.5) may also be seen in a di�erent

way by exploiting the multi-sale struture of the system. To this purpose, we introdue

a new variable aording to

ξ := εz, 0 < ε ≪ 1 (2.9)

and look again at equation (2.5), but now on a smaller sale de�ned by (2.9). After

performing the sale transformation (2.9) and multiplying the resulting equation by ε,
(2.5) reads

g̃(ξ, ε) = ξ2 − 2ξ + ε = 0, (2.10)

i.e. on the small sale we again obtain a regular perturbation problem whih, in this ase,

is idential with (2.1). Consequently, the solutions ξ1,2
ε of (2.10) an also be obtained

in terms of power series expansions idential to those in (2.3) and (2.4). Finally, one

gets the two solutions z1,2
ε = 1

ε
ξ1,2
ε for the singularly perturbed system (2.5) whih are,

of ourse, idential with (2.7) and (2.8).
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We summarize:

1. The appearane of a small parameter in front of the highest order term in an

algebrai equation suh as (2.5) usually indiates the existene of (some) singular

solutions. This aspet has a natural translation to di�erential equations where

singular behavior is indiated by small parameters in front of the highest order

derivative term.

2. Looking at equation (2.10), it seems as if the singularity was transformed away

sine in this equation, ε is a regular perturbation parameter. This is, however, not

the ase sine it is now the sale transformation (eq. 2.9) that beomes singular in

the limit ε→ 0.

3. Finally, we again wish to point out the multi-sale struture of (2.5) and (2.10). If

we look at a small sale (using ξ variables) the system (2.10) is well-behaved and

has the two regular solutions ξ1,2
ε . If, on the other hand, the sale is inreased by

performing the limit ε → 0, only one of the solutions (z2
ε) remains regular while

the other one (z1
ε) beomes singular.

In the next Setion, we shall address the question under whih onditions one may

approximate a singularly perturbed problem by a regularly perturbed one for the ase

that the system is desribed by ordinary di�erential equations.

2.2. ODE systems with `small' parameters

The geometrial singular perturbation theory for ordinary di�erential equations has been

elaborated by Fenihel [60℄ in the 1970s. We shall present the main ideas of this approah

as far as it is neessary to motivate the onept of quasi-integrals in Chapter 3.

In the following we onsider n-dimensional ODE systems of the form

ẋ(t) = f(x, y, ε) (2.11)

εẏ(t) = g(x, y, ε)

where ε is again a positive, su�iently small dimensionless parameter, (x, y) ∈ U ⊂
R

n−m × R
m, and f and g are vetor-valued funtions of the form f : U → R

n−m and

g : U → R
m, respetively. The `dot' denotes derivatives with respet to the (time)

parameter t.
The ourrene of the small parameter ε in front of ẏ in (2.11) indiates that these

quantities vary signi�antly only on the fast time sale t/ε and thereafter instantaneously

follow the slow dynamial degrees of freedom played by the x variables. Tehnially, this

an be seen by taking the limit ε → 0 in whih ase the ODE system (2.11) redues to

the di�erential-algebrai system

ẋ(t) = f(x, y, 0) (2.12)

0 = g(x, y, 0).
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2. Singular Perturbation Theory

Similar to the ase of the algebrai equation (2.5) in the previous Setion where the

limiting proess led to a redution in the order of the original equation, the same limiting

proedure now leads to a redution of the dynamial degrees of freedom from n in (2.11)

to n−m in (2.12) where the y-omponents of the solution urve (x(t), y(t)) are impliitely

determined by the algebrai equation g(x, y, 0) = 0 one the solution x(t) is known.

Again, the singular behavior of the y-omponents of the solution urve (x(t), y(t))
on long time sales (omparable with t) an be remedied by studying the ODE system

(2.11) on a faster time sale τ whih is introdued as

τ =
t

ε
. (2.13)

On the time sale τ , the ODE system (2.11) reads:

x′(τ) = εf(x, y, ε) (2.14)

y′(τ) = g(x, y, ε)

for whih ε is now a regular perturbation parameter sine it does not appear anymore

in front of derivatives with respet to τ (whih are abbreviated with a `prime'). In the

limit ε→ 0, the ODE system (2.14) redues to the so-alled fast subsystem

x′(τ) = 0 (2.15)

y′(τ) = g(x, y, 0).

Thus, on the fast time sale τ only the y-omponents follow a dynamial evolution while

the x-omponents are treated as onstants sine their derivative with respet to τ is

zero. As long as ε 6= 0, the two systems (2.11) and (2.14) are ompletely equivalent. In

the limit ε → 0, however, this equivalene is lost sine the sale transformation (2.13)

beomes singular.

It is now the aim of singular perturbation theory to investigate under whih ondi-

tions the solutions of the redued system (2.12) represent a good approximation to the

solutions of the original (singular perturbation) problem (2.11).

The result is the following: Assume that the algebrai equation g(x, y, 0) = 0 in (2.12)

de�nes a smooth manifold y = ỹ(x) whih is normally attrating in the sense that the

Jaobian matrix Dyg(x, y) |y=ỹ(x) of the linearized fast subsystem along y = ỹ(x)

(δy)′ = Dyg(x, y) |y=ỹ(x) δy (2.16)

has only negative eigenvalues for x belonging to a ompat region in R
n−m, then there

exists a slow invariant manifold ψ(x, ε) = ỹ(x) +O(ε) that an be used to approximate

the dynamis of the n-dimensional ODE system (2.11) for su�iently small ε by the

n−m-dimensional ODE system

ẋ = f(x, ψ(x, ε), ε) (2.17)

whih is now a regular perturbation problem in ε.
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Of great pratial relevane is the limit ε→ 0 orresponding to the quasi-steady-state

approximation (QSSA)

ẋ = f(x, ỹ(x), 0) (2.18)

where the slow manifold ψ(x, ε) is approximated by the quasi-stationary manifold ỹ(x).
Notie that in pratial appliations ε is usually given in terms of intrinsi system param-

eters and therefore annot be made arbitrarily small. Nevertheless it is often su�ient

to approximate the slow manifold of a system by the quasi-stationary manifold in order

to obtain a reasonable desription of the dynamis of the n-dimensional system even in

the ase that ε is di�erent from zero.

We wish to stress again that the manifold y = ỹ(x) is entirely omposed of stationary

points of the fast subsystem (2.15) whih parametrially depend on the slow variables

x ∈ R
n−m. In partiular, the approximation (2.18) is only valid in those ompat regions

of R
n−m where the quasi-stationary manifold y = ỹ(x) is attrating whih may limit the

range of allowed initial onditions for the x variables.

The property that the slow manifold ψ(x, ε) is invariant under the �ow of the ODE

system (2.11) is expressed by the equation:

ψ̇(x, ε) = ψx(x, ε)ẋ = 0, (2.19)

where ψx(x, ε) denotes partial di�erentiation with respet to x ∈ R
n−m. Aordingly,

the slow manifold an be obtained as a solution of the partial di�erential equation

ψx(x, ε)f(x, ψ(x, ε)) =
1

ε
g(x, ψ(x, ε), ε) (2.20)

where we set y = ψ(x, ε) and used (2.11) to replae the time derivatives ẋ and ψ̇ in (2.19)

with the orresponding vetor-valued funtions f and g, respetively. In general, it will

be impossible to �nd expliit solutions of the nonlinear partial di�erential equation(2.20).

However, in many ases one may �nd an approximation to the slow manifold in terms

of a power series expansion in the small parameter ε

ψ(x, ε) = ỹ(x) + εψ1(x) +O(ε2) (2.21)

where the quasi-stationary manifold ỹ(x) reappears as the zeroth order term.

Finally, we mention that the approximation (2.18) has two desirable features whih

is the reason for the great pratial importane of the QSSA: First, it is valid on the

slow time sale t, i.e. it desribes the long-time behavior of the system whih is also

aessible to experimental investigations. Seond, the fast dynamial degrees of freedom

are elimimated and thus, one is left with a problem of redued (numerial) omplexity.
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3. Quasi-Integrals
The individual reation steps in (bio-)hemial reation networks often evolve on di�erent

time sales. The mathematial desription of suh networks naturally leads to singularly

perturbed ODE systems. However, in large systems it is pratially impossible to identify

the small perturbation parameters in the system without any prior knowledge of the

order of magnitude of the individual reation steps. Therefore, we shall develop a method

whih does not require any a priori knowledge, but instead makes diret use of the

solution urves whih are obtained by numerial integration routines. The results of this

Chapter and Appendix C are published in [73℄.

3.1. Quasi-integrals in the hemin system

In the following, we shall exemplify the method of quasi-integrals with the hemin system

introdued in Setion 1.1. In the �rst step, the ODE system (1.2) is rewritten in ompat

vetor notation

ẋ = C · R(x, k) + k0(x
0 − x)

where we introdued the matrix of stoihiometri oe�ients C (without the in- and

out�ow terms proportional to k0) and the vetor of reation rates R as:

C =











−1 0 0 1 −1 0 0 0
−1 −1 −1 0 0 0 0 0
0 −1 −1 −1 1 0 0 0
0 1 1 1 −1 1 −1 0
0 0 0 0 0 1 −1 −1
0 0 0 0 0 −1 1 0











R =















k1x1x2

k2x2x3

k3x2x3x4

k4x3

k5x1x4

k6x6

k7x4x5

k8x5















. (3.1)

Aordingly, the reation mehanism of the hemin system omprises 6 hemial speies

and 8 elementary reation steps. The latter are arranged into the omponents of the

reation rate vetor R.

In the seond step, we use the theory of singularly perturbed systems as it has been

introdued in Setion 2.2 to motivate the onept of quasi-integrals. To this purpose,

let us pretend for a moment that there were two time sales in the hemin system (1.2)

so that it an be transformed into the standard form of a singularly perturbed system

(2.11) by identifying a suitable ombination of intrinsi system parameter whih an

play the role of an epsilon in (2.11). Let us further assume that the small parameter
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3. Quasi-Integrals

epsilon appears in the �rst rate equation of (1.2) whih therefore admits a form similar

to the seond equation in (2.11):

εẋ1 = −k1x1x2 + k4x3
︸ ︷︷ ︸

+ε (−k5x1x4 + k0(x
0
1 − x1))

︸ ︷︷ ︸
(3.2)

= g0(x1, x2, x3) + ε g̃(x1, x4)
︸ ︷︷ ︸

εẏ = g(x, y, ε)

where we identi�ed x1 with the fast variable y and (x2, . . . , x6) with the slow variable

x in (2.11). The motivation for this partiular hoie of the funtion g(x, y, ε) omes

from the fat that if we were allowed to perform the limit ε → 0 in (3.2), we would have

found a quasi-stationary manifold given by the algebrai equation

g0(x1, x2, x3) = 0 = −k1x1x2 + k4x3 (3.3)

provided it is normally attrating in the sense of Setion 2.2.

The ruial point is now the following: Instead of expliitly searhing for a small

parameter in the ODE system (1.2), whih would failitate the transformation (3.2), we

simply test whether the ratio

I14 =
k1x1x2

k4x3

≡ R1

R4

?∼ 1 (3.4)

approahes the onstant (or at least nealy onstant) value 1 along the numerially ob-

tained solution urves xi(t) in whih ase (3.3) is simultaneously ful�lled. Sine I14 is a

nonlinear funtion of the phase spae variables, whose time derivative İ14 ∼ 0 is nearly

zero along the solution urves, we all it a quasi-integral. Note that if the time derivative

was exatly zero, I14 would be an exat integral for the nonlinear �ow of the ODE system

(1.2).

By reversing the order of the above argument, it is lear that eah quasi-integral of the

form (3.4) de�nes a quasi-stationary manifold (3.3) in the sense of Setion 2.2 whih, in

turn, an be used to redue the number of dynamial degrees of freedom in the originally

6-dimensional ODE system (1.2). On the other hand, sine the partition of g into g0

and g̃ in (3.2) was arbitrary, it is also lear how to proeed in order to searh for other

quasi-integrals. For example, in a next step one ould test whether the ondition

I45 =
k4x3

k5x1x4

≡ R4

R5

?∼ 1 (3.5)

is ful�lled in whih ase the quasi-stationary manifold would be given by

g0(x1, x3, x4) = k4x3 − k5x1x4 = 0 = R4 − R5. (3.6)

By ontinuing along this line of argument, one an systematially test all distint

ombinations of the form (3.4) and (3.5) for being approximately onstant. To this
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3.1. Quasi-integrals in the hemin system
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Figure 3.1.: Di�erent ratios of omponents of the reation rate vetor R are shown: While

I45 = R4/R5 approahes a onstant value and therefore de�nes a quasi-

stationary manifold, I14 = R1/R4 remains a heavily osillating funtion

bounded away from 1 and thus, does not ful�ll the ondition for a quasi-

integral.

purpose, one has to onsider only those reation rates Ri in a given rate equation whih

appear with an opposite sign, sine these are the only ones that an potentially balane

eah other. If this proedure is arried out for all six rate equations in (1.2), one has

found all possible quasi-stationary manifolds whih an be represented as ratios of ertain

omponents of the reation rate vetor R.

In the hemin system, we �nd preisely one quasi-integral (eq. 3.5). It is shown in

Fig. 3.1 together with I14 whih represents a ounter example. Note that I45 always

remains in the neighborhood of the onstant value 1 exept for short time intervals

where spiking outliers our (Fig. 3.1a). To the ontrary, I14 remains a heavily osillating

funtion on the sale 10−5 whih is far away from the onstant value 1 (Fig. 3.1b). Thus,

I45 de�nes a quasi-stationary manifold while I14 does not.

We onlude with some general remarks onerning the method of quasi-integrals.

First of all, the method is appliable without any prior knowledge about the di�erent

time sales whih might be present in a given reation network. This property makes it

partiularly suitable for a straightforward redution of high dimensional systems. On the

other hand, we have not yet spei�ed what we mean when we require that a quasi-integral

is approximately onstant, sine the distintion between di�erent ratios suh as I14 and

I45 might not be as lear ut as in Fig. 3.1. However, even in those ases, the method

is appliable if one uses ratios that are approximately onstant for a formal redution

of the original ODE system and subsequently ompares it with the redued version, for

example, based on a loal bifuration diagram. This is, in fat, the strategy that we

shall follow in Setion 4.1 and in the Appendix C where the method of quasi-integrals
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3. Quasi-Integrals

is applied to the 10-dimensional PO system.

3.2. Using quasi-integrals for model redution

Having identi�ed the quasi-integral (3.5), whih possibly de�nes a quasi-stationary man-

ifold, we wish to use it now to eliminate one dynamial degree of freedom in the hemin

system (1.2). To this purpose, we rewrite the 6-dimensional hemin system in the stan-

dard form of a singularly perturbed system (eq. 2.11)

ẋ2 = −R1 − R2 − R3 + k0(x
0
2 − x2) (3.7)

ẋ5 = R6 − R7 − R8x5 + k0(x
0
5 − x5)

ẋ6 = −R6 + R7 − k0x6.

εẋ1 = R4 − R5 + ε(−R1 + k0(x
0
1 − x1))

εẋ3 = −(R4 − R5) + ε(−R2 − R3 − k0x3)

εẋ4 = R4 − R5 + ε(R2 + R3 + R6 − R7 + k0(x
0
4 − x4))

where we have already used the knowledge about the existene of the quasi-stationary

manifold g0(x1, x3, x4) = R4 −R5 in order to plae the small parameter ε at the orret

positions. For larity, the omponents of the reation rate vetor R were used to denote

the individual reation steps in (3.7).

We notie that a naive redution, following the proedure in Setion 2.2, is damned to

fail, sine the term R4 −R5 appears in three di�erent rate equations in the ODE system

(3.7). This (misleadingly) suggests that the fast subsystem is of the form:

x′
1 = R4 − R5 ≡ g0

x′
3 = −(R4 − R5) ≡ −g0 (3.8)

x′
4 = R4 − R5 ≡ g0

whih is obtained after resaling aording to τ = t/ε and performing the limit ε → 0
in (3.7) ( the `prime' again denotes derivatives with respet to the fast time sale τ).
On the other hand, there is only one equation (eq. 3.6) de�ning the quasi-stationary

manifold and thus, the determinant of the Jaobian matrix

∂(g0,−g0, g0)

∂(x1, x3, x4)
(3.9)

of the fast subsystem (3.8) is two-fold degenerate, i.e. it has two zero eigenvalues.

Consequently, the quasi-steady-state approximation (2.18) must not be applied to the

ODE system (3.7).

The reason for the degeneray of the fast subsystem is the presene of (mass) on-

servation relations in the reation mehanism of the hemin system whih have not been

onsidered so far. Suh kind of onservation relations are frequently enountered in

hemial reation systems. They simply express the fat that atoms of a ertain kind
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3.2. Using quasi-integrals for model redution

an not be destroyed during a hemial reation. Instead they aggregate and dissoiate

in �xed stoihiometri relations.

In general, the existene of mass onservation relations is expressed by a non-maximal

rank of the stoihiometri matrix C (eq. 3.1) whih in our ase has rank 4. Thus, there

are two left eigenvetors of C with eigenvalue zero. They an be hosen as

vT
1 = (1,−1, 1, 0, 0, 0) (3.10)

vT
2 = (0, 0, 1, 1, 0, 1)

whih satisfy the eigenvalue equations

vT
1,2 · C = 0 · vT

1,2.

In the following, we use these eigenvetors as the last two rows of the linear oordinate

transformation










y1

y2

y3

y4

y5

y6











=











0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
1 −1 1 0 0 0
0 0 1 1 0 1











·











x1

x2

x3

x4

x5

x6











(3.11)

whih brings the ODE system (1.2) into a form

ẏ1 = k0x
0
2 − y1

{

k0 + k1y4 +
(
k2 + k3(y6 − y5 − y1 − y2 + y4)

)
(y5 − y4 + y1)

}

ẏ2 = −k6y2 + k7y3(y6 − y5 − y1 − y2 + y4) − k0y2 (3.12)

ẏ3 = −k8y3 + k6y2 − k7y3(y6 − y5 − y1 − y2 + y4) + k0(x
0
5 − y3)

ẏ4 = k4(y5 − y4 + y1) − k5y4(y6 − y5 − y1 − y2 + y4) − k1y1y4 + k0(x
0
1 − y4)

ẏ5 = k0(x
0
1 − x0

2 − y5)

ẏ6 = k0(x
0
4 − y6)

where the last two equations for y5 and y6 beome deoupled from the 4-dimensional

subsystem orresponding to the (y1, y2, y3, y4) variables. Note that the latter four vari-

ables are just relabeled versions of four of the original variables, i.e. we have y1 = x2,

y2 = x6, y3 = x5 and y4 = x1.

The last two equations in (3.12) desribe the mass onservation relations. They an

be integrated separately and yield the following solution for zero initial ondition:

y5(t) = (x0
1 − x0

2)(1 − exp(−k0t))

y6(t) = (x0
4)(1 − exp(−k0t)).

This means that after a transient time of order t ∼ 1/k0, the trajetories of the ODE

system (3.12) (and equally that of (1.2)) approah an attrating 4-dimensional manifold

whih is formally de�ned in the limit t → ∞ as

lim
t→∞

y5(t) = lim
t→∞

(x1(t) − x2(t) + x3(t)) = x0
1 − x0

2 =: y∞
5 (3.13)

lim
t→∞

y6(t) = lim
t→∞

(x3(t) + x4(t) + x6(t)) = x0
4 =: y∞

6 .
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3. Quasi-Integrals

In hemial terms, these two relations express the onservation of S atoms and H+ ions,

respetively:

[SO2−
3 ] − [H2O2] + [HSO−

3 ] = [SO2−
3 ]0 − [H2O2]

0
(3.14)

[HSO−
3 ] + [H+] + [AH] = [H+]0

whih is obtained using the orrespondene between the hemial speies and the phase

spae variables (1.3). Sine the last two equations in (3.12) do not ontain any essential

dynamial information, but merely express the stoihiometri onstraints in the reation

mehanism (1.1), the transient approah to the 4-dimensional manifold (3.13) an be

negleted by replaing the variables y5 and y6 in (3.12) with their asymptoti values

aording to (3.13)

y5 = y∞
5 , y6 = y∞

6 . (3.15)

As a result, we obtain a 4-dimensional ODE system

ẏ1 = k0x
0
2 − y1

{

k0 + k1y4 +
(

k2 + k3(y
∞
6 − y∞

5 − y1 − y2 + y4)
)

(y∞
5 − y4 + y1)

}

ẏ2 = −k6y2 + k7y3(y
∞
6 − y∞

5 − y1 − y2 + y4) − k0y2 (3.16)

ẏ3 = −k8y3 + k6y2 − k7y3(y
∞
6 − y∞

5 − y1 − y2 + y4) + k0(x
0
5 − y3)

εẏ4 = k4(y
∞
5 − y4 + y1) − k5y4(y

∞
6 − y∞

5 − y1 − y2 + y4) + ε(−k1y1y4 + k0(x
0
1 − y4))

where the stoihiometri onstraints (3.13, 3.14) are properly taken into aount. More-

over, the quasi-stationary manifold (3.6) now appears in only one rate equation whih,

due to our hoie of the linear oordinate transformation (3.11), is that of y4 ≡ x1. The

fast subsystem is now given by

d

dτ
y4 = k4(y

∞
5 − y4 + y1)

︸ ︷︷ ︸
− k5y4(y

∞
6 − y∞

5 − y1 − y2 + y4)
︸ ︷︷ ︸

. (3.17)

= R4 − R5

Its stationary points

k4 (y∞
5 − y4 + y1)

︸ ︷︷ ︸

x3

−k5 y4
︸︷︷︸

x1

(y∞
6 − y∞

5 − y1 − y2 + y4)
︸ ︷︷ ︸

x4

= 0 (3.18)

de�ne the quasi-stationary manifold for the 4-dimensional version of the hemin system

(eq. 3.16). Due to the proper onsideration of the hemial onstraints (3.14), this is

now a quadrati equation for y4 ≡ x1 whose solution is given by

y4 =
1

2
(y∞

5 −y∞
6 +y1+y2−

k4

k5

)± 1

2

√

(y∞
5 − y∞

6 + y1 + y2 −
k4

k5

)2 + 4
k4

k5

(y∞
5 + y1). (3.19)

Here, we must onsider only the positive square root, sine y4 represents a onentration

and therefore y4 ≥ 0 must hold. A diret omputation of the (1-dimensional) Jaobian
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3.3. Quasi-integrals in general reation networks

matrix along the manifold (3.19) shows that it is globally attrating sine we have:

∂

∂y4

(R4 − R5)
∣
∣
y4=y4(y1,y2)

= −k4 − k5(y
∞
6 − y∞

5 − y1 − y2 + 2y4)
∣
∣
y4=y4(y1,y2)

= −k5

√

(y∞
5 − y∞

6 + y1 + y2 −
k4

k5

)2 + 4
k4

k5

(y∞
5 + y1)

whih is negative for all (y1, y2) ∈ R
2
+. This shows in partiular, that the fast subsystem

(3.17) is no longer degenerate. On the other hand, it is known [74℄ that if the fast

subsystem is entirely omposed of reversible reations, as it is in our ase (R4 and

R5 orrespond to the �rst reversible reation step in (1.1)), then its stationary points

automatially de�ne an attrating manifold for the original �ow.

Finally, we perform the QSSA using the proedure outlined in Setion 2.2 and arrive

at the following 3-dimensional ODE system:

ẏ1 = k0x
0
2 − y1

{

k0 + k1y4 +
(

k2 + k3(y
∞
6 − y∞

5 − y1 − y2 + y4)
)

(y∞
5 − y4 + y1)

}

ẏ2 = −k6y2 + k7y3(y
∞
6 − y∞

5 − y1 − y2 + y4) − k0y2 (3.20)

ẏ3 = −k8y3 + k6y2 − k7y3(y
∞
6 − y∞

5 − y1 − y2 + y4) + k0(x
0
5 − y3),

where y4 = y4(y1, y2) is now a funtion of y1 and y2 aording to the expression for

the quasi-stationary manifold (3.19). That the 3-dimensional ODE system (3.20) truly

represents a very good (even quantitative) approximation to the long-time behavior of

the hemin system (1.2) will be shown in Chapter 4, in partiular in Setion 4.1, where

we ompare the loal one- and two-parameter bifuration diagrams for both systems.

We remark that the de�ning equation for the quasi-stationary manifold (3.18) rep-

resents a so-alled quadri [75℄ whih is the 3-dimensional analog of a oni setion.

Quadris an be thought of as smooth embedded surfaes in R
3. In the ase of equa-

tion (3.18), we �nd after performing appropriate linear transformations (translation,

rotation) a hyperboli paraboloid (Fig. 3.2) whose normal form is given by

y2

b2
− x2

a2
= z (x, y, z) ∈ R

3.

The parameters a and b are given as funtions of the onstants k4, k5, y
∞
5 , and y∞

6 . They

determine the partiular shape of the surfae.

3.3. Quasi-integrals in general reation networks

We brie�y desribe how to generalize the method of quasi-integrals to reation networks

of the form:

ẋ = f(x, k) ≡ C · R(x, k) (3.21)

where the omponents of the vetor �eld f an be written as linear ombinations of

omponents of the reation rate vetor R:

ẋl = fl(x, k) =
r∑

i=1

CliRi(x, k) l = 1 . . . n. (3.22)
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Figure 3.2.: The slow manifold for the hemin system is a so-alled hyperboli paraboloid

whose representation in standard oordinates is given by
y2

b2
− x2

a2 = z.

Here, x ∈ R
n denotes the time-dependent state, k ∈ R

r stands olletively for all pa-

rameters in the system and the onstant matrix C represents the stoihiometri matrix.

In the following, we shall not assume a partiular shape of the reation rate vetor R.

However, sine a large lass of (bio-)hemial reation systems (suh as the hemin and

the PO system studied in this thesis) is modeled by mass-ation type reation networks,

we note that in this ase, the omponents of the reation rate vetor are given by

Ri(x, k) = ki Πjx
κji

j i = 1 . . . r, j = 1 . . . n. (3.23)

Thus, the general form (3.21) admits mass-ation type kinetis as a speial ase, but

also leaves the possibility to use other kineti shemes. The onstant matrix κ in (3.23)

ontains the kineti information of eah individual reation step. Both of the above

mentioned matries, C and κ, have as many rows as there are hemial speies (n) and

as many olumns as there are individual reation steps (r) and thus, ompletely speify

the topology of a network following a mass-ation kinetis.
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3.3. Quasi-integrals in general reation networks

Reall that in Setion 3.2 we searhed in eah rate equation for reation steps that

balane eah other along the numerially obtained trajetories. To this purpose, we

partitioned the funtion g(x, y, ε) in (3.2) into a dominating part g0(x, y) whih was

supposed to desribe the quasi-stationary manifold in the limit ε → 0 and a negligible

part g̃(x, y, ε). In general, the dominating part will be of the form:

(g0)
l
ij = CliRi(x(t), k) + CljRj(x(t), k) ∼ 0, (3.24)

where the index l = 1, . . . , n runs over all rate equations in (3.22) while i, j = 1, . . . , r
denote the individual reation steps ouring in a partiular rate equation.

Quasi-integrals are de�ned as those ratios

I l
ij =

CliRi(x(t), k)

CljRj(x(t), k)
∼ −1 (3.25)

that approah an almost onstant value along the trajetories xl(t) of (3.22) for a ertain
ombination of indies l ∈ {1 . . . n}, i, j ∈ {1 . . . r}. The ourene of the `−1' on the

right-hand side in (3.25) is due to the fat that in (3.24) we must onsider only those

reation steps Ri, Rj for whih sign(Clj) = −sign(Cli) holds beause otherwise (3.24)

an not be ful�lled. This ondition redues the number of index ombinations (l, i, j)
that must be taken into aount during the searh for quasi-integrals. On the other

hand, it may also happen that the same ombination of reation steps ours in di�erent

rate equations in whih ase they an be omitted.

In a next step, one an easily extend the de�nition for a quasi-integral (3.25) and try

to balane more than two reation steps in whih ase the dominant part g0 of g(x, y, ε)
ould be, for example, of the form:

(g0)
l
ijk = CliRi(x(t), k) + CljRj(x(t), k) + ClkRk(x(t), k) ∼ 0. (3.26)

In this ase, quasi-integrals would be given by:

I l
ijk =

CliRi(x(t), k) + ClkRk(x(t), k)

CljRj(x(t), k)
∼ −1 (3.27)

provided that e.g. sign(Cli) = sign(Clk) = −sign(Clj) holds. Indeed, for the PO

system, whih will be disussed in Appendix C, we �nd two quasi-integrals of this type.

From the above desription it is lear that the searh for quasi-integrals is an algo-

rithmi proedure whih an be summarized in the following three steps:

1. First, integrate the ODE system (3.21) over a su�iently long time interval to

obtain the trajetories for parameter values, where the interesting asymptoti kind

of dynamis is observed.

2. Seond, hek whether quasi-integrals of the form (3.25) (or equally (3.27)) exist.

3. Third, apply singular perturbation tehniques (for example the QSSA (eq. 2.18))

to redue the number of dynamial degrees of freedom in the system.
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In the end, it is a good idea to hek the quality of the approximation due to the loose

de�nition of a quasi-integral as being `almost onstant'. This an be done, for example,

by omparing the loal bifuration diagrams for the original and the redued system

whih, at least, reveals whether both systems belong to the same topologial lass.

A seond reason for the neessity to ompare the dynamis of the original with that

of the redued system is that quasi-integrals are usually determined for one partiular

set of parameters and therefore, the redution proedure is tehnially valid for only one

point in parameter spae. Thus, by systematially omparing the loal bifurations in

dependene on relevant system parameters, one an ensure that the redued system has

truly inherited the dynamial properties of the original system in a whole parameter

range.

In this thesis, we always ompare the original and the redued systems based on their

loal bifuration diagrams.
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4. Loal Bifurations in the HeminSystem
This Chapter is devoted to a omparison between the 6-dimensional hemin system

(eq. 1.2) and its 3-dimensional approximation (eq. 3.20) that was derived in Setion 3.2

using the method of quasi-integrals. We begin with a presentation of a two-parameter

bifuration diagram whih shows the global bifuration struture of the 3-dimensional

hemin system. In the next step, we take a setion along a one-parameter path in the

two-parameter plane in order to study some of the odimension one bifuration se-

quenes in detail. Finally, we show that the 6-dimensional hemin system (eq. 1.2) and

its 3-dimensional approximation (eq. 3.20) are indistinguishable based on their loal

bifuration struture.

Notie that for the presentation of the results, we shall use resaled dimensionless

variables and parameters aording to Appendix B.2. In addition, we will �nd several

odimension one and odimension two bifurations in the ourse of the investigation. All

of them are desribed in Appendix A.3 and A.4 in some detail whih, therefore, should

be onsulted for referene.

4.1. Two-parameter ontinuation in k0 and k8

During the experimental investigations of the hemin system [32, 33℄, the �ow rate k0

was taken as the prinipal bifuration parameter (f. Se. 1.1) ontrolling the matter

�ow through the reation system. In order to perform a two-parameter ontinuation,

we hose the deay rate of hemin k8 as a seond bifuration parameter for two reasons:

First, its experimental value has not been preisely determined so far and seond, the

mehanisti role of hemin is to prevent the unbounded prodution of H+ ions and, thus,

the hemin deay rate should be a sensible parameter. In fat, if k8 is identially zero,

the ODE systems (1.2) and (3.20) beome essentially 2-dimensional and no omplex

dynamis is possible anymore.

Generially, as two parameters of an ODE system are varied, several odimension two

bifurations may be enountered along branhes of odimension one bifurations. Those

bifurations, that are relevant for the hemin system, are summarized in Appendix A.4

whih should be onsulted for details.

Figure 4.1 shows the two-parameter bifuration diagram for the 3-dimensional ODE

system (3.20) where the �ow rate k0 and the hemin deay rate k8 have been used as

ontinuation parameters. It basially onsists of �ve regions: In regions 1 and 5, there
is only one stable stationary state. Coming from region 1, the stationary state loses
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Figure 4.1.: Two-parameter bifuration diagram in the �ow rate k0 and the hemin deay

rate k8. Bursting osillations are stable in region 3 whih is bounded by

the period doubling urve (PD) and the saddle-node urve SN1. The dotted

line at k8 = 2.5 marks the parameter path along whih the odimension one

bifuration diagram in Fig. 4.2 has been alulated. Symbols denote: SHi

- urves of subritial Hopf bifurations (dashed), H - urve of superritial

Hopf bifurations (solid), SNi - urves of saddle-node bifurations of �xed

points (solid), PD - urve of period doubling bifurations (dash-dot), odi-

mension two points: GHi - generalized Hopf bifurations (open triangle),

CP - usp (�lled triangle, see also the inset).

stability via a subritial (SH1, dashed line) or a superritial Hopf bifuration (H, solid

line). In the latter ase this leads immediately to the emergene of stable osillations

whih remain of simple periodiity throughout region 2 while in the subritial ase

simple periodi osillations also arise, but in a series of seondary bifurations that will

be disussed in Setion 4.2. The two branhes of Hopf bifurations meet in a odimension

two bifuration point, the generalized Hopf bifuration GH1 at k8 = 1.892 where the

�rst Liapunov oe�ient vanishes.

As the urve of superritial Hopf bifurations (H) is traed towards lower values of k8,

the urve again beomes subritial (SH2) at GH2 where k8 is negative. Notie that the
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4.2. Bifurations along a one-parameter path

region where k8 is negative does not have a physial signi�ane; it is merely inluded

for a onsistent desription of the bifuration senario. Finally, the subritial Hopf

bifuration turns into a neutral saddle (where the eigenvalues ful�ll λ1 + λ2 = 0 with

λ1, λ2 ∈ R) lose to the usp singularity (CP, solid triangle). However, this does not

orrespond to a bifuration. The region in the viinity of the usp point is magni�ed

in the inset of Fig. 4.1 whih shows that two branhes of saddle-node points (SN1 and

SN2) emanate from CP.

Bursting osillations are stable in region 3. This region is entered through a urve of

period doubling bifurations (PD) while it is terminated by a branh of the saddle-node

points SN1. In region 4 two saddle points oexist with one stable equilibrium whih

remains the only �xed point in region 5 where it is stable. Aordingly, all trajetories

settle down to a stationary state in the regions 4 and 5.

The partition into �ve regions, however, only gives a �rst impression of the expeted

dynamis of the ODE system (1.2). For example, there is a narrow band to the right

of the period doubling urve PD where a whole asade of period doubling bifurations

ours as the �ow rate k0 is inreased for a �xed value of k8. Subsequently, a folded

haoti attrator emerges before the �rst periodi bursting osillations appear in region 3.
The bifurations ouring beyond the period doubling bifuration PD are disussed

in Setions 6.2 and 6.3. Furthermore, it is known from the normal form theory of

odimension two bifurations [76℄ that there is an additional urve bifurating from

the generalized Hopf point GH1 in Fig. 4.1 (in our ase towards higher values of k8)

along whih a saddle-node bifuration of periodi orbits takes plae. This bifuration

is involved in the emergene of stable simple periodi osillations above the generalized

Hopf point GH1 where the Hopf bifuration is subritial. The details will be disussed

in the next Setion.

4.2. Bifurations along a one-parameter path

In order to obtain a full piture of the bifuration sequenes, we take a setion along

the one-parameter path k8 = 2.5 in the k0-k8 plane (dotted line, Fig. 4.1) where the

stationary state disappears via a subritial Hopf bifuration. As in the ase of the two-

parameter ontinuation, there are now several odimension one bifurations of stationary

points and periodi solutions that may be enountered upon varying one parameter in

the ODE system (3.20). The relevant bifurations are summarized in the Appendix A.3

whih should be onsulted for referene.

Coming from region 1 of the two-parameter plane above the generalized Hopf bifur-

ation point (f. Fig. 4.1), the simple periodi osillations arise in the following senario

(inset Fig. 4.2): The stable stationary state (solid line) loses stability at k0 = 1.6461
via a subritial Hopf bifuration (SH) giving rise to an unstable limit yle with one

unstable dimension (one of the two Floquet multipliers is outside the unit irle). The

subritial Hopf is followed by a saddle-node bifuration of periodi orbits (SNP) at

k0 = 1.6438 where the seond multiplier also leaves the unit irle and the limit yle

gains a seond unstable dimension. In the narrow parameter interval between the SNP
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Figure 4.2.: One-parameter bifuration diagram along the line k8 = 2.5 (f. Fig. 4.1).

The inset shows a magni�ation of the retangular region where the simple

periodi osillations (solid irles) emerge via a subritial Hopf (inset, SH)

followed by a saddle-node bifuration of periodi orbits (inset, open triangle,

SNP) and an (inverse) Neimark-Saker bifuration (inset, �lled square, NS).

Between SNP and SH, the only stable attrator is a �xed point while a torus

is stable between SH and NS. Mixed-mode osillations are observed beyond

the period doubling (PD) where the primary limit yle (open irles) is

unstable (see text for details). The osillatory region extends until the

saddle-node bifuration SN1 where a homolini bifuration ours (see also

Setion 6.3). For the osillatory states, the minimum and the maximum

amplitude of the osillation are plotted.

and the SH bifuration point, the stationary state is the only attrator sine the oex-

isting limit yle is unstable. Stable osillations, however, arise at k0 = 1.6519 by an

(inverse) Neimark-Saker (NS) bifuration where both multipliers simultaneously ross

the unit irle inwards. Thus, there is a stable quasi-periodi solution bifurating to

the left of the Neimark-Saker point (towards lower k0 values) where it oexists with a

saddle point (orresponding to the dashed line in the inset of Fig. 4.2) in the parameter

interval k0 ∈ (1.6461, 1.6519).
The properties of the torus solution are further disussed in Setion 8.3 where we

analyze the phase �ow on the torus using the slow-fast struture of the hemin system.
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Figure 4.3.: Overlay of the two-parameter bifuration diagrams of the 3-dimensional

ODE system (3.20) (blak lines) and the original 6-dimensional ODE system

(1.2) (red lines).

4.3. Comparison between the 6-d system and its 3-d

approximation

As Fig. 4.3 reveals, there is virtually no di�erene between the two-parameter bifuration

diagrams of the 3-dimensional (blak lines) and the original 6-dimensional hemin system

(red lines). Aordingly, the loal bifuration struture of the 6-dimensional ODE system

(1.2) is perfetly preserved by the 3-dimensional ODE system (3.20). Thus, the latter

yields a very good quantitative approximation to the original dynamis whih, therefore,

will be used for a further investigation of the bursting osillations in the seond Part of

the thesis.

The two-parameter bifuration diagram for the 6-dimensional system (1.2) was reon-

struted from 1-dimensional bifuration diagrams taken along equally spaed setions in

the two-parameter plane where k8 was varied with a stepsize of 0.1.
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5. Summary and Disussion
The �rst Part of the thesis is onerned with the redution of omplex (bio-)hemial re-

ation networks of the form (3.22) while keeping their essential dynamial properties. We

have introdued the onept of quasi-integrals as a numerial method for systematially

�nding a partiular lass of quasi-stationary manifolds in suh networks. Subsequently,

the slow manifolds an be used to eliminate as many dynamial degrees of freedom as

there are quasi-integrals in a given reation network. As a result, one obtains a system of

redued dimensionality whih ontains only the essential dynamial degrees of freedom.

It was shown that quasi-integrals of the type (3.25) and (3.27) may arise from ratios

between ertain omponents of the reation rate vetor R. In general, the omponents

of the reation rate vetor are nonlinear funtions of the phase spae variables desribing

the kinetis of the individual reation steps. Thus, the lass of slow manifolds, that an

be deteted, not only inludes linear relationships among the phase spae variables, but

generially also ontains those whih are de�ned by nonlinear equations.

The method of quasi-integrals is inspired by the geometrial singular perturbation

theory of Fenihel [60℄ (f. Se. 3.1) whih sets the suitable mathematial framework

for the desription of hemial reation systems evolving on di�erent time sales. In

this approah, the existene of quasi-integrals suh as (3.25) and (3.27) is a su�ient

ondition for the existene of a slow manifold. The major advantages of the proposed

method are that

- it does not require a priori knowledge about the relevant time sales in a system.

To the ontrary, it identi�es them.

- it does not rely on a sophistiated resaling proedure in order to identify small

parameters in the system.

- it is an algorithmi proedure and therefore, it is espeially suited for a straight-

forward redution of higher dimensional networks.

In Setion 3.2, we have exemplarily introdued the method of quasi-integrals using the

6-dimensional hemin system (1.2). The reation mehanism (1.1) of the hemin system

omprises the two equilibria

SO2−
3 + H+

k5,k4

⇋ HSO−
3 (5.1)

A+
k6,k7

⇋ A + H+,

and it is not too surprising that the quasi-integral, that we have found, orresponds to

one of them, namely the �rst equilibrium reation in (5.1). However, this observation is
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5. Summary and Disussion

not trivial sine the seond equilibrium reation in (5.1) does not de�ne a quasi-integral.

In order to demonstrate that the method of quasi-integrals does not only detet quasi-

stationary manifolds assoiated with equilibrium reations, we also applied the method

to the 10-dimensional peroxidase�oxidase reation system (f. Appendix B.3) whih,

in ontrast to the hemin system, is entirely omposed of irreversible reation steps.

Remarkably, we identi�ed three possible quasi-integrals in the reation mehanism of

the PO system, two of whih lead to redued systems that even quantitatively agree

quite well with the original one.

In Setion 4.3, we ompared the 6-dimensional ODE system (1.2) with its 3-dimensional

approximation (3.20) based on their loal odimension two bifuration diagrams. The

3-dimensional system has been obtained in Setion 3.2 as a result of a QSSA using the

quasi-integral (3.5). The fat that the bifuration diagrams for both systems are virtu-

ally idential demonstrates that the 3-dimensional ODE system has the same dynamial

properties as the original 6-dimensional ODE system (1.2) and thus, the former may be

used for a further analysis of the bursting osillations in the seond Part of the thesis.

The ruial step in identifying a quasi-integral was to de�ne, under whih onditions

the graph of a quasi-integral is to be regarded as `almost onstant'. As we have already

notied, there is some ambiguity in this de�nition and espeially for higher dimensional

ODE systems, it would be of great value to have a numerial measure that allows for a

more systemati or even automati detetion of quasi-integrals. Based on some ommon

properties shown by all of the deteted quasi-integrals, we suggest the following working

de�nition: A quasi-integral is a non-onstant funtion of the phase spae variables that

remains bounded almost everywhere in a stripe of adjustable thikness µ around 1.
This means that outliers are only allowed in time intervals of adjustable length δ whih

should be small as ompared to typial time sales in the system suh as the period of

the osillations.

However, when deiding whether a ertain ratio Iij is to be regarded as almost on-

stant, our method is quite similar to other semi-objetive methods suh as prinipal

omponent analysis or even singular perturbation theory. In the ase of prinipal ompo-

nent analysis, one usually has to deide how many modes to keep in order to reonstrut

the original data based on the eigenvalue spetrum of a suitable ovariane matrix. But

sine there is no a priori interpretation of the prinipal omponents of a given data set, a

rigorous measure, indiating how many modes to retain, is equally missing. On the other

hand, for singular perturbation theory to be valid, the singular perturbation parameter

ε is required to be su�iently small. However, as we have already pointed out, in pra-

tial appliations ε is given in terms of intrinsi system parameters and thus, has some

�xed onstant value. Moreover, it may even beome of order unity for some systems

without leaving the range of appliability of singular perturbation theory. Thus, for a

partiular system one usually relies on numerial simulations in order to test the validity

of the approximation. Indeed, this is exatly what we have done when we ompared the

original and the redued systems based on their loal bifurations.

Future e�orts should omprise tests of the method of quasi-integrals in higher dimen-

sional reation networks in onjuntion with a suitable extension and/or implementation

of our working de�nition of a quasi-integral.
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6. Dynamis and BurstingOsillations in the Hemin System
In this Chapter, we investigate the bifurations leading to the emergene of bursting os-

illations in the hemin system (1.1) and subsequently, disuss their bifuration sequenes

in terms of Farey progressions. Thereby, we ontinue the desription of the bifuration

diagram of the hemin system in its 3-dimensional approximation (3.20) where the sim-

ple periodi osillations arose via a series of odimension one bifurations involving a

subritial Hopf bifuration, a saddle-node bifuration of periodi orbits and an inverse

Neimark-Saker bifuration (Fig. 4.2).

In the next Setion, we shall introdue a oordinate system that will be more suitable

for the investigation of the bursting osillations, sine it is well adapted to the slow-

fast struture of the hemin system. In Setion 6.2, we desribe the formation of a

haoti attrator that emerges subsequent to the period doubling bifuration PD shown

in the one-parameter bifuration diagram of Fig. 4.2. This suggests that the bursting

osillations arising beyond the period doubling asade are not assoiated with phase-

loked states on a 2-torus. Instead, we observe periodi-haoti progressions of mixed-

mode states in Setion 6.3 whih are organized in pruned Farey sequenes.

6.1. Change of oordinates

For onveniene, we will hange the notation of the variables (y1, y2, y3, y4) used in (3.20)

to (x, y, z, s) and abbreviate the onstant x0
4 − x0

1 + x0
2 as c. In the new oordinates, the

3-dimensional hemin system (3.20) reads

ẋ = k0x
0
2 − x

{

k0 + k1s(x, y) +
(

k2 + k3(c − x − y + s(x, y))
)}

(x0
1 − x0

2 + x − s(x, y))

ẏ = −k0y − k6y + k7z(c − x − y + s(x, y)) (6.1)

ż = k0(x
0
5 − z) − k8z + k6y − k7z(c − x − y + s(x, y))

where s(x, y) stands for the slow manifold (3.19) of the 6-dimensional system (1.2) given

by

s =
1

2
(x + y − c − k4

k5

) +
1

2

√

(x + y − c +
k4

k5

)2 + 4
k4

k5

(x0
1 − x0

2 + x). (6.2)

However, numerial simulations suggest to investigate the bursting osillations in the

hemin system in a di�erent oordiante system where the slow-fast struture of the ODE
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6. Dynamis and Bursting Osillations in the Hemin System

system (6.1) beomes more apparent. To this purpose, we introdue the sum of y and z

as a new oordinate aording to

p = y + z. (6.3)

This linear oordinate transformation has the e�et that one of the three equations

in (6.1) beomes linear in the new oordinate system. On the other hand, numerial

simulations show that y and z are basially antiorrelated (f. Fig. 6.1 in the next Setion)

suh that the sum of them evolves on a muh slower time sale than the 2-dimensional

x-y subsystem. This observation will be ruial to analyze the origin of bursting and

quasi-periodi behavior in the hemin system. In hemial terms, the sum of y and z

is nothing but the total onentration of hemin speies in the system whih, therefore,

might also be of physiologial relevane.

Using (x, y, p) oordinates, the ODE system (6.1) is transformed into

ẋ = k0x
0
2 − x

{

k0 + k1s(x, y) +
(

k2 + k3(c − x − y + s(x, y))
)}

(x0
1 − x0

2 + x − s(x, y))

ẏ = −(k6 + k0)y + k7(p − y)(c − x − y + s(x, y)) (6.4)

ṗ = k0(x
0
5 − p) − k8(p − y)

whih will be the starting point for the slow-fast analysis of the hemin system in

Chapter 8.

6.2. A period doubling route to haos

In the following, we shall desribe the formation of a haoti attrator whih emerges

subsequent to the period doubling bifuration PD in Fig. 4.2, but prior to the bursting

osillations. Reall that the simple periodi osillations (full irles in Fig. 4.2) were

generated by an inverse Neimark-Saker bifuration at k0 = 1.6519. They remain stable

up to k0 = 2.5169 where the �rst of a series of period doubling bifurations renders the

simple osillations unstable and reates a stable period-2 yle (Fig. 6.1a). The next two

period doublings our at k0 = 2.5241 (Fig. 6.1b) and 2.5253 (not shown).

During the period doubling asade, the two multipliers of the primary unstable limit

yle (open irles in Fig. 4.2) rapidly diverge until they are separated by approximately

12 orders of magnitude, i.e. µ1 ∼ 106 and µ2 ∼ 10−6. Thus, the assoiated Poinaré

map exhibits a strong ontration in one and a fast expansion in the other diretion

indiating the reation of a folded attrator for the subsequent haoti states.

Figure 6.1 shows one of these states together with its Poinaré map (f. inset). For

the Poinaré map, we plot the value of the x variable eah time the y variable passes

a loal minimum against the value of x at the preeeding minimum of y. As a result,

the Poinaré map exhibits a typial (asymmetri) tent map shape indiating haoti

behavior. Indeed, the largest Liapunov exponent, haraterizing the loal divergene of

initially lose trajetories, is found to be 0.84 at k0 = 2.529. Figure 6.1d shows a nearby

haoti state at k0 = 2.53 with a Liapunov exponent of 1.12. This state di�ers from

the former one in that the trajetory now performs small amplitude exursions to the
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Figure 6.1.: Period doubling asade leading to a haoti attrator: Phase spae proje-

tions of period-2 (a), period-4 (b) and two subsequent haoti states (),(d)

are shown. The haoti trajetory in () performs only large amplitude osil-

lations while the haoti trajetory in (d) makes irregular exursions to the

neighborhood of the saddle point (open triangle). The assoiated Poinaré

map of the haoti state in () is shown in the inset. It exhibits the shape

of an inverse tent map with a uspoid tip (see text for details). The inset

in (d) shows the same haoti state as in (d) but in a y-z projetion of (6.1)

where it beomes apparent that the haoti attrator is ontained in a thin

layer in phase spae.

neighborhood of the saddle point (open triangle) in an irregular fashion indiating the

upoming bursting osillations. The inset in Fig. 6.1d shows the same haoti trajetory

at k0 = 2.53 but in a y-z projetion where it beomes self-evident that y and z are

basially antiorrelated whih auses the haoti attrator to be ontained in a thin

layer in phase spae; a property that also holds for the subsequent bursting osillations.

Due to the anti-orrelation between y and z, their sum y +z hanges only slowly in time

whih again suggests to introdue the sum of y and z as a new variable as we have done

in equation (6.3).
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Figure 6.2.: The 1120 bursting state (MMO) at k0 = 2.545 is shown in a y-x projetion

(a) and in a p-y projetion (b) from whih the unfolding of the bursting state

along the p diretion beomes apparent. The orresponding time series is

presented in () while the dashed retangular region in () is magni�ed in

(d) showing the small amplitude osillations.

6.3. Bursting osillations

Subsequent to the formation of the haoti attrator, we observe periodi-haoti pro-

gressions of bursting osillations (or MMOs) whih are organized into pruned Farey

sequenes as desribed below. Note that the bursting states are not shown in the one-

parameter bifuration diagram of Fig. 4.2 sine they do not bifurate from the primary

periodi orbit. Instead, they emerge beyond the haoti window that follows the period

doubling bifuration PD. This suggests that they belong to isolated bifuration urves.

Therefore, we present some of the bursting states that were found by diret numerial

integration at the orresponding parameter values.

The �rst periodi bursting state is observed at k0 = 2.545 where 11 large amplitude

osillations alternate with 20 small exursions (Fig. 6.2). Aording to the mixed-mode

nomenlature LS, this state is denoted as 1120. Figure 6.2a shows a projetion onto the

x-y plane (similar to that in Fig. 6.1). If we regard, however, the same state in the p-y
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6.3. Bursting osillations

projetion (Fig. 6.2b) using the newly introdued (x, y, p) oordinate system (f. Se.6.1),

the `unfolding' of the bursting osillations along the p diretion beomes apparent: In

the x-y projetion (Fig. 6.2a) the small amplitude osillations are loated in the right

lower orner while in Fig. 6.2b they our along a line-like manifold at y ∼ 2.1. In

Fig. 6.2 we present the time series orresponding to the pase portraits of Figs. 6.2(a,b).

The dashed retangular region is magni�ed in Fig. 6.2d showing the small amplitude

osillations.

As the �ow rate k0 inreases from 2.545, where a 1120 state is observed, to k0 =
3.778, narrow haoti windows alternate with further periodi windows whih ontain

bursting states with a gradually dereasing number L of large amplitude osillations.

This periodi-haoti sequene approahes the window orresponding to L = 1 at k0 =
3.31 where a 116 state is stable. Within eah periodi window of �xed L, we �nd

pruned Farey sequenes of bursting states with a di�erent number S of small amplitude

osillations. For example, in the periodi window orresponding to the 4S states, the

following progression was numerially resolved: 417 (k0 = 2.768) → 418 (k0 = 2.780) →
419 (k0 = 2.800) → 420 (k0 = 2.830). A omplete Farey sequene would also ontain

the intermediate states whih are obtained by Farey arithmeti (f. Table 1.1), e.g.

835 = 417 ⊕ 418, et.

In the transition region between two states LS and LS+1 with the same number of

large amplitude osillations, narrow haoti windows as well as onatenated states of

the form LSLS+1 are found. The latter are periodi patterns that repeat after two

revolutions while their number of small amplitude osillations di�ers by one. For the

example above, the 417418 state is observed at k0 = 2.775 (Fig. 6.3) while the other two

states 418419, 419420 our at k0 = 2.795, 2.817, respetively.
The parameter window where LS states are stable beomes larger as L gets smaller.

Consequently, we also observed progressions starting with a lower number of small am-

plitude osillations, e.g. 113 at k0 = 3.235. At k0 = 3.390, the number of small amplitude

osillations for the 1S progression already exeeds 20, but their amplitudes are too small

to be ounted. As the sequene of 1S states approahes k0 = 3.778, the number of

small amplitude osillations steadily inreases while the haoti region between two suh

states beomes broader. Thus, one may suspet that within eah periodi window of a

�xed number of large amplitude osillations, LS states with arbitrary integer number S
exist though most of them our in too narrow parameter intervals to be observed in

numerial simulations.

Subsequent to the periodi-haoti progression of bursting osillations, there is a fur-

ther periodi window where we observe simple periodi osillations whih are now of

relaxational type and have long periods (Fig. 6.4a). In Setion 8.2 we shall show that

the hemin system undergoes a transition in the bursting mehanism at k0 = 3.778 whih

auses the relaxational harater of the osillations beyond the periodi-haoti pro-

gression of bursting states. The relaxational osillations terminate at k0 = 3.858 by a

saddle-node homolini bifuration (f. Appendix A.5) where the saddle-node bifuration

SN1 (f. Figs. 4.1 and 4.2) ours on the formerly periodi solution (Fig. 6.4b).

This ompletes the disussion of the bifuration diagram in Fig. 4.2 along the one-

parameter path at k8 = 2.5 in Fig. 4.1.
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Figure 6.3.: The onatenated bursting state 417418 at k0 = 2.775 in a p-y projetion:

The trajetory `loses' after two revolutions; one onsists of 4 large and 17

small, the other one of 4 large and 18 small amplitude osillations.
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Figure 6.4.: Large relaxational osillations at k0 = 3.8 lose to a homolini orbit (a).

The orresponding trajetory in phase spae is shown in (b). SN1 marks the

loation where a saddle-node bifuration (the same as in Fig. 4.2) is to our

at k0 = 3.858 on the formerly periodi solution. This yields a saddle-node

homolini bifuration ausing the osillations to vanish.
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7. Slow-Fast Analysis � TheMethod
Before the slow-fast struture of the hemin system will be analyzed in detail, we present

the basi ideas underlying a slow-fast analysis as it has been introdued by Rinzel and

Ermentrout [23℄ to desribe the bursting behavior of neural systems. In suh systems, the

dynamial variables evolve on di�erent time sales similar to the reation networks that

have been investigated in the �rst Part of the thesis. However, the ruial di�erene is

now that the time sale separation between the slow and the fast proesses is not in�nite

anymore.

As a onsequene, one an not simply assume that the fast proesses relax to a slow

manifold and heneforth instantaneously follow the slow dynamial degrees of freedom.

Instead, the fast dynamial variables must not be negleted in the dynamial desription.

In fat, it is the dynamis of the slow proesses that trigger ertain bifurations in the fast

subsystem. As a result, there are several attrating states in di�erent regions of phase

spae. One may then arrive at a geometrial omprehension of the dynamis sine the

�ow of a system exhibiting a slow-fast struture is mostly on�ned to the neighborhood

of the attrating states of the fast subsystem.

We shall use a artoon of the hemin system in order to exemplarily desribe its slow-

fast struture in phase spae. This example should failitate the understanding of the

bifuration diagrams that will be presented in Chapter 8 where we analyze the slow-fast

struture of the hemin system in detail.

7.1. Cartoon of the slow-fast struture of the hemin

system

Consider Fig. 7.1 where the slow-fast struture of the 3-dimensional hemin system (6.4)

is illustrated in a artoon using the (x, y, p) oordinate system. Here we assume that

the dynamis of the hemin system an be deomposed into a fast motion in the x and

y diretions and a slow motion along the p diretion. Aordingly, the dynamis of the

system should be desribable in terms of an ODE system of the form

ẋ = f(x, y, p) (7.1)

ẏ = g(x, y, p)

ṗ = εh(x, y, p)
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Figure 7.1.: Cartoon of the slow-fast struture of the 3-dimensional hemin system (6.4).

For eah �xed value of the slow variable p, there are ertain invariant states

in the fast x-y subsystem. At p0, for example, a stable limit yle (blak)

oexists with an unstable limit yle (red) and a stable �xed point. Symbols

denote: SNP � saddle-node bifuration of periodi orbits, SH � subritial

Hopf bifuration, SNi � saddle-node bifuration of stationary points,

Fp0
� 2-dimensional spae of the fast subsystem at p = p0, C � ylinder-like

manifold omposed of stable limit yle solutions of the fast subsystem,

L � line-like manifold omposed of stationary points of the fast subsystem.

where ε is a small parameter indiating that p evolves on a slower time sale than the

x-y subsystem.

For the time being, let us onsider the limit ε → 0 in (7.1) whih orresponds to the

assumption that p is not a dynamial variable, but a parameter for the 2-dimensional fast

x-y subsystem. Then, for eah �xed parameter value p0, there exist ertain invariant sets

suh as stationary and/or osillatory states in the 2-dimensional fast subsystem whih

is symbolially represented as the plane spae Fp0
in Fig. 7.1. For example, at p0, there

are three oexisting invariant sets: A stable limit yle (blak irle), an unstable limit

yle (red irle) and a stable �xed point (blak dot).

In the next step, the dynamial nature of p is taken into aount. To this purpose, we

again onsider the dynamis of the ODE system (7.1), but this time for small nonzero

ε. As p slowly varies aording to the third equation in (7.1), the type and stability

of the states in the fast x-y subsystem will also hange. In this sense, p now ats as a

quasi-stati bifuration parameter for the fast subsystem.
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For example, as p moves to the left, the stable and the unstable limit yle merge

in a saddle-node bifuration (SNP) and disappear leaving the stable stationary (thin

blak line) state as the only invariant set. On the other hand, as p moves to the right,

the unstable limit yle shrinks and vanishes in a subritial Hopf bifuration (SH).

Heneforth, a large amplitude limit yle oexists with a saddle point. Eventually, a

saddle-node bifuration (SN1) takes plae on the large amplitude limit yle to form a

saddle-node homolini orbit (f. Appendix A.5) by whih the periodi solution of the

fast subsystem eases to exist.

Now the basi assumption underlying the slow-fast analysis is that the �nite time sale

separation between the fast x-y subsystem and the slow p dynamis is suh that the

stationary and osillatory states, that exist in the fast subsystem at a partiular value

of p, extend along the p diretion to quasi-stationary manifolds in the 3-dimensional

phase spae (f. Fig. 7.1), i.e. the stationary states beome a line-like quasi-stationary

manifold (L) while the osillatory states form a (�nite) ylinder-like manifold (C) whih
is terminated at one side by a saddle-node bifuration (SNP) and at the other side by a

saddle-node homolini orbit.

Here the term `quasi-stationary' is used in a somewhat di�erent meaning as ompared

to the �rst Part of the thesis where it denoted the zeroth order approximation to a slow

manifold to whih the �ow is on�ned due to an in�nite time sale separation between

the fast and slow proesses (see Setion 2.2). Here and in the following, we shall use the

term `quasi-stationary manifold' in the sense that the �ow of the 3-dimensional ODE

system (7.1) is only on�ned to the neighborhood of the quasi-stationary manifolds. For

example, to the left of the saddle-node bifuration (SNP), L is the only attrating set.

Consequently, a trajetory would evolve lose to L in an osillatory or straight manner

depending whether the eigenvalues along L are omplex or real, respetively. Similarly,

between the subritial Hopf (SH) and the saddle-node bifuration (SN1), the ylinder-

like manifold C is the only attrating set suh that in this region of the phase spae a

trajetory would perform large amplitude osillations in the neighborhood of C.

7.2. A lassi�ation sheme for bursting behavior

We have explained how the qualitative behavior of the 3-dimensional �ow (7.1) an be

understood in terms of the invariant sets of the fast x-y subsystem and their bifurations

leading to di�erent attrating states in the orresponding regions of the phase spae.

Note, however, that the dynamis of a partiular trajetory is essentially determined

by the third equation in (7.1) whih desribes the slow dynamis of the quasi-stati

bifuration parameter.

A systemati approah to lassify the bursting behavior of systems exhibiting a slow-

fast struture has been developed by Izhikevih [24℄. By taking into aount all possible

ombinations of odimension one bifurations that may our in the fast subsystem,

di�erent bursting mehanisms are distinguished by the kind of bifurations that lead to

the bursting behavior. Aording to this lassi�ation sheme, the hemin system, as it

is shown in Fig. 7.1, is a subHopf/fold-yle burster, sine the two bifurations, SH and
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SNP, essentially determine the bursting behavior of this system (f. Chapter 8).
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8. The Slow-Fast Struture of theHemin System
This Chapter is devoted to a detailed study of the slow-fast struture of the hemin sys-

tem by whih the origin of its bursting as well as its quasi-periodi behavior will be

eluidated. The basis for the slow-fast analysis will be the 3-dimensional hemin system

in the representation of (6.4) that has been introdued in Setion 6.1 using (x, y, p) oor-
dinates. In this oordinate system, the slow-fast struture of the hemin system beomes

manifest sine p evolves on a slower time sale than the 2-dimensional x-y subsystem.

Furthermore, numerial simulations have shown that the bursting osillations `unfold'

along the p diretion (f. Fig. 6.2b) indiating that the (x, y, p) oordinate system is

espeially suited for a slow-fast analysis. Notie that while in the hemin system, the

slow variable is simply given by the linear ombination p = y + z, it may be di�ult to

�nd suh a suitable variable in general.

The slow-fast analysis is performed by treating the slow variable p as a (quasi-stati)

bifuration parameter for the 2-dimensional fast subsystem

ẋ = k0x
0
2 − x

{

k0 + k1s(x, y) +
(

k2 + k3(c − x − y + s(x, y))
)}

(x0
1 − x0

2 + x − s(x, y))

ẏ = −(k6 + k0)y + k7(p − y)(c − x − y + s(x, y)) (8.1)

whih is simply obtained by omitting the third equation in the 3-dimensional hemin

system (6.4)

ṗ = −(k0 + k8)p − k8y + k0x
0
5 (8.2)

that desribes the slow p dynamis sine both, k0 and k8, vary on the sale 10−4s−1.

In the following, we will analyze the bifuration struture of the ODE system (8.1)

in two steps: In Setion 8.1, we �x the �ow rate k0 at an arbitrary value and desribe

the bifurations in the fast subsystem (8.1) leading to the bursting osillations at this

partiular value of k0. Depending on the urrent value of the slow variable p, we will �nd

di�erent attrating states in the fast subsystem. These states extend to quasi-stationary

manifolds along the p diretion and on�ne the trajetories of the full 3-dimensional

system (6.4) to their neighborhood.

In Setion 8.2, we investigate how the quasi-stationary manifolds that exist at a par-

tiular value of k0 hange in dependene on k0. Therefore, k0 may be regarded as an

external bifuration parameter for the 2-dimensional subsystem (8.1). To the ontrary,

the atual value of the slow variable p an not be presribed arbitrarily. Instead it

evolves dynamially � although within a narrow range of values � aording to equation

(8.2) and thus, p an be alled an internal bifuration parameter.
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8. The Slow-Fast Struture of the Hemin System

Note that the trunated ODE system (8.1) no longer depends on the hemin deay rate

k8 whih was used as a seond bifuration parameter in the two-parameter bifuration

diagram in Fig. 4.1. Thus, for eah �xed value of the external bifuration parameter

k0, we obtain ertain quasi-stationary manifolds in the 3-dimensional system that exist

independently of k8. However, k8 determines (together with k0) the slow dynamis of

the p variable aording to equation (8.2) and onsequently, it in�uenes the dynamis

of the trajetories of the full 3-dimensional system.

The last Setion is devoted to a detailed study of the torus solution that has been

enountered lose to the subritial Hopf bifuration in Fig. 4.2. We show that the

rather unusual phase �ow along the torus is a result of the slow-fast struture of the

hemin system whih an be analyzed in the same way as the bursting osillations.

8.1. Slow-fast analysis at a �xed value of k0

In the following, we analyze the odimension one bifurations of the fast subsystem (8.1)

at a �xed value of the �ow rate k0 whih we arbitrarily hose as 2.8. At this partiular
value of the �ow rate, we will �nd that the bifuration struture of the fast subsystem

(8.1) is similar to the one desribed in Setion 7.1 where we used a artoon of the hemin

system to illustrate its slow-fast struture.

Figure 8.1a shows the bifuration diagram of the fast subsystem where p has been used

as a bifuration parameter whose range has been limited due to minimum and maximum

values obtained from prior numerial simulations. Stationary states are plotted as thin

lines while the maxima and minima of the osillatory states are plotted as bold lines.

The stability of the states is indiated by olor and line style: blak solid lines denote

stable states while red dashed lines enode unstable states.

There are two branhes of stable stationary states in the fast subsystem, one at y ∼
2.07 and the other at y lose to 1. Both of these branhes beome unstable via subritial

Hopf bifurations (SH1 and SH2) while the stable osillations emerge via saddle-node

bifurations (SNP1 and SNP2) where a stable limit yle merges with an unstable one.

The dashed retangular region in Fig. 8.1a is magni�ed in Fig. 8.1b. It shows the

bifurations in the fast subsystem together with the 419 bursting state (blue) at k8 = 2.5
whih is on�ned to the region in phase spae where the subritial Hopf SH1 and the

saddle-node bifuration SNP1 our in the fast subsystem. Notie that in this region of

the phase spae the bifuration struture is exatly the same as in Fig. 7.1.

The dotted line ṗ = 0 denotes the nullline of (8.2), i.e. it indiates in whih region of

the phase spae the trajetory (blue line) moves to the left (ṗ < 0, below the nullline)

and to the right (ṗ > 0, above the nullline). Note that the orbit is always on�ned to the

neighborhood of the invariant sets of the fast subsystem. At the present value of k8 = 2.5,
it makes 4 loops lose to the ylinder-like manifold (bold blak solid line) before it `jumps'

to the line-like manifold (blak thin line) where it performs 19 small osillations. This

an be seen in Fig. 8.1 whih shows a magni�ation of the dashed retangular region

in Fig. 8.1b. In general, a LS state wraps L times around the ylinder-like manifold and

osillates S times along the line-like manifold. In Fig. 8.1d a 3-dimensional view of the
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Figure 8.1.: Slow-fast analysis at a �xed value of the �ow rate k0 = 2.8: The bifuration
diagram of the fast subsystem (8.1) (a). The dashed retangular region is

magni�ed in (b) together with the trajetory (blue line) of a 419 state at

k8 = 2.5. The dashed retangular region in (b) is magni�ed in (). In (d)

a 3-dimensional view of the 419 state is shown together with a projetion

onto the x-y plane. Solid and dashed bold lines denote maxima and minima

of a stable (blak) and an unstable (red) limit yle while solid and dashed

thin lines denote stable (blak) and unstable (red) �xed points of the fast

subsystem.

419 state in the (x, y, p) oordinate system is visualized together with a projetion onto

the x-y plane whih again demonstrates the unfolding of the bursting state along the p
diretion.

In order to larify how the bifurations in the fast subsystem lead to the emergene

and disappearane of the bursting osillations, we desribe one revolution of the traje-

tory in detail: To the left of the SNP1 point in Figs. 8.1(b,) the line-like quasi-stationary

manifold is the only attrator. Sine it is entirely omposed of stable stationary states

of the fast subsystem (8.1) whih are foi, the trajetory performs damped osillations

along this manifold (Fig. 8.1). Subsequent to the subritial Hopf point SH1, the foi

hange stability and hene, the quasi-stationary manifold beomes unstable. Aord-
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8. The Slow-Fast Struture of the Hemin System

ingly, the amplitude of the osillations inreases again while the trajetory gets more

and more attrated by the invariant ylinder-like manifold that is omposed of stable

limit yle solutions of the fast subsystem. In the following the trajetory wraps around

the ylinder-like manifold while it performs large amplitude osillations. During that

period, it spends some time above and some time below the plane de�ned by the nullline

ṗ = 0 (Fig. 8.1b). In total, however, there is an e�etive movement of the trajetory

towards lower p values until it passes the saddle-node bifuration point SNP1 where the

trajetory jumps bak to the line-like quasi-stationary manifold to omplete one yle.

The reason for the net movement towards lower p values is the slowing down e�et

that the line-like quasi-stationary manifold exerts on the part of the trajetory above

the nullline plane. In other words, the trajetory `feels' the presene of the stationary

points of the fast subsystem.

Aording to the lassi�ation of bursting mehanisms given in [24℄ (f. Se. 7.2), the

hemin system is a subHopf/fold-yle burster at k0 = 2.8 sine the large amplitude

osillations terminate by a fold-yle bifuration (SNP1) while the small osillations

disappear via a subritial Hopf bifuration (SH1). As we shall show in the next Setion,

there is a transition in the bursting behavior at higher values of the �ow rate k0.

8.2. Two-parameter ontinuation in p and k0

So far we have analyzed the bifurations in the fast subsystem (8.1) at one partiular

value of the external bifuration parameter, namely at k0 = 2.8. Now we investigate

how the quasi-stationary states of the fast subsystem hange as k0 is varied. To this

purpose, we again proeed in two steps: First, we monitor the deformation of the line-

like quasi-stationary manifold orresponding to the branh of stationary solutions of the

fast subsystem. In the seond step, we also inlude the osillatory states and present

a omplete two-parameter bifuration diagram of the fast subsystem using the slow

variable p and the �ow rate k0 as parameters.

Figure 8.2 shows how the line-like quasi-stationary manifold (blue lines) deforms as

the �ow rate k0 is inreased from the value 2.8 (I) used in Setion 8.1 via k0 = 3.6 (II) to

k0 = 3.8 (III). Along these urves, we �nd ertain odimension one bifurations whih

are onneted by urves obtained from a two-parameter ontinuation using p and k0 as

parameters. For example, the urve I intersets the branhes SH1 and SH2 (dashed red

lines) in two points where subritial Hopf bifurations our. These Hopf bifurations

are the same as those in Fig. 8.1a.

At a higher value of the �ow rate (k0 = 3.495) there is a Bogdanov-Takens bifura-

tion (BT) ouring in the fast subsystem where the seond branh of subritial Hopf

bifurations SH2 terminates. As a onsequene, the other two branhes of stationary

states (II and III) still interset the �rst subritial Hopf bifuration urve SH1, but no

longer SH2. Instead, the two branhes II and III ross the two saddle-node bifuration

urves SN1 and SN2 that emerge at CP from a usp singularity. Note that the loation

of the �rst saddle-node bifuration SN1 moves towards lower p values as the �ow rate k0

inreases whih may lead to interations of SN1 with the osillatory states generated in
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Figure 8.2.: The urves I, II, III show how the branh of stationary states (blue lines)

of the fast subsystem (8.1) hanges as the �ow rate k0 is inreased from 2.8
to 3.6 and 3.8. The odimension one bifurations ouring along the urves

I, II, III are found at the intersetion points of these urves with the two-

parameter ontinuation urves SHi and SNi. Symbols denote: SHi - urves

of subritial Hopf bifurations (dashed, red), H - urve of superritial

Hopf bifurations (solid, blak), SNi - urves of saddle-node bifurations of

�xed points (solid, blak), odimension two points: GHi - generalized Hopf

bifurations (open triangle), BT - Bogdanov-Takens (diamond), CP - usp

(�lled triangle).

the subritial Hopf bifuration SH1, but whih have been omitted in Fig. 8.2 for larity.

The omplete two-parameter bifuration struture of the fast subsystem inluding the

osillatory states is summarized in Fig. 8.3 where p and k0 were used as parameters.

The bifuration lines SH1, SN1, et. are the same as those in Fig. 8.2. In addtion, a

branh of saddle-node bifurations of periodi orbits (SNP1) is shown whih bifurates

from the generalized Hopf bifuration point GH1 (f. inset Fig. 8.3a). This odimension
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Figure 8.3.: Two-parameter bifuration diagram of the fast subsystem(8.1) using the

slow variable p and the �ow rate k0 as parameters. If p sweeps bak and

forth between region 1 and 2 rossing the SNP1 urve, the dynamis of

the whole system exhibits bursting behavior. In the neighborhood of the

intersetion point 3 a transition in the bursting mehanism ours (see text

and Fig. 8.4 for details). Symbols denote: SHi - urves of subritial Hopf

bifurations (dashed red), H - urve of superritial Hopf bifurations (solid),

SNi - urves of saddle-node bifurations of �xed points (solid), SNP1 - urve

of saddle-node bifurations of periodi orbits (dash-dot), odimension two

points: GHi - generalized Hopf bifurations (open triangle), BT - Bogdanov-

Takens (diamond), CP - usp (�lled triangle).

two bifuration point separates two branhes of Hopf bifurations, a superritial (H,

solid blak line) and a subritial one (SH1, dashed red line). The seond inset Fig. 8.3b

shows a magni�ation of the region lose to the usp bifuration point CP where the

two branhes of saddle-node bifurations originate.

In the two-parameter bifuration diagram Fig. 8.3, one an identify the invariant sets
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of the fast subsystem at a given value of the slow variable p whih, in turn, determine the

potential dynamial properties of the system. For example, region 1 orresponds to the

upper stationary state at y ∼ 2.07 while in region 2 we �nd the ylinder-like manifold

that is omposed of stable limit yle solutions. In addition, there is a small bistable

region bounded by the two urves SNP1 and SH1 where a limit yle oexists with a

stationary state (f. Fig. 8.1). Thus, we dedue that whenever the slow p dynamis is

suh that p sweeps bak and forth between region 1 and 2 in phase spae while rossing

the SNP1 urve, the hemin system exhibits bursting behavior as desribed in Setion 8.1.

8.2.1. A transition in the bursting behavior

The two-parameter bifuration diagram shown in Fig. 8.3 an also be used to identify

transitions in the bursting behavior of the hemin system. To this purpose, onsider

the intersetion point (p, k0) = (2.211, 3.773) marked as 3. Here, the subritial Hopf

bifuration SH1 and the saddle-node bifuration SN1 our at the same value of p in

phase spae. Thus, it beomes possible that in a neighborhood of the intersetion point

the (unstable) osillatory states emanating from the subritial Hopf bifuration may

interat with the branh of (unstable) states that originate in the saddle-node bifura-

tion. In order to show that this truly leads to a transition in the bursting behavior of

the hemin system, we ompare the bifuration diagrams of the fast subsystem for two

neighboring values of the �ow rate k0.

Figure 8.4 shows the odimension one bifuration diagrams of the fast subsystem for

k0 = 3.6 (Fig. 8.4a) and k0 = 3.8 (Fig. 8.4), respetively. Again, the trajetories

(blue lines, alulated for k8 = 2.5) are superimposed on the bifuration diagrams. The

waveform of the osillations is displayed in the orresponding time series (Figs. 8.4(b,d)).

The branhes of stationary states (thin lines) in Figs. 8.4(a,) are the same as the urves

II and III in Fig. 8.2, but now they are supplemented by the osillatory states (bold

lines) arising from the subritial Hopf bifuration SH1. At k0 = 3.6, the �nite ylinder-
like manifold is bounded by the saddle-node bifuration SNP1 at the left side and the

saddle-node homolini orbit SNHC at the right side (at p ∼ 2.7) where the saddle-node
bifuration SN1 ours on the large amplitude limit yle.

As the �ow rate k0 inreases from 3.6 to 3.8, the saddle-node homolini orbit moves

together with the two saddle-node bifuration points SN1 and SN2 towards lower p
values until the �rst of them (SN1) ollides with the unstable limit yle (bold dashed

red line) at approximately k0 ∼ 3.778 (not shown), i.e. slightly above the intersetion

point 3 of Fig. 8.3. Subsequent to this bifuration, the saddle-node homolini orbit

has turned into a saddle homolini orbit (SHC) (f. Appendix A.5 for the di�erene

between the two types of homolini orbits) while the saddle-node bifuration SNP1 has

disappeared (Fig. 8.4). Thus, the ylinder-like manifold (Fig. 8.4a, bold blak solid

lines) does not appear anymore for k0 > 3.778 and the fast subsystem beomes bistable.

Heneforth, the bursting behavior of the hemin system is of fold/subHopf type sine

the upper stationary state disappears via the subritial Hopf bifuration SH1 while the

lower stationary state undergoes a fold bifuration at SN1. A typial trajetory basially

jumps bak and forth between the two quasi-stationary states (Fig. 8.4) ausing the
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strong relaxational harater of the osillations (Fig. 8.4d).
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8.3. The origin of quasi-periodi behavior in the

hemin system

In the preeding Setions, we have shown that the origin of the bursting behavior of

the hemin system may be well understood in terms of the invariant states of the fast

subsystem (8.1) whih the trajetories losely follow during their temporal evolution. It

is the goal of the following investigation to show that the quasi-periodi behavior of the

hemin system has a similar origin that an be equally analyzed by a slow-fast analysis.

To this purpose, we investigate the phase �ow on the 2-torus that has been observed

lose to the subritial Hopf bifuration in Fig. 4.2 (f. Se. 4.2). Figure 8.5 again

shows the inset of Fig. 4.2 where the Neimark-Saker bifuration NS appears in on-

juntion with the saddle-node bifuration SNP and the subritial Hopf bifuration SH.

By analyzing the slow-fast struture of the hemin system (6.4) in the viinity of the

Neimark-Saker bifuration point, we shall show that the rather unusual phase �ow on

the torus is a result of the �nite time sale separation in the hemin system.

8.3.1. A torus with unusual phase �ow

Figure 8.6 shows how the torus deforms as the �ow rate k0 is dereased. In the projetions

on the p-y plane (Figs. 8.6(a,b)), the numerial integration was stopped before the

trajetory made a full revolution on the torus in order to reveal a portion of the �ow

along the `inner part' of the torus. We observe a sharp transition from a smooth torus

shown in Fig. 8.6a at k0 = 1.65189 lose to the Neimark-Saker bifuration point in

Fig. 8.5 to a highly distorted one at k0 = 1.65180 (Fig. 8.6b). The arrows indiate the

diretion of phase �ow along the torus.

The saddle point S that emerges after the subritial Hopf bifuration SH (orre-

sponding to the dashed line in Fig. 8.5) ats as an organizing enter for the torus as

an be seen in Fig. 8.6b: The �ow approahes the `outer part' of the torus along the

2-dimensional unstable manifold of the saddle point. Then it moves to the left (i.e.

towards lower p values) until it hanges diretion and returns along the 1-dimensional

stable manifold of the saddle. The reason for the trajetory to hange its diretion an

be grasped from the slow-fast analysis of (6.4) and will be given below.

The phase �ow on the 2-torus an be desribed as follows: If we onsider a 2-torus as a

diret produt of two irles with a di�erent radius (Fig. 8.7), then the angular veloity

ωL along the irle with the larger radius is muh higher than that of the irle with

the smaller radius (Fig. 8.7a). However, lose to the onset of quasi-periodi behavior,

the opposite situation ωS > ωL is usually enountered [9℄ (Fig. 8.7b). In other words,

the `unusual' phase �ow in Fig. 8.6 is a result of the time sale separation in the ODE

system (6.4) sine the trajetory moves muh faster in the x-y diretions than along the

p diretion.

As the �ow rate k0 is further dereased, the overall shape of the torus in Fig. 8.6b does

not hange signi�antly anymore. However, the time spent by the trajetory along the

stable manifold of the saddle point S gradually inreases until the torus and the saddle
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point have eventually disappeared to the left of the subritial Hopf point (SH) where

only a stable �xed point exists (f. Fig. 8.5).

8.3.2. Slow-fast analysis of the phase �ow on the torus

Figure 8.8 shows the same projetions of the phase �ow on the torus as Figs. 8.6(a,),

but this time the bifuration diagrams of the fast subsystem (8.1) are superimposed.

The arrows indiate the diretion of the �ow on the torus while SNP1 and SH1 mark the

loations where a saddle-node bifuration of periodi orbits and a subritial Hopf bifur-

ation our in the fast subsystem. Thus, the bifuration senario in the fast subsystem

is similar to that shown in Fig. 8.1 where we have analyzed the bursting osillations at

k0 = 2.8.
Notie how the �ow losely follows the quasi-stationary states of the fast subsystem.

For example, at k0 = 1.65189, the trajetory (blue line) basially sweeps bak and forth

the saddle-node bifuration point SNP1 while it performs large amplitude osillations

in the viinity of the ylinder-like manifold (bold blak line), thereby reating quasi-

periodi behavior (Fig. 8.8a). As long as the amplitude of the osillations along the

`inner part' of the ylinder-like manifold is su�iently large, the trajetory does not

`feel' the attrative line-like quasi-stationary manifold (thin blak line) and therefore,

remains in the neighborhood of the ylinder-like manifold.

However, as the �ow rate k0 is dereased, the �ow on the torus hanges (Fig. 8.8b):

As soon as the saddle-node point SNP1 is passed to the left, the trajetory is attrated

by the line-like quasi-stationary manifold. Thus, it is the saddle-node point that auses

the trajetory to hange its diretion. Then the orbit returns to the saddle point S along

the stable manifold of S whih, apparently, is on�ned to a neighborhood of the line-like

quasi-stationary manifold. Subsequently, the trajetory moves along the 2-dimensional

unstable manifold of the saddle point S to approah the ylinder-like manifold where it

performs large amplitude osillations while slowly moving to the left until the saddle-

node point SNP1 is passed again and the next revolution begins.

The results shown in Fig. 8.8 suggest that the quasi-periodi behavior in the hemin

system is aused by the partiular onstellation of the saddle-node (SNP1) and the

subritial Hopf bifuration (SH1) ouring in the fast subsystem (8.1). Indeed, the

two-parameter bifuration diagram Fig. 8.3 shows that the fast subsystem is lose to

a Bautin bifuration (f. Appendix A.4) in Fig. 8.8. Sine the urve of subritial

Hopf bifurations SH1 always remains in the neighborhood of the urve of saddle-node

bifurations SNP1, the two bifurations always our in the same region of phase spae

and thus, they may potentially trap a trajetory in the quasi-periodi way as desribed

above for Fig. 8.8.
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Figure 8.4.: Transition in the bursting behavior from subHopf/fold-yle at k0 = 3.6
(a,b) to fold/subHopf type at k0 = 3.8 (,d). (a),() show odimension one

bifuration diagrams of the fast subsystem together with trajetories (blue

lines) alulated for k8 = 2.5 while (b),(d) depit the orresponding time

series. As the �ow rate k0 inreases, the invariant ylinder-like manifold

(formed by stable limit yles of the fast subsystem) is destroyed as the

loation of the saddle-node bifuration SN1 approahes the unstable limit

yle that is reated in the subritial Hopf bifuration SH1 (a,). Hene-

forth, the fast subsystem is bistable () and only relaxational osillations

are observed (d). Symbols denote: SH1 - subritial Hopf bifuration, SNP1

- saddle-node bifuration of periodi orbits, SNi - saddle-node bifuration of

�xed points, SHC - saddle homolini orbit, SNHC - saddle-node homolini

orbit. Solid and dashed bold lines denote maxima and minima of a stable

(blak) and an unstable (red) limit yle while solid and dashed thin lines

denote stable (blak) and unstable (red) �xed points of the fast subsystem,

respetively.
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Figure 8.5.: Inset of Fig. 4.2: A torus solution bifurates at k0 = 1.6519 from the

Neimark-Saker Point NS (blak square) towards lower values of k0. It

exists in a narrow interval up to the subritial Hopf bifuration SH at

k0 = 1.6461. Other symbols denote: SNP (open triangle) - saddle-node

bifuration of periodi orbits, solid line - stable �xed point, dashed line -

saddle point, open/blak irle - unstable/stable limit yle.
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Figure 8.6.: Deformation of the 2-torus as the �ow rate k0 is dereased: (a),(b) represent

projetions onto the p-y plane while (),(d) depit the orresponding time

series. Close to the Neimark-Saker point NS in Fig. 8.5, the torus looks

smooth (a). At a slightly dereased value of the �ow rate, the `inner part' of

the torus rapidly shrinks to a line-like manifold along whih the trajetory

approahes the stable manifold of the saddle point S (b).

a) b)
ωS

ωL

Figure 8.7.: Flow on a 2-torus with di�erent ratios of angular veloities:

ωL > ωS (`unusual') (a) and ωL < ωS (`usual') (b).
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Figure 8.8.: Slow-fast analysis of the phase �ow on the 2-torus lose to the Neimark-

Saker bifuration (a) and slightly below (b) (see text for details). The

trajetories (blue) are superimposed on bifuration diagrams of the fast

subsystem (8.1). Invariant sets of the fast subsystem: Stable/unstable limit

yles are displayed in bold blak/red lines while stable/unstable stationary

states are drawn as thin blak/red lines.
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9. Summary and Disussion
In the seond Part of the thesis, we have studied the bursting or mixed-mode osillations

in the 3-dimensional hemin system (6.4) where we have been partiularly interested in

the eluidation of the mehanism generating the bursting osillations.

In Chapter 6, we showed that the bursting osillations in the hemin system arise

subsequent to the formation of a haoti attrator that follows a period doubling asade.

This suggests that the bursting osillations are not assoiated with phase-loked states

on a 2-torus whih is stable in another region of the parameter spae. Instead, the MMOs

ome in periodi-haoti sequenes with di�erent levels of organization. At the top level,

the periodi windows are labeled by the number L of large amplitude osillations whih

at the same time orrespond to the levels of a Farey tree. Within eah periodi window

of �xed L, we observed pruned Farey sequenes of LS states with a di�erent number

S of small amplitude osillations. Transitions between adjaent states LS and LS+1

again our via narrow haoti windows where periodi onatenated states of the form

LSLS+1 are embedded. Similar bifuration sequenes were also observed by Hauser and

Olsen [13℄ in the PO system and Koper [28℄ in a three variable model system.

The observation that mixed-mode states LS of a gradually dereasing number L of

large amplitude osillations alternate with narrow haoti windows together with the fat

that a haoti attrator was formed prior to the emergene of the �rst bursting state,

suggests that the bursting osillations might atually be embedded in a haoti attrator

similar to a senario reported by Goryahev et. al. [31℄. In this artile it is argued that

the mixed-mode states are embedded in a horseshoe-type attrator. The bifurations of

the MMOs are desribed on the basis of a detailed investigation of a suitable Poinaré

map from whih the transformation of the system's slow manifold into a horseshoe-type

attrator ould be derived as parameters are varied. During the transformation proess,

Poinaré maps are observed that are very similar to the one we alulated in Fig. 6.1

subsequent to the period doubling bifuration. In partiular, Goryahev et. al. also

observe a tent map with almost uspoid tip (f. Fig. 5e in [31℄).

For the hemin system, however, it remains an open task to �nd a Poinaré setion that

is well-de�ned for the whole parameter range of k0 values, where the bursting osillations

are stable, whih would failitate to establish a loser link of the bursting dynamis in

the hemin system to the mehanism proposed in [31℄.

In Chapter 7 we introdued the basis underlying a slow-fast analysis due to Rinzel

and Ermentrout [23℄, and illustrated the slow-fast struture of the hemin system using

the artoon in Fig. 7.1. In addition, we mentioned a lassi�ation sheme for bursting

mehanisms that has been elaborated by Izhikevih [24℄. In this sheme, the bursting

behavior is lassi�ed by the type of bifurations that our in the fast subsystem and

lead to the bursting behavior.
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In Chapter 8, we deomposed the 3-dimensional ODE system (6.4) aording to its

slow-fast struture into the fast subsystem (8.1) and the slow dynamis for the quasi-

stati bifuration parameter p (eq. 8.2). In the following, we analyzed the bifurations

ouring in the fast subsystem (8.1) in dependene on the slow variable p. In general,

from suh an analysis one an dedue the existene of quasi-stationary manifolds in phase

spae to whose neighborhood the trajetories of the ODE system (6.4) are on�ned and

thus, one may arrive at a geometrial omprehension of the phase �ow.

In a �rst step, we analyzed the slow-fast struture of the hemin system at a �xed value

of the �ow rate k0. As a result, we found that ertain odimension one bifurations in

the fast subsystem are responsible for the ourene of bursting osillations; in partiular

the onstellation of the saddle-node bifuration of periodi orbits SNP1 and the subrit-

ial Hopf bifuration SH1 turned out to be essential for the generation of the bursting

osillations (f. Fig. 8.1). Aordingly, the bursting mehanism is of subHopf/fold-yle

type at the hosen parameter value for the �ow rate and thus, it an be arranged into

the lassi�ation sheme proposed by Izhikevih [24℄.

In a seond step, we investigated how the stationary and osillatory states of the fast

subsystem hange under variation of the �ow rate k0. To this purpose, we performed a

systemati two-parameter ontinuation of the fast subsystem using the slow variable p

and the �ow rate k0 as parameters. From the resulting bifuration diagram (Fig. 8.3),

we identi�ed a transition in the bursting behavior of the hemin system by whih it

beomes a fold/subHopf burster due to a hange in the nature of the homolini orbit

in the fast subsystem (Figs. 8.4(a,)). At k0 = 3.6 (Fig. 8.4a), the fast subsystem has

an orbit that is homolini to the nonhyperboli equilibrium at p ∼ 2.7. In ontrast, at

k0 = 3.8 (Fig. 8.4), the saddle-node homolini orbit SNHC has turned into the saddle

homolini orbit SHC whih involves a hyperboli equilibrium at p ∼ 2.2.
The observation of a transition in the bursting behavior of the hemin system is a

novel result at least from a theoretial point of view, sine the slow-fast struture in

other systems is, to our knowledge, mostly investigated at a partiular parameter set in

order to determine the type of bursting behavior aording to the lassi�ation sheme

of Izhikevih. However, suh an approah prevents the detetion of a transition in the

bursting behavior although suh a transition an be of physiologial relevane.

Finally, we found that the same onstellation of odimension one bifurations of the

fast subsystem (SNP1 in onjuntion with SH1), that was already identi�ed to allow

for bursting osillations, may equally aount for quasi-periodi behavior in the hemin

system, although in a di�erent region of the parameter spae. A detailed investigation

of the phase �ow on the 2-torus lose to the Neimark-Saker bifuration in Fig. 8.5

revealed that the quasi-periodi behavior is due to the oupling of an osillator in the

fast subsystem (8.1) (whih is represented by the stable limit yle solution) with the

p variable, but on a slow time sale. Indeed, a similar line of argument has been used

by Koper [28℄ to explain the origin of quasi-periodiity in a di�erent system although a

slow-fast analysis has not been performed to support this statement. However, sine tori

with a phase �ow similar to the one in Fig. 8.6 have been observed in several hemial

systems [25, 26, 28℄, it is very likely that they share a ommon dynamial origin that

an be analyzed by a suitable slow-fast analysis.
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A. Dynamial Systems andBifuration Theory in a Nutshell
It is the aim of the present Chapter to provide the basi ideas and onepts underlying

dynamial systems and bifuration theory as they are neessary to understand the results

in part I and II of this work. Therefore, it should be used as a referene. For onveniene,

the presentation will mostly be kept on an informal level.

We begin in Setion A.1 with a brief introdution to the theory of �nite dimensional

dynamial systems where the basi notions and theorems are reviewed. In partiular,

the Hartman-Grobman and the stable manifold theorem will be presented as the basis

for the loal analysis of the nonlinear �ow near �xed points and limit yles.

Setion A.2 is devoted to the foundations of bifuration theory. Here we introdue

the important notion of topologial equivalene whih de�nes an equivalene relation in

the spae of dynamial systems and thus, allows to ompare the dynamial properties

of two suh systems. In addition, the enter manifold theorem, parameter dependent

dynamial systems and normal forms are disussed.

In Setion A.3, we review the generi loal bifurations of �xed points and limit yles,

that an be observed as one parameter of a system is ontinously varied. Setion A.4

desribes some of the generi loal two-parameter bifurations of �xed points that are

frequently enountered in this work. We onlude this Chapter with Setion A.5 where

we brie�y introdue two global bifurations that involve a homolini orbit to a hyper-

boli and a nonhyperboli equilibrium, respetively.

Our presentation mainly follows the books of Gukenheimer & Holmes [9℄, Kuznetsov

[76℄ and Jetshke [77℄ without partiular referene.

A.1. Dynamial systems

A (�nite dimensional) dynamial system onsists of a (�nite dimensional) state spae

X and a one-parameter group of transformations (ϕt)t on X where we have t ∈ R for

oninuous-time and t ∈ Z for disrete-time systems. For eah t, the so-alled �ow map

ϕt : X → X (A.1)

x 7→ ϕt(x),

is a di�eomorphism of the state spae X transforming any initial state x into a �nal

state ϕt(x) = ϕ(t, x) (f. Fig. A.1a).
On the other hand, if we �x some initial point x0 ∈ X then the map

ϕ(·, x0) : R → X (A.2)
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Figure A.1.: The �ow of a dynamial system (a) and a partiular trajetory passing

through x0 (b).

desribes a urve in X. The image ϕ(t, x0) of the map in (A.2) is alled orbit, solution

urve or trajetory of the �ow ϕt through the point x0 (Fig. A.1b). The �ow satis�es

the group properties:

ϕ0 = idX

ϕt ◦ ϕs = ϕt+s = ϕs ◦ ϕt,

i.e. it yields an abelian ation (in the group theoretial sense) ϕt : R(Z) × X → X of

the real (integer) numbers on the phase spae X de�ned by (t, x) 7→ ϕt(x).
In the following, we shall onsider dynamial systems whose �ow arises from a vetor

�eld in the sense that the �ow satis�es for all x ∈ M ⊆ R
n and all s out of an interval

I = (a, b) ⊆ R:

d

dt
ϕ(t, x)|t=s = f(ϕ(s, x)) (A.3)

where it is su�ient to think of a vetor �eld as a map f : M ⊂ R
n → R

n. If we use

the n-dimensional Eulidean spae R
n equipped with oordinates x = (x1, . . . , xn) as

the state spae X and �x an initial ondition ϕ(t, x0)|t=0 = x(t, x0)|t=0 = x0, then (A.3)

beomes a system of ordinary di�erential equations (ODE system):

d

dt
xi ≡ ẋi = fi(x1, . . . , xn), xi(0) = (x0)i, i = 1, . . . , n

or in short vetor notation

ẋ = f(x), x(0) = x0. (A.4)

The (loal) existene and uniquness of a solution urve ϕ(·, x0) ≡ x(·, x0) : (a, b) →
M of the ODE system (A.4) is guaranteed provided f is, for example, C1, i.e. one
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di�erentiable and the derivative is ontinuous. However, exat solutions of the ODE

system (A.4) an be found only if the omponents of the vetor �eld are linear funtions

or f has ertain ontinuous symmetries, i.e. it is equivariant with respet to a Lie group

of transformations [78, 79℄. Thus, the natural question arises: What an be said about

the typial behavior of trajetories in the absene of suh symmetries?

A.1.1. The geometrial approah

In the qualitative theory of dynamial systems, a geometrial viewpoint is adopted where

the properties of a dynamial system as a whole are more important than the fate of an

individual trajetory. In partiular, invariant manifolds are of paramount interest sine

they allow to lassify the di�erent types of long-time behavior that an be found in a

dynamial system.

In the simplest ase, a trajetory settles down to a stationary state whih is assoiated

with a singular point of the vetor �eld f , i.e. it is a solution of the equation f(x) = 0.
If the �ow map satis�es ϕt+T (x) = ϕt(x) for some T ≥ 0 and for all t ≥ 0 and all x

belonging to an orbit C, this orbit is alled a limit yle and orresponds to a periodi

solution of the ODE system (A.4) with period T . These are the most simple examples of

so-alled invariant sets whih represent the potential long-time behavior of a dynamial

system. Thus, a good strategy for the investigation of any nonlinear dynamial system

is to loate its invariant sets beginning with the �xed points and study subsequently the

behavior of trajetories in the neighborhood of the invariant sets.

This approah is failitated by the Hartman-Grobman and the stable manifold theorem

for �xed points both of whih ome in two versions; one for ontinuous-time and one for

disrete-time systems, i.e. iterated maps. They allow for a loal reonstrution of the

phase portait (i.e. the olletion of all orbits) near �xed points and limit yles. In the

ase of a 2-dimensional system, the knowledge about the loal behavior is often su�ient

to reonstrut the global phase �ow due to the topologial restritions in 2-dimensional

spae. In fat, �xed points and limit yles are the only (generi) invariant sets for

2-dimensional ontinous-time �ows. To the ontrary, in higher dimensional (ontinous-

time) systems, the long-time behavior of trajetories may beome more omplex and

one usually relies on numerial simulations to obtain some global information about the

orresponding phase �ow. We remark that for disrete-time dynamial systems, there are

no suh topologial restritions and even 1-dimensional dynamial systems may beome

arbitrarily omplex.

A.1.2. Invariant sets, attrators, et.

Before the main ideas of the Hartman-Grobman and the stable manifold theorem are

disussed, we give some de�nitions of speial sets in phase spae that are relavant for

the disussion of limiting behavior.

A subset S ⊂ R
n is alled invariant with respet to the �ow ϕt if x ∈ S implies

ϕt(x) ∈ S for all t. Fixed points and limit yles are simple examples of invariant

sets. A losed invariant set A ⊂ R
n is alled attrating if trajetories being in some
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neighborhood U of A at t = 0, remain there for t ≥ 0 and approah the attrating set

in the limit t → ∞. The domain of attration of the set A onsists of all orbits reahing

the neighborhood U of A in �nite time, i.e. ∪t≤0ϕt(U).
An attrator is an attrating set ontaining a dense orbit. This requirement ensures

that a typial trajetory belonging to the attrator omes arbitrary lose to every point

of the attrator. Fixed points and limit yles show rather simple limiting behavior in the

ase that they are attrating. However, in higher dimensional systems (n ≥ 3), one may

also �nd bounded regions in phase spae ontaining ompliately folded attrating sets

that exhibit a `strange' limiting behavior in the sense that nearby trajetories belonging

to the attrator deviate (loally) exponentially fast from eah other. The term `loally'

is important here sine the attrator resides in a bounded region in phase spae and

therefore, two loally diverging trajetories may again ome lose together after some

time. The `strong dependene on the initial onditions' is a hallmark of haoti behavior

whih basially prevents any long-time foreasts in real world haoti systems where

initial onditions are only known with �nite auray. On the other hand, it is usually

very di�ult to `prove' the existene of a haoti attrator in a given dynamial system,

in partiular the existene of a dense orbit.

A.1.3. Hartman-Grobman and stable manifold theorem

In order to state the Hartman-Grobman Theorem, we assume that at least one solution

x0 of the �xed point equation

f(x) = 0 (A.5)

has been found. Note that even this task is basially impossible for higher dimensional

systems sine (A.5) is a oupled nonlinear algebrai equation system.

Next, we study the temporal evolution of small deviations from the �xed point and

set x(t) = x0 + ξ(t). If the deviations |ξ| are su�iently small, one may linearize the

ODE system (A.4) for the nonlinear �ow around the �xed point x0 by trunating the

higher order terms in |ξ|. As a result, the linear ODE system

ξ̇ = fx(x
0)ξ, ξ ∈ R

n
(A.6)

is obtained whih desribes the temporal evolution of small deviations from the �xed

point.

The �ow map ϕL
t of the linearized equation (A.6) an be expliitely onstruted in

terms of the eigenvalues and the (generalized) eigenvetors of the (onstant) Jaobian

matrix fx(x
0) whose entries are the �rst partial derivatives of the vetor �eld evaluated

at the �xed point, i.e. (fx(x
0))ij ≡ ∂fi

∂xj
|x=x0 . A formal solution is just given by the

matrix exponential ϕL
t = exp tfx(x

0) whih is a one-parameter group of transformations

mapping any initial state ξ0 to the �nal state ξ(t, ξ0) = ϕL
t ξ0. Thus, the linearized �ow

is globally de�ned for all ξ ∈ R
n and all t ∈ R whih is not neessarily the ase for

the �ow of the nonlinear ODE system (A.4) whose existene is only guaranteed loally

and usually depends on the initial ondition. The standard example is provided by the
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solution x(t) = x0/(1 − tx0) of the ODE ẋ = x2 with initial ondition x(0) = x0 whose

positive time solutions are only de�ned up to time t = 1/x0.

The question is now: What information about the loal behavior of trajetories of the

nonlinear �ow lose to the �xed point x0 an be obtained from the linearized equations

(A.6)?

The answer is given by the Hartman-Grobman theorem whih asserts that it is suf-

�ient to study the linearized �ow near the �xed point provided the Jaobian matrix

fx(x
0) has no eigenvalues with zero real part there, i.e. x0 is a hyperboli �xed point.

In this ase, one an show that there is a ontinuous hange of oordinates taking the

orbits of the nonlinear �ow to that of the linearized one while the sense of the orbits

is preserved. This property states that the nonlinear and the linear �ow are topologi-

ally equivalent; a notion that we shall return to in the next Setion when bifuration

theory will be disussed. Topologial equivalene is of paramount importane in the

lassi�ation of dynamial systems sine it is used to de�ne its `generi' properties.

The expliit solution of the linearized ODE system A.6 an be used to lassify the

type of �xed point aording to the eigenvalue spetrum of the Jaobian matrix. If all

eigenvalues have a negative real part, the �xed point is asymptotially stable, i.e. all

su�iently small perturbations deay in time and asymptotially approah the stationary

state whih, in this ase, is alled a sink. If the Jaobian matrix possesses at least one

eigenvalue with positive real part, it is alled a saddle whih is unstable. In the ase

that all eigenvalues have a positive real part, the �xed point is alled a soure. This

means that trajetories whih start in the neighborhood of the soure will diverge from

it exponentially fast. Note, however, that the linear stability analysis does not answer

questions of the type: What happens to the trajetory if it esaped the neighborhood

of a saddle point or a soure. In order to answer suh questions, one has to inlude

su�ient higher order terms in the Taylor expansion of the vetor �eld in (A.6).

We now turn to the stable manifold theorem. Let λ1, . . . , λs and λs+1, . . . , λn be

the eigenvalues with negative and positive real part, respetively, and denote by Es =
span{v1, . . . , vs} and Eu = span{vs+1, . . . , vn} the stable and unstable eigenspaes that

are spanned by the orresponding eigenvetors. The linear spaes Es and Eu are sub-

spaes of R
n whih are invariant under the linearized �ow ϕL

t . Moreover, aording to

the stable manifold theorem, there exist loal stable and unstable manifolds W s
loc, W

u
loc in

a neighborhood U(x0) of the �xed point whih are loally invariant under the nonlinear

�ow map ϕt. One an think of these manifolds as the nonlinear extensions of the linear

stable and unstable subspaes Es and Eu, to whih they are tangent at x0 (Fig. A.2).

Using the nonlinear �ow map, the loal invariant manifolds are de�ned as:

W s
loc(x

0) = {x ∈ U(x0)|ϕt(x) ∈ U(x0) ∀t ≥ 0, ϕt(x) → x0
as t → ∞}

(A.7)

W u
loc(x

0) = {x ∈ U(x0)|ϕt(x) ∈ U(x0) ∀t ≤ 0, ϕt(x) → x0
as t → −∞}.

Thus, the loal stable (unstable) manifold onsists of all trajetories that, one belonging

to the neighborhood U(x0) of the �xed point, remain there for all future (past) time and

approah it as time tends to in�nity (minus in�nity).
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Es = W s

Eu

W u

x

y

ẋ = x
ẏ = x2 − y y = x2/3

Figure A.2.: Stable (bold, blak) and unstable manifolds (red) for a two-dimensional

ODE system with �xed point (x0, y0) = (0, 0).

78



A.1. Dynamial systems

By applying the nonlinear �ow map bakward (forward) in time to the loal stable

(unstable) manifold, one may de�ne global stable and unstable manifolds (formally) as:

W s(x0) = ∪t≤0ϕt(W
s
loc(x

0)), W u(x0) = ∪t≥0ϕt(W
u
loc(x

0)). (A.8)

Aordingly, the global stable (unstable) manifold onsists of all points whih (whose

preimages) are mapped under the ation of the nonlinear �ow map to the loal stable

(unstable) manifold in �nite time and thus, approah the �xed point as time tends

to in�nity (minus in�nity). While the loal manifolds an often be approximated by

Taylor series, their global extensions an be omputed expliitly only for very simple

ases. However, the knowledge about their existene an failitate the interpretation of

numerial simulations.

A.1.4. Periodi orbits and Poinaré maps

Having analyzed the loal phase �ow near the singular points of the vetor �eld f , the

next step ould be to �nd periodi solutions of the ODE system (A.4) and study the phase

�ow near those solutions. In the ase of a ontinuous-time system, a periodi orbit is a

losed invariant urve C omposed of points x ∈ C all of whih satisfy ϕt+T (x) = ϕt(x)
for some T ≥ 0 and for all t ≥ 0. The minimal T satisfying this ondition is alled the

period of the orbit. As this de�nition shows, one atually needs an expliit representation

of the nonlinear �ow map in order to verify the periodiity ondition. Thus, periodi

solutions an, in general, be found only by numerial methods suh as the ontinuation

shemes disussed in Setion B.1.

Nevertheless, muh information of the loal phase �ow near a periodi orbit an be

gained by a similar analysis to that of �xed points in Setion A.1.3. To this purpose, one

introdues the geometrial onept of a �rst return or Poinaré map (Fig.A.3) by taking

a n − 1 dimensional loal ross setion Σ ⊂ R
n suh that the periodi orbit as well as

all nearby solution urves piere the ross setion transversally, i.e. the Eulidean salar

produt (ν(x), f(x)) 6= 0 between the vetor �eld f and the unit normal vetor �eld ν

of the ross setion vanishes nowhere on Σ. Denote the (unique) intersetion point of

the periodi orbit C with Σ by p. Then any point q ∈ U(p) ⊂ Σ out of a su�iently

small neighborhood U(p) will be mapped by the nonlinear �ow map to another point

P (q) = ϕτ (q) ∈ Σ of the ross setion where the �rst return time τ = τ(q), in general,

depends on the point q.

By this geometrial onstrution, the analysis of the loal n-dimensional �ow near

the periodi orbit is e�etively redued to that of the n − 1 dimensional Poinaré map

P : U → Σ whih is aessible by the Hartman-Grobman and the stable manifold

theorem for �xed points of iterated maps. In fat, the periodi orbit C will always

interset Σ at the same point p whih therefore is a �xed point of the Poinaré map.

Furthermore, solution urves starting su�iently lose to p will produe a sequene of

points in Σ whih orresponds to an orbit under the iterated appliation of the Poinaré

map.

The Hartman-Grobman Theorem asserts that if the linearized Poinaré map Pq(q)|q=p

has no eigenvalues of unit modulus, the stability of the �xed point p and that of the or-
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C
p q

P (q)

Σ

U

Figure A.3.: Orbits, whih start in the neighborhood of a periodi solutions C of the

nonlinear �ow, indue an iterated map, the Poinaré map q 7→ P (q), on the

transversal ross setion Σ.

responding periodi orbit C is ompletely determined by the eigenvalues of the linearized

Poinaré map. This is the equivalent ondition for �xed points of iterated maps to be

hyperboli. The eigenvalues of an iterated map are also alled multipliers. In the ase

that the n − 1 multipliers are all of modulus less than one, p and C are asymptotially

stable, otherwise p and C are unstable. Periodi solutions with at least one unstable

diretion are alled saddle-yles.

Finally, the stable manifold theorem guarantees the existene of loal stable and un-

stable manifolds W s
loc(p) and W u

loc(p) whih are tangent to the orresponding linear

eigenspaes Es(p) and Eu(p) of the linearized Poinaré map at p. These manifolds are

omposed of trajetories that remain in a neighborhood of the periodi orbit while they

produe a sequene of intersetion points on Σ whih, in the ase of solutions starting

in W s
loc(p), onverge to p as the number of iterations tends to in�nity.

A.2. Bifuration theory

Bifuration Theory is onerned with `generi' properties of dynamial systems. While

the qualitative theory of dynamial systems allows to haraterize a partiular system

aording to the loal stability of its invariant sets, bifuration theory deals with the

problem whether the properties of a partiular system persist under small pertubations

in whih ase the system is alled struturally stable. This issue is of high pratial

relevane sine experimental systems are always subjet to `external' noise exerted by

the environment whih results in small random perturbations to the system under inves-

80



A.2. Bifuration theory

tigation. Thus, one an observe only those features of a system whih are not a�eted

by these perturbations, i.e. its generi features.

In order to takle the problem of strutural stability, one has to ompare two dynamial

systems and therefore one needs some notion of `loseness' and the allowed lass of `small

perturbations'. These ideas are made preise when we regard two n-dimensional vetor

�elds f and g as lose (more preisely as ε − C1 lose) if for all x ∈ K ⊂ R
n out of

some bounded region in phase spae, ‖ f − g ‖< ε and ‖ fx − gx ‖< ε hold, where ‖ · ‖
denotes any onvenient norm in R

n, R
n2

respetively. In addition, two n-dimensional

ODE systems

ẋ = f(x), ẋ = g(x)

are said to be topologially equivalent if there is a ontinuous hange of oordinates h

suh that

h(ϕf
tf

(x)) = ϕ
g
tg(h(x)),

i.e. orbits of the �ow ϕ
f
tf

assoiated with f are ontinuously deformed into the orre-

sponding orbits of ϕ
g
tg .

Equipped with these de�nitions, we an now de�ne a nonlinear ODE system ẋ = f(x)
to be struturally stable if all su�iently ε−C1 lose systems ẋ = g(x) are topologially
equivalent to ẋ = f(x). In partiular, the number and stability type of invariant sets

of the �ow ϕ
f
tf

are retained under small perturbations whih implies that the phase

portraits of topologially equivalent systems `look qualitatively the same'.

So far we have always assumed that the Jaobian matrix at a �xed point has no

eigenvalue with zero real part in whih ase small perturbations to the system will

produe topologially equivalent phase portraits. However, sine the eigenvalues of the

Jaobian matrix depend ontinuously on the system parameters, it may happen that

one of the eigenvalues rosses the imaginary axis as a parameter is varied. In this ase,

one an expet topologially non-equivalent phase portaits for nearby parameter values.

As an example, onsider the linear two-dimensional ODE system:

ẋ1 = a11x1 + a12x2 (A.9)

ẋ2 = a21x1 + a22x2

whih depends on four parameters given by the entries of the 2 × 2 matrix A = (aij).
The eigenvalues of this matrix are given by the roots of the harateristi polynomial:

λ2 + λ trA + detA = 0

where trA = a11+a22 and detA = a11a22−a12a21. The qualitative behavior of trajetories

near the only �xed point (0, 0) is summarized in (Fig. A.4). Along the parabola (trA)2 =
4detA (bold blak line), the eigenvalues hange from real to omplex while the topologial

nature of the �xed point is not altered, i.e. a sink remains a sink, whether solutions

approah it in straight lines or in spirals.

The important point to note is that in the spae of linear systems of the form (A.9),

the stability type of the �xed point is ompletely determined by the two quantities detA
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trA

detA

Reλ

Imλ

(trA)2 = 4detA

Figure A.4.: The partition of the spae of linear 2-dimensional ODE systems aording

to topologial equivalene. Bifurations our along the positive detA- and

the trA-axis (bold, red). The small insets show the qualitative behavior of

trajetories (blue lines) near the �xed point and the orresponding position

of the eigenvalues in the omplex plane.

and trA as long as the system is not loated on the positive detA-axis or the trA-axis

(bold red line) where the system beomes struturally unstable due to the emergene of

eigenvalues with zero real part. A point in the detA-trA-plane where the ODE system is

struturally unstable is alled a bifuration point and the rossing of one of the two axis

is aompanied by a qualitative hange of the loal phase portrait near the �xed point

for nearby parameter values. For example, when the positive detA-axis is rossed from

below, the sink turns into a soure. However, the two lines along whih a bifuration

ours, onstitute a set of (Lebesque) measure zero in the detA-trA-plane. Thus, if one

generates a two-dimensional linear system by hane, it is almost surely struturally

stable whih, therefore, is a generi property of suh a system. We remark that the

same argumentation naturally extends to higher dimensional linear systems.

To the ontrary, Smale [80, 81℄ has shwon that strutural stability is no generi prop-

erty for higher dimensional nonlinear systems (i.e. for n ≥ 3) and muh of the omplexity

in suh systems arises from the nontrivial global behavior of the assoiated nonlinear
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a) b)

Γ

Γ

x0
x0
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W u

W u

W s

W s

Figure A.5.: Homolini orbits in R
2 (a) and R

3 (b).

phase �ows. Of partiular interest are the so-alled homolini orbits (Fig. A.5) where

the unstable and the stable manifold of a �xed point bend in suh a way that they in-

terset along the homolini orbit, i.e. an orbit Γ starting at x ∈ R
n is alled homolini

to a �xed point x0 of the ODE system (A.4) if ϕtx → x0 as t → ±∞ whih implies that

Γ ⊂ W s(x0) ∩ W u(x0). In the ase that x0 is a hyperboli �xed point, one an show

that a homolini orbit to suh a point is struturally unstable, so that one an expet

qualitatively di�erent behavior for slightly perturbed systems (f. Se. A.5).

A.2.1. Center manifold theorem

We now onsider the ase that the ODE system (A.4) has a nonhyperboli equilibrium

point x0 in whih ase the Hartman-Grobman and the stable manifold theorems are

supplemented by the enter manifold theorem. Therefore, we assume that the Jaobian

matrix fx(x
0) has among n+ and n− eigenvalues with positive and negative real parts,

respetively, also n0 eigenvalues with vanishing real part. The enter manifold theorem

asserts the existene of a loal n0-dimensional manifold W c
loc(x

0) that is tangent to the

linear eigenspae Ec(x0) at x0 and loally invariant under the nonlinear �ow. W c
loc(x

0)
is alled the enter manifold and Ec(x0) is spanned by the (generalized) eigenvetors

assoiated to the n0 eigenvalues with zero real part.

The importane of the enter manifold results from the fat that it ontains the

essential dynamis of an ODE system near an equilibrium point no matter what the

dimension of the system is. This is a remarkable fat sine, as we will later show, the

redued �ow on the enter manifold for one-parameter families of dynamial systems is

generially of dimension one or two.

In order to larify the ideas involved in the enter manifold theorem, let us assume

that the original ODE system ẋ = f(x) with x ∈ R
n has been transformed into an
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eigenbasis of the Jaobian matrix fx(0)

u̇ = Bu + g(u, v) (A.10)

v̇ = Cv + h(u, v)

where we assumed without loss of generality that the �xed point has been translated to

the origin x0 = 0 and u ∈ R
n

0 , v ∈ R
n

+
+ n

− , n = n+ + n− + n0. The eigenvalues of the

n0×n0 matrix B have all zero real parts while those of the (n+ +n−)× (n+ +n−) matrix

C are all di�erent from zero. The nonlinear funtions g and h have Taylor expansions

starting with at least quadrati terms. The enter manifold an be loally represented

as a graph of a smooth funtion:

W c = {(u, v)|v = V (u), V (0) = 0, Vu(0) = 0} (A.11)

with V : U(0) ⊂ R
n

0 → R
n

+
+ n

− .

One of the most important results of the enter manifold theorem is the so-alled

Redution Priniple whih says that the �ow of the n-dimensional ODE system (A.10)

is topologially equivalent near the origin to the ODE system

u̇ = Bu + g(u, V (u)) (A.12)

v̇ = Cv

where the �rst equation is the restrition of (A.10) to the enter manifold (eq. A.11).

It desribes the essential dynamis near the �xed point while the seond equation in

(A.12) ontains the trivial dynamis sine it desribes exponentially growing or deaying

solutions. However, in pratial appliations it is desirable to have n+ = 0 in whih

ase the enter manifold is loally attrating and truly desribes the long-time behavior

of solution urves in its neighborhood. Finally, we remark that by di�erentiating the

de�ning equation for the enter manifold v = V (u) with respet to time, one an derive

the (partial) di�erential equation

CV (u) + h(u, V (u)) = Vu(u)
(

Bu + g(u, V (u))
)

from whih one may obtain an approximation to the enter manifold in terms of a power

series expansion.

A.2.2. Parameter dependent systems and normal forms

In the last Subsetion, we argued that if a n-dimensional ODE system has a nonhyper-

boli �xed point it is su�ient to study the restrition of the n-dimensional �ow to the

enter manifold of the nonhyperboli �xed point in order to determine its stability type.

In the following, we onsider parameter dependent systems whih are naturally used to

model experimental situations sine the system of interest is usually embedded in some

form of environment or subjeted to external driving fores. It is lear that hyperboli

�xed points, though they remain hyperboli under su�iently small perturbations, may
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beome nonhyperboli as parameters in the system are varied; for example, onsider a

path in the trA-detA-plane of Fig. A.4 whih rosses the trA-axis.

To this purpose, we desribe how the analysis of the previous Subsetion an be

extended to parameter dependent families of ODE systems

ẋ = f(x, α), (x, α) ∈ R
n × R

k
(A.13)

α̇ = 0

where we added a trivial dynamis for the parameters α to make the enter manifold

theorem appliable to suh systems.

Assume that the parameter dependent ODE system (A.13) has at α = 0 a nonhyper-

boli �xed point at x0 = 0 with n0 eigenvalues having zero real parts. For simpliity,

and beause it is the most interesting ase in real appliations, we further assume that

all other n − n0 eigenvalues have a negative real part. In an appropriate eigenbasis of

the Jaobian matrix fx(0, 0), the ODE system (A.13) reads

u̇ = B(α)u + g(u, v, α)

v̇ = D(α)v + h(u, v, α), (u, v) ∈ R
n

0 × R
n−n

0 (A.14)

α̇ = 0, α ∈ R
k.

At (u, v, α) = (0, 0, 0) this ODE system has a n0 + k-dimensional (parameter depen-

dent) enter manifold W c
loc(0, 0) that is tangent at the origin to Ec(0) × R

k. It an be

represented as the graph of a funtion v = V (u, α) whih may be approximated by a

power series in u and α. The invariane properties of enter manifolds guarantee that

any bifurating solution near (0, 0, 0) remains in one of the enter manifolds for |α| be-
ing su�iently small. Thus, the loal bifurations ouring in a family of ODE systems

an be studied by restriting (A.14) to the parameter dependent enter manifold. As a

result, one obtains the topologially equivalent ODE system

u̇ = B(α)u + g(u, V (u, α), α) (A.15)

whih is now of dimension n0. In one-parameter families, n0 is typially 1 or 2.
After the enter manifold theorem has been applied, the linear part of the ODE system

(A.15) is already in a anonial form sine the eigenvetors of the Jaobian matrix were

used as a basis for the new oordinate system. In order to study the loal bifurations of

the �ow on the enter manifold it is desirable to �nd a partiular simple representative

out of the lass of topologially equivalent systems whih is the aim of normal form

theory. By suessive near identity oordinate transformations, one tries to eliminate as

muh higher order terms in (A.15) as possible up to a partiular order. This proedure

guarantees that the linear part of the vetor �eld is retained at eah step, so that the

resulting (nonlinear) normal form has the same linear degeneraies as the original vetor

�eld. Interestingly, it is the linear part of the vetor that determines whih higher order

terms an be removed by a suitable hange of oordinates. The nonremovable terms are

alled resonanes.
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In a next step, one tries to show that negleting the higher order terms beyond a

partiular order does not alter the topologial lass of the system in whih ase the

obtained vetor �eld is alled a normal form or a universal unfolding for the onsidered

bifuration. However, it should be mentioned that normal form theory is far from being

omplete. So far, it is well developed for one- and two-parameter families of dynamial

systems where many universal unfoldings are known.

In the speial ase that the vetor �eld f an be obtained as the gradient of a salar

funtion V : R
n → R, i.e. f(x) = grad V (x), all universal unfoldings for generi four-

parameter families are known. They are given by Thom's famous seven elementary

`atastrophes' [82℄.

Finally, we remark that there is a enter manifold theorem for �xed points in disrete-

time dynamial systems, too, whih allows for a similar redution of the �ow near non-

hyperboli limit yles that arise as �xed points of a suitable Poinarè map.

A.3. Loal bifurations in one-parameter families

We give a survey of the bifurations of �xed points and limit yles that generially

our in one-parameter families of ontinuous-time dynamial systems.

For eah bifuration, we present a relevant bifuration diagram together with the

bifuration ondition and where appropriate, mention the orresponding normal form

vetor �eld. As we have already pointed out, the normal form vetor �eld desribes the

loal behavior of trajetories near a nonhyperboli �xed point in the enter manifold of

any generi n-dimensional system ful�lling the orresponding bifuration ondition. In

view of (A.14), `loal' means here both, in a neighborhood of the �xed point in phase

spae as well as in a neighborhod of the ritial parameter value where the bifuration

ours in parameter spae. In order to be alled `generi', the n-dimensional vetor �eld

has to satisfy ertain non-degeneray onditions, suh as the nonvanishing of (higher

order) derivatives with respet to phase spae variables and/or parameters evaluated at

the �xed point.

A general bifuration diagram is usually omposed of several bifurations taking plae

in di�erent regions of the parameter spae. Thus, the generi bifurations desribed in

the following may be used as building bloks to understand the bifuration diagrams

shown in Part I and II of this thesis. However, it should be noted that the bifuration

diagrams presented there are not drawn with respet to anonial oordinates aording

to the enter manifold theorem and thus, they may appear distorted.

Finally, we make two general remarks: First, we note that the number of independent

onditions de�ning a bifuration is alled its odimension. It equals the number of

parameters that an be varied independently. Seond, the bifurations desribed in

Setion A.3 and A.4 an be deteted by analyzing the �ow in the neighborhood of a

�xed point or a limit yle and are, therefore, alled loal bifurations.
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a) b)

0

0 α

α

xx y

Figure A.6.: Generi bifurations of equilibria in one-parameter families of ODE systems:

the saddle-node (a) and the Hopf bifuration (b).

A.3.1. Bifurations of equilibria

The setting is mostly the same as in Setion A.2. We onsider parameter dependent ODE

systems ẋ = f(x, α) with x ∈ R
n, but only 1-dimensional parameter spaes with α ∈ R.

A solution of the �xed point equation f(x, α) = 0 is a smooth urve x0 = x0(α) ∈ R
n+1

and the eigenvalues λi(α) of the Jaobian matrix fx(x
0(α)) depend ontinuously on the

parameter α. Thus, as long as x0(α) is hyperboli it remains hyperboli under small

parameter perturbations.

However, when a parameter exeeds a ritial value, there are generially two possibil-

ities by whih x0(α) may beome nonhyperboli: First, the Jaobian matrix fx(x
0(α))

has a simple real zero eigenvalue λ1 = 0 at the ritial parameter value or seond,

a simple pair of omplex onjugated eigenvalues approahes the imaginary axis, i.e.

λ1/2 = ±iω, ω ≥ 0. In the former ase, a saddle-node bifuration takes plae while the

latter orresponds to a Hopf bifuration.

saddle-node bifuration

The saddle-node bifuration, also known as tangent or fold bifurtion, desribes the

appearane and disappearane of a pair of equilibrium points as a ritial parameter

value is passed (Fig. A.6). The standard form of an ODE system exhibiting a saddle-

node bifuration is given by

ẋ = α − x2 ≡ f(x, α), (x, α) ∈ R × R (A.16)

whih sati�es the two nondegeneray onditions

fxx(0, 0) 6= 0 (A.17)

fα 6= 0.
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A. Dynamial Systems and Bifuration Theory in a Nutshell

The ODE system (A.16) an be thought of as the restrited �ow of a n-dimensional

system to its one-dimensional enter manifold.

At α = 0, the ODE A.16 has a nonhyberboli �xed point x0 = 0 with eigenvalue

λ = fx(0, 0) = 0. For α < 0, there is no solution of the �xed point equation f(x, α) = 0
and hene, no �xed point while for α > 0, there are two stationary points: a saddle

(dashed line) and a node (solid line). The arrows in Fig. A.6 show the diretion of the

one-dimensional �ow. Note that in higher dimensional systems with n ≥ 2 both of the

bifurating equilibria an be of saddle-type if the number of their unstable diretions

di�ers by one.

Hopf bifuration

The standard form of the Hopf bifuration is given by the two-dimensional ODE system:

(
ẋ

ẏ

)

=

(
α −ω

ω α

)(
x

y

)

− (x2 + y2)

(
x

y

)

(A.18)

whih has a simple pair of omplex onjugate eigenvalues λ1/2 = ±iω at (x, y, α) =
(0, 0, 0). For α < 0, there is only a stable fous (solid line) whih beomes unstable for

α > 0 (Fig. A.6b). At the same time, a stable periodi solution emerges and oexists

with an unstable fous (dashed line). Diretly at the bifuration point, the �xed point

remains stable, but the rate of onvergene is not exponentially anymore.

The Hopf bifuration shown in Fig. A.6b is alled superritial sine the emerging

limit yle is stable. In general, the stability of the bifurating yle is determined by

the �rst Liapunov oe�ient whih must not vanish for a Hopf bifuration to our. This

oe�ient is given by a ertain ombination of seond- and third order derivatives of the

vetor �eld evaluated at the bifuration point (f. Chapter 3 in [76℄). If the Liapunov

oe�ient is negative, the bifurating yle is stable. Otherwise, the sign in front of the

nonlinear term in (A.18) is reversed from `−' to `+' and the new born periodi solution

is unstable and bifurates to the left where α < 0. In this ase, the Hopf bifuration is

alled subritial.

The existene of the limit yle is guaranteed only for su�iently small parameter

values in the neighborhood of the bifuration point. What `su�ient' means, depends

on the system under onsideration. In partiular, the nonlinear terms beyond the third

order determine the fate of the limit yle far away from the bifuration point.

A.3.2. Bifurations of limit yles

We give a survey of the three generi loal bifurations that a limit yle may undergo as

one-parameter is ontinuously varied. As we pointed out earlier, the analysis of the loal

hanges in the phase �ow near a periodi orbit an be redued to a loal analysis of the

assoiated Poinaré map (f. Fig. A.3), i.e. to a disrete-time system. In order to disuss

the topologial hanges in the proximity of the bifuration point, we show representative

phase portaits diretly at as well as slightly above and below the bifuration point

together with the redued dynamis on a suitable Poinaré setion (Fig. A.7). The
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a)

b)

c)

µ = +1

µ = −1

µ± = e±iθ

Cu

Cu

Cu

Cs Cs

Cs Cs

CsCs

α > 0 α = 0 α < 0

C2

T2

p1 p2

Figure A.7.: Generi one-parameter bifurations of limit yles: saddle-node (a), period

doubling (b) and Neimark-Saker bifuration ().
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A. Dynamial Systems and Bifuration Theory in a Nutshell

de�nition of `above' and `below' the bifuration point is somewhat arbitrary as long as

the expliit expressions for the orresponding normal form mappings are not taken into

aount. However, we shall give here only a qualitative desription of the orresponding

bifuration phenomena without expliit referene to a partiular normal form.

In the following, we desribe the saddle-node, the period doubling and the Neimark-

Saker bifuration for limit yles in a 3-dimensional phase spae. Thus, the assoiated

Poinaré map has two multipliers that determine the stability of its �xed points and

thereby the stability of the orresponding yles. A �xed point of the Poinaré map

beomes nonhyperboli if one of the multipliers lies on the unit irle in the omplex

plane, i.e. |µ| = 1. Generially, there are three possibilities how a multiplier an ross the

unit irle as one-parameter is varied and all possibilities lead to topologially di�erent

senarios.

Saddle-node bifuration of periodi orbits (SNP)

Assume that the linearized Poinaré map has a simple multiplier µ1 = +1 at α = 0
while the other multiplier satis�es 0 < µ2 < 1, then a saddle-node bifuration takes

plae where, this time, a pair of periodi orbits is reated and annihilated as α passes

through zero (Fig. A.7a). For α > 0, there are two limit yles, a stable and an unstable

one. They merge at α = 0 and disappear for α < 0. The orresponding Poinaré maps

show a node oexisting with a saddle (α > 0), a nonhyperboli �xed point (α = 0) and
no �xed point at all (α < 0). In phase spae dimensions n ≥ 3, both of the merging

limit yles an also be of saddle-type if the number of their unstable diretions di�ers

by one.

Period doubling bifuration

Assume that the linearized Poinaré map has a simple multiplier µ1 = −1 at α = 0 while

the other multiplier satis�es −1 < µ2 < 0, then a period doubling (or �ip) bifuration

takes plae where a stable limit yle, existing for α < 0, loses its stability and oexists

for α > 0 with a newly emerged stable limit yle C2 having approximately twie the

period of the primary periodi orbit (Fig. A.7b). The assoiated Poinaré map Pα has

one stable �xed point for α < 0 whih beomes unstable for α > 0 where the period-2

yle C2 is stable instead. On the transversal ross setion, the period-2 yle onsists of

two points whih are mapped into eah other under the appliation of Pα, i.e. p1 = Pαp2

and p2 = Pαp1. In partiular, eah of the two points is a �xed point of the seond iterate

of the Poinaré map, i.e. p1 = P 2
αp1 and p2 = P 2

αp2 where P 2
α ≡ Pα ◦ Pα.

Neimark-Saker bifuration

Here we onsider the ase that the linearized Poinaré map has a simple pair of omplex

onjugate eigenvalues µ± = e±iθ loated at the unit irle (Fig. A.7). If the multipliers

are away from strong resonanes de�ned by eikθ = 1 for k = 1, 2, 3, 4 (f. [9℄), the

Poinaré map has a two-dimensional invariant manifold on whih a losed invariant

urve bifurates from the stable �xed point as α passes through zero while the �xed
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A.4. Loal bifurations in two-parameter families

point beomes unstable for α < 0. The losed invariant urve on the Poinaré setion

orresponds to a 2-torus T2 of the original ODE system.

The orbit struture on the torus is basially determined by the properties of a one-

dimensional map on the invariant irle. In partiular, �xed points and yles of the

irle map orrespond to periodi orbits on the torus whih always ome in pairs of

alternating stability. The periodi orbits emerge and disappear in pairs via saddle-node

bifurations as one parameter is varied. Outside these parameter windows, the torus is

densely overed by a quasi-periodi orbit.

A.4. Loal bifurations in two-parameter families

We have shown that along branhes of one-parameter equilibrium urves x0(α), a bifur-

ation may our at those points (x0, α0) where a simple real or a simple pair of omplex

onjugate eigenvalues of the Jaobian matrix approah the imaginary axis provided some

nondegeneray onditions suh as (A.17) are simultaneously satis�ed.

Now, assume that there are two parameters in the system: β1 and β2. In this ase,

odimension one bifurations will generially our along urves in the two-parameter

plane as long as the relevant bifuration and nondegeneray onditions are still ful�lled.

However, if one of these onditions is violated at some point along the odimension

one bifuration urve, a odimension two bifuration takes plae and one may expet

topologially nonequivalent phase portraits for nearby parameter values. Thus, branhes

of odimension one bifurations originate in odimension two bifuration points whih,

therefore, at as organizing enters for the former. In fat, this is a general feature of

higher odimension bifuration points.

In the remainder of the Setion, we shall onsider the following three ases leading to

topologially distint odimension two bifurations in ODE systems:

1. Together with a simple real eigenvalue λ = 0, the �rst of the nondegeneray

onditions in (A.17) (fxx(0, 0) 6= 0) does not hold anymore in whih ase higher

order terms beyond the quadrati term are needed to unfold the singularity at

(0, 0). Aordingly, the normal form of the fold bifuration (A.16) is replaed by

a two-parameter family of one-dimensional ODEs exhibiting a usp bifuration.

2. Together with a simple real eigenvalue λ1 = 0, a seond simple real eigenvalue

λ2 = 0 also approahes the imaginary axis in whih ase the enter manifold

beomes two-dimensional and a Bogdanov-Takens bifuration takes plae.

3. Finally, we onsider the ase that the �rst Liapunov oe�ient vanishes along a

Hopf bifuration urve in whih ase higher order terms beyond the third order are

needed in (A.18) to unfold the Hopf bifuration. The orresponding odimension

two bifuration is alled a generalized Hopf or Bautin bifuration.
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A. Dynamial Systems and Bifuration Theory in a Nutshell

A.4.1. Cusp bifuration

The minimal phase spae dimension for a usp bifuration to our is one. The orre-

sponding normal form is given by

ẋ = β1 + β2x − x3 ≡ f(x, β1, β2), x ∈ R, (β1, β2) ∈ R
2. (A.19)

The zeros of the vetor �eld f de�ne the equilibrium manifold

M = {(x, β1, β2) : β1 + β2x − x3 = 0}

whih is shown in Fig. A.8a. For β2 < 0, there is a urve (bold line) on M whose

projetion onto the (β1, β2)-plane yields the semiubi parabola

SN = {(β1, β2) : 4β3
2 + 27β2

1 = 0}

along whih saddle-node bifurations take plae (Fig. A.8b). The two branhes of the

semiubi parabola meet in a usp singularity at (β1, β2) = (0, 0). The setion along

the dotted line in Fig. A.8b is shown in Fig. A.8 where the S-shaped equilibrium urve

beomes apparent whih is typial for bistable systems. In the wedge-shaped region I of

Fig. A.8b, two stable and one unstable �xed point oexist while in region II there is only

one stable �xed point. Along the two branhes SN1 and SN2 in Fig. A.8b, one stable

and one unstable �xed point disappear via a fold bifuration.

A.4.2. Bogdanov-Takens bifuration

Here we shall only give a qualitative desription of the phase portraits near the Bogdanov-

Takens point (β1, β2) = (0, 0) (Fig. A.9a). There are no equlibria in region I. As region

II is entered passing the urve SN2, a saddle and a stable node are reated by a saddle-

node bifuration. Then the node turns into a fous whih does not orrespond to a

bifuration. Subsequently, the fous loses stability via a superritial Hopf bifuration

as region III is entered along H and a stable limit yle emerges. As one moves inside

region III towards HC, the limit yle grows until it `merges' with the the saddle that

was reated at SN2 and hene, it beomes a homolini orbit by whih the limit yle

vanishes as region IV is entered. In region IV a saddle oexists with an unstable fous

whih turns into a node before it disappears together with the saddle along the seond

branh SN1 of saddle-node bifurations.

The transition from region III into region IV orresponds to a global bifuration (f.

Se. A.5) whih an not be deteted by merely investigating the neighborhood of a

�xed point sine the homolini orbit forms as a result of the intersetion of the global

stable and unstable manifolds of the saddle-point and thus, involves global aspets of

the �ow far away from the �xed point. This is a nie example how the loal analysis of

higher odimension bifurations may provide information about global bifurations in

the system.
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A.4.3. Bautin bifuration

Similar to the Bogdanov-Takens bifuration, we shall restrit to a qualitative disussion

of the hanges in the loal phase portraits as one moves around the Bautin bifuration

point (β1, β2) = (0, 0) (Fig. A.9b). In region I, there is only one stable fous. It beomes

unstable as region II is entered while rossing the urve H where a stable limit yle

emerges via a superritial Hopf bifuration. This limit yle persists as region III is

entered rossing the branh SH where an additional unstable limit yle is reated inside

the �rst one while the unstable fous regains its stability. Both limit yles merge along

the urve SNP in a saddle-node bifuration (f. A.3) leaving the stable fous as the only

attrator in region I.

The stability of the newborn limit yles is determined by the �rst Liapunov oe�ient.

It is negative along H where superritial Hopf bifurations take plae while it is positive

along SH where subritial Hopf bifurations our (f. [76℄).

a) b)

c)M

x

x

β1

β1

β1

β2

β2

SN1

SN1

SN1

SN2

SN2

SN2

I

II

Figure A.8.: The usp bifuration: M is the equilibrium manifold in the diret produt

spae R × R
2 (a). The other two images show di�erent projetions of M

onto the parameter plane (b) and the x-β1-plane () whih is taken along the

dotted line in (b). Region I exhibits bistability () while in Region II there

is only one stable equilibrium. SNi denote urves along whih saddle-node

bifurations our.
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III
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Figure A.9.: Bogdanov-Takens (a) and Bautin bifuration (b). Symbols denote: H �

superritial Hopf bifuration, SH � subritial Hopf bifuration, SNi �

saddle-node bifuration of �xed point, SNP � saddle-node bifuration of

periodi orbits, HC � saddle homolini bifuration.

A.5. Global bifurations

So far we have onsidered bifurations that an be deteted by a loal analysis, i.e. by

studying the linearized �ow in the neighborhood of a �xed point (eq. A.6) or a limit

yle. In ontrast, global bifurations are often assoiated with homolini orbits and

thus, involve the global behavior of stable and unstable manifolds of �xed points and

limit yles whih, in general, an not be investigated by a loal analysis. Note, however,

that we have already enountered an example where the loal analysis of a odimension

two bifuration (the Bogdanov-Takens bifuration in Setion A.4) led to the predition

of a global bifuration.

In the remainder of this Setion, we shall disuss two global one-parameter bifura-

tions: the saddle homolini bifuration and the saddle-node homolini bifuration.

While the former involves a homolini orbit to a hyperboli �xed point, the latter one

is assoiated with a nonhyperboli �xed point. The minimal phase spae dimension for

both bifurations to our is two.

A.5.1. Saddle homolini bifuration

The saddle homolini bifuration is ompletely haraterized by the Andronov-Leontovih

theorem (f. [76℄). Here, one onsiders a 2-dimensional ODE system of the form:

ẋ = f(x, α), x ∈ R
2, α ∈ R (A.20)
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a)

b)

C

C
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Γ
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SSS
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α > 0 α = 0 α < 0

Figure A.10.: Saddle homolini bifuration (a) and saddle-node homolini bifuration

(b): Both are global bifurations that involve a homolini orbit Γ to a

hyperboli (a) or a nonhyperboli �xed point (b) while periodi orbits C

exist for nearby parameter values. N and S denote a node and a saddle

equilibrium point, respetively.

whih at α = 0 has a saddle equilibrium S at x0 = 0 with nonvanishing eigenvalues

λ1(0) < 0 < λ2(0). In addition, the existene of a homolini orbit Γ (as in Fig. A.10a for

(α = 0)) has to be assumed. So the theorem does not prove the existene of a homolini

orbit. It `merely' desribes what happens to this orbit under small perturbations.

First of all, it is lear that the homolini orbit Γ in Fig. A.10a is not a struturally

stable objet sine one part of the saddle's unstable manifold has to bend in suh a way

that it exatly oinides with one part of its stable manifold. However, the interesting

result of the Andronov-Leontovih theorem is the foreast about the existene of a

periodi orbit C for ertain perturbations of the homolini orbit whih is shematially

represented in Fig. A.10a for α < 0. If the perturbation is applied in the other diretion

(α > 0), the homolini orbit simply disappears. The stability of the yle C in the ase

α < 0 is determined by the so-alled saddle quantity σ = λ1(0) + λ2(0). If σ < 0 the

yle is stable and vie versa.

A frequently observed senario is the following (see the Bogdanov-Takens bifuration

in Setion A.4): A limit yle is born in a Hopf bifuration and oexists with a saddle

equilibrium whih is already present. As the bifuration parameter inreases from the

Hopf bifuration value, the limit yle grows in magnitude until it merges with the saddle

equilibrium in a homolini orbit and heneforth vanishes.
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A.5.2. Saddle-node homolini bifuration

The saddle-node homolini bifuration (also known as saddle-loop homolini or saddle-

node on invariant irle bifuration) atually involves two events: A loal saddle-node

bifuration and the sudden appearane of a stable limit yle solution after the two

equilibria have disappeared. The novel feature of this bifuration is that the saddle-

node bifuration ours diretly on the limit yle (Fig. A.10b).

At α < 0, a saddle S and a node N are loated on an invariant irle whih is formed

by the two �xed points and the unstable manifold of the saddle whih oinides with

the one part of the stable manifold of the node. At α = 0, the saddle and the node

merge in a saddle-node bifuration leaving a nonhyperboli �xed point together with a

homolini orbit Γ. The union of these two sets now onstitutes the invariant irle.

Small perturbations towards α > 0 ause the homolini orbit and the nonhyperboli

�xed point to vanish, but leave the stable limit yle C instead.
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B. Investigation Methods andParameter Settings
The numerial simulations for the hemin and the PO system in Appendix C were per-

formed with the freely available software pakage XPPAUT [83℄. Due to the sti�ness

of the orresponding ODE systems, the `STIFF' integration routine [83, 84℄ was hosen

with a tolerane of 10−5 to ensure numerial stability. For the omputation of the one

and two-parameter bifuration diagrams, we used the ontinuation routines of AUTO

whih are integrated in the XPPAUT environment as well as two other freely available

ontinuation pakages: Content [85℄ and MatCont [86℄. While the AUTO routines are

very robust and reliable for the omputation of odimension one bifurations, the other

two pakages have some advantages for the omputation of odimension two bifuration

points sine they make use of symboli algebra pakages to ompute analytial expres-

sions for the derivatives of the vetor �eld on the right hand side of an ODE system

up to the fourth order. The higher order derivatives are required for the detetion of

ertain odimension two bifuration points suh as the generalized Hopf bifuration [76℄

and the omputation of normal form oe�ients. In addition, Content and MatCont

allow for an easy monitoring of eigenvalues and multipliers along branhes of stationary

and osillatory solutions, respetively.

In the next Setion, we shortly introdue the method of numerial ontinuation whih

was frequently used throughout this work to obtain most of the presented bifuration

diagrams. The Chapter is onluded by two short Setions ontaining the neessary

tehnial details to set up the numerial simulations for the hemin and the PO system.

B.1. The method of numerial ontinuation

We shall give a rather informal introdution to the basi onepts underlying the method

of numerial ontinuation. A more elaborate presentation an be found in Chapter 10

of the textbook by Kuznetsov [76℄. Many of the examples given there an be diretly

implemented as algorithms.

The numerial ontinuation method is a tool for studying the parameter dependene of

invariant sets of a dynamial system as well as their bifurations. As a result, a bifura-

tion diagram is obtained showing the possible asymptoti behavior of typial trajetories

in the parameter regions of interest. The mathematial basis for the numerial ontin-

uation methods is bifuration theory (see Appendix A). It is frequently utilized where

analytial omputations fail or are too intriate, i.e. basially in all ases of pratial

relevane.
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B. Investigation Methods and Parameter Settings

In the following, we onsider a parameter dependent family of ODE systems

ẋ = f(x, α) x ∈ M ⊂ R
n, α ∈ N ⊂ R

2, f : M × N → R
n

(B.1)

where, for onveniene, we assume that the parameter spae is at most two-dimensional.

However, this is not a severe restrition beause the bifuration theory for families of

ODE systems involving more than two parameters is only poorly developed. So, from

theoretial grounds, it is not lear what typial dynamial hanges are to be expeted

under suh irumstanes whih learly hampers, for example, the interpretation of

experimental results.

The numerial ontinuation is started from a known or at least approximately known

invariant set at a partiular point in parameter spae. The most ommonly used starting

point is a stationary state, but in some ases may also be a limit yle or a homolini

orbit of the ODE system (B.1). Therefore, one has to ompute these sets either analyt-

ially or numerially. For example, the �xed points of the ODE system are assoiated

with the singular points of the vetor �eld f ; the latter are solutions of the (generally

nonlinear) algebrai equation system:

f(x, α) = 0 (B.2)

for whih solutions x0(α) are rarely found expliitly.

The �rst strategy to loate at least one of the stable �xed points of an ODE system

onsists in a straightforward numerial integration of the equations (B.1). To this pur-

pose, one has to hoose the initial ondition suh that the ODE system (B.1) has a �xed

point at the orresponding parameter value and the initial point belongs to the basin of

attration of the desired �xed point. A seond strategy would be to use some form of

the Newton iteration sheme, i.e.

x(i+1) = x(i) − f−1
x (x(i))f(x(i)), i = 0, 1, . . . (B.3)

whih onverges to the desired �xed point provided the iteration is started lose enough

to that point and the Jaobian fx has no zero eigenvalue there, i.e. the �xed point is

hyperboli.

The loation of limit yle solutions of the ODE system (B.1) is a more intriate

task. If the yle has no unstable diretion, it an be equally found by a straightforward

numerial integration provided the parameter and the initial point are hosen appro-

priately. Otherwise, one relies again on iteration shemes whih now are formulated as

boundary value problems due to the periodiity of the desired solution. In addition,

one has to provide a phase ondition to single out a partiular periodi solution. This

beomes neessary due to the phase invariane of a limit yle, i.e. every phase-shifted

solution is again a periodi solution with the same period.

The most di�ult task, however, is to begin the numerial ontinuation from a ho-

molini orbit sine it is usually known only approximately; for example in terms of a

nearby loated limit yle having a very long period (f. Se. A.5). Another possibility

is to start a homolini ontinuation from a odimension two bifuration point suh as

a Bogdanov-Takens point (f. Se. A.4).
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B.2. Parameters and settings in the hemin system

Finally, we disuss a typial ontinuation strategy starting from a stationary state as it

was done throughout this thesis. First, we note that the equation system (B.2) onsists

of n equations for the n+1 variables (x, α) ∈ R
n×R, thus de�ning generially (i.e. under

some regularity onditions for the vetor �eld f) a smooth urve x0(α) in R
n+1 whih

desribes the dependene of the equilibrium state on the parameter. Beginning with the

starting point, the ontinuation program uses a preditor-orretor algorithm to loate

the next point along the urve x0(α) and determines its loal stability by examining the

eigenvalues of the Jaobian matrix. In addition, ertain test funtions are used to hek

the ourene of a partiular bifuration (see Chapter 10 in [76℄ for details).

From Setion A.3 we already know that there are only two generi bifurations that

an be enountered along an equilibrium urve: a saddle-node and a Hopf bifuration.

There are now several possibilities for a further investigation.

If a saddle-node is found, one may simply ontinue the equilibrium branh or start a

new ontinuation from the saddle-node point using a seond parameter of the system.

The latter proedure yields a urve in the two-parameter plane along whih saddle-node

bifurations our. Generially, this saddle-node urve meets with a seond saddle-node

urve in a usp singularity whih is a odimension two bifuration point.

If, on the other hand, a Hopf bifuration is enountered along the primary equilibrium

urve, one may equally ontinue this urve (whih then onsists of unstable equilibrium

points after the Hopf bifuration) or swith to the new branh of periodi solutions

whih emanates from the Hopf bifuration point. In the ourse of traversing the pe-

riodi branh, one may now observe three generi bifurations: The saddle-node, the

period doubling and the torus or Neimark-Saker bifuration (f. Se. A.3). All of these

odimension one bifurations may be ontinued in a seond parameter of the system

whih leads to a re�ned partition of the two-parameter plane into regions where di�er-

ent types of omplex osillatory behavior is present.

In addition, one may enounter other odimension two bifuration points along two-

parameter bifuration urves suh as the generalized Hopf or Bautin bifuration when

traversing a branh of Hopf bifurations. Similarly, on a branh of saddle-node bifura-

tions of �xed points, a Bogdanov-Takens bifuration may our (for details see Se. A.4).

B.2. Parameters and settings in the hemin system

The rate onstants that were used for the simulations of the ODE system (1.2) and all

its derived versions are listed in Table B.1. The variables x1, . . . , x6 were resaled suh

that the maximal amplitude of the new variables beomes of order unity. In partiular,

we set

x′
1 = 104 · M−1 x1 x′

4 = 104 · M−1 x4

x′
2 = 102 · M−1 x2 x′

5 = 104 · M−1 x5 (B.4)

x′
3 = 104 · M−1 x3 x′

6 = 104 · M−1 x6.

The method of numerial ontinuation (see Se. B.1) was used for the hemin system

to ompare the original as well as the redued ODE system aording to their loal
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B. Investigation Methods and Parameter Settings

Table B.1.: Rate onstants (at 25◦C) and in�ow stream onentrations used for the nu-

merial investigations of the hemin system. The �ow rate k0 was varied

between 1 · 10−4s−1 and 4.5 · 10−4s−1.

k1 = 0.2 M−1 · s−1 k2 = 1.5 M−1 · s−1 k3 = 8.5 · 106 M−2 · s−1 k4 = 1000 s−1

k5 = 1010 M−1 · s−1 k6 = 0.011 s−1 k7 = 2.5 · 104 M−1 · s−1 k8 = 1.9 · 10−4 s−1

x0
1 = 0.025 M x0

2 = 0.045 M x0
4 = 2.2 · 10−4 M x0

5 = 3 · 10−4 M

bifurations. Continuation alulations were always started from a stable �xed point,

whih we obtained by diret numerial integration of the orresponding ODE system.

The parameter region, where the stable �xed point is reahed, has to be tested in several

runs. We found k0 = 1 · 10−4s−1 to be a suitable starting value.

The two prinipal bifuration parameters in the hemin system are the �ow rate k0 and

the deay rate k8 of hemin whih are both simple rate onstants having the dimension

s−1. Their order of magnitude is 10−4. Thus, whenever we present numerial values

of any of the two parameters, they are to be understood in units of 10−4 · s−1. For

example, in the ODE system (3.20), we found a subritial Hopf bifuration at (k0, k8) =
(1.6461 · 10−4s−1, 2.5 · 10−4s−1) whih due to our onvention would simply be denoted as

(k0, k8) = (1.6461, 2.5).

B.3. Parameters and settings in the PO system

For the numerial simulations of the PO system, we used the BFSO model proposed

by Bronnikova et. al. [87℄. The underlying reation mehanism, the omponents of

the reation rate vetor R as well as the numerial values of the orresponding rate

onstants are listed in Table B.2. Per
n+

denotes the di�erent oxidation states of the

enzyme peroxidase while oI, oII and oIII are synonyms for Per
5+
, Per

4+
and Per

6+
,

respetively.

In order to obtain a quantitative piture of the asymptoti states in the PO system,

we omputed bifuration diagrams by diret numerial integration of the ODE system

(C.1) in dependene on the in�ow rate k12 of NADH in the parameter range k12 =
1.1 · 10−7Ms

−1 . . . 1.345 · 10−7Ms
−1
. For eah parameter value, we disarded a transient

of 35000 time steps and reorded the suessive maxima of the peroxidase ompound III

(oIII) onentration over the next 15000 time steps. The run for the �rst parameter

value of eah simulation was always started from �xed initial onditions. For subsequent

runs of the same simulation, but for other parameter values, the �nal onentrations of

the preeding run were used as new initial onditions. By this proedure, it is possible

to monitor the hanges in the asymptoti states as a parameter is almost ontinuously

varied provided the parameter step size is suitably adapted. For the omputation of

Fig. C.2, we used a step size of 10−3.
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B.3. Parameters and settings in the PO system

Table B.2.: Detailed (BFSO) model of the peroxidase-oxidase reation [87℄ a

reation Ri rate on-

stants ki
f

(1) NADH + O2 + H+ −→ NAD+ + H2O2 k1[NADH][O2] 3.0 b

(2) H2O2 + Per3+ −→ coI + H2O k2[H2O2][Per3+] 1.8 · 107 b

(3) coI + NADH −→ coII + NAD� k3[coI][NADH] 4.0 · 104 b

(4) coII + NADH −→ Per3+ + NAD� k4[coII][NADH] 2.6 · 104 b

(5) NAD� + O2 −→ NAD+ + O−
2 k5[NAD�][O2] 2.0 · 107 b

(6) O−
2 + Per3+ −→ coIII k6[O

−
2 ][Per3+] 1.7 · 107 b

(7) 2O−
2 + 2H+ −→ H2O2 + O2 k7[O

−
2 ]2 5.0 · 106 b

(8) coIII + NAD� −→ coI + NAD+ k8[coIII][NAD�] 1.35 ·108 b

(9) 2NAD� −→ NAD2 k9[NAD�]2 5.6 · 107 b

(10) Per3+ + NAD� −→ Per2+ + NAD+ k10[Per3+][NAD�] 1.8 · 106 b

(11) Per2+ + O2 −→ coIII k11[Per2+][O2] 1.0 · 105 b

(12) −→ NADH k12 variable c

(13) O2(gas) −→ O2(liquid) k13[O2]eq 6.0 · 10−3

d,e

(−13) O2(liquid) −→ O2(gas) k−13[O2] 6.0·10−3 d

a Rate onstants are taken from [13℄. b In M
−1
s−1. c between 1.1 · 10−7 and

1.345 · 10−7 Ms
−1
. d In s−1. e The value of [O2]eq is 1.2 · 10−5 M. f The onen-

trations of H
+
are taken to be onstant and absorbed into the rate onstants ki, sine

the reation system runs in a bu�er solution at pH 6.3

For the interpretation of the resulting bifuration diagrams, one has to keep in mind

that they are topologially equivalent to a Poinaré map where the utting setion in the

extended `phase spae' (whih is the usual phase spae of onentrations augmented by 1

dimension for the time diretion) orresponds to the time points at whih the trajetory

of one of the phase spae variables (in our ase oIII) exhibits a maximum. Thus, limit

yles manifest themselves as �xed points, period-2 yles as period-2 points, tori as

losed invariant loops, et.
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C. Quasi-Integrals in the Peroxidase� Oxidase System
In Part I of the thesis, we have introdued the method of quasi-integrals as an algorithmi

proedure whih an be applied in a straightforward manner to any kind of reation

network modeled by ODE systems of the form (3.21). The method was exempli�ed with

the hemin system where we have found one quasi-integral. However, the existene of

this quasi-integral is not too surprising sine it is assoiated with one of the reversible

reation steps in the reation mehanism (1.1), namely with

SO2−
3 + H+

k5,k4

⇋ HSO−
3 .

On the other hand, the existene of the aforementioned quasi-integral is not trivial sine

the seond equilibrium reation in (1.1)

A+
k6,k7

⇋ A + H+

does not de�ne a quasi-stationary manifold.

In order to demonstrate the fairly wide appliability of the method of quasi-integrals,

we additionally investigate the reation mehanism of the peroxidase � oxidase (PO)

system whih, in ontrast to the hemin system, is entirely omposed of irreversible rea-

tion steps. Nevertheless, we shall identify three possible andidates for quasi-stationary

manifolds. While two of them lead to redued systems whose dynamis is in aeptable

quantitative agreement with the original system, the third andidate poses an example

where the dynamis of the redued system shows only the qualitative features of the

original system.

The PO reation is the prototypial example of an osillatory enzyme system (for a

review see [88℄). Considerable experimental e�orts have been devoted to identify the

individual reation steps taking part in this reation system [89℄. In parallel, a series

of theoretial investigations aimed at reproduing the observed type of dynamis in

numerial simulations [90℄.

The starting point of our analysis is a reation mehanism proposed by Bronnikova,

Fed'kina, Sha�er and Olsen [87℄ (Table B.2) whih shows periodi mixed-mode osil-

lations as well as (homolini) haos [13, 27℄. It omprises 14 irreversible reation steps

and involves 10 speies. By assuming mass-ation kinetis, one an derive the following

10-dimensional ODE system:
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C. Quasi-Integrals in the Peroxidase � Oxidase System

ẋ1 = k2x4x10 − k3x1x6 + k8x3x5 (C.1)

ẋ2 = k3x1x6 − k4x2x6

ẋ3 = −k8x3x5 + k11x7x9 + k6x8x10

ẋ4 = k1x6x7 + k7x
2
8 − k2x4x10

ẋ5 = k3x1x6 + k4x2x6 − k5x5x7 − k8x3x5 − 2k9x
2
5 − k10x5x10

ẋ6 = −k1x6x7 − k3x1x6 − k4x2x6 + k12

ẋ7 = −k1x6x7 − k5x5x7 + k7x
2
8 − k11x7x9 − k−13x7 + k13[O2]eq

ẋ8 = k5x5x7 − 2k7x
2
8 − k6x8x10

ẋ9 = k10x5x10 − k11x7x9

˙x10 = −k2x4x10 + k4x2x6 − k6x8x10 − k10x5x10.

The parameter values for the simulations as well as the oxygen onentration [O2]eq
at equilibrium between the gas/liquid phase are taken from [13℄ (f. Table B.2). We

used zero initial values for all speies exept for x0
10, whih was set to the total enzyme

onentration of 1.5 · 10−6M. k12 (orresponding to the in�ow rate of NADH) was

used as a bifuration parameter ranging between 1.1 · 10−7Ms
−1

and 1.345 · 10−7Ms
−1
.

The orrespondene between phase spae variables x1 . . . x10 and hemial speies is as

follows: x1 ↔ Per
5+

(or o I), x2 ↔ Per
4+

(or o II) , x3 ↔ Per
6+

(or o III), x4 ↔ H2O2,

x5 ↔ NAD
.
, x6 ↔ NADH, x7 ↔ O2, x8 ↔ O

−
2 , x9 ↔ Per

2+
and x10 ↔ Per

3+
. The

notation Per
n+

stands for the di�erent oxidation states of the enzyme peroxidase.

As in the ase of the hemin system, we must take are that the hemial onstraints,

whih are expressed by a non-maximal rank of the stoihiometri matrix, are properly

taken into aount, before the method of quasi-integrals is applied. For the PO system,

the rank of the stoihiometri matrix assoiated with the ODE system (C.1) is 9. The

onsequential linear relationship between some of the hemial speies an be taken as:

x9 = x0
10 − x10 − x3 − x1 − x2, (C.2)

whih simply expresses the onservation of the total amount of enzyme peroxidase in

time. Note that the redution from 10 to 9 dimensions does not lead to any information

loss due to (C.2) being an exat onservation relation. Therefore, we shall treat the 9-

and 10-dimensional systems on an equal footing in the following.
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Figure C.1.: Quasi-integrals in the peroxidase�oxidase system. There are three possible

andidates for quasi-stationary manifolds given by I127 (a), I567 (b) and I34

(). I12 (d) shows that it is sometimes not enough to balane only two

reation steps in order to �nd a quasi-integral: Compare with I127 (a)

In the PO system, there are three andidates for quasi-integrals whih are shown in

Figs. C.1a- (f. Table B.2 for the de�nition of the Ri):

I127 =
R1 + R7

R2

∼ 1 ↔ x4 ∼
k1x6x7 + k7x

2
8

k2x10

(C.3)

I567 =
R5

R6 + 2R7

∼ 1 ↔ x8 ∼ −5

2

k6

k7

x10 +

√

25

4
(
k6

k7

x10)2 +
1

2

k5

k7

x5x7

I34 =
R3

R4

∼ 1 ↔ x2 ∼
k3

k4

x1.

We remark that the �rst two quasi-integrals in (C.3) are of the form (3.27) (both sides

multiplied by −1), where we had to balane three terms in order to obtain approximately

onstant funtions. In partiular, Fig. C.1d shows that it is not enough to balane only
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C. Quasi-Integrals in the Peroxidase � Oxidase System

R1 with R2, beause there are time intervals where I12 shows large deviations from the

onstant value 1.
The attrativity of the quasi-stationary manifolds in (C.3) is evident by diret alu-

lation of the orresponding Jaobian matries, and the appliation of the QSSA for x4,

x8 and x2 yields suessively a 8-,7- and �nally the following 6-dimensional ODE system:

ẋ1 = k1x6x7 + k7x
2
8 − k3x1x6 + k8x3x5 (C.4)

ẋ3 = k6x10x8 − k8x5x3 + k11x7x9

ẋ5 = 2k3x1x6 − k5x5x7 − k8x3x5 − 2k9x
2
5 − k10x5x10

ẋ6 = −k1x6x7 − 2k3x1x6 + k12

ẋ7 = −k1x6x7 − k5x5x7 + k7x
2
8 − k11x7x9 − k−13x7 + k13[O2]eq

˙x10 = −k1x6x7 − k7x
2
8 + k3x1x6 − k6x10x8 − k10x5x10

where x8 = x8(x5, x7, x10) in (C.4) is given as a funtion of x5, x7 and x10 aording to

the seond equation in (C.3).

Let us now address the most prominent dynamial hanges that have been observed

during the suessive redution from a 10-variable to a 6-variable reation mehanism. To

this purpose, we ompare the dynamis of the redued systems with that of the original

one by alulating Poinaré maps of suessive maxima of the oIII onentration as the

NADH in�ow rate k12 is ontinuously varied (f. Se. B.3). This proedure yields loal

bifuration diagrams whih resemble those alulated in [27℄ due to a similar hoie of

parameter sets.

Figure C.2a shows the bifuration senario in the 10/9-dimensional system as it has

already been investigated in [13℄. Of partiular interest are the mixed mode states LS.

(The notation LS denotes a periodi osillatory state where one period onsists of L large

and S small amplitude osillations.) The mixed mode states as well as the alternating

periodi and haoti windows are learly preserved throughout the redution proedure.

The bifuration senarios for the redued 8- and 7-dimensional systems (Figs. C.2b,)

even show a quantitative agreement with that of the original 10/9-dimensional system

(Fig. C.2a).

It is only for the 6-dimensional system that we �nd quantitative deviations from the

original dynamial behavior, sine we observe a shift in the parameter spae where the

�rst haoti and the subsequent mixed-mode states appear (Fig. C.2d). Moreover, the

order of the MMOs is hanged whih might be aused by an inreased resolution of the

periodi windows between two haoti states. In the 6-dimensional system, the periodi

windows also ontain Farey progressions of 1S states with S > 1 whih are either absent

in the 10/9-, 8- and 7-dimensional systems or our in too narrow parameter intervals

to be resolved numerially.

The reason for the quantitative deviations of the 6-dimensional system from the orig-

inal dynamial behaviour may be found in the temporarily large deviations (up to 30%)

of the funtion I34 in Fig. C.1 from the onstant value 1. In ontrast, the quasi-integrals

I127 and I567 exhibit only small �utuations around 1 of at most 10% (f. Figs. C.1a,b).
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Figure C.2.: Bifuration diagrams showing the maxima of peroxidase ompound III

(coIII) onentration as the NADH in�ow rate k12 is varied: the original

10-/9-dimensional system (a), the 8-dimensional system (using I127 ∼ 1)
(b), the 7-dimensional system (using I567 ∼ 1) () and the 6-dimensional

system (using I34 ∼ 1) (d). The mixed-mode states as well as the alter-

nating periodi and haoti windows appear in all of the redued systems

(b,,d), but at slightly di�erent parameter values (d). The 6-dimensional

redued system exhibits Farey sequenes of 1S states with S = 1, 2, 3, 4 (d).
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Deutshe Zusammenfassung
Die vorliegende Arbeit ist in der Theorie dynamisher Systeme angesiedelt. Sie befasst

sih einerseits mit der Modellreduktion komplexer (bio-)hemisher Reaktionsnetzwerke,

wobei die wesentlihen dynamishen Eigenshaften der ursprünglihen Systeme weitest-

gehend erhalten werden sollen und andererseits mit einer Untersuhung über den Ur-

sprung burstartiger Oszillationen im Hämin-Wassersto�peroxid-Sul�t-Reaktionssystem

(Hämin-System). Das Hämin-System ist ein so genanntes minimales Ein-Enzym-Modell-

System, das nur aus einem Enzym-Modellkomplex (Hämin) und seinen Substraten be-

steht. Es gehört zu einer Familie von pH Oszillatoren, die periodishe Änderungen des

pH Wertes in ihrer Umgebung hervorrufen können, was im Weiteren zur Änderung phy-

siologisher Parameter wie der Permeabilität von Membranen oder der Aktivität anderer

Enzyme führen kann. Somit besitzt das Hämin-System als pH Oszillator eine gewisse

biologishe Bedeutung, insbesondere da der Enzym-Modellkomplex Hämin in ähnliher

Form in vielen natürlih vorkommenden Enzymen vorhanden ist.

Neben einfahen periodishen Oszillationen wurden im Hämin-System experimentell

auh sogenannte burstartige Oszillationen beobahtet. Letztere sind periodishe Zyklen,

innerhalb derer einer gewissen Anzahl an Oszillationen groÿer Amplitude, eine im Allge-

meinen davon vershiedene Anzahl an Oszillationen kleinerer Amplitude folgen. Wegen

ihrer typishen Wellenform mit abwehselnd groÿen und kleinen Amplituden jeweils un-

tershiedliher Frequenz werden sie oft mit Signalübertragungsvorgängen in zellulären

Netzwerken in Verbindung gebraht und besitzen deshalb potentiell eine gewisse physio-

logishe Bedeutung.

Entsprehend ihrer thematishen Ausrihtung, ist die vorliegende Arbeit in zwei Teile

gegliedert, die durh einen Anhang ergänzt werden.

Im ersten Teil wird die Methode der Quasi-Integrale beispielhaft anhand des Hämin-

Systems entwikelt. Diese Methode ist numerisher Art und dient dem Au�nden langsa-

mer invarianter Mannigfaltigkeiten in Systemen gewöhnliher nihtlinearer Di�erential-

gleihungen, welhe häu�g zum Modellieren räumlih homogener hemisher Reaktions-

netzwerke verwendet werden. Sie erweist sih insbesondere bei realistishen und deshalb

meistens höher dimensionalen Systemen von Vorteil, da jene analytishen Methoden im

Allgemeinen niht mehr zugänglih sind.

Die Existenz langsamer Mannigfaltigkeiten ist harakteristish für dissipative Syste-

me, in denen sih die Zustände auf zwei stark untershiedlihen Zeitskalen entwikeln.

Um diese zu �nden, prüfen wir systematish, ob Verhältnisse bestimmter Komponenten

des Reaktionsgeshwindigkeitsvektors, welhe die nihtlineare Kinetik der Elementar-

reaktionen beshreiben, entlang der durh numerishe Integrationsroutinen gewonnenen

Lösungskurven einen annähernd konstanten Wert annehmen. Jedem annähernd konstan-

ten Verhältnis entspriht ein Quasi-Integral und damit eine langsame Mannigfaltigkeit.
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Letztere sind durh algebraishe Gleihungen gegeben und können im Folgenden dazu

benutzt werden, die Dimension des ursprünglihen Di�erentialgleihungssystems und da-

mit die Anzahl dynamisher Freiheitsgrade um die Anzahl gefundener Quasi-Integrale

zu verringern. Dieses Vorgehen wird durh die Theorie singulär gestörter Systeme moti-

viert, deren Grundideen wir zu Beginn des ersten Teiles der Arbeit kurz darstellen, um

im Anshluss daran auh den Bezug zu den Quasi-Integralen aufzuzeigen.

Die Dynamik des Hämin-Systems wird aufbauend auf einem experimentell gut be-

stätigten Reaktionsmehanismus durh ein 6-dimensionales gewöhnlihes Di�erential-

gleihungssystem modelliert. Die Methode der Quasi-Integrale liefert in Anwendung auf

das Hämin-System die Existenz einer langsamen Mannigfaltigkeit. Diese wird, unter

Berüksihtigung zweier Massen-Erhaltungsgröÿen, zur Reduktion des ursprünglih 6-

dimensionalen Systems auf ein Drei-Variablen-Modell benutzt. Im Folgenden vergleihen

wir die dynamishen Eigenshaften beider Systeme auf der Grundlage ihrer lokalen Bi-

furkationen, die als quantitatives Maÿ für die topologishe Äquivalenz beider Systeme

angesehen werden können. Dazu berehnen wir mit Hilfe numerisher Kontinuationsrou-

tinen Ein- und Zwei-Parameter Bifurkationsdiagramme, die für beide Systeme praktish

identish sind.

Im zweiten Teil der Arbeit untersuhen wir den Ursprung der burstartigen Oszilla-

tionen im Hämin-System in seiner 3-dimensionalen Approximation. Dazu benutzen wir

eine von Rinzel und Ermentrout entwikelte Methode, bei der eine langsame dynami-

she Variable als quasi-statisher Bifurkationsparameter für das restlihe, sih auf einer

shnelleren Zeitskala entwikelnde Untersystem fungiert. In Abhängigkeit vom aktuellen

Wert der langsamen Variablen gibt es untershiedlihe anziehende Zustände im shnellen

Untersystem, denen die Trajektorien des 3-dimensionalen Flusses folgen, was ein geome-

trishes Verständnis des Flusses im Phasenraum ermögliht. Insbesondere läÿt sih der

das Bursting-Verhalten harakterisierende Mehanismus nah einem von Izhikevih vor-

geshlagenen Shema durh gewisse Bifurkationen im shnellen Untersystem erklären,

die zum Entstehen und Vershwinden der burstartigen Oszillationen führen.

Entsprehend diesem Shema, zeigt das Hämin-System an einem fest gewählten Satz

von Parameterwerten, so genanntes SubHopf/Fold-Cyle Bursting, da eine subkritishe

Hopf-Bifurkation zusammen mit einer Sattel-Knoten Bifurkation periodisher Lösungen,

die für diht benahbarte Werte der langsamen Variablen im shnellen Untersystem

auftreten, für das Bursting-Verhalten des Hämin-Systems verantwortlih sind.

Durh eine systematishe Zwei-Parameter-Bifurkationsanalyse des shnellen Unter-

systems, die in dieser Form bisher noh niht benutzt worden zu sein sheint, �nden

wir einen Übergang im Bursting-Verhalten des Hämin-Systems von einem sogenannten

SubHopf/Fold-Cyle Burster zu einem Fold/SubHopf Burster entsprehend der Klassi-

�kation von Izhikevih. Solhe Übergänge im Bursting-Verhalten in Abhängigkeit von

äusseren Parametern können von physiologisher Bedeutung sein.

Shlieÿlih untersuhen wir mit der von Rinzel und Ermentrout entwikelten Analyse-

methode den Phasen�uÿ auf einem 2-Torus im Hämin-System und �nden dadurh eine

Erklärung für den Ursprung quasi-periodishen Verhaltens in diesem System, die auh

für andere dynamishe Systeme mit ähnlihen Tori von Bedeutung sein sollte.
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