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Policy Research Working Paper 5004

This paper describes an approach to forecasting future 
climate at the local level using historical weather 
station and satellite data and future projections of 
climate data from global climate models (GCMs) that 
is easily understandable by policymakers and planners. 
It describes an approach to synthesize the myriad 
climate projections, often with conflicting messages, 
into an easily-interpreted set of graphical displays that 
summarizes the basic implications of the ensemble of 
available climate models. The method described in the 
paper can be applied to publicly-available data for any 
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country and for any number of climate models. It does 
not depend on geographic scale and can be applied at 
the subnational, national, or regional level. The paper 
illustrates the results for future climate for Ethiopia using 
future climate scenarios projects by 8 global climate 
models. The graphical displays of nine possible future 
climate regimes (average temperature, precipitation and 
their seasonal distribution) for each grid-cell about 50km 
X 50 km). It also provides the probability associated with 
each of the nine-climate regimes.
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1.  Introduction 
 

This paper describes an approach to local climate forecasting that integrates local 

weather history and future projections in simple display formats that are useful for 

policymakers.  It draws on historical climate data from weather stations and satellites; 

projections from climate models (GCMs) linked to global emissions scenarios from the 

Intergovernmental Panel on Climate Change (IPCC); and a methodology for 

summarizing stochastic variation in the data.  The methodology can translate very large, 

multidimensional datasets into easily-interpreted formats for all countries at a high level 

of spatial disaggregation.  In this pilot application for Ethiopia, we develop formats for 

372 grid squares that cover the whole country; three time periods (1960-2000, 2001-

2050, and 2051-2100); eight GCMs1

This exercise is primarily designed to serve policymakers, public investment 

planners and other actors whose decisions must necessarily balance a host of technical, 

economic, political and social concerns.  For these people, the future impact of global 

warming is one factor among many that must be considered.  At the same time, 

appropriate decisions require an approach that captures all the relevant dimensions of 

future climate forecasts, at least to a first approximation.  This paper describes and 

implements such an approach through a step-by-step process.  The remainder of the paper 

is organized as follows.  In Section 2, we provide a general introduction to the 

; and one IPCC future emissions/climate scenario 

(A1B).  However, we have designed our approach for an arbitrary number of grid 

squares, periods, GCMs and IPCC scenarios.  It can produce a fine-gridded database for 

multiple periods that covers all countries and incorporates predictions from all available 

GCMs and IPCC scenarios. 

                                                 
1 See Appendix 1 for documentation of the eight GCMs. 
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methodology and describe the steps for implementing it in the Ethiopian case.  Section 3 

provides illustrations of the results for areas in four Ethiopian regions, and Section 4 

concludes the paper. 

2.  The “Best Fit” Approach to Downscaling 
 

“Downscaling” describes the process by which information from a large, 

heterogeneous global climate dataset is tailored to local conditions to produce local 

weather projections.  Downscaling has two essential components: a system for 

benchmarking local-historical weather data, and a system for bridging from these 

historical data to GCM forecasts.  One problem is that GCMs are calibrated at global 

scale, and individual GCMs may not fit local conditions very well.  Another problem is 

posed by the sheer number of GCMs, which may present very different views of future 

prospects for a particular area.  We need a methodology for judging the “fit” of each 

GCM to local conditions, and a tractable representation of the uncertainty faced by each 

area. 

We begin with monthly temperature and rainfall data for the period 1961-2000 

(henceforth CRU), provided by the Climatic Research Unit of the University of East 

Anglia, Norwich, UK.  The data are gridded to .5°, producing 372 grid squares for 

Ethiopia.  These fine-gridded data combine historical observations from specific weather 

stations with spatial interpolations that combine information from the weather stations 

and satellite-based observations. The data enable us to characterize historical climate 

variation as a bivariate distribution of temperature and rainfall.  They also establish a 

benchmark for tailoring GCM projections to local conditions. 

We implement our methodology in the following steps: 
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2.1  Assignment of reliability weights to the eight GCMs, based on their  

historical “goodness of fit” to the CRU data  
 

We use R2’s rather than the simple correlation coefficients, because we want to 

discriminate strongly in favor of the best-fitting GCMs. Our approach is bivariate, 

because temperature and rainfall are jointly produced by the climate process.  To assign 

reliability weights, we combine fine-gridded historical results for each GCM with 

monthly temperature and rainfall data for the period 1961-2000 (CRU), provided for 

Ethiopia by the Climatic Research Unit of the University of East Anglia, Norwich, UK.  

We compute R2’s  between CRU and each of the eight GCMs for temperature and rainfall 

separately.  Each estimate is based on 178,560 observations (monthly during 1961-2000 

for 372 Ethiopian grid squares).  We add rainfall and temperature R2’s to get a summary 

measure of explained variation for each GCM, specify the smallest value as the 

numeraire, and divide it into the others to get relative scores.   

2.2   Establishment of forecasting benchmarks for each grid square   
 

We require separate benchmarks for the CRU and each of the GCMs.  We establish 

forecasting benchmarks for each grid square using data for the period 1980-2000 (the 

most recent year in our CRU dataset).  We begin by computing average annual rainfall 

and temperature for the nine datasets (CRU; 8 GCMs).  Then we use a least-squares fit 

criterion to select the most representative joint monthly distribution of temperature and 

rainfall.  For each variable, we compute squared monthly deviations from median values 

in each grid square.  We calculate yearly sums of squared deviations for each grid square, 

and then rank the 21 results (1980-2000) separately for temperature and rainfall.  We use 

ranks to ensure robust results, since temperature and rainfall metrics are quire different.  
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Then we compute squared yearly deviations of ranks from their medians for temperature 

and rainfall in each grid square; calculate sums of squared deviations (SSD) for each 

variable; and identify the year with lowest SSD as the benchmark year.  By this “two-

stage least-squares” criterion, the temperature and rainfall for the benchmark year provide 

the best bivariate representation for the 21-year dataset in each grid square.  The process 

generates nine benchmark annual datasets – CRU and eight GCMs – for each of the 372 

grid squares. 

2.3  Generation of benchmarked annual forecast ratios for the GCMs   
 

For each GCM, this entails dividing each observation in each future year by the 

GCMs counterpart observation in its benchmark dataset (most representative 

temperature/rainfall among the 21 years in the period 1980-2000).  The resulting dataset 

contains 297,600  ratios (8 GCMs, 372 grid squares, 100 years). 

2.4  Computation of GCM-based forecasts from actual historical data   
 

For each GCM, this entails multiplying each yearly ratio (from 2.3 above) in each 

future year by the counterpart observation in the CRU benchmark dataset (from the most 

representative temperature/rainfall combination, derived from CRU data for 1980-2000).  

This procedure serves two goals.  It retains the relative changes incorporated in future 

GCM estimates, and it applies these relative changes to the actual point of historical 

departure:  the benchmark series from the CRU data.  This translation step is necessary 

because the GCMs reflect consistent, global-scale computations but are not designed to 

accurately reproduce local climate regimes.  That is why we have developed R2-based 

“goodness-of-fit” scores in the first stage of this process.    
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2.5 Separation of forecasts into relevant future periods   
 

Selection of intervals within the 100-year forecast range (2001-2100) is essentially 

arbitrary.  For this study, we divide the 21st century into two 50-year intervals (2001-

2050; 2051-2100) to provide a simple illustrative template. 

2.6  Separation of weather data into scale classes   
 

The GCMs attempt to replicate actual climate patterns by incorporating year-to-year 

stochastic variation into their forecasts.  At the same time, the GCMs incorporate long 

trends in the annual levels and monthly distributions of rainfall and temperature.  For 

each GCM, each 50-year forecast interval therefore includes widely-varying joint 

observations on temperature and rainfall.  The total forecast variation is compounded by 

the presence of 8 GCMs.  For the scale-separation exercise, we use our calculated yearly 

temperature and rainfall pairs for each GCM in each future forecast interval.  This 

generates 400 annual totals (8 GCMs; 50 years) for temperature and rainfall for each of 

372 grid squares.   These reflect anticipated future climate trends as well as broad 

stochastic variation from year to year.  To establish the full domain for variation, we 

assemble annual observations as follows for each grid square: the first 40 from the CRU 

data (1961-2000) and the other 800 from the GCM-based forecasts (2 future periods, 50 

years in each period; 8 GCMs).  

For tractability, we need a simple scheme for characterizing this variation.  For this 

paper, we establish three equal-sized intervals from minimum to maximum values (Low, 

Medium, High), for rainfall and temperature separately, for the 840 observations in each 

grid square.  Then we assign each annual joint rainfall/temperature observation in each 
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year (1960-2000; 2001-2050; 2051-2100) to one of nine cells in a 3-3 matrix (reflecting 

all possible combinations of low, medium and high values for temperature and rainfall).   

Now we are ready to develop a simple template for calculating joint incidence 

probabilities for the two variables in each period.  The first step draws on the reliability 

weights calculated in Step 2.1 of the analysis.  In fact, the 8 GCMs are far from equal in 

their ability to reproduce local climate patterns in Ethiopia.  To quantify this difference, 

we have calculated the R2-based scores that were previously described.  Now we use 

these scores in an expectational calculus.  The intuition here is straightforward:  In the 

two future periods, we cannot assign the same confidence to predictions from different 

GCMs.  Before we assign a GCM-based forecast to one of the nine cells for a grid square, 

we weight it with the R2-based score that we have computed for the GCM.  In effect, we 

count an observation from the best-fitting GCM as occurring more frequently than an 

observation from the numeraire (worst-fitting GCM).  The relative frequency is the ratio 

of a GCMs R2 score to the numeraire score (for the worst-fitting GCM).  

Once the weighted observations are all assigned to the nine cells for each grid 

square, we calculate the weighted probability for each cell (total cell score/total of all cell 

scores).  We do this for both future periods, as well as for the historical CRU data (here 

each observation gets unit value in the count, since all observations are deemed equally 

reliable).  The result is an easily-interpreted template for each grid square, which shows 

the transition in expected Low-Medium-High incidence of temperature/rainfall pairs from 

actual recent history, to the relatively near future, and then to the distant future.  This 

provides decision-makers with a clear, simple picture of our best evidence on how the 
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current stochastic distribution of climate events is expected to change during the coming 

century. 

2.7  Selection of representative future monthly forecasts 
 

The procedure summarized in 2.6 provides a view of expected change in annual 

temperature and rainfall conditions.  However, investment planning in agriculture and 

other sectors will also be sensitive to expected changes in the monthly pattern of 

temperature and rainfall.  So the final challenge is to distill our best guess about future 

monthly patterns from the huge set of future monthly predictions at our disposal.  And we 

have to do this while preserving the jointness of temperature and rainfall data – they 

cannot be separated for summary purposes.   

We begin by expanding the previously-computed annual totals into monthly 

distributions, in two steps.  First, for annual temperature and rainfall data for each GCM, 

we compute the ratio of each monthly observation to the corresponding annual mean 

value.  Then we apply these ratios to the forecast annual means produced in Step 2.4.  

The result is a dataset with 3,571,200 observations (372 grid squares; 8 GCMs; 100 

years; 12 months/year). In each grid square, we have nine probabilities (which sum to 

100%) assigned to Low-Medium-High combinations of annual temperature and rainfall.  

For cells with non-zero probabilities, we select representative monthly distributions using 

a weighted variant of our previously-described approach to benchmarking:  Within each 

of the nine cells in each future period (and grid square), we compute squared monthly 

deviations from medians for temperature and rainfall for each year and GCM model.  We 

weight the squared deviations by the inverse of the GCMs “goodness-of-fit” score (this 

assigns lower deviation values to better-fitting GCMs, ceteris paribus), which has the 
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effect of moving the choice of a representative monthly series toward the better-fitting 

GCMs).  Then we compute annual totals for the weighted squared deviations for 

temperature and rainfall separately.  As before, we calculate cell ranks for the two 

variables, and perform the second-stage squared-deviations operations on the ranks to get 

annual scores for each GCM and year.  We select the GCM/year which has the lowest 

score (and is therefore closest to the central tendency in the dataset, by our criteria) and 

identify the monthly series for that GCM/year as the most representative series for 

comparative analysis.   

2.8  The analysis tableau 
 

The complete tableau has the following elements.  Each grid square has nine cells 

containing incidence probabilities for annual temperature/rainfall totals in each of three 

periods (past, near future, distant future).  Each cell is also assigned a monthly joint series 

of rainfall and temperature for the past (from the benchmark CRU series that we have 

already described in 2.2 above), as well as monthly series for the two future periods.  

This “distillation” still creates a massive dataset (as many as 9 cells, 3 periods, 372 grid 

squares, although many cells have zero expected incidence.  But for any specific grid 

square (the locus of investment decisions), the template is quite tractable: no more than 9 

monthly series for each of 3 periods. 

 
3.  Illustrative Results for Ethiopia 
 

Figure 1 provides evidence on historical weather patterns in different parts of 

Ethiopia.  For each indicated grid point, we depict the “best-fit” monthly historical 

pattern of temperature (above in each pair) and rainfall.  The data for each variable are 

graphed with the same vertical scale at each point, so that relative levels can be 
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compared.  Typical temperatures are much higher at the western and eastern grid points 

(between 25° and 30° C.) than at the central (highland) point (10° - 15° C.).  Both levels 

and seasonal variations in rainfall are also quite different.  The central point has high 

average rainfall, with a smooth pattern of rise and fall that is approximately centered in 

July (month 7).  The southern and eastern points have very low rainfall, distributed in a 

bimodal pattern with peaks in the spring and fall.  The other two points have sharply 

single-peaked distributions, peaking in July in the west and August in the north. 

Figure 2 presents our benchmark results for weighting GCMs in this exercise.  The 

table presents average R2 scores for the bivariate relationships between the CRU 

(historical) rainfall and temperature observations and the corresponding observations 

from the 8 GCMs (documented in Appendix 1).  Each score is computed from monthly 

observations for 40 years, over 372 Ethiopian grid squares.  The best fit (R2 = .50) is 

provided by GISSA, the AOM model of NASA’s Goddard Institute for Space Studies.  

The worst fit (R2 = .10) is provided by IPSL, the CM4 model of the Institute Pierre 

Simon Laplace, France.  We should emphasize that these results are for Ethiopia only.  It 

is quite possible that the pattern of fit across GCMs is very different for other countries.  

In any case, we observe stark differences for Ethiopia:  The ratio of R2-scores for best 

and worst fit is 5:1.  We use relative weights computed from the results displayed in 

Figure 1 in the stepwise “best-fit” exercise described in Section 2. 

Figures 3-5 illustrate our projection results for three grid points in Figure 1.  As we 

note in Section 2, our methodology condenses all the GCM information into “best-fit” 

patterns for three periods:  historical (1960-2000), 2001-2050 and 2051-2100.  For 

Figures 3-5, we juxtapose the projections for 2051-2100 (in red) with historical data 
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(blue).  The data are condensed into a nine-cell matrix that includes low, medium and 

high ranges for annual temperature and rainfall.  Figures 3-5 include all cells that actually 

contain observations in our results.  Figure 3, drawn from the southern grid point, 

includes results for 7 of the 9 possible matrix cells.  The cells are ordered by probability.  

The topmost graphs portray the future scenario with the highest probability (47.6%) at 

this grid point.  Rainfall remains low and roughly bimodal, but the pattern shifts forward 

by about two months.  Projected temperature rises about 2° C, but the change is not 

constant across the seasons.  The maximum difference occurs in spring and summer, 

while fall temperatures are much closer to the historical pattern. 

The other cells in Figure 3, in descending order of probability, indicate preservation 

of bimodality in rainfall, somewhat higher levels of rainfall, and generally higher peaks 

in the rainiest months.  These patterns are most pronounced in two of the lowest-

probability cells (2.8% and 1.5%), which also indicate forward-shifting by about two 

months.  The corresponding temperature results also suggest higher temperatures on 

average, but the pattern varies considerably.  In the second-highest-probability cell 

(22.8%), projected temperatures are much closer to historical patterns than in the highest-

probability cell.  The other cells reveal the same kind of variation. 

Figures 4 and 5 reveal similar variety in the levels and seasonal distributions of 

rainfall and temperature.  The central Ethiopian point in Figure 4 has much less skew in 

its scenario probabilities than the southern point.  It also displays marked variation in 

seasonal rainfall patterns: a pronounced shift forward toward a fall peak in the highest 

probability cell (36.3%); a shift backward toward a spring peak in the second-probability 

cell (31.1%), and a shift toward steeply-peaked bimodality in one of the lower-probability 
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cells (7%).  Projected temperatures in the central (highland) cell remain low by Ethiopian 

standards, but they are persistently 1° - 2° C. higher than historical figures. 

Figure 5 displays results for the eastern grid point, and they are similar to those for 

the southern point in Figure 3.  Figure 6 provides a more detailed representation for the 

western point, presenting the entire 9-cell matrix for the three periods.  The use of a 

constant low-medium-high breakdown across all three periods enables us to see the 

pattern of climate transition clearly, along with shifts in seasonal patterns.  Rainfall is in 

the left column for each pair.  In the historical period (1960-2000), almost all of the 

observations are in low-temperature cells, while rainfall is more broadly distributed (low 

rainfall 12.5% probability; medium rainfall 55.0%; high rainfall 30%).  The period 2001-

2050 witnesses a marked stretching of the distribution, with observations in 8 of the 9 

matrix cells.  Temperatures begin extending into the medium and high regions, while 

rainfall remains varied and seasonal patterns exhibit significant differences across cells.  

By the period 2051-2100, all of the low-temperature cells have dropped out while rainfall 

remains highly varied.  The highest-probability cell (56.0%) has high temperature and 

medium rainfall, while the second-probability cell (27.5%) has medium temperature and 

medium rainfall.  The seasonal pattern of rainfall in the two high-probability cells has 

roughly the same shape, peaking in the fall.  The seasonal rainfall pattern is clearly 

different in some of the lower-probability cells. 

4.  Summary and Conclusions 

In this paper, we have developed an Ethiopian illustration for a downscaling 

methodology that summarizes information from historical climate data and future 

projections from 8 global climate models.  This method can be applied to publicly-
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available data for any country, and for any number of climate models.  No matter how 

many models are included, the method will summarize information for each grid point in 

the nine-cell matrix portrayed in our Ethiopian illustrations.  The information is 

computed for each square in a fine-gridded map (372 squares for Ethiopia alone).  It 

includes the relative likelihood of future climate regimes, along with associated changes 

in average temperature and rainfall, and the seasonal distributions of those variables.  We 

believe that this spatial information is sufficiently disaggregated to be useful for local 

planners and policymakers.  At the same time, our method is invariant to scale.  After 

aggregation of grid cells, it can be applied to national subregions, nations, or entire 

regions.  We therefore believe that it can provide a generally-useful tool for policymakers 

and planners who need to understand the basic implications of the myriad climate 

projections that are now available. 
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Figure 1:  Monthly Temperature and Rainfall in Five Ethiopian Regions 
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Figure 2:  Relative Fit to CRU Data:  8 Global Climate Models 
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Figure 3:  Present and Future Climate in Southern Ethiopia 
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Figure 4:  Present and Future Climate in Central Ethiopia 
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Figure 5:  Present and Future Climate in Eastern Ethiopia 
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Figure 6:  Present and Future Climate in Westermn Ethiopia 
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     Appendix 1:  CRU and GCM Sources 
 
Historical Data: 1961-2000 
 
CRU:  UK Climatic Research Unit, University of East Anglia, UK 
http://www.cru.uea.ac.uk/ 
 
GCM Data:  1961-2100 
 
GFDL:  Geophysical Fluid Dynamics Laboratory, NOAA, USA 
Model Name:  CM2 
http://www.ipcc-data.org/ar4/model-GFDL-CM2-change.html 
http://www.ipcc-data.org/ar4/model-GFDL-CM2_1-change.html 
 
CCCMA:  Canadian Centre for Climate Modeling and Analysis:  GCM3 
Model Name: GCM3 
http://www.ipcc-data.org/ar4/model-CCCMA-CGCM3_1-T63-change.html 
http://www.ipcc-data.org/ar4/model-CCCMA-CGCM3_1-T47-change.html 
 
GISSA: NASA Goddard Institute for Space Studies (NASA/GISS), USA 
Model name: AOM  
http://www.ipcc-data.org/ar4/model-NASA-GISS-AOM-change.html 
 
INM:  Institute of Numerical Mathematics, Russian Academy of Science, Russia. 
Model name: CM3.0 
 http://www.ipcc-data.org/ar4/model-INM-CM3-change.html 
 
IPSL: Institut Pierre Simon Laplace, France 
Model Name: CM4 
http://www.ipcc-data.org/ar4/model-IPSL-CM4-change.html 
 
MIROC: CCSR/NIES/FRCGC, Japan 

CCSR: Center for Climate System Research, University of Tokyo 
NIES: National Institute for Environmental Studies, Japan 
FRCGC: Frontier Research Center for Global Change, Japan Agency for 
     Marine-Earth Science and Technology (JAMSTEC) 

Model Name: MIROC3.2 
http://www.ipcc-data.org/ar4/model-NIES-MIROC3_2-HI-change.html 
http://www.ipcc-data.org/ar4/model-NIES-MIROC3_2-MED-change.html 
 
MIUBE: Meteorological Institute of the University of Bonn (Germany), Institute of KMA 
(Korea), and Model and Data Group. 
Model Name:  ECHO-G 
http://www.ipcc-data.org/ar4/model-CONS-ECHO-G-change.html 
 
UKMOHAD: Hadley Centre for Climate Prediction and Research, Met Office, UK 

http://www.cru.uea.ac.uk/�
http://www.ipcc-data.org/ar4/model-GFDL-CM2-change.html�
http://www.ipcc-data.org/ar4/model-GFDL-CM2_1-change.html�
http://www.ipcc-data.org/ar4/model-CCCMA-CGCM3_1-T63-change.html�
http://www.ipcc-data.org/ar4/model-CCCMA-CGCM3_1-T47-change.html�
http://www.ipcc-data.org/ar4/model-NASA-GISS-AOM-change.html�
http://www.ipcc-data.org/ar4/model-INM-CM3-change.html�
http://www.ipcc-data.org/ar4/model-IPSL-CM4-change.html�
http://www.ipcc-data.org/ar4/model-NIES-MIROC3_2-HI-change.html�
http://www.ipcc-data.org/ar4/model-NIES-MIROC3_2-MED-change.html�
http://www.ipcc-data.org/ar4/model-CONS-ECHO-G-change.html�


 21 

Model Name: HadCM3 
http://www.ipcc-data.org/ar4/model-UKMO-HADCM3-change.html 
 
 
 
 
 

http://www.ipcc-data.org/ar4/model-UKMO-HADCM3-change.html�



