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Zusammenfassung

Die vorliegende Arbeit leistet einen Beitrag zur Modellierung und Numerik freier Randwert-
probleme mit kapillaren Oberflächen. Die Problematik, die in der Arbeit betrachtet wird, ist die
Entwicklung, Untersuchung und Umsetzung numerischer Methoden zur Berechnung von in der
Gleichgewichtslage eingestellten axialsymmetrischen Oberflächenformen von Ferrofluiden unter
dem Einfluß eines stationären äußeren Magnetfeldes. Die entwickelten mathematischen Mod-
elle und numerischen Lösungsmethoden werden an konkreten Beispielen erprobt und verifiziert.
Als Beispiele betrachten wir die Oberflächenform eines Ferrofluidtropfens, die Oberflächenform
einer Luftblase in magnetischen Flüssigkeit und die Entstehung von einzelnen Stacheln auf der
Oberfläche einer horizontal unendlich ausgedehnten Ferrofluidschicht.

Die axialsymmetrischen statischen Oberflächenformen von Ferrofluiden lassen sich mathema-
tisch mit Hilfe eines gekoppelten Modells beschreiben. Das Modell besteht aus den Maxwell-
Gleichungen im Gebiet, das vom Ferrofluid und der umgebenden Luft eingenommen wird,
sowie der Young-Laplace-Gleichung auf der freien Grenzfläche. Die Grenzfläche zwischen Fer-
rofluid und Luft ist a-priori unbekannt und wird durch die Weckselwirkung von Magnetfeld und
Oberflächenform bestimmt. Es wird eine iterative teilproblem-orientierte Entkopplungsstrate-
gie angegeben, mit deren Hilfe das Gesamtproblem in ein magnetostatisches Problem in einem
Gebiet mit bekannter Grenzfläche und ein Oberflächenproblem mit bekanntem Magnetfeld zer-
legt wird. Die unterschiedliche Struktur der beiden Teilprobleme setzt verschiedene numerische
Approximationstechniken voraus.

Die entwickelte gekoppelte BEM-FEM-Strategie ist gut für die Untersuchung und Berech-
nung der Maxwell-Gleichungen geeignet. Aufgrund der Fernfeld-Randbedingung wird eine
Randelement-Methode (BEM) zur Diskretisierung der Maxwell-Gleichungen im Gebiet der
umgebenden Luft bevorzugt. Die Nichtlinearität des magnetostatischen Problem im Gebiet, das
vom Ferrofluid eingenommen wird, erfordert den Einsatz der Finite-Elemente-Methode (FEM).
Eine direkte Darstellung von Randintegralgleichungen und ihre Diskretisierung mit Hilfe der
Kollokationsmethode bieten ein geeignetes numerisches Verfahren zur Laplace-Gleichung an, die
die Maxwell-Gleichungen im Gebiet der umgebenden Luft in Form eines Potenzials beschreibt.
Die Konvergenz der stückweise konstanten Kollokation-Randelementmethode für exakt darge-
stelltem Rand sowie für Approximationen des Randes mit stückweise linearen Funktionen und
kubischen Splines wird untersucht. Die Kopplung der Kollokation-Randelementmethode im Ge-
biet der umgebenden Luft und der Galerkin-Finite-Elemente-Methode im Gebiet, das vom Fer-
rofluid eingenommen wird, wird programmtechnisch umgesetzt. Eine Approximation des Poten-
zials mittels stückweise linearer Funktionen und eine Approximation der Normalenableitung des
Potenzials auf der freien Grenzfläche mittels stückweise konstanter Funktionen werden verwen-
det. Die Untersuchung der numerischen Konvergenz des magnetostatischen Problems auf einer
Sphäre liefert die Abschätzung in der r-gewichteten L2-Norm mit der Konvergenzrate h2.

Die Anwendung von Finite-Elemente-Methoden erfordert die Konstruktion geeigneter Gitter.
Bei der Konstruktion der Gitter werden eine Delaunay-Technik sowie ein Verfahren der har-
monischen Erweiterung eingesetzt. Beide Vorgehensweisen werden im Hinblick auf die Qualität
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der generierten Gitter sowie auf die Rechenzeiten zur Gittergenerierung verglichen.

Die Oberflächenformen werden bezüglich der Bogenlänge parametrisiert. Aufgrund der para-
metrischen Darstellung der freien Oberflächen wird die Young-Laplace-Gleichung in ein System
von gewöhnlichen Differentialgleichungen umgeschrieben. Dieses System wird mit einer Finite-
Differenzen-Methode oder mit der Spline-Methode diskretisiert. Beide Diskretisierungsmeth-
oden führen auf algebraische Gleichungssysteme. Die Stabilität der iterativen Verfahren zur
Lösung der algebraischen Gleichungssysteme wird im Hinsicht auf eine Unter-Relaxation-Tech-
nik numerisch untersucht.
Eine spezielle Methode zur Konstruktion der Gitter auf der Grenzfläche wird dargestellt. Die
Methode basiert sich auf Daten für die Oberflächenkrümmung und erlaubt eine gute Approxi-
mation der Grenzflächeform, falls starke Deformationen auftreten.

Numerische Ergebnisse zum gekoppelten Modellproblem der Berechnung von in der Gleich-
gewichtslage eingestellten axialsymmetrischen Oberflächenformen von Ferrofluidtropfen unter
dem Einfluß eines stationären Magnetfeldes werden gezeigt und diskutiert. Die numerischen
Ergebnisse werden insbesondere mit elliptischen Oberflächenformen aus der Literatur ver-
glichen, die analytisch durch Minimierung der Energie bestimmt wurden. Statische Oberflä-
chenformen mit gespitzten Endpunkten werden bei der numerischen Testrechnungen beobach-
tet. Das führt auf wesentlichen Abweichungen von der elliptischen Form. Der Übergang zwis-
chen Oberflächen mit abgerundeten Endpunkten und kegelförmigen Formen wird numerisch
gezeigt. Die Oberflächenformen von Ferrofluidtropfen werden in einem breiten Bereich der Mag-
netfeldstärke numerisch berechnet. Aufgrund der Randelementmethode zur Diskretisierung des
axialsymmetrischen Potenzialproblems treten Schwierigkeiten bei der numerischen Berechnung
in der Nähe der Symmetrieachse auf.

Numerische Ergebnisse zum Modellproblem der Berechnung der Oberflächenform einer Luft-
blase in magnetischer Flüssigkeit unter dem Einfluß eines stationären äußen Magnetfeldes wer-
den gezeigt und diskutiert. Das Verhalten eines Ferrofluidtropfens wird mit dem Verhalten
einer Luftblase in magnetischer Flüssigkeit verglichen.

Numerische Ergebnisse zum Modellproblem der Berechnung einzelner Stachel auf der Oberflä-
che einer horizontal unendlich ausgedehnten Ferrofluidschicht werden gezeigt und diskutiert.
Die Ergebnisse werden mit den mit der linearen Stabilitätsanalyse hergeleiteten theoretis-
chen Aussagen verglichen. Die statische Oberflächenformen werden für verschiedene Werte
der Magnetfeldstärke und für verschiedene Typen von Ferrofluiden numerisch berechnet. Die
axialsymmetrischen numerischen Ergebnisse werden mit Ergebnissen für das dreidimensionalen
Modell verglichen. Ein axialsymmetrisch einzelnes Obeflächenmuster, das sich von dem bei der
Rosensweig-Instabilität bekanntem Muster unterscheidet, wird numerisch bestimmt.
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Chapter 1

Introduction

Magnetic fluids are stable colloidal suspensions of ferromagnetic or ferrimagnetic nano-particles
(of size 3-15 nm) in a carrier liquid (water, oil, bio-compatible liquid). On macroscopic level
magnetic fluids can be considered as incompressible and nonconducting continuous media.
Magnetic fluids are not found in nature and they were at first synthesised in the middle of the
1960th. For a detailed overview on magnetic fluids and their properties see [14, 15, 63].

The unique properties of magnetic fluids, namely the combination of their fluidity with
strong interaction with magnetic field provides nowadays an increasing number of their technical
applications. For a general overview on applications see [14, 15].

A special interest is the use of magnetic fluids with free surfaces, in particular, in mass-
exchange apparatus, for hydraulic resistance reduction and heat transfer enhancement [14]. It
gives rise to numerous investigations of shapes and stability control of magnetic fluid surfaces.

One of the classical problems in ferrohydrostatics is an equilibrium of a free magnetic fluid
drop in an external magnetic field. The freely suspended magnetic fluid drop, initially held
spheroidal by surface tension, elongates in the direction of the uniform applied magnetic field
and takes stable equilibrium shapes. The same effect is presented for a dielectric drop subjected
to a uniform electric field, see [9, 79]. A number of experimental [8, 10, 14, 18], theoretical
[8, 14, 17, 18, 60, 71, 72] and numerical [9, 20, 48, 66, 67, 69, 79] studies are concerned with
the problem on equilibrium magnetic-fluid drop shapes.

Theoretical investigations

There are different approaches for the theoretical description of a behaviour of a drop in
a field [8, 14, 17, 72]. All solutions of the theoretical studies are approximative due to the
assumption for the drop shape to be spheroidal. The theoretical approach presented in [8]
is based on the minimisation of the magnetic energy and the interfacial energy in respect
to the aspect ratio between major and minor spheroid semi-axes. In [14] the free surface
equation is required to be satisfied only at the top and the equator of a spheroid. The drop
behaviour is analysed by using a virial method in [17, 72]. The comparative analysis of all
mentioned theoretical approaches, see [17], concludes that all theoretical studies yield identical
results for small drop deformations. Moreover, the energy approach [8] and the virial technique
[17, 72] give identical results for any field, despite the fact that the solutions of both methods
have different analytical representations. Nevertheless, the authors in [8, 10] recognized the
limitation of spheroidal approximation: the drop shapes they observed experimentally became
conical at the drop tips in the region of large drop deformations. The experimental study in
[10] has revealed that the magnetic fluid drop can be considered as a spheroid up to a length-
to-width ratio equals to 7. Agreement between theory and experiment may be considered only
qualitatively successful.
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2 1 Introduction

Hysteresis effect
At sufficiently large values of the magnetic permeability µ (µ > 20) the drop deformation

can exhibit hysteresis. Modestly deformed prolate drops jump to much more elongated shapes
when the magnetic field increases above a threshold. These large elongations persist even when
the magnetic field decreases below the critical value. For decreasing magnetic field a jump
from the upper branch of solutions with large elongated shapes to the lower branch of solutions
appear at the second threshold. A limited range of the magnetic field strength values exists
(hysteretic regime), where two equilibrium configurations of a drop are allowed, one of which
occurs upon increasing the strength of a magnetic field, another - upon its decrease.

The occurrence of the hysteresis effect was observed in the experimental measurements,
where the deformation of agglomerate microdrops of colloidal ferromagnetics (2 to 20 µm) of
high magnetic susceptibility was investigated [8]. The hysteresis was also predicted in theoret-
ical studies [8, 14, 17].

Numerical investigations
Several attempts were made to model the problem on equilibrium drop surfaces numerically

[9, 20, 48, 66, 67, 79].
One of the first works, where the equilibrium drop shapes were studied numerically, was

made at the beginning of the 1980th by Miksis, see [48]. According to results of numerical
calculations it was concluded that for the magnetic permeability µ exceeding some critical
value there is a maximum value of drop deformation at which families of equilibrium shapes
terminate. Such a conclusion was confirmed neither experimentally nor theoretically and was
a consequence of numerical instability.

The time-dependent low-Reynolds-number problem for the drop deformation was studied
in [67] by means of a boundary integral technique. In the work it is reported that for the
permeability µ = 25 it proved impossible to follow the jump to the upper branch of the
deformation curve. A pointed tip was developed and the numerical scheme broke down. The
hysteretic behaviour was not in general reproduced in numerical simulations, suggesting that
the viscosity of the two fluids can play an important role.

In [79] a finite element method was applied to model the behaviour of the linear magnetisable
fluid drop. Composite cylindrical/spherical coordinates were used for accurate calculation of
drop shapes with strong elongated surfaces. It was reported that the hysteresis effect can
occur only in a quite narrow range of values of µ. Such an observation indicated qualitative
difference with the experimental results in [8]. To resolve this discrepancy their numerical
analysis was extended to the case of nonlinear magnetisable fluids in [9]. The hysteresis effect
was found numerically for µ = 41 but quantitative comparison with experimental results was
not presented. All shapes found numerically in [8] have rounded ends, whereas in the experiment
[8] shapes close to conical were observed.

Equilibrium shapes of nonlinear magnetisable fluids were modeled numerically in [20] till
length-to-width ratio equals 5. Numerical instability occurred for further drop elongations.

The method based on the minimisation of the energy with respect to the axisymmetric
shape of the drop was applied in [66]. The dynamic problem was considered under assumption
that the velocity field is potential. Numerically drop shapes for the permeability µ ∈ [1, 5] were
resolved till length-to-width ratio equals 4. According to the experimental results in [14] for
such parameters the drop shape is close to a spheroid.

It follows that all previously done numerical calculations of equilibrium drop shapes have
run into troubles because of numerical instability in regions of strong shape elongations.
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Conical interfaces
Several investigations were made to study appearance of conical interfaces as equilibrium

shapes of a magnetic fluid drop [18, 44, 60, 69, 71].
It is known that the curvature of a cone is inversely proportional to the distance from the

cone tip ρ. From a balance between magnetostatic and surface tension forces we can get that
the magnetic pressure is also inversely proportional to ρ in a cone region. It allows to define
the approximation for the magnetostatic potential and using Maxwell’s equations inside and
outside a cone to construct a dependence of a cone angle as a function of the fluid permeability,
see [18, 60, 71]. At first such an idea to analyse the problem was presented in [71] for the case
of a perfectly conducting drop (µ = ∞). The authors in [18, 60] extended this analysis to the
case of two fluids with arbitrary values of µ. An open question of such analysis is how a local
conical solution may be joined with the rest of the shape of the drop.

In [69] a slender-body theory was used to determine the approximate static shape of a coni-
cally ended magnetic fluid drop. The governing equations were simplified using the assumption
that width-to-length ratio of the drop shape is much smaller than one and neglecting the ef-
fect of the normal component of the magnetic field to the free surface. The model equations
were reduced to an ordinary differential equation for the field intensity, coupled to an algebraic
equation for the pressure balance at the interface.

A semi-analytical approach was applied in [44] to analyse static singular shapes of a fluid
drop. A drop surface was approximated by matching a spheroid with two cones in a tip region
of a relative size 10−4. The resulting integral equations were solved numerically. The authors
found that a stable drop with conical tips exists only above a threshold field and that such a
drop is energetically favoured compared to the spheroidal shape at a sufficiently high field.

The analyses in [44, 69] are applicable to the case of large drop deformations and pointed
ends, but are inappropriate for the case of rounded ends and small deformations.

All previously done numerical studies [9, 48, 67, 79], except theoretical approaches in [18,
60, 71] and semi-analytical investigations in [44, 69], could not resolve the structure of the
solution in the neighbourhood of nearly pointed ends.

Structure of the thesis
A major goal of the thesis is to develop a numerical solution strategy for calculating ax-

isymmetric equilibrium magnetic-fluid shapes subjected to a uniform applied magnetic field.
The second important subject of the thesis is on the base of the developed numerical strategy
to fulfil an accurate numerical modeling and simulation of problems on magnetic-fluid drop
shapes, bubble configurations in a bulk of the magnetic fluid and on single peak formations on
the surface of a magnetic-fluid layer.

In Chapter 2 we formulate the mathematical model on equilibrium magnetic-fluid shapes. In
order to be specific in this Chapter and Chapters 3 and 4 we concentrate on the model problem
of magnetic-fluid drop shapes in a uniform magnetic field. We make several assumptions for the
model statement. We suppose that the magnetic fluid stays homogeneous under the influence
of the magnetic field so that the concentration of the magnetic nanoparticles at the regions of
high surface deformations is not significant higher than in the bulk of the fluid. We assume
that the magnetic fluid is at rest so that a static model analysis is appropriate. The free surface
is defined to stay axisymmetric in the field direction as it deforms with changing field strength.
Our mathematical model excludes conical surface shapes with the curvature taking an infinite
value.

The mathematical model is governed by a coupled system of Maxwell’s equations for
the magnetic field distribution and the Young-Laplace equation for the free surface shape.
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Maxwell’s equations are formulated in the domain with a-priori unknown fluid-air interface.
Governing model equations for a full three dimensional case and its axisymmetric version are
presented in Sections 2.1-2.2 and 2.3, respectively. An iterative decoupling strategy for a cou-
pled system of nonlinear partial differential equations is formulated in Section 2.4. For the
approximation of the separated subproblems (the magnetostatic problem and the free-surface
problem) different numerical techniques are required.

An application of boundary and finite element methods to the magnetostatic problem is dis-
cussed in Chapter 3. To solve Maxwell’s equations both inside and outside of the magnetic fluid
we use the finite element method or a coupled strategy of boundary and finite element meth-
ods. A boundary element method is used in an unbounded air domain to fulfil the boundary
condition for the magnetic field at infinity while with a finite element method we resolve the
non-linearity of the magnetostatic equations inside a magnetic fluid. In Section 3.1 we present
some common aspects about using a boundary element method for the solution of the Laplace
equation in bounded and unbounded domains. Direct formulation of boundary integral equa-
tions is given for 3D and axisymmetric problems. A special attention is made to the boundary
condition at infinity. The collocation method is applied for the discretisation of the integral
equations. Kernel functions approximation and their asymptotic behaviour for axisymmetric
problems are discussed. The boundary element method for the magnetostatic problem formu-
lation inside of the linear magnetisable fluid and outside it is described in Section 3.2. We
apply a piecewise-constant collocation for the magnetostatic problem on a sphere. We show
how an inexact representation of the boundary influences the convergence of the collocation
method. Numerical convergence for the problem with the exact representation of the boundary
and its piecewise linear and cubic spline approximations are analysed. Grid configurations with
uniform and nonuniform point distribution on the boundary are considered.

Section 3.3 presents the finite-element discretisation for the magnetostatic problem with
nonlinear fluid properties. The solvability of the nonlinear problem in weighted Sobolev spaces
is studied. In Section 3.4 we apply the coupling of the collocation boundary element method
in the exterior air domain and the Galerkin finite element method in the interior fluid domain.
Piecewise linears for the potential and piecewise constants for the normal derivative of the
potential on the free boundary are taken. The numerical convergence of the second order for
r-weighted L2-norm is shown for the magnetostatic problem on a sphere. An application of
finite element methods requires a grid construction in a computational domain. In Section
3.5 two methods for the grid generation, a harmonic extension approach and a Delaunay tech-
nique, are presented. They are compared with respect to the quality of the generated grids
and the computational efficiency of the underlying algorithms in application to the coupled
magnetostatic and free surface problem. We found that the harmonic extension approach is
computationally more effective than the Delaunay approach. But the loss in quality of the grid,
generated by the harmonic extension approach in contrast to those by the Delaunay technique,
can be crucial for its further application for the numerical solution of differential equations.

In Chapter 4 a special approach to handle the balance equation on the fluid-air interface
[56, 58] is presented. Surface shapes are parametrised with respect to the arc length. For the
discretisation of the equations a finite-difference method in Section 4.2 and a spline-method in
Section 4.3 are presented. A special algorithm of the surface grid generation [54], based on the
information about a surface curvature, allows us to produce an accurate approximation for the
shapes with high deformations. Section 4.4 contains a test example, intended to examine the
influence of a successive under-relaxation technique to the stability of the iterative algorithms
resulting from the finite-difference and the spline schemes. We observed that the spline scheme
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shows a better stability property. Additionally we found that for axisymmetric problems at least
one boundary condition should necessarily be specified at the “non-axis” end point. Otherwise,
the scheme shows no convergence at all.

Chapter 5 contains numerical results for the problem on axisymmetric equilibrium surface
shapes of a magnetic-fluid drop under the influence of an external uniform magnetic field. A
comparison of numerical results with spheroidal equilibrium shapes, predicted theoretically in
[8], is presented. We found that the difference between theory and numerics lies within 1 %
for the lower branch of the solution, but shows more that 15 % for the upper branch of the
hysteretic curve. Equilibrium shapes with pointed ends were resolved numerically, resulting
in the strong deviation from spheroidal shapes of the theory. The transition from shapes
with rounded ends to shapes close to conical were for the first time realised numerically. We
measured the cone angle of the numerically obtained conical shapes and compared it with the
theoretical predictions in [18, 60]. Equilibrium drop shapes were resolved in a wide range of
field intensities till the saturation of magnetic fluids. We found that in the region of strong
fields, where no surface changes are presented, the computational process becomes unstable.
Numerical difficulties near the symmetry axis, due to the boundary-element discretisation of the
axisymmetric potential problem, become pronounced in the region of strong fields. Adaptive
integration methods, suggested in [50], did not improve the accuracy of the numerical results.
According to our calculations, we report an advantage of using a finite element technique over
the boundary element discretisation in application to the axisymmetric magnetostatic problem
in the region of strong fields.

In Chapter 6 we consider the problem on axisymmetric equilibrium surface shape of a bubble
inside a magnetic-fluid layer under the influence of an external uniform magnetic field. Govern-
ing model equations, numerical strategy and numerical results are presented. The behaviour
of magnetic-fluid drops and bubbles in the magnetic fluid is compared.

In Chapter 7 we consider the problem on axisymmetric equilibrium surface shape of a magnetic-
fluid layer under the influence of an external uniform magnetic field. Governing model equa-
tions, numerical strategy and numerical results are presented. Numerical results are compared
with theoretical ones obtained by the linear stability analysis in [63]. Equilibrium surfaces are
calculated for different magnetic intensities and magnetic-fluid parameters. A comparison of
axisymmetric and three-dimensional numerical results is discussed. Section 7.4 contains nu-
merical results on a solitary surface configurations of a magnetic-fluid layer. It is a novel effect
of the Rosensweig instability, recently observed experimentally in [61].

Finally in Chapter 8 we summarise the main results of the thesis.





Chapter 2

Mathematical model

We consider an isolated magnetic fluid drop of a prescribed volume surrounded by a nonmag-
netic gas media (air) under the action of a uniform magnetic field. The field intensity vector
H0 applied at infinity is assumed to be parallel to the z-axis, i.e. H0 = (0, 0,−H0). Away
from the magnetic fluid the field is uniform. Close to the fluid the magnetic field uniformity is
disturbed due to a self-field, created by the fluid itself.

We are interested in the equilibrium shapes of the free surface between the magnetic fluid
and the surrounding air. The equilibrium shapes are investigated for different values of the
applied magnetic field H0 and for fluids with different magnetic properties.

The free boundary value problem is governed by a coupled system of Maxwell’s equations
for the magnetic field distribution and Young-Laplace equation for the free surface shape.
Maxwell’s equations are formulated in the domain with a-priori unknown fluid-air interface.
On the other side, the interface position is determined by the solution of Maxwell’s equations.
The mathematical model of this problem has a coupled nonlinear statement.

We remark that all equations of this and the following Chapters are expressed in SI-units.

2.1 Maxwell’s equations for magnetostatic field

Let D1 be a domain externally bounded by a closed surface S and D2 be a domain internally
bounded by the same surface which satisfy D = D̄1 ∪ D̄2 = IR3 and D1 ∩D2 = ∅. We assume
that the domain D1 is filled with a magnetic fluid, whereas D2 is an air domain. In the absence
of the applied field interfacial tension holds the drop spherical. Initially we define the fluid
domain D1 as a sphere with a center, placed at the origin of the coordinate system. The
geometry of a computational domain is presented in Fig. 2.1.

Maxwell’s equations for a nonconducting media in the stationary case are given by, see [63]

∇× H = 0, ∇ · B = 0 in D, (2.1)

where H and B denote the magnetic field strength and the magnetic induction, respectively.
The magnetic induction B is related to the magnetic field H and the magnetisation vector M
by the expression

B = µ0(H + M), (2.2)

where µ0 is the permeability constant. The magnetisation vector M of a magnetic fluid is
parallel to the magnetic field H, see [63]

M = M(H)
H

H
, (2.3)

7
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y

x

z

?H = (0, 0,−H0)

S

D1

D2

Figure 2.1: The computational domain at the moment when the magnetic field is to be applied.

where M(H) is the magnetisation law and H = |H|. The magnetisation in the air equals 0.
Due to the fact that magnetic fluids are non-conducting, there is no current flow such that

∇×H = 0. The magnetic field H can be expressed in terms of a magnetostatic potential u by
the expression H = −∇u both inside and outside the fluid domain. From equations (2.1)–(2.3)
it follows that the magnetostatic potential satisfies the equations

−∇ · (µi(|∇ui|)∇ui) = 0, in Di;
µ1 = µ0

(

1 +
M(|∇u1|)
|∇u1|

)

in D1,

µ2 = µ0 in D2,
(2.4)

where the subscripts 1 and 2 denote variables in the fluid and the air domains, respectively.
To complete the formulation of equations (2.4) we define a relation between M and H. The
magnetisation M of the magnetic fluid can be presented by different magnetisation laws. In the
region of weak magnetic fields when the magnetisation M is much smaller then the saturated
magnetisation Ms the linear magnetisation law applies for a magnetic fluid

M(H) = χH, (2.5)

where χ denotes the magnetic susceptibility. Small concentrated magnetic fluids behaves as a
paramagnetic medium and its magnetisation follows the Langevin equation, see [63]

M(H) = MsP (γH), P (t) = coth t− 1

t
, γ =

3χ

Ms
. (2.6)

Let us define boundary conditions for equations (2.4). The boundary conditions on the
interface S between two media with different magnetic properties satisfy, see [63]

u1 = u2, µ1
∂u1

∂n
= µ2

∂u2

∂n
on S, (2.7)

where n is a unit normal vector. Conditions (2.7) are the statement of the continuity of the
tangential component of the magnetic field and of the normal component of the magnetic
induction across the interface. Far from the drop the magnetic field approaches a vertically
directed uniform field with the intensity H0. It follows that we have a condition at infinity

lim
(x,y,z)→∞

(u2 −H0z) = 0. (2.8)
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The magnetostatic field inside and outside the magnetic fluid drop is described by equations
(2.4) with boundary conditions (2.7) and (2.8) for the magnetisation, expressed in one of the
form (2.5) or (2.6).

Remark 2.1.1 We cancel a factor µ0 in equations (2.4). It results that

µ1 = 1 +
M(|∇u1|)
|∇u1| in D1,

µ2 = 1 in D2,

and as a consequence conditions (2.7) take form

u1 = u2, µ1
∂u1

∂n
=
∂u2

∂n
on S.

Remark 2.1.2 In the air domain D2 equation (2.4) corresponds to the Laplace equation and
for the case of a linear magnetisation law (µ1 = const) also in the fluid domain D1.

In the numerical study of surface instabilities it would be desirable to restrict the compu-
tational domain to the region of the magnetic fluid. However, we do not know the boundary
conditions for the magnetostatic potential at the interface. Thus we have to determine the
potential inside and outside of the magnetic fluid region.

2.2 Young-Laplace equation for magnetic fluids

We consider an equilibrium surface S of an isolated magnetic fluid drop.
The magnetically augmented Young-Laplace equation for the isothermal magnetic fluid,

which is at rest, see [14, 63], presents the balance equation on the free surface

p− p0 = σK − µ0

2

(

M
Hn

H

)2

on S, (2.9)

where p is the fluid pressure, p0 = const the external pressure, σ the surface tension coefficient,
K the sum of principal curvatures, Hn the normal component of the magnetic field intensity H.
Equation (2.9) is a balance of capillary and magnetostatic forces along the interface S between
the magnetic fluid and the surrounding air. The balance equation (2.9) states that magnetic
stresses on the interface deform the interface in the direction of the applied magnetic field,
competing against capillary forces.

The fluid pressure p is defined from the Navier-Stokes equations. In the absence of the fluid
motion (u ≡ 0) the Navier-Stokes equations reduce to

∇p = −ρgez + µ0M∇H,
where p is the sum of the hydrostatic and the fluid-magnetic pressure. Integrating the last
equation we get

p = −ρgz + µ0

H
∫

0

MdH + p1, (2.10)

where p1 is a constant reference pressure.
Equation (2.10) together with no-gravity assumption allow us to write the Young-Laplace

(2.9) in the form

σK = µ0

H
∫

0

MdH +
µ0

2

(

M
Hn

H

)2

+ C on S, (2.11)

where C = p1 − p0 is the hydrostatic pressure difference.
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2.3 Cylindrical coordinates

Let us assume that the domains D1 and D2 are invariant by rotation around the z-axis and
generated by rotating two-dimensional meridian domains Ω1 and Ω2

D1 = {(r, θ, z) | (r, z) ∈ Ω1, 0 ≤ θ < 2π}, D2 = {(r, θ, z) | (r, z) ∈ Ω2, 0 ≤ θ < 2π}.

Here (r, θ, z) denote cylindrical coordinates. The surface S is produced by rotating some plane
contour Γ around z-axis.

Under assumption of the axial symmetry around z-axis and symmetry in respect to the
plane z = 0 the three-dimensional computational domain, see Fig. 2.1, can be considered as
two-dimensional in cylindrical coordinates (r, z), see Fig. 2.2.

r

z

?H = (0,−H0)

���
n

Γ

Ω1

Ω2

Figure 2.2: An initial computational domain in cylindrical coordinates.

We reformulate the model equations (2.4) and (2.11) and conditions (2.7), (2.8) in dimen-
sionless variables using the cylindrical coordinates. We choose the radius R0 of the initially
spherical drop as a characteristic length and the strength H0 as a characteristic field strength.
Then we define

r̃ =
r

R0

, z̃ =
z

R0

, H̃ =
H

H0

; K̃ = R0K, ∇̃ = R0∇, ũ =
u

H0R0

,

where a tilde denotes dimensionless variables.
The governing equations take a dimensionless form for the magnetostatic problem (we drop

the tildes for convenience)

−∇ · (µi(|∇ui|)∇ui) = 0, in Ωi;
µ1 = 1 +

M(H0|∇u1|)
H0|∇u1| in Ω1,

µ2 = 1 in Ω2.
(2.12)

The gradient and divergence operators are in cylindrical coordinates under the axial symmetry
assumption for the potential u. The boundary conditions (2.7) and (2.8) and the symmetry
conditions in respect to the z-axis and the plane z = 0 are given by

u1 = u2, µ1
∂u1

∂n
=
∂u2

∂n
on Γ, (2.13)

lim
(r,z)→∞

(u2 − z) = 0, (2.14)
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∂u1

∂n
= 0,

∂u2

∂n
= 0 for r = 0; (2.15)

u1 = 0, u2 = 0 for z = 0. (2.16)

Boundary conditions (2.16) follow from the symmetry requirement at the plane z = 0 and the
asymptotic behaviour of the potential at infinity

∂u

∂z
= 0 and lim

r→∞
u2 = 0 for z = 0.

The model is closed by the Young-Laplace equation in the dimensionless form

σ

R0

K = µ0H0

H
∫

0

M(H0H)dH +
µ0

2

(

M(H0H)
Hn

H

)2

+ C on Γ. (2.17)

The expression for the function µ1 = µ1(t) of the magnetostatic equation (2.12) depends
either we use the magnetisation law in the form of (2.5) or (2.6). For the linear magnetised
fluid with the magnetisation (2.5) we obtain

µ1(t) = 1 + χ. (2.18)

It means, the fluid has a constant material property. For the nonlinear magnetised fluid we get

µ1(t) = 1 + 3χ
P (γ̃t)

γ̃t
, P (t) = coth t− 1

t
, γ̃ =

3χH0

Ms

. (2.19)

Let us mention the properties of the function µ1 in the nonlinear form (2.19)

1 ≤ µ1(t) ≤ 1 + χ for t ≥ 0; P (t) ≥ 0 and P ′(t) ≥ 0 for t ≥ 0, (2.20)

which are important for the analysis of the magnetostatic problem (2.12)-(2.16).
The problem (2.12)-(2.17) are solved for the magnetostatic potential inside and outside the

fluid, for the free surface location and the unknown constant C at different values of the applied
magnetic field H0.

2.4 Decoupling strategy

The model (2.12)-(2.17) is a coupled system of nonlinear differential equations. For solving
the coupled system of equations we apply an iterative decoupling strategy. It consists of two
steps. A first step is to solve the magnetostatic problem (2.12)-(2.16) for a fixed boundary Γ.
A second one is to solve the Young-Laplace equation (2.17) for the new calculated field.

Let us assume that all parameters (R0, H0, σ, µ0, χ, γ̃) and the free surface boundary Γ are
given at the k-th iteration. At the first step we solve the magnetostatic problem (2.12)-(2.16)
for a fixed boundary Γk

−∇ · (µi(|∇uk+1
i |)∇uk+1

i ) = 0, in Ωk
i ;

µ1 = 1 +
M(H0|∇uk+1

1 |)
H0|∇uk+1

1 | in Ωk
1,

µ2 = 1 in Ωk
2,

(2.21)

uk+1
1 = uk+1

2 , µ1
∂uk+1

1

∂n
=
∂uk+1

2

∂n
on Γk, (2.22)
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lim
(r,z)→∞

(

uk+1
2 − z

)

= 0, (2.23)

∂uk+1
1

∂n
= 0,

∂uk+1
2

∂n
= 0 for r = 0; (2.24)

uk+1
1 = 0, uk+1

2 = 0 for z = 0. (2.25)

Here the domain Ωk
1 is bounded by Γk and coordinate axes, the domain Ωk

2 is external to Ωk
1

and restricted to the first quadrant, see Fig. 2.2.
At the second step of the iterative process we define a new boundary position Γk+1′ as a

solution of the Young-Laplace equation (2.17) for the new calculated field

σ

R0

K = µ0H0

Hk+1
∫

0

M(H0H)dH +
µ0

2

(

M(H0H
k+1)

Hk+1
n

Hk+1

)2

+ C on Γk+1′ . (2.26)

To improve numerical stability of the iterative algorithm we apply an under-relaxation technique

Γk+1 = Γk + τ(Γk+1′ − Γk) (2.27)

with 0 < τ < 1. The efficiency of the relaxation technique was discussed in [13, 52] for the
coupled equations of temperature, stream function and vorticity in a wide range of Rayleigh
parameters. The authors suggested algorithms for stabilisation based on numerical study of
test examples. An efficient stabilisation of iterative processes by relaxation was presented for a
wide class of convective problems. From the above reasoning, we apply the relaxation technique
but for the coupled free boundary value problem of this Chapter, combining the magnetostatic
equations and the Young-Laplace equation.

For calculations we took τ = 0.1. In the case of strong shape changes the parameter τ was
decreased till τ = 0.05 or τ = 0.01.

We solve alternately the magnetostatic problem (2.21)-(2.25) and the Young-Laplace equa-
tion (2.26). The iterative process continues unless the change in the drop shape is smaller than
a prescribed threshold ε (generally 10−6)

||Γk+1′ − Γk|| < ε. (2.28)

Relations (2.27) and (2.28) are written formally and should be understood in a coordinate-wise
manner. Here Γ` = {(r`, z`) | r` = r`(t), z` = z`(t), t ∈ [0, L]}, ` = {k, k + 1′, k + 1}.

||Γk+1′ − Γk|| = max
t∈Tn

(|rk+1′(t) − rk(t)|, |zk+1′(t) − zk(t)|),

where Tn = {tj | 0 = t0 < t1 < ... < tn = L, j = 0, n} is a partition of the parameter interval.
If the drop equilibrium is achieved, the applied magnetic field H0 is slowly increased and

the whole computational process repeated. The initial drop shape Γ0 for the calculations with
the new value of H0 is the calculated equilibrium shape corresponding to the preceding H0.

For the approximation of the separated subproblems (2.21)-(2.25) and (2.26) different nu-
merical techniques are used. An application of boundary element and finite element methods
to the magnetostatic problem (2.21)-(2.25) is discussed in Chapter 3. A finite-difference and
spline discretisation for the free surface equation (2.26) are presented in Chapter 4.



Chapter 3

Boundary element and finite element
methods for the magnetostatic problem

An application of boundary and finite element methods to the magnetostatic problem (2.12)-
(2.16) is discussed in Chapter 3. To solve Maxwell’s equations both inside and outside of the
magnetic fluid we use the finite element method or a coupled strategy of boundary and finite
element methods. A boundary element method is used in an unbounded air domain to fulfil
the boundary condition for the magnetic field at infinity while with a finite element method we
resolve the non-linearity of the magnetostatic equations inside a magnetic fluid.

In Section 3.1 we present some common aspects about using a boundary element method
for the solution of the Laplace equation in bounded and unbounded domains. The direct
formulation of boundary integral equations is given for 3D and axisymmetric problems. A
special attention is made to the boundary condition at infinity. The collocation method is
applied for the discretisation of the integral equations. Kernel functions approximation and
their asymptotic behaviour for axisymmetric problems are discussed.

The collocation boundary element method for the magnetostatic problem (2.12)-(2.16) in-
side of the linear magnetisable fluid and outside it is described in Section 3.2. As a test example,
we apply a piecewise-constant collocation for the magnetostatic problem on a sphere. We show
how an inexact representation of the boundary influences the convergence of the collocation
method. Numerical convergence for the problem with the exact representation of the boundary
and its piecewise linear and cubic spline approximations are analysed. Grid configurations with
uniform and nonuniform point distribution on the boundary are considered.

Nonlinear fluid properties no longer allow to use a boundary element method inside of the
fluid domain. Section 3.3 present the finite-element discretisation for the magnetostatic problem
(2.12)-(2.16). The solvability of the weak formulation in weighted Sobolev spaces is studied.

In Section 3.4 we apply the coupling of the collocation boundary element method in the
exterior air domain and the Galerkin finite element method in the interior fluid domain. Piece-
wise linears for the potential and piecewise constants for the normal derivative of the potential
on the free boundary are taken.

An application of finite element methods requires a grid construction in a computational
domain. In Section 3.5 two methods for the grid generation, a harmonic extension approach
and a Delaunay technique, are presented. They are compared with respect to the quality of the
generated grids and the computational efficiency of the underlying algorithms in application to
the coupled magnetostatic and free surface problem.

13
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3.1 Boundary element method for the Laplace equation

A boundary element method transforms a partial differential equation defined on a d-dimensio-
nal domain to an integral equation defined on (d − 1)-dimensional boundary of the domain.
The solution of a boundary value problem is sought as a solution of an equivalent boundary
integral equation containing one or more unknown functions as well as a known fundamental
solution of the differential equation to be solved.

The formulation of a boundary element method for the given boundary value problem
depends on the availability of an explicit fundamental solution of this problem. It restricts the
method mainly to linear differential equations with constant coefficients. One of the important
applications of a boundary element method is the solution of Laplace equations, see [19].

The reduction of boundary value problems to equivalent boundary integral equations can
be done with many different methods. The two most popular methods are the direct method
and the indirect method or method of layer potentials. Standard approaches to solve boundary
integral equations are the collocation method, the Galerkin method and the Nyström method.
For more detailed information we refer to [22, 31, 76].

In the thesis we use a direct formulation of boundary integral equations based upon the
Green’s representation formula. Further discretisation of the boundary integral equations are
realised by the collocation method.

At the beginning let us introduce the fundamental solution for the Laplace operator and
define the surface potentials.

The fundamental solution of the Laplace operator
The fundamental solution u∗(ξ0, ξ) of a differential operator L satisfy

Lu∗ =

{

0 for ξ 6= ξ0,
δξ0 for ξ = ξ0.

Here ξ0, ξ ∈ IRd and δξ0 is the delta function concentrated at the point ξ0.
The fundamental solution for the Laplace operator in IR3 has the form

u∗3D(ξ0, ξ) =
1

4πρ(ξ0, ξ)
, ρ(ξ0, ξ) = |ξ0 − ξ|,

where ρ(ξ0, ξ) is the distance between the source point ξ0 = (x0, y0, z0) and the point ξ =
(x, y, z). The three-dimensional fundamental solution in cylindrical coordinates (r, θ, z) gives

u∗3D(ξ0, ξ) =
1

4π
√

r2 + (r0)2 − 2rr0 cos(θ − θ0) + (z − z0)2
,

where ξ0 = (r0, θ0, z0), ξ = (r, θ, z).

Surface potentials
The domain D1 is a bounded open domain in IR3 with the boundary S. The surface integrals

for a given function u on S define the single-layer Ṽ1 and the double-layer potentials Ṽ2

(Ṽ1u)(ξ
0) =

∫

S

u∗3D(ξ0, ξ)u(ξ)dS for ξ0 ∈ IR3 (3.1)

(Ṽ2u)(ξ
0) =

∫

S

q∗3D(ξ0, ξ)u(ξ)dS for ξ0 ∈ IR3, q∗3D =
∂u∗3D

∂n
. (3.2)
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The derivative q∗3D is in respect to ξ.
Let (V1u)(ξ

0) and (V2u)(ξ
0) be boundary operators corresponding to the restriction of the

single-layer and double-layer potentials to the boundary S

(V1u)(ξ
0) =

∫

S

u∗3D(ξ0, ξ)u(ξ)dS for ξ0 ∈ S, (3.3)

(V2u)(ξ
0) =

∫

S

q∗3D(ξ0, ξ)u(ξ)dS for ξ0 ∈ S. (3.4)

An important feature of the surface potentials is their behaviour when a point ξ0 tends to
the boundary S from the interior or the exterior of the domain D1. The next theorem states
regularity of the surface potentials (3.1)-(3.2) and their jump properties.

Theorem 3.1.1 (Theorem 6.5.1 in [22]) Let D1 ⊂ IR3 be bounded with the boundary S ∈
C∞. Let u ∈ Hα(S), α ∈ IR, then V1 : Hα(S) → Hα+1(S), V2 : Hα(S) → Hα(S). Denote

(Ṽiu)
−(ξ0) =

{

(Ṽiu)(ξ
0) if ξ0 ∈ D1,

lim
η→ξ0, η∈D1

(Ṽiu)(η) if ξ0 ∈ S, (3.5)

(Ṽiu)
+(ξ0) =

{

(Ṽiu)(ξ
0) if ξ0 ∈ D2,

lim
η→ξ0, η∈D2

(Ṽiu)(η) if ξ0 ∈ S, (3.6)

where the limits are taken in the pointwise sense, i = 1, 2. Then for the restriction of operators
(3.5) and (3.6) to the boundary S, we have

V−
1 : Hα(S) → Hα+1(S) such that V−

1 u = V1u, (3.7)

V+
1 : Hα(S) → Hα+1(S) such that V+

1 u = V1u, (3.8)

V−
2 : Hα(S) → Hα(S) such that V−

2 u = (−1/2I + V2)u, (3.9)

V+
2 : Hα(S) → Hα(S) such that V+

2 u = (1/2I + V2)u. (3.10)

Furthermore, Vi,V
−
i ,V

+
i , i = 1, 2 are continuous linear operators.

3.1.1 Direct formulation of boundary integral equations

Representation formula for bounded domain
A solution of the Laplace equation in the interior domainD1 ⊂ IR3 with a boundary S = ∂D1

satisfies the Green’s representation formula, see [30]

u(ξ0) +

∫

S

q∗3D(ξ0, ξ)u(ξ)dS −
∫

S

u∗3D(ξ0, ξ)q(ξ)dS = 0 for ξ0 ∈ D1, (3.11)

where q = ∂u/∂n, q∗3D = ∂u∗3D/∂n with derivatives in respect to ξ and the unit normal vector
n is the outward for the domain D1.

Equation (3.11) can be written as a linear combination of the surface potentials

u(ξ0) + (Ṽ2u)(ξ
0) − (Ṽ1q)(ξ

0) = 0 in D1.

Letting ξ0 tends to a boundary point, by jump properties (3.7)-(3.10) we have

1/2u(ξ0) + (V2u)(ξ
0) − (V1q)(ξ

0) = 0 on S.
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It allows us to write the Green’s representation formula as

k1(ξ
0)u(ξ0) + (Ṽ2u)(ξ

0) − (Ṽ1q)(ξ
0) = 0 in D̄1, (3.12)

where k1(ξ
0) is a geometric constant, equals 1 inside D1 and 1/2 on the boundary S.

Representation formula for an unbounded domain

Let u be a weak solution of the Laplace equation in the exterior domain D2 such that

u ∈ H1
loc(D2) = {u | u ∈ Hs(K) for every compact set K ⊂ D2}

and for some constant c following conditions fulfil

u(ξ) = c+O(|ξ|−1), ∇u(ξ) = O(|ξ|−2) for |ξ| → ∞. (3.13)

Conditions (3.13) guarantee the unique solvability of the Laplace equation in three-dimensional
unbounded domains. The solution u then satisfies, see Lemma 6.9.1 in [22],

u(ξ0) −
∫

S

q∗3D(ξ0, ξ)u(ξ)dS +

∫

S

u∗3D(ξ0, ξ)q(ξ)dS = c for ξ0 ∈ D2. (3.14)

The solution of the magnetostatic problem (2.12)-(2.16) should satisfy the condition at infinity

lim
(r,z)→∞

(u− z) = 0.

Let us introduce a new function

ũ = u− z.

The function ũ satisfies conditions (3.13) hence from (3.14) we can write

ũ(ξ0) −
∫

S

q∗3D(ξ0, ξ)ũ(ξ)dS +

∫

S

u∗3D(ξ0, ξ)q̃(ξ)dS = 0 for ξ0 ∈ D2,

where q̃ = ∂ũ/∂n. It allows us to write

u(ξ0)−
∫

S

q∗3D(ξ0, ξ)u(ξ)dS+

∫

S

u∗3D(ξ0, ξ)q(ξ)dS = (3.15)

z0−
∫

S

q∗3D(ξ0, ξ)zdS +

∫

S

u∗3D(ξ0, ξ)
∂z

∂n
dS,

where n is an inner normal vector for D2.

Let Sr(ξ
0) be the sphere with center ξ0 and radius r. The domain D2 can be considered as

internally bounded by the surface S and externally by the surface Sr with r → ∞. The Green’s
formula (3.11) allows to write for the harmonic function u = z in the bounded domain D2 that

z0 +

∫

∂D2

q∗3D(ξ0, ξ)zdS −
∫

∂D2

u∗3D(ξ0, ξ)
∂z

∂n
dS = 0.
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We have ∂D2 = S ∪ Sr(ξ
0) and

∫

∂D2
=
∫

∂S
+
∫

∂Sr(ξ0)
with the normal vector outer for D2. The

right-hand side of equation (3.15) we can write then as

z0−
∫

S

q∗3D(ξ0, ξ)zdS +

∫

S

u∗3D(ξ0, ξ)
∂z

∂n
dS =

−
∫

Sr(ξ0)

q∗3D(ξ0, ξ)zdS+

∫

Sr(ξ0)

u∗3D(ξ0, ξ)
∂z

∂n
dS.

To calculate integrals over the surface Sr(ξ
0) we go to the spherical coordinates (ρ, θ, ϕ). Then

Sr(θ, ϕ) =





r sin θ cosϕ
r sin θ sinϕ
r cos θ



 , dS = r2 sin θdθdϕ.

The normal direction is radial on the sphere, then it follows that

q∗ =
∂u∗

∂r
= − 1

4πr2
for ξ ∈ Sr(ξ

0),

∂z

∂n
= cos θ for z = z0 + r cos θ on Sr(ξ

0).

We can write that

−
∫

Sr(ξ0)

q∗3D(ξ0, ξ)zdS +

∫

Sr(ξ0)

u∗3D(ξ0, ξ)
∂z

∂n
dS =

π
∫

0

2π
∫

0

(

1

4πr2 (z0 + r cos θ) +
1

4πr
cos θ

)

r2 sin θdθdϕ =

2π
1

4π





π
∫

0

z0 sin θdθ + 2

π
∫

0

ρ cos θ sin θdθ



 =
1

2
(2z0 + 0) = z0.

Finally we write equation (3.15) as

u(ξ0) −
∫

S

q∗3D(ξ0, ξ)u(ξ)dS +

∫

S

u∗3D(ξ0, ξ)q(ξ)dS = z0 (3.16)

or in operator form as

u(ξ0) − (Ṽ2u)(ξ
0) + (Ṽ1q)(ξ

0) = z0 in D2. (3.17)

The boundary equation (3.17) is the representation formula for the potential in the exterior
domain D2 with the condition u = z at infinity.

Letting ξ0 tends to a boundary point, from (3.17) by jump properties (3.7)-(3.10) we have

1/2u(ξ0) − (V2u)(ξ
0) + (V1q)(ξ

0) = z0 on S.

The final representation formula take the form, analogous to (3.12),

k2(ξ
0)u(ξ0) − (Ṽ2u)(ξ

0) + (Ṽ1q)(ξ
0) = z0 in D̄2, (3.18)
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where k2(ξ
0) is a geometric constant, equals 1 inside D2 and 1/2 on the boundary S.

Axisymmetric case

Assuming that the boundary S is a surface of revolution, we can rewrite the surface poten-
tials (3.1) and (3.2) in cylindrical coordinates (r, θ, z) as

(Ṽ1u)(x
0, y0, z0) =

∫

Γ

u(ξ)

2π
∫

0

u∗3D(ξ0, ξ)rdθdΓ,

(Ṽ2u)(x
0, y0, z0) =

∫

Γ

u(ξ)

2π
∫

0

q∗3D(ξ0, ξ)rdθdΓ,

where ξ0 = (r0, z0) and ξ = (r, z). Here, Γ is a meridian line of the domain D1, see Fig. 2.2.

The fundamental solution u∗3D can be analytically integrated over θ. We introduce the
axisymmetric fundamental solution in the next form

u∗ax(ξ
0, ξ) =

2π
∫

0

u∗3D(ξ0, ξ)dθ =
1

2π

π
∫

0

dθ√
a− b cos θ

,

where a = r2 + (r0)2 + (z − z0)2, b = 2rr0. Now let us express the fundamental solution u∗ax in
the form of elliptic integrals

u∗ax(ξ
0, ξ) =

1

2π

π
∫

0

dθ
√

a+ b− 2b cos2 (θ/2)
=

1

π

π/2
∫

0

dθ
√

a+ b− 2b sin2 θ
,

=
1

π
√
a+ b

π/2
∫

0

dθ
√

1 − 2b
a+b

sin2 θ
=

K(m)

π
√
a+ b

. (3.19)

Here K(m) is the complete elliptic integral of the first kind with m = 2b/(a+ b), 0 ≤ m ≤ 1.

The normal derivative of the fundamental solution q∗ax(ξ
0, ξ) is given by

q∗ax(ξ
0, ξ) =

∂u∗ax(ξ
0, ξ)

∂r
nr(ξ) +

∂u∗ax(ξ
0, ξ)

∂z
nz(ξ), (3.20)

where n = (nr(ξ), nz(ξ)) is the unit normal vector and

∂u∗ax(ξ
0, ξ)

∂r
=

1

2πr
√
a+ b

(

−K(m) +
(r0)2 − r2 + (z − z0)2

|ξ − ξ0|2 E(m)

)

, (3.21)

∂u∗ax(ξ
0, ξ)

∂z
=

z0 − z

π|ξ − ξ0|2
√
a+ b

E(m). (3.22)

Here E(m) is the complete elliptic integral of the second kind. To get (3.22) the relation

dK(m)

dm
=
E(m) − (1 −m)K(m)

2m(1 −m)
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was used, see [25]. Finally we can define the axisymmetric boundary operators Ṽ1,ax and Ṽ2,ax

(Ṽ1u)(x
0, y0, z0) = (Ṽ1,axu)(ξ

0) =

∫

Γ

u∗ax(ξ
0, ξ)u(ξ)rdΓ,

(Ṽ2u)(x
0, y0, z0) = (Ṽ2,axu)(ξ

0) =

∫

Γ

q∗ax(ξ
0, ξ)u(ξ)rdΓ.

The representation formulas for the axisymmetric potential in bounded (3.12) and un-
bounded domains (3.18) take the following forms

k1(ξ
0)u(ξ0) + (Ṽ2,axu)(ξ

0) − (Ṽ1,axq)(ξ
0) = 0 in Ω̄1, (3.23)

k2(ξ
0)u(ξ0) − (Ṽ2,axu)(ξ

0) + (Ṽ1,axq)(ξ
0) = z0 in Ω̄2, (3.24)

with

k1 =

{

1/2 on Γ
1 in Ω1

, k2 =

{

1/2 on Γ
1 in Ω2

.

3.1.2 Boundary discretisation

The smooth curve Γ in IR can be described by means of a real-valued differentiable parametri-
sation

Γ = {ξ | ξ = ψ(t), t ∈ [0, L]} or Γ = {(r, z) | r = r(t), z = z(t), t ∈ [0, L]}, (3.25)

where |ψ′(t)| > 0 and
√

r′(t)2 + z′(t)2 > 0.
Let us introduce a sequence of grid points

Ξn = {ξj | ξj = ψ(tj), tj ∈ Tn},

which corresponds to a partition of the parameter interval [0, L]

Tn = {tj | 0 = t0 < t1 < ... < tn = L, j = 0, n}.

The curve Γ can be considered as a union of finitely many plane curves or boundary elements

Γ = ∪Γj, j = 1, n,

where grid points ξj−1 and ξj are the end points of the boundary element Γj.
The boundary Γ can be approximated by Γh such that

ψh(t) : [0, L] → Γh, where ψh(tj) = ξj for j = 0, n. (3.26)

The approximate boundary Γh can be defined in the polynomial spline spaces Sr,m(Ξn).
Following [22] the polynomial spline spaces in one dimension are defined as

Sr,m(Tn) =

{ {u ∈ Cm−1(Tn) | u|(tj−1,tj) ∈ Pr−1(tj−1, tj), j = 1, n} for 0 < m < r,

{u ∈ L2(Tn) | u|(tj−1,tj) ∈ Pr−1(tj−1, tj), j = 1, n} for m = 0,
(3.27)

where r, m are integers. We have that

• S1,0(Tn) is a space of piecewise constant functions,
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• Sr,1(Tn) is a Lagrangian system, see for instance [78],

• if m = r − 1 then Sr,m(Tn) is called the space of polynomial B-splines,

• if m = r > 0 then Sr,m(Tn) can be defined as Pr−1(0, L).

The simplest way to approximate the boundary is to connect boundary points ξj by line
segments. Then ψh(t) ∈ S2,1(Tn) and

ψh(t) = ξj−1 + (t− tj−1)
ξj − ξj−1

tj − tj−1

for t ∈ [tj−1, tj ]. (3.28)

The boundary can be approximated by higher order polynomials, for instance, by a para-
metric cubic spline ψh(t) ∈ S4,3(Tn). Let `j = |ξj − ξj−1|. Setting tj =

∑j
k=1 `k for j = 1, n,

every tj represents the cumulative length of the piecewise line that joints the points from ξ0
to ξj. Additionally, the conditions at the end points ξ0 and ξn should be formulated for the
complete definition of the spline approximation.

Remark 3.1.1 A parametric spline for such a type of parametrisation is called the cumulative
length spline and approximates satisfactorily even those curves with large curvature, see [59].

In order to compare a solution u(ξ) of a boundary integral equation on the exact boundary
Γ with the solution uh(ξ) of the same integral equation but on the approximate boundary Γh,
it is necessary to define a map F of Γh on Γ. Let the exact and approximate boundaries be
given by parametrisations (3.25) and (3.26). Then one can use the mapping

F = ψ ◦ ψ−1
h . (3.29)

Let us present now the collocation method for solving the boundary integral equations.

3.1.3 Collocation method

We summarise some results about collocation methods following [6, 7, 65]. Let

(Au)(ξ) = g(ξ), for ξ ∈ Γ (3.30)

be a boundary integral equation on the boundary Γ of a domain Ω for any continuous function
g(ξ). Let A be a strongly elliptic pseudodifferential operator of order α, see for instance [22].
Assume that

A : Hs → Hs−α is an isomorphism for any s ∈ IR. (3.31)

Let Γ be a smooth curve in IR given by a parameterisation ψ(t), see (3.25), which is addi-
tionally L-periodic, i.e. ψ(t) = ψ(t+ L). We consider the boundary Γ as a union of boundary
elements Γj, j = 1, n with a corresponding partition Tn of the parameter interval [0, L].

Let us denote by Sr(Tn) the space of all L-periodic (r− 1) times continuously differentiable
splines of order r subordinate to the partition Tn. This space corresponds to Sr+1,r(Tn), see
(3.27). Let us assume that the space Sr(Tn) is a subspace of Hτ ([0, L]). For all u ∈ Sr(Tn) the
r-th derivative is a piecewise constant function. It follows that

Sr(Tn) ∈ Hr+1/2−ε([0, L]) for any ε > 0,

see for instance in [22]. Finally we can conclude that

Sr(Tn) ∈ Hτ ([0, L]) for τ < r + 1/2. (3.32)
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We introduce a sequence of collocation points such that

Ξ̃n =







{

ξ̃i | ξ̃i = ψ
(

ti−1 + ti
2

)

, i = 1, n
}

for r even,
{

ξ̃i | ξ̃i = ψ(ti), i = 0, n
}

for r odd.
(3.33)

Such a choice of collocation points is called naive collocation, see [6, 7].
The collocation problem is to find uh ∈ Sr(Ξn) such that

(Auh)(ξ̃i) = g(ξ̃i) for ξ̃ ∈ Ξ̃n. (3.34)

In order the collocation problem (3.34) to be well defined, (Auh)(ξ) and g(ξ) should be
continuous at the collocation points ξ̃i ∈ Ξ̃n. From assumption (3.31) we have Auh ∈ Hτ−α(Γ)
for any uh ∈ Hτ (Γ). From the Sobolev imbedding theorem, see [2, Theorem 5.4], we have that

Hτ−α+1/2(Ω) → C0(Ω̄) for τ − α > 1/2.

It follows that
Hτ−α(Γ) → C0(Γ) for τ − α > 1/2.

Finally with condition (3.32) we get

Auh ∈ C0(Γ) for α < r. (3.35)

Remark 3.1.2 In the even degree case condition (3.35) can be relaxed, see [7]

Auh ∈ C0(Γ) for α < r + 1/2. (3.36)

In the same manner we get a condition for the continuity of the function g(ξ)

g ∈ C0(Γ) for any u ∈ Hβ(Γ) and for β − α > 1/2. (3.37)

The best asymptotic convergence results of the collocation method applied to a strongly
elliptic pseudo-differential equation (3.30) using polynomial splines Sr(Tn) were obtained in
[7], improving earlier results in [6], [65]. The analysis in mentioned above papers is based on
the reformulation of the collocation equations as equivalent Galerkin equations and further
treatment of these equations by Fourier analysis techniques.

Theorem 3.1.2 ([7],[65]) Let A be a strongly elliptic pseudodifferential operator of order α
as defined in (3.31). Let uh ∈ Sr(Tn) be a solution of the collocation problem (3.34) for the
uniform Tn, provided conditions (3.32), (3.35), (3.37) are satisfied.
Then there exist a constant C > 0 independent of h such that for all 0 < h ≤ h0 and any
continuous function g(ξ) the collocation equations (3.34) are uniquely solvable and the optimal
error estimate

||u− uh||Hτ (Γ) ≤ Chβ−τ ||u||Hβ(Γ) (3.38)

holds, provided α ≤ τ ≤ β ≤ r + 1.

Remark 3.1.3 Let us assume that we are interested in the L2-estimate for the error in the
case of piecewise-constant collocation. From Theorem 3.1.2 we have

||u− uh||L2(Γ) ≤ Chβ||u||Hβ(Γ) for β − α > 1/2, 0 ≤ β ≤ 1.

It follows that for the piecewise-constant collocation method the first order of convergence is the
maximum order, predicted by the theory.
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Remark 3.1.4 The collocation method converges at most with the order hr+1−α, whereas the
Galerkin method for the same spline approximation converges at most with the order h2r+2−α,
see [77].

Discrete system
The collocation problem (3.34) is equivalent to the quadratic system of linear equations

n
∑

j=1

(AΦj)(ξ̃i)αj = g(ξ̃i), i = 1, n (3.39)

for unknowns α1, . . . , αn, where {Φj}n
j=1 denote a basis of the space Sr(Tn). The set of linear

algebraic equations (3.39) can be expressed in the matrix form

Hα = f

with the matrix H = (Hij) being the results of integration for the collocation points ξ̃i (row)
and the basis function Φj (column)

Hij = (AΦj)(ξ̃i), i, j = 1, n.

Let us assume that the boundary Γ is described by a parametrisation ψ(t), see (3.25). For
the boundary, presented as a union of boundary elements, we can write

Hij =
n
∑

k=1

∫

Γk

a(ξ̃i, ξ)Φj(ξ)dξ

=
n
∑

k=1

tk
∫

tk−1

(a ◦ ψ)(t̃i, t)(Φj ◦ ψ)(t)|ψ′(t)|dt, i, j = 1, n.

Here a(ξ̃i, ξ) is a kernel of the integral operator A and ξ̃i = ψ(t̃i).

Remark 3.1.5 For the piecewise-constant collocation we have

Hij =

tj
∫

tj−1

(a ◦ ψ)(t̃i, t)|ψ′(t)|dt for uh ∈ S0(Tn).

Numerical integration
In numerical calculations with a boundary element method the final error has mainly two

reasons, the error is due to the applied discretisation approach and due to the numerical inte-
gration.

Depending on the nature of the kernel a(ξ̃i, ξ) and the relative position of the collocation
point ξ̃i with respect to the boundary element Γk on which integration is being carried out, we
can have regular, weakly singular, strongly singular and hypersingular integrals for the entries
of the matrix H.

Regular integrals appear when the collocation point ξ̃i does not belong to the boundary
element Γk (i 6= k).Evaluation of the regular integrals can be carried out by n-point Gaussian
quadrature formulas which integrates exactly a polynomial of degree 2n− 1. The weights and
abscissas for these formulas can be found in [1].
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Weakly singular integrals occur when the collocation point ξ̃i lies within the boundary
element Γk (i = k) and additionally

a(ξ̃i, ξ) = O

(

ln
1

|ξ − ξ̃i|

)

for ξ ∈ Γi.

A possible approach to handle weakly singular integrals is to apply logarithmically weighted
Gaussian quadrature formulas. The weights and abscissas for these formulas with ln (1/t) as
the weighting function can be found in [70] to evaluate integrals over t ∈ [0, 1].

Strongly singular integrals appear when the collocation point ξ̃i lies within the boundary
element Γk (i = k) and the kernel is a singular function of the following order

a(ξ̃i, ξ) = O

(

1

|ξ − ξ̃i|

)

for ξ ∈ Γi.

In such situations the integrals only exist in the sense of their Cauchy principal values, see [31].
Kutt’s quadrature can be used for the computation of Cauchy principal value integrals, see for
instance Chapter 11 in [80].

Hypersingular integrals occur when the collocation point ξ̃i lies within the boundary element
Γk (i = k) and the kernel function satisfies

a(ξ̃i, ξ) = O

(

1

|ξ − ξ̃i|2

)

for ξ ∈ Γi.

Such integrals exist in the sense of the Hadamard principal values, see [31].
Let us denote by H̃ij the numerically integrated analog of Hij such that

|Hij − H̃ij| ≤ chρ.

Let d denote the degree of precision of the numerical integration formula. According to results
in Chapter 6.2 in [76] we can get that for regular integrals

|Hij − H̃ij| ≤ chρ, ρ = d+ 2 − r. (3.40)

An application of numerical integration for calculating entries of the matrix H gives ad-
ditional error to the estimate (3.38). The complete error of the collocation problem (3.34),
according to Theorem 6.2 in [76], is given by

||u− uh||Hτ (Γ) ≤ Chβ−τ ||u||Hβ(Γ) + chs||u||Hmax{0,α}, (3.41)

provided the partition Tn is quasiuniform, s = ρ+ min{0,−τ} − 1 + min{0, α}.
Let us assume that we are interested in the L2-estimate for the error, when the exact solution

u ∈ H1(Γ). Then from (3.40) and (3.41) we have

||u− uh||L2(Γ) ≤ Ch||u||H1(Γ) + chs||u||Hmax{0,α} , (3.42)

for s = d+ 1 − r + min{0, α}. It is natural to require for the second term of the upper bound
in the estimate (3.42) not to worse the common order, i.e. to satisfy

s ≥ 1. (3.43)

It is known that for Gaussian quadrature formulas

d = 2n− 1, (3.44)
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where n is a number of integration points. From (3.42)-(3.44) we can get

n ≥ r − min{0, α} + 1

2
. (3.45)

Condition (3.45) it is necessary to fulfil for calculating regular integrals by Gaussian formulas
not to worse the common error (3.42).

Asymptotic behaviour of kernel functions for ξ → ξ0

The integral operators Ṽ1,ax and Ṽ2,ax for the axisymmetric potential problem

(Ṽ1,axu)(ξ
0) =

∫

Γ

u∗ax(ξ
0, ξ)u(ξ)rdΓ, (Ṽ2,axu)(ξ

0) =

∫

Γ

q∗ax(ξ
0, ξ)u(ξ)rdΓ

contain the following kernel functions

a1(ξ
0, ξ) = u∗ax(ξ

0, ξ)r, a2(ξ
0, ξ) = q∗ax(ξ

0, ξ)r.

The axisymmetric fundamental solution u∗ax and its normal derivative q∗ax include in their ex-
pressions the complete elliptic integrals of the first kind K(m) and the second kind E(m).
Using relations (3.19)-(3.22), we get

a1(ξ
0, ξ) =

K(m)

π
√
a+ b

r,

a2(ξ
0, ξ) =

1

2π
√
a+ b

(

−K(m) +
(r0)2 − r2 + (z − z0)2

|ξ − ξ0|2 E(m)

)

nr(ξ) + (3.46)

1

π
√
a+ b

r(z0 − z)

|ξ − ξ0|2 E(m)nz(ξ).

Here m = 2b/(a+ b), a = r2 + (r0)2 + (z − z0)2, b = 2rr0.
The elliptic integrals can not be calculated exactly. The widely-used technique is to approx-

imate them by polynomials for 0 ≤ m ≤ 1, see [1]

K(m) = K̃(m) + ε(m), K̃(m) = p1(m) + p2(m) ln
1

1 −m
, |ε(m)| ≤ 2 · 10−8;

E(m) = Ẽ(m) + ε(m), Ẽ(m) = p3(m) + p4(m) ln
1

1 −m
, |ε(m)| ≤ 2 · 10−8.

Here functions pi(m), i = 1, 4 are fourth-order polynomials with given coefficients such that

pi(m) = p0
i + p1

i (1 −m) + p2
i (1 −m)2 + p3

i (1 −m)3 + p4
i (1 −m)4,

i = 1 i = 2 i = 3 i = 4

p0
i 1.38629436112 0.5 1 0
p1

i 0.09666344259 0.12498593597 0.44325141463 0.24998368310
p2

i 0.03590092383 0.06880248576 0.06260601220 0.09200180037
p3

i 0.03742563713 0.03328355346 0.04757383546 0.04069697526
p4

i 0.01451196212 0.00441787012 0.01736506451 0.00526449639

The function K(m) contains a singularity for m→ 1

lim
m→1

K(m) =

∫ π/2

0

dθ
√

1 − sin2 θ
=

∫ 1

0

dt

t2 − 1
.
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By construction, therefore, the approximate function K̃(m) is also singular for m = 1 and

K̃(m) = O

(

ln
1

1 −m

)

= O

(

ln
1

|ξ − ξ0|

)

.

The approximate function Ẽ(m) is non-singular at m = 1 due to p4(1) = 0.

The case m = 1 takes place when ξ = (r, z) → ξ0 = (r0, z0) and ξ0 does not lie on the
symmetry axis. In fact,

m =
2b

a+ b
=

4rr0

(r + r0)2 + (z − z0)2
, lim

ξ→ξ0,r0 6=0
m = 1, lim

ξ→ξ0,r0→0
m = 0.

For the realisation of accurate numerical integrations let us study now the nature of the
singularities in the kernel functions a1(ξ

0, ξ) and a2(ξ
0, ξ) for ξ → ξ0 after the approximation

of the elliptic integrals.

Let us assume that the collocation point ξ0 = (r0, z0) lies on the boundary element Γj. We
introduce new functions r̃(t) and z̃(t) on the boundary element

Γj = {(r, z) | r = r(t), z = z(t), t ∈ [tj−1, tj ]}

such that

r̃(t) =
r(t) − r0

t− t0
, z̃(t) =

z(t) − z0

t− t0
,

where tj−1 ≤ t0 ≤ tj, r
0 = r(t0), z0 = z(t0). We have that

lim
t→t0

r̃(t) = r′(t0) and lim
t→t0

z̃(t) = z′(t0).

The parametrisation of Γj should satisfy the requirement r′(t)2 + z′(t)2 > 0, hence we get

lim
t→t0

(r̃(t)2 + z̃(t)2) = r′(t0)2 + z′(t0)2 > 0. (3.47)

In terms of the functions r̃(t) and z̃(t) we can write

|ξ − ξ0|2 = (t− t0)2(r̃2(t) + z̃2(t)),

nr(ξ
0) =

−z′(t0)
√

r′(t0)2 + z′(t0)2
= lim

t→t0

−z̃(t)
√

r̃(t)2 + z̃(t)2
,

nz(ξ
0) =

r′(t0)
√

r′(t0)2 + z′(t0)2
= lim

t→t0

r̃(t)
√

r̃(t)2 + z̃(t)2
.

Here it is assumed that the parameter t changes clock-wise over the boundary element Γj.
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It follows that the kernel functions exhibit the following asymptotic behaviour

lim
ξ→ξ0,r0 6=0

a1(ξ
0, ξ) =

1

2π
lim
m→1

K̃(m) = O

(

ln
1

|ξ − ξ0|

)

lim
ξ→ξ0,r0 6=0

a2(ξ
0, ξ) = −nr(ξ

0)

4πr0
lim
m→1

K̃(m) +

nr(ξ
0)

4πr0
Ẽ(1) lim

t→t0

( −(r + r0)r̃

(t− t0)(r̃2 + z̃2)
+

z̃2

r̃2 + z̃2

)

+

nz(ξ
0)

2πr0
Ẽ(1) lim

t→t0

−rz̃
(t− t0)(r̃2 + z̃2)

= O

(

ln
1

|ξ − ξ0|

)

+
nr(ξ

0)

4πr0
Ẽ(1) lim

t→t0

z̃2

r̃2 + z̃2
+

Ẽ(1)

4πr0
lim
t→t0

( −(r + r0)r̃

(t− t0)(r̃2 + z̃2)

−z̃√
r̃2 + z̃2

+
−2rz̃

(t− t0)(r̃2 + z̃2)

r̃√
r̃2 + z̃2

)

= O

(

ln
1

|ξ − ξ0|

)

+
nr(ξ

0)

4πr0
Ẽ(1) lim

t→t0

z̃2

r̃2 + z̃2
− nz(ξ

0)

4πr0
Ẽ(1) lim

t→t0

r̃z̃

r̃2 + z̃2
.

Two last terms contain no singularities because of condition (3.47), hence

lim
ξ→ξ0,r0 6=0

a1(ξ
0, ξ) = O

(

ln
1

|ξ − ξ0|

)

lim
ξ→ξ0,r0 6=0

a2(ξ
0, ξ) = O

(

ln
1

|ξ − ξ0|

)

.

Both kernel functions a1(ξ
0, ξ) and a2(ξ

0, ξ) are weakly singular.
The situation ξ → ξ0, r0 = 0, when m = 0, requires a special attention. It is an other

source of kernel singularities. Actually we have

lim
ξ→ξ0,r0=0

a1(ξ
0, ξ) =

K(0)

2π
,

lim
ξ→ξ0,r0=0

a2(ξ
0, ξ) = −K(0)

4π
+O

(

1

r0

)

.

For the even-order collocation method the point ξ0 lies in the middle of the boundary element.
It means that r0 does not belong to the symmetry axis, but can lye very close to it. The
quantity 1/r0 then grows unboundendly, resulting in strong variation for the kernel function
a2(ξ

0, ξ). To overcome the loss of accuracy for the numerical integration near the symme-
try axis adaptive integration methods for computing boundary integrals is suggested in [50].
An adaptive integration is proposed by means of the numerical integration software package
Quadpack, see [51]. Regular integrals are calculated by Gauss-Kronrod quadratures. The
(2n + 1)-point Gauss-Kronrod quadrature is an n-point Gaussian rule augmented by a set of
n+ 1 points. The resulting formula integrates exactly a polynomial of degree 3n+ 1 for n even
and 3n+ 2 for n odd (Gaussian rule is exact for the polynomial degree 2n− 1). The numerical
integration is estimated by measuring the difference between n-point Gauss quadrature and
(2n+1)-point Gauss-Kronrod quadrature. A globally adaptive strategy is to bisect the interval
with the largest error until it is less than a prescribed tolerance.

3.2 Boundary element method for magnetostatic prob-

lem

In this section we assume a constant material property of the fluid, i.e. µ1 = const. We apply
the boundary element method to the magnetostatic problem (2.12)–(2.16).
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Boundary integral equations
The boundary value problem (2.12)–(2.16) can be formulated in the form of integral equa-

tions (3.23) and (3.24) where additionally the interface conditions (2.13) should be taken into
consideration.

For points lying on the boundary Γ we have the following boundary integral equations

1

2
u1(ξ

0) + (V2,axu1)(ξ
0) − (V1,axq1)(ξ

0) = 0, (3.48)

1

2
u2(ξ

0) − (V2,axu2)(ξ
0) + (V1,axq2)(ξ

0) = z0. (3.49)

From the problem formulation we have the interface conditions

u1 = u2, µ1q1 = q2 on Γ. (3.50)

At first we apply the interface conditions to equation (3.49)

1

2
u1(ξ

0) − (V2,axu1)(ξ
0) + µ1(V1,axq1)(ξ

0) = z0. (3.51)

Using equations (3.48) and (3.51) we eliminate q1 from the formulation. It gives us the boundary
integral equation for the unknown function u1 on the boundary Γ

1

2
(µ1 + 1)u1(ξ

0) + (µ1 − 1)(V2,axu1)(ξ
0) = z0. (3.52)

For the µ1 > 1, see (2.20), the equation (3.52) is a Fredholm integral equation of the second
kind. When µ1 = 1, then from (3.52) we have u1(r, z) = z. The sum of equations (3.48) and
(3.51) results in

(µ1 − 1)(V1,axq1)(ξ
0) = z0 − u1(ξ

0). (3.53)

For the given Dirichlet data the boundary integral equation (3.53) can be used to determine
the unknown function q1. Equation (3.53) is a Fredholm integral equation of the first kind for
µ1 6= 1.

Additionally, we write integral equations (3.52) and (3.53) in operator form

(Auu1)(ξ) = gu(ξ) for ξ ∈ Γ, (3.54)

(Aqq1)(ξ) = gq(ξ) for ξ ∈ Γ, (3.55)

where

Au =
1

2
(µ1 + 1)I + (µ1 − 1)V2,ax, gu(ξ) = z,

Aq = (µ1 − 1)V1,ax, gq(ξ) = z − u1(ξ).

Here I is an identity operator and ξ = (r, z).

Discretisation by piecewise-constant collocation
We discretise integral equations (3.54) and (3.55) by the collocation method using piecewise

constant approximation for unknown functions
Find uh ∈ S0(Tn) and qh ∈ S0(Tn) such that

Auuh(ξ̃i) = gu(ξ̃i) for ξ̃i ∈ Ξ̃n, (3.56)

Aqqh(ξ̃i) = gq(ξ̃i) for ξ̃i ∈ Ξ̃n. (3.57)
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Following the idea of naive collocation, see [6, 7], as a collocation point ξ̃i we take a midpoint
of the boundary element Γi (3.33). Let {Φj}n

j=1 denote a basis of the space S0(Tn) such that

Φj(t) = 1, t ∈ [tj−1, tj ]; Φj(t) = 0, otherwise.

Then functions uh and qh can be expressed as

uh =
n
∑

j=1

ujΦj, qh =
n
∑

j=1

qjΦj

with unknowns uj = u(ξ̃j) and qj = q(ξ̃j), j = 1, n.
The equations (3.34) are equivalent to two quadratic systems of linear equations

n
∑

j=1

(AuΦj)(ξ̃i)uj = gu(ξ̃i), i = 1, n, (3.58)

n
∑

j=1

(AqΦj)(ξ̃i)qj = gq(ξ̃i), i = 1, n, (3.59)

for unknowns u1, . . . , un and q1, . . . , qn.

Numerical convergence of piecewise constant collocation
The first aim of numerical tests is to compare the experimental order of convergence (eoc)

of the piecewise collocation method (3.56)-(3.57) with results predicted by the theory, see
Remark 3.1.3. The other point of numerical testing is to analyse the influence of boundary
approximation to the convergence of piecewise-constant collocation method (3.56)-(3.57) and
to detect possible geometric instabilities due to an inexact representation of the geometry. For
that reason we performed computations with the exact representation of the boundary and its
piecewise linear and cubic spline approximations.

The magnetostatic problem (2.12)–(2.16) for the sphere, when µ1 = const, has the analytical
solution, see [63]

u1(r, z) =
3

(2 + µ1)
z for (r, z) ∈ Ω1, (3.60)

u2(r, z) = z +
(µ1 − 1)

(2 + µ1)

z

(r2 + z2)3/2
for (r, z) ∈ Ω2,

where the boundary Γ can be presented as

Γ = {(r, z) | r = sin t, z = cos t, t ∈ [0, π/2]}.
Taking into consideration that for the outward unit normal vector on Γ we have

n = (−z′(t), r′(t)) = (r(t), z(t)),

we can write

q1(r, z) =
∂u1

∂r
r +

∂u1

∂z
z =

3

(2 + µ1)
z for (r, z) ∈ Γ. (3.61)

Let µ1 = 6 in our calculations. We apply the piecewise constant collocation (3.56)-(3.57)
for n = 4, 8, 16, 32 and 64. A uniform grid Tn and a nonuniform one T k

n are considered

Tn = {tj | tj = jh, j = 0, n}, (3.62)

T k
n = {tj | t0 = 0; tj =

1

2k+1−j
h, j = 1, k; tj = (j − k)h, j = k + 1, k + n}, (3.63)
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where h = π/(2n). The nonuniform discretisation T k
n is based on the discretisation Tn with k

times uniform refinements of the interval [t0, t1]. Fig. 3.2 presents uniform and nonuniform grid
configurations for n = 4 and k = 3.

r r

z z

Figure 3.1: Grid configurations for T4 (left) and T 3
4 (right): full markers are grid points, empty

markers are collocation points.

To calculate the entries for the discrete systems (3.58), (3.59) we use a Gaussian quadrature
formulas with 12 points for regular integrals and logarithmically weighted Gaussian formulas
with 8 points for weakly singular integrals.

For a collocation method on the exact boundary Γ we define the error functions as

eu(ξ) = u1(ξ) − uh(ξ), eq(ξ) = q1(ξ) − qh(ξ) for ξ ∈ Γ.

For the case of an approximated boundary Γh we have

eu(ξ) = u1(ξ) − (uh ◦ F−1)(ξ), eq(ξ) = q1(ξ) − (qh ◦ F−1)(ξ) for ξ ∈ Γ,

where the mapping F : Γh → Γ is given by (3.29). We denote by || · ||2 and || · ||∞ discrete
analogs of the r-weighted L2-norm and L∞-norm, respectively, evaluated at the collocation
points

||eu||2 =

[

n
∑

i=1

r(t̃i)(u1(ξ̃i) − ui)
2|ξi − ξi−1|

]1/2

, ||eu||∞ = max
1≤i≤n

|u1(ξ̃i) − ui|,

||eq||2 =

[

n
∑

i=1

r(t̃i)(q1(ξ̃i) − qi)
2|ξi − ξi−1|

]1/2

, ||eq||∞ = max
1≤i≤n

|q1(ξ̃i) − qi|.

The comparison of numerical results with the analytical solution on the exactly represented
boundary Γ is illustrated in Table 3.1 and Table 3.2. Analysing the error for n between 4 and
64 we confirm the second order of convergence of the piecewise constant collocation (3.56),
(3.57) on uniform Tn and nonuniform T 8

n grids. It is one order higher than it was predicted
by the theory for the L2-norm, see Remark 3.1.3. However, the second order of convergence
for piecewise constant collocation was proved in Theorem 4.6.17a in [31] for the L∞-norm,
calculated at the collocation points, provided some conditions for the integral operators and
the assumption for the exact solution to be from the space H2(Γ). Additionally we can conclude
that the nonuniform grid parametrisation (3.63) does not worsen the convergence.

Let us consider piecewise linear boundary approximation Γ1
h with the parametrisation (3.28)

from the space S2,1. The results of Tables 3.3 and 3.4 indicate the second order of convergence
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n ||eu||∞ eoc ||eu||2 eoc ||eq||∞ eoc ||eq||2 eoc

4 .477e-3 .305e-3 .178e-2 .118e-2
8 .155e-3 1.625 .936e-4 1.704 .601e-3 1.568 .357e-3 1.719
16 .432e-4 1.840 .254e-4 1.884 .167e-3 1.851 .964e-4 1.888
32 .113e-4 1.932 .657e-5 1.948 .435e-4 1.939 .250e-4 1.949
64 .289e-5 1.970 .167e-5 1.976 .111e-4 1.966 .635e-5 1.976

Table 3.1: Numerical convergence for the exact representation of Γ on uniform grids Tn.

n ||eu||∞ eoc ||eu||2 eoc ||eq||∞ eoc ||eq||2 eoc

4 .109e-2 .518e-3 .803e-2 .233e-2
8 .235e-3 2.216 .108e-3 2.257 .214e-2 1.906 .448e-3 2.379
16 .530e-4 2.150 .263e-4 2.042 .549e-3 1.964 .103e-3 2.127
32 .125e-4 2.084 .663e-5 2.001 .139e-3 1.984 .254e-4 2.015
64 .303e-5 2.044 .167e-5 1.985 .348e-4 1.994 .637e-5 1.992

Table 3.2: Numerical convergence for the exact representation of Γ on nonuniform grids T 8
n .

for all situations except ||eq||∞. Numerically we got the first order for ||eq||∞ on the nonuniform
grids. The maximum deviation from the exact solution takes place at the collocation points
lying near the axis of revolutionOz. It follows that the piecewise linear boundary approximation
decreases the order of convergence at the nonuniform grids (3.63).

n ||eu||∞ eoc ||eu||2 eoc ||eq||∞ eoc ||eq||2 eoc

4 .157e-1 .926e-2 .168e-2 .110e-2
8 .413e-2 1.927 .240e-2 1.946 .520e-3 1.696 .310e-3 1.829
16 .105e-2 1.975 .609e-3 1.981 .138e-3 1.909 .800e-4 1.951
32 .265e-3 1.991 .153e-3 1.993 .353e-4 1.972 .202e-4 1.984
64 .663e-4 1.996 .383e-4 1.997 .893e-5 1.993 .508e-5 1.994

Table 3.3: Convergence for the piecewise-linear boundary Γ1
h on uniform grids Tn.

n ||eu||∞ eoc ||eu||2 eoc ||eq||∞ eoc ||eq||2 eoc

4 .132e-1 .828e-2 .190e-1 .500e-2
8 .396e-2 1.738 .234e-2 1.825 .951e-2 1.002 .133e-2 1.911
16 .104e-2 1.929 .604e-3 1.951 .468e-2 1.022 .342e-3 1.959
32 .264e-3 1.979 .153e-3 1.986 .231e-2 1.016 .868e-4 1.979
64 .662e-4 1.993 .383e-4 1.995 .115e-2 1.009 .218e-4 1.990

Table 3.4: Convergence for the piecewise-linear boundary Γ1
h on nonuniform grids T 8

n .

Let us improve the smoothness property of boundary approximation and consider the bound-
ary approximation by a cubic spline Γ3

h defined in the space S4,3. The results of Tables 3.5 and
3.6 show the second order of convergence for the cubic spline approximation of the boundary
even on the nonuniform grids.

Finally we present all numerical results in Figs. 3.2 and 3.3. The figures illustrate that
the results of the calculations for the exact boundary and for its cubic spline approximation
coincide nearly everywhere.
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n ||eu||∞ eoc ||eu||2 eoc ||eq||∞ eoc ||eq||2 eoc

4 .548e-3 .359e-3 .180e-2 .118e-2
8 .159e-3 1.783 .962e-4 1.901 .610e-3 1.558 .357e-3 1.721
16 .433e-4 1.878 .255e-4 1.915 .168e-3 1.861 .964e-4 1.888
32 .113e-4 1.936 .658e-5 1.954 .436e-4 1.945 .250e-4 1.949
64 .289e-5 1.971 .167e-5 1.977 .112e-4 1.969 .635e-5 1.976

Table 3.5: Convergence for the cubic spline boundary Γ3
h for uniform grids Tn.

n− k ||eu||∞ eoc ||eu||2 eoc ||eq||∞ eoc ||eq||2 eoc

4 .108e-2 .557e-3 .818e-2 .235e-2
8 .235e-3 2.205 .111e-3 2.331 .216e-2 1.918 .449e-3 2.385
16 .530e-4 2.148 .264e-4 2.070 .552e-3 1.970 .103e-3 2.132
32 .125e-4 2.083 .663e-5 1.990 .139e-3 1.988 .254e-4 2.016
64 .303e-5 2.044 .167e-5 1.986 .349e-4 1.996 .637e-5 1.993

Table 3.6: Convergence for the cubic spline boundary Γ3
h for nonuniform grids T 8

n .
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Figure 3.2: Accuracy of numerical calculations on the uniform grids.
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Figure 3.3: Accuracy of numerical calculations on the nonuniform grids.
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3.3 Finite element method for the magnetostatic prob-

lem

3.3.1 Continuous formulation

In Section 2.3 we assumed that the domains D1 and D2, defined in IR3, are invariant by rotation
around the z-axis and generated by rotating two-dimensional meridian domains Ω1 and Ω2 such
that

Ω̄ = Ω̄1 ∪ Ω̄2 = IR+ × IR, Ω1 ∩ Ω2 = ∅, ∂Ω1 ∩ ∂Ω2 = Γ.

For computational purposes we restrict the unbounded domain Ω2 by asymptotic bound-
aries r = rright and z = ztop. The distances of these boundaries from the free surface are
finite but large enough to ensure that the magnetic field there is uniform. The dimensionless
magnetostatic problem (2.12)-(2.16) takes the form

−∇ · (µ(ξ, |∇u|)∇u) = 0, in Ω, µ =

{

µ1(|∇u|) for ξ ∈ Ω1,
1 for ξ ∈ Ω2,

(3.64)

u = z for r = rright, u = ztop for z = ztop, (3.65)

u = 0, u = 0 for z = 0, (3.66)

∂u

∂n
= 0 for r = 0, (3.67)

u1 = u2, µ1
∂u1

∂n
=
∂u2

∂n
on Γ, (3.68)

where

µ1(|∇u|) = 1 + 3χ
P (γ|∇u|)
γ|∇u| , P (t) = coth (t) − 1

t
, γ =

3χH0

Ms
. (3.69)

We set for calculations rright = ztop = 20.
Let us consider the boundary of the computational domain Ω as a union of the boundary

ΓD = ∂Ω ∩ {{z = ztop} ∪ {r = rright} ∪ {z = 0}}

with the Dirichlet condition u = uD, corresponding to conditions (3.65) and (3.66), and the
boundary on the z-axis

ΓN = ∂Ω ∩ {r = 0}
with the Neumann boundary condition (3.67). Then we have

∂Ω = ΓD ∪ ΓN .

Let us denote by X the space of axisymmetric functions

X = {v ∈ L2(D) | v is an axisymmetric function with respect to the z-axis}.

For any function v ∈ X there exists a function ṽ defined on Ω such that

ṽ(r, z) = v(r cos θ, z sin θ, z)
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for (r, z) ∈ Ω and any θ ∈ [0, 2π]. By the substitution we have

∫

D

v2(x, y, z)dxdydz = 2π

∫

Ω

ṽ2(r, z)rdrdz.

It follows that the function ṽ belongs to the weighted space with the measure rdrdz

L2
r(Ω) =







ṽ |
∫

Ω

ṽ2(r, z)rdrdz <∞







with an inner product

(ũ, ṽ) =

∫

Ω

ũṽrdrdz for u, v ∈ L2
r(Ω).

For smooth functions the variable transformation leads to

∂v

∂x
=
∂ṽ(r(x, y), z)

∂x
=
∂ṽ

∂r

∂r

∂x
=
∂ṽ

∂r
cos θ,

∂v

∂y
=
∂ṽ(r(x, y), z)

∂y
=
∂ṽ

∂r

∂r

∂y
=
∂ṽ

∂r
sin θ,

∂v

∂z
=
∂ṽ

∂z
.

We have then that

||v||2V =

∫

D

(

v2 +

(

∂v

∂x

)2

+

(

∂v

∂y

)2

+

(

∂v

∂z

)2
)

dxdydz

= 2π

∫

Ω

(

ṽ2 +

(

∂ṽ

∂r

)2

+

(

∂ṽ

∂z

)2
)

rdrdz = 2π||ṽ||2Vr
,

where v ∈ V (D) = H1(D) ∩X and ṽ belongs to the weighted Sobolev space

Vr(Ω) = {ṽ | ṽ ∈ L2
r(Ω), ∇ṽ ∈ L2

r(Ω)}.

The space V (D) is isomorphic to Vr(Ω), see Theorem II.2.1 in [16].
We define the space

Wr(Ω) = {v ∈ Vr(Ω) | v|ΓD
= 0}.

To get the weak formulation for the problem (3.64)-(3.68), we multiply equation (3.64) by
a weight function r and by an arbitrary function v ∈Wr(Ω), integrate it over Ω and transform
by the first Green formula. The weak formulation of (3.64)-(3.68) reads

Find uh ∈ Vr(Ω) such that uh − u∗ ∈Wr(Ω) and

(µ(ξ, |∇u|)∇u,∇v) = 0 for any v ∈ Wr(Ω). (3.70)

Here u∗ is assumed to be smooth such that u∗|ΓD
= uD.
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Solvability of the variational problem
The classical approach for deriving an assertion about the existence and uniqueness of a

weak solution for the nonlinear boundary value problem consists in the transformation of the
problem to an operator equation

Tu = F, T : V → V ∗,

and further application of the theory of monotone operators, namely, the Browder’s Theorem,
see for instance [37]. If we verify that the operator T is bounded, demicontinuous, monotone and
coercive, then the existence of a solution u ∈ V of the operator equation and consequently, also
the existence of the corresponding weak solution are guaranteed. This approach was studied
for the case of weighted Sobolev spaces in [37].

Let us consider nonlinear differential operators of order 2k

(Nu)(x) =
∑

α∈S

(−1)|α|Dαaα (x; δSu(x)) (3.71)

with
δSu(x) = {Dβu(x); β ∈ S}.

where aα = aα(x; ξ) are given functions defined on Ω × IRm, Ω ⊂ IRN , ξ = {ξβ; β ∈ S} ∈ IRm.
The variable S denotes a subset of the set {α; |α| ≤ k} of all N -dimensional multiindices of
length at most k. It contains the zero multiindex and at least one multiindex of the length k.
The number of elements of the set S equals m.

We define the weighted Sobolev space W k,2(Ω, w) as the set of all functions u such that

||u;W k,2(Ω, w)||2 =
∑

α∈S

∫

Ω

|Dαu(x)|2w(x)dx <∞,

where the weight function w(x) is measurable and positive almost everywhere in Ω such that

w(x)−1 ∈ L1
loc(Ω) and w(x) ∈ L1

loc(Ω).

Additionally we introduce a space W k,2
0 (Ω, w) as the closure of C∞

0 (Ω) with respect to the norm
||·;W k,2(Ω, w)||.

Let a function u0 ∈ W k,2(Ω, w) and a functional F ∈ [W k,2
0 (Ω, w)]∗ from the dual space to

W k,2
0 (Ω, w) be given. A function u ∈W k,2(Ω, w) is a weak solution of the Dirichlet problem for

the operator (3.71), if
u− u0 ∈W k,2

0 (Ω, w) and

∑

α∈S

∫

Ω

aα(x; δSu(x))D
αv(x)dx =< F, v > for any v ∈ W k,2

0 (Ω, w). (3.72)

Theorem 3.3.1 (Theorem 50.2 in [37], existence and uniqueness of weak solution)
Let the coefficients aα = aα(x; ξ) of the nonlinear differential operator (3.71) satisfy the Cara-
théodory condition, growth condition, monotonicity condition and coercivity condition:

aα(x; ξ) are measurable in x for every ξ ∈ IRm and continuous in ξ for a.e. x ∈ Ω; (3.73)

|aα(x; ξ)| ≤ w1/2(x)

(

gα(x) + cα
∑

β∈S

|ξβ|w1/2(x)

)

, (3.74)
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where gα ∈ L2(Ω) and cα ≥ 0;

∑

α∈S

(aα(x; ξ) − aα(x; η))(ξα − ηα) ≥ 0 (3.75)

for a.e. x ∈ Ω and all ξ, η ∈ IRm;

∑

α∈S

aα(x; ξ)ξα ≥ c1
∑

α∈S

w(x)ξ2
α (3.76)

for a.e. x ∈ Ω and all ξ ∈ IRm and c1 > 0.
Then there exists at least one weak solution of the Dirichlet problem (3.72).
If the inequality in (3.75) is strict for ξ 6= η, then the weak solution is uniquely determined.

Let us show that the magnetostatic equation (3.64) can be written as the nonlinear operator
of the form (3.71). After multiplying equation (3.64) by the function r we get

− ∂

∂r

(

rµ(ξ, |∇u|)∂u
∂r

)

− ∂

∂z

(

rµ(ξ, |∇u|)∂u
∂z

)

= 0 in Ω.

We obtain that the magnetostatic equation corresponds to (3.71), where

x = (r, z), k = 1, S = {(0, 1), (1, 0)}, δS =

{

∂u

∂r
,
∂u

∂z

}

,

ξ = {ξ(0,1), ξ(1,0)}, ξ(0,1) =
∂u

∂r
, ξ(1,0) =

∂u

∂z
,

a(0,1) = rµ(x, |ξ|)ξ(0,1), a(1,0) = rµ(x, |ξ|)ξ(1,0).

For the convenience we define ξ1 := ξ(0,1), ξ2 := ξ(1,0), a1 := a(0,1), a2 := a(1,0). The weighted
Sobolev space W k,2(Ω, w) with the weight function w = r corresponds to the space Vr(Ω).

The solvability in Theorem 3.3.1 was stated for the Dirichlet problem. For the magnetostatic
problem (3.64)-(3.68) we have a mixed Dirichlet-Neumann situation and transition conditions
(3.68). In [37] an interpretation of the condition

u− u0 ∈ W k,2
0 (Ω, w)

was discussed. As an example the Laplace operator with the weight function w = r was
taken. The following facts were asserted. The condition u − u0 ∈ W k,2

0 (Ω, r) means that on
the boundary ∂Ω \ {r = 0} we have u = u0 and on the boundary r = 0 no condition imposed
on u. It allows us to assume that by setting the Neumann condition ∂u/∂n = 0 over the
boundary, where the weight function vanishes, we stay still in the frame of Theorem 3.3.1.
The Dirichlet problem with discontinuous coefficients results in the weak formulation of the
form (3.72) for Ω = ∪Ωi with continuous coefficients at every subdomain Ωi. It follows that
Theorem 3.3.1 can be applied for problems with discontinuous coefficients, provided every of
conditions (3.73)-(3.76) to satisfy at all subdomains Ωi.

In order to examine the solvability of the variational problem (3.70) we apply the re-
sults established in Theorem 3.3.1. Let us remind the properties of the function µ1(t) =
1 + 3χP (γt)/(γt)

1 ≤ µ1(t) ≤ 1 + χ for t ≥ 0; P (t) ≥ 0 and P ′(t) ≥ 0 for t ≥ 0. (3.77)
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Now we verify whether coefficients a1(x, |ξ|) and a2(x, |ξ|) satisfy conditions (3.73)-(3.76). We
have that the functions ai = rµ(x, |ξ|)ξi are measurable in x for every ξ ∈ IR2 and continuous in
ξ as the composition of continuous functions for x ∈ Ω1 ∪Ω2. The growth condition is satisfied
with gα(x) ≡ 1 + χ and cα = 1 + χ

|ai(x, |ξ|)| = rµ(x, |ξ|)|ξi| ≤ r(1 + χ)|ξi| ≤ r1/2(1 + χ)

(

1 +
2
∑

j=1

r1/2|ξj |
)

.

Next we show that the monotonicity condition (3.75) is satisfied. Let ξ, η ∈ IR2 be arbitrary.
We set ζ = ξ − η and

φ(t) = r
P (γ|η + tζ|)
γ|η + tζ| (η + tζ, ζ), t ∈ [0, 1].

φ′(t) = rP ′(γ|η + tζ|)(η + tζ, ζ)2

|η + tζ|2 − r
P (γ|η + tζ|)
γ|η + tζ|3 (η + tζ, ζ)2 + r

P (γ|η + tζ|)
γ|η + tζ| (ζ, ζ)

= rP ′(γ|η + tζ|)(η + tζ, ζ)2

|η + tζ|2 + r
P (γ|η + tζ|)
γ|η + tζ|

(

−(η + tζ, ζ)2

|η + tζ|2 + (ζ, ζ)

)

≥ rP ′(γ|η + tζ|)(η + tζ, ζ)2

|η + tζ|2 ≥ 0.

To get the relation we used the fact that the function P (t) is nonnegative and P ′(t) ≥ 0.
For the left-hand side of the monotonicity condition we have

r(µ(x, |ξ|)ξ−µ(x, |η|)η, ζ) = r(ζ, ζ)+φ(1)−φ(0) = r(ζ, ζ)+φ′(t0) ≥ r(ζ, ζ) > 0 for x ∈ Ω1, ξ 6= η,

r(µ(x, |ξ|)ξ − µ(x, |η|)η, ζ) = r(ζ, ζ) > 0 for x ∈ Ω2, ξ 6= η.

The existence of t0 ∈ (0, 1) is guaranteed by the Mean Value Theorem. Hence the monotonicity
condition (3.75) is satisfied.

Finally we have the coercivity condition (3.76) to be fulfilled

rµ(x, |ξ|)(ξ, ξ) ≥ r(ξ, ξ) for all x ∈ Ω and all ξ ∈ IR2.

Therefore, according to Theorem 3.3.1, there exists a uniquely determined weak solution of the
magnetostatic problem (3.64)-(3.68).

3.3.2 Discrete formulation

Let us denote by Ω1
h and Ω2

h polygonal approximations of the domains Ω1 and Ω2, respectively,
such that

∂Ω1
h ∩ ∂Ω2

h = Γh,

where Γh is a piecewise linear approximation of the boundary Γ. Let T 1
h and T 2

h be regular
triangulations of Ω̄1

h and Ω̄2
h, respectively, see for instance [23], such that

Ω̄1
h =

⋃

T∈T 1
h

T, Ω̄2
h =

⋃

T∈T 2
h

T,

where T is a triangular element with a diameter hT and h = max
T∈Th

hT .
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For the discretisation of the problem (3.70) we use conforming finite dimensional spaces

Vh(Ωh) = {vh ∈ Vr(Ωh) ∩ C(Ω̄h) | vh is linear on each T ∈ T 1
h ∪ T 2

h },
Wh(Ωh) = {vh ∈Wr(Ωh) ∩ C(Ω̄h) | vh is linear on each T ∈ T 1

h ∪ T 2
h }.

where Ω̄h = Ω̄1
h ∪ Ω̄2

h. An approximate solution uh is sought in the space of linear conforming
triangular elements. We apply a standard Galerkin approach to the problem (3.70). The
discrete problem reads: Find uh ∈ Vh(Ωh) such that uh − u∗ ∈Wh(Ωh) and

(µ(ξ, |∇uh|)∇uh,∇vh) = 0 for all vh ∈Wh(Ωh). (3.78)

Convergence
Study of the convergence of the finite element method should take into account the problem

formulation in cylindrical coordinates, approximation of the domain Ω by Ωh and numerical
integration for the semilinear form.

For two-dimensional problems the study of the finite element solution of nonlinear second
order elliptic boundary value problems with discontinuous coefficients was presented in [26, 81]
in the case of mixed Dirichlet-Neumann boundary conditions. The domain Ω is approximated by
a polygonal one, conforming piecewise linear triangular elements are used and the integrals are
evaluated by numerical quadratures. With the assumptions that the corresponding operator is
strongly monotone and Lipschitz-continuous and that u ∈ H1(Ω) the convergence of the method
is proved. Under the additional assumption that u is piecewise of class H1+ε, 0 < ε ≤ 1 in [81]
(u is piecewise of class H2(Ω) in [26]) the convergence O(hε) in [81] (O(h) in [26]) is derived.

Iterative solution of the discrete problem
There are several ways to solve the discrete nonlinear problem (3.78). One possibility is to

reduce this problem to a sequence of linear problems by the fixed-point method. Let u0
h ∈ Vh

be arbitrary. Suppose that uk
h ∈ Vh, k ∈ {0, 1, . . . } are known. Then uk+1

h ∈ Vh is determined
as the solution of the linear problem

(µ(|∇uk
h|)∇uk+1

h ,∇vh) = 0 for all vh ∈Wh. (3.79)

To solve the linear system, corresponding (3.79), we apply an F -cycle of a geometric multigrid
method with one pre-smoothing and one post-smoothing step. For details on the multigrid
method see [29]. As a smoother we use a Symmetric Successive Overrelaxation Method (SSOR),
see for instance [64], with a relaxation parameter equals one. The iterative process continues
until the defect of the linear system, when all quantities are taken at the k-th iteration, will
be smaller than ε (generally 10−8). Practically only a few steps (2-10) of the iterative process
have to be performed to solve the linear system. Initially µ1(|∇u0

h|) set to be 1 + χ. It is the
only quantity required to be defined from the previous iteration.

The software package MooNMD, see [36], was used for numerical simulations.

3.4 Boundary element-finite element coupling

It is well known, that a boundary element method (BEM) is suited to problems in the domain
extending to infinity but is usually restricted to regions in which the governing equations
are linear. On the other hand, the finite element method (FEM) is restricted to problems
in bounded domains but is applicable to problems in which the material properties are not
necessarily homogeneous and nonlinearity may occur.
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For the numerical modeling of the magnetostatic problem (2.12)-(2.16) a coupled strategy
of finite element and boundary element methods seems to be the favorable choice. A boundary
integral formulation in the unbounded air domain satisfies the boundary condition for the
magnetic field at infinity while with a finite element method we can resolve non-linearities
inside of the fluid. Following the idea in [78], we apply the coupling of the collocation BEM in
the exterior domain Ω2 and the Galerkin FEM in the interior domain Ω1 for the magnetostatic
problem (2.12)-(2.16).

3.4.1 Continuous formulation

We denote by D1 ⊂ IR3 a bounded domain, see Fig. 2.1, by Ω1 ⊂ IR2 a meridian section of D1

and by Γ a meridian line of D1, see Fig. 2.2. Let us consider the boundary of Ω1 as a union of
the boundary ΓD with the Dirichlet condition (2.16)

u = 0 on ΓD,

the boundary ΓN with the Neumann condition on the z-axis

∂u

∂n
= 0 on ΓN

and the boundary Γ with the transmission conditions (2.13)

u1 = u2, µ1
∂u1

∂n
=
∂u2

∂n
on Γ.

We have that
∂Ω1 = ΓD ∪ ΓN ∪ Γ.

In Section 3.1 we formulated the following boundary integral equation for the Laplace equa-
tion in the exterior domain Ω2, see (3.51)

1

2
u(ξ0) − (V2,axu)(ξ

0) + (V1,axµ1(|∇u|)q)(ξ0) = z0 for ξ0 ∈ Γ. (3.80)

Here u denotes the axisymmetric potential, q = ∂u/∂n with the normal vector outer for Ω1.
We reformulate the magnetostatic problem (2.12)-(2.16) as the nonlocal boundary value

problem for (u, q) in Ω1. The problem reads

−∇ · (µ1(|∇u|)∇u) = 0 in Ω1, (3.81)

(
1

2
I − V2,ax)u+ V1,ax(µ1(|∇u|)q) = z,

∂u

∂n
= q on Γ, (3.82)

u = 0 on ΓD, (3.83)

∂u

∂n
= 0 on ΓN . (3.84)

The nonlocal boundary value value problem (3.81)-(3.84) is equivalent to the problem (2.12)-
(2.16) in the sense that if (u, q) satisfies (3.81)-(3.84) and if we set from (3.24)

u(ξ0) = (Ṽ2,axu)(ξ
0) − (Ṽ1,axq)(ξ

0) + z0 for ξ0 ∈ Ω2,
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then u satisfies (2.12)-(2.16) with ∂u/∂n = q on Γ.
Let us denote by X the space of axisymmetric functions

X = {v ∈ L2(D) | v is an axisymmetric function with respect to the z-axis}.

For any function v ∈ X there exists a function ṽ defined on Ω1 such that

ṽ(r, z) = v(r cos θ, z sin θ, z)

for (r, z) ∈ Ω1 and any θ ∈ [0, 2π]. By the substitution we have
∫

D1

v2(x, y, z)dxdydz = 2π

∫

Ω1

ṽ2(r, z)rdrdz.

It follows that the function ṽ belongs to the weighted space with the measure rdrdz

L2
r(Ω1) =







ṽ |
∫

Ω1

ṽ2(r, z)rdrdz <∞







with an inner product

(ũ, ṽ)Ω1
=

∫

Ω1

ũṽrdrdz for u, v ∈ L2
r(Ω1).

For smooth functions v ∈ X the variable transformation leads to

∂v

∂x
=
∂ṽ(r(x, y), z)

∂x
=
∂ṽ

∂r

∂r

∂x
=
∂ṽ

∂r
cos θ,

∂v

∂y
=
∂ṽ(r(x, y), z)

∂y
=
∂ṽ

∂r

∂r

∂y
=
∂ṽ

∂r
sin θ,

∂v

∂z
=
∂ṽ

∂z
.

Then we have that

||v||2V =

∫

D

(

v2 +

(

∂v

∂x

)2

+

(

∂v

∂y

)2

+

(

∂v

∂z

)2
)

dxdydz

= 2π

∫

Ω

(

ṽ2 +

(

∂ṽ

∂r

)2

+

(

∂ṽ

∂z

)2
)

rdrdz = 2π||ṽ||2Vr
,

where v ∈ V (D) = H1(D) ∩X and ṽ belongs to the weighted Sobolev space

Vr(Ω) = {ṽ | ṽ ∈ L2
r(Ω), ∇ṽ ∈ L2

r(Ω)}.

The space V (D1) is isomorphic to Vr(Ω1), see Theorem II.2.1 in [16].
We define the following spaces

Wr(Ω1) = {v ∈ Vr(Ω1) | v|ΓD
= 0},

Qr(Γ) = H−1/2(Γ) ∩ L2
r(Γ),

H = Wr(Ω1) ×Qr(Γ).
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Let 〈·, ·〉Γ denote the duality paring between spaces H1/2(Γ)∩L2
r(Γ) and Qr(Γ) with respect to

the L2
r(Γ)-inner product

〈u, v〉Γ =

∫

Γ

uvrdΓ for all u ∈ H1/2(Γ) ∩ L2
r(Γ), v ∈ Qr(Γ).

To get the weak formulation for the problem (3.81)-(3.84) inside the domain Ω1, we multiply
equation (3.81) by a weight function r and by an arbitrary function v ∈ Wr(Ω1), integrate it
over Ω1 and transform by the first Green formula. Then the weak problem reads

Find u ∈ Wr(Ω1) such that

(µ1(|∇u|)∇u,∇v)Ω1
= 〈µ1(|∇u|)q, v〉Γ for any v ∈Wr(Ω1). (3.85)

Putting together equations (3.85) and the nonlocal boundary condition (3.82) we get
Find U = (u, q) ∈ H such that

A(U , v) = L(v) for all v ∈Wr(Ω1). (3.86)

Here

A(U , v) := (µ1∇u,∇v)Ω1
− 〈µ1q, v〉Γ + (

1

2
I − V2,ax)u+ V1,ax(µ1q)

and

L(v) := z|Γ.

3.4.2 Discrete formulation

Let us denote by Ωh an approximation of the bounded domain Ω1. Let Th be a regular trian-
gulation of Ω̄h (see [23]), such that

Ω̄h =
⋃

T∈Th

T,

where T is a triangular element with a diameter hT and h = max
T∈Th

hT . Let a set Eh consists of

boundary edges of the triangulation Th

Eh = {E : E edge of T ∈ Th, E ⊂ Γh},

where ∂Ωh = ΓD ∪ ΓN ∪ Γh.
In the finite element-boundary element discretisation of the problem (3.86) we use the

following finite dimensional spaces

Wh(Ωh) = {vh ∈Wr(Ωh) ∩ C(Ω̄h) | vh is linear on each T ∈ Th},
Qh(Γh) = {qh ∈ Qr(Γh) | qh is constant on each E ∈ Eh},

Hh = Wh(Ωh) ×Qh(Γh).

We apply a standard Galerkin approach for the finite element part of the problem (3.86) and
boundary element collocation method for the boundary element part. This yields the following
coupled method, see [78]

Find (uh, qh) ∈ Hh such that

(µ1(|∇uh|)∇uh,∇vh)Ωh
= 〈µ1(|∇uh|)qh, vh〉Γh

for all vh ∈Wh(Ωh) (3.87)
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1

2
uh(ξ̃i) −

∫

Γh

q∗ax(ξ̃i, ξ)uh(ξ)rds+

∫

Γh

u∗ax(ξ̃i, ξ)µ1(|∇uh|)qh(ξ)rds = z̃i for all ξ̃i ∈ Ξ̃n. (3.88)

Here ξ ∈ Γh and ξ̃i = (r̃i, z̃i), Ξ̃n is a set of collocation points.
We define the boundary element-finite element basis of piecewise polynomial functions Φ

based upon a domain triangulation Th and a boundary grid Ξn as

Φ = {φ1, ..., φN , ψ1, ..., ψn+1,Φ1, ...,Φn}.
Here φ1, . . . , φN are the basis functions for approximating u in Ωh, ψ1, . . . , ψn+1 approximate u
on Γh and Φ1, . . . ,Φn represent q on Γh. We set

uh =
N
∑

i=1

αiφi +
n+1
∑

i=1

βiψi, qh =
n
∑

i=1

γiΦi

with unknowns α = {α1, . . . , αN}, β = {β1, . . . , βn+1}, γ = {γ1, . . . , γn}.
The finite dimensional spaces can be defined as

Wh = span{φ1, . . . , φN , ψ1, . . . , ψn+1}, Qh = span{Φ1, . . . ,Φn}.
The isomorphism Φ : IRN+2n+1 → Hh leads to a system of nonlinear algebraic equations





A1(uh) A2(uh) 0
AT

2 (uh) A3(uh) B1(uh)
0 B2 B3(uh)









α
β
γ



 =





0
0
f



 ,

where

A1 = {(a)ij | aij = (µ1(|∇uh|)∇φj ,∇φi)Ωh
, i = 1, N, j = 1, N},

A2 = {(a)ij | aij = (µ1(|∇uh|)∇ψj,∇φi)Ωh
, i = 1, N, j = 1, n+ 1},

A3 = {(a)ij | aij = (µ1(|∇uh|)∇ψj,∇ψi)Ωh
, i = 1, n+ 1, j = 1, n+ 1},

B1 = {(b)ij | bij = −〈µ1(|∇uh|)Φj, ψi〉Γh
, i = 1, n+ 1, j = 1, n},

B2 = {(b)ij | bij =
1

2
ψj(ξ̃i) −

∫

Γh

q∗ax(ξ̃i, ξ)ψjrds, i = 1, n, j = 1, n+ 1},

B3 = {(b)ij | bij =

∫

Γh

u∗ax(ξ̃i, ξ)µ1(|∇uh|)Φjrds, i = 1, n, j = 1, n},

f = {z̃1 . . . z̃n}.
The resulting matrix is expressed as sparse finite element matrices A mixed with a dense and
non-symmetric boundary element matrices B.

Convergence
The convergence of approximate solution (uh, qh) satisfying (3.87)-(3.88) to the solution

(u, q) of the continuous problem (3.86) is connected with several difficulties caused by the
problem formulation in cylindrical coordinates, by the nonlinearity of the problem and by
different domains of definition of approximate and exact solutions.

In Cartesian coordinates with an assumption that µ1 = const > 0 we have the following
results. The convergence of the coupled collocation boundary element and Galerkin finite
element method with a finer boundary element grid or a finer finite element grid is proved in
Theorems 3.3 and 3.5 in [78]
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Theorem 3.4.1 (consequence of Theorem 3.3 in [78]) Let the problem (3.86) be uniquely
solvable. Let the conditions of Theorem (3.1.2) satisfy for the collocation equations (3.88), when
uh is assumed to be given (order of operator α = −1). Furthermore, we assume a faster grid
refinement of the boundary elements than of the finite elements

h̃ = o(h) for h→ 0

and require the inverse assumption for the traces of functions v ∈ H1(Ω1) on Γ

||v||Hσ+1/2(Γ) ≤ ch−σ||v||H1(Ω1) (3.89)

with some σ > 0.
Then there exist h0 > 0 such that for all 0 < h ≤ h0 the coupled linear finite-element and
constant boundary-element method (3.87)-(3.88) are uniquely solvable, and we have asymptotic
convergence of optimal order

||u− uh||Hτ (Ω1) + ||q − qh||H τ̃ (Γ) ≤ c
{

hβ−τ ||u||Hβ(Ω1) + h̃β̃−τ̃ ||q||Hβ̃(Γ)

}

(3.90)

where τ ∈ [1/2, 3/2], τ̃ = τ − 3/2, β ∈ [1, 3], β̃ ∈ [0, 1].

Theorem 3.5 in [78] shows the optimal order of convergence (3.90) for a faster grid refinement
of the finite elements than of the boundary elements. The assumptions of Theorem 3.5 are
stronger than those in Theorem 3.3. In particular, the meshes in Ω1 and on Γ should be
quasiuniform and collocation equations (3.88) can be approximated only by odd order splines.

Iterative solution of the discrete problem
There are several ways to solve the discrete nonlinear problem (3.87)-(3.88). One possibility

is to reduce this problem to a sequence of linear problems by the fixed-point method. Let
(u0

h, q
0
h) ∈ Hh be arbitrary. Suppose that (uk

h, q
k
h) ∈ Hh, k ∈ {0, 1, . . . } are known. Then

(uk+1
h , qk+1

h ) ∈ Hh is determined as the solution of the linear problem

(µ1(|∇uk
h|)∇uk+1

h ,∇vh)Ωh
= 〈µ1(|∇uk

h|)qk+1
h , vh〉Γh

for all vh ∈ Wh(Ωh) (3.91)

1

2
uk+1

h (ξ̃i) −
∫

Γh

q∗ax(ξ̃i, ξ)u
k+1
h (ξ)rds+

∫

Γh

u∗ax(ξ̃i, ξ)µ1(|∇uk
h|)qk+1

h (ξ)rds = z̃i for all ξ̃i ∈ Ξ̃n.

(3.92)
To solve the linear system, corresponding (3.91)-(3.92), we use a direct solver. Namely, we
apply the Gaussian elimination method with pivoting to the system





A1(u
k
h) A2(u

k
h) 0

AT
2 (uk

h) A3(u
k
h) B1(u

k
h)

0 B2 B3(u
k
h)









αk+1

βk+1

γk+1



 =





0
0
f



 .

The iterative process continues until the defect of the linear system, when all quantities are
taken at the k-th iteration, will be smaller than ε (generally 10−8). Practically only a few
steps (2-10) of the iterative process have to be performed to solve the linear system. Initially
µ1(|∇u0

h|) set to be 1 + χ. It is the only quantity required to be defined from the previous
iteration.
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3.4.3 Numerical convergence of the coupled BEM-FEM method

Let us consider the magnetostatic problem (2.12)-(2.16), reformulated as (3.81)-(3.84). We set
µ1 = 6 and take the surface Γ in the form of a circular curve with center 0 and radius R0 = 1.
The problem has the analytical solution

u(r, z) =
3

(2 + µ1)
z for (r, z) ∈ Ω1,

q(r, z) =
3

(2 + µ1)
z for (r, z) ∈ Γ.

For more details about the numerical example see Section 3.2.
We apply the coupled BEM-FEM method (3.87)-(3.88), which combines Galerkin finite

element discretisation by piecewise linears for u(r, z) in Ω1 and collocation boundary element
discretisation by piecewise constants for q(r, z) on Γ. Following the results of the numerical
tests from Section 3.2 we approximate the boundary Γ by a cubic spline. It results in a better
accuracy for the solution of the collocation BEM, than approximation of Γ by piecewise linears,
see Fig. 3.2 and Fig. 3.3. For the test calculations uniform grids on Γ are taken with the
number of nodes n = 64, 128, 256. The Delaunay approach is used to construct a grid inside of
the domain Ω1. The final grid consists of 337 elements for n = 64, 742 elements for n = 128
and 1699 elements for n = 256, see Fig. 3.4. For details of grid construction see Section 3.5.

Figure 3.4: Grid configurations for n = 64 (left), n = 128 (middle) and n = 256 (right).

We measure the computational errors eu and eq on Γ in the r-weighted L2-norm

||eu||2 =





∫

Γ

r(u− uh)
2dΓ





1/2

≈





n
∑

i=1

(u(ξi−1/2) − uh(ξi−1/2))
2

∫

Γi

rdΓ





1/2

,

||eq||2 =





∫

Γ

r(q − qh)
2dΓ





1/2

≈





n
∑

i=1

(q(ξi−1/2) − qh(ξi−1/2))
2

∫

Γi

rdΓ





1/2

,

where ξi−1/2 denotes the middle point of the boundary element Γi. The error for the function
u is measured not over the domain Ω1 but only over the boundary Γ in order to get numerical
rate of convergence. Table 3.7 shows numerical errors ||eu||2 and ||eq||2 and empirical order of
convergence (eoc) for different values of n. The numerical convergence of the second order for
L2-norm is consistent with results predicted by the theory in Cartesian geometry, see (3.90).
The coupled BEM-FEM method results in a higher accuracy than the piecewise collocation
BEM. For instance, the coupled BEM-FEM method gives ||eu||2=0.214e-7 for n = 64, whereas
the boundary element method gives ||eu||2=0.167e-5, see Table 3.5.
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n ||eu||2 eoc ||eq||2 eoc

64 .214e-7 .387e-6
128 .533e-8 2.006 .973e-7 1.994
256 .133e-8 2.003 .244e-7 1.997

Table 3.7: Numerical accuracy of the coupled BEM-FEM method.

3.5 Grid generation

An important element of the numerical solution of partial differential equations by finite element
methods is the grid which represents the physical domain in a discrete form. An overview on
the methods for grid generation can be found in [21] and [45].

Two methods for grid generation - harmonic extension approach [21] and Delaunay technique
[45, 68] are considered. These methods are briefly presented and compared with respect to the
quality of the generated grids and the computational efficiency of the underlying algorithms in
the application to the problem (2.12)-(2.17).

3.5.1 Harmonic extension

Popular grids are those whose generation relies on a mapping concept [21, 45]. According to
this concept the nodes and cells of a grid in a region Ω ⊂ IRd are defined by mapping the nodes
and cells of a reference grid in some reference domain Ω̂ ⊂ IRd with a certain transformation
A : Ω̂ → Ω.

Let us restrict to the case d = 2. Let a mapping B between the points of the reference
boundary ∂Ω̂ and the points of the boundary ∂Ω of the computational domain be given

B : ∂Ω̂ → ∂Ω.

The grid of the domain Ω can be determined by the mapping A : Ω̂ → Ω as a solution of
the Laplace problem

−∆A = 0 in Ω̂, A = B on ∂Ω̂. (3.93)

The mapping A is a harmonic extension of the mapping B given on the boundary. For details
about this approach we refer to [21].

The following lemma gives an important property of the mapping A.

Lemma 3.5.1 (see Theorem 10.3.1 in [21]) Let Ω̂ ⊂ IR2 be a bounded open set of class
C2 and let Ω ⊂ IR2 be a bounded convex open set. Let B ∈ H3/2+ε(∂Ω̂) be a homeomorphism
between ∂Ω̂ and ∂Ω for ε > 0. Then the mapping A, defined as a solution of the problem (3.93),
is a homeomorphism between the closures of Ω̂ and Ω.

The problem (3.93) can be solved approximately by applying a finite element technique.
A discrete Laplace operator Ah is taken as an extension operator from the boundary to the
interior of the domain Ω. Let a conforming and regular triangulation of Ω̂ be given. We choose
the space of piecewise linear functions Vh(Ω̂) to approximate the unknown mapping A. For the
given B(∂Ω̂) we define Ah ∈ Vh(Ω̂) by

∫

Ω̂

∇Ah∇ψ = 0 for any ψ ∈ Vh,0(Ω̂), Ah(∂Ω̂) = B(∂Ω̂), (3.94)

where Vh,0 = {vh ∈ Vh | vh(∂Ω̂) = 0}. Functions on the boundary are to be understood in the
sense of trace, see [2].
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Remark 3.5.1 The grid determination for the domain Ω ⊂ IRd requires d solutions of the
Laplace problem (3.93).

Remark 3.5.2 The number of nodes and cells remains constant as predefined at the reference
domain Ω̂ but the location of nodes are changed in Ω = A(Ω̂).

Remark 3.5.3 The harmonic extension approach (3.93) is limited to situations where the do-
main Ω is convex.

3.5.2 Delaunay approach

An other approach to the grid generation is a Delaunay technique, see [45]. The computational
domain in the Delaunay triangulation is formed by tetrahedral (triangular) cells in such a way
that the circumsphere of a cell does not contain any other point of the grid. This geometric
constraint for grid points of the triangulation is called the Delaunay property or the Delaunay
criterion. The following optimality properties are valid in two dimensions for the Delaunay
triangulation, see [45]:

• Delaunay triangles are nearly equilateral;

• the maximum angle is minimised;

• the minimum angle is maximised.

Before constructing a Delaunay triangulation some grid points in a computational domain
can be prespecified (for instance the points at the boundary of the domain). In this case
the Delaunay property is often overridden at the points close to the prespecified ones, whereas
other points obey the Delaunay criterion. A Delaunay triangulation with prespecified boundary
points is called a constrained Delaunay triangulation. Alternatively to the constrained Delaunay
triangulation a conforming Delaunay triangulation can be constructed. In this case grid points
are added to the boundary of the computational domain and inside of it to fulfill the Delaunay
criterion everywhere.

The software package Triangle, see [68], allows to generate constrained and conforming
Delaunay triangulations by using exact arithmetic. The package includes resources to construct
grids with prespecified constraints on the smallest angle and the smallest triangle area. These
possibilities allow a-priory to control the quality of the generated grid. Several Delaunay
algorithms for grid generation are implemented to the Triangle. The comparison analysis of
the implemented approaches in [68] shows that the divide-and-conquer algorithm is the fastest.

3.5.3 Numerical tests

Test 1. Grid quality
Let us consider a domain Ω with a given boundary, obtained numerically by solving the prob-

lem (2.12)-(2.17). Numerical calculations was made for the linear magnetisable fluid with the
parameter χ = 21 for dimensionless magnetic fields Bm = µ0χV

1/3H2
0/(2σ) = {0, 5.724, 5.725}.

The equilibrium free boundary Γ is presented by the fixed number of points N , which are
connected by line segments.

To apply the harmonic extension approach we define the reference domain Ω̂, a grid in Ω̂
and the mapping B between ∂Ω̂ and ∂Ω. As a reference domain we take Ω for Bm = 0. The
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boundaries ∂Ω̂ and ∂Ω consist of the horizontal boundary on the Or-axis, the vertical boundary
on the Oz-axis and the free surface

∂Ω̂ = Γ̂hor ∪ Γ̂ver ∪ Γ̂, ∂Ω = Γhor ∪ Γver ∪ Γ.

By a Delaunay approach we construct a grid in Ω̂ with N prespecified nodes on Γ̂, see 3.5a.
To find the approximate mapping Ah between Ω̂ and Ω, it is enough to describe the mapping
B in the pointwise sense, see (3.94). We define the nodes on Γhor and Γver by means of a
geometric sequence. The multiplier of the sequence is determined from the requirement for the
edge on the Or-axis (Oz-axis), touching Γ, to have the same length as the adjoint edge on Γ.
Fig. 3.5 shows grids, generated by the harmonic extension approach. The smallest angle of the
triangulations equals 3.3 degree in Fig. 3.5c.

Remark 3.5.4 The quality of the grids, generated by the harmonic extension approach, can be
improved by changing the reference domain Ω̂ and the boundary mapping B(Ω̂).

Fig. 3.6 illustrates grids, generated by the Delaunay approach. We constructed Delaunay
triangulation with prespecified nodes on Γ. We used the constraint on the smallest angle of
grid cells to be more than 30 degree.

Finally we can conclude that the Delaunay approach allows to construct triangulations of
the better quality than those by the harmonic extension approach. It can be essential for
problems with changing boundaries when the boundary variation is strong.

Test 2. Computational efficiency: CPU-time
Let us consider a domain Ω, corresponding to Fig. 3.5b. We apply the harmonic extension

and the Delaunay approaches, when the boundary Γ is given by different number of points,
N = {64, 128, 256}. All calculations are made by means of a software package MooNMD, see
[36], with the use of the package Triangle.

For the harmonic extension approach we create the discrete system, corresponding to the
problem (3.94), and solve it by the Gauss-Seidel method. To construct the Delaunay trian-
gulation we apply divide-and-conquer algorithm in Triangle and transfer the created grid to
MooNMD. Table 3.8 presents time expenses for the algorithms realisations.

Number of points on Γ
Algorithm 64 128 256

Harmonic extension
• create a discrete system 0.01 0.03 0.05
• solve a discrete system 0.03 0.06 0.27
Delaunay approach
• create a grid 0.01 0.01 0.01
• create a new grid object 0.03 0.12 0.62

Table 3.8: Time for grid generation on a HP 9000/785/C3700 with 750 MHz processor (seconds).

The results in Table 3.8 show that the main computational efforts of the harmonic extension
approach was made to solve the discrete system. The main efforts of the Delaunay technique
connects with creating a new grid object in MooNMD for the grid, generated in Triangle.
If to compare the algorithms on the grid with 64 points on Γ then the computational efforts of
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both approaches nearly coincide. Going to the finer mesh with 128 points on Γ the harmonic
extension approach seems to be working twice more quickly, whereas further increase in grid
points indicate the further increase in the time ration between the harmonic extension algorithm
and the Delaunay approach.

Finally we can conclude that the harmonic extension approach is computationally more
effective then the Delaunay approach. From other side, the loss in quality of the grid, generated
by the harmonic extension approach (see Fig. 3.5c), can be crucial for its further application
for the numerical solution of differential equations.



48 3 Boundary element and finite element methods for the magnetostatic problem

a)

b)

c)

a) b) c) zoom

Figure 3.5: Grids, generated by the harmonic extension approach. The row of pictures at the
right side presents zoom of the drop shapes at the tip.

a)

b)

c)

a) b) c) zoom

Figure 3.6: Grids, generated by the Delaunay approach. The row of pictures at the right side
presents zoom of the drop shapes at the tip.



Chapter 4

Numerical methods for modeling of
equilibrium free surfaces

In this chapter we study different aspects for the numerical solution of the Young-Laplace
equation (2.17). Following the methods in [58] for the discretisation of the resulting parametric
equations we present a finite-difference method and a spline-method.

4.1 Parametric statement of Young-Laplace equation

Surface parametrisation
Let s be an arc length of the free boundary Γ that ranges from s = 0 to s = `. We choose

the point s = 0 on the z-axis and the point s = ` on the plane z = 0. Let us describe the
boundary Γ by the parametric functions R(s) and Z(s), where R and Z are radial and axial
surface locations in a cylindrical coordinate system. Then

Γ = {(r, z) | r = R(s), z = Z(s), s = [0, `]}
presents a parametric description of the boundary Γ.

We recall some properties of such boundary representation. For the parametrisation in
respect to the arc length the natural condition is valid

R′(s)2 + Z ′(s)2 ≡ 1. (4.1)

The unit normal vector outward to the fluid domain Ω1 and the unit tangent vector oriented
in the direction of increasing s take form

n = (−Z ′, R′), t = (R′, Z ′).

The surface curvature K in cylindrical coordinates (r, z) is defined by the formula

K = −(RZ ′)′/(RR′). (4.2)

The minus sign in (4.2) appears, while moving along Γ in the direction of increasing s fluid
remains on the right, otherwise it would be the plus sign.

Substituting the expression for the curvature (4.2) to equation (2.17) we can write

Z ′′ = R′F, 0 < s < `, (4.3)

F = −µ0R0

2σ



2H0

H
∫

0

M(H0H)dH +

(

M(H0H)
Hn

H

)2


− Z ′

R
+ C,

49
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where the first term of the function F is assumed to be given and C is an unknown constant.
After the differentiation of condition (4.1)

R′R′′ + Z ′Z ′′ ≡ 0

and substituting it to equation (4.3) we get that

R′′ = −Z ′F, 0 < s < `. (4.4)

Remark 4.1.1 The same result we get by applying the condition R′2 + Z ′2 = const for some
const ≥ 0. To fix the constant equals to 1 we should, additionally to equations (4.3) and (4.4),
satisfy condition (4.1) for some value of s.

Additionally to equations (4.3) and (4.4) we formulate boundary conditions

R(0) = 0, R′(0) = 1, Z ′(0) = 0;

Z(`) = 0, R′(`) = 0, Z ′(`) = −1.
(4.5)

Setting boundary conditions R(0) = 0 and Z(`) = 0 we allow for the end points of the boundary
Γ to lie only on the coordinate axes. The remaining boundary conditions fix the contact angle
equals π/2 at the top of the drop (s = 0), and at the equator (s = `). Thereby we assume
rounded ends for the drop surface and symmetry in respect to the plane z = 0.

Remark 4.1.2 According to Remark 4.1.1 we can conclude that a solution of equations (4.3)
and (4.4) satisfying any three conditions from the following four

R′(0) = 1, Z ′(0) = 0, R′(`) = 0, Z ′(`) = −1, (4.6)

satisfy also the remaining one up to a sign. As a consequence, one of the conditions (4.6) can
be neglected in the model. Particularly, we omit the condition R′(0) = 1.

A constraint for the fluid volume to be of a fixed amount (incompressible fluid)

V = 4πR3
0

∫ `

0

ZRR′ds (4.7)

should be satisfied in addition.

Change of variables
The specific feature of the parametric statement (4.3)-(4.7) is that the arc length ` as an

additional unknown in the formulation. For this reason we nondimensionalise space variables
over `

r̃ =
r

`
, z̃ =

z

`
, s̃ =

s

`
; R̃(s̃) =

R(s)

`
, Z̃(s̃) =

Z(s)

`
.

It allows us to move the unknown length ` into the equations (4.3) and (4.4) and make compu-
tations at the fixed interval (0, 1). The problem (4.3)-(4.7) takes the following form (we omit
the tildes for convenience)

Z ′′ = R′F, R′′ = −Z ′F, F = f − Z ′

R
+ C, 0 < s < 1; (4.8)

R(0) = 0, R′(0) = 1, Z ′(0) = 0; Z(1) = 0, R′(1) = 0, Z ′(1) = −1;

V = 4πR3
0`

3

1
∫

0

ZRR′ds, (4.9)
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where f = −µ0R0
2σ `

[

2H0

H
∫

0

M(H0H)dH +
(

M(H0H)Hn
H

)2
]

.

Let us introduce a notation for the dimensionless length of the free boundary

L =
R0`

V 1/3
.

Then the function f can be rewritten as

f = −µ0V
1/3

2σ
L



2H0

H
∫

0

M(H0H)dH +

(

M(H0H)
Hn

H

)2


 .

From the volume constraint (4.9) we get that

L =



4π

1
∫

0

ZRR′ds





−1/3

. (4.10)

Till now we did not fix the constant C in equations (4.8). To do it we write the first equation
from (4.8) in the equivalent form

(RZ ′)′ = RR′(f + C)

and integrate it over s at the interval (0,1)

1
∫

0

(RZ ′)′ds =

1
∫

0

RR′(f + C)ds, (RZ ′)|s=1
s=0 =

1
∫

0

RR′fds+
C

2
R2
∣

∣

s=1

s=0
.

Then we have

C = − 2

R2(1)



R(1) +

1
∫

0

RR′fds



 . (4.11)

From the way of construction the expression (4.11) it follows that we formally need the
boundary condition Z ′(1) = −1 to define the constant C. From other side, Remark 4.1.2 says
that one of conditions (4.6) we can neglect. Consequently, it is enough to complete equations

Z ′′ = R′F, R′′ = −Z ′F, F = f − Z ′

R
+ C, 0 < s < 1; (4.12)

by four boundary conditions

R(0) = 0, Z ′(0) = 0; Z(1) = 0, R′(1) = 0, (4.13)

where L and C are fixed by (4.10) and (4.11), respectively, and

f = f(H,Hn, L) = −µ0V
1/3

2σ
L



2H0

H
∫

0

M(H0H)dH +

(

M(H0H)
Hn

H

)2


 .
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Function f for different magnetisation laws
We concretise the form of the function f in (4.12) for different magnetisation laws M(H).

Namely, two cases are considered - linear magnetisation law (2.5) and the Langevin law (2.6).
For the weak magnetic fields the linear magnetisation law (2.5) is a reasonable approxima-

tion. Then the function f takes the form

f = −BmL(H2 + χH2
n), Bm =

µ0V
1/3χ

2σ
H2

0 , (4.14)

where a dimensionless parameter Bm denotes the magnetic Bond number.
For the magnetic fluids with the magnetisation law in the form of the Langevin function

(2.6) the function f can be written as

f = −WL

[

2

3χ
ln

sinh (γH)

γH
+

(

P (γH)
Hn

H

)2
]

, W =
µ0M

2
s V

1/3

2σ
, γ =

3χ

Ms
H0, (4.15)

where W and γ are dimensionless parameters.

4.2 Finite-difference method

Discretisation
Let us introduce a uniform grid TN on the parameter interval [0, 1]

TN = {si | si = ih, h = 1/N, i = 0, N}.

We define grid functions Rh = {Ri}N
i=0 and Zh = {Zi}N

i=0 such that Ri ≈ R(si), Zi ≈ Z(si),
i = 0, . . . , N , where R(s) and Z(s) are the exact solution of the problem (4.12)-(4.13).

Following the standard approach of finite-difference methods we replace derivatives in the
differential equations (4.12) by difference quotients

Zss,i = R◦
s,i
F (si, L), Rss,i = −Z◦

s,i
F (si, L), i = 1, N − 1 (4.16)

where

R◦
s,i

=
1

2h
(Ri+1 − Ri−1), Rss,i =

1

h2
(Ri−1 − 2Ri +Ri+1),

F (si, L) = F (R(si), Z(si), R
′(si), Z

′(si), Hi, Hn,i, L). The notations Z◦
s,i

and Zss,i are analo-

gously defined as for the function Rh.
For the functions R(s), Z(s) from the space C4[0, 1] and exactly given constants L and C

the difference equations (4.16) have the second order of local approximation at the grid points
si, i = 1, N − 1. To prevent the second order of local approximation for the difference method
we should approximate the function F and boundary conditions (4.13) at least with the second
order. For the function F we have that

F (si, L) = Fi +O(h2), Fi = f(Hi, Hn,i, Lh) −
Z◦

s,i

Ri

+ Ch, i = 1, N − 1

when C = Ch +O(h2). For the volume constraint (4.9) we apply the midpoint rule to calculate
the integral

V = Vh +O(h2), Vh = 4πR3
0`

3h
N
∑

i=1

[

Zi−1/2Ri−1/2
Ri −Ri−1

h

]

,
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where Ri−1/2 = (Ri−1 +Ri)/2. Then

Lh =

(

4πh
N
∑

i=1

[

Zi−1/2Ri−1/2
Ri −Ri−1

h

]

)−1/3

. (4.17)

We construct Ch from the expression (4.11) with an application of the midpoint rule for the
integral calculation

Ch = − 2

R2
N

(

RN + h
N
∑

i=1

[

Ri−1/2
Ri −Ri−1

h
f(Hi−1/2, Hn,i−1/2, Lh)

]

)

. (4.18)

From the Taylor expansion we have

Z(h) = Z(0) + hZ ′(0) +
h2

2
Z ′′(0) +O(h3),

Z ′(0) =
Z(h) − Z(0)

h
− h

2
R′(0)F (0, L) +O(h2).

The function F contains in the expression the term Z ′/R. We have that Z ′(0) = 0 and R(0) = 0.
By applying the L’Hopital rule then we get

lim
s→0

Z ′(s)

R(s)
= lim

s→0

Z ′′(s)

R′(s)
= F (0, L).

Hence
F (0, L) = (f(H0, Hn,0, L) + C)/2,

and we come to the second order approximation of the boundary condition Z ′(0) = 0

Z1 − Z0

h
=
h

2
F0, F0 =

1

2
(f(H0, Hn,0, Lh) + Ch) .

In the same way we get the second order approximation for the boundary condition R′(1) = 0

RN −RN−1

h
= −h

2
FN , FN =

(

f(HN , Hn,N , Lh) +
1

RN
+ Ch

)

.

By construction we get the finite-difference scheme of the second order for the problem
(4.12)-(4.13)

Zss,i = R◦
s,i
Fi, Rss,i = −Z◦

s,i
Fi, i = 1, N − 1 (4.19)

R0 = 0,
Z1 − Z0

h
=
h

2
F0, (4.20)

RN −RN−1

h
= −h

2
FN , ZN = 0, (4.21)

where

Fi = f(Hi, Hn,i, Lh) −
Z◦

s,i

Ri

+ Ch, i = 1, N − 1,

F0 =
1

2
(f(H0, Hn,0, Lh) + Ch) , FN =

(

f(HN , Hn,N , Lh) +
1

RN
+ Ch

)

,
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and Lh, Ch are calculated with formulas (4.17) and (4.18), respectively.
Iterative solution of the difference problem (4.19)-(4.21)
In [53, 57, 58] two iteration-difference approaches were developed to solve nonlinear differ-

ence problem (4.19)-(4.21). One of them is the following. Suppose that Rk
i , Z

k
i , F k

i , i = 0, N
are known. Let us construct Rk+1′

h and Zk+1′

h in the following way

Rk+1′

ss,i = −Zk
◦
s,i
F k

i , i = 1, N − 1

(4.22)

Rk+1′

0 = 0,
Rk+1′

N −Rk+1′

N−1

h
= −h

2
F k

N ;

Zk+1′

ss,i − Rk
◦
s,i
F k

i = 0, i = 1, N − 1

(4.23)

Zk+1′

1 − Zk+1′

0

h
=
h

2
F k

0 , Zk+1′

N = 0,

where

F k
i = f(Hi, Hn,i, L

k
h) −

Zk
◦
s,i

Rk
i

+ Ck
h , i = 1, N − 1.

This procedure suggests a linearisation of difference equations (4.19)-(4.21). Equations (4.22)
and (4.23) can be solved now in an uncoupled manner. Equations (4.22) are solved for Rk+1′

h

and equations (4.23) used to obtain Zk+1′

h . Finally F k+1′

i are calculated.
To improve numerical stability of scheme (4.22)-(4.23) we apply a successive under-relaxa-

tion technique

uk+1
i = uk

i + τ(uk+1′

i − uk
i ), 0 < τ < 1.

Thus we get the following scheme

1

τ

(

Rk+1
ss,i −Rk

ss,i

)

+Rk
ss,i + Zk

◦
s,i
F k

i = 0, i = 1, N − 1

(4.24)

Rk+1
0 = 0,

Rk+1
N − Rk+1

N−1

h
= −h

2
F k

N ;

1

τ

(

Zk+1
ss,i − Zk

ss,i

)

+ Zk
ss,i −Rk

◦
s,i
F k

i = 0, i = 1, N − 1

(4.25)

Zk+1
1 − Zk+1

0

h
=
h

2
F k

0 , Zk+1
N = 0.

For the calculations we take the relaxation parameter τ = 0.01. By numerical experiments in
[58] τ = 0.01 are found as the preferable choice for the stability of the finite-difference scheme
in a wide range of drop elongations.

Linear systems (4.24), (4.25) are tridiagonal for the unknowns at the (k+1)-th iteration and
can be solved by the Thomas algorithm. A diagonal dominance of the matrices corresponding
to (4.24) and (4.25) implies the stability of the method at every iteration.
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The iterative process continues unless defects of the difference equations (4.19) at the k-th
iteration are satisfied

max
i=1,N−1

{∣

∣

∣
Rk

ss,i + Zk
◦
s,i
F k

i

∣

∣

∣
,
∣

∣

∣
Zk

ss,i −Rk
◦
s,i
F k

i

∣

∣

∣

}

< ε, ε = 10−8.

The iterative scheme (4.24),(4.25) was successfully applied to compute equilibrium shapes
of simply- and doubly-connected surfaces both in the presence of gravitational, centrifugal and
magnetic forces and their absence under zero-gravity, see [55, 74, 75].

Grid selection: stretching transformation
Let us define an independent variable transformation such that

s = s(t), t ∈ [0, 1] such that ṡ(t) > 0, s(0) = 0, s(1) = 1.

In order to apply this transformation to the equations (4.12)-(4.13) the following partial deriva-
tives are formed

d

ds
=

d

dt

dt

ds
=

1

ṡ

d

dt
,

d2

ds2
=

1

ṡ

(

1

ṡ

d

dt

)·

,

where dots denote derivatives in respect to t. The problem (4.12)-(4.13) can be reformulated
in respect to the variable t

(

Ż

ṡ

)·

= ṘF,

(

Ṙ

ṡ

)·

= −ŻF, F = f − Ż

ṡR
+ C, 0 < t < 1; (4.26)

R(0) = 0, Ż(0) = 0; Z(1) = 0, Ṙ(1) = 0, (4.27)

where

f = f(H,Hn, L) = −µ0V
1/3

2σ
L



2H0

H
∫

0

M(H0H)dH +

(

M(H0H)
Hn

H

)2


 ,

C = − 2

R2(1)



R(1) +

1
∫

0

RṘfdt



 , L =



4π

1
∫

0

ZRṘdt





−1/3

.

The finite-difference scheme of the second order for the problem (4.26)-(4.27) can be con-
structed in the same manner as it was done for the problem formulation (4.12)-(4.13). Analo-
gously to the difference problem (4.19)-(4.21) we write

1

h

(

Zi+1 − Zi

hṡ(ti+1/2)
− Zi − Zi−1

hṡ(ti−1/2)

)

= R◦
t,i
Fi, i = 1, N − 1 (4.28)

1

h

(

Ri+1 − Ri

hṡ(ti+1/2)
− Ri −Ri−1

hṡ(ti−1/2)

)

= −Z◦
t,i
Fi, i = 1, N − 1 (4.29)

R0 = 0,
Z1 − Z0

h
=
hṡ(0)2

2
F0, (4.30)

RN −RN−1

h
= −hṡ(1)2

2
FN , ZN = 0, (4.31)
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where

Fi = f(Hi, Hn,i, Lh) −
Z◦

t,i

ṡ(ti)Ri

+ Ch, i = 1, N − 1,

F0 =
1

2
(f(H0, Hn,0, Lh) + Ch) , FN =

(

f(HN , Hn,N , Lh) +
1

RN

+ Ch

)

,

and Lh, Ch are calculated with formulas (4.17) and (4.18), respectively.
It is known from the experimental observations that with increase of the applied magnetic

field the drop extends in the direction of the field and forms peak-shaped surfaces [8, 14].
The surface curvature increases strongly at the region of the drop tip (s = 0). In addition,
the curvature decreases monotonically as we move away from the peak. This preliminary
information on the structure of the solution can be used as a criterion for the grid construction
to resolve accurately area of high curvatures.

Let us consider the stretching transformation proposed in [62] for boundary layer problems
with a reformulation in the form, see [4]

t(s) = 1 − ln [1 + 2(1 − s)/(a+ s)]

ln [1 + 2/a]
, s ∈ [0, 1], a > 0,

with the inverse

s(t) = −a+
2(a+ 1)

1 + (1 + 2/a)1−t
, t ∈ [0, 1], a > 0.

By construction the transformation s(t) concentrates grid points near the boundary t = 0 as
the stretching parameter a approaches 0. The stretching parameter suggested in [62] is related
to the boundary layer thickness d by

(1 + a)2 =
1

1 − d
.

A special choice of the parameter a was suggested in [58] for solving free-surface equations,
when the high resolution of the solution requires in the region of high curvatures (t = 0).
The stretching parameter a was determined by the requirement for the product of the mean
curvature dimensionless over the arc length R0` at the drop tip (t0 = 0) by the step size of
the stretched grid s(t1) − s(t0) to be constant, equals the product of the dimensionless mean
curvature of the spherical drop π/2 by the step size of the uniform grid h = t1 − t0. We have
for the dimensionless mean curvature that

− (RZ ′)′

2RR′

∣

∣

∣

∣

s=0

= −(f(H0, Hn,0, Lh) + Ch)/2.

Hence we get the condition for the parameter a in the following form

−(f(H0, Hn,0, Lh) + Ch)

[

−a+
2(a+ 1)

1 + (1 + 2/a)1−h

]

= πh. (4.32)

By construction we have that increase in curvature at the drop tip is proportional to decrease
in the smallest step size of the stretched grid. The grid points are therefore densest at the tip
of the drop, where greater resolution is desirable.

For the fixed value of a and the given set of parameters (Bm or W and γ, see (4.14), (4.15))
we get numerically the drop shape by solving equations (4.28)-(4.31). Using (4.32) we determine
a new value of the parameter a, which is used for further calculations.
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4.3 Spline method

The cubic spline
Let us introduce a uniform grid TN on the parameter interval [0, 1]

TN = {si | si = ih, h = 1/N, i = 0, N}.

We consider a space of cubic splines

S4,3(TN ) = {u(s) ∈ C2(TN) | u(s)|(si−1,si) ∈ P3(si−1, si), i = 1, N}.

It is well known, see for instance [3], that u(s) ∈ S4,3(TN) on [si−1, si] can be presented as

u(s) = Mi−1
(si − s)3

6h
+Mi

(s− si−1)
3

6h
(4.33)

+

(

ui−1 −
h2

6
Mi−1

)

si − s

h
+

(

ui −
h2

6
Mi

)

s− si−1

h
,

where Mi = u′′(si), ui = u(si). Due to (4.33), the functions u(s) and u′′(s) are continuous on
[0, 1]. From (4.33) we can get the expressions for the one-sided limits of the derivative

lim
s→0

u′(si − s) = u′(s−i ) =
ui − ui−1

h
− h

6
(Mi −Mi−1) +

h

2
Mi,

(4.34)

lim
s→0

u′(si + s) = u′(s+
i ) =

ui+1 − ui

h
− h

6
(Mi+1 −Mi) −

h

2
Mi.

Let us now enforce the continuity of u′(s) by means of (4.34)

ui − ui−1

h
− h

6
(Mi −Mi−1) +

h

2
Mi =

ui+1 − ui

h
− h

6
(Mi+1 −Mi) −

h

2
Mi, (4.35)

where i = 1, N − 1. We assume that two additional condition are given

u′(0) = a, u′(1) = b or u′′(0) = a, u′′(1) = b. (4.36)

Using (4.34) we get

u1 − u0

h
− h

6
(M1 −M0) −

h

2
M0 = a,

uN − uN−1

h
− h

6
(MN −MN−1) +

h

2
MN = b or

(4.37)

M0 = a, MN = b.

From Theorem 3.5.1 and 3.6.1 in [3] it follows that for the given values ui, a, b such that

u(si) = ui, i = 1, N − 1

with conditions at the end points (4.36)

u′(0) = a, u′(1) = b, or u′′(0) = a, u′′(1) = b

the cubic spline u(s) ∈ S4,3(TN) exists and unique.
If f(s) ∈ C4[0, 1] and

u(si) = f(si), i = 1, N − 1
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with conditions at the end points

u′(0) = f ′(0), u′(1) = f ′(1) or u′′(0) = f ′′(0), u′′(1) = f ′′(1),

then for the spline function u(s) ∈ S4,3(TN ) we have

f (α)(s) = u(α)(s) +O(h4−α), α = 0, 4 (4.38)

uniformly with respect to s in [0, 1], see [3]. Moreover, the convergence can not be higher,
unless f(s) is itself a cubic polynomial, see Section 3.12 in [3].

Discretisation
We find an approximate solution Rh, Zh for the problem (4.12)-(4.13) in the space of cubic

splines S4,3(TN) by satisfying the differential equations at the grid points si ∈ TN

M z
i = R′

h(si)F (si, L), M r
i = −Z ′

h(si)F (si, L), i = 1, N − 1; (4.39)

Rh(s0) = 0, Z ′
h(s0) = 0; Zh(sN) = 0, R′

h(sN) = 0, (4.40)

where M r
i = R′′

h(si), M
z
i = Z ′′

h(si).
By construction, spline functions should satisfy condition (4.35) which expresses the conti-

nuity of R′
h(s) and Z ′

h(s) at the inner grid points si, i = 1, N − 1. Additionally we set boundary
conditions at the end points by satisfying equations (4.12) at s0 and sN

M r
0 = 0, M z

0 = F0; M r
N = FN , M z

N = 0. (4.41)

We have 4(N − 1) + 8 equations in respect to 4(N + 1) unknowns Ri, Zi, M
r
i , M z

i , i = 0, N .
For the functions R(s), Z(s) from the space C4[0, 1] and exactly given constants L and C

the difference equations (4.39) have the second order of local approximation at the grid points
si, i = 1, N − 1. Precisely, we substitute R(s) and Z(s) into difference equations and from
(4.38) we get

Z ′′(si) = R′(si)F (si, L) + Ti(h), R′′(si) = −Z ′(si)F (si, L) + Ti(h), i = 1, N − 1,

with the local truncation error

Ti(h) = O(h2) + F (si, L)O(h3).

To prevent the second order of local approximation for equations (4.39) we approximate the
function F at least with the second order

F (si, L) = Fi +O(h2), Fi = f(Hi, Hn,i, Lh) −
Z ′

h(si)

Ri

+ Ch, i = 1, N − 1

F0 =
1

2
(f(H0, Hn,0, Lh) + Ch) , FN =

(

f(HN , Hn,N , Lh) +
1

RN
+ Ch

)

.

when C = Ch +O(h2). For the details of getting expression for F0 see Section 4.2.
For the volume constraint (4.9) we apply Gaussian quadrature formula with 5 points to get

exact integral evaluation. As a consequence we have

Lh = L.

We construct Ch from the expression (4.11) in the following way

Ch = − 2

R2
N



RN + h
N
∑

i=1

f(Hi−1/2, Hn,i−1/2, Lh)

si
∫

si−1

RhR
′
hds



 , (4.42)

where integrals are calculated exactly by Gaussian formulas with 3 points.
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Problem reformulation
The problem reformulation follows the idea suggested in [58].
For the spline functions Rh(s) we have by the Taylor expansion that

R′
h(si−1/2) = R′

h(si) −
h

2
M r

i +
h2

8
R′′′

h (si − 0) = R′
h(si) −

h

2
M r

i +
h2

8
R′′′

h (si−1/2),

R′
h(si+1/2) = R′

h(si) +
h

2
M r

i +
h2

8
R′′′

h (si + 0) = R′
h(si) +

h

2
M r

i +
h2

8
R′′′

h (si+1/2).

It follows that

R′
h(si) =

qr
i + qr

i+1

2
i = 1, N − 1, (4.43)

M r
i =

qr
i+1 − qr

i

h
i = 1, N − 1, (4.44)

where

qr
i = R′

h(si−1/2) −
h2

8
R′′′

h (si−1/2), i = 1, N.

Analogously we can write for the function Zh(S)

Z ′
h(si) =

qz
i + qz

i+1

2
i = 1, N − 1, (4.45)

M z
i =

qz
i+1 − qz

i

h
i = 1, N − 1, (4.46)

where

qz
i = Z ′

h(si−1/2) −
h2

8
Z ′′′

h (si−1/2), i = 1, N.

We substitute (4.43)-(4.46) to equations (4.39) and use the Taylor expansion at the end
points together with boundary conditions Z ′

h(s0) = 0 and R′
h(sN) = 0

Λ1(q
r, qz, F )|i ≡ qr

i+1 − qr
i +

h

2

(

qz
i + qz

i+1

)

Fi = 0 i = 1, N − 1 (4.47)

Λ2(q
r, qz, F )|i ≡ qz

i+1 − qz
i −

h

2

(

qr
i + qr

i+1

)

Fi = 0 i = 1, N − 1 (4.48)

qz
1 =

h

2
F0, qr

N = −h
2
FN . (4.49)

Introducing new variables qr
i , q

z
i allows us to reformulate the problem with 4(N + 1) un-

knowns as two subproblems. The first one is solving (4.47)-(4.48) in respect to qr
i , q

z
i , i = 1, N .

The other one is calculating Ri, Zi, M
r
i , M z

i , i = 0, N using direct formulas (4.43), (4.44) and
conditions (4.41) together with the representations for the spline derivatives (4.34)

M r
0 = 0, M r

i =
qr
i+1 − qr

i

h
, M r

N = FN i = 1, N − 1 (4.50)

M z
0 = F0, M z

i =
qz
i+1 − qz

i

h
, M z

N = 0 i = 1, N − 1 (4.51)

R0 = 0,
Ri −Ri−1

h
− h

6
(M r

i −M r
i−1) +

h

2
M r

i =
qr
i + qr

i+1

2
i = 1, N (4.52)

ZN = 0,
Zi+1 − Zi

h
− h

6
(M z

i+1 −M z
i ) − h

2
M z

i =
qz
i + qz

i+1

2
i = 0, N − 1. (4.53)
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Iterative solution of the difference problem (4.47)-(4.53)
Because of the function F depends on Rh, Zh, the subproblems (4.47)-(4.49) and (4.50)-

(4.53) are coupled. One possibility is to split the subproblems iteratively. A single iteration of
the iterative decoupling strategy reads as follows.
Suppose that F k

i , i = 0, N are given. At first we solve equations (4.47)-(4.49) to find (qr
i )

k+1,
(qz

i )
k+1, i = 1, N . Then by relations (4.50)-(4.53) one after another we calculate (M r

i )k+1,
(M z

i )k+1, Rk+1
i , Zk+1

i , i = 0, N . Finally we can get F k+1
i , the initial data for the next iteration.

To solve nonlinear equations (4.47)-(4.49) we apply an iterative technique with under-
relaxation, similar to (4.24)-(4.25), constructed for the difference method.
Suppose that (qr

i )
l, (qz

i )
l, F l

i are known. Let us construct (qr
i )

l+1, (qz
i )

l+1 in the following way

(qr
i+1)

l+1 − (qr
i )

l+1 = (qr
i+1)

l − (qr
i )

l − τΛl
1(q

r, qz, F )|i, i = 1, N − 1

(4.54)

(qr
N)l+1 = −h

2
F l

N ;

(qz
i+1)

l+1 − (qz
i )

l+1 = (qz
i+1)

l − (qz
i )

l − τΛl
2(q

r, qz, F )|i, i = 1, N − 1

(4.55)

(qz
1)

l+1 =
h

2
F l

0.

Here 0 < τ < 1 is a relaxation parameter.
In [58] two different algorithms to solve equations (4.47)-(4.49) are suggested. Instead of

using boundary condition (4.49), the Algorithm (47) in [58] applies both conditions on the left
side R′

h(s0) = 1, Z ′
h(s0) = 0, resulting in

qr
1 = 1, qz

1 =
h

2
F0, (4.56)

when the Algorithm (44) in [58] uses the conditions on the right side R′
h(sN) = 0, Z ′

h(sN ) = −1

qr
N = −h

2
FN , qz

N = −1. (4.57)

Definition of both boundary conditions on the same side allows to find the solution for qr and
qz on the (k + 1)-th external iteration by the recursive procedures, see [58]. It requires no
additional iterative process, like (4.54), (4.55), when the boundary conditions on both sides
(4.49) are specified.

4.4 Stabilisation by relaxation: test example

We applied a successive under-relaxation technique for equations (4.22)-(4.23) and (4.47)-(4.49)
to improve the numerical stability of the methods. The aim of this section is to examine the
influence of relaxation to the stability of the iterative schemes for the finite-difference (4.24)-
(4.25) and for the spline methods (4.50)-(4.55).

Let us consider the problem formulation with the function f in the form

f = −WL(r′)2, W =
µ0M

2
sV

1/3

2σ
.

This corresponds to the test problem in [58]. Such a formulation is the case of the saturated
magnetic fluid, when the magnetisation M = Ms. For details of the model see [58].
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Analogously to [58] we present the number of iterations for the finite-difference scheme
(4.24)-(4.25) (FD), for the spline schemes (4.50)-(4.55) (S-1) and the spline schemes (44)-(46)
in [58] (S-2) for different relaxation τ and parameter W . The difference in spline schemes
appears due to the definition of boundary conditions as (4.49) or (4.57).

τ = 0.5 τ = 0.1 τ = 0.05 τ = 0.01
W FD S-1 S-2 FD S-1 S-2 FD S-1 S-2 FD S-1 S-2

2.5 19 19 63 113 113 339 231 231 683 1167 1167 3439
5 210 209 61 123 123 323 249 249 651 1262 1261 3278

7.5 × × 57 129 128 301 261 261 608 1320 1319 3058
10 - - 57 132 132 282 268 268 569 1357 1355 2863

12.5 - - 137 134 134 267 273 272 537 1377 1375 2702
15 - - × 136 136 254 276 275 511 1391 1387 2568
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
27.5 - - - 209 203 220 274 272 428 1381 1372 2121
30 - - - 417 387 219 272 270 418 1370 1360 2059

32.5 - - - × × 225 270 268 409 1357 1346 2001
· · · · · · · · · · · · · · · · · · · · · · · ·
40 - - - - - 542 268 268 388 1313 1296 1853

42.5 - - - - - 1259 386 362 382 1301 1285 1809
45 - - - - - × 833 720 378 1292 1277 1769

47.5 - - - - - - × × 363 1295 1287 1733
· · · · · · · · · · · · · · ·
55 - - - - - - - - 377 2260 2189 1615

57.5 - - - - - - - - 411 3424 3224 1586
60 - - - - - - - - 470 ∞ > 5000 1580
· · · · · · · · ·
70 - - - - - - - - 1193 - - 1429

72.5 - - - - - - - - 2180 - - 1411
75 - - - - - - - - ∞ - - 1383
· · · · · ·

187.5 - - - - - - - - - - - 3316
190 - - - - - - - - - - - 4035

192.5 - - - - - - - - - - - > 5000

Table 4.1: Iteration number of the finite-difference scheme (FD), spline scheme (4.50)-(4.55)
(S-1) and spline scheme (44)-(46) in [58] (S-2). The cross sign denotes numerical instability.

The calculations were made on the uniform grid with h = 0.01. The parameter W was
changed with a step of 2.5. An initial iterative approximation for new W was a solution
obtained for the previous value of W . As a criterion for the accuracy of an iterative solution
we asked for the defect of the difference equations to be less than a tolerance ε = 10−4.

From the Table 4.1 we can see that decrease in the relaxation parameter τ results in increase
of number of iterations or, by other words, slows the convergence. From other side decrease in τ
improves numerical stability as parameter W increases. For instance, for W = 40 only schemes
with τ = 0.05 and τ = 0.01 converge, schemes with τ = 0.5 and τ = 0.1 are numerically
unstable. Increase in W corresponds to stronger change in curvature at the free surface.

Comparing different methods we state that the convergence and stability properties of the
finite-difference scheme and the spline scheme S-1 are nearly identical. The spline scheme S-2
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shows better stability properties and is comparable (even better for τ = 0.01) in performance
to the fourth-order tangential scheme in [58].

For the test example we applied also the spline scheme (45)-(47) in [58] where the left side
conditions (4.56) are used. The scheme shows no convergence for any values of the relaxation
parameter. From the results of the numerical experiments we assume that for axisymmetric
problems one of the ’non-axis’ conditions (4.57) should necessarily satisfy.

The main advantage of the spline-method over the finite-difference method is that the
solution of the Young-Laplace equation is found in the form of an analytical representation
lying in C2[0, 1]. The finite-difference method gives only point-wise boundary representation
and requires additional efforts to construct smooth boundary approximation. The boundary
smoothness is important requirement for an application of boundary element methods. In-
fluence of boundary approximation to the convergence of piecewise-constant collocation was
analysed in Section 3.2.



Chapter 5

Numerical results on a magnetic-fluid
drop

At the beginning of the chapter with numerical results let us estimate the relevant characteristic
dimensionless parameters of the problem. We distinguish two situations. The first one corre-
sponds to calculations for linear magnetisable fluids, the second - for nonlinear magnetisable
ones. In the case of linear magnetisable fluids the initial susceptibility χ and the magnetic Bond
number Bm are the dimensionless parameters representing the evolution of the drop surface

χ, Bm = µ0V
1/3χH2

0/(2σ).

For nonlinear magnetisable fluids the initial susceptibility χ, the dimensionless field strength γ
and the parameter W describes the problem

χ, γ = 3χH0/Ms, W = µ0M
2
s V

1/3/(2σ).

For linear magnetisable fluids we take the initial susceptibility χ ∈ {5, 21, 40}. The suscep-
tibility of magnetic fluids takes moderate value χ < 10, see for instance [17]. The hysteresis for
the drop deformation is predicted for χ > 20 and may be observed only for the concentrated
phase microdrops formed during the separation process of colloidal ferromagnetic, see [17]. For
nonlinear magnetisable fluids we choose χ ∈ {1.9, 5, 21}.

The magnetic constant µ0 = 4π ·10−7 H/m denotes the permeability in vacuum. We take the
surface tension σ ∼ 0.0265 kg/s2, the initial drop radius as the characteristic length R0 ∼ 10−3

m and the magnetic saturation Ms ∈ [5, 45] kA/m. We assume the applied magnetic field
H0 ∈ [0, 6] kA/m for the model with linear magnetisable fluids and H0 ∈ [0, 750] kA/m for
nonlinear magnetisable ones. Then the dimensionless parameters are specified as follows

χ ∈ {5, 21, 40}, Bm ∈ [0, 40]; χ ∈ {1.9, 5, 21}, γ ∈ [0, 102], W = {5, 500}.
For all simulations we used a code based on the software package MooNMD, see [36]. The

main part of the program package presents variety of tools to apply finite element methods
for solving many classes of partial differential equations in two- and three-dimensional cases.
The package MooNMD was successfully applied in the solution of the incompressible steady
state and time dependent Navier-Stokes equations [33, 34, 49], for the large eddy simulation of
turbulent flows [32, 35] and for free boundary value problems with capillary surfaces [41, 46].
The flexibility of the package MooNMD is realised by a strict separation of geometry and
finite element data. For the numerical simulation of equilibrium magnetic fluid drops several
algorithms were additionally programmed. Namely, a one-dimensional collocation BEM and
numerical methods of Chapter 4 for modeling equilibrium free surfaces were added to the
MooNMD.

For the first publications of the numerical results, presented in Chapter 5, see [42, 43].

63
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5.1 Linear magnetisable fluids

5.1.1 Comparison with spheroidal shapes, hysteresis effect

There are different approaches for the theoretical description of a behaviour of a drop in a
field, see [8, 14, 17, 72]. All solutions of the theoretical studies are approximate due to the
assumption for the drop shape to be spheroidal and restricted to the case of the weak magnetic
fields, when the linear magnetisation law M(H) = χH can be applied.

The theoretical approach presented in [8] is based on the minimisation of the magnetic
energy and the interfacial energy in respect to the aspect ratio between major and minor
spheroid semi-axes. In [14] the free surface equation is required to be satisfied only at the top
and the equator of a spheroid. Authors in [17, 72] analyse the drop behaviour by using a virial
method. The comparative analysis of all mentioned theoretical approaches, see [17], concludes
that the theoretical studies yield identical results for small drop deformations. Moreover, they
reported that the energy approach in [8] and the virial technique in [17, 72] give identical
results for any field, despite the fact that the solutions of both methods have different analytical
representations.

Let the magnetic fluid drop has some shape with lengths a and b along z and r axes,
respectively. The drop sizes a and b are the analog of major and minor spheroid semi-axes. As
a geometrical characteristic of the drop deformation a length-to-diameter ratio a/b is measured
for different values of the applied field.

The numerical and theoretical (energy approach in [8]) dependences of drop deformations
upon the dimensionless magnetic field Bm = µ0V

1/3χH2
0/(2σ), for several values of the magnetic

susceptibility χ are displayed in Fig. 5.1-5.3. Each curve is a solution family computed at a
fixed value of χ = {5, 21, 40} corresponding to Figs. 5.1, 5.2, 5.3, respectively, and is traced by
continuation in the value of the field Bm. The pictures that higher values of the applied field
Bm cause the drop to elongate along the field direction.

For the case χ = 5, see Fig. 5.1, the numerical and theoretical results show quantitative
agreement within 0.5% . It allows us to conclude that for such a fluid the numerically computed
drop shapes are very close to prolate spheroid, see Fig. 5.1 at the right. According to the results
of numerical simulations we can report also that theoretical studies in [8, 14, 17] give reasonable
approximation for the drop shaping of the fluids with χ ≤ 5 in the region of weak fields.

For the first time, experimental measurements of hysteresis in the deformation of agglom-
erate drops (2 to 20 µm) of a magnetic fluid are reported in [8]. According to the theoretical
results in [8, 14, 17] the drop deformation displays hysteresis as a function of the applied field
for χ > 20. The found dependencies are characterized by the existence of a region where for a
certain magnetic field threshold the drop becomes unstable jumping from a slightly elongated
shape to a much more elongated one. When decreasing the magnetic field the same feature
occurs but for a smaller magnetic field threshold. A limited range of the magnetic field strength
values exists (hysteretic regime), where two equilibrium configurations of a drop are allowed,
one of which occurs upon increasing the strength of a magnetic field, another - upon its de-
crease. Numerically we observed that the dependence of the drop elongation upon the field
goes from a monotone curve for χ < 21 to S-shaped curves for χ ≥ 21, see Fig. 5.1-5.3.

Precise determination of a critical value χc, presenting the lowest χ for which hysteresis
effect appears, is not a subject of the current work. Many investigations to verify the critical
point are fulfilled [8, 48, 67, 79]. The minimum-energy argument in [8] predicts that hysteresis
should occur when χc = 19.8. In the first numerical study on this problem in [48] the bound
18 < χc < 19 is defined. The critical point found numerically in [67] is specified in the range
18.6 ≤ χc ≤ 18.7. The results of the paper [79] show that hysteresis should be observed over
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Figure 5.1: The dependence of the drop elongation upon the magnetic field: χ = 5, linear
magnetisation law. Shapes on the right correspond to Bm = {0, 5, 10, 15, 20, 25, 30, 35, 40}.

5.4 5.5 5.6 5.7 5.8 5.9 6

2

4

6

B
m

a/b

theory
increasing Bm
decreasing Bm

−0.05 0 0.05
0

0.1

0.2

0.3

 r

 z

Figure 5.2: The dependence of the drop elongation upon the magnetic field: χ = 21, linear
magnetisation law. Shapes on the right correspond to Bm = {0, 5, 5.723, 5.725, 10, 15}.
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Figure 5.3: The dependence of the drop elongation upon the magnetic field: χ = 40, linear
magnetisation law. Shapes on the right correspond to Bm = {0, 5, 8.5, 8.55}.
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the range 19.25 ± 0.25 ≤ χc ≤ 20.75 ± 0.25. To guarantee the appearance of the hysteresis in
drop deformation the value χ = 21 is taken in our numerical simulations.

The difference between theory and numerics for χ ≥ 21, see Fig. 5.2, 5.3, lies within 1%
for the lower branch of the solution, but shows more then 15% for the upper branch. The
quantitative difference might be connected with the assumption of the theoretical model for a
drop to be a spheroid for any applied field. Surfaces close to conical are observed numerically
for the upper branches of solution, see Fig. 5.2 and 5.3 at the right. An appearance of shapes
with pointed ends is confirmed experimentally in [8, 10].

Figs. 5.4-5.6 show equilibrium shapes for χ = {5, 21, 40} and different values of the applied
magnetic field Bm. A close-up view of the drop tips is presented on the right of Figs. 5.4-
5.6. The drop tip is becoming increasingly more conical as the aspect ration increases. The
curvatures at the drop tip for the shapes on the right of Figs. 5.4-5.6 exceed that of the spherical
drop (Bm = 0) at 159.1, 928.5 and 1149.3 times, respectively.

Computational instabilities are reported at many numerical studies on this problem, see
[9, 20, 48, 67, 79] and they are observed in our calculations. The numerical instabilities appear
in the regions of strong shape deformations and at critical points, where a transition between
branches of a solution appears. In several works, for instance [48, 79], the importance of
high grid resolution in a region of high surface curvatures is mentioned but no further work is
made to confirm this assumption. To overcome instabilities in our numerical calculations we
reduce a step size for the parameter Bm in regions of strong surface changes and increase a
grid resolution in a region of the drop tip (region of the highest curvatures) by applying an
adaptive technique for grid construction on a free surface, see Section 4.2. As a consequence
of a special grid construction on the free surface we come to an a-priori adaptive grid in a
fluid domain by applying the Delaunay triangulation, see Fig. 3.6. It allowed us to resolve
accurately the nonuniformity of the magnetic field, appearing close to the free surface. As an
additional stabilisation tool we apply an under-relaxation technique for the algorithm of the
free surface calculations (4.24)-(4.25) and for the global iterative process, see (2.27). It allowed
us to perform calculations and get equilibrium shapes in a wide range of field intensities.

The numerical solutions do not end with the last calculated points in Figs. (5.1)-(5.3). The
calculations are stopped at some values of the parameter Bm. The linear magnetisation law is
valid only for weak fields and numerical results for larger values of Bm would have no physical
meaning.

The results of numerical simulations confirm that the realized numerical modeling permits
to follow the hysteresis effect for the drop deformation and to reproduce equilibrium drop shapes
close to conical.

5.1.2 Conical shapes

The magnetic fluid drops with shapes close to conical are observed experimentally in [8] for the
concentrated phase microdrops with size from 2 to 20 µm.

According to the results of numerical simulations we observe that for the magnetic fluids
with susceptibility χ ≥ 21 in the vicinity of the symmetry axis the drop shape become acute
for all solutions lying on the upper branch, see Figs. 5.2 and 5.3. Shapes, close to conical,
appear after the first turning point for the increasing magnetic field and preserve their acute
configuration till the second turning point for the decreasing field.

According to the numerical study in [48] the authors did not expect solutions to exist
after the first turning points. The authors in [79] reported that for χ > 20.75 ± 0.25 families
of equilibrium drop shapes become unstable at the first turning point and terminate. Non-
overcoming numerical instabilities in [48, 79] served as a reason for such conclusions.
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Figure 5.4: Drop deformation due to increasing magnetic field Bm: a, Bm = 0; b, Bm =
10; c, Bm = 25; d, Bm = 40; e, drop tip at Bm = 40. χ = 5, linear magnetisation law.
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Figure 5.5: Drop deformation due to increasing magnetic field Bm: a, Bm = 0; b, Bm =
5.723; c, Bm = 5.725; d, Bm = 15; e, drop tip at Bm = 15. χ = 21, linear magnetisation law.
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Figure 5.6: Drop deformation due to increasing magnetic field Bm: a, Bm = 0; b, Bm =
8.5; c, Bm = 8.55; d, drop tip at Bm = 8.55. χ = 40, linear magnetisation law.
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The internal field of a magnetisable ellipsoid is uniform and directed along the applied field.
The result is shown in § 8 of [38]. Strong deviation from the ellipticity in shape forming near
the symmetry axis results that the magnetic field deviates there from the uniform configuration
at most. High grid resolution in the vicinity of the drop tip, see Fig. 3.6, allow us to resolve
accurately field nonuniformity.

In Fig. 5.7 we present the radius of the mean curvature at the drop tip R(0) dimensionless
over the radius of spherical drop R0 for different values of the applied magnetic field Bm. The
radius R(0) is calculated as a reciprocal value of the mean curvature, approximated locally by
the finite-difference approach, see Section 4.2,

R(0) ≈ 1

−(RZ ′)′/(2RR′)|s=0

.

5.4 5.5 5.6 5.7 5.8 5.9 6
10−4

10−3

10−2

10−1

100

B
m

R(0)/R
0

theory
128 nodes on Γ
256 nodes on Γ

0 5
x 10−3

0.15

0.155

0.16
128 nodes on Γ
256 nodes on Γ

Figure 5.7: Left: the radius of the mean curvature at the drop tip R(0) dimensionless over the
radius of spherical drop R0 for different values of the applied magnetic field Bm; right: shapes
at the first turning point Bm = 5.724. χ = 21, linear magnetisation law.

In the case of zero magnetic field the ratio R(0)/R0 equals 1. Increasing magnetic field de-
creases the radius of curvature. Formation of conical points means that the radius of curvature
must go to zero or the curvature must take an infinite value. It results in singular solutions for
the system of governing equations, describing the problem. To resolve singularities the math-
ematical model should be modified. We decided to leave the model without any modifications
and try to get conical shapes approximately by increasing grid resolution in the vicinity of the
drop tip. Shapes close to conical are obtained numerically, see Fig. 5.7 on the right.

Several observations can be pointed out from Fig. 5.7. Theoretical and numerical results
coincide for the increasing field till the first turning point (Bm = 5.724) and for the decreasing
field after the second turning point (Bm = 5.583). We conclude that spheroidal approximation
has a range of validity which depends on the fluid susceptibility and intensities of the magnetic
field. Increase in grid resolution from 128 to 256 nodes on the free surface Γ (corresponding
grid configurations can be seen in Fig. 3.4) changes field intensities at the turning points, where
transitions between branches of solution appear, by less than 0.2%. We conclude that grid
refinement does not show qualitative changes in solution behaviour. The surfaces, represented
by 256 nodes, will be closer to conical ones than those built with 128 points, because of closer
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to zero values of the radius R(0). It follows that the calculated results are sensitive to grid
refinement when shapes close to conical are formed.

Several investigations are made to study appearance of conical interfaces as equilibrium
shapes of a magnetic fluid drop, see [18, 60, 69, 71]. Consider a conical interface with an angle
2α. The curvature of a cone K is inversely proportional to the distance from the cone tip ρ as
follows

2K =
1

R1

+
1

R2

=
1

∞ +
cotα

ρ
=

cotα

ρ
.

From a balance between magnetostatic and surface tension forces for fluids with constant per-
meabilities, i.e. from the Younge-Laplace equation (2.11) for M = χH

σK =
µ0

2
χH2 +

µ0

2
χ2H2

n + C

we can get that H = O(1/
√
ρ) in a cone. The magnetic potential satisfying Laplace’s equation

inside and outside the cone can be expressed in spherical coordinates (ρ, θ, ϕ) with the tip of
the cone at the origin as follows, see [18, 60, 71]

u1 = u0 + c1ρ
1/2P1/2(cos θ), 0 ≤ θ ≤ α

u2 = u0 + c2ρ
1/2P1/2(− cos θ), α ≤ θ ≤ π

where c1 and c2 are constants, P1/2 is the Legendre function of order 1/2 and the line θ = 0 or
π is the symmetry axis of the cone. The boundary conditions on the interface (2.13) lead to an
homogeneous linear system which has nontrivial solutions if and only if

µ1

µ2

= −
P ′

1/2(− cosα)P1/2(cosα)

P ′
1/2(cosα)P1/2(− cosα)

, (5.1)

where the prime denotes derivative with respect to the argument, see [18, 60]. The relation
(5.1) allows to construct a dependence of a cone angle as a function of the permeability ratio,
see Fig 5.8. The theory predicts that there exist χ∗ ≈ 16.6, corresponding to α ≈ 30◦, such that
for χ < χ∗ no conical solution exists. We notice here that χ∗ < χc ≈ 20.5, see Section 5.1.1,
where χc is a lowest value of χ for which hysteresis takes place. It means that for fluids with
χ∗ ≤ χ < χc conical shapes can appear without hysteretic behaviour of a solution.

From theoretical results follows that fluids with χ ≥ χc can form conical shapes and ac-
cording to our numerical results we can conclude that such shapes lie on the upper branch of a
solution curve, see Figs. 5.2, 5.3. The numerical results confirm a conclusion of a semi-analytical
approach in [44] showing that the solutions on the upper branch of hysteretic curve are not
spheroidal but instead have singular tips. They found that for the applied field H0 larger than
a second turning point, a drop with conical tips has a lower energy and a larger aspect ratio
compared to that of the elongated spheroid by Bacri&Salin in [8]. Therefore, it is energetically
favourable to have a drop with conical tips at a sufficiently large field.

It is worth to mention that for χ > χ∗ two different equilibrium cone angles are possible,
see Fig. 5.8. According to the argumentation in [44] the larger cone angle corresponds to an
unstable equilibrium, where the conical interface for the smaller angle is stable against small
perturbations of the cone angle α.

We measured the cone angle of the numerically obtained shapes for χ = 21 and compared
it with the theoretical predictions in [18, 60], see Fig. 5.9. The theoretical angle is the smallest
from the predicted ones, see Fig. 5.8. The numerical angle is calculated with MATLAB from
the polynomial curve fitting of 20 points of the numerical shape to the linear function in a least
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Figure 5.8: Cone angle as a function of the permeability ratio. Theoretical results in [18, 60].
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Figure 5.9: Cone angle as a function of the applied magnetic field Bm: χ = 21 (µ2/µ1 = 1/22 ≈
0.0455); theoretical results in [18, 60], see also Fig. 5.8.

square sense. The points lie close to the axis and present only the 0.06-th part of the whole
surface length, see Fig. 5.7 on the right.

The theory and numerics is in the rather good agreement for the conically formed shape,
corresponding to the first turning point at Bm = 5.724. The difference is less than 4%. Increase
in the applied field results in decrease of the cone angle of the numerically obtained shapes,
see Fig. 5.9. Thus, the deviation between theoretical and numerical results increases with the
increasing field.

Experimentally the cone measurements are made in [71] for the limit case, i.e. µ2/µ1 = 0.
From the experiment they got that the cone angle α is greater than 45◦, whereas α ≈ 49.3
is predicted by the theory in [71]. An existence of any other experimental studies about the
cone measurements does not known for us. Experimental verification of the theoretical and
numerical results in Fig. 5.8 and Fig. 5.9 would be interesting.
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Theoretical studies in [18, 60, 71] are approximate due to dealing with the governing equa-
tions only in a region of a cone. An open question of such analysis is how a local conical solution
may be joined with the rest of the shape of the drop. A deeper insight to this problem is done
in [44, 69].

A semi-analytical approach is applied in [44] to analyse static singular shapes of a fluid
drop. An assumption is made that Hz is independent of r. A drop surface is approximated
by matching a spheroid with two cones in a tip region of a relative size 10−4. The resulting
integral equation are solved numerically. The authors find that a stable drop with conical tips
exists only above a threshold field and that such a drop is energetically favoured compared to
the spheroidal shape at a sufficiently high field.

A slender-body theory is used in [69] to determine the approximate static shape of a conically
ended magnetic fluid drop. The authors simplify the governing equations using the assumption
of slenderness b/a << 1 and neglecting the effect of the normal component of the magnetic field
to the surface, supposing Hn = 0. The model equations are reduced to an ordinary differential
equation for the fluid intensity, coupled to an algebraic equation for the pressure balance at the
interface.

The slender-body approach allows to find that for the large Bond number the aspect ratio
a/b of conical shapes is proportional to B

3/7
m as Bm → ∞, see Fig. 6 in [69]. This observation

coincides with those for the spheroidal shape approximation of the theory [8], see Fig. 5.10.
Numerically we get that a/b is proportional to B3

m, which is also consistent with the theoretical
results but in the region closer to the first turning point.
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Figure 5.10: The aspect ratio of the drop as a function of the applied magnetic field: χ = 21,
linear magnetisation law.

The analyses in [44, 69] lead to relationships between the permeability ratio, the cone angle,
the aspect ratio of the drop and the magnetic field B∗

m at which a conical end is first observed.
These approaches are more thorough than those in [18, 60, 71], where as a result only the
relation (5.1) between the permeability ratio and the cone angle follows. The approaches in
[44, 69] are applied to the case of large drop deformations and pointed ends (Bm ≥ B∗

m), but
are inappropriate for the case of rounded ends and small deformations. Thus, our numerical
study has some advantages, allowing to get the solution in the whole range of field intensities.
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5.2 Nonlinear magnetisable fluids

In the previous section only linear magnetisable fluids are considered. The linear magnetisation
lawM = χH is a reasonable assumption in the region of weak magnetic fields, whereas nonlinear
magnetisation is a necessary requirement for the problem modeling in a wide range of field
intensities.

The results of this section are for nonlinear magnetisable fluids following the Langevin law

M(H) = MsP (γH), P (t) = coth t− 1

t
, γ =

3χ

Ms

.

The physical meanings of the parameters can be understood by examining the asymptotic
behaviour of M(H) for small and large values of H while holding Ms and γ fixed

lim
H→0

M(H) =
1

3
MsγH = χH, lim

H→∞
M(H) = Ms.

The parameter χ is the initial slope of the curve relating magnetisation to field strength, see
the right picture of Fig. 5.11, Ms is the saturation magnetisation.

In the left picture of Fig. 5.11 the numerical dependencies of drop deformations upon the
applied magnetic field H0 for nonlinear magnetisable fluids with the magnetic susceptibility
χ = 21 and different values of the dimensionless parameter W = µ0M

2
s V

1/3/(2σ) (dimension-
less analog of the saturation Ms) are compared with the spheroidal drop approximation for
linear magnetisable fluid in [8]. In the region of weak fields H0 ∈ [0, 0.35] kA/m the numerical
results for different values W are close to each other and differ not strongly from the theoretical
approximation for the linear magnetisable fluid (black solid line). The results show that non-
linear magnetisable drops behave similarly to linear magnetisable drops at low field strengths
when drop deformations are small. This fact follows from the behaviour of the magnetisation
curves in this region of fields, see the left picture of Fig. 5.11. To be correct with interpreting
data from the left picture we should point that the field intensity H0 in air corresponds to
the magnetic filed with a smaller intensity inside of the fluid. The field H0 = 0.378 kA/m (it
corresponds to the first turning point Bm = 5.724, see Fig. 5.2) produces a uniform field with
intensity Hi = 0.078 kA/m inside a spherical drop, see vertical dashed lines. For the relation
between H0 and Hi see for instance [17] or equation (5.2) from the following subsection. The
region of weak fields H0 ∈ [0, 0.35] corresponds to Hi ∈ [0, 0.07] inside of the fluid, where
magnetisation laws do have linear behaviour.

From the numerical results of Fig. 5.11 we have that a larger W results in a more elongated
shape. The largest possible elongation for the fixed H0 corresponds to the case of the linear
magnetisable fluid (a consequence of the magnetisation law behaviour). The drop elongates
monotonically under increasing field with tendency to take unchangeable configuration in the
region of fluid saturation. An analogous qualitative behaviour of the drop elongation is observed
experimentally in [5].

5.2.1 Comparison with spheroidal shapes

If we assume that the drop shape is spheroidal then the drop elongation for every field intensity
can be determined by applying a theoretical approach, so-called, the virial method in [17, 72].
The virial method in contrast to the theoretical studies in [8, 14] allows to consider nonlinear
magnetisable fluids.

The field strength within a spheroid is uniform and is associated with the external field
strength H0 by means of the relationship

Hi +M(Hi)nx = H0, (5.2)
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Figure 5.11: Left: the dependence of the drop elongation upon the applied magnetic field:
χ = 21, nonlinear magnetisation law; black solid line corresponds to the spheroidal drop ap-
proximation in [8] for linear magnetisation law, point markers present numerical results. Right:
magnetisation law for different fluids.

where Hi is the field strength inside the drop, see for instance [17]. Here, nx is the shape
dependent demagnetisation factor

nx =
1 − e2

2e3

(

ln
1 + e

1 − e
− 2e

)

, (5.3)

where e2 = (1 − b2/a2) is the eccentricity of a spheroid meridian, b and a denote minor and
major axes of a spheroid.

The virial method yields the following dependence

µ0(3V/4π)1/3M2

4πσ
= f(e), (5.4)

where

f(e) =
1

2π

(3 − 2e2)(1 − e2)1/2/e2 − (3 − 4e2) arcsin e/e3

(1 − e2)7/6 ((3 − e2) ln ((1 + e)/(1 − e))/e5 − 6/e4)
. (5.5)

The relation (5.4) corresponds to equation (4.29) in [17] and equation (5) in [72] but is written
their in Gauss-units. We have that M̃ =

√

µ0/(4π)M , where tilde is used for the Gauss-field
and the quantity without tilde is in Si-units.

Let us substitute M to the relation (5.4) in the Langevin form

M(Hi) = MsP (γHi) = Ms

(

coth (γHi) −
1

γHi

)

, γ =
3χ

Ms

forHi defined from (5.2). We get the nonlinear dependence of the eccentricity of the equilibrium
drop configuration e upon γ for different values W = µ0M

2
s V

1/3/(2σ)

1

2π

(

3

4π

)1/3

WP 2(γhi) = f(e), γ =
3χH0

Ms

,

where hi = Hi/H0. Applying the Newton method we find values of e (a/R0 = (1− e2)−1/3) for
the given W and γ. The corresponding dependences are drawn by black lines in Fig. 5.12. The
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curves with markers present solution families computed at fixed values of χ and W and are
traced by continuation in the value of the magnetic field γ. The change in drop height with field
strength is steeper for the fluids with higher W , i.e. a larger W results in a more elongated
shape. From the results presented in Fig. 5.12 we see that for γ ∈ [0, 50] theoretical and
numerical results nearly coincide. It follows that for the taken magnetic fluids drop shapes are
rather close to spheroidal configurations in a wide range of field intensities. For the modeled
fluids the theory predicts a monotone behaviour of the dependencies with tendency to take
unchangeable surface configurations for strong fields, see black lines in Fig. 5.12. For γ > 50
the numerical results show a qualitative difference with the theory. A larger applied field
produces a less elongated shape. Such a ’non-physical’ behaviour showed by numerical results
(an experimental observation of the drop elongation in saturation can be found in [5]) are
discussed in the following section.
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Figure 5.12: The dependence of the drop elongation upon the dimensionless magnetic field
γ = 3χH0/Ms: nonlinear magnetisation law; black line corresponds to the spheroidal shape
approximation by the virial method, see [17, 72]; point markers present numerical results.

Fig. 5.13 displays some characteristics of the magnetic field structure inside of the drop.
Namely, the left picture shows the maximum value of the r-component of the magnetic field
vector H = (Hr, Hz) and the right picture presents the difference H top

z − Hbottom
z of z field-

components at the tip of the drop and on the equator. The magnetic field is dimensionless
over H0. Fig. 5.13 (left) shows the dependence of max (Hr) over γ ∈ [10−1, 103] for different
fluids. The dependencies are qualitatively the same for the modeled fluids. For the weak fields
max (Hr) is nearly zero, then its value increases with increasing field till reaching the maximum
at γ = γ∗. For γ > γ∗ the value of max (Hr) decreases with increasing field till value close to
zero is reached in the region of strong fields, where the fluid goes to be saturated. For the fluid
in saturation the permeability µ1 tends to a permeability of a surrounding air µ2 = 1 when H0

tends to infinity, resulting that the dimensionless internal magnetic field H = (0, 1) coincides
with the uniform external field, see equations (2.12)-(2.16). The maximum value of Hr over
all γ and for the considered fluids equals 0.004. It corresponds to the fluid with the highest
W = 100 and the strongest drop elongation, see Fig. 5.12. We conclude that the magnetic field
inside of the modeled fluids is vertically directed.

A judgement on the field uniformity can be made from the Fig. 5.13 (right) where the relative
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Figure 5.13: Characteristics of the magnetic field structure inside of the fluid drop upon the
applied magnetic field. The magnetic field H = (Hr, Hz) is dimensionless over H0. Variables
Htop

z and Hbottom
z denote z-component of the field vector at the tip of the drop and on the

equator, respectively.

difference between H top
z and Hbottom

z is presented. The fluid with the parameters χ = 1.9,
W = 62 is considered. A uniform field corresponds to a zero difference. For weak fields
(field uniformity due to spheroidal shapes) and for strong fields (field uniformity due to the
fluid saturation) values of H top

z − Hbottom
z are close to zero. For γ ∈ [100, 102] the difference

grows. The uniformity is disturbed by the deviation of equilibrium shapes from spheroidal
configurations but the divergence is not so strong. The difference is not larger than 1%. The
strongest deviation from the field uniformity are expected for shapes close to conical, which
can be presented only for fluids with the magnetic susceptibility χ ≥ χ∗ ≈ 16.6.

5.2.2 Numerical difficulties for saturated fluids

The aim of this section is to clarify the reason for the qualitative difference between numerical
and theoretical results in the region of strong fields (γ > 50), see Fig. 5.12.

Let us start from the deeper insight to the model equations. We reformulated the Young-
Laplace equation (2.17) as follows

Z ′′ = R′F, R′′ = −Z ′F, F = f − Z ′

R
+ C, 0 < s < 1; (5.6)

R(0) = 0, Z ′(0) = 0; Z(1) = 0, R′(1) = 0; (5.7)

f = −WL

[

2

3χ
ln

sinh (γH)

γH
+

(

P (γH)
Hn

H

)2
]

, W =
µ0M

2
s V

1/3

2σ
, γ =

3χ

Ms

H0. (5.8)

Here H is the magnetic field dimensionless over H0. For details see Chapter 4 and equations
(4.12), (4.13) and (4.15).

For strong fields, when γ → ∞, we have the following asymptotic behaviour for terms in
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the expression for the function f

lim
γ→∞

ln
sinh (γH)

γH
= lim

γ→∞
ln
eγH − e−γH

2γH
= lim

γ→∞
γH, (5.9)

lim
γ→∞

(

P (γH)
Hn

H

)2

= lim
γ→∞

((

coth (γH) − 1

γH

)

Hn

H

)2

=

(

Hn

H

)2

.

The first term tends to infinity with increasing γ, whereas the second term takes a finite value
from the interval [0, 1]. The ’big’ term (5.9) is compensated by the constant C in the expression
of the function F , where the constant C is fixed by the relation (4.11)

C = − 2

R2(1)



R(1) +

1
∫

0

RR′fds



 .

It results in a finite value for the expression (f + C) and as a consequence in a finite value for
the curvature of the surface. An arithmetic with big numbers in calculating the function F
produces an additional numerical error and can influence strongly the accuracy of the numerical
results. To avoid this effect let us return to the mathematical model of the problem, namely to
the equation (2.10). The pressure of the fluid can be specified differently, see for instance [14].
In no-gravity case the pressure can be expressed as

p = µ0

H
∫

0

MdH + p1 or p = µ0

H
∫

H0

MdH + p̃1, (5.10)

where p1 and p̃1 denote pressures at the points, where H = 0 or H = H0, respectively. Differ-
ences appear in the value of constant C, which is unknown and is fixed during calculations. We
used the first situation for the mathematical model described in Section 2. The only difference
in the model equations for different pressure expressions (5.10) is in the change of the function
f for the Young-Laplace formulation (5.6)-(5.8). We get

f = −WL

[

2

3χ
ln

sinh (γH)

sinh (γ)H
+

(

P (γH)
Hn

H

)2
]

.

We have than that

lim
γ→∞

ln
sinh (γH)

sinh (γ)H
= lim

γ→∞
ln
eγ(H−1)

H
= lim

γ→∞
γ(H − 1). (5.11)

In contrast to (5.9) now the ’big’ term is suppressed by the factor (H − 1) tending to zero in
the saturation.

A suggested modification of the mathematical model improved the quality of the numerical
results, see Fig. 5.14. Unfortunately, the calculations could not be proceeded after the last
calculated point (γ ≈ 100). The numerical scheme becomes unstable for γ > 100.

In this section we mention also the other numerical problem which becomes pronounced in
the region of strong fields. An accuracy in calculating the magnetic field H over the surface
and its smoothness can play an important role when γ → ∞, see (5.11).
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Figure 5.14: The dependence of the drop elongation upon the dimensionless magnetic field
γ = 3χH0/Ms: nonlinear magnetisation law, χ = 1.9, W = 62; black line corresponds to the
spheroidal shape approximation by the virial method, see [17, 72].

Axisymmetric potential. Losing accuracy near the axis in BEM formulation.
For the magnetic fluid in saturation the permeability µ1 tends to the permeability of a

surrounding air µ2 = 1 when the applied field H0 tends to infinity. The dimensionless magne-
tostatic problem (2.12)-(2.16) takes the form

−∇ · (∇ui) = 0, in Ωi;

u1 = u2,
∂u1

∂n
=
∂u2

∂n
on Γ,

(5.12)

u2 = z, (r, z) → ∞,

u1 = 0, u2 = 0 for z = 0.

The exact solution of the problem (5.12) is given by

u1(r, z) = z in Ω1, u2(r, z) = z in Ω2.

To solve numerically the magnetostatic problem (5.12) we apply a coupled strategy of bound-
ary and finite element methods, see Section 3.4. The numerical solutions are thought to be
found in the space of linear functions for the potential u1 in Ω1 and in the space of piecewise
constant functions for the normal derivative of the potential ∂u1/∂n on the free surface Γ.
It appeared that the simple exact solution of the magnetostatic problem (5.12) can not be
accurately resolved by the coupled BEM-FEM approach in axisymmetric case.

For the test calculations two different configurations for the free surface Γ are taken, see
Fig. 5.15. The surface Γ1 is defined as a part of a circle and the surface Γ2 corresponds to
the shape in Fig. 5.14 for new numerical results with γ ≈ 100. The surface Γ1 has a uniform
points distribution, whereas for the surface Γ2 grid points are concentrated near the tip. Both
surfaces are approximated by the cubic spline. The left picture of Fig. 5.15 presents difference
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between the exact solution of the problem (5.12) and numerically calculated one by the coupled
BEM-FEM approach.
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Figure 5.15: Numerical error as a function of the free surface position for the domain Ω1 with
Γ = Γ1 and Γ = Γ2, see on the right side. For the potential error |uh − z| the difference is
taken at the grid points. For the error in the normal derivative of the potential |∂u/∂n − nz|
the difference is calculated in the middle point of subsplines. nz denotes z-component of the
external normal vector to the surface Γ.

Fig. 5.15 shows that the numerical solutions lose accuracy near the axis of symmetry (the
largest z value) for the case of the elongated drop (dashed lines). An analogous effect is
discussed in [50] where the boundary integral technique is applied for the computation of the
axisymmetric flow. The authors reported that the cause of the difficulty is in the particular
behaviour of the integrands in the BEM-formulation, when a source point ξ0 lies near the
symmetry axis. For the potential problem, see Section 3.1, we have the following asymptotic
behaviour of kernel functions in boundary integral operators

lim
ξ→ξ0,r0=0

a1(ξ
0, ξ) =

K(0)

2π
,

lim
ξ→ξ0,r0=0

a2(ξ
0, ξ) = −K(0)

4π
+O

(

1

r0

)

.

The quantity 1/r0 in the limit for the kernel function a2(ξ
0, ξ) grows unboundendly as ξ0

approaches the axis of symmetry, resulting in strong variation for the integrand.
To overcome the loss of accuracy for the numerical integration near the symmetry axis

the authors in [50] suggested to apply adaptive integration methods for computing bound-
ary integrals. An efficiency of the adaptive integration for calculating boundary integrals in
axisymmetric problems are reported in [50] on the base of numerical tests. They compared
adaptive quadrature approach with the non-adaptive method, where integrals (regular and
weakly singular) are calculated with 6-point Gaussian quadratures.

The numerical results in Fig. 5.15 are calculated without using adaptive quadratures. We
apply 12 points Gaussian quadrature formulas for calculating regular integrals and 8 points
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logarithmically weighted Gaussian formulas for weakly singular integrals. An application of
adaptive integration (a tolerance set to 10−12), suggested in [50], is not improve the accuracy
of the numerical results. The solutions for non-adaptive and adaptive integration are identical.
We assume that the loss of accuracy near the symmetry axis appears due to the concentration
of grid points near the symmetry axis. The numerical results for uniform points distribution
on the surface, see Fig. 5.15, solid lines, show the smooth behaviour of the discretisation error
near the symmetry axis.

Numerical difficulties near the symmetry axis appear in BE-formulation of the axisymmetric
problem (5.12). The finite element method does not exhibit the same sensitive behaviour of
the numerical solution, see Section 6.
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Chapter 6

Equilibrium shapes of a bubble inside a
magnetic-fluid layer

The subject of this chapter is a problem on equilibrium shapes of a bubble inside an infinite
volume of magnetic fluid under the action of a uniform applied magnetic field.

It is reported in [17] that in a fashion analogous to the elongation of the magnetic-fluid
drop in a non-magnetic surrounding in the direction of the field the same occurs upon placing
a drop of non-magnetic medium (bubble) in the magnetic fluid. The physical reasons of the
deformation in both cases, however, differs. Stretching of the magnetic fluid drop occurs because
of an action of the magnetic surface stress. When considering the bubble surrounded by a
magnetic fluid, then the fluid acts towards the bubble flattening. However, distribution of
the pressure in the magnetic fluid, associated with the non-uniformity of the field outside the
bubble, acts contrariwise. The non-uniformity of the magnetic field inside the fluid influences
stronger the surface change than the pressure jump at the fluid-air interface, see e.g. [5], thus
causing the elongation of the bubble in the direction of the field.

6.1 Governing equations

We consider a freely suspended axisymmetric bubble of a prescribed volume surrounded by the
magnetic fluid. We assume that the field intensity vector H0, applied at infinity, is parallel
to the z-axis, i.e. H0 = (0, 0,−H0). Mathematically the problem statement for calculating
equilibrium shapes of a bubble is similar to those formulated for the equilibrium shapes of a
magnetic fluid drop (2.12)-(2.17). The difference now is that the fluid domain Ω1 is unbounded,
whereas the air domain Ω2 is bounded by the free surface Γ, see Fig. 2.2 and Fig. 6.1. For
simplicity of the representation in this Chapter we remind the formulation of the dimensionless
magnetostatic problem (2.12)-(2.16)

−∇ · (µi(|∇ui|)∇ui) = 0, in Ωi;
µ1 = 1 +

M(H0|∇u1|)
H0|∇u1| in Ω1,

µ2 = 1 in Ω2,
(6.1)

u1 = u2, µ1
∂u1

∂n
=
∂u2

∂n
on Γ, (6.2)

lim
(r,z)→∞

(u2 − z) = 0, (6.3)

∂u1

∂n
= 0,

∂u2

∂n
= 0 for r = 0, (6.4)
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u1 = 0, u2 = 0 for z = 0. (6.5)

r

z

?H = (0,−H0)

��	n
Γ

Ω2

Ω1

Figure 6.1: An initial computational domain in cylindrical coordinates.

The magnetisation law M(·) is taken in the Langevin form

M(H0|∇u1|) = MsP (γ|∇u1|), P (t) = coth t− 1

t
, γ =

3χ

Ms

H0,

which results that the fluid permeability µ1 is expressed as

µ1 = 1 + 3χ
P (γ|∇u1|)
γ|∇u1|

.

The model problem is closed by the Young-Laplace equation in the dimensionless form

σ

R0

K = µ0H0

H
∫

1

M(H0H)dH +
µ0

2

(

M(H0H)
Hn

H

)2

+ C on Γ, (6.6)

where H = |∇u1| and Hn = −∇u1 ·n. Some changes appear in (6.6) comparing to the equation
(2.17) for the magnetic-fluid drop. The integral term is taken from 1 to H instead of the
integration from 0 to H as in the equation (2.17). Both formulations are correct, because the
pressure of the fluid can be specified in following different ways, see for instance [14],

p = µ0

H
∫

0

MdH + p1 or p = µ0

H
∫

H0

MdH + p̃1,

where p1 and p̃1 denote pressures at the points, corresponding toH = 0 orH = H0, respectively.
Differences in the Young-Laplace equation appear for the value of constant C, which is unknown
a-priori and is fixed during calculations.

The other change in the mathematical model is because the normal vector on Γ changes a
direction to the opposite, see Figs 2.2 and 6.1 for comparison. As a result the surface curvature
K changes a sign, i.e.

K = (RZ ′)′/(RR′).
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Following the idea of Chapter 4 we reformulates the Young-Laplace equation (6.6) as

Z ′′ = R′F, R′′ = −Z ′F, F = f − Z ′

R
+ C, 0 < s < 1; (6.7)

R(0) = 0, Z ′(0) = 0; Z(1) = 0, R′(1) = 0; (6.8)

where L and C are fixed by (4.10) and (4.11), respectively, and

f = f(H,Hn, L) = WL

[

2

3χ
ln

sinh (γH)

sinh (γ)H
+

(

P (γH)
Hn

H

)2
]

, W =
µ0M

2
sV

1/3

2σ
.

For details of the reformulation we refer to equations (4.12) and (4.13).

6.2 Numerical solution strategy

The problem under consideration is a coupled system of the magnetostatic equations (6.1)-(6.5)
and the free surface equations (6.7)-(6.8). A solution of the magnetostatic problem (6.1)-(6.5)
depends on the position of the free surface Γ, because the surface separates media of different
magnetic properties. The position of the free surface as a solution of the equations (6.7)-(6.8)
depends on the magnetic field configuration on it. The coupled problem (6.1)-(6.5), (6.7)-
(6.8) should be solved simultaneously. Due to the complex statement we apply an iterative
decoupling strategy to the equations, see for details Section 2.4. Each iteration consists of two
steps. The first step is to solve the magnetostatic problem (6.1)-(6.5) for the fixed free surface
Γ, the second step is to find a solution of free surface equations (6.7)-(6.8) for the given field
configuration.

To solve the magnetostatic problem (6.1)-(6.5) numerically we apply the finite element
method, see Section 3.3. It is possible to use a boundary element technique in the bounded
region Ω2 but it is impossible to handle the unbounded domain Ω1 by BEM due to the non-
linearity of the equation there. The coupled boundary and finite element method, which is
reasonable to apply for finding equilibrium magnetic fluid drop shapes, is not worthwhile for
the problem on equilibrium bubble shapes.

To solve the free surface equations (6.7)-(6.8) numerically we apply the finite-difference
scheme, see Section 4.2.

Triangulation of the computational domain is adopted to the varying free surface shape
during the iterative process. As a mechanism for obtaining a new grid for the magnetostatic
problem after the interface position is changed, we use the Delaunay technique presented in
Section 3.5.

6.3 Numerical results

Behaviour of magnetic-fluid drops and bubbles in the magnetic fluid as a function of the applied
field strength is displayed in Figs 6.2 and 6.3. The variables a and b denote drop and bubble
lengths along z and r axis, respectively. Fig. 6.2 presents results for the linear magnetisable
fluid with the susceptibility χ = 5. Fig. 6.3 displays results for the nonlinear magnetisable fluid
with parameters χ = 1.9, W = 62. Each curve is a solution family traced by continuation in
the value of the dimensionless applied field Bm in Fig. 6.2 or γ in Fig. 6.3.

The results show that higher values of the applied field cause the bubble to elongate along
the field direction. At very small fields the bubble deforms to a larger extent than the drop.
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After reaching some field strength (H0 ≈ 1.5 kA/m in Fig. 6.2 and H0 ≈ 1 kA/m in Fig. 6.3)
the drop shows stronger deformation than the bubble with the increasing field.

If we assume that the bubble shape is spheroidal then the surface elongation for every field
intensity can be determined by applying a theoretical approach, so-called, the virial method
[17, 72]. The corresponding dependence for the linear magnetisable fluid with the susceptibility
χ = 5 is drawn by a dashed solid line in Fig. 6.2. It constructed from the relation (4.35) in [17]
after variable transformation from Gauss- to SI-units. We have that

1

8π

(

3

4π

)1/3

Bm =

(

4πχ− 4πχ2nx(e)

1 + χ

)2

f(e),

where the magnetic Bond number Bm = µ0V
1/3χH2

0/(2σ), the demagnetisation factor nx(e) is
defined by (5.3), the function f(e) by (5.5) and the eccentricity of a spheroid e2 = 1 − b2/a2.

In Subsection 5.2.2 for the numerical results on the magnetic-fluid drop the numerical dif-
ficulties for saturated fluids are discussed. One of the difficulty is the loss of accuracy near the
symmetry axis for the numerical solution of the magnetostatic problem (5.12) when a coupled
strategy of boundary and finite element methods is applied. Numerical instability is observed
for γ ≈ 100 and the calculations could not be proceed for γ > 100, see Fig. 6.3. The finite
element technique is applied for solving the magnetostatic problem (6.1)-(6.5) in the process of
finding equilibrium bubble shapes. Numerical calculations for the finite element discretisation
show no computational difficulties for γ > 100, see Fig. 6.3. This observation can be considered
as an additional corroboration of the hypotheses that the computational instability for the drop
calculations comes from the boundary element discretisation of the magnetostatic problem. Ac-
cording to the numerical results we report an advantage of using finite element technique over
the boundary element discretisation in application to the axisymmetric magnetostatic problem
(2.12)-(2.16) in the region of strong fields.
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Figure 6.2: The dependence of the drop and the bubble elongation upon the dimensionless
magnetic field Bm = µ0V

1/3χH2
0/(2σ): linear magnetisation law, χ = 5. The theoretical results

are obtained by the virial method, see [17, 72].
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Figure 6.3: The dependence of the drop and the bubble elongation upon the dimensionless
magnetic field γ = 3χH0/Ms: nonlinear magnetisation law, χ = 1.9, W = 62. The theoretical
results are obtained by the virial method, see [17, 72].
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Chapter 7

Equilibrium surfaces of a
magnetic-fluid layer

The subject of this chapter is a numerical study of the problem on a horizontal magnetic-fluid
layer under the action of gravity and a uniform magnetic field. Equilibrium surface shapes and
the critical parameters corresponding to onset of the layer instability are treated numerically.

The instability of a magnetic-fluid surface in a uniform normally directed magnetic field
(Rosensweig instability or the normal-field instability) is one of the interesting phenomena of
ferrohydrodynamics, see [24]. For weak magnetic fields the interface between the magnetic fluid
and a surrounding gas remains flat. When the intensity of the magnetic field exceeds a critical
value, the spontaneous generation of an ordered pattern of surface protuberances is produced
on the surface. A stationary wave structure arises on a free surface in a threshold-like manner
with the amplitude growing as the field intensity increases. This effect has been sufficiently
studied experimentally [24] and theoretically [27, 28].

A nonlinear description of the instability is necessary in order to estimate the shape of peaks
in a pattern and to determine what particular final pattern (hexagons, squares) occurs due to
the complex nonlinear interaction. Closer theoretical study is made difficult by the necessity to
solve a hydrostatic problem with unknown free surface shape and important role of magnetic
field distortions on the free surface that require an appropriate solving of Maxwell’s equations.
Despite some recent progress, see [28], theoretical investigations based on analytical studies are
still restricted to small relative permeabilities (µ < 1.4) and a linear magnetisation law. A full
numerical approach taking into account all nonlinear effects is necessary.

7.1 Mathematical model

We consider a semi-infinite magnetic-fluid layer with a horizontal plane free surface bounded
from above by a nonmagnetic gas. We define the unperturbed plane surface by the equation
z = 0. The system is regarded under the action of gravity and a uniform vertical magnetic
field. We assume that the field intensity vector H0, applied at infinity, is parallel to the z-axis,
i.e. H0 = (0, 0,−H0). A two-dimensional cut through the three dimensional layer surface is
displayed in Fig. 7.1.

The theoretical study in [27] predicted the occurrence of regular hexagonal or square pattern
of peaks. This observation was confirmed experimentally in [24]. In our model we assume that
the free surface of a single peak is a surface of revolution and go in the model formulation to
the cylindrical coordinates (r, z). We restrict the computational domain to a single cell of the
developed pattern and specify symmetry boundary conditions at the cell boundary r = a. Here
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Figure 7.1: Schematical illustration of the surface deformation.

a denotes a half of the wavelength of an axially symmetric surface perturbation and is used as a
characteristic length scale for the dimensionless calculations. Up to know, there is no technique
available to get the wave length of the equilibrium directly from the simulation.

By restricting calculations to a single cell it is impossible to find a solitary surface pat-
terns, recently observed experimentally in [61]. For the numerical study of a solitary surface
configurations see Section 7.4.

Mathematically the problem statement for calculating axisymmetric equilibrium shapes of a
magnetic-fluid layer is similar to those formulated for the equilibrium shapes of a magnetic-fluid
drop (2.12)-(2.17). The formulation of the dimensionless magnetostatic problem (2.12)-(2.16)
takes the form

−∇ · (µi(|∇ui|)∇ui) = 0, in Ωi;
µ1 = 1 +

M(H0|∇u1|)
H0|∇u1| in Ω1,

µ2 = 1 in Ω2,
(7.1)

u1 = u2, µ1
∂u1

∂n
=
∂u2

∂n
on Γ, (7.2)

∂u1

∂r
= 0,

∂u2

∂r
= 0 for r = 0, (7.3)

∂u1

∂r
= 0,

∂u2

∂r
= 0 for r = 1, (7.4)

lim
z→−∞

(u1 − h1
0z) = 0, lim

z→+∞
(u2 − z) = 0. (7.5)

The space variables are dimensionless over a and the magnetic field over H0. Domains Ω1

and Ω2 are vertically unbounded. The symmetry condition at the cell boundary is given by
(7.3). Taking into consideration that the applied field is perturbed by the surface only locally
in a neighbourhood of the interface we can use at infinity boundary conditions (7.5) for the
undisturbed case Γ = {(r, z) | r ∈ [0, 1], z = 0}. These conditions define uniform magnetic field
far from the free surface. The dimensionless intensity in surrounding air equals 1 at infinity. The
variable h1

0 denotes the dimensionless intensity of the magnetic field inside the fluid. The value
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of h1
0 is defined from the second of transition conditions (7.2) in the case of the unperturbed

surface z = 0. Namely we have

µ1
∂u1

∂n
=
∂u2

∂n
on z = 0 ⇒ µ1

∂u1

∂z
=
∂u2

∂z
⇒ µ1(h

1
0)h

1
0 = 1.

For computational purposes we define asymptotic boundaries z = zbottom and z = ztop.
The distances of these boundaries from the free surface are finite and large enough, namely
zbottom = −5 and ztop = 5. Instead of conditions (7.5) we use the following ones

u1 = h1
0zbottom for z = zbottom, u2 = ztop for z = ztop. (7.6)

The magnetisation law is taken in the Langevin form

M(H0|∇u1|) = MsP (γ|∇u1|), P (t) = coth t− 1

t
, γ =

3χ

Ms

H0,

which results that the fluid permeability µ1 is expressed as

µ1 = 1 + 3χ
P (γ|∇u1|)
γ|∇u1|

.

The other possibility is to define the magnetisation law by the Vislovich’s interpolation
formula, see [73]

M(H0|∇u1|) = Ms
|∇u1|

|∇u1| + hT
,

which results that the fluid permeability µ1 is expressed as

µ1 = 1 +
Ms

H0

1

|∇u1| + hT
.

Here hT = HT/H0 and HT is the magnetic field intensity such that M(HT ) = Ms/2.
The dimensionless Young-Laplace equation (2.17) is reformulated as

σ

a
K = −aρgz + µ0H0

H
∫

0

M(H0H)dH +
µ0

2

(

M(H0H)
Hn

H

)2

+ C on Γ, (7.7)

where ρ is the fluid density, g denotes the acceleration of gravity, H = |∇u1| and Hn = −∇u1 ·n.
The difference to the equation (2.17), formulated for the magnetic-fluid drop problem, is that
the gravity appears as an additional external force in the balance equation on the free surface.

Following the ideas of Chapter 4 we reformulates the Young-Laplace equation (7.7)

Z ′′ = R′F, R′′ = −Z ′F, F = λ2L2Z + f − Z ′

R
+ C, 0 < s < 1; (7.8)

R(0) = 0, Z ′(0) = 0; R′(1) = 1, Z ′(1) = 0. (7.9)

where

f = f(H,Hn, L) = −λSiL

[

2

3χ
ln

sinh (γH)

sinh (γ)H
+

(

P (γH)
Hn

H

)2
]

, λ = a

√

ρg

σ
, Si =

µ0M
2
s

2
√
ρgσ

.



90 7 Equilibrium surfaces of a magnetic-fluid layer

The magnetisation law is taken in the Langevin form. For the Vislovich approximation of the
magnetisation law see Section 4.5 in [41]. For more details about the reformulation of the
problem we refer to equations (4.12), (4.13).

The dimensionless length of the free boundary L = `/a is fixed by the relation

L =
1

R(1)
. (7.10)

To fix the constant C we use the same idea as was applied for getting the formula (4.11). Due
to the boundary conditions (7.9) and the volume constraint

1
∫

0

ZRR′ds = 0, (7.11)

we get

C = − 2

R2(1)

1
∫

0

RR′fds. (7.12)

The initial susceptibility χ, the dimensionless field strength γ, the dimensionless wave length
of the cell λ and the parameter Si are the dimensionless parameters representing the evolution
of the layer surface described by the magnetostatic equations (7.1)-(7.3) and the free surface
equations (7.8)-(7.9)

χ, γ = 3χH0/Ms, λ = a

√

ρg

σ
, Si =

µ0M
2
s

2
√
ρgσ

.

7.2 Numerical solution strategy

The problem under consideration is a coupled system of the magnetostatic equations (7.1)-(7.5)
and the free surface equations (7.8)-(7.9). A solution of the magnetostatic problem (7.1)-(7.5)
depends on the position of the free surface Γ, because the surface separates media of different
magnetic properties. The position of the free surface as a solution of the equations (7.8)-(7.9)
depends on the magnetic field configuration on it. The coupled problem (7.1)-(7.5), (7.8)-(7.9)
should be solved simultaneously.

Due to the coupled statement of the problem we apply an iterative decoupling strategy,
see for details Section 2.4. Each iteration consists of two steps. At the first step we solve the
magnetostatic problem (7.1)-(7.5) for the fixed free surface Γ, as the second step we find a
solution of free surface equations (7.8)-(7.9) for the given field configuration. When the applied
magnetic field is slowly increased, an initial free surface configuration Γ0 is assigned in the form
of a plane surface with a small perturbation (the amplitude is around 1% of the wavelength)
satisfying the volume conservation condition (7.11). For the decreasing field, the initial surface
approximation Γ0 for the calculations with the new value of the applied field H0 is defined as
the calculated equilibrium shape corresponding to the preceding value H0. Damping out of the
perturbation during the iterative process was interpreted as a stability of the plane surface.
Realisation of the solution with a curved surface was considered as an illustration of instability,
as a result of which the initial perturbation evolves to a stationary configuration of a finite
amplitude. The result of the iteration, starting from a given interface position Γk, calculating
the magnetic field, and determining a new position of the interface Γk+1, depends strongly on
the initial surface deformation Γ0. In the bistability regime of the Rosensweig instability two
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stable configurations can be resolved - a flat surface and a developed pattern. Which of these
two states is numerically found, depends on the amplitude of the initial surface perturbation.

To solve the magnetostatic problem (7.1)-(7.5) numerically we apply the finite element
method, see Section 3.3. An advantage of the boundary element method over the finite element
method is not presented for the layer problem. A boundary element technique is impossible
to use in the half-space occupied by the air, when the whole computation domain is given by
IR3. The complement of the infinite domain in IR3 is necessarily to be bounded in order to
reformulate the Laplace equation in the form of the boundary integral equation.

To solve the free surface equations (7.8)-(7.9) numerically we apply the finite-difference
scheme, see Section 4.2.

7.3 Numerical results

The main numerical results of this Section are published in [11, 12, 40, 41].
By the linear stability analysis, see [63, Section 7.1], the critical wave length is estimated as

λc = 2π

√

σ

ρg
.

We set a radius a of a circular cell as a = λc/2 and get the dimensionless wave length as

λ = π.

A typical equilibrium shape of the free surface at a supercritical value of the magnetic field
intensity and the corresponding structure of the magnetic field are shown in Fig. 7.2.

Figure 7.2: Shape of the free surface and isolines of the dimensionless magnetic potential ϕ
at a supercritical value of the magnetic field intensity: Vislovish magnetisation law, χ = 2.5,
hT = 2.2, λ = π, Si = 100; ϕ = u/hT .

Fig 7.3 presents the dependence of the critical magnetic field intensity on the parameter Si
for different values λ of the dimensionless wavelength of the pattern. At the critical magnetic
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field the transition from the flat surface to the pattern of peaks appears. Numerical results are
presented for the plane problem formulation, which was analysed in [40]. Fig 7.3 shows that
the critical magnetic fields obtained numerically for plane perturbations are in agreement with
theoretical results obtained by the linear stability analysis in [63, Section 7.1].

Figure 7.3: Logarithmic dependence of the critical magnetic field intensity on the parameter
Si: Vislovich magnetisation law, χ = 2.5. Dashed lines - theory data corresponding to λ = 1,
2 and π (from above to below). Markers present numerical results for the plane problem.

Figs. 7.4, 7.5 show the dependencies which can not be obtained within the linear theory and
determine the basic characteristics of surface shapes, appearing after occurrence of instability.

Figure 7.4: Amplitude of the perturbed surface versus the magnetic intensity h = H0/HT :
Vislovich magnetisation law, χ = 2.5, λ = π, Si = 50. 1, 2 - peak top coordinate, 3, 4 -
peak foot coordinate, 5 - horizontal surface position in the subcritical region h < hc. 1, 4 -
axisymmetric problem, 2, 3 - plane problem.
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As Fig. 7.4 shows, perturbations of finite amplitude arise on the free surface when magnetic
field intensity exceeds its critical value and then their amplitude increases monotonically with
the field increasing. The peak top develops more intensively than the peak foot. This distinction
is expressed much more for the axially symmetric disturbances (peaks) than for the plane ones
(rollers). Under the same conditions the amplitude of the axially symmetric perturbations of
the surface (peaks) is significantly greater than that of the plane ones (rollers).

An amplitude of the perturbed surface near the stability threshold is of particular interest.
The amplitude dependence on the fluid properties is illustrated in Fig. 7.5. From Fig. 7.5 we
see that with the strengthening of magnetic properties of the fluid (with increasing saturation
magnetisationMs) the amplitude of initial surface perturbations increases considerably. Fig. 7.5
illustrates also the well-known experimental fact: if the fluid magnetisation is less than a limiting
value (Si < 2 for considered problems) the instability of the fluid surface does not arise at any
values of the magnetic field intensity.

Figure 7.5: Amplitude of the perturbed surface near the stability threshold (hc < h < hc+0.002)
versus the parameter Si: Vislovich magnetisation law, χ = 2.5, λ = π; h = H0/HT . 1, 2 - peak
top coordinate, 3, 4 - peak foot coordinate. 1, 4 - axisymmetric problem, 2, 3 - plane problem.
Si∗ = 2 is critical value.

Comparison of axisymmetric and three-dimensional numerical results
The numerical study of the problem on equilibrium shapes of the magnetic-fluid layer in a full

three-dimensional case with surfaces of the graph type were fulfilled in [46, 47]. A comparison
between the numerical results for the axisymmeric and the 3D models were realised in [41]. The
choice of the magnetisation law and the correlation between wave lengths of axisymmetric and
3D surface perturbations play an important role for the quantitative comparison of numerical
results. The Vislovich’s interpolation formula was used in both models. The wave length of
the axisymmetric perturbation was specified as a = λc/

√
3 and not as a = λc/2, defined at the

beginning of the Section.
The critical magnetic field, predicted by the axisymmetric and 3D models, nearly coincides,

see Fig. 7.6. An axisymmetric surface profile is very close to a 3D profile of a single peak, see
Fig. 7.7. The profile shapes of both models nearly completely coincides, but an amplitude of
an axisymmetric peak is smaller at around 10 % of those for a 3D peak. The difference appears
due to the different geometries of the cell (circular for the axisymmetric model and hexagonal
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for the 3D model) and, as a consequence, different volumes of the isolated peak, which should
be preserved in both models.
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Figure 7.6: Peak height of the perturbed surface versus the magnetic field intensity H0:
Vislovich magnetisatioin law, magnetic fluid EMG 909. The vertical line corresponds a critical
magnetic field predicted by the linear stability theory H0 = 14.03 kA/m.
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Figure 7.7: Axial sections of a three-dimensional peak along a line, connecting two vertices of
the hexagonal base (diagonal) and along a line, connecting midpoints of two opposite edges of
the hexagon (edge mids), and an axisymmetric peak shape (rot).
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7.4 Solitary surface pattern

A solitary surface pattern (soliton) was recently experimentally uncovered in the bistability
interval of the Rosensweig instability, see [61]. A single stationary peak was generated by a
local field perturbation in the hysteretic regime of the Rosensweig instability and observed to
be stable after turning off the locally applied field. A solitary surface configuration can be
interpreted as an additional stable state in the hysteretic regime beside the flat surface and the
fully developed pattern, analysed in this Chapter.

Aspects of modeling
In the case of a fully developed pattern we restrict the computational domain to a single cell

and specify symmetry boundary conditions at the cell boundaries, see Section 7.1. For resolving
a single peak, we consider an enlarged computational domain and use boundary conditions
corresponding to a flat surface. It means that the dimensionless form of the governing equations
for equilibrium shapes of the magnetic-fluid layer stays without modifications. Namely, they are
in the form of equations (7.1)-(7.5) for the field and equations (7.8)-(7.9) for the free surface.
The only change now is that the dimensionless parameter λ = a

√

ρg/σ has no connection
with the wavelength of the pattern, as it was predefined in Section 7.3. The value of λ should
be specified large enough to prevent influence form the “artificial” boundary r = 1 to the
region where a peak forms. Experimentally in [61] where observed that a shape of a soliton is
very similar to a standard Rosensweig spike. Their wavelengths also nearly coincide. For our
calculations we define a layer domain which covers a multiple of one wavelength

a = kλc, k = 1, 2, . . .

where λc is the critical wavelength, estimated by the linear stability analysis, see Section 7.3.
The numerical strategy for solution of the coupled system (7.1)-(7.5), (7.8)-(7.9) was given in

Section 7.2. It was mentioned there that results of calculations in the bistability interval of the
Rosensweig instability depend strongly on the initial surface deformation Γ0. A perturbation
of a small amplitude results in a flat surface, whereas a strong perturbation produces a stable
peak. Our aim now is to resolve an additional stable state in the hysteretic regime, a soliton.
In numerical simulations we replace the initial local field perturbation of the experiment in
[61] by an initial surface deformation. The deformation is taken in the form of a single peak
in a pattern (corresponds a = λc/2) and extended by the surface z = 0 to the rest of the
computational domain (a = 2λc).

Numerical results
The results of this Section are obtained for the magnetic fluid EMG 901 with the following

parameters: χ = 2.2, ρ = 1406 kg/m3, σ = 0.025 kg/s2, MS = 48 kA/m. From a linear
stability theory, see [63], we get a critical magnetic field Hc = 9.104 kA/m, a critical wavelength
λc = 8.457 mm and a critical wavenumber kc = 0.743 mm−1.

At first we make calculations for the fully developed pattern to find a hysteretic regime of
the Rosensweig instability, where two stable surface configurations exist. We get the bistability
interval, see Fig. 7.8,

8.59 ± 0.01 ≤ H0 ≤ 9.12 ± 0.01 kA/m.

Within this range we resolve single peak configurations on the free surface of the magnetic fluid.
The lower stability boundary, defined numerically, appears for H∗ = 8.59 ± 0.01 kA/m.

According to the numerical results the soliton exists in the subcritical region H < H∗ and
reduces to the flat surface at H = 8.54 ± 0.01 kA/m. This observation is in contradiction
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Figure 7.8: Height of the peak in the standard Rosensweig pattern and soliton height versus
the applied magnetic field: a = λc/2 for the peak in the pattern and a = 2λc for the soliton.

with the experiment in [61], where the transition from the soliton to the flat surface was
observed for H > H∗. No configurations, except the flat surface, were experimentally found
in the subcritical region. The contradiction in experimental and numerical results might be
based on the assumption of the mathematical model for the peak in the pattern to have a
fixed wavelength. In reality the wavelength changes with the field change, see [39]. The
approximation a = λc/2 might be unsatisfactory for fields close to H∗ and cause thereby
quantitative difference between the experimental observations and the numerical results.

According to the experimental observations in [61], in the supercritical region H0 > Hc a
pattern formation prevents a single peak configuration. A sudden transition from the soliton to
the fully developed Rosensweig pattern is observed experimentally for the field H0 ≈ Hc + 0.02
kA/m, slightly stronger than the critical one. We realised that axisymmetric single peaks exist
not only in the hysteretic regime but also for H0 > 9.12 kA/m, see Fig. 7.8. This might be
caused by the fact that the axisymmetric model does not allow a developed pattern as a solution
of the equations when a = 2λc. In such a big region the developed pattern is not axisymmetric.
Axial symmetry for the pattern can be assumed only in the case when the horizontal size of
the computational domain matches the critical wavelength λc, i.e. a ≈ λc/2. The developed
pattern in the supercritical region might be energetically favourable and soliton configurations
present an unstable state of the Rosensweig instability for H0 > Hc.

Fig. 7.9 displays soliton shapes for different values of the applied magnetic field. A stronger
intensity of the magnetic field results in a higher peak amplitude and a deeper circular hollow
around a peak.

Fig. 7.10 shows, how the “artificially” vertical boundary of the computational domain r = a,
where the surface flatness is specified by condition (7.3), influences to the soliton shaping. At
the left picture of Fig. 7.10 a profile for a = 0.5λc presents a peak in the pattern with a
prespecified wavelength λc. All others shapes are solitons, calculated for different values of
the domain size a. The results of calculations show that soliton shapes are very similar to the
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Figure 7.9: Soliton shapes: H0={8.6, 8.8, 9, 9.2, 9.4, 9.6} kA/m, a = 2λc.

profile of the developed peak in the pattern. A vertical shift of shapes is due to the conservation
of the fluid volume and as a consequence a higher soliton amplitude than those of the peak in
the pattern. The left picture of Fig. 7.10 shows that for the applied field H0 = 9 kA/m soliton
shapes for a = {λc, 2λc, 2.5λc} are very close to each other. The choice of the layer domain with
a = 2λc seems to be reasonable for soliton calculations. The right picture of Fig. 7.10 shows,
however, that for H = 9.6 kA/m defining a = 2λc results in a circular wave around a soliton.
The wave appears due to the symmetry boundary condition at r = a and vanishes when the
vertical boundary of the domain is set far enough from the peak region.
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Figure 7.10: Soliton profiles for the different domain size a: H0 = 9 kA/m (left) and H0 = 9.6
kA/m (right).

Let us name a diameter of a peak’s foot as a peak’s wavelength. Figure 7.11 shows wavenum-
ber of solitons versus the applied magnetic field. The deviation of the soliton wavenumber from
the pattern wavenumber kc, predicted by the linear stability analysis, (dashed line in Fig. 7.11)
is more than 30 %. The numerical results in Fig. 7.11 predict monotonical decrease of the
wavenumber with increasing field intensity and shows near linear dependence of the wavenum-
ber from the field.
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Chapter 8

Final Remarks

A major goal of the thesis was to develop a numerical solution strategy for calculating axisym-
metric equilibrium magnetic-fluid shapes subjected to a uniform applied magnetic field. The
second important subject of the thesis was on the base of the developed numerical strategy
to fulfil an accurate numerical modeling and simulation of problems on magnetic-fluid drop
shapes, bubble configurations in a bulk of the magnetic fluid and on single peak formations on
the surface of a magnetic-fluid layer.

The mathematical model on equilibrium magnetic-fluid shapes is formulated by a coupled
system of Maxwell’s equations inside the fluid and in the surrounding air and the Young-Laplace
equation on the free surface boundary. A fluid-air interface is unknown a-priori and is defined
by the magnetic field. A simultaneous solution of the equations is necessary. An iterative
decoupling strategy allows to split equations into two subproblems: the Maxwell’s equations
for the given fluid-air interface and the Young-Laplace equation for the given magnetic field.
For the approximation of the separated subproblems different numerical techniques were used.

A coupled strategy of boundary-element and finite-element methods is a powerful tool for
the numerical treatment of the Maxwell’s equations. A boundary element method was used
in an unbounded air domain to fulfil the boundary condition for the magnetic field at infinity
while with a finite element method we resolved the non-linearity of the magnetostatic equations
inside a magnetic fluid. A direct formulation of boundary integral equations with their further
discretisation by the collocation technique is a possible way to handle the Laplace equation.
The numerical convergence of the piecewise-constant collocation boundary-element method
with the exact boundary representation, its piecewise linear and cubic spline approximations
were analysed. In numerical tests cubic splines have been proven to be sufficiently accurate
for the boundary representation. The results for the exact boundary and for its cubic spline
approximation nearly coincide. The coupling of the collocation boundary element method in
the exterior air domain and the Galerkin finite element method in the interior fluid domain was
realised. Piecewise linears for the potential approximation and piecewise constants for the nor-
mal derivative of the potential on the free boundary were taken. The numerical convergence of
the second order for r-weighted L2-norm was shown for the magnetostatic problem on a sphere.
From the calculations we found that the boundary element discretisation of the axisymmetric
Laplace equation shows a non-smooth behaviour of the discretisation error near the symmetry
axis. We realised that the finite element method does not exhibit the same sensitive behaviour
of the numerical solution.

An application of finite element methods requires a grid construction in a computational
domain. Two methods for the grid generation, a harmonic extension approach and a Delaunay
technique, were presented. They were compared with respect to the quality of the generated
grids and the computational efficiency of the underlying algorithms in application to the coupled
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magnetostatic and free surface problem. We found that the Delaunay approach allows to
construct triangulations of a better quality compared to the harmonic extension approach.
This fact can be essential for the iterative solving of the coupled equations, when the change
of the computational domain during the iterative process is rather strong.

Surface shapes were parametrised with respect to the arc length. The parametric represen-
tation of the free surface results in the reformulation of the Young-Laplace equation as a system
of nonlinear ordinary differential equations. The finite-difference method and the spline scheme
can be applied for the discretisation of the resulting system. A test example was realised to
examine the influence of a successive under-relaxation technique to the stability of the iterative
algorithms for solving algebraic equations. The spline scheme showed a better stability prop-
erty than the finite-difference method. We found that for axisymmetric problems at least one
boundary condition should necessarily be specified at the “non-axis” end point. Otherwise, the
scheme shows no convergence at all. A special algorithm of the surface grid generation was
presented. It is based on the information about a surface curvature and allows to produce an
accurate approximation for the shapes with high deformations.

The numerical results for the problem on axisymmetric equilibrium surface shapes of a
magnetic-fluid drop under the influence of an external uniform magnetic field were presented.
A comparison of numerical results with spheroidal equilibrium shapes, predicted theoretically
by the energy minimisation technique, was given. Equilibrium shapes with pointed ends were
resolved numerically, resulting in the strong deviation from spheroidal shapes of the theory. The
transition from shapes with rounded ends to shapes close to conical were realised numerically.
Equilibrium drop shapes were resolved in a wide range of field intensities till the saturation of
magnetic fluids. The drop elongates monotonically under increasing field with tendency to take
unchangeable configuration in the region of fluid saturation. Shapes, close to conical, appear
after the first turning point of the hysteretic curve for the increasing magnetic field and preserve
their acute configuration till the second turning point for the decreasing field. Increase in the
applied field results in decrease of the cone angle.

The numerical results for the problem on axisymmetric equilibrium surface shape of a bubble
inside a magnetic-fluid layer under the influence of a uniform magnetic field were presented.
The behavior of magnetic-fluid drops and bubbles in the magnetic fluid were compared.

Under the assumption of axial symmetry, equilibrium states of the magnetic-fluid layer in
the Rosensweig-instability phenomenon were numerically resolved. The numerically-obtained
critical values of the magnetic field, when the transition from the flat surface to the pattern of
peaks appears, found to be in agreement with the theoretically-predicted field values obtained
by the linear stability analysis. Equilibrium surfaces were calculated for different magnetic in-
tensities and magnetic-fluid parameters. A comparison of axisymmetric and three-dimensional
numerical results were discussed. The quantitative comparison of axisymmetric and three-
dimensional surface profiles justifies the axial symmetry assumption for a peak in the pattern.

A solitary surface pattern (soliton) was recently experimentally uncovered in the bistability
interval of the Rosensweig instability. The numerical treatment of the Rosensweig-instability
phenomenon allowed us to resolve soliton configurations as an additional stable state beside
the flat surface and the fully developed pattern.
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