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Zusammenfassung

Im Rahmen der Dissertation mit dem Titel ”Modellierung, Entwurf und Optimierung

von hochfrequenten mikroelektromechanischen Strukturen” werden zwei und dreidi-

mensionale verbundene elektromechanische Modelle für sogenannte HF-MEMS Schal-

ter entwickelt. Die elektrostatische Lösung wird berechnet, indem man entweder die

Gleichung von Laplace in den homogenen Regionen und das Gesetz von Gauss an

den Schnittknoten anwendet oder indem man das Gesetz von Gauss in der komplet-

ten Region anwendet. Im Falle der Anwendung der Gleichung von Laplace wird ein

System von Gleichungen mit der Bandmatrixmethode erzeugt und gelöst, während

bei der Anwendung des Gesetzes von Gauss in der kompletten Region eine Aktual-

isierungsgleichung für das Potential erzeugt wird, die mit Hilfe einer leistungsfähigen

iterativen Methode berechnet wird. Das mechanische Modell basiert auf der Lösung

der mechanischen Gleichungen, welche die Bewegung der Membrane entweder ana-

lytisch oder numerisch beschreiben. Die Interaktion zwischen dem elektrostatischen

und dem mechanischen Modellen wird iterativ betrachtet. Die Form der Brücke, als

Funktion der angewandten Spannung und die Spannung des Zuges nach unten wer-

den berechnet, wobei eine allgemeine Übereinstimmung mit existierenden Messdaten

für ähnliche Schaltungsgeometrien festgestellt werden kann. Die Modelle werden mit

Hilfe eines numerischen Simulationsprogramms implementiert (MATLABTM).

Diese Dissertation umfasst auch die Entwurfs-und Optimierungsaspekte von HF-

MEMS Schaltern mit Hilfe von elektromagnetischen (EM) 3-D Simulatoren. Zwei

Entwürfe sind vorgeschlagen worden. Der erste Entwurf ist der eines MEMS Schal-

ters in π-Konfiguration für Breitbandanwendungen mit guten Isolationseigenschaften.

Der zweite Entwurf ist der eines Einsauf-Drei-Umschalter (SP3T). Beide Schalter sind

auf einem hochresistiven Silikonsubstrat entworfen und basieren auf einer doppelt-

gestützten Membranarchitektur. Ein Ersatzschaltbild für die Beschreibung des Schal-

ters wird vorgeschlagen.

Zusätzlich wird eine zweidimensionale periodische Schlitz auf der Rückseite der

Struktur (DGS) mit einem L-förmigen DGS in koplanarer Wellenleitertechnologie

(CPW) vorgeschlagen. Die Abhängigkeit der Ersatzschaltungselemente von den En-

twurfsparametern der DGS wird demonstriert. Die vorgeschlagenen DGS Strukturen
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sind sehr gut geeignet um leistungfähige Bandstop-Filter zu entwerfen. Alle theo-

retischen Ergebnisse werden experimentell überprüft.

Als Anwendung für DGS und MEMS Schalter wird ein rekonfigurierbarer HF-

MEMS DGS Resonator entworfen, der unter Verwendung einer 2-D periodischen DGS

und von HF-MEMS Schaltern die Resonanzfrequenz steuert. Ein neues Ersatzschal-

tungsmodell für den Resonator wird vorgeschlagen und eine Methode um die Werte

der Schaltkreiselement zu extrahieren wird abgeleitet. Die vorgeschlagene Struktur

kann unter anderem in Automobil- und Transceiverbauteilen verwendet werden.
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Abstract

This dissertation develops two and three-dimensional coupled electrostatic-mechanical

models for RF MEMS switches. The electrostatic solution is obtained either by ap-

plying Laplace’s equation in the homogenous regions and Gauss’s law at the interface

nodes or by applying Gauss’s law in the whole regions. In case of applying Laplace’s

equation, a system of equations is generated and solved using the band matrix method,

while in case of applying Gauss’s law in the whole region an updating equation for

the potential is generated then an efficient iterative technique is employed to compute

it. The mechanical model is based on solving the mechanical equation that describes

the movement of the switch’s bridge either analytically or numerically. The interac-

tion between the electrostatic and mechanical models is considered iteratively. The

shape of the bridge, as a function of applied voltage, and the pull down voltage have

been calculated and are found to be in close agreement with published measurement

data for similar switches geometries. The models are implemented with a numerical

simulation program (MATLABTM).

This thesis covers also the design and optimization aspects of RF MEMS switches

using full-wave 3-D EM simulators. Two designs have been proposed. One is a π-

configuration MEMS switch for wideband and high-isolation applications. Second is

a single-pole, three-throw switch. Both switches are designed on a high resistivity Si

substrate and are based on fixed-fixed membrane architecture. An equivalent circuit

model for each switch is proposed to describe the switch RF-performance very well.

Additionally, a two-dimensional periodic and an L-shaped defected ground struc-

tures (DGS) in the coplanar waveguide technology are proposed. A criterion that

determines the dependence of the equivalent circuit elements on the design parame-

ters of the defect is demonstrated. The proposed DGS structures are efficient to design

high-performance bandstop filters. All theoretical results are verified experimentally

and results agree very well.

Last, as an application for the DGS and MEMS switches, an RF MEMS reconfig-

urable DGS resonator is designed using a 2-D periodic DGS and RF MEMS switches

to control the resonant frequency. A new equivalent circuit model for the resonator

is proposed and the method to extract the circuit element values is derived as well.

The proposed structure can be used in automotive and transceiver applications.
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Chapter 1

Introduction

Micro-Electro-Mechanical Systems (MEMS) are miniature devices or systems com-

bining electrical and mechanical components, fabricated using integrated circuit (IC)

compatible batch processing techniques with characteristic sizes ranging from mi-

crometers to millimeters. MEMS devices have many applications in different broad-

band/RF/wireless systems [1,2,3,4,5,6,7]. These include RF switches, phase shifters,

routing switches, time delay networks, reconfigurable antenna, tuning filters and other

passive components at microwaves and millimeterwaves. The broadband systems

or subsystems using these devices include phased-array antenna for beam scanning,

beam steers in quasi-optical transceiver, high-speed front-end switching, monolithic

microwave/millimeterwave integrated-circuits (MMICs) and high-speed data process-

ing. MEMS devices provide many advantages over conventional devices because of

their unique actuation, miniature, and integration features. The miniature feature of

MEMS devices reduces the sizes and weights of the integrated components, which also

reduces driving-power consumption. Furthermore, lots of different components can

be integrated on a single chip to achieve more functionality without extra connector

losses or impedance mismatch losses. In addition, potential low cost manufacturing

into a variety of substrates

This field of technology is known by a wide variety of names in different parts of

the world: in United States is known as Micro Electro Mechanical Systems (MEMS),

in Europe it is called Micro System Technology (MST), while in Japan it is named

Micromechanics, and is called also Nano Technology by others (Nano technology

usually refers to devices ranging in size from a nanometer to a micron). In general,

MEMS combine many disciplines, including physics, bioinformatics, biochemistry,

electrical engineering, optics and electronics.

There are different fabrication technologies used in the realization of three-dimensional

MEMS [9]:

- Bulk silicon micromachining techniques use either etches that stop on the crystallo-

graphic planes of a silicon wafer or etches that act isotropically to generate mechanical

1



2

(a)

(b)

(c)

Figure 1.1: MEMS fabrication technologies (a) Bulk micromachining, (b) Surface
micromachining , (c) LIGA, [8].

parts, i.e. form the microstructures by etching away the bulk of the silicon wafer to

achieve the desired result, Fig. 1.1(a).

- Surface micromachining techniques build up the structure in layers of thin films on

the surface of the silicon wafer (or any other suitable substrate), Fig. 1.1(b).

- The LIGA (Lithographie, Galvanoformung und Abformung, a German acronym for

Lithography, Electrodeposition, and Molding) is a technology, which creates small,

but relatively high aspect ratio devices using x-ray lithography, Fig. 1.1(c).

The MEMS technology has existed since 1970 in the form of sensors, however

radio frequency devices have been rare. The most common RF device is the MEMS

switch (which sacrifices the speed of a PIN diode for greatly enhanced isolation).

MEMS microwave switch technology was first developed in 1980 by Dr. Larry Larson

at Hughes Research Labs (Malibu, CA).
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(a)      (b)        (c) 

Filter

SP4T

SP4T

SP2T

SP2T

Figure 1.2: Some application areas of RF MEMS switches: (a) Phased-array antenna,
(b) Switched filter banks for wireless applications, and (c) Single-pole double-throw
(SP2T) transceiver switches.

1.1 RF MEMS Switches

RF MEMS switches are devices that use mechanical movement to achieve a short

circuit or an open circuit in RF transmission line. These MEMS devices are primarily

designed for low-loss applications that do not required fast switching rates such as in

airborne and satellite communication. The advantages of RF MEMS switches over

their solid-state counterparts such as FETs or PIN diodes are:

1. Low Power Consumption: The electrostatic actuation requires a DC voltage

but does not consume any current, leading to a very low power dissipation.

2. Very Low Insertion Loss in the ON state.

3. Very High Isolation in the OFF state.

4. High Intermodulation Products : RF MEMS switches are very linear devices

since they do not contain a p-n junction, they exhibit negligible intermodulation

distortion.

5. Very Low Fabrication Cost : RF MEMS switches are fabricated using surface

micromachining techniques and can be built on quartz, pyrex, high-resistivity

silicon, or GaAs substrates.
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However, RF MEMS switches have also their share of problems, such as:

1. Relatively Low Speed : The switching speed of most MEMS switches is around 2-

40 µs. Certain communication and radar systems require much faster switches.

However, access holes in the plates on top of the ground planes allows faster

operation by reducing the air-damping effect underneath the plate.

2. Low Power Handling : Most MEMS switches cannot handle more than 20-50

mW.

3. High-Voltage Drive: Electrostatic MEMS switches require 20-80 Volts for re-

liable operation. However, a lot of work has been done to reduce the driving

voltage by incorporating mender-shaped supports [10,11].

4. Low Reliability : The reliability of mature MEMS switches is 0.1-10 billion cycles.

However, many systems require switches with 20-200 billion cycles.

5. Difficulty of Packaging : Packaging costs are currently high, and the packaging

technique itself may adversely effect the reliability of the MEMS switch.

6. High Total Cost : While MEMS switches have the potential of very low manu-

facturing cost, one must add the cost of packaging and the high-voltage drive

chip.

Generally, the RF MEMS switches can be classified as follows:

1. Actuation mechanism:

- The mechanical movement in the MEMS devices can be obtained using

electrostatic, magnetostatic, piezoelectric, or thermal design. The majority

of RF-MEMS switches rely on electrostatic actuation, which is based on the

attractive Coulomb force existing between charges of opposite polarity. Some

advantages of using electrostatic actuation are the relatively simple fabrication

technology, much simpler compared to, for instance, electromagnetic excitation,

the high degree of compatibility with a standard IC process line, and the ease

of integration with planar and micro-strip transmission lines. A drawback is

the high actuation voltage, which is in the range of 12-60 Volts. In case the

available supply voltage is limited, e.g., to 3-5 Volts as in handhold phones,

on-chip high-voltage generators such as the ”Dickson-type dc voltage multiplier

circuit” may be incorporated. This is either done monolithically or in a hybrid

fashion as has recently been demonstrated by Motorola.

2. Construction:

- The movable part in the MEMS structures can be cantilever or double-

supported beam. Clearly, the cantilever offers the important advantage of factor
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of eight reduction in the actuation voltage, when compared to that required by

the suspension bridge [2]. However, the fixed-fixed beam architecture is not

very sensitive to the residual stress in the supporting beam. It is also usually

easy to be fabricated and does not require special processing compared to the

dielectric beams or the thick low-stress electroplated cantilever [12].

3. Contacting mechanism:

- There are two different contact mechanisms in RF MEMS switches, a

capacitive contact and metal-to-metal (ohmic) contact. The capacitive contact

is characterized by the capacitance ratio between the up-state (open circuit)

and down-state (short circuit) positions, and this is typically 80-160 depending

on the design. The down-state capacitance is typically 2-3 pF, and is suitable

for 8-100 GHz applications. In general, it is hard to obtain a large down-

state capacitance using nitride or oxide layers, and this limits the low-frequency

operation of the device. On the other hand, DC-contact switches with small

up-state capacitances (open circuit) can operate from 0.01 to 40 GHz, and in

some cases, to 60 GHz (for example, the Rockwell Scientific [13] switch has an

up-state capacitance of only 1.75 fF and an isolation of 23 dB at 60 GHz). In

the down-state position (short-circuit), the DC-contact switch becomes a series

resistor with a resistance of 0.5-2 Ω, depending on the contact metal used.

The direct contact series switch has a disadvantage of short contact lifetime

compared to the capacitive coupled one [14].

4. Circuit and Substrate Configurations:

As is the case with all two-terminal devices, the switches can be placed in

series or in shunt across a transmission line. Typically, capacitive switches have

been used in a shunt configuration [15], while DC-contact switches are placed

in series [16]. The reason is that it is easier to get a good isolation with a

limited impedance ratio (such as the capacitive switch) in a shunt-circuit than

in a series circuit. Also, MEMS switches are compatible with both microstrip

and CPW lines on glass, silicon and GaAs substrates, and have been used in

these configurations all the way up to 100 GHz. For low loss applications at

microwave frequencies, it is important to use high-resistivity substrates.

1.1.1 State-of-the-art

RF-MEMS switching devices and circuits have originated at several industrial re-

search labs and universities and many others different research organizations overall

the world and have experienced an exponential growth in the last few years. In

Europe more than 120 research centers, laboratories, or university institutes are in-

volved in microsystems technologies, producing a large variety of innovative processes
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Figure 1.3: Photomicrograph of (a) the Radant MEMS series switch [17], (b) the
University of Michigan metal membrane series switch [18], (c) the HRL’s cantilever
switch [19], (d) the Rockwell Scientific MEMS series switch [13], (e) the Raytheon
MEMS capacitive shunt switch [20,15], and (f) the University of Michigan low-voltage
MEMS shunt capacitive switch [21].
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and device concepts and yielding considerable expertise. Many RF-MEMS switching

devices have been developed, tested, and intensively published because of their at-

tractive performances. The selection of the switch type depends upon the required

performance, application and manufacturing facilities. Examples of these switches

are shown in Fig. 1.3.

1.1.2 RF MEMS Switch Modeling

RF MEMS switches are constructed using thin metal membrane, which can be elec-

trostatically actuated using dc-biasing voltage. The design of a MEMS device is a

complex task that involves both electrical and mechanical optimization steps. The

geometry of such a device, in fact, must satisfy technological constraints while achiev-

ing good reliability and very high electrical performances [22]. The challenges in the

simulation of electrostaticmechanical transducers can be summarized as: one has to

deal with at least two different physical fields, usually the electrostatic and mechanical

fields. Since they are designed on scales on which an electrostatic force is capable to

move or deform the membrane, three-dimensional (3-D) or at least two-dimensional

(2-D) coupled electrostatic-mechanical model is needed for accurate prediction of the

switch behavior. So that an effort to realize efficient models has to be made.

Fixed plate 
(Lower electrode)

Spring
k

L

Movable plate 
(Membrane)

W

bt

V
go

Figure 1.4: Simple lumped capacitor-spring model for RF MEMS switch.

Reduced order models consisting of one, two or several coupled Ordinary Differen-

tial Equations (ODEs) are often used to understand the behavior of electrostatically

actuated devices when three-dimensional or even detailed two-dimensional models are

too computationally intensive. In the literatures, a simple 1-D lumped model, shown

in Fig. 1.4 used a single parallel-plate approximation for capacitance and neglected

all fringing fields has been introduced in [23]. When a DC voltage is applied between

the fixed plate (lower electrode) and the movable plate (membrane), an electrostatic

force will induced to pull the membrane downward to the fixed plate with a pull-down
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voltage given by:

Vpi =

√
8k

27εoWb
g3

o (1.1)

where k is the effective spring constant of the membrane, W is the lower electrode

width, b is the membrane width, εo is the free space permittivity, and go is the nominal

gap height. The effective spring constant k of the membrane can be approximated

by [24]

k =
32Et3b

L3
+

8σ(1− ν)tb

L
(1.2)

where E is the Young’s modulus of the membrane material, t is the membrane thick-

ness, L is the membrane length, σ is the residual tensile stress in the membrane, and

ν is Poison’s ratio for the membrane material. This single-degree-of-freedom model is

the simplest and most intuitive analytically, but is the least accurate. Its purpose is

for first-cut analysis to gain physical insight, explore design options and understand

overall behavior.

-

x

g(x)
go

+

V

Figure 1.5: Simplified schematic of 2-D distributed model for fixed-fixed beam based
MEMS switch showing realistic position-dependent gap.

A two-dimensional model used a distributed parallel-plate approximation for ca-

pacitance and incorporated a fringing field correction but ignored the effect of conduc-

tor curvature on electric fields has been investigated in [25]. It accounts for the fact

that actual structures have non-rigid, position-dependent gaps as shown in Fig. 1.5.

Adding the fist-order fringing field correction term to the electrostatic force improves

the accuracy of the 2-D model but still has some limitations.

Other investigations related to the 2-D electrostatic-mechanical coupled analysis

can be found in [26, 27, 28, 29, 30, 31]. To the author’s knowledge, the electrostatic

force calculated in the literature is not very accurate; in some works the fringing

field is neglected or an approximate expression is used or the electrostatic force is

assumed to be uniformly distributed along the membrane. Through this study, the

electrostatic force is calculated very accurately using a non-uniform mesh distribution

along the membrane. 1-D, 2-D, and 3-D nonlinear analytical models to analyze the



1.2. Defected Ground Structures 9

electrostatic pull-in of a fixed-fixed beam at small structural deflection are proposed

in [32]. However, most RF MEMS switch structures work at large deflection range.

Several commercial software tools, specifically designed for RF MEMS development,

are appearing in the market. Generally, these tools perform a full device analysis

concerning the mechanical and thermal aspects but are lacking the accurate elec-

trical modeling. 3-D numerical simulations of the membrane deflections using shell

elements and multi-body contact algorithm has been reported in [33]. A 3-D quasi-

static electro-mechanical model as application of CoSolve-EM software by combining

the electromagnetic and mechanical simulators to determine the beam deformation

has been studied in [34]. 3-D coupled electro-mechanical simulation tools for RF

MEMS structures are available in commercial packages such as CoventorWare [35]

and Abaqus [36], or multi-physics simulation tools such as IntelliCAD [37] and An-

sys [38]. Most of these solvers are to find a self-consistent solution to the coupled

electro-mechanical problem using the boundary-based coupling between a mechanical

finite element solver and an electrostatic boundary element solver. Although accu-

rate results using some of those tools can be obtained, however those coupled analyses

software packages are more sophisticated and also computationally intensive.

1.2 Defected Ground Structures

Defected ground structures (DGS) have shown increasing potential for implementa-

tion in different applications: MIC, MMIC, and RFIC [39,45,44,43,46]. They provide

sharp, distinct electromagnetic band-gap and high slow wave factor, which lead to

smaller size circuits. They have been used numerously in the recent years, however

most of the applications are in microstrip structures [47]. In these structures, well-

defined shapes are etched at the back metal. This requires a precise double-sided

processing and adequate packaging to keep an air-gap between the ground and the

package. On the other hand, coplanar waveguide (CPW) have both signal and ground

on the same surface. Though they occupy larger area than microstrip lines, they can

be considered as a good compromise for DGS structures. Moreover, CPW are used

for circuit design since they can be easily integrated into existing RF ICs without the

need for incorporating via-holes. They are less sensitive to the substrate thickness

and substrate dielectric constant than the microstrip structures [48].

Consequently this opens the door to a wide range of applications [49,50]. Different

shapes of defects have been studied, among them are: dumbbell [47], periodic [51],

fractal [52], circular [44], spiral [41], T-shaped [40], and different geometrical shapes

like circular, squared, and arrow-heads in microstrip circuit are presented in [42]. To

our knowledge, few applications for DGS on CPW circuits have been reported, among

them are: The dumbbell shaped DGS is presented in [39], a vertically periodic DGS

is proposed in [43] for microstrip and CPW line in which the periodicity takes place in

the vertical direction only, a one-dimensional DGS structure where the periodicity is
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(a) (b)

(c) (d)

(e) (f)

Figure 1.6: Examples of the defected ground structures (a) Schematic view of the
lattice shape DGS, which is etched in the ground plane of a microstrip line [39], (b)
the T-shaped DGS [40], (c)The layout of the CPW based spiral-shaped DGS [41],
(d) Hi-Lo LPF with two arrowhead DGS slots, X = 1.12 cm [42], (e) transmission
lines with vertical periodic DGS [43], and (f) Schematic of an 2-D PBG structure for
microstrip, the square lattice circles are etched in the ground plane of a microstrip
line [44].
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in the horizontal direction is presented in [53]. Some examples of these DGS structures

are shown in Fig. 1.6. In general, these techniques also best utilizes the area to get

very low stop band frequencies.

1.3 MEMS Resonator

As an application of the DGS structures in the MEMS technology, an RF MEMS re-

configurable DGS resonator is designed and optimized for automotive and transceiver

applications. For these reasons a short review on RF resonators is presented below.

Resonators find widespread use in transceiver architectures, e.g., frequency con-

trolling elements in reference oscillators, tunable resonator for VCOs and building

elements for filters and duplexers [54]. Based upon their principle of operation, res-

onators can be classified into two types: Firstly, electromagnetic wave resonators, e.g.,

lumped element LC-type resonators, transmission line resonators, cavity resonators

and dielectric resonators. Secondly, electromechanical or acoustic wave resonators,

e.g., mechanical resonators, bulk acoustic wave resonators and surface acoustic wave

resonators. MEMS technology has emerged in each of the above and they have shown

promising characteristics in achieving important filter parameters, such as narrow

bandwidth, low loss, and good stability [5]. In the literature, silicon micromachined

RF MEMS resonators, open-end patch resonator and short circuit via resonator were

investigated in [55]. A MEMS-based photonic bandgap (PBG) band-stop filter de-

signed using etched lattice shape of CPW PBG unit cell and fabricated using MEMS

surface micromachining process on a high-resistivity silicon substrate was presented

in [56].

For many applications, the resonant frequency of the resonator must have a small

degree of tunability to cover certain frequency band. Tuning can be obtained electri-

cally or mechanically. Micromachined tunable dielectric resonator was implemented

in [57]. In this case, tunability was achieved by coupling the membrane to the dielec-

tric resonator. In [58], the fabrication of a micromechanical tunable resonator using

the commercial 0.35 µm complementary metal oxide semiconductor (CMOS) process

and the post-process of only one maskless wet etching has been investigated.

1.4 Contribution

With the recent rapid growth of RF MEMS switches, it has developed an emergent

requirement for more accurate theoretical models to predict their electromechanical

behaviors. In this dissertation, 2-D and 3-D coupled electrostatic-mechanical models

for the RF MEMS switches are developed, considering simultaneously the axial stress,

residual stress, and the actual field distribution on bridge structure. The developed
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simulation programs combine the electrostatic and mechanical analyses together to ac-

curately describe the switch deformation and predict the pull down voltage in a quite

short CPU time, which proves its potential for implementation in the computer-aided

design tools for RF MEMS structures. The models are implemented in a numerical

simulation program (MATLAB version 7.0). Verification of the models and simula-

tions has been done by considering a lot of standard RF MEMS switches from the

literatures.

A π-configuration RF MEMS switch is designed and optimized based on numerical

experimentations using full-wave 3-D electromagnetic (EM) simulators. The proposed

switch exhibits a very high isolation (> 50 dB) in the OFF-state over a very wide

frequency band (2-50 GHz). The insertion loss in the ON-state ranges from 0.2 to 2 dB

over the whole range while the return loss is kept a minimum of 25 dB. Based on the

same technique, a single-pole, three-throw (SP3T) RF MEMS switch is also designed

and optimized to be used in the switching networks for satellite communications and

both portable unites and base stations for wireless applications. Circuit models that

describe the switches’ RF-performance well are also introduced and they can be easily

applied to circuit design.

Different new defected ground structures (DGS) effective to miniaturize the cir-

cuit area of CPW filters are introduced. The first one is a 2-D periodic DGS (PDGS)

based on the repetition of the lattice-shape unit-cell in both vertical and horizontal

directions to control the resonant frequency. The proposed structure has the advan-

tage of having an almost constant capacitance while the inductance varies linearly

as the number of cell increases, which simplifies the design process. The second one

is an L-shaped DGS for CPW technology. The L-section is again repeated at one

side or at both sides to prolong the current path and hence to increase the effective

inductance and capacitance of the structure, which makes it easy to control the cutoff

frequency characteristics. A criterion that determines the dependance of the equiva-

lent circuit elements on the design parameters of the defect is presented as well. High

performance bandstop filters using cascaded DGS are designed and experimentally

verified.

A MEMS reconfigurable DGS resonator using the 2-D PDGS and RF-MEMS

series-resistive switches is also proposed. The proposed resonator has approximately a

fixed bandwidth over a wideband regime (K-band), which is interesting for automotive

and transceiver applications. We also introduce a new cascaded two parallel-resonance

circuit model, which describe the resonator’s performance very well. In addition, the

equivalent circuit parameters extraction methods are derived.
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1.5 Thesis Organization

This theoretical modeling of MEMS structures objectives were to carry out theoret-

ical studies to gain a fundamental understanding of electromechanical phenomenon

of microfabricated MEMS devices and to produce models which can predict the elec-

tromechanical performance of these devices. A thorough understanding of these elec-

tromechanical properties as well as predictive theoretical models is necessary for suc-

cessful design and fabrication of electromechanical systems. This thesis consists of

seven chapters where Chapter 1 gives an introduction for the microelectromechani-

cal systems. It discuses the state-of-the-art of RF MEMS switches and the defected

ground structures. It presents the contributions of the thesis in the MEMS topic.

Chapters 2 and 3 deal with the 2-D and 3-D coupled electrostatic-mechanical

models for suspension bridge RF MEMS switches, respectively. The electrostatic

model solves the electrostatic problem for the potential distribution in the compu-

tational domain. The electrostatic field and hence the electrostatic force density

distribution induced on the membrane are determined. The mechanical model calcu-

lats the bridge deformation arising from the induced electrostatic force. This is done

by solving the mechanical equation covering the beam/plate motion using the finite

difference method (FDM).

Chapter 4 focuses on new RF MEMS switch designs based on numerical exper-

imentations technique using full-wave 3-D EM simulators. The equivalent circuit

models describe the switches performance are discussed as well.

In Chapter 5, two different designs of defected ground structures in CPW tech-

nology are investigated. To evaluate the RF performance of the proposed DGS struc-

tures, sample structures are implemented and measured. Comparing with the data

obtained from simulation, good agreement is observed.

In Chapter 6, one of the DGS structures investigated in Chapter 5 is combined

with series-resistive RF MEMS switches to construct a novel MEMS reconfigurable

DGS resonator. Methods to extract the equivalent circuit model parameters are

derived in this chapter.

Conclusions and possible future works are presented in Chapter 7. The developed

programs are presented in Matlab version 7. Samples from these programmes are

given in Appendies A and B at the end of the thesis.



Chapter 2

Two-Dimensional Coupled
Electromechanical MEMS Analysis

This chapter deals with the two-dimensional (2-D) coupled electrostatic-mechanical

model for RF MEMS switches. Two different algorithms for the solution of the elec-

trostatic problem for the potential computation are presented. The first algorithm

is based on solving the Laplace’s equation in the different homogenous regions while

Gauss’s law is applied at the interface nodes in the 2-D computational domain. Ap-

plying Laplace’s equation in conjunction with Gauss’s law in 2-D Cartesian coordinate

system to all free nodes using the finite difference method (FDM) results in a system

of equations, where the quadratic interpolation approximation is used to approximate

the derivatives appearing in the FDM analyses. The generated system of equations

is solved using the band matrix method to compute the potential distribution in the

computational domain. The second algorithm is based on applying Gauss’s law to all

free nodes in the computational domain using the FDM with the central difference

approximation for the derivatives appearing in the analyses. Gauss’s law is applied to

the inhomogeneous region with a non-uniform discretization for accurate numerical

simulation. This results in a one updating equation for the potential. An efficient

iterative procedure is employed to this updating equation to get the steady state

solution for the potential distribution. Another two different algorithms for the so-

lution of the mechanical problem for the beam deformation determination are also

presented. The first one is based on solving the beam equation analytically using

the method of variation of parameters to determine the beam deformation, while the

second algorithm calculates the beam deformation based on solving the beam equa-

tion numerically using the FDM. The strong interaction between the electrostatic and

mechanical domains is considered iteratively.

Through this study, the effects of residual stress due to the fabrication process

and the axial force resulting from the beam stretching are taken into account. The

electrostatic force is calculated very accurately and as a non-uniform force distributed

along the beam. Most of the publications, either neglect the effect of the residual stress

14
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or the axial force or both of them [31]. To the authors’ knowledge, the electrostatic

force calculated in the literature is not very accurate; some time the fringing field

is neglected or used an approximate expression or the electrostatic force assumes

uniformly distributed along the membrane [28,59]. The analyses and simulations here

are dedicated to the fixed-fixed beam bridge RF MEMS shunt-capacitive switches,

although they are also applicable to other types of electrostatic MEMS structures.

This type of the switch structure is chosen because it is used quite often in RF MEMS

applications.

2.1 RF MEMS Switches Operation

A typical RF MEMS shunt-capacitive switch, shown in Fig. 2.1, consists of a fixed-

fixed thin metallic membrane which is suspended over a bottom electrode insulated

by a dielectric film. This dielectric film serves to prevent the electric short between

two conductors (the membrane and lower electrode) and provide a low impedance

path for the RF signal. The membrane is made of good mechanical properties metal

like Au or Cu prepared by electroplating process. When the switch is not actuated,

the membrane is in the up-position, there is low capacitance between the membrane

and the bottom electrode, and the device is in the ON state. When a dc voltage is

applied between the movable structure and the fixed bottom electrode, electrostatic

charges are induced on both the movable structure and the bottom electrode. The

electrostatic charges cause a distributed electrostatic force, which deforms the movable

structure. In turn, such deformation leads to storage of elastic energy, which tries to

restore the structure to its original shape. The structure deformation also results in

the reorganization of all surface charges on the device. This reorganization of charges

causes further structural deformation; hence, the device exhibits a highly nonlinear,

coupled electromechanical behavior. Until a certain voltage is applied, the so-called

pull-in voltage or actuation voltage, an equilibrium position exists through a balance

between the elastic restoring force and electrostatic force. After pull-in, the device is

in the OFF state and its capacitance is much larger than that in the ON state. The

switch actuation is therefore a coupled-field problem of electrostatics and structural

response. In order to accurately describe the switch deformation and predict the

pull-in voltage, numerical iterations between electrostatic and mechanical domains

have to be made.

2.2 Electromechanical Coupled Analysis Algorithm

The developed coupled electrostatic-mechanical model starts by solving the electro-

static problem in the two-dimensional domain of the switch structure for the potential

distribution. Having computed the potential, the electric filed distribution and hence

the electrostatic force induced on the membrane can be determined. Consequently,
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Figure 2.1: Fixed-fixed beam bridge RF MEMS shunt-capacitive switch, (a) 3-D
structure, (b) 2-D structure.
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the mechanical model can be initiated using the determined electrostatic forces to

calculate the beam deformation, which in turn alters the electrostatic force distri-

bution. This cycle between the electrostatic and mechanical models is considered

as one-iteration. In this cycle the electrostatic problem has to be solved for the new

switch structure with the deformed bridge of a displacement, which is calculated from

the last iteration. The program goes back and forth between the electrostatic and

mechanical models until the difference between the maximum-displacement in the

membrane in two successive iterations is less than a specified error, which is consid-

ered as the program convergence criterion defined by the user.

The results reported in the current chapter are given for a fixed-fixed beam RF

MEMS shunt-capacitive switch geometrically similar to that reported in [23]. This

switch has the following dimensions, the membrane length L, width b, and thickness

t are 300, 80, and 2 µm, respectively. It is made of aluminum with residual stress σ of

20 MPa and Young’s modulus E of 70 MPa. The MEMS switch is built on a coplanar

waveguide (CPW) line with dimensions of G/W/G = 60/100/60 µm and a 50 Ω

characteristic impedance on a high-resistivity silicon substrate with 11.9 dielectric

constant and 400 µm height. This is coated by a 0.4 µm silicon dioxide buffer layer

(tox). A 0.15 µm silicon nitride dielectric layer (td) coats the lower electrode, which has

a thickness (tm) of 0.8 µm. The initial gap height (go) is 1.5 µm. The computational

domain is assumed as a rectangular box as shown in Fig. 2.2, which has dimensions of

300 and 35 µm in the x and y directions, respectively. Because the electrostatic field

is mostly confined in the gap regions, the entire substrate has not been considered

in the calculations. Instead, only seven times of the some (tox + tm + td + go) was

considered, which assures a negligible field.

2.3 2-D Electrostatic Analysis

2.3.1 Potential Computation

First Algorithm: Matrix Inversion

The electrostatic model starts by generating the meshes with non-uniform finite dif-

ference steps in both directions to get the minimum execution time with the highest

possible accuracy as shown in Fig 2.2. Next, the 2-D Laplace’s equation is applied to

all free nodes in the different homogenous regions as following:

∂2V (x, y)

∂x2
+

∂2V (x, y)

∂y2
= 0 (2.1)

For accurate solution, this second order partial differential equation is approxi-

mated using the quadratic interpolation approximation with non-uniformly spaced

finite difference mesh. For any general function V (x), shown in Fig. 2.3, can be ap-

proximated at three adjacent nodes using a polynomial P (x) of second order degree
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as follow:

P (x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) (2.2)

Imposing P (xi) = V (xi), (1 ≤ i ≤ 3) , one can determine co, c1, and c2 from the

following matrix equation:




1 0 0
1 (x1 − x0) 0
1 (x2 − x0) (x2 − x0)(x2 − x1)







c0

c1

c2


 =




V (x0)
V (x1)
V (x2)




Substituting this back in (2.2) using c′s coefficients, which is determined from the
last matrix equation with some rearrangements, the following expression for the ap-
proximated function P (x) can be written in the form:

P (x) =
(x− x1)(x− x2)

(xo − x1)(xo − x2)
V (xo) +

(x− xo)(x− x2)
(x1 − xo)(x1 − x2)

V (x1) +
(x− xo)(x− x1)

(x2 − xo)(x2 − x1)
V (x2)

P (x) is a second order degree polynomial which coincides with the exact function V (x)
at three nodes xo, x1, and x2. Let xo = xL, x1 = xC , and x2 = xR and V (xo) = VL,
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Figure 2.3: Quadratic interpolation.

V (x1) = VC , V (x2) = VR.

Thus,

P (x) =
(x− xC)(x− xR)

(xL − xC)(xL − xR)
VL +

(x− xL)(x− xR)
(xC − xL)(xC − xR)

VC +
(x− xL)(x− xC)

(xR − xL)(xR − xC)
VR (2.3)

Equation (2.3) can be differentiated to obtain the approximations for the first and
second order derivatives as:

dP (x)

dx
=

2x− xC − xR

(xL − xC)(xL − xR)
VL +

2x− xL − xR

(xC − xL)(xC − xR)
VC +

2x− xL − xC

(xR − xL)(xR − xC)
VR (2.4a)

d2P (x)

dx2
=

2VL

(xL − xC)(xL − xR)
+

2VC

(xC − xL)(xC − xR)
+

2VR

(xR − xL)(xR − xC)
(2.4b)

Similar expressions can be obtained in the y direction:

dP (y)

dy
=

2y − yC − yT

(yB − yC)(yB − yT )
VB +

2y − yB − yT

(yC − yB)(yC − yT )
VC +

2y − yB − yC

(yT − yB)(yT − yC)
VT (2.5a)

d2P (y)

dy2
=

2VB

(yB − yC)(yB − yT )
+

2VC

(yC − yB)(yC − yT )
+

2VT

(yT − yB)(yT − yC)
(2.5b)

Using equations (2.4b) and (2.5b) the Laplace’s equation (2.1) can be approximated
at any general node C shown in Fig. 2.4(a) as follow:

2VL

(xL − xC)(xL − xR)
+

2VC

(xC − xL)(xC − xR)
+

2VR

(xR − xL)(xR − xC)

+
2VB

(yB − yC)(yB − yT )
+

2VC

(yC − yB)(yC − yT )
+

2VT

(yT − yB)(yT − yC)
= 0

Thus, the general system of equation for any free node in a homogenous medium is
in the form:
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[
1

(yC − yB)(yT − yB)

]
VB +

[
1

(xC − xL)(xR − xL)

]
VL

+

[ −1

(xC − xL)(xR − xC)
+

−1

(yC − yB)(yT − yB)

]
VC (2.6)

+

[
1

(xR − xL)(xR − xC)

]
VR +

[
1

(yT − yB)(yT − yC)

]
VT = 0

At the same time Gauss’s law is applied at the dielectric interface nodes between the
different media as following:

−
∮

l

ε

(
∂V

∂x
âx +

∂V

∂y
ây

)
· ândl = 0 (2.7)

where ε is the medium permittivity and â is the normal unit vector to the Gauss’s
contour l. Dividing the Gauss’s contour l into four segments as shown in Fig. 2.4(b)
takes each segment parallel to the main axes gives the next equation:

−
∫

right

ε(y)
∂V

∂x
dy −

∫

top

ε(x)
∂V

∂y
dx +

∫

left

ε(y)
∂V

∂x
dy +

∫

bottom

ε(x)
∂V

∂y
dx = 0 (2.8)

Applying the finite difference technique to the last equation gives the following
expression:

− VR − VC

xR − xC

[
ε2(yT − yC) + ε3(yC − yB)

2

]
− VT − VC

yT − yC

[
ε1(xC − xL) + ε2(xR − xC)

2

]

+
VC − VL

xC − xL

[
ε1(yT − yC) + ε4(yC − yB)

2

]
+

VC − VB

yC − yB

[
ε4(xC − xL) + ε3(xR − xC)

2

]
= 0

(2.9)
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where the subscripts L,R, T , and B denote left, right, top, and bottom, respectively
and εi, i = 1, 2, 3, 4 are the different medium permittivities.

Thus, the general system of equation for any interface node can be expressed as
follow:

[
ε4(xC − xL) + ε3(xR − xC)

yC − yB

]
VB +

[
ε1(yT − yC) + ε4(yC − yB)

xC − xL

]
VL

+
[
ε2(yT − yC) + ε3(yC − yB)

xR − xC

]
VR +

[
ε1(xC − xL) + ε2(xR − xC)

yT − yC

]
VT

−
[

ε4(xC−xL)+ε3(xR−xC)
yC−yB

+ ε1(yT−yC)+ε4(yC−yB)
xC−xL

+ ε2(yT−yC)+ε3(yC−yB)
xR−xC

+ ε1(xC−xL)+ε2(xR−xC)
yT−yC

]
VC = 0 (2.10)

Equations (2.6) and (2.10) are the general system of equations for any node in
the 2-D computational domain in a homogenous medium and at interface nodes,
respectively. Those equations are derived assuming that mesh is rectangular i.e. the
grid lines are parallel to the main axes. Upon applying an actuation voltage, the
membrane is deformed and it loses its parallelness to the mesh lines as illustrated in
Fig. 2.5. For these reasons, Eq. (2.6) has to be correspondingly modified.
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Figure 2.5: A General voltage node in the 2-D computational domain when the switch
gets distorted due to the actuation, (a) Actual grid, (b) Interpolated grid.

Using a linear interpolation, one can obtain two voltage nodes at the left V ∗
L and

at the right V ∗
R of the general node C on the horizontal axis in the x-y plane as shown

in Fig. 2.5. Both have the same y-coordinates yc as C:

V ∗
L = VL +

yC − yL

yLT − yL

(VLT − VL) (2.11a)

V ∗
R = VRB +

yC − yRB

yR − yRB

(VR − VRB) (2.11b)
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To restore a rectangular grid, one can take the average value of the y-components
and re-calculate the new coordinates y∗T and y∗B as follows:

y∗T =

(
yRT + yT

2
+

yLT + yT

2

)/
2 (2.12a)

y∗B =

(
yRB + yB

2
+

yLB + yB

2

)/
2 (2.12b)

Consequently, if a membrane deformation takes place, the system of equations
formed by (2.6) has to be modified using the interpolated values V ∗

L (xL, yC) and
V ∗

R(xR, yC) instead of using VL(xL, yB) and VR(xR, yT ), as follow:

[
1

(yB − yC)(yB − yT )

]
VB +

[
1

(yT − yB)(yT − yC)

]
VT

+

[
1

(xL − xC)(xL − xR)

]
·
[

yC − yL

yLT − yL

VLT +
yLT − yC

yLT − yL

VL

]

+

[
1

(xR − xL)(xR − xC)

]
·
[

yR − yC

yR − yRB

VRB +
yC − yRB

yR − yRB

VR

]

+

[
1

(xC − xL)(xC − xR)
+

1

(yC − yB)(yC − yT )

]
VC = 0 (2.13)

Using the boundary conditions of V = 0 at the outer boundary nodes and at the
nodes on the bridge, while V = Vo on the lower electrode, Vo is the applied voltage.
The application of (2.6) in conjunction with (2.10) and (2.13) to all free nodes in the
2-D computational domain results in a set of simultaneous equations of the form:

[A] [X] = [B]

where [A] is a sparse matrix has the coefficients of the system of equations, [X] is a
column matrix consisting of the unknown values of the potential at the free nodes,
and [B] is a column matrix containing the known values of the potential at the fixed
nodes.

[X] = [A]−1 [B] (2.14)

After getting [X], the potential of all nodes in the computational domain is known.

Second Algorithm: Iterative Technique

In this algorithm the potential distribution in the computation domain is computed
based on an iterative technique for an updating equation for the potential distribution
in the 2-D computational domain. This updating equation is obtained by applying
Gauss’s law in two-dimensions to all free nodes in the computational domain using the
finite difference method to approximate the derivatives. The boundary conditions are
V = Vo on the lower electrode (CPW signal line) and V = 0 on the upper electrode
(MEMS bridge) and the outer boundaries. On the dielectric interface and at any
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node in the computational domain other than those on the electrodes, Gauss’s law is
applied (2.7). The finite difference approximations translate this integral equation at
a general node C on the grid inside the computational domain enclosed by a closed
contour l as illustrated in Fig. 2.4(b) gives:

VC =

[
VL

xC−xL
[(yT − yC)ε1 + (yC − yB)ε4] + VR

xR−xC
[(yT − yC)ε2 + (yC − yB)ε3]

+ VB

(yC−yB) [(xR − xC)ε3 + (xC − xL)ε4] + VT

yT−yC
[(xR − xC)ε2 + (xC − xL)ε1]

]




(
yC−yB

xR−xC
+ xR−xC

yC−yB

)
ε3 +

(
yT−yC

xR−xC
+ xR−xC

yT−yC

)
ε2

+
(

yC−yB

xC−xL
+ xC−xL

yC−yB

)
ε4 +

(
yT−yC

xC−xL
+ xC−xL

yT−yC

)
ε1




(2.15)

This equation can be rearranged in the following general form [60]:

VC = CRVR + CLVL + CT VT + CBVB (2.16)

where

CR = Co
(yT − yC)ε2 + (yC − yB)ε3

xR − xC

, CL = Co
(yT − yC)ε1 + (yC − yB)ε4

xC − xL

,

CT = Co
(xR − xC)ε2 + (xC − xL)ε1

yT − yC

, CB = Co
(xR − xC)ε3 + (xC − xL)ε4

yC − yB

,

and

Co =




(
yC−yB

xR−xC
+ xR−xC

yC−yB

)
ε3 +

(
yT−yC

xR−xC
+ xR−xC

yT−yC

)
ε2

+
(

yC−yB

xC−xL
+ xC−xL

yC−yB

)
ε4 +

(
yT−yC

xC−xL
+ xC−xL

yT−yC

)
ε1



−1

In the same way, equation (2.15) is derived assuming the grid is rectangular and
the grid lines are parallel to each other and parallel to the main axes. But this is not
correct in the gap region more than ever as the beam gets deformed when a dc voltage
is applied between the membrane and the lower electrode. Thus, the same trick of
the interpolation discussed earlier can be used to estimate the potential for two nodes
on a horizontal line passing through the center node C, as given by equations (2.11).
Therefore, equation (2.15) for any node in the gap region in case distorted switch can
be expressed as follows:

VC =

[
V ∗

R

xR−xC

[
y∗

T
− y∗

B

]
+ VT

yT−yC
[xR − xL] +

V ∗
L

xC−xL

[
(y∗

T
− y∗

B

]
+ VB

(yC−yB) [xR − xL]
]

[
y∗

T
−y∗

B

xR−xC
+ xR−xL

yT−yC
+

y∗
T
−y∗

B

xC−xL
+ xR−xL

yC−yB

] (2.17)

where y∗T and y∗B as given by (2.12).

Or in the general form:

VC = C∗
LV ∗

L + C∗
RV ∗

R + C∗
BVB + C∗

T VT
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Figure 2.6: A General voltage node in the computational domain when the switch
gets deformed.

where

C∗
L = C∗

o

y∗
i+1,j

− y∗
i−1,j

xi,j − xi,j−1

, C∗
R = C∗

o

y∗
i+1,j

− y∗
i−1,j

xi,j+1 − xi,j

,

C∗
B = C∗

o

xi,j+1 − xi,j−1

(yi,j − yi−1,j)
, C∗

T = C∗
o

xi,j+1 − xi,j−1

yi+1,j − yi,j

,

and

C∗
o =

[
y∗

i+1,j
− y∗

i−1,j

xi,j+1 − xi,j

+
xi,j+1 − xi,j−1

yi+1,j − yi,j

+
y∗

i+1,j
− y∗

i−1,j

xi,j − xi−1,j

+
xi,j+1 − xi,j−1

yi,j − yi−1,j

]−1

To obtain the potential distribution in the 2-D computational domain, first all free
nodes are initiated with zero potential and then an iterative procedure is employed to
(2.16) to update itself until the potential for all free nodes get saturated. The accuracy
of the results depends on the number of iterations, which updates the potential. This
number of iterations is calculated by the program for a given percentage accuracy
for the calculated potential in terms of the applied voltage. The error is measured
as the largest difference between two successive values in the potential for any node
in the computational domain. Fig. 2.7 illustrates the potential residual error versus
the number of iterations for different required accuracies. From Fig. 2.7(a) we can
see that for an error of 0.5 %, the required number of iterations is 81. While 267
iterations is needed for 0.1 % error as illustrated in Fig. 2.7(b).
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Figure 2.7: Convergence of error in the potential computational (a) 0.5 % error and
(b) 0.1 % error.

2.3.2 Electrostatic Field Calculation

Having computed the potential distribution, the electric filed vectors can be calculated
from the relation Ē = −∇V at any node. Since we are using a non-uniform grid,
the quadratic interpolation for approximating the first derivative (which is needed
to determine the electric field components) is a better approximation as compared
to the linear one as given by equations (2.4a) and (2.5a). The x-component, as an
example, of the electric field at any arbitrary node is then given by:

Ex(x) = − 2x− xC − xR

(xL − xC)(xL − xR)
VL − 2x− xL − xR

(xC − xL)(xC − xR)
VC − 2x− xL − xC

(xR − xL)(xR − xC)
VR (2.18)

In the same way, the y-components at all nodes can be computed.

2.3.3 Capacitance Determination

In order to calculate the switch capacitance one needs to compute the total charge on
the lower electrode then divide it by the applied voltage. Gauss’s law is applied around
the lower electrode as shown in Fig. 2.10. This leads to the following expression for
the total enclosed charge after using the FDM.
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Figure 2.8: 2-D potential distribution with different values of the number of iterations
for the potential computation iterative procedure (a) one iteration (b) 20 iterations,
(c) 50 iterations, (d) 100 iterations, (e) 500 iterations, and (f) 1000 iterations.
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Figure 2.9: Electrostatic field distribution in the 2-D computational domain.

ρenc = −
∑

right

VR − VC

xR − xC

[
ε2(yT − yC) + ε3(yC − yB)

2

]

−
∑
top

VT − VC

yT − yC

[
ε1(xC − xL) + ε2(xR − xC)

2

]
(2.19)

+
∑

left

VC − VL

xC − xL

[
ε1(yT − yC) + ε4(yC − yB)

2

]

+
∑

bottom

VC − VB

yC − yB

[
ε4(xC − xL) + ε3(xR − xC)

2

]

The capacitance C per unit length is given next by C = ρenc/Vo, where Vo is the
applied voltage between the lower and upper electrodes.

2.3.4 Electrostatic Charge and Force Induced on the Mem-
brane

The electrostatic model calculates the electrostatic force induced on the movable
beam when a dc-actuation voltage is applied between the upper and lower electrodes.
When the DC voltage is applied between the electrodes, charges are induced on
the membrane and opposite charges accumulate on the lower electrode. The charge
density per unit length ρ induced on the membrane are calculated using Gauss’s law
in two dimensions as follow:

ρ = −
∮

l

ε
∂V

∂n
n̂ · ândl (2.20)
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Figure 2.10: Computation of the total charge accumulated on the lower electrode to
be used for structure-capacitance determination.

where l is a closed contour surrounds a subsection of the membrane as shown in Fig.
2.2. Here ân is a normal unit vector to the contour segments. By dividing the Gauss’s
contour into four segments, one can obtain:

ρ = −
∫

right

ε(y)
∂V

∂x
dy −

∫

top

ε(x)
∂V

∂y
dx +

∫

left

ε(y)
∂V

∂x
dy +

∫

bottom

ε(x)
∂V

∂y
dx

Assuming the field outside the metallic boundaries and the voltage applied to the
membrane to be zero, and the adjacent medium to the bridge surface is air with
εr = 1. Thus, the accumulated charge per unit length distributed in the z-direction
for any segment on the membrane centered at (xc, yc) can be calculated as:

ρ(xC) = εo
VB

yC − yB

[
xR − xL

2

]

This equation is divided by the segment length (xR − xL)/2 to find the charge
density and multiplying it by b, the beam width in the z-direction, one can obtain
the distributed charge per unit length on the bridge along the x-axis for any segment
centered at xc as:

ρ(xC) = εo
VB

yC − yB

b (2.21)

Having obtained the electric field components, the electrostatic force induced on
the bridge can be determined. The normal electrostatic force per unit length can be
determined in terms of the storage energy U per unit length as: f(x) = −dU(x, y)/dy,
where U is defined as U = (1/2)

∫
s

εE2dxdy, and s is the surface contour shown in Fig.

2.2. Thus, f(x) = (1/2)
∫
l

εE2dx in Newton per unit length along the z-direction.
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Figure 2.11: Electrostatic (a) force and (b) charge densities distributions induced on
the membrane with actuation voltage of 30 Volts.

Therefore, the amount of the electrostatic force induced on a certain segment of length
∆x on the membrane is calculated by:

∆f(x) = (1/2)εoE
2(x, y)∆x

This equation is divided by ∆x to find the force density and multiplying it by
the beam width b in the z-direction gives the distributed force per unit length in the
x-direction induced on the bridge. Thus, at any arbitrary node x the distributed force
per unit length is given as:

f(x) =
b

2
εo

(
E2

x + E2
y

)
(2.22)

y

f(x)

w(x)
x

x

L

Figure 2.12: Schematic diagram of a deformed electrostatic loaded double-supported
beam.

2.4 2-D Mechanical Analysis

The mechanical model is based on solving the beam equation that describes the
beam movement, which is electrostatically loaded when applying a dc voltage between
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the lower electrode and the upper movable one (membrane) to determine the beam
deformation. Figs. 2.1 and 2.12 show the fixed-fixed beam diagram and the load
configuration, respectively. The step-up support in this beam has been approximated
as a ”fixed” boundary condition [24]. The transverse deflection of the movable beam
w(x) is governed by Euler-Bernoulli beam equation given in [61] as:

_

E Ĩ
d4w

dx4
− (Tr + Ta)

d2w

dx2
= f(x) (2.23)

where f(x) is the distributed force density per unit length (the beam here is elec-
trostatically actuated and the electrostatic force f(x), which is calculated from the
electrostatic model, couples the mechanical model and the electrostatic model). w(x)

is the transverse beam displacement,
_

E= E/ (1− ν2) is the beam modulus where E
is Young’s modulus, ν is Poisson’s ratio, Ĩ = bt3/12 is the beam moment of inertia, t
and b are the beam thickness and width, respectively. Tr is the residual force and is
formulated by Tr = σ̂bt where σ̂ is the residual stress which equals σo(1− ν) for the
doubly supported beam, where σo is the biaxial residual stress. Ta is the axial force
and is formulated by

Ta =

_

E bt

2L

L∫

0

(
dw

dx

)2

dx.

Equation (2.23) is a non-linear, non-homogenous 4th order differential equation. To
solve (2.23) to find the beam deformation, two algorithms are employed and discussed
in details in the next sections.

2.4.1 1st Algorithm: Analytical Solution

To find the general solution of equation (2.23), it is more convenient to rewrite it in
the form:

d4w

dx4
− k2d2w

dx2
= F (x) (2.24)

where

k2 =
Tr + Ta

_

E Ĩ
=

σ̂bt
_

E Ĩ
+

6b

Lt2

L∫

0

(
dw

dx

)2

dx,

and

F (x) =
f(x)
_

E Ĩ

Equation (2.24) is a fourth order nonlinear, inhomogeneous differential equation. If

the axial force term 6b
Lt2

L∫
0

(
dw
dx

)2
dx is neglected k becomes constant (equals to

√
σ̂bt
_
EĨ

).

Thus the 4th order differential equation becomes linear. The general solution of a
higher order inhomogeneous linear differential equation can be found easily using the



2.4. 2-D Mechanical Analysis 31

method of variation of parameters [62]. The general solution of this equation while,
initially, assuming k is constant can be found by assuming the general solution of the
homogenous equation of (2.24) to be in the form:

wc(x) = ao + a1x + a2e
kx + a3e

−kx (2.25)

Furthermore, by setting wo(x) = 1, w1(x) = x,w2(x) = ekx, and w3(x) = e−kx in the
last equation, one can use the method of variation of parameters for determining a
particular solution wp(x) of Eq. (2.24) in terms of four functions uo, u1, u2 and u3

such that:

wp(x) = uo(x)wo(x) + u1(x)w1(x) + u2(x)w2(x) + u3(x)w3(x) (2.26)

For these functions to be determined, four conditions must be specified. The Wron-
skian W of functions wo, w1, w2, and w3 is the determinant:

W (wo, w1, w2, w3) =




wo(x) w1(x) w2(x) w3(x)
w′

o(x) w′
1(x) w′

2(x) w′
3(x)

w′′
o(x) w′′

1(x) w′′
2(x) w′′

3(x)
w′′′

o (x) w′′′
1 (x) w′′′

2 (x) w′′′
3 (x)


 (2.27)

while u′k = Wk

W
, where Wk is the determinant obtained by replacing the kth column

of the Wronskian by the column consisting of the elements (0, 0, 0, F (x)). Simple
integration can be used to obtain uo(x), u1(x), u2(x), and u3(x), while substitution in
Eq. (2.26) yields the particular solution

uo(x) =
1

aok2

∫
xF (x)dx, u1(x) = − 1

a1k2

∫
F (x)dx,

u2(x) =
1

2a2k3

∫
e−kxF (x)dx, u3(x) = − 1

2a3k3

∫
ekxF (x)dx

with,

wp(x) =
1

k2

∫
xF (x)dx− x

k2

∫
F (x)dx +

ekx

2k3

∫
e−kxF (x)dx− e−kx

2k3

∫
ekxF (x)dx

Thus, the general solution of w(x) equals wc(x) + wp(x), which can be found as:

w(x) = ao + a1x + a2e
kx + a3e

−kx + 1
k2

x∫
0

λF (λ)dλ− x
k2

x∫
0

F (λ)dλ

+ ekx

2k3

x∫
0

e−kλF (λ)dλ− e−kx

2k3

x∫
0

ekλF (λ)dλ (2.28)

where a0, a1, a2, and a3 are constants to be determined by applying the boundary
conditions w(0) = 0 = w′(0) and w(L) = 0 = w′(L), with assumed clamped-clamped
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beam. The coefficients a0, a1, a2, and a3 can be determined from the following matrix
equation:




a0

a1

a2

a3


 =




1 0 1 1
0 1 k −k
0 L ekL e−kL

0 1 kekL −ke−kL




−1 


0
0
b1

b2


 (2.29)

where

b1 = − 1

k2

L∫

0

λF (λ)dλ +
L

k2

L∫

0

F (λ)dλ− ekL

2k3

L∫

0

e−kλF (λ)dλ +
e−kL

2k3

L∫

0

ekλF (λ)dλ

and

b2 =
1

k2

L∫

0

F (λ)dλ− ekL

2k2

L∫

0

e−kλF (λ)dλ− e−kL

2k2

L∫

0

ekλF (λ)dλ

The integrals for the coefficients b1 and b2 are all finite and are computed numerically.

Now to include the axial force in this analysis, we use the resulting w(x) to de-

termine the axial force term 6b
Lt2

L∫
0

(
dw
dx

)2
dx and then calculate the new value of k

and substitute back in Eq. (2.28). Using the new values of the coefficients a0, a1, a2,
and a3 calculated from Eq. (2.29) to determine the new w(x). Repeating this process
until the difference between two successive iterations for k is within a pre-determined
value. In our procedure the error was set to be lower than 103 µm−1.

x x x

kb c d

x

a

Figure 2.13: Application of FDM to find the beam deformation, k is a general node
on the beam

2.4.2 2nd Algorithm: Numerical Solution

The beam equation, (2.23) is solved here numerically using FDM. To find the general
solution of (2.23), it is more convenient to rewrite it in the form:

d4w

dx4
− T

d2w

dx2
= F (x) (2.30)
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where

T =
Tr + Ta

_

E Ĩ
=

σo(1− ν)bt
_

E Ĩ
+

6b

Lt2

L∫

0

(
dw

dx

)2

dx,

and

F (x) =
f(x)
_

E Ĩ

Equation (2.30) is a fourth order nonlinear, inhomogeneous differential equation. If
the axial force term is neglected T becomes constant and the 4th order differential
equation becomes linear. As was done in the electrostatic model, the quadratic inter-
polation is used to approximate the derivatives in (2.30) too. Using FDM, the second
and fourth derivatives at general node k illustrated in Fig. 2.13 can be defined as:

(
d2w

dx2

)

k

=
wc − 2wk + wb

(∆x)2

and (
d4w

dx4

)

k

=
wd − 4wc + 6wk − 4wb + wa

(∆x)4

So that, the system of equation for the beam equation at any general node k can be
written in the following form:

wa

[
1

(∆x)4

]
+ wb

[ −4

(∆x)4
+

−T

(∆x)2

]
+ wk

[
6

(∆x)4
+

2T

(∆x)2

]

+wc

[ −4

(∆x)4
+

−T

(∆x)2

]
+ wd

[
1

(∆x)4

]
= Fk (2.31)

The boundary conditions of (2.30) are vanishing the displacements and slopes at both
ends for the clamped-edges beam. The band matrix method is then employed to solve
the generated system of equations which results in the bending function w(x) of the
beam.

To include the axial force in this analysis, we use the resulting w(x) to determine
the axial force term Ta. The new value of T is then substituted back in (2.31) to
determine the new w(x). This process is repeated until the difference between two
successive iterations for T is less a tolerance value.

2.5 Coupling the Electrostatic and Mechanical Mod-

els

It is easily seen that the electrostatic model treats the beam deflection w(x) as an
input parameter and produces the electrostatic force density f(x) as an output pa-
rameter. On the other hand, the input and output parameters of the mechanical
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Figure 2.14: (a) Electrostatic charge, (b) Force densities induced on the medial node
on the beam, (c) Corresponding node displacement, and (d) Gap capacitance, all
versus the number of iterations between the electrostatic and mechanical models
when the switch is actuated with a dc voltage of 30 Volts.

model are f(x) and w(x), respectively, as may be seen from (2.23). This means
that, the two models can be represented by a closed loop with the output of one
model being the input to the other. The most suitable algorithm for the solution of
such a closed-loop system is iterative algorithms. For a given actuation voltage Vo

a deflection distribution w(0)(x) = 0 is initially assumed. The resulted force density
distribution f (1)(x) is next calculated using the electrostatic model, which is then
used by the mechanical model to determine the new deflection distribution w(1)(x)
and this terminations the first iteration. The iterations should continue until the
difference between two successive deflection distributions w(i)(x) and w(i+1)(x) (or
equivalently two successive force density distributions f(i)(x) and f (i+1)(x) becomes
less than a given tolerance.

For MEMS analyses, it is usually assumed that the pull down occurs when the
microstructure deflects down to (2/3)go, where go is the initial gap height. This is
considered the unstable mechanical position of the bridge. Hence the back and forth
switching between the electrostatic and mechanical models converges as long as the
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switch works in the mechanical stability region otherwise it may diverge. There-
fore, the iterations is stopped when the maximum deflection is greater than or equal
(1/3)go, which corresponds to the pull down voltage for the MEMS switch.

2.6 Results and Discussions

To validate the obtained numerical results and verify the proposed model, three stan-
dard capacitive RF MEMS switches that have been presented in [15,23,63] are mod-
eled. The computed pull down voltage amounts to 33.4, 47.2, and 52.5 Volts while
the experimental values for the similar configuration are 50, 30, and 39 (simulated
value) Volts, respectively. There are small mismatches between the modeled and re-
ported values, these may be due to the residual stress value, which is assumed to be
constant of 20 MPa for aluminum fixed-fixed beam bridge in our calculations. As the
pull down voltage is directly related to the residual stress, a considerable change in
the value of the later leads to a corresponding change in the pull down voltage.

The computed electrostatic charges and forces induced on the membrane and the
corresponding displacement of the beam center and the gap capacitance as functions
of the number of iterations between the electrostatic and mechanical models are
illustrated in Figs. 2.14(a), 2.14(b), 2.14(c) and 2.14(d), respectively. The steady-
state condition with actuation voltage of 30 Volts reached after nine iterations for
a tolerance in w(x) of 10−3µm. The number of iterations, which is needed to reach
the steady-state beam position is completely dependent not only on the required
tolerance but also on the actuation voltage. If the actuation voltage is much smaller
than the pull down voltage the steady-state condition reached fast, while it needs more
iterations when the actuation voltage is closer the pull down voltage. In the present
example, the pull down voltage is about 34 Volts. As a consequence, 3 iterations was
needed for an actuation voltage of 20 Volts, while for an actuation voltage of 33 Volts
13 iterations were needed to reach the steady-state conditions.

The iterations stopped when the error in the maximum deflection curve falls below
a tolerance value (here given as 10−3 µm) or the maximum displacement increases
than (1/3)go, which means the applied voltage is greater than or equals the pull down
voltage. The shape of the deformed membrane terms of applied voltage is depicted in
Fig. 2.15(a). Fig. 2.15(b) illustrates the gap height versus the applied voltage. The
maximum force density induced on the membrane center node in terms of applied
voltage is illustrated in Fig. 2.15(c). While Fig. 2.15(d) shows the gap capacitance
versus the applied voltage. The computed pull down voltage amounts to 35 Volts
while the experimental value for similar configuration is usually reported to be in the
range of 30 Volts. The computed up-position capacitance of the MEMS switch is 85
fF while the experimental value is 70 fF. The theoretical results are very close to the
experimental values reported in the literatures.

Those results correspond to switch geometry and dimensions similar to that re-
ported in [23]. The number of meshes that have been used in the calculation were
nx = 60 and ny = 40 in x and y directions, respectively. The mesh size was non-
uniform in both x and y directions for more accurate solution. Smaller mesh size
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is considered where fine geometrical details are present. The minimum and maxi-
mum values in the x-direction are ∆xmin = 2.8 µm (over the lower electrode region,
where most of the field is confined) and ∆xmax = 7.5 µm (at the end of the mem-
brane, where approximately no field), respectively. The corresponding values in the
y-direction are ∆ymin = 0.0375 µm (within the dielectric layer with the smallest
thickness), and ∆ymax = 2.945 µm (at the bottom of the substrate, where the field is
decayed). The elapsed CPU time on a PC with Pentium IV, 1.4 GHz processor, and
2.0 GB RAM was 51.34 second to reach the steady-state bridge position, which has
been achieved after nine iterations between the mechanical and electrostatic domains
with a tolerance of 10−3 µm in the maximum displacement at actuation voltage of 30
Volts.
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Figure 2.15: (a) The shape of the deformed membrane, (b) Beam center node dis-
placement, (c) Electrostatic force density induced at the beam center node, and (d)
Gap capacitance, all versus the applied voltage.
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2.7 Conclusion

In this chapter, a two-dimensional coupled electrostatic-mechanical model for double-
supported beam bridge RF MEMS shunt-capacitive switches has been presented,
where the axial and residual stresses in the mechanical equation are taken into ac-
count. A simulation program has been developed to determine the deformation of
the membrane in the MEMS switches as a function of the applied voltage.

Two algorithms for the electrostatic model have been investigated; one is based
on solving Laplace’s equation in the different homogenous regions using the FDM,
while Gauss’s law is employed at the interface nodes between different media. As a
consequence, the band matrix method is employed to solve the generated system of
equations to fined out the potential distribution in the 2-D computational domain.
The second one is based on solving Gauss’s law in the 2-D Cartesian coordinates sys-
tem using the central difference approximation for the derivatives. Then, an efficient
iterative procedure is implemented for the solution of the potential distribution. The
mechanical model is to determine the beam deformation arising from the induced
electrostatic force that calculated by the electrostatic model. To do this, two algo-
rithms for the mechanical model have been developed. The first one is solving the
beam equation analytically using the method of variation of parameters to determine
the beam deformation. While the second one is based on solving the beam equation
numerically using the FDM, where the quadratic interpolation is used to approximate
the derivatives.

The model results in an accurate determination of the switch capacitance, and
the beam deformation in terms of the actuation voltage. The pull down voltage
is also calculated for different structures and agrees well with the published data.
The presented model combines the electrostatic and mechanical analyses and gives
accurate results in a quite short CPU time. The developed algorithm and the program
presented are capable to determine the bridge deformation, pull-in voltage and to
investigate the effect of source fluctuations on the switch performance efficiently. Due
to its numerical efficiency and small CPU time requirement, the developed algorithm
and the related computer code can be easily integrated in the computer-aided design
tools of RF MEMS switches saving a great deal of time allowing the designer to gain
valuable physical insight.



Chapter 3

Three-Dimensional Coupled
Electromechanical MEMS Analysis

In the last chapter, a 2-D coupled electrostatic-mechanical model for RF MEMS

shunt-capacitive switches has been developed. However, the results are still little bit

mismatched with the measured values. Successful MEMS devices rely not only on

well-developed fabrication technologies but also on the knowledge of device behaviors,

based on which a favorable structure of the device can be forged. One of the critical

design issues for electro-statically actuated devices is the necessity of avoiding or

intentionally initiating the occurrence of the pull-in phenomenon during operation.

Some applications such as microphones or pressure sensors must only be operated

within the safe range without pull-in occurring, while others such as optical switches

need to tune the bias voltage across the pull-in back and forth to alternate switch-on

and off. In all the aforementioned applications, the information of the critical bias

voltage as the pull-in occurs and the associated deflection of the deformed plates must

be precisely computed and then provided to the designers to meet the required device

specifications.

This chapter deals with a thee-dimensional (3-D) coupled electrostatic-mechanical

model, which is a high efficient and quite accurate to characterize the capacitive RF

MEMS switches. The solution of the electrostatic problem is based on applying

Gauss’s law to all free nodes in the 3-D computational domain. This results in a

one updating equation for the potential. An efficient iterative procedure is then

employed to this updating equation to get the steady state solution for the potential

distribution. Having computed the potential distribution, the electrostatic field and

hence the electrostatic force density induced on the membrane are determined. The

mechanical problem is the determination of the bridge deformation arising from the

electrostatic loading. This is done by solving the plate equation numerically using

the finite difference method (FDM). The interaction between the mechanical and

electrostatic domains here is considered iteratively. The analyses and simulations in

38
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the present chapter are dedicated to the fixed-fixed beam bridge RF MEMS shunt-

capacitive switches, although they are also applicable to other types of electrostatic

MEMS structures. The choice of this type of switch structure is because it is used

quite often in RF MEMS applications.

Boundary box 

(Air filled)

Membrane 

V = 0 Volts

Si-Substrate

Dielectric

layer (Si3N4)

Buffer layer

(SiO2)

Fixed-fixed beam  

bridge RF MEMS 

capacitive switch 

Lower electrode 

V = Vo

Vo Actuation voltage

x

z

Outer boundary

V = 0 Volts 

y

Figure 3.1: A fixed-fixed beam bridge RF MEMS shunt-capacitive switch impeded in
a boundary air-filled box, 3-D computational domain.

3.1 The Simulation Program Algorithm

A shunt-capacitive RF MEMS switch, shown in Fig. 3.1, consists of a fixed-fixed

thin metallic film suspended over a dielectric film deposited on top of the bottom

electrode. This dielectric film serves to prevent the electric short between two con-

ductors and provide a low impedance path for the RF signal. When the switch is

un-actuated, there is a very small capacitance between the membrane and the bottom

electrode, and the device is in the ON-state. When an electrostatic voltage is applied

between the two conductors, an electrostatic force is created to pull the membrane

down. At a certain voltage, the membrane collapses and comes in contact with the

thin dielectric layer, which covers the bottom electrode, so a large capacitive coupling

is there and the device is in the OFF-state. When a dc voltage is applied between the
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movable membrane and the fixed bottom electrode, electrostatic charges are induced

on both the membrane and the bottom electrode. The electrostatic charges cause an

electrostatic force, which deforms the membrane. In consequence, such deformation

results in an elastic force, which tries to restore the membrane to its original shape.

In general, the deformation will also result in the reorganization of all surface charges

on the device. This reorganization of charges is adequate to cause further membrane

deformation. Thus, the device exhibits a coupled electro-mechanical behavior. For

a certain applied voltage, an equilibrium position is defined by balancing the elas-

tic and electrostatic forces. In order to model and simulate this coupled behavior,

numerical iterations between the electrostatic and mechanical solutions are coupled.

In the presented analyses, the balance condition takes place when the difference be-

tween two successive iterations for the transverse deflection of the membrane is less

than a pre-determined value. The schematic diagram of the MEMS switch under

investigation embedded in an air-filled box, where the electrostatic problem is to be

solved is shown in Fig. 3.1, while Fig. 3.2 shows a general voltage node at which

the electrostatic potential to be computed based on the surrounding nodes potentials

and media characteristics.

T
Gauss’s surface 

L
R

General voltage 
node, C

Bz

x

y

F

C

K

Figure 3.2: A general voltage node C in the 3-D computational domain, surrounded
by six nodes L, R,B, T, F , and K with eight different media and the assumed closed
Gauss’s surfaces.

3.1.1 The 3-D Electrostatic Analysis

The developed electrostatic model is based on the solution for the potential distribu-

tion of the 3-D structure. It starts by meshing the computational domain in three
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dimensions with non-uniform finite difference steps for more accurate results. The

3-D integral form of Gauss’s law (3.1) is applied to all free nodes in the computational

domain, i.e.

−
∮

s

ε(x, y, z)

(
∂V

∂x
âx +

∂V

∂y
ây +

∂V

∂z
âz

)
· ânds = 0 (3.1)

where ε is the medium permittivity, ds is an element of the Gauss’s surface as shown

in Fig. 3.2, and ân is the unit vector normal to Gauss’s surface. The boundary

conditions are V = Vo on the lower electrode, Vo is the actuation voltage, and V = 0

on the outer boundaries including all nodes on the membrane (upper electrode). In

additions, Gauss’s law is applied to all interface nodes except those lay on the metallic

electrodes.

Applying the FDM to (3.1) on the closed surface contours after dividing it into

six surfaces left, right, top, bottom, front, and back as described in Fig. 3.2 leads to

an updating equation for the potential as follow:

VC − VF

yC − yF

[
ε2(xR − xC)(zT − zC) + ε3(xC − xL)(zT − zC)

+ε6(xR − xC)(zC − zB) + ε7(xC − xL)(zC − zB)

]

−VK − VC

yK − yC

[
ε1(xR − xC)(zT − zC) + ε4(xC − xL)(zT − zC)

+ε5(xR − xC)(zC − zB) + ε8(xC − xL)(zC − zB)

]

+
VC − VL

xC − xL

[
ε3(yC − yF )(zT − zC) + ε4(yK − yC)(zT − zC)

+ε7(yC − yF )(zC − zB) + ε8(yK − yC)(zC − zB)

]
(3.2)

−VR − VC

xR − xC

[
ε1(yK − yC)(zT − zC) + ε2(yC − yF )(zT − zC)

+ε5(yK − yC)(zC − zB) + ε6(yC − yF )(zC − zB)

]

+
VC − VB

zC − zB

[
ε5(xR − xC)(yK − yC) + ε6(xR − xC)(yC − yF )
+ε7(xC − xL)(yC − yF ) + ε8(xC − xL)(yK − yC)

]

−VT − VC

zT − zC

[
ε1(xR − xC)(yK − yC) + ε2(xR − xC)(yC − yF )
+ε3(xC − xL)(yC − yF ) + ε4(xC − xL)(yK − yC)

]
= 0

where L,R, B, T, F , and K denote left, right, bottom, top, front, and back, respec-
tively.

Equation (3.2) is derived assuming that the mesh is rectangular i.e. the grid lines
are parallel together and parallel to the main axes. When the electrostatic domain is
distorted due to the deformation of the switch, which arises by applying a dc voltage
between the membrane and the lower electrode, the meshes are rearranged. Thus,
the meshes in the gap region are not rectangular so far and furthermore the grid lines
are neither parallel to each other nor parallel to the main axes as illustrated in Fig.
3.3. For these reasons, equation (3.2) must be modified to model the problem.

Using linear interpolation one can obtain two voltage nodes at the left V ∗
L and

at the right V ∗
R with respect to the general node C on the horizontal axis in the x-z

plane, i.e. they have the same z-coordinates zc as the general node C as following:
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Figure 3.3: 3-D grid before and after the switch getting distorted due to the defor-
mation of the actuated switch (a) before distortion, (b) The distorted grid in the x-z
plane, and (c) In the y-z plane.

V ∗
L = VL +

zC − zL

zLT − zL
(VLT − VL) and V ∗

R = VRB +
zC − zRB

zR − zRB
(VR − VRB) (3.3a)

In the same way in the y-z plane

V ∗
K = VK +

zC − zK

zKT − zK
(VKT − VK) and V ∗

F = VFB +
zC − zFB

zF − zFB
(VF − VFB) (3.3b)

In order to set the Gauss’s top and bottom surfaces horizontal and parallel to the
x-y plane, we can average the z′s coordinates and re-calculate the new coordinates
z∗T and z∗B as follow:

z∗T = (zT1 + zT2)/2 and z∗B = (zB1 + zB2)/2 (3.3c)

where

zT1 =

(
zRT + zT

2
+

zLT + zT

2

)/
2, zB1 =

(
zRB + zB

2
+

zLB + zB

2

)/
2,

zT2 =

(
zKT + zT

2
+

zFT + zT

2

)/
2, and zB2 =

(
zKB + zB

2
+

zFB + zB

2

)/
2.

The new updating potential equation, which is used in the disturbed regions, is
equation (3.2) after substituting with the interpolated values V ∗

L , V ∗
R, V ∗

K , V ∗
F , z∗B, and

z∗T as calculated above instead of using VL, VR, VK , VF , zB, and zT . In all cases, the
updating potential equation (3.2) can be rearranged in the following general form:

VC = CF VF + CKVK + CLVL + CRVR + CBVB + CT VT (3.4)
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where VC , VF , VK , VL, VR, VB, and VT are the potentials at the center, front, back, left,
right, bottom, and top nodes depicted in Fig. 3.3. The coefficients CF , CK , CL, CR, CB,
and CT are easily computed from (3.2).

To obtain the potential distribution in the computational domain, first all free
nodes are initialized with zero voltage and then an iterative procedure is employed
to (3.4) until the potential at all free nodes converges. The coefficients C ′s in (3.4)
are calculated once outside the iterative loop, which helps a lot to have a quite short
running time to reach the steady state solution for the potential.
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Figure 3.4: Computation of the potential with a specified accuracy (a) 0.5 % error
and (b) 0.1 % error.

The accuracy of the results is completely dependent on the number of iterations
for the iterative procedure, which compute the potential. Therefore, the program
estimates the number of iterations automatically for a given percentage-accuracy.
In this analysis, the accuracy is measured in terms of the applied voltage as the
largest difference between two successive values of the potential for any node in the
computational domain. Fig. 3.4 illustrates the residual potential error as a function
of the number of iterations for different required accuracies. From Fig. 3.4(a) one
can see that for an error of 0.5 %, the required number of iterations is 81. While
267 iterations is needed for a 0.1 % error as investigated in Fig. 3.4(b). The switch
geometry that is investigated here is similar to that one reported in [23]. The switch
membrane length, width, and thickness are 300, 80, and 2 µm, respectively. It is
made of aluminum with residual stress σ of 20 MPa and Young’s modulus E of 70
MPa. The coplanar waveguide (CPW) structure has a 100 µm strip width and 60
µm gap width, while the ground planes have 190 µm width and 0.8 µm thickness.
The switch structure is built on a high-resistivity silicon substrate with 11.9 dielectric
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constant. This is coated by a 1 µm silicon dioxide buffer layer. A 0.15 µm silicon
nitride dielectric layer coats the lower electrode. The initial gap height is 1.5 µm. The
boundary box has a 600, 400, and 80 µm length, width and height in the x, y and z
directions, respectively, with about 25 µm air layer above the membrane and 50 µm
depth in the substrate, which assure a negligible field.
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Figure 3.5: 3-D potential distribution in the computational domain (a) x-z plane at
the y-symmetrical plane and (b) y-z plane at the x-symmetrical plane.

Having obtained the potential distribution, shown in Fig. 3.5, the electrostatic
field distribution can be computed from the field-voltage relation;

Ē = ∂V /∂x · âx+∂V /∂y · ây+∂V /∂z · âz

Using a quadratic interpolation technique, one can obtain expressions for the deriva-
tives for a non-uniformly spaced finite difference mesh. For example, the x-component
of the electric field can be written as:

Ex(x) = − 2x− xC − xR

(xL − xC)(xL − xR)
VL − 2x− xL − xR

(xC − xL)(xC − xR)
VC − 2x− xL − xC

(xR − xL)(xR − xC)
VR (3.5)

In the same way, the y and z-components for the electrostatic field can be calcu-
lated. We should mentioned here also that in the gap region, when the switch gets
deformed, the same interpolation technique is employed in order to apply (3.5) with
the interpolated values of the potential and the z-coordinates.

The main parameter that is calculated by the electrostatic model is the dis-
tributed force density induced on the membrane. The transverse components of
the electrostatic force density can be determined in terms of the storage energy as
p(x, y) = −dU/dz, where U is defined as U = (1/2)

∫
v

εE2dxdydz, and v is the volume

enclosed by the Gauss’s surfaces as depicted in Fig. 3.2. For any arbitrarily node
on the membrane, the following relation can expresses the electrostatic force density
induced on the membrane in the z-direction:
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p(x, y) =
1

2
εo(E

2
x + E2

y + E2
z ) N/m2 (3.6)

where ε is the air permittivity and Ex, Ey, and Ez, are the magnitudes of field com-
ponents at the corresponding node. The electrostatic force density induced on the
membrane with actuation voltage of 25 Volts for the switch dimensions similar to
those reported in [23] is depicted in Fig. 3.6(a).
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Figure 3.6: (a) Electrostatic force and (b) Charge density distributions induced on
the membrane with a dc actuation voltage of 25 Volts for the switch geometries given
above.

The electrostatic charge density ρ induced on the membrane, when a dc voltage is
applied between the membrane and lower electrode, can be determined by applying
Gauss’s law for all nodes on the bridge as follow:

ρ = −
∮

s

ε
∂V

∂n
n̂ · ânds (3.7)

where n̂ is the unit vector normal to the membrane and ds is the Gauss’s surface in the
ân direction. Equation (3.7) is applied to all nodes on the lower-face of the membrane
to calculate the accumulated charges per unit area. Assuming the membrane is biased
with zero voltage and the surrounding medium is air, after applying the FDM equation
(3.7) can be re-expressed in the following form:

ρ(xC , yC)|zon bridge
= εo

(zT − zB)(yB − yF )Ex + (zT − zB)(xR − xL)Ey + (xR − xL)(yB − yF )Ez

(xR − xL)(yB − yF )
(3.8)

where Ez, Ez, and Ez are the electric field x, y, and z components at the C node.
The charge density distribution induced on the membrane with actuation voltage of
25 Volts is shown in Fig. 3.6(b) for the same switch dimensions.

One more important parameter for the RF MEMS switch that would be calculated
by the electrostatic model is the gap capacitance. To compute this capacitance one
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needs to calculate the total charges accumulated on the lower electrode then divide
it by the applied voltage. Applying Gauss’s law around the lower electrode leads to
the following expression for the total enclosed charge using the FDM, such that

ρenclosed = −
∑

right

VR − VC

4(xR − xC)

[
ε2(yT − yC)(zC − zF ) + ε3(yC − yB)(zC − zF )

+ε6(yT − yC)(zK − zC) + ε7(yC − yB)(zK − zC)

]

+
∑

left

VC − VL

4(xC − xL)

[
ε1(yT − yC)(zC − zF ) + ε4(yC − yB)(zC − zF )

+ε5(yT − yC)(zK − zC) + ε8(yC − yB)(zK − zC)

]

−
∑
top

VT − VC

4(yT − yC)

[
ε1(xC − xL)(zC − zF ) + ε2(xR − xC)(zC − zF )

+ε5(xC − xL)(zK − zC) + ε6(xR − xC)(zK − zC)

]
(3.9)

+
∑

bottom

VC − VB

4(yC − yB)

[
ε3(xR − xC)(zC − zF ) + ε4(xC − xL)(zC − zF )

+ε7(xR − xC)(zK − zC) + ε8(xC − xL)(zK − zC)

]

−
∑

back

VK − VC

4(zK − zC)

[
ε5(xC − xL)(yT − yC) + ε6(xR − xC)(yT − yC)

+ε7(xR − xC)(yC − yB) + ε8(xC − xL)(yC − yB)

]

+
∑

front

VC − VF

4(zC − zF )

[
ε1(xC − xL)(yT − yC) + ε2(xR − xC)(yT − yC)

+ε3(xR − xC)(yC − yB) + ε4(xC − xL)(yC − yB)

]

Then the structure capacitance C is given by C = ρenclosed/Vo, where Vo is the actu-
ation dc voltage.

3.1.2 The Mechanical Model

The mechanical model is based on solving the plate (biharmonic) equation, which
models the deflection arising in a 2-D rectangular isotropic symmetric laminated
plates as reported in [64]. This equation is given by:

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
=

p(x, y)

D
(3.10)

where w is the transverse displacement in the z-direction, p(x, y) is the pressure (force
per area in N/m2), acting on the membrane, which is calculated by solving the 3-
D electrostatic problem using the electrostatic model, and D = Et3/12(1− ν2) is
the plate stiffness. E is the Young’s modules, t is the bridge thickness, and ν is the
Poisson’s ration. The fundamental assumptions of linear, elastic, and small-deflection
theory of bending for thin plates are assumed [65]. Boundary conditions are applied
for rectangular plate, assuming that the x and y axes are taken parallel to the edges
of the plate, with two opposite clamped edges and the other two are free as shown
in Fig. 3.7. For clamped edge, the deflection along this edge is zero, and the tangent
plane to the deflected middle surface along this edge coincides with the initial position
of the middle plane of the plate. Assuming the clamped edge to be given by x = 0
and x = L where L is the bridge length, the boundary conditions are:

ω(x, y)|x=0 = 0 = ω(x, y)|x=L (3.11a)

ω′(x, y)|x=0 = 0 = ω′(x, y)|x=L (3.11b)
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Figure 3.7: (a) Schematic diagram of the deformed electrostatic loaded fixed-
fixed beam, (b) A general node on the membrane surrounded by 12 nodes
(a, b, c, d, e, f, g, h, o, p, r, and s) to be used by the FDM to approximate the 4th order
derivatives in the plate equation, (c) The rectangular plate (membrane).

The free edges to be given by y = 0 and y = b where b is the bridge width. Along these
free edges there is no bending and twisting moments and also no vertical shearing
forces. These conditions give the following boundary conditions:

[
∂2ω

∂y2
+ ν

∂2ω

∂x2

]

y=0

= 0 =

[
∂2ω

∂y2
+ ν

∂2ω

∂x2

]

y=b

(3.12a)

[
∂3ω

∂y3
+ (2− ν2)

∂3ω

∂y∂x2

]

y=0

= 0 =

[
∂3ω

∂y3
+ (2− ν2)

∂3ω

∂y∂x2

]

y=b

(3.12b)

Applying the FDM to (3.10) for a general node k on the membrane surrounded
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by twelve nodes a, b, c, d, e, f, g, h, o, p, r, and s, shown in Fig. 3.7, the fourth order
derivatives are approximated, which can be translated as follow:

we

∆4
y

+
2wo

∆2
x∆2

y

+
(−4

∆4
y

− 4
∆2

x∆2
y

)
wf +

2wp

∆2
x∆2

y

+
wa

∆4
x

+
(−4

∆4
x

− 4
∆2

x∆2
y

)
wb

+
(

6
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x

+
8
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)
wk +

(−4
∆4

x
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)
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+
wd

∆4
x
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x∆2

y

+
(−4
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y

− 4
∆2

x∆2
y

)
wg +

2ws

∆2
x∆2

y

+
wh

∆4
y

=
Pk

D

where ∆x and ∆y are the mesh sizes in the x and y directions, respectively. Applying
(3.13) to all nodes on the bridge using the stated boundary conditions in equations
(3.11a) and (3.12b), a system of equations can be generated. Solving the generated
system of equations, the transverse displacement for all nodes on the bridge can be
determined and hence the bridge deformation is realized.

V E F

EndConvergence?

Figure 3.8: A simplified flowchart for the coupling process between the mechanical
and electrostatic analysis.

3.1.3 The Electrostatic-Mechanical Coupling Process

The coupled models start by solving the electrostatic problem for the potential distri-
bution in the 3-D computational domain. After having calculated the potential dis-
tribution, the electrostatic field and then the electrostatic force can be determined.
Having determined the electrostatic force distribution induced on the membrane,
the mechanical model can be initiated to determine the deformation in the mem-
brane, which in turn alters the force distribution. This cycle between the electrostatic
and mechanical models is considered as one iteration. The program goes back and
forth between the electrostatic and mechanical models until the bridge’s deformation
reaches steady state. Fig. 3.9(a), 3.9(b), 3.9(c) and 3.9(d) illustrate the electrostatic
charge and force densities induced on the membrane center node and the correspond-
ing displacement at the same node and the gap capacitance as a function of the
number of iterations between the electrostatic and mechanical models, respectively.
The steady state conditions reached after six iterations with a tolerance of 0.001 µm
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Figure 3.9: Coupling between the electrostatic and mechanical models procedure, (a)
Electrostatic charge, (b) Electrostatic force densities induced on the membrane center
node, (c) Membrane center node displacement, and (d) Gap capacitance, all versus
the number of iterations between the electrostatic and mechanical models, all with
actuation voltage of 25 Volts for the considered example.

between two successive values in the displacement of the membrane center node. The
input accuracy for the potential calculations is 0.1 %.

For MEMS analysis, it is usually assumed that the pull down occurs when the
microstructure travels down to (2/3)go, where go is the initial gap height. This is
considered the unstable mechanical position of the membrane. Hence the back and
forth switching between the electric and mechanical models converges as long as the
switch works in the mechanical stability region otherwise it may diverge. Therefore,
the iteration is stopped when the maximum deflection is greater than or equal (1/3)go,
which corresponds to the pull down voltage for the MEMS switch as illustrated in
Fig. 3.11(c). The collapsing of the membrane to the lower electrode after being
traveled more than (1/3)go can be explained in terms of the dramatic increase in
the electrostatic force at certain biasing voltage, so-called pull down voltage (Fig.
3.11(a)), that compared to the elastic force (mechanical restored force) induced on
the bridge. This elastic force is a self-induced mechanical force that tries to restore
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the bridge to its original position. The stable position of the membrane reaches when
the electrostatic force balances with mechanical restored force.
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Figure 3.10: (a) The deformed membrane at different values of applied voltage, (b)
Electrostatic force density distribution with applied voltage equals to the pull down
value.

3.2 Results and Discussions

In the verification process, some standard fixed-fixed beam bridge RF MEMS shunt-
capacitive switches are simulated and compared with the published data [23, 63, 15].
The pull down voltage calculated by the present algorithm is compared with the
measured values reported in those citations and with those calculated using the 1-D
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Figure 3.11: (a) Electrostatic force density induced on the bridge center node versus
the applied voltage, (b) Gap capacitance versus the applied voltage, and (c) Position
of the bridge center node in terms of the applied voltage, all for the switch dimensions
of that reported in [23].

and 2-D models were introduced in [23] and in the last chapter, respectively. The
comparison results are summarized in Table 3.2. As an example here, the shunt-
capacitive RF MEMS switch reported in [23] is modeled using our approach and
the computed pull down voltage was found to be very closed to the measured value,
(Vpi = 29.9 and 30 Volts modeled and measured, respectively). The Young’s modulus
E of the membrane in our calculations was 70 GPa and the residual stress was 20
MPa. The number of cells in the mesh in the x, y, and z directions were 45, 40, and 58,
respectively have been used. To achieve a 0.05 % error in the potential computation,
a maximum number of iterations of 500 in the potential computation procedure are
used.

Figure 3.10(a) shows the shape of the deformed membrane at different values of
applied voltage for a shunt-capacitive RF MEMS switch, geometrically was similar
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to that given in [23]. The electrostatic force density distributed on the membrane
at applied voltage equals to the pull down value is illustrated in Fig. 3.10(b). The
maximum force density induced at the bridge center node in terms of the applied
voltage is illustrated in Fig. 3.11(a), which explains how the switch gets pull down.
The gap capacitance and the position of bridge center node in terms of the applied
voltage are illustrated in Figs. 3.11(b) and 3.11(c), respectively. The CPU time,
which is required to get a stable membrane shape when the switch is actuated with
certain voltage on a PC with AMD opteron processor 250 with 3.39 GHz and 2.0 GB
RAM is 3.824 minutes. The input required accuracy for the potential computation is
0.1 %.

Table 3.1: Comparison of the pull down voltage (Volts) between the 1-D, 2-D, and
3-D models (σ = 20 MPa).

Switch’s 1-D Model 2-D Model 3-D Model Reported
geometry [23] [66] [Present] values

Goldsmith [15] 48.7 47.9 36.2 30-50 [15]
Muldavin [23] 39.4 34.4 29.9 20-30 [23]
Rebeiz [63] 51.7 47.5 39.2 35-39 [63]

3.3 Conclusion

In the present chapter, a three-dimensional electrostatic-mechanical coupled model
for the fixed-fixed beam bridge RF MEMS shunt-capacitive switches has been intro-
duced. A simulation program is developed to determine the deformation of the bridge
as a function of the actuation voltage. The electrostatic model is based on solving the
integral form of Gauss’s law in a 3-D Cartesian coordinates system using the central
difference approximation for the derivatives. An efficient iterative procedure is em-
ployed for the solution of the potential distribution. The algorithm is very efficient to
determine the pull down voltage of the RF MEMS shunt-capacitive switches. How-
ever, it can be used for other types of RF MEMS structures. The developed algorithm
and the presented program are capable to determine the bridge deformation, pull-in
voltage and to investigate the effect of source fluctuations on the switch performance
efficiently. The developed algorithm and the presented program proved that they can
be easily integrated in the computer-aided design tools for RF MEMS switches saving
a great deal of CPU time allowing the designer free to gain valuable physical insight
while conveniently and quickly exploring a wide design space.



Chapter 4

Design and Optimization of RF
MEMS Switches

In the previous chapters we concerned ourselves with a purely theoretical modeling

of the RF MEMS switches. In the current chapter we deal in detail with design and

circuit aspects of the RF MEMS switches. Two different RF MEMS switch designs

are investigated and optimized based on numerical experimentations technique using

3-D electromagnetic (EM) and circuit simulators. The first one is a π-configuration

RF MEMS switch for high isolation and wideband applications. It is constructed

using the standard fixed-fixed beam bridge shunt-capacitive and series-resistive RF

MEMS switches connected in a π-configuration. The second one is a single-pole

three-throw (SP3T) RF MEMS switch for phased arrays and switching networks for

satellite communication applications. For both switches, the electrical circuit model

is studied for more understanding and for the optimization purpose.

4.1 π-Configuration RF MEMS Switch

The conventional RF metrics characterizing MEMS switches are: 1) The insertion loss

in the ON-state; 2) The isolation (i.e. 1/|S21|) in the OFF-state; and 3) The return

loss (i.e. 1/|S11|) in both states. During the course of this study, efforts are done

to improve these metrics. In other words, achieving high isolation in the OFF-state

and low insertion and return losses in the ON-state. The complexity of the proposed

structure here is much less than that of different researchers, who tried to improve

the isolation in the OFF-state by using multi-switch architectures [21, 18, 67]. The

proposed switch is in the fabrication process, so that the demonstrated results are

based on numerical experimentations using 2.5D EM simulator (Sonnet software [68]).

In many applications, a wider band and a higher isolation than that offered by single

switches are required. In [21] a network of four parallel switches has been designed.

While in [18, 67], three alternative structures to achieve such a goal are proposed,

namely, two MEMS bridges, cross and series-shunt switches. In this contribution,

53
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Figure 4.1: Schematic diagram of (a) shunt-capacitive MEMS switch, (b) series-
resistive MEMS switch, (c) π-configuration RF MEMS switch, and (d) Equivalent
circuit topology for the π-switch.
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depending on the filter theory, a series-shunt combinations as a π configuration as

shown in Fig. 4.1 are arrange to achieve that request.
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Figure 4.2: EM simulations for the single RF MEMS (a) Shunt-capacitive and (b)
Series-resistive switches at Up and Down states.

4.1.1 Design and Description

A π-type RF MEMS switch is constructed as a shunt-capacitive, series-resistive and

shunt-capacitive switches connected in a cascaded configuration as illustrated in Fig.

4.1. High isolation at the high frequency portion of the band is provided by the shunt

arm while at the low frequency portion this is achieved by the series arm. The shunt

arms are constructed using the standard shunt-capacitive RF MEMS switch, shown

in Fig. 4.1(a). While, the series arm is constructed using the series-resistive RF
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Figure 4.3: EM simulations for the π-structure RF MEMS switch at (a) ON and (b)
OFF states.

MEMS switch, shown in Fig. 4.1(b). Both series and shunt switches are constructed

as fixed-fixed beam architecture. Therefore, they are not very sensitive to the residual

stress in the supporting beam. The fixed-fixed beam is usually easy to fabricate and

does not require special processing compared to the dielectric beams or the thick

low-stress electroplated cantilever [67]. Both shunt and series arms are fabricated

simultaneously using the same steps, as the fabrication processes of both switches

are compatible. These switches first are designed and optimized using a 3-D EM

simulator. The EM simulations of the single separate shunt and series RF MEMS

switches are depicted in Figs. 4.2(a) and 4.2(b), respectively. The EM simulations

of the optimized π-type MEMS switch at ON and OFF states are shown in Fig. 4.3.

The optimized ON-state return loss (S11) is a minimum of 25 dB from dc to 50 GHz,

and a minimum of 12 dB up to 60 GHz. The insertion loss (S21) is less than 0.4 dB up
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to 50 GHz. The OFF-state isolation (S21) is greater than 40 dB up to 50 GHz. The

isolation is only degraded above this frequency due to the existence of a resonance at

54 GHz. The π-switch is built on high resistivity silicon substrates (> 5 kΩ.cm) of

630 µm thickness and 11.9 relative permittivity, with a 1 µm-thick of silicon dioxide

buffer layer (εr = 3.9). The switch circuit is constructed on the top of the buffer layer

using a 3 µm-thick aluminum coplanar waveguide line with dimensions of G/W/G

= 80/120/80 µm corresponding to a characteristic impedance of 50-Ω. The bottom

electrode of the switch is built using 0.3 µm of refractory metal. This film provides a

high value of the conductivity, which leads to the low loss performance. In addition,

it achieves a good contact between the membrane and the lower electrode due to

its smooth surface finish. Therefore, it minimizes any air gab between them, which

results in a maximum down-state capacitance for the shunt branch. A thin film of

silicon nitride of a 0.1 µm thickness is placed on the top of the lower electrodes to

prevent the dc control signal from shorting the supply during the switch actuation.

However, it allows the RF signal to capacitively couple the upper membrane with the

lower electrode. The metallic switch membrane has length, width, and thickness of

280, 80, and 0.6 µm, respectively, made of gold. It suspenses above the lower-electrode

with initial height of go = 2.5 µm. This membrane is made of a high conductivity

metal, which produces low RF resistance and good mechanical properties. The pull-

down electrodes are connected using high resistivity bias lines up to the edge of the

ground plane of the CPW line. The silicon nitride layer is also used to isolate the

bias lines from the ground plane. The isolation in the series switch is achieved by an

air gap of 60 µm width in the signal line underneath the membrane. Dimples with

10×20 µm2 area are deposited on the RF signal line underneath the membrane to

achieve a good metallic contact when the series switch is actuated.

4.1.2 Numerical Experimentations

The radio frequency responses shown in Fig. 4.3 of the proposed π-type RF MEMS

switch are achieved by an iterative optimization technique. Some of these trials are

depicted in Fig. 4.4. A transmission line of 230 µm length is used to connect the shunt

and the series arms. This structure produces good isolation over a wide bandwidth.

The very high isolation (> 80 dB) is hard to obtain in practices due to the noise floor

effect. Our target is to improve the return loss while preserve a high isolation over a

wide band. This is achieved by incorporating a matching network between the series

and the shunt arms. Fig. 4.4(a) shows the inserting of inductive elements between

the series and shunt arms with a length of λ/8 at 20 and 40 GHz and changing their

widths, w1 and w2, respectively. The S-parameters of inserting those elements in

terms of changing their widths are illustrated in Fig. 4.4(b) and 4.4(c), respectively.

Another inductive element is inserted at the input and output ports with an electrical

length of λ/8 at 40 GHz as depicted in Fig. 4.4(d). This figure also shows controlling
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Figure 4.4: π-switch optimization based on numerical experimentations (a) Inserting
inductive elements between the shunt and series arms, S-parameters for changing
(b) w1, (c) w2, (d) Inserting inductive elements at the input and output ports and
controlling the length of the inner inductive elements, S-parameters for changing (e)
l, and (f) w3.
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length, l of the inner inductive element. The insertion and return losses versus the

outer inductive element’s width and the inner element’s length while maintaining its

width at 40 µm are illustrated in Figs. 4.4(e) and 4.4(f), respectively. In all cases, the

isolation at the OFF-state is not affected by inserting those inductive elements. This

is because the isolation is controlled by the gap width in the series resistive switch

at low frequencies and by the down-state capacitance of the shunt switch at high

frequencies. It is sufficient to control the width of the inductive elements to obtain

a very low return loss for a selected frequency range within the band of frequencies

without disturbing the isolation. The power handling capability of the switch could

be affected by reducing the width of the inductive elements, which puts a limitation

on how much narrow width we can reach?
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Figure 4.5: Equivalent circuit model for the π-structure RF MEMS switch at (a) ON
state and (b) OFF state.

4.1.3 Circuit Modeling

The π-switch is first characterized using the 3D EM simulator to extract its S-

parameters at both ON and OFF-states. In addition, the EM circuit simulator (Mi-

crowave Office software [69]) is used to find out an appropriate equivalent circuit for

the π-switch. The shunt arm is modeled by one lumped CLR branch, which repre-

sents the bridge with the capacitance changing its values from up-state to down-state.

The series arm is modeled by a series capacitance at the up position (OFF-state) and
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Figure 4.6: Equivalent circuit and EM simulations of the π-type RF MEMS switch
at (a) ON state and (b) OFF state.

by a series inductance and resistance branch at the down-position (ON-state). A

combination of series resistance and inductance models the taper in the series arm.

The distances between the series and the shunt arms are modeled by transmission

lines of different characteristic impedances. The electrical circuit models for the pro-

posed π-type RF MEMS switch at ON and OFF states are shown in Figs. 4.5(a)

and 4.5(b), respectively. Those circuit models are used to fit, as close as possible, the

S-parameters of the switch, which are obtained using the EM simulator. The modeled

and simulated results for both ON and OFF states are shown in Figs. 4.6. Good

matching between the circuit and EM simulations assure that the proposed equitant

circuit model could describe the π-type RF MEMS switch with sufficient accuracy.
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4.1.4 Switch Layout

For the fabrication process a set of mask sequences for the switch is designed and these

masks are shown in Fig. 4.7. Mask no. 1, deposits the lower electrodes of the shunt

capacitive switches. Mask no. 2, forms the bias lines, pads, and the lower electrodes

of the series switch. Mask no. 3, deposits the dielectric layer (Si3N4) to isolate the

bias lines and lower electrodes of both switches when the bridges are actuated. Mask

no. 4 is to grow up the coplanar line and the posts for all bridges. Mask no. 5 defines

the membranes for the RF MEMS switch. The proposed π-configuration RF MEMS

switch needs five masks in total. All fabrication processes are compatible with the

MMICs technology.
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Biasing lines Pads
- OFF

- ON

+ OFF Pads + ON

(a) Layout of the π-reconfigurable RF MEMS switch

(b) Mask no. 1 (c) Mask no. 2 (d) Mask no. 3

(e) Mask no. 4 (f) Mask no. 5

Figure 4.7: Set of the mask sequences for the π-configuration RF MEMS switch.
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4.2 SP3T Wideband RF MEMS Switch

The development of RF MEMS switches has attracted a great deal of interest [63]

during the last decade. However, most of the research has been directed to develop

single-pole, single-throw (SPST) switches. To the best of the author’s knowledge,

there is a limited reported work for the multi-port RF MEMS switch. In [70] a single-

pole, double-throw (SPDT) switch has been designed for X- and K-band frequency

ranges, based on a shunt-capacitive switch. That switch exhibits a typical of 40 dB

isolation at both 7 and 20 GHz, and an insertion loss of 0.95 dB at 7 GHz and of 0.69

dB at 20 GHz. In [71] a SP3T switch has been implemented in hybrid-form where the

beams (cantilever beams) are micromachined separately and then integrated on an

alumina substrate using flip-chip technology. It exhibits a typical of 0.5 dB insertion

loss at 16 GHz and of 20 dB isolation at 18 GHz.

Some application areas of MEMS switches including single-pole, N-throw (SPNT)

switches are in phased arrays, switching networks for satellite communications and

portable unites and base stations for wireless applications. Using MEMS switches

to replace solid-state switches in SP3T arrangement has many advantages as stated

above. In addition, it can be implemented in a more compact area and does not

require a matching network when integrated in MMICs circuits. Through this work,

an SP3T RF MEMS switch is presented. Electromagnetic simulations in addition to

circuit modeling are used to design and optimize the switch. Three series-configured,

resistive-contact RF MEMS switches based on fixed-fixed beam architecture are used

to construct the complete SP3T switch. The SP3T switch exhibits an insertion loss

of about 0.45 dB, a minimum of 22 dB return loss, and a minimum isolation of 20 dB

between the different ports in the frequency range from dc to 25 GHz. The proposed

switch is currently in the fabrication process. So that, the demonstrated results are

based on numerical experimentations only.

4.2.1 Design and Description

Figure 4.8(a) illustrates a single-pole, three-throw (SP3T) RF MEMS switch struc-

ture. The SP3T switch is a four-port device designed in coplanar waveguide envi-

ronments to be easily integrated with IC’s circuits. The input port is connected to a

50-Ω characteristic impedance CPW line with dimensions G/W/G of 80/120/80 µm.

The CPW lines are made of aluminum with thickness of 3 µm. The series-resistive

RF MEMS switches are built on the CPW lines with an initial gap height of 3 µm.

The isolation of the switch is achieved by an air gap in the RF signal lines of width

80 µm underneath the membrane. A good contact between the membrane and the

RF signal line at down-position can be achieved with help of dimples with an area of

10×20 µm2 that are employed on the RF signal line underneath the membrane. The

bias lines and the lower electrodes are made of high resistivity metal (NiCr) with a

sheet resistance of 1400 kΩ/square. The membranes are made of gold with thickness
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Figure 4.8: The SP3T RF MEMS switch (a) Schematic diagram, and (b) Equivalent
circuit model.
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of 0.6 µm and 300×100 µm2 area. The tapers in the RF signal lines under the mem-

branes helps a lot to reduce the parasitic capacitance of the series switch while it is in

the up position and leave more space to increase the lower electrodes, which in con-

sequence reduce the required actuation voltage. An inductive element with length of

120 µm is used to connect it to the junction. This junction is branched into the three

output ports using inductive elements of 480 µm length for each. A series-resistive

switch is constructed on the CPW line of each of the output ports. This switch is

used to open or short the center conductor of the CPW line to the output port. These

series switches are constructed with fixed-fixed beam architectures. When the series

switch is actuated the RF input signal passes to its port. On the other hand, the RF

signal is reflected away from the arm containing the non-actuated switch.
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Figure 4.9: EM and equivalent circuit simulations for the SP3T RF MEMS switch in
case of port 2 is ON while ports 3 and 4 are OFF, (a) Return and insertion losses,
(b) Different ports isolations.
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Figure 4.10: EM and equivalent circuit simulations for the SP3T RF MEMS switch
in case of port 3 is ON while ports 2 and 4 are OFF, (a) Return and insertion losses,
(b) Different ports isolations.
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4.2.2 EM Simulation and Circuit Modeling

A numerical experimentation is applied to optimize the switch structure shown in Fig.

4.8(a). The radio frequency performance of the SP3T switch is characterized over a

wide frequency range from dc to 40 GHz using a 2.5D electromagnetic simulator

(Sonnet Suite). In addition, the corresponding circuit model is studied as well in

order to get more understanding about its RF performance. The circuit model is

shown in Fig. 4.8(b). Fig. 4.9 illustrates a comparison between the equivalent circuit

model and the EM simulation results obtained from the EM simulator in the case

where port 2 (or 4) is in the ON-state and both ports 3 and 4 (or 3 and 2) are in the

OFF-state, keeping in mind the symmetry of the SP3T switch. Fig. 4.10 demonstrate

the S-parameters when port 3 is in the ON-state and both ports 2 and 4 are in the

OFF-state.

4.2.3 Switch Layout

For the purpose of fabrication processes, the set of mask sequences are designed as

shown in Fig. 4.11. Mask no. 1 defines the CPW line and the slots for the bias lines

and the dimples. Mask no. 2, is for deposition of the bias lines, pads, and the lower

electrodes of the series switches. Mask no. 3 deposits the dielectric layer (Si3N4) to

isolate the bias lines and the lower electrodes of the series switches. Mask no. 4, is for

deposition of the metal for the CPW lines and the posts for the bridges of the series

switch. Mask no. 5 defines the bridges of the series switches. The switch fabrication

process is compatible with conventional CMOS processes.

4.3 Conclusion

Based on numerical experimentation technique using 3-D EM and circuit simulators,

two type of RF MEMS switches have been designed and optimized. The first one is

a π-configuration RF MEMS switch for high isolation and wideband applications. It

results in a minimum return loss of 25 dB in the range from dc to 50 GHz, and of 12

dB up to 60 GHz along with a minimum insertion loss of 0.4 dB up to 50 GHz in the

ON-state. At the OFF-state the isolation is greater than 40 dB up to 50 GHz. To

the best of our knowledge, this is the highest isolation reported so far for RF switches

over such a wide frequency band. This switch is suitable for applications where a

high isolation, low loss and good matching are required.

The second one is a single-pole, three-throw RF MEMS switch configuration for

phased arrays, switching networks for satellite communications and portable unites

applications. It consists of three series-configured, metal-to-metal contact, RF MEMS

switches based on fixed-fixed beam architecture in a coplanar environment. The SP3T

switch shows good results: an insertion loss of about 0.45 dB, a minimum return loss of
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Figure 4.11: Set of the mask sequences for the SP3T RF MEMS switch.
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22 dB, and a minimum isolation of 20 dB between the different ports in the frequency

range from dc to 25 GHz have been achieved.

The expected actuation voltage for those switches lies in the range of 20 to 30

Volts depending on the fabrication conditions. The equivalent circuit models for

both switches have been also studied for more understanding and optimization pur-

pose. The equivalent circuit and EM simulations agree very well to each other, which

validates the proposed equivalent circuit models. The π and SP3T switches have been

built on a CPW environment. This makes it easy to integrate them into MICs or

MMICs circuits. Both switches need five masks where the fabrication processes are

compatible with the MIC’s technology.



Chapter 5

DGS: Design and Applications

5.1 Introduction

Defected ground structures (DGS) add an extra degree of freedom in microwave circuit

design. The defect in the ground of planar transmission line (e.g. microstrip, coplanar

and conductor backed coplanar waveguides) adds parallel-connected inductor, capaci-

tor, and resistor to the equivalent circuit model of the transmission line [39,72], which

leads to a rejection of the signal at a certain frequency determined by the shape and

size of the defect. The equivalent circuit can be physically interpreted as follows:

The defect increases the path of the current, which induces an inductor. It is also

comparable to the wavelength, thus a potential drop occurs across it, which leads to

an equivalent capacitance. The resistance R corresponds to the losses in the defect.

In this chapter two different designs of defected ground structures are introduced.

Those two types are simple and can be easily designed to cover a wide range of

frequency band. The first one is a 2-D periodic DGS based on the repetition of

a unit-cell (standard dumbbell structure) in a simplified and systematic way. The

second one is an L-shaped DGS. The L-shaped section can be repeated in series at

one or at both sides to prolong the current’s path and thus to increase the effective

inductance and capacitance of the structure. The proposed structures are designed in

CPW environment. However, it can be applied for microstrip technology too. High

performance bandstop filters are designed using the proposed DGS structures. The

equivalent circuit models for the proposed DGS are studied and the parameters af-

fecting the inductance, capacitance and resistance are separately determined. Several

DGS structures are designed, fabricated, and measured for the validation purpose.

5.2 2-D Periodic DGS for CPW Line

A two-dimensional periodic dumbbell structure is proposed; the dumbbell structure is

added as a unit-cell in a systematic way in both horizontal and vertical directions to

69
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Figure 5.1: Schematic diagram of (a) Standard dumbbell structure, (b) Seven-cells
2-D periodic DGS structure, A-A is the symmetrical axis of the structures.

construct the 2-D periodic DGS. This technique best utilizes the area to get very low

stop band frequencies. Design methodology, electromagnetic simulation and equiv-

alent circuit model are presented in the next sections. These are followed by the

experimental verification.

5.2.1 Structure Design Methodology

The 2-D periodic DGS for CPW structure is based on the standard dumbbell struc-

ture, shown in Fig. 5.1(a). The cells are added such that the symmetry along the

axes (A-A) of the dumbbell is kept unchanged. Thus, for the two-cells structure, a

cell is added above the first cell. For three-cells, two-cells are placed to the left and to

the right of the first cell. The same process is applied for larger number of cells. The

schematic diagram of seven cells is shown in Fig. 5.1(b). The schematic diagrams

of two, three, four, and five-cells are shown in Fig. 5.2, respectively. For the case of

seven and eight-cells, we preferred to put them in the third row instead of the first

row.
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(a) (b)

(c) (d)

Figure 5.2: The proposed two-dimensional periodic DGS for CPW line (a) two-Cells,
(b) three-Cells, (c) four-Cells, and (d) five-Cells.

5.2.2 EM Simulation and Circuit Modeling

The unit dumbbell structure was designed for coplanar waveguide line with 50 Ω

characteristic impedance for good RF impedance matching. The CPW has dimensions

of G/W/G equal to 0.2/2.8/0.2 mm, where W is the width of the center conductor

and G is the slot width as shown in Fig. 5.1. The dielectric constant of the substrate

is 3.38, its height is 0.813 mm, and the metal thickness is 35 µm. The first step in

the design is to optimize the parameters of the unit-cell to get a stop band response

centered at a certain frequency, e.g. 12 GHz, with the constraint that the unit-cell has

dimensions of a×a and it is etched in both ground planes symmetrically at distance

a/2 far from the slots of the CPW line. This was achieved using the 3-D EM simulator,

”Microwave Studio version 5.0”. The optimized dimensions for the unit-cell are: a×a

= 2×2 mm, and a gap of width t = 0.2 mm.
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Figure 5.3: RF frequency response for the 2-D periodic DGS with different number
of repeated cells (a) Return loss S11, and (b) Transmission loss S21.

Two, three, and up to nine-cells are arranged as explained in the previous section,

shown in Fig. 5.2. Their performances are investigated using the Microwave Studio

EM simulator. The S-parameters of the eight structures are illustrated in Fig. 5.3.

The transmission parameter S21 depicts a minimum at a frequency determined by the

structure geometry. Its value decreases as the number of cells increase. For n = 2 (n

is the number of cells) this frequency is 7 GHz, while for n = 9, the frequency is 4

GHz. In all structures, the magnitude of S21 at the resonant frequency is below -20

dB except n = 2.

The performance of the periodic defected ground structures is modeled using cir-

cuit lumped elements. Fig. 5.4(a). illustrates the equivalent circuit model. It con-

sists of a parallel RLC resonance to model the defected region [73] and two sections

of transmission lines connected in series at both sides of the resonant circuit. The

length of the transmission line is equal to the distance from the center of the basic

unit-cell to the reference plane, L/2 = 14 mm, the characteristic impedance is 50.6 Ω

and the effective dielectric constant is 1.885 as determined by the EM simulator. The

validation of the equivalent circuit model is depicted in Fig. 5.4(b), where the EM

and circuit simulations for a single unit cell are compared. This equivalent circuit

model is the same for any number of repeated cells, only the values of the equiva-

lent circuit parameters are varied. Fig. 5.4(c) shows the variation of the equivalent

capacitance, inductance, and resistance as a function of the number of cells. The

equivalent capacitance is approximately constant independent of the number of cells,

while the equivalent inductance increases linearly as the number of cells increases

and there are minor changes in the resistance. These results can be interpreted to

the structure geometry as follows: As the number of cells increases, the path of the

current increases, which increases the value of the inductance linearly since all cells

have constant perimeter. The capacitance is mainly determined by the capacitance
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of the gap of the first cell, which is kept constant in all iterations. The resistance

corresponds to the radiation, conductor, and dielectric losses in the defect.
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Figure 5.4: The dumbbell-shape DGS structure, (a) Equivalent circuit model, L,C,
and R correspond to the defected region (b) EM and equivalent circuit simulations,
(c) Equivalent capacitance, inductance, and resistance versus the number of repeated
cells for the 2-D periodic DGS structure.

5.2.3 Experimental Verifications

Two, three, and four-cells 2-D periodic DGS structures for CPW line are fabricated

on Ro4003c substrate with all design parameters similar to that described in the

simulations. The picture of the fabricated structures is shown in Fig. 5.5(a). The

structures are measured using 8722D vector network analyzer from 1-10 GHz. Figs.

5.5(b), 5.5(c) and 5.5(d) show the measured S-parameters for the two, three, and

four-cells 2-D periodic DGS structures, respectively. Results of the EM and circuit

simulations are also shown on the same graph. Excellent agreement is achieved.
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Figure 5.5: (a)Pictures of the fabricated 2-D periodic DGS structures (two, three,
and four repeated cells). Measurements, EM and equivalent circuit simulations for
the fabricated structures (b) two-Cells, (c) three-Cells, and (d) four-Cells.

5.2.4 Cascaded 2-D Periodic DGS for CPW Line

The 2-D periodic DGS is cascaded to get a wide stop band with very sharp edges

bandstop filters. The number of cells in the cascaded periodic DGS sections controls

the center frequency of the stop band. The number of the cascaded sections and

the separation between them control the sharpness and the width of the band. Two,

and four sections separated by 3 mm using four-cells 2-D periodic DGS structures

are fabricated and measured with 2.5, 3.8 GHz bandwidth and more than 27, 33 dB

rejection, respectively. Pictures for the fabricated structures are shown in Fig. 5.6(a).

The measured and simulated RF performances are shown in Fig. 5.6(b) and 5.6(c).

Good agreement is achieved.
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Figure 5.6: (a) Picture of two and four-cascaded sections of four-repeated cells 2-D pe-
riodic DGS structures, (b) RF performance for the fabricated two-cascaded sections,
and (c) four-cascaded sections.
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Figure 5.7: (a) Conventional coplanar waveguide transmission line, (b) L-shaped
defected ground structure and (c) RF frequency response of a single-sided one-section
(SS1S) L-shaped DGS.

5.3 L-Shaped DGS for CPW Line

An L-shaped defected ground structure for coplanar waveguide is proposed as shown

in Fig. 5.7(b), which is a modification from the conventional coplanar waveguide

shown in Fig. 5.7(a). The L-element is then added in series at one side, Fig. 5.8(a),

or at both sides, Fig. 5.8(b). This technique increases the path of the current and thus

increases the inductance of the defect. Increasing the number of the L-sections will

increase the capacitance simultaneously since the area of the capacitance effectively

increases. However, as it can be seen in Fig. 5.9, the surface current distribution
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SS4SSS3SSS1S SS2S

(a)

DS3S DS4SDS2SDS1S

(b)

Figure 5.8: One, two, three, and four L-shaped DGS repeated in (a) Single-sided and
(b) Double-sided.

calculated at 4 GHz using the 2.5D planar EM simulator Sonnet version 9.52 suggests

that the magnitude varies in the direction of the propagation and thus both inductance

and capacitance are not simply connected in series or in shunt, respectively.

The objective of this study is to present a criterion that determines the depen-

dence of the equivalent circuit elements (i.e. capacitance, inductance, and resistance)

on the design parameters of the defect and to incorporate these defects into filters

to improve their performance compared to conventional design. However, to the au-

thor’s knowledge, the physical dependence of the equivalent circuit of the defect and

its design parameters on the field distribution has not yet been investigated. As con-

sequence, the L-shaped DGS structure is studied and the electric and magnetic fields

within the defect are investigated using an EM simulator. From this study, parame-

ters affecting L,R, and C separately are determined. Numerical experimentation of

the effect of different design parameters are carried out, which leads to a very wide

variation of the band-stop frequency (2.8-10.5 GHz). Based on parameter sweeping,
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(a) (b)

Figure 5.9: Surface current distribution at 4 GHz of (a) Conventional CPW line and
(b) SS1S L-shaped defected ground structure

two wideband bandstop filters are designed using cascaded four cells of double-sided

two-sections L-shaped DGS. The achieved central frequencies are 6.0 and 3.7 GHz and

the band-stop widths are 2.8 and 2.0 GHz with rejection larger than 30 and 25 dB,

respectively. All numerical investigations are confirmed experimentally and excellent

agreement is achieved.
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Figure 5.10: Electric field distributions of DS2S DGS at 5.5 GHz (a) x-component
and (b) z-component

5.3.1 Theory and Basic Idea

The electric and magnetic field distributions in an RF multi-conductors structure

can be used to determine a proper equivalent circuit. The intensity of these fields
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Figure 5.11: y-Component of the magnetic field distributions for DS2S DGS at 5.5
GHz

determines which parts of the metal contribute to the equivalent circuit. A single-

sided one-section (SS1S) L-shaped structure, which defects the ground of the CPW

(shown in Fig. 5.7(b)) leads to disturbing the electric and magnetic field distributions

and reducing the transmission around a certain frequency f1 (here f1= 8.4 GHz) as

shown in Fig. 5.7(c).

The tangential components of the electric field distribution on the metallization

plane for the double-sided two-sections (DS2S) L-shaped DGS determined at 5.5 GHz

using Microwave Studio version 5.0 are shown in Fig. 5.10 and Fig. 5.11, respectively.

For the sake of illustration, Fig. 5.10 is divided into two regions: region I, where

the electric field is highly concentrated in the gap, hence any change in the dimensions

of the gap will affect the effective capacitance of the structure. The electric fields

reduce toward the end of this region. In region II, the electric field nearly vanishes.

This means that the length of the last finger of the last L-section will not affect

the effective capacitance of the structure. Fig. 5.11 illustrates the magnetic field

distribution on the metallization plane for the DS2S DGS at the same frequency. The

current is distributed throughout the whole structure. Therefore any change in the

length of the L-section will strongly affect the magnetic field distribution and hence

the surface current, which in turn will lead to a change in the effective inductance of

the structure.

In conclusion, to control the inductance while keeping the capacitance constant,

regions of negligible electric field should be first determined, then changing the cur-

rent’s path length controls the inductance. On the other hand, to have a capacitance-

controlled structure the variation of the length of the current pathes should be neg-

ligible.
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5.3.2 Structure Design and Discerption

The L-shaped DGSCPW unit cell is shown in Fig. 5.7(b). The height of the defect

is h. The width of the air gap is g, the strip width is t, and the distance of the L-

shape’s edge to the CPW slot is equals to d. The L-shaped DGS structure looks like

an interdigitated capacitor with finger width and spacing being b and t, respectively.

The L-sections are added in series either at one side or at both sides to keep the

symmetry as illustrated in Figs. 5.8(a) and 5.8(b), respectively.

The L-shaped defected ground structure was designed for a coplanar waveguide

line with 50 Ω characteristic impedance (G/W/G = 0.2/2.8/0.2 mm) for good RF

impedance matching, where W is the width of the center conductor and G is the width

of the slot. The substrate height is 0.813 mm, the dielectric constant is 3.38 and the

metal thickness is 35 µm. The first step in the design is to optimize the parameters

of one L-section at one side to get a stop band response centered at certain frequency

(here at 8.38 GHz). The resulting dimensions of the L-shaped, which is etched in

both ground planes symmetrically are: h = 4, s = 0.6, and g = t = d = 0.3 mm. The

dimensions of the DS2S defect as shown in Fig. 5.14 are l = 3.4, d = 0.3, h = 4, b =

0.3, t = 0.3 and c is 0.0 mm.

5.3.3 EM Simulation and Circuit Modeling

One, two, three, and four L-sections are arranged at one side and at both sides as

shown in Figs. 5.8(a) and 5.8(b), respectively. Their performances are investigated

using the 3-D EM simulator Microwave Studio version 5.0. The S-parameters of the

structures are shown in Fig. 5.12. The transmission loss, S21 depicts a minimum at

a frequency determined by the structure geometry and it decreases as the number

of L-sections increases. For a single-sided one-section (SS1S), the center frequency

is 8.38 GHz, while for the double-sided four-sections (DS4S), it is 4.21 GHz. In all

structures, the magnitude of the rejection, S21, at the resonant frequency is more

than 23 dB.

The RF performance of the L-shaped defected ground structures has been mod-

eled using circuit elements as well. The equivalent circuit model is presented in Fig.

5.13(a). It consists of a shunt connected capacitance, inductance, and resistance

with two cascaded sections of transmission lines at both sides. The transmission line

length is half the physical length of the total structure port to port, L/2 = 10 mm,

its characteristic impedance is 50.4 Ω and the effective dielectric constant is 1.88 as

determined by the EM simulator. The S-parameters of the equivalent circuit and

the EM simulations for double-sided three-sections (DS3S) DGS are presented in Fig.

5.13(b). Good agreement is achieved. Little difference between the circuit and the

EM simulations is observed at high frequencies due to the frequency dependence of the

capacitance and inductance. The variation of the equivalent capacitance, inductance,

and resistance are almost changed linearly as a function of the number of repeated
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Figure 5.12: EM simulations for the L-shaped DGS for CPW in terms of the number
of repeated L-sections, (a) Return loss S11 and (b) Transmission loss S21.

L-sections, however the corresponding increasing rates are not Lo, Co, Ro, (the induc-

tance, capacitance and resistance of a unit cell), since the magnitude of the voltage

and current along the defect are not constants as predicted in the introduction.

5.3.4 Parametric Analysis

Based on numerical experimentations using the 3-D electromagnetic simulator, the

L-shaped DGS is analyzed and designed. All its parameters are optimized to obtain

specified resonant frequency. A second L-section is added and duplicated at both sides

to form a double-sided two-sections (DS2S) DGS as shown in Fig. 5.14 to reduce the

resonant frequency from 8.4 to 5.8 GHz. The dimensions of the DS2S are varied

to determine which parameter affects the inductance, capacitance, and resistance to
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Figure 5.13: L-shaped DGS circuit modeling, (a) Equivalent circuit model, and (b)
Equivalent circuit and EM simulations for SS1S and DS4S L-shaped DGS. The circuit
parameters R,L, and C are 1.3 kΩ, 0.89 nH, and 0.405 pF for SS1S structure and 4.5
kΩ, 2.4 nH, and 0.6 pF for DS4S structure, respectively.

verify the idea presented in Section 5.3.1. Fig. 5.15(a) shows the variations of the

DS2S resonant frequency fo with all cell dimensions. The width of the central gap (g)

and the width of the slot (t) are multiplied by 10 to be included on the same graph.

When the length of the whole defect (h) varies, the length of the L-shaped defect (l)

is kept constant. In this case, the whole defect penetrates the ground. Similarly when

the distance between the defect and the slot of the CPW (d) varies, h is kept constant.

Thus in the extreme case, the L-shape turns into a T-shape. When t changes, s is

kept equal to 0.8 mm. During simulation, all dimensions are kept constant when one

parameter changes. The initial values are those mentioned above. The resonance

frequency increases with respect to b, c, l, and h and decreases with respect to g, t,

and d.

For every point shown in Fig. 5.15, the parameters of the equivalent circuit model
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are optimized relative to the S-parameters obtained from the EM simulation. The

parameters can also be determined using the equations given in [73] knowing the

center frequency of the band reject and the 3 dB cutoff frequency taken from the S21

curve. Fig. 5.15(b) shows the variation of the equivalent capacitance as a function of

the DS2S dimensions. The capacitance increases as l, h and b increase and decreases

as d, t, and g increase. Meanwhile it is constant as c increases. This is consistent with

the theoretical predictions. Since the defect acts as an interdigitated capacitor, l, h

and b effectively increase the area and thus increase the total capacitance, while g and

t increase the separation between the two electrodes and thus reduce the capacitance.

As for d, it decreases the whole area of the capacitor when it decreases and thus

the capacitance decreases. On the other hand c has a different effect, in this region

the electric field is weak and hence it does not affect the capacitance. Fig. 5.15(c)

illustrates the variation of the equivalent inductance with all sweeping parameters. It

increases as all parameters except d and g increase. It decreases as d increases and it

remains constant as g varies. This is also consistent with the theoretical predictions.

All parameters except d and g increase the length of the current path and this in turn

increases the equivalent inductance. On the other hand, when d increases the length

of the defect decreases and consequently the inductance reduces. The central gap

width g does not vary the current path and hence the inductance remains constant.

c

t
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g

t

d
G

W

G

Figure 5.14: Double-sided two-sections (DS2S) L-shaped defected ground structure
for CPW line.

The effect of the cell parameters on the equivalent resistance has been studied as
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Figure 5.15: Sweeping parameters analysis of the DS2S L-shape DGS, (a) Variation
of the center frequency fo (GHz), (b) Variation of the equivalent capacitance C (pF),
(c) Variation of the equivalent inductance L (nH), (d) Variation of the equivalent
resistance R (kΩ) in terms of sweeping parameters. The dimensions are: c = 0, h =
4, l = 3.4, and t = g = d = b = 0.3, mm. When t changes from 0.2 to 0.6, the
parameter s equals to 0.8 mm.

well, as illustrated in Fig. 5.15(d). This resistance corresponds to the radiation, the

conductor, and the dielectric losses in the defect as shown in [74]. It is found that

the resistance is almost constant as b and d change, and minor change occurs when

l, g, and t change. However, as h and c increase, the resistance decreases. This can

be explained by the fact that at resonance some of the energy radiates due to the

magnetic current induced on the ground plane. The radiated power is roughly related

to the DGS size and if its size becomes comparable to the wavelength, it will function

as a radiator instead of a resonator. In this structure, the radiation loss is small since

the sum of the reflected and transmitted power is very close to unity as depicted in

Fig. 5.13(b). Table 5.3.4 summarizes the relation between the sweeping parameters

and the equivalent circuit model of the defect.
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Table 5.1: DS2S Parameters and their effects on the elements of the equivalent circuit
model.

Ranges (mm) fo (GHz) C (pF) L (nH) R (kΩ)

b 1-5 4.02-2.85 ↑ ↑ –
h 5-9 5.52-4.00 ↑ ↑ ↓
l 2-6 10.5-4.12 ↑ ↑ –
d 0-3 3.60-4.39 ↓ ↓ –
t 0.2-0.6 3.94-4.31 ↓ – –
g 0.2-0.5 5.56-6.20 ↓ – –
c 0-4 5.47-4.20 – ↑ ↓

↑ increases, ↓ decreases, – constant.

5.3.5 Measurements and Applications

Different structures are fabricated on Rogers substrate. All dimensions are as de-

scribed in the simulations. Pictures of the fabricated single-sided one-section, double-

sided two-sections, and double-sided three-sections L-shaped DGS structures for CPW

line are shown in Fig. 5.16(a). The fabricated structures are measured using a 8722D

vector network analyzer calibrated with standard calibration technique in the fre-

quency band from one to 10 GHz. The measured and the simulated data for the

three structures are shown in Figs.5.16(b), 5.16(c),and 5.16(d). Good agreement is

achieved.

The unit cell of the L-shaped DGS can also be cascaded periodically to get more

flexible characteristics. Fig. 5.17(b) shows the transmission loss S21 for different

number of cascaded DS2S L-shaped DGS cells. The separation between the cells

is 4 mm and all other dimensions are as described above. The coupling between

the cells, which is a function in the separation between the cells and their number,

alters the resonance frequency and widens the bandwidth. To obtain a wideband

bandstop filters, the double-sided two-sections L-shaped DGS unit-cell is repeated

four times as shown in Fig. 5.17(a). The separation between the repeated unit-cells

(a) is optimized to get the deepest rejection, widest bandwidth, and sharpest edges.

The best performance was achieved when a = 4 mm. Two filters having two different

central frequencies are fabricated. The first has l = 3.4 mm, d = 0.3 mm, central

frequency of 6.0 GHz, bandwidth of 2.8 GHz, and a rejection of larger than 30 dB.

The second has l = 6.4 mm, d = 2.0 mm, central frequency of 3.7 GHz, bandwidth

of 2.0 GHz, and a rejection of larger than 25 dB. The measured and EM data are

illustrated in Fig. 5.17(c) and 5.17(d). The measured and simulated results are in

good agreement.



5.4. Conclusion 86

(a)

1 2 3 4 5 6 7 8 9 10

Fre

-40

-30

-20

-10

0

S
-P

a
r
a

m
e

te
r
s

 [
d

B
]

S11 Circuit Simulation

S11 EM Simulation

S11 Measurement

S21 Circuit Simulation

S21 EM Simulation

S21 Measurement

S11 S21

quency[GHz]

(b)

1 2 3 4 5 6 7 8 9 10

Fre

-40

-30

-20

-10

0

S
-P

a
r
a

m
e

te
r
s

 [
d

B
]

S11 Circuit Simulation

S11 EM Simulation

S11 Measurement

S21 Circuit Simulation

S21 EM Simulation

S21 Measurement

S11 S21

quency [GHz]

(c)

1 2 3 4 5 6 7 8 9 10

Frequency [GHz]

-40

-30

-20

-10

0

S
-P

a
ra

m
e
te

rs
 [

d
B

]

S21S11

S11 Circuit Simula S21 Circuit Simulationtion

S11 EM Simulation S21 EM Simulation

S11 Measurement S21 Measurement

(d)

Figure 5.16: (a) Photograph of the fabricated L-shaped DGS structures, (b) S-
parameters of single-sided one-section (SS1S), (c) Double-sided two-sections (DS2S),
and (d) Double-sided three-sections (DS3S) L-shaped DGS for CPW line.

5.4 Conclusion

A two-dimensional periodic defected ground structure (2-D PDGS) for coplanar waveg-

uide line is proposed. The proposed structure is based on the standard dumbbell

structure, which is repeated periodically in a simplified and systematic way to con-

trol the central resonant frequency. The introduced structure has the advantage of

having an almost constant capacitance while the inductance varies linearly as the

number of cells increase, which simplifies the design process. The center frequency

varies from 7 GHz down to 4 GHz with more than 20 dB rejection in the stopband

when the number of cells increase from two to nine cells. Two and four sections

of PDGS are cascaded to form wide-bandstop filters with high rejection. Excellent

agreement is achieved between the EM and circuit simulations and the experimental

results.

An L-shaped defected ground structure for coplanar waveguide line is analyzed

and designed. This L-shaped structure consists of L-shaped unit cell that is repeated

in single-sided or in double-sided (to keep symmetry) to prolong the current path and
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Figure 5.17: Cascaded four-cells DS2S L-shaped DGS for CPW (a)Picture of the
fabricated structures, (b) Insertion loss S21 for one, two, three, and four cascaded
sections, (c) Measured and EM simulated S-parameters. The separation a is equal to
4 mm, (c) Parameters are as shown in Fig. 2. (d) Similar to (c) except that l = 7 mm,
and h = 2 mm.

hence to increase the effective inductance and the effective capacitance. The center

frequency varies from 8.38 GHz for single-sided one L-section (SS1S) down to 4.21

GHz for double-sided four L-sections (DS4S) with more than 23 dB rejection in the

stopband. Both electric and magnetic fields within the defect are carefully studied

and their impact on the equivalent circuit model was discussed. The structure has a

linear variation of the equivalent capacitance and inductance relative to the number

of L-sections. It has a very low center frequency with very compact size compared to

the standard dumbbell structure with the same area. The variation of the resonant

frequency as well as the parameters of the equivalent circuit in terms of the L-shaped

design parameters are illustrated. All theoretical predictions are confirmed with the

S-parameters measurement. This large number of variable permits the design of

resonators that cover a wide range of frequencies (2-12 GHz). Two bandstop filters

are designed and experimentally verified using four cascaded cells of double-sided two-

sections L-shaped DGS with 4 mm separation. The achieved central frequencies are

6.0 and 3.7 GHz and the stopband widths are 2.8 and 2.0 GHz with rejection larger
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than 30 and 25 dB, respectively, and low loss (< 0.2 dB) in the pass-band regions. All

numerical investigations have been confirmed experimentally and excellent agreement

is achieved. It is expected that the L-shaped DGS structure will have potential

applications in RF and microwave circuits.



Chapter 6

RF MEMS Reconfigurable DGS
Resonator

In this chapter, the 2-D PDGS for CPW, which has been introduced in the last

chapter, is re-designed on a high-resistivity silicon substrate. The resonant frequency

is transferred to be in the K-band for transceivers and automotive applications. The

number of the periodic cells controls the resonant frequency as described earlier.

Fixed-fixed beam RF MEMS series-resistive switches [12] are constructed on the 2-D

PDGS to control the number of the active cells by shorting out the others as shown in

Fig. 6.1. Therefore, the resonant frequency is changed according to the number of the

un-shorted cells. The 2-D PDGS in the presence of the MEMS switches and the rest

of the CPW compose the introduced MEMS reconfigurable DGS resonator, which

through this paper will be called loaded resonator. While in absence of the MEMS

switches it is called unloaded resonator. The introduced MEMS reconfigurable DGS

resonator has approximately a fixed bandwidth of about 8.1 GHz over a wideband

frequency range (K-band). The proposed structure can be designed easily for other

frequency bands by changing the number of unit-cells of the 2-D PDGS. A cascaded

two parallel-resonance circuits model for the MEMS reconfigurable DGS resonator is

introduced as well. The equivalent circuit parameters extraction methods have also

been derived. Simulations based on the proposed circuit model are in a very good

agreement with the electromagnetic (EM) simulations, which suggests that the MEMS

reconfigurable DGS resonator is an inductive controlled reconfigured structure. The

structure is designed in CPW environment on a high-resistivity silicon substrate. It

is therefore suitable for monolithic integration with standard IC process.

The current chapter is organized as follows: section 6.1 describes the design and

the optimization of the 2-D PDGS on a high-resistivity silicon substrate to operate at

21.1 GHz. The equivalent circuit model and how the circuit parameters are extracted

are described in the same section as well. The RF MEMS series-resistive switch is

investigated in section 6.2. Section 6.3 introduces the MEMS reconfigurable DGS

resonator and the proposed cascaded two-parallel resonance circuit model and the

89



6.1. 2-D PDGS for CPW on Si-Substrate 90

method of the circuit-parameters extraction. This is followed by the conclusion.
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Figure 6.1: Schematic diagram of a MEMS reconfigurable DGS resonator designed
using five unit-cells of a 2-D PDGS for CPW line and eight fixed-fixed beam RF
MEMS series-resistive switches to get 64 resonance states in the K-band frequency
domain.

6.1 2-D PDGS for CPW on Si-Substrate

Recently, a 2-D periodic defected ground structure (PDGS) for CPW line has been

proposed in [75]. It has been designed for X-band frequency range and fabricated on

a Ro4003c substrate using MIC technology. It is based on the repetition of a unit-

cell (standard dumbbell) in a simplified and systematic way to control the resonance

of the DGS. Here, five cells of the 2-D PDGS are considered as an example for the

analysis and the verification of the idea. The structure has been re-designed on a high-

resistivity silicon (ρ > 4 kΩ.cm) substrate of 635 µm thickness covered by a 1.0 µm

SiO2 buffer layer. The CPW line has G/W/G equals to 40/70/40 µm corresponding

to 50 Ω characteristic impedance and 2.5 µm thickness of Al metallization. The

defect is etched in both sides of the ground planes of the CPW symmetrically. The

dimensions of the defected structure, as shown in Fig. 6.2(a), are g = 40 µm and a =

200 µm. The designed parameters are optimized to achieve a resonance at a selected

frequency (here is 21.1 GHz) with a rejection more than 34.5 dB at the resonant

frequency and insertion loss of about 0.1 dB in the lower passband and with less than

2.5 dB in the upper passband as depicted in Fig. 6.2(c).

The 2-D PDGS, shown in Fig. 6.2(a), is analyzed using the full-wave 2.5D planar

EM simulator Sonnet version 10.52. The EM simulation provides a frequency response
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Figure 6.2: Two-Dimensional periodic DGS for CPW line with five periodic unit-
cells, (a) Schematic diagram, (b) Equivalent circuit model, and (c) EM and circuit
simulation S-parameters

with one cutoff frequency and one-attenuation pole. This frequency response can be

model accurately by a single parallel RLC resonance as shown in Fig. 6.2(b). The

resistance R is always very large and accounts for the different losses in the structure.

To extract the parameters of the equivalent circuit model, the resonant frequency

ωo and the 3 dB cutoff frequency ωc are first determined from the EM simulations.

The resonant frequency ωo in terms of the parallel resonant circuit elements is given

by:

ωo = 1
/√

LC (6.1)

where L and C are the inductance and capacitance of the parallel inductor and

capacitor, respectively. The 3 dB cutoff frequency is determined using S21 curve



6.2. RF MEMS Series-Resistive Switch 92

(assuming that both transmission lines are very short) as follows:

The equivalent impedance of the parallel resonance is given by

Z =
1

1/R + 1/jωL + jωC
(6.2)

and from the circuit theory,

S21 =
2Zo

2Zo + Z
=

2Zo

2Zo + 1
1/R+1/jωL+jωC

(6.3)

at the 3 dB cutoff frequency point ωc

|S21| = 2Zo√
4Z2

o +
(

ωc/C
ω2

o−ω2
c

)2
=

1√
2
, assuming R >> Zo (6.4)

Rearranging (6.4), the capacitance of the equivalent circuit model is given by:

C =
ωc

2Zo(ω2
o − ω2

c )
(6.5)

substituting back in (6.1), the inductance value L can be determined.

The resistance R in the equivalent circuit model is best fitted around the resonant

frequency ωo. In this case, the equivalent impedance is Zs = R and the transmission

loss S21 is

S21|ω=ωo
=

∣∣∣∣
2Zo

2Zo + Zs

∣∣∣∣ =
2Zo

2Zo + R
⇒ R = 2Zo

1− S21|ωo

S21|ωo

(6.6)

To validate the circuit model, the five-cells 2-D PDGS shown in Fig. 6.2(a) with

the dimensions given above is simulated using an EM simulator. The extracted R,

L and C are 5.22 kΩ, 0.546 nH and 0.104 pF, respectively, where fc and fo are 14.8

and 21.1 GHz, respectively and S21|ωo = 0.0188. The two simulation results are in a

very good agreement as illustrated in Fig. 6.2(c).

6.2 RF MEMS Series-Resistive Switch

Figure 6.3(a) shows the schematic diagram of a fixed-fixed beam, series-configured,

and resistive-contact RF-MEMS switch, which has been introduced in [12]. This

switch is implemented in the proposed structure because it operates over a wide

frequency band (0-30 GHz). It is based on a fixed-fixed beam, which makes its

fabrication process straightforward. Further more, it is compatible with the standard

MIC technology and does not require a high DC actuation voltage (Vpi ≈ 20 Volts).

These switches are combined with the 2-D PDGS as shown in Fig. 6.4, such that
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when being actuated, some cells will be shorted out and consequently the properties

of the DGS structure will change. This will lead to a change in the resonant frequency.

To study the RF performance of the MEMS series-resistive switch whose dimen-

sions are adjusted to fit the slots of the 2-D PDGS, it is re-designed in CPW envi-

ronment, as shown in Fig. 6.3(a). The substrate is a high-resistivity silicon (ρ > 4

kΩ.cm) coated by a 1.0 µm SiO2 buffer layer. The bridge of the MEMS switches is

made of Au to improve the mechanical properties. The corresponding length, width,

and thickness of the switch’s membrane are 280, 80, and 1.0 µm, respectively. The

initial gap height is 2.5 µm. The lower electrode is made of the high-resistivity metal

NiCr with a sheet resistance of 1400 Ω/square which is coated by a 0.15 µm Si3N4 di-

electric layer to prevent DC short circuit. At the OFF-state (no DC biasing voltage

is applied) the isolation is caused by a gap in the RF signal line of the CPW un-

derneath the membrane that has a width of 40 µm. At the ON-state (DC biasing

voltage is applied) a dimples of 20 µm2 area and 0.2 µm height on the signal line of the

CPW underneath the membrane is employed to reduce the contact resistance when

it is contacting the bridge. The designed MEMS switch is analyzed using the EM

simulator (Sonnet). The RF frequency responses of the single-separated RF MEMS

series-resistive switch in both the ON and OFF-states are shown in Fig. 6.3(b). In

the ON-state, the insertion loss is about 0.1 dB and the return loss is about 30 dB

up to 30 GHz. While in the OFF-state, the isolation is more than 20 dB up to 10

GHz and more than 12 dB up to 30 GHz.
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Figure 6.3: Fixed-fixed beam RF MEMS series-resistive switch, (a) Schematic dia-
gram, and (b) RF frequency response of a single-separated switch at the ON and
OFF states
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6.3 RF MEMS Reconfigurable DGS Resonator

Figure 6.1 shows the schematic diagram of the proposed MEMS reconfigurable DGS

resonator. While Fig. 6.4 depicts the half-symmetry 2-D plane of the proposed

structure illustrated in Fig. 6.1. It consists of five cells of the 2-D PDGS in CPW

environment and eight RF MEMS series-resistive switches based on fixed-fixed beam

to cover the whole K-band for transceivers and automotive applications. The recon-

figured resonator is designed as follows: First the 2-D PDGS in CPW environment is

designed as described in section 6.1 to operate at a selected frequency (here is 21.1

GHz) using five unit cells arranged as shown in Fig. 6.2(a). Then eight RF MEMS

series-resistive switches that are described in the last section are constructed on both

ground planes of the CPW symmetrically around the slots, which join the cells in the

2-D PDGS together. To reduce the parasitic capacitance of the MEMS switches at

the up-position (OFF-state of the series switch) and keep the switch isolation quite

high, the slots are tapered from 200 µm down to 90 µm as illustrated in Fig. 6.4.

This taper does not affect the 2-D PDGS response itself and this is checked before

constructing the MEMS switches. Another advantage of these tapers is the availabil-

ity of free space, which allows the increase of the lower-electrodes area. Consequently,

the reduction of the pull-down voltage of the MEMS switches.
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Figure 6.4: Half-symmetrical 2-D view of the RF MEMS reconfigurable DGS res-
onator, which is depicted in Fig. 6.1.

The introduced MEMS reconfigurable DGS resonator is designed and analyzed

using the full-wave 2.5D EM simulator. The RF frequency response of the MEMS

reconfigurable DGS resonator in the case of zero applied voltage to all MEMS switches

is investigated in Fig. 6.5. The resonant frequency is 19.4 GHz with more than 25

dB rejection. The insertion loss in the lower passband is less than 0.1 dB, while the
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bandwidth is about 8.1 GHz. The quality factor (determined from the well-known

center-frequency/bandwidth definition Q = ωo/2α = ωo/∆ωo) is about 2.4, keeping

in mind that this value includes the effect of a 500 µm length of the CPW transmission

line at both sides and the effects of the RF MEMS switches as well.

Having eight switches, which can be actuated individually, 28 states can be prin-

cipally obtained. However, because the structure has a vertical and horizontal sym-

metries, only 26 states are available. The highest and the lowest frequency values

are determined by “no switches are actuated” and “switches S1, S2, S4, S5, S6 and

S8 are actuated”, respectively. Between these two frequencies 64 states are available,

which means a fine granularity in discrete frequency steps between the upper and

lower limits.

The loaded resonator is analyzed and simulated using the EM simulator at differ-

ent states of the RF MEMS switches to get the RF frequency response. The lowest

resonant frequency (19.4 GHz) has been obtained when no switches are actuated.

While the highest resonant frequency (27.1 GHz) is obtained when S1, S2, S4, S5,

S6 and S8 are actuated. We should mention here that when all switches are actu-

ated, the defected ground structure would be nearly completely destroyed and the

total structure behaves as a simple coplanar transmission line, i.e. there is no filter

resonance in this case.

The following cases describe the performance of the loaded resonator at different

conditions of the switches:

Case 1) The MEMS switch S1 - no symmetry - is actuated. In this case the 2-D PDGS

operates with four cells at one side, while the MEMS switch shorts the 5th cell.

As a result, the resonant frequency increases from 19.4 GHz up to 20.1 GHz.

Case 2) The two symmetrical switches S1 and S5 are actuated. The structure in this

case operates with four cells at both sides so that the resonance increases up to

21.1 GHz.

Case 3) Switches S1 and S4 are actuated – no symmetry – to cancel two cells at one

side only so that the center frequency shifts further up to 21.9 GHz.

Case 4) Switches S1 and S4 as well as their mirrors images S5 and S8 are actuated to

change the resonance to 25.3 GHz.

Case 5) At one side, three switches are actuated (namely, S1, S2 and S4) to get the

resonance at 22.6 GHz.

Case 6) The symmetrical switches S1, S2, S4 and S5, S6, S8, respectively, are biased to

get the highest resonant frequency at about 27.1 GHz.

The reflection coefficient S11 and the transmission coefficient S21 in all these cases are

illustrated in Fig. 6.5(a) and 6.5(b), respectively.
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Figure 6.5: RF frequency response of the MEMS reconfigurable DGS resonator in
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6.3.1 Circuit Model and Parameters Extraction

The electromagnetic simulation of the loaded resonator shows that it has two attenu-

ation poles and one full-transmission frequency within the range of 0-35 GHz. Hence,

two cascaded parallel RLC circuits in addition to two transmission lines at each end,

whose lengths equal to half of the physical length of the total structure (1000 µm)

will model this structure accurately. The equivalent circuit model is depicted in Fig.

6.6(a) and the EM simulations are shown in Fig. 6.6(b). The first and the second

stop frequencies, ω1 and ω2, can be determined from this frequency response. More-

over, the full-transmission frequency point ωo and the 3 dB cutoff frequency ωc can

be determined as well. These frequencies are sufficient to extract all the parameters

of the equivalent circuit model as it is shown below.

The equivalent impedance of the cascaded parallel resonance circuits is

Z =
1

1/R1 + 1/jωL1 + jωC1

+
1

1/R2 + 1/jωL2 + jωC2

(6.7)

The reflection coefficient S11 is given by

S11 =
Z

2Zo + Z
=

1
1/R1+1/jωL1+jωC1

+ 1
1/R2+1/jωL2+jωC2

2Zo + 1
1/R1+1/jωL1+jωC1

+ 1
1/R2+1/jωL2+jωC2

Assuming that R >> Zo, S11 is reduced to

S11 =

jωL1

1−ω2L1C1
+ jωL2

1−ω2L2C2

2Zo + jωL1

1−ω2L1C1
+ jωL2

1−ω2L2C2

(6.8)

The above expression has two poles at

ω1 = 1
/√

L1C1 and ω2 = 1
/√

L2C2 (6.9)

The transmission coefficient S21 is given by

S21 =
2Zo

2Zo + Z
=

2Zo

2Zo + jωL1

1−ω2L1C1
+ jωL2

1−ω2L2C2

(6.10)

It has full transmission at ωo, which is given by

jωoL1

1− ω2
oL1C1

+
jωoL2

1− ω2
oL2C2

= 0

Hence the full transmission frequency ωo is given by:

ωo =
√

C1ω2
1 + C2ω2

2

/√
C1 + C2 (6.11)
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Similarly the 3 dB cutoff frequency ωc at ω1 is determined by |S21| = 1
/√

2, which

leads to

ωc

2Zo

(
1/C1

ω2
1 − ω2

c

+
1/C2

ω2
2 − ω2

c

)
= 1 (6.12)

From (6.11) and (6.12) the capacitances C1 and C2 of the equivalent circuit model

are given by:

C1 =
ωc

2Zo

(
(ω2

o − ω2
c )(ω

2
2 − ω2

1)

(ω2
1 − ω2

c )(ω
2
2 − ω2

c )(ω
2
o − ω2

1)

)
(6.13a)

C2 =
ωc

2Zo

(
(ω2

o − ω2
c )(ω

2
2 − ω2

1)

(ω2
1 − ω2

c )(ω
2
2 − ω2

c )(ω
2
2 − ω2

o)

)
(6.13b)

The inductances L1 and L2 of the equivalent circuit model can be directly determined

from (6.9).

The resistances R1 and R2 of the circuit model are best fitted around the resonant

frequencies ω1 and ω2, respectively. In this case, the impedance around the first

resonant frequency ω1 is dominated by the first parallel resonance where the equivalent

impedance is Zs1 ≈ R1 and the transmission loss S21 is given by:

S21|ω=ω1
=

∣∣∣∣
2Zo

2Zo + Zs1

∣∣∣∣ =
2Zo

2Zo + R1

⇒ R1 = 2Zo

1− S21|ω1

S21|ω1

(6.14a)

The impedance around the second resonant frequency ω2 is dominantly by the

second parallel resonance where the equivalent impedance is Zs2 ≈ R2 and the trans-

mission loss S21 is given by:

S21|ω=ω2
=

∣∣∣∣
2Zo

2Zo + Zs2

∣∣∣∣ =
2Zo

2Zo + R2

⇒ R2 = 2Zo

1− S21|ω2

S21|ω2

(6.14b)

To validate the circuit model, the reconfigured resonator is simulated with the

dimensions of the five-cells 2-D PDGS being that given in section 6.1. The dimensions

of the RF-MEMS switches are given in section 6.2 with all MEMS switches being

identical. The extracted R1, R2, L1, L2, C1 and C2 are 1.95, 1.02 kΩ, 0.4928, 0.0772

nH and 0.1366, 0.3307 pF, respectively. These values correspond to f1, f2, fc andfo of

19.4, 31.5, 14.05, and 28.5 GHz, respectively, while |S21| = 0.04887 and 0.08922 at f1

andf2, respectively. The results of the proposed equivalent-circuit-model simulation

are in a very good agreement with the EM simulation results as illustrated in Fig.

6.6(b).
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Figure 6.7: Equivalent circuit model capacitance and inductance of the first parallel
resonator of Fig. 6.6(a) as a function of the different cases discussed above in terms
of switches states.

The introduced MEMS reconfigurable DGS resonator operates as an inductive

controlled structure. Fig. 6.7 shows how the equivalent circuit capacitance and in-

ductance of the first parallel resonance change when the different switches change

their states from the ON to OFF as discussed in the cases mentioned above. The

equivalent capacitance and inductance of the second parallel resonance are almost

constant because they don’t play any role with the first attenuation pole. As shown

in Fig. 6.7, the capacitance is almost constant while the inductance changes linearly

as a function of the number of the downstate switches or, in the same meaning, as

a function of the active unit cells of the 2-D PDGS. This agrees well with the inves-

tigation presented in [75] for the 2-D PDGS. The structure is therefore an inductive

controlled one in terms of the number of the periodic cells. Even with the presence of

the MEMS switches the 2-D PDGS is still an inductive controlled structure because

the MEMS series switches control the number of cells in the 2-D PDGS only.

6.4 Conclusion

In this chapter, an RF MEMS reconfigurable DGS resonator using two-dimensional

periodic defected ground structures in CPW environment and fixed-fixed beam RF

MEMS series-resistive switches that covers the whole K-band for transceivers and/or

automotive applications has been presented. The MEMS reconfigurable DGS res-

onator has been designed on a high-resistivity silicon substrate in CPW environment

that is suitable for monolithic integration in the context of a standard planar mi-

crowave process. The proposed reconfigured resonator has a bandwidth of 8.1 GHz

with more than 20 dB rejection over the whole K-band frequency range. A cascaded

double-parallel-resonance circuit model for the reconfigured resonator has been pro-

posed. Methods to extract the parameters of the equivalent circuit from the EM
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simulations for the 2-D PDGS and the MEMS reconfigurable DGS resonator have

been derived as well. The EM and the circuit simulation results are in a very good

agreement, which validates the proposed circuit model. Simulation shows that the

introduced resonator is an inductive controlled reconfigured structure. The proposed

structure is very flexible to be designed for different frequency bands since the reso-

nant frequency can be controlled by either the number of unit cells of the 2-D PDGS

or the unit cell dimensions or both. The possible combination of the switches provides

a fine granularity in discrete steps over a wide frequency range.



Chapter 7

Conclusions

The research contained in this dissertation has developed 2-D and 3-D coupled elec-

tromechanical models for RF MEMS switches. It has also produced characterizations

of several MEMS switches and defected ground structures in CPW technology. As

an application for both MEMS switches and DGS structures, a new RF MEMS re-

configurable DGS resonator has been proposed.

This chapter contains a conclusion of the findings of this research by highlighting

the most significant observations concerning the 2-D and 3-D coupled models as well

as the design and optimization of these switches, DGS structures, and reconfigurable

resonator. Several future research ideas are also presented.

7.1 Contributions

Computer simulators are powerful tools that can help in the design of electrome-

chanical devices, and aid in the understanding of the device behavior. Two and

three-dimensional simulation coupled models were devolved in this thesis, with the

applications of the models to describe and characterize proposed RF MEMS switches

and MEMS reconfigurable DGS resonator.

Chapter 1 gives a full survey on the MEMS technology and the state-of-the-art

of RF-MEMS switches and the previous work in the MEMS switch modeling. In

addition, a short review on the DGS structures and its potential application for

MEMS technology has been demonstrated.

Chapter 2 and 3 presented contributions in developing 2-D and 3-D coupled

electrostatic-mechanical models for electrostatically actuated fixed-fixed bridge RF

MEMS switches. The electrostatic models compute the potential distribution in the

computational domain very accurately. The actual field distribution and hence the

electrostatic force density induced on the membrane have been also calculated accu-

rately. The mechanical models determine the bridge’s deformation arises from the

101
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induced electrostatic force by solving the beam/plate equation using the finite dif-

ference method. The strong interaction between the electrostatic and mechanical

models is considered iteratively. The strengths and weaknesses of the 2-D and 3-D

simulation models were compared and contrasted.

Well-characterized RF MEMS switches have been designed in Chapter 4. A π-

configuration RF-MEMS switch for wideband and high-isolation applications as well

as a single-pole three-throw (SP3T) RF MEMS switch have been presented. The

π-switch exhibits a minimum isolation of 50 dB in the frequency range from dc to

50 GHz and of 30 dB in the frequency range from 50 to 60 GHz. The insertion loss

ranges from 0.2 to 2 dB and a minimum of 25 dB return loss up to 50 GHz. While

the SP3T switch yields an insertion loss of about 0.45 dB and a minimum of 22 dB

return loss in the frequency range from dc to 25 GHz. A minimum of 20 dB isolation

between the different ports has been achieved over the same frequency range. The

equivalent circuit models that describe the switches performance quite well, have been

also introduced. The demonstrated results were based on numerical experimentations

using a 3-D full wave electromagnetic simulators.

New designs of defected ground structures (DGS) in CPW environment has been

proposed in Chapter 5. A 2-D periodic DGS based on the repetition of a lattice shape

in both horizontal and vertical directions has been investigated. The design has the

advantage of having an almost constant capacitance and linear inductance variation

as the number of cells increases, which simplify the design process. An L-shaped DGS

for CPW line is also presented and the L-section is repeated at one side or at both sides

to control the cutoff frequency characteristics. It has the advantage of being either

capacitive or inductive controlled structure. The behavior of the electromagnetic

field in the L-shaped DGS has been investigated and the parameters affecting the

inductance, capacitance, and resistance of the equivalent circuit model are separately

determined. Numerical experimentation of the effect of different design parameters

have been carried out, which leads to a very wide variation of the band-stop frequency

(2.8-10.5 GHz). High performance bandstop filters using cascaded periodic DGS are

designed and experimentally successfully verified. Results show that they have the

advantage of very small size.

In Chapter 6 an RF MEMS reconfigurable DGS resonator is designed and op-

timized. It has approximately a fixed bandwidth of about 8.1 GHz over the whole

K-band regime. It can be also easily re-designed for other frequency bands by control-

ling the number of the unit-cells of the 2-D PDGS. A cascaded two parallel-resonance

circuit model for the reconfigurable resonator has been proposed as well. The chap-

ter ended with a quantitative description of the equivalent circuit model parameters

extraction.

The developed models have been presented in Matlab version 7 and samples from

these programs are given in Appendices A and B.
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Finally, some related publications to this work are given in page 137.

7.2 Suggestions for Future Work

The goal is always to progress towards the eventual objective of developing a full

three-dimensional model valid over a wide range of dimensions and actuation regimes.

Accurate and general electrostatic models in 2-D and 3-D are always desirable due to

the high cost of solving electrostatics problems in three dimensions. Accurate mod-

els for the tip of a cantilever will allow accurate characterization of electrostatically

actuated cantilever beams. After generalizing the models, a complete software pack-

age with a simple graphical user interface can be developed and integrated to any

computer-aided design tools for the RF MEMS structures.

Producing good MEMS models is the key to efficient and useful simulations. The

3-D model accuracy can be improved by including higher-order effects, such as axial

and residual stresses in the plate equations. Development of new models will allow

simulation of a wider range of microsystem designs. Experimental verification of

models is extremely important and will remain a worthwhile research area for several

years.

Additionally, the introduced DGS structures proved its potential to be applied to

design high performance lowpass and bandpass filters with miniaturized size. To study

the miniaturization technology, DGS may be important in our future research. We

are very interested in building a complete library of the equivalent circuit parameters

values in terms of the defect physical dimensions to simplify the design process.

Last, fabricating and measuring the proposed MEMS components in this disser-

tation to verify the obtained theoretical results is a big coming work.
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Appendix A

Matlab 2-D Coupled
Electrostatic-Mechanical Model
Scripts

These are the Matlab scripts to simulate the behavior of an electrostatically actuated

fixed-fixed beam RF MEMS capacitive switch. They run on Matlab version 7.0.

Comments are sprinkled liberally throughout the script. LapVarPar2D.m is the main

program, which is read the switch parameters from the file DataIn.m to produce the

output during the simulation ResultsLaVarPar2D.m

A.1 Matlab Code of the 2-D Coupled Model

LaVarPar2D.m

% ********************************************************************************
% 2-D Coupled Electrostatic-Mechanical Model for RF MEMS Shunt Capacitive Switches
% File name: LapVarPar.m, August, 2005
% By Ehab K. I. Hamad, E-mail:Ehab.Hamad@E-Technik.Uni-Magdeburg.DE
% This program calculates bridge deformation at certain actuation voltage for a
% shunt-capacitive MEMS switch
% ********************************************************************************
% Program Algorith:
% 1. Solve Laplace’s equation using FDM. The generated system of equations are
% solved using Band Matrix Method to calculate the potential distribution in
% the 2-D computation domain. Hence, the electric field distribution is
% computed. Then the induced electrostatic force density distribution on the
% membrane is determined.
% 2. Solve the mechanical equation governing the motion of the movable beam to
% determine the deformation corresponding to the induced electrostatic force.
% 3. Repeat 1. using the new geometry after deformation to determine the new
% force distribution.
% 4. Repeat 2. to determine the new beam deformation.
% 5. Repeat 1. to 4. until getting the steady-state solution between the
% Electrostatic model and mechanical domains.
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clear all
Vo = input(’Inter biasing voltage, Vo=’); % Voltage applied to the lower

% electrode, CPW’s signal line
DataIn.m % Read the input file which has the switch parameters

tic % to set the starting up time
EI = E*b*t^3/(12*(1-nu*nu)); % Beam modulus [Pa.m^4=N.m^2]
Tr = Sigma*(1-nu)*b*t; % Residual stress

ng =8; dg = go/ng; nd =4; dd = td/nd;
nm =6; dm = tm/nm; nox=4; dox= tox/nox;
no =4; dW = 2*(go+td+tm+tox); xno = 2*dW/no;
n2 = round((W/2-dW)/xno); xno = (W/2+dW)/(n2+no);
n1 = n2; dL = (L-W)/2-dW;
% no = # of nodes at the lower electrode edges
% n2 = # of nodes in the middle region of the center conductor

m = 2*(ng+nd+nm+nox); % Total number of points in the y direction
n = 2*(n1+no+n2); % Total number of points in the x direction
% # of points in the metal region are (no+2*n2)*nm
% # of unknowns Lm=(n-1)*(m-1)-(no+2*n2)*nm
% matrix size Lm*Lm to be solved using Band Matrix Method [A][X]=[B]
nmx = no+2*n2+1; Lm = (n-1)*(m-1)-nmx*(nm+1); % Lm = Number of Unknown

% Mesh Generation
% ***************
% Grid size is uniform over the lower electrode + distance equals to dW at
% the left and at the right edges then increases linearly up to the end of
% the bridge with a number of points in this region equals to n1.
for i=1:m+1,

for j=1:n1, % Girding in the x direction
x(i,j)=xno-2*(dL-n1*xno)*(j-n1)/((n1-1)*n1); x(i,n-j+1)=x(i,j);

end
for j=1:no, x(i,n1+j)=xno; x(i,n1+no+2*n2+j)=xno; end;
for j=1:n2, x(i,n1+no+j)=xno; x(i,n1+no+2*n2+1-j)=xno; end;

end
for i=1:m+1, xx(i,1)=0; for j=1:n, xx(i,j+1)=xx(i,j)+x(i,j); end; end;

H=5; % Computation domain has H times of (go+td+tm+tox) height in the substrate
dy = H*(go+td+tm+tox);
for i=1:m/2+nox+nm+nd, % Meshing in the y direction

for j=1:n+1,
if i < m/2+1, y(i,j) = dox+(4*dy/m-2*dox)*(m/2-i)/(m/2-1);
elseif (i > m/2) & (i < m/2+nox+1), y(i,j) = dox;
elseif (i > m/2+nox) & (i < m/2+nox+nm+1), y(i,j) = dm;
elseif i > m/2+nox+nm, y(i,j) = dd;
end

end
end

% Set Boundary Conditions
% ***********************
Epsr = ones(m,n); % Air fill
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for i=1:m/2, for j=1:n, Epsr(i,j)=11.9; end; end; % Si substrate
for i=1:nox, for j=1:n, Epsr(m/2+i,j)=3.9; end; end; % SiO2 layer
% Si3N4 Layer
for i=1:nd, for j=1:(no+2*n2), Epsr(m/2+nox+nm+i,n1+no/2+j)=6.7; end; end;
V = zeros(m+1,n+1); %Initiating al nodes with zero voltage
for i=1:nm+1, for j=1:(no+2*n2+1), V(m/2+nox+i,n1+no/2+j)=Vo; end; end;

% Initiating A, B, and w matrices
% *******************************
A = zeros(Lm,Lm); B = zeros(Lm,1); w = zeros(1,n+1);
wmax = 10; it = 0;
while abs(max(w)-wmax) > 1E-9, % Starting iteration to calculate deformation
it = it+1
if max(w) > go,

sprintf(’ Stopped because Wmax > go, i.e. Vo > Vpi’)
break

end

% Auto-adapting the grid size according to the deformation of the bridge
% **********************************************************************
for i = m/2+nox+nm+nd+1:m, for j=1:n+1, y(i,j)=(go-w(j))/ng; end; end;
for j=1:n+1, yy(1,j)=0; for i=1:m, yy(i+1,j)=yy(i,j)+y(i,j); end; end;

% Solve Laplace’s equation using FDM and apply the matrix inversion method to find
% out the potential distribution in the 2-D computational domain
% ********************************************************************************
% Corner 1 in the matrix A(Lm x Lm)
i=2; j=2; k=1;
B(k) =V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)))+V(i-1,j)/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k) = 1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k+1) = -1/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k+n-1) = -1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;
for j = 3:n-1,

B(k) = V(i-1,j)/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k) = 1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-1) = -1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1) = -1/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k+n-1) = -1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end
% Corner 2,
j=n;
B(k)=V(i,j+1)/(x(i,j)*(x(i,j)+x(i,j-1)))+V(i-1,j)/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k) = 1/(x(i,j)*x(i,j-1))+1/(y(i-1,j)*y(i,j));
A(k,k-1) = -1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+n-1) = -1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

for i=3:(m/2+nox-1),
for j = 2:n,

if j == 2
B(k) = V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1) = -1/(x(i,j)*(x(i,j-1)+x(i,j)));
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elseif j == n
B(k) = V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-1) = -1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k-1) = -1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1) = -1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k) = 1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-n+1) = -1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1) = -1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end
end

i=m/2+nox;
for j=2:(n1+no/2),

if j == 2
B(k) = V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k) = 0.0;
A(k,k-1) = -1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

end
A(k,k) = 1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k+1) = -1/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-n+1) = -1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1) = -1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end

% Line in SiO2 below Metal
for j = (n1+no/2+1):(n1+3*no/2+2*n2+1),

B(k) = V(i+1,j)/(y(i,j)*(y(i-1,j)+y(i,j)));
A(k,k) = 1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-1) = -1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1) = -1/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-n+1) = -1/(y(i-1,j-1)*(y(i-1,j)+y(i,j)));
k=k+1;

end

for j = (n1+3*no/2+2*n2+2):n,
if j == n

B(k) = V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
else

B(k)=0.0;
A(k,k+1) = -1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+(n-1-nmx))=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end
% SiO2-Si, BVP, Interface between two different media
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k=(n-1)*(m/2-1)+1; i=m/2+1;
for j=2:n,

if j == 2,
B(k) =V(i,j-1)*(y(i,j)*Epsr(i,j-1)+y(i-1,j)*Epsr(i-1,j-1))/x(i,j-1);
A(k,k+1)=-(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);

elseif j == n,
B(k) =V(i,j+1)*(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);
A(k,k-1)=-(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);

else
B(k)=0.0;
A(k,k-1)=-(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);
A(k,k+1)=-(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);

end
A(k,k) =Epsr(i,j)*(x(i,j)/y(i,j)+y(i,j)/x(i,j))...

+Epsr(i,j-1)*(x(i,j-1)/y(i,j)+y(i,j)/x(i,j-1))...
+Epsr(i-1,j)*(x(i,j)/y(i-1,j)+y(i-1,j)/x(i,j))...
+Epsr(i-1,j-1)*(x(i,j-1)/y(i-1,j)+y(i-1,j)/x(i,j-1));

A(k,k-n+1)=-(x(i,j-1)*Epsr(i-1,j-1)+x(i,j)*Epsr(i-1,j))/y(i-1,j);
A(k,k+n-1)=-(x(i,j-1)*Epsr(i,j-1)+x(i,j)*Epsr(i,j))/y(i,j);
k=k+1;

end

% SiO2-Air
k=(n-1)*(m/2+nox-1)+1;
% SiO2-Air
i=m/2+nox+1;
for j=2:(n1+no/2),

if j == 2,
B(k) =V(i,j-1)*(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);
A(k,k+1)=-(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);

elseif j == (n1+no/2),
B(k) =V(i,j+1)*(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);
A(k,k-1)=-(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);

else
A(k,k-1)=-(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);
A(k,k+1)=-(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);
B(k)=0.0;

end
A(k,k) =Epsr(i,j)*(x(i,j)/y(i,j)+y(i,j)/x(i,j))...

+Epsr(i,j-1)*(x(i,j-1)/y(i,j)+y(i,j)/x(i,j-1))...
+Epsr(i-1,j)*(x(i,j)/y(i-1,j)+y(i-1,j)/x(i,j))...
+Epsr(i-1,j-1)*(x(i,j-1)/y(i-1,j)+y(i-1,j)/x(i,j-1));

A(k,k-n+1)=-(x(i,j-1)*Epsr(i-1,j-1)+x(i,j)*Epsr(i-1,j))/y(i-1,j);
A(k,k+(n-1-nmx))=-(x(i,j-1)*Epsr(i,j-1)+x(i,j)*Epsr(i,j))/y(i,j);
k=k+1;

end

for j= (n1+3*no/2+2*n2+2):n,
if j == (n1+3*no/2+2*n2+2),

B(k)=V(i,j-1)*(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);
A(k,k+1)=-(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);

elseif j == n,
B(k)=V(i,j+1)*(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);
A(k,k-1)=-(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);
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else
B(k)=0.0;
A(k,k-1)=-(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);
A(k,k+1)=-(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);

end
A(k,k) =Epsr(i,j)*(x(i,j)/y(i,j)+y(i,j)/x(i,j))...

+Epsr(i,j-1)*(x(i,j-1)/y(i,j)+y(i,j)/x(i,j-1))...
+Epsr(i-1,j)*(x(i,j)/y(i-1,j)+y(i-1,j)/x(i,j))...
+Epsr(i-1,j-1)*(x(i,j-1)/y(i-1,j)+y(i-1,j)/x(i,j-1));

A(k,k-(n-1-nmx))=-(x(i,j-1)*Epsr(i-1,j-1)+x(i,j)*Epsr(i-1,j))/y(i-1,j);
A(k,k+(n-1-nmx))=-(x(i,j-1)*Epsr(i,j-1)+x(i,j)*Epsr(i,j))/y(i,j);
k=k+1;

end
for i=(m/2+nox+2):(m/2+nox+nm),

for j=2:n1+no/2,
if j == 2,

B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

elseif j == n1+no/2,
B(k)=V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-(n-1-nmx))=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+(n-1-nmx))=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end

for j=(n1+3*no/2+2*n2+2):n,
if j == (n1+3*no/2+2*n2+2),

B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

elseif j == n,
B(k)=V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-(n-1-nmx))=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+(n-1-nmx))=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end
end

i=m/2+nox+nm+1;
for j=2:n1+no/2,

if j == 2,
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B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

elseif j == n1+no/2,
B(k)=V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-(n-1-nmx))=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+(n-1-nmx))=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end

for j=(n1+3*no/2+2*n2+2):n,
if j == (n1+3*no/2+2*n2+2),

B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

elseif j == n,
B(k)=V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-(n-1-nmx))=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1)=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end

i=m/2+nox+nm+2;
for j=2:(n1+no/2),

if j == 2,
B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k-1)= -1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-(n-1-nmx))=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1)=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end

for j=(n1+no/2+1):(n1+3*no/2+2*n2+1),
B(k) =V(i-1,j)/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k) =1/(x(i,j)*x(i,j-1))+1/(y(i-1,j)*y(i,j));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));
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A(k,k+n-1)=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end

for j=(n1+3*no/2+2*n2+2):n,
if j == n,
B(k)=V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k)=1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1)=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end
for i=(m/2+nox+nm+3):(m/2+nox+nm+nd);

for j=2:n,
if j == 2,

B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

elseif j == n
B(k)=V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));
end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1)=-1/(y(i,j)*(y(i-1,j)+y(i,j)));

if (j == n1+no/2+1) | (j == n1+3*no/2+2*n2+1),
A(k,k) =Epsr(i,j)*(x(i,j)/y(i,j)+y(i,j)/x(i,j))...

+Epsr(i,j-1)*(x(i,j-1)/y(i,j)+y(i,j)/x(i,j-1))...
+Epsr(i-1,j)*(x(i,j)/y(i-1,j)+y(i-1,j)/x(i,j))...
+Epsr(i-1,j-1)*(x(i,j-1)/y(i-1,j)+y(i-1,j)/x(i,j-1));

A(k,k-1)=-(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);
A(k,k+1)=-(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);
A(k,k-n+1)=-(x(i,j-1)*Epsr(i-1,j-1)+x(i,j)*Epsr(i-1,j))/y(i-1,j);
A(k,k+n-1)=-(x(i,j-1)*Epsr(i,j-1)+x(i,j)*Epsr(i,j))/y(i,j);
B(k)=0.0;

end
k=k+1;
end

end

i=(m/2+nox+nm+nd+1);
for j=2:(n1+no/2),

if j == 2,
B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
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A(k,k-1) = -1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
end
A(k,k)=1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1)=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end

for j=(n1+no/2+1):(n1+3*no/2+2*n2+1),
B(k)=0.0;
A(k,k) =Epsr(i,j)*(x(i,j)/y(i,j)+y(i,j)/x(i,j))...

+Epsr(i,j-1)*(x(i,j-1)/y(i,j)+y(i,j)/x(i,j-1))...
+Epsr(i-1,j)*(x(i,j)/y(i-1,j)+y(i-1,j)/x(i,j))...
+Epsr(i-1,j-1)*(x(i,j-1)/y(i-1,j)+y(i-1,j)/x(i,j-1));

A(k,k-1)=-(y(i-1,j)*Epsr(i-1,j-1)+y(i,j)*Epsr(i,j-1))/x(i,j-1);
A(k,k+1)=-(y(i-1,j)*Epsr(i-1,j)+y(i,j)*Epsr(i,j))/x(i,j);
A(k,k-n+1)=-(x(i,j-1)*Epsr(i-1,j-1)+x(i,j)*Epsr(i-1,j))/y(i-1,j);
A(k,k+n-1)=-(x(i,j-1)*Epsr(i,j-1)+x(i,j)*Epsr(i,j))/y(i,j);
k=k+1;

end

for j=(n1+3*no/2+2*n2+2):n,
if j == n,

B(k)=V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
else

B(k)=0.0;
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1)=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end

for i=(m/2+nox+nm+nd+2):(m-1),
for j=2:n,

if j == 2,
B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

elseif j == n,
B(k)=V(i,j+1)/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));

else
B(k)=0.0;
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));

end
A(k,k) =1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
A(k,k+n-1)=-1/(y(i,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end
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end
% Corner 3,
j=2; i=m;
B(k)=V(i,j-1)/(x(i,j-1)*(x(i,j-1)+x(i,j)))+V(i+1,j)/(y(i,j)*(y(i-1,j)+y(i,j)));
A(k,k)=1/(x(i,j-1)*x(i,j))+1/(y(i,j)*y(i-1,j));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
k=k+1;
for j=3:n-1,

B(k) = V(i+1,j)/(y(i,j)*(y(i-1,j)+y(i,j)));
A(k,k)=1/(x(i,j-1)*x(i,j))+1/(y(i-1,j)*y(i,j));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j-1)+x(i,j)));
A(k,k+1)=-1/(x(i,j)*(x(i,j-1)+x(i,j)));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));
k=k+1;

end
% Corner 4,
j=n; i=m;
B(k)=V(i,j+1)/(x(i,j)*(x(i,j)+x(i,j-1)))+V(i+1,j)/(y(i,j)*(y(i,j)+y(i-1,j)));
A(k,k)=1/(x(i,j)*x(i,j-1))+1/(y(i,j)*y(i-1,j));
A(k,k-1)=-1/(x(i,j-1)*(x(i,j)+x(i,j-1)));
A(k,k-n+1)=-1/(y(i-1,j)*(y(i-1,j)+y(i,j)));

Phi = inv(A)*B;
ko = 1;
for i = 2:m, % Boundary Value Problem

for j = 2:n,
if (((i > (m/2+nox)) & (i < (m/2+nox+nm+2))) & ...

((j > (n1+no/2)) & (j < (n1+3*no/2+2*n2+2)))),
V(i,j)=Vo;

else
V(i,j) = Phi(ko); ko = ko+1;

end
end

end
clear Phi;

% Calculation of the electric field in the computation domain
% ***********************************************************
U = 0;
for i = 1:m,

for j = 1:n,
x(i,j)=0.5*((V(i,j+1)-V(i,j))/x(i,j)+(V(i+1,j+1)-V(i+1,j))/x(i+1,j));
Ey(i,j)=0.5*((V(i+1,j)-V(i,j))/y(i,j)+(V(i+1,j+1)-V(i,j+1))/y(i,j+1));
Exy = sqrt(Ex(i,j)*Ex(i,j) + Ey(i,j)*Ey(i,j));
U = U+0.125*Epso*Epsr(i,j)*Exy^2*(x(i,j)+x(i+1,j))*(y(i,j)+y(i,j+1));

end
end

% Determination of the gap capacitance
% C = Q/V, where Q is the total charge accumulated on the lower electrode
% Qenc = Int(D.ds)
% Q per unit square = Int (D.dl) = Int(Eps E.dl) =Eps Int(Eydx+Exdy)
Q1=0; i=m/2; % bottom
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for j=n1:n-n1, Q1=Q1+Epso*Epsr(i,j)*Ey(i,j)*(x(i,j)+x(i+1,j))/2; end
Q2=0; i=m-ng; % top
for j=n1:n-n1, Q2=Q2+Epso*Epsr(i,j)*Ey(i,j)*(x(i,j)+x(i+1,j))/2; end
Q3=0; j=n1; % left
for i=m/2:m-ng, Q3=Q3+Epso*Epsr(i,j)*Ex(i,j)*(y(i,j)+y(i,j+1))/2; end
Q4=0; j=n-n1; % right
for i=m/2:m-ng, Q4=Q4+Epso*Epsr(i,j)*Ex(i,j)*(y(i,j)+y(i,j+1))/2; end
Qenc = abs(Q1)+abs(Q2)+abs(Q3)+abs(Q4); % Total charge
wmax = max(w);

% Determination of the induced electrostatic charge and force distributions on the
% membrane.
% ********************************************************************************
for j=1:n,

Qm(j) = Epso*(Ex(m,j)*(y(m,j)+y(m,j+1))+Ey(m,j)*(x(m,j)+x(m+1,j)))...
*b/(x(m,j)+x(m+1,j));

f(j) = 0.5*Epso*(Ex(m,j)*Ex(m,j)+Ey(m,j)*Ey(m,j))*b;
end

Qmo = Qm(1); Qm(1) = 0; fo = f(1); f(1) = 0;
for j = 2:n,

Qmx = Qm(j); fox = f(j);
Qm(j) = 0.5*(Qmo+Qmx); f(j) = 0.5*(fo+fox);
Qmo = Qmx; fo = fox;

end
Qm(n+1) = 0; f(n+1) = 0;

% Mechanical model
% ***************
% Solving beam equation (Euler-Bernoulli Beam Equation) using method of variation
% of parameters to solve 4th order non-homogenous differential equation to
% calculate the beam deformation w(x) arises from the induced electrostatic force
% on the bridge f(x) taking into account the residual and axial stresses.

Tr = Sigma*(1-nu)*b*t; Ta = 10; Tao = 0.01; F = f/EI;
while abs(Ta - Tao) >= 1E-10,
Ta = Tao; k = sqrt((Tr+Ta)/EI);
Ak = [1 0 1 1; 0 1 k -k; 1 L exp(k*L) exp(-k*L); 0 1 k*exp(k*L) -k*exp(-k*L)];
b1 = -1/(k*k)*Int_0_L(xx(m+1,:).*F,xx(m+1,:))+L/(k*k)*Int_0_L(F,xx(m+1,:))...

- exp(k*L)/(2*k^3)*Int_0_L(exp(-k*xx(m+1,:)).*F,xx(m+1,:))...
+ exp(-k*L)/(2*k^3)*Int_0_L(exp(k*xx(m+1,:)).*F,xx(m+1,:));

b2 = 1/(k*k)*Int_0_L(F,xx(m+1,:))...
- exp(k*L)/(2*k*k)*Int_0_L(exp(-k*xx(m+1,:)).*F,xx(m+1,:))...
- exp(-k*L)/(2*k*k)*Int_0_L(exp(k*xx(m+1,:)).*F,xx(m+1,:));

Bk = [0; 0; b1; b2]; ak = inv(Ak)*Bk;
w(1) = 0;
for j = 2:n,

w(j)=ak(1)+ak(2)*xx(m+1,j)+ak(3)*exp(k*xx(m+1,j))+ak(4)*exp(-k*xx(m+1,j))...
+ 1/(k*k)*Int_0_x(xx(m+1,:).*F,xx(m+1,:),j)...
- xx(m+1,j)/(k*k)*Int_0_x(F,xx(m+1,:),j)...
+ exp(k*xx(m+1,j))/(2*k^3)*Int_0_x(exp(-k*xx(m+1,:)).*F,xx(m+1,:),j)...
- exp(-k*xx(m+1,j))/(2*k^3)*Int_0_x(exp(k*xx(m+1,:)).*F,xx(m+1,:),j);

end
w(n+1) = 0;
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[dw2,x1] = First_derivative2(w,xx(m+1,:)); [Tao] = Int_0_L(dw2,x1);
Tao = E*t*b*Tao/(2*L);
end % End of the Mechanical model
clear F; clear dw2; clear x1;
C_it(it) = 2E15*U*b/Vo^2; % total capacitance in fF
w_it(it) = max(w);
end % End the iteration to calculate deformation
for j = 1:n+1, shape(j) = go-w(j); end
CPU_time = toc % Elapsed time in seconds

clear A; clear B; clear Epsr; clear w; clear x; clear y; clear Ex; clear Ey;

save Results2D % Save results in a mat file named Results2D.mat

subplot(2,2,1); hold on
for i=1:m+1, plot(xx(i,:).*1E6,yy(i,:).*1E6); end;
for j=1:n+1, plot(xx(:,j).*1E6,yy(:,j).*1E6); end;
axis([0 L*1E6 0 max(yy(:,1))*1E6]); title(’Mesh distribution’);
xlabel(’x [\mum]’); ylabel(’y [\mum]’); hold off

subplot(2,2,2); [c, h]=contour(xx(1,:).*1E6,yy(:,1).*1E6,V); grid;
xlabel(’x [\mum]’); ylabel(’y [\mum]’);
title(’Potential distribution’)

subplot(2,2,3); plot(xx(1,:).*1E6,Qm), grid;
xlabel(’x (\mum)’); ylabel(’Q [coulombs/m]’); axis([0 L*1E6 1.5*min(Qm) 0]);
title(’Charge density distribution induced on the membrane’);

subplot(2,2,4); plot(xx(1,:).*1E6,f), grid; axis([0 L*1E6 0 1.5*max(f)]);
xlabel(’x (\mum)’); ylabel(’Force, f(x) [N/m]’);
title(’Force density distribution induced on the bridge’);

figure; subplot(2,2,1); plot(w_it*1e6,’linewidth’,2), grid;
xlabel(’Number iterations’); ylabel(’Position [\mum]’);
axis([0 it 0.95*min(w_it)*1E6 1.05*max(w_it)*1E6]);
title(’Position of the bridge-middle-node vs. # of iterations’);

subplot(2,2,2); plot(C_it,’linewidth’,2), grid;
xlabel(’Number of iterations’); ylabel(’Capacitance [fF]’);
axis([0 it 0.95*min(C_it) 1.05*max(C_it)]); title(’Capacitance vs. iterations’);

subplot(2,1,2); plot(xx(1,:)*1E6,shape*1E6), grid;
xlabel(’x (\mum)’); ylabel(’Gap height (\mum)’); axis([0 L*1E6 0 go*1E6]);
title(’Shape of the bridge actuation voltage of Vo’);

% The END of the program LapVarPar.m



Appendix B

Matlab 3-D Coupled
Electrostatic-Mechanical Model
Scripts

These are the Matlab scripts to simulate the behavior of an electrostatically actuated
fixed-fixed beam RF MEMS capacitive switch. They run on Matlab version 7.0.
MEMS3D.m is the main program, which reads the switch parameters from the file
DataIn.m and it requires an additional program SolvePlateEqUsingFDM.m to solve
the plate equation to determine the bridge deformation using the FDM. It produces
an output file ResultsMEMS3D.m during the simulation, which has the results.

B.1 Matlab Code of the 3-D Coupled Model

MEMSDModel.m

% ********************************************************************************
% 3-D Coupled Electrostatic-Mechanical Model for RF MEMS Shunt Capacitive Switches
% File name: MEMS3D_Model.m, August, 2005
% By Ehab K. I. Hamad, E-mail:Ehab.Hamad@E-Technik.Uni-Magdeburg.DE
% This program calculates the pull down voltage for a shunt-capacitive MEMS switch
% ********************************************************************************
% Program Algorithm:
% 1. The electrostatic model solves the electrostatic problem of the switch
% structure to compute the potential distribution in the 3-D computational
% domain. The computation of the potential is based on the integral form of
% Gauss’s law and constructing an updating equation for the potential.
% 2. The updated equation is solved using an iterative technique assuming an
% artificial absorbing boundary conditions, where the coefficients of the
% updating equation are calculated outside the iterative loop, which saves much
% time. Then the electrostatic field and force distributions are calculated.
% 3. The mechanical model determines the bridge deformation, which corresponds to
% the electrostatic force calculated by the electrostatic model by
% solving the plate equation using the FDM.
% 4. Re-shape the membrane and repeat 1 to 4 till getting steady-state solution.
%*********************************************************************************

117



B.1. Matlab Code of the 3-D Coupled Model 118

clear all;
tic % to measure the starting CPU time
% Input parameters and the MEMS switch dimensions:
Maxiter=input(’ Inter Maximum # of iterations, niter =’); % Maximum # of iteration

% to find the potential distribution if
% the specified error could not reach.

percent = input(’ Inter required percentage error % = ’);
Vg = 0; % Voltage applied to the CPW ground planes and the bridge

DataIn.m % Read an input file which has the switch’s parameters

% Calculation of the spring constant K and the pull-down voltage from the 1D model
% given by Muldavin and Rebeiz, MTT-T Juni 2000.
K = 32*E*b*t^3/L^3+8*Sigma*(1-nu)*b*t/L; Vpi1D = sqrt(8*K*go^3/(27*Epso*W*b));
D = E*t^3/(12*(1-nu^2)); % Flexural rigidity of the bridge [Pa.m^3=N.m]

%---------------------------------------------------------------------------------
L=L/2; ax=2*L; n=30; nx=45; dx=L/n; ns=4; ds=ts/ns;
W=W/2; nwx=round(W/dx); dxo=(ax-L-ts)/(nx-n-ns);
b=b/2; ay=5*b; m=20; ny=40; dy=b/m; dyo=(ay-b)/(ny-m);
% ax, ay, and az are the outer box dimensions along x, y, and z, respectively
% nx, ny, and nz are the number of meshes along x, y, and z, respectively

H=t+go+td+tm+tox; Ha=5*H; Hb=10*H; az=Hb+H+Ha;
nt=4; ng=8; nd=4; nm=4; nox=3;
nH=nt+ng+nd+nm+nox; nHb=nH; nHa=round(0.5*nH); nz=nHb+nH+nHa;
dHa=Ha/nHa; dt=t/nt; dg=go/ng; dd=td/nd;
dm=tm/nm; dox=tox/nox; dHb=Hb/nHb;

tgg = tm; ngz = nm; count = 0; got = 0;
if tg <= tgg, got =1; end;

% To find how many mesh lines are needed in the CPW’s ground planes along z-axis;
while got==0,

for k = 1:nd, count = count+1; tgg = tgg + dd;
if tgg >= tg, ngz = ngz+count; got = 1; clear tgg;

break
end

end
if got == 1, break; end;
for k = 1:ng, count = count+1; tgg = tgg + dg;

if tgg >= tg, ngz = ngz+count; got = 1; clear tgg;
break

end
end
if got == 1, break; end;
for k = 1:nt, count = count+1; tgg = tgg + dt;

if tgg >= tg, ngz = ngz+count; got = 1; clear tgg;
break

end
end
if got ~= 1,

sprintf(’ ERROR: Please check the CPW’’s ground plane thickness’)
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break
end

end

w = zeros(m+1,n+1); % Bending function of the bridge in two dimensions
Er = ones(ny,nx,nz); Er(1:m,1:nwx,nHb+nox+nm+1:nHb+nox+nm+nd) = Epsr;
Er(1:ny,1:nx,nHb+1:nHb+nox) = 3.9; Er(1:ny,1:nx,1:nHb) = 11.9;
Ex =zeros(ny+1,nx+1,nz+1); Ey =zeros(ny+1,nx+1,nz+1); Ez =zeros(ny+1,nx+1,nz+1);

% Constructing the non-uniform 3-D grid. After deformation this grid is getting to
% be non-rectangular, this non-rectangular grid is treated by linear interpolation
% to be a rectangular.
% -------------------------------------------------------------------------
for i = 1:ny+1,

for k = 1:nz+1
x(i,1,k) = 0;
for j = 2:n+1, x(i,j,k) = x(i,j-1,k) + dx; end;
for j = n+2:n+ns+1, x(i,j,k) = x(i,j-1,k) + ds; end;
for j = 1:nx-n-ns,

if (ax-L-ts)/(nx-n-ns) > ds,
dxo = ds + 2*((ax-L-ts)/(nx-n-ns)-ds)*(j-1)/(nx-n-ns-1); end;

x(i,n+ns+1+j,k) = x(i,n+ns+j,k) + dxo;
end

end
end
for j = 1:nx+1,

for k = 1:nz+1,
y(1,j,k) = 0;
for i = 2:m+1, y(i,j,k) = y(i-1,j,k) + dy; end;
for i = 1:ny-m,

if (ay-b)/(ny-m) > dy,
dyo = dy + 2*((ay-b)/(ny-m)-dy)*(i-1)/(ny-m-1); end;

y(m+1+i,j,k) = y(m+i,j,k) + dyo;
end

end
end
for i = 1:ny+1,

for j = 1:nx+1,
z (i,j,1) = 0;
for k = 2:nHb+1, z(i,j,k) = z(i,j,k-1)+dHb; end;
for k = nHb+2:nHb+nox+1, z(i,j,k) = z(i,j,k-1)+dox; end;
for k = nHb+nox+2:nHb+nox+nm+1, z(i,j,k) = z(i,j,k-1)+dm; end;
for k = nHb+nox+nm+2:nHb+nox+nm+nd+1, z(i,j,k) = z(i,j,k-1)+dd; end;

end
end

% Starting the applied voltage from Vo = 0 till getting the pull down voltage, Vpi
ii = 0; Vpi=0; step=5;
while Vpi == 0, % Starting voltage loop
ii = ii+1;
if w(1,1) >= 0.10*go, step = 2.0; end
if w(1,1) >= 0.15*go, step = 1.0; end
if w(1,1) >= 0.20*go, step = 0.5; end % Variable step voltage
if w(1,1) >= 0.25*go, step = 0.2; end
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if ii == 1, Vo =1E-6; elseif ii == 2, Vo = step; else Vo = Vo+step; end;
Ermax = percent*Vo/100;
wmax = 100; it = 0; Vo

% Starting iterations to calculate the steady-state bridge’s deformation by forth
% and back between the electrostatic and mechanical models
while abs(w(1,1) - wmax) > 1E-9,
if w(1,1) > (2/3)*go,

sprintf(’ Stopped because Wmax > go, i.e. Vo > Vpi’)
Vpi = Vo
break

end
if it >= 15,

break
end
it=it+1 % Count the number of iterations needed to get the steady-state condition

% Electrostatic Model:
V = zeros(ny+1,nx+1,nz+1); % Initialization of all nodes to be zero
Ccond = zeros(ny,nx,nz); Cg = zeros(ny,nx,nz);
CR = zeros(ny,nx,nz); CL = zeros(ny,nx,nz); CT = zeros(ny,nx,nz);
CB = zeros(ny,nx,nz); CF = zeros(ny,nx,nz); CK = zeros(ny,nx,nz);

% Adapting the mesh size and grid shape in the air gap region above and under the
% membrane while it is getting deformed.
for i =1:ny+1,

for j = 1:nx+1,
if j >= n+1,

for k = nHb+nox+nm+nd+2:nHb+nox+nm+nd+ng+1,
z(i,j,k) = z(i,j,k-1)+dg; end

for k = nHb+nox+nm+nd+ng+2:nHb+nH+1, z(i,j,k) = z(i,j,k-1)+dt; end;
for k = nHb+nH+2:nz+1, z(i,j,k) = z(i,j,k-1)+dHa; end;

elseif i >= m+1,
for k = nHb+nox+nm+nd+2:nHb+nox+nm+nd+ng+1,

z(i,j,k) = z(i,j,k-1)+(go-w(m+1,j))/ng; end;
for k = nHb+nox+nm+nd+ng+2:nHb+nH+1, z(i,j,k) = z(i,j,k-1)+dt; end;
for k = nHb+nH+2:nz+1, z(i,j,k) = z(i,j,k-1)+(Ha+w(m+1,j))/nHa; end;

else
for k = nHb+nox+nm+nd+2:nHb+nox+nm+nd+ng+1,

z(i,j,k) = z(i,j,k-1)+(go-w(i,j))/ng; end
for k = nHb+nox+nm+nd+ng+2:nHb+nH+1, z(i,j,k) = z(i,j,k-1)+dt; end;
for k = nHb+nH+2:nz+1, z(i,j,k) = z(i,j,k-1)+(Ha+w(i,j))/nHa; end;

end
end

end

% The computation of the potential distribution in the 2-D computational domain.
% constructing the potential coefficients matrix before starting the iterations.
% ------------------------------------------------------------------------------
for i = 1:ny,

for j = 1:nx,
for k = 2:nz

if k > nHb+nox & k <= nHb+nox+nm+1 & j <= nwx+1,
Ccond(i,j,k) = Vo; % Voltage applied to the CPW signal line
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elseif (k> nHb+nox & k <= nHb+nox+ngz+1 & j>= n+1) | (k > nHb+nox...
& k <= nHb+nox+nm+nd+ng+1 & j > n & j <= n+ns+1 & i <= m+1)...
| (k> nHb+nox+nm+nd+ng & k <= nHb+nH+1 & j <= n+ns+1 & i<=m+1),

Cg(i,j,k)= Vg; % Voltage applied to the CPW ground planes & bridge
elseif i == 1 & j == 1 & k > nHb+nox+nm+nd+1, % Coefficients for nodes

ZT = 0.25*(2*z(i,j,k+1)+z(i,j+1,k+1)+z(i+1,j,k+1)); % on the z-axis
ZB = 0.25*(2*z(i,j,k-1)+z(i,j+1,k-1)+z(i+1,j,k-1));
x2 = x(i,j+1,k)-x(i,j,k); y2 = y(i+1,j,k)-y(i,j,k);
z1e = z(i,j,k)-z(i,j,k-1); z2e = z(i,j,k+1)-z(i,j,k);
z1 = z(i,j,k)-ZB; z2 = ZT-z(i,j,k);
t1 = 0; t2 = Er(i,j,k)*x2*z2/y2 + Er(i,j,k-1)*x2*z1/y2;
t3 = 0; t4 = Er(i,j,k)*y2*z2/x2 + Er(i,j,k-1)*y2*z1/x2;
t5 = Er(i,j,k-1)*x2*y2/z1e; t6 = Er(i,j,k)*x2*y2/z2e;
Co = t1+t2+t3+t4+t5+t6;
CF(i,j,k) = t1/Co; CK(i,j,k) = t2/Co; CL(i,j,k) = t3/Co;
CR(i,j,k) = t4/Co; CB(i,j,k) = t5/Co; CT(i,j,k) = t6/Co;

elseif i == 1 & j ==1,
x2 = x(i,j+1,k)-x(i,j,k); y2 = y(i+1,j,k)-y(i,j,k);
z1 = z(i,j,k)-z(i,j,k-1); z2 = z(i,j,k+1)-z(i,j,k);
t1 = 0; t2 = Er(i,j,k)*x2*z2/y2 + Er(i,j,k-1)*x2*z1/y2;
t3 = 0; t4 = Er(i,j,k)*y2*z2/x2 + Er(i,j,k-1)*y2*z1/x2;
t5 = Er(i,j,k-1)*x2*y2/z1; t6 = Er(i,j,k)*x2*y2/z2;
Co = t1+t2+t3+t4+t5+t6;
CF(i,j,k) = t1/Co; CK(i,j,k) = t2/Co; CL(i,j,k) = t3/Co;
CR(i,j,k) = t4/Co; CB(i,j,k) = t5/Co; CT(i,j,k) = t6/Co;

elseif i <= m+1 & j == 1 & k > nHb+nox+nm+nd+1, % Symmetry along x-axis
ZT = 0.125*(4*z(i,j,k+1)+2*z(i,j+1,k+1)+z(i+1,j,k+1)+z(i-1,j,k+1));
ZB = 0.125*(4*z(i,j,k-1)+2*z(i,j+1,k-1)+z(i+1,j,k-1)+z(i-1,j,k-1));
x2 = x(i,j+1,k)-x(i,j,k); z1 = z(i,j,k)-ZB; z2 = ZT-z(i,j,k);
y1 = y(i,j,k)-y(i-1,j,k); y2 = y(i+1,j,k)-y(i,j,k);
z1e = z(i,j,k)-z(i,j,k-1); z2e = z(i,j,k+1)-z(i,j,k);
t1 = Er(i-1,j,k)*x2*z2/y1 + Er(i-1,j,k-1)*x1*z1/y1;
t2 = Er(i,j,k)*x2*z2/y2 + Er(i,j,k-1)*x2*z1/y2;
t3 = 0;
t4 = Er(i,j,k)*y2*z2/x2 + Er(i-1,j,k)*y1*z2/x2...

+ Er(i,j,k-1)*y2*z1/x2 + Er(i-1,j,k-1)*y1*z1/x2;
t5 = Er(i,j,k-1)*x2*y2/z1e + Er(i-1,j,k-1)*x2*y1/z1e;
t6 = Er(i,j,k)*x2*y2/z2e + Er(i-1,j,k)*x2*y1/z2e ;
Co = t1+t2+t3+t4+t5+t6;
CF(i,j,k) = t1/Co; CK(i,j,k) = t2/Co; CL(i,j,k) = t3/Co;
CR(i,j,k) = t4/Co; CB(i,j,k) = t5/Co; CT(i,j,k) = t6/Co;

elseif j == 1, % Symmetry along x-axis, yz-plane
x2 = x(i,j+1,k)-x(i,j,k);
y1 = y(i,j,k)-y(i-1,j,k); y2 = y(i+1,j,k)-y(i,j,k);
z1 = z(i,j,k)-z(i,j,k-1); z2 = z(i,j,k+1)-z(i,j,k);
t1 = Er(i-1,j,k)*x2*z2/y1 + Er(i-1,j,k-1)*x1*z1/y1;
t2 = Er(i,j,k)*x2*z2/y2 + Er(i,j,k-1)*x2*z1/y2;
t3 = 0;
t4 = Er(i,j,k)*y2*z2/x2 + Er(i-1,j,k)*y1*z2/x2...

+ Er(i,j,k-1)*y2*z1/x2 + Er(i-1,j,k-1)*y1*z1/x2;
t5 = Er(i,j,k-1)*x2*y2/z1 + Er(i-1,j,k-1)*x2*y1/z1;
t6 = Er(i,j,k)*x2*y2/z2 + Er(i-1,j,k)*x2*y1/z2 ;
Co = t1+t2+t3+t4+t5+t6;
CF(i,j,k) = t1/Co; CK(i,j,k) = t2/Co; CL(i,j,k) = t3/Co;
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CR(i,j,k) = t4/Co; CB(i,j,k) = t5/Co; CT(i,j,k) = t6/Co;
elseif i == 1 & j < n+1 & k > nHb+nox+nm+nd+1, % Symmetry along y-axis

ZT = 0.125*(4*z(i,j,k+1)+z(i,j+1,k+1)+z(i,j-1,k+1)+2*z(i+1,j,k+1));
ZB = 0.125*(4*z(i,j,k-1)+z(i,j+1,k-1)+z(i,j-1,k-1)+2*z(i+1,j,k-1));
x1 = x(i,j,k)-x(i,j-1,k); x2 = x(i,j+1,k)-x(i,j,k);
y2 = y(i+1,j,k)-y(i,j,k); z1 = z(i,j,k)-ZB; z2 = ZT-z(i,j,k);
z1e = z(i,j,k)-z(i,j,k-1); z2e = z(i,j,k+1)-z(i,j,k);
t1 = 0;
t2 = Er(i,j,k)*x2*z2/y2 + Er(i,j-1,k)*x1*z2/y2...

+ Er(i,j,k-1)*x2*z1/y2 + Er(i,j-1,k-1)*x1*z1/y2;
t3 = Er(i,j-1,k)*y2*z2/x1 + Er(i,j-1,k-1)*y2*z1/x1;
t4 = Er(i,j,k)*y2*z2/x2 + Er(i,j,k-1)*y2*z1/x2;
t5 = Er(i,j,k-1)*x2*y2/z1e + Er(i,j-1,k-1)*x1*y2/z1e;
t6 = Er(i,j,k)*x2*y2/z2e + Er(i,j-1,k)*x1*y2/z2e;
Co = t1+t2+t3+t4+t5+t6;
CF(i,j,k) = t1/Co; CK(i,j,k) = t2/Co; CL(i,j,k) = t3/Co;
CR(i,j,k) = t4/Co; CB(i,j,k) = t5/Co; CT(i,j,k) = t6/Co;

elseif i == 1, % Symmetry along y-axis, xz-plane
x1 = x(i,j,k)-x(i,j-1,k); x2 = x(i,j+1,k)-x(i,j,k);
y2 = y(i+1,j,k)-y(i,j,k);
z1 = z(i,j,k)-z(i,j,k-1); z2 = z(i,j,k+1)-z(i,j,k);
t1 = 0;
t2 = Er(i,j,k)*x2*z2/y2 + Er(i,j-1,k)*x1*z2/y2...

+ Er(i,j,k-1)*x2*z1/y2 + Er(i,j-1,k-1)*x1*z1/y2;
t3 = Er(i,j-1,k)*y2*z2/x1 + Er(i,j-1,k-1)*y2*z1/x1;
t4 = Er(i,j,k)*y2*z2/x2 + Er(i,j,k-1)*y2*z1/x2;
t5 = Er(i,j,k-1)*x2*y2/z1 + Er(i,j-1,k-1)*x1*y2/z1;
t6 = Er(i,j,k)*x2*y2/z2 + Er(i,j-1,k)*x1*y2/z2;
Co = t1+t2+t3+t4+t5+t6;
CF(i,j,k) = t1/Co; CK(i,j,k) = t2/Co; CL(i,j,k) = t3/Co;
CR(i,j,k) = t4/Co; CB(i,j,k) = t5/Co; CT(i,j,k) = t6/Co;

elseif i <= m+1 & j < n+1 & k > nHb+nox+nm+nd+1, % Non-rectangular region
ZT = 0.125*(4*z(i,j,k+1)+z(i,j+1,k+1)+z(i,j-1,k+1)+z(i+1,j,k+1)...

+z(i-1,j,k+1));
ZB = 0.125*(4*z(i,j,k-1)+z(i,j+1,k-1)+z(i,j-1,k-1)+z(i+1,j,k-1)...

+z(i-1,j,k-1));
x1 = x(i,j,k)-x(i,j-1,k); x2 = x(i,j+1,k)-x(i,j,k);
y1 = y(i,j,k)-y(i-1,j,k); y2 = y(i+1,j,k)-y(i,j,k);
z1 = z(i,j,k)-ZB; z2 = ZT-z(i,j,k);
z1e = z(i,j,k)-z(i,j,k-1); z2e = z(i,j,k+1)-z(i,j,k);
t1 = Er(i-1,j,k)*x2*z2/y1 + Er(i-1,j-1,k)*x1*z2/y1...

+ Er(i-1,j,k-1)*x2*z1/y1 + Er(i-1,j-1,k-1)*x1*z1/y1;
t2 = Er(i,j,k)*x2*z2/y2 + Er(i,j-1,k)*x1*z2/y2...

+ Er(i,j,k-1)*x2*z1/y2 + Er(i,j-1,k-1)*x1*z1/y2;
t3 = Er(i-1,j-1,k)*y1*z2/x1 + Er(i,j-1,k)*y2*z2/x1...

+ Er(i-1,j-1,k-1)*y1*z1/x1 + Er(i,j-1,k-1)*y2*z1/x1;
t4 = Er(i,j,k)*y2*z2/x2 + Er(i-1,j,k)*y1*z2/x2...

+ Er(i,j,k-1)*y2*z1/x2 + Er(i-1,j,k-1)*y1*z1/x2;
t5 = Er(i,j,k-1)*x2*y2/z1e + Er(i-1,j,k-1)*x2*y1/z1e...

+ Er(i-1,j-1,k-1)*x1*y1/z1e + Er(i,j-1,k-1)*x1*y2/z1e;
t6 = Er(i,j,k)*x2*y2/z2e + Er(i-1,j,k)*x2*y1/z2e...

+ Er(i-1,j-1,k)*x1*y1/z2e + Er(i,j-1,k)*x1*y2/z2e;
Co = t1+t2+t3+t4+t5+t6;
CF(i,j,k) = t1/Co; CK(i,j,k) = t2/Co; CL(i,j,k) = t3/Co;



B.1. Matlab Code of the 3-D Coupled Model 123

CR(i,j,k) = t4/Co; CB(i,j,k) = t5/Co; CT(i,j,k) = t6/Co;
else % Coefficients for general node

x1 = x(i,j,k)-x(i,j-1,k); x2 = x(i,j+1,k)-x(i,j,k);
y1 = y(i,j,k)-y(i-1,j,k); y2 = y(i+1,j,k)-y(i,j,k);
z1 = z(i,j,k)-z(i,j,k-1); z2 = z(i,j,k+1)-z(i,j,k);
t1 = Er(i-1,j,k)*x2*z2/y1 + Er(i-1,j-1,k)*x1*z2/y1...

+ Er(i-1,j,k-1)*x2*z1/y1 + Er(i-1,j-1,k-1)*x1*z1/y1;
t2 = Er(i,j,k)*x2*z2/y2 + Er(i,j-1,k)*x1*z2/y2...

+ Er(i,j,k-1)*x2*z1/y2 + Er(i,j-1,k-1)*x1*z1/y2;
t3 = Er(i-1,j-1,k)*y1*z2/x1 + Er(i,j-1,k)*y2*z2/x1...

+ Er(i-1,j-1,k-1)*y1*z1/x1 + Er(i,j-1,k-1)*y2*z1/x1;
t4 = Er(i,j,k)*y2*z2/x2 + Er(i-1,j,k)*y1*z2/x2...

+ Er(i,j,k-1)*y2*z1/x2 + Er(i-1,j,k-1)*y1*z1/x2;
t5 = Er(i,j,k-1)*x2*y2/z1 + Er(i-1,j,k-1)*x2*y1/z1...

+ Er(i-1,j-1,k-1)*x1*y1/z1 + Er(i,j-1,k-1)*x1*y2/z1;
t6 = Er(i,j,k)*x2*y2/z2 + Er(i-1,j,k)*x2*y1/z2...

+ Er(i-1,j-1,k)*x1*y1/z2 + Er(i,j-1,k)*x1*y2/z2;
Co = t1+t2+t3+t4+t5+t6;
CF(i,j,k) = t1/Co; CK(i,j,k) = t2/Co; CL(i,j,k) = t3/Co;
CR(i,j,k) = t4/Co; CB(i,j,k) = t5/Co; CT(i,j,k) = t6/Co;

end
end

end
end

% Iterations to calculate the potential distribution in the computational domain
% using the updating potential’s equation with applying two symmetries along x
% and y axes. In the non-rectangular region (curved grid) a linear interpolation
% technique is employed to get the potential at nodes on virtual rectangular grid.
% --------------------------------------------------------------------------------
for ko = 1:Maxiter,

residual = 0; % initialize the residual
for i = 1:ny,

for j = 1:nx,
for k = 2:nz

if i == 1 & j == 1 & k > nHb+nox+nm+nd+1, % Nodes on the z-axis
VR = V(i,j+1,k-1)+(V(i,j+1,k)-V(i,j+1,k-1))*(z(i,j,k)...

-z(i,j+1,k-1))/(z(i,j+1,k)-z(i,j+1,k-1));
VK = V(i+1,j,k)+(V(i+1,j,k+1)-V(i+1,j,k))*(z(i,j,k)...

-z(i+1,j,k))/(z(i+1,j,k+1)-z(i+1,j,k));
Vnew = CK(i,j,k)*VK + CR(i,j,k)*VR + CB(i,j,k)*V(i,j,k-1)...

+ CT(i,j,k)*V(i,j,k+1) + Ccond(i,j,k) + Cg(i,j,k);
elseif i == 1 & j == 1,
Vnew = CK(i,j,k)*V(i+1,j,k) + CR(i,j,k)*V(i,j+1,k)...

+ CB(i,j,k)*V(i,j,k-1) + CT(i,j,k)*V(i,j,k+1)...
+ Ccond(i,j,k) + Cg(i,j,k);

elseif i==1 & j<n+1 & k > nHb+nox+nm+nd+1, % Symmetry along y-axis
VL = V(i,j-1,k)+(V(i,j-1,k+1)-V(i,j-1,k))*(z(i,j,k)...

-z(i,j-1,k))/(z(i,j-1,k+1)-z(i,j-1,k));
VR = V(i,j+1,k-1)+(V(i,j+1,k)-V(i,j+1,k-1))*(z(i,j,k)...

-z(i,j+1,k-1))/(z(i,j+1,k)-z(i,j+1,k-1));
VK = V(i+1,j,k) + (V(i+1,j,k+1)-V(i+1,j,k))*(z(i,j,k)...

-z(i+1,j,k))/(z(i+1,j,k+1)-z(i+1,j,k));
Vnew = CK(i,j,k)*VK + CL(i,j,k)*VL...
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+ CR(i,j,k)*VR + CB(i,j,k)*V(i,j,k-1)...
+ CT(i,j,k)*V(i,j,k+1) + Ccond(i,j,k) + Cg(i,j,k);

elseif i == 1, % Symmetry along y-axis, xz-plane
Vnew = CK(i,j,k)*V(i+1,j,k) + CL(i,j,k)*V(i,j-1,k)...

+ CR(i,j,k)*V(i,j+1,k) + CB(i,j,k)*V(i,j,k-1)...
+ CT(i,j,k)*V(i,j,k+1) + Ccond(i,j,k) + Cg(i,j,k);

elseif i<=m+1 & j==1 & k>nHb+nox+nm+nd+1, % Symmetry along x-axis
VR = V(i,j+1,k-1)+(V(i,j+1,k)-V(i,j+1,k-1))*(z(i,j,k)...

-z(i,j+1,k-1))/(z(i,j+1,k)-z(i,j+1,k-1));
VK = V(i+1,j,k)+(V(i+1,j,k+1)-V(i+1,j,k))*(z(i,j,k)...

-z(i+1,j,k))/(z(i+1,j,k+1)-z(i+1,j,k));
VF = V(i-1,j,k-1)+(V(i-1,j,k)-V(i-1,j,k-1))*(z(i,j,k)...

-z(i-1,j,k-1))/(z(i-1,j,k)-z(i-1,j,k-1));
Vnew = CF(i,j,k)*VF + CK(i,j,k)*VK...

+ CR(i,j,k)*VR + CB(i,j,k)*V(i,j,k-1)...
+ CT(i,j,k)*V(i,j,k+1) + Ccond(i,j,k) + Cg(i,j,k);

elseif j == 1, % Symmetry along x-axis, yz-plane
Vnew = CF(i,j,k)*V(i-1,j,k) + CK(i,j,k)*V(i+1,j,k)...

+ CR(i,j,k)*V(i,j+1,k) + CB(i,j,k)*V(i,j,k-1)...
+ CT(i,j,k)*V(i,j,k+1) + Ccond(i,j,k) + Cg(i,j,k);

elseif i<=m+1 & j<n+1 & k>nHb+nox+nm+nd+1 % Non-rectangular region
VL = V(i,j-1,k)+(V(i,j-1,k+1)-V(i,j-1,k))*(z(i,j,k)...

-z(i,j-1,k))/(z(i,j-1,k+1)-z(i,j-1,k));
VR = V(i,j+1,k-1)+(V(i,j+1,k)-V(i,j+1,k-1))*(z(i,j,k)...

-z(i,j+1,k-1))/(z(i,j+1,k)-z(i,j+1,k-1));
VK = V(i+1,j,k)+(V(i+1,j,k+1)-V(i+1,j,k))*(z(i,j,k)...

-z(i+1,j,k))/(z(i+1,j,k+1)-z(i+1,j,k));
VF = V(i-1,j,k-1)+(V(i-1,j,k)-V(i-1,j,k-1))*(z(i,j,k)...

-z(i-1,j,k-1))/(z(i-1,j,k)-z(i-1,j,k-1));
Vnew =CF(i,j,k)*VF+CK(i,j,k)*VK+CL(i,j,k)*VL+CR(i,j,k)*VR...

+ CB(i,j,k)*V(i,j,k-1) + CT(i,j,k)*V(i,j,k+1)...
+ Ccond(i,j,k) + Cg(i,j,k);

else % General node in the computational domain
Vnew = CF(i,j,k)*V(i-1,j,k) + CK(i,j,k)*V(i+1,j,k)...

+ CL(i,j,k)*V(i,j-1,k) + CR(i,j,k)*V(i,j+1,k)...
+ CB(i,j,k)*V(i,j,k-1) + CT(i,j,k)*V(i,j,k+1)...
+ Ccond(i,j,k) + Cg(i,j,k);

end
r = abs(Vnew - V(i,j,k)); % check accuracy
if r > residual, residual = r; end
V(i,j,k) = Vnew;

end
end

end
iter(ko) = ko; % set the residual and iteration number in arrys
resid(ko) = residual; niter = ko;
if residual <= Ermax,

break
end

end
clear CF; clear CK; clear CL; clear CR; clear CB; clear CT;
clear Ccond; clear Cg; clear Co; clear t1; clear t2; clear t3;
clear t4; clear t5; clear t6;
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% The electric field calculation in the 2-D computation domain, E(x,y,z)=Ex+Ey+Ez
% -------------------------------------------------------------------------------
for i = 1:ny,

for j = 1:nx+1,
for k = 2:nz,

if (k > nHb+nox & k <= nHb+nox+nm+1 & j < nwx+1) | (k > nHb+nox ...
& k <= nHb+nox+ngz+1 & j > n+1) | (k > nHb+nox ...
& k <= nHb+nox+nm+nd+ng+1 & j > n+1 & j < n+ns+1 & i <= m+1)...
| (k >= nHb+nox+nm+nd+ng+1 & k <= nHb+nH+1 & j < n+ns+1 & i <= m+1),
Ex(i,j,k) = 0;

elseif i <= m+1 & j == 1 & k > nHb+nox+nm+nd+1,
VR = V(i,2,k-1)+(V(i,2,k)-V(i,2,k-1))*(z(i,1,k)-z(i,2,k-1))...

/(z(i,2,k)-z(i,2,k-1));
VRR = V(i,3,k-1)+(V(i,3,k)-V(i,3,k-1))*(z(i,1,k)-z(i,3,k-1))...

/(z(i,3,k)-z(i,3,k-1));
Ex(i,1,k) = (x(i,2,k)+x(i,3,k))*V(i,1,k)/(x(i,2,k)*x(i,3,k))...

+(x(i,2,k)*VRR/x(i,3,k)-x(i,3,k)*VR/x(i,2,k))...
/(x(i,3,k)-x(i,2,k));

elseif i <= m+1 & j<=n+1 & k > nHb+nox+nm+nd+1, % Non-rectangular grid
VL = V(i,j-1,k)+(V(i,j-1,k+1)-V(i,j-1,k))*(z(i,j,k)-z(i,j-1,k))...

/(z(i,j-1,k+1)-z(i,j-1,k));
VR=V(i,j+1,k-1)+(V(i,j+1,k)-V(i,j+1,k-1))*(z(i,j,k)-z(i,j+1,k-1))...

/(z(i,j+1,k)-z(i,j+1,k-1));
Ex(i,j,k) = -(x(i,j,k)-x(i,j+1,k))*VL/((x(i,j-1,k)-x(i,j,k))...

*(x(i,j-1,k)-x(i,j+1,k)))-(2*x(i,j,k)-x(i,j-1,k)-x(i,j+1,k))...
*V(i,j,k)/((x(i,j,k)-x(i,j-1,k))*(x(i,j,k)-x(i,j+1,k)))...
-(x(i,j,k)-x(i,j-1,k))*VR/((x(i,j+1,k)-x(i,j-1,k))...
*(x(i,j+1,k)-x(i,j,k)));

elseif j == 1,
Ex(i,1,k) = (x(i,2,k)+x(i,3,k))*V(i,1,k)/(x(i,2,k)*x(i,3,k))...

+(x(i,2,k)*V(i,3,k)/x(i,3,k)-x(i,3,k)*V(i,2,k)/x(i,2,k))...
/(x(i,3,k)-x(i,2,k));

elseif j == nx+1,
Ex(i,j,k) = -(x(i,j,k)-x(i,j-1,k))*V(i,j-2,k)/((x(i,j-2,k)...

-x(i,j-1,k))*(x(i,j-2,k)-x(i,j,k)))-(x(i,j,k)-x(i,j-2,k))...
*V(i,j-1,k)/((x(i,j-1,k)-x(i,j-2,k))*(x(i,j-1,k)-x(i,j,k)));

else
Ex(i,j,k)=-(x(i,j,k)-x(i,j+1,k))*V(i,j-1,k)/((x(i,j-1,k)-x(i,j,k))...

*(x(i,j-1,k)-x(i,j+1,k)))-(2*x(i,j,k)-x(i,j-1,k)-x(i,j+1,k))...
*V(i,j,k)/((x(i,j,k)-x(i,j-1,k))*(x(i,j,k)-x(i,j+1,k)))...
-(x(i,j,k)-x(i,j-1,k))*V(i,j+1,k)/((x(i,j+1,k)-x(i,j-1,k))...
*(x(i,j+1,k)-x(i,j,k)));

end
end

end
end

for i = 1:ny+1,
for j = 1:nx,

for k = 2:nz,
if (k > nHb+nox & k <= nHb+nox+nm+1 & j <= nwx+1) | (k > nHb+nox ...
& k <= nHb+nox+ngz+1 & j >= n+1) | (k > nHb+nox ...
& k <= nHb+nox+nm+nd+ng+1 & j >= n+1 & j <= n+ns+1 & i < m+1)...
| (k >= nHb+nox+nm+nd+ng+1 & k <= nHb+nH+1 & j <= n+ns+1 & i < m+1),
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Ey(i,j,k) = 0;
elseif i == 1 & j < n+1 & k > nHb+nox+nm+nd+1,

VK = V(2,j,k-1)+(V(2,j,k)-V(2,j,k-1))*(z(1,j,k)-z(2,j,k-1))...
/(z(2,j,k)-z(2,j,k-1));

VKK = V(3,j,k-1)+(V(3,j,k)-V(3,j,k-1))*(z(1,j,k)-z(3,j,k-1))...
/(z(3,j,k)-z(3,j,k-1));

Ey(1,j,k) = (y(2,j,k)+y(3,j,k))*V(1,j,k)/(y(2,j,k)*y(3,j,k))...
+(y(2,j,k)*VKK/y(3,j,k)-y(3,j,k)*VK/y(2,j,k))...
/(y(3,j,k)-y(2,j,k));

elseif i<=m+1 & j < n+1 & k > nHb+nox+nm+nd+1, % Non-rectangular grid
VF = V(i-1,j,k)+(V(i-1,j,k+1)-V(i-1,j,k))*(z(i,j,k)-z(i,j,k-1))...

/(z(i-1,j,k+1)-z(i-1,j,k));
VK=V(i+1,j,k-1)+(V(i+1,j,k)-V(i+1,j,k-1))*(z(i,j,k)-z(i+1,j,k-1))...

/(z(i+1,j,k)-z(i+1,j,k-1));
Ey(i,j,k) = -(y(i,j,k)-y(i+1,j,k))*VF/((y(i-1,j,k)-y(i,j,k))...

*(y(i-1,j,k)-y(i+1,j,k)))-(2*y(i,j,k)-y(i-1,j,k)-y(i+1,j,k))...
*V(i,j,k)/((y(i,j,k)-y(i-1,j,k))*(y(i,j,k)-y(i+1,j,k)))...
-(y(i,j,k)-y(i-1,j,k))*VK/((y(i+1,j,k)-y(i-1,j,k))...
*(y(i+1,j,k)-y(i,j,k)));

elseif i == 1,
Ey(1,j,k) = (y(2,j,k)+y(3,j,k))*V(1,j,k)/(y(2,j,k)*y(3,j,k))...

+(y(2,j,k)*V(3,j,k)/y(3,j,k)-y(3,j,k)*V(2,j,k)/y(2,j,k))...
/(y(3,j,k)-y(2,j,k));

elseif i == ny+1,
Ey(i,j,k) = -(y(i,j,k)-y(i-1,j,k))*V(i-2,j,k)/((y(i-2,j,k)...

-y(i-1,j,k))*(y(i-2,j,k)-y(i,j,k)))-(y(i,j,k)-y(i-2,j,k))...
*V(i-1,j,k)/((y(i-1,j,k)-y(i-2,j,k))*(y(i-1,j,k)-y(i,j,k)));

else
Ey(i,j,k)=-(y(i,j,k)-y(i+1,j,k))*V(i-1,j,k)/((y(i-1,j,k)-y(i,j,k))...

*(y(i-1,j,k)-y(i+1,j,k)))-(2*y(i,j,k)-y(i-1,j,k)-y(i+1,j,k))...
*V(i,j,k)/((y(i,j,k)-y(i-1,j,k))*(y(i,j,k)-y(i+1,j,k)))...
-(y(i,j,k)-y(i-1,j,k))*V(i+1,j,k)/((y(i+1,j,k)-y(i-1,j,k))...
*(y(i+1,j,k)-y(i,j,k)));

end
end

end
end

for i = 1:ny,
for j = 1:nx,

for k = 1:nz+1
if (k > nHb+nox+1 & k <= nHb+nox+nm & j <= nwx+1) | (k > nHb+nox+1 ...

& k <= nHb+nox+ngz & j >= n+1) | (k > nHb+nox+1 ...
& k <= nHb+nox+nm+nd+ng+1 & j >= n+1 & j <= n+ns+1 & i <= m+1)...
| (k > nHb+nox+nm+nd+ng+1 & k <= nHb+nH & j <= n+ns+1 & i <= m+1),
Ez(i,j,k) = 0;

elseif k == 1,
Ez(i,j,k)=(z(i,j,k+1)*V(i,j,k+2)/z(i,j,k+2)-z(i,j,k+2)*V(i,j,k+1)...

/z(i,j,k+1))/(z(i,j,k+2)-z(i,j,k+1));
elseif k == nz+1,

Ez(i,j,k) = -(z(i,j,k)-z(i,j,k-1))*V(i,j,k-2)/((z(i,j,k-2) ...
-z(i,j,k-1))*(z(i,j,k-2)-z(i,j,k)))-(z(i,j,k)...
-z(i,j,k-2))*V(i,j,k-1)/((z(i,j,k-1)-z(i,j,k-2))...
*(z(i,j,k-1)-z(i,j,k)));
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else
Ez(i,j,k) = -(z(i,j,k)-z(i,j,k+1))*V(i,j,k-1)/((z(i,j,k-1)...

-z(i,j,k))*(z(i,j,k-1)-z(i,j,k+1)))-(2*z(i,j,k)...
-z(i,j,k-1)-z(i,j,k+1))*V(i,j,k)/((z(i,j,k)...
-z(i,j,k-1))*(z(i,j,k)-z(i,j,k+1)))-(z(i,j,k)...
-z(i,j,k-1))*V(i,j,k+1)/((z(i,j,k+1)-z(i,j,k-1))...
*(z(i,j,k+1)-z(i,j,k)));

end
end

end
end
clear V;

% Calculation of the total charge accumulated on the CPW signal line to
% determine
% the switch capacitance by applying Gauss’s law: Qenc= Int(D.ds) around the
% center conductor of the CPW (lower electrode).
% --------------------------------------------------------------------------------
k_B = floor(nHb/2); % selected bottom surface location
j_R = floor((n+nwx)/2); % selected right surface location
k_T = nHb+nox+nm+nd; % selected top surface location
k = k_B; Qinc = 0; % bottom surface
for i = 2:ny,

x2 = x(i,2,k)-x(i,1,k); y1 = y(i,1,k)-y(i-1,1,k); y2 = y(i+1,1,k)-y(i,1,k);
Qinc = Qinc + 0.5*Ez(i,1,k)*(Er(i,1,k-1)*x2*y2+Er(i-1,1,k-1)*x2*y1);
for j = 2:j_R,

x1 = x(i,j,k)-x(i,j-1,k); x2 = x(i,j+1,k)-x(i,j,k);
y1 = y(i,j,k)-y(i-1,j,k); y2 = y(i+1,j,k)-y(i,j,k);
Qinc = Qinc + 0.25*Ez(i,j,k)*(Er(i,j,k-1)*x2*y2+Er(i-1,j,k-1)*x2*y1...

+ Er(i-1,j-1,k-1)*x1*y1 + Er(i,j-1,k-1)*x1*y2);
end

end
j = j_R; % Right surface
for i = 2:ny,

for k = k_B:k_T,
y1 = y(i,j,k)-y(i-1,j,k); y2 = y(i+1,j,k)-y(i,j,k);
z1 = z(i,j,k)-z(i,j,k-1); z2 = z(i,j,k+1)-z(i,j,k);
Qinc = Qinc - 0.25*Ex(i,j,k)*(Er(i,j,k)*y2*z2+Er(i-1,j,k)*y1*z2...

+ Er(i,j,k-1)*y2*z1 + Er(i-1,j,k-1)*y1*z1);
end

end
k = k_T; % Top surface
for i = 2:ny,

x2 = x(i,2,k)-x(i,1,k); y1 = y(i,1,k)-y(i-1,1,k); y2 = y(i+1,1,k)-y(i,1,k);
Qinc = Qinc - 0.5*Ez(i,1,k)*(Er(i,1,k)*x2*y2 + Er(i-1,1,k)*x2*y1);
for j = 2:j_R,

x1 = x(i,j,k)-x(i,j-1,k); x2 = x(i,j+1,k)-x(i,j,k);
y1 = y(i,j,k)-y(i-1,j,k); y2 = y(i+1,j,k)-y(i,j,k);
Qinc = Qinc - 0.25*Ez(i,j,k)*(Er(i,j,k)*x2*y2+Er(i-1,j,k)*x2*y1...

+ Er(i-1,j-1,k)*x1*y1 + Er(i,j-1,k)*x1*y2);
end

end
Qinc = Qinc*4*Epso; % Multiplied by 4 due to two the symmetries
Cap = 1E15*abs(Qinc)/Vo; % Total switch capacitance in fF
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% Calculation of the electrostatic force induced on the membrane.
% ---------------------------------------------------------------
k = nHb+nox+nm+nd+ng+1;
for i = 1:m+1,

for j = 1:n+1,
if i == 1 & j == 1,

f(i,j) = -0.5*Epso*Ez(i,j,k)*Ez(i,j,k);
elseif i == 1,

f(i,j) = -0.5*Epso*(Ex(i,j,k)*Ex(i,j,k)+Ez(i,j,k)*Ez(i,j,k));
elseif j == 1,

f(i,j) = -0.5*Epso*(Ey(i,j,k)*Ey(i,j,k)+Ez(i,j,k)*Ez(i,j,k));
else

f(i,j) = -0.5*Epso*(Ex(i,j,k)^2+Ey(i,j,k)^2+Ez(i,j,k)^2);
end

end
end

% Calling the mechanical model to determine the bridge deformation caused when
% applying the DC biasing voltage Vo.
% The mechanical model solves the plate equation using the FDM and matrix
% inversion method to calculate the bending function w(x,y) due to the
% electrostatic force induced on the membrane P(x,y), when applying Vo.
P = [flipud(f); f(2:m+1,:)]/D; P = [fliplr(P) P(:,2:n+1)]; clear f;

[Wm] = SolvePlateEqUsingFDM(2*m,2*n,dx,dy,t,nu,P);

wmax = w(1,1); w(1:m+1,1:n+1) = abs(Wm(m+1:2*m+1,n+1:2*n+1));
end % End the iteration, which calculates the deformation

g(ii) = go - w(1,1); fv(ii) = D*abs(P(m+1,n+1)); C(ii) = Cap; Vi(ii)= Vo;
shape(1:2*m+1,1:2*n+1,ii) = go - abs(Wm(1:2*m+1,1:2*n+1)); clear Wm;
end % End Vo loop
X = x(1,:,1); X = X’; Y = y(:,1,1); P = abs(P);
Xb(1:n+1)=X(1:n+1); Xb=[Xb L+Xb(1:n)]; Yb(1:m+1)=Y(1:m+1); Yb=[Yb b+Yb(1:m)];
Xb=Xb*1e6; Yb=Yb*1e6; L=L*2e6; b=b*2e6;
CPU_Time = toc % to measure the CPU elapsed time

clear Ex; clear Er; clear z1e; clear z2e; clear wmax; clear count;
clear Ey; clear x1; clear x2; clear y1; clear y2; clear z1; clear z2;
clear Ez; clear ZT; clear ZB; clear VL; clear VR; clear VF; clear VK;
clear i; clear j; clear k; clear k_B; clear k_T; clear j_R;

save Results_MEMS3D % save results in a mat file

figure; % surf
mesh(Xb,Yb,P*D); axis([0 L 0 b 0 1.2*D*max(max(P))]);
xlabel(’x [\mum]’); ylabel(’y [\mum]’); zlabel(’Force density [N/m^2]’);
title(’Electrostatic force density distribution at pull down]’);

figure; mesh(Xb,Yb,shape(:,:,ii)*1E6); axis([0 L 0 b -go*1e6 go*1E6]);
xlabel(’x [\mum]’); ylabel(’y [\mum]’); zlabel(’Gap height [\mum]’);
title(’Shape of the deformed membrane at actuation voltage \geq V_{pi}’);
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figure; subplot(1,3,1); plot(Vi,g*1e6), grid;
xlabel(’Voltage [Volts]’); ylabel(’Position [\mum]’);
axis([0 10*(floor(Vo/10)+1) 0 go*1E6]);
title(’Bridge center position vs. applied voltage’);

subplot(1,3,2); plot(Vi,C), grid;
xlabel(’Voltage [Volts]’); ylabel(’Capacitance [fF]’);
axis([0 10*(floor(Vo/10)+1) 0.99*min(C) 1.01*max(C)]);
title(’Capacitance vs. applied voltage’);
subplot(1,3,3); plot(Vi,fv/1000), grid;
xlabel(’Voltage [Volts]’); ylabel(’Force density [kN/m^2]’);
axis([0 10*(floor(Vo/10)+1) 0.95*min(abs(fv/1000)) 1.05*max(abs(fv/1000))]);
title(’Force density induced on the bridge center node vs. applied voltage’);

figure; plot(iter,resid), grid;
title(’ Error = %’)
xlabel(’Number of iterations’); ylabel(’Residual’);

% The END of the main program MEMS3DModel.m
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