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Zusammenfassung

In der vorliegenden Arbeit werden Konzepte der Antennentheorie mit denen der Mikro-

wellentheorie verknüpft, um eine “Antennentheorie innerhalb resonierender Systeme”

zu formulieren. Resonierende Systeme sind in diesem Zusammenhang als räumliche

Umgebungen definiert, innerhalb derer sich elektromagnetische Resonanzen (“stehende

Wellen”) ausbilden können. Eine Antennentheorie innerhalb resonierender Systeme

bietet einen geeigneten Rahmen zur Modellierung innerer Probleme der elektromag-

netischen Verträglichkeit. Diese Modellierung beinhaltet hauptsächlich die Unter-

suchung der Wechselwirkung von Antennen, wobei elektromagnetische Störquellen durch

sendende Antennen und elektromagnetische Störsenken durch empfangende Antennen

repräsentiert werden.

Unsere Vorgehensweise orientiert sich an den folgenden drei Fragestellungen:

1. Welche Gleichungen bestimmen das Verhalten von Antennen innerhalb resonieren-

der Systeme (physikalische Modellbildung und mathematische Formulierung)?

2. Welche mathematischen Methoden sind anzuwenden, um diese Gleichungen hin-

reichend genau und schnell auswerten zu können (analytische und numerische

Lösungsverfahren)?

3. Welche Schlussfolgerungen lassen sich aus den gewonnenen Lösungen ziehen

(physikalische Interpretation und technische Anwendung)?

Um auf diese Fragestellungen adäquat eingehen zu können, ist die Kenntnis der

grundlegenden Konzepte der klassischen Elektrodynamik unabdingbar. Diese Konzepte

werden in Kapitel 1 vollständig eingeführt und interpretiert. Die gewählte Darstellung ist

als Kombination von Maxwellscher Axiomatik und eichtheoretischer Beschreibung origi-

när. Eine wichtige Konsequenz ist die Identifikation der zwei komplementären Arten von

Singularitäten des elektromagnetischen Feldes, welche durch Coulomb-Singularitäten

und elektromagnetische Resonanzen gegeben sind. Entsprechend lassen sich elektro-

magnetische Felder in Coulomb-Felder und Strahlungsfelder unterteilen. Für die in

praktischen Anwendungen auftretenden elektromagnetischen Felder ist eine exakte Auf-

spaltung in diese beiden Feldanteile in der Regel nicht möglich. Diese untrennbare Ver-

knüpfung von Coulomb-Anteilen und Strahlungsanteilen ist der hauptsächliche Grund

für die bei der Formulierung und Anwendung einer Antennentheorie in resonierenden

Systemen auftretenden Schwierigkeiten.



2 Zusammenfassung

Das für die weitere mathematische Formulierung notwendige Rüstzeug wird maßgeb-

lich durch die Funktionalanalysis geliefert. Daher beginnt Kapitel 2 mit einer Bereit-

stellung funktionalanalytischer Begriffe und Methoden. Wesentlich sind die Methode der

Entwicklung nach Eigenfunktionen eines selbstadjungierten Differentialoperators und die

Methode der Greenschen Funktion als Basis der Antennentheorie. Auch numerische

Lösungsmethoden finden im funktionalanalytischen Rahmen eine natürliche und ein-

heitliche Darstellung.

In Kapitel 3 werden zunächst elektromagnetische Begriffe für die Antennentheorie

eingeführt. Hierzu gehören Definitionen elektromagnetischer Kopplung, das Prinzip

der Reziprozität, und die Darstellung von Antennenimpedanzen in Umgebungen mit

diskretem elektromagnetischen Spektrum. Es zeigt sich, dass die in der Antennenthe-

orie zu lösenden Feldintegralgleichungen innerhalb von resonierenden Systemen Green-

sche Funktionen als Integralkerne aufweisen, die sowohl durch Coulomb-Singularitäten

als auch durch elektromagnetische Resonanzen gekennzeichnet sind. Eine prakti-

kable Auswertung solcher Integralgleichungen erfordert eine getrennte Berechnung bei-

der Arten von Singularitäten. Hierfür eignen sich hybride Strahlen-Moden Darstel-

lungen Greenscher Funktionen, die sich mit Interpolationsverfahren und der Metho-

de der analytischen Regularisierung kombinieren lassen. Mit diesen Hilfsmitteln wer-

den für kanonische Beispiele Antennenimpedanzen innerhalb von Resonatoren berech-

net. Diese Berechnungen repräsentieren vollständige Lösungen von Antennenproblemen

innerhalb resonierender Systeme und liefern Erkenntnisse für die Elektromagnetische

Verträglichkeit.

Nichtlinear belastete Antennen innerhalb resonierender Ungebungen werden in Kapi-

tel 4 betrachtet. An solchen Antennen treten Intermodulationseffekte auf, die komplexe

Frequenzspektren generieren. Zur Berechnung solcher Frequenzspektren ist es vorteil-

haft, ein gegebenes Antennenproblem zunächst auf ein Netzwerkproblem zu reduzieren.

Anschließend können Methoden der nichtlinearen Netzwerktheorie angewendet werden.

Ein für die Elektromagnetische Verträglichkeit wichtiger Aspekt ist das Phänomen der

Unwandlung von hohen Frequenzen zu niedrigen Frequenzen innerhalb von Resonatoren.

Dieser Effekt wird qualitativ beschrieben und anhand von Beispielen quantitativ berech-

net.

Die Integralgleichungen der Antennentheorie bilden auch die Grundlage der

herkömmlichen Leitungstheorie und ihrer Verallgemeinerungen. Daher bietet es sich

an, abschließend in Kapitel 5 auf elektromagnetische Leitungen einzugehen. Für gleich-

förmige Leitungen ist eine Aufspaltung des Leitungsstromes in Gleichtaktstrom und

Gegentaktstrom auch in resonierenden Umgebungen sinnvoll. Der Gleichtaktstrom kann

dann mit den in Kapitel 3 vorgestellten Methoden der Antennentheorie berechnet wer-

den, während sich der Gegentaktstrom näherungsweise durch klassische Leitungstheorie

berechnen läßt. Zur Beschreibung allgemeiner Leitungskonfigurationen ist die klassis-

che Leitungstheorie aber nicht mehr geeignet und es sind in diesem Fall die Integral-

gleichungen der Antennentheorie ohne einschränkende Annahmen zu lösen.



Introduction and Summary

Antennas are engineering devices that are built to transmit and receive electromagnetic

signals. In everyday life they are known as essential components of radio, television,

mobile communication, and radar systems. The interaction between a transmitting and

a receiving antenna is represented by the sequence

transmitting antenna −→ electromagnetic field −→ receiving antenna . (1)

In antenna theory we are mainly concerned with the modeling of this sequence. The

corresponding physical framework is provided by classical electrodynamics. In classical

electrodynamics it is appropriate to view the sequence (1) as electromagnetic interac-

tion between electromagnetic sources, where electromagnetic sources are represented by

electric charges and their currents,

electromagnetic sources←→ electromagnetic field←→ electromagnetic sources . (2)

The coupling between electromagnetic sources and electromagnetic fields is governed by

the Maxwell equations. If we want to explicitly calculate the interaction sequence (2) we

have to solve the Maxwell equations. In free space the general solution of the Maxwell

equations with respect to elementary electromagnetic sources is known. It is fortunate

that this case is the one which is of primary interest in antenna theory: Usually, we

require electromagnetic propagation between a transmitting and a receiving antenna to

take place in a free space environment where it is not too much influenced by obstacles

and boundaries. This is why antennas often are mounted on top of mountains, towers,

roofs, or poles. Consequently, most results of antenna theory are based on the assump-

tions that the electromagnetic coupling and propagation takes place in free space [5, 211].

However, in antenna theory we also are confronted with situations where the as-

sumption of a free space environment is no longer justified. Examples are cavity backed

antennas that are located within a semi-open cavity [52, 26] or periodic antenna arrays

that are modeled by equivalent configurations of single antennas which are enclosed by

a number of mirrors [132, 5]. The necessity to formulate antenna coupling not only in

free space becomes particularly evident if we consider the increasingly important and

expanding subject of Electromagnetic Compatibility (EMC) analysis [217, 117, 168, 197]:

In EMC analysis we encounter a large class of situations where Electromagnetic Interfer-

ence (EMI) sources act as transmitting antennas and produce unwanted electromagnetic
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fields. These fields may eventually couple to EMI victims that behave like receiving

antennas. Therefore, it is natural to view in this context both EMI sources and EMI

victims as unintentionally coupled antennas. Since EMI sources and victims often are

located within metallic enclosures it is then required to adapt the concepts of antenna

theory to this situation.

Probably one of the most important features of a free space environment is the

existence of a continuous set of possible states of the electromagnetic field. An antenna

in free space may couple, depending on its excitation, to all electromagnetic states of

this continuous set. This set mathematically is described by a simple function, the

Green’s function of the Helmholtz equation in free space. It follows from the properties

of this function that in free (three-dimensional) space electromagnetic wave propagation

can be characterized by outgoing spherical waves in a rather simple way. But once we

introduce boundaries these can impose severe conditions on the possible states of the

electromagnetic field. In particular, boundary conditions may single out discrete and

bound states, the so-called modes or resonances. We call an environment which supports

resonances a resonating environment or resonating system. If an antenna is placed

within a resonating system the coupling between antenna and electromagnetic field at

a particular frequency can be greatly inhibited or enhanced. Also the solution of the

Maxwell equations becomes more complex and involved if compared to free space [146].

These considerations lead us to the subject of this thesis: We will investigate the

interaction between transmitting and receiving antennas in resonating systems and, ac-

cordingly, call the corresponding framework antenna theory in resonating systems. This

framework emerges from the combination of usual antenna theory and microwave theory.

In microwave theory, which includes the theory of guided waves, the Maxwell equations

are solved within resonating systems in order to model electromagnetic propagation

[136, 30, 172]. Therefore, many concepts that are familiar from microwave theory can

be applied to antenna theory in resonating systems as well. But microwave theory usu-

ally assumes given electromagnetic sources which excite electromagnetic fields, that is,

the electric currents that generate the propagating electromagnetic fields usually are

assumed to be known. This is in contrast to antenna theory where antenna currents a

priori are unknown and also need to be determined on the basis of the Maxwell equa-

tions. It follows that in the framework of an antenna theory of resonating systems

we always have to consider not only freely propagating electromagnetic fields but also

their interaction with transmitting and receiving antennas which do represent extended

electromagnetic sources. As a result, both antenna currents and electromagnetic fields,

which both interact, need to be determined.

Our approach is based on the following chapters:

Chapter 1 provides an account of the foundations of classical electrodynamics. It yields

the basic equations of electromagnetics that we will need to solve together with

their physical interpretation. Our presentation is original, unique, and believed

to be of appreciable pedagogical value. It combines an axiomatic approach with
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the classical gauge field approach. The axiomatic approach has been outlined in

a recent monograph [84] which is based on a careful study of relevant literature,

among we especially mention the work of Truesdell & Toupin [225] and Post [171].

The classical gauge field approach has been established by Weyl [236] and nowa-

days constitutes a cornerstone of elementary particle physics [21]. We will use a

formulation of the gauge field approach which stresses the physical importance of

the gauge potentials and has been found useful both in gravity and electromag-

netics [62, 66, 67]. After a comparison of the axiomatic and the classical gauge

field approach we will pay special attention to the dynamical properties of the elec-

tromagnetic field. In the course of this it will be essential to introduce the split

of the electromagnetic field into an irrotational and a rotational part. This split

will also lead to a distinction between Coulomb fields and radiation fields. As a

further consequence it will be seen that Coulomb fields and radiation fields are

inseparably intertwined. It is this circumstance that leads to many conceptual and

practical problems in electrical engineering applications such as antenna theory or

transmission line theory. Therefore, our presentation of the foundations of classical

electrodynamics is beneficial in order to recognize the link between basic electro-

magnetic field properties and fundamental difficulties that are encountered during

the solution of actual engineering problems.

Chapter 2 begins with a summary of important results of functional analysis. This

mathematical subject developed from the necessity to solve boundary value prob-

lems that are of importance in physics. These boundary value problems include

vector wave equations that form the dynamical basis of many electromagnetic prob-

lems. We review the relevant concepts that have been introduced by Hilbert [32]

and later were applied to problems of theoretical physics [146]. A main goal of

this review is to introduce the method of eigenfunction expansion for self-adjoint

differential operators. The functional analytic framework also yields an elegant ap-

proach to the Green’s function method which is of utmost importance for a proper

formulation of antenna theory. Green’s functions are essential to represent the elec-

tromagnetic interaction either in free space or in the presence of boundaries. As

an example we will outline the construction of electromagnetic Green’s functions

in cavities. Finally, it will be stressed that the framework of functional analy-

sis naturally leads to the discretization of boundary value problems and, thus, to

numerical solution methods.

Chapter 3 first presents some basic concepts of antenna theory. In particular, mea-

sures of electromagnetic coupling will be introduced and related to electromagnetic

field properties. For the formulation of equations that are appropriate to deter-

mine antenna currents we will concentrate on the class of linear wire antennas and

review how to obtain relevant electric field integral equations. For the case of an-

tennas in resonating systems these integral equations are characterized by kernels
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which are given by Green’s functions that contain both Coulomb singularities and

resonances, i.e., poles in the complex frequency plane. Efficient solution methods

of these integral equations require to separate both types of electromagnetic sin-

gularities. Concepts that realize such a separation include the method of analytical

regularization and the representation of Green’s functions in hybrid form. They al-

low to explicitly calculate antenna impedances in resonating systems in an efficient

way. This will be exemplified for linear wire antennas within rectangular cavities.

The analytic-numerical results confirm the properties of antenna coupling within

resonating systems that are qualitatively expected from physical arguments.

Chapter 4 serves to consider antennas in resonating systems that are nonlinearly

loaded. A nonlinear load will cause intermodulation effects and drastically change

the frequency spectrum that is excited by an antenna. Consequently, it will be of

main concern to determine the spectrum that is generated by a nonlinearly loaded

antenna within a resonating system. As a general solution strategy, the corre-

sponding electromagnetic field problem will be reduced to an equivalent circuit

problem. An important aspect is the phenomenon of “high to low frequency con-

version” which will be discussed in the context of Electromagnetic Compatibility

Analysis.

Chapter 5 specializes on linear wire structures that form transmission lines. The cou-

pling of transmission lines to electromagnetic fields is modeled by the same electric

field integral equations that occur in antenna theory and it follows that the meth-

ods of the previous Chapter 3 apply. It will be outlined how to put the Maxwell

equations in the form of generalized Telegrapher equations and how to arrive at the

classical transmission line theory. In the course of this it will turn out to be useful

to introduce antenna mode currents and transmission line currents. For uniform

transmission lines both types of currents decouple in free space and may also ap-

proximately decouple within a cavity. The benefit of such a decoupling is that the

antenna mode may be calculated along the lines of Chapter 3 while the transmis-

sion line mode can, approximately, be calculated from the comparatively simple

classical transmission line theory. However, the classical transmission line theory

is not suitable to characterize general tranmission line structures. In this case it

is necessary to solve the integral equations of antenna theory without restricting

approximations.



Chapter 1

Fundamentals of Electromagnetics

In nature one has, up to now, identified four fundamental interactions: Gravity, elec-

tromagnetism, weak interaction, and strong interaction. Gravity and electromagnetism

manifest themselves on a macroscopic level. The weak and the strong interactions are

generically microscopic in nature and require a quantum field theoretical description right

from the beginning. Most electrical engineering applications are modeled by means of

the electromagnetic interaction and in this case it is not required to take into account

the other three interactions. This is especially true for the development of the usual

antenna theory and microwave theory.

The four interactions can be modeled individually. Thereby it is recognized that

electromagnetism has the simplest structure amongst these interactions. This simplicity

is reflected in the Maxwell equations. They, together with a few additional assumptions,

explain the electromagnetic phenomena that we observe in nature or in laboratories.

Authoritative accounts of classical electromagnetic field theory are provided by [199, 93,

182], e.g..

Rather then simply accepting the Maxwell equations and studying their consequences

we have in mind to derive them from some deeper lying structures, using as few assump-

tions as possible. This is the main motivation for the development of the axiomatic

approach and the gauge field approach. Both approaches to electromagnetism will be

introduced below. It is known from elementary particle physics that the Maxwell equa-

tions rely on conservation laws and symmetry principles [21, 185]. These concepts will

be the main ingredients of the axiomatic approach in the following Sec. 1.1 and also of

the gauge field approach which is the subject of Sec. 1.2. The two different approaches

will be related to each other in Sec. 1.3. In Sec. 1.4 we will mainly be concerned to

rewrite Maxwell equations in terms of wave equations while the subject of Sec. 1.5 is to

derive important electromagnetic field properties from the electromagnetic equations of

motion.



8 Fundamentals of Electromagnetics

1.1 Axiomatic approach

The axiomatic approach to classical electrodynamics is based on electric charge con-

servation, the Lorentz force, magnetic flux conservation, and the existence of local and

linear constitutive relations [225, 84]. The inhomogeneous Maxwell equations, expressed

in terms of Di and Hi , turn out to be a consequence of electric charge conservation,

whereas the homogeneous Maxwell equations, expressed in terms of Ei and Bi, are

derived from magnetic flux conservation. The excitations Di and Hi , by means of con-

stitutive relations, are linked to the field strengths Ei and Bi. Whereas the axiomatic

approach has been presented in a relativistic framework [225, 84] we will be able to

mostly do without relativistic notions. This is quite remarkable and requires, in par-

ticular for the derivation of the homogeneous Maxwell equations from magnetic flux

conservation, some steps that are not necessary if the complete framework of relativity

is available.

The axiomatic approach is not only characterized by simplicity and beauty, but is also

of appreciable pedagogical value. The more clearly a structure is presented, the easier

it is to memorize. Moreover, an understanding of how the fundamental electromagnetic

quantities Di, Hi, Ei, B
i are related to each other may facilitate the formulation and

solution of actual electromagnetic problems.

As it is appropriate for an axiomatic approach, we will start from as few prerequi-

sites as possible. What we will need is some elementary mathematical background that

comprises differentiation and integration in the framework of tensor analysis in three-

dimensional space. In particular, the concept of integration is necessary for introducing

electromagnetic objects as integrands in a natural way. To this end, we will use a tensor

notation in which the components of mathematical quantities are explicitly indicated

by means of upper (contravariant) or lower (covariant) indices [190]. The advantage of

this notation is that it allows to represent geometric properties clearly. In this way, the

electromagnetic objects become more transparent and can be discussed more easily. For

the formalism of differential forms, which provides similar conceptual advantages, we

refer to [128, 84].

Some mathematical material is compiled in Appendix A. It might be helpful in order

to get comfortable with the tensor notation. For a quick start we introduce the following

conventions:

• Partial derivatives with respect to a spatial coordinate xi (with i, j, · · · = 1, 2, 3)

or with respect to time t are abbreviated according to

∂

∂xi
−→ ∂i ,

∂

∂t
−→ ∂t . (1.1)

• We use the “summation convention”. It states that a summation sign can be

omitted if the same index occurs both in a lower and an upper position. That is,



1.1 Axiomatic approach 9

we have, for example, the correspondence

3∑

i=1

αi β
i ←→ αi β

i . (1.2)

• We define the Levi-Civita symbols εijk and εijk. They are antisymmetric with

respect to all of their indices. Therefore, they vanish if two of their indices are

equal. Their remaining components assume the values +1 or −1, depending on

whether ijk is an even or an odd permutation of 123:

εijk = εijk =

{
1 , for ijk = 123, 312, 231,

−1 , for ijk = 213, 321, 132.
(1.3)

With these conventions we obtain for the gradient of a function f the expression ∂if .

The curl of a (covariant) vector vi is written according to εijk∂jvk and the divergence of

a (contravariant) vector (density) wi is given by ∂iw
i.

Now we are prepared to move on to the Maxwell theory. In the next four subsections,

we will establish classical electrodynamics from electric charge conservation (axiom 1),

the Lorentz force (axiom 2), magnetic flux conservation (axiom 3), and the existence of

constitutive relations (axiom 4). This represents the core of classical electrodynamics: It

results in the Maxwell equations together with the constitutive relations and the Lorentz

force law.

In order to complete electrodynamics, one can require two more axioms, which we

only mention shortly (see [84] for a detailed discussion). One can specify the energy-

momentum distribution of the electromagnetic field (axiom 5) by means of its so-called

energy-momentum tensor. This tensor yields the energy density (DiEi + HiB
i)/2 and

the energy flux density εijkEjHk (the Poynting vector), inter alia. Moreover, if one treats

electromagnetic problems of materials in macrophysics, one needs a further axiom by

means of which the total electric charge (and the current) is split (axiom 6) in a bound

or material charge (and current), which is also conserved, and in a free or external charge

(and current).

1.1.1 Electric charge conservation (axiom 1) and the inhomo-

geneous Maxwell equations

In classical electrodynamics, the electric charge is characterized by its density ρ. From

a geometric point of view, the charge density ρ constitutes an integrand of a volume

integral. This geometric identification is natural since, by definition, integration of ρ

over a three-dimensional volume V yields the total charge Q enclosed in this volume

Q :=

∫

V

ρ dv . (1.4)
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We note that, in the SI-system, electric charge is measured in units of “ampere times

second” or coulomb, [Q] = As = C. Therefore, the SI-unit of charge density ρ is

[ρ] = As/m3 = C/m3.

It is instructive to invoke at this point the Poincaré lemma. There are different

explicit versions of this lemma. We use the form (A.23) that is displayed in Appendix A.

Then (if space fulfills suitable topological conditions) we can write the charge density ρ

as the divergence of an integrand Di of a surface integral. Thus,

∂iD
i = ρ (∇ ·D = ρ) . (1.5)

This result already constitutes one inhomogeneous Maxwell equation, the Coulomb-

Gauss law. In parenthesis we display for comparison the more conventional vector no-

tation.

Electric charges often move. We represent this motion by a material velocity field ui,

that is, we assign locally a velocity to each portion of charge in space. The product of

electric charge density ρ and material velocity ui defines1 the electric current density J i,

J i = ρui . (1.6)

Geometrically, the electric current density constitutes an integrand of surface integrals

since integration of J i over a two-dimensional surface S yields the total electric current I

that crosses this surface,

I =

∫

S

J i dai . (1.7)

We have, in SI-units, [I] = A and [J i] = A/m2.

We now turn to electric charge conservation, the first axiom of our axiomatic ap-

proach. To this end we have to determine how individual packets of charge change in

time as they move with velocity ui through space. A convenient way to describe this

change is provided by the material derivative Du/Dt which also is often called convective

derivative [225, 183]. It allows to calculate the change of a physical quantity as it appears

to an observer or a probe that follows this quantity. Then electric charge conservation

can be expressed as
DuQ

Dt
= 0 , (1.8)

where the material derivative is taken with respect to the velocity field ui. It can be

rewritten by means of the Reynold’s transport theorem in the following way [183, p.

1This definition is a microscopic one, since the movement of individual electric charges that constitute

the electric charge density is considered. On a macroscopic“averaged”level it is possible that the effective

charge density vanishes while an electric current is present. An example is a configuration of an electric

current that flows within a wire and exhibits no net charge density since negative charges of moving

electrons are compensated by positive charges of atoms that constitute the wire.
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457],

DuQ

Dt
=
Du

Dt

∫

V (t)

ρ dv

=

∫

V (t)

∂ρ

∂t
dv +

∮

∂V (t)

ρui dai

=

∫

V (t)

(
∂ρ

∂t
+ ∂i(ρu

i)

)
dv . (1.9)

Here we used in the last line the Stokes theorem in the form of (A.24). The volume

V (t) that is integrated over depends in general on time since it moves together with the

electric charge that it contains. By means of (1.6), (1.8), and (1.9) we obtain the axiom

of electric charge conservation in the local form as continuity equation,

∂tρ + ∂iJ
i = 0 . (1.10)

We mention that we can obtain this result also from the direct application of the material

derivative Du/Dt to the charge density. Noting that the material derivative is the sum

of the partial time derivative and the Lie derivative with respect to the velocity field ui

[225],
Du

Dt
=

∂

∂t
+ lu , (1.11)

we find with (A.39) for the material time derivative of the scalar density ρ

Duρ

Dt
=
∂ρ

∂t
+ luρ (1.12)

=
∂ρ

∂t
+ ∂i(ρu

i) (1.13)

=
∂ρ

∂t
+ ∂iJ

i . (1.14)

In this way the continuity equation (1.10) follows from Duρ/Dt = 0.

Now we use the inhomogeneous Maxwell equation (1.5) in order to replace within

the continuity equation (1.10) the charge density by the divergence of Di. This yields

∂i

(
∂tD

i + J i
)

= 0 . (1.15)

Again we invoke the Poincaré lemma, now in the form (A.22), and write the sum ∂tD
i+J i

as the curl of the integrand of a line integral which we denote by Hi. We obtain

εijk∂jHk − ∂tD
i = J i

(
∇×H − ∂D

∂t
= J

)
. (1.16)

Equation (1.16) constitutes the remaining inhomogeneous Maxwell equation, the

Ampère-Maxwell law, which, in this way, is derived from the axiom of electric charge
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conservation. The fields Di and Hi are called electric excitation (historically: electric

displacement) and magnetic excitation (historically: magnetic field), respectively. From

(1.5) and (1.16) it follows that their SI-units are [Di] = As/m2 and [Hi] = A/m.

Some remarks are appropriate now: We first note that we obtain the excitations Di

andHi from the Poincaré lemma and charge conservation, respectively, without introduc-

ing the concept of force. This is in contrast to other approaches that rely on the Coulomb

and the Lorentz force laws [43]. Furthermore, since electric charge conservation is valid

not only on macroscopic scales but also in microphysics2, the inhomogeneous Maxwell

equations (1.5) and (1.16) are microphysical equations as long as the source terms ρ

and J i are microscopically formulated as well. The same is valid for the excitations

Di and Hi. They are microphysical quantities – in contrast to what is often stated in

textbooks, see [93], for example. We finally remark that the inhomogeneous Maxwell

equations (1.5) and (1.16) can be straightforwardly put into a relativistically invariant

form. This is not self-evident but suggested by electric charge conservation in the form

of the continuity equation (1.10) since this fundamental equation can also be shown to

be relativistically invariant.

1.1.2 Lorentz force (axiom 2) and merging of electric and mag-

netic field strengths

During the discovery of the electromagnetic field, the concept of force has played a major

role. Electric and magnetic forces are directly accessible to experimental observation.

Experimental evidence shows that, in general, an electric charge is subject to a force

if an electromagnetic field acts on it. For a point charge q at position xq
i we have

ρ(xi) = qδ(xi − xq
i). If it has the velocity ui we postulate the Lorentz force

Fi = q(Ei + εijku
jBk) (1.17)

as second axiom. It introduces the electric field strength Ei and the magnetic field

strength Bi. The Lorentz force already yields a prescription of how to measure Ei and Bi

by means of the force that is experienced by an infinitesimally small test charge q which

is either at rest or moving with velocity ui. Turning to the dimensions, we introduce

voltage as “work per charge”. In SI, it is measured in volt (V). Then [Fi]=VC/m and,

according to (1.17), [Ei] = V/m and [Bi] = Vs/m2 = Wb/m2 = T, with Wb as

abbreviation for Weber and T for Tesla.

From the axiom of the Lorentz force (1.17), we can draw the conclusion that the

electric and the magnetic field strengths are not independent of each other. The corre-

2Microphysics commonly is understood as the physics on small scales that describes the interaction

between single, elementary particles. The concept of an elementary particle not necessarily involves

quantum effects and also is useful and important for classical electrodynamics [182]. On microphysical

scales electric charges and their related currents often are represented by distributions that reflect the

physical model of a point particle.
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a) charge observed from its rest frame b) charge observed from inertial frame
moving with respect to q

Bi
iB!

Figure 1.1: A charge that is, in some inertial frame, at rest and is immersed in a purely

magnetic field experiences no Lorentz force, see Fig.1a. The fact that there is no Lorentz

force should be independent of the choice of the inertial system that is used to observe

the charge. Therefore, a compensating electric field accompanies the magnetic field if

viewed from an inertial laboratory system which is in relative motion to the charge, see

Fig.1b.

sponding argument is based on the special relativity principle: According to the special

relativity principle, the laws of physics are independent of the choice of an inertial sys-

tem [43]. Different inertial systems move with constant velocities vi relative to each

other. The outcome of a physical experiment, as expressed by an empirical law, has to

be independent of the inertial system where the experiment takes place.

Let us suppose a point charge q with a certain mass moves with velocity ui in an

electromagnetic field Ei and Bi. The velocity and the electromagnetic field are measured

in an inertial laboratory frame. The point charge can also be observed from its instan-

taneous inertial rest frame. If we denote quantities that are measured with respect to

this rest frame by a prime, i.e., by u′i, E ′
i, and B′i, then we have u′i = 0. In the absence

of an electric field in the rest frame, i.e., if additionally E ′
i = 0, the charge experiences

no Lorentz force and, therefore, no acceleration,

F ′
i = q(E ′

i + εijku
′jB′k) = 0 . (1.18)

The fact that the charge experiences no acceleration is also true in the laboratory

frame. This is a consequence of the special relativity principle or, more precisely, of the

fact that the square of the acceleration can be shown to form a relativistic invariant.

Consequently,

Fi = q(Ei + εijku
jBk) = 0 . (1.19)

Thus, in the laboratory frame, electric and magnetic field are related by

Ei = −εijkujBk . (1.20)
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Figure 1.2: The tetrahedron of the electromagnetic field. The electric and the magnetic

excitations Di, Hi and the electric and the magnetic field strengths Ei, B
i build up 4-

dimensional quantities in spacetime. These four fields describe the electromagnetic field

completely. Of electric nature are Di and Ei, of magnetic nature Hi and Bi.

This situation is depicted in Fig.1.1. Accordingly, we find that electric and magnetic

field strength cannot be viewed as independent quantities. They are connected to each

other by transformations between different inertial systems.

Let us pause for a moment and summarize: So far we have introduced the four elec-

tromagnetic field quantities Di, Hi and Ei, B
i. These four quantities are interrelated by

physical and mathematical properties. This is illustrated in Fig.1.2 by the “tetrahedron

of the electromagnetic field”3.

1.1.3 Magnetic flux conservation (axiom 3) and the homoge-

neous Maxwell equations

We digress for a moment and turn to hydrodynamics. Helmholtz was one of the first who

studied rotational or “vortex” motion in hydrodynamics, see [115]. He derived theorems

for vortex lines. An important consequence of his work was the conclusion that vortex

lines are conserved. They may move or change orientation but they are never sponta-

neously created nor annihilated. The vortex lines that pierce through a two-dimensional

surface can be integrated over and yield a scalar quantity that is called circulation. The

circulation in a perfect fluid, which satisfies certain conditions, is constant provided the

loop enclosing the surface moves with the fluid [115].

There are certainly fundamental differences between electromagnetism and hydro-

3Thanks are due to Dr. Christian Heinicke for providing this figure.
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dynamics. But some suggestive analogies exist. A vortex line in hydrodynamics seems

analogous to a magnetic flux line. The magnetic flux Φ is determined from magnetic

flux lines, represented by the magnetic field strength Bi, that pierce through a two-

dimensional surface S,

Φ :=

∫

S

Bi dai . (1.21)

As the circulation in a perfect fluid is conserved, we can guess that, in a similar way, the

magnetic flux may be conserved. Of course, the consequences of such an axiom have to

be borne out by experiment.

At first sight, one may find vortex lines of a fluid easier to visualize than mag-

netic flux lines. However, on a microscopic level, magnetic flux can occur in quanta.

The corresponding magnetic flux unit is called flux quantum or fluxon and it carries

Φ0 = h/(2e) ≈ 2, 07 · 10−15 Wb, with h the Planck constant and e the elementary

charge. Single quantized magnetic flux lines have been observed in the interior of type

II superconductors if exposed to a sufficiently strong magnetic field, see [84, p. 131].

They even can be counted. The corresponding experiments provide good evidence that

magnetic flux is a conserved quantity.

But how can we formulate magnetic flux conservation mathematically? In Sec. 1.1.1

we applied the material derivative Du/Dt with respect to a velocity field ui to the total

electric charge Q and, equivalently, to the electric charge density ρ. This yielded the

continuity equation (1.10) which expresses electric charge conservation. We may follow

the same pattern to express magnetic flux conservation and write down the conservation

law
DuΦ

Dt
= 0 . (1.22)

This expression has to be examined and this, in turn, requires to clarify the following

two points:

• How do we define a velocity field ui with respect to a magnetic field Bi?

• What is a physically reasonable definition of the current of a magnetic flux?

To answer the first point we have to know how to observe, in general, a magnetic

field. The only means that we have to our disposal is the Lorentz force law, the second

axiom of our approach. With the Lorentz force law we may use electric test charges

to measure the electric and magnetic field strength. We have already noted in the

last subsection that electric and magnetic field strength are connected to each other

by relativistic transformations. This makes it impossible to state in a relativistically

invariant way which contribution to a Lorentz force is due to an electric field and which

contribution is due to a magnetic field. Any observer who uses an electric test charge

which is located in his rest frame might state that the Lorentz force on his test charge is

“purely electric” since for his test charge ui = 0 in (1.17) and, thus, Fi = qEi. He might

furthermore draw the conclusion that in his rest frame the velocity of the magnetic field
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vanishes as well. This is, of course, a wrong conclusion since the velocity which appears

in the Lorenz force law is the relative velocity between an observer and a test charge but

it is, a priori, not the relative velocity between a test charge and the magnetic field.

To nevertheless associate a velocity field to a magnetic field we note that the vanishing

of the Lorentz force on a test charge is relativistically invariant. If the Lorentz force on

a test charge vanishes in one inertial systems it will vanish in all inertial systems. In

this case there will be exactly one inertial system where this test charge is at rest. In

this inertial system we have

F ′
i = q(E ′

i + εijku
′jB′k) = 0 (1.23)

and it follows, since u′j = 0, that E ′
i = 0. We now define this distinguished inertial

system to be, at the position considered, the rest frame of the magnetic field. This

definition requires that we can always find an inertial system where F ′
i = 0, i.e., that

we can always find an inertial system where E ′
i = 0. For an arbitrary electromagnetic

field this will not be true, but we assign this property to a purely magnetic field. A

purely magnetic field is an electromagnetic field where, at any point in space and time,

we can make the electric field vanish in one inertial system. In the definition of magnetic

flux conservation we will only consider electromagnetic fields which are purely magnetic.

Otherwise we are not able to associate a velocity field to a magnetic field in a relativis-

tically invariant way. Therefore, the answer to the first point is that the velocity ui

associated to a (purely) magnetic field is the velocity of a specified inertial system which

moves with respect to a laboratory system with velocity ui and where the Lorentz force

on a test charge vanishes.

An answer to the second point requires to provide a physically meaningful definition

of magnetic flux current. To this end we reconsider the notion of electric charge,

Q =

∫

V

ρ dv , (1.24)

together with its corresponding conservation law

∂tQ +

∫

∂V

J i dai = 0 . (1.25)

We see from this representation that the rate of change of the electric charge within a

specified volume V is balanced by the out- or inflowing charge across the surface ∂V .

This charge transport is described by the electric charge current J i that is integrated

over the enveloping surface ∂V . By means of the Stokes theorem in the form (A.24),

equation (1.25) yields the local continuity equation

∂tρ + ∂iJ
i = 0 . (1.26)

Let us follow the same pattern to define the current of a magnetic flux: Starting with

the definition (1.21) of the magnetic flux, the corresponding geometric conservation law,
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in analogy to (1.25), reads

∂tΦ +

∫

∂S

JΦ
i dc

i = 0 , (1.27)

where we introduced the magnetic flux current JΦ
i . This is a covariant vector that is

integrated along a line ∂S, that is, along the curve bordering the 2-dimensional surface

S. The conservation law (1.27) tells us that the rate of change of the magnetic flux

within a specified area S is balanced by the magnetic flux current JΦ
i that is integrated

along the boundary ∂S. Then the Stokes theorem in the form (A.25) yields the local

continuity equation

∂tB
i + εijk∂jJ

Φ
k = 0 . (1.28)

One interesting consequence is the following: The divergence of (1.28) reads

∂i(∂tB
i) = 0 =⇒ ∂iB

i = ρmag , ∂tρmag = 0 . (1.29)

Thus, we find a time-independent term ρmag which acquires tentatively the meaning of

a magnetic charge density. Let us choose a specific reference system in which ρmag is

constant in time, i.e., ∂tρmag = 0. Now we go over to an arbitrary reference system with

time coordinate t′ and spatial coordinates xi′ . Clearly, in general ∂t′ρmag 6= 0. The only

way to evade a contradiction to (1.29) is to require ρmag = 0, that is, the magnetic field

strength Bi has no sources, its divergence vanishes:

∂iB
i = 0 (∇ ·B = 0) . (1.30)

This is recognized as one of the homogeneous Maxwell equations.

To specify the magnetic flux current we finally explore magnetic flux conservation,

expressed by means of the material time derivative Du/Dt with respect to a velocity

field ui which is associated to a purely magnetic field. We have

DuΦ

Dt
=
Du

Dt

∫

S(t)

Bi dai

=

∫

S(t)

(
∂tB

i − εijk∂jεklmu
lBm + ui∂jB

j
)
dai , (1.31)

where we applied the Helmholtz transport theorem [183, p. 456]. Alternatively, we can

work with the local expression

DuB
i

Dt
= ∂tB

i + luB
i

= ∂tB
i + uj∂jB

i − Bj∂ju
i +Bi∂ju

j , (1.32)

where we used the formula (A.36) for the Lie derivative of a contravariant vector density.
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The Lie derivative of Bi can be rewritten according to4

uj∂jB
i −Bj∂ju

i +Bi∂ju
j = −εijk∂jεklmu

lBm + ui∂jB
j . (1.33)

Hence, it follows
DuB

i

Dt
= ∂tB

i − εijk∂jεklmu
lBm + ui∂jB

j (1.34)

and it is recognized that (1.34) is the local version of (1.31)

According to (1.30) the divergence of the magnetic field strength Bi vanishes, ∂iB
i =

0. Also, by virtue of (1.20), we can locally identify the term −εklmu
lBm with an electric

field strength Ek. This is because we assumed that we work with a purely magnetic field,

i.e., an electromagnetic field which does not exert a Lorentz force on an electric charge

which moves with velocity ui in the laboratory frame. Then magnetic flux conservation,

DuB
i/Dt = 0, yields

∂tB
i + εijk∂jEk = 0

(
∂B

∂t
+ ∇×E = 0

)
. (1.35)

This equation reflects magnetic flux conservation, the third axiom of our axiomatic ap-

proach. It constitutes the remaining homogeneous Maxwell equation, that is, Faraday’s

induction law. We compare this result to the continuity equation (1.28) and deduce that

the electric field that appears in the Faraday’s induction law has to be interpreted as a

magnetic flux current.

1.1.4 Constitutive relations (axiom 4) and the properties of

spacetime

So far we have introduced 4×3 = 12 unknown electromagnetic field components Di, Hi,

Ei, and Bi. These components have to fulfill the Maxwell equations (1.5), (1.16), (1.30),

and (1.35), which represent 1 + 3 + 1 + 3 = 8 partial differential equations. In fact,

among the Maxwell equations, only (1.16) and (1.35) contain time derivatives and are

dynamical. The remaining equations, (1.5) and (1.30), are so-called “constraints”. They

are, by virtue of the dynamical Maxwell equations, fulfilled at all times if fulfilled at

one time. It follows that they do not contain information on the time evolution of

the electromagnetic field. Therefore, we arrive at only 6 dynamical equations for 12

unknown field components. To make the Maxwell equations a determined set of partial

differential equations we still have to introduce additionally the so-called “constitutive

relations” between the excitations Di, Hi and the field strengths Ei, B
i.

4In a more conventional notation this identity reads, compare (B.11),

(u ·∇)B −B(∇ · u) + (B ·∇)u = −∇× (u×B) + u(∇ ·B) .
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The simplest case to begin with is to find constitutive relations for the case of elec-

tromagnetic fields in vacuum. There are guiding principles that limit their structure.

We demand that constitutive relations in vacuum are invariant under translation and

rotation, furthermore they should be local and linear, i.e., they should connect fields at

the same position and at the same time. Finally, in vacuum the constitutive relations

should not mix electric and magnetic properties. These features characterize the vacuum

and not the electromagnetic field itself. We will not be able to prove them but postulate

them as fourth axiom.

If we want to relate the field strengths and the excitations we have to remind ourselves

that Ei, Hi are natural integrands of line integrals and Di, Bi are natural integrands of

surface integrals. Therefore, Ei, Hi transform under a change of coordinates as covariant

vectors while Di, Bi transform as contravariant vector densities. To compensate these

differences we will have to introduce a symmetric metric field gij = gji. The metric tensor

determines spatial distances and introduces the notion of orthogonality. The determinant

of the metric is denoted by g. It follows that
√
ggij transforms like a density and maps

a covariant vector into a contravariant vector density. We then take as fourth axiom the

constitutive relations for vacuum,

Di = ε0
√
g gij Ej , (1.36)

Hi = (µ0
√
g)−1gij B

j . (1.37)

In flat spacetime and in Cartesian coordinates, we have g = 1, gii = 1, and gij = 0

for i 6= j. We recognize the familiar vacuum relations between field strengths and

excitations. The electric constant ε0 and the magnetic constant µ0 characterize the

vacuum. They acquire the SI-units [ε0] = As/Vm and [µ0] = Vs/Am.

What seems to be conceptually important about the constitutive equations (1.36),

(1.37) is that they not only provide relations between the excitations Di, Hi and the field

strengths Ei, B
i, but also connect the electromagnetic field to the structure of spacetime,

which here is represented by the metric tensor gij. The formulation of the first three

axioms that were presented in the previous sections does not require information on

this metric structure. The connection between the electromagnetic field and spacetime,

as expressed by the constitutive relations, indicates that physical fields and spacetime

are not independent of each other. The constitutive relations might suggest the point

of view that the structure of spacetime determines the structure of the electromagnetic

field. However, one should be aware that the opposite conclusion also has a truth value:

It can be shown that the propagation properties of the electromagnetic field determine

the metric structure of spacetime [84, 114].

Constitutive relations in matter usually assume a more complicated form than (1.36),

(1.37). In this case it would be appropriate to derive the constitutive relations, after

an averaging procedure, from a microscopic model of matter. Such procedures are the
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subject of solid state or plasma physics, for example. A discussion of these subjects is

out of the scope of this work but, without going into details, we quote the constitutive

relations of a general linear magnetoelectric medium:

Di =
(
εij − εijk nk

)
Ej +

(
γi

j + s̃j
i
)
Bj + (α− s)Bi , (1.38)

Hi =
(
µ

−1

ij − εijk mk
)
Bj +

(
−γj

i + s̃i
j
)
Ej − (α + s)Ei . (1.39)

This formulation is due to Hehl & Obukhov [84, 85, 163], an equivalent formulation

was given by Lindell & Olyslager [173, 128]. Both matrices εij and µ−1
ij are symmetric

and possess 6 independent components each, εij is called permittivity tensor and µ−1
ij

impermeability tensor (reciprocal permeability tensor). The magnetoelectric cross-term

γi
j, which is trace-free, γk

k = 0, has 8 independent components. It is related to the

Fresnel-Fizeau effects. Accordingly, these pieces altogether, which we printed in (1.38)

and (1.39) in boldface for better visibility, add up to 6 + 6 + 8 + 1 = 20 + 1 = 21

independent components.

With the introduction of constitutive relations the axiomatic approach to classical

electrodynamics is completed. We will see in the next Section 1.3 how this approach

relates to the framework of gauge theory.

1.1.5 Remarks

We have presented an axiomatic approach to classical electrodynamics in which the

Maxwell equations are derived from the conservation of electric charge and magnetic

flux. In the context of the derivation of the inhomogeneous Maxwell equations, one

introduces the electric and the magnetic excitation Di and Hi, respectively. The ex-

plicit calculation is rather simple because the continuity equation for electric charge

is already relativistically invariant such that for the derivation of the inhomogeneous

Maxwell equations no additional ingredients from special relativity are necessary. The

situation is more complicated for the derivation of the homogeneous Maxwell equations

from magnetic flux conservation since it is not immediately clear of how to formulate

magnetic flux conservation in a relativistic invariant way. It should be mentioned that

if the complete framework of relativity were available, the derivation of the axiomatic

approach could be done with considerable more ease and elegance [225, 84].

At this point we would like to comment on a question that sometimes leads to

controversial discussions, as summarized in [183], for example. This is the question of

how the quantities Ei, D
i, Bi, and Hi should be grouped in pairs, i.e., the question

of “which quantities belong together?”. Some people like to form the pairs (Ei, B
i),

(Di, Hi), while others prefer to build (Ei, Hi) , (Di, Bi). Already from a dimensional

point of view, the answer to this question is obvious. Both, Ei and Bi are voltage-

related quantities, that is, related to the notions of force and work: In SI, we have

[Ei] = V/m, [Bi] = T=Vs/m2, or [Bi] = [Ei]/velocity. Consequently, they belong
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together. Analogously, Di and Hi are current-related quantities: [Di] = C/m2 = As/m2,

[Hi] = A/m, or [Di] = [Hi]/velocity.

These conclusions are made irrefutable by relativity theory. Classical electrodynamics

is a relativistic invariant theory and the implications of relativity have been proven to

be correct on macro- and microscopic scales over and over again. And relativity tells us

that the electromagnetic field strengths Ei, B
i are inseparably intertwined by relativistic

transformations, and the same is true for the electromagnetic excitations Di, Hi. In the

spacetime of relativity theory, the pair (Ei, B
i) forms one single quantity, the tensor of

electromagnetic field strength, while the pair (Di, Hi) forms another single quantity, the

tensor of electromagnetic excitations. If compared to these facts, arguments in favor of

the pairs (Ei, Hi), namely that both are covectors, and (Di, Bi), both are vector densities

(see the tetrahedron in Fig.2), turn out to be of secondary nature.

1.2 The gauge field approach towards electromag-

netism

Modern descriptions of the fundamental interactions heavily rely on symmetry principles.

In particular, this is true for the electromagnetic interaction which can be formulated

as a gauge field theory that is based on a corresponding gauge symmetry. In recent

articles this approach towards electromagnetism has been explained in an original and

descriptive way [64, 66, 67]. We want to put the gauge field approach next to the ax-

iomatic approach since it furnishes further information that will complement our picture

of classical electrodynamics. In particular, it allows to clarify the concept of gauge in-

variance which often accompanies explicit calculations in the solution of electrodynamic

boundary value problems. It also shows that the electromagnetic potentials, which often

are viewed as mathematical auxiliary variables, are of major physical relevance. Fur-

thermore, in the gauge field approach the inhomogeneous Maxwell equations turn out to

be true equations of motion while the homogeneous Maxwell equations become a mere

mathematical identity.

While it is rewarding to gain the additional insights that are provided by the gauge

field approach it should be admitted that this approach, at first sight, extends on a

rather abstract level. But it only requires a small number of steps:

1. Accept the fact that physical matter fields (which represent electrons, for example)

are described microscopically by complex wave functions.

2. Recognize that the absolute phase of these wave functions has no physical rel-

evance. This arbitrariness of the absolute phase constitutes a one-dimensional

rotational type symmetry U(1) (the circle group). This is the gauge symmetry of

electrodynamics.
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3. To derive observable physical quantities from the wave functions requires to define

derivatives of wave functions with respect to space and time. These derivatives

need to be invariant under the gauge symmetry. The construction of such “gauge

covariant” derivatives makes it necessary to introduce gauge fields. One gauge

field, the vector potential Ai, defines gauge covariant derivatives DA
i with respect

to the three independent directions of space, while another gauge field, the scalar

potential φ, defines a gauge covariant derivative Dφ
t with respect to time.

4. Finally, the values of the gauge fields φ and Ai are obtained from equations of

motion that turn out to be the inhomogeneous Maxwell equations. The gauge

fields are related to the gauge invariant electric and magnetic field strengths via

Ei = −∂iφ− ∂tAi , (1.40)

Bi = εijk∂jAk . (1.41)

1.2.1 Differences of physical fields that are described by refer-

ence systems

To introduce the concept of gauge symmetry we formally denote a physical field by F,

its components by F i, and a reference frame with respects to these components by ei,

F = F iei . (1.42)

The field F might change in space or time. Its components F i depend on the reference

frame ei and usually do not have an absolute significance since usually we have a certain

freedom to choose ei. Therefore, a change of F involves both its components and the

corresponding reference frame. Then we have

∂iF = (∂iF
j)ej + F j(∂iej) , (1.43)

∂tF = (∂tF
j)ej + F j(∂tej) . (1.44)

This simple looking “product rule for differentiation” poses severe difficulties: We might

be able to determine the differences ∂iF
j and ∂tF

j, e.g., by measurements, but how do

we determine changes ∂iej, ∂tej of reference frames? What is an unchanged reference

frame? How do we gauge a reference frame? We have to face the fact that a priori

changes of reference frames are not defined as long as they involve the change between

different points in space or time.

At this point the concept of ”interactions”enters the stage. If a physical field changes

its value we might intuitively think that this is due to an interaction. The gauge principle

states that the information on the change of reference frames is contained in interaction

fields. Mathematically, this is formulated as follows: The changes ∂iej, ∂tej of a reference

frame are determined by interaction fields Aij
k and φj

k according to

∂iej := Aij
kek , (1.45)

∂tej := φj
kek . (1.46)
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With these definitions the interaction fields provide a gauging of reference system at

different positions in space and time. This is the reason why they are called gauge fields.

A corresponding mathematical term is connection, because gauge fields connect reference

systems at different positions in space and time.

With the definitions (1.45), (1.46) we may write the differences ∂iF, ∂tF as

∂iF = (∂iF
j)ej + F jAij

kek , (1.47)

∂tF = (∂tF
j)ej + F jφj

kek . (1.48)

So far it is not clear if the formal introduction of the gauge fields Aij
k and φj

k is phys-

ically meaningful. However, it turns out that these gauge fields correctly describe the

fundamental interactions that we observe in nature. In the following this circumstance

will be explained for the case of the electromagnetic interaction.

1.2.2 The phase of microscopic matter fields

We first identify the physical field and its corresponding reference system which leads to

the introduction of the electromagnetic field as a gauge field. To this end we note that

microscopic matter fields, like electrons, for example, are represented in the framework

of quantum mechanics by wave functions Ψ(xi, t) [10, 58]. A wave function assumes

complex values and depends on space coordinates xi and a time coordinate t, Ψ(xi, t) ∈
C. It follows that a microscopic particle with specified momentum pi and specified energy

E is represented by a wave function of the form

Ψ(xi, t) = Ψ0 e
− j

~
(pix

i−Et) , (1.49)

with Ψ0 ∈ R, and ~ a fundamental constant which carries the dimension of an action,

~ = h/2π ≈ 1.0546× 10−34Js.

The plane wave (1.49) is a very special case of a wave function since momentum

and energy of a microscopic particle usually are not known exactly but affected by an

uncertainty. In this more general case microscopic particles are represented by wave

packets that are obtained by the superposition of plane waves of the form (1.49) with

different momenta and energies. The value Ψ(xi, t) has no direct physical significance,

but the square of its absolute value yields a probability density. This is, the real value

P (xi, t) = |Ψ(xi, t)|2 dv (1.50)

is the probability to find a particle, which is described by Ψ(xi, t), at time t within a

volume dv.

The wave function Ψ(xi, t) of (1.49) has the structure

Ψ(xi, t) = Ψ0 e
−jθ (1.51)
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with the phase

θ(xi, t) = (pix
i − Et)/~ . (1.52)

It is seen that the characteristic quantities pi and E of a free microscopic particle are

included in its phase θ(xi, t). They can explicitly be obtained by differentiation of the

phase of the wave function,

pi = ~ ∂iθ , (1.53)

E = −~ ∂tθ , (1.54)

and these relations reveal that the momentum and the energy of a microscopic particle

is determined by the phase differences ∂iθ and ∂tθ. These phase differences depend on

reference frames that, a priori, can arbitrarily be chosen, as we will see next.

1.2.3 The reference frame of a phase

In this subsection we consider a wave function Ψ at one space point xi at a fixed time t.

We wish to assign a specific phase θ to Ψ. The phase can be taken as a real number of

the interval [0, 2π[, 0 ≤ θ < 2π. In order to assign a fixed value to θ we need a reference

system which determines a reference phase. We denote this reference phase by βR. The

specification of θ is explained in Fig. 1.3. There the wave function is displayed as a curly

line. The arrow along this curly line indicates that the wave function is characterized by

a certain phase. This phase can be thought of as a point on a circle and is given by an

element of the interval [0, 2π[. The reference phase βR is drawn as another arrow which

also indicates a certain direction, i.e., represents an element of the interval [0, 2π[. We

take this value as reference phase βR. The choice of βR a priori is arbitrary. A convenient

choice would be βR = 0, for example.

+ =
R

β

βR
θ=θ +

R

R βR

Ψ Ψ

θ 

Figure 1.3: A reference system which determines a reference phase βR allows to determine

the phase of a wave function according to θ = θR + βR.

To read off the value θ of the wave function we determine the angle between the

wave function and the reference system. This angle is denoted by θR and refers to the
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reference system βR. Therefore, θR can be understood as a component with respect to

the basis βR. The component θR and the basis βR yield the phase θ according to

θ = θR + βR . (1.55)

In terms of the wave function we write

Ψ =Ψ0 e
−jθ = Ψ0 e

−j(θR+βR)

=Ψ0 e
−jθR

e−jβR . (1.56)

It follows that the wave function is of the form (1.42),

Ψ = ΨReR , (1.57)

with the correspondences

ΨR = Ψ0 e
−jθR

(component) (1.58)

and

eR = e−jβR (reference system). (1.59)

The choice of a reference system of a phase is not unique. This is clarified in Fig. 1.4.

We have the gauge freedom to choose between reference systems which differ from each

other by a one-dimensional rotation. The choice of a fixed reference system is called the

choice of a gauge. In this language the value θR is a gauge dependent quantity since it

depends on the gauge, i.e., it depends on the choice of a reference system.

We denote a gauge transformation by δε. Its effect on the component θR of the phase

is

δεθ
R := θ′

R − θR =
q

~
ε . (1.60)

Here we have assigned to the difference θ′R − θR the value qε/~. This notation seems a

bit awkward but it is in accordance with conventions that have their origin in quantum

mechanics. The phase difference carries no physical dimension and q has the dimension

of electric charge, [q] = As = C. Therefore, the parameter ε has the dimension of an

action per charge, [ε] = J/(As2). The interpretation of a gauge transformation (1.60)

might appear to be rather trivial: If we shift between two reference systems that differ

by an angle (q/~)ε then the component θR of the phase changes by an angle (q/~)ε.

The reference system βR can also be used to gauge the reference system β ′
R. In order

to show this we set the value of β ′
R to

β ′
R = βR −

q

~
ε . (1.61)

Then βR transforms under a gauge transformation according to

δεβR := β ′
R − βR = − q

~
ε . (1.62)
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∋

’

β

R

R

Rβ

R

h
q

Ψ

θθ ’

Figure 1.4: The phase θR of the wave function Ψ depends on the choice of a reference

system. A gauge transformation corresponds to the transition from one reference system

to another equivalent reference system. This transition is accomplished by a rotation

about an angle (q/~)ε.

It follows that the phase θ is a gauge independent quantity,

δεθ = δεθ
R + δεβR

=
q

~
ε− q

~
ε = 0 . (1.63)

But in spite of this gauge independence the value of θ has no absolute significance since

it depends, by virtue of θ = θR + βR, on a choice of a reference frame βR.

The situation is different if we consider the difference between two phases θ1 and θ2.

Since both phases are defined at the same point xi and to the same time t they can be

characterized by a common reference system βR,

θ1 = θR
1 + βR , (1.64)

θ2 = θR
2 + βR . (1.65)

Taking the difference yields

θ1 − θ2 = θR
1 − θR

2 , (1.66)

that is, the difference θ1− θ2 is both independent of the reference system βR and, due to

δε(θ1 − θ2) = δεθ1 − δεθ2 = 0− 0 = 0 , (1.67)

a gauge independent quantity. Therefore, the phase difference θ1−θ2 at one point (xi, t)

in spacetime has an absolute significance.
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1.2.4 The gauge fields of a phase

So far we considered the pase θ at one point (xi, t) in spacetime. Now we turn to the

change of the phase between two different points in spacetime and first concentrate on

two points (xi, t) and (xi + dxi, t) that are separated by an infinitesimal spatial distance

dxi. Mathematically, we find from (1.55) for the difference ∂iθ between two points xi

and xi + dxi the expression

∂iθ = ∂iθ
R + ∂iβR , (1.68)

this is, the change of the phase θ is the sum of the change of its component and the

change of its reference frame.

We will now geometrically interpret (1.68) and think of how to construct the differ-

ence ∂iθ. The construction is divided into several steps, compare Fig. 1.5:

i

βR

β

R

βR
i i i

R

R
i

R

βi R
i

dx

(x ,t)

ΨΨ

’

+θ θ 
(x +dx ,t)

θ 

dx

Figure 1.5: Determination of parallel reference systems at two spatially separated point

(xi, t) and (xi + dxi, t). In the left part of the figure, at the point (xi, t), the phase is

given by θ = θR + βR. In the right part of the figure, at the point (xi + dxi, t), we have

the phase θ = θR +∂iθ
R dxi +βR +∂iβR dx

i. This is explained in more detail in the text.

1. According to the previous subsection 1.2.3 we first determine the phase θ(xi, t) at

the point (xi, t) by a reference system βR according to θ(xi, t) = θR(xi, t)+βR(xi, t).

2. At the point (xi + dxi, t) we choose an arbitrary reference frame β ′
R. In Fig. 1.5

this arbitrary reference frame is displayed by a dotted line. It can be used to read

off the value

θ′
R
(xi + dxi, t) = θR(xi, t) + ∂iθ

R dxi . (1.69)

However, this value has no immediate physical relevance since its corresponding

reference system has been arbitrarily chosen.
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3. At the point (xi +dxi, t) there exists a unique reference system βR which is defined

to be unchanged if compared to the reference system βR at (xi, t). In mathematical

terms, such an unchanged reference system is named a parallel reference system.

It is obtained from the arbitrary reference system β ′
R by a rotation about an angle

∂iβR,

βR(xi + dxi, t) = β ′
R(xi + dxi, t)− ∂iβR dx

i (1.70)

and has the same phase value as the reference system at the point (xi, t),

βR(xi + dxi, t) = βR(xi, t) . (1.71)

With respect to this parallel reference system the component of the phase is given

by

θR(xi + dxi, t) = θR(xi, t) + ∂iθ
R dxi + ∂iβR dx

i . (1.72)

In summary we obtain the relations

θ(xi, t) = θR(xi, t) + βR(xi, t) , (1.73)

θ(xi + dxi, t) = θ′
R
(xi + dxi, t) + β ′

R(xi + dxi, t)

= θR(xi, t) + ∂iθ
R dxi + βR(xi, t) + ∂iβR dx

i , (1.74)

which lead us back to (1.68),

∂iθ =
θ(xi + dxi, t)− θ(xi, t)

dxi
(1.75)

= ∂iθ
R + ∂iβR . (1.76)

The relation (1.76) determines the difference ∂iθ. But the contributions ∂iθ
R and

∂iβR need to be known explicitly. And this leads to the conceptual problem that has

been described at the end of subsection 1.2.1: We may determine the change ∂iθ
R if

we properly read off the corresponding phases but the difference ∂iβR a priori is not

determined. We simply do not know which reference systems at different points are in

parallel!

At this point the gauge fields come into play. In accordance to (1.45), (1.46) the

difference ∂iβR of the reference frame is determined from a gauge field Ai by

∂iβR := − q
~
Ai . (1.77)

Similar to (1.60) the factor q/~ has been chosen to arrive at results that comply with

quantum mechanics. Therefore, we obtain

∂iθ = ∂iθ
R − q

~
Ai . (1.78)
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In view of (1.53) we realize that the momentum pi of a microscopic particle can only

be defined by means of the gauge field Ai. It follows from (1.78) that the SI-unit of the

gauge field Ai is [Ai] = Vs/m.

So far we have considered the difference ∂iθ between two spatially separated points

(xi, t) and (xi + dxi, t). In the same way we can consider the difference ∂tθ between two

temporally separated points (xi, t) and (xi, t+ dt). This leads to the relation

∂tθ = ∂tθ
i + ∂tβi . (1.79)

Since ∂tβi is undetermined this requires the introduction of a gauge field φ,

∂tβR :=
q

~
φ , (1.80)

and we obtain the result

∂tθ = ∂tθ
R +

q

~
φ . (1.81)

Similar to above we realize, in view of (1.54), that the energy E of a microscopic particle

can only be defined by means of the gauge field φ. Also it follows from (1.81) that the

SI-unit of the gauge field φ is [φ] = V.

A comparison between (1.78) and (1.81) reveals that we have chosen different signs

in front of the fields Ai and Φ. This is done in order to be able to merge Ai and φ in

accordance to common conventions into a single relativistically covariant quantity with

four components.

At the end of this subsection we want to remark that the gauge fields Ai and φ are

not gauge invariant. In fact, from (1.62) we have

δε(∂iβR) = − q
~
∂iε , (1.82)

δε(∂tβR) = − q
~
∂tε , (1.83)

and with the definitions (1.77), (1.80) we obtain for the behavior of Ai and φ under

gauge transformations

δεAi = ∂iε , (1.84)

δεφ = −∂tε . (1.85)

If we form the combinations

Ei := −∂iφ− ∂tAi , (1.86)

Bi := εijk∂jAk (1.87)

we can easily verify that these are invariant under gauge transformations,

δεEi = −∂i∂tε+ ∂t∂iε = 0 . (1.88)

δεB
i = −εijk∂j∂kε = 0 . (1.89)
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It follows from (1.86), (1.87) that the fields Ei and Bi carry the same SI-units as the

electric and magnetic field strength, respectively, that have been introduced in subsection

1.1.2 within the axiomatic approach, [Ei] = V/m, [Bi] = Vs/m2.

More important information is obtained if we consider the integrability conditions

εijk∂jEk = − εijk∂j∂kφ︸ ︷︷ ︸
=0

−∂tε
ijk∂jAk

= −∂tB
i (1.90)

∂iB
i = εijk∂i∂jAk

= 0 (1.91)

These conditions resemble exactly the homogeneous Maxwell equations (1.35) and (1.30).

1.2.5 The electromagnetic field as a gauge field

In the last subsection we introduced the gauge fields Ai and φ in order to define parallel

reference frames at different points in spacetime. The approach was general and we still

do not know the values of Ai and φ. How do we obtain these values?

If we assume that Ai and φ are physical fields we may further assume that they are

determined by equations of motion which can be constructed according to the guidelines

of classical field theory. These guidelines imply that equations of motion can often (but

not always) be concisely characterized by a Lagrangian density

L = L(Ψ, ∂iΨ, ∂tΨ) (1.92)

which, in the standard case, is a function of the fields Ψ of the theory and their first

derivatives. Integration of the Lagrangian density L over space yields the Lagrangian L,

L =

∫
L(Ψ, ∂iΨ, ∂tΨ) dv , (1.93)

and further integration over time yields the action S,

S =

∫
Ldt . (1.94)

There are guiding principles that tell us how to obtain an appropriate Lagrangian density

for a given theory. Once we have an appropriate Lagrangian density, we can conveniently

derive the properties of the fields Ψ. For example, the equations of motion which de-

termine the dynamics of Ψ follow from extremization of the action S with respect to

variations of Ψ,

δΨS = 0 =⇒ equations of motion for Ψ . (1.95)
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More explicitly, the equations of motion are given by the well-known Euler-Lagrange-

equations

∂j

(
∂L
∂jΨ

)
− ∂t

(
∂L
∂tΨ

)
− ∂L
∂Ψ

= 0 (1.96)

Now we turn to the Lagrangian density Lgauge of the gauge fields Ai and φ. It has to

fulfill a number of requirements:

• It should have the geometric character of a scalar density in order to be a proper

volume integrand, compare section A.3.

• It should be gauge invariant.

• It should be relativistically invariant.

• It should have the SI-unit [L] = VAs/m3.

• It should be no more than quadratic in the fields Ai and φ.

• It should contain no higher order derivatives than first order derivatives to yield

second order equations of motion.

These requirements are quite stringent. In fact, with the fields Ai, φ and the gauge

invariant quantities Ei, B
i alone we cannot build a proper Lagrangian density. To con-

struct a Lagrangian density we have to introduce, as in section 1.1.4, a metric structure

gij = gji that characterizes the geometry of spacetime. To get the dimensions right

we further have to introduce two constants ε0 and µ0 with SI-units [ε0] = As/Vm and

[µ0] = Vs/Am, respectively . Then the only meaningful combination of Ai and φ can be

written in terms of Ei and Bi. It is given by the expression5

Lgauge =
1

2

(
ε0
√
ggijEiEj − (µ0

√
g)−1gijB

iBj
)
. (1.97)

So far we only have taken into account the gauge fields. The Lagrangian density (1.97)

corresponds to a free gauge field theory with no coupling to electrically charged matter

fields. The inclusion of matter fields requires to set up a corresponding Lagrangian

density Lmatter. As indicated in (1.92) this will involve derivatives ∂iΨ, ∂tΨ of the fields

Ψ. In order to be gauge invariant, i.e., to be independent of a specific choice of reference

frames, these derivatives are expected from (1.47), (1.48) to involve the gauge fields.

Indeed, if we recall the relations (1.57), (1.59) and (1.77) we can write

∂iΨ = (∂iΨ)ReR = (∂iΨ
R)eR + ΨR(∂ieR)

= (∂iΨ
R)eR − j∂iβRΨR eR

=
(
∂iΨ

R + j
q

~
AiΨ

R
)
eR

= DA
i ΨR eR (1.98)

5The factor 1/2 is introduced to yield the correct Hamilton function (energy function) which can be

obtained from the Lagrangian density by means of a Legendre transformation.
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with the gauge covariant derivative

DA
i := ∂i + j

q

~
Ai . (1.99)

Analogously, it follows with (1.80)

∂tΨ = (∂tΨ)ReR = (∂tΨ
R)eR + ΨR(∂teR)

= (∂tΨ
R)eR − j∂tβRΨR eR

=
(
∂tΨ

R − j q
~
φΨR

)
eR

= Dφ
t ΨR eR (1.100)

with the gauge covariant derivative

Dφ
t := ∂t − j

q

~
φ . (1.101)

Therefore, in order to be gauge invariant, the matter Lagrangian density may only con-

tain derivatives and gauge fields as combinations of gauge covariant derivatives. To

explicitly obtain the matter Lagrangian density requires advanced knowledge of rela-

tivistic quantum mechanics. We will refer at this point to the literature [21, 185] and

quote as a result that the Lagrangian density of a certain class of electrically charged

matter fields, like electrons, is given by6

Lmatter = −j~cΨR
γi
(
DA

i −
mc

~

)
ΨR + j~Ψ

R
γ0

(
Dφ

t −
mc2

~

)
ΨR . (1.102)

We may write the terms that couple the gauge fields to the matter fields as

Lcoupling = −AiJ
i − φρ (1.103)

where we defined

J i := qcΨ
R
γiΨR (1.104)

ρ := qΨ
R
γ0ΨR (1.105)

Then the dynamics of the gauge fields Ai and φ is determined from the combined La-

grangian density

Lem = Lgauge + Lcoupling . (1.106)

The equations of motion that follow from this Lagrangian density are given by the

Euler-Lagrange equations (1.96). In our specific case they acquire the form

∂j

(
∂Lem

∂jAi

)
− ∂t

(
∂Lem

∂tAi

)
− ∂Lem

∂Ai

= 0 , (1.107)

∂j

(
∂Lem

∂jφ

)
− ∂t

(
∂Lem

∂tφ

)
− ∂Lem

∂φ
= 0 . (1.108)

6In this expression ΨR denotes a 4-component spinor, Ψ
R

is the adjoint spinor of ΨR, and γ0, γi are

4× 4-matrices [185].
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We insert the expressions (1.97), (1.103) into (1.106) and obtain

εijk∂jHk − ∂tD
i = J i , (1.109)

∂iD
i = ρ , (1.110)

with the definitions

Hk := (µ0
√
g)−1gklB

l , (1.111)

Di := ε0
√
g gij Ej . (1.112)

The results (1.109) and (1.110) are recognized as the inhomogeneous Maxwell equations

(1.16) and (1.5), respectively. It follows that the gauge fields Ai and φ, that have been

introduced in the formal context of reference frames, do indeed constitute the electro-

magnetic potentials that are familiar from classical electrodynamics. In this framework

the homogeneous Maxwell equations turn out to be mathematical integrability condi-

tions while the inhomogeneous Maxwell equations represent the equations of motion of

the gauge fields Ai and φ.

1.3 On the relation between the axiomatics and the

gauge field approach

In the following we want to comment on the interrelation between the previously pre-

sented axiomatic approach and the gauge field approach. It is interesting to see how the

axioms find their proper place within the gauge approach.

1.3.1 Noether theorem and electric charge conservation

In field theory there is a famous result which connects symmetries of laws of nature

to conserved quantities. This is the Noether theorem [161] which has been proven to

be of great importance in both classical and quantum contexts. It is, in particular,

discussed in books on classical electrodynamics, see [182, 199], for example. The Noether

theorem connects the symmetry of a Lagrangian density L(Ψ, ∂iΨ, ∂tΨ), compare (1.93),

to conserved quantities. Suppose, for example, that L is invariant under time translations

δt. From our daily experience this assumption seems plausible since we do not expect that

the laws of nature change in time. Then the Noether theorem implies a local conservation

law which expresses the conservation of energy. Similarly, invariance under translations

δxi in space implies conservation of momentum, while invariance under rotations δωi
j

yields the conservation of angular momentum,

δtL = 0 =⇒ conservation of energy , (1.113)

δxiL = 0 =⇒ conservation of momentum , (1.114)

δωi
jL = 0 =⇒ conservation of angular momentum . (1.115)
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These symmetries of spacetime are called external symmetries. But the Noether theorem

also works for other types of symmetries that are called internal ones. Gauge symmetries

often are internal symmetries. In this case, gauge invariance of the Lagrangian implies a

conserved current with an associated charge. That is, if we denote a gauge transformation

by δε we conclude

δεL = 0 =⇒ charge conservation . (1.116)

If we apply this conclusion to electrodynamics we have to specify the Lagrangian density

to be the one of matter fields that represent electrically charged particles. Then invari-

ance of this Lagrangian density under the gauge symmetry of electrodynamics yields

the conservation of electric charge. Thus, if we accept the validity of the Lagrangian

formalism, we can arrive at electric charge conservation from gauge invariance via the

Noether theorem.

1.3.2 Minimal coupling and the Lorentz force

We already have mentioned that, according to (1.95), we can derive the equations of

motion (1.96) of a physical theory from a Lagrangian density and its associated action.

We can use this scheme to derive the equations of motion of electrically charged parti-

cles. In this case, the corresponding Lagrangian density (that of the electrically charged

particles) has to be gauge invariant.

For the electromagnetic case we have demonstrated that the Lagrangian density will

be gauge invariant if we pass from partial derivatives to gauge covariant derivatives

(1.99), (1.101) according to

∂i −→ DA
i := ∂i + j

q

~
Ai , (1.117)

∂t −→ Dφ
t := ∂t − j

q

~
φ , (1.118)

with q the electric charge of the particle under consideration. The substitutions (1.117),

(1.118) constitute the simplest way to ensure gauge invariance of the Lagrangian density

of electrically charged particles. They constitute what commonly is called minimal

coupling. Due to minimal coupling, we relate electrically charged particles and the

electromagnetic field in a natural way that is dictated by the requirement of gauge

invariance.

If we assume, as in Section 1.2.2,

ΨR = Ψ0 e
− j

~
(pixi−Et) , (1.119)

we find

j~∂iΨ
R = pi Ψ

R (1.120)

−j~∂tΨ
R = EΨR (1.121)
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These are relations that indicate how to pass from quantum physics to classical physics,

i.e., how to pass from the action of the differential operators j~∂i and −j~∂t on a

wavefunction to the momentum and energy of a classical particle. It follows that the

classical analogues of (1.117) and (1.118) are given by

pi −→ pi − qAi , (1.122)

E −→ E − qφ . (1.123)

This is, if electrically charged particles are represented by classical particles, rather than

by wave functions, we have to replace within the corresponding classical Lagrangian

function the energy E and the momentum pi of each particle according to (1.122) and

(1.123).

As a general example we consider a non-relativistic classical particle with mass m

and charge q. In absence of an electromagnetic field7 the energy and momentum of the

particle are related by

E =
pip

i

2m
. (1.124)

In the presence of an electromagnetic field we have the replacements (1.122) and (1.123)

which lead to

E =
(pi − qAi)(p

i − qAi)

2m
+ qφ . (1.125)

It follows from this expression for the energy E that the Lagrange function L of the

particle is given by [14, p. 167]

L =
m

2
(∂txi)(∂tx

i) + qAi(∂tx
i)− qφ . (1.126)

The equation of motion is obtained from the Lagrange function via

d

dt

∂L

∂(∂txi)
− ∂L

∂xi
= 0 . (1.127)

This yields with (1.126)

m(∂2
t xi) + q

(
∂tAi + ∂tx

j(∂jAi)
)
− q∂tx

j(∂iAj) + q∂iφ = 0 . (1.128)

The first term represents the force Fi = m(∂2
t xi) that acts on the particle. We rearrange

the other terms and note, in particular, the identity

∂iAj − ∂jAi = εijkε
klm∂lAm . (1.129)

It is then immediate to arrive at

Fi = q(−∂iφ− ∂tAi) + q(εijk∂tx
jεklm∂lAm) . (1.130)

7We also assume the absence of a gravitational field.
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Finally, we replace by means of (1.86) and (1.87) the gauge fields Ai and φ by the field

strengths Ei and Bi. The result is the Lorentz force law (1.17),

Fi = q(Ei + εijk∂tx
jBk) . (1.131)

Therefore, in the gauge field approach the Lorentz force is a consequence of the minimal

coupling procedure which couples electrically charged particles to the electromagnetic

potentials.

1.3.3 Bianchi identity and magnetic flux conservation

The electromagnetic gauge fields Ai and φ are often introduced as mathematical tools

to facilitate the integration of the Maxwell equations. Indeed, the equations (1.90) and

(1.91) have revealed that the homogeneous Maxwell equations reduce to mere integra-

bility conditions that automatically are fulfilled if the electromagnetic field strengths are

expressed in terms of the gauge potentials. This is an interesting observation since within

the gauge approach the gauge potentials are fundamental physical quantities and are not

only the outcome of a mathematical trick. Thus we can state that the mathematical

structure of the gauge potentials already implies the homogeneous Maxwell equations

and, in turn, magnetic flux conservation. In this light, magnetic flux conservation, within

the gauge approach, appears as the consequence of a geometric identity. This is in con-

trast to electric charge conservation that can be viewed as the consequence of gauge

invariance, i.e., via the Noether theorem as the consequence of a physical symmetry.

The integrability conditions that are reflected in the homogeneous Maxwell equations

are special cases of Bianchi identities. Bianchi identities are the result of differentiating

a potential twice. For example, in electrostatics the electric field strength Ei can be

derived from a scalar potential φ according to

Ei = −∂iφ . (1.132)

Differentiation reveals that the curl of Ei vanishes,

εijk∂jEk = εijk∂j∂kφ = 0 , (1.133)

which is due to the antisymmetry of εijk. Again, this equation is a mathematical identity,

a simple example of a Bianchi identity.

1.3.4 Gauge approach and constitutive relations

The gauge approach towards electrodynamics deals with the properties of gauge fields,

which represent the electromagnetic field, and with matter fields. It does not reflect

properties of spacetime. In contrast to this, the constitutive relations do reflect properties

of spacetime, as can be already seen from the constitutive relations of vacuum that
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Figure 1.6: Interrelations between the axiomatic approach (rectangular frames) and the

gauge field approach (elliptic frames) of classical electrodynamics. Both approaches

yield the Maxwell equations. The gauge approach requires the knowledge of constitutive

relations which represent the fourth axiom of the axiomatic approach. However, the

first, second, and third axiom of the axiomatic approach can be obtained from the gauge

approach. Electric charge conservation, the first axiom of the gauge approach, represents

the gauge symmetry of electrodynamics by means of the Noether theorem.
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involve the metric gij, compare (1.36) and (1.37). Thus, also in the gauge approach

the constitutive relations have to be postulated as an axiom in some way. One should

note that, according to (1.86), (1.87), the gauge potentials are directly related to the

field strengths Ei and Bi. The excitations Di and Hi are part of the inhomogeneous

Maxwell equations which, within the gauge approach, are derived as equations of motion

from an action principle, compare (1.109) and (1.110). Since the action itself involves

the gauge potentials, one might wonder how it is possible to obtain equations of motion

for the excitations rather than for the field strengths. The answer is that during the

construction of the Lagrangian density (1.97) from the gauge potentials the constitutive

relations are implicitly used.

Fig. 1.6 summarizes the interrelations between the axiomatic approach and the gauge

approach.

1.4 More fundamental equations of electromagnetic

field theory

From the axiomatic approach and from the gauge field approach to classical electrody-

namics we obtained the Maxwell equations (1.5), (1.16), (1.30), and (1.35). Appropriate

constitutive relations of the form (1.36), (1.37) or, more general, (1.38), (1.39) make

Maxwell equations a set of determined partial differential equations. Within the lim-

its of classical physics these equations model the interaction between electromagnetic

sources ρ, J i and the electromagnetic field, represented by (Ei, B
i) and (Di, Hi). In

order to explicitly formulate a specific problem we have to impose physically meaning-

ful initial and boundary conditions that lead to a well-defined boundary value problem.

The solution of such a boundary value problem, in turn, determines a unique solution

of Maxwell equations.

For the solution of an electromagnetic boundary value problem it often is advan-

tageous to first rewrite Maxwell equations as (second order) wave equations. This is

straightforward as long as the constitutive relations are of a simple form8. Clearly, the

solution of wave equations has been studied in many branches of physics and mathemat-

ics for a long time and a variety of corresponding solution procedures exist [146].

In the following we will no longer use the tensor notation of the previous sections but

turn to the more conventional vector notation of ordinary vector analysis that has been

adopted by many authors of standard textbooks, see for example [30, 43, 93, 183, 227].

The widespread use of this notation is the reason why we will adopt it as well. Hence,

we replace the covariant vectors Ei, Hi by ordinary vectors in three-dimensional space,

8Constitutive relations usually are not of a simple form if they introduce material parameters that

are space or time dependent, if they mix electric and magnetic fields, or if they introduce nonlinearities,

for example. In such cases analytic solutions of Maxwell equations often cannot be found and it is

required to directly apply numerical methods to the Maxwell equations.
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Ei → E, Hi → H. Also the contravariant vector densities Bi, Di, and J i are replaced

by ordinary vectors, Bi → B, Di → D, and J i → J, while the notation for the scalar

density ρ remains unchanged. It is obvious that due to this transition we lose information

on the geometric properties of the electromagnetic quantities. For example, integration

along lines or over surfaces is no longer defined in a natural way since line integrals∫
c
E · dt or surface integrals

∫
S
B · da now require a metric structure of space which is

represented by the scalar product. Formally, we may also form the expressions
∫

c
D · dt

or
∫

S
H · da but the physical interpretation of these integrals is not clear and certainly

needs explanation since the electric excitation D or the magnetic excitation H are not

natural integrands of line- or surface-integrals, respectively. This indicates that it is

important to keep the limitations of the vector notation in mind in order to construct

mathematical expressions of physical objects in a meaningful way.

In the following we will first consider electromagnetic quantities that are defined in the

time domain. But quickly we will also pass to the frequency domain, see subsection 1.4.3,

and to reciprocal space, see subsection 1.4.4. It is convenient to print the corresponding

Fourier transforms using different fonts. Then it is not necessary to always keep the

arguments r, t, ω, or k in parentheses next to the symbols of the fields to indicate which

domain or space they belong to. The letters of the different fonts are introduced in the

table below. Greek letters remain unaltered, however, this should not lead to confusion

since usually they do not appear isolated in an equation.

Time domain Frequency domain Reciprocal space

electric excitation D(r, t) D(r, ω) D(k, t)

magnetic excitation H(r, t) H(r, ω) H(k, t)

electric field strength E(r, t) E(r, ω) E(k, t)

magnetic field strength B(r, t) B(r, ω) B(k, t)

charge density ρ(r, t) ρ(r, ω) ρ(k, t)

current density J(r, t) J(r, ω) J(k, t)

vector potential A(r, t) A(r, ω) A(k, t)

scalar potential φ(r, t) φ(r, ω) φ(k, t)

Table 1.1: Different fonts that are used to distinguish between the basic electromagnetic

quantities in time domain, frequency domain, and reciprocal space.
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1.4.1 Decoupling of Maxwell equations and wave equations

We rewrite the Maxwell equations (1.5), (1.16), (1.30), and (1.35) in vector notation.

This yields the familiar expressions

∇ ·D(r, t) = ρ(r, t) , (1.134)

∇×H(r, t)− ∂D

∂t
(r, t) = J(r, t) , (1.135)

∇ ·B(r, t) = 0 , (1.136)

∇× E(r, t) +
∂B

∂t
(r, t) = 0 . (1.137)

To decouple the Maxwell equations we assume constitutive relations which characterize

a homogeneous, isotropic medium. These are of the form

D(r, t) = εE(r, t) , (1.138)

B(r, t) = µH(r, t) , (1.139)

with constant parameters ε and µ. Then we apply the curl operator ∇× to (1.135),

(1.137) and combine the results. This yields

∇×∇× E(r, t) + εµ
∂2

∂t2
E(r, t) = −µ∂J

∂t
(r, t) , (1.140)

∇×∇×B(r, t) + εµ
∂2

∂t2
B(r, t) = µ∇× J(r, t) . (1.141)

These equations can be transformed into standard wave equations if the identity (B.6) is

used, together with the constitutive relations (1.138), (1.139) and the Maxwell equations

(1.134), (1.136). We obtain

∆E(r, t)− εµ∂
2E

∂t2
(r, t) =

1

ε
∇ρ(r, t) + µ

∂J

∂t
(r, t) , (1.142)

∆B(r, t)− εµ∂
2B

∂t2
(r, t) = −µ∇× J(r, t) . (1.143)

Due to the constitutive relations (1.138), (1.139) two analogous equations are valid for

D(r, t) and H(r, t) which furnish no additional information. Therefore we arrive at six

scalar equations for six unknown field components. Equations (1.142), (1.143) constitute

inhomogeneous wave equations9 with phase velocity

c =
1√
εµ

. (1.144)

9Since in equations (1.142), (1.143) the wave operator ∆ − εµ ∂2/∂t2 acts on three-dimensional

vectors it is clear that these equations are vector wave equations. However, also equations of the

type (1.140), (1.141) often are called vector wave equations, even though the differential operator

−(∇×∇×) − εµ ∂2/∂t2 not always coincides with the wave operator. It does coincide with the wave

operator if it acts on a divergence free vector field.
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In vacuum (ρ(r, t) = 0,J(r, t) = 0) the inhomogeneous terms on the right hand sides

vanish and we obtain the homogeneous wave equations

∆E(r, t)− 1

c2
∂2E

∂t2
(r, t) = 0 , (1.145)

∆B(r, t)− 1

c2
∂2B

∂t2
(r, t) = 0 . (1.146)

1.4.2 Equations of motion for the electromagnetic potentials

We already have seen that the field strength E(r, t) and B(r, t) can be derived from the

scalar potential φ(r, t) and the vector potential A(r, t) via

E(r, t) = −∇φ(r, t)− ∂A

∂t
(r, t) , (1.147)

B(r, t) = ∇×A(r, t) . (1.148)

If the electromagnetic field is expressed by means of φ(r, t) and A(r, t) the homogeneous

Maxwell equations (1.136), (1.137) are recognized as geometric identities which auto-

matically are fulfilled. Then the remaining inhomogeneous Maxwell equations (1.134),

(1.135) determine the electromagnetic field. We replace within the inhomogeneous

Maxwell equations the excitations D(r, t), H(r, t) by means of the constitutive rela-

tions (1.138), (1.139) and the equations (1.147), (1.148) by φ(r, t) and A(r, t). This

yields

∆φ(r, t) +
∂(∇ ·A(r, t))

∂t
= −ρ(r, t)

ε
, (1.149)

∆A(r, t)− 1

c2
∂2A(r, t)

∂t2
−∇

(
∇ ·A(r, t) +

1

c2
∂φ(r, t)

∂t

)
= −µJ(r, t) . (1.150)

These are four scalar equations for the four unknown field components φ(r, t) and A(r, t).

Since electrodynamics is invariant under the gauge transformations

δεφ(r, t) = −∂ε(r, t)
∂t

, (1.151)

δεA(r, t) = ∇ε(r, t) , (1.152)

with an arbitrary function ε(r, t) we may simplify (1.149) and (1.150) by the choice of

a particular gauge. Common gauges are the Coulomb gauge

∇ ·A(r, t) = 0 (1.153)

and the Lorenz gauge

∇ ·A(r, t) +
1

c2
∂φ(r, t)

∂t
= 0 . (1.154)
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The Coulomb gauge leads to

∆φ(r, t) = −ρ(r, t)
ε

, (Coulomb gauge) (1.155)

∆A(r, t)− 1

c2
∂2A(r, t)

∂t2
− 1

c2
∂(∇φ(r, t))

∂t
= −µJ(r, t) . (Coulomb gauge) (1.156)

while the Lorenz gauge yields a scalar and a vector wave equation,

∆φ(r, t)− 1

c2
∂2φ(r, t)

∂t2
= −ρ(r, t)

ε
, (Lorenz gauge) (1.157)

∆A(r, t)− 1

c2
∂2A(r, t)

∂t2
= −µJ(r, t) . (Lorenz gauge) (1.158)

1.4.3 Maxwell equations in frequency domain and Helmholtz

equations

Time harmonic fields with sinusoidal time dependency can be expressed as

Fsinus(r, t) = Re
[
F (r, ω)ejωt

]
. (1.159)

This is a special case of the Fourier representation of a field with arbitrary time depen-

dency,

F(r, t) = Re

[
1√
2π

∫ ∞

−∞

F (r, ω)ejωt dω

]
. (1.160)

In the time harmonic case we may pass to the frequency domain and write the

Maxwell equations as

∇ ·D(r, ω) = ρ(r, ω) , (1.161)

∇×H(r, ω)− jωD(r, ω) = J(r, ω) , (1.162)

∇ ·B(r, ω) = 0 , (1.163)

∇×E(r, ω) + jωB(r, ω) = 0 . (1.164)

The vector wave equations (1.140) and (1.142) of the electric field E, for example, convert

in the frequency domain to vector Helmholtz equations

∇×∇×E(r, ω)− k2E(r, ω) = −jωµJ(r, ω) , (1.165)

∆E(r, ω) + k2E(r, ω) =
1

ε
∇ρ(r, ω) + jωµJ(r, ω) , (1.166)

with k = ω/c the wave number. For the magnetic field B we have

∇×∇×B(r, ω)− k2B(r, ω) = µ∇× J(r, ω) , (1.167)

∆B(r, ω) + k2B(r, ω) = −µ∇× J(r, ω) . (1.168)
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The Helmholtz equations for the scalar and vector potential in the Lorenz gauge assume

the form

∆φ(r, ω) + k2φ(r, t) = −ρ(r, ω)

ε
, (Lorenz gauge) (1.169)

∆A(r, ω) + k2A(r, ω) = −µJ(r, ω) . (Lorenz gauge) (1.170)

If compared to (1.166), (1.168) these equations are more simple since now the source

terms involve no derivatives.

1.4.4 Maxwell equations in reciprocal space

Fields F(r, t) that are defined in time domain are transformed to reciprocal space by a

spatial Fourier transform according to

F(k, t) =
1

(2π)3/2

∫
F(r, t)ejk·r d3r . (1.171)

The inverse transform is given by

F(r, t) =
1

(2π)3/2

∫
F(k, t)e−jk·r d3k . (1.172)

The operator ∇ transforms to multiplication by −jk in reciprocal space. Therefore, the

Maxwell equations in reciprocal space become

−jk · D(k, t) = ρ(k, t) , (1.173)

−jk × H(k, t)− ∂D(k, t)

∂t
= J(k, t) , (1.174)

−jk · B(k, t) = 0 , (1.175)

−jk × E(k, t) +
∂B(k, t)

∂t
= 0 . (1.176)

This representation of Maxwell equations has the advantage that the fields and time

derivatives all depend on the same point k in reciprocal space. Hence, the partial

differential equations of real space become strictly local equations in reciprocal space.

1.4.5 Boundary conditions at interfaces

At the transition between two media with parameters (ε1, µ1, σ1) and (ε2, µ2, σ2) the

boundary conditions can be derived from Maxwell equations by means of integration

and application of Stokes’ theorem. This is a standard procedure which is described in
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many textbooks, see, for example, [61, § 7.3.6.]. We have

∇× E +
∂B

∂t
= 0 =⇒ (E1 −E2)× en = 0 , (1.177)

∇×H− ∂D

∂t
= J =⇒ (H1 −H2)× en = J s , (1.178)

∇ ·B = 0 =⇒ (B1 −B2) · en = 0 , (1.179)

∇ ·D = ρ =⇒ (D1 −D2) · en = ρS . (1.180)

These boundary conditions are valid both in time and frequency domain. The vector en

denotes a normal unit vector that points on the interface between the different media

from medium 1 to medium 2 and J s denotes a surface current that may flow on the

interface between the media. Accordingly, ρs denotes a surface charge density.

We also have a boundary condition for the magnetic vector potential A,

B = ∇×A =⇒ (A1 −A2)× en = 0 . (1.181)

This boundary condition is gauge invariant since it is based on the rotational part of the

magnetic vector potential.

1.5 Basic electromagnetic field properties

From the previous basic equations of the electromagnetic field it is already possible

to derive some basic electromagnetic field properties without to explicitly solve elec-

tromagnetic boundary problems. An important issue is the dynamical content of the

electromagnetic field which will be considered next.

1.5.1 Dynamical and nondynamical components of the electro-

magnetic field

(a) Helmholtz’s vector theorem, longitudinal and transverse fields

In the study of vector fields F the Helmholtz’s vector theorem is a useful tool [146]. It

states that any vector field F, which is finite, uniform, continuous and square integrable,

may be split into a longitudinal or irrotational part F‖ and a transverse or rotational

part F⊥,

F = F‖ + F⊥ , (1.182)

where F‖ and F⊥ are implicitly defined by

∇× F‖ = 0 , (1.183)

∇ · F⊥ = 0 . (1.184)
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This split is unique. A good discussion of the Helmholtz’s vector theorem is contained in

[206] where it is stressed that the theorem critically depends on the boundary conditions

of the field F. In the following we will assume that the boundary conditions are such that

the Helmholtz’s vector theorem can be applied10. The names longitudinal and transverse

acquire a clear geometric interpretation in reciprocal space where (1.183) and (1.184)

become

−jk × F‖ = 0 , (1.185)

−jk · F⊥ = 0 , (1.186)

that is, F‖ is parallel to k and F⊥ is perpendicular to k.

By means of the vector identity (B.6) and the relation

∆

(
1

|r − r′|

)
= −4πδ(r − r′) (1.187)

it can be shown that in real space the longitudinal and transverse part of a vector field

F(r, t) are given by

F‖(r, t) = − 1

4π
∇

∫
∇

′ · F(r′, t)

|r − r′| d3r′ , (1.188)

F⊥(r, t) =
1

4π
∇×∇×

∫
F(r′, t)

|r − r′| d
3r′ , (1.189)

respectively. These explicit formulas show that the split F = F‖ + F⊥ introduces non-

local effects: Both F‖(r, t) and F⊥(r, t), considered at a fixed time t and at a specific

point r, depend on the values of F(r′, t) at the same time and at all points r′ in space.

Conversely, even if F(r, t) is localized in space, i.e., if it vanishes outside a compact

region, the parts F‖(r, t) and F⊥(r, t) generally will extend over the whole space.

Example: We consider a point charge q at a position R(t) which moves with velocity

v(t) and is observed from a position r, compare Fig. 1.7

The charge density ρ and current density J of this point charge are given by

ρ(r, t) = qδ(r −R(t)) , (1.190)

J(r, t) = qv(t)δ(r −R(t)) , (1.191)

10From a microscopic but still classical point of view macroscopic boundary conditions are the result

of the interaction between the electromagnetic field and electrically charged particles, like electrons or

protons. Therefore, if we consider fundamental properties of the electromagnetic field, we may focus on

these microscopic interactions and do not separately need to consider macroscopic boundary conditions.

For example, we may replace the boundary conditions that are imposed by a perfect conductor by the

interaction between the electromagnetic field and the electrons and protons that represent the electrically

charged particles of the perfect conductor.
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0
r

R(t)

q

v(t)

r−R(t)

Figure 1.7: Coordinates of a moving point charge q. Position and velocity of the point

charge are related by v(t) = ∂R(t)/∂t.

respectively. To calculate the corresponding longitudinal current J‖(r, t) we use (1.188)

and apply the continuity equation

∇
′ · J(r′, t) = −∂ρ

∂t
(r′, t) . (1.192)

This yields

J‖(r, t) =
q

4π

∂

∂t
∇

∫
δ(r′ −R(t))

|r − r′| d3r′ (1.193)

=
q

4π

∂

∂t
∇

(
1

|r −R(t)|

)
(1.194)

= − q

4π

∂

∂t

(
r −R(t)

|r −R(t)|3
)

(1.195)

=
q

4π

[
v(t)

|r −R(t)|3 −
3(r −R(t))[(r −R(t)) · v(t)]

|r −R(t)|5
]
. (1.196)

Accordingly, due to J⊥(r, t) = J(r, t)− J‖(r, t), we also have

J⊥(r, t) =
q

4π

[
4πv(t)δ(r −R(t))− v(t)

|r −R(t)|3 +
3(r −R(t))[(r −R(t)) · v(t)]

|r −R(t)|5
]

(1.197)

and it is clearly seen that both J‖(r, t) and J⊥(r, t) extend over the whole space.

(b) Nondynamical Maxwell equations as boundary conditions in time

We turn to the complete set of Maxwell equations (1.134) – (1.137) and first note that

(1.134) and (1.136) are no dynamical equations but rather so-called boundary conditions

that determine appropriate initial conditions of the fields. By virtue of the remaining

dynamical Maxwell equations they are fulfilled at all times if they are fulfilled at one

time. To illustrate this circumstance for the boundary condition (1.136) we assume that

at some initial time t0 we have

∇ ·B|t0 = 0 . (1.198)
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It then needs to be shown that at an infinitesimally later time t0 + dt we have

∇ ·B|t0+dt = 0 (1.199)

i.e., that
∂(∇ ·B)

∂t

∣∣∣∣
t0

= 0 . (1.200)

However, this condition immediately follows if we take the divergence of the dynamical

Maxwell equation (1.137). Similarly, we find from (1.135)

∂

∂t
(∇ ·D− ρ)

∣∣∣∣
t0

= −
(

∇ · J +
∂ρ

∂t

)∣∣∣∣
t0

(1.201)

= 0 , (1.202)

where in the second step the continuity equation (1.10) has been employed. Therefore,

it is sufficient to calculate the solutions of (1.134) and (1.136) at an initial time t0 and

then solve with these solutions as boundary conditions the dynamical Maxwell equations

(1.135) and (1.137) to obtain the time evolution of the electromagnetic field.

(c) Longitudinal part of the Maxwell equations

The Maxwell equation (1.134) can be written as

∇ ·D‖(r, t) = ρ(r, t) (1.203)

and relates the longitudinal electric excitation D‖ to the charge density ρ. In reciprocal

space this relation becomes

−jk · D‖(k, t) = ρ(k, t) (1.204)

and can easily be solved for D‖(k, t) to yield

D‖(k, t) = jρ(k, t)
k

k2
. (1.205)

An inverse Fourier transform to real space gives the result

D‖(r, t) =
1

4π

∫
ρ(r′, t)

r − r′

|r − r′|3 d
3r′ . (1.206)

This result is quite remarkable since it turns out that the longitudinal electric dis-

placement is completely determined from the instantaneous Coulomb field of the charge

distribution. With the constitutive relation (1.138) the same is true for the longitudinal

electric field strength,

E‖(r, t) =
1

4πε

∫
ρ(r′, t)

r − r′

|r − r′|3 d
3r′ . (1.207)
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The fact that D‖(r, t) and E‖(r, t) instantly respond to a change of the charge density

does, at this point, not necessarily imply that causality is violated since we require the

complete fields D(r, t), E(r, t) to be causal.

The longitudinal part of the second inhomogeneous Maxwell equation (1.135) is given

by

−∂D‖(r, t)

∂t
= J‖(r, t) (1.208)

We take the divergence of this equation and reveal that it reduces to the continuity

equation
∂ρ(r, t)

∂t
+ ∇ · J‖(r, t) = 0 (1.209)

Therefore, (1.208) conveys no additional information.

We summarize that the longitudinal components of the electromagnetic field are

determined from the instantaneous Coulomb field of the electric charge density. It follows

that the longitudinal components do not have their own degrees of freedom, they are

tied to the degrees of freedom of the electric charge density.

(d) Transverse part of the Maxwell equations

What is left to investigate are the transverse parts of the Maxwell equations (1.135)

and (1.137),

∇×H⊥(r, t)− ∂D⊥

∂t
(r, t) = J⊥(r, t) , (1.210)

∇× E⊥(r, t) +
∂B⊥

∂t
(r, t) = 0 . (1.211)

With simple constitutive relations of the form (1.138), (1.139) these equations are easily

decoupled and we arrive at the transverse part of the wave equations (1.142), (1.143),

∆E⊥(r, t)− εµ∂
2E⊥

∂t2
(r, t) = µ

∂J⊥

∂t
(r, t) , (1.212)

∆B⊥(r, t)− εµ∂
2B⊥

∂t2
(r, t) = −µ∇× J⊥(r, t) . (1.213)

Since

B⊥ = B (1.214)

we will drop in the following the transverse index ⊥ of the magnetic field strength.

From the wave equations (1.212) and (1.213) it appears that E⊥ and B are the

dynamical quantities of the electromagnetic field with two independent components each.

However, one needs to note that E⊥ and B are not independent of each other. To

explicitly show how both quantities are interrelated we rewrite the dynamical Maxwell

equations (1.210), (1.211) in reciprocal space. With the constitutive relations (1.138),
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(1.139), the relations c2 = 1/(εµ), ω = ck, and the notation k̂ = k/k we find, similar to

(1.174), and (1.176) the equations

∂E⊥(k, t)

∂t
= −jωck̂ × B(k, t)− J⊥(k, t)

ε0
(1.215)

ck̂ × ∂B(k, t)

∂t
= −jωE⊥(k, t) (1.216)

In the sourceless case with J⊥ = 0 one recognizes from these equations by addition and

subtraction that eigenfunctions of this system are determined from

∂

∂t

(
E⊥(k, t)− ck̂ × B(k, t)

)
= jω

(
E⊥(k, t)− ck̂ × B(k, t)

)
, (1.217)

∂

∂t

(
E⊥(k, t) + ck̂ × B(k, t)

)
= −jω

(
E⊥(k, t) + ck̂ × B(k, t)

)
. (1.218)

To label these eigenfunctions we introduce variables a(k, t) and b(k, t) by

a(k, t) :=
j

2N(k)

[
E⊥(k, t)− ck̂ × B(k, t)

]
, (1.219)

b(k, t) :=
j

2N(k)

[
E⊥(k, t) + ck̂ × B(k, t)

]
. (1.220)

The factor j/2N(k) denotes a normalization coefficient and is in accordance to a common

notation that is used in the context of the quantization of the electromagnetic field [28].

In this context the function N(k) is related to the energy of a quantum state of the

electromagnetic field. For our purposes the explicit form of N(k) is not important.

Within expressions of the electromagnetic field in real space the function N(k) will cancel

and drop out. It could also be absorbed in the definition of a(k, t) and b(k, t).

It is immediate to solve (1.219), (1.220) for E⊥(k, t) and B(k, t). Since both quantities

have to be real it turns out that we have to require

b(k, t) = −a
∗(−k, t) , (1.221)

where the asterisk ∗ denotes complex conjugation. Then we find

E⊥(k, t) = −jN(k)
[
a(k, t)− a

∗(−k, t)
]
, (1.222)

B(k, t) = −jN(k)

c

[
k̂ × a(k, t) + k̂ × a

∗(−k, t)
]
. (1.223)

Therefore, the transverse electromagnetic field is completely specified by the function

a(k, t). Since E⊥(k, t) and B(k, t) are transverse functions it follows that a(k, t) is a

transverse function, too. Hence, we conclude that a(k, t) exhibits two degrees of freedom

which are the two dynamical components of the electromagnetic field. The function

a(k, t) is said to represent the normal modes of the electromagnetic field. This term



50 Fundamentals of Electromagnetics

indicates that a(k, t) represents a whole class of electromagnetic excitations which is

parameterized by a discrete or continuous set of values for the wavenumber k.

We may insert (1.222) and (1.223) in the Maxwell equations and obtain for the time

evolution of a(k, t) the equation

∂a(k, t)

∂t
− jωa(k, t) = − j

2εN(k)
J⊥(k, t) . (1.224)

This equation of motion for the normal modes represents in fact the motion of harmonic

oscillation: If we implicitly introduce a new variable c(k, t) via

a(k, t) = c(k, t)− j

ω

∂c(k, t)

∂t
(1.225)

we find from (1.224) the familiar equation of motion of a harmonic oscillator

∂2
c(k, t)

∂t2
+ ω2

c(k, t) =
ω

2εN(k)
J⊥(k, t) . (1.226)

From (1.222) and (1.223) we also obtain for the fields E⊥(r, t) and B(t, t) from a

Fourier transformation the expansions

E⊥(r, t) = − j

(2π)3/2

∫
N(k)

[
a(k, t)e−jk·r − a

∗(k, t)ejk·r
]
d3k , (1.227)

B(r, t) = − j

(2π)3/2

∫
N(k)

c

[
k̂ × a(k, t)e−jk·r − k̂ × a

∗(k, t)ejk·r
]
d3k . (1.228)

We remind ourselves that a(k, t) and a
∗(k, t) are purely complex quantities such that

the fields E⊥(r, t) and B(r, t) are real.

In the absence of sources we have J⊥(k, t) = 0. Then the equation of motion (1.224)

yields the solution

a(k, t) = a(k)ejωt (1.229)

and the expansions (1.227), (1.228) turn into expansions in traveling plane waves,

E⊥free(r, t) = − j

(2π)3/2

∫
N(k)

[
a(k)ej(ωt−k·r) − a

∗(k)e−j(ωt−k·r)
]
d3k , (1.230)

Bfree(r, t) = − j

(2π)3/2

∫
N(k)

c

[
k̂ × a(k)ej(ωt−k·r) − k̂ × a

∗(k)e−j(ωt−k·r)
]
d3k .

(1.231)

In these expansions of the free fields the functions a(k, t) = a(k)ejωt corresponding to

different k are completely decoupled. This holds also true if the electromagnetic sources,

represented by J⊥(k, t), are independent of a(k, t), i.e., independent of the electromag-

netic field. However, if the electromagnetic sources do interact with the electromagnetic

field the time evolution of J⊥(k, t) will depend on a(k, t) and, in general, lead to a

coupling between a(k, t) with different k.
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1.5.2 Electromagnetic energy and the singularities of the elec-

tromagnetic field

The energy density w(r, t) of the electromagnetic field is given by

wem(r, t) =
1

2

(
E(r, t) ·D(r, t) + B(r, t) ·H(r, t)

)
(1.232)

and the corresponding energy W (t) is

Wem(t) =

∫
wem(r, t) d3r (1.233)

=
1

2

∫ (
E(r, t) ·D(r, t) + B(r, t) ·H(r, t)

)
d3r . (1.234)

This energy, in general, is not a constant of motion if the electromagnetic field interacts

with electromagnetic sources.

We want to split the electromagnetic field energy into a contribution of the longitudi-

nal fields E‖, D‖ and a contribution of the transverse fields E⊥, D⊥, B, and H. Clearly,

the magnetic part of Wem(t) only involves the transverse fields B, H. The electric part

can be written as

1

2

∫
E(r, t)·D(r, t) d3r

=
1

2

∫
E
∗(k, t) · D(k, t) d3k (1.235)

=
1

2

∫ (
E‖

∗(k, t) + E⊥
∗(k, t)

)
·
(
D‖(k, t) + D⊥(k, t)

)
d3k (1.236)

=
1

2

∫
E‖

∗(k, t) · D‖(k, t) d
3k +

1

2

∫
E⊥

∗(k, t) · D⊥(k, t) d3k (1.237)

=
1

2

∫
E‖(r, t) ·D‖(r, t) d

3r +
1

2

∫
E⊥(r, t) ·D⊥(r, t) d3r . (1.238)

The result is the desired split into longitudinal and transverse contributions to Wem(t).

If we assume a constitutive relation of the form (1.138) and take into account the

results (1.206), (1.207) it is easy to see that the longitudinal contribution Wem‖ to the

electromagnetic field energy Wem is just given by the electrostatic Coulomb energy,

Wem‖(t) =
1

2

∫
E‖(r, t) ·D‖(r, t) d

3r

=
1

8πε

∫∫
ρ(r, t)ρ(r′, t)

|r − r′| d3r d3r′ . (1.239)

For the transverse contribution

Wem⊥(t) =
1

2

∫ (
E⊥(r, t) ·D⊥(r, t) + B(r, t) ·H(r, t)

)
d3r (1.240)
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we cannot find in real space a result of similar simplicity. But if we assume the validity

of the constitutive relations (1.138), (1.139) and shift to reciprocal space we can write

Wem⊥(t) =
ε

2

∫ (
E⊥

∗(k, t) · E⊥(k, t) + B
∗(k, t) · B(k, t)

)
d3k (1.241)

and insert into this expression the relations (1.222) and (1.223). From simple vector

algebra we then obtain

Wem⊥(t) = ε

∫
N

2(k) [a∗(k, t) · a(k, t) + a(−k, t) · a∗(−k, t)] d3k . (1.242)

Therefore, the transverse contribution to the electromagnetic energy is completely de-

termined from the normal modes a(k, t).

Next we inspect under which conditions the electromagnetic energy of a system

becomes divergent: From the expression (1.239) for the electrostatic Coulomb energy

of the longitudinal fields it is seen that this energy depends on the relative position of

the electric sources within a system. It diverges in the limit |r → r′| in which case two

sources become arbitrarily close. This behavior characterizes the Coulomb singularity

of classical electrodynamics and is related to the infinite amount of Coulomb energy

that is carried by any electric source. It is independent of the kinematical or dynamical

state of a source, i.e., it is independent of velocity or acceleration. In particular, in

the time-harmonic case it is independent of frequency. The expression (1.242) for the

energy of the transverse fields exhibits no spatial singularity. We have seen from (1.224)

and (1.226) that the normal modes a(k, t) represent oscillations of the electromagnetic

field that are driven by the transverse part J⊥(k, t) of the electric current. Dominant

contributions to the energy (1.242) occur if the excitation is such that it operates at

an eigenfrequency ω of the system. In this case of an electromagnetic resonance it is

known from the elementary solution of the equation of motion of a forced harmonic

oscillator that the amplitude of the resulting oscillation will tend to infinity if no loss

mechanism is present [14]. Then the energy (1.242) will tend to infinity as well. It follows

that in the lossless case the oscillations of the electromagnetic field become singular at

resonance. This is the second type of electromagnetic singularity which leads to diverging

electromagnetic energy. Since forced harmonic motion is the only solution of the equation

of motion (1.226) this type of singularity is the only one that is contained in (1.242).

As a result we can state that the electromagnetic field exhibits two types of singu-

larities that lead to diverging electromagnetic energy densities. These are

• Coulomb singularities that are related to the mutual position of electric sources

• electromagnetic resonances that are related to forced oscillations of the electro-

magnetic field
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1.5.3 Coulomb fields and radiation fields

The split of the electromagnetic fields D, H, E, B and the electric current J in longi-

tudinal and transverse parts already has been proven to be useful in our study of basic

electromagnetic field properties. Unfortunately, it also has some disadvantages. Two

major disadvantages, which, in fact, are interrelated, are the following:

• The split in longitudinal and transverse parts is not relativistically invariant. A

field which is purely longitudinal if observed from a first reference system will

contain transverse contributions if observed from a second reference system which

is in relative motion to the first one.

• The decomposition in longitudinal and transverse parts introduces non-local ef-

fects. This has been noted in subsection 1.5.1 (a) where the explicit form of the

decomposition is given by (1.188) and (1.189).

The physical relevance of these disadvantages becomes apparent if we return to the

analysis of the longitudinal and transverse parts of the Maxwell equations as outlined

in subsections 1.5.1 (c) and (d): It was found that the longitudinal electric field E‖

represents the instantaneous Coulomb field of the electric charge density ρ. Since the

complete electric field E, according to (1.142), fulfills a proper wave equation which

leads to causal solutions it follows that the transverse electric part E⊥ must contain an

instantaneous contribution which exactly cancels the instantaneous contribution of E‖.

Indeed, it can be shown that this is the case [28]. At first sight this is surprising since

E⊥ fulfills the wave equation (1.212). But the solution of this wave equation contains

instantaneous contributions since the source term J⊥ is non-local and contains instan-

taneous contributions as well, compare the short discussion for the general transverse

field F⊥ after (1.189). Therefore, the split in longitudinal and transverse electromag-

netic fields does not separate physically independent electromagnetic field contributions

since longitudinal and transverse electromagnetic fields are inseparably connected to

each other.

To illustrate this circumstance we consider the electromagnetic field of a moving

point charge where we assume the validity of the constitutive relations (1.36) and (1.37).

At a fixed time the point charge is located at a position r′ where it moves with velocity

v, and an observer is positioned at a position r. The unit vector er′,r := (r−r′)/|r−r′|
points from the charge to the observer, compare Fig. 1.8, and we also introduce as an

abbreviation β := v/c. Then the electromagnetic field, expressed in terms of the field

strengths E, B, that is noticed by the observer is given by [93]

E(r, t) =
q

4πε0

[
(er′,r − β)(1− β2)

(1− β · er′,r)3 |r − r′|2
]

ret︸ ︷︷ ︸
velocity field (Coulomb field)

+
q

4πε0

[
er′,r ×

(
(er′,r − β)× ∂β

∂t

)

c(1− β · er′,r)3 |r − r′|

]

ret︸ ︷︷ ︸
acceleration field (radiation field)

,

(1.243)
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B(r, t) =
1

c
er′,r ×E(r, t) (1.244)

=
q

4πε0

[
(β × er′,r)(1− β2)

c(1− β · er′,r)3 |r − r′|2
]

ret︸ ︷︷ ︸
velocity field (Coulomb field)

+
q

4πε0

[
er′,r ×

(
er′,r ×

(
(er′,r − β)× ∂β

∂t

))

c2(1− β · er′,r)3 |r − r′|

]

ret︸ ︷︷ ︸
radiation field (acceleration field)

.

The brackets [ ]ret indicate that the enclosed quantities have to be taken at the retarded

time tret that is introduced in the caption of Fig. 1.8. Each of the fields (1.243) and

(1.244) nicely splits into a first part which depends on the velocity of the charge and a

second part which depends on both the velocity and the acceleration of the charge.

x

y

z

observer

v

e

r

r’

charge q

r’,r

Figure 1.8: A charge q moves with velocity v in the presence of an observer. We

assume that the observer does not move with respect to the inertial system xyz. The

electromagnetic field that is generated by the electric charge requires the time |r− r ′|/c
to reach the observer. Therefore, the electromagnetic field that is noticed by the observer

at a time t has been generated by the electric charge at the earlier, retarded time tret =

t− |r − r′|/c

The velocity fields can also be obtained by a Lorentz transformation of the static

fields

Estatic(r) =
q

4πε

r − r′

|r − r′|3 , (1.245)

Bstatic(r) = 0 . (1.246)

This suggests the name Coulomb fields for the electromagnetic velocity fields. They

constitute the static Coulomb field of a point charge as noticed by an observer which is

in relative motion to the charge. The remaining acceleration fields are commonly called

radiation fields.

We can also split the fields (1.243) and (1.244) into longitudinal and transverse parts.

Since the magnetic field already is purely transverse we only consider the electric field.
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The longitudinal component E‖ is given by the instantaneous Coulomb field, see (1.207),

and it follows

E‖(r, t) =
q

4πε0

r − r′(t)

|r − r′(t)|3︸ ︷︷ ︸
instantaneous Coulomb field

, (1.247)

E⊥(r, t) =
q

4πε0

([
(er′,r − β)(1− β2)

(1− β · er′,r)3 |r − r′|2
]

ret

− r − r′(t)

|r − r′(t)|3
)

︸ ︷︷ ︸
remaining part of the Coulomb field

+
q

4πε0

[
er′,r ×

(
(er′,r − β)× ∂β

∂t

)

c(1− β · er′,r)3 |r − r′|

]

ret︸ ︷︷ ︸
radiation field

. (1.248)

Therefore, the split of the electric field in longitudinal and transverse parts also splits

the Coulomb field in two parts and assigns the afore-mentioned instantaneous field con-

tributions to both the longitudinal and the transverse component of the electric field.

In many electrical engineering applications of classical electrodynamics we do not

have available the microscopic picture of single electric charges that generate an elec-

tromagnetic field. Then we express electromagnetic sources by the charge and current

density ρ and J, respectively. In this case we can no longer characterize a resulting

electromagnetic field by the velocities and accelerations of microscopic charges and, ac-

cordingly, do no longer have the notion of velocity fields and acceleration fields. This

implies that, in general, we can no longer split an electromagnetic field into its Coulomb

part and its radiation part. We still have the split into longitudinal and transverse parts,

but the transverse part contains contributions of the Coulomb part and the complete

radiation part.

In principle, we could isolate the radiation part of the electromagnetic field if, at a

particular time, we were able to switch off the coupling between electric charges and the

electromagnetic field, i.e., if we could switch off electric charges and their accompanying

Coulomb fields. Then the remaining radiation field would be the solution of the source-

less Maxwell equations with ρ = 0, J = 0, and nontrivial initial conditions. A solution

of the sourceless Maxwell equations commonly is called free electromagnetic field. It is a

pure radiation field and fulfills the homogeneous wave equations (1.145) and (1.146). A

free electromagnetic field has no longitudinal components since its longitudinal electric

field component (1.207) vanishes by virtue of ρ = 0. The solutions for the transverse

components are characterized by oscillatory motion, as is recognized from the solutions

(1.230) and (1.231) which, in turn, reflect the solutions of the harmonic oscillator equa-

tions (1.224) and (1.226) for a vanishing transverse current. The solutions (1.230) and

(1.231) also exhibit that for a radiation field the wave vector k, the electric field E = E⊥,

and the magnetic field B always are mutually orthogonal to each other. It is in this way

that a radiation field propagates electromagnetic energy with phase velocity c = 1/
√
εµ

through space.



56 Fundamentals of Electromagnetics

However, in practice we cannot simply switch off electric charges to neglect the cou-

pling between electric charges and the electromagnetic field. Instead, we have to consider

the non-local transverse electric current J⊥ which drives the transverse electromagnetic

field components and, in general, extends through the whole of space. Then the concept

of a free electromagnetic field turns to an ideal which, nevertheless, often is a useful

one. An example is given by the far field of an antenna in free space. In free space the

transverse electric current falls off faster in intensity than the electromagnetic field does.

Then the electromagnetic field becomes asymptotically free at large distances where it

constitutes the common radiation field.

The fact that we generally cannot split a given electromagnetic field into a Coulomb

part and a radiation part indicates that there are some conceptual difficulties in classical

electrodynamics which cannot be resolved. These do not necessarily have to be a matter

of concern. If we solve an electromagnetic boundary value problem we will usually

solve for the complete fields and it might be of no practical interest to know which

part of the solution constitutes a Coulomb field and which part represents a radiation

field. However, the fact that there are two different categories of electric fields with

different, and often complementary, properties will be the reason for many difficulties

that we encounter during the solution of practical problems in electrical engineering. As

two examples we mention the problematic numerical evaluation of electromagnetic fields

that are generated by antennas within cavities (see Chapter 3) and the derivation of

conventional transmission line theory from the complete Maxwell theory which requires

some inelegant approximations (see Chapter 5).



Chapter 2

Linear Operator Theory, Green’s

Function Method, and Numerical

Methods

In the previous chapter we introduced the main physical quantities of the Maxwell the-

ory. These are the electromagnetic sources ρ,J and the electromagnetic field which

is represented by the electromagnetic excitations D,H and the electromagnetic field

strengths E,B. The mathematical setting has been a geometric one: Physical quantities

are geometric objects that are defined in space and time, the relevant Maxwell equa-

tions can be derived from symmetry principles, and also the fundamental constitutive

relations are closely connected to the structure of space and time. In such a geometric

field-theoretical framework we can always expand a physical field F into a basis ei and

corresponding components F i,

F =

D∑

i=1

F iei . (2.1)

A formal expansion of this kind already has been employed in Section 1.2.1, compare

(1.42). The basis ei characterizes the geometric properties of the field F. If F consti-

tutes a vector in three-dimensional space, for example, the basis ei constitutes a three-

dimensional vector frame, the components F i are real or complex valued functions, and

the dimension of the vector space where F resides is that of space itself, D = 3. An

expansion of the form (2.1) explicitly shows, by means of the basis ei, in which way a

physical field F is connected to space or time.

With this understanding of the Maxwell theory we may formulate proper electro-

magnetic boundary value problems. These will involve the Maxwell equations, together

with physically meaningful initial and boundary conditions. Then the solution of an

electromagnetic boundary value problems requires to determine the components F i for

a specific basis ei. Corresponding solution procedures are contained in the classic realm

of mathematical methods in theoretical physics [32, 146]. In the development of these
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solution procedures it has been one of the main mathematical achievements of the twen-

tieth century to merge the three principal branches of mathematics, namely algebra,

geometry, and analysis, in order to arrive at the unified framework of functional anal-

ysis. Functional analysis provides a natural setting for the formulation and solution of

electromagnetic boundary value problems.

In functional analysis functions are viewed as elements of a vector space, also called

a linear space or a function space, that, in most cases of practical interest, is infinite

dimensional. In such a space a function F i is expanded in terms of an infinite dimensional

set of given basis function φn according to

F i =
∞∑

n=1

F i
nφn (2.2)

with real or complex numbers F i
n. Then a complete expansion of a physical field F is

written as

F =

D∑

i=1

∞∑

n=1

F i
nφnei . (2.3)

In Fig. 2.1 it is schematically shown how the physical space and the function space merge

to yield the complete space where F resides.

The main benefit of an expansion of the form (2.3) is that the determination of a

physical field F, that is, the determination of a finite set of functions {F i}, is reduced

to the determination of an infinite set of real or complex numbers {F i
n}. The fact that

the set {F i
n} is infinite is, in practice, not too much of a disadvantage. In some cases

analytic solution methods may yield the complete infinite set of coefficients F i
n in analytic

form. If no such solution can be found the function F i can often be approximated to a

sufficiently accurate degree by a finite expansion

F i ≈
N∑

n=1

F i
nφn . (2.4)

Finite expansions of this form are the basis of numerical solution methods. These char-

acterize the solution of a boundary value problem by a finite number of numerically

calculated coefficients F i
n.

2.1 Elements of functional analysis

In order to make the introductory remarks and ideas of this chapter more precise we

first need to define function spaces that are appropriate to accommodate functions that

represent solutions of (electromagnetic) boundary value problems. These spaces are

characterized by a number of algebraic, geometric, and analytic properties. In most

cases the function spaces of physical interest are given by so-called Hilbert spaces [32].
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basis φn

basis e i

rphysical space

function space

F

F (r)

F (r)

F (r)

2

1

F

F

F3

2

1

3

Figure 2.1: Expansion of a vector field F in its three components F i via F =
∑3

i=1 F
iei.

The number of components matches the dimension of the physical space. The compo-

nents itself are viewed as elements of a function space. This function space usually is

infinite dimensional. In the figure each function F i is represented by a specific curve

which is obtained from an expansion F i =
∑∞

n=1 F
i
nφn. The representation of F i by

smooth curves indicates the infinite number of degrees of freedom of each component

F i.

We will outline in the following the requirements for a function space to be a Hilbert

space. Then the next step will be to define the notion of a linear operator that acts

on the elements of a Hilbert space. This serves to reformulate a linear boundary value

problem in terms of a linear operator equation. A linear operator equation will be viewed

as a linear mapping between two Hilbert spaces. Then the solution of a linear boundary

value problem reduces to the construction of the corresponding inverse mapping. This

formulation will lead to a proper understanding of the Green’s function method and

numerical solution procedures.

There is a wealth of literature on the subject of functional analysis. Many treatments

extend on a mathematically solid and abstract level. Thorough introductions include

[41, 2]. Historically, functional analytic methods have been developed for the solution

of partial differential equations that are important in mathematical physics and many

books focus on these applications, see for instance [32, 141, 208, 17]. Functional analysis

has also been of fundamental importance for the formulation of quantum mechanics

[134, 140, 37]. The mathematical framework of quantum mechanics necessarily is a

functional analytic one and any serious book on quantum mechanics requires to introduce

the corresponding mathematical concepts to some degree. Electromagnetic theory can
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be formulated without prior knowledge of functional analysis. But functional analysis

unifies the various solution methods for electromagnetic boundary value problem into

a single framework and makes it possible to find solutions in a systematic way. This

is the main motivation to study functional analysis which, at first sight, seems to be

a rather abstract topic and unrelated to electrical engineering problems. Monographs

that explain the advantages of functional analysis in an electrical engineering context

are given by [40, 96, 81, 243], among others.

This Section 2.1 collects a number of mathematical definitions and their use for

the solution of electromagnetic boundary value problems is not obvious from the

beginning. It might be motivating to know that already in Section 2.2 we will

apply these mathematical concepts to the Maxwell theory.

2.1.1 Function spaces

We consider sets, equivalently termed spaces, with elements f , g, and h. For the following

mathematical definitions these elements are not required to represent physical quantities

(even though we have in mind that they do).

Example: A function space that is important in both mathematics and physics

is denoted by Lp(Ω)m [51, 81]. This is the set of all functions f = f(r) =

(f1(r), f2(r), . . . , fm(r)) ∈ Cm that are Lebesgue integrable1 to the pth power on

r = (x1, x2, . . . xn) ∈ Ω ⊆ Rn such that
∫

Ω

|f(r)|p dΩ <∞ , (2.5)

with 1 ≤ p ≤ ∞. Here the absolute value |f(r)| ∈ R is defined by

|f(r)| :=
(
f(r) · f ∗(r)

)1/2
=

(
m∑

i=1

fi(r)fi
∗(r)

)1/2

. (2.6)

Again, the asterisk ∗ denotes complex conjugation. Of particular interest in electromag-

netic applications is the function space L2(Ω)3. It accommodates electromagnetic field

configurations that are represented by both a three-component electric field and a three

component magnetic field and, additionally, are square integrable. Square integrability

implies that within the integration domain the electromagnetic energy is finite, compare

(1.234). This is a necessary physical requirement [228].

We now add structures to general spaces in order to be able to define Hilbert spaces.

This, in turn, requires the definitions of

1The theory of Lebesgue integration is necessary if we want to integrate functions that are discon-

tinuous or unbounded [205]. It extends the theory of Riemann integration that is limited to continuous

functions. In practice, if we wish to explicitly calculate the value of an integral, the differences between

Lebesgue integration and Riemann integration play no major role and it is enough to keep in mind the

few facts on Lebesgue integration that are listed in [208].
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(a) metric spaces

(b) linear spaces or, equivalently, vector spaces

(c) normed spaces

(d) inner product spaces

These different categories of spaces are, in fact, interrelated. This is illustrated in Fig. 2.2.

In the following we will first define metric spaces and then proceed towards the definition

of Hilbert spaces.

inner product 

metric spaces linear spaces,
vector spaces

Hilbert spaces

spaces

normed spaces

Figure 2.2: Function spaces that are important in functional analysis. A Hilbert space

turns out to be a special case of an inner product space which, in turn, is a special case

of a normed space. A normed space is both a linear space and a metric space. But a

linear space is not necessarily a metric space and vice versa.

(a) Metric spaces

A space S is called a metric space if there exists a mapping d : S × S → R, d(f, g) ∈ R

with properties

d(f, g) ≥ 0 , (2.7)

d(f, g) = 0 if and only if f = g , (2.8)

d(f, g) = d(g, f) , (2.9)

d(f, g) ≤ d(f, h) + d(g, h) (triangle inequality) . (2.10)
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A metric space introduces the concept of distance, see Fig. 2.3. The mapping d is called

a metric.

metric space

d(f,g)=d(g,f) g
f

d(f,h)

d(g,h)

h

Figure 2.3: In a metric space a distance is associated to any two elements. In particular,

the metric d respects the triangle inequality (2.10).

Example: The function space Lp(Ω)m is a metric space. A class of metrics for

Lp(Ω)m is given by the p-metric dp,

dp(f , g) :=

(∫

Ω

|f(r)− g(r)|p dΩ
)1/p

(2.11)

with 1 ≤ p <∞. In this definition the absolute value (2.6) has been used. The p-metric

is also defined for p =∞ via

d∞(f , g) := sup
r∈Ω
|f(r)− g(r)| . (2.12)

In a metric space the topological notions of 1. continuity, 2. convergence, 3. Cauchy

convergence, 4. completeness, 5. denseness, 6. closure, 7. boundedness, and 8. compact-

ness can be defined:

1. If L : S1 → S2 is a mapping between two metric spaces S1, S2 with metrics dS1,

dS2, respectively, then L is continuous at f ∈ S1 if for every number ε > 0 there

exists a number δ > 0 such that dS2(L(f), L(g)) < ε whenever dS1(f, g) < δ with

g ∈ S1.

2. A sequence of elements {fn} = f1, f2, . . . in a metric space S with metric d is

convergent if there is an element f such that for every number ε > 0 there is an

integer N with d(fn, f) < ε whenever n > N .

3. A sequence of elements {fn} = f1, f2, . . . in a metric space S with metric d is

Cauchy convergent or a Cauchy series if for every number ε > 0 there is an integer

N with d(fn, fm) < ε whenever n,m > N .
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4. A metric space S with metric d is complete if each Cauchy series in S is a convergent

sequence in S.

5. If we consider two subspaces S1 and S2 of a metric space S with S1 ⊂ S2 then the

set S1 is said to be dense in S2 if for each g ∈ S2 and each ε > 0 there exists an

element f ∈ S1 such that d(f, g) < ε. This states that every element of S2 can be

approximated arbitrarily close by elements of the set S1.

6. The closure S of a set S consists of the limits of all sequences that can be con-

structed from S. Then a set S is called closed if S̃ = S.

7. A set S is bounded if there is a real number k such that d(f, g) < k for all f, g ∈ S.

8. A set S is called compact if each sequence of elements in S, which is not necessarily

convergent, has a subsequence that converges to an element of S. Compact sets

are closed and bounded.

For simple illustrations and examples of these notions we refer to [37].

(b) Linear Spaces, Vector Spaces

In a linear space S, also called vector space, the operations addition and scalar multipli-

cation are defined, compare Fig. 2.4. Moreover, with real or complex scalars α, β, the

following properties are valid,

f + g = g + f , (2.13)

(f + g) + h = f + (g + h) , (2.14)

There is a zero element 0 such that f + 0 = f , (2.15)

For every f there is an element f̃ = −f such that f + f̃ = 0 , (2.16)

α(f + g) = αf + αg , (2.17)

(α + β)f = αf + βf , (2.18)

1 · f = f , (2.19)

α(βf) = (αβ)f . (2.20)

Example: The function space Lp(Ω)m is a linear space by the common method

of adding functions and multiplying functions with scalars. These additions and scalar

multiplications are induced by the usual rules for addition and scalar multiplication in

Cn. Therefore, the functions of Lp(Ω)m, or the functions of some other linear function

space, can be referred to as vectors.

Also the spaces Rn and Cn are linear spaces. In particular, from the common use of

vector calculus we are very familiar to consider R3 as a vector space and its elements as

vectors.
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0

f
g

fα

vector space

f=−ff
∼

f+g
f−g

Figure 2.4: In a linear space the operations addition and scalar multiplication can be

performed. Also the notions of a zero element and the negative of an element are defined.

(c) Normed spaces

A linear space S is normed if there is a real valued function ‖f‖, the norm of f , with

properties

‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0 , (2.21)

‖αf‖ = |α| ‖f‖ , (2.22)

‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ S . (2.23)

A normed space introduces the concept of length, as illustrated in Fig. 2.5. We note that

any normed space is a metric space with d(f, g) := ‖f − g‖.

0 normed space

||g||
||f||

α f|| ||
||f+g||

||f−g||

Figure 2.5: In a normed space a length ‖f‖ is associated to each vector f . A norm

induces via d(f, g) := ‖f − g‖ a metric in a natural way. Therefore, any normed space

is also a metric space.
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Example: The function space Lp(Ω)m is a normed space. With f ∈ Lp(Ω)m a class

of norms for Lp(Ω)m is defined by the p-norm according to

‖f‖p := dp(f , 0) =

(∫

Ω

|f(r)|p dΩ
)1/p

(2.24)

with 1 ≤ p <∞. For p =∞ we define

‖f‖∞ := d∞(f , 0) = sup
r∈Ω
|f(r)| . (2.25)

(d) Inner product spaces and pseudo inner product spaces

An inner product space is a linear space S with an inner product. An inner product is

a mapping S × S → C which associates to each ordered pair f , g ∈ S a complex scalar

〈f, g〉 with

〈f, g〉 = 〈g, f〉∗ , (2.26)

〈f, f〉 ≥ 0 and 〈f, f〉 = 0 if and only if f = 0 , (2.27)

〈αf, g〉 = α〈f, g〉 , (2.28)

〈f + g, h〉 = 〈f, h〉+ 〈g, h〉 . (2.29)

Within an inner product space the notion of orthogonality is defined. Two elements f ,

g are defined to be orthogonal if 〈f, g〉 = 0. An inner product space also is a normed

space since an inner product induces a norm by means of

‖f‖ := 〈f, f〉1/2 . (2.30)

Example: The function space L2(Ω)m is an inner product space. For f , g ∈ L2(Ω)m

an inner product is given by

〈f , g〉 :=

∫

Ω

f(r) · g∗(r) dΩ . (2.31)

The norm induced by this inner product is the two norm ‖f‖2,

〈f ,f〉1/2 =

(∫

Ω

|f(r)|2 dΩ
)1/2

= ‖f‖2 . (2.32)

One should note that the definition (2.31) presupposes square integrability and, there-

fore, we require f , g ∈ L2(Ω)m rather than f , g ∈ Lp(Ω)m for arbitrary p. However, if

f , g ∈ Lp(Ω)m for p 6= 2 we still can have f , g ∈ L2(Ω)m, but this is not true in general.

We can attribute a further geometric interpretation to the inner product if we consider

the expressions

f ‖g :=
〈f, g〉g
‖g‖2 , (2.33)

f⊥g := f − 〈f, g〉g‖g‖2 = f − f ‖g . (2.34)
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Here we assume that ‖g‖ 6= 0 and that the norm ‖ ‖ is defined according to (2.30). From

the properties of the inner product we then obtain

〈f ‖g , f ‖g〉+ 〈f⊥g , f⊥g〉 = 〈f, f〉 , (2.35)

or

‖f ‖g‖2 + ‖f⊥g‖2 = ‖f‖2 . (2.36)

It is also easy to check that

〈f⊥g , g〉 = 0 . (2.37)

These relations are explained in terms of the Pythagorean theorem in Fig. 2.6 where the

expression f ‖g geometrically is explained as the projection of f onto g. In the special

case of ‖g‖ = 1 the absolute value |〈f, g〉| of the inner product 〈f, g〉 coincides with the

norm of this projection,

‖f ‖g‖ =

∥∥∥∥
〈f, g〉g
‖g‖2

∥∥∥∥ (2.38)

= |〈f, g〉| ‖g‖‖g‖2 (2.39)

= |〈f, g〉| , (2.40)

where in the last line ‖g‖ = 1 was used.

||gf
0

f
g

inner product space

f

T

g

Figure 2.6: Within an inner product space the inner product 〈 , 〉 allows to define

the projection f ‖g of one element f onto another element g. The complement f⊥g is

orthogonal to f ‖g and we have f = f ‖g + f⊥g .

In electromagnetic theory also the notion of a pseudo inner product space is of im-

portance. A pseudo inner product space is a linear space S which is equipped with a

pseudo inner product. A pseudo inner product, in turn, is a mapping S × S → C which
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associates to each pair f , g ∈ S a scalar 〈f, g〉p with

〈f, g〉p = 〈g, f〉p , (2.41)

〈αf, g〉p = α〈f, g〉p , (2.42)

〈f + g, h〉p = 〈f, h〉p + 〈g, h〉p . (2.43)

These properties imply that 〈f, f〉p is not necessarily positive or real-valued. Therefore,

a pseudo inner product does not always generate a norm.

Example: The function space L2(Ω)m is a pseudo inner product space. For f , g ∈
L2(Ω)m a pseudo inner product is defined via

〈f , g〉p :=

∫

Ω

f(r) · g(r) dΩ . (2.44)

(e) Hilbert spaces

It was indicated in (2.2) that we want to expand a physical quantity in terms of an

infinite series of known basis functions. From a physical point of view it is important

to choose basis function with physically meaningful properties. A physical meaningful

property can be “continuity”, “differentiability”, or “square-integrability”, for example.

Once we have chosen appropriate basis functions we want to be sure that an infinite

linear combination of these functions shares the same properties. This requires that the

space of the basis functions is complete2.

We consider as a simple illustration the set Q of rational numbers. This set is not

complete. To show this we consider the sequence {
∑n

m=1
1

m!
}∞n=1. With the metric

d(f, g) = |f − g| this sequence is easily recognized as a Cauchy series. But due to the

relation
∞∑

n=1

1

n!︸︷︷︸
rational

= e︸︷︷︸
irrational

= 2.71828 . . . , (2.45)

it does not converge in Q and it follows that Q is not complete. Therefore, the result of

an infinite linear combination of rational numbers is not necessarily a rational number.

We now turn to the definition of a Hilbert space: An inner product space is called a

Hilbert space H if it is complete in the induced norm ‖f‖ = 〈f, f〉1/2. This means that

every Cauchy sequence in H converges to an element of H, that is, for every sequence

{fn} ⊂ H with ‖fn − fm‖ → 0 there exists an f ∈ H such that ‖fn − f | → 0. This is

illustrated in Fig. 2.7.

Example: The function space L2(Ω)m with the inner product (2.31) is a Hilbert

space. This implies that L2(Ω)m needs to be complete. The completeness of L2(Ω)m

2Completeness has been defined in Sec. 2.1.1 (a).
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f1 f2 fm fn...

Hilbert space0

f
...

Figure 2.7: An inner product space is a Hilbert spaceH if any Cauchy sequence {fn} ⊂ H

converges to an element f ∈ H.

follows from the completeness of Lp(Ω)m as a metric space. The proof that Lp(Ω)m as

a metric space is complete is known as the Riesz-Fischer theorem and can be found in

[51, pp. 99–100], for example.

(f) Finite expansions and best approximation

We now consider the approximation of a given element f of a Hilbert space H by a finite

set of mutually orthonormal elements gm ∈ H, m = 1, . . . , N . To this end we form the

linear combination f̃ :=
∑N

m=1 αmgm with a sequence of coefficients αm. The difference

e := f − f̃ is defined as an error with norm ‖e‖ = ‖f − f̃‖.
Obviously, it is of interest to know which choice of coefficients αm minimizes the

error. We have

‖f − f̃‖ = 〈f − f̃ , f − f̃〉 (2.46)

= 〈f, f〉+ 〈f̃ , f̃〉 − 〈f̃ , f〉 − 〈f, f̃〉 (2.47)

= ‖f‖2 +
N∑

m=1

|αm|2 −
N∑

m=1

αm〈f, gm〉∗ −
N∑

m=1

αm
∗〈f, gm〉 (2.48)

= ‖f‖2 +

N∑

m=1

|αm − 〈f, gm〉|2 −
N∑

m=1

|〈f, gm〉|2 , (2.49)

and this leads to the conclusion that the choice

αm = 〈f, gm〉 (2.50)

minimizes the norm of the error. These coefficients are known as generalized Fourier
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coefficients and the linear combination

f̃ =
N∑

m=1

〈f, gm〉gm (2.51)

is the expansion of f with respect to the elements gm. It is the best possible expansion of

f in terms of the set gm. A finite-dimensional example of this circumstance is provided

by Fig. 2.8.

f

.

g

g
f

3

2 ~

e

g
1

Figure 2.8: Illustration of the “best approximation” of an element f =
∑3

i=1 f
igi by an

element f̃ =
∑2

i=1〈f, gi〉gi. The error e = f − f̃ is orthogonal to the approximation f̃ .

The error e is orthogonal to the finite expansion, 〈e, f̃〉 = 0. Since the set of all

elements that can be obtained from linear combinations of the set gm forms a closed

linear subspace M of H we arrive at an illustration of the Projection theorem.

(g) Projection theorem:

• If M is a closed linear subspace of a Hilbert space H any element f ∈ H can

uniquely be written as the sum f = f̃ + e of an element f̃ ∈ M and an element

e ∈M⊥.

Here the orthogonal complement M⊥ is the set of all f ∈ H such that 〈f, g〉 = 0 for all

g ∈M . A proof of the projection theorem can be found in [37, p. 123].
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(h) Basis of a Hilbert space:

A basis of a Hilbert space H is defined as a set of orthonormal elements fn such that

any f ∈ H can uniquely be written as

f =
∞∑

n=1

〈f, fn〉fn . (2.52)

Here we have assumed that the Hilbert space H is infinite-dimensional and, thus, requires

an infinite number of basis elements. However, there also exist finite dimensional Hilbert

spaces. Examples for finite dimensional Hilbert spaces are Rn and Cn.

2.1.2 Linear operators

With the definition of a Hilbert space we have provided a function space that will be

suitable to accommodate the solutions of (electromagnetic) boundary value problems.

However, the structures of a Hilbert space are not sufficient to model the equations of

electromagnetic field theory. Therefore, it is required to introduce operators that relate

elements of a Hilbert space in a general way.

In what follows we will concentrate on linear operators. This is sufficient as long as the

equations which we want to model and, eventually, to solve are linear. Electromagnetic

field theory is a linear theory if the constitutive relations are linear. In this case we may

apply the methods that are provided by linear operator theory.

(a) Definition of a linear operator, domain and range of an operator

A linear operator L is defined as a linear mapping L : S1 → S2 between linear spaces

S1, S2. With f, g ∈ S1, Lf , Lg ∈ S2, and α, β ∈ C linearity implies

L(αf + βg) = αLf + β Lg . (2.53)

The domain DL of an operator L is the set of all elements f ∈ S1 for which the operator

is defined, while the range RL of the operator L is the set of elements of S2 that result

from the mapping of the domain.

We will consider in the following linear operators that act between Hilbert spaces

H1, H2.

(b) Bounded operators and the norm of an operator

We define a linear operator L : H1 → H2 as bounded if for all elements f ∈ H1 there is

a real number k such that

‖Lf‖ ≤ k ‖f‖ . (2.54)
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Operators that are not bounded are called unbounded. Closely related to the definition

of bounded operators is the definition of the norm of an operator: The norm ‖L‖ of a

linear operator L : H1 → H2 is the smallest number k that satisfies ‖Lf‖ ≤ k ‖f‖ for

all f ∈ H1,

‖L‖ := sup
‖f‖6=0

‖Lf‖
‖f‖ . (2.55)

From this definition the relation ‖Lf‖ ≤ ‖L‖ ‖f‖ follows immediately.

(c) Continuous operators

The continuity of an operator that acts between two Hilbert spaces is defined in analogy

to the continuity of a mapping between two metric spaces: A linear operator L : H1 → H2

is continuous at an element f0 ∈ H1 if for every ε there is a δ such that ‖Lf −Lf0‖ < ε

if ‖f − f0‖ < δ.

It can be shown that a linear operator L : H1 → H2 is continuous if and only if it is

bounded [208, p. 318]. Moreover, if a linear operator L : H1 → H2 is defined on a finite

dimensional Hilbert space it is continuous and, thus, also bounded.

(d) Linear functionals

Linear functionals are special cases of linear operators. They map elements of a linear

space into the set C of complex numbers. If we focus on mappings between Hilbert

spaces we may define a functional I as a mapping I : H → C with the property

I(αf + βg) = αI(f) + βI(g) (2.56)

for f, g ∈ H and α, β ∈ C. Clearly, the notions of boundedness, norm, and continuity are

defined for linear functionals in the same way as for linear operators. For each element

g of a Hilbert space there is a natural bounded linear functional which is defined via the

inner product and given by

Ig(f) = 〈f, g〉 . (2.57)

That the converse is also true is the content of the Riesz representation theorem.

(e) Riesz representation theorem:

• For a bounded linear functional I on a Hilbert space H there is a unique element

g ∈ H such that Ig(f) = 〈f, g〉 for all f ∈ H. In this case it also follows that

‖I‖ = ‖g‖.

The Riesz representation theorem is proven in [37, p. 126], for example.
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(f) Adjoint and pseudo adjoint operators

To approach the definition of an adjoint operator we first consider a bounded linear

operator L : H1 → H2. Then Ig(f) = 〈Lf, g〉 is a bounded linear functional Ig : H1 → C

for all f ∈ H1 and it follows from the Riesz representation theorem that there is a unique

g? ∈ H1 such that for all f ∈ H1

〈Lf, g︸ ︷︷ ︸
∈H2

〉 = 〈f, g?

︸︷︷︸
∈H1

〉 . (2.58)

Since g? depends on g we introduce a new operator L? : H2 → H1, the so-called adjoint

operator of L, which is defined by

L?g := g? . (2.59)

This implies

〈Lf, g〉 = 〈f,L?g〉 (2.60)

and it follows that for any bounded linear operator L there is a unique adjoint L?.

For an unbounded linear operator the Riesz representation theorem does not neces-

sarily hold. However, even if L is unbounded we still may relate an element g ∈ H2 to

an element g? ∈ H1 such that for f ∈ H1 the property (2.60) is valid.

Pseudo adjoint operators L?p : S1 → S2 that act between pseudo inner product

spaces S1, S2 can also be considered. By means of a pseudo inner product they are

introduced by the relation

〈Lf, g〉p = 〈f,L?pg〉p (2.61)

(g) Compact operators

A bounded linear operator L : H1 → H2 is compact if it maps any bounded set of H1 into

a compact set of H2. From the definition of a compact set, as given in section 2.1.1 (a),

it follows that for a compact operator for each bounded sequence {fn} ⊂ H1 there is a

subsequence {fni
} ⊂ H1 such that L{fni

} converges in H2. Compact operators that act

on infinite dimensional spaces are comparatively well understood and have advantageous

properties if compared to other operators that act on infinite dimensional spaces and are

not compact.

(h) Invertible operators, resolvent operator

We often want to solve operator equations of the form Lf = g. If L possesses a contin-

uous inverse L−1 we find the unique solution f = L−1g. This formal solution procedure

naturally leads to the notion of invertible operators: An operator L : H1 → H2 is

invertible if there exists an operator L−1 : H2 → H1 such that

L−1Lf = f (2.62)
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for all f ∈ H1 and

LL−1g = g (2.63)

for all g ∈ H2. The operator L−1 is the inverse of L. It is easy to see that if L : H1 → H2

is an invertible linear operator then L−1 is a linear operator.

A class of operators that often occurs in the formulation of boundary value problems

in terms of integral equations has the form L − λI, where L is a compact operator, I

is the identity operator, and λ ∈ C, λ 6= 0. Operators of this form are invertible under

certain conditions. In particular, we have the result [208, p. 401] that an operator L−λI,
with L : H → H bounded and |λ| > ‖L‖, is invertible with a bounded inverse

(L − λI)−1 = −
∞∑

n=0

1

λn+1
An (2.64)

and, furthermore,

‖(L− λI)−1‖ ≤ (|λ| − ‖L‖)−1 . (2.65)

The series expansion (2.64) is often called Neumann series and the operator (L− λI)−1

is known as the resolvent operator.

(i) Self-adjoint, normal, and unitary operators

A linear operator L : H → H is called self-adjoint or Hermitian if

L = L? (2.66)

A linear operator L : H → H is called normal if it is bounded and

LL? = L?L . (2.67)

Moreover, a linear operator L : H → H is unitary if and only if the adjoint operator L?

is equal to the inverse L−1,

LL? = L?L = I . (2.68)

Unitary operators preserve sizes, distances, and angles since

〈Lf,Lg〉 = 〈f,L?Lg〉 = 〈f, g〉 . (2.69)

2.1.3 Spectrum of a linear operator

(a) Standard eigenvalue problem, spectrum, and resolvent set

We consider a linear operator L : H → H that maps a Hilbert space onto itself. The

standard eigenvalue problem involves to find nontrivial solutions of the equation

Lf = λf (2.70)
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with λ ∈ C an eigenvalue, f ∈ DL and f 6= 0 an eigenfunction or eigenvector. Trivially,

the standard eigenvalue problem can also be written as

Lλf := (L − λI)f = 0 (2.71)

with I the identity operator on H.

For finite dimensional Hilbert spaces H the properties of eigenvalues and eigenvectors

are well-known from elementary linear algebra. Hence, for the definition of the spectrum

of a linear operator it is instructive to first consider the finite dimensional case and then

move on to the infinite dimensional case.

Finite dimensional case: Suppose the resolvent operator L−1
λ exists for a particular

λ ∈ C. Then λ cannot be an eigenvalue since

L−1
λ Lλf = 0 (2.72)

implies f = 0, i.e., (2.70) or (2.71) would only have trivial solutions. Conversely,

if L−1
λ does not exist we have a nontrivial solution for Lλf = 0 and λ is an

eigenvalue. The set of all eigenvalues of L makes up the spectrum of L and, in the

finite dimensional case considered here, is denoted by σfinite(L),

σfinite(L) :=
{
λ ∈ C : L−1

λ = (L − λI)−1 does not exist
}
. (2.73)

For all other values of λ the operator Lλ is invertible and (2.70) or (2.71) do only

admit trivial solutions. This complement of the spectrum is called the resolvent

set and denoted by ρ(L),

ρ(L) := C− σfinite(L) . (2.74)

It follows that for finite dimensional H the resolvent set is the set of all λ ∈ C that

make L−1
λ exist. In this case L−1

λ is bounded since all linear operators that act

between finite dimensional Hilbert spaces are bounded. Additionally, the range of

Lλ constitutes the complete space H, i.e. the dimension of RLλ
is equal to the

dimension of H since the kernel of the linear mapping Lλ only contains the zero

element {0}. In mathematical terms the latter statement is written as RLλ
= H

where in this context the bar indicates the closure of a set3. As a result, the inverse

mapping L−1
λ is defined on the complete space H and not just on a subset of H.

Infinite dimensional case: We have just observed that in the finite dimensional case

the resolvent set is the set of λ ∈ C for which L−1
λ exists and it followed that

L−1
λ is bounded and is defined on the whole space H, i.e., RLλ

= H. In the

infinite dimensional case it will no longer be true that the existence of L−1
λ implies

boundedness and RLλ
= H. If the existence of L−1

λ implies boundedness and

3The closure of a set has been defined in Sec. 2.1.1 (a).
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RLλ
= H we call λ a regular value of L. Then the resolvent set is defined as the

set of all regular values of Lλ,

ρ(L) :=
{
λ ∈ C : λ a regular value of Lλ

}
. (2.75)

The set of all λ ∈ C which are not regular values of L is defined as the spectrum

σ(L) of L,

σ(L) := C− ρ(L) . (2.76)

These definitions are generalizations of the definitions of a resolvent set and a

spectrum in the finite dimensional case.

(b) Classification of spectra by operator properties

In the following we will outline a specific classification of operators and their correspond-

ing spectra which has been introduced and discussed by a number of authors, see, for

example, [50, p. 125], [51, p. 194], [150, p. 412] and [81, p. 223]. Other types of clas-

sification do exist [208, p. 347]. An advantage of the classification which is described

below is the division of the corresponding spectra into disjoint sets. It is based on the

consideration of Lλ, that is, we first fix both L and λ, put Lλ into one of the following

categories, and then identify λ as part of a spectrum or part of the resolvent set.

1. The operator Lλ is not invertible.

Then the standard eigenvalue problem (2.70) admits a nontrivial solution f . For

a fixed L the set of all eigenvalues λ which makes Lλ not invertible form the point

spectrum of L which we denote by σp(L). That is, the point spectrum is exactly

the set of all eigenvalues. For a given eigenvalue λ the corresponding nontrivial

solution f is an eigenvector corresponding to that eigenvalue. Eigenvalues λ of an

operator L are also often called poles of the resolvent operator L−1
λ .

2. The operator Lλ is invertible.

Then the standard eigenvalue problem (2.70) admits only the trivial solution f = 0

and we distinguish the following subcases:

(a) The range of Lλ is dense in H, RLλ
= H.

In this subcase we further distinguish between the possibilities that the resol-

vent L−1
λ is bounded or unbounded.

i. The resolvent L−1
λ is bounded.

Then the value λ is called a regular value of L. The set of all regular

values forms the resolvent set ρ(L).

ii. The resolvent L−1
λ is unbounded.

Then the value λ is part of the so-called continuous spectrum which we

denote by σc(L).
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(b) The range of Lλ is not dense in H, RLλ
6= H

Then the range of Lλ is a proper subset of H, RLλ
⊂ H, RLλ

6= H, and the

corresponding set of values of λ forms the residual spectrum of L which we

denote by σr(L).

L λ

L λ

L λ
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no
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continuous spectrum

λ is in the
point spectrum
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Is      invertible?

       dense in H?

Is the inverse of
        bounded?

Start

Figure 2.9: Illustration of the definition of the point spectrum, residual spectrum, con-

tinuous spectrum, and the resolvent set, as adapted from [150].

The diagram of Fig. 2.9 illustrates these definitions. The total spectrum is the union

of the disjoint sets that form the point spectrum, continuous spectrum, and residual

spectrum,

σ(L) = σp(L) ∪ σc(L) ∪ σr(L) , (2.77)

= C− ρ(L) . (2.78)
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This mathematical classification is important because it defines and categorizes the spec-

trum of a linear operator. However, it does not tell us how to actually calculate the

spectrum.

For illustrative examples of the point, continuous, and residual spectrum we refer to

[150, § 6.6]. In view of applications to electromagnetics we are interested in the calcula-

tion of the spectrum of linear operators that occur in the formulation of electromagnetic

boundary value problems. An important class of such operators is given by second order

differential operators that are known as Sturm-Liouville operators. The properties of

these operators have been investigated in the context of electromagnetic applications

and this includes the calculation of their spectra for specified boundary value problems.

It then turns out that the residual spectrum usually does not occur, but the point and

continuous spectrum are of great importance in electromagnetic field analysis. Relevant

examples and calculations are not detailed here but can be found in the literature, see

[40] and, in particular, [81, § 5]. Our main motivation to introduce the spectrum of a

linear operator is to arrive at the method of eigenfunction expansion.

2.1.4 Spectral expansions and representations

(a) Linear independence of eigenfunctions

We have in mind to construct expansions of elements of a Hilbert space in terms of eigen-

functions of a specific operator. In this context the following statements are important:

• For a linear operator L : H → H the eigenvectors f1, f2, . . . , fn that correspond to

distinct eigenvalues λ1, λ2, . . . , λn form a linearly independent set in H. A simple

proof of this statement is given in [81, p. 228].

• If the operator L : H → H is not only linear but additionally self-adjoint and has

eigenvalues then these eigenvalues are real and the eigenvectors corresponding to

distinct eigenvalues are orthogonal. This is proven in [37, p. 182], for example.

• Moreover, if the linear operator L : H → H, with H infinite-dimensional, is

both compact and self-adjoint the Hilbert-Schmidt theorem states that there exists

an orthonormal system of eigenvectors {en} corresponding to nonzero eigenvalues

{λn} such that any f ∈ H can uniquely be represented in the form

f = f0 +

∞∑

n=1

〈f, en〉en , (2.79)

where the element f0 satisfies Lf0 = 0.

A proof of the Hilbert-Schmidt theorem can be found in [37, p. 188]. It should be

noted that the eigenvectors en not necessarily form a basis of H. In this case the

element f0 is the projection of f on the space which is orthogonal to the closed

linear subspace of H which is spanned by the eigenvectors {en}.
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The Hilbert-Schmidt theorem can be generalized if the eigenvectors corresponding

to zero eigenvalues are included. This leads to the spectral theorem for compact and

self-adjoint operators.

(b) Spectral theorem for compact and self-adjoint operators:

• If L : H → H is a compact and self-adjoint linear operator acting on an infinite-

dimensional Hilbert space H then there exists an orthonormal basis H of eigen-

vectors {fn} with corresponding eigenvalues {λn}. It follows for every f ∈ H

f =
∞∑

n=1

〈f, fn〉fn (2.80)

and

Lf =
∞∑

n=1

λn〈f, fn〉fn . (2.81)

This is the spectral theorem for compact and self-adjoint operators which is a standard

piece of linear operator theory. A proof is given in [37, p. 190] and [60, p. 243], for

example. The eigenfunction expansions (2.80), (2.81) are particularly useful because

they allow to reduce the action of a linear operator to an algebraic mapping. The

corresponding matrix with respect to the eigenvectors {fn} is given by (2.81). It is

diagonal and, in the usual cases, infinite dimensional.

(c) Remarks on the relation between differential and integral operators

The differential operators that are involved in electromagnetic boundary value problems

can be self-adjoint, compare Sec. 2.2.2 below, but they are usually not compact. This is

unfortunate since in these situations we cannot apply the spectral theorem for compact

and self-adjoint operators. Consequently, we do not know if the eigenfunctions of a

differential operator, if they exist, form a basis within the Hilbert space considered.

At this point we find a loophole if we consider the following statement:

• If L : H → H is an invertible linear operator with associated eigenvalues λn and

eigenfunctions fn then L−1 : H → H has eigenvalues 1/λn corresponding to the

eigenfunctions fn.

A proof of this statement can be found in [81, p. 233]. Therefore, we can show that

the eigenfunctions of a differential operator form a basis if we are able to construct its

inverse operator and demonstrate that this inverse operator is compact and self-adjoint.

It might be clear from intuition that the inverse operators of many differential oper-

ators are given by integral operators.
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• If the inverse integral operator of a self-adjoint differential operator can be con-

structed it has a symmetric kernel and it follows as a consequence that it is self-

adjoint and compact.

This fundamental result is obtained in [32, Chap. V, § 14]. The mathematical details of

this circumstance, like the precise assumptions that are needed to derive this results, are

elaborated in the relevant mathematical literature, see [2, 141, 60, 50], among others.

We conclude that the standard way to justify the eigenfunction expansion method, if

applied to a linear differential operator, is to construct the corresponding inverse integral

operator and to show that it is self-adjoint and compact. We also note that this general

strategy to convert a differential boundary value problem to an integral boundary value

problem is contained in the Green’s function method which will be explained in the

following Sec. 2.2.

In electromagnetics the negative Laplace operator LD = −∆ and the double-curl

operator LD = ∇×∇× are of particular interest, as is evident from Sec. 1.4.3. Solutions

of the homogeneous Helmholtz equations

∆F + k2F = 0 , (2.82)

∇×∇× F − k2F = 0 , (2.83)

are determined from solutions of the spectral problems

−∆F = k2F , (2.84)

∇×∇× F = k2F , (2.85)

respectively. Therefore, it is important to study the spectral properties of these op-

erators. There are no general or simple results that characterize the spectra of the

negative Laplace operator or the double-curl operator because the definition of an op-

erator includes the definition of its domain, which, in turn, is determined from the

specific boundary value problem. Self-adjointness of the negative Laplace operator and

the double-curl operator will depend on their domains and we first have to specify these

in order to be able to arrive at explicit results.

(d) A comment on Sobolev spaces

It seems to be inconvenient that the spectral theorem for compact and self-adjoint oper-

ators cannot directly be applied to differential operators which, usually, are not compact.

This reflects the fundamental difficulty that differential operators often produce singular

effects if acting on functions that are not differentiable in their whole domain. As a rule,

integral operators are more well-behaved, they tend to “smooth out” singular behavior

and therefore it is plausible that we require integral operators in order to show that the

eigenfunctions of a differential operator are complete and form a basis.
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However, it is possible to avoid the reduction from differential to integral equations

if we pass to distributional Hilbert spaces which contain generalized functions that are

defined in a distributional sense. Such spaces are called Sobolev spaces. The Sobolev-

space approach can be applied to the direct solution of partial differential equations

[141, 60]. We will not pursue this approach since we will focus in the following on the

conventional Green’s function approach which is based on integral equations.

2.2 The Green’s function method

The construction of solutions to linear differential equations with specified sources and

given boundary conditions belongs to the fundamental problems of the Maxwell theory

and other physical field theories. The Green’s function method provides a technique to

find these solutions.

Again, we formally express a linear differential equation as an operator equation of the

form LDf = g with a linear differential operator LD, a source function g which is assumed

to be known, and an unknown function f . The Green’s function method consists in

finding a Green’s function G such that the unknown function f is expressed as an integral

over the source function g, weighted with the Green’s function. From a physical point

of view the Green’s function method is a representation of the superposition principle:

The Green’s function is the solution of the given linear differential equation with respect

to a unit source which is placed at a specific position. Then the solution with respect

to a general source is obtained from the superposition of known solutions of individual

unit sources at various positions.

2.2.1 Basic ideas

To introduce the Green’s function method we consider a real, self-adjoint differential

operator LD with

(LDf) (r) = g(r) . (2.86)

Here, we explicitly indicate that the functions depend on a variable r which usually

represents a position in space. It is also common to have the time t as an additional

parameter.

A Green’s function is implicitly defined by

LDG(r, r′) = δ(r − r′) (2.87)

with

δr := δ(r − r′) (2.88)

the Dirac delta function which is a generalized function that is defined in the distri-

butional sense [55, 198]. In a Hilbert space H with an inner product 〈 , 〉 it can be
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introduced via the relationship

〈f, δr〉 = f(r) . (2.89)

Let us suppose that we have constructed a Green’s function that fulfills (2.87). Then

we may consider the expression

〈LDf,G
∗〉 = 〈f,LDG

∗〉 (2.90)

= 〈f, (LDG)∗〉 . (2.91)

Here we used that LD is self-adjoint and real. We apply (2.87) and notice that the delta

function is a real function. This yields

〈LDf,G
∗〉 = 〈f, δ〉 (2.92)

= f . (2.93)

With (2.86) we find the solution of the original problem as

f = 〈g,G∗〉 . (2.94)

This establishes the Green’s function method for solving differential equations that are

represented by a linear, self-adjoint, and real differential operator LD.

Example: We consider as an example the Hilbert space L2(Ω)m with inner prod-

uct (2.31) and f , g ∈ L2(Ω)m. In analogy to (2.86) and (2.87) we assume a linear

differential equation

(LDf) (r) = g(r) . (2.95)

For the corresponding Green’s function we make the ansatz

LDG(r, r′) = δ(r − r′)I (2.96)

where now the Green’s function G(r, r′) is represented as a dyadic and I denotes the

unit dyad [213]. With the inner product (2.31) the delta function acts according to

〈f , δr〉 =

∫

Ω

δ(r − r′)f(r′) dΩ′ (2.97)

= f(r) . (2.98)

We repeat the steps that led from (2.90) to (2.94) and obtain the solution of (2.95) in

the form

f(r) =

∫

Ω

g(r′) ·G(r, r′) dΩ′ . (2.99)
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2.2.2 Self-adjointness of differential operators and boundary

conditions

The general solutions (2.94), (2.99) that we obtained by means of the Green’s function

method look deceptively simple because they only involve to weight the source func-

tion g with the Green’s function G. However, from the theory of differential equations

we know that boundary conditions play a fundamental role for the determination of a

unique solution. Therefore, the information on boundary conditions must have been

incorporated in the derivation of (2.94), (2.99). Indeed, we presupposed self-adjointness

of the real differential operator LD,

〈LDf, g〉 = 〈f,LDg〉 . (2.100)

Since in most function spaces of physical interest the inner product is represented by

means of integration it follows that self-adjointness is closely connected to “generalized

partial integration”, i.e., to the generalized Green’s identity

∫

Ω

(LDf)g∗ dΩ =

∫

Ω

f(LDg)
∗ dΩ +

∫

Γ=∂Ω

J(f, g) dΓ (2.101)

where Ω is the integration volume and ∂Ω = Γ its boundary. We can write this identity

in terms of the inner product as

〈LDf, g〉 = 〈f,LDg〉+
∫

Γ=∂Ω

J(f, g) dΓ . (2.102)

It follows that LD is self-adjoint if and only if the integral on the right side of this equation

vanishes. This requirement will pose restrictions on the a priori unknown function f and

the Green’s function G.

We demonstrate this circumstance by the following general application of the Green’s

function method: Let us consider again a differential equation of the form

LDf = g (2.103)

and a corresponding Green’s function G which satisfies

LDG = δ . (2.104)

At this point we do not require LD to be self-adjoint. We take the inner product of

(2.103) with G∗ and the inner product of the complex conjugate of (2.104) with f in

order to obtain

〈LDf,G
∗〉 = 〈g,G∗〉 , (2.105)

〈f, (LDG)∗〉 = 〈f, δ∗〉 = f . (2.106)
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We form the differences of both equations and find

〈LDf,G
∗〉 − 〈f, (LDG)∗〉 = 〈g,G∗〉 − f (2.107)

In the notation of (2.102) we are thus led to

〈g,G∗〉 − f =

∫

Γ=∂Ω

J(f,G) dΓ , (2.108)

i.e., we will obtain the simple solution (2.94) if and only if the boundary integral, which

involves the so-called conjunct J(f,G), vanishes. This explicitly shows the relation

between self-adjointness of the differential operator LD and boundary conditions of f

and G.

Example 1: We consider the Helmholtz equation (1.169) for the magnetic vector

potential A in the Lorentz gauge,

∆A(r) + k2A(r) = −µJ(r) . (Lorenz gauge) (2.109)

Up to a factor µ the dyadic Green’s function of this equation has to fulfill

∆G
A
(r, r′) + k2G

A
(r, r′) = −Iδ(r − r′) . (2.110)

With the inner product (2.31) of L2(Ω)3 the general equation (2.107) yields

∫

Ω

[
(∆A(r′)) ·GA

(r, r′)−A(r′) ·∆G
A
(r, r′)

]
d3r′ = (2.111)

−µ
∫

Ω

J(r′) ·GA
(r, r′) d3r′ + A(r) .

By means of the second vector-dyadic Green’s second theorem (B.21) the integral on the

left side can be transformed to a boundary integral. We obtain

A(r) = µ

∫

Ω

J(r′) ·GA
(r, r′) d3r′ +

∮

Γ

[
(en ×A(r′)) · (∇′ ×G

A
(r, r′))− (∇×A(r′)) · (en ×G

A
(r, r′))+

en ·A(r′)(∇′ ·GA
(r, r′))− en ·G

A
(r, r′)(∇′ ·A(r′))

]
d2r′ . (2.112)

Since we want to make the boundary integral vanish we have to think about appropriate

boundary conditions. If we suppose that the boundary is perfectly conducting it follows

en ×A(r)|r∈Γ = 0 , (2.113)

∇ ·A(r)|r∈Γ = 0 , (2.114)
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such that the first and last term within the surface integral will vanish. We also have

the corresponding boundary conditions

en ×G
A
(r, r′)

∣∣∣
r∈Γ

= 0 , (2.115)

∇ ·GA
(r, r′)

∣∣∣
r∈Γ

= 0 (2.116)

of the dyadic Green’s function such that the surface integral completely vanishes. There-

fore, the magnetic vector potential can be calculated from the expression

A(r) = µ

∫
J(r′) ·GA

(r, r′) d3r′ . (2.117)

which involves no boundary terms.

Example 2: We consider the vector Helmholtz equation (1.165) for the electric

field E,

∇×∇×E(r)− k2E(r) = −jωµJ(r) . (2.118)

Up to a factor −jωµ the corresponding Green’s function needs to fulfill

∇×∇×G
E
(r, r′)− k2G

E
(r, r′) = Iδ(r, r′) . (2.119)

The general equation (2.107) yields
∫

Ω

[
(∇×∇×E(r′)) ·GE

(r, r′)−E(r′) · (∇×∇×G
E
(r, r′))

]
d3r′ =

−jωµ
∫

Ω

J(r′) ·GE
(r, r′) d3r′ −E(r) . (2.120)

From application of the Green’s theorem (B.20) and the identity (B.15) we find

E(r) = −jωµ
∫

Ω

J(r′) ·GE
(r, r′) d3r′ + (2.121)

∮

Γ

[
(en ×E(r′)) · (∇×G

E
(r, r′))− (∇×E(r′)) · (en ×G

E
(r, r′))

]
d2r′ .

If we suppose again that the interior of the boundary Γ is perfectly conducting we have

the boundary condition

en ×E(r)|r∈Γ = 0 , (2.122)

The corresponding boundary condition of the Green’s function is

en ×G
E
(r, r′)

∣∣∣
r∈Γ

= 0 (2.123)

and, as a consequence, the surface integral vanishes such that the electric field can be

calculated according to

E(r) = −jωµ
∫

Ω

J(r′) ·GE
(r, r′) d3r′ . (2.124)
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Example 1 and Example 2 show that the Helmholtz equations for the magnetic vector

potential and the electric field strength, respectively, form self-adjoint boundary value

problems if the fields are defined in a finite domain which is enclosed by a perfectly

conducting boundary.

2.2.3 Spectral representation of the Green’s function

We have seen by means of the Green’s function method that it is straightforward to

construct a formal solution of a linear differential equation. However, so far nothing

has been said about the explicit construction of a Green’s function. In this respect the

spectral properties of the relevant differential operator are of great help.

To illustrate this circumstance we consider again an operator LD : H → H which

determines a differential equation of the form

(LDf) (r) = g(r) . (2.125)

Let LD be self-adjoint and let us further assume that, along the discussion of Sec. 2.1.4

(c), the eigenvectors {fn} of LD form an orthonormal basis of the Hilbert space H,

(LDfn) (r) = λnfn(r) . (2.126)

Since LD is self-adjoint the eigenvalues λn are real. It is then possible to expand the

unknown function f and the known source g of (2.125) according to

f(r) =
∞∑

n=1

αnfn(r) , (2.127)

g(r) =
∞∑

n=1

〈g, fn〉fn(r) , (2.128)

with a priori undetermined expansion coefficients αn. These expansions can be inserted

into (2.125) to yield
∞∑

n=1

αnλnfn(r) =

∞∑

n=1

〈g, fn〉fn(r) . (2.129)

It follows for the coefficients αn

αn =
〈g, fn〉
λn

(2.130)

where we assumed λn 6= 0. If λn = 0 the corresponding eigenfunction is in the null space

of the operator LD and an arbitrary multiple of it can be added to the solution of (2.125)

to yield another solution. Therefore, our assumption λn 6= 0 is based on the assumption

that (2.125) has a unique solution. This is physically meaningful since, according to

the uniqueness theorem [82], well-posed electromagnetic boundary value problems have

a unique solution.
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With (2.130) we have obtained a formal solution for the function f ,

f(r) =
∞∑

n=1

〈g, fn〉
λn

fn(r) (2.131)

=

〈
g,

∞∑

n=1

f ∗
n(r)fn

λn

〉
. (2.132)

In the last step we have used the fact that the eigenvalues λn are real. If we compare this

solution to the general solution (2.94) which is written in terms of a Green’s function we

find the identification

G(r, r′) =

∞∑

n=1

fn(r)fn
∗(r′)

λn
(2.133)

This is a very useful and important result: If we know the eigenfunctions and eigenvalues

of a self-adjoint differential operator with eigenfunctions that form a basis we automat-

ically know its corresponding Green’s function. A Green’s function of the form (2.133)

is referred to as spectral representation since it is based on the spectral properties of the

corresponding differential operator. It is also referred to as mode representation if, in

physical applications, the eigenfunctions fn(r) are identified as eigenmodes or eigenoscil-

lations of a physical system.

2.2.4 General solutions of Maxwell equations

We recall that we have in mind to solve electromagnetic boundary value problems.

In Sections 1.4.1 and 1.4.3 we have seen that for homogeneous and isotropic media

it is immediate to decouple the Maxwell equations and rewrite them in the form of

wave equations or, in the time harmonic case, as Helmholtz equations. Then linear

operator theory suggests to study the spectral properties of the relevant wave operator or

Helmholtz operator. For a given boundary value problem we need to explictly determine

the eigenvalues and eigenfunctions of the generalized eigenvalue problem that has been

defined in Sec. 2.1.3. Once we know the eigenvalues and eigenfunctions we may construct

the Green’s function that yields the formal solution of the boundary value problem. In

summary, we arrive at a fairly general method to obtain analytical expressions for the

solution of Maxwell equations.

However, depending on the type of boundary conditions, the construction of the

Green’s function can be arbitrarily difficult. And even if we can find a Green’s function

it still can be a nontrivial numerical task to explicitly compute the electromagnetic

quantities that we are interested in. This will become evident in Chapter 3 where

antenna boundary value problems will explicitly be solved.

In the absence of boundaries, i.e., in free space, and within a homogeneous medium

the general solution of the Maxwell equations is given in terms of the solution of the
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scalar Helmholtz equation. This follows from (1.169) and (1.170) which constitute in free

space four independent scalar Helmholtz equations. These have the general structure

(∆ + k2)f(r, ω) = −g(r, ω) (2.134)

and the appropriate Green’s function G0(r, r
′) needs to satisfy

(∆ + k2)G0(r, r
′) = −δ(r − r′) . (2.135)

The solution for G0(r, r
′) is most easily obtained in spherical coordinates, taking ad-

vantage of the symmetries of free space. This yields the retarded solution [93, p. 243]

G0(r, r
′) =

1

4π

e−jk|r−r′|

|r − r′| . (2.136)

Therefore, in free space the general solution of the Maxwell equations is represented by

the equations

φ(r) =

∫
G0(r, r

′)ρ(r′) d3r′

=
1

4πε

∫
e−jk|r−r′|

|r − r′| ρ(r
′) d3r′ , (2.137)

A(r) =

∫
G0(r, r

′)J(r′) d3r′

=
µ

4π

∫
e−jk|r−r′|

|r − r′| J(r′) d3r′ , (2.138)

which relate the electromagnetic sources ρ, J to the electromagnetic field, expressed by

φ and A in the Lorenz gauge.

2.3 Green’s functions of electromagnetic cavities

To solve the Maxwell equations within a electromagnetic cavity we recall again from

Sec. 1.4.3 that in a linear, isotropic, and homogeneous medium the Maxwell equations in

frequency domain can be reduced to Helmholtz equations. For the vector potential A(r)

in the Lorenz gauge, the electric field E(r), and the magnetic field B(r), respectively,

we found the (vector) Helmholtz equations

∆A(r, ω) + k2A(r, ω) = −µJ(r, ω) , (2.139)

∇×∇×E(r, ω)− k2E(r, ω) = −jωµJ(r, ω) , (2.140)

∇×∇×B(r, ω)− k2B(r, ω) = µ∇× J(r, ω) . (2.141)
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The corresponding dyadic Green’s functions obey the differential equations4

∆G
A
(r, r′) + k2G

A
(r, r′) = −Iδ(r − r′) , (2.142)

∇×∇×G
E
(r, r′)− k2G

E
(r, r′) = Iδ(r − r′) , (2.143)

∇×∇×G
B − k2G

B
(r, r′) = ∇δ(r − r′)× I . (2.144)

Equations (2.142) and (2.143) already are familiar from the examples of Sec. 2.2.2.

Suppose we are able to construct G
A
(r, r′). Then we obtain G

E
(r, r′) and G

B
(r, r′)

via

G
E
(r, r′) =

(
I +

1

k2
∇∇

)
G

A
(r, r′) , (2.145)

G
B
(r, r′) = ∇×G

A
(r, r′) . (2.146)

Clearly, this is an immediate consequence of the relations

E(r) = −jω
(

1 +
1

k2
∇∇·

)
A(r) , (2.147)

B(r) = ∇×A(r) . (2.148)

If we construct G
E
(r, r′) rather than G

A
(r, r′) we obtain G

B
(r, r′) from

G
B
(r, r′) = ∇×G

E
(r, r′) (2.149)

since

B(r) = − 1

jω
∇×E(r) . (2.150)

In the following we will outline how to construct the Green’s functions G
A
(r, r′) and

G
E
(r, r′) inside a closed and perfectly conducting cavity by means of the eigenfunction

expansion method. These are important standard procedures which are contained in

a number of textbooks. We mention in particular Morse & Feshbach [146, § 13], Van

Bladel [227, § 10], and Collin [30, § 2]. However, these standard procedures presuppose

that the eigenfunctions of the relevant Helmholtz operators form a basis of the Hilbert

space L2(Ω)3 with inner product (2.31). To assure this property requires to extent

the spectral theorem for compact and self-adjoint operators to non-compact self-adjoint

differential operators. Such extensions exist in the mathematical literature, see [160,

2, 35, 215, 111], and have partly been reformulated to be easier accessible to scientists

and engineers [150, 208, 81]. They critically depend on the domain of the differential

operator considered and there is no single theorem which covers all cases of physical

interest. Fortunately, the solution of the Helmholtz equations (2.139), (2.140) within a

4It is a convention to skip in the definitions of the Green’s functions the factors µ and −jωµ that

appear on the right hand sides of the corresponding Helmholtz equations.
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finite three-dimensional volume which is enclosed by a perfectly conducting boundary

belongs to a class of problems which is known as three-dimensional, regular Sturm-

Liouville problems [40]. These problems are rather well understood and characterized

by eigenfunctions which form a basis in the Hilbert space L2(Ω)3 [81, p. 262]. This is, in

fact, the mathematical foundation of the spectral representations which we will consider

now.

2.3.1 Spectral representations of perfectly conducting cavities’

Green’s functions

(a) General considerations and a canonical example

We consider a closed cavity that surrounds a finite three-dimensional volume Ω by a

perfectly conducting cavity wall Γ. We further assume that the interior of the cavity is

given by a linear, homogeneous, and isotropic medium. Electromagnetic fields within the

cavity have to fulfill the Helmholtz equations (2.139) – (2.141) together with Dirichlet

boundary conditions for the magnetic vector potential,

en ×A(r)|r∈Γ = 0 , ∇ ·A(r)|r∈Γ = 0 , (2.151)

or a Dirichlet boundary condition for the electric field,

en ×E(r)|r∈Γ = 0 . (2.152)

For the corresponding Green’s functions this implies

en ×G
A
(r, r′)

∣∣∣
r∈Γ

= 0 , ∇ ·GA
(r, r′)

∣∣∣
r∈Γ

= 0 , (2.153)

or

en ×G
E
(r, r′)

∣∣∣
r∈Γ

= 0 . (2.154)

With these boundary conditions it follows from Example 1 and Example 2 of Sec. 2.2.2

that for a real wavenumber k the Helmholtz operators ∆ + k2 and ∇ ×∇ × +k2 are

self-adjoint. As mentioned above, the eigenfunctions of these operators form bases and

we have to explicitly calculate these eigenfunctions in order to construct the spectral

representation of the corresponding Green’s functions along the lines of Sec. 2.2.3. This

is a general way to solve the Maxwell equations inside a perfectly conducting cavity.

Example 1: The Helmholtz equation for the magnetic vector potential A(r)

∆A + k2A = −µJ (2.155)

has, according to (2.126), the related eigenvalue problem

∆fn + k2fn = −k̃2
nfn (2.156)
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with eigenfunctions fn and eigenvalues k̃2
n. We note that, trivially, this can be rewritten

as

−∆fn = k2
nfn , k2

n := k̃2
n + k2 . (2.157)

It follows that the eigenfunctions of the Helmholtz operator can be determined from the

eigenfunctions of the negative Laplace operator. The eigenvalues are different, though.

To proceed we have to specify boundary conditions, that is, the geometry of the

cavity. As a canonical example we consider a rectangular cavity of dimensions lx, ly
and lz. In Cartesian coordinates its enclosed volume is characterized by 0 ≤ x ≤ lx,

0 ≤ y ≤ ly, and 0 ≤ z ≤ lz. The eigenvalue problem (2.157) reduces to three single

equations,

−∆fx
nex = k2

nf
x
nex , (2.158)

−∆f y
ney = k2

nf
y
ney , (2.159)

−∆f z
nez = k2

nf
z
nez , (2.160)

where the unit vectors ex, ey, and ez could also be dropped. The boundary condition

en ×A(r)|r∈Γ = 0 yields

f y
n(x = 0) = f z

n(x = 0) = 0 , (2.161)

f z
n(y = 0) = fx

n (y = 0) = 0 , (2.162)

fx
n (z = 0) = f y

n(z = 0) = 0 . (2.163)

The solutions for the eigenfunctions are easily found, e.g., by separation of variables,

and are given by

fx
mnp(r) = cos

(
mπ

lx
x

)
sin

(
nπ

ly
y

)
sin

(
pπ

lz
z

)
, (2.164)

f y
mnp(r) = sin

(
mπ

lx
x

)
cos

(
nπ

ly
y

)
sin

(
pπ

lz
z

)
, (2.165)

f z
mnp(r) = sin

(
mπ

lx
x

)
sin

(
nπ

ly
y

)
cos

(
pπ

lz
z

)
. (2.166)

We observe that the former collective index n has turned to a triple index mnp where m,

n, and p assume integer values that run from 0 to infinity. It is customary to introduce

the abbreviations

kx :=
mπ

lx
, ky :=

nπ

ly
, kz :=

pπ

lz
. (2.167)

Then the eigenvalues k2
mnp are written as

k2
mnp = k2

x + k2
y + k2

z . (2.168)

We note from (2.164) – (2.166) that ∇ ·f(r)|r∈Γ = 0 such that our solution respects the

boundary condition ∇ ·A(r)|r∈Γ = 0. The eigenfunctions fx,y,z
mnp (r) are square integrable
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in the domain Ω, i.e., within the rectangular cavity, but not normalized. In fact, we have

∫ lx

0

∫ ly

0

∫ lz

0

(fx,y,z
mnp )2(r) d3r =

lxlylz
ε0mε0nε0p

(2.169)

with

ε0N =

{
1 for N = 0,

2 for N > 0.
(2.170)

Thus, the normalization factor of the functions f x,y,z
mnp (r) is given by

√
ε0mε0nε0p

lxlylz
. The

orthonormal eigenfunctions
√

ε0mε0nε0p

lxlylz
fx,y,z

mnp (r) determine the spectral representation of

the dyadic Green’s function G
A
(r, r′) by means of the central result (2.133) with λn =

k̃2
n = k2

mnp − k2. It follows

G
A
(r, r′) = (2.171)

∞∑

m,n,p=0

ε0mε0nε0p

lxlylz

fx
mnp(r)fx

mnp(r
′)exex + f y

mnp(r)f y
mnp(r

′)eyey + f z
mnp(r)f z

mnp(r
′)ezez

k2
mnp − k2

We have mentioned that it is possible to immediately obtain from G
A
(r, r′) the dyadic

Green’s functions G
E
(r, r′) and G

B
(r, r′) via (2.145) and (2.146). For example, the

spectral representation of the electric dyadic Green’s function that follows from (2.171)

is given by

G
E
(r, r′) =

∞∑

m,n,p=0

ε0mε0nε0p

lxlylz
×

[
fx

mnp(r)fx
mnp(r

′)exex + f y
mnp(r)f y

mnp(r
′)eyey + f z

mnp(r)f z
mnp(r

′)ezez

k2
mnp − k2

− 1

k2

∇fmnp(r)∇fmnp(r
′)

k2
mnp − k2

]
(2.172)

where we defined for notational convenience

fmnp(r) := sin(kxx) sin(kyy) sin(kzz) . (2.173)

In summary, we arrive at spectral representations for both G
A
(r, r′) and G

E
(r, r′)

within a perfectly conducting, rectangular cavity.

(b) Spectral representations in terms of longitudinal and transverse eigen-

functions

In the previous Example 1 we have been fortunate that the vector Helmholtz equation,

together with the associated boundary conditions, decoupled to three independent scalar
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Helmholtz equations which could straightforwardly be solved. In general, vector wave

equations and their associated boundary conditions will couple the different components

of the unknown vector field. This will lead, in turn, to complicated partial differential

equations that are not solved easily. This problem has been discussed in particular by

Morse & Feshbach [146, § 13] where it is suggested to reduce the solution of a vector

wave equation to the solution of scalar wave equations. As a general solution strategy,

and based on previous work of Hansen [80] and Stratton [210], Morse & Feshbach show

how to set up, in a first step, an ansatz for the solution which consists of the sum of

a longitudinal part and a transverse part. That such a split is unique is guaranteed

by the Helmholtz theorem, see Sec. 1.5.1, where the decomposition of a vector field

into its longitudinal and transverse part already has been proven to be useful for the

investigation of the dynamical properties of the electromagnetic field.

The longitudinal part of the solution of a vector wave equation is the gradient of a

scalar potential. Many techniques to obtain solutions for scalar potentials are available.

From a physical point of view we know that the longitudinal part of a solution of the

Maxwell equations for the electromagnetic field is nondynamical and determined from

the position of electric charges.

The transverse part of the solution of a vector wave equation is the curl of a vector

potential. The constraint that the divergence of a curl vanishes indicates that the trans-

verse part of the solution, and thus the vector potential, may always be derived from

two scalar fields. In electrodynamics these two scalar fields represent the two dynamical

degrees of freedom of the electromagnetic field that were exhibited in Sec. 1.5.1 in terms

of the normal variables a(k, t).

We illustrate this solution strategy by a specific example, compare [30, § 5].

Example 2: The vector Helmholtz equation for the electric field strength E(r)

∇×∇×E(r, ω)− k2E(r, ω) = −jωµJ(r, ω) (2.174)

has the associated eigenvalue problem

∇×∇× fn = λnfn (2.175)

We have in mind to find the eigenfunctions of this equation in order to construct a

spectral representation of the electric dyadic Green’s function G
E
(r, r′), if viewed as a

solution of (2.143). As a prerequisite we recall that a split of the corresponding vector

wave equation (2.140) into its longitudinal and its transverse part yields

−k2E‖ = −jωµJ‖ , (2.176)

∇×∇×E⊥ − k2E⊥ = −jωµJ⊥ . (2.177)

If we introduce a scalar potential ϕ in order to express E‖ according to

E‖ = −∇ϕ (2.178)
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we identify (2.176) as a Poisson equation,

−∇ ·E‖ = ∆ϕ = −jωµ
k2

∇ · J‖ (2.179)

= −µω
2

k2
ρ (2.180)

= −ρ
ε

(2.181)

where we used the continuity equation (1.209) and the relation ω2/k2 = c2 = 1/(εµ).

Now the eigenfunctions fn of the eigenvalue problem are divided into longitudinal

eigenfunctions Ln,

∇× Ln = 0 , ∇ ·L 6= 0 , (2.182)

and transverse eigenfunctions F n,

∇× F n 6= 0 , ∇ · F n = 0 . (2.183)

Clearly, the longitudinal eigenfunctions Ln are in the null space of ∇×∇×. However,

they are not in the null space of ∇×∇× −k2 and need to be obtained via the solution

of the Poisson equation (2.181) in terms of scalar functions ϕn. As in the previous

Example 1 this involves the eigenfunctions of the (negative) Laplace operator.

The transverse eigenfunctions F n are further divided into functions Mn and Nn.

The functions Mn are obtained via the ansatz

Mn = ∇× (ψnc) (2.184)

with a scalar potential ψn and a constant vector c which, in this context, is often referred

to as pilot vector or piloting vector. If this ansatz is inserted into the vector wave equation

one finds

∇×
(
∇×∇× (ψnc)− k2(ψnc)

)
= −∇× [c(∆ψn + k2ψn)] (2.185)

= 0 (2.186)

and it follows

∆ψn + k2ψn = 0 . (2.187)

Hence, Mn is obtained from the solution of a scalar Helmholtz equation. Similarly, we

obtain the functions Nn from the ansatz

Nn = ∇×∇× (χnc) (2.188)

with another scalar potential χn which fulfills

∆χn + k2χn = 0 . (2.189)
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For a rectangular cavity we may choose the piloting vector c as ez. This yields the

transverse functions Mn and Nn as TE- and TM-modes, respectively, with reference to

the z− coordinate. It follows for the the scalar functions ϕn, ψn, and χn that [146, p.

1774]

ϕmnp(r) = sin

(
mπ

lx
x

)
sin

(
nπ

ly
y

)
sin

(
pπ

lz
z

)
, (2.190)

ψmnp(r) = cos

(
mπ

lx
x

)
cos

(
nπ

ly
y

)
sin

(
pπ

lz
z

)
, (2.191)

χmnp(r) = sin

(
mπ

lx
x

)
sin

(
nπ

ly
y

)
cos

(
pπ

lz
z

)
. (2.192)

This yields the eigenfunctions

Lmnp(r) = ∇ (sin(kxx) sin(kyy) sin(kzz)) , (2.193)

Mmnp(r) = ∇× (cos(kxx) cos(kyy) sin(kzz)ez) , (2.194)

Nmnp(r) = ∇×∇× (sin(kxx) sin(kyy) cos(kzz)ez) , (2.195)

(2.196)

which form a complete set. After normalization we obtain the corresponding spectral

representation of the Green’s function G
E
(r, r′) in the form

G
E
(r, r′) =

∞∑

m,n,p=0

ε0mε0nε0p

lxlylz

[
Mmnp(r)Mmnp(r

′)

(k2
mnp − k2)k2

mn

+

Nmnp(r)Nmnp(r
′)

(k2
mnp − k2)k2

mnpk
2
mn

− Lmnp(r)Lmnp(r
′)

k2k2
mnp

]
(2.197)

where k2
mnp is defined as in (2.168) and, furthermore,

k2
mn = k2

x + k2
y . (2.198)

We may compare this result to the spectral representation (2.172). Both representations

are equivalent but derived from different eigenfunctions. The first representation (2.172)

utilizes the eigenfunctions of the negative Laplace operator −∆ while the second repre-

sentation (2.197) utilizes the eigenfunctions of the double-curl operator ∇×∇×. These

two sets of eigenfunctions constitute equivalent bases of the Hilbert space L2(Ω)3 with

inner product (2.44). More equivalent representations of dyadic Green’s functions for a

rectangular cavity are given in [212].

2.3.2 Spectral representations of lossy cavities’ Green’s func-

tions and the quality factor of a cavity

So far we considered lossless cavities. The fundamental difference between solutions

of electromagnetic wave equations in lossless cavities and corresponding solutions in
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lossy cavities is the circumstance that in the lossy case the wave operators ∆ + k2 and

∇ × ∇ × −k2 are no longer self-adjoint. To see this explicitly, we recall that self-

adjointness of a differential operator requires

〈LDf, g〉 =

∫

Ω

(LDf)g∗ dΩ =

∫

Ω

f(LDg)
∗ dΩ = 〈f,LDg〉 (2.199)

If we take LD as ∆+k2 or ∇×∇× −k2 we notice that the shift of LD from f to g within

the inner product requires to have a real wavenumber k. Also we have to apply partial

integration to the differential operators ∆ and ∇ ×∇×. This will produce boundary

terms which we require to vanish in order to arrive at a self-adjoint boundary value

problem. We will discuss in the following that, in general, these two requirements are

not met if losses are present.

(a) Dissipative media and complex wavenumber

In electrodynamics, dissipative media exhibit electric and magnetic losses which are

characterized by a complex permittivity ε and complex permeability µ, respectively [92].

Electric losses are more common than magnetic losses and the complex permittivity is

often written in the form

ε = ε′ − j
(
ε′′ +

σ

ω

)
(2.200)

with σ the conductivity of the medium considered. Permittivity ε and permeability µ

yield the intrinsic impedance5 Zint and the relation between wavenumber k and angular

frequency ω,

Zint =

√
µ

ε
. (2.202)

k = ω
√
εµ , (2.203)

It follows that in a lossy medium Zint and k may become complex quantities. In principle,

the wavenumber k can be kept real since, trivially, we can always write (2.203) as

ω = k/
√
εµ, define a complex angular frequency, and keep the wavenumber real. In

5Here we mention the intrinsic impedance only in passing. This quantity represents a common

notation that is applied if freely propagating electromagnetic waves, i.e., radiation fields, are considered.

If the amplitudes of the corresponding electric field strength and magnetic excitation are denoted by E
and H, respectively, then it follows from the sourceless Maxwell equations that [93, §7.1]

√
µ

ε
=
E
H . (2.201)

The expressions on both sides of this equation exhibit the dimension Ω and, thus, are defined as

intrinsic impedance. The intrinsic impedance is an intrinsic property of the space or medium where the

electromagnetic field is propagating.
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fact, both a complex wavenumber or a complex frequency are physically meaningful.

Since a plane wave that propagates, say, in the positive x-direction is of the form

E(x, t) = E0e
−j(kx−ωt) (2.204)

the imaginary part of a complex wavenumber will describe an attenuation in space

while the imaginary part of a complex angular frequency will describe a complementary

attenuation in time. The relation between both imaginary parts is given by (2.203), of

course.

If we work in the frequency domain and assume a time dependency ejωt we need to

keep ω real and have a complex wavenumber k. Then the wave operators ∆ + k2 and

∇×∇× −k2 are no longer self-adjoint and there is no more guarantee that the associated

eigenfunctions form a complete set that can be used to obtain a spectral representation of

the corresponding Green’s function. If we consider the special case that a lossy medium

is enclosed by a perfectly conducting cavity it is clear that the boundary conditions are

the same as in the lossless case. Then the solution of the Helmholtz equations

∆A + k2A = −µJ , (2.205)

∇×∇×E − k2E = −jωµJ (2.206)

in terms of the solution of an eigenvalue problem, as described by Example 1 and Ex-

ample 2 of Sec. 2.3.1, is the same for both real and complex wavenumbers k. It follows

that the eigenfunctions are of the same form in both cases and can be used to obtain

the spectral representations of the associated Green’s functions [95]. Thus, to general-

ize within a perfectly conducting cavity the solution of Helmholtz equations for lossless

media to the solution of Helmholtz equations for lossy media is simple. We only have to

employ a complex wavenumber in the relevant expressions. This is, in particular, true

for the spectral representations of the Green’s functions.

(b) Lossy cavity walls

It was pointed out in connection with (2.199) that self-adjointness of a differential opera-

tor requires the vanishing of boundary terms that are produced by partial integration. In

Example 1 and Example 2 of Sec. 2.2.2 the boundary terms associated to the operators

∆ + k2 and ∇ ×∇ × −k2 vanished since we assumed Dirichlet boundary conditions

that correspond to a perfect conductor and, thus, imply no losses at the cavity walls.

However, the boundary terms will not generally vanish if losses at the cavity walls are

present. These losses are commonly modeled by approximate boundary condition that

often are given in terms of impedance boundary conditions [201, 92, 89]. Already the

relatively simple first order boundary condition of Leontovich [124],

en ×E = −Zs en × (en ×H) , (2.207)
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with Zs the surface impedance6, leads to a coupling between different field compo-

nents [201]. This considerably complicates the solution of a Helmholtz equation within

a lossy cavity. As a rule, there are no longer exact solutions available and one needs to

rely on approximate solution techniques.

An important approximate technique to find the electromagnetic field inside a cavity

with lossy walls is to expand it in terms of the orthogonal eigenfunctions of a lossless

cavity [92, §4]. This is reasonable as long as the losses are rather small and do not

perturb the lossless modes too much. To illustrate this technique we consider within a

lossy cavity the source-free Maxwell equations

∇×E + jωµH = 0 , (2.208)

∇×H − jωεE = 0 , (2.209)

where E and H are subject to the impedance boundary condition (2.207). Here we

assumed a harmonic time dependency ejωt that characterizes the electromagnetic modes

after external sources have been switched off. Due to the losses at the cavity walls the

electromagnetic field will be attenuated in time such that the angular frequency needs to

be a complex quantity, ω = ω′ + jω′′. It is of primary interest to find the possible values

of ω since these values characterize the electromagnetic properties of the lossy cavity.

In order to proceed we introduce eigenfunctions of the lossless problem that yield

expansions of the electric and magnetic field within a perfectly conducting cavity. We

denote electric and magnetic eigenfunctions by En = {LE
n ,F

E
n } and Hn = {LH

n ,F
H
n },

respectively. In view of (2.208), (2.209) these eigenfunctions fulfill7, compare [227, §10],

∇× LE
n = 0 , (2.210)

∇×LH
n = 0 , (2.211)

∇× F E
n + jωpµF H

n = 0 , (2.212)

∇× F H
n − jωpεF

E
n = 0 . (2.213)

As eigenvectors of self-adjoint operators these eigenvectors are mutually orthogonal and

6The surface impedance Zs is defined as the coefficient of proportionality that links on the surface

of a conductor the tangential component en ×E of the electric field strength to the (effective) surface

current Js = en × (en ×H), compare (1.177) and (1.178). The concept of surface impedance is an

approximate one. For a good conductor it follows from Maxwell equations that Zs ≈ (1 + j)/σδ, with

σ the conductivity of the conductor and δ the relevant skin depth [93, §8.1]. In (2.207) the sign in front

of Zs depends on the orientation of the normal unit vector en. Here, the orientation is chosen such

that en points to the interior of the cavity.
7The eigenfunctions En and Hn can also be viewed as eigenfunctions of the double-curl operator

∇ × ∇× and constructed along the lines of Example 2 of Sec. 2.3.1. This is easily verified if, for

the case of position-independent material parameters ε and µ, the equations (2.212) and (2.213) are

decoupled by the application of the curl operator ∇×. For the specific Example 2 of Sec. 2.3.1 we have

the correspondences LE
n −→ Lmnp and F E

n −→Mmnp, Nmnp.
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can be taken as normalized as well8,

∫

Ω

Em(r) ·E∗
n(r) d3r =

∫

Ω

Hm(r) ·H∗
n(r) d3r = δmn , (2.214)

with δmn the Kronecker symbol which assumes the value 1 if m = n and 0 otherwise.

In (2.212), (2.213) the index p (“perfect”) indicates that the eigenfrequencies ωp of the

perfectly conducting cavity will be different from the eigenfrequencies ω of the lossy

cavity.

We expand the solutions of (2.208), (2.209) in terms of the eigenfunctions En, Hn

and unknown coefficients αn, βn,

E(r) =
∑

n

αnEn(r) , H(r) =
∑

n

βnHn(r) , (2.215)

and consider the expressions

∫

Ω

(
∇×E(r) + jωµH(r)

)
·Hn(r) d3r = 0 , (2.216)

∫

Ω

(
∇×H(r)− jωεE(r)

)
·En(r) d3r = 0 , (2.217)

for n = 1, 2, . . .. By means of the vector identity (B.10) and after application of Stokes

theorem we find
∫

Ω

[
E(r) ·

(
∇×Hn(r)

)
+ jωµH(r) ·Hn(r)

]
d3r +

∫

Γ

(
E(r)×Hn(r)

)
· en d

2r = 0 ,

(2.218)
∫

Ω

[
H(r) ·

(
∇×En(r)

)
− jωεE(r) ·En(r)

]
d3r +

∫

Γ

(
H(r)×En(r)

)
· en d

2r = 0 .

(2.219)

The surface integral of (2.218) can be rewritten as

∫

Γ

(
E(r)×Hn(r)

)
· en d

2r = −Zs

∫ (
en × (en ×H(r))

)
·Hn(r) d2r (2.220)

= Zs

∑

n

βn

∫

Γ

(
en ×Hm(r)

)
·
(
en ×Hn(r)

)
d2r

︸ ︷︷ ︸
=:Λmn

(2.221)

= Zs

∑

n

βnΛmn (2.222)

where we used the impedance boundary condition (2.207) and the expansion (2.215) for

the magnetic field. Due to the boundary condition en × En = 0 the surface integral

8This statement could also be written in terms of the inner product, 〈Em, En〉 = 〈Hm, Hn〉 = δmn
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of (2.219) vanishes. It remains to eliminate in the volume integrals by means of (2.212)–

(2.211) the curl-operators, to expand the fields E and H by means of (2.215), and to

use the orthonormal property (2.214). This yields

j(ωpεαn + ωµβn) + Zs

∑

n

βnΛmn = 0 , (2.223)

ωεαn + ωpµβn = 0 . (2.224)

In this system of equations the variables αn, βn and ω are unknown. We are particu-

larly interested in the time-dependent case ω 6= 0. In this case (2.224) can be used to

eliminate αn in (2.224). This leads us to

∑

m

βm

(
jµ
ω2 − ω2

p

ω
δmn + ZsΛmn

)
= 0 . (2.225)

Nontrivial solutions for the unknowns βn are obtained if and only if

Det

[
jµ
ω2 − ω2

p

ω
δmn + ZsΛmn

]
= 0 (2.226)

and this condition yields the possible values for ω.

The condition (2.226) is readily evaluated if simplifying assumptions are made: Let

us suppose that the modes ωp are not degenerate and sufficiently separated such that

ω can be considered to be close to the mth mode ω
(m)
p . If, furthermore, the surface

impedance Zs is small the coupling between different modes is small as well and it is

sufficient to consider the single equation

jµ
ω2 − (ω

(m)
p )2

ω
+ ZsΛmm = 0 (2.227)

which has the solution

ω =

√
(
ω

(m)
p

)2 −
(ZsΛmm

2µ

)2

+
j

2

ZsΛmm

µ
. (2.228)

This formula exemplifies that a finite surface impedance Zs modifies the possible reso-

nance frequencies of a cavity if compared to the lossless case:

• Resonance frequencies are shifted towards smaller values.

• The angular frequency ω acquires a positive imaginary part which leads, due to

the time dependency ejωt, to an attenuation in time.

These qualitative results could have been expected from the well-known features of a

damped harmonic oscillator [14, §18]. However, the difficult part of the analysis is to

explicitly calculate the values of the complex resonance frequencies. In general, this is

only possible by means of perturbative and approximate methods.
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(c) Quality factor of a cavity

In a perfectly conducting cavity the discrete eigenvalues of the Helmholtz equations

for the electromagnetic field determine the discrete resonance frequencies. In principle,

only those time-harmonic excitations which exactly match a resonance frequency may

excite an electromagnetic field and then the resonance curve is modeled by a delta-

function peak. If losses occur these will smear out the sharp resonance curves and

there will be band of frequencies around each resonance frequency that can lead to an

excitation. The half-width of the corresponding realistic resonance curves depends on

the amount of power loss in the cavity. It is common to characterize this circumstance

by a dimensionless quantity which is called the quality factor Q of a cavity. It is defined

by [93]

Q = ωp
stored energy

power loss
. (2.229)

If we denote the energy that is stored in the cavity by Wcav it follows from energy

conservation9

dWcav

dt
= −ωp

Q
Wcav(t) (2.230)

Therefore, the time dependency of Wcav is given by

Wcav(t) = W0 cave
−ωpt/Q . (2.231)

The electromagnetic energy is proportional to the square of the electric and magnetic

fields in the cavity. It follows that the electromagnetic fields have a time dependency of

the form

E(t) = E0e
−ωpt/(2Q)ej(ωp+∆ω)t (2.232)

= E0e
j(ωp+∆ω+jωp/(2Q))t (2.233)

where we incorporated the shift ∆ω of the resonance frequency which is due to the losses.

Since the complex eigenfrequencies of a lossy cavity often are written as ω = ω ′ + jω′′

we have from (2.233)

ω′′ =
ω′ −∆ω

2Q
≈ ω′

2Q
, (2.234)

and the quality factor can be expressed according to

Q ≈ ω′

2ω′′
. (2.235)

We also have from (2.234) the relation

ω ≈ ω′

(
1 +

j

2Q

)
. (2.236)

9As in the previous subsection 2.3.2 (b) we still exclude external sources.
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(d) Time harmonic sources and lossy cavities

If time harmonic sources are present inside a lossy cavities we will have a stationary

process where the power loss is compensated by the time harmonic sources. In this case

the electromagnetic fields will no longer be attenuated in time. But we can think of

the electromagnetic field inside the cavity as the result of propagating fields that scatter

many times at the cavity walls and eventually superimpose to form the eigenmodes that

we observe in the time harmonic case. This interpretation is justified by the scattering

expansion of the next Sec. 2.3.3. Then a propagating field inside a lossy cavity will

decay in space while it propagates through a lossy medium or gets scattered at a lossy

cavity walls. In Sec. 2.3.2 we have already mentioned that due to the relation (2.203)

the losses in a dissipative medium can be accounted for by either a complex wavenumber

k = k′ − jk′′ or by a complex angular frequency ω = ω′ + jω′′. That is, if we consider

the phase φ = k · r − ωt of a propagating field it is, from a mathematical point of

view, a matter of taste to accommodate a negative imaginary part of the phase in the

wavenumber or in the angular frequency. If we have lossy cavity walls the situation is,

from a physical point of view, more complicated since we require perturbation theory in

order to infer from a given surface impedance Zs that the angular frequency becomes

a complex quantity. However, a rather simple result such as (2.228) or, in terms of

the quality factor, (2.236) shows that for small losses the effect of lossy cavity walls is

equivalent to that of a lossy medium. Indeed, for small losses a propagating wave will

scatter many times before there is a noticeable attenuation and, in the mean, this is

equivalent to a continuous attenuation due to a lossy medium.

It follows that both for dissipative media and lossy cavities we can describe small

losses by a complex wavenumber. To convert between complex angular frequencies and

complex wavenumbers we use the relation (2.203) and, for complex wavenumbers, write

k′ − jk′′ = ω′√εµ (2.237)

while, for complex angular frequencies, we write

ω′ + jω′′ =
k′√
εµ

(2.238)

For small losses, Re(
√
εµ)� Im(

√
εµ), it is easy to find that

k′

k′′
=
ω′

ω′′
(2.239)

It follows, for example, that the relation (2.236), which is valid if we work with complex

frequencies, is equivalent to

k ≈ k′
(

1− j

2Q

)
(2.240)

if we work with complex wavenumbers.
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The bottom line is that in the time harmonic case we split off the time dependency

ejω′t and incorporate losses in the complex wavenumber k = k′−jk′′. From the discussion

above it follows that small losses at the cavity walls can approximatively be treated as

losses in a dissipative medium. In particular, we then can use the spectral representations

for the Green’s functions of the Helmholtz equations to write down the corresponding

solution of the Maxwell equations. In the lossless case the wavenumber in the solution

is real, in the lossy case it becomes complex.

2.3.3 Ray representations of cavities’ Green’s functions from

scattering expansions

So far we have considered spectral representations of Green’s functions. This type of

representations emerged as a natural result of the eigenfunction expansion method where

we employed the spectral properties of the relevant wave operators. In this section

we want to point out another type of representation which is based on the Green’s

function G0(r, r
′) of free space, as defined by (2.136), and allows to construct cavities’

Green’s functions in terms of a so-called ray representation. We can think of a ray as an

electromagnetic field which propagates freely, i.e., without scattering, between a source

point r′ and an observation point r. Therefore, a ray is represented by the Green’s

function G0(r, r
′) which, in this context, is also referred to as a propagator.

If we put an electromagnetic source within a cavity at a position r′ rays will emanate

from this source. One of these rays will directly lead to an observation point r. Other

rays will scatter at the cavity wall and might eventually reach the observation r ′. These

rays do not necessarily correspond to the one of geometric optics, all possible paths

that lead via scattering processes from the source to the observation point need to

be considered in order to obtain the complete effect of the source on the observation

point. It follows that the Green’s function of a cavity can be obtained if we sum up all

rays that reach an observation point in the presence of this cavity. The corresponding

ray representation of the Green’s function is the result of a scattering expansion which

has been introduced by Balian & Duplantier [6]. In their paper Balian & Duplantier

constructed scattering expansions for the dyadic magnetic and electric Green’s function.

To find an analogue representation for the dyadic vector potential Green’s function is

rather immediate and will be considered in the following.

Suppose that electric currents J(r′) are enclosed by a cavity within a volume Ω.

Then the vector potential A(r) at an observation point r is given by

A(r) = µ

∫

Ω

G0(r, r
′)J(r′) d3r′ + µ

∫

Γ=∂Ω

G0(r, r
′)J s(r

′) d2r′ (2.241)

=: Ainc(r) + µ

∫

Γ=∂Ω

G0(r, r
′)J s(r

′) d2r′ . (2.242)

Here J s(r
′) denotes the surface current that is induced by the currents J(r′) on the
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inner surface of the cavity. The incident field Ainc(r) is the magnetic vector potential

that results from the direct ray contributions of the sources J(r′). If we are able to

express J s(r
′) in terms of J(r′) we can find from (2.241) an expression for the cavities’

Green’s function.

The surface currents can be determined from a magnetic field integral equation which

is based on the boundary condition (1.178), compare [227, §11.6],

J s(r) = 2en ×H inc(r) + 2

∫

Γ

en ×∇×
(
G0(r, r

′)Js(r
′)
)
d2r′ . (2.243)

In this equation we defined

H inc(r) =
1

µ
∇×Ainc(r) (2.244)

=

∫

Ω

∇× (G0(r, r
′)J(r′)) d3r′ . (2.245)

The integral kernel of the last expression can be rewritten if we use the identity (B.8)

and take advantage of the symmetry property G0(r, r
′) = G0(|r − r′|) of the Green’s

function of free space. Then we have

H inc(r) =

∫

Ω

G′
0(r, r

′)er,r′ × J(r′)) d3r′ , (2.246)

where we introduced the abbreviation

G′
0(r, r

′) :=
∂G0(|r − r′|)
∂|r − r′| (2.247)

and er,r′ denotes a unit vector that points from r to r′. Let us now define the first order

current J1s as

J1s(r) := 2en ×H inc(r) =
2

µ
en ×

(
∇×Ainc(r)

)
. (2.248)

It can be used to solve the magnetic field integral equation (2.243) by iteration. This

yields a solution for J s(r) in terms of a Neumann series (2.64)10,

J s(r) = J1s(r) + 2

∫

Γ

enr
× (G′

0(r, r1)er,r1)× J1s(r1) d
2r1

︸ ︷︷ ︸
=:J2s

+ 4

∫∫

Γ

enr
× (G′

0(r, r1)er,r1)× enr1
× (G′

0(r1, r2)er1,r2)× J1s(r2) d
2r1 d

2r2
︸ ︷︷ ︸

=:J3s

+ . . .

= J1s + J2s + J3s + . . .

=
∞∑

n=1

Jns . (2.249)

10To avoid too many parenthesisses we assume in the following formulas that multiple vector products

are evaluated from the right to the left, i.e., a× b× c = a× (b× c)
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In this equation we explicitly indicated the position of a normal vector by an index, i.e.,

enr
is the normal vector at position r at the cavity wall. The surface current Jns is

the result of electromagnetic fields that have been scattered n times at the cavity wall.

Therefore, (2.249) constitutes a scattering expansion of the surface current J s.

We insert (2.249) into (2.241) and obtain a scattering expansion for the magnetic

vector potential,

A(r) = µ

∫

Ω

G0(r, r
′)J(r′) d3r′ + µ

∫

Γ

G0(r, r
′)J1s(r

′) d2r′

+ µ

∫

Γ

G0(r, r
′)J2s(r

′) d2r′ + µ

∫

Γ

G0(r, r
′)J3s(r

′) d2r′

+ . . .

= µ

∫

Ω

G0(r, r
′)J(r′) d3r′ + 2

∫

Γ

G0(r, r1)enr1
×∇×Ainc(r1) d

2r1

+ 4

∫∫

Γ

G0(r, r1)enr1
× (G′

0(r1, r2)er1,r2)× enr2
×∇×Ainc(r2) d

2r1 d
2r2

+ 8

∫∫∫

Γ

G0(r, r1)enr1
× (G′

0(r1, r2)er1,r2)× enr2
× (G′

0(r2, r3)er2,r3)

× enr3
×∇×Ainc(r3) d

2r1 d
2r2 d

2r3

+ . . . (2.250)

This result yields a ray representation in terms of a scattering expansion for the dyadic

cavities’ Green’s function G
A
(r, r′),

G
A
(r, r′) = G0(r, r

′) + 2

∫

Γ

G0(r, r1)enr
×∇×G0(r1, r

′) d2r1

+
4

µ

∫∫

Γ

G0(r, r2)enr2
× (G′

0(r2, r1)er2,r1)× enr1
×∇×G0(r1, r

′) d2r1 d
2r2

+
8

µ

∫∫∫

Γ

G0(r, r3)enr3
× (G′

0(r3, r2)er3,r2)× enr2
× (G′

0(r2, r1)er2,r1)

× enr1
×∇×G0(r1, r

′) d2r1 d
2r2 d

2r3

+ . . . (2.251)

with

G0(r, r
′) = G0(r, r

′)I (2.252)

the dyadic Green’s function of free space.

Ray representations and scattering expansions are interesting in their own rights

since they make precise the intuitive idea to construct a cavities’ Green’s function by

the superposition of elementary scattering processes. Thus they are reminiscent of the

Huygens’ principle. It should be admitted, however, that an exact evaluation of the

integrals that occur in (2.251) will be impossible in most cases. In physical contexts, the
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scattering expansion has approximately been evaluated in high-frequency limits, yielding

corrections to ray optics [6]. Clearly, these corrections will involve geometric factors that

characterize the geometry of the scattering surface. This connection of electromagnetic

properties and geometric properties has been used in an engineering context to show

that for the description of current propagation along linear antenna and transmission

line structures radiation effects become important if the wavelength is of the order or

shorter than the radii of curvature of these structures [63, 65].

A considerable simplification occurs if the geometry of the cavity is such that the

mirror principle can be applied. Then it is possible to express the scattering contributions

in terms of image sources.

Example 1: We consider a rectangular cavity of dimensions lx, ly, and lz and

want to find a ray representation for its Green’s function G
A
(r, r′). From the mode

representation (2.171) we already know that among the nine components of G
A
(r, r′)

only three components are non-vanishing,

G
A
(r, r′) = GA

xx(r, r
′)exex +GA

yy(r, r
′)eyey +GA

zz(r, r
′)ezez . (2.253)

mirror plane

original currents

mirrored currents

Figure 2.10: Illustration of the mirror principle if applied to electric current sources.

Electric currents that are perpendicular to the mirror plane do not reverse direction

if mirrored, currents that are in parallel to the mirror plane do reverse direction if

mirrored. The mirrored sources are imaginary sources that allow to replace the actual

system (original sources plus mirror plane) by an equivalent system (original sources

plus mirrored currents) where the mirror plane is removed. For the equivalent system

the mirrored sources are chosen such that the electromagnetic field at the location of the

(removed) mirror plane is the same as in the original system, i.e., the equivalent system

respects the boundary conditions of the actual system, as is required by the uniqueness

theorem. Textbooks discuss the mirror principle in the context of image theory, see, for

example, [4, §7.4].
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...

... ...

...

0 1

32

Figure 2.11: Illustration of the mirror principle if applied to a two-dimensional periodic

structure. The original sources are located in the cell which is marked by “0”and printed

in bold. They are mirrored three times to yield the mirrored sources in the cells “1”,

“2”, and “3”. The four numbered cells constitute a basic block. Any other mirrored

source can be obtained from one of the sources of this basic block by an even number of

mirror reflections, such that no more directional changes need to be taken into account.

It follows that all image sources can be obtained from copies of the basic block. In

the figure eight copies of the basic block are drawn. For a three-dimensional periodic

structure one uses a basic block which consists of eight cells that form a rectangular

parallelepiped and are numbered from “0” to “7”. In the formulas (2.254) - (2.256) the

summation with index i yields this basic block, where the coefficients Axx
i , Ayy

i , and Azz
i

take into account the directional changes that are due to mirror reflections. Finally, the

triple sum with indices m, n, and p generates the copies of the basic block.

As explained in Figures 2.10 and 2.11, application of the mirror principle yields

GA
xx(r, r

′) =
∞∑

m,n,p=−∞

7∑

i=0

Axx
i G0

(
Ri,mnp(r, r

′)
)
, (2.254)

GA
yy(r, r

′) =
∞∑

m,n,p=−∞

7∑

i=0

Ayy
i G0

(
Ri,mnp(r, r

′)
)
, (2.255)

GA
zz(r, r

′) =
∞∑

m,n,p=−∞

7∑

i=0

Azz
i G0

(
Ri,mnp(r, r

′)
)
, (2.256)
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with

G0

(
Ri,mnp(r, r

′)
)

=
e−jkRi,mnp(r,r′)

4πRi,mnp(r, r′)
. (2.257)

The length Ri,mnp(r, r
′) represents the distances of the source and its mirror sources to

the observation point r = (x, y, z). It is given by

Ri,mnp(r, r
′) :=

√
(Xi + 2mlx)2 + (Yi + 2nly)2 + (Zi + 2plz)2 , (2.258)

with

Xi :=

{
x− x′ , i = 0, 1, 2, 3

x + x′ , i = 4, 5, 6, 7
, (2.259)

Yi :=

{
y − y′ , i = 0, 1, 4, 5

y + y′ , i = 2, 3, 6, 7
, (2.260)

Zi :=

{
z − z′ , i = 0, 2, 4, 6

z + z′ , i = 1, 3, 5, 7
. (2.261)

The coefficients Axx
i , Ayy

i , and Azz
i are defined by

Axx
i :=

{
+1 , i = 0, 3, 4, 7

−1 , i = 1, 2, 5, 6
, (2.262)

Ayy
i :=

{
+1 , i = 0, 2, 5, 7

−1 , i = 1, 3, 4, 6
, (2.263)

Azz
i :=

{
+1 , i = 0, 1, 6, 7

−1 , i = 2, 3, 4, 5
. (2.264)

In the summation series (2.254) – (2.256) the term obtained for m = n = p = i = 0,

respectively, corresponds to the Green’s function of free space. The numerical prop-

erties of this ray representation will be studied and compared to those of the spectral

representation (2.171) in Sec. 3.3.

2.4 Numerical methods and the method of moments

With the Green’s function approach we have been able to formally solve the Maxwell

equations, if rewritten as Helmholtz equations, in free space and within cavities. For

the special case of rectangular cavities we have given explicit expressions for the vec-

tor potential and electric Green’s function. The study of these canonical solutions is

important in order to understand electromagnetic phenomena on a fundamental level.

In practice, however, we have to go beyond the scope of canonical problems. Then the

Green’s function approach becomes intricate for two major reasons:

• In general, we will not be able to find an explicit expression for the Green’s function

of a given boundary value problem.
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• Even if we explicitly know the Green’s function we have not necessarily completed

the solution of the given boundary value problem. The Green’s function tells us the

field that is generated by a given source, and this is important information. But we

not always know the source since, in general, it is coupled to the field and interacts

with the field. In this case we still have to solve some operator equation, typically

an integral equation, which contains the Green’s function. And the corresponding

solution often cannot be found in closed form.

As a result, we face some operator equation which we cannot solve in closed form or

which is too complicated to be solved by approximate analytical methods. It is at this

point where numerical methods become a useful option.

A numerical method approximates the solution of a boundary value problem by a

finite set of numerically calculated real or complex numbers11. These numbers are the

coefficients F i
n of an expansion with respect to some basis functions φn, as shown in

(2.4). The choice of basis functions φn and the way of calculating the coefficients F i
n

largely depends on the specific numerical method that is chosen.

A very general type of a numerical method is provided by the method of moments.

Due to its generality, its abbreviation “MoM” is often interpreted as “Mother of all

Methods”. We will see in the following how the method of moments results from the

approximate solution of a linear operator equation.

2.4.1 Derivation of the method of moments

We consider a linear operator L : H1 → H2 that acts between two Hilbert spaces H1,

H2 and examine the linear operator equation

Lf = g (2.265)

with an unknown function f and a known function g. First, we choose bases {ψn}∞n=1 ∈
H1 and {wn}∞n=1 ∈ H2. Then we form the approximations

f̃ =

N∑

k=1

αkψk , (2.266)

g̃ =
N∑

j=1

〈g, wj〉wj . (2.267)

Since f is unknown the coefficients αk are unknown as well. In (2.267) g̃ approaches g in

the limit N −→∞. The functions ψk are commonly called basis functions or expansion

functions, while the functions wj are known as weighting functions.

11We might be lucky and find that such a finite set of numbers yields the exact solution, but this case

is not common.
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In order to determine the unknowns αk we consider the approximate problem

Lf̃ = g̃ .

This equation can further be approximated by N algebraic equations for N unknowns

αk. To this end we first consider the approximation

Lf̃ =
N∑

k=1

αk(Lψk) (2.268)

=

N∑

k=1

∞∑

j=1

αk〈Lψk, wj〉wj , (2.269)

≈
N∑

k=1

N∑

j=1

αk〈Lψk, wj〉wj . (2.270)

We set the last expression equal to the approximation (2.267). It follows

N∑

k=1

αk〈Lψk, wj〉 = 〈g, wj〉 (2.271)

for j = 1 . . .N . This already is the desired linear system of equations for the unknowns

αk. We introduce the abbreviations

Ajk := 〈Lψk, wj〉 , (2.272)

βj := 〈g, wj〉 , (2.273)

and write (2.271) in the succinct form

[A][α] = [β] . (2.274)

If the inverse matrix [A]−1 exists we find the solution

[α] = [A]−1 [β]

which determines the approximate solution (2.266) of the original problem (2.265).

In the application of the method of moments the main difficulty is to choose the basis

functions ψk and weighting functions wj such that the approximations (2.266), (2.267)

are physically meaningful and, additionally, make an evaluation of the matrix elements

(2.272) feasible. It is not obvious how to find “good” choices of basis and weighting

functions. In practice, the calculation of the matrix [A] will be the most time consuming

part of the method of moment algorithm.
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2.4.2 General remarks on numerical methods for linear prob-

lems in electromagnetic field theory

A variety of numerical methods for solving electromagnetic boundary value problems has

been developed during the last decades. Since at the beginning of the 1970s the use of

digital computers became common the ratio between computer cost and computer power

has constantly decreased. This makes it more and more attractive to use numerical

methods.

In the development of numerical solution procedures we begin with a mathematical

model which normally is expressed in terms of differential equations, integral equations,

or variational expressions. This mathematical model should reflect the underlying phys-

ical model as well as possible. Then, in a second step, the mathematical model is

discretized by an appropriate approximation of the solution domain such that the de-

sired accuracy of the solution can be achieved. Finally, the solution algorithm needs

to be implemented as a computer program which should use the computer resources in

an efficient way. Usually, at the end of the solution algorithm there will be a matrix

equation, as exemplified by (2.274), which reflects a discretized linear operator equation

and needs to be inverted to yield the approximate, numerical solution.

There is a vast amount on literature on the subject of numerical methods in electro-

magnetic field analysis among we mention in particular [243, 11, 187, 209]. The various

numerical methods can roughly be divided into domain methods and boundary methods.

Among the domain methods are the Finite Difference Method and the Finite Element

Method which are based on differential equations or variational expressions. Domain

methods involve the discretization of the domain where the electromagnetic fields are

defined and yield, as a result, approximate expressions for the electromagnetic fields.

Boundary methods are based on integral equations or variational expressions and in-

volve the discretization of the boundary of the electromagnetic field problem. Usually

they yield approximate expressions for the electromagnetic sources. Examples are the

Boundary Element Method and the Method of Moments, if understood as a method for

solving integral equations.

Formally, the different numerical solution methods have a unified description in the

framework of functional analysis. They all yield approximate solutions in the form

(2.266) with a finite number of numerically calculated coefficients αk that refer to a

finite number of basis functions ψk. Different numerical solution methods consists of

different choices of basis functions and different ways to compute the corresponding co-

efficients. As is evident from Sec. 2.1.1 (f), it is advantageous to choose basis functions

which are orthonormal. For orthonormal basis functions it has been shown that the

generalized Fourier coefficients (2.50) yield the best possible approximation to the ex-

act solution which minimizes the error. It also follows from the projection theorem of

Sec. 2.1.1 (g) that an approximate solution will be a projection of the exact solution onto

a finite dimensional linear subspace of the Hilbert space considered. For that reason cer-
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tain numerical solution procedures, as the Finite Element Method or integral equation

methods, are often referred to as projection methods [145, 209]. The mathematical anal-

ysis of such methods exemplifies that the functional analytic framework is essential in

order to understand and optimize the numerical methods of electromagnetic field theory.
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Chapter 3

Antenna Theory in Resonating

Systems

The previous two chapters dealt with the electromagnetic interaction on a general level.

From the formulation of the Maxwell equations in terms of three-dimensional wave or

Helmholtz equations together with the Green’s function method it has been possible to

represent the electromagnetic interaction by Green’s functions.

Now we apply these theoretical concepts to formulate antenna theory in resonating

systems. It has been mentioned in the introduction before Chapter 1 that a main

motivation to introduce this subject is to consider in the framework of Electromagnetic

Compatibility the coupling between EMI-sources and -victims in environments where

resonances can be excited. In this context, an EMI-source represents a transmitting

antenna and an EMI-victim represents a receiving antenna. The class of problems in

Electromagnetic Compatibility that involve resonating environments are often referred

to as interior problems.

To arrive at an antenna theory in resonating systems it is necessary to merge con-

cepts of conventional antenna theory with those of microwave theory. This is illustrated

in Fig. 3.1. In antenna theory the main task is to calculate antenna currents. The usual

approach to do this is to solve for a given electromagnetic excitation an integral equation

for the unknown current and we will shortly review this approach in Sec. 3.2. Once the

antenna current is determined it is straightforward to obtain the related electromagnetic

field by means of integration and the Green’s function of free space, compare (2.138). On

the other hand, in microwave theory the main task is to determine the electromagnetic

field within a waveguide or cavity. Here, the usual approach is to construct an appro-

priate Green’s function. Once the Green’s function is constructed from the solution of

a boundary value problem, which reflects the geometry of the waveguide or cavity, the

principal structure of the electromagnetic field is known. It is given in terms of the

eigenmodes of the resonating system. Which eigenmodes actually are excited depends

on the electromagnetic excitation which is often provided by a fixed electric current that
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Antenna Theory Microwave Theory

resonating electromagnetic system
modelled as waveguide

or cavity

Antenna Theory in

Interaction between antennas

and cavities
within waveguides

Interaction between antennas

(Interior EMC problems)

in free space

Resonating Systems

Figure 3.1: Conventional antenna theory and microwave theory merge into an antenna

theory of resonating systems which is suitable to model interior problems of Electromag-

netic Compatibility.

is assumed to be independent of the electromagnetic field that it generates. Therefore,

antenna theory puts focus on the determination of electric currents while microwave

theory puts focus on the determination of electromagnetic fields1

From these considerations it becomes clear what an antenna theory in resonating

systems consists of: First, it consists of the determination of the Green’s function of a

resonating system, i.e., it consists of the characterization of the electromagnetic prop-

erties of the resonating system. Second, it consists of the determination of an antenna

current within the resonating system. This involves the solution of an integral equation

with the Green’s function of the resonating system as kernel. Since the integral equation

will be defined on the antenna surface it is at this point where the properties of the

antenna enter.

It follows that the main task of antenna theory in resonating systems is to solve

integral equations with Green’s functions as kernels which incorporate the properties of

electromagnetic resonances. The main difficulties that are encountered in the solution

of this class of integral equations are of a numerical nature. The physical reason behind

these numerical difficulties is implied by the discussion of Sec. 1.5.2 and given by the fact

that the Green’s function of a resonating system exhibits the two complementary singu-

1Of course, also electromagnetic fields are of great importance and interest in antenna theory. But

it is straightforward to calculate from a known antenna current the associated electromagnetic field

by means of an appropriate Green’s function. In antenna theory the difficult part is to calculate the,

a priori, unknown antenna current, and this is why focus needs to be put on this aspect.
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larities of the electromagnetic field, namely the Coulomb singularity and electromagnetic

resonances.

Antenna theory in free space involves a continuous electromagnetic spectrum and

no discrete resonances occur. In this situation the Coulomb singularity is the only

electromagnetic field singularities that occurs. In a resonating system the presence of

resonances adds singular field effects and these additional effects will also be reflected

by antenna characteristics. It is of primary interest to calculate these additional effects.

Single resonances can have a dominating influence and drastically change the behavior

of antenna configurations inside resonating systems if compared to free space.

“Antenna theory in resonating systems” is a notion which is not established in the

current textbook literature. Some of the ideas and solution strategies that we will

introduce in the following have been applied to rather specific electrical engineering

problems. These include the characterization of cavity backed antennas [125, 59, 202],

antenna arrays [5, 118], printed circuit boards [224, 78, 123], reverberation chambers

[240, 88, 232, 233, 18, 242], and multilayered media [22, 129, 241]. There are also recent

investigations of wire antennas [179, 180, 72] and transmission lines [207, 222, 221] within

cavities. These works differ in the type of (simplifying) assumptions that are made to

arrive at specific results. The results obtained seem to become increasingly important

to the field of Electromagnetic Compatibility since they add insights to the mostly

numerical and experimental studies of electromagnetic coupling through cavity apertures

and inside cavities [19, 20, 107, 166, 49, 151, 203, 164, 126, 127].

3.1 Basic concepts of antenna theory

The definition and calculation of antenna characteristics require a few basic concepts

of antenna theory that are summarized in the following subsections. We will introduce

important measures of electromagnetic coupling, review the notion of reciprocity, give

mathematical expressions that are suitable to calculate the self and mutual impedance

of antennas, and finally relate antenna impedances to the spectral properties of the

electromagnetic field within a cavity.

3.1.1 Measures of electromagnetic coupling

A transmitting antenna represents an electric current source J(r′) which generates an

electromagnetic field E(r). This “current to field” coupling is expressed by the electric

Green’s function G
E
(r, r′) that has been introduced in (2.124),

E(r) = −jωµ
∫

G
E
(r, r′)J(r′) d3r′ . (3.1)

The electric Green’s function is a fundamental quantity since it represents the solution

of the Maxwell equations with respect to prescribed boundary conditions. It is a local
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function and does not reflect any specific antenna properties.

In practice, the field E(r) will interact with an antenna not locally at one point but

along the extent of the antenna where it will induce a current J(r). A measure of this

“field to current” coupling is the reaction which is defined by [82][§ 3]

〈a, b〉p :=

∫
Ea(r) · J b(r) d3r (3.2)

= 〈Ea,J b〉p . (3.3)

Here we do not consider artificial magnetic sources which can also be incorporated in the

definition of reciprocity. In (3.2) the first entry “a” represents the electric field and the

second entry“b”represents the electric current that reacts on the electric field. The index

“p” indicates that the reaction is defined in terms of a pseudo inner product, compare

Sec. 2.1.1 (d). Since the field Ea(r) will be generated by some source J a(r′) it follows

that the reaction is closely related to the Green’s function G
E
(r, r′),

〈a, b〉p = −jωµ
∫∫ (

G
E
(r, r′)Ja(r′)

)
· J b(r) d3r′d3r . (3.4)

The reaction is a more practical measure of electromagnetic coupling than the mere

electric Green’s function. It can be thought of as the coupling between a measured field

and the antenna or probe that is used for the measurement.

The reaction itself is not sufficient to characterize the mutual coupling between two

antennas since it accounts for the properties of only one antenna. To characterize the

mutual coupling between two antennas 1 and 2 it is customary to employ the notion

of mutual impedance Z12. The definition of mutual impedance involves two antennas

that are excited by some electromagnetic source. Then the voltages V1, V2 and currents

I1, I2 at the antenna input terminals are related to each other by a 2 × 2 impedance

matrix [42]

Z =

(
Z11 Z12

Z21 Z22

)
(3.5)

according to

V1 = Z11I1 + Z12I2 , (3.6)

V2 = Z21I1 + Z22I2 . (3.7)

This network representation is illustrated in Fig. 3.2.

The impedance matrix concisely characterizes the antenna configuration which is deter-

mined from the antenna geometries, the antenna positions and orientations, and their

electromagnetic environment. The impedances Z11 and Z22 are the self impedances of

antenna 1 and antenna 2 in the presence of antenna 2 and antenna 1, respectively. The
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I2

V1

I1

V2
V2

I2I1

Z

antenna 1 antenna 2

V1

Figure 3.2: Two coupled antennas and their network equivalent

mutual impedances Z12 and Z21 specify the electromagnetic coupling between both an-

tennas. Even though impedance is a very basic concept one should keep in mind that it

is only defined for time harmonic fields.

As will be recalled in Sec. 3.1.3, the mutual impedance Z12 can be calculated in terms

of the reaction according to [42, 149]

Z12 = −〈b, a〉p
Ia
2 I

b
1

(3.8)

= −
∫

antenna 2
Eb(r) · Ja(r) d3r

Ia
2 I

b
1

, (3.9)

where the indices a and b refer to two different situations. Similar to the electric Green’s

function, the mutual impedance incorporates the electromagnetic properties of the an-

tenna environment and, additionally, takes into account the properties of the transmit-

ting and receiving antenna. To actually calculate Z12 from (3.9) is not trivial since

the required electric field and electric currents have to be obtained as the solution of

complete boundary value problems.

The notions “electric Green’s function”, “reaction”, and “mutual impedance” are col-

lected and concisely characterized in Fig. 3.3.

Z ab

(ii) reaction

(iii) mutual impedance

(i) electric Green’s function

integrated

coupling antenna properties<a,b>

local no influence

large influence

G (r,r’)
E

p

Figure 3.3: The electric Green’s function is a mathematical ideal and not influenced

by antenna properties. Reaction and mutual coupling are more realistic measures for

electromagnetic coupling that take into account the properties of transmitting and/or

receiving antennas.
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3.1.2 Reciprocity

Reciprocity is a symmetry principle which represents the invariance of an interaction

under the exchange of source and observation point. In electrical engineering contexts

the concept of reaction is frequently used to exploit the associated invariance under the

exchange of a source (“transmitting antenna”) and a probe (“receiving antenna”). To

formulate this definition in mathematical terms we consider a source J a(r′) at a point r′

which produces a field Ea(r) at a point r and a source J b(r) at the same point r

which produces a field Eb(r′) at the point r′ where the source Ja(r′) is located. Then

reciprocity is fulfilled if the reaction between Ea(r) and J b(r) is the same as the reaction

between Eb(r′) and Ja(r′),

Ea(r) · J b(r) = Eb(r′) · Ja(r′) . (3.10)

This statement of reciprocity is particularly useful to show the well-known equivalence

of antenna pattern in transmission and reception [82][§ 3]. It should be noted that reci-

procity also implies a number of additional fundamental relationships between receiving

and transmitting antenna properties that are of practical interest [8].

Whether or not reciprocity is valid depends on the differential operator that deter-

mines the equation of motion of the fields and it depends on the boundary conditions

that are imposed on the fields [146, §7]. To find in the electromagnetic case a criterion

for reciprocity we follow a standard approach and examine two sets of electric currents

Ja and J b within a region Ω which produce electric and magnetic fields Ea, Ha and

Eb, Hb, respectively. Then, in the frequency domain, Maxwell equations

∇×Ea,b(r) + jωµHa,b(r) = 0 , (3.11)

∇×Ha,b(r)− jωεEa,b(r) = Ja,b(r) (3.12)

are valid. Within Faraday’s induction law (3.11) the magnetic field strength B has

already been replaced by the magnetic excitation H with the help of a linear constitutive

relation of the form B = µH. Similarly, a linear constitutive relation of the form

D = εE has been employed to write down the Ampére-Maxwell law (3.12).

Dot multiplication of (3.11) with Hb,a and of (3.12) with Eb,a yields, after some

elementary algebraic manipulations and the application of (B.10), the single equation

∇ · (Eb(r)×Ha(r)−Ea(r)×Hb(r)) = Ea(r) · J b(r)−Eb(r) · Ja(r) . (3.13)

Integration of this local relation over a simply connected volume Ω with surface Γ that

encloses all sources Ja, J b and subsequent application of Gauss’s law lead to

∫

Γ=∂Ω

(
Eb(r)×Ha(r)−Ea(r)×Hb(r)

)
· d2r =

∫

Ω

(
Ea(r) · J b(r)−Eb(r) · Ja(r)

)
d3r ,

= 〈a, b〉p − 〈b, a〉p . (3.14)



3.1 Basic concepts of antenna theory 119

This relation is often called reciprocity theorem [42]. It is analogous to the relation

(2.102) which yields conditions for the self-adjointness of a linear differential operator

LD. The condition for reciprocity resembles (2.100) and is given by

〈a, b〉p = 〈b, a〉p . (3.15)

Obviously, there are two possibilities to verify if reciprocity is fulfilled. We can check

if either the surface integral or the volume integral of (3.14) identically vanishes. In

both cases we need to know the dynamical equations (3.11), (3.12) and the boundary

conditions that are imposed on the fields [71].

We first consider the surface integral

IΓ :=

∫

Γ

(Eb(r)×Ha(r)−Ea(r)×Hb(r)) · d2r (3.16)

of (3.14). It vanishes both in free space and inside a cavity with lossy walls:

• The case of free space is the standard case. If the sources of the fields are located

in free space the surface Γ can be chosen as the surface of a sphere with radius r

that tends to infinity, r → ∞. Then the appropriate surface boundary condition

on the fields is given by the radiation condition. It ensures that the integrand

(Eb ×Ha −Ea ×Hb) falls off faster than 1/r2 [227]. It follows that the surface

integral IΓ vanishes and reciprocity is fulfilled.

• Inside a cavity with lossy walls we choose Γ as the interior of the cavity wall and

assume that the Leontovich boundary condition (2.207) is valid,

en ×E(r) = −Zsen ×
(
en ×H(r)

)
. (3.17)

This yields

(
Eb(r)×Ha(r)

)
· en =

(
en ×Eb(r)

)
·Ha(r) (3.18)

= −Zs

[(
en × (en ×Hb(r)

)]
·Ha(r) (3.19)

= −Zs

[(
en ·Ha(r))(en ·Hb(r)

)
+ Ha(r) ·Hb(r)

]
.

(3.20)

Clearly, the last expression is invariant under exchange of a and b. Due to d2r =

en d
2r it follows that the surface integral vanishes. Therefore, the Leontovich

boundary condition leads to reciprocity as well. This includes the special case of

perfectly conducting cavity walls.

Alternatively, we consider the volume integral

IΩ :=

∫

Ω

(Ea(r) · J b(r)−Eb(r) · Ja(r))d3r (3.21)

=〈a, b〉p − 〈b, a〉p (3.22)
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and employ the electric Green’s function G(r, r′) to relate the electric fields to the

electric currents,

Ea,b(r) =

∫

Ω

G
E
(r, r′)Ja,b(r′) d3r′ . (3.23)

It follows

IΩ =

∫∫

Ω

(
G

E
(r, r′)Ja(r′)

)
· J b(r)−

(
G

E
(r, r′)J b(r′)

)
· Ja(r)) d3r d3r′ . (3.24)

Therefore, the volume integral vanishes and reciprocity, 〈a, b〉p = 〈b, a〉p, is fulfilled if the

condition

G
E
(r, r′) =

(
G

E)T
(r′, r) (3.25)

holds. Here,
(
G

E)T
denotes the transpose of the dyad G

E
. It is easy to see that the

Green’s functions (2.171), (2.172), and (2.197) fulfill the condition (3.25) since they are

both symmetric and invariant under exchange of r and r′.

3.1.3 Integral expressions for self and mutual impedances of

antenna elements

We return to the impedance matrix [Z] that has been introduced in (3.5) to characterize

the coupling between two antennas by a two-port network. It is evident from (3.6)

and (3.7) that the matrix elements Zij can be calculated as ratios between open-circuit

voltages and input currents. Explicitly, we have

Z11 =
V1

I1

∣∣∣∣
I2=0

, Z22 =
V2

I2

∣∣∣∣
I1=0

, (3.26)

and

Z12 =
V1

I2

∣∣∣∣
I1=0

, Z21 =
V2

I1

∣∣∣∣
I2=0

. (3.27)

It is a standard proof of network theory to show that reciprocity implies Z12 = Z21 [25,

§13].

The matrix components Z11 and Z22 are the self impedances of antenna 1 and 2 in

the presence of an open-circuited antenna 2 and 1, respectively. Hence, to calculate

Z11 or Z22 it is necessary to take into account the coupling between an active and an

open-circuited antenna. In free space this coupling can often be neglected. However, it

can be strong if the antennas are located within a resonating environment. To explicitly

calculate Z11, for example, one excites antenna 1 by an input voltage V1 and then

calculates the current I1 from coupled integral equations.

To calculate the mutual impedance Z12 = Z21 we may focus on the left equation

of (3.27). Since in this expression it is assumed that antenna 1 is open-circuited it is

required to excite antenna 2 by a given source and to calculate with this excitation the
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current I2 and the open-circuit voltage V1. Again, the current I2 can be obtained as

the solution of an integral equation. But the calculation of V1 is problematic since this

open-circuit voltage is given by the displacement current of an infinitesimally small gap

which represents the antenna input terminal. An adequate modeling of this gap and a

calculation of the corresponding displacement current is, in practice, too complicated.

In order to circumvent this difficulty it is possible to employ reciprocity and express V1

in terms of quantities that are easier to calculate.

To see how reciprocity is applied to this problem we consider Fig. 3.4 and denote

by “a-situation” and “b-situation” two different antenna configurations. The a-situation

corresponds to the original configuration that is used to calculate Z12, i.e., the configu-

ration consists of a transmitting antenna 2 which induces an electric field Ea at an open

circuited antenna 1. The b-situation consists of a single transmitting antenna 1 which

is identical to antenna 1 of the a-situation. Antenna 1 generates an electric field Eb at

the position of antenna 2 that is present in the a-situation. If we invoke reciprocity of

the a- and b-situation we have 〈a, b〉p = 〈b, a〉p, i.e.,

∫

antenna 1

Ea(r) · J b(r) d3r =

∫

antenna 2

Eb(r) · Ja(r) d3r . (3.28)

If we assume that antenna 1 is perfectly conducting the tangential electric field Ea at

the antenna surface will vanish except at the gap that constitutes the antenna input

terminal. Then we find
∫

antenna 1

Ea(r) · J b(r) d3r = −V a
1 I

b
1 (3.29)

with V a
1 the open-circuit voltage of antenna 1 in the a-situation and I b

1 the input current

of antenna 1 in the b-situation. The minus sign in (3.29) results from the convention that

at a network port the voltage and the current point in different directions, compare Fig.

3.2. It follows that the open-circuited voltage V a
1 can be calculated from the expression

V a
1 = −

∫
antenna 2

Eb(r) · Ja(r) d3r

Ib
1

. (3.30)

With this result we obtain from (3.27) the expression for the mutual impedance Z12 that

already has been quoted in (3.9),

Z12 = −
∫

antenna 2
Eb(r) · Ja(r) d3r

Ia
2 I

b
1

= −〈E
b,Ja〉p
Ia
2 I

b
1

. (3.31)

We conclude that in order to calculate the mutual impedance between two antennas

we have to determine, for a given excitation, the current distributions J a and J b. Then
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transmitting
antenna 2

location of
antenna 2

transmitting
antenna 1

JaEa

"a−situation" "b−situation"

antenna 1
open−circuited

Jb bE

Figure 3.4: If reciprocity is applied to the a- and b-situation the calculation of the

reaction at the input terminal of antenna 1 can be expressed in terms of the reaction

along antenna 2. This facilitates to calculate the open-circuit voltage in the a-situation.

the electric field Eb that enters (3.31) is obtained from the current distribution J b via

the electric dyadic Green’s function G
E
(r, r′) and the relation (3.1).

A formula which is analogous to (3.31) can be derived for the self impedance Zself

of a single antenna. There are at least two approaches to arrive at such a formula.

The first is to apply (3.31) to the mutual impedance between two identical antennas

which are brought together to form a single antenna. The second approach is to apply

reciprocity to an “a-situation” which consists of a single transmitting antenna and to

a “b-situation” which consists of an auxiliary current distribution. In both cases one

obtains the common result [97, § 14]

Zself = −
∫

antenna
E(r) · J(r) d3r

I2
(3.32)

= −〈E,J〉p
I2

. (3.33)

Here, the current distribution J , electric field E, and input current I refer to a fixed

excitation which typically is taken as a unit voltage source.

3.1.4 Antenna impedances and spectral properties

The impedance formulas (3.31) and (3.33) connect the fundamental electromagnetic

quantities E and J to the lumped network quantities Z12 and Zself , respectively. A

specific electromagnetic boundary value problem which involves antenna elements will

be characterized by a certain electromagnetic spectrum which, in turn, will be reflected

by the impedances of the antenna elements. From the material that has been collected in

Chapter 2 it is straightforward to relate antenna impedances to the spectral properties
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of the electromagnetic field.

(a) Expansion of antenna impedances with respect to the eigenfunctions of

the Helmholtz equation for the magnetic vector potential

We consider, along the lines of Sections 2.2.3 and 2.3.1 (a), the Helmholtz equation of

the magnetic vector potential A in the Lorenz gauge,

∆A + k2A = −µJ . (3.34)

The magnetic vector potential has an eigenfunction expansion of the form2

A =
∑

n

αA
n fA

n (3.35)

where the eigenfunctions obey

−∆fA
n = k2

nf
A
n . (3.36)

With an expansion for the electric current,

J =
∑

n

〈J ,fA
n 〉fA

n , (3.37)

we write the Helmholtz equation (3.34) as

∑

n

αA
n (−k2

n + k2)fA
n = −µ

∑

n

〈J ,fA
n 〉fA

n (3.38)

and find for k2
n 6= k2 the coefficients

αA
n = µ

〈J ,fA
n 〉

k2 − k2
n

. (3.39)

Therefore, the magnetic vector potential can be written in terms of the eigenfunction

expansion

A = µ
∑

n

〈J ,fA
n 〉

k2 − k2
n

fA
n . (3.40)

This also yields an eigenfunction expansion for the electric field: Generally, we have

E = −∇φ− jωA (3.41)

2It should be noted that the summation over the index n represents a condensed notation. In Example

1 of Sec. 2.3.1 the eigenfunction expansion of the magnetic vector potential within a rectangular cavity

was discussed. It became clear that the index n turns to a triple index mnp and that an eigenfunction

fn comprises three independent eigenfunctions fx
nex, fy

ney, and fz
nez . Hence, in (3.35) each summand

is of the form αxi

mnpf
xi

mnpexi
with xi ∈ {x, y, z}.
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and in the Lorenz gauge, ∇ ·A + jωφ/c2 = 0, this relation turns to

E = −jω
k2

(
∇(∇ ·A) + k2A

)
. (3.42)

From (3.40) we can also obtain an eigenfunction expansion of the electric field,

E = −jωµ
k2

∑

n

〈J ,fA
n 〉

k2 − k2
n

(
∇(∇ · fA

n ) + k2fA
n

)
. (3.43)

The electric field enters the impedance formulas (3.31) and (3.33). If we insert (3.43)

in (3.31), for example, we find

Z12 =
jωµ

Ia
2 I

b
1k

2

∑

n

〈J b,fA
n 〉

k2 − k2
n

〈∇(∇ · fA
n ) + k2fA

n ,J
a〉p (3.44)

=
jωµ

Ia
2 I

b
1k

2

∑

n

〈J b,fA
n 〉〈Ja,∇(∇ · fA

n ) + k2fA
n 〉

k2 − k2
n

. (3.45)

In the last line we used the property (2.41) of the pseudo inner product and the fact

that the eigenfunctions fA
n , as eigenfunctions of a linear, self-adjoint operator, are real,

compare Sec. 2.1.4. For the self impedance we find a similar expression,

Zself =
jωµ

I2k2

∑

n

〈J ,fA
n 〉〈J ,∇(∇ · fA

n ) + k2fA
n 〉

k2 − k2
n

. (3.46)

From (3.45) and (3.46) it appears that the mutual and self impedance encounter a pole

whenever the wavenumber k approaches an eigenvalue kn. We will discuss this feature

after the next subsection.

(b) Expansion of antenna impedances with respect to the eigenfunctions of

the Helmholtz equation for the electric field

We now consider the Helmholtz equation of the electric field E,

∇×∇×E − k2E = −jωµJ . (3.47)

From Sec. 2.3.1 (b) it follows that the electric field has an eigenfunction expansion of

the form

E = E‖ + E⊥ (3.48)

=
∑

n

αE‖
n Ln +

∑

n

αE⊥
n F n (3.49)

where the longitudinal eigenfunctions Ln and the transverse eigenfunctions F n fulfill

∇×∇× Ln = 0 , (3.50)

∇×∇× F n = k2
nF n . (3.51)
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With an expansion for the electric current we write the Helmholtz equation (3.47) as

−
∑

n

αE‖
n k2Ln +

∑

n

αE⊥
n (k2

n − k2)F n = −jωµ
∑

n

〈J ,Ln〉Ln − jωµ
∑

n

〈J ,F n〉F n .

(3.52)

For k2
n 6= k2 this yields the coefficients

αE‖
n =

jωµ

k2
〈J ,Ln〉 , (3.53)

αE⊥
n = jωµ

〈J ,F n〉
k2 − k2

n

. (3.54)

Therefore, the electric field can be written in terms of the eigenfunction expansion

E =
jωµ

k2

∑

n

〈J ,Ln〉Ln + jωµ
∑

n

〈J ,F n〉
k2 − k2

n

F n . (3.55)

If we insert (3.55) in (3.31) we find for the mutual impedance the expansion

Z12 = − jωµ

k2Ia
2 I

b
1

∑

n

〈J b,Ln〉〈Ja,Ln〉 −
jωµ

Ia
2 I

b
1

∑

n

〈J b,F n〉〈Ja,F n〉
k2 − k2

n

, (3.56)

=: Z12‖ + Z12⊥ . (3.57)

Here we denote by Z12‖ and Z12⊥, respectively, the longitudinal and transverse contri-

butions to the mutual impedance. Similarly, we find for the self impedance (3.33)

Zself = − jωµ
k2I2

∑

n

〈J ,Ln〉2 −
jωµ

I2

∑

n

〈J ,F n〉2
k2 − k2

n

(3.58)

=: Zself‖ + Zself⊥ . (3.59)

It is recognized again that the mutual and self impedance encounter a pole whenever

the wavenumber k approaches an eigenvalue kn.

(c) Network representation of electromagnetic cavities

The expressions (3.46) and (3.58) for the self impedance of an antenna element have

been obtained by different eigenfunction expansions but have a similar structure. This

structure finds a simple interpretation in terms of equivalent circuit elements. To exhibit

this relation we consider a parallel RLC-circuit, as shown in Fig. 3.5. Its impedance

Zcircuit is given by
1

Zcircuit
=

1

Rn
+

1

jωLn
+ jωCn (3.60)

or

Zcircuit = −
jω 1

Cn

ω2 − 1
LnCn

(1 + j ωLn

Rn
)
. (3.61)
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C

L

Rn

n

n

Figure 3.5: A parallel RLC-circuit. Its impedance resembles the contribution of an

electromagnetic resonance to the self impedance of an antenna element.

We compare this expression to the dynamical, transverse part Zself⊥ of the self impedance

of an antenna element, multiply both the nominator and denominator of (3.58) by 1/εµ,

and allow for ohmic losses. This yields (3.58) in the form

Zself⊥ =
∑

n

− jω 〈J ,F n〉2

εI2

ω2 − ω2
n(1 + j 1

2Q
)2

(3.62)

≈
∑

n

− jω 〈J ,F n〉2

εI2

ω2 − ω2
n(1 + j 1

Q
)

(3.63)

In view of (3.61) we formally have the identifications

Cn =
εI2

〈J ,F n〉2
, (3.64)

Ln =
〈J ,F n〉2
ε(Iωn)2

, (3.65)

Rn =
Q〈J ,F n〉2
εI2ωn

. (3.66)

In these equations the current density J is, a priori, not known but needs to be obtained

by the complete solution of the actual antenna problem.

Suppose we specialize an antenna element to a small probe where, up to an unknown

amplitude, the shape of the current distribution is approximated by a known function.

A practical choice for such a function is given by a sinusoidal current distribution. Then

in the expansions (3.58) and (3.63) the unknown quadratic current amplitudes of the

nominator and denominator will cancel and the self impedance turns to a quantity which

is characterized by cavity properties alone. It then follows that the expression (3.63)

constitutes the equivalent circuit for a probe-fed cavity, compare [181, §11] and [82, §8],

which is given by an infinite sum of parallel RLC-circuit impedances. Therefore, an

empty cavity has a representation by an equivalent circuit which consists of an infinite
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number of RLC-circuits in series, with each RLC-circuit representing one cavity mode3.

If an extended antenna is brought into the cavity the single RLC-circuits will not be

independent of each other since the lumped elements (3.64)–(3.66) depend on the antenna

current J and this current involves all modes of the cavity4.

The formal identification of an antenna impedance of the form (3.63) with cir-

cuit impedances such as (3.61) does not facilitate the actual calculation of antenna

impedances. However, since RLC-circuits are well-understood this identification is help-

ful to interpret the qualitative features of calculated antenna impedances. For example,

close to a resonance ω ≈ ωm the expression for the self impedance (3.58) can be written

in the form

Zself ≈ Zself‖ −
jω 〈J ,fE

m〉2

εI2

ω2 − ω2
m(1 + j 1

Q
)

+
∑

n6=m

− jω 〈J ,fE
n 〉2

εI2

ω2 − ω2
n(1 + j 1

Q
)

(3.67)

where the second term will dominate the variation of Zself with respect to ω. Therefore,

close to a resonance the characteristics of Zself will be those of a standard resonance

curve, as shown in Fig. 3.6, which is well-known from usual circuit theory [25]. The

same will be true for the mutual impedance Z12, as is evident from the expansions (3.56)

and (3.58) which have an identical structure.

3.2 Integral equations for the electric current on lin-

ear antennas

The problem to calculate the electric current on an antenna is a special case of a scatter-

ing problem. An antenna current is generated by primary sources that produce incident

electromagnetic fields Einc, H inc. Then the total fields E, H in the presence of the

antenna, i.e., in the presence of the scatterer, are a superposition of the incident fields

and scattered fields Esca, Hsca,

E = E inc + Esca , (3.68)

H = H inc + Hsca . (3.69)

The general strategy to find from this decomposition an equation for the unknown an-

tenna current consists of three steps which require the surface equivalence principle, the

source-field relationships that follow from the solution of the Maxwell equations, and

the boundary conditions for the total electromagnetic fields [174, §1]:

3This statement does not take into account the longitudinal eigenfunctions Ln which can be sup-

ported if the cavity is not simply connected
4This is reminiscent of the fundamental discussion of the transverse part of the Maxwell equations

of Sec. 1.5.1 (d), compare in particular the remarks after (1.231).
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Figure 3.6: Plot of the function f(x) = − jx
x2−(1+jx/10)

which resembles the circuit

impedance (3.61). Shown are the absolute value, the real part, and the imaginary part of

f(x). At resonance, both the absolute value and the real part attain a maximum which is

finite as long as losses are present. The imaginary part changes sign at resonance where

the dominant behavior of the resonant circuit shifts between inductive and capacitive.

1. By virtue of the surface equivalence principle the antenna is replaced by equivalent

electromagnetic sources which, a priori, are unknown. If the antenna is assumed

to be perfectly conducting the equivalent electromagnetic sources are represented

by an electric antenna current. In general, the equivalent electromagnetic sources

will be determined from the incident electromagnetic fields.

2. The equivalent electromagnetic sources generate a scattered electromagnetic field

according to the source-field relationships that express a field by the integral over

a source, weighted with the appropriate Green’s function. This allows to replace

the unknown scattered electromagnetic field, which usually is defined within an

entire volume, by the unknown equivalent sources, which usually are defined on a

boundary surface.

3. On the boundary surface, where the unknown equivalent sources are defined, the

boundary conditions (3.68), (3.69) for the total fields must be enforced. This relates

on the boundary surface the known incident electromagnetic field to integrals over

the unknown equivalent sources
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These three steps comprise, in short, how to construct field integral equations for un-

known electromagnetic sources that are induced by primary electromagnetic fields.

In the following we will focus on linear antennas. These constitute the classical an-

tenna prototype and generalize the concept of an idealized, mathematical electric dipole

to an actual engineering device. In the development of antenna theory linear antennas

have played a dominant role because many of their properties can be modeled by ana-

lytic methods. However, even in the simplest realistic cases simplifying approximations

have to be made in order to arrive at analytic results [104, 192, 29, 106].

3.2.1 Pocklington’s equation

It is remarkable that already ten years after the discovery of electromagnetic radiation by

Hertz [87] in 1887 an integral equation for the current distribution along cylindrical wire

dipole antennas was published by Pocklington [175] in 1897. Pocklington’s equation

constitutes an electric field integral equation that is adapted to cylindrical, thin-wire

antennas. To formulate this integral equation we follow the three-step procedure of the

last paragraph and first introduce a surface current J s which is related to a scattered

electric field Esca via the electric Green’s function G
E
,

Esca(r) = −jωµ
∫

Γ

G
E
(r, r′) J s(r

′) d2r′ . (3.70)

Here the antenna surface is denoted by Γ. The boundary condition for the total electric

field E on a perfectly conducting surface is en ×E = 0 or, alternatively, Et = 0, with

Et = E · et the projection of E on a given tangential vector et. With this boundary

condition and (3.68) we obtain an electric field integral equation,

jωµ

[∫

Γ

G
E
(r, r′)J s(r

′) d2r′
]
· et(r) = E inc

t (r) . (3.71)

This equation simplifies if the antenna geometry is that of a thin cylindrical wire. Then

a thin-wire approximation can be performed where azimuthal currents are neglected and

the surface current Js turns to a filamentary current I that flows along the cylinder axis

[16, 235]. If furthermore the wire is assumed to be straight and, in Cartesian coordinates,

directed along the z-axis we obtain from (3.71)

jωµ

∫ L/2

−L/2

GE
zz(z, z

′)I(z′) dz′ = E inc
z (z) (3.72)

with L the length of the antenna. We finally use (2.145) to replace the zz-component of

the electric dyadic Green’s function by the zz-component of the dyadic Green’s function

for the magnetic vector potential in the Lorenz gauge. This yields Pocklington’s equation

in the form

− 1

jωε

∫ L/2

−L/2

(
∂2

∂z2
+ k2

)
GA

zz(z, z
′)I(z′) dz′ = E inc

z (z) . (3.73)
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3.2.2 Hallén’s equation

Not until forty years after the publication of Pocklington’s integral equation a different

integral equation for the calculation of antenna currents was proposed by Hallén [77].

We derive this integral equation in close analogy to Pocklington’s equation and first

introduce an equivalent surface current J s on the boundary of the antenna surface. This

current is related to the scattered magnetic vector potential via

Asca(r) = µ

∫

Γ

G
A
(r, r′) J s(r

′) d2r′ . (3.74)

The boundary condition for the total magnetic vector potential A on a perfectly con-

ducting surface is en ×A = 0 or, equivalently, At = 0. With this boundary condition

and the relation

A = Ainc + Asca (3.75)

we obtain

µ

[∫

Γ

G
A
(r, r′)J s(r

′) d2r′
]
· et(r) = −Ainc

t (r) . (3.76)

Again, we may consider the special case of a thin, straight cylindrical wire which is

directed along the z-axis and find, similar to (3.72),

µ

∫ L/2

−L/2

GA
zz(z, z

′)I(z′) dz′ = −Ainc
z (z) . (3.77)

This result looks rather simple but it must be noted that, in practice, the incident

electromagnetic field usually will be given in terms of the electric field strength E inc

rather than in terms of the magnetic vector potential Ainc. In the Lorenz gauge we have

Einc(r) = −jω
k2

(
∇(∇ ·Ainc(z)) + k2Ainc(z)

)
(3.78)

and this second order partial differential equation needs to be solved in order to obtain

Ainc from E inc. In case of a z-directed thin-wire antenna (3.78) simplifies to

E inc
z (z) = −jω

k2

(
∂2

∂z2
+ k2

)
Ainc

z (z) . (3.79)

This ordinary differential equation has well-known solutions that are given by sum of a

general solution of the homogeneous problem and a special solution of the inhomogeneous

problem. It follows

−Ainc
z (z) = C1e

jkz + C2e
−jkz +

k

2jω

∫ L/2

−L/2

sin(k|z − z′|)E inc
z (z′) dz′ , (3.80)

where C1, C2 denote two integration constants that need to be determined from the

boundary condition that the antenna current vanishes at the antenna ends. The function
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G(z) = sin(k|z|) that appears in the special solution of the inhomogeneous problem is,

up to a constant factor, a Green’s function for the differential equation (3.79). It fulfills

(∂2/∂z2 +k2)G(z) = 2kδ(z). With (3.80) we obtain from (3.77) Hallén’s equation in the

form

µ

∫ L/2

−L/2

GA
zz(z, z

′)I(z′) dz′ = C1e
jkz + C2e

−jkz +
k

2jω

∫ L/2

−L/2

sin(k|z − z′|)E inc
z (z′) dz′ .

(3.81)

Compared to Pocklington’s equation (3.73) the integral kernel of Hallén’s equation is

less singular and thus preferable for numerical evaluations. The integral kernel of Pock-

lington’s equation exhibits a spatial singularity that is proportional to 1/|r − r ′|3 while

in the case of Hallén’s equation the spatial singularity is proportional to 1/|r − r ′|.
However, to determine in Hallén’s integral equation the integration constants C1, C2 can

be cumbersome and in such cases Pocklington’s equation might be the more practical

choice.

3.2.3 Mixed-potential integral equation

The mixed-potential integral equation represents another version of an electric-field in-

tegral equation. It is often used in numerical calculations since its integral kernel is

proportional to 1/|r − r′|2, that is, the singularity of the integral kernel is weaker than

in the case of Pocklington’s equation. Additionally, the mixed-potential integral equation

does not require to determine integration constants as in the case of Hallén’s equation.

To derive the mixed-potential integral equation we consider the relation (1.147) for

the scattered electromagnetic field in the frequency domain,

Esca(r) = −∇φsca − jωAsca . (3.82)

If we replace by means of the Lorenz gauge the scalar potential φsca by the vector

potential Asca and employ (3.74) we will be led back to (3.70) and obtain nothing new.

Alternatively, we consider, besides (3.74), the source-field relation

φsca(r) = µ

∫

Γ

Gφ(r, r′) ρs(r
′) d2r′ (3.83)

with Gφ(r, r′) the scalar Green’s function of the scalar Helmholtz equation, compare

(1.169), and ρs a surface charge density. This surface charge density is related to a

surface current J s by a continuity equation which, in integral form, reads

jω

∫

Γ

ρs dA+

∫

∂Γ

J s · dA = 0 . (3.84)

If the surface Γ is simply connected Stokes theorem (A.25) can be applied to yield the

local continuity equation

jωρs(r) + (∇× J s(r)) · en = 0 (3.85)
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with en a normal vector on Γ. This is a special case of the fundamental continuity

equation (1.10). It follows that (3.82) can be rewritten in the form

Esca(r) =
1

jωε

∫

Γ

((
∇Gφ(r, r′)

)
(∇′ × J s(r

′)) · en + k2G
A
(r, r′)J s(r

′)
)
d2r′ . (3.86)

This yields the electric field integral equation

1

jωε

[∫

Γ

((
∇Gφ(r, r′)

)
(∇′ × J s(r

′)) · en + k2G
A
(r, r′)Js(r

′)
)
d2r′

]
·et(r) = −E inc

t (r) .

(3.87)

Again, we may consider the special case of a z-directed, cylindrical and straight antenna.

In this case (3.85) is not valid since the surface of a cylinder is not simply connected.

But after a thin-wire approximation we can replace (3.85) by

jωq′ +
dI

dz
= 0 , (3.88)

with q′ the electric charge per unit length and I the total electric current on the antenna,

and find in analogy to (3.87) the mixed-potential integral equation

1

jωε

∫ L/2

−L/2

[
∂Gφ(z, z′)

∂z

∂I(z′)

∂z′
+ k2GA

zz(z, z
′)I(z′)

]
dz′ = −E inc

z (z) . (3.89)

In free space Gφ(z, z′) and GA(z, z′) are the same functions and the mixed-potential

integral equation further simplifies.

3.2.4 Schelkunoff’s equation

For completeness we mention another electric field integral equation that is known as

Schelkunoff’s equation. It requires the condition

∂Gφ(z, z′)

∂z
= −∂G

φ(z, z′)

∂z′
(3.90)

which implies translational invariance of the Green’s function, Gφ(z, z′) = Gφ(|z − z′|).
This condition is fulfilled for the Green’s function of free space, compare (2.137), but it

will not be valid in general.

If (3.90) holds we may integrate by parts the first term in the integral of (3.89),
∫ L/2

−L/2

∂Gφ(z, z′)

∂z′
∂I(z′)

∂z′
dz′ = Gφ(z, z′)

∂I(z′)

∂z′

∣∣∣∣
z′=L/2

z′=−L/2

−
∫ L/2

−L/2

Gφ(z, z′)
∂2I(z′)

∂z′2
. (3.91)

Then the mixed-potential integral equation can be rewritten to yield Schelkunoff’s equa-

tion,

1

jωε

∫ L/2

−L/2

[
Gφ(z, z′)

∂2I(z′)

∂z′2
+ k2GA

zz(z, z
′)I(z′)

]
dz′

− 1

jωε
Gφ(z, z′)

∂I(z′)

∂z′

∣∣∣∣
z′=L/2

z′=−L/2

= −E inc
z (z) . (3.92)
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As in the case of Hallén’s equation the integral kernel of Schelkunoff’s equation is pro-

portional to 1/|r − r′| and, thus, advantageous for numerical evaluation.

3.2.5 General remarks on solution methods

The integral equations (3.73), (3.81), (3.89), and (3.92) are considered to be the four

standard equations for the current determination on cylindrical thin-wire antennas [176,

177, 189]. To obtain an unknown antenna current it is necessary to solve for a given

excitation one of these equations. Corresponding solution methods can be divided into

analytical and numerical methods.

(a) Analytical methods

After its publication Pocklington’s equation was mainly used to justify that the antenna

current on a linear dipole antenna can be approximated by a sinusoidal current distribu-

tion. This rather crude approximation yields satisfying results if the current distribution

is required to calculate electromagnetic far-field patterns, but it fails for the calculation

of self impedances. Hallén provided refined results for the antenna current in terms of se-

ries solutions [77]. His approach stimulated further research activities on wire antennas.

Especially King added to this subject and provided detailed results in his unparalleled

monograph [104]. In particular, King’s three-term approximation to Hallén’s equation,

which involves the three sinusoidal terms sin(k|z|), cos(kz), and cos(kz/2), made it pos-

sible to obtain satisfying, approximate results for the calculation of antenna impedances

[105]. It should be noted in this connection that the theory of linear antennas is accom-

panied by many subtleties that are rooted in the difficulties to properly model details of

antenna geometries or antenna excitations. To get an impression of the related analytic

approaches we refer, besides to the classic book of King [104], to the monographs by

Schelkunoff & Friis [192], Collin & Zucker [29], and King & Harrison [106]. It is telling

that these thorough works appeared just before Harrington introduced the method of

moments to the electromagnetic research community and the use of digital computers

became common [83]. From that time there was a significant shift from analytical to

numerical methods in antenna theory.

(b) Numerical methods

A combination of the integral equations for wire antennas with the method of moments,

as described in Sec. 2.4.1, turns out to be an effective way to calculate antenna currents.

The integral equations are defined on antenna surfaces and, thus, for their numerical

solution it is sufficient to discretize these boundaries rather than the complete volume

where the electromagnetic field is defined. Once we have calculated a numerical solution

for the antenna current the corresponding electromagnetic field is found from a Green’s

function that relates the electric current to the electromagnetic field.
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In the method of moments an unknown antenna current is approximated by a finite

linear combination of basis functions ψk with unknown coefficients αk, compare (2.266),

I ≈
N∑

k=1

αkψk . (3.93)

If this ansatz is inserted in one of the linear integral equations of the form

LI = −E (3.94)

one finds, after the introduction of weighting functions wj, the linear algebraic system

of equations (2.271),
N∑

k=1

αk〈Lψk, wj〉 = −〈E,wj〉 . (3.95)

In practice, the difficult numerical part is to evaluate the matrix components 〈Lψk, wj〉.
Once we know these components it is immediate to solve the system (3.95) by s simple

matrix inversion for the unknown expansion coefficients αk. In this way we arrive at the

following simple solution scheme:

1. Choose an integral equation for the unknown antenna current. This integral equa-

tion will contain the physical information of the antenna problem.

2. Choose appropriate basis functions ψk and weighting functions wj. The choice

should be such that the subsequent numerical evaluation of the components

〈Lψk, wj〉 can effectively be done. This step mainly requires mathematical skills

and experience.

3. Evaluate the elements 〈Lψk, wj〉 and −〈E,wj〉.

4. Solve the linear system of equations and obtain an approximate solution for the

unknown antenna current.

Early and important results that have been obtained by this method are discussed and

summarized in [142, 143, 16, 237]. More recent results and references are provided

by [177, 189]. Nowadays, the numerical analysis of wire antennas in free space can be

considered to be a standard task and a variety of free and commercial software packages

that are based on the method of moments are available. However, the analysis of wire

antennas can still be difficult if specific geometric details, like wire ends, wire junctions,

or connections to metallic surfaces, need to be properly taken into account or if the

antenna environment is characterized by complex media or complicated boundaries.
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(c) Solution methods for antenna theory in cavities

In Chapter 2 we have considered Green’s function of self-adjoint differential operators

that relate a primary source g and a field f by a simple relation of the form

f(r) =

∫

Ω

g(r′) ·G(r, r′) dΩ , (3.96)

see (2.117) and (2.124), for example. In particular, spectral and ray representations of

cavities’ Green’s function have been constructed in Sec. 2.3. These Green’s functions

naturally incorporate the boundary conditions at the cavity walls. As a consequence, it

is not necessary to explicitly take into account the interaction of primary sources g(r ′)

with the cavity walls.

Source-field relations of the form (3.96) are the basis of the integral equations of

antenna theory, compare (3.70), (3.74), and (3.83). Therefore, any configuration of

boundaries with a known Green’s function and associated source-field relations of the

form (3.96) can be considered. This generality is an obvious benefit of the Green’s

function approach.

It already has been mentioned various times that antenna theory normally is formu-

lated in free space. That is, most results of antenna theory are obtained on the basis

of integral equations that employ the Green’s function of free space. It seems logical

to build upon these results and look for the modifications that occur if we pass to the

inside of a resonating environment. It has been shown by means of the general ray rep-

resentation (2.251) that a cavities’ Green’s function contains the Green’s function of free

space as a zeroth order approximation. This suggests the possibility to split an antenna

problem within a resonating environment into an antenna problem in free space and an

additional problem that is determined from the characteristics of the resonances. This

intuitive idea is realized by a mathematical solution procedure, the so-called method of

analytical regularization.

3.2.6 Method of analytical regularization

Halléns equation, Pocklington’s equation, and the mixed-potential integral equation are

integral equations of the first kind and of the general form

0 = E(z) +

∫
k(z, z′)I(z′) dz′ , (3.97)

with k(z, z′) an integral kernel that contains the relevant Green’s function. In operator

notation we write (3.97) as

LI = −E . (3.98)

The linear operator L is an integral or integro-differential operator and contains the

Coulomb singularity. As a consequence, the first order integral equations of antenna

theory turn out to be ill-conditioned to various degrees.
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At this point the method of analytical regularization can be beneficial [162, 229,

230]. By this method an ill-conditioned first integral equation is converted to a well-

conditioned second order integral equation of the general form

I(z) = I0(z) +

∫
k̃(z, z′)I(z′) dz′ . (3.99)

The method of analytical regularization requires that the linear operator L can be split

into two parts,

L = L0 + L1 , (3.100)

where L0 contains the singularity that needs to be regularized. It is also required that

the inverse operator L−1
0 can be constructed. If this operator is applied to the equation

L0I + L1I = −E (3.101)

we obtain an integral equation of the second kind,

I = −L−1
0 E − L−1

0 L1I (3.102)

= I0 − L−1
0 L1I , (3.103)

where we defined I0 := −L−1
0 E. This second order integral equation needs to be solved

for the unknown current I. It usually is well-conditioned and accompanied by stable

solutions.

In the application of the method of analytical regularization to antenna theory in

cavities, or possibly some other resonating environment, it is reasonable to choose L0

as the “free space” operator of the problem, that is, L0 becomes the integral or integro-

differential operator which results if the Green’s function of free space is employed in

the kernel of the relevant first order integral equation. Then L0 contains the Coulomb

singularity and the methods and results of conventional antenna theory are applied to

obtain L−1
0 . The subsequent solution of the resulting second order integral equation

(3.103) takes into account the cavity properties. The kernel of this second order inte-

gral equation will involve the difference between the cavities’ Green’s function and the

Green’s function of free space and will contain no spatial singularity since the Coulomb

singularity gets subtracted. The method of analytical regularization can straightfor-

wardly be combined with the method of moments where the operators L0 and L1 turn

to finite-dimensional matrices.

3.3 Accelerating the convergence rate of series

Green’s functions

The application of Green’s functions to actual physical problems usually requires to eval-

uate these functions many times for various arguments. Unfortunately, most Green’s
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functions of physical interest are given in terms of mathematical series. These series

often slowly converge and make it impossible to calculate accurate values within a rea-

sonable time frame. It is then necessary to either find an alternative to the Green’s

function approach or transform a slowly converging series into another series with better

convergence properties. In this section we discuss the second possibility.

3.3.1 Mode, ray, and hybrid representations

There is no general mathematical recipe for the transformation of a slowly converging

series into a rapidly converging series. A series will have good convergence properties if

the characteristics of the corresponding Green’s functions are reflected by the summands

of the series. In the electromagnetic case dominant characteristics are the two types of

electromagnetic field singularities that have been identified in Sec. 1.5.2. Close to the

source region, where the distance between observation point r and source point r ′ is

electrically small, k|r−r′| � 1, the Coulomb singularity will be strong. In this case the

series Green’s function should contain a summand which incorporates the Coulomb sin-

gularity. This requirement is fulfilled by a ray representation, as discussed in Sec. 2.3.3.

Conversely, close to a resonance frequency, where the wavenumber k approaches an eigen-

value kn, the Green’s function will be dominated by a resonance. Then the series Green’s

function should contain a summand which incorporates this resonance such that in this

case a spectral mode representation of the Green’s function will be suitable, compare

Sec. 2.3.1.

Modes Rays

oscillations yield global information scattering processes yield local information

of a system of a system

characterize late response in time-domain characterize early response in time-domain

advantageous for low-frequency regime advantageous for high- frequency regime

where the mode-density is low where the mode-density is high

and a small number of modes and rays of geometrical optics

characterizes the field characterize the field

advantageous to model advantageous to model

resonances Coulomb singularities

Table 3.1: Complementary properties of modes and rays. A more detailed discussion is

provided by Felsen [47].
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These simple arguments indicate that representations of electromagnetic series

Green’s functions which incorporate both spectral and ray properties will have advan-

tageous convergence properties both at resonance and close to the source region. Such

representations are known as hybrid representations. The first systematic investigation

of hybrid representations is mainly due to Felsen [46, 47]. He pointed out that modes

and rays are related to each other by infinite Poisson transformations and this explains

their complementary properties which, from a physical point of view, reflect the com-

plementarity of resonances and the Coulomb singularity. Mode properties are compared

to ray properties in Tab. 3.1.

In one dimension an infinite Poisson transformation is expressed by the infinite Pois-

son sum formula [32, Chap. 2, §5]

∞∑

n=−∞

f(2nπ + t) =
1

2π

∞∑

ν=−∞

ejνt

∫ ∞

−∞

f(τ)e−jντ dτ . (3.104)

For t = 0 this formula reduces to
∞∑

n=−∞

f(2nπ) =
1

2π

∞∑

ν=−∞

∫ ∞

−∞

f(τ)e−jντ dτ (3.105)

and a three-dimensional version of this result is
∞∑

m,n,p=−∞

f(2mπ, 2nπ, 2pπ) = (3.106)

1

(2π)3

∞∑

m,n,p=−∞

∫∫∫ ∞

−∞

f(τ1, τ2, τ3)e
−j(mτ1+nτ2+pτ3) dτ1 dτ2 dτ3 .

The following example shows the transformation between modes and rays within a rect-

angular cavity.

Example: We consider the dyadic Green’s function G
A

of a rectangular cavity, compare

(2.171). This Green’s function is diagonal and the three components GA
xx, G

A
yy, and GA

zz

are related to each other by cyclic exchange of x, y, and z. The explicit form of the GA
zz

component, for example, is given by

GA
zz(r, r

′) = (3.107)

∞∑

m=1

∞∑

n=1

∞∑

p=0

ε0p

lxlylz

sin(mπx
lx

) sin(mπx′

lx
) sin(nπy

ly
) sin(nπy′

ly
) cos(pπz

lz
) cos(pπz′

lz
)

(mπ
lx

)2 + (nπ
ly

)2 + (pπ
lz

)2 − k2

=
1

8

∞∑

m=−∞

∞∑

n=−∞

∞∑

p=−∞

ε0p

lxlylz

sin(mπx
lx

) sin(mπx′

lx
) sin(nπy

ly
) sin(nπy′

ly
) cos(pπz

lz
) cos(pπz′

lz
)

(mπ
lx

)2 + (nπ
ly

)2 + (pπ
lz

)2 − k2
.

The trigonometric functions of each summand of the last expression can be recombined

to yield eight exponential terms. In this exponential form the mode representation
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(3.107) of GA
zz(r, r

′) is transformed by means of the three-dimensional infinite Poisson

summation formula (3.106). The resulting integrals on the right hand side of (3.106)

have closed form solutions and yield the transformed result [239, 240]

GA
zz(r, r

′) =

∞∑

m,n,p=−∞

7∑

i=0

Azz
i G0

(
Ri,mnp(r, r

′)
)
, (3.108)

with Ri,mnp(r, r
′) and Azz

i as defined in (2.258) and (2.264), respectively. Therefore,

we obtain the ray representation (2.256) as the infinite Poisson transform of the mode

representation (3.107). Additionally, it is recognized that single rays are represented by

integrals of the form
∫∫∫∞

−∞
f(τ1, τ2, τ3)e

−j(mτ1+nτ2+pτ3) dτ1 dτ2 dτ3 and it follows that rays

and modes are essentially each others Fourier transform.

The infinite Poisson transformation mediates between mode and ray representation

but does not yield a hybrid representation which contains, by definition, both a mode and

a ray part. To obtain a hybrid representation for the Green’s function of a rectangular

cavity it is possible to consider a finite Poisson transformation which is a generalization

of (3.106) and given by [33, 240]

M∑

m=m0

N∑

n=n0

P∑

p=p0

f(2mπ, 2nπ, 2pπ) = (3.109)

∞∑

m,n,p=−∞

∫ M+ 1
2

m0−
1
2

∫ N+ 1
2

n0−
1
2

∫ P+ 1
2

p0−
1
2

f(τ1, τ2, τ3)e
−2πj(mτ1+nτ2+pτ3) dτ1 dτ2 dτ3 .

This formula allows to transform only a subset of modes into a ray contribution. Wu &

Chang calculated in this way a hybrid representation for the Green’s function GA
zz(r, r

′)

of a rectangular cavity [239, 240]. They noticed during the calculation that the inte-

grations of (3.109) cannot be done in closed form and obtained as a result a hybrid

representation as an approximate sum of a mode part, a ray part, and a correction term.

This mathematical feature is in accordance to the observation of Felsen [47] that pure

mode and ray contributions are inseparably entangled and cannot be split into two dis-

junct sets. The convergence properties of the hybrid representation of Wu & Chang have

been compared to those of the standard mode and ray representations and the expected

advantageous convergence properties close to the source region and close at resonance

could be confirmed [68]. However, we will later make use of a different hybrid repre-

sentation which is based on the so-called Ewald transformation and will be introduced

below.

Having mentioned the Ewald transformation it is already indicated that besides the

infinite and finite Poisson transformation there are other transformations and methods

that have been found useful to improve the convergence of series Green’s functions.

A variety of results for the series Green’s functions of the two-dimensional Helmholtz

equation in periodic domains includes the application of the so-called Kummer’s trans-

formation, Veysoglu’s transformation, Shanks’ transformation, or Melnikov’s method



140 Antenna Theory in Resonating Systems

[130, 38, 138, 99, 204]. These results can be applied to the solution of two-dimensional

problems which involve the analysis of antenna arrays [118], electromagnetic coupling

on printed circuit boards [224], the description of cavity backed antennas [202], and

electromagnetic fields in layered media [22], for example.

Obviously, series Green’s functions of the three-dimensional Helmholtz equation are

more involved than their two-dimensional counterparts. A direct evaluation of the triple

sum in (3.107), for example, is not practical. But in this and similar cases it is possible

to perform one of the required summations in analytic form. To simplify (3.107), for

example, we first apply the trigonometric identity

cos(α) cos(β) =
1

2

(
cos(α− β) + cos(α + β)

)
(3.110)

to each summand and then use the formula
∞∑

p=0

cos(px)

p2 − a2
= − π

2a

cos(x− π)a

sin(πa)
(3.111)

which is valid for 0 ≤ x ≤ 2π. After some algebra this reduces the triple sum represen-

tation (3.107) to the double sum representation

GA
zz(r, r

′) =

(3.112)

4

lxly

∞∑

m,n=1

sin(mπ
lx
x) sin(mπ

lx
x′) sin(nπ

ly
y) sin(nπ

ly
y′)

γ sinh(γlz)
·
{

cosh(γ(lz − z)) cosh(γz′) , z ≥ z′

cosh(γ(lz − z′)) cosh(γz) , z < z′
,

where we defined γ :=
√

(mπ
lx

)2 + (nπ
ly

)2 − k2. In this expression the hyperbolic terms

lead, in general, to satisfying convergence properties. However, since the double sum

representation basically is a mode representation convergence properties deteriorate for

r → r′, i.e., if the Coulomb singularity is approached. Moreover, the representation

(3.112) diverges for z → z′ even if r and r′ are not close to each other.

As an alternative, representations of the three-dimensional periodic Green’s function

that are based on the Ewald transformation have been proven to be advantageous. This

transformation was introduced by Ewald [44, 45] to theoretical solid state physics in the

beginning of the 20th century. Decades later, the benefit of the Ewald transformation for

the numerical evaluation of the Green’s function for the Helmholtz operator on periodic

structures was pointed out by Jordan et al. [98], see also Cohen [27]. This led to an

Ewald representation for the electromagnetic Green’s function of a perfectly conducting

cavity where the wavenumber k is assumed to be real [167, 137]. A generalization of this

result to lossy cavities which are characterized by complex wavenumbers is given in [69].

As shown in Appendix C, the component GA
zz of the dyadic cavity’s Green’s function

G
A

can be split in two parts,

GA
zz(r, r

′) = GA
zz1(r, r

′)︸ ︷︷ ︸
“mode part”

+GA
zz2(r, r

′)︸ ︷︷ ︸
“ray part”

, (3.113)
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with

GA
zz1(r, r

′) =
1

8lxlylz

∞∑

m,n,p=−∞

7∑

i=0

Azz
i

e−
k2
mnp−k2

4E2

k2
mnp − k2

ej(kxXi+kyYi+kzZi) , (3.114)

and

GA
zz2(r, r

′) =
1

8π

∞∑

m,n,p=−∞

7∑

i=0

Azz
i

[ejkRi,mnperfc(Ri,mnpE + jk/2E)

Ri,mnp

+
e−jkRi,mnperfc(Ri,mnpE − jk/2E)

Ri,mnp

]
, (3.115)

where Azz
i is defined as in (2.264) and erfc(z) denotes the complex complementary error

function. Analogous expressions are valid for the components GA
xx and GA

yy. The param-

eter E is adjustable and balances the contributions of both the mode part and the ray

part. Increasing values of E make the mode part contribute more to (3.113) and decrease

the influence of the ray part while decreasing values of E make the ray part contribute

more to (3.113) and increase the influence of the mode part. From a numerical point of

view it is best to choose E such that the decay of both series is balanced [98, 110]. Some

care must be taken since the first terms of (3.114) and (3.115) can become much larger

than the actual value of the Green’s function. These large terms cancel each other but

due to the limited numerical accuracy of a computer this cancellation is susceptible to

rounding errors. It should also be noted that the calculation of the complex complemen-

tary error function erfc(z) is nontrivial. The various algorithms that lead to an efficient

evaluation are still subject to research in numerical mathematics [170, 195, 234].

3.3.2 Numerical examples

For illustrational purposes we calculate in this section the electromagnetic Green’s func-

tion of a lossy rectangular cavity by means of the mode representation (3.112), the

ray representation (2.254)–(2.256), and the Ewald representation (3.113). We take as

an example a cubic cavity with edges lx = ly = lz = L and place a unit source at

r′ = (0.25L, 0.25L, 025L), compare Fig. 3.7

As observation points we choose close to the source the point r =

(0.26L, 0.26L, 0.26L) and, for comparison, distant from the source the point r =

(0.7L, 0.7L, 0.7L). We also choose two wavenumbers. The first one, k = 9.42/L,

is near to the resonances k122 = k212 = k221 = 3π/L ≈ 9.42477796/L, the second

one, k = 8.50/L, is inbetween the resonances above and its neighboring resonances

k112 = k121 = k211 =
√

6π/L, i.e., this value is not near a resonance. Combining both

the two observation points and the two wavenumbers yields four different combinations.

For a fixed quality factor Q = 1000 we first calculate for these combinations the four

complex values of GA
zz(r, r

′, k) by means of the mode representation (3.112) and the
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y

z

x

L

L

L

r’

Figure 3.7: Sample cavity of dimensions lx = ly = lz = L.

Ewald representation (3.113). It is known, and subsequently will be confirmed, that in

case of high quality factors the convergence of the ray representation (2.254)–(2.256) is

very poor .

We plot the relative error versus the number of terms that are included in the calcu-

lation. To number the terms in a systematic way all terms are first calculated and then

ordered by their absolute value in descending order, that is, the term N = 1 corresponds

to the term which has the largest absolute value. Reference values are calculated by the

mode representation (3.112) and the Ewald representation (3.113), including a sufficient

number of terms. Within the plots the calculated relative errors vary by about 15 orders

and do not tend to zero due to numerical inaccuracies.

(a) Convergence distant to source region and off resonance

For the combination r = (0.7L, 0.7L, 0.7L), r′ = (0.25L, 0.25L, 025L) and k = 8.50/L

the resulting relative errors of the real and imaginary part of GA
zz(r, r

′, k) are shown in

Fig. 3.8. From a numerical and physical point of view this combination is not problem-

atic. In this case the two-dimensional mode representation performs considerably better

than the Ewald representation.

(b) Convergence distant to source region and close to resonance

Next we consider the combination r = (0.7L, 0.7L, 0.7L), r′ = (0.25L, 0.25L, 025L),

and k = 9.42/L. The relative errors of the real and imaginary part of GA
zz(r, r

′, k) are

shown in Fig. 3.9. Since both the two-dimensional mode representation and the Ewald

representation are suitable to model resonances the convergence properties even slightly

improve if compared to Fig. 3.8.
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Figure 3.8: Convergence properties of GA
zz(r, r

′, k) for r = (0.7L, 0.7L, 0.7L), r′ =

(0.25L, 0.25L, 025L), k = 8.50/L and Q = 1000. The real part is plotted to the left, the

imaginary part to the right.
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Figure 3.9: Convergence properties of GA
zz(r, r

′, k) for r = (0.7L, 0.7L, 0.7L), r′ =

(0.25L, 0.25L, 025L), k = 9.42/L, and Q = 1000.

(c) Convergence close to source region and off resonance

We consider the combination r = (0.26L, 0.26L, 0.26L), r′ = (0.25L, 0.25L, 025L), and

k = 9.42/L. The resulting relative errors of the real and imaginary part of GA
zz(r, r

′, k)

are shown in Fig. 3.10. In this case the observation point is close to the source point and

it is seen that the convergence properties of the two-dimensional mode representation

become worse. The convergence properties of the Ewald representation are practically

unaffected.
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Figure 3.10: Convergence properties of GA
zz(r, r

′, k) for r = (0.26L, 0.26L, 0.26L), r′ =

(0.25L, 0.25L, 025L), k = 8.50/L, and Q = 1000.
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Figure 3.11: Convergence properties of GA
zz(r, r

′, kc) for r = (0.26L, 0.26L, 0.26L), r′ =

(0.25L, 0.25L, 025L), k = 9.42/L, and Q = 1000.

(d) Convergence close to source region and close resonance

We take the fourth combination r = (0.26L, 0.26L, 0.26L), r′ = (0.25L, 0.25L, 025L),

and k = 9.42/L. The resulting relative errors of the real and imaginary part of

GA
zz(r, r

′, k) are shown in Fig. 3.11. Similar to the previous case the convergence of

the two-dimensional mode representation becomes worse while the Ewald representation

still allows to calculate highly accurate values.

(e) Convergence if the source region is approached

To more clearly exhibit the influence of the source singularity we plot in Fig. 3.12 and

Fig. 3.13 the convergence of the two-dimensional mode representation and the Ewald

representation, respectively, for decreasing distances |r − r′| where the position of r′
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Figure 3.12: Convergence properties of the double sum representation for GA
zz(r, r

′, kc)

with r → r′, k = 8.5/L, and Q = 1000. The parameter d := |r− r′| assumes the values

0.43L, 3.46 · 10−2L, and 1.73 · 10−3L.
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Figure 3.13: Convergence properties of the Ewald representation for GA
zz(r, r

′, kc) with

r → r′, k = 8.5/L, and Q = 1000. The parameter d := |r − r′| assumes the values

0.43L, 3.46 · 10−2L, and 1.73 · 10−3L.

is kept and r approaches r′ along the diagonal that is indicated in Fig. 3.7. For the

mode representation the decreasing convergence for smaller distances between source and

observation point is evident, while the Ewald representation appears to be insensitive

towards variation of this distance.

(f) Convergence if the two-dimensional singularity of the two-dimensional

mode representation is approached

It has been mentioned that the two-dimensional mode representation contains a singu-

larity for z → z′. That is, even if r and r′ are not close to each other the two-dimensional
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mode representation will no longer converge if z approaches z ′. This is exemplified in

Fig. 3.14. For the same situation the Ewald representation still has good convergence

properties, as can be seen from Fig. 3.15.
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Figure 3.14: Convergence properties of the double sum representation for GA
zz(r, r

′, kc)

with z → z′, k = 8.5/L, and Q = 1000. Fixed coordinates are x′ = y′ = z′ = 0.25L and

x = y = 0.7L. The distance dz := z − z′ assumes the values 0.43L, 3.46 · 10−2L, and

1.73 · 10−3L.
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Figure 3.15: Convergence properties of the Ewald representation for GA
zz(r, r

′, kc) with

z → z′, k = 8.5/L, and Q = 1000. Fixed coordinates are x′ = y′ = z′ = 0.25L and

x = y = 0.7L. The distance dz := z − z′ assumes the values 0.43L, 3.46 · 10−2L, and

1.73 · 10−3L.

(g) Dependency of the quality factor on the convergence

Finally, we illustrate in Fig. 3.16 and 3.17 the dependency of the quality factor on the

accuracy of all three different representations. We take a fixed number of terms for each
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Figure 3.16: Convergence properties of GA
zz(r, r

′, kc) for r = (0.7L, 0.7L, 0.7L), r′ =

(0.25L, 0.25L, 025L), k = 8.50/L for varying Q. For each representation the number of

terms is fixed. Ewald representation: 11664 terms; ray representation: 103823 terms;

two-dimensional mode representation: 57600 terms
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Figure 3.17: Convergence properties of GA
zz(r, r

′, kc) for r = (0.26L, 0.26L, 0.26L), r′ =

(0.25L, 0.25L, 025L), k = 9.42/L for varying Q. For each representation the number of

terms is fixed. Ewald representation: 11664 terms; ray representation: 103823 terms;

two-dimensional mode representation: 57600 terms

representation which are chosen such that the calculation time for a specific value of

GA
zz is about the same order for all three representations. Since a single term of the

ray sum is calculated faster than single terms of the other representations we include in

the ray sum the highest number of terms. Accordingly, the lowest number of terms is

included in the Ewald representation since the required calculation of the complementary

error function for each single term is comparatively time consuming. As a result, it is

recognized that the convergence of the mode representation and the Ewald representation

does not significantly depend on the quality factor. The ray representation converges to

a satisfactory degree only in case of low quality factors.
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3.3.3 Approximation and interpolation of series Green’s func-

tion

The use of hybrid representations for series Green’s functions eliminates major conver-

gence problems that commonly are encountered if Green’s functions are evaluated close

to the source region or close to a resonance. But in spite of this major advantage it still is

necessary to sum up hundreds or thousands of series terms to calculate a single accurate

value of a series Green’s function. This is not very satisfying. To improve this situation

it suggests itself to approximate or interpolate a series Green’s function by polynomial

functions.

The approximation of a function is its representation by an element of a finite di-

mensional function space that is expressed as a linear combination of suitable basis

functions. We already have discussed such finite dimensional expansions in an appropri-

ate functional analytic setting in Sec. 2.1.1 (f). Efficient approximations can be achieved

by means of orthonormal polynomials [23]. Historically, the approximation of solutions

of boundary value problems by means of orthonormal polynomials has been of great

importance5. However, these approximation techniques have their limitations. If fine

discretization are required we usually need a large number of polynomials to model a

given function. This involves polynomials of high order which are characterized by strong

oscillations and, in general, are not suitable for efficient approximations. The resulting

convergence problems are analogous to those discussed in Sec. 3.3.1.

Similar to approximation schemes are interpolation schemes6. An interpolation

scheme requires the calculation of a finite number of function values at discrete nodes

that form a grid. In order to find function values between neighboring nodes the func-

tion is interpolated between these nodes by a piecewise polynomial of low order. There-

fore, an interpolation scheme approximates a given function by a number of piecewise

polynomials which are defined inbetween discrete nodes rather than over a whole grid.

The interpolation by piecewise polynomials leads to the concept of spline interpolation

[196, 79]. In practice, the most important splines are piecewise polynomials of zeroth

order (step functions), first order (linear splines), or third order (cubic splines).

The implementation of an approximation or interpolation scheme requires to consider

the following nontrivial issues:

• Usually, we consider a fixed frequency and need to evaluate a Green’s function for

various source and observation points r′ and r, respectively. Each point depends on

5The possible polynomial solutions of the general second order Sturm-Liouville differential equation

play a major role in mathematical physics and encompass a variety of canonical solutions in electro-

magnetic theory. They are given by the Jacobi, Gegenbauer, Tschebycheff, Legendre, Laguerre, and

Hermite polynomials [17, § 5.10].
6Formally, the distinction between approximation and interpolation schemes is not clearly cut since

both types constitute finite expansions of the form (2.4). In the applied mathematical literature it is

nevertheless common to introduce both notions separately [79].
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three spatial coordinates such that the Green’s function depends on six variables.

It follows that a polynomial approximation to the Green’s function involves six-

dimensional polynomials of the form P (r, r′) : R6 → C. This is not a problem in

principle, but it is desirable to reduce the number of variables, e.g., by symmetry

considerations.

• An electromagnetic Green’s function contains the Coulomb singularity and this

singularity is not suitable to be modeled by polynomials. Hence, it is necessary to

subtract terms that characterize the Coulomb singularity before an approximation

or interpolation is done. The subtracted terms can later be added to the fitted

polynomial in order to yield the complete Green’s function.

The possibility to reduce the number of variables that enter the Green’s function

and the explicit subtraction of singular terms depend on the specific Green’s function.

A general scheme for the efficient evaluation of Green’s functions that contain both the

Coulomb singularity and resonances is proposed in Fig. 3.18.

In the following we will specialize the scheme of Fig. 3.18 to the Green’s function

G
A
(r, r′) of a rectangular cavity. According to (2.171) this dyadic Green’s function is

diagonal and consists of the three nonvanishing components GA
xx(r, r

′), GA
yy(r, r

′), and

GA
zz(r, r

′). We will focus on the component GA
zz(r, r

′), the remaining components can

be treated in the same way.

(a) Reduction from six to three variables

Let us consider the ray representation (2.256) of GA
zz(r, r

′) which can be rewritten ac-

cording to

GA
zz(r, r

′) =
1

4π

∞∑

m,n,p=−∞

7∑

i=0

Azz
i

e−jkRi,mnp(r,r′)

Ri,mnp(r, r′)
(3.116)

= G(|x− x′|, |y − y′|, |z − z′|) +G(|x− x′|, |y − y′|, z + z′)

−G(|x− x′|, y + y′, |z − z′|)−G(|x− x′|, y + y′, z + z′)

−G(x+ x′, |y − y′|, |z − z′|)−G(x+ x′, |y − y′|, z + z′)

+G(x+ x′, y + y′, |z − z′|) +G(x + x′, y + y′, z + z′) (3.117)

with

G(u, v, w) :=
1

4π

∞∑

m,n,p=−∞

e−jkRmnp(u,v,w)

Rmnp(u, v, w)
(3.118)

and

Rmnp :=
√

(u− 2mlx)2 + (v − 2nly)2 + (w − 2plz)2 . (3.119)
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G(r,r’) in canonical form
(e.g. mode representation)

G(r,r’) in computationally
efficient form

(e.g. hybrid representation)

G(r,r’) as entirely smooth function
(no Coulomb singularity)

~

Approximation or interpolation
of G(r,r’)~

Explicit values of G(r,r’)

sample values approximation or interpolation

reductionmathematical analysis

simple numerical evaluation

Figure 3.18: Proposed scheme for the efficient evaluation of a cavities Green’s function

G(r, r′).

The mapping G(u, v, w) : R3 → C depends on three variables rather than on six vari-

ables. Accordingly, it is advantageous to approximate or interpolate G(u, v, w) and

calculate GA
zz(r, r

′) from (3.117). For the calculation of sample values of G(u, v, w) the

following Ewald representation, which follows from (3.113), can be used,

G(u, v, w) = G1(u, v, w)︸ ︷︷ ︸
“mode part”

+G2(u, v, w)︸ ︷︷ ︸
“ray part”

, (3.120)

G1(u, v, w) =
1

8lxlylz

∞∑

m,n,p=−∞

e−
k2
mnp−k2

4E2

k2
mnp − k2

ej(kxu+kyv+kzw) , (3.121)

G2(u, v, w) =
1

8π

∞∑

m,n,p=−∞

[ejkRi,mnperfc(RmnpE + jk/2E)

Rmnp

+
e−jkRi,mnperfc(RmnpE − jk/2E)

Rmnp

]
. (3.122)
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(b) Subtraction of Coulomb singularities and discontinuous derivatives

As is evident from (3.118) the function G(u, v, w) encounters a Coulomb singularity

whenever Rmnp = 0. This condition is fulfilled if and only if

u = 2mlx , v = 2nly , w = 2plz . (3.123)

Since r, r′ are located inside the rectangular cavity it follows from (3.117) that the

variables u,v, and w are defined in the range 0 ≤ u ≤ 2lx, 0 ≤ v ≤ 2ly, and 0 ≤ w ≤ 2lz.

Therefore, the condition (3.123) can be met if and only if m,n, p ∈ {0, 1}. It follows that

in the summation (3.118) there are eight terms which contain a Coulomb singularity.

Any of these singular terms is of the form e−jkRmnp/Rmnp where Rmnp may approach

zero. A Taylor expansion yields

e−jkRmnp

Rmnp

=
1

Rmnp

− jk − k2Rmnp

2
+
jk3R2

mnp

6
+ . . . (3.124)

If the first term 1/Rmnp is subtracted we obtain a function which is continuous at

Rmnp = 0. Due to the third term −k2Rmnp/2 the first derivative of this function is

not continuous [12]. To achieve a better approximation by polynomial functions we also

subtract this term. As a result, it is suggested to approximate the function

G̃(u, v, w) = G(u, v, w)− 1

4π

1∑

m,n,p=0

(
1

Rmnp
− k2Rmnp

2

)
(3.125)

rather than G(u, v, w). From the approximated function G̃(u, v, w) it is easy to calculate

G(u, v, w) by adding the eight terms that are subtracted in (3.125). Finally, the Green’s

function GA
zz(r, r

′) is obtained from G(u, v, w) via (3.117).

3.4 Explicit calculation of current distributions and

antenna impedances

In this section we finally turn to the explicit solution of antenna problems. For a given

electromagnetic excitation the solution of an antenna problem consists of the calculation

of the electric current on one or several antennas. Once the antenna current is known the

electromagnetic field can be calculated via the Green’s function and integration. Other

quantities of physical interest follow from the knowledge of the electric current and the

electromagnetic field.

As described in Sec. 3.2, the mathematical equations that need to be solved are

integral equations that have been obtained from the formulation of a general antenna

problem in terms of an electromagnetic scattering problem. If N antennas are present
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we arrive at N coupled integral equations of the form

N∑

j=1

(
L−1

D Ij
)
(ri) = −E inc

tan(ri) , i = 1, . . . , N , (3.126)

where L−1
D denotes the relevant integral or integro-differential operator, Ij is the current

on antenna j, and ri indicates a position on antenna i. These coupled integral equations

have to be solved for the unknown antenna currents Ij.

3.4.1 Choice of integral equations, basis functions, and weight-

ing functions

We focus on linear thin-wire antennas that are located within a rectangular cavity. The

choice of a rectangular cavity is natural and canonical since both linear antennas and a

rectangular cavity are adapted to a Cartesian coordinate system. Accordingly, we have

to decide which of the four standard integral equations of Sec. 3.2 are appropriate in this

case. Leaving aside for the moment the possibility of approximate, analytical solutions

and concentrating on method of moments solutions we take into account the following

points:

• The integral kernel of Pocklington’s equation is highly singular and appears to be

not very attractive for numerical evaluations. However, in spite of possible numer-

ical instabilities a solution of Pocklington’s equation by the method of moments

can straightforwardly be implemented. In this case the choice of piecewise sinu-

soidal basis functions together with delta functions as weighting functions (“point

matching”) leads to matrix elements (2.272) that have an analytic solution and it

follows that no numerical integrations are necessary.

• Among the four integral equations Hallén’s equation has the simplest kernel and

can straightforwardly be solved by the method of moments. In particular, the

choice of piecewise pulse functions as basis functions and delta functions as weight-

ing functions allows to approximately calculate the corresponding matrix elements

(2.272) in analytic form. The disadvantage of Hallén’s equation is the cumbersome

determination of integration constants. However, as long as we consider elementary

antenna configurations this determination is manageable.

• The kernel of the mixed-potential integral equation involves a spatial derivative of

the unknown antenna current. For a method of moment solution this implies that

the basis functions of the unknown current must be differentiable. This criterion

excludes the common piecewise basis functions and requires whole domain basis

functions. It follows that the calculation of the matrix elements (2.272) requires

integrations that extend over the complete antenna. In case of an antenna that is
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located in free space the Green’s function (2.136) that enters the kernel of the mixed

potential is elementary such that it is feasible to numerically perform the required

integrations. Within a cavity the Green’s function is much more complicated. In

this case numerical integration will still be possible but considerably more time-

consuming.

• Schelkunoff’s equation cannot be applied to the solution of antenna problems

within a cavity since it requires the condition (3.90) which is not met within a

cavity.

These arguments suggest to make use of Hallén’s and Pocklington’s equation. They pro-

vide the possibility to avoid numerical integration which, in our case, would involve to

numerically integrate a series Green’s function. This does not mean that such numerical

integrations are necessarily inefficient. It just seems more reasonable to first use analyt-

ical results before invoking numerical tools. Details of the method of moment solution

of Hallén’s and Pocklington’s equation are described in the following. Essentially, these

are standard procedures that are also discussed in the relevant literature [147, 174, 187].

(a) Method of moment solution of coupled Pocklington’s equation using point

matching and piecewise sinusoidal functions as basis functions

We write Pocklington’s equation in the general form (3.71)

jωµ

[∫

Γ

G
E
(r, r′)J s(r

′) d2r′
]
· et(r) = E inc

t (r) . (3.127)

For N coupled antennas the condition (3.127) must be enforced on each antenna surface

such that in this case it constitutes N coupled integral equations. More explicitly,

we denote by r(i), r(j) a position vector that points to the surface of antenna i, j,

respectively, with i, j = 1, . . . , N . Together with a thin-wire approximation this yields

jωµ

N∑

j=1

∫

antennaj

eT
t (r(i))G

E
(r(i), r(j))et(r

(j))I(r(j)) dr(j) = E inc
t (r(i)) . (3.128)

To simplify notation we assume in the following that the antennas are aligned with one

rectangular coordinate axis, say, the z-axis. The general case is obtained from linear com-

binations of this kind of specialization since the expression eT
t (r(i))G

E
(r(i), r(j))et(r

(j))

within (3.128) is a linear combination of nine terms of the form etxi
GE

xixj
etxj

where

xi ∈ {x, y, z}. With et(r
(i)) = et(r

(j)) = ez the coupled integral equations (3.128)

acquire the form

jωµ
N∑

j=1

∫

antennaj

GE
zz(r

(i), r(j))I(r(j)) dr(j) = E inc
z (r(i)) , (3.129)
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or

− 1

jωε

N∑

j=1

∫

antennaj

(
∂2

∂z2
+ k2

)
GA

zz(r
(i), r(j))I(r(j)) dr(j) = E inc

z (r(i)) . (3.130)

In order to solve this Pocklington’s integral equation system by the method of mo-

ments each current is expanded as a linear combination of basis functions, I(r(i)) =∑
k α

(i)
k Ik(r

(i)). Then we divide each antenna into 2M intervals of length h(j) =

L(j)/(2M), choose the 2M − 1 points between adjacent intervals as matching points

r
(i)
k , and further take piecewise sinusoidal functions as basis functions, Ik = Sk,

Sk(r
(j)) =





sin k(z(j)−z
(j)
k

)

sinkh(j) , if z
(j)
k−1 ≤ z(j) ≤ z

(j)
k

sin k(z
(j)
k+1−z(j))

sin kh(j) , if z
(j)
k ≤ z(j) ≤ z

(j)
k+1

0, else

k = 1, . . . 2M − 1 . (3.131)

This yields the algebraic system of equations

N∑

j=1

2M−1∑

k=1

α
(j)
k Z

(j)E
k (r

(i)
l ) = −jωεE inc

z (r
(i)
l ) , i = 1, . . . , N , l = 1, . . . , 2M − 1 (3.132)

which provides N × (2M − 1) equations for N × (2M − 1) unknowns α
(j)
k . The matrix

elements Z
(j)E
k (r

(i)
l ) turn out to be

Z
(j)E
k (r

(i)
l ) =

k

sin kh(j)

[
GA

zz(r
(i)
l , r

(j)
k+1) +GA

zz(r
(i)
l , r

(j)
k−1)− 2 cos kh(j)GA

zz(r
(i)
l , r

(j)
k )
]
.

(3.133)

Therefore, the calculation of the matrix elements Z
(j)E
k (r

(i)
l ) requires no integration. It

only involves to compute the Green’s function GA
zz(r, r

′) for various arguments.

(b) Method of moment solution of coupled Hallén’s equations using point

matching and piecewise pulse functions as basis functions

We write Hallén’s equation in the general form (3.76)

µ

[∫

Γ

G
A
(r, r′)J s(r

′) d2r′
]
· et(r) = −Ainc

t (r) . (3.134)

Again, as in the case of Pocklington’s equation, we denote by r(i), r(j) a position vector

that points to the surface of antenna i, j, respectively, with i, j = 1, . . . , N . We also

adopt a thin-wire approximation and assume that the antennas are aligned with one

rectangular coordinate axis, say, the z-axis. In analogy to (3.129) we arrive at

µ
N∑

j=1

∫

antennaj

GA
zz(r

(i), r(j))I(r(j)) dr(j) = −Ainc
z (r(i)) , (3.135)
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with I(r(i)) the N unknown antenna currents. Again, in order to apply the methods of

moments to (3.135) each current is expanded as a linear combination of basis functions,

I(r(i)) =
∑

k α
(i)
k Ik(r

(i)). Now we divide each antenna into 2M − 1 intervals of length

h(j) = L(j)/(2M − 1) with L(j) the length of antenna j, choose the midpoints of the

intervals as matching points r
(i)
k , and further take pulse functions as basis functions,

Ik = Pk, with

Pk(r
(j)) =

{
1 if z(j) ∈

[
z

(j)
k − h(j)

2
, z

(j)
k + h(j)

2

]

0 else
, k = 1, ..., 2M − 1 . (3.136)

This yields the algebraic system of equations

µ

N∑

j=1

2M−1∑

k=1

α
(j)
k Z

(j)A
k (r

(i)
l ) = −Ainc

z (r
(i)
l ) , i = 1, . . . , N , l = 1, . . . , 2M − 1 (3.137)

which provides N × (2M − 1) equations for N × (2M − 1) unknowns α
(j)
k . The matrix

elements Z
(j)A
k (r

(i)
l ) are given by

Z
(j)A
k (r

(i)
l ) =

∫ z
(j)
k

+h(j)

2

z
(j)
k

−h(j)

2

GA
zz(r

(i)
l , r

(j)) dr(j) (3.138)

≈ GA
zz(r

(i)
l , r

(j)
k )|r(i)

l − r
(j)
k |
∫ z

(j)
k

+h(j)

2

z
(j)
k

−h(j)

2

1

|r(i)
l − r(j)|

dr(j) . (3.139)

In the last line we isolated the Coulomb singularity of the Green’s function. Due to the

thin-wire approximation the distance |r(i)
l − r(j)| is bounded from below by the antenna

radius ρ. The integral of (3.139) can be calculated analytically,

∫ z
(j)
k

+h(j)

2

z
(j)
k

−h(j)

2

1

|r(i)
l − r(j)|

dr(j) =

∫ z
(j)
k

+h(j)

2

z
(j)
k

−h(j)

2

1√
ρ2 + (z

(i)
l − z(j))2

dz(j) (3.140)

= ln


z

(j)
k − z

(i)
l + h(j)

2
+
√
ρ2 + (z

(j)
k − z

(i)
l + h(j)

2
)2

z
(j)
k − z

(i)
l − h(j)

2
+
√
ρ2 + (z

(j)
k − z

(i)
l − h(j)

2
)2


 .

(3.141)

Similar to (3.133) the calculation of the matrix elements Z
(j)A
k (r

(i)
l ) requires no in-

tegration. It only involves to compute the Green’s function GA
zz(r, r

′) for various argu-

ments.
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3.4.2 Calculation of self impedances

In this subsection we calculate self impedances of dipole antennas within a rectangular

cavity. To calculate antenna impedances is not just a special aspect of antenna theory,

it rather requires the complete solution of an antenna problem which has an unknown

antenna current as solution. Such a complete solution also allows to calculate other

quantities of interest, like the electromagnetic field at some point in space, for exam-

ple. We focus on the calculation of antenna impedances since these quantities concisely

characterize properties of both antennas and their electromagnetic environment.

(a) Cavity properties

We choose a cavity of dimensions lx = 6m, ly = 7m, and lz = 3m. This cavity ge-

ometry corresponds to a mode-stirred chamber at the University of Magdeburg. The

quality factor of this chamber was experimentally measured and the result compared

to a simple but well-established model [113]. On the basis of this study we describe

ohmic losses in the cavity walls by the approximate formula Q(f) = 0.1
√
f/Hz; this

yields Q(100MHz) = 1000, for example. According to the examples of Sec. 2.3.1, cavity

resonances are characterized by three integers m, n, and p via the wavenumber

k2
mnp = k2

x + k2
y + k2

z (3.142)

=

(
mπ

lx

)2

+

(
nπ

ly

)2

+

(
pπ

lz

)2

(3.143)

with corresponding resonance frequencies

fmnp =
1

2
√
εµ

√(
m

lx

)2

+

(
n

ly

)2

+

(
p

lz

)2

. (3.144)

We assume that the cavity is filled with air. The corresponding values of the lowest

thirty resonance frequencies fmnp of the cavity are displayed in Tab. 3.2.

(b) Antenna properties

We consider perfectly conducting, cylindrical, and straight dipole antenna of wire radius

ρ = 10−3m. The antenna lengths L1 = L2 = L will be chosen as L = 1m, L = 2m,

or L = 0.2m such that the thin-wire approximation can be applied. Furthermore, we

assume that the antennas are aligned to one of the coordinate axis, say, the z-axis,

compare Fig. 3.19. In principle, arbitrary orientations can be considered as well. Due

to linearity, an antenna problem which involves arbitrary orientations can be reduced

to antenna problems with canonical antenna orientations that are in parallel to one

of the coordinate axes. Here we are mainly interested to work out the basic physical

mechanisms of antenna coupling and thus focus on canonical cases.
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mnp fmnp mnp fmnp mnp fmnp

110 32.90 MHz 201 70.66 MHz 311 92.59 MHz

120 49.58 MHz 211 73.83 MHz 231 95.50 MHz

011 54.36 MHz 310 77.95 MHz 330 98.71 MHz

210 54.36 MHz 031 81.38 MHz 041 99.16 MHz

101 55.86 MHz 230 81.38 MHz 240 99.16 MHz

111 59.82 MHz 221 82.63 MHz 321 99.73 MHz

021 65.81 MHz 131 85.13 MHz 012 102.20 MHz

220 65.81 MHz 320 86.32 MHz 410 102.20 MHz

130 68.93 MHz 140 89.22 MHz 141 102.26 MHz

121 70.39 MHz 301 90.08 MHz 102 103.00 MHz

Table 3.2: The lowest thirty resonances and their corresponding frequencies of a cavity

of dimensions lx = 6m, ly = 7m, and lz = 3m.

lx

ly

lz

z0

x

y
z

antenna 1

antenna 2

rectangular cavity

Figure 3.19: Two straight dipole antenna which are aligned to the z-axis and placed

within a rectangular cavity of dimensions lx, ly, and lz.

(c) Coupling between antennas and cavity

It follows from (3.40) or (3.55) that the electromagnetic coupling of an antenna current J

to the electromagnetic field within a cavity is determined from the coupling coefficients

αA
mnp = µ

〈J ,fA
mnp〉

k2 − k2
mnp

. (3.145)

or

αE‖
mnp =

jωµ

k2
〈J ,Lmnp〉 , αE⊥

mnp = jωµ
〈J,F mnp〉
k2 − k2

mnp

. (3.146)

Up to a constant factor, each coefficient is the projection of an antenna current onto an

eigenfunction which is weighted by 1
k2−k2

mnp
or 1

k2 . If, in particular, this projection is zero
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the antenna will not couple to the corresponding eigenmode.

Let us consider, as an example, an antenna 1 which is aligned to the z-axis, see

Fig. 3.19. The most symmetric positioning is obtained if the center of the antenna is

placed at r0 = (lx/2, ly/2, lz/2) = (3, 3.5, 1.5)m. In this case we find for the projection

of the antenna current J(r) = I(z)δ(x−x0)δ(y− y0)ez onto the eigenfunction fA
mnp the

expression

〈J ,fA
mnp〉 = 〈Jz, f

zA
mnp〉 (3.147)

=

∫ z0+L/2

z0−L/2

I(z′)f zA
mnp(x0, y0, z

′) dz′ (3.148)

=

√
ε0mε0nε0p

lxlylz

∫ z0+L/2

z0−L/2

I(z′) sin

(
mπ

lx
x0

)
sin

(
nπ

ly
y0

)
cos

(
pπ

lz
z′
)
dz′

(3.149)

=

√
ε0mε0nε0p

lxlylz
sin
(mπ

2

)
sin
(nπ

2

)∫ z0+L/2

z0−L/2

I(z′) cos

(
pπ

lz
z′
)
dz′ . (3.150)

This projection vanishes for even m and n. It also vanishes if both p is odd and the

antenna is symmetrically excited around its center. In this case cos( pπ
lz
z′) is an odd

function with respect to z0 = lz/2 and, due to the symmetry of the problem, I(z) is

an even function with respect z0 = lz/2 such that the integral of (3.150) vanishes. It

follows, for example, that for a symmetric excitation and in the frequency range 25 MHz

to 100 MHz the antenna will only couple to the modes 110 (32.9 MHz), 130 (68.9 MHz),

310 (78.0 MHz), and 330 (98.7 MHz), compare Tab. 3.2.

As a second example we consider an antenna 2 which is aligned to the z-axis with the

center of the antenna placed at r0 = (3lx/4, ly/2, lz/2) = (4.5, 3.5, 1.5)m, see Fig. 3.19.

Then we find for the projection of the antenna current J(r) = I(z)δ(x− x0)δ(y− y0)ez

onto the eigenfunction fA
mnp the expression

〈J ,fA
mnp〉 =

√
ε0mε0nε0p

lxlylz
sin

(
3mπ

4

)
sin
(nπ

2

)∫ z0+L/2

z0−L/2

I(z′) cos

(
pπ

lz
z′
)
dz′ . (3.151)

This projection vanishes for m an integer multiple of 4 and n even. It also vanishes if

both p is odd and the antenna is symmetrically excited around its center. It follows for a

symmetric excitation and in the frequency range 25 MHz to 100 MHz that the antenna

will couple to the modes 110 (32.9 MHz), 210 (54.4 MHz), 130 (68.9 MHz), 310 (78.0

MHz), 230 (81.4 MHz), and 330 (98.7 MHz), compare Tab. 3.2.

(d) Self impedances from method of moment solutions of Pocklington’s and

Hallén’s equation

We now calculate the self impedance of antenna 1 and antenna 2, respectively. To this

end we choose the antenna lengths as L = 1m and proceed along the lines of Sec. 3.4.1
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to numerically solve both Pocklington’s and Hallén’s equation within the rectangular

cavity. The antennas will be excited by a delta-gap generator which is placed at the

center of each antenna. Mathematically, a delta-gap generator is modeled by an incident

electromagnetic field of the form

Einc
t (z) = V0δ(z − z0) (3.152)

where z0 indicates the position of the delta-gap generator. It has been shown by Rynne

that the model of a delta-gap generator leads to Pocklington’s and Hallén’s equations

that mathematically are well-posed [186]. From a physical point of view a distribu-

tional incident field represents a drastic idealization, though. In a numerical scheme

the delta peak can be approximated by a pulse function Pkz0(z) where kz0 labels the

interval of length h where the delta peak is located, compare (3.136). We then have the

approximation

δ(z − z0) ≈
Pkz0(z)

h
. (3.153)

With a fixed excitation of the form (3.152) the solution of Pocklington’s and Hallén’s

equation is reduced to the calculation of the dyadic Green’s function component GA
zz,

see (3.133) and (3.139). To calculate the various values of this component we use the

interpolation scheme of Sec. 3.3.3. As interpolating functions we take cubic splines. The

required sample values are obtained from the Ewald representation (3.120).

For the calculation we have to fix the parameter M which determines the fineness

of the discretization. We first choose M = 60, i.e., for the solution of Pocklington’s

equation the antenna is divided into 2M = 120 intervals and for the solution of Hallén’s

equation the antenna is divided into 2M − 1 = 119 intervals. This yields approximate

solutions for the unknown antenna current. Then the exciting voltage V0, which can

be taken as 1V, is divided by the value of the antenna current at the antenna center

to yield the self impedance. The results for the real and imaginary parts of the self

impedances Zself of the single antennas 1 and 2 are shown in Figs. 3.20, 3.21, 3.22, and

3.23, respectively.
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Figure 3.20: Real part of the self impedance of antenna 1. The characteristics of a

resonance curve are recognized whenever the antenna couples to a cavity mode.
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Figure 3.21: Real part of the self impedance of antenna 2. Similar to Fig. 3.20 we

recognize resonance peaks whenever antenna 2 couples to a cavity mode. Compared to

antenna 1 there are additional couplings to the modes 210 and 230.
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Figure 3.22: Imaginary part of the self impedance of antenna 1. Again, the characteristics

of a resonance curve are recognized whenever the antenna couples to a cavity resonance.
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Figure 3.23: Imaginary part of the self impedance of antenna 2. It is analogous to that

of antenna 1 in Fig. 3.22 except that antenna 2 couples to the additional modes 210 and

230.
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The real part of the self impedances is characterized by sharp resonance peaks that

occur if and only if the antenna couples to a cavity resonance. This follows from the

discussion of Sec. 3.1.4: If we consider the expansion (3.46) of the self impedance we

find, in our example, for the nominator of each summand

〈J ,fA
mnp〉〈J ,∇(∇ · fA

mnp) + k2fA
mnp〉 = 〈Jz, f

zA
mnp〉〈Jz,

∂2f zA
mnp

∂z2
+ k2f zA

mnp〉 (3.154)

= (k2 − k2
z)〈Jz, f

zA
mnp〉2 (3.155)

Then the expression (3.46) for the self-impedance reduces to

Zself =
jωµ(k2

z − k2)

I2k2

∑

n

〈Jz, f
zA
mnp〉2

k2 − k2
mnp

, (3.156)

that is, we obtain pole contributions for k → kmnp as long as 〈J ,fA
mnp〉 = 〈Jz, f

zA
mnp〉 is

nonvanishing. The shapes of the resonance peaks are recognized as the real part of a

resonance curve, see Fig. 3.6. The small bandwidth of the resonance peaks of Figs. 3.20

and 3.21 is due to the comparatively high quality factor of the cavity. It is also seen that

the solutions of Pocklington’s and Hallén’s equation agree well.

Also the imaginary part of the self impedances exhibits sharp resonance peaks that

are of the same shape than the imaginary part of the resonance curve in Fig. 3.6. Inbe-

tween two separate resonances the value of the self impedance approaches that of free

space. It is seen that the solutions of Pocklington’s and Hallén’s equation exhibit the

same qualitative behavior, however, the values of the two solutions do not agree well.

This disagreement is not a consequence of cavity effects. It also occurs in free space and

is rooted in the strong singularity of the kernel of Pocklington’s equation which requires

a comparatively fine discretization in order to correctly quantify the Coulomb interaction

within the method of moments. This is a known feature, see [42], for example, which

is exemplified by Fig. 3.24 where the imaginary part of the input impedance of antenna

1 and antenna 2 in free space is plotted, as obtained by the solution of Hallén’s equa-

tion and Pocklington’s equation for various values of the parameter M . It is recognized

that for finer discretizations the solution of Pocklington’s equation approaches that of

Hallén’s equation.

This situation is somehow unfortunate: In the application of Pocklington’s equation

an accurate modeling of the Coulomb singularity requires a fine discretization and, in

turn, to calculate within the method of moments an impedance matrix with a large

number of entries. However, due to the resonance effects within the cavity the calculation

of the matrix elements is time consuming and it is desirable to keep the impedance matrix

as small as possible. As a consequence, it is desirable to separate in the calculation

Coulomb singularity and resonance effects. This is exactly what the method of analytical

regularization can achieve which has been introduced in Sec. 3.2.6.
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Figure 3.24: Imaginary part of the input impedance of the identical antennas 1 and 2

in free space. For finer discretizations the solution of Pocklington’s equation approaches

that of Hallén’s equation.

(e) Regularization of Pocklington’s equation

The discretization of Pocklington’s equation leads to a system of algebraic equations

that is of the form (3.132). Symbolically, we write this system of equations as

[ZE][I] = −[E] (3.157)

with [ZE] the known impedance matrix, [I] the unknown sample values of the antenna

current, and [E] the known sample values of the electromagnetic excitation. This is

the discrete analogue of an operator equation of the form (3.98) which is the starting

point for the method of regularization. The impedance matrix [ZE] can be split into

a free space part [ZE
0 ] which is calculated from the Green’s function of free space and

a remainder [ZE
1 ] which is calculated from the difference between the cavities Green’s

function and the Green’s function of free space,

[ZE] = [ZE
0 ] + [ZE

1 ] . (3.158)

The free space solution [I0] is simply obtained by the inversion of [ZE
0 ],

[I0] = −[ZE
0 ]−1[E] . (3.159)

Similar to (3.103) it follows that the unknown antenna current [I] is determined from

the algebraic equation

[I] = [I0]− [ZE
0 ]−1[ZE

1 ][I] (3.160)
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with solution

[I] =
(
[1] + [ZE

0 ]−1[ZE
1 ]
)−1

[I0] . (3.161)

Here we introduced the unit matrix [1].

The benefit of this procedure is obvious: The singularity of the Coulomb interaction

is accounted for in the free space solution (3.159). The time to compute [ZE
0 ] is negligible

if compared to the time to compute [ZE
1 ]. Therefore, it poses no problems to obtain [I0]

for a fine discretization. Then the unknown antenna current [I] can be calculated from

(3.161) with a more coarse discretization.

As an example we repeat the calculation of the self impedance of antenna 1 that led

to Fig. 3.22 but now regularize Pocklington’s equation as outlined above. To obtain the

free space solution I0 from (3.159) we choose a fine discretization with M = 160 and to

subsequently calculate I via (3.161) we reduce the fineness to M = 40. The result is

displayed in Fig. 3.25 and compared to the solution of Hallén’s equation. It is obvious

that the agreement between the different solution procedures is much better now.
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Figure 3.25: Imaginary part of the self impedance of antenna 1. The curve that shows the

solution of Hallén’s equation is the same as in Fig. 3.22. Now the solution of Pocklington’s

equation agrees much better since the method of analytical regularization was used.

In this connection it is worth mentioning that a criterion for the stability of a method

of moments calculation is provided by the so-called condition number cond([Z]) of the

impedance matrix [Z] [79, 90]. The condition number can be introduced via the infinity
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[ZA] [ZE] [ZE
0 ] [1] + [ZE

0 ]−1[ZE
1 ]

(M=60) (M=60) (M=160) (M=40)

cond∞ at 25.0 MHz 7.311 3743 2107 1.009

cond∞ at 32.9 MHz 262.1 4790 2157 5.661

Table 3.3: Various condition numbers of matrices that need to be inverted to solve

Hallén’s, Pocklington’s, and the regularized Pocklington’s equation.

norm of an n× n matrix. This norm is defined by

‖[Z]‖∞ := maxi=1,2,...,n

n∑

j=1

|zij| , (3.162)

that is, this norm is the maximum of the sums obtained from adding the absolute values

of the elements of [Z] in each row. Then, in turn, the condition number is defined by

cond∞([Z]) := ‖[Z]‖∞‖[Z]−1‖∞ (3.163)

where we assigned the index ∞ to the condition number in order to indicate that it

refers to the infinity norm (3.162)7. The condition number is bounded below by 1. High

condition numbers indicate that the solution of the associated linear system of equations

is sensitive towards errors of the given data.

For illustration we display in Tab. 3.3 condition numbers of the matrices that have

to be inverted to yield solutions of Hallén’s and Pocklington’s equation. We choose

from the results that are displayed in Figs. 3.22 and 3.25 the frequencies 25.0 MHz

(off resonance) and 32.9 MHz (at resonance) and compute the condition numbers of

the matrices [ZA] (Hallén), [ZE] (Pocklington), [ZE
0 ] (regularized Pocklington), and

[1] + [ZE
0 ]−1[ZE

1 ] (regularized Pocklington). It is seen that the matrix [ZA] is char-

acterized by low condition numbers if compared to [ZE], even though the condition

numbers increase at resonance. The matrix [ZE
0 ] is calculated from the Green’s function

of free space and thus insensitive towards cavity resonances. The condition numbers of

the regularized matrix [1] + [ZE
0 ]−1[ZE

1 ] are low and indicate the high stability of the

regularized Pocklington’s equation.

3.4.3 Calculation of mutual impedances between dipole anten-

nas

The same methods that have been used for the calculation of antenna self impedances

apply to the calculation of mutual impedances between different antennas. Of particular

7It is also common to define condition numbers with respect to other matrix norms. Common choices

are the 1-norm, 2-norm, or the Frobenius norm [79].
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importance are the integral expressions for antenna impedances that have been intro-

duced in Sec. 3.1.3. We will take advantage of the integral expression for the mutual

impedance Z12 that is given by (3.31). It requires to calculate electromagnetic quan-

tities in the “a-situation” and the “b-situation” that are displayed in Fig. 3.4. In the

“a-situation”we have to solve coupled Pocklington’s and Hallén’s equations that are de-

fined on the surface of two antennas while in the “b-situation”only a single Pocklington’s

or Hallén’s equation needs to be solved. The accuracy of the solution of Pocklington’s

equation will be improved by the method of regularization, as described above.

(a) Parallel antennas

We first investigate antennas that are in parallel and focus on the configuration that is

shown in Fig. 3.19. Antenna 1, antenna 2, and the cavity are chosen as in the previous

subsection with the exception that the lengths of the antennas now are enlarged to

L = 2m in order to have larger mutual coupling effects. We recall that antenna 1

couples to the cavity modes 110, 130, 310, and 330, while, antenna 2 couples to the same

modes and, additionally, to the modes 210 and 230.

In Fig. 3.26 the absolute value of the mutual impedance Z12 is shown on a loga-

rithmic scale. The two curves that have independently been obtained by the solution

of regularized Pocklington’s and Hallén’s equations agree well. It is observed that the

mutual impedance becomes large whenever both antennas simultaneously couple to a

common mode. This seems plausible from physical intuition and follows from the ex-

pansion (3.45) of the mutual impedance. The nominator of each summand has, in our

example, the form

〈J b,fA
mnp〉〈Ja,∇(∇ · fA

mnp) + k2fA
mnp〉 = 〈J b

z , f
zA
mnp〉〈Ja

z ,
∂2f zA

mnp

∂z2
+ k2f zA

mnp〉 (3.164)

= (k2 − k2
z)〈J b

z , f
zA
mnp〉〈Ja

z , f
zA
mnp〉 (3.165)

It follows that the expression (3.45) for the self-impedance reduces to

Z12 =
jωµ(k2 − k2

z)

Ia
2 I

b
1k

2

∑

n

〈J b
z , f

zA
mnp〉〈Ja

z , f
zA
mnp〉

k2 − k2
mnp

, (3.166)

such that dominating pole contributions are obtained if both 〈Ja
z , f

zA
mnp〉 and 〈J b

z , f
zA
mnp〉 are

nonvanishing. Hence, the primary resonance peaks 110, 130, 310, and 330 of Fig. 3.26

are explained by the sum of (3.166) which, up to a constant factor, constitutes the

reaction between both antennas. However, the reaction does not explain the minor

resonance peaks 210 and 230 that are observed if only antenna 2 couples to a mode. To

explain these peaks we plot in Fig. 3.27 the absolute value of the electric current Ia
2 (z)

on antenna 2 for three different frequencies that are in the vicinity of the resonance

frequency of mode 210. The first, 51 MHz, is below resonance, the second, 54 MHz,

is at resonance, and the third, 57 MHz is above resonance. While for 51 MHz and
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57 MHz the current distribution is similar to a corresponding free space solution the

current distribution drastically changes as the antenna couples to the cavity mode 210.

One should note that the first natural antenna resonance (not cavity resonance!) of

antenna 2 in free space occurs at 150 MHz, since in this case λ = L2 = 2m. Within

the cavity we observe a current distribution which resembles that of a natural antenna

resonance at a much lower frequency. That is, due to the coupling of antenna 2 to a cavity

mode the value of the input current Ia
2 , which enters the formula (3.166) of the mutual

impedance, drastically changes, and this is the reason for the secondary resonance peak

210 that is observed in the plot of the mutual impedance. The same conclusion is valid

for the secondary peak 230.

The real and imaginary parts of the mutual impedance are displayed in Fig. 3.28

and Fig. 3.29, respectively. The shape of the resonance peaks is explained by the reso-

nance curves of Fig. 3.5 and also familiar from the calculated self-impedances of the last

subsection. In contrast to the real part of the self impedance, which must be strictly

positive, the real part of the mutual impedance can become negative. This is due to

the oscillations of the electromagnetic Green’s function and a phenomenon which is also

present in free space. The sign reversal is also reflected in the resonance peaks of the

imaginary part of the mutual impedance. On the linear scale the secondary resonance

peaks of the modes 210 and 230 can hardly be seen.
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Figure 3.26: Absolute value of the mutual impedance between antenna 1 and antenna 2

in the frequency range of 25 MHz to 100 MHz. The antennas are in parallel.
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Figure 3.27: Absolute value of the current distribution Ia
2 (z) below (51 MHz), at (54

MHz), and above (57 MHz) the cavity resonance 210. While the resonance is passed

the current distribution drastically changes and assumes the shape of a natural antenna

resonance in free space.

(b) Cross polarized antennas

For further illustration we now consider cross polarized antennas. We start from the

configuration Fig. 3.19 and turn antenna 1 by ninety degrees in the yz-plane. This

yields the configuration of Fig. 3.30. Since antenna 2 is unchanged it still couples to

the modes with m odd, n odd, and p even, i.e., it still couples to the modes 110 (32.9

MHz), 210 (54.4 MHz), 130 (68.9 MHz), 310 (78.0 MHz), 230 (81.4 MHz), and 330 (98.8

MHz). Antenna 1 is now aligned to the y-axis. Similar to (3.150) the projection of the

antenna current J(r) = I(y)δ(x− x0)δ(z− z0)ey onto the eigenfunction fA
mnp yields the

expression

〈J ,fA
mnp〉 = 〈Jy, f

yA
mnp〉 (3.167)

=

∫ y0+L/2

y0−L/2

I(y′)f yA
mnp(x0, y

′, z0) dy
′ (3.168)

=

√
ε0mε0nε0p

lxlylz

∫ y0+L/2

y0−L/2

I(y′) sin

(
mπ

lx
x0

)
cos

(
nπ

ly
y′
)

sin

(
pπ

lz
z0

)
dz′

(3.169)

=

√
ε0mε0nε0p

lxlylz
sin
(mπ

2

)
sin
(pπ

2

)∫ zy+L/2

y0−L/2

I(y′) cos

(
nπ

ly
y′
)
dy′ . (3.170)
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Figure 3.28: Real part of the mutual impedance between antenna 1 and antenna 2 in

the frequency range of 25 MHz to 100 MHz.
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Figure 3.29: Imaginary part of the mutual impedance between antenna 1 and antenna 2

in the frequency range of 25 MHz to 100 MHz.
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This projection vanishes for even m, p, and, for a symmetric excitation, odd n. Therefore,

antenna 1 now couples to modes with m odd, n even, and p odd. It follows that up to

100 MHz antenna 1 couples to the modes 101 (55.9 MHz), 121 (70.4 MHz), 301 (90.1

MHz), and 321 (99.7 MHz). As a consequence, there will be no more simultaneous

coupling of both antennas to a common mode.

lx

ly

lz

z0

x

y
z

antenna 2

rectangular cavity

antenna 1

Figure 3.30: Two cross polarized antennas. Antenna 1 is aligned to the y-axis and

antenna 2 is aligned to the z axis.

As in the previous example of two parallel antennas we consider again the expansion

(3.45) of the mutual impedance. The nominator of each summand now has the form

〈J b,fA
mnp〉〈Ja,∇(∇ · fA

mnp) + k2fA
mnp〉 = 〈J b

y, f
yA
mnp〉〈Ja

z ,
∂2f yA

mnp

∂z∂y
〉 (3.171)

= −kzky〈J b
y, f

yA
mnp〉〈Ja

z , f
zA
mnp〉 . (3.172)

The expression (3.45) for the self-impedance reduces to

Z12 = −jωµkzky

Ia
2 I

b
1k

2

∑

n

〈J b
y, f

yA
mnp〉〈Ja

z , f
zA
mnp〉

k2 − k2
mnp

, (3.173)

and it follows that contributions to the mutual impedance are obtained if both 〈J a
z , f

zA
mnp〉

and 〈J b
y, f

yA
mnp〉 are nonvanishing. But this does not happen since for any n or p either

〈Ja
z , f

zA
mnp〉 or 〈J b

y, f
yA
mnp〉 vanishes. It follows that in this example the mutual impedance

vanishes,

Z12 = 0 . (3.174)

This does not mean that the two antennas do not interact at all. But it means that

the interaction is such that it has no effect at the antenna input terminals which are

symmetrically positioned at the center of each antenna.
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3.4.4 Electrically short antennas

The analysis of this chapter is mainly based on the Green’s function formalism and the

spectral properties of the electromagnetic field. It yields analytic formulas for quantities

like the self or mutual impedance of dipole antennas. However, these formulas involve

the, a priori, unknown antenna current. The antenna current is determined from an

integral equation that can be solved by the method of moments. Usually, the method

of moments is taken as a numerical solution procedure, but it can be turned into an

approximative, analytical solution procedure if the unknown function, here the antenna

current, is approximated by only a few basis functions. Then the resulting linear system

of equations can analytically be solved.

The approximation of an antenna current by only a few terms is physically meaning-

ful if the antenna considered is electrically small, kL� 1. An often made approximation

follows from the assumption that the antenna current is sinusoidal. In this case the an-

tenna current is modeled by only one piecewise sinusoidal basis function Sk(r), compare

(3.131).

Example: We consider the antenna-cavity configuration of Fig. 3.19 and choose the

antenna lengths as L = 0.2m. To calculate the mutual impedance between both antennas

we concentrate on the expression (3.31),

Z12 = −〈E
b,Ja〉p
Ia
2 I

b
1

. (3.175)

With reference to Sec. 3.4.1 (a) we choose a discretization with M = 1 and expand each

antenna current according to

Ib
1(r

(1)) = α(1)S1(r
(1)) , (3.176)

Ia
2 (r(2)) = α(2)S1(r

(2)) . (3.177)

The input currents of the antennas are simply given by the (unknown) expansion coef-

ficients,

Ib
1 = α(1) , (3.178)

Ia
2 = α(2) . (3.179)

To evaluate the inner product of (3.175) we first evaluate the electric field by a calculation

which is similar to the one which led to (3.133),

Eb
z(r

(2)) = −jωµ
∫

antenna 1

GE
zz(r

(2), r(1))α(1)S1(r
(1)) dr(1) (3.180)

= − jωµα(1)

k sin(kh)

[
GA

zz(r2, r1 + L/2ez)−GA
zz(r2, r1 − L/2ez)

−2 cos(kL/2)GA
zz(r2, r1)

]
. (3.181)
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Here, the position vectors r1, r2 point to the centers of the antennas. With (3.178),

(3.179), and (3.181) the expression for the mutual impedance (3.175) becomes

Z12 =
jωµ

k sin(kL/2)

[
GA

zz(r2, r1 + L/2ez)−GA
zz(r2, r1 − L/2ez)

−2 cos(kL/2)GA
zz(r2, r1)

] ∫

antenna2

S1(r
(2)) dr(2) . (3.182)

The last integral can be approximated according to

∫

antenna2

S1(r
(2)) dr(2) =

2

sin(kL/2)
(1− cos(kL/2)) (3.183)

≈ L

2
(3.184)

and we obtain the final result

Z12 =
jωµL

2k sin(kL/2)

[
GA

zz(r2, r1 + L/2ez)−GA
zz(r2, r1 − L/2ez)

−2 cos(kL/2)GA
zz(r2, r1)

]
. (3.185)

In Fig. 3.31 we compare the mutual impedance as calculated by the approximate, analytic

result (3.185) to a method of moment solution. It is recognized that the approximate

solution reproduces well the major resonance peaks that occur whenever both antennas

couple to a common mode. Differences are observed inbetween these resonances, but

the qualitative behavior of the curves agree fairly well. Of course, the advantage of the

approximate solution is that it is calculated much faster than the method of moment

solution and also provides a final answer in terms of the formula (3.185).

Clearly, as we turn to the simplified models of electrically short antennas we generally

will no longer be able to take into account detailed features of the antenna current. For

example, the approximation by a simple sinusoidal function will fail to yield any reliable

value for the input impedance of an antenna. Therefore, turning to electrically short

antennas means turning away from a number of details and subtleties of antenna theory.

If antennas are drastically reduced in size to represent localized current elements that

do not exhibit their own degrees of freedom we are left to study the behavior of the

electromagnetic field. Then an antenna theory in resonating systems reduces to the

conventional microwave theory, as displayed in Fig. 3.1.

Models of electrically short antennas nevertheless are useful to get an overall un-

derstanding of antenna coupling in resonating environments and also allow to estimate

the order of coupling effects that are of practical interest. This has been exemplified in

particular by Tkachenko and his coworkers [219, 153, 220].



3.5 Remarks on antenna analysis in free space and resonating systems 173

30 40 50 60 70 80 90 100

10
−2

10
0

10
2

f/MHz

ab
s(

Z
12

) 
/ O

hm

Hallen
short antenna

110 130
310

330

Figure 3.31: Mutual impedance between electrically short antennas, calculated by a

method of moments solution of Hallén’s equation and the approximate, analytic result

(3.185) which is based on the assumption of electrically short antennas.

3.5 Remarks on antenna analysis in free space and

resonating systems

We repeat that the main tasks of antenna analysis are

1. the solution of field integral equations for antenna currents and

2. the calculation of electromagnetic fields from antenna currents.

From a formal perspective, these two points constitute a simple road map. However, in

practice they can be almost arbitrarily difficult to deal with. Both points require the

knowledge of the electromagnetic Green’s function. The Green’s function establishes the

integral kernel of the field integral equations to be solved and also relates the electric

current to the electromagnetic field. It constitutes the solution of the Maxwell equations

for prescribed boundary conditions.

In three-dimensional free space the Green’s function represents outgoing spherical

waves, see (2.136), that incorporate both Coulomb fields and radiation fields. The elec-

tromagnetic field that can be generated by an antenna in free space will be a superpo-

sition of such spherical waves that combine to yield a characteristic radiation pattern.
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For a resonating environment the Green’s function might not be known from the begin-

ning. If it is not possible to construct (or, at least, approximate) this Green’s function it

follows that an antenna analysis, as outlined above, cannot be done and it is necessary

to resort to numerical techniques. But if the Green’s function is known also the spec-

tral properties of the electromagnetic field within the resonating environment are known.

Linear superpositions of the corresponding resonances (or, equivalently, eigenmodes) will

make up the electromagnetic field that is generated by an antenna. That is, while in

free space an antenna will always generate a superposition of outgoing spherical waves

it will generate in a resonating environment a superposition of various resonances which

yields both the appropriate Coulomb and radiation fields. The latter superposition is

determined from coupling coefficients of the form (3.145) or (3.146). A complete set of

known coupling coefficients can be seen as an antenna-cavity characteristic, comparable

to an antenna radiation characteristic in free space. This set of coefficients not only

depends on the geometry of the antenna but also on the positioning of the antenna in

the resonating environment and on the resonating environment itself.

The calculation of antenna couplings within resonating environments is, in principle,

straightforward. The mutual impedance between antennas is determined from formulas

of the form (3.45) and (3.56). It critically depends on the absolute antenna positions

within the resonating environment. This is in contrast to free space where the relative

position of the antennas is decisive. In particular, within a cavity the mutual coupling

does not necessarily decay in case of increasing distance between the two antennas since

the cavity modes do not decay with increasing distance, as well. For strong antenna

coupling at resonance it is not the relative distance but the simultaneous coupling to a

resonant mode that is decisive. In view of applications to Electromagnetic Compatibility

it is obvious that the electromagnetic coupling between unintentionally coupled antennas

within a resonating environment can considerably be reduced not only by avoiding res-

onance frequencies or decreasing the quality factor of the cavity. An equally important

aspect is the positioning of the antennas within the cavity that should be chosen such

that a simultaneous coupling to single modes is avoided.



Chapter 4

Nonlinearly Loaded Antennas

Most of the concepts we have used so far, be this linear operator theory, the Green’s

function method, or the method of moments, for example, rest on the assumption that

electromagnetic field theory is a linear theory. We know that this assumption is valid

as long as the constitutive relations, which relate the electromagnetic excitations D, H

to the electromagnetic field strengths E, B, are linear. Examples of linear constitutive

relations are provided by (1.36), (1.37) for the case of vacuum and by (1.38), (1.39) for

the case of a general linear magnetoelectric medium.

But it is an inevitable truth that modern electric and electronic devices contain

nonlinear elements like diodes, transistors, or other semiconductor elements. As a con-

sequence, we need to have an understanding of how these nonlinearities might influence

electric currents and electromagnetic fields. These effects of nonlinearities can be wanted

or unwanted. Of course, nonlinear semiconductor elements are designed to serve some

purpose, and this purpose usually will exploit nonlinear properties that lead to wanted

effects. But unwanted effects occur as well and these effects need to be studied in the

framework of Electromagnetic Compatibility.

To account for nonlinear effects might, at first sight, require to work with nonlinear

constitutive relations and turn to nonlinear electromagnetic field theory [108]. In fact,

many field theories are nonlinear. Examples are the three fundamental interactions grav-

ity, weak, and strong interaction. But the resulting nonlinear field equations are difficult

to solve [36, 200]. Often one relies on perturbation theory and attempts to calculate

nonlinear corrections to linear first order solutions. Fortunately, the semiconductor el-

ements that we just mentioned in the previous paragraph usually can be considered as

concentrated, lumped elements. It is then not necessary to apply nonlinear field theory

but rather appropriate to apply nonlinear circuit theory.

The reason why it is of interest to discuss nonlinearities in the context of antenna

theory in resonating systems is best illustrated by an example. To this end we consider

in Fig. 4.1 a cavity which contains a nonlinearity. In practice, this could be the model

of a computer with a metallic housing or the model of some metallic compartment
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Figure 4.1: A high frequency electromagnetic field (1.) couples through a small open-

ing into the interior of an electric or electronic system (2.). If the electromagnetic field

interacts with a nonlinearity, which is modeled by a nonlinearly loaded antenna (3.),

intermodulation will occur which can result in the generation of low frequency electro-

magnetic fields (4.). This is an example of “high to low frequency conversion” by a

nonlinearly loaded antenna within a cavity.

within an aircraft or vehicle, for example. The cavity acts like a shield which prevents

exterior electromagnetic fields to couple to the interior of the cavity. However, in realistic

situations the cavity will not be completely closed but have small openings or slits. High

frequency electromagnetic fields might penetrate through these openings and couple to

the interior of the cavity. If nonlinearities are present in the interior it can happen

that intermodulation occurs. This phenomenon describes the generation of secondary

frequencies from the electromagnetic excitation of nonlinearities by primary frequencies

and will be discussed below. Intermodulation can produce low frequency fields from

high frequency fields1. These low frequency fields might disturb the system within the

cavity, e.g., by the excitation of cavity resonances. This general example is not only of

purely academic interest. Experiments on realistic smart defense systems have shown

that even though a system is shielded against low frequency electromagnetic fields there

can be a surprisingly high level of low frequency noise inside the system which disturbs

enclosed analog electronic devices that operate in the low frequency region [152]. In this

chapter we intend to give an impression of methods that are suitable to model this kind

of problems of Electromagnetic Compatibility.

Nonlinearly loaded antennas and wires in free space already have been investigated

in some detail. Schuman [194] combined a method of moment solution with a Newton-

Raphson iterative technique to calculate the load current of a nonlinearly loaded thin-

wire scatterer. Sarkar & Weiner [188] proposed an analytic, iterative solution scheme

1The notions “low frequency fields” and “high frequency fields” are not strictly defined and mainly

used for linguistic convenience. Approximately, we think in the present context of the range from 103Hz

to 107Hz as low frequency regime and 108Hz to 1010Hz as high frequency regime.
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which uses the Volterra series technique in the frequency domain and obtained power

levels of the scattered field of a nonlinearly loaded antenna. Two different solution meth-

ods were proposed by Liu & Tesche [131]. The first one is a direct time-domain integral

approach which is different from the Schuman method, the second one utilizes equivalent

circuits in the frequency domain to split the problem in a linear and a nonlinear part,

where the solution of the linear part is obtained from the method of moments and the

solution of the nonlinear part is obtained by the iterative solution of a nonlinear inte-

gral equation. Similar analytical and numerical techniques were used by Kanda [100] to

analyze an electrically short dipole with a nonlinear load. Landt et al. [116] numerically

solved a time-domain integral equation to exhibit the behavior of nonlinearly loaded an-

tennas. In their analysis they included a number of interesting examples that illustrated

effects caused by short electromagnetic pulses such as generated from lightning or sparks.

Another method of moment study, which involves dipoles loaded with passive and active

diodes, was conducted by Janaswamy & Lee [94]. Finally, Huang & Chu [91] investigated

wire scatterers with nonlinear or time-harmonic loads in the frequency domain. Similar

to Sarkar and Liu & Tesche they transformed the electromagnetic field problem to a

circuit problem and, eventually, solved for the unknown current of the nonlinear circuit

by means of the harmonic balance technique to calculate scattered field spectra.

The analysis of nonlinear antenna problems within a resonating system follows the

same patterns as the corresponding analysis in free space. Clearly, it is necessary to

take into account the effects that result from the coupling between nonlinearly loaded

antennas and electromagnetic resonances. Up to now there is relatively few literature

on the subject of nonlinearly loaded antenna in resonating environments. In particular,

Lee et al. have studied mutual coupling mechanisms within arrays of nonlinear antennas

[118, 119, 120, 121]. These arrays form two-dimensional periodic structures and the

corresponding Green’s function exhibits similar features as that of a three-dimensional

rectangular cavity. In the papers of Lee et al. the electromagnetic field problem is reduced

to an equivalent circuit problem which, in turn, is solved by one of several different

techniques. An equivalent circuit was also used in the investigation of a nonlinearly

loaded antenna within a three-dimensional rectangular cavity where intermodulation

effects were explicitly computed by means of the harmonic balance technique [70].

The strategy to reduce for the solution of nonlinear antenna problems within a res-

onating system the electromagnetic field problem to an equivalent circuit problem seems

to be natural and convenient. In this case resonance effects will be incorporated in

lumped antenna impedances and we know from Chapter 3, at least for canonical config-

urations, how to model and calculate these impedances in an efficient way.
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4.1 Important aspects of the analysis of nonlinearly

loaded antennas

This section introduces two basic but important aspects that are essential for the analysis

of nonlinearly loaded antennas. The first is the representation of an antenna configura-

tion by an equivalent circuit, the second is the generation of new frequencies by nonlinear,

lumped circuit elements.

4.1.1 Equivalent circuit of a nonlinearly loaded antenna

We consider in Fig. 4.2 a nonlinearly loaded antenna. The antenna has been drawn as

a dipole antenna, but it could also be of another type. The antenna is subject to an

incident electromagnetic field. This field will cause, in general, a current inl(t) and a

voltage vnl(t) at the nonlinear load.

linear part nonlinear part

Einc

nonlinear 
load

+

antenna

electromagnetic
incident

field

i

vnl

nl(t)

(t)

Figure 4.2: A linear antenna with a nonlinear load. The nonlinear load is connected to

the antenna input terminal. As indicated, the configuration splits into a linear and a

nonlinear part.

The frequency behavior of the linear part of the excited antenna can be represented by

a Norton’s or Thévenin’s equivalent circuit looking toward the scatterer at the antenna

input terminal, as shown in Fig. 4.3 [131]. The equivalent circuits involve an equivalent

current source Ieq(ω) or an equivalent voltage source Veq(ω), respectively, that are due to

the electromagnetic source field. They also involve the antenna input admittance Yin(ω)
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Figure 4.3: Equivalent circuit of the nonlinearly loaded antenna of Fig. 4.2. Both the

Norton and Thévenin equivalent are shown. In the notation used the variable ω repre-

sents all frequencies that occur at a certain circuit element.

or input impedance Zin(ω), respectively. These frequency domain functions need to be

determined from the associated field-theoretical, linear boundary value problem, e.g., by

means of the method of moments. Once this is done it remains to determine the current

through and voltage across the nonlinear load by means of the methods of nonlinear

circuit theory.

4.1.2 Intermodulation frequencies

Probably the most important feature of nonlinear circuits is the generation of secondary

frequencies from primary frequencies that are provided by excitation sources. An in-

tuitive approach to this feature is provided if the current-voltage relation i = f(v) of

a nonlinear element is expressed as a power series and subject to an excitation volt-

age which has multiple frequency components. This is a well-known approach which is

described in a number of textbooks, see [133, §1], e.g..

Example 1: Let us consider the simple nonlinear circuit of Fig. 4.4 (a) and assume

that the nonlinearity is characterized by the current-voltage relation

i(t) = a1v(t) + a2v
2(t) + a3v

3(t) (4.1)

with constant factors a1, a2, and a3. We further assume that the voltage source veq(t) is

given by a “two-tone excitation” of the form

veq(t) = v1 cos(ω1t) + v2 cos(ω2t) . (4.2)

With this excitation we want to solve for the unknown current i(t) in (4.1). This is

trivial since

v(t) = veq(t) (4.3)



180 Nonlinearly Loaded Antennas

eqv  (t) eqv  (t)

(a) (b)

i(t)

v(t) v(t)

i(t)

i=f(v) i=f(v)

R

Figure 4.4: Two simple nonlinear circuits that exhibit the generation of intermodulation

frequencies.

and, thus,

i(t) = a1 (v1 cos(ω1t) + v2 cos(ω2t)) + a2 (v1 cos(ω1t) + v2 cos(ω2t))
2

+a3 (v1 cos(ω1t) + v2 cos(ω2t))
3 . (4.4)

The quadratic and cubic term can be expanded and rewritten by means of trigonometric

identities such as

cos2(x) =
1

2
(1 + cos(2x)) , (4.5)

cos3(x) =
1

4
(3 cos(x) + cos(3x)) , (4.6)

in order to reduce powers of trigonometric functions to linear combinations of single

trigonometric functions. This yields

i(t) =a1 (v1 cos(ω1t) + v2 cos(ω2t))

+
a2

2

(
v2
1 + v2

2 + v2
1 cos(2ω1t)

+v2
2 cos(2ω2t) + 2v1v2[cos((ω1 + ω2)t) + cos((ω1 − ω2)t)]

)

+
a3

4

(
v3
1 cos(3ω1t) + v3

2 cos(3ω1t)

+ 3v2
1v2[cos((2ω1 + ω2)t) + cos((2ω1 − ω2)t)]

+ 3v1v
2
2[cos((ω1 + 2ω2)t) + cos((ω1 − 2ω2)t)]

+ 3(v3
1 + 2v1v

2
2) cos(ω1t) + 3(v3

2 + 2v2
1v2) cos(ω2t)

)
. (4.7)

It follows that i(t) contains besides the primary frequencies ω1 and ω2 new frequencies

which are of the form

ωm,n = mω1 + nω2 (4.8)
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withm,n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .. These frequencies are called mixing frequencies

or intermodulation frequencies.

Example 2: As a second example we consider the nonlinear circuit of Fig. 4.4 (b) which

includes a resistor R and the same nonlinearity as circuit (a). In this case we cannot

directly obtain i(t) from veq(t) since

veq(t) = Ri(t) + v(t) (4.9)

and this provides only one equation for the two unknowns i(t) and v(t). In order to

eliminate in (4.9) the voltage v(t) by the current i(t) we invert the series (4.1). This

yields [1, Eq. 3.6.25]

v(t) =
1

a1
i(t)− a2

a3
1

i2(t) +
2a2

2 − a1a3

a5
1

i3(t)− 5(a3
2 − a1a2a3)

a7
1

i4(t) + . . . . (4.10)

This series is, in fact, infinite and displayed up to the fourth term. With (4.9) we find a

relation between veq(t) and i(t),

veq(t) =

(
1

a1
+R

)
i(t)− a2

a3
1

i2(t) +
2a2

2 − a1a3

a5
1

i3(t)− 5(a3
2 − a1a2a3)

a7
1

i4(t) + . . . . (4.11)

From the inversion of this series we obtain the current

i(t) =
1

1/a1 +R
veq(t) +

a2/a
3
1

(1/a1 +R)3 v
2
eq(t) +

2a2
2/a

6
1 − (1/a1 +R)(2a2

2 − a1a3)/a
5
1

(1/a1 +R)5
v3
eq(t)

−5
(1/a1 +R)a2(2a

2
2 − a1a3)/a

8
1 − (1/a1 +R)2(a3

2 − a1a2a3)/a
7
1 − a3

2/a
9
1

(1/a1 +R)7
v4
eq(t) + . . . ,

(4.12)

which, again, is represented by an infinite series that is displayed up to the fourth term.

In case of a two-tone excitation we may insert (4.2) into (4.12) and work out the powers

of veq(t) in an analogous way as we did to arrive at (4.7). In principle, for the complete

series expansion of i(t) this results in an infinite number of intermodulation frequencies of

the form (4.8). However, in practice the series expansion (4.12) will only be meaningful

if the parameters a1, a2, a3, and the amplitudes of the exciting voltages v1, v2 are such

that the series converges. As a general rule, this will be fulfilled if the nonlinearity is

weak and the exciting voltages are small. Then the series terms of (4.12) will decay with

increasing order and, as a result, the influence of high intermodulation frequencies that

exceed a certain order can be neglected.

In the introduction to this chapter we mentioned the phenomenon of “high to low

frequency conversion” which occurs if two frequencies of a two-tone (or multiple-tone)

excitation are close to each other. Accordingly, if we assume two exciting frequencies

ω1, ω2 with

ω2 = ω1 + ∆ω , ω1, ω2 � ∆ω (4.13)
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then the intermodulation frequencies ωm,n will be of the form

ωm,n = (m+ n)ω1 + n∆ω (4.14)

and the lowest intermodulation frequency is given by

ω−1,1 = |ω1,−1| = ∆ω . (4.15)

This is a second order intermodulation frequency which is exhibited by the quadratic

term of the solution (4.7), for example. Further intermodulation frequencies withm+n =

0 are provided by

ω−n,n = |ωn,−n| = n∆ω , n > 1 . (4.16)

These are, obviously, integer multiples of ∆ω which are, for n not too large, also low in

comparison to ω1, ω2. Interpolation frequencies with |m+n| = 1 are located around ω1,

ω2. Explicitly, we have

ω1−n,n = |ωn−1,−n| = ω1 + n∆ω , (4.17)

ω1+n,−n = |ω−1−n,n| = ω1 − n∆ω . (4.18)

In Fig. 4.5 the distribution of some of these intermodulation frequencies is shown.

−1,1ω

−2,2ω

−3,3ω

2ω1ω

2,−1ω

3,−2ω

−1,2ω

−2,3ω

I(   )ω

ω∆ω

Figure 4.5: Selected intermodulation frequencies that result from a two-tone excitation if

the exciting frequencies ω1, ω2 are close to each other. It is assumed that the amplitudes

decrease for increasing order of intermodulation. The lowest intermodulation frequency

is given by ω−1,1 = |ω1,−1| = ∆ω. Not drawn are possible dc contributions at zero

frequency.
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4.2 Methods of nonlinear circuit theory

In the previous section we displayed in Fig. 4.3 the equivalent circuit of a nonlinearly

loaded antenna and indicated by means of two elementary examples that the solution for

the current Inl(ω) (and, hence, for the voltage Vnl(ω)) will contain a variety of intermod-

ulation frequencies. It follows that in case of a two-tone excitation a nonlinear circuit,

and thus a nonlinearly loaded antenna, will exhibit the phenomenon of “high to low fre-

quency conversion”. This is a statement of general validity. To explicitly calculate this

phenomenon we have to be able to calculate from a given equivalent circuit with known

sources Ieq(ω), Veq(ω) , known parameters Yin(ω), Zin(ω), and a known nonlinearity with

current-voltage characteristic i = f(v) the unknown current Inl(ω).

In the following we will shortly introduce methods of nonlinear circuit theory that

are suitable to calculate nonlinear networks of the form (4.3). Since the antenna char-

acteristics usually will be given in the frequency domain, as exemplified by the antenna

admittance or impedance, pure time-domain methods cannot directly be applied. Pop-

ular methods that can directly be applied include the method of successive approxi-

mation which is also known as Picard iteration [122, 34], the Volterra series technique

[193, 184, 231, 133], and the harmonic balance technique [148, 109, 133].

Z(   )ω

V(   )ω

=

+
v(t)

nli  (t)

v(t)

i

eqv  

nlil

l
Z(   )

V  (   )  ωeq

ω
I (   )ω

linear circuit nonlinear circuit

v

Figure 4.6: Division of a nonlinear circuit in two equivalent circuits.
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In oder to attain an understanding of these methods it will be useful to divide a

nonlinear circuit, as shown in Fig. 4.6, into a pair of equivalent circuits. One equivalent

circuit represents the linear part and can be described in the frequency domain, the

other equivalent circuit represents the nonlinear part and will be described in the time

domain. The methods mentioned above take advantage of this division.

4.2.1 Successive approximation - Picard iteration

The method of successive approximation is described first because it is both an analytic

method and comparatively simple to use. It requires that the nonlinearity is weak and

the exciting signal is small such that the relation between voltage and current can be

expressed by a converging power series. The method of successive approximation consists

of the following steps:

1. Start from the linear circuit of Fig. 4.6 and set V (ω) = 0. It follows that the

computation of the current Il(ω) is equivalent to the solution of a linear circuit

problem. Solve this linear circuit problem. The result constitutes a first order

solution and contains the exciting frequencies.

2. Analytically convert the current Il(ω) into the time domain to obtain il(t).

3. Turn to the nonlinear circuit of Fig. 4.6 and set inl(t) = il(t). Characterize the

nonlinearity not by a current-voltage relation but by a voltage-current relation of

the form2

v(t) = F (inl(t)) =
N∑

n=2

bni
n
nl(t) . (4.19)

Insert the explicit expression for the current inl(t) into this relation and work out

the powers innl(t) by means of trigonometric identities of the type (4.5), (4.6). This

yields the voltage v(t) as a superposition of single frequency contributions.

4. Obtain V (ω) from v(t). This is immediate since v(t) is given by a sum of single

frequency contributions.

5. Turn back to the linear circuit and calculate with V (ω) an improved value of Il(ω).

Finally, return to step 2 and continue the process until Il(ω) has converged.

During this process the most cumbersome part is to work out in step 3 the powers innl(t).

In order to do this in a systematic way it is convenient to employ an exponential notation:

If inl(t) is given as a linear combination of M frequencies,

inl(t) =
M∑

m=1

im cos(ωmt+ ϕm) , (4.20)

2We assume that the linear part of the nonlinearity has been absorbed by the impedance Z(ω) of

the linear circuit.
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it can be rewritten as

inl(t) =
1

2

M∑

m=1

[
ime

j(ωmt+ϕm) + ime
−j(ωmt+ϕm)

]

=
1

2

M∑

m=1

[
îme

jωmt + î∗me
−jωmt

]

=
1

2

M∑

m=−M
m6=0

îme
jωmt . (4.21)

Here we defined îm := ime
jϕm, î−m := î∗m, and ω−m := −ωm. It follows that a power of

inl(t) is expressed according to

innl(t) =




1

2

M∑

m=−M
m6=0

îme
jωmt




n

(4.22)

=
1

2n

M∑

m1=−M

m1 6=0

M∑

m2=−M

m2 6=0

. . .
M∑

mn=−M
mn 6=0

î1î2 . . . îme
j(ωm1+ωm2+...+ωmn )t , (4.23)

and this expression is easier to evaluate than powers of trigonometric functions.

Example: We consider the nonlinear circuit of Fig. 4.6 which involves a general

impedance Z(ω). Let us further assume that the exciting voltage is given by a two-

tone excitation of the form

veq(t) =
2∑

m=1

vm cos(ω1t+ ϕm) (4.24)

=
1

2

2∑

m=−2
m6=0

v̂me
jωmt . (4.25)

In the following we work out the first order Picard iteration, where we presuppose a

third order nonlinearity of the form

v(t) =

3∑

n=2

bni
n
nl(t) (4.26)

= b2i
2
nl(t) + b3i

3
nl(t) . (4.27)

We first set V (ω) = 0 and obtain

I
(1)
l (ω) =

2∑

m=1

v̂m

Z(ωm)
(4.28)
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as solution of the linear circuit problem. Conversion to time domain leads to

i
(1)
l (t) = i

(1)
nl (t) (4.29)

=
1

2

2∑

m=−2
m6=0

v̂m

Z(ωm)
ejωmt . (4.30)

This is inserted into (4.27) to yield the first order iterated voltage at the nonlinearity,

v(1)(t) =
3∑

n=2

bn
2n




2∑

m=−2
m6=0

v̂m

Z(ωm)
ejωmt




n

(4.31)

=
b2
4

2∑

m1=−2
m1 6=0

2∑

m2=−2
m2 6=0

v̂m1

Z(ωm1)

v̂m2

Z(ωm2)
ej(ωm1+ωm2 )t

+
b3
8

2∑

m1=−2
m1 6=0

2∑

m2=−2
m2 6=0

2∑

m3=−2
m3 6=0

v̂m1

Z(ωm1)

v̂m2

Z(ωm2)

v̂m3

Z(ωm3)
ej(ωm1+ωm2+ωm3 )t . (4.32)

The double sum of (4.32) already consists of (2 ·2)2 = 16 summands with corresponding

frequencies

− ω2 − ω2 − ω2 − ω1 − ω2 + ω1 − ω2 − ω2

− ω1 − ω2 − ω1 − ω1 − ω1 + ω1 − ω1 − ω2

+ ω1 − ω2 + ω1 − ω1 + ω1 + ω1 + ω1 + ω2

− ω2 − ω2 + ω2 − ω1 + ω2 + ω1 + ω2 + ω2 . (4.33)

These 16 terms show that v(1)(t) contains dc contributions and the frequencies 2ω1, 2ω2,

ω1 + ω2, and |ω1 − ω2|. The triple sum of (4.32) already consists of (2 · 2)3 = 64 terms

that add contributions with frequencies ω1, ω2, 2ω1 +ω2, |2ω1−ω2|, ω1 +2ω2, |ω1−2ω2|,
3ω1, and 3ω2.

The first order voltage (4.32) can also be written in terms of cosine functions. To

this end we express the impedance Z(ωm) by its absolute value |Z(ωm)| and its argu-
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ment ϕZm. Then we find

v(1)(t) =
b2
2

[(
V1

|Z(ω1)|

)2

+

(
V2

|Z(ω2)|

)2

+

(
V1

|Z(ω1)|

)2

cos(2(ω1t+ ϕ1 − ϕZ1))

+

(
V2

|Z(ω2)|

)2

cos(2(ω2t+ ϕ2 − ϕZ2))

+ 2
V1

|Z(ω1)|
V2

|Z(ω2)|
(
cos((ω1 + ω2)t+ ϕ1 − ϕZ1 + ϕ2 − ϕZ2)

+ cos((ω1 − ω2)t+ ϕ1 − ϕZ1 − ϕ2 + ϕZ2)
)]

+
b3
4

[(
V1

|Z(ω1)|

)3

cos(3(ω1t + ϕ1 − ϕZ1)) +

(
V2

|Z(ω2)|

)3

cos(3(ω2t + ϕ2 − ϕZ2))

+ 3

(
V1

|Z(ω1)|

)2
V2

|Z(ω2)|
(
cos(2(ω1t+ ϕ1 − ϕZ1) + ω2t + ϕ2 − ϕZ2)

+ cos(2(ω1t+ ϕ1 − ϕZ1)− ω2t− ϕ2 + ϕZ2)
)

+ 3
V1

|Z(ω1)|

(
V2

|Z(ω2)|

)2 (
cos(ω1t+ ϕ1 − ϕZ1 + 2(ω2t + ϕ2 − ϕZ2))

+ cos(ω1t+ ϕ1 − ϕZ1 − 2(ω2t+ ϕ2 − ϕZ2))
)

+ 3

((
V1

|Z(ω1)|

)3

+ 2
V1

|Z(ω1)|

(
V2

|Z(ω2)|

)2
)

cos(ω1t+ ϕ1 − ϕZ1)

+ 3

((
V2

|Z(ω2)|

)3

+ 2

(
V1

|Z(ω1)|

)2
V2

|Z(ω2)|

)
cos(ω2t+ ϕ2 − ϕZ2)

]
. (4.34)

To calculate the second order voltage v(2)(t) it is necessary to repeat the procedure from

(4.25), but with veq(t) replaced by veq(t) − v(1)(t). This will result in a twelve-tone

excitation. In this case the double and triple sum of (4.32) will consist of (2 · 12)2 = 576

and (2 · 12)3 = 13824 terms, respectively.

This example shows that the calculation of higher order Picard iterations quickly

becomes laborious. Fortunately, it is rather straightforward to use computer algebra

packages, such as Maple [54, 144] or MATHEMATICA [238], in order to perform the

necessary analytic calculations with the help of a computer.

4.2.2 Volterra series analysis

The Volterra series analysis constitutes a generalized power series approach. As in the

case of the method of successive approximation it requires that the nonlinearity is weak

and the exciting signal is small such that it is meaningful to consider a current-voltage
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relation of the form

i(t) =
N∑

n=1

anv
n(t) . (4.35)

A power series approach has been used in the Example 1 of Sec. 4.1.1. In this example

the exciting voltage veq(t) is equal to the voltage v(t) at the nonlinearity and, as a result,

we are able to immediately obtain the unknown current in terms of a power series, as

displayed in (4.7). In order to generalize this example we assume that the exciting

voltage consists of a multi-tone excitation which includes M different frequencies,

veq(t) =
1

2

M∑

m=−M
m6=0

v̂me
jωmt . (4.36)

If the exciting voltage Veq(ω) is related to the voltage V (ω) at the nonlinearity by a

linear transfer function H(ω),

V (ω) = H(ω)Veq(ω) (4.37)

we can write

v(t) =
1

2

M∑

m=−M
m6=0

v̂mH(ωm)ejωmt (4.38)

where H(ω−m) = H∗(ωm). It follows that the current inl(t) is given by the expression

inl(t) =
N∑

n=1

an




1

2

M∑

m=−M
m6=0

v̂mH(ωm)ejωmt




n

(4.39)

=

N∑

n=1

an

2n

M∑

m1=−M

m1 6=0

M∑

m2=−M

m2 6=0

· · ·
M∑

mn=−M
mn 6=0

v̂m1 v̂m2 . . . v̂mn
×

H(ωm1)H(ωm2) . . .H(ωmn
)ej(ωm1+ωm2+...+ωmn )t . (4.40)

This is a simple closed-form result which, unfortunately, can only be obtained if a linear

relation of the form (4.38) is valid. This already excludes the equivalent circuits of a

nonlinearly loaded antenna in Fig. 4.3.

In Volterra series analysis it is shown that in case of an excitation of the form (4.36)

the response inl(t) of any weakly nonlinear circuit can be expressed as

inl(t) =

N∑

n=1

1

2n

M∑

m1=−M

m1 6=0

M∑

m2=−M

m2 6=0

· · ·
M∑

mn=−M
mn 6=0

v̂m1 v̂m2 . . . v̂mn
×

Hn(ωm1 , ωm2 . . . ωmn
)ej(ωm1+ωm2+...+ωmn )t . (4.41)
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Here we introduced the functions Hn(ωm1 , ωm2 . . . ωmn
) that are known as nth-order

nonlinear transfer functions. The expression (4.41) is a generalization of (4.40). Clearly,

for the special case

Hn(ωm1 , ωm2 . . . ωmn
) = anH(ωm1)H(ωm2) . . .H(ωmn

) (4.42)

both expressions become equivalent.

In practice, the main task of Volterra series analysis is to determine the nonlinear

transfer functions Hn(ωm1 , ωm2 . . . ωmn
). Appropriate analytic methods include the har-

monic input method and the method of nonlinear currents [133, §4], see also [15, 24].

These methods are reminiscent of the method of successive approximation which has

been introduced in the last section since higher order contributions to the solution are

obtained by working out powers of lower order contributions. In fact, since both the

Volterra series analysis and the method of successive approximation are analytic meth-

ods which yield the solution in the form of a generalized power series it is expected that

they produce identical results. A comparison of both methods, which employs iteration

techniques, exhibits the equivalence of both methods [34]. However, the Volterra series

analysis yields the solution in the form (4.41) which is advantageous for the analysis and

design of analog circuits [231, 133].

In the context of nonlinearly loaded antennas the Volterra series analysis has been

used to calculate for a specific example the frequency spectrum of the scattered elec-

tromagnetic field [188], and to this end nonlinear transfer functions were analytically

worked out up to the third order. Similar calculations have been performed in the con-

text of distortion analysis [48, 231]. In general, the third order appears to be an upper

limit for the analytic calculation of transfer functions by hand. To calculate higher order

transfer functions in this way simply becomes too laborious. Thus, similar as for the case

of the method of successive approximation, it is tempting to use computer algebra to

program the required calculations. It turns out that symbolic network analysis programs

can be suitable in this respect [56, 57, 231]. But these programs are much more complex

than a few dozens lines of computer algebra code that are sufficient to work out Picard

iterations.

4.2.3 Harmonic balance technique

The harmonic balance technique is not restricted to weakly nonlinear circuits. However,

it is not a purely analytic method and usually requires the use of numerical procedures.

The main steps of the harmonic balance technique are based on the division of a nonlinear

circuit into two linear and nonlinear circuits, as displayed in Fig. 4.6.

1. Start from the linear circuit of Fig. 4.6 and provide an initial guess for V (ω), i.e.,

for all harmonics that are represented by V (ω).

2. Compute from V (ω) the current Il(ω). This is equivalent to the solution of a linear

circuit problem.
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3. Apply an inverse Fourier transformation to the voltage V (ω) to calculate the time

domain current v(t).

4. Turn to the nonlinear circuit of Fig. 4.6. and obtain inl(t) from the nonlinear

voltage to current relation

i(t) = f (v(t)) . (4.43)

Then apply a Fourier transformation to calculate Inl(ω).

5. Compare the linear current Il(ω) of step 2 to the nonlinear current Inl(ω) of step 4.

If both currents are (approximately) equal a solution is obtained. If the error

eIl−Inl
:= Il(ω)− Inl(ω) (4.44)

appears to be not acceptable modify the voltage V (ω) “in an appropriate way”.

With this modified voltage return to step 2 and repeat the process until the error

(4.44) is below an acceptable limit and, thus, the currents Il(ω) and Inl(ω) are

balanced.

To modify in step 5 the voltage V (ω) “in an appropriate way” usually is reduced to

finding zeros of a set of nonlinear equations. Corresponding iterative solution methods

are part of the mathematical literature [165, 101]. These can also be used to solve the

nonlinear equation in step 4. The standard way to numerically perform the required

Fourier transformations in step 3 and step 4 is to apply the Fast Fourier Transform [13].

Harmonic balance techniques3 have been used to study scattering properties of non-

linearly loaded antennas and antenna arrays [91, 118]. The examples considered involved

two-tone excitations and in these cases intermodulation phenomena were observed on

the grounds of numerical calculations. But it is a disadvantage of the common har-

monic balance techniques that in case of a two-tone or multi-tone excitation the various

frequencies must be pairwise commensurable, i.e., the frequencies must be harmonics

of a common fundamental frequency. This is the actual reason for the name harmonic

balance technique. It should be mentioned, however, that methods have been proposed

to generalize the harmonic balance technique in order to overcome this limitation [133,

§3.6].

4.3 Calculation of intermodulation phenomena

We have introduced three frequency domain methods of nonlinear circuit theory in order

to be able to calculate intermodulation phenomena at nonlinearly loaded antennas within

resonators. We summarize the properties of these methods:

3Here the harmonic balance technique is in the plural since different variations of this technique

exist [133, §3].
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• The method of successive approximation is an analytic method which is suitable to

analyze weak nonlinearities that are driven by small signals. It is laborious to use if

higher order iterations are calculated by hand. However, it is rather straightforward

to program the required analytic calculations by means of computer algebra.

• The Volterra series analysis also is an analytic method which is appropriate for

the analysis of weak nonlinearities and small signals. The computation of higher

order nonlinear transfer functions is laborious. Unlike the method of successive ap-

proximation, the Volterra series analysis is not easily transformed into a computer

algorithm.

• The harmonic balance technique is a numerical method which is appropriate to

analyze a variety of nonlinearities. However, it cannot directly be applied to general

multi-tone excitations.

Considering these points it seems appropriate to apply in the following the method of

successive approximation.

4.3.1 Intermodulation at a nonlinearly loaded antenna within

a cavity

In order to study nonlinearly loaded antennas within cavities we need to know the input

impedance at the antenna port where the nonlinear load is located. To become specific

we focus on single dipole antennas that are nonlinearly loaded at the antenna center.

Then an input impedance is represented by a self impedance, as calculated along the lines

of Sec. 3.4.2. To illustrate this point we now return to the antenna-cavity configuration

of Sec. 3.4.2 and reconsider antenna 1.

(a) Equivalent circuit of an antenna within a cavity

The real and imaginary part of the self impedance of antenna 1 are shown in Figs. 3.20

and 3.22, respectively. In order to model this self impedance by an equivalent circuit

we recall from Sec. 3.1.4 (c) that the self impedance of an antenna element within a

cavity can be composed of contributions of longitudinal and transverse eigenfunctions.

The transverse contributions are represented as a collection of parallel RLC-circuits.

Accordingly, we consider a circuit as displayed in Fig. 4.7. This circuit contains four

parallel RLC circuits in series, representing the four modes 110, 130, 310, and 330 that

couple to antenna 1 in the frequency range up to 100 MHz. The circuit also contains

a capacitor Cfree and an inductor Lfree to take into account the antenna properties in

free space. These two lumped element constitute a simplified pole/zero expansion of

the corresponding input impedance in free space [192, §9.3], [8]. The values of Cfree and

Lfree can be fitted to match the method of moments solution of the input impedance of
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Figure 4.7: Equivalent circuit of the self impedance of antenna 1 which is located within a

rectangular cavity. This equivalent circuit is valid in the frequency range up to 100 MHz

where antenna 1 couples to four cavity resonances. For higher frequencies the coupling

to additional resonances needs to be taken into account. However, this is trivial since in

this case it is only required to add more parallel RLC circuits.

free space resonance 110 resonance 130 resonance 310 resonance 330

Lfree = 286.4nH L110 = 12.65nH L130 = 4.171nH L310 = 3.469nH L330 = 2.434nH

Cfree = 2.652pF C110 = 1.850nF C130 = 1.278nF C310 = 1.202nF C330 = 1.068nF

—– R110 = 1500Ω R130 = 1500Ω R310 = 1500Ω R330 = 1500Ω

Table 4.1: Explicit values of the lumped elements that constitute the equivalent circuit

of Fig. 4.7.

free space. The values of the lumped elements Lmnp, Cmnp and Rmnp are determined

from the method of moments solution that yields Figs. 3.20 and 3.22 and from the

relations (3.64)–(3.66). As a result we obtain the values that are displayed in Tab. 4.1.

With these values we calculate the impedance Zcirc of the equivalent circuit. The real

and imaginary part of the result are shown in Fig. 4.8. Both parts agree well with the

method of moments solution. One should note that the height of a plotted resonance

peak depends on how close the actual resonance frequency is approached by one of the

sampled frequencies.

We now have specified the equivalent circuit of an antenna impedance which can be

implemented in the Thévenin equivalent of Fig. 4.3. In order to complete the problem it

remains to choose a nonlinearity and an excitation. We will assume that the nonlinearity

is characterized by a voltage-current relation of the form

vnl(t) = b1i(t) + b2i
2(t) + b3i

3(t) (4.45)

with constant parameters b1, b2 and b3. As excitation we choose a two-tone excitation

as

veq(t) = v1 cos(ω1t) + v2 cos(ω2t) (4.46)

with constant amplitudes V1 and V2. This yields a particular example of an equivalent
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Figure 4.8: Real and imaginary part of the impedance Zcirc(f) of the equivalent circuit of

Fig. 4.7. They represent approximations to the method of moments solution of Figs. 3.20

and 3.22.

circuit which models the voltage and current at the nonlinear load of an antenna within

a cavity.

(b) Application of the method of successive approximation

We now apply the method of successive approximation. The general algorithm has been

described in Sec. 4.2.1 and the example of the same section exhibited the first iteration

in detail. One should note that the method of successive approximation requires that

a possible linear part of the nonlinearity gets absorbed in the circuit impedance Z(ω).

In our specific case the voltage-current relation (4.27) exhibits a linear part which is

determined by the constant b1. It follows that the impedance Z(ω) of the general example

in Sec. 4.2.1 now assumes the form Zcirc(ω) + b1.

The solution of the first order iteration is displayed in (4.32) and (4.34). It is clear

that the impedance Z(ω) has no effect on the values of intermodulation frequencies but

determines the amplitudes of the resulting spectrum. For further illustration we fix the

parameters b1, b2, b3, V1, V2 and choose

b1 = 1 kΩ , b2 = −6
kΩ

A
, b3 = 3

kΩ

A2 , (4.47)

v1 = v2 = 100 V . (4.48)

For the given value of b1 we plot in Fig. 4.9 the absolute value and the argument of

Zcirc(ω) + b1. Similar to Fig. 4.8 resonance peaks are observed whenever antenna 1

couples to a cavity resonance.

It remains to choose exciting frequencies ω1 = 2πf1 and ω2 = 2πf2. We first set

f1 = 70MHz and f2 = 80MHz. After four Picard iterations, that have been calculated
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Figure 4.9: Absolute value and argument of the complex impedance Zcircuit(ω) + b1.

with the aid of the computer algebra program Maple, the amplitudes of the major

frequencies in the emerging spectrum of the current through the nonlinear load do no

longer significantly change and the corresponding result is shown in Fig. 4.10. The

qualitative form of the spectrum is expected from the simple power series analysis of

Sec. 4.1.2, it looks analogous to the spectrum of Fig. 4.5. We note, in particular, the

emergence of the low intermodulation frequency at 10MHz.

The chosen frequencies f1 = 70MHz and f2 = 80MHz are slightly above the resonance

frequencies f130 and f310, respectively. The values of the antenna impedance at 70MHz

and 80MHz are essentially those of free space. To change this situation we lower the

exciting frequencies and choose f1 = 69MHz and f2 = 78MHz such that they approach

resonance peaks with significantly increased absolute values of the antenna impedance,

compare the left graph of Fig. 4.9. Since the absolute value of the antenna impedance

enters the denominator of the terms that emerge from the Picard iteration, see (4.34), we

expect that the new choice of exciting frequencies will lower the amplitudes of the current

spectrum. This is verified by Fig. 4.11 which shows the current spectrum which results

after four Picard iterations. An additional and obvious explanation of this phenomenon

is that the cavity resonances, which are represented by the parallel RLC-circuits of

Fig. 4.7, act like filters that suppress the exciting frequencies.

In the resonance region the absolute value of the impedance Zcircuit(ω) + b1 may

also decrease if compared to the corresponding value that were obtained if the antenna

were located in free space. This is observed in the left graph of Fig. 4.9: Towards

lower frequencies any resonance peak attains a (not very pronounced) minimum. If

we move the exciting frequencies to the vicinity of these minima the amplitudes of the

resulting current spectrum should become (slightly) larger if compared to the first choice

of exciting frequencies which resembled the situation of free space. Indeed, if we choose

f1 = 68.7MHz and f2 = 77.7MHz we obtain after four Picard iterations the current

spectrum of Fig. 4.12. Apparently, the amplitudes of the spectrum are larger than
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Figure 4.10: Resulting spectrum of the current I(ω) through the nonlinear antenna

load. The chosen two-tone excitation consists of the frequencies f1 = 70MHz and

f2 = 80MHz. Significant contributions to the current at the intermodulation frequencies

10MHz, 60MHz, and 90 MHz are clearly visible.

those of Fig. 4.10. One should note that this is not a pure resonance effect. A pure

resonance curve of a parallel RLC circuit, as exemplified by Fig. 3.6, exhibits exactly

one maximum of the absolute value of the corresponding impedance but no minimum.

The minima in the left graph of Fig. 4.9 are due to the fact that the free space part

of the antenna impedance, which in the equivalent circuit of Fig. 4.7 is represented by

the capacitance Cfree, adds a large negative value to the imaginary part of the antenna

impedance.

4.3.2 Remarks

It should be apparent by now that for the analysis of a nonlinearly loaded antenna by

means of nonlinear circuit theory it is not really important if the antenna is located

in a resonating environment or not. However, before we are able to invoke nonlinear

circuit theory we have to know the equivalent circuit which characterizes the linear elec-

tromagnetic properties of the antenna that are present if the nonlinear load is removed.

These linear electromagnetic properties, which are represented by antenna impedances,

will reflect possible resonance effects. For the modeling and calculation of the relevant

antenna impedances the methods of Chap. 3 are suitable. In particular, it turns out

that within an equivalent circuit electromagnetic resonances are represented by parallel
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Figure 4.11: Resulting spectrum of the current I(ω) through the nonlinear antenna

load if the two-tone excitation consists of the (resonant) frequencies f1 = 69MHz and

f2 = 78MHz. If compared to the spectrum of Fig. 4.10 the amplitudes are considerably

reduced.

RLC-subcircuits. The explicit values of the elements that constitute these subcircuits

have to be determined from the complete solution of the corresponding linear antenna

problem.

The nonlinear circuit theory provides voltage and current spectra as primary results.

These spectra are composed of intermodulation frequencies. It follows from our anal-

ysis that the values of these intermodulation frequencies do depend on the excitation

frequencies and on the nonlinear load, but they are independent of the linear antenna

properties. In particular, they are independent of possible resonance effects. However,

if resonance effects are present these can affect the amplitudes of the resulting spectra.

Therefore, the influence of resonance effects on the voltage and current spectra appear

to be not drastic. But it would be rush in our judgment to assume that this excludes any

drastic influence of resonance effects. We have calculated intermodulation frequencies

such as the low intermodulation frequency ∆ω = |ω1 − ω2| which results from a two-

tone excitation. Once the values of these intermodulation frequencies coincide with a

resonance frequency, drastic electromagnetic coupling effects can happen, as exemplified

by the analysis of mutual antenna impedances in the presence of resonances in Chap. 3.

We remark that strong intermodulation effects at nonlinearities within a resonator have

also been experimentally verified for the special case of repetitive sinusoidal pulses as

excitation [112].
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Figure 4.12: Resulting spectrum of the current I(ω) through the nonlinear antenna load

if the two-tone excitation consists of the frequencies f1 = 68.7MHz and f2 = 77.7MHz.

If compared to the spectrum of Fig. 4.10 the amplitudes are slightly increased.

We finally mention that analytic iterative techniques not only are suitable to predict

intermodulation frequencies and their corresponding amplitudes. They can also be used

to design filters, the so-called “pre-inverses” or ”post-inverses”, to suppress intermodula-

tion frequencies in order to protect a system. To get an impression of this possibility we

refer to [158, 231].
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Chapter 5

Antenna Theory and Transmission

Line Theories

Transmission lines consist of metallic structures that transmit electromagnetic signals

and energy. In this respect they are similar to systems of transmitting and receiving

antennas. However, the physical mechanisms that govern the electromagnetic trans-

mission along transmission lines are quite different if compared to the electromagnetic

transmission between pairs of antennas. This circumstance is illustrated in Fig. 5.1.

~ Z L

transmitting
antenna

~ Z L

network
source

receiving
load

receiving
antenna

electromagnetic field

transmission transmission

electric charges

Figure 5.1: Electromagnetic transmission by means of a pair of antennas (left) and a

transmission line (right). Inbetween the antennas an electromagnetic field mediates the

actual transmission while the transmission line provides electric charges that mediate

the transmission between the source and the load.

Inbetween a pair of antennas the electromagnetic transmission results from a propa-

gating electromagnetic field which, for practical purposes, can often be approximated by

a radiation field. This does not mean that in such a situation no Coulomb field is present.

A Coulomb field will be related to the electric charges that move along the antennas and
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will constitute their near-field. But in many cases the transmitting and receiving anten-

nas are sufficiently far apart such that the main coupling is mediated by the radiation

field which resembles a freely propagating electromagnetic field1. Electric charges are

not involved in the actual electromagnetic transmission that happens inbetween the an-

tennas. They only are required at the beginning and at the end of the transmission in

order to, respectively, generate and receive the transmitting electromagnetic field.

The electromagnetic transmission along a transmission line does involve electric

charges. These charges are located on the transmission line which normally consists of a

highly conducting material. They are accompanied by a Coulomb field which dominate

their mutual electromagnetic interaction at short distances. While the electric charges

get accelerated, a radiation field will be produced. In particular, this will happen at

high frequencies or if the transmission line is strongly curved or bent. Normally, the

generation of a radiation field by electric charges on a transmission line is an unwanted

effect which may affect the properties of a transmission line. For many situations this

effect is small and negligible.

It follows that the dynamics along a transmission line is determined from the motion

of electric charges and not from the degrees of freedom of an electromagnetic field. The

fact that for the electromagnetic transmission along a transmission line the degrees of

freedom of the electromagnetic field can often be neglected implies that the classical

transmission line theory (classical TLT) has a much simpler structure than the Maxwell

theory. The classical TLT is a limiting case of the Maxwell theory and contains the elec-

tric current I(z), representing electric charges, and the electric voltage V (z), representing

the associated Coulomb fields, as main physical quantities [103, 169, 226, 217]. Clearly,

these two quantities are not independent of each other. They are related by Telegrapher

equations which, for a two-wire transmission line and in the frequency domain, are of

the form

∂V (z)

∂z
+ (jωL′ +R′)I(z) = V ′

s (z) , (5.1)

∂I(z)

∂z
+ (jωC ′ +G′)V (z) = I ′s(z) . (5.2)

The primed quantities denote per-unit-length parameters. Explicitly, the quantities L′,

R′, C ′, and G′ are the per-unit-length inductance, resistance, capacitance, and conduc-

tance, respectively. They represent geometric and material properties of the transmission

line. The quantities V ′
s and I ′s denote distributed voltage and current sources, respec-

tively, and represent the electromagnetic excitation of the line. For a given exciting

1We remind us at this point that in the presence of moving electric charges there will be an extended

nonvanishing transverse current J⊥ which, in turn, will couple to the transverse parts of the electro-

magnetic field. In this general case there is no free propagation of an electromagnetic field since the

wave equations (1.212) and (1.213) will always contain a non-vanishing source term. The propagation

can only be approximately free at large distances to moving charges.
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electromagnetic field their explicit form depends on the choice of one of several but

equivalent coupling models which is used to calculate V ′
s or I ′s [214, 3, 178].

Even though the classical TLT is approximate it is often preferred over the exact

Maxwell theory because the Telegrapher equations (5.1), (5.2), which constitute a set

of coupled first order differential equations, are much easier to solve than the complete

set of the Maxwell equations. The price that has to be paid for this simplification is the

limited scope of the classical TLT. It is obvious that prior to the application of classical

TLT its limitations need to be understood.

If the conditions for an application of the classical TLT are not met it is suggestive to

enlarge the range of applicability of the Telegrapher equations while keeping their math-

ematical structure. This leads to the subject of generalized transmission line theories

(generalized TLTs). We have the relations

Maxwell Theory ⊆ generalized TLTs ⊂ classical TLT .

In order to arrive at a generalized TLT, two meaningful possibilities come to mind:

1. Supplement the classical TLT by corrective terms that take into account additional

effects.

2. Derive more general Telegrapher equations from the exact Maxwell theory.

The second possibility appears to be the more systematic and logical one.

In this chapter we will discuss if the classical TLT can be applied in the presence of

resonances. To this end we provide in Sec. 5.1 a derivation of the classical TLT from the

full Maxwell theory, expressed in terms of integral equations of antenna theory, namely

in terms of Pocklington’s equation in the form (3.71) and the mixed potential integral

equation (3.89). Based on this derivation we will comment in Sec. 5.2 on generalized

TLTs and finally argue why the classical TLT can lead to satisfying results if applied

inside a resonator.

5.1 Classical transmission line theory deduced from

antenna theory

5.1.1 Coupled Pocklington’s equations, antenna and transmis-

sion line mode

We consider a set of coupled Pocklington’s equations (electric field integral equations)

which models the electromagnetic coupling to a system of wires. The wires are supposed

to represent a transmission line. For concreteness we consider two wires and assume a
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thin-wire approximation. Then the corresponding coupled Pocklington’s equations are

analogous to those who model two coupled thin-wire antennas,

jωµ

[∫

wire 1

G
E
(τ1, τ

′
1)I1(τ

′
1) dτ

′
1 +

∫

wire 2

G
E
(τ1, τ

′
2)I2(τ

′
2) dτ

′
2

]
· eτ1 = E inc

tan(τ1) , (5.3)

jωµ

[∫

wire 1

G
E
(τ2, τ

′
1)I1(τ

′
1) dτ

′
1 +

∫

wire 2

G
E
(τ2, τ

′
2)I2(τ

′
2) dτ

′
2

]
· eτ2 = E inc

tan(τ2) . (5.4)

Here we introduced the variables τ1, τ2 that parameterize the length of wire 1 and

wire 2, respectively. Fixed values of these variables represent fixed wire positions. The

unit vectors eτ1 , eτ1 are tangent to the line-like wires. The currents I1(τ1), I2(τ2) result

from the thin-wire approximation and are defined by

I i(τi) := Iieτi
(5.5)

for i = 1, 2. The scalar Ii is the value of the electric current at the wire position τi.

If the wires form a transmission line we expect that they can be parameterized by a

common coordinate ξ with value ξ = ξ0 at the beginning and ξ = ξL at the end of the

line, compare Fig. 5.2. We take this coordinate as a common integration variable and

write (5.3), (5.4) as

jωµ

[∫ ξL

ξ0

(
G

E
(τ1, τ

′
1)I1(τ

′
1)
∂τ ′1
∂ξ′

+ G
E
(τ1, τ

′
2)I2(τ

′
2)
∂τ ′1
∂ξ′

)
dξ′
]
· eτ1 = E inc

tan(τ1) , (5.6)

jωµ

[∫ ξL

ξ0

(
G

E
(τ2, τ

′
1)I1(τ

′
1)
∂τ ′1
∂ξ′

+ G
E
(τ2, τ

′
2)I2(τ

′
2)
∂τ ′2
∂ξ′

)
dξ′
]
· eτ2 = E inc

tan(τ2) . (5.7)

The variables τ1, τ2 are now understood as functions of the parameter ξ.

Next we introduce two currents IA and ITL as linear combinations of I1 and I2,

IA :=
1

2
(I1 + I2) , (5.8)

ITL :=
1

2
(I1 − I2) . (5.9)

The inverse equations are

I1 = IA + ITL , (5.10)

I2 = IA − ITL . (5.11)

Identifications of this kind are familiar from the classical TLT with IA being reminiscent

of the so-called “antenna mode”or “common mode” current and ITL being reminiscent of

the “tranmission line mode” or “differential mode” current. In the present context these

identifications are still formal. We note that neither IA nor ITL need to be tangent to
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Figure 5.2: Introduction of a common variable ξ which parameterizes the wires of a

transmission line.

one of the wires. But it is clear that we still may split IA and ITL into a component

and a unit vector,

IA =
1

2
(I1eτ1 + I2eτ2) =: IAeIA

, (5.12)

ITL =
1

2
(I1eτ1 − I2eτ2) =: ITLeITL

. (5.13)

If the relations (5.10), (5.11) are inserted into (5.6), (5.7) it is simple to find

jωµ

[∫ ξL

ξ0

([
G

E
(τ1, τ

′
1)
∂τ ′1
∂ξ′

+ G
E
(τ1, τ

′
2)
∂τ ′2
∂ξ′

]
IA(ξ′)

+

[
G

E
(τ1, τ

′
1)
∂τ ′1
∂ξ′
−G

E
(τ1, τ

′
2)
∂τ ′2
∂ξ′

]
ITL(ξ′)

)
dξ′
]
· eτ1 = E inc

tan(τ1) , (5.14)

jωµ

[∫ ξL

ξ0

([
G

E
(τ2, τ

′
1)
∂τ ′1
∂ξ′

+ G
E
(τ2, τ

′
2)
∂τ ′2
∂ξ′

]
IA(ξ′)

+

[
G

E
(τ2, τ

′
1)
∂τ ′1
∂ξ′
−G

E
(τ2, τ

′
2)
∂τ ′2
∂ξ′

]
ITL(ξ′)

)
dξ′
]
· eτ2 = E inc

tan(τ2) . (5.15)

We both add and subtract these equations and obtain

jωµ

∫ ξL

ξ0

(
GE

+A(τ1, τ2, τ
′
1, τ

′
2)IA(ξ′) +GE

+TL(τ1, τ2, τ
′
1, τ

′
2)ITL(ξ′)

)
dξ′ = E inc

tan(τ1) + E inc
tan(τ2) ,

(5.16)

jωµ

∫ ξL

ξ0

(
GE

−A(τ1, τ2, τ
′
1, τ

′
2)IA(ξ′) +GE

−TL(τ1, τ2, τ
′
1, τ

′
2)ITL(ξ′)

)
dξ′ = E inc

tan(τ1)− E inc
tan(τ2) ,

(5.17)
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where we introduced the abbreviations

GE
+A(τ1, τ2, τ

′
1, τ

′
2) := eτ1 ·

(
G

E
(τ1, τ

′
1)
∂τ ′1
∂ξ′

+ G
E
(τ1, τ

′
2)
∂τ ′2
∂ξ′

)
· eIA

+eτ2 ·
(

G
E
(τ2, τ

′
1)
∂τ ′1
∂ξ′

+ G
E
(τ2, τ

′
2)
∂τ ′2
∂ξ′

)
· eIA

, (5.18)

GE
+TL(τ1, τ2, τ

′
1, τ

′
2) := eτ1 ·

(
G

E
(τ1, τ

′
1)
∂τ ′1
∂ξ′
−G

E
(τ1, τ

′
2)
∂τ ′2
∂ξ′

)
· eITL

+eτ2 ·
(

G
E
(τ2, τ

′
1)
∂τ ′1
∂ξ′
−G

E
(τ2, τ

′
2)
∂τ ′2
∂ξ′

)
· eITL

, (5.19)

GE
−A(τ1, τ2, τ

′
1, τ

′
2) := eτ1 ·

(
G

E
(τ1, τ

′
1)
∂τ ′1
∂ξ′

+ G
E
(τ1, τ

′
2)
∂τ ′2
∂ξ′

)
· eIA

−eτ2 ·
(

G
E
(τ2, τ

′
1)
∂τ ′1
∂ξ′

+ G
E
(τ2, τ

′
2)
∂τ ′2
∂ξ′

)
· eIA

, (5.20)

GE
−TL(τ1, τ2, τ

′
1, τ

′
2) := eτ1 ·

(
G

E
(τ1, τ

′
1)
∂τ ′1
∂ξ′
−G

E
(τ1, τ

′
2)
∂τ ′2
∂ξ′

)
· eITL

−eτ2 ·
(

G
E
(τ2, τ

′
1)
∂τ ′1
∂ξ′
−G

E
(τ2, τ

′
2)
∂τ ′2
∂ξ′

)
· eITL

. (5.21)

5.1.2 Decoupling of antenna and transmission line mode cur-

rent: uniform transmission lines in free space

The expressions we obtained so far look more complicated than the original equations

(5.3) and (5.4) that we started from. To nevertheless appreciate this form of coupled

Pocklington’s equations we specialize to the case of straight and parallel wires. We

align a Cartesian coordinate system such that the z-axis is parallel to the wires and

choose ξ = z. This leads to the simplifications

eτ1 = eτ2 = eIA
= eITL

, (5.22)

eτ1,2 ·G
E · eIA,TL

= GE
zz , (5.23)

∂τ1
∂ξ

=
∂τ2
∂ξ

= 1 . (5.24)

Accordingly, equations (5.18) – (5.21) reduce to

GE
+A(z1, z2, z

′
1, z

′
2) = GE

zz(z1, z
′
1) +GE

zz(z1, z
′
2) +GE

zz(z2, z
′
1) +GE

zz(z2, z
′
2) , (5.25)

GE
+TL(z1, z2, z

′
1, z

′
2) = GE

zz(z1, z
′
1)−GE

zz(z1, z
′
2) +GE

zz(z2, z
′
1)−GE

zz(z2, z
′
2) , (5.26)

GE
−A(z1, z2, z

′
1, z

′
2) = GE

zz(z1, z
′
1) +GE

zz(z1, z
′
2)−GE

zz(z2, z
′
1)−GE

zz(z2, z
′
2) , (5.27)

GE
−TL(z1, z2, z

′
1, z

′
2) = GE

zz(z1, z
′
1)−GE

zz(z1, z
′
2)−GE

zz(z2, z
′
1) +GE

zz(z2, z
′
2) . (5.28)

Let us now further suppose that the transmission line is located in free space. Then

the Green’s function is that of free space, GE
zz = GE

0 zz. It is, in particular, translation



5.1 Classical transmission line theory deduced from antenna theory 205

invariant,

GE
0 zz(z, z

′) = GE
0 zz(|z − z′|) . (5.29)

For straight, parallel wires we have, compare Fig. 5.3,

|z1 − z′1| = |z2 − z′2| =⇒ GE
0 zz(z1, z

′
1) = GE

0 zz(z2, z
′
2) , (5.30)

|z1 − z′2| = |z2 − z′1| =⇒ GE
0 zz(z1, z

′
2) = GE

0 zz(z2, z
′
1) . (5.31)

z1

z ’2

z ’1

z2

zz’

|z − z’ |1

|z − z’ |
2

|z − z’ |2

|z − z’ |1

1

z0 zL

wire 1

wire 2
2

2
1

z

d

Figure 5.3: Geometry of a straight two-wire transmission line.

It follows that the relations (5.25)–(5.28) reduce to

GE
0 +A(z1, z2, z

′
1, z

′
2) = 2

(
GE

0 zz(z1, z
′
1) +GE

0 zz(z1, z
′
2)
)
, (5.32)

GE
0 +TL(z1, z2, z

′
1, z

′
2) = 0 , (5.33)

GE
0−A(z1, z2, z

′
1, z

′
2) = 0 , (5.34)

GE
0−TL(z1, z2, z

′
1, z

′
2) = 2

(
GE

0 zz(z1, z
′
1)−GE

0 zz(z1, z
′
2)
)
, (5.35)

and in view of the integral equation system (5.16), (5.17) it is recognized that the antenna

mode IA and the transmission line mode ITL completely decouple,

jωµ

∫ zL

z0

GE
0 +A(z1, z2, z

′
1, z

′
2)IA(z′) dz′ = E inc

tan(z1) + E inc
tan(z2) , (5.36)

jωµ

∫ zL

z0

GE
0−TL(z1, z2, z

′
1, z

′
2)ITL(z′) dz′ = E inc

tan(z1)− E inc
tan(z2) . (5.37)
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5.1.3 Transmission line mode current and classical transmis-

sion line theory

The antenna mode current IA in (5.36) vanishes at the beginning and at the end of the

transmission line. This is analogous to the boundary conditions of the antenna current

on a single wire antenna. Also the Green’s function GE
+A(z1, z2, z

′
1, z

′
2) exhibits the same

qualitative behavior as the kernel of the Pocklington’s equation for a single wire antenna

since in (5.32) the terms GE
0 zz(z1, z

′
1) and GE

0 zz(z1, z
′
2) add up and only considerably

differ if the distance |z − z′| is smaller or of the order of the distance d between wire 1

and wire 2. It follows that (5.36) can be solved with the methods of antenna theory.

The classical TLT is contained in (5.37). To explicitly see this we first note that

Pocklington’s equation (3.72),

jωµ

∫ zL

z0

GE
zz(z, z

′)I(z′) dz′ = E inc
tan(z) , (5.38)

is equivalent to the mixed potential integral equation (3.89),

1

jωε

∫ zL

z0

[
∂Gφ(z, z′)

∂z

∂I(z′)

∂z′
+ k2GA

zz(z, z
′)I(z′)

]
dz′ = −E inc

z (z) , (5.39)

with Gφ(z, z′) and GA
zz(z, z

′) indicating the Green’s functions for the scalar potential φ

and the magnetic vector potential A in the Lorenz gauge, respectively. We introduce a

per-unit-length charge q′ by the continuity equation

∂I(z)

∂z
+ jωq′(z) = 0 (5.40)

and define a potential V q′ by

V q′(z) :=
1

ε

∫ zL

z0

Gφ(z, z′)q′(z′) dz′ . (5.41)

Furthermore, in view of (5.35) and (5.37), we introduce the combinations

Gφ
0−TL(z, z′) = 2

(
Gφ

0(z1, z
′
1)−Gφ

0(z1, z
′
2)
)
, (5.42)

GA
0−TL(z, z′) = 2

(
GA

0 zz(z1, z
′
1)−GA

0 zz(z1, z
′
2)
)
. (5.43)

For the straight two-wire transmission line of Fig. 5.3 we explicitly have

Gφ
0−TL(z, z′) = GA

0−TL(z, z′) =
1

2π

[
e−jk
√

(z−z′)2+ρ2

√
(z − z′)2 + ρ2

− e−jk
√

(z−z′)2+d2

√
(z − z′)2 + d2

]
, (5.44)

where ρ denotes the wire radius which limits the Coulomb singularity in the thin-wire

approximation. It is an elementary mathematical task to verify that Gφ
0−TL and GA

0−TL,
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as given by (5.44), are strongly localized functions that are characterized by a sharp peak

in the domain where k|z−z′| is of the order of the distance d. Since the spatial variation

of q(z) and I(z) is of the order of the wavelength considered these quantities do only

slightly change along an interval of length k|z − z ′| ≈ d if we assume that kd� 1. This

circumstance is essential in the derivation of the classical TLT, compare the appendix

of [218], for example, since it leads to the simplifications

∫ zL

z0

Gφ
0−TL(z, z′)q′(z′) dz′ ≈ q′(z)

∫ zL

z0

Gφ
0−TL(z, z′) dz′ , (5.45)

∫ zL

z0

GA
0−TL(z, z′)I(z′) dz′ ≈ I(z)

∫ zL

z0

GA
0−TL(z, z′) dz′ . (5.46)

The integrals in these equations can be approximately evaluated according to

1

2π

∫ zL

z0

[
e−jk
√

(z−z′)2+ρ2

√
(z − z′)2 + ρ2

− e−jk
√

(z−z′)2+d2

√
(z − z′)2 + d2

]
dz′

≈ 1

2π

∫ zL

z0

[
1√

(z − z′)2 + ρ2
− 1√

(z − z′)2 + d2

]
dz′ (5.47)

≈ ln(d/ρ)

π
, (5.48)

where the first approximation (5.47) requires the previously made assumption kd � 1

and the second approximation (5.48) requires zL−z � d and z−z0 � d, i.e., the point z

should not be close to the beginning or the end of the line such that boundary effects

are negligible.

The mixed potential integral equation (5.39) and the continuity equation (5.40) can

now be written as classical Telegrapher equations

∂V q′(z)

∂z
+ jωL′I(z) = E inc

tan(z1)− E inc
tan(z2) , (5.49)

∂I(z)

∂z
+ jωC ′V q′(z) = 0 , (5.50)

with

C ′ :=
ε∫ zL

z0
Gφ

0−TL(z, z′) dz′
(5.51)

≈ πε

ln(d/ρ)
, (5.52)

L′ := µ

∫ zL

z0

GA
0−TL(z, z′) dz′ (5.53)

≈ µ

π
ln(d/ρ) . (5.54)
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As a result, with the Telegrapher equations (5.49), (5.50) and the per-unit-length pa-

rameters (5.52), (5.54) we have arrived at the classical TLT. Since the source terms are

given by

V ′
s (z) = E inc

tan(z1)− E inc
tan(z2) , (5.55)

I ′s(z) = 0 , (5.56)

we have obtained the field-to-line coupling model of Agrawal [3, 216].

5.1.4 Discussion

We summarize the assumptions that are necessary to derive the classical TLT: First,

the coupled Pocklington’s equations (5.3), (5.4) have been written in a form which

presupposes

1. perfect conductivity of the wires;

2. a thin-wire approximation.

These two simplifying assumptions are also often made in antenna theory. Additionally,

a decoupling of antenna mode current and transmission line mode current required

3. geometrical uniformity, i.e., the conductors have to be straight and in parallel;

4. translation invariance of the relevant Green’s function along the transmission line.

Finally, a reduction of the integral equation for the transmission line current and the

continuity equation to classical Telegrapher equations required that

5. the wavelength considered is large in comparison to the separation of the trans-

mission line conductors, kd� 1.

The assumptions 1., 3., and 4. are clearly cut and represent precise statements. Also as-

sumption 2., the thin-wire approximation, can be made precise [235]. But assumption 5.

is not a precise statement. It is required to simplify the integro-differential equation

(5.39) to a differential equation and this, in turn, requires to assume the per-unit-length

charge q′(z) and current I(z) to be (approximately) constant along an (electrically small)

range of integration. That is, we employ electrostatic and magnetostatic assumptions

and, thus, neglect that the per-unit-length charge and current along the line actually are

subject to change. As a result, we neglect a radiation field which, according to (1.243)

and (1.244), always is present if electric charges are accelerated. Classical TLT would

conceptually be much simpler if we had available a mathematical method to strictly

decompose a given electromagnetic field into its constitutive velocity (Coulomb) and

acceleration (radiation) field. But no such method is known and this is the reason why
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we have to employ imprecise approximations, as represented by assumption 5, in order

to isolate the dynamics of electric charges and their associated Coulomb field from the

radiation field. As a result, the Telegrapher equations do not represent the complex

dynamics of the complete electromagnetic field and its sources which is characterized by

the inseparability of Coulomb field and radiation field.

5.2 Generalized transmission line theories

It has been mentioned that the Telegrapher equations (5.1), (5.2) of the classical TLT

have a much simpler structure than the complete set of Maxwell equations. Indeed,

Telegrapher equations can readily be solved: Suppose that Telegrapher equations are

written in the combined form

∂

∂ξ

(
V (ξ)

I(ξ)

)
=

(
P11(ξ) P12(ξ)

P21(ξ) P22(ξ)

)(
V (ξ)

I(ξ)

)
+

(
V ′

s (ξ)

I ′s(ξ)

)
(5.57)

or, in a more condensed notation2, as

∂X(ξ)

∂ξ
= P (ξ)X(ξ) + X ′

s(ξ) (5.58)

with a, possibly position dependent, per-unit-length parameter matrix P (ξ). Then it is

known from the general theory of differential equations that the general solution for the

unknowns V (ξ), I(ξ) ≡X(ξ) is given by [39, 53]

X(ξ) =Mξ
ξ0
{P }X(ξ0) +

∫ ξ

ξ0

Mξ
η{P }X ′

s(η) dη . (5.59)

Here, the operatorMξ
ξ0
{P } denotes the product integral or matrizant of the matrix P (ξ),

Mξ
ξ0
{P } := I +

∫ ξ

ξ0

P (η) dη +

∫ ξ

ξ0

P (η)

∫ η

ξ0

P (τ) dτ dη + . . . (5.60)

=

ξ∏

ξ0

eP (η) dη . (5.61)

In the classical TLT the parameter matrix P is position independent and the product

integral simplifies to a matrix exponential.

In generalized transmission line theories one or more of the necessary assumptions of

the classical TLT, which are listed in Sec. 5.1.4, are dropped while the electromagnetic

propagation still is described by Telegrapher equations of the form (5.58). Once those

generalized Telegrapher equations are determined, it is possible to study on the basis

of (5.59) their solutions.

2While in (5.57) the notation implies a two-wire transmission line, the notation in (5.58) is suitable

to represent the Telegrapher equations of a multiconductor transmission line [7].
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5.2.1 Generalized transmission line theories as methods for

solving field integral equations of antenna theory

Most of the literature on extensions of the classical TLT deals with geometrically nonuni-

form transmission lines. This is discussed and reviewed in [74, 154, 7], for example. Here

we will restrict ourselves to point out recent advantages in the framework of generalized

transmission line theories which are based on rigorous derivations and take the field

integral equations of antenna theory as starting point.

It already had been noted by King [103] that in the conversion of an electric field inte-

gral equation to a Telegrapher equation it is essential to pull, similar to (5.45), (5.46), the

charge and current distributions out of the relevant integrals. Realizing this necessity,

Haase et al. [73, 74, 75, 76] developed a new method to derive a generalized transmission

line theory which they called transmission line super theory (TLST). Their derivation is

based on the mixed-potential integral equation and the continuity equation. Both equa-

tions are written in a form which is appropriate to be applied to general transmission

line structures. To rewrite the mixed potential integral equation as a Telegrapher equa-

tion it is assumed that the electric current is given by the general solution of a second

order differential equation3. This general solution can be expressed in the form (5.59)

and be inserted into the mixed potential integral equation. As a result, the functions

of the charge and current distribution become independent of the integration variable

and can be pulled in front of the integrals in order to yield generalized transmission line

equations. A solution of these equations is not trivial since it requires, in particular, an

iterative solution of an integral equation for the, a priori, unknown generalized transmis-

sion line parameters and source terms. This, in turn, requires mathematical procedures

to efficiently evaluate expressions that contain product integrals [9, 74]. The TLST has

been applied to a variety of examples, reproducing known analytic solutions as well as

results from numerical method of moment calculations and experimental measurements.

Generalized transmission line theories add radiation effects to the classical Telegra-

pher equations and it turns out that there is a freedom in absorbing the corresponding

additional terms by the per-unit-length parameters or the distributed sources. In partic-

ular, this complicates the physical interpretation of generalized per-unit-length parame-

ters which, in the context of a generalized transmission line theory, usually are position

dependent, frequency dependent, or gauge dependent. To a good degree these features

have been elucidated by a number of articles by Nitsch & Tkachenko [156, 157, 159].

We also mention results of Tkachenko et al. which demonstrate the benefit of analyt-

ical techniques for the analysis of canonical but geometrically nonuniform transmission

line configurations. The results are based on the solution of Pocklington’s equation or

the mixed potential integral equation [218, 155, 223]. In these studies, the canonical

transmission line structures usually involve a perfectly conducting ground plane. This

3This assumption is backed by a study of Mei [139] where it is shown that the current distribution

along a nonuniform transmission line generally is characterized by a second order differential equation.
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makes it possible to discard the symmetric antenna mode current right from the be-

ginning and, similar to the analysis of Sec. 5.1.3, concentrate on the evaluation of the

transmission line mode current.

In summary, considerably progress in the formulation of generalized transmission

line theories has been achieved during the last years. Generalized transmission line

theories offer an alternative way to solve integral equations of antenna theory and are

applicable as long as the structures considered resemble a transmission line which can

be parameterized by a single spatial variable. In particular, the TLST produces results

that are in good agreement with corresponding method of moments calculations and,

additionally, are in a form which is suitable to embed transmission lines into network

representations of larger systems [74].

5.2.2 Transmission lines in the presence of resonances

There have been investigations of transmission lines in cavities, but these are, by far, not

extensive. Some investigations, such as [49, 151, 166], combine numerical methods with

classical TLT and validate their results against (more time-consuming) purely numerical

calculations and experimental measurements. Recently, by means of a semi-analytical

approach, it has been more systematically investigated if the classical TLT still is valid

within a cavity [207]. To this end, a classical TLT model of a specific transmission line

inside a rectangular cavity has been combined with an analytically calculated incident

electromagnetic cavity field. Then the results of this classical TLT model were compared

to corresponding results of a numerical full-wave calculation and it was observed that the

classical TLT reproduced most of the characteristic features of the full-wave calculation.

However, the mechanism that explains why the classical TLT, for certain configurations,

yields satisfying results inside cavities has not been discussed.

Any rigorous approach towards transmission lines in cavities will necessarily involve

the integral equations of antenna theory in resonating systems. From the developments

of Chap. 3 it is anticipated that the solution of any integral equation of this type will

require numerical evaluations, as exemplified in [221]. Clearly, it is always possible

to resort to method of moments calculations, such as presented in Sec. 3.4, in order to

calculate the current on a transmission line in the same way as the current on an antenna

– the integral equations to solve are the same. Similarly, it is expected that the TLST

can also be adapted to cavities’ Green’s functions, even though this has not been shown

in detail, yet.

But let us return to the integral equation based derivation of classical TLT in Sec. 5.1.

To arrive at the Telegrapher equations (5.49), (5.50) we employed three times the prop-

erties of free space Green’s functions:

1. To decouple for straight, parallel wires the antenna mode from the transmission

line mode we used translation invariance of the free space Green’s function GE
0 zz,

compare (5.29).
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2. To pull in (5.45), (5.46) the per-unit-length charge q′ and the current I out of the

integrals we took advantage of the strongly localized Coulomb singularity that is

contained in the combinations Gφ
0−TL and GA

0 +TL of free space Green’s functions.

3. To calculate the per-unit-length parameter L′ and C ′ we used in (5.47) the explicit

mathematical expression of the free space combinations Gφ
0−TL and GA

0−TL.

For the classical TLT to be applicable within a cavity it needs to be checked if these

three steps are (approximately) valid if the Green’s functions of free space are replaced

by the corresponding cavities’ Green’s functions. To this end we recall that, according

to Sec. 2.3.3, it is physically meaningful to split a cavities’ Green’s function Gcav into a

free space contribution G0 and a remainder G̃ which takes into account the interaction

with the cavity,

Gcav = G0 + G̃ . (5.62)

We now state that the steps 1.–3. can approximately be performed within a cavity.

1. The decoupling of antenna and transmission line mode requires the kernels

GE
+TL(z1, z2, z

′
1, z

′
2) and GE

−A(z1, z2, z
′
1, z

′
2) to vanish. From the relations (5.26), (5.27),

and Fig. 5.3 with d = y1 − y2 it follows that it is meaningful to consider the Taylor

expansions

G̃E
zz(z1, z

′
2) ≈ G̃E

zz(z1, z
′
1)−

∂G̃E
zz

∂y
(z1, z

′
1) d , (5.63)

G̃E
zz(z1, z

′
2) ≈ G̃E

zz(z2, z
′
2) +

∂G̃E
zz

∂y
(z2, z

′
2) d , (5.64)

G̃E
zz(z2, z

′
1) ≈ G̃E

zz(z2, z
′
2) +

∂G̃E
zz

∂y
(z2, z

′
2) d , (5.65)

G̃E
zz(z2, z

′
1) ≈ G̃E

zz(z1, z
′
1)−

∂G̃E
zz

∂y
(z1, z

′
1) d , (5.66)

since then

GE
+TL(z1, z2, z

′
1, z

′
2) = GE

−A(z1, z2, z
′
1, z

′
2) ≈

(
∂G̃E

zz

∂y
(z1, z

′
1) +

∂G̃E
zz

∂y
(z2, z

′
2)

)
d . (5.67)

If the terms involving the derivative of the Green’s function are small the kernels

GE
+TL(z1, z2, z

′
1, z

′
2) and GE

−A(z1, z2, z
′
1, z

′
2) are small as well and, as a result, antenna

and transmission line mode approximately decouple. For a qualitative discussion of this

point one might represent the cavities Green’s function G
E

cav by means of an expansion

in transverse and longitudinal eigenfunctions, compare Sec. 2.3.1.

The transverse eigenfunctions are solutions of sourceless Helmholtz equations and

the spatial variation of the dominant eigenfunctions is of the order of the wavelength

considered. It follows that the contributions of the transverse eigenfunctions to the
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derivative terms in (5.63)–(5.66) will be of the order of kd. Thus, according to the

assumption kd� 1 of classical TLT, these contributions will be small.

The longitudinal eigenfunctions are solutions of electrostatic Poisson equations and

constitute the Coulomb singularity. Their spatial variation diverges close to a Coulomb

singularity and, otherwise, quickly decays. Since G̃ = Gcav −G0 contains no Coulomb

singularity it is expected that, in general, the longitudinal eigenfunctions will lead to no

significant spatial variation of G̃. However, this argument does not apply if a source

point is close to a cavity wall. In this case there will be a dominant “mirrored”Coulomb

interaction with the cavity wall which is embedded in G̃ and the spatial variation of G̃

might exceed the order of the parameter kd. However, this will be an electrostatic effect

and no resonance effect.

2. We need to reconsider the approximations (5.45), (5.46) which are due to the domi-

nance of the Coulomb interactions at short distances when source and observation point

approach each other. This dominance is unaffected by the presence of a cavity.

3. The electrostatic calculation that led to the values of the per-unit-length parameters

(5.52), (5.54) consists of the evaluation of integrals of the form
∫ L/2

−L/2
Gφ,A

−TL(z, z′) dz′.

Within a cavity these parameters will only significantly change if the Coulomb field in

the vicinity of the transmission lines is significantly perturbed by the presence of the

cavity. In this case, the parameters L′, C ′ have to be calculated from an electrostatic

calculation which takes into account the cavity wall.

These arguments are of a general nature. They should be taken as guidelines rather

than as mathematical proofs. However, they express the basic mechanism that under-

lies conventional TLT: The basic mechanism of conventional TLT is the subtraction of

electromagnetic field contributions of two (or more) conductors such that the sharp, lo-

calized Coulomb fields remain and the smooth, extended radiation fields (approximately)

cancel. This mechanism applies both in free space and within resonating systems.
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Appendix A

Tensor Analysis, Integration, and

Lie derivative

Within a theoretical formulation physical quantities are modeled as mathematical ob-

jects. The understanding and application of appropriate mathematics yields, in turn,

the properties of physical quantities. In the development of the axiomatic approach, we

made repeated use of integration, of the Poincaré lemma, and of the Stokes theorem.

It is with these mathematical concepts that it is straightforward to derive the basics of

electromagnetism from a small number of axioms.

Integration is an operation that yields coordinate independent values. It requires

an integration measure, the dimension of which depends on the type of region that is

integrated over. We want to integrate over one-dimensional curves, two-dimensional

surfaces, or three-dimensional volumes that are embedded in three-dimensional space.

Therefore, we have to define line-, surface-, and volume-elements as integration measures.

Then we can think of suitable objects as integrands that can be integrated over to yield

coordinate independent physical quantities.

A.1 Integration over a curve and covariant vectors

as line integrands

We consider a one-dimensional curve c = c(t) in three-dimensional space. In a specific

coordinate system xi, with indices i = 1, 2, 3, a parameterization of c is given by the

vector

c(t) =
(
c1(t), c2(t), c3(t)

)
. (A.1)

The functions ci(t) define the shape of the curve. For small changes of the parameter t,

with t→ t+ ∆t, the difference vector between c(t+ ∆t) and c(t) is given by

∆c(t) =

(
∆c1

∆t
,
∆c2

∆t
,
∆c3

∆t

)
∆t , (A.2)
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compare Fig.A.1. In the limit where ∆t becomes infinitesimally we obtain the line

element

dc(t) = (dc1(t), dc2(t), dc3(t))

:=

(
∂c1(t)

∂t
,
∂c2(t)

∂t
,
∂c3(t)

∂t

)
dt . (A.3)

It is characterized by an infinitesimal length and an orientation.

x1
x2

x3

c(t+  t)∆
∆c(t)

t+  t∆

c(t)

t

line c

Figure A.1: Parameterization of a curve c(t). The difference vector ∆c(t) between

c(t+ ∆t) and c(t) yields, in the limit ∆t→ 0, the line element dc(t).

We now construct objects that we can integrate over the curve c in order to obtain a

coordinate invariant scalar. The line element dc contains three independent components

dci. If we shift from old coordinates xi to new coordinates yj′ = yj′(xi) these components

transform according to

dcj
′

=
∂yj′

∂xi
dci . (A.4)

Therefore, we can form an invariant expression if we introduce objects α = α(xi), with

three independent components αi, that transform in the opposite way,

αj′ =
∂xi

∂yj′
αi . (A.5)

This transformation behavior characterizes a vector or, more precisely, a covariant vector

(a 1-form). It follows that the expression

αi dc
i = αj′ dc

j′ (A.6)

yields the same value in each coordinate system.
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Thus, we can now immediately define integration over a curve by the expression
∫
αi dc

i =

∫
α1 dc

1 + α2 dc
2 + α3 dc

3

=

∫ (
α1
∂c1

∂t
+ α2

∂c2

∂t
+ α3

∂c3

∂t

)
dt . (A.7)

The last line shows how to carry out explicitly the integration since αi and ci are functions

of the parameter t.

A.2 Integration over a surface and contravariant

vector densities as surface integrands

Now we consider a two-dimensional surface a = a(t, s). Within a specific coordinate

system xi, a parameterization of a is of the form

a(t, s) = (a1(t, s), a2(t, s), a3(t, s)) (A.8)

with parameters t, s and functions ai(t, s) that define the shape of the surface.

∆a i

t+  t∆

s+  s∆
∆s∆s

∆t ∆t∆ai

∆ai

st

surface a

Figure A.2: Parameterization of a surface a(t, s). The lines t =const, t + ∆t =const,

s =const, and s + ∆s =const circumscribe a surface ∆ai that is spanned by the edges
∆ai

∆t
dt and ∆ai

∆s
ds. In the limit ∆t → dt, ∆s → ds, it becomes an elementary surface

element dai.

An elementary surface element is bound by lines t =const, t + dt =const, s =const,

and s + ds =const, compare Fig.A.2. It is characterized by the two edges ∂ai

∂t
dt and

∂ai

∂s
ds. These edges span an infinitesimal surface, the area and orientation of which is

characterized by a covariant vector dai that points normal to the infinitesimal surface.

The vector dai is given by the vector product of ∂ai

∂t
dt and ∂ai

∂s
ds,

dai = εijk
∂aj

∂t

∂ak

∂s
dt ds . (A.9)
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In order to know how the components dai transform under coordinate transformations

yj′ = yj′(xi), we have to know the transformation behavior of the symbol εijk. Since in

any coordinate system, εijk assumes the values 0, 1, or -1 by definition, it is obvious that

in general

εi′j′k′ 6= ∂xi

∂yi′

∂xj

∂yj′

∂xk

∂yk′ εijk . (A.10)

This is because the determinant of the transformation matrix, i.e.,

det (∂x/∂y) = εijk
∂xi

∂yi′

∂xj

∂yj′

∂xk

∂yk′ , (A.11)

is, in general, not equal to one. But it follows from (A.11) that the correct transformation

rule for εijk is given by

εi′j′k′ =
1

det(∂x/∂y)

∂xi

∂yi′

∂xj

∂yj′

∂xk

∂yk′ εijk

= det(∂y/∂x)
∂xi

∂yi′

∂xj

∂yj′

∂xk

∂yk′ εijk . (A.12)

With (A.9) this yields the transformation rule for the components dai,

daj′ = det(∂y/∂x)
∂xi

∂yj′
dai . (A.13)

Now we construct quantities that can be integrated over a surface. Since a surface

element is determined from three independent components dai we introduce an integrand

with three independent components βi that transform according to

βj′ =
1

det(∂y/∂x)

∂yj′

∂xi
βi . (A.14)

Transformation rules that involve the determinant of the transformation matrix charac-

terize so-called densities. Densities are sensitive towards changes of the scale of elemen-

tary volumes. In physics they represent additive quantities, also called extensities, that

describe how much of a quantity is distributed within a volume or over the surface of a

volume. This is in contrast to intensities. The covariant vectors that we introduced as

natural line integrals are intensive quantities that represent the strength of a physical

field.

The transformation behavior (A.14) of the components βi characterizes a contravari-

ant vector density. With this transformation behavior the surface integral

∫
βidai =

∫
βiεijk

∂aj

∂t

∂ak

∂s
dt ds (A.15)

yields a scalar value that is coordinate independent.
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A.3 Integration over a volume and scalar densities

as volume integrands

We finally consider integration over a three-dimensional volume v in three-dimensional

space. Again we choose a specific coordinate system xi and specify a parameterization

of v by

v(t, s, r) =
(
v1(t, s, r), v2(t, s, r), v3(t, s, r)

)
, (A.16)

with three parameters t, s, and r.

An elementary volume element dv is characterized by three edges ∂vi

∂t
dt, ∂vi

∂s
ds, and

∂vi

∂r
dr. The volume, which is spanned by these edges, is given by the determinant

dv = det

(
∂vi

∂t
dt,

∂vi

∂s
ds,

∂vi

∂r
dr

)

= εijk
∂vi

∂t

∂vj

∂s

∂vk

∂r
dt ds dr . (A.17)

It is not coordinate invariant but transforms under coordinate transformations yj ′ =

yj ′(xi) according to

dv′ = det(∂y/∂x) dv . (A.18)

Since the volume element dv constitutes one independent component, a natural object

to integrate over a volume has one independent component as well. We denote such an

integrand by γ. It transforms according to

γ′ =
1

det(∂y/∂x)
γ . (A.19)

This transformation rule characterizes a scalar density and yields

∫
γ dv =

∫
γ εijk

∂vi

∂t

∂vj

∂s

∂vk

∂r
dt ds dr (A.20)

as a coordinate independent value.

A.4 Poincaré Lemma

The axiomatic approach takes advantage of the Poincaré lemma. The Poincaré lemma

states under which conditions a mathematical object can be expressed in terms of a

derivative, i.e., in terms of a potential.

We consider integrands αi, β
i, and γ of line-, surface-, and volume integrals, respec-

tively, and assume that they are defined in an open and simply connected region of

three-dimensional space. Then the Poincaré lemma yields the following conclusions:
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1. If αi is curl free, it can be written as the gradient of a scalar function f ,

εijk∂jαk = 0 =⇒ αi = ∂if . (A.21)

2. If βi is divergence free, it can be written as the curl of the integrand αi of a line

integral,

∂iβ
i = 0 =⇒ βi = εijk∂jαk . (A.22)

3. The integrand γ of a volume integral can be written as the divergence of an inte-

grand βi of a surface integral,

γ is a volume integrand =⇒ γ = ∂iβ
i . (A.23)

While conclusions (A.21), (A.22) are familiar from elementary vector calculus, this might

not be the case for conclusion (A.23). However, (A.23) is rather trivial since, in Cartesian

coordinates x, y, z, for a given volume integrand γ = γ(x, y, z) the vector β i with

components βx =
∫ x

0
γ(t, y, z)/3 dt, βy =

∫ y

0
γ(x, t, z)/3 dt, and βz =

∫ z

0
γ(x, y, t)/3 dt

fulfills (A.23). Of course, the vector βi is not uniquely determined from γ since any

divergence free vector field can be added to β i without changing γ. We further note

that γ, as a volume integrand, constitutes a scalar density. It can be integrated as

above to yield the components of β i as components of a contravariant vector density.

Therefore, the integration does not yield a coordinate invariant scalar such that γ cannot

be considered as a natural integrand of a line integral.

A.5 Stokes Theorem

In our notation Stokes theorem, if applied to line integrands αi or surface integrands βi,

yields the identities:

∫

V

∂iβ
i dv =

∫

∂V

βi dai , (A.24)
∫

S

εijk∂jαk dai =

∫

∂S

αi dc
i , (A.25)

where ∂V denotes the two-dimensional boundary of a simply connected volume V and

∂S denotes the one-dimensional boundary of a simply connected surface S.

A.6 Lie derivative

The Lie derivative lv describes the change of an object T between two infinitesimally

neighboring points p (with coordinates xi) and p̃ (with coordinates xi+εvi(p)), as noticed
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by an observer who applies a coordinate system x′ that is dragged along the vector field

vi [190, 225],

lvT := lim
p̃→p

T ′(p̃)− T (p)

||p̃− p|| (A.26)

= lim
ε→0

T ′(xi + εvi)− T (xi)

ε
. (A.27)

At the point p̃ the relation between the coordinate system x and the dragged coordinate

system x′ is given by the coordinate transformation

xn = x′
n

+ εvn(xi) (A.28)

with transformation matrix
∂xn

∂x′i
= δn

i + ε∂iv
n (A.29)

Example: We apply the definition (A.26) to a contravariant vector density βn with

transformation behavior

β ′n = det

(
∂xn

∂x′i

)
∂x′n

∂xi
βi . (A.30)

To evaluate (A.26) we only keep terms linear in ε and neglect higher order terms. We

note that

det

(
∂xn

∂x′i

)
= det(δn

i + ε∂iv
n) (A.31)

= 1 + εTrace( ∂iv
n)︸ ︷︷ ︸

=∂jvj

+O(ε2) . (A.32)

It follows

β ′n(p̃) = det

(
∂xn

∂x′i

)
∂x′n

∂xi
βi(p̃) (A.33)

= (1 + ε ∂jv
j)(δn

i − ε ∂iv
n)(βi(p) + ε vj∂jβ

n(p)) (A.34)

= βn(p) + ε
(
vj∂jβ

n(p)− ∂iv
nβi(p) + ∂jv

jβn(p)
)
, (A.35)

and we obtain from (A.27) for the Lie derivative of βn the expression

lvβ
n = vj∂jβ

n − βi∂iv
n + βn∂jv

j . (A.36)

In a similar way we obtain the Lie derivative of a covariant vector αn as

lvαn = vj∂jαn + αj∂nv
j (A.37)

and the Lie derivative of a scalar density γ turns out to be

lvγ = vj∂jγ + γ∂jv
j (A.38)

= ∂j(γv
j) . (A.39)
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Appendix B

Some Formulas of Vector and

Dyadic Calculus in Three

Dimensions

This appendix collects a few identities that are useful to work out expressions that

involve vector and dyadic quantities. A number of these identities has been used in the

previous chapters. A much more exhaustive collection of vector and dyadic identities is

provided by the appendices of the classic book of Van Bladel [227].

B.1 Vector identities

The following vector identities involve three-component vector functions a, b, c,d, a

scalar function ψ, and the differential operator ∇.

a · (b× c) = b · (c× a) = c · (a× b) (B.1)

a× (b× c) = (a · c)b− (a · b)c (B.2)

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) (B.3)

∇×∇ψ = 0 (B.4)

∇ · (∇× a) = 0 (B.5)

∇× (∇× a) = ∇(∇ · a)−∆a (B.6)

∇ · (ψa) = a ·∇ψ + ψ∇ · a (B.7)

∇× (ψa) = ∇ψ × a + ψ∇× a (B.8)

∇(a · b) = (a ·∇)b + (b ·∇)a + a× (∇× b) + b× (∇× a) (B.9)

∇ · (a× b) = b · (∇× a)− a · (∇× b) (B.10)

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b ·∇)a− (a ·∇)b (B.11)
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B.2 Dyadic identities

In the following G denotes a dyadic and G
T

its transpose.

a · (G · b) = (a ·G) · b = a ·G · c (B.12)

(a ·G)× b = a · (G× b) = a ·G× b (B.13)

(a×G) · b = a× (G · b) (B.14)

(a× b) ·G = a · (b×G) = −b · (a×G) (B.15)

(G× a) · b = G · a× b = −(G× b) · a (B.16)

a× (b×G) = b(a ·G)− (a× b)G (B.17)

a ·G = G
T · a = (a ·G)T (B.18)

B.3 Integral identities

The following integral identities involve volume integrals that extend over a regular

volume Ω ⊂ R3 which is bounded by a closed surface Γ = ∂Ω. The unit normal vector

en is defined to point inward from the surface Γ into the volume Ω.

Vector-dyadic Green’s first theorem
∫

Ω

[
(∇× a) · (∇×G)− a · (∇×∇×G)

]
d3r =

∮
en × (a×∇×G) d2r (B.19)

Vector-dyadic Green’s second theorem

∫

Ω

[
(∇×∇× a) ·G− a · (∇×∇×G)

]
d3r = (B.20)

−
∮

Γ

[
(n× a) · (∇×G) + (en ×∇× a) ·G

]
d2r

By means of vector and dyadic identities the vector-dyadic Green’s second theorem can

be put into the equivalent form

∫

Ω

[
(∆a) ·G− a ·∆G

]
d3r = (B.21)

∮

Γ

[
(en × a) · (∇×G)− (∇× a) · (en ×G) + en · a(∇ ·G)− en ·G(∇ · a)

]
d2r



Appendix C

Ewald Representation of the Dyadic

Vector Potential’s Green’s Function

In this appendix we derive the Ewald representation (3.113) of the dyadic vector po-

tential’s Green’s function of a rectangular cavity from the ray representation (2.256).

Since the three nonvanishing components GA
xx, G

A
yy, and GA

zz are related to each other

by cyclic exchange of x, y and z it is sufficient to concentrate on the component GA
zz.

The formulas that we will use are a consequence of the results that are provided by the

original paper of Ewald [45], and all that needs to be done is to adapt these results to

the geometry of a rectangular cavity.

We start from the ray representation (2.256) of the component GA
zz which is repeated

as

GA
zz(r, r

′) =
1

4π

∞∑

m,n,p=−∞

7∑

i=0

Azz
i

e−jkRi,mnp(r,r′)

Ri,mnp(r, r′)
(C.1)

with

Ri,mnp(r, r
′) =

√
(Xi + 2mlx)2 + (Yi + 2nly)2 + (Zi + 2plz)2 , (C.2)

where the distances Xi, Yi and Zi depend on r and r′, compare (2.259)–(2.261). We

now consider the identity

e−jkRi,mnp

Ri,mnp
=

2√
π

∫ ∞

0

e−R2
i,mnps2+ k2

4s2 ds (C.3)

which is valid if the complex path of integration is such that the integrand remains finite

for s→ 0 and tends to zero for s→∞. With (C.3) the component GA
zz can be split into
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two parts GA
zz1 and GA

zz2,

GA
zz1 =

1

2π3/2

∞∑

m,n,p=−∞

7∑

i=0

Azz
i

∫ E

0

e−R2
i,mnps2+ k2

4s2 ds , (C.4)

GA
zz2 =

1

2π3/2

∞∑

m,n,p=−∞

7∑

i=0

Azz
i

∫ ∞

E

e−R2
i,mnps2+ k2

4s2 ds . (C.5)

We first concentrate on the expression GA
zz1. By means of (C.2) it can be rewritten

as

GA
zz1 =

1

2π3/2

7∑

i=0

Azz
i

∫ E

0

e
k2

4s2×
[

∞∑

m=−∞

e−(Xi+2mlx)2s2
∞∑

n=−∞

e−(Yi+2nly)2s2
∞∑

p=−∞

e−(Zi+2plz)2s2

]
ds (C.6)

In a next step we transform the summations according to

∞∑

m=−∞

e−(Xi+2mlx)2s2

=

√
π

2lxs

∞∑

m=−∞

e−( mπ
2lxs)

2
+j mπ

lx
Xi , (C.7)

∞∑

n=−∞

e−(Yi+2nly)2s2

=

√
π

2lys

∞∑

n=−∞

e
−

“

nπ
2lys

”2
+j nπ

ly
Yi , (C.8)

∞∑

p=−∞

e−(Zi+2plz)2s2

=

√
π

2lzs

∞∑

p=−∞

e−( pπ
2lzs)

2
+j pπ

lz
Zi . (C.9)

At this point it is convenient to employ the notation introduced by (2.167) and (2.168),

kx =
mπ

lx
, ky =

nπ

ly
, kz =

pπ

lz
, k2

mnp = k2
x + k2

y + k2
z , (C.10)

in order to express (C.6) in the form

GA
zz1 =

1

16lxlylz

∞∑

m,n,p=−∞

7∑

i=0

Azz
i e

j(kxXi+kyYi+kzZi)

∫ E

0

e−
k2
mnp−k2

4s2

s3
ds . (C.11)

The integration can be performed in closed form,

∫ E

0

e−
k2
mnp−k2

4s2

s3
ds = 2

e−
k2
mnp−k2

4E2

k2
mnp − k2

, (C.12)

yielding the result (3.114)

GA
zz1 =

1

8lxlylz

∞∑

m,n,p=−∞

7∑

i=0

Azz
i

e−
k2
mnp−k2

4E2

k2
mnp − k2

ej(kxXi+kyYi+kzZi) . (C.13)



227

Next we consider the expression (C.5) for GA
xx2. Ewald, in his paper [45], derived the

identity

2√
π

∫ ∞

E

e−R2
i,mnps2+ k2

4s2 ds =
1

2Ri,mnp

[
ejkRi,mnperfc(Ri,mnpE + jk/2E)+

+ e−jkRi,mnperfc(Ri,mnpE − jk/2E)
]

(C.14)

which immediately leads to the result (3.115),

GA
zz2 =

1

8π

∞∑

m,n,p=−∞

7∑

i=0

Azz
i

[ejkRi,mnperfc(Ri,mnpE + jk/2E)

Ri,mnp

+
e−jkRi,mnperfc(Ri,mnpE − jk/2E)

Ri,mnp

]
. (C.15)

This completes the derivation of the Ewald representation (3.113) from the ray repre-

sentation (2.256).
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1996).

[198] Schwartz, L.: Mathematics for the physical sciences, (Addison-Wesley, Reading,

1966).

[199] Schwinger, J., DeRaad Jr., L.L., Milton, K.A., and Tsai, W.: Classical Electrody-

namics, (Perseus Books, Reading, 1998).

[200] Scott, A.: Nonlinear Science, (Oxford University Press, Oxford, 1999).



244 BIBLIOGRAPHY

[201] Senior, T.B.A. and Volakis,J.L.: Approximate boundary conditions in electromag-

netics, (IEE, London, United Kingdom, 1995).

[202] Shi, S., Hirasawa, K., and Chen Z.N.: “Circularly Polarized Rectangularly Bent

Slot Antennas Backed by a Rectangular Cavity”, IEEE Trans. Antennas Propagat.,

vol. 49, Nov. 2001, 1517–1524.

[203] Siah, E.S., Sertel, K., Volakis, J.L., Liepa, V.V., and Wiese, R.: “Coupling studies

and shielding techniques for electromagnetic penetration through apertures on

complex cavities and vehicular platforms”, IEEE Trans. Electromagn. Compat.,

vol. 45, (May 2003), 245–256.

[204] Singh, S., Richards, W.F., Zinecker, J.R., and Wilton, D.R.: “Accelerating the

convergence of series representing the free space periodic Green’s function”, IEEE

Trans. Antennas Propagat., vol. 38, (December 1990), 633–642.

[205] Sobolev, S.L.: Partial Differential Equations of Mathematical Physics, (Dover,

New York, 1989).

[206] Sommerfeld, A.: Mechanics of Deformable Bodies, (Academic Press, New York,

1950).

[207] Spadacini, G., Pignari, A., and Marliani, F.: “Closed-Form Transmission Line

Model for Radiated Susceptibility in Metallic Enclosures” IEEE Trans. Electro-

magn. Compat., vol. 47, (November 2005), 701–708.

[208] Stakgold, I.: Green’s Functions and Boundary Value Problems, 2nd ed., (John

Wiley & Sons, New York, 1998).

[209] Steele, C.W.: Numerical Computation of Electric and Magnetic Fields, 2nd ed.,

(Chapman & Hall, New York, 1997).

[210] Stratton, J.A.: Electromagnetic Theory, (McGraw-Hill, New York, 1941).

[211] Stutzman, W.L. and Thiele, G.A.: “Antenna Theory and Design”, 2nd ed., (John

Wiley & Sons, New York, 1997).

[212] Tai, C.-T. and Rozenfeld, P.: “Different Representations of Dyadic Green’s Func-

tions for a Rectangular Cavity”, IEEE Trans. Microwave Theory Tech., vol. 24,

(September 1976), 597–601.

[213] Tai, C.-T.: Dyadic Green Functions in Electromagnetic Theory, (IEEE Press, New

York, 1994).

[214] Taylor, C.D., Satterwhite, R.S., and Harrison C.H.: “The Response of a Ter-

minated Two-Wire Transmission Line Excited by a Nonuniform Electromagnetic

Field”, IEEE Trans. Antennas Propag., vol. 13, (November 1965), 987–989.



BIBLIOGRAPHY 245

[215] Taylor, M.E.: “Partial Differential Equations II – Qualitative Studies of Linear

Equations”, (Springer, New York, 1996).

[216] Tesche, F.M.: “Principles and applications of EM field coupling to transmission

lines”, in Proc. of EMC Zurich 95, Zurich, Switzerland, March 1995, 21–31.

[217] Tesche, F.M., Ianoz, M.V., and Karlsson, T.: EMC Analysis Methods and Com-

putational Methods, (John Wiley & Sons, New York, 1997).

[218] Tkachenko, S., Rachidi, F., and Ianoz, M.: “Electromagnetic Field Coupling to

a Line of Finite Length: Theory and Fast Iterative Solutions in Frequency and

Time Domains”, IEEE Trans. Electromagn. Compat., vol. 37, (November 1995),

509–518.

[219] Tkachenko, S., Vodopianov, G.V., and Martinov, L.V.: “Electromagnetic field

coupling to an electrically small antenna in a rectangular cavity”, in Proc. of EMC

Zurich 99, Zurich, Switzerland, February 1999, 379–384.

[220] Tkachenko, S., Gronwald, F., Krauthäuser H.G., and Nitsch, J.: “Investigation
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