
Re�ective and Adaptive Middleware
for Software Evolution of
Information Systems

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von
M.Sc. Ahmed Mohamed Ali Ghoneim

geboren am 2. März 1972

in El-Menou�ya, Egypt

Gutachter:
Prof.Dr. Gunter Saake

Prof.Dr. Claus Rautenstrauch

Prof.Dr. Walter Cazzola

Promotionskolloquium am 16.02.2007

i

Abstract of the Dissertation
by

Ahmed Ghoneim

Abstract
The high volatility and competitively of organizational ('socio-techno-economical') en-
vironment are putting tremendous pressure on software-intensive developers to come up
with adaptive and evolving approaches. To contribute to such topical e�orts towards
adaptive information system at early phases, the present thesis addresses the rigorous de-
velopment of self-adapting information systems. The approach we are putting forwards
is referred to as RAMSES (Re�ective and Adaptive Middleware for Software Evolution of
non-stopping information Systems), and provides a re�ective architecture for adapting
the software applications, in response the requirements and environmental changes.
The re�ective middleware is based on a UML-compliant base- and meta-level.
RAMSES provides objects with the ability of dynamically changing their behavior by
exploiting their design information. The meta-level of the proposed architecture rei�es
UML diagrams including structural and behavioral information of the system to adapt;
then it uses such data for dynamically adapting the software system against environmen-
tal changes. The evolution takes place in two steps: a meta-object, called evolutionary
meta-object, plans a possible evolution against the detected external events then another
meta-object, called consistency checker meta-object validates the feasibility of the pro-
posed plan before really evolving the system. The meta-objects use the system design
information to lead its evolution.
Our middleware uses rei�cation library to explicit an abstract view of the concrete-
level that can be manipulated at run-time. Both evolutionary and consistency checker
meta-objects work directly on the rei�cations. The evolutionary meta-object steers
the evolution of rei�cations through evolutionary rules that describe the changes in
environment. Where as the consistency checker meta-object check the rei�cations are
consistent with the changes. To evaluate RAMSES and validate our claims, a number of
examples of urban tra�c control system (UTCS) are used.

ii

Abstract der Dissertation - deutsche Fassung

Schnelle Veränderungen und harter Konkurrenzkampf sind heute bestimmende Faktoren
in der Software-Entwicklung. Aus diesem Grund wird der Ruf nach anpassungsfähigen
und erweiterbaren Systemen immer lauter. Gerade die Domäne der informationsverar-
beitenden Systeme unterliegt ständigen Schwankungen. Ziel ist es daher, schon in frühen
Entwicklungsphasen Techniken ein�iessen zu lassen, die der Forderung nach (weitestge-
hend automatisierter) Adaptivität und Erweiterbarkeit gerecht werden. Der in dieser
Dissertation beschriebene Ansatz trägt den Titel RAMSES (Re�ective and Adaptive Mid-
dleware for Software Evolution of non-stopping information Systems). Die Basis bildet
eine Architektur, die das Mittel der (Selbst-)Re�ektion nutzt, um dem Gedanken der
Anpassbarkeit und Erweiterbarkeit gerecht zu werden.
Die re�ektive Middleware bedient sich verschiedener UML-Konstrukte, die in der Basis-
und Meta-Ebene wirken. RAMSES etabliert Objekte, die die Fähigkeit zur dynamischen
Änderung ihres Verhaltens besitzen. Die Änderung geschieht unter Ausnutzung ihrer
Design-Informationen. Die Meta-Ebene der Basis-Applikation verarbeitet (auch bezeich-
net als "Verdinglichung", engl.: Rei�cation) geeignete UML-Diagramme (Repräsentanten
für Struktur und Verhalten der Basis-Software). Die generierten Daten werden dann für
den Prozess der dynamischen Adaption (als Reaktion auf Änderungen in der Laufzeit-
Umgebung) des Programms genutzt. Die Anpassung (Weiterentwicklung) erfolgt in
zwei Phasen. Ein Meta-Objekt ("Evolutionary Meta-Object") plant eine geeignete An-
passungvariante gegen die aufgetretene Veränderung in der Umwelt. Ein zweites Meta-
Objekt ("Consistency Checker Meta-Object") validiert die Machbarkeit/Korrektheit der
geplanten Änderungen, bevor diese konkret werden. Die beiden Ausführungsschritte er-
folgen unter Verwendung der Entwurfsinformationen.
Unsere Middleware nutzt "Rei�cation"-Bibliotheken um die Manipulation der Basis-
Applikation auf einem abstrakten Level (losgelöst von der Quellcode-Ebene) durchführen
zu können. Sowohl "Evolutionary Meta-Object", als auch "Consistency Checker Meta-
Object" arbeiten beide auf den generierten ("verdinglichten") Informationen. Die "Evo-
lutionary Meta-Objects" planen die nötigen Anpassungen unter Berücksichtigung von
"Evolutionary Rules" (Lösungsstrategien). Die "Consistency Checker Meta-Objekte"
prüfen die Konsistenz der Anpassungen (mittels Validierungsregeln). Auf der Basis
verschiedener Beispiel-Implementierungen des "Urban Tra�c Control System" (UTCS)
wird RAMSES analysiert und hinsichtlich der vorher de�nierten Zielstellung bewertet.

iii

Acknowledgments

This dissertation, while an achievement that bears my name, would not have
been possible without the help of others, who I would now like to thank.
I wish to acknowledge high indebtedness and my deep gratitude to my good natured and
devoted supervisor Prof. Dr. Gunter Saake for introducing me to the interesting �eld
of Software evolution. His generosity to share his insight and ideas with me, was the
starting point for the work of my research project. Due to �nancial support out of his
grants, I was able to participate in conferences. During my stay, I found Prof. Gunter
Saake and his family very hospitable and helpful.
I am highly indebted to my a�ectionate co-supervisor Dr. Walter Cazzola for giving me
an initiative to this research. His inspiring guidance, remarkable suggestions, construc-
tive criticism and friendly discussions enabled me to complete the research work and
this thesis e�ciently. He spared a lot of his precious time in advising and helping me
throughout the research work.
I am overwhelmed with gratitude for the unconditional support provided by Prof. Claus
Rautenstrauch a long these �ve years.
I am grateful thanks go to all colleague of Database Group, who were always quite
helpful during my defense and organizing the party.

To my family for their love and support. My most grateful thanks go to my parents and
my brothers. My most grateful thanks go to my wife (Wesam) and my kids (Mahmoud
and Rahma). They have been especially patient and understanding during what was
anticipated to be a �ve year process, though has now ended at �ve years.
Magdeburg, Germany

March 6, 2007

Ahmed Ghoneim

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Approach and Contribution of the Dissertation 3

1.2.1 Approach . 3
1.2.2 Contribution . 4

1.3 The RAMSES Middleware: General Insight 5
1.4 Outline of the Dissertation . 6

2 Preliminaries 9
2.1 Software Engineering Models . 9
2.2 Software Maintenance and Evolution . 11

2.2.1 Software maintenance . 11
2.2.2 Software evolution . 12

2.3 Re�ection Terminology in Software Systems 14
2.3.1 Computational re�ection . 14
2.3.2 Re�ection in the object-oriented paradigm 15
2.3.3 Re�ection models . 16

2.4 Current Techniques of Analysis and Evolution of the Software Systems . 17
2.4.1 Re-engineering (renovation) . 17
2.4.2 Impact analysis techniques . 17
2.4.3 Refactoring . 19
2.4.4 Slicing object-oriented approaches 19

2.5 Object-Oriented Analysis and Design Techniques 20
2.6 Summary . 23

3 Design Information: RAMSES Base and Meta Building Stones 25
3.1 Introduction and Motivation . 25
3.2 The urban tra�c control system (UTCS): simpli�ed view 26
3.3 Explicit versus Implicit View . 28

3.3.1 Implicit behavior . 28

v

vi Contents

3.3.2 Explicit behavior . 33
3.4 Lightweight Formalisation of Design Information 36

3.4.1 Structural design information . 37
3.4.2 Behavioral design information . 39

3.5 Summary . 42

4 Evolution Planning: RAMSES Strategic Processes 45
4.1 Introduction and motivation . 45
4.2 UML Diagrams as Meta-Data . 46
4.3 Evolution and Validation Planning . 49

4.3.1 Evolutionary planning of the UTCS example (3.2) 52
4.3.2 Consistency validation of the UTCS example (3.2) 56

4.4 Operation-Based Adaptation of Design Information 57
4.4.1 Operations taxonomy of structural design information 58
4.4.2 Operations taxonomy of behavioral design information 59

4.5 Interpreting the Evolution by Using Script Language 60
4.6 Summary . 64

5 The Re�ective Middleware: RAMSES At Work 65
5.1 Software Evolution through Re�ection 66

5.1.1 The re�ective architecture . 67
5.1.2 Decisional engines and evolutionary rule sets 69

5.2 Rei�cation and Re�ection by Using Design Information 71
5.3 Describing the Meta-level Behavior of RAMSES 73

5.3.1 Evolutionary meta-object . 75
5.3.2 Consistency checker meta-object 80

5.4 Summary . 84

6 The UTCS: a Case Study 87
6.1 The Speci�cation and Components of the UTCS 87

6.1.1 UTCS components . 88
6.1.2 Speci�cation of the UTCS . 89

6.2 UTCS Cases . 90
6.2.1 Case (A): closing a lane or part of lane 90
6.2.2 Normal layout for case (B): an overview 92
6.2.3 Normal layout for case (C): an overview 95

6.3 Design Information Realization for Case (A) 97
6.3.1 Evolutionary rules . 97
6.3.2 Validation rules . 103
6.3.3 Samples of script rules for case (A) 104

6.4 Practical Results: A Dynamic Evolution and Validation Prototype 106
6.4.1 The external libraries required . 106
6.4.2 The prototype: an overview . 107

6.5 Summary . 109

Contents vii

7 Comparison of RAMSES to Related Works 111
7.1 Evaluation Criteria . 112
7.2 Re�ective Approaches and RAMSES . 113

7.2.1 The K-Component architecture 114
7.2.2 Architectural re�ection . 114
7.2.3 Co-operative actions (CO Actions) 115
7.2.4 DART . 116
7.2.5 Some comments on the comparison 116

7.3 Analysis&Evolution Approaches and RAMSES 118
7.3.1 Re-engineering tools . 118
7.3.2 Impact analysis tools . 119
7.3.3 Refactoring tools . 119
7.3.4 Assessment against the evolution criteria 120

7.4 Summary . 122

8 Concluding Remarks 123
8.1 Recapitulation . 123
8.2 Further future work . 125

8.2.1 Re�ecting the planned evolution by the AOP on the base-system
code . 125

8.2.2 Formal underpinning . 126
8.2.3 Dynamic adaptation with re�ective graph-transformations 126

Bibliography 129

Curriculum Vitae 139

List of Figures

1.1 The thesis outline. 6

2.1 Classic&Evolutionary software engineering life cycles [32]. 10
2.2 Re�ective tower. 15
2.3 UML 2.0 diagrams classi�cations. 21
2.4 Engineering UML speci�cation. 22

3.1 City layout: a) the layout during normal activities b) the layout during
road maintenance. 27

3.2 The representation of concrete-level of UTCS. 30
3.3 The refactor view of the concrete-level of UTCS. 31
3.4 The slicing and impact analysis view of the concrete-level of UTCS. . . . 32
3.5 Normal behavior for the particular routes of the UTCS case1. 34
3.6 Class diagram of the urban tra�c control system. 35
3.7 Normal layout: a) the static view . 36
3.8 Normal layout: the behavior view. 37
3.9 The taxonomy of design information-abstract level. 37

4.1 Modi�ed Layout: a) the modi�ed static view b) the modi�ed behavior view. 55

5.1 RAMSES designed for the evolution of software systems. 67
5.2 The RAMSES meta-behavior using UTCS motivation example 3.1. 75
5.3 Evolutionary meta-objects for describing the meta-level behavior of RAMSESmid-

dleware. 76
5.4 The application of the evolutionary meta-object in the UTCS 80
5.5 The role of consistency checking against evolution of the system structure. 83

6.1 The original map for Berlin city . 91
6.2 Layout of Case A. 91
6.3 Proposed evolution of Area A: a) adapted layout according �rst plan b)

adapted layout according second plan. 93
6.4 Layout of Case B. 93
6.5 Proposed evolution of area B: a) adapted layout according �rst plan b)

adapted layout according second plan. 94
6.6 Case (C): (a) normal layout, (b) emergency plan. 96

ix

x List of Figures

6.7 Class diagram for the normal layout. 98
6.8 Deployment diagram: a) object instances connection at tra�c node (tn1)

b) object instances connection at tra�c node (tn2). 99
6.9 Adapted deployment diagram realized from �rst plan at �gure 6.3.a . . . 100
6.10 TwoGroupsSync with 4tf . 101
6.11 TwoGroupsSync with 5tf . 102
6.12 The evolution prototype interface. 107

List of Tables

4.1 Operation categories for changes in class diagrams 58
4.2 Operation categories for changes in deployment diagram 59
4.3 Operations categories for changes in statechart diagram 59
4.4 Operations categories for changes in sequence diagram 60
4.5 Operations categories for changes in activity diagram 61

2.1 Comparison of RAMSES with re�ective architectures 117
3.1 Comparison of RAMSES with analysis and evolution tools 121

xi

1 Introduction

Software systems in general and information systems in particular need more than ever to
dynamically adapt against unanticipated requirement changes. The main scope of soft-
ware evolution consists of rendering a system adaptable to any environmental changes.
In the traditional software life cycle, as we illustrate in the next chapter, software evolu-
tion belongs to the last phase of maintenance, where incremental changes in the software
are made.

This chapter purposes to shed some lights on the problem of the dynamic software
evolution. We then detail the objectives of the thesis. The RAMSES middleware is then
motivated and highlighted as an approach to solve the problems of software evolution.
Finally, a roadmap for the remaining chapters of this thesis is introduced.

1.1. Thesis Statement

Information systems can easily be approached as being composed of many interact-
ing components, specially as they are more and more supporting collaborating inter-
organization. Their planning usually involve designer, planner, manager and program-
mers, among other stakeholders. The livability of the software systems means they
should be able to face the challenges in their environments and requirements. As re-
quirements, technology and business rapidly and unanticipatedly change, information
systems should be redesigned and extended by new functionalities to timely face com-
petitively. Such adaptation and evolution addressed on the bases of well de�ned criteria
(time-dependent).

Software systems are thus expecting for mechanisms to face changes in their environment
and be able to self-adapt their code and design models when unanticipated events occur.
The UML is de facto the standard (graphical) language used during the design process,
therefore its diagrams are considered as a good representation for the system design [11].
Dynamic events are hard to be captured at design-time whereas their occurrence surely
a�ects also the design information.

Runtime evolution considers the case where the changes are made dynamically. Here,
systems evolve dynamically for instance by changing functionalities of some classes,
subsystems or components, hot-swapping existing components or by integrating newly
developed classes or components without stopping the whole system. Runtime evolution

1

2 Chapter 1. Introduction

has to be either planned ahead explicitly in the system or the underlying platform has
to provide means to e�ectuate software changes dynamically. Recent trends in software
engineering research put the evolution as one of the most vivid and topical direction.
Approaches and techniques endowed with tools are promised to produce software systems
able to adapt themselves to environmental changes by adding new and/or modifying
existing functionalities. Among these topical evolution-centered mechanisms for getting
software adaptability ready for working we cite mainly computational re�ection [74, 17].

Computational re�ection is a technique that allows a system to maintain information
about itself (meta-information) and to use these data for changing (adapting) its behav-
ior. This is done through the casual connection between the base- (i.e., the controlled
system) and the meta-level (the evolutionary system). Re�ection is the ability of a
system to watch its own computation and possibly change the way it is performed.
Observation and modi�cation imply an underlay that will be observed and modi�ed.
Since the system reasons about itself, the "underlay" is itself, i.e. the system has a
self-representation [74]. A re�ective architecture logically models a system in two lay-
ers, called base-level and meta-level. In the sequel, for simplicity, we refer to the "part
of the system working in the base-level or in the meta-level" respectively as base-level
and meta-level. The base-level realizes the functional aspect of the system, whereas the
meta-level realizes the nonfunctional aspect of the system. Functional and nonfunctional
aspects discriminate among features, respectively, essential or not for committing with
the given system requirements. Security, fault tolerance, and evolution are examples
of nonfunctional requirements1. The meta-level is causally connected to the base-level,
i.e., the meta-level has some data structures, generally called rei�cation, representing
every characteristic (structure, behavior, interaction, and so on) of the base-level. The
base-level is continuously kept consistent with its rei�cation, i.e., each action performed
in the base-level is rei�ed by the rei�cation and vice versa each change performed by the
meta-level on the base-level rei�cation is re�ected on the base-level.

The systems running in the base-level are the non-stopping systems prone to be adapted,
whereas the nonfunctional feature realized by the meta-level is the software evolution.
Evolution takes place exploiting design information concerning to these non-stopping
systems. To correctly evolve the base-level system, the meta-level system must face
many problems. The most important are:

� to determine which events cause the need for evolving the base-level system;

� how to react on events and the related evolutionary actions;

� how to validate the consistency and the stability of the evolved system and even-
tually how to undo the evolution;

1 The borderline between what is a functional feature and what is a nonfunctional feature is quite
confused because it is tightly coupled to the problem requirements. For example, in a tra�c control
system the security aspect can be considered nonfunctional whereas security is a functional aspect
of an auditing system.

1.2. Approach and Contribution of the Dissertation 3

� to determine which information allows system evolution and how such information
is involved in the evolution.

In this dissertation, we will tackle the above problems, by providing the RAMSES mid-
dleware for dynamically evolving the software systems by using its design information.
Design information have all the necessary data to evolve the modeled system. Therefore
we have to build an infrastructure that exploits design information. Such an infrastruc-
ture has:

� the ability to manipulate the base-level design information for the meta-level;
� the meta-level takes care of the evolution through:

À meta-components observe the runtime events;
Á for each runtime event, special types of meta-entities and engines built the

evolution and validation plan (a set of strategic processes);
Â apply the evolution strategic into the meta-level design information;
Ã apply the validation strategic into the meta-level design information.

� to re�ect the consistently evolved meta-level design information to its base level.
The cooperative meta-components at meta-level consults the evolutionary and validation
engines, adapting the meta-level design information for new requirements or new runtime
behavior. Changes to the meta-level design information can be made at run-time and
are re�ected to its base-components after the validation. The evolution and consistency
are not hard-coded. Instead, we build a re�ective framework of the base-systems that
can automatically self-adapt for any changes to be active long-life span.

1.2. Approach and Contribution of the Dissertation

1.2.1. Approach

The approach we will take to prove our dissertation concerns the dynamic evolution of
the software systems against runtime changes by using the system design information.
For that purpose we will use an approach based on re�ective techniques. As design
conceptual model, we respect the object-oriented paradigm and its UML method, as
one of the mostly accepted and widely adopted methodology in developing di�erent
software systems, and information systems in particular. We refer to the output of the
design phase�that is several UML diagrams�as the design information. The thesis
discusses in depth how the dynamic evolution can be driven by the design information,
and describes how it facilitates planning and validating the evolution. The main result of
these investigations is a re�ective middleware, we refer to as RAMSES, whose aim consists
of consistently evolving software systems against runtime changes. This middleware

4 Chapter 1. Introduction

provides the ability to change both structure and behavior for the base-level system at
run-time by using its design information. The meta-level is composed of cooperating
meta-objects. Whereas, the base objects are controlled by the meta-objects to drive
their evolution.

1.2.2. Contribution

The main contributions of this dissertation can be divided into the following scienti�c/-
fundamental contributions:

¶ we present a lightweight formalisation of the design information. This formalisation
serves as a basis for the of evolution and validation plan strategies. In a more
context, it provides the explicit de�nition of each design information model and
the connection between di�erent models.

· we provide the evolution and validation planning aspects, as a set of evolution
strategy and validation strategy of the software design information.

¸ we de�ne the structure of the intermediate layer (virtual layer) for manipulating
the design information.

¹ we provide an explicit manipulation method that uses the design information to
evolve the systems according the changes in its environment. The UML models
represent the data of the systems at the development phase. When we are going to
the running phase, we need a model that represent the data included in the UML,
we are using XMI schemas that represent the UML models at running phase. Our
evolutionary meta-objects reify these data to their meta-level.

º we introduce the idea of use the rule-base approach for evolving and validating the
representative system. We show how our evolutionary and validation rules actions
built and applied into the representative of the design information.

» the main contribution of the research presented in this thesis is the development
of a re�ective middleware which support the dynamic evolution of the object-
oriented software systems. This middleware allows the developer to make changes
to the software system at its representative in form of design information. The
middleware provides the developer with a runtime view of the base level system in
order to allow its evolution.

¼ Develop consistent platform-based policies and rules for evolution. These concerns
present conception and implementation of evolution and consistency checking rules.

Additionally, we also provide a number of practical contributions:

À while the previous contributions are scienti�c contribution, as a more practical
contribution we developed a prototype tool capturing the planning phase of the
RAMSES middleware.

1.3. The RAMSES Middleware: General Insight 5

Á we show the applicability of our approach in the working case study.
Â we implement the evolutionary engines rules and the consistency engines rules by

using scripts.

1.3. The RAMSES Middleware: General Insight
To provide the reader with a �rst insight of the RAMSES middleware, we present the
main components of RAMSES and their functionalities. The RAMSES middleware can be
regarded as two-layers (RAMSES base-level and RAMSES meta-level) and additional virtual
intermediate layer (RAMSES rei�cations). In the following, the key features of each layer
are sketched.

RAMSES Base-level: The RAMSES base-level is composed of the base level system. In
order to allow describing and reasoning about this level, we explicit structural and
behavior view of the base level system in form of design information models. The
design information provides di�erent views of the running application. This views
help the developer to evolve this systems for currently changes in their domain.
The design information is the central concept for documenting a software system
and it plays also a relevant role in the system maintenance. The UML is the
considered formalism for representing the design information.

RAMSES Meta-level: This level is the heart of RAMSES middleware. Through this level
the evolutionary and validation strategies are created for each runtime events by
using special meta-components. There are two meta-objects (evolutionary meta-
object and consistency checker meta-object) are driving the evolution. At the
meta-level the running information system�in terms of its interactions, internal
computations and external interfaces with current context�is rei�ed to a meta-
representation, where adequate rules for controlling its consistent run-time evolu-
tion are conceived and implemented. For this di�cult task of run-time rei�cation
and re�ection, we will identify special engines for that purpose.

RAMSES Rei�cations: The RAMSES rei�cation is a virtual layer that manipulates the
design information. The RAMSES rei�cation is the description for realized by rei�-
cation library. It provides the system with the ability of manipulating its design
information according to its evolution. It directly performs the manipulation on
the XMI representation of the UML diagrams providing an API based on the logic
concepts (diagrams, classes, relationships, and so on) and independent of the XMI
syntax and complexity. The rei�cation library has two bene�ts:

� it provides an abstract view of the design information that can be manipulated
at run-time,

� it interfaces the data (design information) with the evolutionary application
(the evolutionary meta-objects) keeping the data updated.

6 Chapter 1. Introduction

Figure 1.1: The thesis outline.

1.4. Outline of the Dissertation

The thesis is organized as follows:
Chapter 2, introduces the notions of software engineering methodologies for evolving the
software systems. Then, we provide an overview of software maintenance&evolution, re-
�ection, and the current techniques for software evolution. Finally, we introduce an
overview of the object oriented analysis method, and the engineering UML 2.0 speci�ca-
tion and it's tools.
The core of the dissertation is described by RAMSES middleware as shown in �gure 1.1.
The core is divided into three chapters: �rst, chapter 3 describes the UML-compliant
base and meta stone building for RAMSES middleware; Second, chapter 4 describes the
essence processes for describing the evolution and validation plan; �nally, chapter 5
presents the re�ective architecture (RAMSES) that provides an application with the ability
to adapt according to evolution and validation strategies. The meta-level incorporates
some knowledge about the application design to decide how to react to environmental
events, and whether it is safe to perform changes into the running application.

1.4. Outline of the Dissertation 7

Chapter 3, presents the role of design information as the essence for support software
evolution. Then, the requirements of the motivation example introduced. This moti-
vation example will be used thought the whole core of the dissertation. After that, we
introduce our analysis of the explicit and implicit view for evolving software. Finally,
the formalisation is introduced, that enables the precise de�nition of design information.
The detailed description of how to automate the evolution is introduced in Chapter 4.
This chapter presents the way to plan the evolution of the design information, and
interprets this kind of evolution by using scripts.
A re�ective middleware called RAMSES is laid out in detail in Chapter 5, describing how
the liaison between the base and meta level can be built and how it can be used to self
adapting a running system to environment changes.
Chapter 6, devotes to assess and enhance the practicability of the RAMSES middleware.
In this sense, we deal with a non trivial case study (urban tra�c control systems).
In order to adequately deal with the evolutionary and consistency checker engines, we
present how to built the script rules for evolving and validating.
Chapter 7, compares the RAMSES middleware with respect to most of the existing similar
approaches proposed in the literature.
Finally, Chapter 8, provides some conclusion, summaries the contribution drawn from
this research, and provides a list of interesting open issues that require further research.

2 Preliminaries

This chapter provides some necessary background for the main topic of this dissertation,
that deals with (information systems) software evolution using re�ection techniques. In
this sense, software evolution throughout the software development process, re�ection,
and conceptual problems related to evolution belong to the landscape of this thesis
topic. The main part of this chapter is therefore devoted to bring more light on these
fundamental ingredients to adapt software systems, which will be dealt in detail in
subsequent chapters.

More precisely, �rstly, we give an overview of the whole life cycle in developing infor-
mation systems. Secondly, we recall the essential concepts of software maintenance and
evolution. Thirdly, re�ection concept is introduced and it's types are shown. Fourthly,
the current techniques are presented. Finally, we close this chapter by introducing the
object-oriented methodologies and giving a general overview of UML methodology.

2.1. Software Engineering Models

Software engineering models de�ne how to build a correct software system in a stepwise
way, and that are as much sensitive as possible for any change in their requirements.
The main schools of thought in software engineering are:

� Linear thinking fostered by waterfall life cycle [97]. The waterfall life cycle is
divided into sequential phases analysis, design, implementation and testing phase.
In each phase we use special techniques and tools. When a phase ends, the next
phase starts in a sequential �ow, until code production. The problems of this model
is that it works only for simple requirements and when the life span for the system
software remains long without changes. When the requirement speci�cations are
complex, to make them tractable we have to adopt instead the prototype life
cycle [34].

� Iterative or evolutionary thinking, fostered by the spiral model [9]. This model
integrates the waterfall with prototyping for producing a model dealing with the
complex requirements. It divides the software engineering space into four quad-
rants: management planning, formal risk analysis, engineering, and customer as-
sessment.

9

10 Chapter 2. Preliminaries

Figure 2.1: Classic&Evolutionary software engineering life cycles [32].

The spiral model for software engineering is currently the most realistic approach to the
development for large-scale systems and software [32, 47]. There are two archetypes of
the spiral model: the �rst one is, the incremental life cycle. This model separates the
development cycle into n-cycles, each cycle consists of waterfall phases, with the end of
each cycle we have a prototype until we reach the �nal version of the product. Second
archetype is the evolutionary development. This model improves the incremental �ow
by adding the user feedback at the output of each cycle and document his view and new
additional functions into the next development cycle as shown in �gure 2.1.

The Win-Win spiral model [8] as a new version of the traditional spiral model, the Win-
Win version strives to involve all stakeholders in the development process. It involves a
collaborative engine that establishes "win" conditions set by users, customers, develop-
ers, and system engineers in order to evolve requirements throughout the process. The
proposed model adds three activities to the front end of each spiral cycle:

� Identify the system or subsystem's key stakeholders.

� Identify the stakeholders win conditions for the system or subsystem.

� Negotiate win-win reconciliations of the stakeholders win conditions.

To be able to describe where evolution is addressed in the software development pro-
cess, the software development life-cycle needs to be reviewed. Usually, this life-cycle
is subdivided into di�erent phases. During the requirements phase, the requirements
for a software system are discovered, speci�ed and analyzed. In this sense, this phase
includes the analysis phase as a sub-phase. In the design phase, the software system is
designed, but still independent of a speci�c programming language. Several sub-phases
can be distinguished, such as architectural (or high-level) design, mechanistic design
and detailed (or low-level) design. During the implementation phase, the actual code is
written, based on the information given in the detailed design. Usually, template code
can be generated directly from the design. The testing and validation phases check if

2.2. Software Maintenance and Evolution 11

the software system ful�ls the speci�ed requirements, and see if the software behaves
correctly in all situations. Finally, the maintenance phase deals with the software system
after it has been delivered, by making bug �xes, implementing new requirements, etc.
With respect to software evolution, this is a very important phase, since it is the stage
where software evolution occurs continuously.

2.2. Software Maintenance and Evolution
Evolution is a critical issue in the life cycle of all software systems particularly those
serving highly volatile business domains such as banking, e-commerce and telecommu-
nications. The key di�erence between development, evolution and maintenance is that
development is performed from scratch, whereas maintenance is performed by modify-
ing existing software systems, �nally, evolution is a subset of maintenance related to the
activity and phenomenon of (adaptive, perfective and preventive) software systems [67].
In the next subsection, we describe in details the software maintenance and evolution.

2.2.1. Software maintenance

Software maintenance is the general process of changing a system after it has been
delivered. The changes may be simple changes to correct coding errors, more extensive
changes to correct design errors, signi�cant enhancements to correct speci�cation errors,
or accommodate new requirements. Software maintenance does not normally involve
major architectural changes to the system. Changes are implemented by modifying
existing system components and, where necessary, by adding new functionalities to the
system.
The maintenance phase consists of the process of modifying a software system or compo-
nent after delivery, to correct faults, improve performance or other attributes, or adapt
to a changed environment. Usually, four types of maintenance are distinguished in [70]:

Corrective maintenance : it concerns the repair of faults found.
Adaptive maintenance : deals with adapting the software to changes in the envi-

ronment, such as new hardware or next release of an existing system. Adaptive
maintenance does not lead to changes in the system's functionality.

Perfective maintenance : it allows accommodating to new or changed user require-
ments. It concerns functional enhancements to the system.

Preventive maintenance : concerns activities aimed at increasing the system's main-
tainability, such as updating documentation or adding comments.

All these types of maintenance are concerned with activities aimed at keeping the sys-
tem usable and valuable for the target organization as long as possible. So, software

12 Chapter 2. Preliminaries

maintenance has more service-like aspects than software development, because the value
of software maintenance is in the activities that result in bene�ts for the customers, such
as correcting faults and adding new features.
The continuous process of maintenance or evolution characterizes the main features of
software, namely its modi�ability, and its capacity for change. Moreover, the mainte-
nance phase can be considered as the most important phase of the software development
process, since studies have shown that the costs of system maintenance (i.e., evolution)
are as high as 60% of the overall development costs [45].

2.2.2. Software evolution

Software systems are continuously changing and adapting to meet the needs of their users
and surrounding environment in terms of new functionalities, new architecture, new
technological support, etc. Therefore, a good understanding of the evolution process is
essential. This permits building better concepts, methods and tools to assist developers
as they maintain and enhance these systems. Furthermore, it will pave the way for
the investigation of techniques and approaches to monitor, plan and predict a successful
evolutionary paths for long lived software projects. The dynamic behavior of the software
systems as they are maintained and enhanced over their life times and preceded states [4].
That is, software evolution is de�ned as examining the dynamic behavior of the developed
system, how it changes over time.
In research literature, an important distinction is made between two kinds of software
evolution: Run-time evolution (autonomous or programmed evolution) and design-time
evolution (heteronomous evolution) as follows:

Design-time : in this type, changes are made manually by a software engineer during
the software development process. The changes to a software artifact can thus be
totally unpredictable. As a result, it is very hard if not impossible to create fully
automatic process with inherent tools that perform these changes, and ensure that
the resulting software artifact is consistent and con�ict-free.

Run-time : in this evolution type, the implemented software is dynamically modi�ed
while it is running. With run-time evolution, software artifacts can change them-
selves automatically when receiving triggers which activate evolution. An intrinsic
aspect of autonomous evolution is that it can only be used to deal with anticipated
changes.

With respect to the work in [67], the term software evolution relates to the activity and
phenomenon of software change. It includes two aspects that re�ect, respectively, the
complementary concerns of the how and the what/why [69, 68] of software evolution.
Interest in the former is concerned with methods, tools and techniques to change func-
tional, performance and other characteristics of the software in a controlled, reliable,
fast and cost e�ective manner. This is the more widespread view and is exempli�ed

2.2. Software Maintenance and Evolution 13

by the contributions to a series of meetings on principles of software evolution [53, 52].
Interest in the what/why, on the other hand, focuses on understanding the software
evolution phenomenon, its underlying causes and drivers, common patterns of evolu-
tionary behaviour, and the characteristics of that behaviour. This line of investigation,
the focus of the FEAST (Feedback, Evolution And Software Technology) studies in the
Department of Computing at Imperial College. FEAST and their antecedents, has also
been pursued by a small number of other groups world-wide (e.g. [58, 72, 87]).
Both views, the how and the what/why, must be pursued if mastery of the software
evolution phenomenon is to be achieved in a world increasing dependent on computers
and software. The following are examples of the type of questions whose answer is
pursued under the latter view:

� why does software evolution occur?
� why is it inevitable?
� what are key attributes of the evolution process?
� what is their impact on the software process and its products?
� what are the practical implications of the above on the planning control and man-

agement of software system evolution?
With respect this approach, the authors proposed a set of methodological guidelines
also named laws (Lehman's Laws) concerning system change. They claim these laws
are invariant and widely applicable. Lehman and Belady examined the growth and
evolution of a number of large software systems. The proposed laws were derived from
these measurements. The Lehman's Laws (hypotheses, really) are illustrated in the
following list [67].

Continuing change: a program that is used in a real-world environment necessarily
must change or become progressively less useful in that environment.

Increasing complexity: as an evolving program changes, its structure tends to become
more complex. Extra resources must be devoted to preserving and simplifying the
structure.

Large program evolution: program evolution is a self-regulating process. System at-
tributes such as size, time between releases and the number of reported errors are
approximately invariant for each system release.

Organisational stability: over a program's lifetime, its rate of development is approx-
imately constant and independent of the resources devoted to system development.

Conservation of familiarity: over the lifetime of a system, the incremental change in
each release is approximately constant.

Continuing growth: the functionality o�ered by systems has to continually increase to
maintain user satisfaction.

14 Chapter 2. Preliminaries

Declining quality: the quality of systems will appear to be declining unless they are
adapted to changes in their operational environment.

Feedback system: evolution processes incorporate multi-agent, multi-loop feedback
systems and you have to treat them as feedback systems to achieve signi�cant
product improvement.

This approach is rather code-driven evolution one and does not tackle design phases as
we are aiming to.

2.3. Re�ection Terminology in Software Systems

2.3.1. Computational re�ection

Computational re�ection or simply re�ection is a solution to the problem of creating
applications able to maintain, use, and change representations of their own design. Re-
�ective systems are able to use self-representation to extend, modify, and analyze their
own computation.

Re�ection is born in the �eld of Arti�cial Intelligence before propagating to various �elds
in computer science such as logic programming, functional programming and object-
oriented programming [36]. It was introduced in object-oriented programming thanks
to the famous works of Pattie Maes [73, 74]. Re�ection is the ability of a system to
observe and manipulate its computation and possibly change the way it is performed.
Observation and modi�cation imply an underlay that will be observed and modi�ed.
Since the system reasons about itself, the underlay is itself, i.e. the system has a self-
representation [74]. There are two aspects of such manipulation: introspection and
intercession:

� Introspection is the ability for a program to observe and therefore reason about
its own state.

� Intercession is the ability for a program to modify its own execution state or alter
its own interpretation or meaning.

Both aspects require a mechanism for encoding execution state as data; providing such
an encoding is called rei�cation [7].

Computational re�ection has been used in several �elds, for example for developing
operating systems [111, 48], fault tolerant systems [59], compilers [63], and also for
building distributed frameworks [60, 66, 31, 71, 1].

2.3. Re�ection Terminology in Software Systems 15

2.3.2. Re�ection in the object-oriented paradigm

An object-oriented re�ective system is logically structured in two or more levels, con-
stituting a re�ective tower as shown in �gure 2.2. The �rst level is the base-level and
describes the computations that the system is supposed to do. The second one is the
meta-level and describes how to perform the previous computations. The entities (ob-
jects) working in the base level are called base-entities, while the entities working in the
other levels (meta-levels) are called meta-entities. Each level is causally connected to ad-
jacent levels, i.e. entities working into a level have data structures reifying the activities
and the structures of the entities working into the underlying level and their actions are
re�ected into such data structures. Any change to such data structures modi�es entity
behavior. Each level, except the �rst and the last one, is a base-level for the above level
and is a meta-level for the underlying level.
Meta-entities supervise the base-entities activity. The concept of trap could be used
to explain how supervision takes place. Each base-entity action is trapped by a meta-
entity, which performs a meta-computation, then it allows such base-entity to perform
the action. The in�nite regression of the re�ective tower can be managed in di�erent
ways. Brian Smith suggested the use of lazy evaluation in 3-Lisp [99]: an interpreter is
not created unless needed.

Figure 2.2: Re�ective tower.

It is possible to observe, going beyond the re�ective tower of compilers/interpreters, that
each re�ective computation can be separated into two logical aspects: computational �ow
context switching and meta-behavior. A computation starts with the computational �ow
in the base level; when the base-entity begins an action, such action is trapped by the

16 Chapter 2. Preliminaries

meta-entity and the computational �ow raises at meta-level (shift-up action). Then
the meta-entity completes its meta-computation, and when it allows the base-entity
to perform the action, the computational �ow goes back to the base level (shift-down
action) [18].

2.3.3. Re�ection models

Meta-levels can be used to explain and self-describe the structural and computational
models of a language in term of its own data and control structures. Two re�ection
models in the object-oriented paradigm are identi�ed in [39]: Structural [29, 15] and
Behavioral Re�ection [74].

Structural re�ection

In the structural model, the meta-level is constituted by meta-classes. A meta-class is
the class of a class considered as an object. Meta-classes have information on structural
aspects of objects at the base level: if this information is modi�ed, then the structure of
these objects is modi�ed accordingly. This model allows designers to extend the static
part of an object-oriented language.

Structural re�ection has been included in an extension of the Java programming lan-
guage [76] known as metaXa. This is in addition to the re�ective capabilities already
present in standard Java, and allows more than one meta-object per object.

Behavioral re�ection

In the behavioral model, objects at the meta-level are called meta-objects [73]. A meta-
object is similar to a normal object, but it maintains all the re�ective information. The
class of a meta-object is named meta-object class. The activation of a meta-object
depends on the access to the associated base-level object, named re�ected object. Any
invocation to a re�ected object service produces the execution of a speci�c method of
the associated meta-object. A meta-object has information about the behavioral aspects
of base-level objects, for example, how a speci�c object treats a message. The meta-
object model is di�erent from the meta-class model, mainly, because of the association
is established between objects and not between classes.

Behavioral re�ection can also be added to Java [109], allowing the programmer to alter
the behavior of the virtual machine at run-time.

2.4. Current Techniques of Analysis and Evolution of the Software Systems 17

2.4. Current Techniques of Analysis and Evolution
of the Software Systems

There are a number of high-level techniques for software analysis and evolution, however
none have proved satisfactory as a general-purpose evolution strategy. We discuss some
methodologies for software analysis and evolution in the following subsections.

2.4.1. Re-engineering (renovation)

Re-engineering, also known as both renovation and reclamation, is the examination
and alteration of a subject system to reconstitute it in a new form and the subsequent
implementation of the new form. Re-engineering is the most dominant maintenance
approach, however the main goal is the recovery of design information, not its exploita-
tion [28, 101]. Re-engineering aims to solve the growing problem of maintaining legacy
systems. It consists of three parts: reverse engineering, restructuring and forward engi-
neering. The reverse engineering stage aims to create representations of the system at
higher levels of abstraction, to retrieve lost design information. The optional restructur-
ing stage applies general-purpose transformations to some intermediate representation of
the source code, and then the forward engineering maps the intermediate representation
back to code, possibly of a di�erent language. For example, during the re-engineering of
information management systems, an organization generally reassesses how the system
implements high-level business rules and makes modi�cations to changes in the business
for the future.

Design recovery is a subset of re-engineering, and it is distinguished by the sources and
span of information should be handle. According to Ted Biggersta�: "Design recovery
recreates design abstract from a combination of code, existing design documentation (if
available), personal experience, and general knowledge about problem and application
domains... Design recovery must reproduce all of the information required for a person
to fully understand what a program does, how it does it, why it does it, and so forth.
Thus, it deals with a far wider range of information than found in conventional software
engineering representation or code" [6]. A key objective of design recovery is to develop
structures that will help the software engineer understand a program or system.

2.4.2. Impact analysis techniques

Software change is a fundamental ingredient of software maintenance. Impact analysis is
key in analyzing the changes or potential change and in identifying the software objects.
Impact analysis is the activity of identifying what to modify to accomplish a change, or
of identifying the potential consequences of a change [3]. Example of impact analysis
are:

18 Chapter 2. Preliminaries

� using cross reference listings to see what other parts of a program contain references
to a given variable or procedure,

� browsing a program by opening and closing related �les,

� using traceability relationships to identify changing artifacts,

� using con�guration management systems to track and �nd changes, and

� consulting designs and speci�cations to determine the scope of a change.

Research in change impact analysis has varied from approaches relying completely on
static information, including the early analysis of [2, 62], to approaches that only utilize
dynamic information, such as [65]. There also are some approaches that describe the
dynamic traceability for unanticipated events [79] and di�erent types of impact analysis
of UML models [14, 37, 13].

An early form of change impact analysis used reachability on a call graph to measure
impact. This technique was presented in [2] as intuitively appealing and a starting point
for implementing change impact analysis tools. Kung et al. [62] described various sorts
of relationships between classes in an object relation diagram, classi�ed types of changes
that can occur in an object-oriented program, and presented a technique for determining
change impact using the transitive closure of these relationships.

Law and Rothermel [65] present a notation of dynamic impact analysis. In this approach,
if a procedure p is changed, any procedure that is called after p, as well as any procedure
that is on the call stack after p returns, is included in the set of potentially impacted
procedures.

An approach is presented in [79], that fosters changes of software by managing runtime-
traceable dependencies of requirement speci�cations and test cases to corresponding ar-
chitectural elements and source code fragments. In case of (unexpected) change requests
it is easy to �nd the a�ected system parts, thus facilitating timely change propagation
and regression testing.

Horizontal Impact Analysis (HIA) and Vertical Impact Analysis (VIA) are presented in
the context of UML-based iterative development. HIA focuses on changes and impacts
at one level of abstraction, and corresponds to what people have generally been doing
(e.g.[14, 2]). Whereas VIA focuses on changes at one level of abstraction and their impacts
at another level of abstraction. Moreover, VIA is based on a careful classi�cation of
changes and re�ne in UML models and an automated identi�cation of re�nements based
on detected changes. For each re�nement, traceability links are then automatically
established and can then be used to control the impact of changes in more abstract
models on more re�ned models [37, 13].

2.4. Current Techniques of Analysis and Evolution of the Software Systems 19

2.4.3. Refactoring

Refactoring can be regarded as restructuring or behavior preserving transformations of
the source-code of an object-oriented program without changing its external behavior [43,
84, 85]. The overall goal of refactoring is to improve the maintainability of software. The
key idea is to redistribute attributes and methods across the class hierarchy to prepare
the software for future extensions. If well applied refactoring improves the design of
software, make software easier to understand, helps to �nd bugs, and helps to program
faster. We argue that the concept of refactoring would be very worthwhile for runtime
evolution. Whenever a change operation can be split into a refactoring and a functional
change, it will be easier to handle, if only we have a way of validating that the semantics
of the refactored system is kept.
The practical analysis for refactoring is presented in [94], this technique was to make
refactoring more practical for object-oriented programming, hence the development of
the refactoring browser. The main contributions this work brought were through out-
lining a speci�c de�nition of some of the more common refactorings by identifying pre
and post conditions that are required to be met before/after applying any method. An
empirical study was carry out on the usefulness of applying refactorings to a simple
system. The study proved that using refactorings help to reduce the cost development
and delivery time of a system [105, 104].

2.4.4. Slicing object-oriented approaches

Program slicing has a range of applications such as code understanding, debugging, pro-
gram testing, reverse engineering, and metrics analysis [54]. Weiser [108] de�nes a slice
with respect to a slicing criterion that consists of a program point (P) and a subset of
program variables (V). Slices are executable programs that are constructed by removing
zero or more statements from the original programs. Weiser's algorithm uses data�ow
analysis on control �ow graphs to compute inter-procedural slices. Ottenstein and Ot-
tenstein [86] de�ne a slicing criterion to consist of a program point (P) and a variable
(V) that is de�ned or used at (P). They use a graph reachability algorithm on a program
dependence graph to compute a slice that consists of the program that may a�ect the
value of (V) at (P). The two-pass graph reachability algorithm described by Horwitz,
Reps & Binkley [51] makes use of procedure dependence graphs to compute slices on
procedures. A class dependence graph (CLDG) [96] is a graphical representation of a
class. The construction of a class dependence graph makes use of procedure dependence
graphs to represent the methods (class members) of the class.
Korel and Laski have introduced the notation of dynamic slicing [61]. A slice computed
for a particular �xed input. The availability of runtime information makes dynamic
slices smaller than static slices, but limits its applicability to that particular input.
Larsen and Harrold [64] present how to compute slices for individual classes, groups of
interacting classes and complete programs. the presented class dependence graphs are

20 Chapter 2. Preliminaries

e�ciently constructed for derived classes and interacting classes by incorporating parts
of previously constructed class dependence graphs.

Jackson and Rollins [54] have introduced chopping which reveals the statements involved
in a transitive dependence from one speci�c statement (the source criterion) to another
(the target criterion). A chop for a chopping criterion (s, t) is the set of nodes that are
part of an in�uence of the (source) node s onto the (target) node (t). This is basically
the set of nodes which are lying on a path from (s) to (t) in the procedure dependence
graph (PDG).

2.5. Object-Oriented Analysis and Design
Techniques

We give an overview for several semi-formal or informal object-oriented generations.
There are three generations for object-oriented methodologies: The �rst generation
methods are called object oriented analysis and design (OOA&D). These methods are
Booch [10], Objectory [55] and OMT [98]. The second-generation fostered by Fusion [30]
for providing the systematic object oriented software engineering methodology. The
third-generation specifying method, visualizing, and documenting the application of an
object-oriented system under development. The UML [11] is third-generation model-
ing methodology for analyzing and specifying object oriented systems. Moreover, UML
provides models through all the life cycle. The UML combines and extends elements
of previous object-oriented notations such as OMT, Booch, and Objectory. In contrast
to these methodologies, its notations are precisely de�ned using the object constraint
language (OCL) [82] and a meta-model to express the allowed forms of diagrams and
their properties. The UML methodology provides systematic models through all software
engineering phases.

Software systems have a complex structure, to capture the structure and behavior of
these systems you need a set of models. Hence, UML is composed of structural and
behavioral models that can be used to model a system at their life cycle [11, 83, 42].
These models are classi�ed into three categories as shown in �gure 2.3: Engineering the
above classi�cation of UML models by using waterfall life cycle is illustrated in �gure 2.4.
The proposed UML life cycle is composed of four phases:

Requirement phase: during this phase the functionality and non functionality of the
software systems are captured in form of use cases model. The use cases model
are a technique for capturing functional requirements of the system and such are
used in the requirements phase of the development cycle. Use cases are also well
known, however, nothing in UML describes how the content of a use case should be
captured. The primary elements are termed as actors and the processes are called
Use Cases. The Use case diagram shows which actors interact with each use case.

2.5. Object-Oriented Analysis and Design Techniques 21

Deployment model

Component model

Collaboration model

Sequence Model

Activity Model

State Model

Object Model

Class DiagramUse case model UML static models

UML implementation models UML behavioral models

UML 2.0

UML 2.0 Diagrams

Figure 2.3: UML 2.0 diagrams classi�cations.

Analysis phase: based-on the output of the requirement phase. The goal of the analysis
phase is to create the sequence model and the system structure description in form
of class diagram.

� The class diagram classi�es the actors de�ned in the use case diagram into a
set of interrelated classes. The relationship or association between the classes
can be either an is-a or has-a relationship. Each class in the class diagram
may be capable of providing certain functionalities. These functionalities
provided by the class are termed methods of the class. A part from this, each
class may have certain attributes that uniquely identify the class.

� A sequence model represents the dynamic behavior of the system by depicting
the sequence of actions that occur in a system. The important aspect of a
sequence model is that it is time-ordered. This means that the exact sequence
of the interactions between the objects is represented step by step. Di�erent
objects in the sequence model interact with each other by passing messages
(method call).

Design phase: the design models are created based on the requirement and analysis
models. The design models are:

� The object model is a special kind of class diagram. An object is an instance of
a class. This essentially means that an object represents the state of a class
at a given point of time while the system is running. The object diagram
captures the state of di�erent classes in the system and their relationships or
associations at a given point of time.

22 Chapter 2. Preliminaries

Figure 2.4: Engineering UML speci�cation.

� A state model is a quite well-known technique to describe the behavior of the
software system. In particular, a state model de�nes the possible states of a
certain object can posses and the di�erent state transitions existing between
states. In addition to this, a state model also captures the transition of
the object's state from an initial state to a �nal state in response to events
a�ecting the system.

� An activity model is used to describe work �ow or procedure logic. This
model gives more lights on the object states transitions and the activities
causing the changes in the object states. The process �ows in the system
are captured in the activity model. Similar to a state diagram, an activity
model also consists of activities, actions, transitions, initial and �nal states,
and guard conditions.

� A collaboration model represents the associations between di�erent objects
in the system. The associations are listed as numbered interactions that help

2.6. Summary 23

to trace the sequence of the interactions. This model helps to identify all the
possible interactions that each object has with other objects in the system.

Implementation phase: The UML implementation models describe the way for adding
new features and for deploying the system as follows:

� The component model represents the high-level parts that make up the sys-
tem. This diagram depicts, at a high level, what components form part of
the system and how they are interrelated.

� The deployment model captures the con�guration of the runtime elements of
the application. This diagram is by far most useful when a system is built
and ready to be deployed.

2.6. Summary
This chapter has introduced relevant work from the literature, with particular emphasis
on work related to software evolution, software architecture, software re�ection, and
modeling languages. This material forms the background, motivation, and basic material
for the work presented in the rest of this thesis.

3 Design Information: RAMSES Base
and Meta Building Stones

In this chapter, we describe the role of the design information, that means how the
design information support software evolution. To evolve the software systems you need
to know more about the classes, the collaboration between them and so on. For that
we are going to the abstract level of design information, which gives us the ability to
explicit a global view the concrete-level and all the software components. This chapter
represents some aspects of design information in terms of presenting the structural and
behavioral models of the concrete-level. This will be used in subsequent chapters as
the cornerstone for software evolution. In chapter 5, our middleware uses the design
information to drive the runtime evolution of the software system.
This chapter is organized as follows: Section 3.1, overviews the design information as
the liaison between software design and concrete-level. Next, section 3.2, introduces
the requirements of a case study, this case study models a UTCS application and is
used as running example throughout this dissertation. Then, section 3.3, describes
the implicit and explicit behavior. Moreover, it describes in more details the design
information. Finally, section 3.4, presents the design information taxonomy and their
formal realization.

3.1. Introduction and Motivation
UML [11, 80] is the main methodology for software development, which describes the
system's behavior, architecture and components. The design phase provides all the
models necessary to the system to plan its evolution and a good evolutionary plan can
be directly designed on UML diagrams producing a new set of design models.
Software evolution is the most important process in software engineering, yet there is
little consensus on how evolutionary changes should be made, thus there is a little
coherency in maintenance practice.
The design information is the term that describes the software systems during the design
phases and evolution phases. We consider, the design information is both the graphical
representation in form of UML and their internal representation in form of XMI. Both
forms have internal-connection between each others, this means any change in one form
implies change to the other.

25

26 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

The design information is typically used at design time to describe and establish a
common understanding about the abstract realization of the software system. Design
information is usually not explicitly represented at runtime. Recently, the introduction
of software platforms supporting component plug-in, dynamic binding, PIM (platform
independent model) and PSM (platform speci�c models) have facilitated adaptation
of the software systems at runtime. It is important that the models described by the
design information are preserved during adaptation. In chapter 5, we propose a re�ective
middleware for self-adaptation that exploits design information to evolve the system
against dynamic changes. In the following we describe the importance of using the
design information:

� Design information provides a global view impacting of the whole system.

� From the de�nition of the design information, it gives the opportunity, through
their models to understand the concrete base-level system. From this point of view,
we can say it is the representation that is able to support both the horizontal and
vertical evolution that describe the new changes. Most of the other approaches
drive the evolution to one model of the design information neglecting the strictly
connecting models with it.

� The role of design information is realized from a version of a software system to
aid in evolving on that particular version. In other words, the design information
of the earlier versions can be used as a cornerstone to evolve the later versions.

� Describing the evolution of the code can be done by describing the changes that
occur to it. The way to describe the source code changes is by describing the
changes to their realized design information.

In the following sections, we describe the realized abstract representation of the soft-
ware system through the running example (UTCS). Then, we present in details through
example the explicit and implicit design information views.

3.2. The urban tra�c control system (UTCS):
simpli�ed view

In this section, the case study is introduced as running example throughout the next
chapters. Our case study is a design of a urban tra�c control system (UTCS) simulation.
We now specify the requirements for the UTCS example.

The case study concerns a simulation part of the urban tra�c control system. Here we
illustrate the re�ective object model for the tra�c control system by using UML [11, 100].
The evolution of complex urban agglomerates has posed signi�cant challenges to the city
planners in terms of optimizing tra�c �ows in a normally congested tra�c network [95].
Simulation and analysis of such systems require modelling the behavioral, structural

3.2. The urban tra�c control system (UTCS): simpli�ed view 27

STOP STOP

S
T

O
P

Church St.

Upper St.

Lower St.

M
ai

n
 S

t.

L
ef

t
S

t.

R
ight S

t.

N
ar

ro
w

 S
t.

(a) Standard situation

STOP

Upper St.

Lower St.

R
ight S

t.

M
ai

n
 S

t.

L
ef

t
S

t.

N
ar

ro
w

 S
t.

Church St.

(b) Temporary situation

Figure 3.1: City layout: a) the layout during normal activities b) the layout during road maintenance.

and physical characteristics of the road systems. This includes at least mobile agents
themselves, the roads and intersections.

It is fairly evident that modeling and developing an urban tra�c control system is an
hard job for software engineers. The most important issues they have to deal with
are: slowly evolving road situation, that the model must re�ect accurately at all times,
changes to the road situation that happens with no warning (accidents, broken tra�c
lights etc.) and that the system must take into account immediately, and of course the
ever changing �ow of people and vehicles and the dire consequences of restarting the
system during rush hour or at all.

There are many other non-stoppable systems that have problems similar to the urban
tra�c control system. Air tra�c control, assembly line and nuclear station power are
some examples of this kind of systems. Their problems are related to the fact they are
non-stoppable and need a higher reactivity to sudden environmental changes.

The map in Fig. 3.1.a could represent a simpli�cation of a real city map. Notwithstanding
that, it can help us in understanding the problems that a city planner has to face
when plans the UTCS of its city. The city planner must plan tra�c system taking in
consideration several issues, two of them, that we consider in the case study, are:

� cars must be able to reach every road from everywhere; and

� opposite tra�c lights at the same crossroad (e.g., tra�c lights at the crossway
between Church St. and Main St. in Fig. 3.1.a) must be synchronized or they are
useless.

A city map can be easily represented by an oriented graph G ≡ (Crossroads, Roads)
whose nodes are crossroads and whose edges are roads. Therefore, the �rst requirement

28 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

above can be formalized in:

Proposition 3.2.1. ∀c1, c2 ∈ Crossroads∧c1 6= c2 ∃p ≡ {r1 . . . rn} , ri ∈ Roads s.t.∀i, 1 ≤
i < n, ∃c ∈ Crossroads s.t. ri ≡ (x, c) ∧ ri+1 ≡ (c, y) ∧ r1 ≡ (c1, v) ∧ rn ≡ (w, c2). That
is, all crossroads in the map are connected by a path of roads. ¥

Analogously the second requirement can be formalized in:

Proposition 3.2.2. ∀r, p ∈ Roads s.t. r⊥p if ∃tr, tp ∈ Tra�cLights =⇒

Sync(tr, tp) =





trgreen =⇒ tpred
∨ tpyellowGreen

trred
∨ tryellowGreen

=⇒ tpgreen

tpred
∨ tpredY ellow

=⇒ trgreen

Where. TrafficLights is the set of all the tra�c lights marked on the map, tr and tp
are respectively the tra�c lights in r and in p. ¥

An urban tra�c control system that respects such criteria is consistent with the basic
requirements that a livable city must have. Therefore, the software engineer that designs
an UTCS should guarantee that such criteria will be respected. These requirements
de�ne the consistency of the system design.

3.3. Explicit versus Implicit View

Object-oriented software systems are composed of components (such as: classes, pack-
ages, libraries,..etc). These components have inter- or intra- connection between each
other. The implementation code of these systems has implicit information, that de-
scribes the relations such as: inheritance, delegation, shared attribute, method calls, and
encapsulation. To evolve these systems, we need to tangle the distributed components of
the implementation code to constitute a global view of the whole system. It is a sort of
snapshot that abstracts how these concrete components work and interact to each other.
The global view should perfectly provide an explicit view for all the concrete and implicit
information hidden in the code. One of the most critical problems in software evolution
is to consistently propagate the evolution from a piece of code to all the implicit related
pieces of code. The problem is just related to the implicit relation established among
the code process.

3.3.1. Implicit behavior

Most of the techniques mentioned in section 2.4 are able to analysis and evolve some
pieces of the applications. Usually, the applications are composed of many components.
Evolving some parts of these application neglecting how these components are connected

3.3. Explicit versus Implicit View 29

to each other leads to inconsistency problems1. To correctly evolve these applications,
we should have a complete overview of the concrete level of these applications. In the
following items, we discuss the common failure of existing approaches:

re-engineering: is a general solution of design recovery and does not provides a speci�c
solution how the recovered data should be structured in appropriate form, how
they connect. The problem is part of the forward engineering phase, which is
delegated to any sound development methodology. However for contemporary
systems, especially those built with an incremental methodology, the problem of
evolution is not how to migrate code to a new language, but rather how to quickly,
reliably and easily implement desired changes to the running application. Re-
engineering is not an appropriate solution for this problem.

impact analysis techniques: is promising techniques for dynamic and static traceabil-
ity of the application and events. The technique is quite limited for evolution in
the general sense. It requires a priori knowledge of the kinds of changes to expect
for the impact class instances. Moreover, these techniques cannot support evolu-
tionary change to program elements that do not participate in the de�ned impact
class.

slicing techniques: slicing and chopping have many applications, but for software main-
tenance they are most useful for performing impact analysis. One of the most
di�cult tasks in software evolution is to identify potential consequences of a pro-
posed change. This ripple e�ect analysis is strongly supported by these techniques.
Unfortunately, slices only identify elements that may need to be changed - they
do not compute what changes need to be made. Thus slicing and chopping should
ideally be combined with some form of incremental computation.

refactoring techniques: refactoring techniques provide the best way to evolve each
of the distributed pieces of the application code. This means, these approaches
provide the way to vertically adaptation (we means with vertical adaptation is the
ability to localize only one component, and adapt it for runtime changes). This
lead us to say, these techniques lack of the ability of horizontal adaptation, that
describes the ability to evolve the software components as well as the intra- and
inter components connections.

To complete the description of the behavior for the above techniques, we show the role
of these techniques through a simple case of the UTCS. In �gure 3.2, we illustrate the
snippet of the concrete representation. We have six classes: road, tra�cLight, sync-
Manager, syncProtocol, Case1, and tra�cLink. The UTCS case1 is composed of ten
crossroads, each crossroad connects two one-way road instances. There are two types of
crossroads: �rst, complex crossroad that manages the tra�c �ow of two road instances
by using two of synchronized tra�c light instances. Second, simple crossroad connects

1 The inconsistency problems realize when the application does not accept the whole or part of
changes.

30 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

Figure 3.2: The representation of concrete-level of UTCS.

the two di�erent road instances without tra�c lights. In the following, we describe the
complete structure of the UTCS case1 by listing all the simple and complex crossroads
as follows:

� crossroad(left1, church1, tf1); crossroad(left2, church1, tf2);
� crossroad(church2, main2, tf3); crossroad(main1, church2, tf4);
� crossroad(main2, upper2); crossroad(main2, upper1);
� crossroad(upper2, right); crossroad(right, lower1);
� crossroad(lower1, main1); crossroad(lower1, lower2);
� crossroad(lower2, left1); crossroad(upper1, narrow);

3.3. Explicit versus Implicit View 31

Figure 3.3: The refactor view of the concrete-level of UTCS.

� crossroad(narrow, church2); crossroad(upper1, upper3);

� crossroad(upper3, left2).

As in crossroad description, there are four tra�c lights (tf1,tf2,tf3,tf4). These tra�c
lights are composed of two synchronization groups. Each group consists of two tra�c
lights as follows: twoGroupSync(tf1,tf2) and twoGroupSync(tf3,tf4). These two groups
of synchronization are managed by two classes at the concrete level: (syncManager and
syncProtocol). Suppose we want to describe a particular behavior state such as (a priority
for the ambulance route from road upper2 (accident) to left2 (hospital)). The main goal is
to explicit this behavior from the implicit data at the concrete level components. This
kind of behavior could be used to describe the shortest path between the hospital and
the point where the accident occurred. It is di�cult to realize from speci�c part of the
code this kind of particular behavior. For that, we are looking for a method, that is
able to detect such kind of explicit data. In �gure 3.2, we illustrate the implicit view
through the distributed classes of the UTCS case1. In the rest of this subsection, we
describe the role of the refactoring and slicing&impact analysis techniques of the UTCS
case1 related to the particular behavior ambulance route. Moreover, we illustrate how
these techniques provide their solutions to describe this particular behavior.

An important kind of change to object-oriented software is a refactoring. Examples
of refactoring such as: changing the names of classes and methods, moving methods
and �elds from one class to another, and splitting methods or classes. The common
philosophy of refactoring is that change the structure of a concrete level (program)
not its behavior. For that, it is di�cult to explicit the required data that describes a
speci�c behavior of the system and change it. The normal behavior of the refactoring
techniques is shown in �gure 3.3, that proposes a solution for solving the ambulance case

32 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

Figure 3.4: The slicing and impact analysis view of the concrete-level of UTCS.

by introducing a new class named Ambulance1, that is used to apply the emergency plan
for the crossroad instances of the class case1. With this solution, refactoring techniques
increase the implicit information at the concrete level. Moreover, it does not exploit the
required data that describe new behavior (ambulance route). The semantic information
about a system is scattered in a large amount of implicit code, with this practical
simple refactoring scenario is leading to the structural evolution not behavioral. The
example in �gure 3.3, shows how implicit information represents particular behavior at
the code. In this simple scenario a developer starts a short refactoring session, in which
he/she refactors the new class ambulance1. He/She (1) extracts a new class named
ambulance1 ; (2) creates new associations between the other classes; and (3) renames the
synchronization method to ambulanceSyncCase, replacing all references to ambulance1
in the base-code . This refactoring scenario requires additional implicit code to switch
the system behavior to the normal state.

The main goal of the slicing and impact analysis techniques provides the traceability of
the whole application as shown in �gure 3.4. Object-oriented slices techniques are able
to produce static of the software system. This kind of traceability graph is named Class
Dependency Graph (CDG). This graph lacks for understandability by the developer and
its di�culty to support new adaptations. In contrast, the impact analysis techniques
provide a good traceability for both static and dynamic view of the system, and drive
pieces of evolution by providing impact class which contact to all the other components.

3.3. Explicit versus Implicit View 33

But the problem is the evolution proposed by impact analysis still static. Impact analysis
techniques introduce a set of atomic changes into the implicit code such as: add new
method named ambulanceSyncCase, to the class syncProtocol for describing the new
particular behavior, and another method to the main class case1 named switchNBehavior
to switch the system again to the normal behavior.

The fundamental problem underlying the approaches sketched above is that, �rst, refac-
toring techniques do not provide an explicit view of the description of the whole behavior.
Moreover, it increases the implicit data through the code. Second in case of slicing, these
techniques are able to built an explicit view from the concrete level, but it lacks for a
particular explicit view and evolution.

In the next subsection, we describe the design information to explicit design models from
the concrete level.

3.3.2. Explicit behavior

In this subsection, we introduce how to explicit global view from the implicit concrete
code of the UTCS case1 by using design information models. With logic thinking of
evolution problem, we need to give an explicit data of the whole system, then propagate
the evolution based on the consistency propagated evolution of the explicit data.

From the de�nition of the design information, it provides an explicit data for the implicit
concrete-level. The explicit data can be structured in a set of models such as: (1) explicit
model that describes the structure of the implicit components and their interaction;
(2) explicit model that describes the behavior of these components; and (3) explicit
model that describes the particular behavior of the whole system. For that, the design
information provides a set of explicit models for the concrete level. These models are
connected and the most properties of these explicit models is driving the evolution in
both vertical and horizontal. We give a closer look for the both type of evolution for
the design information: �rst, vertical evolution is the ability to evolve and analysis each
model or component alone. Most of the other techniques apply this kind of analysis and
evolution. Second, horizontal evolution, in sense that all the explicit models should be
provide the whole structure and behavior of the system. For that reason, The evolution
based for elements of one model of the design information should be re�ected also to
the connected elements at the other explicit models. For example, the changes in the
implicit component tra�c light implies changes to the explicit structure model, explicit
behavior model, and explicit system behavior model.

Now, we illustrate the role of the design models to explicit speci�c models for the UTCS
case1, that describe the normal behavior for the UTCS case and the ambulance behavior.
The realized explicit models should describe the particular behavior of the ambulance
behavior case.

34 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

TL4

TL4:TrafficLight

TL2 TL3

TL2:TrafficLight

TL3:TrafficLight

Traffic Flow TL1

turn_right(leftst.)

turn_right(lowerst.)

turn(mainst.)

turn(churchst.)

turn_left(narrowst.)

turn_left(leftst.)

turn_right(rightst.)

Upperst.

TL1 : TrafficLight

Activity_for_normal_layout_of_running_example

red

green
red

green

green

red

green

red

Figure 3.5: Normal behavior for the particular routes of the UTCS case1.

As stated in the UML speci�cation [80], an activity allows a very readable modelling
of concurrency and of all elementary programming concepts namely: sequence, branch,
loop, swimlane, fork and join. Activity diagrams are usually associated to a class and,
as such, they model the operations �ow inside the class. This �ow can depend on
internal or external events. Nevertheless, the activity diagram also allows a hierarchical
decomposition, through the use of sub-activity states, and it can model several classes
related by class aggregation. Through the use of external events we can even synchronize
several activity diagrams.

With the help of an example, we describe why the design information used for evolution.
The UTCS for an ambulance case, can be described the �ow of the part of it by an activity
diagram shown in �gure 3.5, that opens a window as dynamic view of the concrete code
that describe the �ow in normal case. This activity diagram de�nes the interconnections
among roads and crossroads and swimlanes that express the dependencies among roads

3.3. Explicit versus Implicit View 35

TrafficLight

−sem_id:string

−assyncid:string

−corner_id:string

+turn−off():void

+tick():void

+turn−on():void

Road

−road_id:string

−link_id:string

UTCS−ClassDiagram

assyncid

link−id

Figure 3.6: Class diagram of the urban tra�c control system.

and tra�c lights. Therefore the information derived by these diagrams must go together
with the system code as meta-data.
The design information realizes the structure explicit view that describes the implicit
components and their connections in form of class diagram. The class diagram in �g-
ure 3.6 could represent the structure part of the simpli�cation of a UTCS case1. Notwith-
standing that, it can help us in abstract global view how the concrete-level component
structured and the relation between them. That is, all crossroads in the map are con-
nected by a path of roads. An urban tra�c control system that respects such criteria
is consistent with the basic requirements that a livable city must have. Therefore, the
software engineer that designs an UTCS should guarantee that such criteria will be
respected. These requirements de�ne the consistency of the system design.
The structure explicit data the describe how the instances connect, can be described by
the deployment diagram as shown in �gure 3.7, that de�nes the interconnections among
roads and crossroads. A statechart expresses the dependencies among tra�c lights as
shown in �gure 3.8. These diagrams well describe the system structure and behavior and
its evolution should pass through these data to be well planned and integrated with the
existing code. Therefore the information derived by all these diagram must go together
with the system code as meta-data.
In this subsection we introduced the successful behavior by presenting an explicit global
view of the UTCS case1 by using design information. The successful behavior describes
the implicit information in the implementation code of motivation case into three UML
diagrams for simplicity as follows:
class diagram - explicit information that describe the general static view of the whole

sample case.

36 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

TL4:TrafficLight

TL3:TrafficLight

TL2:TrafficLight

TL1:TrafficLight

NarrowSt.:Road

UpperSt.:Road

RightSt.:Road

ChurchSt.:Road

MainSt.:Road

LowerSt.:Road

LeftSt.:Road

OM4Standard_situation

Roads−Map

upper−>narrow
narrow−>church

main−>upper

upper−>right

lower−>left

left−>chruch

church−>main

lower−>main

has

has

has

has

assyncid

assyncid

upper−>left

Figure 3.7: Normal layout: a) the static view .

deployment diagram - provides an global view for the instance connections

statechart diagram - explicit the dynamic behavior for speci�c class in the system.

activity diagram - explicit the dynamic information in form of activity and action for
the whole system at particular state.

3.4. Lightweight Formalisation of Design
Information

In the following we describe the design information formalism that is used as a corner-
stone for our approach. Our approach to evolution uses design information as knowledge
bases for getting system evolution. Design information is the data related to the design
of the system we want to evolve. UML is the adopted formalism for representing design
information.

The taxonomy of the design information is composed of two sub component structural
information and behavioral information as shown in �gure 3.9. Structure information
describes the realized static structure of the concrete-level in the form of class diagram
and deployment diagram. The behavior information describes the realized dynamic be-
havior of the concrete-level in form of three UML diagrams (statechart, sequence and
activity). To this aim, we assume that the design information realizes as follows:

3.4. Lightweight Formalisation of Design Information 37

Concurrent TL1 & TL2 states

TL1 States

yellowGreen red

yellowRedgreen t=30sec

tick()

t=5sectick()

t=20sec

tick()

t=5sec tick()

TL2 States

yellowRed green

yellowGreenred t=20sec

tick()

t=5sectick()

t=30sec

tick()

t=5sec tick()

SecondTwoSycronizedTrafficLights

turn−on()
turn−off

Figure 3.8: Normal layout: the behavior view.

Figure 3.9: The taxonomy of design information-abstract level.

De�nition 3.4.1. Design information (DI) is represented as a set of structural and
behavioral UML diagrams: DI={< SDI >, < BDI >}.

Where. SDI is the structural design information and BDI is the behavior design
information. ♦

3.4.1. Structural design information

Structural design information is an explicit description of the structure of the base-level
objects. This includes the number of attributes and their data type. In the following
de�nitions we describe the two structural diagrams as described in �gure 3.9.

38 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

De�nition 3.4.2. Structural design information < SDI >: {CD,DD}.

Where. CD is the class diagram and DD is the deployment diagram. ♦

The two types of the structural design information are the class diagram and deploy-
ment diagram. In the following de�nitions, we de�ne the formalism of both types, then
applying the de�nitions to the structural diagrams realized from the running example.

De�nition 3.4.3. Class diagram (CD) is the formula that describes the system in an
abstract level using two components: classes and the relations between them as follows:

CD = {Σm
i=1 clsi, Σ

n
j,k,l assj(clsk, clsl)}.

Where. ∀ clsi ∈ CD, the clsi is de�ned as follows:

clsi =< clsN, Σt
w=1 attw, Σm

i=1 opi >

For association or relation, ∀ assi ∈ CD, the assi is de�ned as follows:

assi =< asstype, Σm
i=1 clsi, cardinality >, ∀ cardik ∈ cardinality,

the complete description of the cardik represents as:

cardik =< cardtype, Σn
l=1 (clsl, clsl.cardno) >

Note: cls is the class and ass represents the association between two or more classes.♦

Example 3.4.1. The classes Road (R) and Tra�cLight (TL) as modelled in Figure 3.6
represent the static structure of the running UTCS case study. The both classes can
speci�ed using the following formal de�nition:

UTCS-CD = {< clsR, clsTL >,

< asshas(clsRins
, clsTLins

),

assassyncid(clsTLins
, clsTLins

),

asslink−id(clsRins
, clsRins

) >}.

M

De�nition 3.4.4. Deployment diagram (DD) is the formula that describes how the
system instances interact in the abstract level using two components: class instances
(objects) and the object connections as follows:

DD = {Σm
i=1 obji, Σn

j,k,l objrelj(objk, objl)}.

Where. obj is the objects and objrel is the relations between objects. ♦

3.4. Lightweight Formalisation of Design Information 39

Example 3.4.2. Figure 3.7 represents another view of static structure of our case study
in form of deployment diagram. We de�ned the objects and their relations according to
the de�nition (3.2.4) as follows:

UTCS−DD = {UTCS −DDobjs, UTCS −DDobjrels}.

Where.

UTCS−DDobjs = {objleftSt:road, objlowerSt:R, objchurchSt:R,

objrightSt:R, objmainSt:R, objupperSt:R, objnarrowSt:R,

objTL1:TL, objTL2:TL, objTL3:TL, objTL4:TL},

and

UTCS−DDobjrels = {objrelleftSt→churchSt(leftSt, churchSt),
objrelchurch→main(churchSt,mainSt),
objrelnarrow→church(narrowSt, churchSt),
objrelupper→narrow(upperSt, narrow),

objrelmain→upper(mainSt, upperSt),
objrelupper→right(rightSt, upperSt),
objrellower→main(lowerSt,mainSt),
objrellower→left(lowerSt, leftSt),
objrelupper→left(leftSt, upperSt)}

Note: UTCS-DDobjs is listing all the object instances described in �gure 3.7, UTCS-
DDobjrels is listing all the possible relations between object instances described in UTCS-
DDobjs, R is the road class, and TL is the tra�c Light class. M

3.4.2. Behavioral design information

Behavioral design information describes the computations and the communications car-
ried out by the base-level objects. It includes objects behavior, collaboration between
objects, and the state of the objects. In the following, we de�ne the syntax formula for
the behavior diagrams, that we will use in the next chapters.

De�nition 3.4.5. Behavioral design information is described as:

< BDI >: {StD, SeD, AcD},

Where. StD is the statechart diagram , SeD is the sequence diagram, and AcD is the
activity diagram. ♦

40 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

In the following, we de�ne in details the behavioral design information components,
Moreover, how this de�nition is realized by examples.

De�nition 3.4.6. Statechart diagram (StD) describes the classes behavior through the
movement of a class from a state to another under event/condition. The statechart
diagram has the following elements:

StD = {Σm
i=1 Sti, Σ

n
j stypj, Σ

m
l=1 transl}.

Where. the St is the states, styp is the state types, the possible types are (simple state,
concurrent state, fork state, and join state), and trans is the transition from state to
another.
Note:

∀ clsi ∈ CD ∃ stdi ∈ StD s.t.

(clsi, stdi) = < Σm
l,k,j=1 (clsi.Stj, clsi.stypk, clsi.transl) > .

♦
Example 3.4.3. The statechart is shown in �gure 3.8, speci�es the synchronization
between two tra�c lights (TL1,TL2). After applying the de�nition 3.4.6, we get the
following results:

StDconTL1&TL2
= {StTL1, StTL2, stypconcurrent(TL1,TL2), transTL1, transTL2}.

Where. The state of TL1 consequently is organized as follows:

StTL1 = {green, yellowRed, red, yellowGreen}.

The possible transitions for the TL1 states are realized in the following formula:

transTL1 = {t1(tick(), Sgreen → SyellowRed, t = 30sec),

t2(tick(), SyellowRed → Sred, t = 5sec),

t3(tick(), Sred → SyellowGreen, t = 20sec),

t4(tick(), SyellowGreen → Sgreen, t = 5sec)}.

Then, we de�ne the consequence states and transitions of the TL2 as follows:

StTL2 = {red, yellowGreen, green, yellowRed}.

The possible transitions for the TL2 states are realized in the following formula:

transTL2 = {t1(tick(), Sred → SyellowGreen, t = 20sec),

t2(tick(), SyellowGreen → Sgreen, t = 5sec),

t3(tick(), Sgreen → SyellowRed, t = 30sec),

t4(tick(), SyellowRed → Sred, t = 5sec)}.

3.4. Lightweight Formalisation of Design Information 41

Since we describe the statechat of �gure 3.8, we extract the general form of that example
as follows:

StDfigure 3.8 = {SSstate, transturn−on(Sstate,Fstate),
Sforkconcurrent(TL1green,TL2red),

Sjoin(TL1,TL2), transturn−off (Sjoin,Fstate)}.
M

De�nition 3.4.7. Sequence diagram (SeD) describes the system behavior as a con-
nection of system components through messages between them. This diagram has the
following elements: objects and messages that describe the events �ow between the
objects.

SeD = {Σm
i=1 obji, Σ

n
j messj, Σ

m
l=1 opl}.

Where. obj is an object that participates in speci�c scenario, mess represents the mes-
sage between two object instances. Finally, the op is the operation that will be �re in
the speci�c object. ♦
De�nition 3.4.8. Activity diagram (AcD) describes a particular behavior of the sys-
tems. The activity diagram has the following elements:

AcD = {Σm
i=1 astypi, Σn

j slj, Σm
l=1 transl}.

Where. the astyp is the activity state types, the possible types are (action state, �ow
state, fork state, merge state, branch state, and join state), sl is the swimlane area for
speci�c object, and trans is the transition from state to another or to object instances.

♦
Example 3.4.4. The activity diagram in �gure 3.5 shows the normal �ow at a set of
roads through set of synchronized tra�c lights. We realize the formalism of the normal
behavior of the activity diagram as follows:

AcDUTCSnb
= {< astypinitialS >,< astypactionS >,< astypforkS >,

< astypjoinS >,< objNs >, < mergeNs >, < slset >,

< transset >,< astypfinalS >}.
Where. In the following, the action states are realized as follows:

< astypactionS > = {ASgo−upperst, ASturn−left(narrowst), ASturn−left(leftst),

ASturn−right(rightst), ASturn−right(lowerst), ASturn−right(leftst),

ASturn(churchst), ASturn(mainst)}.
Next, the fork state is described in details as follows:

< astypforkS > = {FSupper→narrow, FSupper→left, FSupper→right}.

42 Chapter 3. Design Information: RAMSES Base and Meta Building Stones

After that, this �gure includes two join states, that are realized as follows:

< astypjoinS > = {JS(Uleft,Lleft)→Church, JS(Church,Lower)→Main}.

There are four object nodes are distributed through four swimlanes as follows:

< objNs > = {objnTL1, objnTL2, objnTL3, objnTL4}.

Moreover, there are four merge states described in details as follows:

< mergeNs > = {MNSleft1−has−tflow(TL1green& TL2red),

MNSleft2−has−tflow(TL1red& TL2green),

MNSchurch−has−tflow(TL3green& TL4red),

MNSmain−has−tflow(TL3red& TL4green)}.

The swimlanes are realized as follows:

< slset > = {sltflow, slTL1, slTL2, slTL3, slTL4}.

All the possible transitions illustrated in �gure 3.5, are realized as follows:

< transset > = {transIS(ISinitialS, ASupperst),

transFS1(ASturn−left(narrowst), ASturn−left(leftst), ASturn−right(rightst)),

trans2AS(ASturn−right(rightst), ASturn−right(lowerst)),

trans2AS(ASturn−right(lowerst), ASturn−right(leftst)),

transJS1([ASturn−left(leftst), ASturn−right(leftst)], ASturn(churchst)),

transJS2([ASturn−right(lowerst), ASturn(churchst)], ASturn(mainst))}.

Note: IS is the initial state, AS is the action state, JS is the join state, MNS is the
merge node state, sl is the swimlane, t�ow is the tra�c �ow, and FS is the �nal state.

M

3.5. Summary
In this chapter we presented the role for using design information as a base for driving
software evolution. Design information provides structural and behavioral views of the
implementation code. Design information enables the developer to explicit the structural
part of the concrete-level by providing the class diagrams. To explicit the behavior
of the code then the design information provide the statechart, activity diagrams or
collaboration diagrams. The main advantage of the design information is to give the
system simpler as a base to understand, change, and maintain.

3.5. Summary 43

We have shown some methodologies and design information that are inadequate for
system evolution either because they require a prior knowledge or they have no explicit
mapping between design and runtime. This is the main gap that was addressed using
UML diagrams that are explicitly mapped to source code and making the connection
maintainable.
A �rst contribution, presented in this chapter, is the formalisation of the design infor-
mation. Using this formalism, several explicit structural and behavior of the software
systems can be precisely speci�ed to drive the evolution and validation plans. This is
the subject of the next chapter.

4 Evolution Planning:
RAMSES Strategic Processes

In this chapter we describe how design information can be used to drive the software
evolution and to maintain code consistency. We are going to explain how to automate
the evolution by design information. To have a general middleware to deal with software
evolution, the evolution planning cannot be hardcoded into the system. Therefore, the
evolution planning aims for a knowledge-driven view of software development.

Actually, the design process is very important to the usability and understandability of
the system. The design models and implementation code must be strictly connected.
Usually, the early stages of the development, the speci�cations and the design of the
system, are ignored once the code has been developed. This practice cause a lot of
problems, in particular when the system must evolve. Recognizing changes at the higher
level of abstraction and taking into automatically adapting the UML representation is
exactly the motivation for this chapter.

This chapter is organized as follows: Section 4.1, overviews the design information based
speci�cation of the dynamic evolution. Section 4.2, illustrates the representation form
of the UML at meta-level. Section 4.3, discusses the evolution planning through the
evolutionary and consistency checker. Section 4.4 explains which operations can be
done for the evolution planning. Finally, section 4.5 explains how to interpret the XMI
schema by using script rules.

4.1. Introduction and motivation

In the last few years, methodologies to automate part of or the whole software life cycle
has been widely studied in the software system development. These methodologies can
be used to create and/or maintain software, i.e. they are applicable to all the phases of
the software life cycle. Evolution and maintenance are becoming increasingly important
in the software development. Automatic techniques to support these phenomena are
fundamental to improve the management of unanticipated software evolution.

The design process is very important to the usability and understandability of the sys-
tem. There are two views of design processes: functional and nonfunctional. Functional
requirements present a complete description of how the system will function from the

45

46 Chapter 4. Evolution Planning: RAMSES Strategic Processes

user's perspective, while non-functional requirements dictate properties and impose con-
straints on the system.

We summarize the objective of this chapter in the following items:

� how the UML diagrams can be represented in a suitable form at runtime.

� how to plan the evolution to the design information for runtime changes, and how
to check the consistency of the modi�ed parts. This means how to provide an
evolutionary plan for an event and check the design information after applying the
plans.

� how XMI 1 can be managed by using operations-based evolution. How these oper-
ations are used to extract some parts of the XMI schemas and adapting them.

� how can the XMI schema interpreter the evolution by using script rules. How script
language support the dynamic adaptation of the design information, and how these
scripts interpret the dynamic evolution.

In the next section we �rst describe the representation of meta-data in the form of XMI
schemas.

4.2. UML Diagrams as Meta-Data

The UML is de facto the standard (graphical) language used during the design process,
therefore we consider its diagrams as a good representation of for the design informa-
tion [11]. Dynamic events are hard to be captured at design-time whereas their occur-
rence surely involves design information. This problem causes complete redesigning of
the software system. Our scope is to simplify the evolution/maintenance mechanism.
That is, to render the changes required by the evolution immediately available both to
the realized design information.

Software systems are expecting for a mechanisms to face changes in their environment
and be able to self-adapt their code and design models when unanticipated events occur.
This problem forces a complete redesigning of the software systems when changes occur.
OMG2 introduced a standard speci�cation for UML models and their semantics to model
the software systems. Moreover, the OMG [83] has introduced a standard representation
for the UML, called XMI [81], that can be used between di�erent software tools. For
simplicity, if we consider the design information as a coin, then this coin has two views:
(1) UML graphical representation and XMI internal representation (this view easy to
computerize by program). The XMI can be used to transfer the design information data
from a platform to another. XMI provides a translation of UML diagrams in a form more
suitable for run-time manipulation.

1 XML Metadata Interchange, for more details http://www.omg.org/
2 www.omg.org

www.omg.org�

4.2. UML Diagrams as Meta-Data 47

XMI provides a translation of UML diagrams in a text-based form more suitable for
run-time manipulation as shown in the following schema that show the representation
for the running example. The XMI standard gives a guideline for translating each UML
diagram in XML. Each diagram is assimilated to a graph whose nodes are the diagram's
components (e.g., classes, states, actions and so on), and arcs represent the relation
among the components. The graph is decorated with XML tag describing the properties
of the corresponding UML component.

After that we will illustrate the real result of the translation between UML diagram and
XML by using the Poseidon tool. The result XMI schema is showed in the following
listing.

<?xml version = '1.0' encoding = 'UTF-8' ?> <XMI xmi.version = '1.2'
xmlns:UML = 'org.omg.xmi.namespace.UML' xmlns:UML2 =
'org.omg.xmi.namespace.UML2'
timestamp = 'Fri May 19 21:36:38 CEST 2006'>
<XMI.header><XMI.documentation>
<XMI.exporter>Netbeans XMI Writer</XMI.exporter>
<XMI.exporterVersion>1.0</XMI.exporterVersion>
<XMI.metaModelVersion>1.4.3</XMI.metaModelVersion></XMI.documentation>

</XMI.header>
<XMI.content>
<UML:Model xmi.id = 'Im1153ee00m10b4c9feb4amm7e78' name = 'UTCS'

isSpecification = 'false' isRoot = 'false' isLeaf = 'false'
isAbstract = 'false'>

<UML:Namespace.ownedElement>
<UML:Class xmi.id = 'Im1153ee00m10b4c9feb4amm7e62' name = 'Road'

visibility = 'public' isSpecification = 'false' isRoot = 'false'
isLeaf = 'false' isAbstract = 'false' isActive = 'false'/>

<UML:Class xmi.id = 'Im1153ee00m10b4c9feb4amm7e4f' name = 'TrafficLight'
visibility = 'public' isSpecification = 'false' isRoot = 'false'
isLeaf = 'false' isAbstract = 'false' isActive = 'false'/>

<UML:Object xmi.id = 'Im1153ee00m10b4c9feb4amm7dfa' name = 'MainSt.'
visibility = 'public' isSpecification = 'false'>
.
.

<UML:Object xmi.id = 'Im1153ee00m10b4c9feb4amm7deb' name = 'ChurchSt.'
visibility = 'public' isSpecification = 'false'>

.

.
<UML:Object xmi.id = 'Im1153ee00m10b4c9feb4amm7d3e' name = 'TL2'

visibility = 'public' isSpecification = 'false'>
.
<UML:Instance.linkEnd>

<UML:LinkEnd xmi.idref = 'Im1153ee00m10b4c9feb4amm7d83'/>

48 Chapter 4. Evolution Planning: RAMSES Strategic Processes

<UML:LinkEnd xmi.idref = 'Im1153ee00m10b4c9feb4amm7d6a'/>
<UML:LinkEnd xmi.idref = 'Im1153ee00m10b4c9feb4amm7cd9'/>
<UML:LinkEnd xmi.idref = 'Im1153ee00m10b4c9feb4amm7d76'/>

</UML:Instance.linkEnd>

.
<UML2:Region xmi.id = 'Im1153ee00m10b4c9feb4amm7bd4' name = 'Region_4'
visibility = 'public' isSpecification = 'false'>

<UML2:Region.subvertex>
<UML2:State xmi.id = 'Im1153ee00m10b4c9feb4amm7bc3'
name = 'red' visibility = 'public' isSpecification = 'false'>
<UML2:Vertex.outgoing>

.

.

The above portion of XMI code translates part of the object diagram showed in Chapter
3 at �gure 3.7. In particular, it describes the object named TL2 and Main St and
their inter-connection. The instances description of a class is grouped into the XMI tag
UML.Object. The two occurrences showed in the above snippet describe respectively
the object TL2 and Church St in �gure 3.7. The name of the instance is contained in
the attribute name, whereas the type of the instance is contained in the sub-tag Class.
The xmi.idref refers to description of the corresponding class into the class diagram.
The has association is described through the tags UML:Instance.linkEnd that specify
which instances are involved into the association and the tag UML:Instance.ownedLink
that describes the nature of the association.

At system bootstrap, the XMI representation of design information extracts from the
code. In this way we render accessible UML data-model to the meta-objects. Design
information manipulation is yielded by creating and parsing XMI representation of the
corresponding UML diagrams [49]. In this way we render accessible UML data-model.
The XMI parser includes the following features:

� it transforms the UML design information related to the code in speci�c extracted
schemas;

� it declares how to add extensions to the meta-data; and

� it allows self adaptation of the extracted schemas.

The XMI schemas are tightly linked with the implementation code. As described in [49],
we can create new UMLmodels from XMI schemas, therefore the evolutionary plan, which
is a group of modi�ed XMI schemas, can be reverted into UML diagrams. Basically, this
reciprocity between UML diagrams and XMI schemas allows to maintain the connection
between design and code.

4.3. Evolution and Validation Planning 49

4.3. Evolution and Validation Planning
In this section we explain the aspect of evolution planning and consistency validation,
and their relation with design information. A plan describes the way to adapt the
software system for runtime changes.
Evolutionary and validation planning is the strategy that is used by RAMSES meta-
objects to dynamically evolve and validating the simulation of the software system in
from of design information for runtime events. For that, we de�ne the formalism for
the main role of those objects: evolution planning, and validation planning. Below, we
de�ne these concepts as follows:

De�nition 4.3.1. Evolution planning (EP), given a system (S), S.t.:
Scomp = {SDI , Ddomain},

Based on the design information de�nition, the evolution strategy of the system (S) is
realized by the following formula:

SES = {SSSSDI
, SDSBDI

}. ∀ rei ∈ Ddomain ∃ evolutionary plan (EP)

The generated evolutionary plan is a set of evolutionary actions(EA) related to the
structural and behavioral design information of the system. The evolution plan of the
runtime event (rei) is described as follows:

EPrei
= {Σ EASSSDI

, Σ EADSBDI
},

The adopted system is realized by applying the proposed evolutionary plan (EP) to the
original (S), the adopted system we refer as:

S′ = {SSSSDI
× Σ EASSSDI

, SDSBDI
× Σ EADSBDI

}.
Where. SDI is the design information of the system S, Ddomain is the running domain
and environment of S, (SES) is the evolution strategy of S, SSSSDI

is the static evolution
strategy of S, SDSBDI

is the dynamic evolution strategy of S. ♦

Evolutionary planning is the strategy to evolve the software system for the changes in
it's environment domain. By generating an evolution plan for each runtime event, then
apply the generated plan direct to the system and it's design information as shown
in algorithm 1. The evolution planning algorithm in details, the inputs of evolution
planning are: the design information of system (S), and the detect runtime event. The
evolution planning output is the new system includes the runtime changes we refer as
(S ′). The evolution planning core is: For each runtime event, the evolution planning
generates: preEVOPlan3, an evolutionary action, and PostEvoPlan4. Each evolutionary
action has two components:
3 preEVOPlan is the precondition for the evolution planning process, that includes set of condition

should be valid before applying the evolutionary action.
4 PostEVOPlan is the set of conditions that describe the evolutionary action applied to the system

and leave the system consistent with the changes.

50 Chapter 4. Evolution Planning: RAMSES Strategic Processes

static evolutionary action: lists all the generated actions related to the structural de-
sign information;

dynamic evolutionary action: lists all the generated actions related to the dynamic
design information.

The evolution planning checks that the preEVOPlan is valid or not. If preEVOPlan then
apply the evolutionary action strategy types (static and dynamic) to the corresponding
components of the system (S). In the following, we describe the postEVOPlan as the
role of the validation planning and it's algorithm in details.

De�nition 4.3.2. Validation planning (VP), VP aims to check the evolved system
(S ′) is consistent thought two types of checking: horizontal and vertical consistency,
and all the evolutionary actions applied. We suppose that, evolution planning is the
map, s.t. EP : S −→ S ′. Then, we assume the VP is a pair of two boolean components
that check the functionality of the EP map is consistency evolving the system (S). The
validation formula can be described as follows: VP=(HVP,VVP), s.t.

HVP = {IsCons(S ′DI), IsApp()},
and

VVP = {< SVVP >,< BVVP >}.
The two elements of VVP described in more details as follows:

SVVP = {IsCons(S ′CD, UMLSCD)×
IsCons(S ′DD, UMLSDD),

IsApp(EPS′SDI
: SSDI −→ SSDI × EASDI)};

BVVP = {IsCons(S ′StD, UMLSStD)×
IsCons(S ′SeD, UMLSSeD)×
IsCons(S ′AcD, UMLSAcD),

IsApp(EPS′BDI
: SSDI −→ SBDI × EABDI)};

Where. HVP is the horizontal validation planning, VVP is the vertical validation plan-
ning, SVVP is the vertical validation planning for the structural components of the
system, BVVP is the vertical validation planning for the behavior components of the
system, IsCons is the consistency boolean function, IsApp is the applied function of the
evolutionary action to the system, and UMLS is the UML syntax standard for speci�c
diagram. ♦

The validation planning of the evolved system (S ′) aims to check the results of the
evolution planning map. The validation planning is described through two validation
types:

4.3. Evolution and Validation Planning 51

Data : SDI , rei

Result:
S ′ - Evolution planning

/*evolutionary planning processes of the system (S) */
begin

for each Runtime (rei) ∈ SDomain do
generate preEVOPlan;
generate an Evolutionary action;
generate postEVOPlan
EPrei

= {Σ EASSSDI
, Σ EADSBDI

};
for each EPrei

do
if preEVOPlan valid then

/*apply the evolution static strategy to the class diagram
and deployment diagram */

repeat
for m ∈ SSDI do

EPCD = EASSCD
× S.CD;

EPDD = EASSDD
× S.DD

end
until All Σ EASSSDI

applied ;

/*apply the evolution dynamic strategy to the statechart
diagram, sequence diagram, and activity diagram */

repeat
for m ∈ SBDI do

EPStD = EABSStD
× S.StD;

EPSeD = EABSSeD
× S.SeD;

EPAcD = EABSAcD
× S.AcD;

end
until All Σ EADSBDI

applied ;
else

Create (new preEVOPlan)
end

end
end

end
Algorithm 1: Strategy of the evolution planning.

52 Chapter 4. Evolution Planning: RAMSES Strategic Processes

syntax validation: Syntax validation is the vertical validation for both structural and
behavioral design information of the system. The VVP described in algorithms(2,3).
The vertical validation plan checks each model of the system is consistent with the
changes made by evolutionary planning. Finally, the syntax validation realized by
the value of VP.
Note: V P = {V PSDI × V PBDI}.

semantic validation: Semantic validation is the horizontal validation that describes if
a model in the system is consistent then all the related models should be consistent
too. For example, The HVP checks for any changes in the class diagram or the de-
ployment diagram, Then this modi�cation should be re�ected into special scenario
in case of sequence diagram or particular behavior in case of activity diagram, as
shown in example (4.3.3).

After, de�ning the evolution and validation planning. We describe the evolution and
validation plan describing the changes from the developer point of view for the normal
layout described in the chapter 3. We suppose the detected runtime event is (closing
Church street). Then, the developer suggests an evolution and validation plan to solve
the problems related to this event, and with keeping satis�ed all the constraint also to
the modi�ed plan.

In the following subsections, we describe the proposed evolutionary and validation plans
for normal layout described in the chapter 3. The evolutionary and validation plan
describe the developer point of view to adapt the realized design information.

4.3.1. Evolutionary planning of the UTCS example (3.2)

Informally, the evolutionary plan has to carry out the following actions:

� turn-o� the tra�c lights [tf1, tf2, and tf3];

� delete the road church st. and its roadlinks towards the others;

� change the direction from [upper → narrow] to [narrow → upper];

� add new tra�c light tf5 to the upper at the crossroad between upper and main;

� move the tra�c light tf4 to end of main connected with upper ;

� set new synchronization between tf5 and tf4; and

� delete the tf1,tf2 and tf3 from the statechart and their states.

Applying our evolution planning de�nition for the above evolutionary plan as follows:

4.3. Evolution and Validation Planning 53

Data : S ′DI , EP, SDI

Result:
S ′ - Validation planning

/*validation planning description of the evolved system */
begin

for m ∈ SSDI do
if EP �nished then

/*Vertical validation of the static structural components */
repeat

for m ∈ S ′SDI do
/*SVVP of the class diagram */
if S ′.CD = S.CD × EAssCD

then
V PS′CD

= true

else
V PS′CD

= false

end
/*SVVP strategy of the deployment diagram */
if S ′.DD = S.DD × EAssDD

then
V PS′DD

= true

else
V PS′DD

= false

end
end
V PSDI = V PS′CD

× V PS′DD
;

until All S ′SDI scanned ;
else

check again EPS′SDI

end
end

end
Algorithm 2: Strategy of the structural validation planning.

54 Chapter 4. Evolution Planning: RAMSES Strategic Processes

Data : S ′DI , EP, SDI

Result:
S ′ - validation planning

/*validation planning description of the evolved system */
begin

for m ∈ SDI do
if EP �nished then

/*Behavior validation planning of the behavioral design
information */

repeat
for m ∈ S ′BDI do

/*BVVP strategy of the statechart diagram */
if S ′.StD = S.StD × EABsStD

then
V PS′StD

= true

else
V PS′StD

= false

end
/*BVVP strategy of the sequence diagram */
if S ′.SeD = S.SeD × EABsSeD

then
V PS′SeD

= true

else
V PS′SeD

= false

end
/*SVVP strategy of the activity diagram */
if S ′.AcD = S.SeD × EAsBAcD

then
V PS′AcD

= true

else
V PS′AcD

= false

end
end
V PBDI = V PS′StD

× V PS′SeD
× V PS′AceD

;
until All S ′BDI scanned ;

else
check again EPS′BDI

end
end

end
Algorithm 3: Strategy of the behavioral validation planning.

4.3. Evolution and Validation Planning 55

TL
4:

Tr
af

fic
Li

gh
t

TL
3:

Tr
af

fic
Li

gh
t

N
ar

ro
w

S
t.:

R
oa

d

U
pp

er
S

t.:
R

oa
d

R
ig

ht
S

t.:
R

oa
d

M
ai

nS
t.:

R
oa

d

Lo
w

er
S

t.:
R

oa
d

Le
ftS

t.:
R

oa
d

M
od

ifi
ed

O
bj

ec
t M

od
el

R
oa

ds
−M

ap

na
rr

ow
−>

up
pe

r

m
ai

n−
>u

pp
er

up
pe

r−
>r

ig
ht

lo
w

er
−>

le
ft

lo
w

er
−>

m
ai

n

ha
s

ha
s

as
sy

nc
id

le
ft−

>u
pp

er

(a) Object Model

C
o

n
cu

rr
e

n
t
T

L
3

 &
 T

L
4

 s
ta

te
s

T
L

3
 S

ta
te

s

ye
llo

w
G

re
e

n
re

d

ye
llo

w
R

e
d

g
re

e
n

t=
3

0
se

c

tic
k(

)

t=
5

se
c

tic
k(

)

t=
2

0
se

c

tic
k(

)

t=
5

se
c

tic
k(

)

T
L

4
 S

ta
te

s

ye
llo

w
R

e
d

g
re

e
n

ye
llo

w
G

re
e

n
re

d
t=

2
0

se
c

tic
k(

)

t=
5

se
c

tic
k(

)

t=
3

0
se

c

tic
k(

)

t=
5

se
c

tic
k(

)

F
ir
st

T
w

o
S

yc
ro

n
iz

e
d

T
ra

ff
ic

L
ig

h
ts

tu
rn

−
o

n
()

tu
rn

−
o

ff
(b) Statechart

Figure 4.1: Modi�ed Layout: a) the modi�ed static view b) the modi�ed behavior view.

Example 4.3.1. The evolution planning (EP) of the UTCS example is described in
�gure 3.1.b. The EP is realized through set of evolutionary actions that is applied to
the design information:

EAUTCS = {EAUTCSDD
, EAUTCSStD

},

Such that the evolutionary actions related to the deployment diagram are de�ned as:

EAUTCSDD
= {UTCSDD.Σ3

i=1 tfi.turn_off(),

UTCSDD.deleteClsIns(cls.churchSt.),

UTCSDD.deleteClsIns(clschurchst.).roadLink(rlleft−→church,

rlchurch−→main, rlnarrow−→church, rlchurch−tl3),

UTCSDD.addClsIns(tf5, tf5roadLink
(rlList)),

UTCSDD.changeDirClsIns(rlupper−→narrow, rlnarrow−→upper)}.

56 Chapter 4. Evolution Planning: RAMSES Strategic Processes

Then, the evolutionary actions related to statecharts are:

EAUTCSStD
= {createSync(twoGroupSync (tf5, tf4), Σ3

i=1 deleteTL.tfi}.

Finally the evolved diagrams described by the following formula:

UTCSDI′ = {UTCSDD × EAUTCSDD
, UTCSStD × EAUTCSStD

}.

Where. EAUTCSDD
is the evolutionary actions for the deployment diagram, EAUTCSStD

is the evolutionary actions for the statechart diagram, the method deleteClsIns is the
deletion of a class instances, addClsIns is the addition of a class instances, changeDirClsIns
is the changing road direction, createSync is the creation of synchronization protocol be-
tween tra�c lights instances, and twoGroupSync is a type of synchronization between
two tra�c lights by de�ning the time cycle of each color for both instances. M

4.3.2. Consistency validation of the UTCS example (3.2)

The validation plan has to carry out the following actions:
� check that the remaining tra�c lights are synchronized;
� check that every road Link has a connection between two roads;
� check that every association between road instances and tra�c lights instances is

one to one relation;
Applying our de�nition of the validation planning to check the syntax of VVP is de-
scribed as follows:

Example 4.3.2. The vertical validation planning of the UTCS example is shown in
�gure 3.1.b, is described by:

VVPUTCS = {VVPUTCSDD
,VVPUTCSStD

}

such that, the vertical validation planning of the deployment diagram is realized from
the example as follows:

VVPUTCSDD
= {Σm

i,j,k DDClsIns.roadLinki
= (rj, rk),

Σm
i,j,k DDClsIns.tFLinki

= (tfi, tfk)}.

The validation reports of deployment calculated by:

If (∀ rL ∈ DDClsIns.roadLinki
=⇒ rL 6= null) ∧

(∀ tfL ∈ DDClsIns.tFLinki
=⇒ tfL 6= null)

ThenVVPDD = true, (DD consistent)
ElseVVPDD = false, (DD inconsistent).

4.4. Operation-Based Adaptation of Design Information 57

The vertical validation planning of the statechart is realized from the example as follows:

VVPUTCSStD
= {Σm

i StDClsIns.syncPi
= tfi.getSyncGroup()}.

The validation report of the statechart is calculated by:

IF (∀ tSP ∈ StDClsIns.syncPi
=⇒ tSP 6= null)

ThenVVPStD = true, (evolved statechart consistent),
ElseVVPStD = false, (the statechart inconsistent).

Where. DDClsIns.roadLinki
is the validator operator used to check there is a road link,

DDClsIns.tFLinki
is the validator operator used to check the tra�c link instances, and

StDClsIns.syncPi
is the validator operator used to check the tra�c light belongs to group

of synchronization or not. M
Example 4.3.3. The Horizontal validation planning (HVP) of the example is shown in
�gure 4.1.

∀ tflk ∈ UTCSDDobjrel=tFLinkk
s.t. tf lk = (tfi, tfj), ∀ i and j =⇒

∃ cstate ∈ UTCSStD s.t. cstate = concurrentState(tfi, tfj).

For instance as in �gure 4.1, HVP has the following processes:

tfl1 = (tf4, tf5) ∈ UTCSDD′ =⇒ ∃ cstate ∈ UTCSStD

s.t. cstate = concurrentstate{
(tf4green , tf4yellowRed

, tf4red
, tf4yellowGreen

),

(tf5red
, tf5yellowGreen

, tf5green , tf5yellowred
)}.

M

4.4. Operation-Based Adaptation of Design
Information

As said in the previous section, the XMI speci�es how UML models are mapped into
XML �le. Besides this functionality XMI can also speci�es how changes can be easily
mapped into UML diagrams. Therefore, XMI is very good solution for solving some of
the requested requirements for UML evolution.
In this section we de�ne a set of (simple) operations to manipulate the UML diagrams
through their XMI representation. These operations could be used to automate the
dynamic evolution of the UML diagrams. Design information could be represented in
a suitable form to be observed and manipulated. To parse and apply the evolution in
XMI schemas, we need speci�c operations that are able to scan speci�c part of XMI to
modify, delete or update it. In the following subsections we illustrate some operations
and its roles for handling the design information.

58 Chapter 4. Evolution Planning: RAMSES Strategic Processes

Operation Description
add class add an empty class
add attribute the addition of an attribute to a class
add method the addition of a method to a class
add relation the addation of a relation between two classes
delete class the deletion of a class
delete attribute the deletion of an attribute from a class
delete method the deletion of a method from a class
delete relation the deletion of a relation between two classes
rename class the change of the class name
change attribute the changes of an attribute like new name or value
change method the changes of a method name, method body
change relation the change in the relation like the name the cardinality

Table 4.1: Operation categories for changes in class diagrams

4.4.1. Operations taxonomy of structural design information

We realize the adaptation of the structure design information by describing in more
details the general operations related to the structural design information components.
In table 4.1, we summarize the operation taxonomy for adaptation in class diagram. In
that table we have classi�ed the operation categories into three type:

add type, the aim is to add new class diagram elements (class, attribute, method and
relation5.);

delete type, the aim to delete existing class diagram elements;

change type, the aim is to rename class, change attribute value, rename methods, and
rename the name of the relations or change the cardinality values.

Now we are going to describe the operation taxonomy for adaptation the second compo-
nent of the structural design information- deployment diagram. In �gure 4.2, we illustrate
the operations used to evolve this kind of static diagram. To avoid the concurrency we
can classify the adaptation of the deployment diagram related to objects and relations
as follows:

objects - the operations related to evolve objects are: adding new object, delete existing
one, and rename object;

relations - the operations related to evolve relations are: adding new relation, delete
existing one, and rename the relation.

5 We are using the term relation in general to describe all the possible relation for the class diagram
such as: dependency, association, directed association, aggregation, and composition

4.4. Operation-Based Adaptation of Design Information 59

Operation Description
add object add an empty class instance (object)
add relation the addition of a relation between two objects
remove object the deletion of an object
remove relation the deletion of a relation
change object the change of the name of an object
change relation the change the name of the relation

Table 4.2: Operation categories for changes in deployment diagram

Operation Description
add state the addition of a new state
add transition the addition of a transition between two states
add region the addition of a new region to the concurrent states
add fork state the addition of a fork state to distributed

the �ow to many states
add join state the addition of a join state to connect

the distributed states to a state
delete state the deletion of a state
delete transition the deletion of a transition between two states
delete fork state the deletion of a fork state
delete join state the deletion of a join state
change state the change of a state name
change transition the change of a transition label and arguments
change fork state the change of a fork state name
change join state the change of a join name

Table 4.3: Operations categories for changes in statechart diagram

4.4.2. Operations taxonomy of behavioral design information

In this subsection, we describe the required operations to evolve the realized behavior
design information diagrams. Firstly, we summarize the operations taxonomy for adap-
tion the statechart diagram. To drive the evolution for the statechart you need speci�c
operations, that realize the di�erent states types and the transition. In �gure 4.3, we
describe the evolution to the realized statechart diagram related to the main components
of the statechart as follows:

state-kind - the required operations to evolve state-kind6 in general are: create new
state, delete a state or modify a state.

transition - The operations related to the transition are: create new transition, delete
a transition or modify the arguments of exiting one.

6 We use term state-kind to describe all the existing state types in normal statechart such as: simple
sate, composite state, concurrent state, fork state, and join state.

60 Chapter 4. Evolution Planning: RAMSES Strategic Processes

Operation Description
add object add an object to the sequence platform
message the addition of a message to an object
delete object the deletion of a objects and all the connected message
delete message the deletion of a message

Table 4.4: Operations categories for changes in sequence diagram

Secondly, we describe the operations taxonomy for adaptation in the realized sequence
diagram. In �gure 4.4, we summarize the main operations related to the statechart
elements as follows:

object - the operations related to the object are: adding new object or deleting existing
one;

message - the operations related to the message7 element are: adding new message or
deleting a message.

Finally, we describe the operation taxonomy for adaptation in the realized activity dia-
gram. In �gure 4.5, we summarize the operation related to evolve the activity diagram
elements as follows:

activity - the operation related to the activity object is: adding or deleting an activity
state8;

decisions - adding or deleting (branch state or merge state);

signal - the addition or deletion of the fork or join states;

swimlanes9 - the addition or deletion a swimlane.

4.5. Interpreting the Evolution by Using Script
Language

Adaptation in the design information is driven by adaptation rules as script. These
adaptation rules can be related to either the evolution and validation. Evolutionary
rules are speci�ed and selected, according to the detected event. To detect which rule to
apply, a set of guard statements may be included to the rule, to be evaluated when the
rule is triggered. Consistency rules, which checks the consistency of the modi�ed XMI
schema, and a set of conditions, are triggered immediately upon parsing the evolutionary
plans and the modi�ed XMI schema.

7 The term message describe all the di�erent kinds of message used in the sequence diagram such
as: simple messages, special messages to create or destroy objects, and message responses.

8 the activity state term is used to describe the action state and concurrent action state.

4.5. Interpreting the Evolution by Using Script Language 61

Operation Description
add action state add an empty class
add object �ow state the addition of an object �ow state
add transition the addition of a transition between two states
add swimlane the addition of a swimlane
add branch state the addition of a branch state
add merge state the addition of a merge state
add fork state the addition of a fork state
add join state the addition of a join state
delete action state delete an empty class
delete object �ow state the deletion of an object �ow state
delete transition the deletion of a transition between two states
delete swimlane the deletion of a swimlane
delete branch state the deletion of a branch state
delete merge state the deletion of a merge state
delete fork state the addition of a fork state
delete join state the addition of a join state

Table 4.5: Operations categories for changes in activity diagram

Ruby is an interpreted scripting language for quick and easy object-oriented program-
ming. It has many features to process text �les and to do system management tasks. It is
simple, straightforward, and extensible. Moreover the Ruby code is easily integrable with
C and C++ code [102, 75]. Ruby is an interpreted (immediately executable), scripting,
pure object-oriented language, which can masquerade as a procedural language, portable,
untyped, automatic garbage collection. Ruby includes advanced object-oriented concepts
and features such as: singleton method, mix-in rather than multiple-inheritance, oper-
ator and method overloading, exception handling, iterators and closures, meta-class,
built-in pattern-matching (like Perl).
The main advantages of Ruby are:

� the ability to examine (introspection) aspects of the program from within the
program itself.

� dynamic-typing, modules and mix-in classes.

� everything is an object;

� variables are object attributes

� every function is a method

Ruby scripts are able to edit the rule set and have them reinterpreted to support the
dynamic addition of new rules or changes. In the rest of this subsection we illustrate an
example of an evolutionary and consistency rule. To automate the design information
adaptation, the described rules have to be implemented as scripts (e.g., Ruby scripts)

62 Chapter 4. Evolution Planning: RAMSES Strategic Processes

that can be invoked during the system evolution. In the following, we present some
portions of the Ruby scripts necessary for adapting our test case.

Ruby rule for describing planning evolution

Informally, an evolutionary rule can be regarded as an instruction or authority for a
manager to execute actions on design information to achieve an objective or execute
a change. An evolutionary rule, in the form of Ruby script, is usually made up of an
event speci�cation that triggers the rule, which is often �red as a result of a monitoring
operation, an action to perform in response to the trigger, and target object that is part
of the XMI schema upon which the action performed.

In the following Ruby script we are interpreting the part of UTCS. The aims of this rule
is to extract the nodes related to the object diagrams form the XMI schemas by using
getObjectDiagram. Then it adapts the link-id of each road as speci�ed by map by using
two methods (getAllInstancesOf and setAttributeValue). The second part of the rule is
used to add new instance of class Tra�c Light to the new crossroads by asking for the
name of the instance, adding the new instance to the object diagram nodes. Finally, by
using setAttributeValue we �ll the attributes of the added instance.

def plan_inaccessible_road(r, map, tls, xmi_schema)
Planning system adaptation when the part of road r is inaccessible .
puts r
puts map
puts tls

od = xmi_schema.getObjectDiagram()
Adapt the link−id of each road as speci�ed by map.
for rr in od.getAllInstancesOf("Road")
if map[rr.getAttributeValue("road-id")] != nil then
rr.setAttributeValue("link-id", map[rr.getAttributeValue("road-id")])

end
end

Tra�c lights in tls must be added at new crossroads.
tls.each_key {|name|
theTL = od.addInstance(name, "Traffic Light")
tls[name].each_key {|attribute|
theTL.setAttributeValue(attribute, tls[attribute])

}
}

end

4.5. Interpreting the Evolution by Using Script Language 63

The plan consists of modifying the object model and the statechart of the system, so that,
(i) all the roads next to the inaccessible road change their �ow direction according to the
planner information, (ii) all the tra�c lights near the inaccessible street are removed,
(iii) new tra�c lights are introduced at new crossroads created after the changes in the
�ow direction, the behavior of such tra�c lights will be synchronized, and (iv) at last
the inaccessible road is removed from the system (it will be reintroduced when it is
accessible again).
In our test case the closure of Church street is managed by the following invocation:

plan_inaccessible_road("Church St.",
{ "Left" => "Upper", "Upper" => "Right",
"Narrow" => "Upper" },

{ "TL-Upper" => { "sem_id" => "s1-U1",
"corner-id" => "Upper St. & Main St." },

"TL-Main" => { "sem_id" => "s2-M12",
"corner-id" => "Main St. & Upper St." }

})

Ruby rule for describing validation

The second format of the adaptation rules is the validation rules. These rules are very
similar to the evolutionary rules described above, but the rule is used to check the
consistency between the original UML diagrams and the modi�ed UML diagrams.
In the following Ruby script we describe a consistency rule used to check the synchroniza-
tion between two tra�c lights. The class diagram extracted from the XMI schemas by
using the method getClassDiagram, and the result stored in CD. Then by using method
getClass the script rule extracts the Tra�c Light type from the class diagram. After
that, it checks the consistency by checking the synchronize attribute (asssyncid) value
between every couple of tra�c light. This rule returns a boolean to illustrate if the
tra�c lights are synchronized or not.

def all_synchronized?
Synchronized traffic lights are really synchronized?

CD = xmi_schema.getClassDiagram()
TLClass = CD.getClass("TrafficLight")
synchronized = true
for TL1 in TLClass.getAllInstances()
unless (tl = TL1.asssyncid9) then
TL2 = TLClass.getInstance(tl)
synchronized &&= synchronized?(TL1, TL2)

end

64 Chapter 4. Evolution Planning: RAMSES Strategic Processes

end
return synchronized

end

We describe only how a script langauge can be used to construct rules for consistency
validation and evolution. In the next chapter we will go more in details about these
adaptation mechanisms.

4.6. Summary
Many challenges remain in the development of tactical planning systems that will enable
automated changes. XMI is used to represent the UML diagrams. This represents the link
between the running application and the design phase. The evolutionary planning can be
used to dynamically recon�gure the UML diagrams as a reaction to external events, such
as anomalies detected by electronic devices. Moreover, the evolutionary planning can
be used to dynamically extend the design information with new features, components,
and relations between them. The evolutionary can be used to adapt the behavior as well
as the structure that represents the system in XMI. The consistency checker has to be
used when we have to check the consistency of dynamic changes carried out by a system
on a representative of another schema before e�ectively performing such changes. The
consistency checker has to be used in critical environments to avoid the dire consequences
of erroneous and inconsistent updates. We described a set of operations for dealing with
the UML diagrams, these operations aims to extract some nodes, modify, and delete the
diagrams. Finally, we used the scripting language to manage the evolution of the design
information by describing two types of adaptation rules (evolutionary and consistency
rules). The rules are written in Ruby.

5 The Re�ective Middleware:
RAMSES At Work

In this chapter, we present our middleware (RAMSES) for dynamically evolving and val-
idating consistency of software systems against run-time changes. The RAMSES mid-
dleware is based on a re�ective architecture which provides objects with the ability of
dynamically changing their behavior by changing its design information, as speci�ed in
chapter 3 and in chapter 4. The meta-level is composed of cooperating components, and
rei�es deployment models, scenarios, activity and statecharts of the system to adapt;
then it uses such data for dynamically adapting the software system against environ-
mental changes. The evolution takes place in two steps, each is handled by a special
component: a meta-object, called evolutionary meta-object, plans a possible evolution
against the detected external events then another meta-object, called consistency checker
meta-object validates the feasibility of the proposed plan before really evolving the sys-
tem. The meta-objects use the system design information to drive the system evolution.

A software system with a long life span, must be able to dynamically adapt itself to face
unexpected changes in its environment avoiding a long out-of-service period for main-
tenance. A software system consists of several components concurrently executed and
exchanging messages. Two aspects control the evolution of such kinds of systems: behav-
ior, that is, how a single component behaves, and dependencies, that is, the interactions
among components. Both of them can be involved in system evolution to comply with
changes to system requirements.

A re�ective architecture represents the structure that allows the running systems to
consistently evolve. In [20] we described a re�ective architecture for the evolution of the
running systems. In such a framework, the system running in the base-level is the one
prone to be adapted, whereas the software evolution is the nonfunctional feature realized
by the meta-level. Evolution takes place exploiting design information concerning the
running systems.

The cooperative meta-object at meta-level consult the engines, adapting the rei�ed ob-
jects for dynamic behavior. Changes to the rei�ed systems can be made at runtime and
are immediately re�ected to its base-components. The rei�ed components can be devel-
oped interactively and incrementally. The evolution and consistency are not hard-coded,
neither are they generated. Instead, we build a re�ective framework of the base-systems
that can be automatically self-adapted for any changes to be active long-life span.

65

66 Chapter 5. The Re�ective Middleware: RAMSES At Work

Software engineering however, still makes the unreasonable demand for the running
system to be fully specify the changes in advance. Software development asked for the
way to modify the base objects at runtime without going to rebuild the application
again. It requires a new approach, which adapts the base application as well as on
advances in software technology. This new perspective uses the design data for the base
application to adapt it, for runtime changes by modifying the rei�ed data. In the rest of
this chapter we give a brief overview of the re�ective architecture and of its components,
we show how these components work and the manipulation of the design information.
After that, at section 5.3, we present how the both evolutionary and consistency checker
meta-objects are describing the behavior for the meta-level systems.

This chapter is organized as follows: Section 5.1, describes our re�ective architecture (the
evolutionary mechanism), and the evolutionary engine related with the architecture and
its rules. Section 5.2, describes the rei�cation library to constitute the (rei�ed system)
at the meta-level. Section 5.3, describes the behavior of the meta-level. Finally in
section 5.4, we survey the main points highlighted in this chapter.

5.1. Software Evolution through Re�ection

The goal of RAMSES middleware consists of evolving a software system to face environ-
mental and requirement changes and validate the consistency of such an evolution. This
goal is achieved by:

� adopting a re�ective architecture which dynamically drives the evolution of the
software system through its design information when an event occurs; this has
been made possible by moving design information from design- to run-time.

� using two sets of rules: evolutionary and consistency, which describes how evo-
lution takes place and when the system is consistent respectively; these rules are
used by the decisional components of the re�ective architecture but not by the
system that must be evolved;

� adapting the design information of the system and re�ecting the changes on the
running system.

In the reset of this section we give a brief overview of the re�ective architecture and
of its components, we show how these components work and the manipulation of the
design information.

5.1. Software Evolution through Re�ection 67

���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

reflect

reify reify

System
Base−Level

Consistency Checker

Meta−ObjectMeta−Object

Evolutionary

MOP

MOP

Meta−Level

Base−Level

engineengine

Reification

Evolutionary

Rules

Validation

Rules

Figure 5.1: RAMSES designed for the evolution of software systems.

5.1.1. The re�ective architecture

To render a system self-adapting1, we encapsulate it in a two-layers re�ective architec-
ture as shown in Figure 5.1, and formally described in de�nition 5.1.1. The base-level
is the system that we want to render self-adapting whereas the meta-level is a second
software system which rei�es the base-level design information and plans its evolution
when particular events occur. By using a re�ective architecture, thanks to the trans-
parency and separation of concerns properties of re�ection, we can render self-adapting
every software system without changing its code. The RAMSES middleware formally is
de�ned as follows:

De�nition 5.1.1. RAMSES middleware is a re�ective architecture, that is constituted of
two levels: RAMSESbase−level and RAMSESmeta−level. Through these levels the RAMSES mid-
dleware consists of three components as follows:
RAMSESmiddleware = {RAMSESbase−components,RAMSESmeta−components,RAMSESreification}, s.t.

RAMSESbase−components = {BLSDI , BLScode},
RAMSESmeta−components = {MObjsEvolutionary,MObjsconsistency−checker},
RAMSESreification = {ReifLib,XMI}.

Where. RAMSESbase−components is the underlaying systems (implementation code) or their
design information at the base level, BLS is the base-level system (In our case, we assume

1 By the sentence to render a system self-adapting we mean that such a system is able to change its
behavior and structure in according with external events by itself.

68 Chapter 5. The Re�ective Middleware: RAMSES At Work

the base-level system is the design information), RAMSESmeta−components is the meta-level
components that monitor and supervisor the evolution of the base-level system,Mobjs
is the meta-objects, that represents the main components of the RAMSES meta-level,
RAMSESreification is an intermediate layer that used to reify the base-system components,
and ReifLib is the RAMSES rei�cation library, that represents the core components of the
intermediate layer. ♦

This approach allows two kinds of dynamic evolution: structural and behavioral evolu-
tion. For instance, the following design information is related to the base-level system:

� deployment model, which describes objects and their relations; this model repre-
sents the structural part of the system;

� sequence diagrams, which traces system operations between objects (inter-object
connection) for each use case at a time; and

� statecharts, which represents the evolution of the state of each object (intra-object
connection) in the system.

The meta-level is responsible of dynamically adapting the base-level and it is composed
of some special meta-objects, called evolutionary meta-objects. There are two types of
evolutionary meta-objects: the evolutionary and the consistency checker meta-objects.
Their goals consists of consistently evolving the base-level system. The former is directly
responsible for planning the evolution of the base-level through adding, changing or
removing objects, methods, and relations. The latter is directly responsible for checking
the consistency of the planned evolution and of really carrying out the evolution through
the causal connection.

Through the causal connection, the base-level system and its design information are
rei�ed by using the rei�cation library in the meta-level (see section 5.2 for more details).
Classic re�ection takes care of reifying the state and every other dynamic aspect of the
base-level system, whereas the rei�cation library provides a rei�cation of the design as-
pects of the base-level system such as its architecture and the collaborations among its
components. The rei�cation mechanisms content is the main di�erence of our archi-
tecture with respect to standard re�ective architectures. Usually, rei�cations represent
the base-level system behavior and structure not its design information. Rei�cation li-
brary can build the representatives of the base-level system design information in the
meta-level. Both evolutionary and consistency checker meta-objects directly work on
such representatives and not on the real system, this allows a safe approach to evo-
lution postponing every change after validation checks. As described in [19] when an
external events occur, the evolutionary meta-object proposes an evolution as a reaction
to the consistency checker meta-object which validates the proposal and schedules the
adaptation of the base-level system if the proposal is accepted.

5.1. Software Evolution through Re�ection 69

5.1.2. Decisional engines and evolutionary rule sets

Adaptation and validation components in the architecture are respectively driven by a
set of rules which de�ne how to adapt the system according to the detected event and
the meaning of system consistency.
To give more �exibility to the approach, these rules are not hardwired in the correspond-
ing meta-object rather they are passed to a sub-component of the meta-objects them-
selves, respectively called evolutionary and validation engines, which interpret them.
Therefore, each meta-object has two components: (i) the core which interacts with the
rest of the system (e.g., detecting external events/adaptation proposals, or manipulating
the rei�ed meta-data/applying the adaptation on the base-level system) and it imple-
ments the meta-object's basic behavior, and (ii) the engine which interprets the rules
driving the meta-object's decisions.
In this chapter, we express both evolutionary and validation rules by using the Ruby
scripting language as described in section 4.5. The engine is the Ruby interpreter, which
executes the planed rules for evolution or check consistency.
The engines are passive sub-components of the respective meta-objects: evolutionary
and consistency checker. The engines carry out the following actions:

ä the engines are invoked by the meta-objects when needed, e.g., the validation en-
gine is invoked by the consistency checker meta-object when a proposal of evolution
is ready to be validated;

ä in agreement with its behavior, the meta-object chooses a rule that the engine
interprets;

ä through re�ective facilities used in the rules, the engine directly access and modify
the base-level representation;

ä the engine, or better the rules used by the engine, applied to the rei�cations.

Next, we will explain how these engines work. When an event occurs, the evolutionary
engine receives from the evolutionary meta-object all the data related to the occurred
event and the rule related to the adaptation required by the event. The rule will refer
to the rei�ed design information of the base-level system. The execution of the rule
will create the evolutionary plan that the evolutionary meta-object will pass to the
consistency checker meta-object. Analogously, the consistency checker meta-object will
delegates the validation of the evolutionary plan to its engine. The engine uses the
consistency rules and the XMI representation for testing if the proposed evolution can
be rendered e�ective or not.
Both rules and engines working on meta-objects are tightly bound but completely un-
bound from the rest of the re�ective architecture. Therefore, to adapt our approach to
use rules speci�ed with a di�erent formalism is quite simple; we have just to substitute
the engine with another able to interpret the chosen formalism. Of course, the engines

70 Chapter 5. The Re�ective Middleware: RAMSES At Work

must be able to interact with the rest of the architecture as described by the following
algorithm.

In general, adaptation takes place as follows:

¶ the rei�cation library rei�es the base-level design information into their meta-level;

· the evolutionary meta-object waits for an event that needs the adaptation of the
base-level system; when such an event occurs it starts to plan evolution:

À through the design information of the base-level system, it detects which
base-level components might be involved in the evolution; then

Á it informs its engine about the occurred event and components involved in
the evolution;

Â the evolutionary engine decides which evolutionary rule (or which group of
evolutionary rules) is better to apply; then

Ã it designs the evolutionary plan by applying the chosen evolutionary rule (or
group of rules);

¸ the evolutionary meta-object passes the evolutionary plan to the consistency checker
meta-object which must validate the proposed evolutionary plan before rendering
the adaptation e�ective:

À the consistency checker meta-object demands the validation phase to the val-
idation engine;

Á the validation engine validates the proposed evolutionary plan by using its
validation rules and the base-level system design information.

¹ if the proposed evolutionary plan is considered sound the consistency checker meta-
object schedules the base-level system adaptation accordingly with such an evo-
lutionary plan; otherwise the consistency checker meta-object returns an error
message to the evolutionary meta-objects restarting the adaptation phase.

The evolutionary plan proposed by the evolutionary meta-object is a manipulation of
the design information of the base-level system. The causal connection is responsible
of modifying the model of the base-level system according with the proposed evolution.
The most important advantage of this approach is that adaptation can take place on non-
stoppable systems because it does not require that the base-level system stops during
adaptation, but it only needs to de�ne when it is safe to carry out the adaptation.

5.2. Rei�cation and Re�ection by Using Design Information 71

5.2. Rei�cation and Re�ection by Using Design
Information

We have talked about reifying and re�ecting design information of the base-level sys-
tem. The design information simply feed the meta-level system during system bootstrap
and drive its meta-computations during the evolution of the base-level system. Design
information was described in chapters 3 and it is used by the middleware described in
this chapter.

When an event occurs, the design information related to the base-level entities, that
can be involved by the event, are used by the evolutionary and the consistency checker
meta-objects for driving the evolution of such base-level entities (as described in the
previous algorithm).

Design information identi�es which entities are involved by the event (class and state
diagrams), their behavior (sequence diagrams) and how the event can be propagated in
the base-level system (collaboration diagrams). Therefore introspection and intercession
on large systems become simpler than using standard re�ective approaches because the
design information provide a sort of index on the base-level entities and their interaction.

Moreover design information is the right complement to the base-level system rei�cation
build by the standard causal connection. Meta-objects consult and manipulate the
design information to get information that otherwise are not easily accessible from the
running system, e.g., the collaboration among objects. Design information are also used
as a testbed for manipulation because they give an easily accessible overview of global
features as inter-objects collaborations.

The rei�cation library is the core component of the whole framework. It is necessary to
provide the ability of manipulating the design information of the software system which
is abstracting from the XMI details and without coping with the graphical representa-
tion. It loads the XMI description of the design information, it allows to extend and
modify the UML diagrams, and �nally save the modi�ed design information again as a
XMI �le. We formally de�ne the RAMSES-library as follows:

The rei�cation library provides a uniform approach to the design manipulation. Chang-
ing the design representation, the application does not change. The central part of the
rei�cation library is the class Rei�cation which represents the design information and
provides access to the UML diagrams. To use it, create an instance of this class by
calling the constructor with the name of the XMI �le to load. Then access the UML
diagrams by calling getAllClassDiagram() which returns an array of all class diagrams,
or by retrieving a speci�c diagram by name using getClassDiagram(String name). The
same pattern is used to access object and statechart diagrams. After all modi�cations
have been applied, you can save the rei�cation by calling the method save() which writes
the XMI representation to a �le named according to the name given to the constructor

72 Chapter 5. The Re�ective Middleware: RAMSES At Work

pre-pended with the string Ramses_.

De�nition 5.2.1. RAMSES rei�cation library is the link between the RAMSES middleware
levels. The RAMSES rei�cation is de�ned as follows:

RRLRAMSES.reification = {RRLXMI(CD), RRLXMI(DD), RRLXMI(SeD),

RRLXMI(StD), RRLXMI(AcD)}, s.t.
RRLXMI(CD) = {XMIreification(XMICD.getAllClasses()),

XMIreification(XMICD.evolveCD())},
RRLXMI(DD) = {UTCSXMIreification(XMIDD.getAllInstances()),

XMIreification(XMIDD.evolveDD())},
RRLXMI(StD) = {XMIreification(XMIStD.getStateChartDiagram()),

XMIreification(XMIStD.evolveStD())},
RRLXMI(SeD) = {UTCSXMIreification(XMISeD.getSequenceDiagram()),

XMIreification(XMISeD.evolveSeD())},
RRLXMI(AcD) = {XMIreification(XMIAcD.getActivityDiagram()),

XMIreification(XMIAcD.evolveAcD())},

Where. RRLXMI(CD) is the rei�cation for the class diagram,
XMIreification(XMICD.evolveCD()) with evolveCD we mean all the possible operations
related to the class diagram such as (removeClass(), createNewClass, getClass), RRLXMI(DD)
is the rei�cation of deployment diagram, XMIreification(XMIDD.evolveDD())} is all the
possible operations related to the deployment diagram such as (getInstance, removeIn-
stance, connect Instance), RRLXMI(StD) is the rei�cation for the statechart,
XMIreification(XMIStD.evolveStD())} is the all possible operations related to the state-
chart such as(getState(), removeState(), connectState()), RRLXMI(SeD) is the rei�cation
of sequence diagram, XMIreification(XMISeD.evolveSeD())} is the set of operations re-
lated to sequence diagram such as(addInstanceObject(), removeInstanceObject(), addIn-
stanceMessage(), removeInstanceMessage()), RRLXMI(AcD) is the rei�cation of activity
diagram, XMIreification(XMIAcD.evolveAcD())} is the set of evolution operation related
to add, remove or update the activity diagram elements (activity state type, message,
operations). ♦
Example 5.2.1. The class ClassDiagram provides several methods to get, create and
remove classes, actors and interfaces. To add a new class to the diagram call createNew-
Class(String name, String visibility, boolean abstract). To get a reference to an existing
class by name, call getClass(String name). If you want to remove a class from the dia-
gram, call removeClass either with the name or reference to the class object. The same
pattern is used to deal with actors and interfaces. M
Example 5.2.2. The class ObjectDiagram can be used to add, remove and connect
instances (objects). You can also access instances by name or type with getAllInstance-
sOf(String type) and getInstance(String name, String type). To add a new instance call

5.3. Describing the Meta-level Behavior of RAMSES 73

addInstance(String name, UMLType type) with the name and type (class). To remove
an instance call removeInstance either with the name and type or with a reference to
the instance object. To connect instances in the diagram (an instance references an-
other instance through an attribute) call connectInstances(Instance1, Instance2, String
name). Such a connection can be removed by calling disconnectInstances with the same
parameters. M

Example 5.2.3. The class StateChartDiagram provides lots of methods to get, add and
remove States, FinalStates, ForkStates, InitialStates, and JoinStates. Each type of state
can be removed by a given name or instance. You can get a reference to a state with
the appropriate getState method and add a state to the diagram either by providing an
existing instance or the name of a new state. M

5.3. Describing the Meta-level Behavior of RAMSES

In this section we describe the behavior of the meta-level by describing the role of the evo-
lutionary meta-objects. We present a meta-objects for the evolution of software systems.
The role of evolutionary meta-objects proposed in this chapter, shows how to adapt a
software system to re�ect changes in its running environment. These meta-objects de-
pend on well-known techniques for programs to dynamically analyze and modify their
own structure. Our meta-objects go together with common re�ective software architec-
tures. These meta-objects provide a solution for changing the base-level systems behav-
ior according with changes that occur in its running environment. We present special
meta-objects in meta-level at the re�ective architecture for providing unusual solution
to self-adapt base-level systems runtime behavior. The meta-level consists of two meta-
objects: �rst, an evolutionary meta-object, enables a software systems to adapt itself
to dynamic changes to its requirements. Second, consistency checker meta-object, the
responsibility of this meta-object is to check the meta-data is consistent with the evolu-
tionary plans executed by Evolutionary meta-object. In this section, we de�ne in details
the two evolutionary meta-objects to self-adaptation re�ective architecture at runtime.
The role of the evolutionary and consistency checker meta-objects for describing the
adaptation and checking the consistency of the modi�ed meta-data for changes is shown
in �gure 5.3, in the next subsections, we describe the structure of these meta-objects in
details.
The working meta-level behavior of RAMSES illustrates in �gure 5.2. The meta-behavior
described by the following scenario:

� the meta-behavior components observes the UTCS environments or new require-
ments, if they capture a runtime event, in our case for example closing churchSt.
for road maintenance or accident;

� the meta-behavior uses the RAMSES rei�cation library for manipulating the base-
level design information;

74 Chapter 5. The Re�ective Middleware: RAMSES At Work

� the meta-level evolutionary processes described in the following example:

Example 5.3.1. Meta-level evolutionary processes described by the role of (EMObj).
It uses it's evolutionary engine (EE) for consulting the following adaptation rules:

EMObjEE(UTCS) = {< ER1 >, < ER2 >, < ER3 >, < ER4 >, < ER5 >},
The EMObj uses the RAMSES rei�cation library RRL for manipulating and apply
the evolution to the UTCS.XMI.

Where.
< ER1 > = {UTCSXMI.DD(ClsIns.deleteIns(tf1, tf2, tf3)),

UTCSXMI.StD(ClsIns.setAllOffState(tf1, tf2, tf3)),

UTCSXMI.DD(ClsIns.deleteAlltFLinkTo(tf1, tf2, tf3),

UTCSXMI.DD(ClsIns.deleteAlltFLinkFrom(tf1, tf2, tf3))};

< ER2 > = {UTCSXMI.DD(ClsIns.deleteIns(churchSt))};

< ER3 > = {UTCSXMI.DD(ClsIns.deleteAllRoadLinkTo(churchSt)),

UTCSXMI.DD(ClsIns.deleteAllRoadLinkFrom(churchSt))};

< ER4 > = {UTCSXMI.DD(ClsIns.addIns(tf5)),

UTCSXMI.DD(ClsIns.settF link(tf5, tf4))};

< ER5 > = {UTCSXMI.StD(ClsIns.createCState(tf1, tf2))}.
M

� the meta-level validation processes of the evolved design information described in
the following example:

Example 5.3.2. The meta-level validation described by the role of CCMObj. The
CCMObj consults the following validation rules by using its validation engine(VE)
such as:

CCMObjV E(UTCS) = {< V R1 >, < V R2 >, < V R3 >}.
Where.

< VR1 > = {∀ tfi, tfj ∈ TFLink[] s.t. tFLink(tfi, tfj) ∈ UTCSDD}
=⇒ ∃ (tfCS) ∈ concurrentstatelist(TFCS[])

s.t. tfCS(tfi, tfj) ∈ UTCSStD;

5.3. Describing the Meta-level Behavior of RAMSES 75

Figure 5.2: The RAMSES meta-behavior using UTCS motivation example 3.1.

For instance,

TFLink(tf4, tf5) ∈ UTCSDD =⇒ ∃ tfCS(tf4, tf5) ∈ UTCSStD;

< VR2 > = {∀ rl ∈ UTCSDD =⇒ ∃ ri, rj ∈ Roads[]

s.t. rl(ri, rj) ∈ UTCSDD};

< VR3 > = {∀obji ∈ UTCSDD, for each evolution of
obji.evolveCD ∈ UTCSDD

=⇒ obji.evolveStD ∈ UTCSStD};
for instance, the tra�c light instances (tf1, tf2, tf3) are deleted and their links from
the UTCSDD, and also, their concrete states and simple states deleted from the
UTCSStD as shown in �gure 4.1. M

5.3.1. Evolutionary meta-object

The main aim of evolutionary meta-object is to enable a non-stoppable software systems
to self-adapt for the new changes in their requirements and environments.
Several times a (non-stoppable) software system must evolve to adapt itself to the evo-
lution of the environment it is modeling. For running example, in a software system as

76 Chapter 5. The Re�ective Middleware: RAMSES At Work

Figure 5.3: Evolutionary meta-objects for describing the meta-level behavior of RAMSES middleware.

the UTCS, this involves changes in the overall structure and behavior of the system, i.e.,
new components to interact with and a reorganization of the components interactions.
If changes are planned a lot of time in advance, it is not a problem to take advantage of
a moment when the tra�c is low, for stopping the UTCS for a while, just the time for
the recon�guration. This is not a feasible solution when the change suddenly happens
such as in case of a road interruption due to a road accident or something similar. In a
similar case, we cannot stop the normal execution of the UTCS, creating many problems
in other parts of the system, to face the unexpected situation.

The roles of evolutionary meta-object is involved in the dynamic evolution of a non-
stoppable system, obviously the most important is formally described in de�nition 5.3.1
and is represented by the fact that:

� keeping still for a while (during the recon�guration) a non-stoppable system could
have dire consequences up to and including death.

� the system has to change whenever the environment it is modeling changes;

� changes to the environment can happen at all times, they are outside the control
of the system and can not be foresee during the system design;

� recon�guring the system in accordance with the changes in the environment is not
easy and always feasible; moreover the cost of errors can be very high;

� to limit the problems, stopping to the system have to be planned in advance
(e.g., roads unpracticability is noti�ed to drivers weeks in advance) and have to be
scheduled in noncritical moments (e.g. signals maintenance is carried out during
night).

5.3. Describing the Meta-level Behavior of RAMSES 77

De�nition 5.3.1. The Evolutionary meta-object has the following roles: (1) detect the
runtime events; (2) by using RRLRAMSES.reification reify the XMI representation into the
meta-level; (3) build an evolutionary rules list for each event, then apply this list to the
rei�ed XMI.

RAMSESmcEMObj
= {EMObj.observer(runtimeEvent?),

EMObjRRLRAMSES.reification
(RDI.XMI),

EMObj.create(ERlist)}
s.t. ∀ re ∃

ESre = {EMObj.createPreCond(re),

EMObj.createPostCond(re),

EMObjEvoEngine.createERList(ERList)}.
The role of meta-object for driving the evolution is realized as follows:

If (EMObj.createPreCond(re) = true)

Then MDI = EMobj.doAdaptation(RDI,ERList)

Else EMObj.reCreate(ES ′).

Where. mc is the meta-level components, EMObj is the Evolutionary meta-object, RDI
is the rei�ed design information by using RRLRAMSES.reification, ERList is the Evolutionary
rules list related to the runtime event (re), ES is the evolution strategy, MDI is the
modi�ed design information, ES′ new evolution strategy. ♦

It is fairly evident that to render a non-stoppable system in compliance with the above
roles a speci�c mechanism for adapting the system to environmental changes is needed.
Adaptation takes place on a representative of the system. In this way, the adaptation
mechanism does not interfere with the current execution of the system it is adapting,
preserving the non-stoppable property of the system. Once the adaptation has been com-
pleted, the synchronization of the representative with the original system is delegated to
the consistency checker meta-object for verifying the soundness of the adaptation. Ex-
amples of this approach can be found in [103]. The evolutionary meta-object describes
how to modify the base-objects through their representatives, i.e., the rei�cations. It
directly controls and manipulates the rei�cations adapting their content in accordance
with environmental changes, e.g., adding new operations/components or altering the
state of an object. The rei�cations represent the interface between the evolutionary and
the consistency checker. In the details, when an environmental change takes place this
meta-object, following the evolution rules, adapts to the occurred change the representa-
tive of the system. The evolution rules adopted by the evolutionary meta-object system
design information.
Here we show an algorithm illustrating the basic steps carried out by the evolutionary
meta-object. This algorithm is realized by using the pseudo code described in algo-
rithm [4]. The evolutionary meta-object is parametric on the rei�ed system. This

78 Chapter 5. The Re�ective Middleware: RAMSES At Work

Data : base-level system - Rei�cation
Result: adapted design information - evolutionaryMetaObject

/*representative of the base-level aspect */
_representative ← ramses.reification(designInformation);

/*the rules it follows for adaptations */
plans ← evolutionaryMetaObject(selectedRules);
metaData ← ramses.reification(designInformation, _representative (a));
e ← getRunTimeEvent(runTimeEvent);

/*it retrieves from the plan the rule to face with the event. */
begin

/*when an external event has occurred returns true then its argument
refers to the occurred event */

bool ← on_external_event (event & e);
while true do

if on_external_event (e) then
_plan ← evolutionaryMetaObject(evolutionaryEngine, e);
newstr ←doAdaptation(structureAdaptation, _plan);
newbeh ←doAdaptation(behaviorAdaptation, _plan);

end
end
adaptMetaData (newstr,newbeh);

/*when called an inconsistency has been detected it tries to solve
such an inconsistency exploiting its plan */

inconsistency_detected() ;
doAdaptation(_representative (a), e);

/*apply the role of events to representative data */
adaptation ← _planGetAction(e);

/*it carries out the adaptation. */
adaptation(_representative (a), e);

/*it notifies the attempt of evolution. */
_representativeChanged ()

end
Algorithm 4: The role of evolutionary meta-object

5.3. Describing the Meta-level Behavior of RAMSES 79

means that a class describing the aspect to adapt has also to be provided and to be
used to instantiate the evolutionary meta-object. It works on the rei�cations, i.e., on
a representative of the software system. The representative, of course, depends on the
aspect of the system this meta-object will deal with.

Another important element are the rules adopted by the algorithm for adapting the rep-
resentative. These rules are represented by an instance _plan of the plans class. The
do_adaptation() of the evolutionary asks _plan for the adaptation rule to apply when
an event happens. Then the evolutionary applies the adaptation rule to the representa-
tive. The evolution takes place when an external event, i.e., an event that has not been
generated by the non-stoppable system, happens. The inconsistency_detected()
method is invoked by the implementation of the consistency checker meta-object.

In a complex system, as shown in the pseudo code above and in �gure 5.3, there will be
as many instances of the evolutionary meta-object as many aspects of the system have
to be adapted. The evolutionary meta-object can be used to dynamically recon�gure a
system (not necessarily a non-stoppable system) as a reaction to external events, such
as anomalies detected by electronic devices. Moreover, it can be used to dynamically
extend a running system with new features, components, and relations between them.

The evolutionary meta-object is applied in the UTCS for creating new synchronization
protocol for the list of tra�c lights in accordance with adaptation as shown in Figure 5.4.
This meta-object interacts with elements of the rei�cations like roads, tra�c lights, syn-
chronization manager, synchronization protocol, and elaborates the photography survey
at real-time. The evolutionary uses rei�cation library for reifying the design information
of the base-level system in form of XMI. After that, the evolutionary detects an event to
turn of same tra�c lights at speci�c tra�c node and create new synchronization protocol
for the existing tra�c lights. Then, evolutionary creates an evolutionary plan to adapt
the rei�cations.

As explained, the evolutionary meta-object observes the environment changes and adapts
the base-level representative. The consistency of the representative is validated by the
consistency checker meta-object when the evolutionary �nishes the adaptation. If the
validation fails the control returns to the evolutionary for �xing the problem. The
representative adapted by the evolutionary is kept up to date by the rei�cation library.

The evolutionary meta-object provides the following advantages:

� provides an implicit mechanism for dynamically evolving a system;

� provides a uniform way to evolve every aspect of a system, they could also be
evolved separately;

and drawbacks:

� the non-stoppable system has an overhead when external events occurs and adap-
tation is needed;

80 Chapter 5. The Re�ective Middleware: RAMSES At Work

Figure 5.4: The application of the evolutionary meta-object in the UTCS

� the system need extra code and data structures representing the system, its be-
havior and the evolutionary rules.

A critical role is played by the adaptation rules, they are the core of the evolutionary
and their realization is very hard because adaptations badly designed or applied at the
wrong time could have very dire consequences, e.g., consider the chaos generated by
stopping the tra�c lights in a very busy area during the rush hour.

5.3.2. Consistency checker meta-object

To verify the feasibility and the soundness of the changes applied by evolutionary meta-
object. That is, to check if it is possible to apply such changes without rendering
inconsistent the base-level system. The consistency checker meta-object role is formally
described as follows:

De�nition 5.3.2. The Consistency checker meta-object has the following roles: (1)
check the consistency of the modi�ed design information (MDI) based on the applied
evolution strategy (ES); (2) using the RRLRAMSES.reflection(MDI.XMI) for manipulating
the modi�ed design information; (3) Create a CCRList based-on the created postcondi-
tion by EMObj.

RAMSESmcCCMObj
= {CCMObj.checkConsistency(MDI,ES),

CCMObjRRLRAMSES.reification
(MDI.XMI),

CCMObj.create(CCRList)}
s.t. ∀ ES ∃

CCSES = {CCMObj.get(MDI,ES), CCMObjconsEngine(CCRList)}.

5.3. Describing the Meta-level Behavior of RAMSES 81

The role of consistency checker meta-object is realized as follows:

IF (CCMObj.applied(CCRList) = true)

THEN BDI.XMI = RRLRAMSES.reflection(MDI.XMI)
Else CCMObj.inconsistencyDetected(), EMObj.reCreate(ES ′).

Where. mc is the meta-level component, CCMObj is the consistency checker meta-
object, MDI is the evolved design information based on the evolution strategy (ES),
RRL is the RAMSES rei�cation library, CCS is the consistency checker strategy, CCRList
is the list of the validation rules, ES′ is a new evolution strategy to avoid inconsistency
state. ♦

The delicacy of dynamically changing (part of) a component of a system is fairly ev-
ident. Usually changes directly a�ect only (part of) a component rendering simple to
verify the e�ects of the changes. In complex systems each component cooperates with,
integrates/is integrated in, uses/is used by other components, therefore, the e�ect of
changes performed on a component are propagated to many other components not di-
rectly involved by the modi�cation. Hazardous changes to a component will con�ict
with the overall behavior of the system and such con�icts are quite di�cult to be de-
tected. This problem is further ampli�ed by the fact that the system can not be stopped
hindering an easy recon�guration and validation of the complete system. For example,
in the UTCS, at a crossroads we can not turn green a tra�c light without considering
the state of the correspondent tra�c light for pedestrians. Therefore, it is important
to verify that environmental changes impacting on many components do not generate
con�icts in the overall system and the e�ect of these environmental changes has only to
be propagated to the system components when it is safe, i.e., when the propagation do
not leave the system in an inconsistent state.

It is fairly evident from the problem description that every "proposed" change to a com-
ponent of the system has to be well planned and validated against inconsistency. Hence
we need a mechanism that applies the changes to the system only when the "proposed"
changes are proved to leave consistent the system. Moreover, such a mechanism has not
only to guarantee against inconsistencies due to erroneous updates but also to choose
the right moment for applying the "proposed" changes.

The basic idea consists of gathering many "proposed" changes together on represen-
tatives of the base-level system, checking step by step that replacing such a pool of
representatives with the corresponding aspects of the system will leave the system in a
consistent situation. Then, the replacement will take e�ectively place when the system is
in a state that can safely be carried out. Whereas, changes, that the consistency checker
considers that could render the system inconsistent, are returned to the evolutionary for
�xing.

82 Chapter 5. The Re�ective Middleware: RAMSES At Work

The pseudo code that illustrates the basic steps carried out by the consistency checker
for verifying and maintaining consistent the base-level system after evolution is shown
in the algorithm 5.

Data : evolved meta-data - Rei�cation, evoPlan - evolutionaryMetaObject
Result: consistencyBool - consistencyCheckerMetaObject

/*sample of consistency checker working only on modified meta-data */
strView ← ramses.reification(meta-data);
behView ← ramses.reification(meta-data);
plans ← evolutionaryMetaObject(plans);
begin

/*reset the notification of a change received by evolutionary */
plans ← CreateConsistencyPlan (evoPlan, meta-data);
begin

bool←check_consistency() (); strView.rest();
behView.rest();
plan.check_consistency() (strView,behView);

end
conChecker ← consistencyCheckerMetaObject(meta-data);
while true do

if strView.is_changed() then
if conChecker.check_consistency() then

_plan ← consistencyCheckerMetaObject
(consistencyCheckerEngine, plans);
structureAdaptation.inconsistency_detected() ;
behaviorAdaptation.inconsistency_detected() ;

else
strView.adaptation ;
behView.adaptation ;

end
end

end
end

Algorithm 5: The role of the consistency checker

The consistency checker works on the whole system. It does not work only on a speci�c
aspect but rather it has to maintain the consistency among meta-data of the system.
Consistency rules are an important element managed by the consistency checker. These
rules are represented by an instance _plan of the plans<consistency> class and are
used to determine if the representatives (in our pseudo code are represented by a be-

5.3. Describing the Meta-level Behavior of RAMSES 83

Figure 5.5: The role of consistency checking against evolution of the system structure.

havior: behView and a structure: strView) are a consistent snapshot of the system.
The method check_consistency() of the consistency checker delegates _plan for such
a check on the representatives.
Both the evolutionary and the consistency checker work on system representatives. Evo-
lutionary objects carry out their work when external events occur whereas the consis-
tency checker performs its work when one of the representatives that it is monitoring
is modi�ed, that is, when an evolutionary object proposes a change. If evolutionary
objects notify that they have carried out a change to the consistency checker, it is able
to simply detect such a change in the representatives. Such a noti�cation is performed
through a boolean �ag added to the shared representatives. Such a �ag is set to true
when an evolutionary object modi�es the representative, to false when the consistency
checker validates the proposed changes. Therefore, the consistency checking will take
place when the consistency checker detects a change in the �ags shared with the evolu-
tionary objects.

In �gure 5.5 we show the integration of the consistency checker with the evolutionary.
The �gure sketches consistency checker role in the RAMSES architecture by considering
the role of the rei�cation library.

The consistency checker has to be used when we have to check the consistency of dynamic
changes carried out by a system on a representative of another system before e�ectively
performing such changes. The consistency checker has to be used in critical environments
to avoid the dire consequences of erroneous and inconsistent updates.

A feasible use of the consistency checker consists of checking the consistency of the base-
level of a re�ective system against changes performed by the meta-level system before
re�ection takes place. However this meta-object is not mined from existing systems.

84 Chapter 5. The Re�ective Middleware: RAMSES At Work

The consistency checker can be used stand alone for checking the consistency of a system
or in collaboration with evolutionary for safely evolving a system:

� it compares the consistency of the meta-data embodied by the rei�cation library.
It uses a set of prede�ned rules;

� it interacts with evolutionary to �x potential inconsistencies between the �pro-
posed� adaptation and the referents;

� it delegates/authorizes the re�ection to update the corresponding aspects after the
validation of the �proposed� adaptation.

The consistency checker provides the following advantages:
� It checks the consistency of the meta-data after evolution and before updating

the base-level system in accordance with the adaptation. That is, it checks that
carrying out the adaptation proposed by evolutionary will not render the base-level
system inconsistent.

� The control �ow returns to the evolutionary for �xing the proposed evolution if
the consistency check fails.

� It looks, in collaboration with the evolutionary, for the right moment to allow
system evolution, i.e., the moment which guarantees that evolution leaves the
evolved system working and consistent.

The consistency checker has a few drawbacks:
� It augments the run-time overhead due to its checking and to its cooperation with

evolutionary meta-objects for �xing the inconsistencies.
� Its work is based on a rigorous set of rules establishing when the system can be

considered inconsistent.
� Adaptation does not immediately occur.

An important point is represented by the quality of the rules composing the validation
system. This requirements is a very delicate point which requires a highly skilled software
architect because all the e�cacy of the consistency checker is based on the quality of
the validation system and a bad designed validation system can have dire consequences.

5.4. Summary

In this chapter we have proposed an infrastructure named RAMSES to dynamically adapt
software systems using architecture re�ection. As with common re�ective systems, we
have divided the architecture of software systems into base- and meta-level. The base-
level consists of the running application as well as design information in form of XMI
schemas. The meta-level is composed of an interpreter engine for managing the evolution

5.4. Summary 85

and validating consistency processes for runtime changes. The evolution and validation
is based on graph transformation which take place on the rei�ed design information
(XMI schemas). The meta-level behavior is described by the role of two evolutionary
meta-objects (evolutionary and consistency checker).

6 The UTCS: a Case Study
This chapter describes how design information, i.e., UML speci�cations, can be used
to evolve a software system and validate the consistency of such an evolution. In the
previous chapters we presented the RAMSES middleware for software evolution describing
the role played by meta-data in the evolution of software systems. The whole chapter
focuses on a case study; we show how the urban tra�c control system (UTCS) or part
of it must evolve when unscheduled road maintenance, a car crush or a tra�c jam block
normal vehicular �ow in a speci�c road. The UTCS case study perfectly shows how
requirements can dynamically change and how the design of the system should adapt
to such changes. Both system consistency and adaptation are governed by rules based
on meta-data representing the system design information. As we show by an example,
such rules represent the core of our evolutionary approach driving the evolutionary and
consistency checker meta-objects and interfacing the meta-level system (the evolutionary
system) with the system that has to be adapted.

This chapter is organized as follows: Section 6.1, provides a brief overview of the dynamic
application UTCS. Section 6.2, we described three di�erent cases of three di�erent unan-
ticipated events. Section 6.3, presents the design information for case (A). Section 6.4,
presents the UTCS evolution prototype. Section 6.5, brie�y summarizes main points
highlighted in this chapter.

6.1. The Speci�cation and Components of the
UTCS

We describe the speci�cation for one of the systems that have a continuously changing
nature, the system we deal with is the urban tra�c control systems (UTCS). The software
engineers and city planners have to face many criteria for specifying the design issues of
these systems. Moreover, part of these criteria should be able to deal with unanticipated
events. When designing (UTCS) of a modern city, the software engineer cannot face all
the unanticipated events. These systems should be �exible for new functional and non-
functional requirements. The UTCS have to deal with a lot of unexpected and hard to
plan such as tra�c lights disruptions, roads maintenance, car crashes, tra�c jam and
so on. These considerations necessitate the need of rendering the UTCS dynamically
adaptable to the external events.

We use the UTCS as a case study for many reasons, as follows:

87

88 Chapter 6. The UTCS: a Case Study

� The environment of UTCS is dynamic;
� This case study is rich with unanticipated events. At design-time, we can not

imagine and implement all these events;
� This system is �exible to include new functional and non-functional requirements;
� The area of UTCS is rich with many �x components and mobile components, the

relation among these components can dynamically change to get a new behavior
for the system;

The existing UTCS systems lack in adaptability to evolve and validate the tra�c �ow
of some areas for unanticipated events such as: adding new tra�c lights, changing
the roads directions, changing the synchronization protocol between the opposite tra�c
lights, re-engineering the tra�c �ow of some area and so on.

6.1.1. UTCS components

This section illustrates the main components of the urban tra�c control systems (UTCS).
The UTCS consists of the following components, that provide a simpli�ed vision of their
software systems. Moreover, these components abstract the real world:

� Tra�c Nodes : represent the road intersections. Every tra�c node has a set of
road sections, and the �ow through its connected roads is managed by using a set
of synchronized tra�c lights. We consider the tra�c nodes class has the following
methods: (1) give the ability to create a new tra�c node; (2) specify the connected
road sections to this tra�c node; (3) detect the direction of these roads; (4) provide
how to change the synchronization protocol for speci�c tra�c node and changes
the �ow trough the connected road sections. This component is the main in UTCS
and has a relation to the other components.

� Tra�c Lights: are a signalling device positioned at a road intersection or pedestrian
crossing to indicate when it is safe to drive, ride or walk, using colored lights,
typically red for stop, green for go, and yellow for proceed with caution. The system
planner should specify the synchronized tra�c lights, and the synchronization
protocol between them. The tra�c light class has a set of methods such as: (1)
create new tra�c light; (2) get the current state of the tra�c light; (3) change
from state to another; (4) get and speci�es the group of synchronization that the
tra�c light belongs to; (5) turn-on the initial states of the tra�c light; (6) turn-o�
speci�c tra�c lights.

� Road Sections: every city consists of a network of roads, that connects any place
to the other. UTCS represents the road network as a graph (roads represent the
arcs and roads intersection (crossroads) represent the nodes). The system planner
should specify for each road the name, direction of �ow, the identi�cation code,
the position of road in the map, and detect the connection with the other road

6.1. The Speci�cation and Components of the UTCS 89

sections. Moreover, the maximum speed through each road. This class has the
following operations: (1) create a new road section; (2) specify the directions
for road sections and lanes; (3) specify the link of the road with the others; (4)
associate connection with the tra�c light class.

� Synchronization Manager: speci�es the synchronization protocol for the tra�c
lights enclosed to a tra�c node for controlling the �ow at this tra�c node. The
synchronization manager has the following operations: (1) create a synchronization
group for the set of tra�c lights; (2) switch from one group of synchronization to
another.

� Synchronization Protocol: the synchronization protocol speci�es di�erent phases
of synchronization at each tra�c node. Each phase speci�es the allowed direction
and the color required to allow this direction. The synchronization protocol has
the following operations: (1) de�ne the tra�c �ow phases for each group of syn-
chronization; (2) de�ne the initial states for each tra�c light in the synchronization
group; (3) generalize the synchronization type which create the suitable type of
synchronization for each group.

� Tra�c Link: the main propose is to specify the link between road sections and
their tra�c lights. The main operations for this class are: (1) create the relation
between the tra�c lights and the roads; (2) specify the start and end for each road
section and the tra�c lights.

� Directions: specify the directions for each road sections connected to the crossroads
(tra�c node). The main operations for this class are: (1) create a new direction;
(2) change the existing one; (3) specify the relations between road sections and
tra�c nodes.

6.1.2. Speci�cation of the UTCS

The map in the �gure 6.1, represents a simpli�cation of part of the Berlin downtown.
We marked on the map some special area that we use to explain how RAMSES work.
Moreover, for each case we sketch the original map for that area and the modi�ed map,
more details about these events are in the next sections.

We discuss the speci�cation of the UTCS in general. In this system we have a map that
describes the �ow in normal case as follows:

� There are a set of roads with di�erent types (one way, two ways, and many lanes);

� There is a circular axes that links four roads;

� The tra�c lights at a crossroad must be synchronized. There are many cases of
synchronization: two tra�c light, three tra�c light and four tra�c light.

90 Chapter 6. The UTCS: a Case Study

In such systems, the urban manager supervises normal operations, that describe an-
ticipated events like: controls the roads, and controlled the tra�c lights. The system
planner address a set of rules, that should be considered to validate these respect of a
given set of constraints. Some of the issues considered in the case study are:

� Reachability: means cars must be able to reach every road from every where;
� Every opposite tra�c lights at the crossroad must be synchronized.
� For the cycling connection there is a priority for the cars that pass in cycle way

(priority conditions).
� Tram circulations cannot be interrupted, it is close path.

In the following section we describe in abstract-level three di�erent cases of UTCS sys-
tem, then, we discuss one of these cases in more detailed.

6.2. UTCS Cases
This section describes the three di�erent cases marked in the Berlin map as shown in
�gure 6.1.

6.2.1. Case (A): closing a lane or part of lane

We have analyzed the map of area shown in �gure 6.2, that is simpli�cation of the map of
the area (A) marked in �gure 6.1. The normal layout of area (A) consists of two tra�c
nodes (tn1 and tn2), each tra�c node represents the crossroads (roads intersections).
The tra�c �ow at each tra�c node is controlled by using a set of tra�c lights. In
the normal layout, tra�c node (tn1) is controlled by four tra�c lights, and tra�c node
(tn2) is controlled by three tra�c lights. Each set of tra�c lights has the same type
of synchronization protocol named TwoGroupsSync. The formal representation of the
normal layout of case (A) is as follows: Given the following nodes:
TNsetCaseA = {tn1, tn2}, s.t.

TLtn1 = {tf1, tf2, tf3, tf4},
TLtn2 = {tf5, tf6, tf7},
RStn1 = {rs1, rs2, rs3, rs4},
RStn2 = {rs5, rs4, rs6}.

The syncManager speci�es the following groups of synchronization for case (A):

TwoGroupsSync((A,B), [(tf1, tf3), (tf2, tf4)]),
TwoGroupsSync((A,B), [(tf6), (tf5, tf7)]).

6.2. UTCS Cases 91

Figure 6.1: The original map for Berlin city

Figure 6.2: Layout of Case A.

92 Chapter 6. The UTCS: a Case Study

Tra�c jam at a lane of road section (rs4)

In �gure 6.3, we illustrate two plans from the designer point of view to evolve the layout
according to an unanticipate event (closing all or part of the left lanes of road section rs4).
The formal representation of the �rst plan of modi�ed layout of case (A) is described as
follows: Given the following nodes:
TNsetM1caseA = {tn1, tn2}, s.t.

TLtn1 = {tf1, tf2, tf3},
TLtn2 = {tf5, tf6},
RStn1 = {rs1, rs2, rs3, rs4},
RStn2 = {rs5, rs4, rs6}.

The syncManager speci�es the following group of synchronization for case (M1case1):

TwoGroupsSync((A,B,C), [(tf1, tf3), (tf2), ,(tf5, tf6)]).

The formal representation of the second plan of modi�ed layout of case (A) is as follows:
Given the following nodes: TNsetM2CaseA = {tn1, tn2}, s.t.

TLtn1 = {tf1, tf2, tf3, tf4},
TLtn2 = {tf5, tf6, tf7},
TLtn3 = {tf8, tf9},
RStn1 = {rs1, rs2, rs3, rs7},
RStn2 = {rs8, rs5, rs6},
RStn3 = {rs7, rs8}.

The syncManager speci�es the following groups of synchronization for case (M2caseA):

TwoGroupsSync((A,B), [(tf1, tf3), (tf2, tf4)]),
TwoGroupsSync((A,B), [(tf6), (tf5, tf7)]),
TwoGroupsSync((A,B), [(tf8), (tf9)]).

6.2.2. Normal layout for case (B): an overview

In this section, we discuss the layout of area (B), in the original map. The normal layout
of this case is described in �gure 6.4. The normal layout consists of four tra�c nodes.
The tra�c �ow at the tra�c node (tn1 and tn2) at the main road is controlled by four
tra�c lights. The tra�c �ow for the other tra�c nodes depends on the priority of �ow.
The tra�c lights at tra�c node (tn1 and tn2) have the synchronization protocol named
TwoGroupsSync. The formal representation of the normal layout of case (B) as follows:
Given the following nodes:

6.2. UTCS Cases 93

(a) First Plan (b) Second Plan

Figure 6.3: Proposed evolution of Area A: a) adapted layout according �rst plan b) adapted layout
according second plan.

Figure 6.4: Layout of Case B.

94 Chapter 6. The UTCS: a Case Study

TNsetCaseB = {tn1, tn2, tn3, tn4}, s.t.

TLtn1 = {tf1, tf2, tf3, tf4},
TLtn2 = {tf5, tf6, tf7, tf8},
RStn1 = {rs1, rs2, rs3, rs6},
RStn2 = {rs7, rs6, rs9, rs8},
RStn3 = {rs5, rs9, rs10},
RStn4 = {rs3, rs4, rs5}.

The syncManager speci�es the following groups of synchronization for case (CaseB):

TwoGroupsSync((A,B), [(tf1, tf3), (tf2, tf4)]),
TwoGroupsSync((A,B), [(tf5, tf7), (tf6, tf8)]).

closing a road for maintenance or accident

In the �gure 6.4, we illustrate the normal behavior of the �ow in the (B) area, when
the main road (rs6) is closed. In that case, we need to modify the �ow to that road and
change the behavior of the tra�c lights, that control the tra�c �ow from and to this
road.

(a) First Plan (b) Second Plan

Figure 6.5: Proposed evolution of area B: a) adapted layout according �rst plan b) adapted layout
according second plan.

In �gure 6.5, we illustrate two plans from the designer point of view to evolve the layout
according to an unanticipate event (closing road rs6). The formal representation of

6.2. UTCS Cases 95

the �rst plan of modi�ed layout of case (B) is as follows: Given the following nodes:
TNsetM1caseB = {tn1, tn2, tn3, tn4}, s.t.

TLtn1 = {tf1, tf2, tf3},
TLtn2 = {tf5, tf7, tf8},
RStn1 = {rs1, rs2, rs3},
RStn2 = {rs7, rs9, rs8},
RStn3 = {rs5, rs9, rs10},
RStn4 = {rs3, rs4, rs5}.

The syncManager speci�es the following groups of synchronization for case (M1caseB):

TwoGroupsSync((A,B), [(tf1, tf3), (tf2)]),
TwoGroupsSync((A,B), [(tf5, tf7), (tf8)]).

The formal representation of the second plan of modi�ed layout of case (B) is as follows:
Given the following nodes: TNsetM2caseB = {tn1, tn2, tn3, tn4}, s.t.

TLtn1 = {tf1, tf2, tf3},
TLtn2 = {tf5, tf7, tf8},
TLtn3 = {tf9, tf10, tf11, tf12},
RStn1 = {rs1, rs2, rs3},
RStn2 = {rs7, rs9, rs8},
RStn3 = {rs5, rs9, rs10},
RStn4 = {rs3, rs4, rs5}.

The syncManager speci�es the following groups of synchronization for case (M2caseB):

TwoGroupsSync((A,B), [(tf1, tf3), (tf2)]),
TwoGroupsSync((A,B), [(tf5, tf7), (tf8)]),

TwoGroupsSync((A,B), [(tf9, tf10), (tf11, tf12)]).

6.2.3. Normal layout for case (C): an overview

The layout of the considered area (C) consists of two tra�c nodes (tn1 and tn2); each
tra�c node represents a crossroads as shown in �gure 6.6.a. The tra�c �ow at each tra�c
node is controlled by a set of tra�c lights. In details, the tra�c at the tra�c nodes tn1

and tn2 are respectively controlled by four tra�c lights. Both sets of tra�c lights adopt
the same synchronization protocol (named TwoGroupsSync): opposite tra�c lights have
always the same color, if a couple is red the other one is green or vice versa. The formal
representation of the normal layout of case (C) is:

96 Chapter 6. The UTCS: a Case Study

TNCaseC = {tn1, tn2}, s.t.

TLtn1 = {tf1, tf2, tf3, tf4}
TLtn2 = {tf5, tf6, tf7, tf8}
RStn1 = {rs1, rs2, rs3, rs4}
RStn2 = {rs5, rs4, rs6, rs7}

The syncManager speci�es the following groups of synchronization for case (CaseC):

(a) Layout of Case (C) (b) Emergency plan

Figure 6.6: Case (C): (a) normal layout, (b) emergency plan.

TwoGroupsSync((A,B), [(tf1, tf3), (tf2, tf4)])
TwoGroupsSync((A,B), [(tf5, tf7), (tf6, tf8)])

Note that, in the considered area we have a large avenue (the road composed by the
sections rs2, rs4 and rs7) with three lanes, the tra�c lights steering the tra�c �ow in
this avenue have three lights as well:

tf2 = {tf2L1
, tf2L2

, tf2L3
}

tf4 = {off, off, off}
tf6 = {tf6L1

, tf6L2
, tf6L3

}
tf8 = {off, off, off}

When an anomalous situation is detected (e.g., a tra�c jam in the rush hour or a gas
tube explodes) the UTCS must adapt itself to solve or alleviate the emergency. Of

6.3. Design Information Realization for Case (A) 97

course, not all the anomalous situation can be foreseen at design-time and anyway the
code and the design should not polluted with the management of these anomalous and
seldom cases. Therefore the adaptation dynamically takes place and consequently also
the design must be changed.
Consider the case of the emergency plan, showed in Fig. 6.6.b, for alleviating the con-
gestion at the rush hour in the large avenue. In the plan the �rst lane of the avenue
change will be run in the other direction and consequently some tra�c lights change
their behavior and synchronization protocol.
In particular the tra�c lights in the large avenue are characterize by:

tf2 = {tf2L1
, tf2L2

, off}
tf4 = {tf4L1

, off, tf2L2
}

tf6 = {tf6L1
, tf6L2

, on/off}
tf8 = {tf8L1

, off, off}

6.3. Design Information Realization for Case (A)
In this section, we illustrate the class diagram and deployment models for the normal
layout for the Case(A). In �gure 6.7, we realize the structure of the case (A) in form of
class diagram, that presents the classes and their relations. In �gure 6.8, we realize the
instance road sections and its tra�c lights of the normal layout instances as described in
�gure 6.2. In �gure 6.9, we represent the �rst deployment object model of the modi�ed
layout as described in �gure 6.8.a.
In our point of view, the statechart model opens a window of the system behavior. Since,
the statechart represents the behavior of the system, then we illustrate di�erent kinds
of synchronization protocol. Figure 6.10, represents how four tra�c lights synchronize
to represent the state of tra�c �ow at tra�c node (tn1). The behavior for the normal
layout is described at �gure 6.7, that has two types of synchronization protocols, (1) �rst
protocol describes the synchronization between four tra�c lights; (2) second protocol
describes the synchronization between three tra�c lights. To realize a new behavior that
describes the modi�ed layout as shown in �gure 6.9, we create set of script rules to delete
two instances of tra�c lights and create new synchronization protocol as described in
�gures 6.11.

6.3.1. Evolutionary rules

RAMSESmiddleware has two types of meta-objects:(evolutionary and consistency checker)
meta-objects. In this case, the evolutionary meta-object detects the runtime events,
whose e�ect is to close the left lane of the road section rs4. Then, the evolutionary
meta-object proposes one of the following two evolutionary plans:

98 Chapter 6. The UTCS: a Case Study

Pe
de

st
ria

ns

+p
ed

es
tra

inT
ra

ffic
Na

via
ga

to
r()

:vo
id

Ve
hi

cl
e

+v
ec

hic
leT

ra
ffic

Na
via

ga
to

r()
:vo

id

Ph
as

e

−le
ng

th
:in

t

−g
ro

up
s:S

tri
ng

<<
cr

ea
te

>>
+P

ha
se

(le
ng

th
:in

t,g
ro

up
s:S

tri
ng

):P
ha

se

+g
et

Le
ng

th
():

vo
id

+s
et

Le
ng

th
(le

ng
th

:in
t):

vo
id

+s
et

Gr
ou

ps
(g

ro
up

s:S
tri

ng
):v

oid

+g
et

Gr
ou

ps
():

St
rin

g

+a
dd

Gr
ou

p(
gr

ou
pI

D:
ch

ar
):v

oid

Tw
oG

ro
up

sS
yn

c

<<
cr

ea
te

>>
+T

wo
Gr

ou
ps

Sy
nc

():
Tw

oG
ro

up
sS

yn
c

<<
en

um
er

at
ion

>>

St
at

e

−s
ta

te
:in

t=
of

f

−O
ff:

int
=0

−R
ed

:in
t=

1

−R
ed

Ye
llo

w:
int

=2

−G
re

en
:in

t=
3

−G
re

en
Ye

llo
w:

int
=4

+g
et

():
vo

id

+s
et

(_
sta

te
:in

t):
vo

id

Tr
af

fic
Li

nk

<<
cr

ea
te

>>
+T

ra
ffic

Lin
k(

sta
rt:

Ro
ad

Se
cti

on
,e

nd
:R

oa
dS

ec
tio

n)
:T

ra
ffic

Lin
k

<<
cr

ea
te

>>
+T

ra
ffic

Lig
ht

(s
ta

rt:
Ro

ad
Se

cti
on

,e
nd

:R
oa

dS
ec

tio
n,

tf:
Tr

af
fic

Lig
ht

):T
ra

ffic
Lig

ht

+g
et

St
ar

t()
:R

oa
dS

ec
tio

n

+g
et

En
d(

):R
oa

dS
ec

tio
n

+g
et

Tr
af

fic
Lig

ht
():

Tr
af

fic
Lig

ht

Sy
nc

Pr
ot

oc
ol

<<
cr

ea
te

>>
+s

yn
cP

ro
to

co
l()

:S
yn

cP
ro

to
co

l

+g
et

Ph
as

eC
ou

nt
():

int

+g
et

Ph
as

eL
en

gh
t(p

ha
se

:in
t):

int

+s
wi

tch
Gr

ou
p(

ph
as

e:
int

,g
ro

up
ID

:C
ha

r):
bo

ole
an

+g
et

Gr
ou

pI
nit

St
at

e(
gr

ou
pI

D:
Ch

ar
):v

oid

+s
et

Gr
ou

pI
nit

St
at

e(
gr

ou
pI

D:
Ch

ar
,st

at
e:

St
at

e)
:vo

id

+c
lea

rP
ha

se
s(

):v
oid

+a
dd

Ph
as

es
(p

ha
se

:P
ha

se
):v

oid

+g
et

Ph
as

eA
t(p

ha
se

:in
t):

Ph
as

e

Sy
nc

M
an

ag
er

−c
ur

re
nt

Ph
as

e:
int

−re
m

ain
ing

Ti
m

e:
int

+t
ick

():
vo

id

<<
cr

ea
te

>>
+S

yn
cM

an
ag

er
(p

ro
to

co
l:S

yn
cP

ro
to

co
l,tr

af
fic

Lig
ht

s:T
ra

ffic
Lig

ht
[])

:S
yn

cM
an

ag
er

Tr
af

fic
Li

gh
t

−id
:S

tri
ng

−g
ro

up
ID

:ch
ar

<<
cr

ea
te

>>
+T

ra
ffic

LI
gh

t(i
d:

St
rin

g,
gr

ou
pI

D:
ch

ar
):T

ra
ffic

Lig
ht

+g
et

Id
():

St
rin

g

+s
et

Id
(id

:S
tri

ng
):v

oid

+g
et

St
at

e(
):S

ta
te

+s
et

St
at

e(
sta

te
:S

ta
te

):v
oid

+t
ur

n_
on

():
vo

id

+t
ur

n_
of

f()
:vo

id

+i
sO

n(
):b

oo
lea

n

+t
ick

():
vo

id

+g
et

Sy
nc

M
an

ag
er

():
Sy

nc
M

an
ag

er

+s
et

Sy
nc

M
an

ag
er

(s
yn

cM
an

ag
er

:S
yn

cM
an

ag
er

):v
oid

+g
et

Gr
ou

pI
D(

):c
ha

r

+s
et

Gr
ou

pI
D(

gr
ou

pI
D:

ch
ar

):v
oid

Ro
ad

Se
ct

io
n

−le
ng

th
:d

ou
ble

−id
:S

tri
ng

<<
cr

ea
te

>>
+R

oa
dS

ec
tio

n(
id:

str
ing

,le
ng

th
:d

ou
ble

,d
1:

Di
re

cti
on

,d
2:

Di
re

cti
on

):R
oa

dS
ec

tio
n

+g
et

Le
ng

th
():

do
ub

le

+g
et

Id
():

St
rin

g

+g
et

La
ne

sF
or

Di
re

cti
on

(tf
:T

ra
ffic

Lin
k)

:in
t

+s
et

Le
ng

th
(le

ng
th

:d
ou

ble
):v

oid

Di
re

ct
io

n

−n
um

be
rO

fL
an

es
:in

t

−b
ot

hD
ire

cti
on

s:b
oo

lea
n

<<
cr

ea
te

>>
+D

ire
cti

on
(s

ta
rt:

Tr
af

fic
No

de
,e

nd
:T

ra
ffic

No
de

):D
ire

cti
on

<<
cr

ea
te

>>
+D

ire
cti

on
(s

ta
rt:

Tr
af

fic
No

de
,e

nd
:T

ra
ffic

No
de

,n
um

be
rO

fL
an

es
:in

t):
Di

re
cti

on

<<
cr

ea
te

>>
+D

ire
cti

on
(s

ta
rt:

Tr
af

fic
No

de
,e

nd
:T

ra
ffic

No
de

,n
um

be
rO

fL
an

es
:in

t,b
ot

hD
ire

cti
on

s:b
oo

lea
n)

:D
ire

cti
on

+b
ot

hD
ire

cti
on

s(
):b

oo
lea

n

+g
et

En
d(

):T
ra

ffic
No

de

+g
et

Nu
m

be
rO

fL
an

es
():

vo
id

+g
et

St
ar

t()
:T

ra
ffic

No
de

Tr
af

fic
No

de

<<
cr

ea
te

>>
+T

ra
ffic

No
de

():
Tr

af
fic

No
de

<<
cr

ea
te

>>
+T

ra
ffic

No
de

(c
on

ne
cte

dR
oa

dS
ec

tio
ns

:R
oa

dS
ec

tio
n[

],a
llo

we
dD

ire
cti

on
:T

ra
ffic

Lin
k[]

):T
ra

ffic
No

de

+g
et

Co
nn

ec
te

dR
oa

dS
ec

tio
n(

):R
oa

dS
ec

tio
n[

]

+s
et

Co
nn

ec
te

dR
oa

dS
ec

tio
n(

co
nn

ec
te

dR
oa

dS
ec

tio
n:

Ro
ad

Se
cti

on
[])

:vo
id

+g
et

Al
low

ed
Di

re
cti

on
s(

):T
ra

ffic
Lin

k[]

+s
et

Al
low

ed
Di

re
cti

on
s(

all
ow

ed
Di

re
cti

on
s:T

ra
ffic

Lin
k[]

):v
oid

+n
od

eT
ra

ffic
Na

vig
at

or
M

an
ag

er
():

vo
id

cla
ss

−d
iag

ra
m

−c
as

eA

tic
k

+

pr
ot

oc
ol

+

sta
rt

+
en

d
+

ha
s

+

tf+1.
.*

sy
nc

M
an

ag
er

+

tra
ffic

Lig
ht

s
+

1.
.*

sta
te

+

sy
nc

Ty
pe

ph
as

es
+1.

.*

tra
ffic

No
de

+

sy
nc

M
an

ag
er

+

all
ow

ed
Di

re
cti

on
s

+

all
ow

ed
Di

re
cti

on
s

+

co
nn

ec
te

dR
oa

dS
ec

tio
ns

+
1.

.*

ve
hic

les
+1.

.*

na
via

ga
to

r
+

ro
ad

Lin
k

gr
ou

pI
D

tic
k

+

tra
ffic

Lig
ht

+

d2+
d1+

en
d

+sta
rt

+

m
ap

Gr
ou

p2
In

itS
ta

te
+

Figure 6.7: Class diagram for the normal layout.

6.3. Design Information Realization for Case (A) 99

tf4
:T

ra
ffi

cL
ig

ht
tf3

:T
ra

ffi
cL

ig
ht

tf2
:T

ra
ffi

cL
ig

ht
tf1

:T
ra

ffi
cL

ig
ht

rs
4:

R
oa

dS
ec

tio
n

rs
3:

R
oa

dS
ec

tio
n

rs
2:

R
oa

dS
ec

tio
n

rs
1:

R
oa

dS
ec

tio
n

O
M

4T
ra

ffi
cN

od
e(

tn
1)

R
oa

dS
ec

tio
ns

−
4−

(t
n1

)

ro
ad

Li
nk ro
ad

Li
nk

ro
ad

Li
nk

ro
ad

Li
nk

ro
ad

Li
nk

ro
ad

Li
nk

T
ra

ffi
cL

ig
ht

sA
t(

tn
1)

co
lo

r=
"G

"

co
lo

r=
"R

"

gr
ou

pI
D

=
"B

"

gr
ou

pI
D

=
"A

"

ha
s

ha
s

ha
s

ha
s

(a) DM4tn1

tf6
:T

ra
ffi

cL
ig

ht

tf7
:T

ra
ffi

cL
ig

ht

tf5
:T

ra
ffi

cL
ig

ht

rs
6:

R
oa

dS
ec

tio
n

rs
5:

R
oa

dS
ec

tio
n

rs
4:

R
oa

dS
ec

tio
n

O
M

4T
ra

ffi
cN

od
e(

tn
2)

ro
ad

Li
nk

ro
ad

Li
nk

ro
ad

Li
nk

R
oa

dS
ec

tio
n4

(t
n2

)

co
lo

r=
"R

"

co
lo

r=
"G

"

gr
ou

pI
D

=
"B

"

gr
ou

pI
D

=
"A

"

ha
s

ha
s

ha
s

T
ra

ffi
cL

ig
ht

A
t(

tn
2)

(b) DM4tn2

Figure 6.8: Deployment diagram: a) object instances connection at tra�c node (tn1) b) object
instances connection at tra�c node (tn2).

100 Chapter 6. The UTCS: a Case Study

tf3
:T

ra
ffi

cL
ig

ht

tf2
:T

ra
ffi

cL
ig

ht
tf1

:T
ra

ffi
cL

ig
ht

rs
4:

R
oa

dS
ec

tio
n

rs
3:

R
oa

dS
ec

tio
n

rs
2:

R
oa

dS
ec

tio
n

rs
1:

R
oa

dS
ec

tio
n

M
od

ifi
ed

−
1−

O
M

R
oa

dS
ec

tio
ns

−
4−

(t
n1

)

ro
ad

Li
nk ro
ad

Li
nk

ro
ad

Li
nk

ro
ad

Li
nk

ro
ad

Li
nk

ro
ad

Li
nk

T
ra

ffi
cL

ig
ht

s−
w

ith
 T

hr
ee

G
ro

up
sS

yn
c

co
lo

r=
"G

"

co
lo

r=
"R

"

gr
ou

pI
D

=
"B

"

gr
ou

pI
D

=
"A

"

ha
s

ha
s

ha
s

ha
s

tf5
:T

ra
ffi

cL
ig

ht

rs
4:

R
oa

dS
ec

tio
n

rs
6:

R
oa

dS
ec

tio
n

rs
5:

R
oa

dS
ec

tio
n

tf6
:T

ra
ffi

cL
ig

ht

R
oa

dS
ec

tio
ns

−
4−

(t
n2

)
gr

ou
pI

D
=

"C
"

co
lo

r=
"R

"

co
nc

ur
re

nt
 s

ta
te

co
nc

ur
re

nt
 s

ta
te

ha
s

ro
ad

Li
nk

ro
ad

Li
nk

ro
ad

Li
nk

Figure 6.9: Adapted deployment diagram realized from �rst plan at �gure 6.3.a

6.3. Design Information Realization for Case (A) 101

tf4
−

tf2
 &

tf1
−

tf3
 s

yn
ch

ro
ni

za
tio

n

tf2
 s

ta
te

s

gr
ee

nY
el

lo
w

gr
ee

n

re
dY

el
lo

w
re

d
t=

20
 s

ec

tic
k(

)

t=
5

se
c

tic
k(

)

t=
30

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)

tf4
 s

ta
te

s

gr
ee

nY
el

lo
w

gr
ee

n

re
dY

el
lo

w
re

d
t=

20
 s

ec

tic
k(

)

t=
5

se
c

tic
k(

)

t=
30

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)

tf3
 s

ta
te

s

re
dy

el
lo

w
re

d

gr
ee

nY
el

lo
w

gr
ee

n
t=

30
 s

ec

tic
k(

)

t=
 5

 s
ec

tic
k(

)

t=
20

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)

tf1
 s

ta
te

s

re
dy

el
lo

w
re

d

gr
ee

nY
el

lo
w

gr
ee

n
t=

30
 s

ec

tic
k(

)

t=
5

se
c

tic
k(

)

t=
20

 s
ec

tic
k(

)

t=
5

se
c

tic
k

T
w

oG
ro

up
S

yn
c−

4t
f

gr
ou

p
B

tu
rn

_o
n(

)

gr
ou

p
A

tu
rn

_o
n(

)

ph
as

e
I

tu
rn

_o
n(

)

ph
as

e
I

tu
rn

_o
ff(

)

Figure 6.10: TwoGroupsSync with 4tf

102 Chapter 6. The UTCS: a Case Study
F

iv
e

tr
af

fic
 L

ig
ht

s
w

ith
 T

hr
ee

G
ro

up
S

yn
c

P
ro

to
co

l s
yn

ch
ro

ni
za

tio
n

tf3
 s

ta
te

s

re
dY

el
lo

w
re

d

gr
ee

nY
el

lo
w

gr
ee

n
t=

30
 s

ec

tic
k(

)

t=
5

se
c

tic
k(

)

t=
20

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)

tf1
 s

ta
te

s

re
sY

el
lo

w
re

d

gr
ee

nY
el

lo
w

gr
ee

n
t=

30
 s

ec

tic
k(

)

t=
5

se
c

tic
k(

)

t=
20

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)

tf6
 s

ta
te

s

gr
ee

nY
el

lo
w

gr
ee

n

re
dY

el
lo

w
re

d
t=

30
 s

ec

tic
k(

)

t=
20

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)
t=

 5
 s

ec
tic

k(
)

tf2
 s

ta
te

s

gr
ee

nY
el

lo
w

gr
ee

n

re
dY

el
lo

w
re

d

t=
5

se
c

tic
k

t=
20

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)

t=
30

 s
ec

tic
k(

)

tf5
 s

ta
te

s

gr
ee

nY
el

lo
w

gr
ee

n

re
dY

el
lo

w
re

d

t=
20

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)

t=
30

 s
ec

tic
k(

)

t=
5

se
c

tic
k(

)

T
hr

ee
G

ro
up

S
yn

c−
5t

f

gr
ou

p
A

tu
rn

_o
n(

)

ph
as

e
I

tu
rn

_o
n(

)

ph
as

e
I

tu
rn

_o
ff(

)

gr
ou

p
B

tu
rn

_o
n(

)

gr
ou

p
C

tu
rn

_o
n(

)

Figure 6.11: TwoGroupsSync with 5tf

6.3. Design Information Realization for Case (A) 103

First plan close the whole left lane of road section (rs4): This evolutionary plan com-
poses of two steps:

� turn o� the tra�c lights (tf4, tf7)

� create a new synchronization protocol for the remaining tra�c lights.
synManager(ThreeGroupsSync(A,B, C), [(tf1, tf3), (tf2), (tf5, tf6)]).

Second plan close a part of the left lane of road section (rs4): The second evolu-
tionary plan composed of the following steps:

� delete road section (rs4),

� create new road section instances (rs7 and rs8)

� create new tra�c node at the part of road section (rs7 and rs8), tn3,

� add two tra�c instances to the new tra�c node, TLtn3 = {tf8, tf9},
� create a synchronization protocol for the new tra�c lights,

syncManager(TwoGroupsSync(A,B), [(tf8), (tf9)]).

6.3.2. Validation rules

The main role of the consistency checker meta object is to check that the internal
representation remains consistent after evolutionary meta-object work.

In case of the �rst plan: The consistency checker has to verify two rules: (1) The
initial state of both tra�c lights (tf4, tf7) is o�. (2) every tra�c light belongs to
the threeGroupsSync.

In case of the second plan: The consistency checker has to verify the following rules:

� tn3 ∈ TNsetM2caseA,

� rs7 and rs8 created and added,

� tf8 and tf9 created and added,

� synchronization protocol assigned for tf8 and tf9.

Reachability: Every tra�c node by using set of tra�c lights allows di�erent kinds of
direction and reachability of the road sections that connected to this tra�c node.
For example tf1 at the tra�c node tn1 allows the following direction: rs1 −→ rs2,
rs1 −→ rs3 and rs1 −→ rs4. From the original map for CaseA, we get all the
direction �ow between the connected road sections for both tra�c nodes (tn1 and
tn2). The role of the consistency checker is to check the adapted layout keeps all
the directions �ow that exist at the original one, by checking the value of roadLink
attribute.

104 Chapter 6. The UTCS: a Case Study

6.3.3. Samples of script rules for case (A)

In the following, we illustrate the Ruby script for evolving and validating the internal
representation of the software systems.

The following code snippet describes how to remove instances from the object model in
�gure 6.8.

removing tf4 and tf7
trafficNode1.removeInstance(trafficNode1.getInstance("tf4","TrafficLight"))
trafficNode2.removeInstance(trafficNode2.getInstance("tf7","TrafficLight"))

In this part of the script code, we illustrate how to adapt the synchronization between
tra�c lights by adding new region at the statechart, then we add the states for that
tra�c light instance and its states.

adding the "tf5 states " to the Region_3
top1SiPrC.addState("tf5states")
top1SiPrCSiTl5=top1SiPrC.getAllSimpleState[0]
top1SiPrCSiTl5.addNewRegion("tf5")
top1SiPrCSiTl5r=top1SiPrCSiTl5.getRegion("tf5")

This code snippet of the rule adapts the required transitions between simple states for
the tra�c light instance ("tf5").

add the transitions
top1SiPrCSiTl5rRe=top1SiPrCSiTl5r.getState("red")
top1SiPrCSiTl5rGr=top1SiPrCSiTl5r.getState("green")
top1SiPrCSiTl5rGY =top1SiPrCSiTl5r.getState("greenYellow")
top1SiPrCSiTl5rRY =top1SiPrCSiTl5r.getState("redYellow")

top1SiPrCSiTl5rRe.addTransitionTo (top1SiPrCSiTl5rRY, "", "t=30sec","tick()")
top1SiPrCSiTl5rRY.addTransitionTo (top1SiPrCSiTl5rGr, "","t=5 sec","tick()")
top1SiPrCSiTl5rGr.addTransitionTo (top1SiPrCSiTl5rGY, "", "t=20sec","tick()")
top1SiPrCSiTl5rGY.addTransitionTo (top1SiPrCSiTl5rRe, "","t=5 sec","tick()")

In the following code snippet, we check, whether the deployment diagram and statechart
diagrams have anything left from the two deleted tra�c lights tf4 & tf7.

to check >> tf7 states << # puts
Ramses::StateChartDiagram.new.methods[1..-1]

top1SiPrB = top1.getAllSimpleState[0].getRegion("Region_2")
puts getNames(top1SiPrB) begin

6.3. Design Information Realization for Case (A) 105

top1SiPrB.getState("tf7 States")
faultReason << "tf7 states are still in the statechartdiagram\n"
rescue Ramses::StateDoesNotExistsException

end

Finally, this part of code snippet checks whether the remaining tra�c lights are in the
appropriate groups.

top1SiPrA = top1.getAllSimpleState[0].getRegion("Region_1")
faultReason << "tf1 states are missing the group a\n" unless

getNames(top1SiPrA).include?("tf1 states")
faultReason << "tf3 states are missing the group a\n" unless

getNames(top1SiPrA).include?("tf3 states")

This part of script describes how to de�ne the new behavior for the tra�c lights that
control the tra�c �ow at the tra�c nodes tn3 and tn4.

add the new states to the statechartdiagram twoGroupSync−4tf−4(tn3&tn4)

top3 =$reif.getStateChartDiagram("Statediagram_1")

initState = top3.addInitialState("init")
forkInit =top3.addForkState("fork")
finalState = top3.addFinalState("final")
joinState = top3.addJoinState("join")
initState.addTransitionTo(forkInit, "turn_on()", "", "Phase I")
joinState.addTransitionTo(finalState, "turn_off()", "", "Phase I")

top3Si = top3.addState("tf9-tf10 & tf11-tf12 synchronization states")

top3SiPrA = top3Si.addNewRegion("Region_1")
forkRegion1=top3SiPrA.addForkState("fork region1")
joinRegion1=top3SiPrA.addJoinState("join region1")
joinRegion1.addTransitionTo(joinState, "", "", "")
forkInit.addTransitionTo(forkRegion1, "", "group A", "")

106 Chapter 6. The UTCS: a Case Study

6.4. Practical Results: A Dynamic Evolution and
Validation Prototype

In this chapter, we describe the external libraries that are used by the evolution&validation
prototype. Then, we give an overview that illustrates the functionality of the prototype
to evolve and validate the internal representation of the software systems.

6.4.1. The external libraries required

The evolutionary prototype depends on several libraries, especially on the rei�cation
library which provides the functionality of loading, manipulating and saving the XMI
design information. For loading and writing the XMI data, the rei�cation library uses the
Xerces XML parser. Besides that, some other external libraries are required to achieve the
dynamic scripting support of the prototype. Since the manipulation and validation of the
design information is done by rules (evolutionary and consistency checking rules) which
may change during the lifetime of the application, it is self-evident to use a scripting
language for composing these rules. There are many free Java based implementations of
di�erent scripting languages available.

JRuby

JRuby is a Ruby interpreter written in 100% pure Java and provides most built-in Ruby
classes. It supports the interaction with and the de�nition of Java classes from within
Ruby. The API is split into two halves, low-level and high-level. The low-level is imple-
mented in Java and provides a thin wrapper over Java re�ection classes. The high-level
is built on top of this, implemented entirely in Ruby. For the prototype, the high-level
capabilities are su�cient, for example to use the Java random class in a rule you just
have to write:
require 'java'
include_class 'java.util.Random'
r = Random.new
puts r.nextInt

Bean scripting framework

The Bean Scripting Framework (BSF) is a Java library which provides scripting language
support within Java applications, and access to Java objects and methods from scripting
languages. BSF permits Java applications to be implemented in part (or dynamically
extended) by a language that is embedded within it. Therefore it provides an API

6.4. Practical Results: A Dynamic Evolution and Validation Prototype 107

that makes it possible to call scripting language engines (like JRuby) from within Java.
In addition, it contains an object registry that exposes Java objects to these scripting
language engines.
Before using the BSF you have to register the Ruby scripting engine and create an
instance of the BSFManager class:
BSFManager.registerScriptingEngine("ruby",

"org.jruby.javasupport.bsf.JRubyEngine", new String[] { "rb" };

BSFManager manager = new BSFManager();

The current implementation of the prototype uses global variables to provide access to
the rei�ed data from within the Ruby rule. The following line declares a global variable
called reif, which refers to an instance of the Rei�cation class.
manager.declareBean("reif", reif, Reification.class);

Then it can be used transparently in the Ruby rule like any other global Ruby variable,
e.g.:
cds = $reif.getAllClassDiagram

Figure 6.12: The evolution prototype interface.

6.4.2. The prototype: an overview

The evolution and validation prototype interface as shown in �gure 6.12, that provides
the ability to evolve and validate the internal representation of the software system.

108 Chapter 6. The UTCS: a Case Study

The structure of UTCS prototype is composed of the �ve buttons. In the following, we
illustrate the roles of these buttons:

LoadXMI: The role of this button is to load the internal design information of software
system in form of XMI by using RAMSES rei�cation library.

LoadScript: Provides the ability to load Ruby script, that describes the designer point
of view to evolve or validate the design representation of the software systems.

LoadTextArea: Provides the ability to load the edit the script rules and update its
before applying its to the loaded XMI schemas.

Execute: Applying the script to the loaded XMI schema and saving the modi�ed schema
to another �le.

SaveTextArea: provides the ability to save the modi�ed script to a new script �le.

The UTCS interface has additional three components:

Reify again?: gives the ability to reify the XMI multi-times to evolve or validate.

RightTextArea: uses for traceability the execution of script as log window.

LeftTextArea: uses as a editor for scripts.

We have applied the UTCS prototype to the cases we have discussed in the previous
sections. For each case, the prototype drives the evolution by loading the normal layout;
then applying the suggested evolutionary plan to the XMI schemas. In case of check
the consistency, the prototype loads the modi�ed schemas; then applies the required
validation plan.

Finally we illustrate in details the typical use of the prototype as follows:

� load XMI-�le, by using the button LoadXMI or open submenu you can load the
XMI �le that describe the normal layout for the case you want to evolve;

� load script (evolution) in the script-text area. By using the button loadTextArea,
you can load the evolution scripts in the LeftTextArea as shown in the GUI;

� For the scripts loaded at the LeftTextArea you have the ability to read it and make
the new changes. After that, by using the button SaveTextArea, you can save the
modi�ed script;

� apply the loaded or modi�ed evolution script to the XMI �le by using the button
Execute;

� sign the checkbox Reify again? to reify the XMI �le many times;

� To check the XMI �le is consistent with changes, we should loaded a consistency
script as the same way for evolution script;

� execute the loaded consistency rule to the XMI �le;

6.5. Summary 109

� you can check the traceability of the execution both the evolution and consistency
script by monitoring the log-window (RightTextArea).

6.5. Summary
A good design is the basis of every good project, this is particularly true when design
information should be used to verify and adapt a running system without stopping it. In
this chapter we have shown the role of design information in the adaptation of software
systems at run-time. The evolution is managed by a re�ective middleware that rei�es
and, when events occur, manipulates system design information (the system meta-data).
Manipulation is realized by Ruby scripts that drive both the adaptation plan and the
consistency checks. We have chosen to write evolutionary and consistency rules as Ruby
scripts rather than as logic formulas because: they are expressive as well as (maybe
more than) logic formulas; (ii) we don't have to write an interpreter for the rules; �nally
(iii) they can directly interact with the base-level representation through the re�ective
facilities of Ruby without extra e�orts.
The chapter focuses on a case study but it should be clear that the approach is general
and usable to evolve most of the software systems.

7 Comparison of RAMSES to Related
Works

Today's software systems are mostly characterized by an ever increasing size and com-
plexity, rapid changing of requirements, frequent upgrading of supporting technology,
and varying contexts for use and deployment. These facts are more acute for information
systems due to their long life span, market and economy volatility, aggressive competi-
tiveness to survive increased by the emergence of virtual (dynamic) inter-organizational
enterprises. To cope with this high volatility, both industry and academia acknowledge
the overwhelming need for putting forward adequate conceptual techniques, methods
and tools are able to directly construct self-adapting and dynamically evolving informa-
tion systems instead of the development life-cycle of constructing and only afterwards
considering maintenance and evolution.

There are currently several ongoing proposals dealing with this vivid area of research and
practice, namely the sound combination of computational re�ection issues with di�erent
design information models as well as the adaptation of such combinations for coping
with runtime evolution. Therefore, any attempt toward an exhause comparison of such
proposals in this area seems to be premature. Moreover, due to the usual divergence in
their objective, its di�cult to compare self-adapt setting and main application domains
they are devoted to, even well-establish dynamic adaptation.

Nevertheless, it is more or less possible to assess existing dynamic approaches with re-
spect to some adequately selected evolution criteria; where the more the main application
domain and self-adapting setting of such framework are close, the more exhaustive and
clear becomes such comparison. In this sense, as the RAMSES architecture is essentially
dedicated for dynamically evolving the software systems for runtime changes based on
its design information, we will restrict ourself only to the approaches that achieve dy-
namic adaptation. More precisely, as the RAMSES architecture stems from base-level to
meta-level with computational re�ection, script engines and design information issues,
we will carry out our comparative study with respect to these two directions, namely
(1) re�ective approaches; and (2) analysis and evolution approaches.

On the light of these motivating choices, in the following subsections, �rstly, we com-
ment on the selected evolution criteria which are mainly adopted from [67] and slightly
enriched with advanced criteria including runtime speci�cation evolution. Secondly, we
will apply these criteria to the related re�ective approaches by classifying the RAMSES as

111

112 Chapter 7. Comparison of RAMSES to Related Works

one of them. Finally, we apply the same criteria to the selected analysis and evolution
tools.

7.1. Evaluation Criteria

In the following we report on the commonly agreed upon runtime evolution concepts,
which assign the self-adaptation to any evolution framework. These concepts are classi-
�ed into four categories: meta-based criteria, design information-based criteria, re�ection
features, dynamic evolution and analysis features. Besides that, we propose to include
a �fth class of criteria more speci�c to complex information systems as an application
domain. Referred to as advanced features, criteria of this class allows to assess a given
architecture against the capability of handling runtime evolution.

Meta-based criteria: This criteria category states the capability of a given framework
in ful�lling the following concepts: monitoring base-system as the ability of meta-
level to monitor the execution of the base-level system; detecting the runtime events
as the ability to get the runtime events and for each event build his own pre-
condition and post-condition; interpreting the changes as the ability to adapt the
systems by using special meta-objects; and �nally, the ability to check the consis-
tency of the modi�ed components by using meta-objects.

Design information-based criteria: This includes the ability of driving software evo-
lution and validation based on design-information as follows: �rst, horizontal evo-
lution and validation (E&V) as the ability to evolve and validate the explicit and
implicit related components; second, vertical evolution and validation (E&V) as
the ability to evolve and validate each explicit or implicit components alone.

Re�ection features: This criteria category speci�es the link between the base-level and
the meta-level in ful�lling the following concepts: reifying explicit data as the abil-
ity to reify the base components into the meta-level to constitute the representative
system; re�ect the changes to its base-objects as the ability to re�ect all the changes
have been done on the representative systems to its base components; and �nally,
trap speci�c models as the ability to reduce the cost of rei�cation by reifying only
the required objects according to the pre-condition of the runtime events.

Dynamic evolution and analysis features: This category addresses some analysis and
evolution features. The criteria are: (1) connection to the speci�cation- and
concrete- level, as the ability to directly interact with the both view of the system;
(2) global view, as the ability to explicit di�erent views from the implicit concrete-
level; (3) dynamic evolution, as the ability to drive new changes to both structural
and behavioral representation.

Advanced features: The �rst criterion we consider in this category is the ability to
apply the feedback concepts to the rei�ed systems to include the new data and the

7.2. Re�ective Approaches and RAMSES 113

also in the inconsistent states; continuing changes as the ability to self-adapt the
rei�ed system whenever there is runtime events; failure avoidance (robustness) as
the ability to avoid an inconsistence states at some level; and �nally, organisational
stability as the ability of the modi�ed system to be consistent against the changes.

In the following, we overview some of the related work by focusing more on approaches
which are of interest to our thesis. In the last few years, there has been a growing
interest for dynamically evolving software systems. In the literature, there are several
approaches related to building adaptive software systems by allowing system behavior
to evolve after design time. Several of such approaches propose re�ective architecture-
based mechanisms for dynamic evolution. In addition, there are some related tools are
used to support analysis and evolution of the software systems. The related topics could
be summarized by categorizing them within the research directions as follows.

7.2. Re�ective Approaches and RAMSES

In [5], software evolution is de�ned as a kind of software maintenance that takes place
only when the initial development was successful. The goal consists of adapting the
application to the ever-changing, and often in an unexpected way, user requirements
and operating environment.

Software evolution, as well as software maintenance, is characterized by its huge cost
and slow speed of implementation. Often, software evolution implies a redesign of the
whole system, the development of new features and their integration in the existing
and/or running systems (this last step often implies a complete rebuilding of the system).
Besides, software systems are often asked for promptly evolving to face critical situations
such as to repair security bugs, to avoid the failure of critical devices and to patch the
logic of a critical system.

It is fairly evident the necessity of improving the software adaptability and its promptness
without impacting on the activity of the system itself. This statement brings forth the
need for a system to manage itself to some extent, to dynamically inspect component
interfaces, to augment its application-speci�c functionality with additional properties,
and so on. Non-stopping applications with a long life span are typical applications that
have to be able to dynamically adapt themselves to sudden and unexpected changes to
their environment. Therefore, the support for run-time adaptive software evolution is a
key aspect of these systems. Software evolution of a generic system is usually carried
out by stopping the system and manually, or with the aid of speci�c tools, changing the
system behavior according to the required evolution. A more dynamic approach consists
of encapsulating the system prone to be adapted in a monitoring system that waits for
an event. When the event occurs, it plans a countermove that will imply the automatic
and dynamic evolution of the monitored system. The monitoring system also takes care
to grant the safety and stability of the monitored system against its evolution.

114 Chapter 7. Comparison of RAMSES to Related Works

Most systems that o�er computational re�ection at runtime are based on the use of a
meta-object protocol (MOP). MOPs give a system the ability to customize at runtime,
but what may be adapted must be previously speci�ed by the protocol. Di�erent ap-
proaches modifying the MOP are commonly needed to make the system adaptable to a
new characteristic. The system we consider in this overview are:

7.2.1. The K-Component architecture

K-components [38] uses asynchronous architectural re�ection to build context-aware
adaptive software. The adaptation logic that speci�es the adaptive behaviour (adap-
tation policy) is written as adaptation contracts in a declarative programming language
(ACDL). Adaptation occurs in response to adaptation events raised by either the applica-
tion components or from the evaluation of adaptation rules themselves, e.g., anticipated
failure to achieve a set goal. The meta-level con�guration manager runs asynchronously
and so periodically re�ects on the need for adaptation, using polled adaptation events
and the adaptation contracts, thereby greatly reducing re�ective computation overhead.
The rei�ed software architecture is arranged as a typed directed component con�gura-
tion graph, where changes to the con�guration graph during dynamic adaptation are
performed as transactional operations, so that the result is again a correct directed
con�guration graph. If adaptation is required, a component can be removed from the
system con�guration graph and another component, exposing the same interface, can
be swapped in. A component's external interface cannot be changed by architectural
recon�guration since only recon�guration operations on the con�guration graph is al-
lowed. This maintains correctness of the component con�guration graph but severely
restricts how the system can adapt.

New components can be loaded at runtime from a DLL or as a remote CORBA com-
ponent, but their interface must be previously speci�ed since the con�guration graph
is a static representation of the architecture of the system, and cannot be extended to
support new component types at runtime. The system also requires that the adaptation
event types are known to the con�guration manager at compile-time, so very little sup-
port is included to initiate adaptations in response to unanticipated or un-typed events,
as will likely occur in a mobile or pervasive computing environment.

7.2.2. Architectural re�ection

Architectural Re�ection, [27] presented a novel approach to re�ection called architectural
re�ection which allows dynamic adaptation of a system through its design information.
Software architecture manipulation allows adaptation in-the-large of the system, i.e.,
one can add and remove components but cannot add new functionality to a component.
The strategic re�ection has presented, an aspect of architectural re�ection, which is an
extension of classic re�ection to the software architecture level. The basic application of

7.2. Re�ective Approaches and RAMSES 115

this extension is to allow for a systematic and conceptually clean approach to designing
systems with self-management functionality (such as dynamic recon�guration) which
also supports such functionality to be added to an existing system without modifying
the system itself. In the rest of this subsection, we introduce in details two approaches
based on architecture re�ection: an adaptive and re�ective middleware (ARM) [41, 40]
and an architectural re�ection for software evolution [88, 89].
In [41, 40] present an adaptive and re�ective middleware (ARM). The ARM is composed
of two layers: the �rst layer de�nes the re�ective knowledge. It rei�es the system's com-
ponents in terms of re�ective objects and their related quality of services (QoS). The
second layer introduces the view concept that is representing an organizational mecha-
nism of the re�ective knowledge. Views organize re�ective objects based on their QoS,
structure, location, and topology. Each view has associated strategies that implement
the logic necessary to take decision. The mechanism that allows the management of
the re�ective knowledge is represented by views. The ARM achieves the adaptivity by
re�ective objects, views, and strategies. However, this architecture is limited to recon�g-
uration of views and re�ected objects and such is not really able to create new solutions.
The software systems with this approach are partially evolved on-site without going back
to software factory and no new algorithms are really invented.
A framework presented in [88, 89] allow evolution at the architecture level. This frame-
work uses a re�ective layer to maintain and control meta-level information. Allowing
visibility and manipulation of meta-level information gives the maintainer of software
the ability to compose software at the architecture level. The framework fails to achieve
all of the safety requirements. In this case, no new non-functional requirements are
really added to evolve the system. Non-functional requirements can be connected and
disconnected at run-time, but new non-functional cannot be included online, as soon as
they are available.

7.2.3. Co-operative actions (CO Actions)

A re�ective architecture by using a cooperative object-oriented style presented in [106].
Structural elements of this approach are classes as basic components, and (CO Actions)
to represent interactions among objects characterizing the collaborative behavior [35] as
basic connectors. This approach achieves adaptability by: (1) dynamically extending
objects behavior using roles, and (2) selecting at run-time the objects and roles partic-
ipating in a cooperation. Re�ection has been used to clearly separate and intertwine
the description of functionality, synchronization, interaction, and adaptation. By en-
capsulating each description into a di�erent component of the proposed architecture it
is possible to support recon�guration, and evolution is enhanced. Although the separa-
tion of concerns increases the number of components, it helps reducing complexity since
the various components can be understood and altered independently. An architecture
pattern has presented to support run-time adaptability targeted for co-operative object-
oriented architectures. Decisions on changing or adding objects are not automated, but

116 Chapter 7. Comparison of RAMSES to Related Works

a human expert operates on the architecture by con�guring the role of Co Actions so
that objects are appropriately changed at run-time. Moreover, this architecture does
not deal with introducing into an application new class versions at run-time, but only
with re-con�guring loaded application classes.

7.2.4. DART

DART (Distributed Adaptive Runtime) [90] is a runtime re�ective framework for dis-
tributed adaptation, developed by Sony. A framework for re�ective objects is provided
to support functional behaviour adaptation of the application, which operates by allow-
ing alternative method implementations (adaptive methods) to be selected via selectors,
in a manner similar to the Strategy design pattern [44]. Also included is a method inter-
ception system (re�ective methods) for non-functional behaviour adaptation in response
to environmental changes. Using this approach, intercepted method calls are redirected
to a set of meta objects before and after invocation using a re�ector, which manages
these meta-objects. A runtime manager is instantiated for each application as it starts
up. Adaptation policy functions, written in C, register for adaptation events and can
introspect on both the base-level and meta-level code.

DART does not support the dynamic speci�cation of new adaptations, and many aspects
of the adaptation must be anticipated at or before runtime. DART is of interest to the
RAMSES project for its support for named object speci�cations, event driven dynamic
adaptation of functional and non-functional behaviours, adaptation using behavioural
re�ection, and a con�guration mechanism that can be adapted for individualised adap-
tation policies.

7.2.5. Some comments on the comparison

After sketching the feature of the each of �ve re�ective approaches for evolution, table
2.1 summarizes the result of each approach with respect the afore-described evolution
criteria categories. The RAMSES features are assumed to be largely understood from
the previous chapters, and therefore their results are directly reported in this table.
The used legends are: '√' standing for Yes; '×' standing for No and '+/−' for a non
satisfactory ful�llment of the criterion.

In this table we notice that the RAMSES does not support the criteria item organisa-
tional stability and there are two criteria items not yet satis�ed such as: detecting the
runtime events and re�ect changes to it base objects. Whereas K-components does
not support, for instance, detecting the runtime changes, robustness, couple connec-
tion between speci�cation and concrete, and organisational stability. The criteria items
not yet satisfactory by K-component for instance: vertical E&V, trap speci�c models,
global view, and feedback. The drawbacks for Architecture re�ection present in the

7.2. Re�ective Approaches and RAMSES 117

R
AM

SE
S

K
-C

om
po

ne
nt

A
rc
hi
te
ct
ur
al

R
e�

ec
tio

n

C
O

ac
tio

ns

D
A
RT

Meta-based criteria
monitoring base-system √ √ √ √ √
detecting the runtime events +/− × × √ √
interpreting the changes √ √

+/− +/− √
consistency management +/− √ × × ×
Design information-based criteria
horizontal E&V √

+/− √ × √
vertical E&V √ √ × × ×
Re�ection features
reifying explicit data √ √ √ √ √
re�ect changes to its base objects √ √ √

+/− √
trap speci�c models √

+/− +/− × √
Dynamic analysis and evolution features
speci�cation and concrete are connected √ × × × ×
global view √

+/− √
+/− +/−

dynamic adaptation √ √ √ √ √
Advanced features
feedback system √

+/− × +/− +/−
continuing change √ √ √ √ √
failure avoidance (Robustness) +/− × × × ×
organisational stability × × × × √

Table 2.1: Comparison of RAMSES with re�ective architectures

118 Chapter 7. Comparison of RAMSES to Related Works

following criterions: dealing with runtime events, consistency management, interpret-
ing the changes,trap speci�c models, and speci�cation and concrete connected. Also all
the advanced features criteria except the continuing change criterions. Concerning the
Co-action does not satisfy the design information-based criteria, however, the following
criterions: interpreting changes, consistency management, speci�cation and concrete
connection, robustness and stability. Finally, the DART does not satisfy the following
criterions: consistency management, speci�cation and concrete connected, global view,
feedback and robustness.

7.3. Analysis&Evolution Approaches and RAMSES

In this section, we divided the analysis and evolution approaches into three categories
as described in chapter 2.4. Here, we focus on the tools that are used at each category
to support analysis or evolution.

re-engineering tools: we selected the re-engineering tools that automatic recovery and
drive partially or totally evolution;

impact analysis tools: that use to static or dynamically analysis of the software sys-
tem;

refactoring tools: that automatically restructuring the software system.

In the rest of this section, we enumerate the related tools for each category.

7.3.1. Re-engineering tools

Re-engineering approaches all seek to represent the software at a higher level than that
of the di�erent information which is directly extracted from the code. They di�er,
however, in their solutions to the following main issues: the data model on which the
tool operates, the strategy for creating a high-level model and the kinds of view o�ered.

The MANSART tool [50], requires information obtainable from an abstract syntax tree
(AST) of the program, and uses recognizers to detect language-speci�c cliches associated
with speci�c architecture styles. Each style can then be viewed as a simple graph.

Rigi [107] and the re�exion model tool [78] both use any set of relations extracted
from the code. The Rigi tool incorporates automatic clustering, but also allows user
de�ned grouping of the source model. It allows for hierarchically embedded views of
di�erent relations and presents a sophisticated user interface for manipulating these.
The Re�exion model approach expects an engineer to de�ne a high-level model and a
declarative mapping from the source relations to this model. Its view then reports how
close the high-level model comes to describing the source code. Dali [57] is a workbench

7.3. Analysis&Evolution Approaches and RAMSES 119

which integrates several extraction tools and allows for the combination of the views
obtained from these di�erent sources.

In terms of the data model views required, our middleware is using rei�cation library
to explicit the higher level views. These views describe both structural and behavioral
of the system. We see the strength of our approach is the �exibility of separation of
concern the evolution of these higher views from the applications.

7.3.2. Impact analysis tools

Program traces have been used in software maintenance to locate code implementing a
particular program feature. For understanding of object-oriented software, much of the
work on using dynamic information has focused on techniques for visualizing the large
amount of information. ISViS [56] is a visualization tool which displays interaction
diagrams using a mural technique and also o�ers pattern matching capabilities to aid
in identifying recurring patterns of events. In [107] use program animation techniques
to display the number of objects involved in the execution, and the interaction between
them through user-de�ned high-level models.

Chianti : a change impact analysis tool for java that is implemented in the context of
Eclipse environment [91]. Chianti has been implemented in the context of the Java
editor of Eclipse, a widely used extensible open-source development environment for
java. This tool is responsible for driving a set of atomic changes from two versions of an
Eclipse project (i.e., java programs), which is archived via a pairwise comparison of the
abstract syntax trees of the classes in the two project versions.

Most of impact analysis tools explicit static and dynamic information from the concrete-
level and drive the evolution through the elements speci�ed in the impact change cate-
gories. Our middleware explicit static and dynamic information in form of UML models
and its computerized form XMI, the both forms are familiar for the designer and de-
veloper. The impact analysis tools drive atomic changes identi�ed with concrete-level
(e.g., add a class, delete a method, add a �eld). In contrast, our approach apply all
the possible changes in the requirement by using script engines, that directly interacts
with the explicit views. Finally, The impact analysis techniques are aimed at deployed
concrete-level, in that they are interested in obtaining user patterns of concrete-level
execution. In contrast, our approach are intended for use during the earlier phases of
software development, to give developers immediate feedback on changes they make.

7.3.3. Refactoring tools

The nature of applying refactorings is very much language speci�c. The early phases
of developing refactoring (restructuring) concentrated on block-structures an object-
oriented languages. A number of more recent tools also support refactoring: the Smalltalk

120 Chapter 7. Comparison of RAMSES to Related Works

Refactoring Browser [93], which automatically performs a set of refactorings taken pri-
marily from Opdyyke's original work; the IntelliJ Renamer tool (www.intellij.com),
which supports renaming of packages, variables, etc. and moving packages and classes
for java; and the Xref-Speller (www.xref-teck.com/speller/), which extends the Emacs
editor to support a set of refactorings for C and for Java.

Bowdidge's Star Diagram [12] is a visualization technique that represents a high level
abstraction of a programs structure. The tool can be used to understand a C++ program
through a graphical tree structure which can be interactively changed to restructure
the program. However the Star Diagram has limitations in relation to the graphical
representation of a large problem becomes unmanageable coherent. The restructurings
which can be applied are also limited since the visualization is too high level to consider
what is happening within a method. The tool does not recommend speci�c refactorings,
and the tool user must identify the variables or data structures that are candidates for
refactorings.

Moore's Guru tool [77] automates two speci�c and somewhat more global refactorings. It
employes a graph-based inheritance hierarchy inference algorithm that can automatically
restructuring an inheritance hierarchy and refactors methods written in self programs.
Restructuring the hierarchies are based upon "maximising sharing and minimising du-
plication of the features (mostly methods) of objects and concrete classes". After re-
structuring a hierarchy, Guru produces a totally new structure as this produces better
results. However this automation of a new hierarchy will e�ect a developers mental
model of the system. Using a similar algorithm Guru can also automatically extract
shared expressions from methods.

In [92] presented the case of refactoring scenario (e.g., Extract Method) that leading to
evolution information loss. From our point of view, refactorings is the best way to evolve
and validate each component of the concrete-level. For evolving and validate the spe-
ci�c behavior that gathering from di�erent concrete-level components, our middleware
presents dynamic views at the speci�cation-level.

7.3.4. Assessment against the evolution criteria

In table 3.1 we reported the result of the features of each approach, the RAMSES included,
against the selected evolution criteria. As shown in this table, the RAMSES architecture
does not support the criterion stability and not yet satisfy the criterions: detecting
the runtime events, re�ect to base object, and robustness. Whereas impact analysis
tools do not support, for instance, design information-based criteria and the following
features: speci�cation and concrete connection, global view, feedback system, and ro-
bustness. The re-engineering tools do not support the following criterions: detecting
runtime events, vertical E&V, dynamic adaptation, robustness, and stability. Finally,
refactoring tools do not support the following features: interpreting the changes, con-

7.3. Analysis&Evolution Approaches and RAMSES 121

R
AM

SE
S

re
en

gi
ne

er
in
g
to
ol
s

Im
ap

ct
an

al
ys
is

to
ol
s

R
ef
ac
to
rin

g
to
ol
s

Meta-based criteria
monitoring base-system √ √ √ √
detecting the runtime events +/− × × √
interpreting the changes √ √ √

+/−
consistency management √ √ × ×
Design information-based criteria
horizontal E&V √ √ × ×
vertical E&V √

+/− × √
Dynamic analysis and evolution features
speci�cation and concrete are connected √ √

+/− ×
global view √ √

+/− +/−
dynamic adaptation p × √ √
Advanced features
feedback system √ √ × +/−
continuing change √ √ √ √
failure avoidance (Robustness) +/− × × √
organisational stability × × √ ×

∗ p= Partially applied only into the design information.
Table 3.1: Comparison of RAMSES with analysis and evolution tools

122 Chapter 7. Comparison of RAMSES to Related Works

sistency management, speci�cation and concrete connection, global view, feedback, and
stability.

7.4. Summary
This chapter has presented the results of comparing the planning phase of RAMSES mid-
dleware with the related re�ective architectures and analysis&evolution tools. We have
de�ned set of evaluation criteria. The RAMSES middleware and the related approaches
have been evaluated against this set of evaluation criteria.
The next chapter concludes this thesis with a summary of the contributions of the
RAMSES project, along with a discussion of open research questions and suggestions for
further work in this area.

8 Concluding Remarks

The purpose of this closing chapter is to recapitulate the achieved research results and
main contributions of this thesis. Furthermore, we point at some future research direc-
tions around the RAMSES proposal, that we think are very worthwhile to pursue.

8.1. Recapitulation

Most of today's research on software evolution is concerned with processes supporting
adaptation and maintenance. Based on its results, predictions about future directions
and expected modi�cations are made that can serve as aids for future self-adapting
activities. With increasing deployment and use of continuously running systems, ad-
ditional e�ort seems best to be made on allowing such software systems to be evolved
without taking them o�ine or even shutting them down for maintenance, upgrade, or
other related activities, are become more than ever a challenging task. Particulary, for
crucial phase of software evolution, it is widely acknowledged that any suitable self-
adaptation approach, able to absorb this ever-increasing complexity, has to ful�ll at
least the following requirements:

� A clear separation of concerns between the application functionality and the adap-
tation processes. All the code necessary to make the application aware of the
execution environment as well as the code that de�nes the adaptation actions are
encapsulated inside the evolutionary objects;

� A software system should be able to modify itself to improve system response
time, recover from a subsystem failure, or incorporate additional behavior during
runtime;

� A software system should be opened to adaptive if new application behaviors
realized and adaptation plans can be introduced during runtime;

� On-the-�y reduction of the gap between software design and software evolution,
to get a good evolution we have to pass through the evolution software design;

� Dependency-preserving evolution. By maintaining an explicit representation of
the prerequisites and dynamic dependencies in the software system, the evolution-
ary objects acquires the necessary knowledge to adapt the system in a safe and
consistent way;

123

124 Chapter 8. Concluding Remarks

� A set of policies should be used to dynamically adapt to changing system circum-
stances in order to continue to meet system requirements;

� Last but not least an evolution framework has also support computational re�ec-
tion properties.

The research we carried out in this dissertation stems from observation that in spite
of the e�ort undertaken in recent years, we are far from a widely accepted evolution
approach ful�lling all the mentioned (minimal) evolution requirements. In particular
the challenging issues transcending existing approaches concern dynamically evolving
the software systems.

In a contribution towards such a suitable evolutionary approach, we proposed in this the-
sis a new proposal based on these requirements. The middleware, referred to as RAMSES,
is based on a re�ective architecture. This middleware uses design information for driving
evolution and reducing the gap between software design and software evolution. In the
meta-level of this middleware, we de�ned two evolutionary meta-objects that use the
script engines for satisfying the runtime evolution and consistency. The middleware has
been compared with most of existing similar approaches, and a non-trivial case study
has been drawn up enhancing it practicality.

In some detailed, after introducing in chapter 2, necessary motivation and preliminary
concepts, in chapter 3, we presented the design information as a global view impacting
of the whole system, then, we analysed the explicit and implicit view through example,
�nally, the �rst contribution, we de�ned the design information taxonomy and presented
the lightweight formalisation of this taxonomy representative the basic features of UML.

The fourth chapter has been devoted to illustrate how to build an evolution and valida-
tion planning to evolve and validating the design information system for changes. We
formally de�ned in general the evolution and validation strategy, then we completely
analysed the processes of evolution and validation through algorithms. Finally, we de-
�ned the rule-based script that automatically evolving the design information based on
the evolution and validation plan.

The middleware was the subject of the �fth chapter. In context, we have introduced a
re�ective architecture for supporting runtime evolution. More precisely, RAMSES helps in
signi�cantly evolving and validating the information systems by separating the adapta-
tion concerns of an information system from its internal concerns. During this chapter,
�rstly, we described and de�ned the whole RAMSES infrastructure. secondly, we pre-
sented the RAMSES rei�cation library, that describes the rei�cation and re�ection of
the design information through a set of examples. Finally, we de�ned the role of the
RAMSES meta-level for driving the evolution and validation. By describing functionality
of the evolutionary and consistency checker meta-objects.

After putting the structure for the RAMSES middleware. In chapter 6, we carried on
UTCS case study. To show how our RAMSES middleware works, we built three cases
of the UTCS case study. In particular, we analysed each case with a speci�c runtime

8.2. Further future work 125

event, then built the required evolution and validation strategy to adapt the system
in according to the realized event. On the other hand, we showed how to built the
scripting engines by providing a set of Ruby rules. Finally, we presented the evolution
and validation prototype to automatically evolved and validated the design information.
We have tested our prototype by using the de�ned UTCS cases.

In chapter 7, we situate the RAMSES proposal with respect to most of existing similar
approaches, including re�ective architectures and software development approaches.

Some of the results prior to this dissertation have been published in [22, 20, 19, 21, 23,
46, 24, 26]. Finally, our approach to software evolution has the following bene�ts:

� evolution is not tailored on a speci�c software system but depends on its design
information;

� evolution is managed as a nonfunctional features, therefore, can be added to every
kind of software system without modifying it; and

� evolution strategy is not hardcoded in the system but it can dynamically change
by substituting the evolutionary and validation rules.

8.2. Further future work

After this crucial �rst step towards evolving and validation the software systems for the
changes in their environment based on design information using the proposed RAMSESmid-
dleware. We are conscious that much work remains ahead to software evolution in result
in a largely acceptable self-adapting approach. In this section, we identify and summary
at least two relevant phases for extending the RAMSES middleware as presented in this
thesis; where, for each foreseen extension we shed some lights, even very super�cial it is,
on our thinking about possible solutions.

8.2.1. Re�ecting the planned evolution by the AOP on the
base-system code

This phase deals with re�ecting the modi�ed design information from the meta-level to
the base-level. It completes the overall adaptation process. One key question of this
phase is how design information can be re�ected to code level. State charts and class
diagrams are abstract views of the system behavior and structure. It is not trivial to map
changes of these information to changes at code level. A powerful mapping mechanism
is the goal of this package. In [25] �rst results show the way how to accomplish that. We
argue that extended design information which includes mapping information can help
to implement re�ection also for domain-speci�c design information. A second challenge
is the modi�cation of code at run-time. Regarding this question we want to use current

126 Chapter 8. Concluding Remarks

techniques of the AOP community. We want to investigate how to use run-time aspect
weaving for our re�ection process. An analysis of current approaches (load-time vs. run-
time weaving, proxy-based vs. instrumented code approaches) will reveal an appropriate
solution.

Concerning the step of the re�ection of the modi�ed meta data back to the basis level,
this phase will analyze di�erent techniques for sound time code creation/modi�cation.
The goal to be achieved is not just new code load or weaving techniques but also on
their integrableness. As stated before all the re�ective and evolutionary activity is per-
formed on a rei�cation of the design information (re�ection should change its application
domain) whereas the actuation of the evolution directly involves the system code.

In this phase we will explore the application of the aspect-oriented techniques to this
job. They are the perfect tools for instrumenting the code when driven from other code
but in this work the instrumentation should be driven by the design. So the expected
result of this phase is a novel approach to the aspect-oriented software development that
use the design information to weave and instrument the code.

8.2.2. Formal underpinning

We consider this phase as crucial as it allows us to recapitulate on the experience gained
in chapter 5, on guiding us towards a disciplined way of self-adapting and dynamically
recon�guring information systems. For this purpose, we endeavor to capitalize on �rst
result [16], that shows a petri nets based re�ective framework that leads a system able
to evolve, keeping separated functional aspects from evolutionary ones and applying
evolution to the model if necessary. More precisely, as UML is becoming the standard
defacto for software development. That is, we plan to exploit the class roles with OCL2
for endowing interfaces with pre- and post-condition constraints to be compliant with the
corresponding components. Finally, the corresponding domain- and platform- dependent
aspects will be investigated so that all what can happen at run-time will be validated
at design time in a formal way.

8.2.3. Dynamic adaptation with re�ective
graph-transformations

For this phase we propose to recapitulate on the work on K-components [38] and also
re�ective-based process based level [33]. We have to adapt these work to our. More
precisely in this phase, we highlight the following points: �rstly, abstraction of compo-
nents and their connectors to graph transformation. In this task the aim to capture
the coarse-grained architecture of the conceived and validated conceptual model in term
of nodes and links and rules re�ecting its behavior. Secondly, proposition of evolving
transformation rules. These rules should re�ect the recon�guration laws that the system

8.2. Further future work 127

has to bind itself to, according to the nature of the domain application, the events to
be intercepted and the context allowed by the application. The work proposed in [110]
and related investigations will be our main inspiration for this task. That is, we will
capitalize on the expertise and previous experiences in graph-based techniques to adopt
a logical view of con�gurations as diagrams (labeled graphs) and recon�guration as a
rewrite process de�ned over graph-transformations. Finally, abstraction of the middle-
ware evolutionary scripts and consistency checking rules to graph transformation rules.
This task should be regarded as a complementary and a formalization to the second
phase, where consistency checking rules for evolution and self-adaptation are proposed.
That is, to allow formally reasoning about these implementation-driven rules, we pro-
pose to abstract them at a higher level where we can validate and reason about them
using the formal frameworks we propose.

Bibliography

[1] Mehmet Ak³it, Ken Wakita, Jan Bosch, Lodewijk Bergmans, and Akinori
Yonezawa. Abstracting Object Interactions Using Composition Filters. In Proceed-
ings of Object-Based Distributed Programming (ECOOP'94 Workshop), Lecture
Notes in Computer Science 791, pages 152�184. Springer-Verlag, July 1994.

[2] Robert Arnold and Shawn Bohner. Software Change Impact Analysis. Wiley-IEEE
Computer Society Press, June 1996.

[3] Robert S. Arnold and Shawn A. Bohner. Impact analysis - towards a framework
for comparison. pages 292�301. IEEE Computer Society, 1993.

[4] L.A. Belady and M.M. Lehman. A model of large program development. IBM
Systems Journal, 15(1):225�252, 1976.

[5] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution: a
roadmap. In ICSE '00: Proceedings of the Conference on The Future of Software
Engineering, pages 73�87, New York, NY, USA, 2000. ACM Press.

[6] Ted J. Biggersta�. Design recovery for maintenance and reuse. IEEE Computer,
22(7):36�49, 1989.

[7] Daniel G. Bobrow, Richard G. Gabriel, and Jon L. White. CLOS in Context
- The Shape of the Design Space. In Andreas Pæpcke, editor, Object Oriented
Programming: The CLOS Perspective, pages 29�61. MIT Press, 1993.

[8] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy. Using the
Win-Win Spiral Model: A Case Study. In IEEE Computer, pages 33�44, 1998.

[9] B.W. Boehm. A Spiral Model for Software Development and Enhancement. IEEE
Computer, 21(5):61�72, May 1988.

[10] Grady Booch. Object-Oriented Analysis and Design with Applications. The Ben-
jamin/Cummings Publishing Company, Inc., second edition, 1994.

[11] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Uni�ed Modeling Lan-
guage User Guide. Object Technology Series. Addison-Wesley, Reading, Mas-
sachusetts, third edition, February 1999.

129

130 Bibliography

[12] Robert W. Bowdidge and William G. Griswold. Supporting the restructuring of
data abstractions through manipulation of a program visualization. ACM Trans.
Softw. Eng. Methodol., 7(2):109�157, 1998.

[13] Lional C. Briand, Yvan Labiche, and Tao Yue. Vertical impact analysis of uml
models. Technical Report Technical Report SCE-06-06, Carleton University, April
2006.

[14] Lionel C. Briand, Yvan Labiche, and L. O'Sullivan. Automated impact analysis of
uml models. Journal of Systems and Software, 79(3):339�352, 2006.

[15] Jean-Pierre Briot and Pierre Cointe. Programming with Explicit Metaclasses in
SmallTalk-80. In USA Portland, Oregon, editor, Proceedings of OOPSLA'89, volume
24(10) of Sigplan Notices, pages 419�431. ACM, October 1989.

[16] Lorenzo Capra and Walter Cazzola. A Petri-Net Based Re�ective Framework.
In Proceedings of the IPM International Workshop on Foundations of Software
Engineering (FSEN'05), Tehran, Iran, on 1st-3rd of October 2005.

[17] Walter Cazzola. Evaluation of Object-Oriented Re�ective Models. In Proceed-
ings of ECOOP Workshop on Re�ective Object-Oriented Programming and Systems
(EWROOPS'98), in 12th European Conference on Object-Oriented Programming
(ECOOP'98), Brussels, Belgium, on 20th-24th July 1998. Extended Abstract also
published on ECOOP'98 Workshop Readers, S. Demeyer and J. Bosch editors,
LNCS 1543, ISBN 3-540-65460-7 pages 386-387.

[18] Walter Cazzola. Communication-Oriented Re�ection: a Way to Open Up the RMI
Mechanism. PhD thesis, Università degli Studi di Milano, Milano, Italy, February
2001.

[19] Walter Cazzola, James O. Coplien, Ahmed Ghoneim, and Gunter Saake. Frame-
work Patterns for the Evolution of Nonstoppable Software Systems. In Pavel
Hruby and Kristian Elof Søresen, editors, Proceedings of the 1st Nordic Conference
on Pattern Languages of Programs (VikingPLoP'02), pages 35�54, Højstrupgård,
Helsingør, Denmark, on 20th-22nd of September 2002. Microsoft Business Solu-
tions.

[20] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Re�ective Analysis and
Design for Adapting Object Run-time Behavior. In Zohra Bellahsène, Dilip Pa-
tel, and Colette Rolland, editors, Proceedings of the 8th International Conference
on Object-Oriented Information Systems (OOIS'02), Lecture Notes in Computer
Science 2425, pages 242�254, Montpellier, France, on 2nd-5th of September 2002.
Springer-Verlag. ISBN: 3-540-44087-9.

[21] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. RAMSES: a Re�ective
Middleware for Software Evolution. In Proceedings of the 1st ECOOP Workshop
on Re�ection, AOP and Meta-Data for Software Evolution (RAM-SE'04), in 18th

Bibliography 131

European Conference on Object-Oriented Programming (ECOOP'04), pages 21�
26, Oslo, Norway, on 15th June 2004.

[22] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Software Evolution through
Dynamic Adaptation of Its OO Design. In Hans-Dieter Ehrich, John-Jules Meyer,
and Mark D. Ryan, editors, Objects, Agents and Features: Structuring Mechanisms
for Contemporary Software, Lecture Notes in Computer Science. Springer-Verlag,
Heidelberg, Germany, February 2004.

[23] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. System Evolution through
Design Information Evolution: a Case Study. In Walter Dosch and Narayan Deb-
nath, editors, Proceedings of the 13th International Conference on Intelligent and
Adaptive Systems and Software Engineering (IASSE 2004), pages 145�150, Nice,
France, on 1st-3rd of July 2004. ISCA.

[24] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. ViewPoint for Maintaining
UML Models Against Application Changes. In Joaquim Filipe, Markus Helfert,
and Boris Shishkov, editors, Proceedings of the 1st International Conference on
Software and Data Technologies (ICSOFT'06), pages 263�268, Setúbal, Portugal,
on 11th-14th of September 2006. INSTICC. ISBN: 978-8865-69-4.

[25] Walter Cazzola, Sonia Pini, and Massimo Ancona. Aop for software evolution: a
design oriented approach. In Proceedings of the 2005 ACM Symposium on Applied
Computing (SAC), Santa Fe, New Mexico, USA, March 13-17, 2005, pages 1346�
1350. ACM, 2005.

[26] Walter Cazzola, Sonia Pini, Ahmed Ghoneim, and Gunter Saake. Coevolving
application code and design models by exploiting metadata. In Proceedings of the
2007 ACM Symposium on Applied Computing (SAC), Seoul, Korea, March 11 -
15, 2007, toappear. ACM, 2007.

[27] Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Rule-Based
Strategic Re�ection: Observing and Modifying Behaviour at the Architectural
Level. In Proceedings of 14th IEEE International Conference on Automated Soft-
ware Engineering (ASE'99), pages 263�266, Cocoa Beach, Florida, USA, on 12th-
15th October 1999.

[28] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional
Requirements in Software Engineering. Kluwer Academic Publishing, 2000.

[29] Pierre Cointe. MetaClasses are �rst class objects: the ObjVLisp model. In Nor-
man K. Meyrowitz, editor, Proceedings of the 2nd Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA'87), volume 22(10)
of Sigplan Notices, Orlando, Florida, USA, October 1987. ACM.

[30] Derek Coleman, Patrick Arnold, Stephanie Bodo�, Chris Dollin, Helena Gilchrist,
Fiona Hayes, and Paul Jeremes. Object-Oriented Development: The Fusion
Method. Prentice-Hall, Englewood Cli�s, NJ, 1994.

132 Bibliography

[31] Fábio M. Costa, Hector A. Duran, Nikos Parlavantzas, Katia B. Saikoski, Gordon
Blair, and Geo� Coulson. The Role of Re�ective Middleware in Supporting the
Engineering of Dynamic Applications. In Walter Cazzola, Robert J. Stroud, and
Francesco Tisato, editors, Re�ection and Software Engineering, Lecture Notes in
Computer Science 1826, pages 79�99. Springer-Verlag, Heidelberg, Germany, June
2000.

[32] Todd Cotton. Evolutionary Fusion: A customer Oriented Incremental Life cycle
for Fusion. In Hewlett-Packard Journal, pages 1�5, 1996.

[33] C.E. Cuestaa, P. Fuentea, and E. Barrio-Solorzanoa, M.and Beatob. An �abstract
process� approach to algebraic dynamic architecture description. The Journal of
Logic and Algebraic Programming xx (2004), 2004. to appear.

[34] W. Curtis, Herb Krasner, Vincent Y. Shen, and Neil Iscoe. On Building Software
Process Models Under the Lamppost. In Proceedings of the 9th International
Conference on Software Engineering, pages 96�105, Monterey, California, USA,
1987. ACM Press.

[35] Roger de Lemos and Alexander Romanovsky. Coordinated Atomic Actions in Mod-
elling Object Cooperation. In Proceedings of the 1st IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing, volume 30 of Sigplan
Notices, pages 152�161, Kyoto, Japan, April 1995.

[36] François-Nicola Demers and Jacques Malenfant. Re�ection in Logic, Functional
and Object-Oriented Programming: a Short Comparative Study. In Proceedings
of the IJCAI'95 Workshop on Re�ection and Metalevel Architectures and their
Applications in AI, pages 29�38, Montréal, Canada, August 1995.

[37] Ralph Depke, Gregor Engels, Sebastian Thöne, M. Langham, and B. Lütkemeier.
Process-oriented, consistent integration of software components. In COMPSAC,
pages 13�18. IEEE Computer Society, 2002.

[38] Jim Dowling and Vinny Cahill. The K-Component Architecture Meta-Model for
Self-Adaptive Software. In Akinori Yonezawa and Satoshi Matsuoka, editors, Pro-
ceedings of 3rd International Conference on Metalevel Architectures and Separa-
tion of Crosscutting Concerns (Re�ection'2001), LNCS 2192, pages 81�88, Kyoto,
Japan, September 2001. Springer-Verlag.

[39] Jacques Ferber. Computational Re�ection in Class Based Object Oriented Lan-
guages. In Proceedings of 4th Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA'89), volume 24 of Sigplan Notices,
pages 317�326. ACM, October 1989.

[40] Francesca Arcelli Fontana, Claudia Raibulet, and Francesco Tisato. Exploiting
re�ection for software architectures. In Jaelson Castro and Ernest Teniente, edi-
tors, Advanced Information Systems Engineering, 17th International Conference,

Bibliography 133

CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings of the CAiSE'05
Workshops, Vol. 2, pages 109�123. FEUP Edições, Porto, 2005.

[41] Francesca Arcelli Fontana, Claudia Raibulet, and Francesco Tisato. Modeling qos
through architectural re�ection. In Hamid R. Arabnia and Hassan Reza, editors,
Proceedings of the International Conference on Software Engineering Research and
Practice, Las Vegas, Nevada, USA, June 27-29, 2005, Volume 1, pages 347�363,
2005.

[42] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Third Edition . Addison-Wesley, Reading, Massachusetts, 2003.

[43] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[44] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Professional Computing
Series. Addison-Wesley, Reading, Ma, USA, 1995.

[45] Carlo Ghezzi, Mehdi Jazayeri, and D. Mandrioli. Fundamentals of Software Engi-
neering. Prentice-Hall, 1991.

[46] Ahmed Ghoneim, Sven Apel, and Gunter Saake. Evolutionary software life cycle
for self-adapting software systems. In Chin-Sheng Chen, Joaquim Filipe, Isabel
Seruca, and José Cordeiro, editors, ICEIS 2005, Proceedings of the Seventh Inter-
national Conference on Enterprise Information Systems, Miami, USA, May 25-28,
pages 211�216, 2005.

[47] Tom Gilb. Principles of Software Engineering Management. Addison-wesley, 1988.

[48] Brendan Gowing and Vinny Cahill. Making Meta-Object Protocols Pratical for
Operating Systems. In Proceedings of 4th International Workshop on Object Ori-
ented in Operating Systems, pages 52�55, April 1995.

[49] Timothy J. Grose, Gary C. Doney, and Brodsky Stephan A. Mastering XMI: Java
Programming with XMI, XML, and UML. John Willy & Sons, Inc., April 2002.

[50] David R. Harris, Alexander S. Yeh, and Howard B. Reubenstein. Extracting archi-
tectural features from source code. Automated Software Engineering, 3(1/2):109�
138, 1996.

[51] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In PLDI '88: Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation, pages 35�46, New York, NY,
USA, 1988. ACM Press.

[52] ISPSE2000. International Workshop on the Principles of Software Evolution.
Kanazawa, Japan, November 2000.

134 Bibliography

[53] ISPSE98. International Workshop on the Principles of Software Evolution. Kyoto,
Japan, 20 1998.

[54] Daniel Jackson and Eugene J. Rollins. A new model of program dependences for
reverse engineering. In SIGSOFT '94: Proceedings of the 2nd ACM SIGSOFT
symposium on Foundations of software engineering, pages 2�10, New York, NY,
USA, 1994. ACM Press.

[55] Ivar Jacobson, Magnus Christerson, Patrick Jonsson, and Gunnar Overgaard.
Object-Oriented Software Engineering: A use Case Driven Approach. Addison
wesely, 1992.

[56] Dean Jerding and Spencer Rugaber. Using visualization for architectural localiza-
tion and extraction. In WCRE '97: Proceedings of the Fourth Working Conference
on Reverse Engineering (WCRE '97), page 56, Washington, DC, USA, 1997. IEEE
Computer Society.

[57] R. Kazman and S. J. Carrière. View extraction and view fusion in architectural
understanding. In ICSR '98: Proceedings of the 5th International Conference on
Software Reuse, page 290, Washington, DC, USA, 1998. IEEE Computer Society.

[58] Chris F. Kemerer and Sandra Slaughter. An empirical approach to studying soft-
ware evolution. IEEE Trans. Softw. Eng., 25(4):493�509, 1999.

[59] Marc-Olivier Killijian, Jean-Charles Fabre, Juan-Carlos Ruiz-Garcia, and Shigeru
Chiba. A Metaobject Protocol for Fault-Tolerant CORBA Applications. In Pro-
ceedings of the 17th Symposium on Reliable Distributed Systems (SRDS'98), pages
127�134, 1998.

[60] Fabio Kon, Roy Campbell, and Manuel Román. Design and Implementation of
Runtime Re�ection in Communication Middleware: the DynamicTAO Case. In
Proceedings of ICDCS'99 Workshop on Middleware, 1999.

[61] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155�163,
1988.

[62] David Chenho Kung, Jerry Gao, Pei Hsia, F. Wen, Yasufumi Toyoshima, and Cris
Chen. Change impact identi�cation in object oriented software maintenance. In
ICSM '94: Proceedings of the International Conference on Software Maintenance,
pages 202�211, Washington, DC, USA, 1994. IEEE Computer Society.

[63] John Lamping, Gregor Kiczales, Luis H. Rodriguez Jr, and Erik Ruf. An Archi-
tecture for an Open Compiler. In Akinori Yonezawa and Brian C. Smith, editors,
Proceedings of the Int'l Workshop on Re�ection and Meta-Level Architecture, pages
95�106, 1992.

[64] Loren Larsen and Mary Jean Harrold. Slicing object-oriented software. In ICSE
'96: Proceedings of the 18th international conference on Software engineering,
pages 495�505, Washington, DC, USA, 1996. IEEE Computer Society.

Bibliography 135

[65] James Law and Gregg Rothermel. Whole program path-based dynamic impact
analysis. In ICSE '03: Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 308�318, Washington, DC, USA, 2003. IEEE Computer
Society.

[66] Thomas Ledoux. OpenCorba: A Re�ective Open Broker. In Pierre Cointe, editor,
Proceedings of the 2nd International Conference on Re�ection'99, LNCS 1616,
pages 197�214, Saint-Malo, France, July 1999. Springer-Verlag.

[67] M. M. Lehman and L. A. Belady, editors. Program evolution: processes of software
change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[68] Meir M. Lehman and Juan F. Ramil. Software evolution: background, theory,
practice. Inf. Process. Lett., 88(1-2):33�44, 2003.

[69] Meir M. Lehman, Juan F. Ramil, and G Kahen. Evolution as a Noun and Evolution
as a Verb. In Proceedings of the Workshop on Software and Organisation Co-
evolution (SOCE 2000), Imperial College, London, July 2000.

[70] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of application
software maintenance. Commun. ACM, 21(6):466�471, 1978.

[71] Orlando Loques, Alexandre Sztajnberg, Julius Leite, and Marcelo Lobosco. On
the Integration of Con�guration and Meta-Level Programming Approaches. In
Walter Cazzola, Robert J. Stroud, and Francesco Tisato, editors, Re�ection and
Software Engineering, Lecture Notes in Computer Science 1826, pages 191�210.
Springer-Verlag, Heidelberg, Germany, June 2000.

[72] Chris Lüer, David S. Rosenblum, and André van der Hoek. The evolution of soft-
ware evolvability. In IWPSE '01: Proceedings of the 4th International Workshop
on Principles of Software Evolution, pages 134�137, New York, NY, USA, 2001.
ACM Press.

[73] Pattie Maes. Computational Re�ection. PhD thesis, Arti�cial Intelligence Labo-
ratory, Vrije Universiteit, Brussel, Belgium, 1987.

[74] Pattie Maes. Concepts and Experiments in Computational Re�ection. In Nor-
man K. Meyrowitz, editor, Proceedings of the 2nd Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA'87), volume 22 of
Sigplan Notices, pages 147�156, Orlando, Florida, USA, October 1987. ACM.

[75] Yukihiro Matsumoto. Ruby In A Nutshell: A desktop Quick Reference. O'Reilly
& Associates, Inc., 2002.

[76] Michael Golm and Jügen Kleinöder. metaXa and the future of re�ection. Technical
report, In Proceedings of the Workshop on Re�ective Programming in C++ and
Java, 1998. Available on the World-Wide Web at http://www4.informatik.uni-
erlangen.de/TR/pdf/TR-I4-98-09.pdf.

136 Bibliography

[77] Ivan Moore. Automatic inheritance hierarchy restructuring and method refactor-
ing. In OOPSLA, pages 235�250, 1996.

[78] Gail C. Murphy and David Notkin. Reengineering with re�exion models: A case
study. Computer, 30(8):29�36, 1997.

[79] Gustaf Neumann, Mark Strembeck, and Uwe Zdun. Using runtime introspectible
metadata to integrate requirement traces and design traces in software compo-
nents. In Proceedings of ECOOP Workshop on Unanticipated Software Evolution
(USE 2002), pages 1�9, Malaga, Spain, 2002.

[80] OMG. Uni�ed Modeling Language (UML) Speci�cation version 1.4 (Draft). OMG
Document ad/01-02-13, 2001.

[81] OMG. OMG-XML Metadata Interchange (XMI) Speci�cation, v1.2. OMG Model-
ing and Metadata Speci�cations available at http://www.omg.org, January 2002.

[82] OMG. Uni�ed Modeling Language 2.0 OCL Final Adopted Speci�cation). OMG
Document ptc/03-10-14, 2004.

[83] OMG. Uni�ed Modeling Language: Diagram Interchange version 2.0). OMG
Document ptc/05-06-04, June 2005.

[84] William F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, Cham-
paign, IL, USA, 1992.

[85] William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by
refactoring. In CSC '93: Proceedings of the 1993 ACM conference on Computer
science, pages 66�73, New York, NY, USA, 1993. ACM Press.

[86] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in
a software development environment. In SDE 1: Proceedings of the �rst ACM
SIGSOFT/SIGPLAN software engineering symposium on Practical software de-
velopment environments, pages 177�184, New York, NY, USA, 1984. ACM Press.

[87] Václav T. Rajlich and Keith H. Bennett. A staged model for the software life
cycle. Computer, 33(7):66�71, 2000.

[88] Stephen Rank. Architectural re�ection for software evolution. In Walter Cazzola,
Shigeru Chiba, and Gunter Saake, editors, RAM-SE'05, 2nd ECOOP Workshop on
Re�ection, AOP and Meta-Data for Software Evolution Glasgow, Scotland, 25th
of July 2005, 2005.

[89] Stephen Rank, Keith Bennett, and Steven Glover. FLEXX: Designing Software for
Change through Evolvable Architectures. In P. Henderson, editor, in System Engi-
neering for Business Process Change: Collected papers from the EPSRC research
programme, Lecture Notes in Computer Science, pages 38�50. Springer-Verlag,
Heidelberg, Germany, 2000.

http://www.omg.org�

Bibliography 137

[90] Pierre-Guillaume Raverdy, Hubert Le Van Gong, and Rodger Lea. Dart: A re�ec-
tive middleware for adaptive applications. In in IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware '98),
1998.

[91] Xiaoxia Ren, Barbara G. Ryder, Maximilian Störzer, and Frank Tip. Chianti: a
change impact analysis tool for java programs. In 27th International Conference on
Software Engineering (ICSE), 15-21 May 2005, St. Louis, Missouri, USA, pages
664�665.

[92] Romain Robbes and Michele Lanza. Change-based software evolution. In Laurence
Duchien, Maja D'Hondt, and Tom Mens, editors, Proceedings of the International
ERCIM Workshop on Software Evolution April, pages 159�164, LIFL - INRIA,
France, 2006.

[93] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for smalltalk.
Theor. Pract. Object Syst., 3(4):253�263, 1997.

[94] Donald Bradley Roberts. Practical analysis for refactoring. PhD thesis, 1999.
Adviser-Ralph Johnson.

[95] Rosaldo Rossetti and Sergio Bampi. A Software Environment to Integrate Ur-
ban Tra�c Simulation Tasks. In Journal of Geographic Information and Decision
Analysis, volume 3, pages 56�63, 1999.

[96] Gregg Rothermel and Mary Jean Harrold. Selecting tests and identifying test
coverage requirements for modi�ed software. In ISSTA '94: Proceedings of the
1994 ACM SIGSOFT international symposium on Software testing and analysis,
pages 169�184, New York, NY, USA, 1994. ACM Press.

[97] W. W. Royce. Managing the Development of large software systems : Concepts
and techniques. In Proceedings of WESCON, pages 1�9, USA, 1970.

[98] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, Engle-
wood Cli�s, NJ, 1991.

[99] Brian C. Smith. Re�ection and Semantics in a Procedural Language. Technical
Report 272, MIT Laboratory of Computer Science, 1982.

[100] Perdita Stevens and Rob Pooley. Using UML: Software Engineering With Objects
and Components. Pearson Education Limited, 2000.

[101] Ladan Tahvildari and Kostas Kontogiannis. A metric-based approach to enhance
design quality through meta-pattern transformation. In 7th European Conference
on Software Maintenance and Reengineering (CSMR 2003), 26-28 March 2003,
Benevento, Italy, Proceedings, pages 183�192. IEEE Computer Society, 2003.

[102] David Thomas and Andrew Hunt. Programming Ruby: The Pragmatic Program-
mer's Guide. Addison-Wesley, 2001.

138 Bibliography

[103] Francesco Tisato, Andrea Savigni, Walter Cazzola, and Andrea Sosio. Architec-
tural Re�ection: Realising Software Architectures via Re�ective Activities. In
Wolfang Emmerich and Stephan Tai, editors, Proceedings of the 2nd Interna-
tional Workshop on Engineering Distributed Objects (EDO 2000), Lecture Notes in
Computer Science 1999, pages 102�115. Springer-Verlag, University of California,
Davis, USA, on 2nd-3rd of November 2000.

[104] Lance Tokuda and Don S. Batory. Automating three modes of evolution for object-
oriented software architectures. In Proceedings of the 5th USENIX Conference on
Object-Oriented Technologies & Systems, May 3-7, The Town & Country Resort
Hotel, San Diego, California, USA, pages 189�202, 1999.

[105] Lance Tokuda and Don S. Batory. Evolving object-oriented designs with refactor-
ings. Autom. Softw. Eng., 8(1):89�120, 2001.

[106] Emiliano Tramontana. Re�ective Architecture For Changing Objects. In
ECOOP'2000 Workshop on Re�ection and Metalevel Architectures, 2000.

[107] Robert J. Walker, Gail C. Murphy, Bjørn N. Freeman-Benson, Darin Wright, Darin
Swanson, and Jeremy Isaak. Visualizing dynamic software system information
through high-level models. In OOPSLA, pages 271�283, 1998.

[108] Mark Weiser. Program slicing. In ICSE '81: Proceedings of the 5th international
conference on Software engineering, pages 439�449, Piscataway, NJ, USA, 1981.
IEEE Press.

[109] Ian Welch and Robert J. Stroud. Kava - using byte code rewriting to add be-
havioural re�ection to java. In COOTS, pages 119�130, 2001.

[110] M. Wermlinger and J. Fiadeiro. A graph transformation approach to software
architecture recon�guration. Science of Computer Programming, 44:133�155, 2002.

[111] Yasuhiko Yokote. The ApertOS Re�ective Operating System: The Concept and
Its Implementation. In Andreas Pæpcke, editor, Proceedings of the 7th Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA'92), volume 27(10) of Sigplan Notices, pages 414�434, Vancouver,
British Columbia, Canada, October 1992. ACM.

Curriculum Vitae

Curriculum Vitae
Personal Data
Name: Ahmed Mohamed Ali Ghoneim
Place and date of birth: Born in Egypt on March 2, 1972
Nationality: Egyptian
Military Service: carried out
Status: married

Educational History
Bachelor of Science: B. Sc. degree in Pure Mathematics and Computer Science, Menou�ya

University, Egypt, May 1994.
Master of Science: M. Sc. degree in Computer Science, Menou�ya University, Egypt,

December 1999.
Doctor of Philosophy: Ph.D. degree in Computer Science, Otto-von-Guericke- Univer-

sity Magdeburg, Germany, March 2007.

Work and Teaching Experience

� Instructor for Computer Sciences in El-Menou�ya University - Egypt, 1996-1999.
� Assistant teacher in the department of Computers Science and Mathematics at

University of El-Menou�ya, Egypt, 1999-2001.
� Research assistant in the department of Business and technical information systems

at the Otto-von-Guericke- University Magdeburg, Germany. August 2001- March
2007.

Co-operation with other scientists

I have also collaborated or I'm collaborating with:
� Prof. Dr. Walter Cazzola - University of Milano-Italy,
� Dr. Sven Apel - University of Magdeburg-Germany,
� prof. Dr. James O. Coplien - University of Manchester - England.
� Dr. Soni Pini - University of Genova-Italy.

Publications
� Walter Cazzola and Sonia Pini and Ahmed Ghoneim and Gunter Saake. Co-

Evolving Application Code and Design Models by Exploiting Meta-Data. In Pro-
ceedings of the 12th Annual ACM Symposium on Applied Computing (SAC'07),
Seoul, South Korea, on 11th-15th of March 2007.

� Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Viewpoint for Maintaining
UML Models against Application Changes. In Proceedings of International Con-
ference on Software and Data Technologies (ICSOFT 2006), Setúbal, Portugal,
11th-14th of September 2006.

� Ahmed Ghoneim and Sven Apel and Gunter Saake. Evolutionary Software Life
Cycle for Self-Adapting Software Systems. In In Chin-Sheng Chen, Joaquim Fil-
ipe,Isabel Seruca, and José Cordeiro, editors, ICEIS 2005, Proceedings of the Sev-
enth International Conference on Enterprise Information Systems,Miami, USA,
May 25-28, pages 211-216, 2005.

� Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. RAMSES: a Re�ective
Middleware for Software Evolution. Proceedings of the 1st ecoop Workshop on
Re�ection, AOP and Meta-Data for Software Evolution (RAM-SE'04) in 18th
European Conference on Object-Oriented Programming (ecoop'04),Oslo, Norway.

� Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. System Evolution through
Design Information Evolution: a Case Study. Proceedings of the 13th International
Conference on Intelligent and Adaptive Systems and Software Engineering (IASSE-
2004), July 1-3, Nice, France.

� Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Software Evolution through
Dynamic Adaptation of Its OO Design. In Hans-Dieter Ehrich, John-Jules Meyer,
and Mark D. Ryan, editors, Objects, Agents and Features: Structuring Mecha-
nisms For Contemporary Software, Lecture Notes in Computer Science, Heidel-
berg, Germany, 2003.

� Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Re�ective Analysis and
Design for Adapting Object Run-time Behavior. In Zohra Bellahsène, Dilip Pa-
tel, and Colette Rolland, editors, Proceedings of the 8th International Conference
on Object-Oriented Information Systems (OOIS'02), Lecture Notes in Computer
Science 2425, pages 242-254, Montpellier, France, on 2nd-5th of September 2002.
Springer-Verlag. ISBN: 3-540-44087-9.

� Walter Cazzola, James O. Coplien, Ahmed Ghoneim, and Gunter Saake. Frame-
work Patterns for the Evolution of Nonstoppable Software Systems. In Pavel
Hruby and Kristian Elof Søresen, editors, Proceedings of the 1st Nordic Conference
on Pattern Languages of Programs (VikingPLoP'02), pages 35-54, Højstrupgård,
Helsingør, Denmark, on 20th-22nd of September 2002. Microsoft Business Solu-
tions.

	Abstract of the Dissertation
	Deutsche Fassung
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Statements
	Approach and Contribution of the Dissertation
	Contribution
	The RAMSES Middleware: General Insight
	Outline of the Dissertation

	Preliminaries
	Software Engineering Models
	Software Maintenance and Evolution
	Reflection Terminology in Software Systems
	Current Techniques of Analysis and Evolution of the Software Systems
	Object-Oriented Analysis and Design Techniques
	Summary

	Design Information: RAMSES Base and Meta Building Stones
	Introduction and Motivation
	UTCS: simplified view
	Explicit versus Implicit View
	Lightweight Formalisation of Design Information
	Summary

	Evolution Planning: RAMSES Strategic Processes
	Introduction and motivation
	UML Diagrams as Meta-Data
	Evolution and Validation Planning
	Operation-Based Adaptation of Design Information
	Interpreting the Evolution by Using Script Language
	Summary

	The Reflective Middleware: RAMSES At Work
	Software Evolution through Reflection
	Reification and Reflection by Using Design Information
	Describing the Meta-level behavior of RAMSES
	Summary

	The UTCS: a Case Study
	The Specification and Components of the UTCS
	UTCS Cases
	Design Information Realization for Case (A)
	Practical Results: A dynamic Evolution and Validation Prototype
	Summary

	Comparsion of RAMSES to Related Works
	Evolution Criteria
	Reflective Approaches and RAMSES
	Analysis&Evolution Approaches and RAMSES
	Summary

	Concluding Remarks
	Recapitulation
	Further future work

	Bibliography
	Curriculum Vitae

