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Zusammenfassung

In der vorliegenden Arbeit beschäftigen wir uns mit Systemen linearer diophantischer Gleichungen

und Ungleichungen der Form

a⊺

i z = αi, i = 1, . . . , m1,

b⊺

j z ≤ βj , j = 1, . . . , m2,

c⊺

kz ≡ γk (mod pk), k = 1, . . . , m3.

Solche Systeme treten in vielen interessanten Anwendungen auf, z.B.:

• lineare und nichtlineare ganzzahlige Optimierung [2],

• Sampling auf Kontingenztabellen in der Statistik [50],

• Zählen von Gitterpunkten in der Kombinatorik und der Statistik [44],

• Dekomposition chemischer Reaktionen in Elementarreaktionen [89],

• Erreichbarkeit in Petri-Netzen [22],

• Fundamentalkurven und -flächen in der Topologie [124].

Abhängig vom Problem ergeben sich unterschiedliche mathematische Fragestellungen, z.B.:

• Lösbarkeit des linearen Systems über Z,

• Finden einer ganzzahligen Lösung,

• Effiziente Kodierung aller ganzzahlige Lösungen,

• Zählen aller ganzzahligen Lösungen,

• Finden einer Kosten-optimalen ganzzahligen Lösung.

Dabei bildet die effiziente Kodierung aller, möglicherweise unendlich vielen, ganzzahligen Lösungen

eines linearen Systems eines der grundlegenden Probleme. Wir betrachten im folgenden drei Mög-

lichkeiten:
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• Darstellung über ganzzahlige Basen,

• Darstellung über Hilbertbasen,

• Darstellung über kurze rationale Erzeugendenfunktionen.

Darstellungen von Gitterpunktmengen

Darstellung über ganzzahlige Basen. Wir nennen T ⊆ S eine ganzzahlige Erzeugendenmenge

von S ⊆ Zn, falls für alle s ∈ S endliche viele Elemente ti ∈ T und nichtnegative ganze Zahlen αi

mit

s =
∑

αiti

existieren. Eine inklusions-minimale ganzzahlige Erzeugendenmenge nennt man auch ganzzahlige

Basis. Mit Hilfe einer ganzzahligen Basis lassen sich also alle Elemente einer, möglicherweise un-

endlichen, Gitterpunktmenge S ganzzahlig erzeugen. Obwohl diese Basen in einem primalen Algo-

rithmus zur Lösung linearer ganzzahliger Optimierungsprobleme Einsatz finden [69], haben sie für

viele andere Anwendungen zwei wichtige Nachteile. Zum einen existiert nicht für jede Gitterpunkt-

menge S eine endliche ganzzahlige Basis, selbst dann nicht, wenn S die Gitterpunktmenge eines

Polyeders ist. Zum anderen werden durch T meist auch Elemente erzeugt, die nicht zu S gehören,

d.h., im allgmeinen ist

S (
{

∑

αiti : ti ∈ T, αi ∈ Z+

}

.

Es sei noch bemerkt, daß für die Gitterpunktmenge in rationalen polyedrischen Kegeln stets eine

endliche ganzzahlige Erzeugendenmenge, eine sogenannte Hilbertbasis, existiert.

Darstellung über Hilbertbasen. Die beiden Nachteile von ganzzahligen Basen lassen sich zu-

mindest für Polyeder dadurch beheben, daß wir eine ganzzahlige Version von Weyls Theorem über

die Zerlegung von Polyedern in die Summe eines Polytops und eines Kegels verwenden:

Giles & Pulleyblank [64]: Für jedes nichtleere Polyeder P ⊆ Rn existiert ein rationales Polytop

Q ⊆ Rn und ein rationaler Kegel C ⊆ Rn mit P ∩ Zn = (Q ∩ Zn) + (C ∩ Zn).

Mit anderen Worten, jeder Gitterpunkt aus P ist die Summe einer inhomogenen ganzzahligen

Lösung aus Q und einer nichtnegativen ganzzahligen Linearkombination der homogenen Elemente

einer Hilbertbasis von C.

Die Vorteile dieser endlichen Darstellung liegen auf der Hand: Für jedes nichtleere Polyeder existiert

eine solche Darstellung seiner Gitterpunkte und diese Darstellung kodiert wirklich nur die Gitter-

punkte des Polyeders. Als Nachteil erweist sich jedoch die Größe der beteiligten Mengen. Sowohl

Q∩Zn als auch die Hilbertbasis von C können selbst in fester Dimension exponentiell viele Elemente

besitzen.

Darstellung über kurze rationale Erzeugendenfunktionen. Eine weitere Kodierungsmög-

lichkeit ist die implizite Kodierung der Gitterpunkte einer Menge S in einer Erzeugendenfunktion:

fS(z) =
∑

α∈S

zα,
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wobei zα = zα1
1 . . . zαn

n . Wenn S unendlich ist, so ist fS(z) eine (Laurent-) Reihe und für endliches

S ist fS(z) ein (Laurent-) Polynom. Desweiteren hat fS(z) die schöne Eigenschaft, daß |S| = fS(1).

Allerdings besitzt fS(z) auch |S| Summanden. Interessanterweise kann man aber im Fall, daß S

die Gitterpunktmenge eines Polyeders ist, fS(z) auch äquivalent als Summe rationaler Funktionen

fS(z) =
∑

i∈I

Ei
zui

∏d
j=1(1 − zvij )

mit endlicher Indexmenge I und mit Ei ∈ {0, 1} schreiben, wobei die Kodierungslänge dieser

Repräsentation in fester Dimension polynomiell in der Kodierungslänge der Ungleichungsbeschrei-

bung für P ist [13]. Dies rechtfertigt die Bezeichnung “kurze rationale Erzeugendenfunktion”. Wie

schon oben angedeutet, ermöglicht diese Darstellung das effiziente Zählen von Gitterpunkten in

Polytopen fester Dimension.

Obwohl diese Darstellung in fester Dimension schöne Komplexitätsaussagen erlaubt, hat auch sie

einen Nachteil. Ist S lediglich über fS(z), d.h. als rationale Erzeugendenfunktion gegeben, erweist

sich bereits die Angabe eines einzigen Punktes aus S als praktisch schwierig, obwohl sich dies in

fester Dimension theoretisch natürlich in polynomieller Zeit bewerkstelligen läßt.

Themen der vorliegenden Arbeit

Ganzzahlige Basen, Hilbertbasen, Graverbasen

In Kapitel 1 zeigen wir, daß eine Gitterpunktmenge S genau dann eine endliche ganzzahlige Basis

besitzt, wenn cone(S) ein rationaler polyedrischer Kegel ist.

In Kapitel 2 betrachten wir spezielle ganzzahlige Basen, nämlich Hilbertbasen und Graverbasen.

Wir setzen die Ausführungen aus [71] über die positive Summeneigenschaft fort, kombinieren sie

aber mit einem Project-and-Lift Ansatz, der zuerst Hilbert- und Graverbasen in Projektionen

berechnet und diese dann in den Originalraum liftet. Dieser Algorithmus zur Berechnung von

Hilbertbasen und Graverbasen scheint das ganzzahlige Pendant zur Double-Description Methode

zur Berechnung von Extremstrahlen von Kegeln und von Zirkuiten von Matrizen [60, 74] zu sein.

Kapitel 3 enthält keine eigenen neuen Resultate, sondern erklärt Schritt für Schritt, wie Graver-

basen sich als universelle Testmengen in einem primalen Augmentierungsalgorithmus zur Lösung

von linearen ganzzahligen Optimierungsproblemen einsetzen lassen. Hierbei liefert die Graverba-

sis Richtungen, in die nichtoptimale ganzzahlige Lösungen verbessert werden können. Schulz und

Weismantel [108] haben gezeigt, daß man sogar die verbessernden Richtungen so geschickt wählen

kann, daß der Augmentierungsalgorithmus in polynomieller Zeit in der Kodierungsgröße des Pro-

blems und der Kodierungsgröße der Graverbasis läuft.

In Kapitel 4 wenden wir diese Komplexitätsaussage auf lineare ganzzahlige Optimierungsprobleme

an, deren Struktur eine polynomiell große Kodierung der Graverbasis zuläßt und damit zu einem

polynomiellen Algorithmus zur Lösung dieser Problemklasse führt.
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In Kapitel 5 präsentieren wir dann einen Algorithmus zur effizienteren Berechnung von Graver-

basen im Fall, daß der gegebenen Matrix eine gewisse symmetrische Struktur zugrundeliegt. Dies

ermöglicht zum Beispiel die Berechnung von Graverbasen für größere Kontingenztabellen in der

Statistik.

In Kapitel 6 zeigen wir die Existenz endlicher Testmengen für gewisse ganzzahlige konvexe Opti-

mierungsprobleme über Polyedern. Unser Ansatz über Graverbasen führt zur gleichen endlichen

Testmenge wie in [97] durch Verfeinerung von Kegeln und Vereinigung ihrer inklusions-minimalen

Hilbertbasen.

Am Ende des ersten Teil, in Kapitel 7, präsentieren wir Malkins Project-and-Lift Algorithmus

zur Berechnung von Erzeugendenmengen und Gröbnerbasen von Gitteridealen [75]. Diese Mengen

finden zum Beispiel beim Sampling in der Statistik, als Testmengen in der ganzzahligen Opti-

mierung (für feste Kostfunktion) Kapitel 3 oder beim Zählen von Gitterpunkten in Polytopen

(Kapitel 8) Anwendung. Interessanterweise ist Malkins Algorithmus angewandt auf die Berech-

nung von Graverbasen mit Hilfe von Gröbnerbasen äquivalent zum Project-and-Lift Algorithmus

aus Kapitel 2 zur direkten Berechnung von Graverbasen, [114, Kapitel 14].

Kurze rationale Erzeugendenfunktionen

Nachdem wir in Kapitel 8 zeigen, wie man Gitterpunkte in Polytopen mit Hilfe von Hilbert-

basen und Gröbnerbasen torischer Ideale berechnen kann, gehen wir in Kapitel 9 auf die einzelnen

Schritte von Barvinoks Algorithmus [13] und dessen Implementierung in der Software LattE [41]

ein. Obwohl diese Implementierung bereits recht erfolgreich neue Zählformeln berechnen konnte,

konnte erst unsere vorgeschlagene Homogenisierung des Polytops mit anschließender Verwendung

von Barvinoks Algorithmus die Zählformel für magische 5 × 5 Quadrate bestimmen.

In Kapitel 10 nutzen wir Barvinoks rationale Erzeugendenfunktionen zur Maximierung einer line-

aren Funktionen über den Gitterpunkten eines Polytops. Schon Barvinok merkte an, daß ein in

fester Dimension polynomieller Algorithmus zum Gitterpunktzählen mit Hilfe binärer Suche auch

einen polynomiellen Optimierungsalgorithmus in fester Dimension impliziert. Lasserre gab einen

weiteren heuristischen Ansatz an, den wir in Kapitel 10 zu einem deterministischen Algorithmus,

dem Digging-Algorithmus, ausbauen. Beide Algorithmen wurden implementiert und verglichen,

wobei der Digging-Algorithmus in unseren Beispielen besser abschnitt.

In den Kapiteln 11 und 12 konstruieren wir für feste Dimension einen FPTAS (vollpolynomielles

Approximationsschema) für die ganzzahlige und gemischt-ganzzahlige Optimierung eines nicht-

negativen Polynoms über einem Polytop. Dies liefert die bestmögliche zu erhoffende Komplexitäts-

klasse, da beide Probleme selbst in fester Dimension NP-schwer sind.

In 2003 zeigten Barvinok und Woods [15], daß man mit kurzen rationalen Erzeugendenfunktio-

nen auch effizient z.B. Durchschnitte oder Projektionen von Gitterpunktmengen berechnen kann.

Insbesondere zeigten sie, daß sich Hilbertbasen und Graverbasen in kurze rationale Erzeugenden-

funktionen kodieren lassen. In Kapitel 13 nutzen wir Barvinoks und Woods’ Resultate, um auch

Gröbnerbasen torischer Ideale effizient zu kodieren.
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Notation

Z integer numbers

Q rational numbers

R real numbers

C complex numbers

X+ {x ∈ X : x ≥ 0}

X>0 {x ∈ X : x > 0}

kerX(A) {x ∈ X : Ax = 0}

(IP)c,b min{c⊺z : Az = b, z ∈ Z+}

(L)c,β min{c⊺z : z ≡ β (mod L), z ∈ Zn
+}

v(i) ith component of v

‖v‖1 l1 − norm
∑d

i=1 |v
(i)|

supp(v) support {i : v(i) 6= 0}

(v+)(i) max(v(i), 0)

(v−)(i) max(−v(i), 0)

xv xv(1)

1 · . . . · xv(d)

d

e1, . . . , ed unit vectors in Rd

v ≤ w, where v, w ∈ Rd
+ v(i) ≤ w(i) for i = 1, . . . , d

v ⊑ w, where v, w ∈ Rd (v+, v−) ≤ (w+, w−)

xI ≥ 0 xi ≥ 0 for all i ∈ I

xi





Introduction

In this thesis, we are concerned with systems of linear diophantine equations and inequalities of

the form

a⊺

i z = αi, i = 1, . . . , m1,

b⊺

j z ≤ βj , j = 1, . . . , m2,

c⊺

kz ≡ γk (mod pk), k = 1, . . . , m3.

Since we can turn any inequality into an equation by introducing a non-negative integer slack

variable, and since we can also turn any modulo constraint into an equation by introducing an

integer slack variable that is unconstraint in sign, we may assume that the above system is given

in the form Az = b, zI ≥ 0 for some index set I ⊆ {1, . . . , n}.

Such systems appear in many interesting applications, such as

• linear and nonlinear integer programming [2],

• sampling in statistics [50],

• counting lattice points in combinatorics [44],

• decomposition of chemical reactions into elementary reactions [89],

• reachability in Petri nets [22],

• fundamental curves and surfaces in topology [124].

Depending on the application, we are faced with different mathematical questions, for example:

• feasibility of the above linear system over Z,

• finding one integer solution,

• efficient encoding of all integer solutions,

• counting all integer solutions,

• finding a cost-optimal integer solution.

1
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Among these questions, the efficient encoding of all, potentially infinitely many, integer solutions

to a linear system of the above type is of fundamental importance. In this thesis, we consider the

following three possibilities:

• representation via integral bases,

• representation via Hilbert bases,

• representation via short rational generating functions.

Representations of lattice point sets

Representation via integral bases. We call T ⊆ S an integral generating set of S ⊆ Zn, if for

all s ∈ S there exist finitely many elements ti ∈ T and non-negative integers αi with

s =
∑

αiti.

An inclusion-minimal integral generating set is also called an integral basis. Once an integral gen-

erating set T of S is available, every lattice point in S can be written as a finite non-negative

integer linear representation of elements from T , even if S is not finite. However, there are two

drawbacks. First, there might be many more lattice points outside of S that can be represented as

such a linear combination, and second, not every set S ⊆ Zn possesses a finite integral generating

set.

Example. The set S = {(z1, 1) ∈ Z2 : z1 ∈ Z+} does not have a finite integral generating set.
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In fact, S itself is the smallest integral generating set of S. This example also demonstrates that

{
∑

αiti : ti ∈ T, αi ∈ Z+} = {z ∈ Z2
+ : z2 ≥ 1} can be much bigger than S. �

Despite these negative properties, integral generating sets find application in the design of integer

simplex type methods based on reformulation techniques to solve linear integer optimization prob-

lems, see for example the Integral Basis Algorithm in [69]. Herein, the authors exploit the fact that a

set S of the form S = {z ∈ Zn : Az ≤ b, z ≥ 0} always has a finite integral generating set. Moreover,

as a side-effect of their approach, unwanted additional solutions from {
∑

αiti : ti ∈ T, αi ∈ Z+}

are excluded automatically.
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In [19], Bertsimas and Weismantel characterize those polyhedra P ⊆ Rn
+ whose sets of lattice

points S = P ∩Zn possess a finite integral generating set. In Chapter 1, we extend this criterion to

arbitrary sets S ⊆ Zn. It turns out that S has a finite integral generating set if and only if cone(S)

is a rational polyhedral cone. The latter includes the well-known fact that the lattice points in a

rational polyhedral cone always possess a finite integral generating set, called a Hilbert basis of the

cone. Moreover, it implies that a monoid M ⊆ Zn is finitely generated if and only if cone(M) is a

rational polyhedral cone, see Jeroslow [84].
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Representation via Hilbert bases. Both disadvantages of integral bases can be avoided for

polyhedra by using an integer version of Weyl’s theorem [64]: For every non-empty rational poly-

hedron P ⊆ Rn there exist a rational polytope Q and a rational cone C such that

P ∩ Zn = (Q ∩ Zn) + (C ∩ Zn).

In other words, if we set I = Q∩Zn and denote by H a finite Hilbert basis of C, then any integer

point in P can be written as the sum of one of the finitely many (inhomogeneous) solutions in I

and a non-negative integer linear combination of the finitely many (homogeneous) solutions in H .
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y = x - 2

y = 3x + 1

{(x, y) ∈ Z
2 : x − y ≤ 2,−3x + y ≤ 1, x + y ≥ 1, y ≥ 0} = {(0, 1), (1, 0), (1, 1), (3, 0)} + cone((1, 1), (1, 3)) ∩ Z

2

The advantages of this representation are immediate: There exists such a nice representation for

every nonempty polyhedron and it encodes exactly the lattice points in the polyhedron. A disad-

vantage, however, are the sizes of the sets I and H . Even in fixed dimension, both sets can be of

exponential size in the encoding length of the inequalities defining the polyhedron.



4

Representation via short rational generating functions. Another possible representation is

the implicit encoding of the lattice points of a set S in a generating function

fS(z) =
∑

α∈S

zα,

where zα = zα1
1 . . . zαn

n . For infinite S, this generating function is a Laurent series. If S is finite,

fS(z) is a (Laurent-) polynomial and it holds that |S| = fS(1). However, fS(z) contains also |S|

many summands.

V1 = (0, 0), V2 = (5, 0), V3 = (4, 2), V4 = (0, 2)

V

V

1

4

V2

V
3

fS(z) = z
5
1 + z

4
1z

2
2 + z

4
1z2 + z

4
1 + z

3
1z

2
2 + z

3
1z2 + z

3
1 + z

2
1z

2
2 + z

2
1z2 + z

2
1 + z1z

2
2 + z1z2 + z1 + z

2
2 + z2 + 1.

If S is the set of lattice points in a polyhedron, fS(z) can be written in a shorter form, namely as

the sum of rational functions

fS(z) =
∑

i∈I

Ei
zui

∏d
j=1(1 − zvij )

,

where I is a finite index set and where Ei ∈ {0, 1}. In fact, Barvinok [13] showed that in fixed

dimension, one can even find such a representation that is of polynomial size in the encoding length

of the inequality description of the polyhedron. This justifies the notion “short rational generating

function”. One possible application for these generating functions is the efficient counting of lattice

points in polytopes in fixed dimension.

Although this representation allows us to show various nice complexity results, it also has a disad-

vantage. If S is given only encoded as a rational generating function, it is a hard task (in practice)

to find a single element in S, although it is (in theory) a polynomially solvable problem in fixed

dimension.

Topics and structure of this thesis

This theses presents the results from several single-authored [72, 73, 76] and co-authored [3, 40,

41, 42, 43, 44, 75] research articles.
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Integral bases, Hilbert bases, Graver bases

In Chapter 1, we show that a lattice point set S ⊆ Zn possesses a finite integral generating set if

and only if cone(S) is a rational polyhedral cone. This result generalizes the characterizations by

Bertsimas and Weismantel [19] of finite integral bases of polyhedra and by Jeroslow [84] of finitely

generated monoids.

In Chapter 2, we deal with special integral bases, namely with (inclusion-minimal) Hilbert bases

and Graver bases. Note that the Graver basis of a matrix A is the union
⋃

j

Hj \ {0}

of the inclusion-minimal Hilbert bases Hj of the pointed rational polyhedral cones

ker(A) ∩ Oj = {x ∈ Oj : Ax = 0}

taken over all 2n orthants Oj of Rn.

We base our treatment on the positive sum property [72] and combine it with a project-and-lift

approach [73], which first computes Hilbert bases and Graver bases in projected spaces and then

lifts them into the original space. This algorithm to compute Hilbert bases and Graver bases seems

to be the integer equivalent to the double-description method to compute extreme rays of cones

and circuits of matrices [60, 74].

One application of Graver bases is as universal test sets for the family of linear integer programming

problems

min{c⊺z : Az = b, z ≥ 0, z ∈ Zn},

as b ∈ Zd and c ∈ Rn vary. A universal test set for this family is a set of (integral) directions that

contains an improving direction t for any non-optimal solution z0 of any given problem from the

problem family above. This means, that z0 − t is also feasible and c⊺(z0 − t) < c⊺z0. Repeating

such augmentation steps, we obtain a simple primal optimization algorithm. In Chapter 3, which

contains no new research results, we present all the necessary pieces of this augmentation algorithm.

We wish to point out here, that Schulz and Weismantel [108] have shown that the augmenting steps

can be chosen in such a way that only polynomially many augmentation steps are needed in order

to reach an optimal solution. Thus, it is only the exponential size of the Graver basis that prevents

the augmentation algorithm from running in polynomial time in the input data.

In Chapter 4, we consider a class of optimization problems with a very structured problem matrix

[A, B](n) :=

















B B B · · · B

A 0 0 · · · 0

0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

















.

If we fix the matrices A and B, then by combining a finiteness result by Hoşten and Sullivant [79]

with the above mentioned polynomiality result by Schulz and Weismantel [108], we show



6

• that the size of the Graver basis of [A, B](n) is polynomially bounded in n and in the size of

the input data, and

• that consequently, the augmentation algorithm to solve this class of optimization problems

runs in polynomial time in n and in the size of the input data.

This algorithm settles the complexity of optimizing a linear function over the lattice points of

3-dimensional r × s × n transportation polytopes (also called contingency tables by statisticians)

when two side lengths r and s are kept fix and the third side length n is allowed to vary. Three-

dimensional transportation polytopes are especially appealing, since DeLoera and Onn [46] have

shown recently that every polytope can be transformed into a polynomial-size three-dimensional

transportation polytope, for which there exists a (coordinate-erasing) bijection between the lattice

points of both polytopes.

We continue our treatment of Graver bases for special matrices in Chapter 5. Here, we present an

algorithm that computes Graver bases of “symmetric matrices”, or better of “symmetric lattices”,

more efficiently. We call a lattice symmetric, if there is a group of permutations that permute

the components of a vector in Zn in such a way that lattice points are mapped to lattice points.

A matrix A is called symmetric, if the lattice ker(A) is symmetric. The algorithm we present is

an adaptation of the project-and-lift algorithm from Chapter 2 and allows the computation of

much bigger examples if the lattice is symmetric. The biggest algorithmic challenge here was the

combination of symmetry with the symmetry-breaking project-and-lift algorithm algorithm from

Chapter 2.

In the next chapter, Chapter 6, we generalize the notion of a test set to a certain class of convex

integer optimization problems over the lattice points of a polyhedron, for which we show that

a finite test set always exists. Our construction via linearization and Graver bases leads to the

same set of vectors that was independently discovered by Murota, Saito, and Weismantel [97] via

a refinement of cones and a union of their inclusion-minimal Hilbert bases.

Finally, in Chapter 7, we present Malkin’s project-and-lift algorithm to compute generating sets

and Gröbner bases of lattice ideals [75]. This algorithm completes the algorithmic framework started

with the project-and-lift approach to compute Hilbert bases and Graver bases from Chapter 2. It

turns out that Malkin’s algorithm outperforms the saturation approach by Hoşten and Sturmfels

[78] and its improvement by Bigatti, LaScala, and Robbiano [21]. Generating sets and Gröbner

bases of lattice ideals have a variety of interesting applications such as for sampling in statistics

or as test sets for integer linear programs, where the objective function is kept fix and only the

right-hand side vector b ∈ Zd is allowed to vary, see Chapter 3.

Gröbner bases of special lattice ideals, namely of toric ideals, also appear in one algorithm to count

lattice points in polytopes via Hilbert bases, see Chapter 8. This counting algorithm is of course

restricted by the sizes of the Hilbert basis and the Gröbner basis that has to be computed. As

these sets might be exponentially large even in fixed dimension, this counting approach is applicable

only for smaller examples. Nonetheless, we were able to recover known counting formulas and to

establish new counting formulas such as for magic and semi-magic 3 × 3 × 3 cubes.
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Short rational generating functions

In the following chapters we concentrate on problems in fixed dimension. This leads to some nice

complexity results. For example, in the 1980’s, H. Lenstra created an algorithm to detect integer

points in polyhedra, based on the LLL-algorithm and the idea of short vectors [67, 93]. As a

consequence, solving the feasibility problem with a fixed number of variables can be done in time

polynomial in the size of the input. In the 1990’s, based on work by the geometers Brion, Khovanski,

Lawrence, and Pukhlikov, Barvinok created an algorithm to count integer points inside polyhedra

that runs in polynomial time for fixed dimension [13, 14]. Shortly after Barvinok’s breakthrough,

Dyer and Kannan [52] modified the original algorithm of Barvinok, which originally relied on

Lenstra’s result, giving a new proof that integer linear programming problems with a fixed number

of variables can be solved in polynomial time.

In Chapter 9 we present each step of Barvinok’s algorithm and give also details on how we im-

plemented it into a software package we named LattE [41]. Although this implementation could

already produce new counting formulas, only our algorithmic improvement via a homogenization

of the polytope was able to compute the counting formula for magic 5 × 5 squares.

In Chapter 10, we compare two algorithms based on Barvinok’s short rational generating func-

tions for maximizing a linear function over the lattice points of a rational polytope. For the first

algorithm, note that one can turn Barvinok’s counting oracle into an algorithm that solves integer

linear programming problems with a fixed number of variables in polynomial time (i.e. by counting

the number of lattice points in P that satisfy c⊺x ≥ α, we can narrow the range for the maximum

value of c⊺x, then we iteratively look for the largest α where the count is non-zero). This idea was

already proposed by Barvinok in [14]. In the second algorithm we replace zi by tci in the generating

function. Hence zα becomes tc
⊺α and we obtain

fS(z) =
∑

α∈S

zα −→ fS(t) =
∑

α∈S

tc
⊺α.

If we perform this substitution in the short rational function representation of fS(z), we are faced

with the problem of recovering the highest term in the series expansion of fS(t). Recently, Lasserre

gave a very easy heuristics to find this highest appearing term [91]. Lasserre suggests to expand

every single summand, a rational function in t, to extract the highest term appearing in these

expansions, and to add up the coefficients of this term. If the coefficient is non-zero, we have

identified the highest appearing term in the expansion of fS(t) and have found the optimal value.

Unfortunately, his heuristics often fails in practice and we need to “dig” further for the highest

term with a nonzero coefficient. In Chapter 10, we present the details of this digging algorithm and

compare it with Barvinok’s binary search idea.

In Chapters 11 and 12, we construct fully polynomial time approximation schemes (FPTAS) for

maximizing a non-negative polynomial over the (mixed-) integer points of a polytope based on short

rational generating functions. For the pure integer case, in order to find lower and upper bounds

for the optimal value f∗, we use the simple fact that for tuples of non-negative real numbers
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f(x1), . . . , f(xs) and for all integers k ≥ 1 we have

k

√

√

√

√

s
∑

i=1

f(xs)k/s ≤ f∗ = max{f(x1), . . . , f(xs)} ≤ k

√

√

√

√

s
∑

i=1

f(xs)k.

Increasing k, these bounds become more and more tight. Then we employ a binary search to

produce a lattice point whose objective value is bigger than (1 − ǫ)f∗ for given ǫ. This algorithm

runs in time polynomial in the size of the input data and in 1/ǫ. In the mixed-integer situation,

we construct a suitable sequence of grid refinements and use an FPTAS for the pure integer case

on these grids in order to find a rational point whose objective value is bigger than (1 − ǫ)f∗.

In 2003, Barvinok and Woods [15] showed that one can perform set operations such as intersection,

union, or even projection of certain lattice point sets in polynomial time when the dimension is

fixed, using again short rational generating functions. They also showed that in fixed dimension,

Hilbert bases and Graver bases can be encoded in polynomial time into a short rational generating

function. In Chapter 13, using the results of Barvinok and Woods, we present an algorithm to

construct a similar encoding also for Gröbner bases of toric ideals.



Part I

Integral bases, Hilbert bases, and

Graver bases

9





Chapter 1

Integral bases

At the core of this chapter are integral generating sets of lattice point sets.

Definition 1.0.1 Let S ⊆ Zn. Then we call T ⊆ S an integral generating set of S, if for every

s ∈ S there exists a finite (integer) linear combination s =
∑

αiti with ti ∈ T and αi ∈ Z+. We

call T an integral basis of S if T is an inclusion-minimal integral generating set.
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Figure 1.1: Minimal integral generating sets of two sets of lattice points.

Note that an integral generating set of S is allowed to contain elements only from S itself! The

main result in this chapter is the following characterization of which sets S ⊆ Zn admit a finite

linear integer representation, i.e., every point of S can be expressed as a non-negative linear integer

combination of a finite subset of S. For the proof of this theorem see Section 1.3.

Theorem 1.0.2 Let S ⊆ Zn be any set of lattice points in Zn.

(a) S has a finite integral generating set if and only if C = cone(S) is a rational polyhedral cone.

(b) If the cone C = cone(S) is rational and pointed, then there is a unique integral basis of S.

Example 1.0.3 For S =
{

(x, y) ∈ Z2 : (x, y) = (s2, s + t), s, t ∈ R+

}

= {(x, y) ∈ Z2
+ : x−y2 ≥ 0},

and for S = {(x, y) ∈ Z2
+ : y ≥ 1} we easily see that cone(S) is not rational, see Figure 1.2.

Consequently, there do not exist finite integral generating sets for these sets S. �
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Figure 1.2: cone(S) is not rational.

Theorem 1.0.2 generalizes a characterization by Jeroslow of finitely generated monoids to arbitrary

sets of lattice points.

Corollary 1.0.4 (Jeroslow [84]) A monoid M ⊆ Zn has a finite (integral) generating set if and

only if C = cone(M) is a rational polyhedral cone.

If S is the set of lattice points in a rational polyhedron, Bertsimas and Weismantel [19] already

characterized those rational polyhedra that have a finite integral generating set. We give a proof

of this non-trivial consequence of Theorem 1.0.2 in Section 1.4.

Corollary 1.0.5 (Bertsimas and Weismantel [19]) For A ∈ Zd×n and b ∈ Zd, define the sets

P =
{

x ∈ Rn
+ : Ax ≤ b

}

, S = P ∩ Zn, and C = {x ∈ Rn
+ : Ax ≤ 0}.

(a) There exists a finite integral generating set of S if and only if S contains all but finitely many

integer points in C ∩ Zn
+.

(b) If a finite integral generating set of S exists, then there is a unique integral basis of S.

As a special case of this corollary we may state a well-known fact about rational cones.

Corollary 1.0.6 For every rational polyhedral cone C = {z ∈ Rn : Bz ≥ 0}, the set C ∩ Zn

possesses a finite integral generating set, a so-called Hilbert basis.

If C is pointed, there is a unique inclusion-minimal integral generating set.

�� ��

��

��

�� �� �� ��

��

��
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��

This fundamental fact has applications in many scenarios for linear integer programming. In par-

ticular, it is important for
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• proving finiteness results in cutting plane theory [106],

• showing the existence of totally dual integral systems of linear diophantine systems [64],

• deriving optimality conditions for linear integer optimization problems [65],

• designing integer simplex type methods based on reformulation techniques [69].

Note that Corollary 1.0.6 is also an immediate consequence of a more general statement implied

by Theorem 1.0.2.

Corollary 1.0.7 For every rational polyhedral cone C = {z ∈ Rn : Bz ≥ 0} and for every

sublattice Λ of Zn, the set C ∩ Λ forms a finitely generated monoid under vector addition.

If C is pointed, there is a unique inclusion-minimal integral generating set.

Before proving Theorem 1.0.2 and the non-trivial Corollary 1.0.5, we present two major ingredients

needed in the proofs. The first ingredient is the well-known Gordan-Dickson Lemma, whereas the

second ingredient is a simple idea to prove Corollary 1.0.6. The combination of both enables us to

show our main theorem of this chapter, Theorem 1.0.2.

1.1 Gordan-Dickson Lemma

The Gordan-Dickson Lemma (see for example Section 4.2 in [36]) is not only important for our

proof of Theorem 1.0.2, but it will also be crucial for the termination proofs of the algorithms

presented in later chapters. We state and prove here two equivalent versions of it. Whereas the set

version is suitable to show finiteness of integral generating sets, the sequence version is suitable to

show termination of many algorithms. In the statements the relation ≤ denotes the partial ordering

on Zn
+, where u ≤ v if u(i) ≤ v(i) for i = 1, . . . , n.

Lemma 1.1.1 (Gordan-Dickson Lemma, sequence version) Let {p1, p2, . . .} be a sequence

of points in Zn
+ such that pi 6≤ pj whenever i < j. Then this sequence is finite.

Proof. We prove this lemma inductively on the number n of variables. For n = 1, the sequence

{p1, p2, . . .} is a strictly decreasing sequence of non-negative integers and is thus finite.

Let the lemma be true for n = 1, . . . , k and consider the case n = k+1. Assume that there exists an

infinite sequence in Zn
+ such that pi 6≤ pj whenever i < j. From this infinite sequence we construct

a similar infinite sequence in Zn−1
+ , a contradiction.

Consider the set of non-negative integer numbers {p
(n)
1 , p

(n)
2 , . . .} and let j1 be the first index such

that p
(n)
j1

is minimal in this set. Now repeat the same step with the set of non-negative integer

numbers {p
(n)
j1+1, p

(n)
j1+2, . . .} and find the first index j2 such that p

(n)
j2

is minimal in this set. Clearly,

p
(n)
j1

≤ p
(n)
j2

. As the sequence {p1, p2, . . .} is not finite, we can repeat this step infinitely often,
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constructing a sequence {pj1 , pj2 , . . .} with the property that p
(n)
j1

≤ p
(n)
j2

≤ . . ., that is, with last

components that form an increasing sequence. Moreover, we still have for this infinite subsequence

that pi 6≤ pj whenever i < j. For i = 1, 2, . . ., let πn−1(pji
) denote the projection of pji

onto the first

n− 1 components. By construction, pi 6≤ pj whenever i < j implies that also πn−1(pi) 6≤ πn−1(pj)

whenever i < j. Therefore, {πn−1(pj1), πn−1(pj2), . . .} forms an infinite sequence in Zn−1
+ that

contradicts our induction hypothesis for n− 1. Thus, the sequence {p1, p2, . . .} must be finite. �

Lemma 1.1.2 (Gordan-Dickson Lemma, set version) Every infinite set S ⊆ Zn
+ contains

only finitely many ≤-minimal points.

Proof. Assume on the contrary that there were infinitely many such ≤-minimal points. They can

be put into an infinite sequence {p1, p2, . . .} with pi 6≤ pj for all i, j. By Lemma 1.1.1, however,

this infinite sequence must be finite. A contradiction. �

Consequently, Lemma 1.1.1 implies Lemma 1.1.2. Note that the converse also holds true.

Lemma 1.1.3 Lemma 1.1.2 implies Lemma 1.1.1.

Proof. Let {p1, p2, . . .} be a sequence of points in Zn
+ such that pi 6≤ pj whenever i < j. Then the

set {p1, p2, . . .} ⊆ Zn contains at most finitely many ≤-minimal points. Let k denote the maximal

index among these ≤-minimal pi. Thus, for j > k we have pi ≤ pj for at least one (≤-minimal) pi,

i ≤ k < j. This contradicts the properties of the sequence {p1, p2, . . .}, which is therefore finite. �

Thus, both presented versions of the Gordan-Dickson Lemma are equivalent.

1.2 Hilbert bases

One notion that plays a fundamental role in the subsequent chapters is that of a Hilbert basis of a

polyhedral cone. Corollary 1.0.6 states that rational polyhedral cones always possess a (by definition

finite) Hilbert basis. Pointed rational polyhedral cones even contain a unique inclusion-minimal

Hilbert basis. Let us give a simple proof of these facts.

Proof of Corollary 1.0.6. It suffices to prove the claim for full-dimensional simplicial cones C. If

C is not full-dimensional, we may perform a linear integer transformation (that maps lattice points

to lattice points) to make C full-dimensional in a space of smaller dimension. If C is not simplicial,

we may triangulate it into simplicial cones. (Let us remind the reader that a triangulation of a

cone C in dimension d is a collection of d-dimensional simplicial cones such that their union is C,

their interiors are disjoint, and any pair of them intersect in a (possibly empty) common face.)

Let v1, . . . , vn ∈ Zn and consider the (half-open) parallelepiped

F =







n
∑

j=1

αjvj : 0 ≤ α1, . . . , αn < 1







.
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As F ⊆ C is bounded, F contains only finitely many lattice points {f1, . . . , ft} in Zn. Moreover,

every lattice point v ∈ C ∩ Zn can be written as

v =

n
∑

j=1

λjvj =

n
∑

j=1

⌊λj⌋vj +





n
∑

j=1

(λj − ⌊λj⌋)vj



 ∈ Z+v1 + . . . + Z+vn + (F ∩ Zn)

with λj ≥ 0 and 0 ≤ λj − ⌊λj⌋ < 1 for all j = 1, . . . , n. Thus, the finitely many lattice points

(F ∩ Zn) ∪ {v1, . . . , vn} form an integral generating sets of C ∩ Zn. This shows the existence of a

(finite) Hilbert basis of C.

Let us now show uniqueness of an inclusion-minimal Hilbert basis if C is pointed. As C is pointed,

there is some vector c ∈ Rn such that C ⊆ {x ∈ Rn : c⊺x ≥ 0} and C ∩ {x ∈ Rn : c⊺x = 0} = {0}.

Assume that U = {u1, . . . , ur} and V = {v1, . . . , vt} are two different inclusion-minimal Hilbert

bases of C. Moreover, assume that w.l.o.g. u1 6∈ V . Minimality of U implies that u1 cannot

be written as a positive integer linear combination of elements in U \ {u1}. However, as V is

a Hilbert basis of C and as u1 ∈ C ∩ Zn, there is a non-negative integer linear combination

u1 =
∑t

j=1 αjvj . Consequently, we also have c⊺u1 =
∑t

j=1 αjc
⊺vj . Clearly, as u1 6∈ V , αj ∈ Z+,

and {x ∈ Rn : c⊺x = 0} ∩ C = {0}, we have c⊺vj < c⊺u1 for all j with αj > 0. As also U is

a Hilbert basis of C and as all vj ∈ C ∩ Zn, there are non-negative integer linear combinations

vj =
∑r

i=1 βi,jui, j = 1, . . . , t. Moreover, we have again c⊺ui ≤ c⊺vj whenever βi,j > 0. Plugging

these representations into u1 =
∑t

j=1 αjvj , we get a representation of u1 as a non-negative integer

linear combination of elements in U . However, by construction, they all have a scalar product

with c that is strictly less than c⊺u1. Thus, we have written u1 as a non-negative integer linear

combination of elements in U \ {u1}, a contradiction to our assumption that U is an inclusion-

minimal Hilbert basis, and the claim is proved. �

Finiteness of Hilbert bases already implies a nice and important finite description for all integer

solutions of a system of linear inequalities, that is, for the lattice points in polyhedra, Lemma 1.2.1.

If one has an algorithm to compute Hilbert bases at hand, one can even turn its proof into a

construction to produce such a description. Moreover this lemma implies an integer version of

Weyl’s theorem, see Corollary 1.2.2.

Lemma 1.2.1 Let P = {z ∈ Rn : Az ≤ b} be a polyhedron and C = {z ∈ Rn : Az ≤ 0} its

recession cone. If P contains a lattice point, that is P ∩ Zn 6= ∅, then there exist finitely many

points z1, . . . , zk ∈ P ∩ Zn and h1, . . . , hs ∈ C ∩ Zn such that every solution z ∈ P ∩ Zn can be

written as

z = zi +

s
∑

j=1

αjhj ,

for some i ∈ {1, . . . , k} and with αj ∈ Z+ for all j = 1, . . . , s.

Moreover, the vectors h1, . . . , hs form a Hilbert basis of C.
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Proof. Consider the rational polyhedral cone P := {(z, u) ∈ Rn+1 : Az − bu ≤ 0 : z ∈ P}. Note

that z ∈ P if and only if (z, 1) ∈ P and z ∈ C if and only if (z, 0) ∈ P . Consider a (finite) Hilbert

basis H of P and let {z1, . . . , zk} := {z : (z, 1) ∈ H} and {h1, . . . , hs} := {h : (h, 0) ∈ H}. We

show now that these vectors zi and hj have the required property.

Let z ∈ P ∩ Zn. Then (z, 1) ∈ P ∩ Zn+1 and consequently,

(z, 1) =
∑

αjgj , (1.2.1)

with αj ∈ Z+ and gj ∈ H for all j. As the last component of each element in P is non-negative,

the last component of each gj with αj > 0 in Equation (1.2.1) must be 0 or 1. Moreover, exactly

one such gi has last component equal to 1 and necessarily αi = 1 and all the other vectors gj ,

j 6= i, must have a zero last component. Thus,

(z, 1) = (zi, 1) +

s
∑

j=1

αj(hj , 0),

for some i ∈ {1, . . . , k}. Deleting the last component, we get the desired representation of z.

The vectors h1, . . . , hs form a Hilbert basis of C, since with z ∈ C ∩ Zn we have (z, 0) ∈ P

and consequently, all gj with αj > 0 in the representation (z, 0) =
∑

αjgj must have zero last

component and therefore are among the vectors h1, . . . , hs. �

The representation from Lemma 1.2.1 immediately proves true an integer analogue of Weyl’s the-

orem, which states that each polyhedron P can be written as the sum of a polytope Q plus the

recession cone C of P .

Corollary 1.2.2 (Giles and Pulleyblank [64]) Let P = {z : Az ≤ b, z ∈ Rn} with P ∩ Zn 6= ∅

and let C = {z : Az ≤ 0, z ∈ Rn}. Then there exists a polytope Q ⊆ Rn such that

(P ∩ Zn) = (Q ∩ Zn) + (C ∩ Zn).

Proof. Clearly, Q = conv(z1, . . . , zk) with z1, . . . , zk as defined in the proof of Lemma 1.2.1 has

the desired property. �

It should be noted that in general, the polytope Q from Weyl’s theorem and the polytope Q from

its integer analogue can be different.
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Example 1.2.3 Let P = {z : 2z ≤ 1, z ∈ R}. Then we have Q = {1/2} in the continuous and

Q = {0} in the integer setting. �

1.3 Proof of Theorem 1.0.2

For the proof of Theorem 1.0.2, we adapt the proof of Corollary 1.0.6. However, as we do not

impose any structural assumption on S, we have to be cautious to check whether the integral

generating set that we construct consists of lattice points from S only. The tricky part in the proof

of Theorem 1.0.2 is to show that all constructed points lie indeed in S. The second example in

Figure 1.1 on page 11 already illustrates this difficulty.

Proof of Theorem 1.0.2. Let us start showing part (a). If C = cone(S) is not a rational

polyhedral cone, S cannot have a finite integral generating set G ⊆ S, since C = cone(S) = cone(G)

would be a rational cone, contradicting our initial assumption on C.

Now we show the remaining claim that S has a finite integral generating set if C = cone(S) is

rational by explicitly constructing such a finite set. It should be noted that the constructed integral

generating set is not necessarily minimal. As in the proof of Corollary 1.0.6, it suffices to prove the

claim for full-dimensional cones C.

Next, let us triangulate C into (finitely many!) rational simplicial cones C1, . . . , Cl. Note that we

can and do choose such a triangulation for which the generators of the cones Ci are also among

the generators v1, . . . , vm of C. Then

S ⊆
⋃

q∈Q∩Zn

l
⋃

i=1

(q + Ci).

We now construct a finite integral generating set for each of the sets (q + Ci) ∩ S. W.l.o.g., we

assume Ci = cone(v1, . . . , vr) (otherwise relabel the vi). Consider the parallelepiped

Fi =







r
∑

j=1

αjvj : 0 ≤ α1, . . . , αr < 1







.

As Fi is bounded, Fi contains only finitely many lattice points {f1, . . . , ft} in Zn. Moreover,

(q + Ci) ∩ Zn is the disjoint union of the following t sets Fi,1, . . . , Fi,t with

Fi,j =

{

q + fi,j +

r
∑

k=1

αkvk : α1, . . . , αr ∈ Z+

}

.

Thus, it suffices to construct a finite integral generating set for each of the sets Fi,j ∩ S. If we had

q + fi,j ∈ S, we had have already found a desired representation of the points Fi,j ∩ S by vectors

from {v1, . . . , vk, q + fi,j} ⊆ S. Thus assume on the contrary that q + fi,j 6∈ S. We construct now

a finite set Hi,j ⊆ S such that every s ∈ Fi,j ∩ S can be written as

s = h +

r
∑

j=1

αjvj
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for some h ∈ Hi,j and with αj ∈ Z+, j = 1 . . . , m, as desired. Consequently, Hi,j ∪{v1, . . . , vk} ⊆ S

is a finite integral generating set for Fi,j ∩ S.

As Ci is a simplicial cone, each point in Fi,j has a unique representation as q + fi,j +
∑r

k=1 αkvk

implying that there is a one-to-one correspondence φi,j between Fi,j and Zr
+ given by

φi,j

(

q + fi,j +

r
∑

k=1

αkvk

)

= (α1, . . . , αr).

Consider the set φi,j(Fi,j ∩S) ⊆ Zr
+. By the Gordan-Dickson Lemma, Lemma 1.1.2, there are only

finitely many points {g1, . . . , gp} that are minimal with respect to the partial ordering ≤ defined

on Zr
+. Let Hi,j = {φ

(−1)
i,j (g1), . . . , φ

(−1)
i,j (gp)} ⊆ S. Thus, for every element s ∈ Fi,j ∩S there exists

some g ∈ {g1, . . . , gp} with g ≤ φi,j(s), implying that s = φ
(−1)
i,j (g)+

∑r
k=1 αkvk for φ

(−1)
i,j (g) ∈ Hi,j

and αk = (φi,j(s) − g)(k) ∈ Z+, k = 1, . . . , r. �

1.4 Proof of Corollary 1.0.5

Let us show part (a) first. If S is finite, nothing is left to show. Thus, assume that S is not

finite and therefore also C 6= {0}. Assume that S contains all but finitely many integer points in

C ∩ Zn
+. In particular, S contains an (integer) point of every extreme ray of C, which implies that

C ⊆ cone(S). By Corollary 1.2.2, we have S = Q + C with Q = conv(G) for some G ⊆ S. Thus,

also cone(G) ⊆ cone(S). Thus,

cone(S) ⊆ cone(G) + cone(C) = cone(G) + C ⊆ cone(S),

implying cone(S) = cone(G) + C. Thus, cone(S) is the Minkowski sum of two rational polyhedral

cones and as such also a rational polyhedral cone. Consequently, S has a finite integral generating

set by Theorem 1.0.2.

Now assume that there are infinitely many integer points in C that do not belong to S. In particular,

0 6∈ P as otherwise 0 = A0 ≤ b implying C ⊆ P and thus C∩Zn ⊆ S. Assume for the moment that

each extreme ray R of C contains a (nonzero!) rational point vR of P . Then {λvR : λ ≥ 1} ⊆ P ∩C,

since λvR ≤ vR ≤ 0 and since λvR ≤ vR ≤ b. By convexity of P , P must contain the convex hull

H of all these half-lines {λvR : λ ≥ 1, λ ∈ R}. As

C \ H =

{

x : x =
∑

R

λRvR, 0 ≤
∑

R

λR < 1, λR ≥ 0 for all rays R

}

is bounded, only a finite number of integer points in C can lie in C \H . As S = P ∩Zn, this implies

that only finitely many integer points C can lie outside of S, contradicting our initial assumption

on C. This implies that there exists an extreme ray R of C that does not contain any point of P .

We now show that cone(S) cannot be a rational cone, and by Theorem 1.0.2, S does not have a

finite integral generating set. Assume on the contrary that cone(S) is rational. By convexity of S,

every ray in cone(S) has a nontrivial intersection with S and thus also with P . This implies that
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the extreme ray R = cone(vR) does not belong to cone(S). As cone(S) is rational, there exists a

finite (rational) description

cone(S) = {x ∈ Rn : c⊺

i x ≤ 0, i = 1, . . . , p}.

Then vR 6∈ cone(S) implies that there is some index j such that c⊺

j vR > 0. Now consider any integer

point w ∈ S. As conv(S) = conv(G) + C, all integer points on the half-line {w + αvR : α ≥ 0}

belong to S. Moreover, as vR is a rational vector, there are infinitely many integer points on this

half-line. However, as c⊺

j vR > 0, we have c⊺

j (w + αvR) > 0 for sufficiently large α, implying that

there are integer points of S that lie outside of cone(S). This contradiction shows that cone(S)

cannot be rational and part (a) is proved.

Finally, part (b) of our claim follows again literally the lines of the uniqueness part in the proof of

Lemma 1.0.6, where the notion of a Hilbert basis is replaced by the notion of an integral generating

set. �
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Chapter 2

Positive sum property

In this chapter we consider special integral generating sets, namely those that have the positive

sum property. Informally, G ⊆ S has the positive sum property with respect to S ⊆ Zn if and only

if G ∩ Oj is an integral generating set of S ∩ Oj for every orthant Oj of Rn.

2.1 The relation ⊑

Let us start by generalizing the partial ordering ≤ on Rn
+ to a partial ordering ⊑ on Rn, and by

exhibiting some useful facts about it.

Definition 2.1.1 We call u, v ∈ Rn sign-compatible if u(j)v(j) ≥ 0 for all j = 1, . . . , n.

For u, v ∈ Rn we say that u ⊑ v if u and v are sign-compatible and if |u(j)| ≤ |v(j)| for all

components j = 1, . . . , n, that is, u belongs to the same orthant as v and its components are not

greater in absolute value than the corresponding components of v.

Example 2.1.2 Checking the definition, we see that (1,−1, 0) ⊑ (2,−1, 4). On the other hand,

we have (1,−1, 0) ⊑| (2, 1, 4), since the signs of the second components disagree. �

For v ∈ Zn we component-wise define v+ := max(0, v) and v− := (−v)+ = max(0,−v). With this,

it can easily been checked that u ⊑ v if and only if (u+, u−) ≤ (v+, v−). This simple correspondence

readily implies an extension of both versions of the Gordan-Dickson Lemma to the ⊑-situation.

Lemma 2.1.3 (Gordan-Dickson Lemma, ⊑ version)

• Every sequence {p1, p2, . . .} of points in Zn such that pi 6⊑ pj whenever i < j, is finite.

• Every infinite set S ⊆ Zn contains only finitely many ⊑-minimal points.

The following fact about the relation ⊑ will turn out very useful in the subsequent proofs.

21
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Lemma 2.1.4 Let u, v, w ∈ Rn with u ⊑ v − w. Then for each of the n components of v − u and

of w + u we have

• w(i) ≤ (v − u)(i) ≤ v(i) and w(i) ≤ (w + u)(i) ≤ v(i), if (v − w)(i) ≥ 0,

• w(i) ≥ (v − u)(i) ≥ v(i) and w(i) ≥ (w + u)(i) ≥ v(i), if (v − w)(i) ≤ 0.

In other words, each component (v − u)(i) of v − u and each component (w + u)(i) of w + u lies in

the interval defined by the components v(i) and w(i) of v and w.

For w = 0, the inequalities involving (v − u)(i) imply v − u ⊑ v.

Proof. First observe that u ⊑ v − w is equivalent to −u ⊑ −(v − w). Let us write down the

definition of −u ⊑ −(v − w) component-wise:

• 0 ≤ −u(i) ≤ −(v − w)(i), if −(v − w)(i) ≥ 0,

• 0 ≥ −u(i) ≥ −(v − w)(i), if −(v − w)(i) ≤ 0.

Now we simply add v(i) to the inequalities on the left-hand sides and we are done:

• v(i) ≤ (v − u)(i) ≤ w(i), if (v − w)(i) ≤ 0,

• v(i) ≥ (v − u)(i) ≥ w(i), if (v − w)(i) ≥ 0.

Analogously, to obtain the inequalities for (w + u)(i) write down the defining inequalities for

u ⊑ v − w and add w(i) to all parts of these inequalities. �

2.2 Positive sum property

Now we are ready to introduce the basic notion of this chapter.

Definition 2.2.1 (Positive Sum Property) We say that v ∈ Zn is ⊑-representable with re-

spect to G ⊆ Zn, if v can be written as a finite integer linear combination v =
∑

i∈I αigi with the

property that for all i ∈ I we have

• gi ∈ G, αi > 0, αi ∈ Z>0, and

• gi ⊑ v.

A set G has the positive sum property with respect to S ⊆ Zn if G ⊆ S and if every non-zero

v ∈ S is ⊑-representable with respect to G.

Example 2.2.2 Trivially, the set {±e1, . . . ,±en} has the positive sum property with respect to

Zn, whereas the set {e1, . . . , en} has the positive sum property with respect to Zn
+. �
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Finding for given S ⊆ Zn a set G that has the positive sum property with respect to S is not easy

in general. The following lemma gives a characterization for the case that S is a sublattice of Zn.

Lemma 2.2.3 Let L be a sublattice of Zn and let G ⊆ L. The set G has the positive sum property

with respect to L if and only if G contains the set M of all ⊑-minimal elements of L \ {0}.

Proof. Assume that G has the positive sum property with respect to L and let v ∈ M . Then v

must belong to G, which can be seen as follows. If v 6∈ G, then the positive sum property of G with

respect to L implies that there exists a positive integer linear combination v =
∑

αigi with nonzero

vectors gi ∈ G and with gi ⊑ v. The condition gi ⊑ v, however, contradicts the ⊑-minimality of v

unless v = gi. Therefore, v ∈ G and consequently, M ⊆ G.

On the other hand, the relation M ⊆ G already implies that G has the positive sum property with

respect to L. Suppose on the contrary that there is some z ∈ L \ {0} that cannot be written as a

positive integer linear combination of elements in M which are all sign-compatible with z. Among

all such vectors z choose one that has a smallest l1-norm (which is of course a positive integer).

Clearly, z 6∈ M , that is, z is not ⊑-minimal. Therefore, there is some v ∈ M with v ⊑ z. By our

minimality assumption on ‖z‖1, there exists a positive integer linear combination z − v =
∑

αigi

with gi ∈ M and gi ⊑ z−v, since ‖z−v‖1 < ‖z‖1. But now we have z = v+
∑

αigi with v, gi ∈ M ,

v ⊑ z, and gi ⊑ z − v ⊑ z. This contradicts our non-representability assumption on z. �

A simple consequence of this lemma is the following.

Corollary 2.2.4 For any sublattice L of Zn, the set of ⊑-minimal elements of L\{0} is the unique

inclusion-minimal set that has the positive sum property with respect to L.

A natural question to ask is how this corollary looks like if we fix our attention to just one orthant

Oj of Rn. Here is the straight-forward answer from the last corollary.

Corollary 2.2.5 For any sublattice L of Zn, the set of ⊑-minimal elements of (L ∩ Oj) \ {0} is

the unique inclusion-minimal set that has the positive sum property with respect to L ∩ Oj.

In fact, this result holds for any union of orthants. As indicated already in the introduction, we are

sometimes interested in sets having the positive sum property with respect to {x ∈ L : xI ≥ 0},

where I ⊆ {1, . . . , n}. Herein, we take the union over 2|I| orthants.

Corollary 2.2.6 For any sublattice L of Zn and for any index set I ⊆ {1, . . . , n}, the set of ⊑-

minimal elements of {x ∈ L : xI ≥ 0}\{0} is the unique inclusion-minimal set that has the positive

sum property with respect to {x ∈ L : xI ≥ 0}.

2.3 How to check the positive sum property

So far, checking whether a given set G ⊆ Zn has the positive sum property with respect to

a given lattice L would require infinitely many ⊑-representability tests. Although Lemma 2.2.3
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characterizes the elements of L that need to be computed in order to complete a given generating

set of lattice vectors with respect to the positive sum property, it does not say how to do this

step algorithmically. The following criterion, however, is different. It states that only finitely many

“critical vectors” need be tested for representability. It is this lemma that leads to a finite algorithm

to compute a set of vectors that has the positive sum property with respect to the given lattice,

see Section 2.4.

Lemma 2.3.1 (Criterion for positive sum property with respect to integer lattice) Let

L be an integer sublattice of Zn. A symmetric set G ⊆ L, that is v ∈ G implies −v ∈ G, has the

positive sum property with respect to L if and only if the following two conditions hold:

• G finitely generates L over Z, and

• for every pair v, w ∈ G, the vector v + w is ⊑-representable with respect to G.

Proof. We have to show that any non-zero z ∈ L can be written as a finite positive linear integer

combination of elements from G where each vector in this combination is sign-compatible with

z. Since G generates L over Z and since G is symmetric, the vector z can be written as a linear

combination z =
∑

αivi for finitely many αi ∈ Z>0 and vi ∈ G. Note that
∑

αi‖vi‖1 ≥ ‖z‖1 with

equality if and only if vi ⊑ z for all i.

From the set of all such linear integer combinations
∑

αivi choose one such that
∑

αi‖vi‖1 is

minimal and assume that
∑

αi‖vi‖1 > ‖z‖1. Otherwise vi ⊑ z for all i and we are done. Therefore,

there have to exist vectors vi1 , vi2 in this representation which have some component k = k0 of

different signs.

By the assumptions on G, the vector vi1 + vi2 can be written as vi1 + vi2 =
∑

βjv
′
j for finitely

many βj ∈ Z>0, v′j ∈ G, and βjv
′
j ⊑ vi1 + vi2 for all j. The latter implies that we have for each

component k = 1, . . . , n,

∑

j

βj |v
′
j
(k)

| = |
∑

j

βjv
′
j
(k)

| = |(vi1 + vi2 )
(k)| ≤ |v

(k)
i1

| + |v
(k)
i2

|,

where the last inequality is strict for k = k0 by construction. Summing up over k = 1, . . . , n, yields
∑

βj‖v′j‖1 = ‖vi1 + vi2‖1 < ‖vi1‖1 + ‖vi2‖1. But now z can be represented as

z = αi1vi1 + αi2vi2 +
∑

i6=i1,i2

αivi

=
∑

βjv
′
j + (αi1 − 1)vi1 + (αi2 − 1)vi2 +

∑

i6=i1,i2

αivi

and it holds that

∑

βj‖v
′
j‖1 + (αi1 − 1)‖vi1‖1 + (αi2 − 1)‖vi2‖1 +

∑

i6=i1,i2

αi‖vi‖1 <
∑

αi‖vi‖1

in contradiction to the minimality required on the sum
∑

αi‖vi‖1. Altogether we obtain that

‖z‖1 =
∑

αi‖vi‖1, that is, G has the positive sum property with respect to L. �
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Sometimes we can exploit an already known or pre-computed structure of G. This structure allows

us to reduce the number of critical vectors v + w that need to be checked in the second condition

above and leads to a tremendous speed-up of the algorithm, see Section 2.5.

Example. The lattice L = kerZn+d(A|Id) is generated over Z by the vectors (e1,−Ae1), . . .,

(en,−Aen). Obviously, the set G = {±(e1,−Ae1), . . . ,±(en,−Aen)} has already the positive sum

property with respect to L on the first n components. This nice property is exploited in the

following criterion. �

Lemma 2.3.2 (Another criterion for positive sum property with respect to a lattice)

Let L be an integer sublattice of Zn and let πs be the projection of vectors in Rn onto their first

s components. Moreover, let G ⊆ L be a set such that πs(G) has the positive sum property with

respect to πs(L). In addition, we require that the set {v ∈ G : πs(v) = 0} is symmetric.

Under these assumptions, the set G has the positive sum property with respect to L if and only if

the following two conditions hold:

• {v ∈ G : πs(v) = 0} finitely generates {v ∈ L : πs(v) = 0} over Z, and

• for every pair v, w ∈ G for which πs(v) and πs(w) are sign-compatible, the vector v + w is

⊑-representable with respect to G.

Proof. Again, we have to show that any z ∈ L \ {0} can be written as a finite positive integer

linear combination of elements from G where each vector in this combination belongs to the same

orthant as z. Since πs(G) has the positive sum property with respect to πs(L), we can write

πs(z) =
∑

αiπs(vi) for finitely many αi ∈ Z>0 and vi ∈ G, πs(vi) ⊑ πs(z).

Thus, we know that πs(z−
∑

αivi) = 0 and therefore, z−
∑

αivi can be written as a positive integer

linear combination of elements from {v ∈ G : πs(v) = 0}. Combining these two representations, we

get a representation z =
∑

αivi with αi ∈ Z>0, vi ∈ G, and πs(vi) ⊑ πs(z), that is, in the first s

components all vi have the same signs as z.

If we consider only such representations for z as just constructed, the remainder of the proof follows

literally the proof of Criterion 2.3.1. �

2.4 How to complete a set to have the positive sum property

Lemma 2.3.1 reduces the decision whether a finite symmetric generating set F of L has the positive

sum property with respect to L to a finite number of representability tests which may be treated

algorithmically. In order to complete a set of vectors with respect to the positive sum property,

this lemma suggests the following procedure which adds further elements to the set as long as it

does not have the desired positive sum property, see Pottier [102]. Such procedures are known as

completion procedures [27].
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Algorithm 2.4.1 (Completion Procedure)

Input: a finite symmetric set F ⊆ kerZn(A) generating L over Z

Output: a set G ⊇ F that has the positive sum property with respect to L

G := F

C :=
⋃

f,g∈G

S-vectors(f, g)

while C 6= ∅ do

s := an element in C

C := C \ {s}

f := normalForm(s, G)

if f 6= 0 then

C := C ∪
⋃

g∈G

S-vectors(f, g)

G := G ∪ {f}

return G.

In this algorithm, the set S-vectors(f, g) corresponds to the “critical” vectors that are described in

Lemma 2.3.1, that is, S-vectors(f, g) = {f + g}.

Behind the function normalForm(s, G) there is the following algorithm which returns 0 if a ⊑-

representation s =
∑

αigi with finitely many αi ∈ Z>0 and gi ∈ G, gi ⊑ z is found, or it returns a

vector t such that a ⊑-representation of s is possible with respect to G ∪ {t}.

The normalForm algorithm aims at finding such a ⊑-representation s =
∑

αigi by reducing s by

elements of G in such a way that, if at some point of this reduction the zero vector is reached,

a ⊑-representation s =
∑

αigi has been found. If the reduction process terminates with a vector

t 6= 0 then a ⊑-representation s =
∑

αigi with respect to G∪{t} has been constructed. The vector

t is called a normal form of s with respect to the set G.

Algorithm 2.4.2 (Normal form algorithm)

Input: a vector s, a set G of vectors

Output: a normal form of s with respect to G

while there is some g ∈ G such that s is reducible by g do

s := reduce s by g

return s

The reduction involved in the normalForm algorithm remains to be defined. We say that s ∈ Zn

can be reduced by g ∈ Zn to s−g if g ⊑ s. Thus, in case of reducibility, we have s = g+(s−g) with

g ⊑ s and s− g ⊑ s. Since ‖s− g‖1 < ‖s‖1, we conclude that normalForm(s, G) always terminates.
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Lemma 2.4.3 (Pottier [102]) With the above definitions of S-vectors and of normalForm the

Completion Procedure 2.4.1 terminates and satisfies its specifications.

Proof. Termination of the above algorithm follows immediately by application of the ⊑-version

of the Gordan-Dickson Lemma, Lemma 2.1.3, to the sequence of vectors {v ∈ G \F} as they were

added to G by the algorithm. To see this, note that f = normalForm(s, G) implies that there is no

g ∈ G with g ⊑ f . Thus, the algorithm produces a sequence of vectors {v ∈ G \ F} = {f1, f2, . . .},

where fi 6⊑ fj for i < j. Such a sequence is always finite by Lemma 2.1.3. Correctness of the

algorithm follows immediately by Lemma 2.3.1, since upon termination normalForm(v +w, G) = 0

for all v, w ∈ G, giving a representation v + w =
∑

αigi with αi ∈ Z>0, gi ∈ G, and gi ⊑ v + w.

�

Remark. Let us state here a simple criterion to reduce the number of critical vectors v + w that

need to be checked. If v and w belong to the same orthant, the relation v, w ⊑ (v + w) implies

that (v + w) = v + w is already a desired ⊑-representation of (v + w)as in the second condition

of Lemma 2.3.1 and we do not need to waste time searching the (possibly huge) set G for suitable

vectors gi. �

2.5 Speeding up the completion procedure

In this section we exploit the criterion given in Lemma 2.3.2 instead of the one given in Lemma

2.3.1 to complete a generating set of L with respect to the positive sum property. In fact, we wish

to solve a more general problem:

“Compute the ⊑-minimal elements in LI := {x ∈ L : xI ≥ 0} \ {0} for given I ⊆ {1, . . . , n}.”

For this, we first introduce a special generating set of L. This generating set not only decreases the

number of sums f + g that need to be added to C, but more importantly, it reduces the amount of

work to compute normalForm(s, G) tremendously. As the latter computation is the most expensive

part of Algorithm 2.4.1, this heavily speeds up the computation. Moreover, we employ a so-called

critical-pair selection strategy that chooses the next element s from C according to a certain rule.

This, together with the special input set, will imply that the set G returned by our algorithm is

exactly the set of ⊑-minimal elements (in the case that no non-negativity constraint is present).

Not a single unnecessary vector is computed!

In Algorithm 2.4.1, one has to wait until the very end to extract the ⊑-minimal elements from the

returned set G. In contrast to this, our algorithm provides a certificate of ⊑-minimality for each

vector that is added to G.

Let us assume for the rest of this chapter that L is generated by r linearly independent vectors

and that the first r components of the vectors of L are linearly independent, that is, the only r-

dimensional vector that is zero on the first r components is 0. Consequently, the first r components
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of a vector v ∈ L uniquely define v. In order to compute this lifting quickly whenever needed,

we may assume that the generators {p1, . . . , pr} ⊆ Zn of L have the following structure, which is

clearly achievable by suitable elementary integral row operations and permutations of columns:

p1 = ( p1,1, p1,2, . . . , . . . , p1,r, . . . , p1,n ),

p2 = ( 0, p2,2, . . . , . . . , p2,r, . . . , p2,n ),

p3 = ( 0, 0, p3,3 . . . , p3,r, . . . , p3,n ),
... (

...,
..., . . . ,

. . . ,
..., . . . ,

... ),

pr = ( 0, 0, . . . , 0, pr,r, . . . , pr,n ),

with pi,i > 0, i = 1, . . . , r.

Let πd denote the projection of an n-dimensional vector onto its first d ≥ r components. Next let

us define a norm ‖.‖ on vectors v ∈ L as follows: ‖v‖ := ‖πd(v)‖1, where ‖.‖1 denotes the l1-norm

on Rd. It can easily be checked that, under our assumptions on L, this defines indeed a norm on

L. It is this norm definition that breaks existing symmetry of the given problem.

Putting J := I ∩ {1, . . . , d}, we clearly have LI ⊆ LJ . Let πd(F ) denote the set of all ⊑-minimal

nonzero vectors in πd(LJ ). By Corollary 2.2.6, πd(F ) has the positive sum property with respect

to πd(LJ), that is, every vector πd(v) ∈ πd(LJ ) is ⊑-representable with respect to πd(F ). Such a

representation πd(v) =
∑

αiπd(fi) with αi ∈ Z>0 and πd(fi) ⊑ πd(v) can be uniquely lifted to

v =
∑

αifi showing in particular that F generates LJ (and thus also LI) over Z+.

Moreover, this set πd(F ) can be computed for example via Algorithm 2.4.1 once a lattice basis F of

πd(L) ⊆ Zd over Z is given as input. Note that all these ⊑-minimal vectors in πd(F ) must lift to ⊑-

minimal elements in L, since they are already indecomposable/minimal on the first d components.

This approach via Algorithm 2.4.1 is not very efficient in practice, although in our computational

experiments, it often happened that the set πr(F ), in case that d = r, simply contained the unit

vectors in Zr and possibly their negatives. However, the reference to Algorithm 2.4.1 shall suffice

here to convince the reader that πd(F ) can be found without computing the ⊑-minimal elements

in L first.

Let us now define the pieces for the project-and-lift algorithm that computes the ⊑-minimal ele-

ments in LJ \ {0} and thus also in LI \ {0}.

Algorithm 2.5.1 (Faster Algorithm to Compute ⊑-minimal elements in LJ \ {0})

Input: set F ⊆ LJ such that πd(F ) is the set of ⊑-minimal nonzero vectors in πd(LJ )

Output: a set G which contains all ⊑-minimal vectors in LJ \ {0}

G := F

C :=
⋃

f,g∈G:πd(f) and πd(g) are sign-compatible

{f + g}

while C 6= ∅ do

s := an element in C with smallest ‖.‖-norm
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C := C \ {s}

f := normalForm(s, G)

if f 6= 0 then

G := G ∪ {f}

C := C ∪
⋃

g∈G:πd(f) and πd(g) lie in the same orthant of Rd

{f + g}

return G.

Due to our special input set, the function normalForm(s, G) can be sped up as follows.

Algorithm 2.5.2 (Faster Normal Form Algorithm)

Input: a vector s, a set G of vectors

Output: a normal form of s with respect to G

if there is some g ∈ G such that g ⊑ s return 0

return s

Once the normal form algorithm finds a vector g ∈ G with g ⊑ s, it would reduce s to s − g with

‖s − g‖1 < ‖s‖1. As we will show below, the algorithm can conclude now that a representation

s = g1+. . .+gr, gi ∈ G, gi ⊑ s, i = 1, . . . , r, will exist upon termination of the algorithm. Therefore,

the function normalForm(s, G) can return 0 immediately without explicitly constructing such a

relation.

Since we started with a very special input set that has the positive sum property already on the

first d components, only those pairs of vectors f, g ∈ G lead to a critical vector in C, for which the

projections πd(f) and πd(g) are sign-compatible.

Finally, let us prove our claims. There are in fact two claims. First, the special input set, the

restricted set of critical pairs, and the new definition for the normal form algorithm guarantee that

a superset of all ⊑-minimal elements in LJ is computed. Second, the selection strategy that chooses

the next s by increasing norm ‖.‖ guarantees that no element is computed that is not ⊑-minimal.

Lemma 2.5.3 Algorithm 2.5.1 always terminates and returns a set G containing all ⊑-minimal

elements in LJ \ {0}.

Proof. To prove termination, consider the sequence of vectors in G \ F = {f1, f2, . . .} as they are

added to G during the run of the algorithm. By construction, we have fi 6⊑ fj , that is (f+
i , f−

i ) 6≤

(f+
j , f−

j ) whenever i < j. Thus, by the Gordan-Dickson Lemma, this sequence must be finite and

the algorithm terminates.

To prove correctness, let us assume that z is ⊑-minimal in LJ \ {0} but is not contained in the

final output set G of Algorithm 2.5.1. Without loss of generality we may assume that z has a

smallest norm ‖z‖ among all such ⊑-minimal vectors in LJ \ {0}. Therefore, we can assume that
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all ⊑-minimal elements g in LJ \ {0} with ‖g‖ < ‖z‖ are contained in G. In the following, we

construct a contradiction to the assumption z 6∈ G and correctness of Algorithm 2.5.1 is proved.

Note that we essentially follow the construction of the proof of Lemma 2.3.1. We only need to show

that each step is still correct with our new definitions.

As F is contained in G, there is a representation z =
∑

αivi with positive integers αi and vectors

vi ∈ G with πd(vi) ⊑ πd(z). From the set of all such linear integer combinations choose one such

that
∑

αi‖vi‖1 is minimal.

Let us assume first that
∑

αi‖vi‖1 > ‖z‖1. Therefore, there have to exist vectors vi1 , vi2 in this

representation which have some component k = k0 of different signs. By construction, k0 > d, as

the vi all have the same sign as z on the first d components.

The vector vi1 + vi2 was added to C during the run of Algorithm 2.5.1 (as πd(vi1 ) and πd(vi2) are

sign-compatible by construction). If ‖vi1 + vi2‖ = ‖z‖, then all other vi, i 6= i1, i2, must satisfy

‖vi‖ = 0 as πd(vi) ⊑ πd(z) for all i. But πd(vi) = 0 implies vi = 0 and thus vi1 + vi2 = z. Since

vi1 + vi2 (= z) is a vector that was added to C during the run of the algorithm, the vector z is

eventually chosen as s ∈ C. Being ⊑-minimal, we have normalForm(z, G) = z and thus, z must

have been added to G, in contradiction to our assumption z 6∈ G.

Therefore, we may assume that ‖vi1 + vi2‖ < ‖z‖. However, since all ⊑-minimal elements v in

LJ \{0} with norm ‖v‖ < ‖z‖ are assumed to be in G, there must exist a representation vi1 +vi2 =
∑

βjv
′
j for finitely many βj ∈ Z>0, v′j ∈ G, and βjv

′
j ⊑ vi1 + vi2 for all j. This implies that we

have for each component k = 1, . . . , n,
∑

j

βj |v
′
j
(k)

| = |
∑

j

βjv
′
j
(k)

| = |(vi1 + vi2 )
(k)| ≤ |v

(k)
i1

| + |v
(k)
i2

|,

where the last inequality is strict for k = k0 by construction. Summing up over k = 1, . . . , n, yields
∑

βj‖v′j‖1 = ‖vi1 + vi2‖1 < ‖vi1‖1 + ‖vi2‖1. But now z can be represented as

z = αi1vi1 + αi2vi2 +
∑

i6=i1,i2

αivi

=
∑

βjv
′
j + (αi1 − 1)vi1 + (αi2 − 1)vi2 +

∑

i6=i1,i2

αivi

and it holds
∑

βj‖v
′
j‖1 + (αi1 − 1)‖vi1‖1 + (αi2 − 1)‖vi2‖1 +

∑

i6=i1,i2

αi‖vi‖1 <
∑

αi‖vi‖1

in contradiction to the minimality required on
∑

αi‖vi‖1. Thus, our assumption
∑

αi‖vi‖1 > ‖z‖1

was wrong and
∑

αi‖vi‖1 = ‖z‖1 must hold.

But this last equation implies that vi ⊑ z for all i, contradicting ⊑-minimality of z unless the

representation z =
∑

αivi is trivial, that is z = v1 ∈ G. This, however, again contradicts our

initial assumption z 6∈ G and thus all ⊑-minimal elements in LJ \ {0} are in G as claimed. �

It should be noted that we did not make use of our selection strategy to prove termination and cor-

rectness of Algorithm 2.5.1. It is the following Lemma that provides a certificate for ⊑-minimality

of vectors in G.
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Lemma 2.5.4 The set G returned by Algorithm 2.5.1 is exactly the set of ⊑-minimal elements in

LJ \ {0}.

Proof. The crucial observation for this proof is that the norms ‖s‖ of the vectors s that are chosen

from C form a non-decreasing sequence. This follows from the definition that normalForm(s, g)

only returns either 0 or s and from our condition that only vectors f + g are added to C whose

first d components are sign-compatible. The latter implies ‖f + g‖ = ‖f‖ + ‖g‖. Thus, when we

remove an element s from C which turns out to be irreducible by the elements of G, that is, if

s = normalForm(s, G), we only add new elements s+g to C that satisfy ‖s+g‖ = ‖s‖+‖g‖ > ‖s‖.

Now assume that some z ∈ G is not ⊑-minimal in LJ \{0}. Thus, there is some ⊑-minimal element

g in LJ \ {0} with g ⊑ z. Under our assumptions on L, g ⊑ z implies ‖g‖ < ‖z‖. Since G contains

all ⊑-minimal elements of LJ \{0} (and thus in particular the vector g) at the end of the algorithm

and since after z only vectors f are added to G that have a norm ‖f‖ ≥ ‖z‖, the vector g must

have been contained in G already at the time when z was added to G. This however, implies that

Algorithm 2.5.1 must have computed normalForm(z, G) = 0, a contradiction to the assumption

that z was added to G. �

2.6 Computing Hilbert bases and Graver bases

Let us clarify in this section how to invoke this project-and-lift approach more effectively in order

to compute the nonzero ⊑-minimal elements of a lattice L ⊆ Zn and of L+. Assume again, that

L is spanned by r linearly independent vectors and that the first r components of L are linearly

independent, too.

2.6.1 ⊑-minimal elements in L \ {0}

This question is easy to solve. First compute a set F such that πr(F ) is the set of ⊑-minimal

elements in πr(L) \ {0}. Then use Algorithm 2.5.1 to compute exactly the ⊑-minimal elements in

L \ {0}, that is, the Graver basis of L.

Example 2.6.1 The homogeneous primitive partition identities of order n, see [114, Chapter 14]

for details, correspond to the Graver basis elements of the matrix
(

1 1 1 . . . 1

1 2 3 . . . n

)

.

For n = 20, there exist 1, 254, 767 Graver basis elements (and their negatives). This computation

with the implementation in 4ti2 of this project-and-lift algorithm took about 30 days on a Sun

Fire V890 Ultra Sparc IV processor with 1200 MHz. A more recent implementation by Matthias

Walter reduces the computation time down to 8.25 days on the same machine. Note that both

implementations did not exploit the special structure of the problem matrix. �
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2.6.2 ⊑-minimal elements in L+ \ {0}

Here, the situation is slightly more complicated. Of course, one could extract these ⊑-minimal

elements from the ⊑-minimal elements in L\{0}. This is clearly inefficient, as the latter set can be

much bigger than the set we are looking for. Unfortunately, we cannot avoid such a behavior, but

we can at least try to keep the set, from which we extract our desired ⊑-minimal elements, small.

We achieve this as follows. First we compute the set of ⊑-minimal elements in πr(L) \ {0} and

from it we extract the ⊑-minimal elements in πr(L)+ \ {0}. Now we use this set as πr(F ) and the

set πr+1(L)∩{x : x{1,...,r} ≥ 0} instead of LJ with Algorithm 2.5.1. This computes the ⊑-minimal

elements in (πr+1(L)∩{x : x{1,...,r} ≥ 0})\{0} from which we can extract the ⊑-minimal elements

in πr+1(L)+ \ {0}. Iterating this process with one new variable at a time, we obtain the ⊑-minimal

elements in πr+2(L)+ \ {0}, . . ., πn(L)+ \ {0} = L+ \ {0}, and are done.

Clearly, in intermediate steps we still compute only supersets from which we throw away those

elements with negative last component, but these differences in sizes are not as big as when we

extract the ⊑-minimal elements in L+ \ {0} from those in L \ {0}.

Example 2.6.2 Let us consider the cone of magic 6 × 6 squares, see Chapter 8 for its definition.

This cone is a 24-dimensional cone in R36. Using an implementation in 4ti2 of the project-and-lift

algorithm above, the 522, 347 elements in the Hilbert basis were computed in about 10 days on a

1GHz PC with 4GB RAM running Linux. �

Remark. This project-and-lift approach is of course applicable also for the computation of the

⊑-minimal elements in LI = {x ∈ L : xI ≥ 0}, where I ⊆ {1, . . . , n}. Moreover, we can use this

approach to compute Hilbert bases of general cones C = {x : Ax ≤ 0}. To see this, introduce slack

variables u, define ⊑u via (x1, u1) ⊑u (x2, u2) if and only if u1 ⊑ u2, and compute all ⊑u-minimal

elements in {(x, u) ∈ Zn+d : Ax + u = 0, u ≥ 0}. Note that x ∈ Zn belongs to the Hilbert basis of

C if and only if (x,−Ax) is ⊑u-minimal in {(x, u) ∈ Zn+d : Ax + u = 0, u ≥ 0}.

Finally, we wish to remark here that there are also other algorithms [4, 33, 100, 103] to compute

the ⊑-minimal elements in the case that L = ker(A) for some integer matrix A. Our approach,

however, is faster and more general. �
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Test sets

In this chapter we deal with the solution of integer linear programs via a simple augmentation

algorithm. In fact, we consider the optimization problem:

(L)c,β : min{c⊺z : z ≡ β (mod L), z ∈ Zn
+}.

Herein, L denotes a sublattice of Zn, and we have β ∈ Zn and c ∈ Rn. For given matrix A ∈ Zd×n

and L = {x ∈ Zn : Ax = 0}, this general problem simplifies to the “usual” integer linear program

(IP)c,b : min{c⊺z : Az = b, z ∈ Zn
+}

for a certain vector b ∈ Zd.

Although (L)c,β denotes a family of problems as c and β vary, we refer to subsets of (L)c,β as (L)c,β

as well, but state which data is kept fixed and which is allowed to vary. Thus, a single instance, that

is where β and c are given, is also denoted by (L)c,β . The family (IP)c,b is handled analogously.

Note that the problem (L)c,β has a close connection for example to the “group problem in integer

programming” [106] and to the integer Fourier-Motzkin elimination [121, 122, 123], respectively.

�

Primal methods are based on repeated augmentation of a feasible solutions to (L)c,β to optimality.

Strongly related to this augmentation scheme is the notion of a test set. For a recent survey on

test sets see for example [120].

Definition 3.0.1 (Test Set) A set T ⊆ Zn is called a test set for (L)c,β if

1. c⊺t > 0 for all t ∈ T , and

2. for every β ∈ Zn and for every non-optimal feasible point z0 of (L)c,β there exists a vector

t ∈ T such that z0 − t is feasible.

A vector t ∈ T satisfying these two conditions is called an improving vector or an improving

direction.

33
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A set is called a universal test set for (L)c,β if it contains a test set for (L)c,β for every cost

vector c ∈ Rn.

Clearly, a universal test set can only depend on the given lattice L as all the other data is allowed

to vary. Moreover, it should be noted that a test set is a subset of the lattice L, since subtracting

a test set element t from a feasible solution z must lead to another feasible solution z − t ≡ β

(mod L).

Once a finite (universal) test set T for and a feasible solution z0 to (L)c,β are available, the following

augmentation algorithm can be employed in order to solve the optimization problem (L)c,β .

Algorithm 3.0.2 (Augmentation Algorithm)

Input: L, c, β, a finite test set T for (L)c,β , a feasible solution z0 to (L)c,β

Output: an optimum zmin of (L)c,β

while there is t ∈ T with c⊺t > 0 such that z0 − t is feasible do

z0 := z0 − t

return z0

Thus, the process of optimizing (L)c,β via (universal) test sets can be decomposed as follows:

1. Compute a generating set of L over Z.

2. Compute a (universal) test set for (L)c,β .

3. Find an initial solution z0 to (L)c,β .

4. Augment z0 until an optimum zmin is reached.

In the following, we deal with each of these algorithmic questions in more detail.

3.1 How do we find lattice generators?

In this section, we deal with the question of how to find lattice generators if the lattice is given

only implicitly as L = {z ∈ Zn : Az = 0, Bz ≡ 0 (mod p)}, where Bz ≡ 0 (mod p) is a short-hand

notation for relations B⊺

i z ≡ 0 (mod pi) for given integers pi.

Let us first reduce the problem to one where the lattice has the form {z′ ∈ Zk : A′z′ = 0} for

some integer matrix A′. For this, we write each relation B⊺

i z ≡ 0 (mod pi) in the equivalent form

B⊺

i z − γipi = 0 for some integer γi. Then it can be easily seen that once we project the elements

of a generating set of

{(z, γ) ∈ Zk : Az = 0, Bz − diag(p)γ = 0} =
{(

A 0
B −diag(p)

)

( z
γ )
}

=: {z′ ∈ Zk : A′z′ = 0}
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over Z onto the first n components (that is, we throw away again the γi’s), we get a generating set

of L over Z, as desired.

Thus, without loss of generality, we can now assume that L = {z ∈ Zn : Az = 0}. Moreover, we

may assume that the d × n matrix A has full row rank d, a property that is easily checked or

achieved by computing the row-echelon form of A. We now bring the matrix A into a special form,

the Hermite normal form HNF(A). This matrix HNF(A) is the uniquely determined d× n matrix

(D|0) that one gets from A by doing only integer column operations (change of sign, addition

of integer multiple of a column to another column, interchanging two columns) such that D is a

lower-triangular matrix with strictly positive entries on the diagonal and all entries dij of D with

j < i are non-negative and strictly smaller than the element dii of the diagonal of D in the same

row.

Thus, we can write HNF(A) = AU1 . . . Us, where the Ui are n×n matrices that encode the column

operations performed on A. Note that we get the matrix U := InU1 . . . Us from the identity matrix

In by performing the same column operations on In as on A.

Lemma 3.1.1 Let HNF(A) = AU and let u1, . . . , un denote the columns of U . Then the last n−d

columns of U , ud+1, . . . , un, generate L = kerZn(A) over Z.

Proof. Computing AU = HNF(A) = (D|0), we already see that Aui = 0 for i = d + 1, . . . , n, and

thus ud+1, . . . , un ∈ kerZn(A).

Let z ∈ kerZn(A) and consider 0 = Az = (AU)(U−1z) = HNF(A)y = (D|0)y with y = U−1z.

By construction of U , det(U) = ±1, and thus U−1 contains only integer entries. Consequently,

y ∈ kerZn(HNF(A)). Due to the special structure of HNF(A), that is, since the columns of D

are linearly independent, kerZn(HNF(A)) is generated over Z by the unit vectors ed+1, . . . , en. We

conclude that z = Uy is an integer linear combination of the columns ud+1, . . . , un of U and the

claim is proved. �

Example 3.1.2 Consider the optimization problem

min

{

(1, 0, 1, 0)z :

(

1 1 1 1

1 5 10 25

)

z =

(

10

110

)

, z ∈ Z4
+

}

.

Herein, we have A = ( 1 1 1 1
1 5 10 25 ). Let us compute

• the Hermite normal form HNF(A) = (D|0) of A and

• the transformation matrix U with HNF(A) = AU ,

from which we can extract a lattice basis F for kerZ4(A).

( 1 1 1 1
1 5 10 25 ) → ( 1 0 0 0

1 4 9 24 ) → ( 1 0 0 0
1 4 1 0 ) → ( 1 0 0 0

1 1 4 0 ) → ( 1 0 0 0
0 1 0 0 )
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Thus,

HNF(A) =

(

1 0 0 0

0 1 0 0

)

.

Applying the same column operations to I4 we obtain

U =











0 1 −5 5

2 −2 9 −6

−1 1 −4 0

0 0 0 1











.

The last two columns of HNF(A) are zero. Thus, the last two columns of U ,

F = {(−5, 9,−4, 0), (5,−6, 0, 1)},

(here written as row vectors) form a lattice basis of kerZ4(A). �

3.2 Graver bases: A universal test set

In this section, we have another look onto a basic object of this book, the Graver basis. The

Graver basis turns out to be a universal test set for the problem class (L)c,β . We now give three

different equivalent characterizations of Graver bases. Corollaries 2.2.4 and 2.2.5 imply that these

characterizations are indeed equivalent.

Definition 3.2.1 For given sublattice L of Zn, we define the Graver basis GIP(L) as follows:

1. GIP(L) is the unique inclusion-minimal set having the positive sum property with respect to

L.

2. GIP(L) is the set of all ⊑-minimal elements of L \ {0}.

3. For every orthant Oj of Rn let Hj denote the unique inclusion-minimal generating set of the

monoid Oj ∩ L. Then GIP(L) is the union of these Hj taken over all 2n orthants Oj of Rn.

Note that Chapter 2 already provided algorithms to compute this Graver basis once generators of

the underlying lattice L are known.

Originally, Graver [65] defined this set via the third condition and only for a special type of lattices,

L = kerZn(A) := {v ∈ Zn : Av = 0}, the integer kernel of a given matrix A.

Example 3.1.2 cont. In order to compute the Graver basis of A, perform the completion proce-

dure, Algorithm 2.4.1, or use the software package 4ti2 [70] as follows. Store the problem matrix

in a file, say “4coins”:

2 4

1 1 1 1

1 5 10 25
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and then call “graver 4coins” which produces a file named “4coins.gra”:

5 4

-5 6 0 -1

-5 9 -4 0

0 3 -4 1

-5 3 4 -2

-5 0 8 -3

containing the desired 5 Graver basis elements. As the Graver basis is symmetric, that is, if v is a

Graver basis element so is −v, we obtain as the Graver basis of A the 10 vectors:

{±(−5, 6, 0,−1),±(−5, 9,−4, 0),±(0, 3,−4, 1),±(−5, 3, 4,−2),±(−5, 0, 8,−3)}

�

The next lemma shows that it is in fact the positive sum property with respect to L that turns

the Graver basis GIP(L) into a universal test set.

Lemma 3.2.2 (Positive Sum Property implies Universal Test Set Property) If G ⊆ Zn

has the positive sum property with respect to the sublattice L of Zn, then G is a universal test set

for (L)c,β.

Proof. Given β ∈ Zn, c ∈ Rn, and a non-optimal feasible point z0 of (L)c,β . We have to prove

that there exists a vector v ∈ G such that z0 − v is a better feasible solution than z0.

By z1 denote another feasible solution with smaller cost function value than z0. Thus, by the

assumptions on G, we can write z0−z1 ∈ L as a finite integer linear combination z0−z1 =
∑

αigi,

where gi ∈ G, αi ∈ Z>0, and αigi ⊑ z0 − z1 for all i. Since 0 < c⊺(z0 − z1) =
∑

αic
⊺gi we have

c⊺gj > 0 for at least one gj . We claim that z0 − gj is feasible and has a better cost function value

than z0.

Clearly, z0 − gj ≡ β − 0 ≡ β (mod L) and c⊺z0 > c⊺(z0 − gj), since gj ∈ L and c⊺gj > 0. So it

remains to prove that z0 − gj ≥ 0. But this follows immediately from Lemma 2.1.4, which states

that the components of z0−gj ≥ 0 lie in the intervals defined by the corresponding (non-negative!)

components of z0 and of z1. �

Corollary 3.2.3 The Graver basis GIP(L) is a universal test set for (L)c,β.

Remark. It should be noted that in general a Graver basis does not constitute an inclusion-

minimal universal test set for (L)c,β . There is in fact a unique inclusion-minimal universal test set,

a universal Gröbner basis of the underlying lattice ideal. We refer to [114] for more details. �
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3.3 How do we find an initial solution?

Now that we have computed a lattice basis for L, we can apply one of the algorithms presented

in Chapter 2 to compute a universal test set for (L)c,β , the Graver basis. But how can we find an

initial solution z0 for a given problem

min{c⊺z : z ≡ β (mod L), z ∈ Zn
+}.

from which we can start the augmentation algorithm? As it turns out, universal test sets allow a

procedure similar to Phase I of the simplex method in linear programming: first we find a solution

z0 ∈ Zn to z ≡ β (mod L) and then the negative components of z0 are iteratively “removed” by

subtracting suitable vectors from the universal test set.

An integer solution to z ≡ β (mod L) is quickly found: z0 = β. However, how do we find it when

z ≡ β (mod L) is given as {z ∈ Zn : Az = a, Bz ≡ b (mod p)}? Again, as in Section 3.1 we

can reduce our attention to the case {z ∈ Zn : Az = a}. Now compute HNF(A) and U with

HNF(A) = AU , again as in Section 3.1.

From a = Az = (AU)(U−1z) = Hy = (D|0)y, y = U−1z, we first compute a solution y0 to

Hy = a. Such a solution y0 is quickly found, as D is a triangular matrix. Moreover, again since

D is a triangular matrix, any two solutions to Hy = a differ only in their last n − d components

by a linear (integer) combination of ed+1, . . . , en. Thus, there is an integer solution z to Az = a if

and only if there is an integer solution y0 = U−1z0 to Hy = a. (Remember that U−1 is an integer

matrix!) Thus, if there is no integer solution y0 to Hy = a, our optimization problem is infeasible.

On the other hand, once we have found an integer solution y0 with Hy0 = a, we easily find the

integer solution z0 = Uy0 with Az = a.

It remains to transform this integer solution z0 of Az = a into a non-negative integer solution

of Az = a. This is done as follows: while there is some t in the universal test set such that

‖(z0 − t)−‖1 < ‖z−0 ‖1, replace z0 by z0 − t and repeat.

Clearly, this process terminates after finitely many steps. Either we have found a feasible (non-

negative, integer) solution to Az = a, or some components of z0 are still negative. We claim that

in the latter case, the equations Az = a do not have a non-negative integer solution.

Lemma 3.3.1 If z0 6∈ Zn
+ is an integer solution of Az = a such that there is no t ∈ GIP(A) with

‖(z0 − t)−‖1 < ‖z−0 ‖1, then {z : Az = a, z ∈ Zn
+} is empty.

Proof. Assume on the contrary that there was a solution z1 ∈ Zn
+ of Az1 = a. Then with

I := {i : z
(i)
0 < 0}, z+

0 and z1 + z−0 are both solutions to the minimization problem

min

{

∑

i∈I

−z(i) : z ≡ β + z−0 (mod L), z ∈ Zn
+

}

.

While z+
0 has objective value

∑

i∈I −(z+
0 )(i) = 0 by construction of I, the objective value of z1+z−0

is strictly negative, since (z1)I ≥ 0 and since at least one component of (z−0 )I is strictly positive
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by our assumption z0 6≥ 0. Thus, there is some element t in the universal test set such that z+
0 − t

is a feasible (non-negative) solution with strictly negative objective value
∑

i∈I

−(z+
0 − t)(i) =

∑

i∈I

−(−t)(i) < 0.

By adding
∑

i∈I −z
(i)
0 to both sides, we have

∑

i∈I −(z0 − t)(i) <
∑

i∈I −z
(i)
0 . However, since

(z0 − t)(i) ≥ 0 and z
(i)
0 ≥ 0 for all i 6∈ I, this is equivalent to ‖(z0 − t)−‖1 < ‖z−0 ‖1, contradicting

our assumption on z0 that no such t exists. �

Example 3.1.2 cont. To find an integer solution to Az =
(

10

110

)

, we first solve Hy =
(

10

110

)

,

which gives for example y0 = (10, 110, 0, 0)⊺ as an integer solution. Next we compute z0 = Uy0 =

(110,−200, 100, 0)⊺. A quick check verifies Az0 =
(

10

110

)

.

The vector (5,−9, 4, 0)⊺ reduces the negative component while keeping the nonnegative components

nonnegative. Note that the vector (5,−1, 0, 1)⊺, however, would also be applicable although new

negative components appear. The important fact is that the norm of the negative components

becomes smaller.

z0 → z0 := z0 − 22 · (5,−9, 4, 0)⊺ = (0,−2, 12, 0)⊺

Now we can subtract the vector (0,−3, 4,−1)⊺ and get

z0 → z0 := z0 − 1 · (0,−3, 4,−1)⊺ = (0, 1, 8, 1)⊺,

a feasible solution to the optimization problem. Again, we check that indeed Az0 =
(

10

110

)

. �

3.4 Does the augmentation process always terminate?

Having found an initial solution z0 to our minimization problem

min{c⊺z : z ≡ β (mod L), z ∈ Zn
+}.

and having a universal test sets for (L)c,β at hand as well, we can apply the augmentation procedure

to iteratively improve z0. There are two natural questions to ask:

• Does the augmentation procedure always terminate if the optimization problem is solvable?

• How can we determine whether the optimization problem is unbounded with respect to the

objective function?

To answer the first question, we observe that there are only finitely many different vectors in the

universal test set. Thus, in each augmentation step the objective value is decreased by the (well-

defined and positive) minimum improvement of all these finitely many vectors. If the augmentation

procedure did not terminate, the objective value would drop below any given number.

Let us now assume for the second question that the objective function is not bounded with respect

to the objective function. We claim that already a (not necessarily universal) test set provides us

with the information that the problem is unbounded.
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Lemma 3.4.1 Let T be a test set for (L)c,β. The problem (L)c,β is unbounded with respect to the

objective function if and only if there exists t ∈ T being feasible for (L)c,0 with c⊺t > 0.

Proof. Note that the problem (L)c,β is unbounded with respect to the objective function if and

only if there exists a feasible integer solution z in (L)c,0 with c⊺z < 0. On the other hand, 0 is not

optimal for the problem (L)c,0 if and only if there exists t ∈ T with c⊺t > 0 such that 0 − t is a

better feasible solution than 0. �

Example 3.1.2 cont. Finally, we want to augment the feasible solution z0 = (0, 1, 8, 1) (written as

a row vector for better readability) to optimality. In a first step, however, we extract those vectors

from the Graver basis that have a strictly positive objective value, as only those could possibly be

applied as improving directions:

(5,−6, 0, 1) : (5, 0, 0, 1) → (0, 6, 0, 0)

(5,−9, 4, 0) : (5, 0, 4, 0) → (0, 9, 0, 0)

(0,−3, 4,−1) : (0, 0, 4, 0) → (0, 3, 0, 1)

(5,−3,−4, 2) : (5, 0, 0, 2) → (0, 3, 4, 0)

(−5, 0, 8,−3) : (0, 0, 8, 0) → (5, 0, 0, 3)

We would like to point out here, that not all 5 improving directions are needed as a test set for

the given cost vector. Already the two vectors

(5,−6, 0, 1) : (5, 0, 0, 1) → (0, 6, 0, 0)

(0,−3, 4,−1) : (0, 0, 4, 0) → (0, 3, 0, 1)

would suffice. To convince ourselves of this fact, note that for example if (5, 0, 4, 0) → (0, 9, 0, 0) is

applicable, then so is (0, 0, 4, 0) → (0, 3, 0, 1). The Graver basis, being a universal test set, usually

contains many vectors that are superfluous once only a fixed objective function is considered.

Now we can augment z0 (for example) as follows:

(0, 1, 8, 1) → (0, 1, 8, 1)− (−5, 0, 8,−3) = (5, 1, 0, 4)

(5, 1, 0, 4) → (5, 1, 0, 4)− (5,−6, 0, 1) = (0, 7, 0, 3)

The solution (0, 7, 0, 3) is optimal with objective value 0. One reason to convince us is the fact that

no test set vector can improve it, another is that the objective function is bounded from below by

0 and this value is reached. Thus, zmin = (0, 7, 0, 3) is an optimal solution. �

3.5 How many augmentation steps are needed?

Let us assume that we have found a feasible solution z0 to the problem (L)c,β and assume that

we were able to decide that the optimal value of (L)c,β is finite. The iterative augmentation

procedure, Algorithm 3.0.2 using test sets can now be applied, since test sets allow a solution to

the Augmentation problem:



Chapter 3. Test sets 41

Augmentation problem. Given L ⊆ Zn, z0 ∈ Zn
+ and c ∈ Zn, either find an improving direction

g ∈ Zn, namely one with z − g ∈ {y ∈ Zn
+ : y ≡ z0 (mod L)} and c⊺g > 0, or assert that no such

g exists.

A major remaining question is how many augmentation steps are needed to reach an optimal

solution. In the following, we give an answer to this last remaining question.

An augmentation oracle for a lattice L is one that solves the augmentation problem, that is,

when queried on z0 ∈ Zn
+ and c ∈ Zn, it either returns an improving direction g or asserts that

none exists. Recently, in [108], a directed version of the augmentation problem was introduced;

quite remarkably, it was shown that the number of directed augmentation steps needed to reach

optimality is polynomial. We discuss this next. First, we define the directed augmentation problem.

Directed Augmentation Problem. Given c1, c2 ∈ Qn and z0 ∈ {y ∈ Zn
+ : y ≡ β (mod L)}, find

a vector g = g+ − g− ∈ Zn such that z0 − g ∈ {y ∈ Zn
+ : y ≡ β (mod L)} and c⊺

1g+ − c⊺

2g− > 0, or

decide that no such vector g exists.

Thus, the directed augmentation problem involves two objective function vectors: c1 controls the

cost of the positive part of g and c2 controls the cost of the negative part of g. The usual augmen-

tation problem occurs as the special case c1 = c2 = c. A directed augmentation oracle for L is one

that solves the directed augmentation problem, i.e. when queried on z0 ∈ Zn
+, c1, c2 ∈ Zn, it either

returns an improving direction g or asserts that none exists.

In [108], it was assumed that the input includes an upper bound vector u ∈ Zn
+ on the variables,

so that the actual feasible set is {z ∈ Zn
+ : z ≡ β (mod L), z ≤ u}. Under this assumption, the

feasible region is always bounded and there is always an optimal solution. Further, the complexity

estimates in [108] depended on the bit size of u and β. However, this is not really needed. If

the integer program (L)c,β with β = z0 is solvable, it has an optimal solution whose bit size is

polynomially bounded in the size of (given generators of) L and β = z0 Moreover, such bounds u

are polynomial time computable. This basically follows from Cramer’s rule, see e.g. [106, Section

17.1]. Therefore, it is possible to compute an upper bound u in terms of (given generators of) L

and β only, and plug it into the analysis of [108].

With this, the results of [108] imply the following.

Theorem 3.5.1 (Schulz, Weismantel [108]) There is a polynomial oracle time algorithm that,

given (generators of) L ⊆ Zn, z0 ∈ Zn
+, c ∈ Zn, solves the integer program (L)c,β with β = z0 by

querying a directed augmentation oracle for L.

Here, as usual, solving the (feasible) integer program means that the algorithm either returns an

optimal solution or asserts that the objective function is unbounded; and polynomial oracle time

means that the number of arithmetic operations, the number of calls to the oracle, and the size

of the numbers occurring throughout the algorithm are polynomially bounded in the size of the

input: (generators of) L, β = z0, and c.

As we show now, the Graver basis of a lattice L yields not only an augmentation oracle for L, but

it enables the realization of a directed augmentation oracle for L as well.
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Lemma 3.5.2 Let GIP(L) be the Graver basis of L ⊆ Zn. For any z0 ∈ Zn
+ and c1, c2 ∈ Zn, there

is a g ∈ Zn with z0 − g ∈ {y ∈ Zn
+ : y ≡ z0 (mod L)} and c⊺

1g+ − c⊺

2g− > 0 if and only if there is

such g ∈ GIP(L).

Proof. Let v be a suitable vector for the Directed Augmentation Problem. Then v can be written

as v =
∑s

i=1 gi with (not necessarily distinct) vectors gi ∈ GIP(L) and gi ⊑ v for all i. Thus,

(v+, v−) =
∑s

i=1(g
+
i , g−i ) and consequently

0 < c⊺

1v+ − c⊺

2v− =

s
∑

i=1

c⊺

1g+
i − c⊺

2g−i .

This implies that there is some gj in this sum with c⊺

1g+
i − c⊺

2g−i > 0. We claim that also z0 − gj ∈

{y ∈ Zn
+ : y ≡ z0 (mod L)} and thus also the Graver basis element gj is a suitable vector for the

Directed Augmentation Problem.

Clearly, as gj ∈ GIP(L), we have gj ∈ L and thus z0 − gj ≡ z0 (mod L). It remains to show that

z0 − gj ≥ 0. But this follows immediately from Lemma 2.1.4, which states that the components of

z0 − gj ≥ 0 lie in the intervals defined by the corresponding (non-negative!) components of z0 and

of z0 − g. �

As an immediate corollary of Theorem 3.5.1 and Lemma 3.5.2, we get the following statement.

Theorem 3.5.3 There is a polynomial time algorithm that, given generators of a lattice L ⊆ Zn

along with its Graver basis GIP(L), and vectors z0 ∈ Zn
+ and c ∈ Zn, solves the integer program

(L)c,β with β = z0.

While Theorem 3.5.3 holds for sublattice L of Zn, its complexity bound depends on the size of the

Graver basis which is part of the input. Typically, the Graver basis is very large and its cardinality

may be exponential in the dimension n. However, in the next chapter we show that for a broad

and useful class of matrices, we can tame the behavior of the Graver basis.
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n-fold integer programming

It is well-known that the integer program min{c⊺x : Ax = b, x ∈ Z
q
+}, where A is an integer

matrix and b, c are integer vectors of suitable dimensions, is generally NP-hard but polynomial

time solvable in fixed dimension q, see [106]. In this chapter, motivated by applications to high-

dimensional transportation problems and contingency tables and by the recently discovered striking

universality theorem for rational polytopes [46] (see Section 4.1), we study the following class of

integer programming problems in variable dimension.

The n-fold integer programming problem. Fix a p×q integer matrix A. Given positive integer

n and integer vectors b = (b0, b1, . . . , bn) and c = (c1, . . . , cn), where b0 ∈ Zq, and bk ∈ Zp and

ck ∈ Z
q
+ for k = 1, . . . , n, find a non-negative integer vector x = (x1, . . . , xn), where xk ∈ Z

q
+ for

k = 1, . . . , n, which minimizes c⊺x =
∑n

k=1(c
k)⊺xk subject to the equations

∑n
k=1 xk = b0 and

Axk = bk for k = 1, . . . , n.

The term “n-fold integer programming” refers to the problem being almost separable into n similar

programs min{ck⊺

x : Axk = bk, xk ∈ Z
q
+} in fixed dimension. The constraint

∑n
k=1 xk = b0,

however, binds these programs together, and the result is an integer program in large variable

dimension nq.

Let the n-fold matrix of A be the following (q +np)×nq matrix, with Iq the q× q identity matrix:

A(n) :=

















Iq Iq Iq · · · Iq

A 0 0 · · · 0

0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

















.

Then the n-fold integer programming problem can be written conveniently in matrix form as

min{c⊺x : A(n)x = b, x ∈ Z
nq
+ }.

In this chapter we establish the following theorem. Naturally, the input size is n plus the bit size

of the integer objective vector c ∈ Znq and the integer right-hand side vector b ∈ Zq+np.

43
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Theorem 4.0.1 Fix any integer matrix A. Then there is a polynomial time algorithm that, given

any n and any integer vectors b and c, solves the corresponding n-fold integer programming problem.

The proof of this theorem involves two heavy ingredients. First, it makes use of the equivalence of

the linear optimization problem and the directed augmentation problem, recently introduced and

studied in [108], see Section 3.5 for details. Second, it uses recent results of [79] and [105] on the

stabilization of certain Graver bases.

One important consequence of Theorem 4.0.1 is a polynomial time algorithm for the 3-way trans-

portation problem for long tables, settling its computational complexity; see Section 4.1 for details.

Corollary 4.1.2 Fix any r, s. Then there is a polynomial time algorithm that, given l, integer

objective vector c, and integer line-sums (ui,j), (vi,k) and (wj,k), solves the integer transportation

problem

min{c⊺x : x ∈ Zr×s×l
+ ,

∑

i

xi,j,k = wj,k,
∑

j

xi,j,k = vi,k,
∑

k

xi,j,k = ui,j}.

The n-fold integer programming problem and theorem can be generalized as follows.

Generalized n-fold integer programming. Fix integer matrices A, B of sizes r × q and s × q,

respectively. Given positive integer n and integer vectors b = (b0, b1, . . . , bn) and c = (c1, . . . , cn),

with b0 ∈ Zs, and bk ∈ Zr and ck ∈ Z
q
+ for k = 1, . . . , n, find x = (x1, . . . , xn) with xk ∈ Z

q
+

for k = 1, . . . , n, which minimizes c⊺x =
∑n

k=1 ckxk subject to
∑n

k=1 Bxk = b0 and Axk = bk for

k = 1, . . . , n. Thus, the problem matrix is of the form

















B B B · · · B

A 0 0 · · · 0

0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

















.

We have the following more general result, from which Theorem 4.0.1 is deduced in the case B = Iq.

Theorem 4.0.2 Fix any pair of integer matrices A, B of compatible sizes. Then there is a polyno-

mial time algorithm that solves the generalized n-fold integer programming problem on any input

n, b, c.

This chapter is organized as follows. In Section 4.1 we discuss applications of Theorem 4.0.1 to

multi-way transportation problems and to some packing problems, as follows. In Subsection 4.1.1

we obtain the aforementioned Corollary 4.1.2 which provides a polynomial time solution to 3-way

integer transportation problems for long tables, contrasting the recent universality theorem of [46]

for slim tables. We also extend this result to d-way transportation problems for long tables of

any dimension (Corollary 4.1.4). In Subsection 4.1.2 we describe applications to a certain ship-

ment problem (Corollary 4.1.5) and to the classical cutting stock problem (Corollary 4.1.6). In

Section 4.2 we develop the remaining ingredients for our n-fold integer programming algorithm.

We discuss the stabilization of Graver bases discovered recently in [79, 105], and use it to show
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that Graver bases of n-fold matrices can be computed in polynomial time (Theorem 4.2.2). In

Section 4.3, we us this result together with the results from Section 3.5 to prove our main theorem

of this chapter, Theorem 4.0.2, and its specialization Theorem 4.0.1 .

4.1 Applications

4.1.1 High dimensional transportation problems

A d-way transportation polytope is the set of all m1 × · · · × md non-negative arrays x = (xi1,...,id
)

such that the sums of the entries over some of their lower dimensional subarrays (margins) are

specified. For simplicity of exposition, we shall concentrate here only on d-way line-sum polytopes,

of the form

T =

8

<

:

x ∈ R
m1×···×md
+ :

X

i1

xi1,...,id
= ui2,...,id

,
X

i2

xi1,...,id
= ui1,i3,...,id

, . . . ,
X

id

xi1,...,id
= ui1,...,id−1

9

=

;

.

Transportation polytopes and their integer points (called contingency tables by statisticians), have

been studied and used extensively in the operations research literature and in the context of secure

statistical data disclosure by public agencies such as the census bureau and the national center for

health statistics. In the operations research literature, one is typically interested in the integer and

linear transportation problems, which are the integer and linear programming problems over the

transportation polytope, see e.g. [12, 88, 99, 104, 119, 125] and references therein. In the statistics

community, one is often interested in the values an entry can attain in all tables with fixed margins,

related to the security of the entry under margin disclosure, and in the construction of a Markov

basis allowing a random walk on the set of tables with fixed margins, see e.g. [8, 37, 38, 47, 51, 82]

and references therein.

It is well known that the system defining a 2-way transportation polytope is totally unimodular.

This implies that all the above problems are easy in this case. However, already 3-way trans-

portation problems are much harder. Consider the problem of deciding if a given 3-way line-sum

polytope of r × s × l arrays (with r rows, s columns and l layers) contains an integer point: the

computational complexity of this problem provides useful indication about the difficulty of the

problems mentioned above. If r, s, l are all fixed, then the problem is solvable in polynomial time

by integer programming in fixed dimension rsl. On the other hand, if r, s, l are all variable part

of the input, then the problem is NP-complete [82]. The in-between cases are much more delicate.

The case of two parameters r, s variable and one parameter l fixed was recently resolved in [45],

where it was shown to be NP-complete, strengthening [82]. Moreover, very recently, in [46], the

following striking universality result was shown.

Proposition 4.1.1 Any rational polytope P = {y ∈ Rn
+ : Ay = b} is polynomial time representable

as a 3-way line-sum transportation polytope of size r × s × 3 for some (polynomially bounded) r
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and s,

T = {x ∈ Rr×s×3
+ :

∑

i

xi,j,k = wj,k,
∑

j

xi,j,k = vi,k,
∑

k

xi,j,k = ui,j}.

Here representable means that there is a coordinate-erasing projection from Rr×s×3 onto Rn pro-

viding a bijection between T and P and between the sets of integer points T ∩Zr×s×3 and P ∩Zn.

Thus, any rational polytope is an r×s×3 line-sum polytope, and any integer (respectively, linear)

programming problem is equivalent to an integer (respectively, linear) r × s × 3 line-sum trans-

portation problem. This result led to the solution of several open problems from [119] and [125]

and had several implications on the complexity of Markov bases and the entry security problem,

see [46] and [47] for more details.

However, the last case, of two parameters r, s fixed and one parameter l variable, has remained

open and intriguing. Here, as a consequence of Theorem 4.0.1, we are able to resolve this problem

and show that both the decision and optimization problems are polynomial time solvable.

Corollary 4.1.2 Fix any r, s. Then there is a polynomial time algorithm that, given l, integer

objective vector c, and integer line-sums (ui,j), (vi,k) and (wj,k), solves the integer transportation

problem

min{c⊺x : x ∈ Zr×s×l
+ ,

∑

i

xi,j,k = wj,k,
∑

j

xi,j,k = vi,k,
∑

k

xi,j,k = ui,j}.

Proof. We formulate the 3-way integer transportation problem as an n-fold integer program with

n := l, p := r + s, and q := r · s. Reindex the variables as xk
i,j := xi,j,k so that the variables

vector is x = (x1, . . . , xn) with xk = (xk
i,j) ∈ Zr×s

+ a 2-way r × s table–the kth layer of the 3-way

table x. Similarly write c = (c1, . . . , cn) with ck ∈ Zr×s for the objective vector. Next, put b :=

(b0, b1, . . . , bn), with b0 ∈ Zrs
+ defined by b0 := (ui,j), and bk ∈ Zr+s

+ defined by bk := ((vi,k), (wj,k))

for k = 1, . . . , n. Finally, let A be the p × q = (r + s) × r · s matrix of equations for the usual

2-way transportation polytope, forcing row-sums and column-sums on each of the r × s layers xk

by Axk = bk, k = 1, . . . , n. Then the equations Axk = bk force the line-sums vi,k and wj,k, and the

additional n-fold integer program binding constraint
∑n

k=1 xk = b0 forces the “long” line-sums ui,j .

This completes the encoding. Since r, s are fixed, so are p, q, and A, and therefore, the corollary

follows from Theorem 4.0.1. �

Example 4.1.3 Consider the case r = s = 3 (the smallest where the problem is genuinely 3-

dimensional). Then p = 6, q = 9, and writing xk = (xk
1,1, x

k
1,2, x

k
1,3, x

k
2,1, x

k
2,2, x

k
2,3, x

k
3,1, x

k
3,2, x

k
3,3),

the matrix A which defines the n-fold program providing the formulation of the 3 × 3 × l trans-

portation problem is

A =





















1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1





















.
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Already for this case, of 3× 3× l tables, the only polynomial time algorithm for the corresponding

line-sum integer transportation problem we are aware of is the one guaranteed by Corollary 4.1.2

above. �

Corollary 4.1.2 extends to transportation problems of any dimension d, for long tables, namely, of

size m1×· · ·×md−1× l, where m1, . . . , md−1 are fixed and only the length l is variable, as follows.

Corollary 4.1.4 Fix d, m1, . . . , md−1. Then there is a polynomial time algorithm that, given l, in-

teger objective c, and line-sums (ui2,...,id
), . . . , (ui1,...,id−1

), solves the long multi-way transportation

problem

min{c⊺x : x ∈ Z
m1×···×md−1×l
+ :

∑

i1

xi1,...,id
= ui2,...,id

, . . . ,
∑

id

xi1,...,id
= ui1,...,id−1

}.

Proof. The long multi-way transportation problem can be encoded as an n-fold integer program

with n := l, p :=
d−1
∑

i=1

mi, and q :=
d−1
∏

i=1

mi, by reindexing the variables as xid

i1,...,id−1
:= xi1,...,id

,

letting A be the matrix of the equations of the line-sums of (d− 1)-way transportation polytope of

the m1 × · · · × md−1 arrays, and proceeding in direct analogy to the proof of Corollary 4.1.2. The

details are omitted. �

4.1.2 Some packing problems

Minimum cost shipment

The minimum cost shipment problem concerns the shipment of a large stock of items of sev-

eral types, using various vessels, with minimum possible cost. More precisely, the data is as

follows. There are t types of items. The weight of each item of type j is wj and there are

nj items of type j to be shipped. There are v available vessels, where vessel k has maximum

weight capacity uk. The cost of shipping one item of type j on vessel k is pj,k. We now for-

mulate this as an n-fold integer programming problem. We set n := v, p := 1, q := t + 1.

The defining matrix is the row vector A = (Aj) := (w1, w2, . . . , wt, 1). The variables vector is

x = (x1, . . . , xn) with xk = (xk
1 , . . . , xk

t , xk
q ), where xk

j represents the number of items of type

j to be shipped on vessel k for j = 1, . . . , t, and xk
q is an extra slack variable representing the

unused weight capacity in vessel k. The cost vector is c = (c1, . . . , cn) with ck = (ck
1 , . . . , ck

t , ck
q),

where ck
j := pj,k for j = 1, . . . , t, and ck

q := 0. Finally, the demand vector is b = (b0, b1, . . . , bn)

with bk := uk for k = 1, . . . , n, and b0 := (n1, . . . , nt,
∑v

k=1 uk −
∑t

j=1 njwj). Then the resulting

n-fold integer programming problem, min{c⊺x : A(n)x = b, x ∈ Z
nq
+ }, can be written in scalar form
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as follows:

min
∑q

j=1

∑n
k=1 ck

j xk
j =

∑t
j=1

∑v
k=1 pj,kxk

j

s.t.
∑n

k=1 xk
j = b0

j = nj , j = 1, . . . , t,

∑n
k=1 xk

q = b0
q =

∑v
k=1 uk −

∑t
j=1 njwj ,

∑q
j=1 Aj xk

j =
∑t

j=1 wj xk
j + xk

q = bk = uk, k = 1, . . . , n,

xk
j ∈ Z+, j = 1, . . . , q, k = 1, . . . , n.

Assume that the number t of types is fixed, but the numbers nj of items of each type may be very

large: this is a reasonable assumption in applications (for instance, several types of automobiles to

be shipped overseas, or several types of appliances to be shipped on ground). Then we obtain the

following striking corollary of Theorem 4.0.1, showing that the problem is polynomial time solvable,

where the input size is v plus the bit size of the integer numbers nj , wj , uk, pj,k constituting the

data. Note that this result is much stronger than the standard results on the pseudo-polynomial

time solvability of this kind of packing and knapsack-type problems using dynamic programming:

our algorithm can handle very large nj and uk, possibly exponential in the dimensional parameter

v.

Corollary 4.1.5 For each fixed number t of types, the minimum cost shipment problem is solvable

in time which is polynomial in the number v of vessels and in the bit size of the integer numbers nj

of items of each type to be shipped, type weights wj, vessel capacities uk, and shipment costs pj,k.

The cutting stock problem

This is a classical manufacturing problem, where the usual setup is as follows: a manufacturer

supplies rolls of material (such as scotch-tape or band-aid) in one of t different widths w1, . . . , wt.

The rolls are all cut out from standard rolls of common large width u, coming out of the production

line. Given orders by customers for nj rolls of width wj , the problem facing the manufacturer is to

meet the orders using the smallest possible number of standard rolls. This is almost a direct special

case of the minimum cost shipment problem discussed above, with sufficiently many identical

vessels, say v :=
∑t

j=1⌈nj/⌊u/wj⌋⌉, of capacity uk := u each, playing the role of the standard

rolls, and with cost pj,k := wj for each roll of width wj regardless of the standard roll from which

it is being cut out. The only correction needed is that each slack variable xk
q = xk

t+1, measuring

the unused width of the kth standard roll, has cost of one unit instead of zero, so that the total

cost becomes the number of standard rolls used. Thus the formulation as an n-fold program is with

n :=
∑t

j=1⌈nj/⌊u/wj⌋⌉, p := 1, q := t + 1, A := (w1, w2, . . . , wt, 1), variables xk
j representing the

number of rolls of width wj cut out of the kth roll for j = 1, . . . , t and xk
q representing the unused

width of the kth standard roll, costs ck
j := wj for j = 1, . . . , t and ck

q := 1, and demands bk := u

for k = 1, . . . , n and b0 := (n1, . . . , nt, nu −
∑t

j=1 njwj).
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Again, quite surprisingly, we get the following useful corollary regarding this classical problem.

Corollary 4.1.6 For fixed number t of widths, the cutting stock problem is solvable in time poly-

nomial in
∑t

j=1⌈nj/⌊u/wj⌋⌉ and in the bit size of the numbers nj of roll orders and roll widths

wj and u.

One common approach to the cutting stock problem makes use of so-called cutting patterns, which

are feasible solutions of the knapsack problem {y ∈ Zt
+ :
∑t

j=1 wjyj ≤ u}. This is useful when the

width u of the standard rolls is of the same order of magnitude as the demand widths wj . However,

when u is much larger than the wj , the number of cutting patterns becomes prohibitively large to

handle. But then the values ⌊u/wj⌋ are large and hence n :=
∑t

j=1⌈nj/⌊u/wj⌋⌉ is small, in which

case the result of Corollary 4.1.6 using n-fold integer programming becomes particularly appealing.

4.2 Graver bases of n-fold matrices

Fix any pair of integer matrices A and B with the same number of columns, of dimensions r × q

and s × q, respectively. The n-fold matrix of the ordered pair A, B is the following (s + nr) × nq

matrix,

[A, B](n) :=

















B B B · · · B

A 0 0 · · · 0

0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

















.

With this, the generalized n-fold integer programming problem can be conveniently written as

min{c⊺x : [A, B](n)x = b, x ∈ Z
nq
+ }.

The n-fold of a single matrix A, defined in the introduction, is the special case A(n) = [A, Iq ]
(n)

with B = Iq the q × q identity, giving the regular (non-generalized) n-fold integer programming

problem.

We now discuss a recent result of [105] and its extension in [79] on the stabilization of Graver bases

of n-fold matrices. Consider vectors x = (x1, . . . , xn) with xk ∈ Z
q
+ for k = 1, . . . , n. The type of x

is the number |{k : xk 6= 0}| of nonzero components xk ∈ Z
q
+ of x. The following result of [79] on

the stabilization of Graver bases of [A, B](n) extends the earlier result for B = Iq from [105].

Proposition 4.2.1 For every pair of integer matrices A ∈ Zr×q and B ∈ Zs×q, there exists a

constant g(A, B) such that for all n, the Graver basis of [A, B](n) consists of vectors of type at

most g(A, B).

The smallest constant g(A, B) possible in the proposition is called the Graver complexity of A, B.

Using Proposition 4.2.1, we now show that GIP([A, B](n)) can be computed in polynomial time.
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Theorem 4.2.2 Fix any pair of integer matrices A ∈ Zr×q and B ∈ Zs×q. Then there is a

polynomial time algorithm that, given n, computes the Graver basis GIP([A, B](n)) of the n-fold

matrix [A, B](n). In particular, the cardinality and the bit size of GIP([A, B](n)) are bounded by a

polynomial function of n.

Proof. Let g := g(A, B) be the Graver complexity of A, B and consider any n ≥ g. We show that

the Graver basis of [A, B](n) is the union of
(

n
g

)

suitably embedded copies of the Graver basis of

[A, B](g). Consider any g indices 1 ≤ k1 < · · · < kg ≤ n and define a map φk1,...,kg
from Z

gq
+ to Z

nq
+

by sending x = (x1, . . . , xg) to y = (y1, . . . , yn) defined by ykt := xt for t = 1, . . . , g, and yk := 0

for all other k.

We claim that the Graver basis of [A, B](n) is the union of the images of the Graver basis of [A, B](g)

under the
(

n
g

)

maps φk1,...,kg
for all 1 ≤ k1 < · · · < kg ≤ n, that is,

GIP([A, B](n)) =
⋃

1≤k1<···<kg≤n

φk1,...,kg
(GIP([A, B](g))). (4.2.1)

To see this, recall first that, by definition, the Graver basis of a matrix M is the set of all ⊑-minimal

nonzero integer dependencies on M (where a dependency on M is a vector x satisfying Mx = 0).

Thus, if x = (x1, . . . , xg) ∈ GIP([A, B](g)) then x is a ⊑-minimal nonzero dependency on [A, B](g),

implying that φk1,...,kg
(x) is a ⊑-minimal nonzero dependency on [A, B](n) and hence φk1,...,kg

(x) ∈

GIP([A, B](n)). This establishes that the right-hand side of Equation (4.2.1) is contained in the left-

hand side. Conversely, consider any y ∈ GIP([A, B](n)). Then, by Proposition 4.2.1, the type of

y is at most g, so there are indices 1 ≤ k1 < · · · < kg ≤ n such that all nonzero components

of y are among those of the reduced vector x := (yk1 , . . . , ykg), and therefore y = φk1,...,kg
(x).

Now, y ∈ GIP([A, B](n)) implies that y is a ⊑-minimal nonzero dependency on [A, B](n), and

therefore x is a ⊑-minimal nonzero dependency on [A, B](g) and hence x ∈ GIP([A, B](g)), showing

that y ∈ φk1,...,kg
(GIP([A, B](g))). This establishes that the left-hand side of Equation (4.2.1) is

contained in the right-hand side. Thus, the Graver basis of [A, B](n) is indeed given by Equation

(4.2.1).

Since A, B are fixed and hence g = g(A, B) is constant, the g-fold matrix [A, B](g) is also fixed

and so the cardinality and bit size of its Graver basis GIP([A, B](g)) are constant as well. It follows

from Equation (4.2.1) that |GIP([A, B](n))| ≤
(

n
g

)

|GIP([A, B](g))| ∈ O(ng). Further, each element of

GIP([A, B](n)) is an nq-dimensional vector φk1,...,kg
(x) obtained from some x ∈ GIP([A, B](g)) (of

constant bit size) by appending zero components, and therefore is of linear bit size O(n), showing

that the bit size of the entire Graver basis GIP([A, B](n)) is O(ng+1). Finally, it is clear that the
(

n
g

)

= O(ng) images φk1,...,kg
(GIP([A, B](g))) and their union GIP([A, B](n)) can be computed in

time polynomial in n, completing the proof. �

Example 4.2.3 Consider the matrices A = [1 1] and B = I2. The Graver complexity of the pair

A, B is g(A, B) = 2. The 2-fold matrix and its Graver basis, consisting of two antipodal vectors
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only, are

[A, B](2) = A(2) =











1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1











, GIP

(

[A, B](2)
)

= {±(1,−1,−1, 1)}.

By Theorem 4.2.2, the Graver basis of the 4-fold matrix [A, B](4) = A(4) can be computed by

taking the union of the images of the 6 =
(

4
2

)

maps φk1,k2 : Z2·2
+ −→ Z4·2

+ for 1 ≤ k1 < k2 ≤ 4, and
we obtain

[A, B]
(4)

=

0

B

B

B

B

B

B

B

@

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1

C

C

C

C

C

C

C

A

, GIP

„

[A, B]
(4)

«

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

±(1, −1, −1, 1, 0, 0, 0, 0)

±(1, −1, 0, 0, −1, 1, 0, 0)

±(1, −1, 0, 0, 0, 0, −1, 1)

±(0, 0, 1, −1, −1, 1, 0, 0)

±(0, 0, 1, −1, 0, 0, −1, 1)

±(0, 0, 0, 0, 1, −1, −1, 1)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

.

�

4.3 Polynomial time algorithm for n-fold integer program-

ming

We now provide the polynomial time algorithm for the generalized n-fold integer programming

problem

min{c⊺x : [A, B](n)x = b, x ∈ Z
nq
+ }. (4.3.1)

First, combining the results of the previous section and the previous chapter, we get a polynomial

time procedure for converting any feasible solution to an optimal one. We record this result in the

following lemma.

Lemma 4.3.1 Fix any pair of integer matrices A ∈ Zr×q and B ∈ Zs×q. Then there is a poly-

nomial time algorithm that, given n, objective vector c ∈ Z
nq
+ , and non-negative integer vector

x ∈ Z
nq
+ , solves the generalized n-fold integer programming problem in which x is feasible, i.e. the

one with b := [A, B](n)x.

Proof. First, apply the polynomial time algorithm underlying Theorem 4.2.2 on input n and

compute the Graver basis GIP([A, B](n)) of the n-fold matrix [A, B](n). Then apply the polynomial

time algorithm underlying Theorem 3.5.3 on input [A, B](n), GIP([A, B](n)), c and x, solving the

integer programming problem in (4.3.1). �

We now show that, moreover, given any b, we can efficiently find an initial feasible solution to

Problem (4.3.1).

Lemma 4.3.2 Fix any pair of integer matrices A ∈ Zr×q and B ∈ Zs×q. Then there is a poly-

nomial time algorithm that, given n and demand vector b ∈ Zs+nr
+ , either finds a feasible solution

x ∈ Z
nq
+ to the generalized n-fold integer programming problem in (4.3.1), or asserts that no feasible

solution exists.
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Proof. Introduce 2n(r+s) auxiliary variables to the given generalized n-fold integer program, and

denote by z the resulting vector of n(2(r+s)+q) variables. Consider the auxiliary integer program

of finding a non-negative integer vector z that minimizes the sum of the auxiliary variables subject

to the following system of equations, with Ir and Is the r × r and s × s identity matrices:

















B Is −Is 0 0 B Is −Is 0 0 B · · · B Is −Is 0 0

A 0 0 Ir −Ir 0 0 0 0 0 0 · · · 0 0 0 0 0

0 0 0 0 0 A 0 0 Ir −Ir 0 · · · 0 0 0 0 0
. . .

0 0 0 0 0 0 0 0 0 0 0 · · · A 0 0 Ir −Ir

















· z = b.

This auxiliary program is in fact again a generalized n-fold integer program, with matrices A =

(A, 0, 0, Ir,−Ir) and B = (B, Is,−Is, 0, 0). Since A and B are fixed, so are A and B. Due to the

special structure of the auxiliary program, a feasible solution of this program can be written down

easily in terms of b. Consequently, the auxiliary program can be solved by the algorithm underlying

Lemma 4.3.1, in time polynomial in n and the bit size of b. Since the auxiliary objective is bounded

below by zero, the algorithm will output an optimal solution z. If the optimal objective value is

(strictly) positive, then the original n-fold program in (4.3.1) has no feasible solution, whereas if

the optimal value is zero, then the restriction of z to the original variables is a feasible solution x

of the original program in (4.3.1). �

Combining the results of Lemmas 4.3.1 and 4.3.2, we obtain the main result of this chapter.

Theorem 4.0.2. Fix any pair of integer matrices A, B of compatible sizes. Then there is a poly-

nomial time algorithm that solves the generalized n-fold integer programming problem on any input

n, b, c.

Clearly, Theorem 4.0.1 is deduced from Theorem 4.0.2 in the special case B = Iq. We emphasize

again that, by solving the generalized n-fold integer programming problem, we mean in the complete

sense that the algorithm concludes with precisely one of the following: it either asserts that there

is no feasible solution, or asserts that the objective function is unbounded, or returns an optimal

solution.
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Exploiting symmetry in the

computation of Graver bases

Graver bases have a variety of interesting applications. Unfortunately, the size of Graver bases

increases quickly with the dimension, making it very hard if not impossible to compute them

in practice. In several applications, however, as for example in algebraic statistics, the problems

involve a high symmetry that should make it much easier to compute the Graver basis in terms of

(relatively few) representatives. We have seen such a phenomenon already in the previous chapter.

Nonetheless, let us demonstrate the problem by an example.

Example 5.0.1 Consider the set of all 3 × 3 tables/arrays whose entries are filled with integer

numbers in such a way that the sums along each row and along each column are 0. One particular

example is the table






1 −1 0

−1 3 −2

0 −2 2






.

If we encode the 9 entries of the table as z1, . . . , z9, then the set of 3 × 3 tables coincides with the

integer vectors in the kernel of the matrix

A3×3 =





















1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1





















,

that is, with all z ∈ Z9 satisfying A3×3z = 0. The Graver basis of A3×3 consists of all ⊑-minimal

nonzero tables among them. The particular 3× 3 table above does not belong to the Graver basis

53
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of A3×3, since






1 −1 0

−1 1 0

0 0 0






⊑







1 −1 0

−1 3 −2

0 −2 2






.

Using the computer program 4ti2 [70], we find that the following 15 vectors (and their negatives)

constitute the Graver basis of A3×3:

(1, −1, 0, −1, 1, 0, 0, 0, 0)

(0, 0, 0, 1, 0, −1, −1, 0, 1)

(1, 0, −1, −1, 0, 1, 0, 0, 0)

(1, −1, 0, 0, 0, 0, −1, 1, 0)

(0, 0, 0, 1, −1, 0, −1, 1, 0)

(1, −1, 0, −1, 0, 1, 0, 1, −1)

(0, −1, 1, 1, 0, −1, −1, 1, 0)

(1, −1, 0, 0, 1, −1, −1, 0, 1)

(1, 0, −1, 0, 0, 0, −1, 0, 1)

(0, −1, 1, 0, 1, −1, 0, 0, 0)

(0, 1, −1, 1, −1, 0, −1, 0, 1)

(0, 0, 0, 0, 1, −1, 0, −1, 1)

(0, −1, 1, 0, 0, 0, 0, 1, −1)

(1, 0, −1, 0, −1, 1, −1, 1, 0)

(1, 0, −1, −1, 1, 0, 0, −1, 1)

However, there is an obvious symmetry group S3 × S3 × S2 operating on the set of 3 × 3 tables

whose elements transform a given table v ∈ ker(A3×3) into another table w ∈ ker(A3×3) by suitably

rearranging components (permuting rows or columns, flipping the table along the main diagonals).

If we take these symmetries into account, we see that among these 15 elements there are in fact

only two essentially different elements:

(1, −1, 0, −1, 1, 0, 0, 0, 0)

(1, −1, 0, −1, 0, 1, 0, 1, −1)

or, in a more array-like notation:







1 −1 0

−1 1 0

0 0 0






and







1 −1 0

−1 0 1

0 1 −1






.

It should be clear that for bigger or for higher-dimensional tables, this difference in sizes becomes

far more striking, since the acting symmetry groups are much bigger. �

In the following, let a sublattice L ⊆ Zn be given and let SL ⊆ Sn be a group of symmetries such

that for all v ∈ L and for all σ ∈ SL we have that also σ(v) := (vσ(1), . . . , vσ(n)) ∈ L. Finally,

denote by orbSL(v) := {σ(v) : σ ∈ SL} the orbit of v under SL.
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Lemma 5.0.2 Let L ⊆ Zn be a lattice, let SL ⊆ Sn be the group of its symmetries, and let

g, g′, s, s′ ∈ L. Then the following holds:

• If g ⊑ s then σ(g) ⊑ σ(s) for every σ ∈ SL.

• If there is no g′ ∈ orbSL(g) with g′ ⊑ s, then for every s′ ∈ orbSL(s) there is no g′′ ∈ orbSL(g)

with g′′ ⊑ s′.

• If v ∈ GIP(L) then orbSL(v) ⊆ GIP(L).

Proof. The first statement follows immediately from the definition of ⊑.

For the second statement, let s′ = σ(s) for some σ ∈ SL and assume there is some g′′ ∈ orbSL(g)

with g′′ ⊑ s′. Then g′ := σ−1(g′′) ⊑ σ−1(s′) = s and g′ ∈ orbSL(g). A contradiction to the assumed

non-existence of such g′.

For the last statement we have to show that with v ∈ GIP(L) also the full orbit orbSL(v) lies in

GIP(L). For this it suffices to assume that there is some σ(v) ∈ orbSL(v) that could be written

non-trivially as σ(v) = w1 + w2 with w1, w2 ⊑ σ(v). But this would imply v = σ−1(w1) + σ−1(w2)

with nonzero σ−1(w1), σ
−1(w2) ⊑ v, which contradicts v ∈ GIP(L). Thus, σ(v) must belong to

GIP(L). �

As a consequence of this lemma, GIP(L) decomposes completely into full orbits. Our task of com-

puting GIP(L) thus reduces to computing representatives of these orbits, and to collect them into

a set Gsym(L). By the previous lemma, we recover GIP(L) via

GIP(L) =
⋃

v∈Gsym(L)

orbSL(v).

Note that this last expression does not compute a superset of GIP(L). In contrast to this, the last

statement of Lemma 5.0.2 fails to be true in general for minimal toric Gröbner bases or for minimal

Markov bases associated with the lattice L, see Chapter 7 for details.

5.1 Computing the symmetric Graver basis

In this section, we adapt Pottier’s algorithm [102], Algorithm 2.4.1 from page 26, to deal with

the symmetries of L in the computation of GIP(L). Although this algorithm is not the fastest way

to compute Graver bases directly, it will be easier for us to exploit the given symmetries (and to

present the main ideas). The state-of-the-art algorithm, Algorithm 2.5.1 from page 28, exploits the

positive sum property of Graver bases and needs to break the symmetry to do so. Nonetheless, we

show how to exploit the symmetries also in this situation and arrive at an even faster “symmetric”

algorithm.

Let us now adapt Algorithm 2.4.1 to exploit the symmetries. Let us start with an immediate

consequence of Lemma 5.0.2. For the definition of normalForm(s, G) see again Algorithm 2.4.2 on

page 26.
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Corollary 5.1.1 If s = g1 + . . . + gr, gi ⊑ s, i = 1, . . . , r, then σ(s) = σ(g1) + . . . + σ(gr),

σ(gi) ⊑ σ(s), i = 1, . . . , r for every σ ∈ SL. Consequently, if G =
⋃

v∈Gsym

orbSL(v) and if

normalForm(s, G) = 0 then normalForm(σ(s), G) = 0 for every σ ∈ SL.

In other words, if a representation s = g1 + . . . + gr, gi ∈ G, gi ⊑ s, i = 1, . . . , r has been found,

the symmetry of L already guarantees existence of a similar representation for every element in

orbSL(s). Thus, we have to check normalForm(s, G) = 0 only for one vector s ∈ orbSL(s).

Finally, we are in the position to exploit symmetries in Pottier’s algorithm. The main difference to

the original algorithm will be that instead of keeping the sets G and C in memory, we only store

their representatives under the given symmetry in sets Gsym and Csym. (At any point during the

“symmetric” algorithm we may go back to the original algorithm by replacing all elements in Gsym

and Csym by the vectors from their orbits under SL.)

Moreover, there a few more changes. Once we have found a nonzero vector f that is to be added to

G (and to Gsym as a new representative), we assume that we add the full orbit orbSL(f) to G, as

we know that the Graver basis would contain the full orbit if f was in fact a Graver basis element.

Accordingly, instead of adding only the vectors
⋃

g∈G

{f + g}

to C, we immediately include the vectors
⋃

f ′∈orbSL
(f),g∈G

{f ′ + g}.

As G will always be a union of full orbits, this last expression can be transformed to
⋃

f ′∈orbSL
(f),g∈G

{f ′ + g} =
⋃

g∈Gsym

⋃

f ′ ∈ orbSL(f)

g′ ∈ orbSL(g)

{f ′ + g′} =
⋃

g∈Gsym

⋃

g′∈orbSL
(g)

orbSL(f + g′′),

since f ′ + g′ = σ(f + g′′) for some σ ∈ SL and some g′′ ∈ orbSL(g). Therefore, we update Csym as

follows:

Csym = Csym ∪
⋃

g∈Gsym

⋃

g′∈orbSL
(g)

{f + g′}.

Note that since
⋃

g′∈orbSL
(g)

orbSL(f + g′) =
⋃

f ′∈orbSL
(f)

orbSL(f ′ + g)

we have a choice in adding either all vectors {f + g′} or all vectors {f ′ + g} to Csym. Clearly,

one would choose to add as few new representatives to Csym as possible to keep the number of

S-vectors that need to be reduced small. After all, these reductions are the most expensive part

of the algorithm. This saving in the number of critical vectors is what makes this algorithm much

faster than Pottier’s algorithm when applied to lattices with high symmetry.

In the following algorithm, repSL(H) for a set H ⊆ L of vectors shall denote a set of representatives

of H under the symmetry group SL.
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Algorithm 5.1.2 (Algorithm to Compute Gsym(L)))

Input: generating set F of L over Z

Output: a set G which contains GIP(L)

Gsym := repSL(F ∪ −F ) G := orbSL(F ∪ −F )

Csym := repSL

(

⋃

f,g∈G

{f + g}

)

C :=
⋃

f,g∈G

{f + g}

while Csym 6= ∅ do

s := an element in Csym

Csym := Csym \ {s} C := C \ orbSL(s)

f := normalForm(s, Gsym) := normalForm(s, G) f := normalForm(s, G)

if f 6= 0 then

Gsym := Gsym ∪ {f} G := G ∪ orbSL(f)

Csym := Csym ∪
⋃

g∈G

⋃

g′∈orbSL
(g)

{f + g′} C := C ∪
⋃

f ′∈orbSL
(f),g∈G

{f ′ + g}

return G = orbSL(Gsym).

In this algorithm, we compute normalForm(s, Gsym) via normalForm(s, Gsym) := normalForm(s, G).

Clearly, from a practical perspective, one would not want to keep the huge set G in memory

or to recompute it when needed. Then, of course, one needs to think about how to compute

normalForm(s, Gsym) efficiently if only Gsym instead of G is available. (For example, G might be

simply too big to be kept in memory.) This is still an open question and any significant improve-

ment in the solution of this problem would lead to an equally significant algorithmic improvement

of the overall algorithm.

Lemma 5.1.3 Algorithm 5.1.2 always terminates and returns a set G containing GIP(L).

Proof. To prove termination, consider the sequence of vectors in Gsym \ repSL(F ∪ −F ) =

{f1, f2, . . .} as they are added to Gsym during the run of the algorithm. By construction, we

have fi 6⊑ fj whenever i < j. Thus, by the Gordan-Dickson Lemma, Lemma 2.1.3, this sequence

must be finite and the algorithm terminates.

Note that throughout the run of the algorithm, we always have G = orbSL(Gsym). Upon termination

we know that normalForm(f + g, G) = 0 for every pair of vectors f, g ∈ G. Thus, G must contain

the Graver basis GIP(L). �

5.2 Computing the symmetric Graver basis faster

As in Section 2.5, let πd be again the projection of an n-dimensional vector onto its first d com-

ponents and assume the this projection of L is injective, that is, πd(L) = {0}. Moreover, re-
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member that we defined ‖.‖ in Section 2.5 as ‖v‖ := ‖πd(v)‖1. Although this definition of ‖.‖

in breaks most if not all existing symmetry in the problem, we will now combine the ideas

of Sections 2.5 and 5.1 to a faster algorithm to compute symmetric Graver bases. The main

idea is to use the norm ‖.‖ defined on Zn to define a norm on orbits: For T ⊆ L, we define

‖T ‖ := min{‖v‖ : v ∈ T } = min{‖πd(v)‖1 : v ∈ T }. Then the new symmetric Graver basis

algorithm looks as follows.

Algorithm 5.2.1 (Faster Algorithm to Compute Gsym(L))

Input: set F ⊆ L such that πd(F ) is the set of ⊑-minimal nonzero vectors in πd(L)

Output: a set G which contains GIP(L)

Gsym := repSL(F )

Csym := repSL

(

⋃

f,g∈G

{f + g}

)

while Csym 6= ∅ do

s := an element in Csym with smallest value of ‖ orbSL(s)‖

Csym := Csym \ {s}

f := normalForm(s, Gsym)

if f 6= 0 then

Gsym := Gsym ∪ {f}

Csym := Csym ∪
⋃

g∈G

⋃

g′∈orbSL
(g)

{f + g′}

return G = orbSL(Gsym).

Due to our special input set and our norm defined on orbits, we can again simplify and speed

up the normal form computation normalForm(s, Gsym) := normalForm(s, orbSL(Gsym)) by using

Algorithm 2.5.2 instead of Algorithm 2.4.2. Again, from a practical perspective, one would want

to compute normalForm(s, Gsym) without recovering or storing the huge set orbSL(Gsym).

On the other hand, it should be noted that we do not, as in Algorithm 2.5.1, have an orthant

condition in Algorithm 5.2.1 that reduces the number of vectors added to Csym. This is done to

“undo” the symmetry breaking caused by ‖.‖.

Lemma 5.2.2 Algorithm 5.2.1 always terminates and returns the set G = GIP(L).

Proof. The subsequent proof follows similar lines as the proof of Lemma 2.5.3.

To prove termination, we consider again the sequence of vectors in Gsym \ repSL(F ) = {f1, f2, . . .}

as they are added to Gsym during the run of the algorithm. By construction, we have fi 6⊑ fj

whenever i < j. Thus, by the Gordan-Dickson Lemma, Lemma 2.1.3, this sequence must be finite

and the algorithm terminates.
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Next we show that GIP(L) ⊆ G. Assume that this is not the case. Among all elements z ∈ GIP(L)\G

choose one with ‖ orbSL(z)‖ smallest. Moreover, we may assume that z is a representative of

orbSL(z) with ‖πd(z)‖1 = ‖ orbSL(z)‖. By our generating assumption on the set F ⊆ G, there

exists a non-trivial representation z =
∑

αivi with positive integers αi and vectors vi ∈ G with

πd(vi) ⊑ πd(z). From the set of all such linear integer combinations choose one such that
∑

αi‖vi‖1

is minimal. Note that from πd(vi) ⊑ πd(z) and the fact that the relation z =
∑

αivi is non-trivial,

we conclude ‖πd(vi)‖1 < ‖πd(z)‖1 and thus ‖ orbSL(vi)‖ < ‖ orbSL(z)‖ for all i.

Let us assume first that
∑

αi‖vi‖1 > ‖z‖1. Therefore, there have to exist vectors vi1 , vi2 in this

representation which have some component k = k0 of different signs. By construction, k0 > d, as

the vi all have the same sign as z on the first d components.

The orbit of the vector vi1 + vi2 was added to the set Csym during the run of the algorithm. If

we had ‖vi1 + vi2‖ = ‖z‖, then all other vectors vi, i 6= i1, i2 satisfy ‖vi‖ = 0 as πd(vi) ⊑ πd(z)

for all i. But πd(vi) = 0 implies vi = 0 and thus vi1 + vi2 = z. Since vi1 + vi2(= z) is a vector

whose orbit (or better: a representative of it) was added to Csym during the run of the algo-

rithm, a representative of orbSL(z) is eventually chosen as s ∈ Csym. Being ⊑-minimal, we have

normalForm(repSL(orbSL(z)), Gsym) = repSL(orbSL(z)) and thus, repSL(orbSL(z)) must have been

added to Gsym, in contradiction to our assumption z 6∈ G.

Therefore, we may assume that ‖vi1 + vi2‖ < ‖z‖. However, since all Graver basis elements with

norm strictly smaller than ‖z‖ are assumed to be in G, we may continue literally as in the proof

of Lemma 2.5.3: rewrite z =
∑

αivi and arrive at a contradiction to the minimality of
∑

αi‖vi‖1.

Thus, we must have
∑

αi‖vi‖1 = ‖z‖1, which implies that vi ⊑ z for all i. As z is ⊑-minimal, this

is only possible if the relation z =
∑

αivi is trivial, that is z = v1. As v1 ∈ G we now also have

z ∈ G as desired.

To show that not only GIP(L) ⊆ G but in fact GIP(L) = G is true, assume G \ GIP(L) 6= ∅. Among

all elements z ∈ G \ GIP(L) choose one with ‖ orbSL(z)‖ smallest. Moreover, we may again assume

that z is a representative of orbSL(z) with ‖πd(z)‖1 = ‖ orbSL(z)‖. Note that by Lemma 5.0.2 and

since z 6∈ GIP(L), not a single element in orbSL(z) belongs to GIP(L).

We now start with a non-trivial representation z =
∑

αivi with positive integers αi and vectors

vi ∈ F ⊆ G with πd(vi) ⊑ πd(z). Clearly, πd(vi) ⊑ πd(z) implies ‖πd(vi)‖1 < ‖πd(z)‖1 and thus

‖ orbSL(vi)‖ < ‖ orbSL(z)‖ for all i. Next, we follow similar steps as above (or more precisely: as

in the proof of Lemma 2.5.3) to change z =
∑

αivi into a representation z =
∑

βjwj with βj > 0,

wj ∈ G and wj ⊑ z for all j. As z is not ⊑-minimal, this representation is not trivial.

Note that in z =
∑

αivi, z =
∑

βjwj , and in any intermediate representation z =
∑

βkuk, we have

that the summands vi, wj , uk have a strictly smaller norm on the first d components as z. In fact,

the same property holds for the sum of two summands that are iteratively needed for the rewriting

steps. Thus, their corresponding orbits also have a strictly smaller norm than ‖ orbSL(z)‖. We

conclude that at the time repSL(orbSL(z)) was chosen from Csym and then added to Gsym, repre-

sentatives for all orbits orbSL(wj) were already in Gsym. Thus, normalForm(repSL(orbSL(z)), Gsym)

must have returned 0 in contradiction to the assumption that repSL(orbSL(z)) was added to Gsym.

We conclude G \ GIP(L) = ∅ and hence G = GIP(L). �
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5.3 Computational experiments

In this section we report on computational experience with a few examples that have symmetry.

These problem all deal with 3-way tables, that is, with k1 × k2 × k3 tables of unit cubes, each

containing an integer number. For each problem, the lattice L is the set of lattice points in the

kernel of the matrix that encodes the conditions that the sums along each one-dimensional row

parallel to a coordinate axis are 0. Example 5.0.1 presented the case of 3 × 3 tables.

The following running times demonstrate that, as expected, our symmetric algorithm heavily speeds

up the computation. (Times are given in seconds on a Sun UltraSparc III+ with 1.05 GHz.)

Problem |SL| Size of Graver basis |Gsym| Algorithm 2.5.1 Algorithm 5.2.1

3 × 3 × 3 1, 296 795 7 2 1

3 × 3 × 4 1, 728 19, 722 27 1, 176 9

3 × 3 × 5 8, 640 263, 610 61 560, 517 526

3 × 4 × 4 6, 912 4, 617, 444 784 −− 260, 590



Chapter 6

Graver test sets for integer

programs with Z-convex objective

As we have seen in Chapter 3, integer linear optimization problems

(IP)c,b : min{c⊺z : Az = b, z ∈ Zn
+},

can be solved by a simple augmentation scheme, Algorithm 3.0.2. There are two key steps in this

algorithmic scheme: finding an initial feasible solution and finding improving vectors. Remember

that universal test sets, which depend only on the problem matrix A, are good for both of these

tasks.

Example 6.0.1 Consider the problem

min{x + y : x, y ∈ Z+}.

The Graver test set associated to the problem matrix A = 0 is {±(1, 0),±(0, 1)}. As one can

easily check, already the subset {(1, 0), (0, 1)} provides an improving direction to any non-optimal

solution of this particular problem instance. Thus, with the help of {(1, 0), (0, 1)}, we can augment

any given feasible solution to the (in this case unique) optimal solution (0, 0). �

Intrinsic to the proofs that there do exist finite (universal) test sets for (IP)c,b and that they do

indeed provide an improving direction to any non-optimal feasible solution, is the fact that both

the objective function and the constraints are linear. Now let us observe what happens with a

non-linear objective function.

Example 6.0.2 Consider the problem

min{(x + y)2 + 4(x − y)2 : x, y ∈ Z+}.
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As again A = 0, the corresponding Graver basis is GIP(A) = {±(1, 0),±(0, 1)}. However, this

universal test set for the integer linear program (IP)c,b does not provide an improving direction to

any non-optimal feasible solution for the quadratic problem given above:

Clearly, (0, 0) is again the unique optimal solution with objective value 0. Now consider the point

(1, 1) with objective value 4. There are 4 points reachable from (1, 1) via the directions given by

GIP(A): (1, 0) and (0, 1), both with objective value 5, and (2, 1) and (1, 2), both with objective

value 13. Therefore, in order to reach the optimum (0, 0) from (1, 1), additional vectors are needed

in the test set.

As we will see below, the set GIP(A) ∪ {±(1, 1)} provides improving directions to any non-optimal

solution of the above quadratic problem. Moreover, this property remains true even if we change

the objective function in a certain way. (For details see below.) For example, with the directions

from GIP(A) ∪ {±(1, 1)} we can also find the optimum of the following program:

min{e|x+y−3| + 4(x − y + 2)6 + 2x − y : x, y ∈ Z+} �

In this chapter we relieve the restriction to linear objective functions and employ test set methods

for the solution of integer optimization problems

(CIP)f,b : min{f(z) : Az = b, z ∈ Zn
+},

where A ∈ Zd×n, b ∈ Zd, and where

f(z) :=

s
∑

i=1

fi(c
⊺

i z + ci,0) + c⊺z.

Herein, c ∈ Rn, c1, . . . , cs ∈ Zn, c1,0, . . . , cs,0 ∈ Z, and fi : R → R, i = 1, . . . , s, are Z-convex

functions with minimum at 0. We call g : R → R a Z-convex function with minimum at α ∈ Z,

if the function g(x + 1) − g(x) is increasing on x ∈ Z and if g(x + 1) − g(x) ≤ 0 for all integers

x < α and g(x + 1) − g(x) ≥ 0 for all integers x ≥ α. Clearly, these three conditions imply that

x = α is a minimum of g over Z. We will, however, restrict our attention to Z-convex functions

with minimum at 0. This is in fact no restriction, since we can transform any Z-convex function g

with minimum at α to one with minimum at 0 by considering g(x) = g(x + α) instead.

The problem type (CIP)f,b includes for example linear integer programs for f1 = · · · = fs = 0, or

quadratic integer programs for fi(x) = x2. However, one could apply our approach also to more

exotic functions like fi(x) = |x| or fi(x) = −x for x ≤ 0 and fi(x) = ex for x > 0, that is, the

functions fi considered as functions from R to R need not be continuous.

Our main result is the following. Note that Murota, Saito, and Weismantel [97] arrive at the same

result via a refinement of cones and a union of their inclusion-minimal Hilbert bases.

Theorem 6.0.3 Let A ∈ Zd×n and c1, . . . , cs ∈ Zn be given. Denote by C the s× n matrix whose

rows are formed by the vectors c⊺

1 , . . . , c⊺

s . Moreover, let Is denote the s × s unit matrix. Then for

any particular choice
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• of Z-convex functions f1, . . . , fs with minima at x = 0,

• of c1,0, . . . , cs,0 ∈ Z, and

• of c ∈ Rn,

the set

HCIP(A, C) := φn

(

GIP

(

A 0

C Is

))

provides an improving direction to any non-optimal feasible solution of the problem (CIP)f,b.

Herein, φn defines the projection of a vector onto its first n components, and for a set G of

vectors φn(G) denotes the set of images of elements in G under φn.

Trivially, GIP(A) ⊆ HCIP(A, C) for any matrix C. However, as we have seen in Example 6.0.2, this

inclusion can be strict.

For f1 = · · · = fs = 0, we simply obtain HCIP(A, 0) = GIP(A) as a (universal) test set for (IP)c,b.

But, as the following example shows, the set GIP(A) gives improving directions even for a far bigger

problem class.

Example 6.0.4 Consider the family of problems (CIP)f,b where c1, . . . , cn are the unit vectors in

Rn, that is,

min{f(z) : Az = b, z ∈ Zn
+}

with

f(z) :=
s
∑

i=1

fi(zi + ci,0) + c⊺z.

As C = In, we need to compute the Graver basis of the Lawrence lifting

(

A 0

In In

)

of A. Since all elements in the kernel of this Lawrence lifting have the form (u,−u) and since

(v,−v) ⊑ (u,−u) in Z2n if and only if v ⊑ u in Zn, this Graver basis is simply {(u,−u) : u ∈

GIP(A)}. Thus, HCIP(A, In) = GIP(A), showing that the set GIP(A) is also a test set for this bigger

problem class where A is kept fixed and the remaining problem data is allowed to vary. �

The remainder of this chapter is structured as follows: In Section 6.1 we study our test set approach

for convex quadratic optimization problems, of which the Quadratic Assignment Problem (QAP)

is probably the most famous example.

The quadratic assignment problem [28] deals with assigning n facilities to n locations such that

a certain quadratic cost function is minimized. It can be formulated as the following problem
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involving permutation matrices :

min







n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

dijklxijxkl +
n
∑

i=1

n
∑

j=1

cijxij :

n
∑

j=1

xij = 1, i ∈ {1, . . . , n},

n
∑

i=1

xij = 1, j ∈ {1, . . . , n},

xij ∈ {0, 1}, i, j ∈ {1, . . . , n}} .

The value dijkl can be seen as costs for assigning facility i to location j and facility k to location

l, whereas cij models a fixed cost incurred by locating facility i to location j.

Even nowadays, QAP’s of size n > 30 (that is, with more than only 900 binary variables) are

still considered to be computationally extremely hard, if not intractable. One major problem in

branch-and-bound algorithms that try to solve these problems is the lack of sharp lower bounds.

We conclude this chapter with Section 6.2, in which we prove our main theorem, Theorem 6.0.3.

6.1 Quadratic programs

In this section we deal with the special case of convex quadratic optimization problems

min{z⊺Qz + c⊺z : Az = b, z ∈ Zn
+},

where Q is a symmetric, positive semi-definite matrix with only rational entries. These problems

can be solved by the augmentation approach introduced in Chapter 3 using HCIP(A, C). The reason

for this is the following basic result from the theory of quadratic forms [90].

Lemma 6.1.1 Let Q ∈ Qn×n be a symmetric matrix. Then there exist a diagonal matrix D ∈ Qn×n

and an invertible matrix U ∈ Qn×n such that Q = U⊺DU . Moreover, each diagonal element dii of

D is representable by the quadratic form x⊺Qx, that is, for all dii there is some xi ∈ Rn such that

dii = x⊺

i Qxi.

Corollary 6.1.2 Let Q ∈ Qn×n be a symmetric positive semi-definite matrix. Then there exist a

diagonal matrix D ∈ Qn×n with only non-negative entries and an invertible matrix U ∈ Qn×n such

that Q = U⊺DU .

Proof. This is an immediate consequence of Lemma 6.1.1, since dii = x⊺

i Qxi ≥ 0 for all i as Q is

positive semi-definite. �

Thus, every convex quadratic objective function z⊺Qz can be restated as
∑s

i=1 αi(c
⊺

i z)2 with αi > 0

and ci ∈ Zn. Therefore, the test set approach from Chapter 3 is applicable to these problems using
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HCIP(A, C) and fi(x) = αix
2
i , αi > 0. Moreover, we should point out that s ≤ n, that is, the

Graver basis that has to be computed for HCIP(A, C) involves at most 2n variables.

In the following, we will restrict our attention to quadratic 0-1 problems.

Corollary 6.1.3 Any quadratic 0-1 optimization problem

min{z⊺Qz + c⊺z : Az = b, z ∈ {0, 1}n}

with symmetric matrix Q ∈ Qn×n can be rephrased as an equivalent problem

min{z⊺Qz + c⊺z : Az = b, z ∈ {0, 1}n},

where Q ∈ Qn×n is a symmetric, positive definite matrix.

Proof. As z2
i − zi = 0 for z ∈ {0, 1}, the given optimization problem is equivalent to

min{z⊺Qz + c⊺z + λ(z⊺Inz − 1⊺z) : Az = b, z ∈ {0, 1}n},

where λ ∈ R denotes some fixed scalar. As for sufficiently large λ = λ ∈ Q+ the matrix Q + λIn

becomes positive definite, Lemma 6.1.2 can be applied, giving the result with Q = Q + λIn and

c = c − λ1. �

Consequently, any 0-1 quadratic optimization problem

min{z⊺Qz + c⊺z : Az = b, z ∈ {0, 1}n}

can be written as

min

{

s
∑

i=1

αi(c
⊺

i z)2 + c⊺z : Az = b, z ∈ {0, 1}n

}

with αi > 0, and therefore, by using HCIP(A, C), the test set approach from Chapter 3 can be

applied. However, choosing different λ in the proof of Corollary 6.1.3, we get different equivalent

formulations for the same problem (CIP)f,b. But as the following example shows, different problem

formulations can lead to different test sets HCIP(A, C) for the same problem. These sets, however,

are test sets for two different problem families of which the given specific problem is a common

member.

Example 6.1.4 Consider the quadratic 0-1 problem with A = 0 and

Q =







0 1 1

1 0 2

1 2 0






.

Since A = 0, we need to compute the Graver basis of (C|I3). But we have different choices for C.

As x2
i = xi, i = 1, 2, 3, we have

x⊺Qx = 2x1x2 + 2x1x3 + 4x2x3

= (x1 + x2 + x3)
2 + (x2 + x3)

2 − x2
1 − 2x2

2 − 2x2
3

= (x1 + x2 + x3)
2 + (x2 + x3)

2 − x1 − 2x2 − 2x3
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and

x⊺Qx = 2x1x2 + 2x1x3 + 4x2x3

= (x1 − 2x2 + x3)
2 + (3x1 + x2 + 4x3)

2 + 12(x1 − x3)
2 − 22x2

1 − 5x2
2 − 29x2

3

= (x1 − 2x2 + x3)
2 + (3x1 + x2 + 4x3)

2 + 12(x1 − x3)
2 − 22x1 − 5x2 − 29x3.

Therefore, the corresponding two matrices for the test set computations are

(

C′ I2

)

=

(

1 1 1 1 0

0 1 1 0 1

)

and

(

C′′ I3

)

=







1 −2 1 1 0 0

3 1 4 0 1 0

1 0 −1 0 0 1






.

Using the software package 4ti2 [70], we obtain

HCIP(A′, C′) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (0, 1,−1), (1, 0,−1)}

HCIP(A′′, C′′) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1,−1, 0), (0, 1,−1),

(0, 1, 1), (1, 0, 1), (1, 0,−1), (1, 1,−1), (1, 1, 1), (1,−1, 1)}

Note that HCIP(A′, C′) ( HCIP(A′′, C′′). �

This gives us much freedom to rewrite particular 0-1 problems, possibly arriving at much smaller

test sets for the same problem. As the following example shows, the same phenomenon happens

also in the general (non-0-1) case.

Example 6.1.5 Consider the problem with A = 0 and

Q =







2 1 1

1 2 1

1 1 2






.

Again, since A = 0, we need to compute the Graver basis of (C|Is) for some integer s, and as the

following shows, we have more than one choice for C:

x⊺Qx = 2x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x1x3 + 2x2x3

= (x1 + x2 + x3)
2 + x2

1 + x2
2 + x2

3

= (x1 + x2)
2 + (x1 + x3)

2 + (x2 + x3)
2

Corresponding to these two representations are the matrices

(

C′ I4

)

=











1 1 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1










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and

(

C′′ I3

)

=







1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1






.

Using 4ti2, we obtain

HCIP(A′, C′) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (0, 1,−1), (1, 0,−1)}

HCIP(A′′, C′′) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (1, 0,−1), (0, 1,−1),

(1, 1,−1), (1,−1, 1), (1,−1,−1)}

Note that again, HCIP(A′, C′) ( HCIP(A′′, C′′). �

6.2 Proof of Theorem 6.0.3

In this section we prove the main theorem of this chapter, Theorem 6.0.3. First, we will collect

some facts about Graver bases that will turn out very useful in the final proof.

Lemma 6.2.1 Let B =
(

A a −a
)

be an integer matrix such that the two columns a and

−a differ only by a sign. Then the Graver basis of B can be constructed from the Graver basis of

B′ =
(

A a
)

in the following way:

GIP(B) = {(u, v, w) : vw ≤ 0, (u, v − w) ∈ GIP(B′)} ∪ {±(0, 1, 1)}.

Proof. Let (u, v, w) ∈ GIP(B). Since ±(0, 1, 1) are the only ⊑-minimal elements in kerZn+2(B)\{0}

with u = 0, we may assume that u 6= 0. Moreover, it holds vw ≤ 0, since otherwise either

(u, v +1, w +1) ⊑ (u, v, w) or (u, v− 1, w− 1) ⊑ (u, v, w) contradicts the ⊑-minimality of (u, v, w).

Thus, without loss of generality, we assume in the following that v ≥ 0 and w ≤ 0. Next we show

(u, v − w) ∈ GIP(B′).

Suppose that (u, v − w) 6∈ GIP(B′). Then there is some vector (u′, z′) ∈ GIP(B′) with (u′, z′) ⊑

(u, v − w) and u′ 6= 0. (If u′ = 0 then z′ = 0 contradicting (u′, z′) ∈ GIP(B′) since 0 6∈ GIP(B′).)

Of course, (u′, z′) 6= (u, v − w), since we assume (u′, z′) ∈ GIP(B′) and (u, v − w) 6∈ GIP(B′). From

v − w ≥ 0 we get 0 ≤ z′ ≤ v − w. Next we show that (u, v, w) 6∈ GIP(B) which will contradict our

initial assumption (u, v, w) ∈ GIP(B).

To prove this, note that 0 ≤ min(z′, v) ≤ v and 0 ≥ −z′ + min(z′, v) ≥ w. Whereas the first

chain of inequalities holds because of 0 ≤ z′, the second can be seen as follows. If z′ ≤ v, we get

0 ≥ −z′ + z′ = 0 ≥ w by our assumption on w. If, on the contrary, z′ > v we get 0 ≥ −z′ + v ≥

−(v − w) + v = w, since (u′, z′) ⊑ (u, v − w) and thus 0 ≤ z′ ≤ v − w. But this implies that

(u′, min(z′, v),−z′+min(z′, v)) ⊑ (u, v, w). Moreover, we know that u′ 6= 0 and (u′, min(z′, v),−z′+

min(z′, v)) ∈ kerZn+2(B). Thus, it remains to prove that (u′, min(z′, v),−z′+min(z′, v)) 6= (u, v, w),

which implies that (u, v, w) is not ⊑-minimal in kerZn+2(B) \ {0} and therefore (u, v, w) 6∈ GIP(B).
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Suppose that (u′, min(z′, v),−z′ +min(z′, v)) = (u, v, w) is true. This yields u = u′, min(z′, v) = v,

and w = −z′ + min(z′, v) = −z′ + v ≥ −(v − w) + v = w. But this implies that z′ = v − w

and therefore (u′, z′) = (u, v − w) in contrast to our assumption (u′, z′) 6= (u, v − w) above. Thus

(u, v, w) 6∈ GIP(B). This shows the ⊆-part of our equation.

It remains to prove that every vector (u, v, w) with u 6= 0, v ≥ 0, w ≤ 0, and (u, v − w) ∈ GIP(B′)

belongs to GIP(B). Clearly, (u, v, w) ∈ kerZn+2(B). Suppose that there exists a vector (u′, v′, w′) ∈

kerZn+2(B) with u′ 6= 0, (u′, v′, w′) ⊑ (u, v, w), and (u, v, w) 6= (u′, v′, w′). But then we conclude

(u′, v′ −w′) ∈ kerZn+1(B′) and (u′, v′ −w′) ⊑ (u, v −w). If (u, v −w) 6= (u′, v′ −w′) was true, this

would contradict (u, v − w) ∈ GIP(B′).

Therefore, suppose that we have (u, v − w) = (u′, v′ − w′), (u′, v′, w′) ⊑ (u, v, w), and (u, v, w) 6=

(u′, v′, w′). But then 0 ≤ v′ ≤ v and 0 ≥ w′ ≥ w together imply that 0 ≤ v′ − w′ ≤ v − w. Since

u = u′ and (u, v, w) 6= (u′, v′, w′), at least one of the inequalities v′ ≤ v and −w′ ≤ −w holds

strictly. Therefore, 0 ≤ v′ − w′ < v − w, a contradiction to v − w = v′ − w′. �

Example 6.2.2 The Graver basis of B′ = (3 1) is GIP(B′) = {±(1,−3)}. Thus, the Graver basis

of B = (3 1 − 1) is

GIP(B) = {±(1, 0, 3),±(1,−1, 2),±(1,−2, 1),±(1,−3, 0),±(0, 1, 1)},

as can easily be double-checked with 4ti2. �

A simple consequence of this lemma is

Corollary 6.2.3 Let B =
(

A a a
)

be an integer matrix with two identical columns a. Then

the Graver basis of B can be constructed from the Graver basis of B′ =
(

A a
)

in the following

way:

GIP(B) = {(u, v, w) : vw ≥ 0, (u, v + w) ∈ GIP(B′)} ∪ {±(0, 1,−1)}.

Proof. The claim follows immediately from the fact that (u, v, w) is ⊑-minimal in ker
(

A a a
)

if and only if (u, v,−w) is ⊑-minimal in ker
(

A a −a
)

. �

The following is an immediate consequence of Lemma 6.2.1 and of Corollary 6.2.3.

Lemma 6.2.4 Let A ∈ Zd×n and let B =
(

A a . . . a −a . . . −a
)

be an integer matrix

with finitely many multiple columns a and −a which differ only in their signs. Then we have

φn(GIP(B)) = φn

(

GIP

(

A a
))

∪ {0}.

Proof. The constructions in Lemma 6.2.1 and in Corollary 6.2.3 satisfy

φn

(

GIP

(

A a −a
))

= φn

(

GIP

(

A a
))

∪ {0}

and

φn

(

GIP

(

A a a
))

= φn

(

GIP

(

A a
))

∪ {0}.
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Putting both constructions together iteratively, we get

φn(GIP(B)) = φn

(

GIP

(

A a
))

∪ {0},

as claimed. �

Thus, in order to compute φn(GIP(B)), it suffices to compute φn

(

GIP

(

A a
))

. The following

is an immediate consequence to Lemma 6.2.4.

Corollary 6.2.5 Let A ∈ Zd×n, c1, . . . , cs ∈ Zn, and k ∈ Z>0. Denote by C the s×n matrix whose

rows are formed by the vectors c⊺

1 , . . . , c⊺

s , by the bold letter 1 the vector in Rk with all entries 1,

and by Is the s × s unit matrix. Then

φn(GIP(Ak)) = φn

(

GIP

(

A 0

C Is

))

∪ {0},

where

Ak :=

















A

c⊺

1 −1 1

c⊺

2 −1 1
. . .

. . .

c⊺

s −1 1

















.

Before we come to the proof of our main theorem of this chapter, let us prove two more useful

facts.

Lemma 6.2.6 Let g be a Z-convex function with minimum at 0. Then for fixed p ∈ Z and for

fixed k ≥ |p|, an optimal solution to

min{
k
∑

j=1

(g(j) − g(j − 1))xi,j + (g(−j) − g(−j + 1))yi,j :

p =
k
∑

j=1

xj −
k
∑

j=1

yj , xj , yj ∈ {0, 1}, j = 1, . . . , k},

is given by

x1 = . . . = xp = 1, xp+1 = . . . = xk = y1 = . . . = yk = 0, if p > 0,

x1 = . . . = xk = y1 = . . . = yk = 0, if p = 0,

y1 = . . . = y−p = 1, y−p+1 = . . . = yk = x1 = . . . = xk = 0, if p < 0.

The optimal value in each of these three cases is g(p) − g(0).

Proof. The case p = 0 is trivial and the optimal objective value is 0 = g(0) − g(0).

Let us now consider the case p > 0. Clearly, since p > 0, some xi must be positive. Suppose that

in a minimal solution we have xi = 1 and yj = 1 for some i and some j. This cannot happen, since
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by putting xi = 0 and yj = 0 we would arrive at a solution with smaller objective value, as all

coefficients in the objective function are positive. Thus, in a minimal solution y1 = . . . = yk = 0.

Since g is a Z-convex function with minimum at 0, the coefficients g(j)− g(j − 1) in the objective

function are non-negative and form a non-decreasing sequence as j > 0 increases. Thus,

x1 = . . . = xp = 1, xp+1 = . . . = xk = 0

leads to a minimal objective value. This value is

p
∑

j=1

(g(j) − g(j − 1)) = g(p) − g(0).

For the case p < 0 we conclude analogously that x1 = . . . = xk = 0. Moreover, since g is a Z-

convex function with minimum at 0, the coefficients g(−j) − g(−j + 1) in the objective function

are non-negative and form a non-decreasing sequence as j > 0 increases. As above, this implies

that

y1 = . . . = y−p = 1, y−p−1 = . . . = yk = 0

leads to a minimal objective value. This value is again

−p
∑

j=1

(g(−j) − g(−j + 1)) = g(p) − g(0)

and the claim is proved. �

Corollary 6.2.7 Let f1, . . . , fs be Z-convex functions with minimum at 0, A ∈ Zd×n, b ∈ Zd,

c ∈ Rn, c1, . . . , cs ∈ Zn, and c1,0, . . . , cs,0 ∈ Z be given. Then for fixed z ∈ Zn and for fixed

k ≥ max{|c⊺

i z + ci,0|, i = 1, . . . , s}, the optimal value of

min{
s
∑

i=1

k
∑

j=1

(fi(j) − fi(j − 1))xi,j + (fi(−j) − fi(−j + 1))yi,j + c⊺z :

Az = b, z ∈ Zn
+,

c⊺

i z + ci,0 =
k
∑

j=1

xi,j −
k
∑

j=1

yi,j, i = 1, . . . , s,

xi,j , yi,j ∈ {0, 1}, i = 1, . . . , s,

j = 1, . . . , k}.

is f(z) −
s
∑

i=1

fi(0), where

f(z) :=
s
∑

i=1

fi(c
⊺

i z + ci,0) + c⊺z.

Proof. Since z is fixed, the problem decomposes into s smaller problems for which we can apply

Lemma 6.2.6. Thus, the optimal value of the given problem is

s
∑

i=1

[fi(c
⊺

i z + ci,0) − fi(0)] + c⊺z =

s
∑

i=1

fi(c
⊺

i z + ci,0) + c⊺z −
s
∑

i=1

fi(0) = f(z) −
s
∑

i=1

fi(0). �
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Now let us finally prove our main theorem of this chapter, Theorem 6.0.3.

Proof. In order to prove this claim, assume that we are given Z-convex functions f1, . . . , fs with

minimum at 0, c1,0, . . . , cs,0 ∈ Z, b ∈ Zd, and c ∈ Rn. Moreover, assume that we are given a

non-optimal feasible solution z0 to Az = b, z ∈ Zn
+.

The theorem is proved if we can find some vector t ∈ HCIP(A, C) such that z0 − t is feasible and

such that f(z0 − t) < f(z0). In the following, we construct such a vector t.

Since we assume z0 to be non-minimal, there exists some better feasible solution z1, say. Let

k := max{|c⊺

i z0 + ci,0|, |c
⊺

i z1 + ci,0|, i = 1, . . . , s}

and consider the auxiliary integer linear program

(AIP) : min{
s
∑

i=1

k
∑

j=1

(fi(j) − fi(j − 1))xi,j + (fi(−j) − fi(−j + 1))yi,j + c⊺z :

Az = b, z ∈ Zn
+,

c⊺

i z + ci,0 =
k
∑

j=1

xi,j −
k
∑

j=1

yi,j , i = 1, . . . , s,

xi,j , yi,j ∈ {0, 1}, i = 1, . . . , s,

j = 1, . . . , k}.

By Lemma 6.2.6 and Corollary 6.2.7, the minimal values of (AIP) for fixed z = z0 and for fixed

z = z1 are f(z0) − f0 and f(z1) − f0, where f0 =
s
∑

i=1

fi(0). By (z0, x0, y0) and (z1, x1, y1) denote

feasible solutions of (AIP) that achieve these values.

As f(z0) > f(z1) by assumption, we have f(z0) − f0 > f(z1) − f0. Thus, (z0, x0, y0) is a feasible

solution of (AIP) that is not optimal. Therefore, there must exist some vector (t, u, v) in the Graver

basis associated with the problem matrix of (AIP) that improves (z0, x0, y0). Clearly, t 6= 0, since

(z0, x0, y0) is optimal for fixed z0. We will now show that t ∈ HCIP(A, C), that z0 − t is feasible for

(CIP)f,b, and that f(z0 − t) < f(z0). The claim then follows immediately, as these are the three

conditions for an improving vector t.

The problem matrix associated to (AIP) is

Ak :=

















A

c⊺

1 −1 1

c⊺

2 −1 1
. . .

. . .

c⊺

s −1 1

















,

where

φn(GIP(Ak)) = φn

(

GIP

(

A 0

C Is

))

∪ {0} = HCIP(A, C) ∪ {0},

by Corollary 6.2.5. Therefore, (t, u, v) ∈ GIP(Ak) satisfies t ∈ HCIP(A, C)∪{0}. Since t 6= 0, we have

t ∈ HCIP(A, C). Moreover, as (z0, x0, y0)− (t, u, v) is feasible for (AIP), we must have A(z0− t) = b

and z0 − t ≥ 0, implying that z0 − t is feasible for (CIP)f,b.
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It remains to show f(z0−t) < f(z0). Let (z0−t, x2, y2) be a feasible solution of (AIP) that achieves

the minimal value f(z0− t)− f0 of (AIP) for fixed z = z0− t, see Lemma 6.2.6 and Corollary 6.2.7

for its existence and construction. Clearly, this minimal objective value of (AIP) for fixed z = z0−t

is less than or equal to the objective value cost(z0 − t, x0 − u, y0 − v) of (z0, x0, y0) − (t, u, v) in

(AIP), that is, f(z0− t)− f0 = cost(z0− t, x2, y2) ≤ cost(z0− t, x0−u, y0− v). By construction, we

have cost(z0− t, x0−u, y0−v) < cost(z0, x0, y0) = f(z0)−f0. Therefore, f(z0− t)−f0 < f(z0)−f0

and consequently f(z0 − t) − f(z0). �



Chapter 7

Computation of generating sets of

lattice ideals

7.1 Introduction

In this chapter, we present a new algorithm due to Malkin [75] for computing a generating set of

a lattice ideal

I(L) := 〈xu+

− xu−

: u ∈ L〉 ⊆ k[x1, ..., xn],

where k is a field, L is a sub-lattice of Zn with L ∩ Zn
+ = {0}, and

xu+

− xu−

:= x
u+
1

1 x
u+
2

2 · · · x
u+

n
n − x

u−
1

1 x
u−
2

2 · · · x
u−

n
n .

Generating set and Gröbner basis computations for general ideals are usually very time consuming.

Fortunately, in the special setting of lattice ideals, many improvements are possible. Two interesting

areas of application of lattice ideals are algebraic statistics and integer programming. We chose to

include the presentation of this algorithm into this thesis

• because it complements the project-and-lift approach to compute Graver bases, see Chapter 2,

• because Gröbner bases of lattice ideals are test sets for families of integer linear programs

with fixed cost function, see Chapter 3,

• because Gröbner bases of lattice ideals will be used for counting lattice points in polytopes,

see Chapter 8, and

• because we present an efficient encoding these Gröbner bases, see Chapter 13.

In general, a generating set of I(L) is not readily available. For a basis S of the lattice L over Zn,

the ideal J(S) := 〈xu+

− xu−

: u ∈ S〉 satisfies J(S) ⊆ I(L), but usually one may not expect that

73
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J(S) = I(L). Also, when computing a Gröbner basis of a lattice ideal, computational experiments

show that when L∩Zn
+ = {0}, the computation of a generating set usually takes much longer than

computing the Gröbner basis from the generating set.

Generating sets of lattice ideals and Gröbner bases of lattice ideals have corresponding geometric

concepts (see [116, 118, 120]), which we call generating sets of lattices and Gröbner bases of lattices

respectively (see Section 7.2). These concepts are related as follows: if a set S ⊆ L is a generating

set of L or a Gröbner basis of L with respect to a term order ≻, then G := {xu+

− xu−

: u ∈ S} is

respectively a generating set of I(L) or a Gröbner basis of I(L) with respect to ≻; and also, if a

set of monic binomials G is a generating set of I(L) or a Gröbner basis of I(L) with respect to a

term order ≻, then S := {α − β : xα − xβ ∈ G} is respectively a generating set of L or a Gröbner

basis of L with respect to ≻. Note that we use the same order ≻ for monomials and vectors via the

relation xα ≻ xβ if and only if α ≻ β for α, β ∈ Zn
+. Also, note that any minimal reduced Gröbner

basis of a lattice ideal is a set of monic binomials.

In this chapter, we present existing theory and the new algorithm only in a geometric framework

following the approach in [116], [118], and [120], since for lattice ideals, we prefer the geometric

approach to the algebraic one. However, note that for every geometric concept presented, there

exists an equivalent algebraic notion, although we do not present it here. Also, we have tried to

make this chapter reasonably self contained, so for completeness, we present geometric proofs of

existing results where pertinent.

Recently, there has been renewed interest in toric ideal computations because of applications in

algebraic statistics. Here, we are interested in Markov bases, which are used in a Monte-Carlo

Markov-Chain (MCMC) process to test validity of statistical models via sampling. Diaconis and

Sturmfels [50] showed that a (preferably minimal) generating set of a lattice

LA := {u ∈ Zn : Au = 0}

for some matrix A ∈ Zd×n is a Markov basis. Note that I(LA) is a toric ideal. However, at that time,

no effective implementation of an algorithm to compute generating sets of toric ideals was available

that could deal with moderate size problems in 50 − 100 variables. This situation has changed by

now: several such implementations are available. Using 4ti2 [70], Eriksson even reports, in [56],

on successful computations of Gröbner bases and Markov bases of toric ideals in 2, 048 variables.

His problems arise from phylogenetic trees in computational biology.

In integer programming, test sets of integer programs correspond to Gröbner bases of lattices (or

lattice ideals). Test sets were introduced in [65]. Consider the general linear integer program

min{c⊺zσ : Az = b, zσ ≥ 0, z ∈ Zn}

where c ∈ Q|σ|, A ∈ Zd×n, b ∈ Zd, σ ⊆ {1, ..., n}, σ := {1, ..., n} \ σ, and where zσ is the set

of variables indexed by σ. Any integer program that has an optimal solution can be written in

this form [34]. By projecting onto the σ variables, we can rewrite these integer programs in the

equivalent and more convenient form

(IP)
σ
A,c,b = min{c⊺z : Aσz ≡ b (mod AσZ), z ∈ Z

|σ|
+ },
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where Aσ and Aσ are the sub-matrices of A whose columns are indexed by σ and σ respectively,

and AσZ := {Aσz : z ∈ Z|σ|}. In the special case where σ = ∅, we set AσZ := {0}, and the problem

(IP)∅A,c,b simplifies to (IP)A,c,b := min{c⊺z : Az = b, z ∈ Zn
+}. Note that group relaxations and

extended group relaxations of (IP)A,c,b are also of the form (IP)
σ
A,c,b for some cost vector c ∈ Q|σ|

[80]. Without loss of generality, we assume that c is generic meaning that (IP)
σ
A,c,b has a unique

optimal solution for every feasible b ∈ Zd. We can always easily perturb a given c so that it is

generic.

As defined in Chapter 3, a set T ⊆ Z|σ| is called a test set for (IP)
σ
A,c,b if T contains an improving

direction t for every non-optimal feasible solution z ∈ Z
|σ|
+ of (IP)

σ
A,c,b; that is, z − t is also feasible

and c⊺(z − t) < c⊺z. Clearly, z − t being feasible implies that t is an element of the lattice

Lσ
A := {u ∈ Z|σ| : Aσu ≡ 0 (mod AσZ)}.

Moreover, a set T ⊆ Lσ
A is called a test set for (IP)

σ
A,c the class of integer programs (IP)

σ
A,c,b for

all b ∈ Zd, if T is a test set for every integer program in (IP)
σ
A,c. Graver showed that there exist

finite sets T that are test sets for (IP)A,c (σ = ∅). In fact, his sets also constitute finite test sets

for (IP)
σ
A,c for arbitrary σ. Having a finite test set available, an optimal solution of (IP)

σ
A,c,b can

be found by iteratively improving any given non-optimal solution of (IP)σ
A,c,b, see Chapter 3.

In [34] and [115], it was shown that given a generic cost vector c and a term order ≻ where c and

≻ are compatible, a set S ⊆ Lσ
A is a Gröbner basis of Lσ

A with respect to a ≻ if and only if S is

a test set for (IP)
σ
A,c where c and ≻ are compatible if c⊺α > c⊺β implies α ≻ β for all α, β ∈ Zn

+.

A compatible term ordering ≻ exists for every generic c, and a compatible generic c exists for

every term ordering ≻. Additionally, any lattice L can be written in the form Lσ
A for some matrix

A ∈ Zn×d and some index set σ ⊆ {1, ..., n}, and so, Gröbner bases of lattices and test sets of

integer programs really are equivalent concepts.

We define generating sets and Gröbner bases of lattices, in Section 7.2, in a geometric context and

present the completion procedure [27, 26, 36], which is the main building block for the algorithms

for computing generating sets.

In Section 7.3, we present the two main existing algorithms for computing generating sets: the

algorithm of Hoşten and Sturmfels in [78], which we call the “Saturation” algorithm; and the algo-

rithm of Bigatti, LaScala, and Robbiano in [21], which we call the “Lift-and-Project” algorithm. We

also describe our new algorithm for computing generating sets: the “Project-and-Lift” algorithm.

The Saturation Algorithm is based upon the result that I(L) = (. . . ((J(S) : x∞
1 ) : x∞

2 ) . . .) : x∞
n

where S is a lattice basis of L and J(S) is defined as above. Using this result, we can compute a

generating set of I(L) from S via a sequence of saturation steps where each individual saturation

step is performed via the completion procedure. The Lift-and-Project Algorithm is based upon

the related result that I(L) = J(S) : (x1 · x2 · . . . · xn)∞. Here, a generating set is computed via

the completion procedure using an additional variable. The Project-and-Lift Algorithm is strongly

related to the Saturation Algorithm; however, the computational speed-up is enormous as will be

seen in Section 7.7. In contrast with the Saturation Algorithm, which performs saturation steps

in the original space of the lattice L, the Project-and-Lift Algorithm performs saturation steps in

projected subspaces of L and then lifts the result back into the original space.
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We are mainly interested in computing a generating set of L where L ∩ Zn
+ = {0}. However in

Section 7.4, we address the question of how to compute a generating set L if L ∩ Zn
+ 6= {0}. We

demonstrate that the above methods for the case where L ∩ Zn
+ = {0} can be extended to this

more general case; it happens to be more straight-forward in some ways.

The completion procedure as it is presented in Section 7.2 is not very efficient. In Section 7.5, we

show how to increase the efficiency of the completion procedure. All the results in this section,

which we present in a geometric framework, have corresponding results in an algebraic context.

This section is rather technical and no other section depends upon it, so it may be skipped on first

reading.

In Section 7.6, we give the solution of a computational challenge posed by Seth Sullivant to compute

the Markov basis of 4× 4× 4 tables with 2-marginals, a problem involving 64 variables. We solved

this with the help of the new algorithm. Our computations led to 148, 968 elements in the minimal

generating set of I(A) which fall into 15 equivalence classes with respect to the underlying symmetry

group S4 × S4 × S4 × S3.

In Section 7.7, we compare the performance of the implementation of the Project-and-Lift algo-

rithm in 4ti2 v.1.2 [70] with the implementation of the Saturation algorithm and the Lift-and-

Project algorithm in Singular v3.0.0 [66] and in CoCoA 4.2 [30]. The Project-and-Lift algorithm

is significantly faster than the other algorithms.

7.2 Generating sets and Gröbner bases

Given a lattice L ⊆ Zn, and a vector b ∈ Zn, we define

FL,b := {x : x ≡ b (mod L), x ∈ Zn
+}.

For S ⊆ L, we define G(FL,b, S) to be the undirected graph with nodes FL,b and edges (x, y) if

x − y ∈ S or y − x ∈ S for x, y ∈ FL,b.

Definition 7.2.1 A set S ⊆ L a generating set of L if the graph G(FL,b, S) is connected for

every b ∈ Zn.

We remind the reader that connectedness of G(FL,b, S) simply states that between each pair x, y ∈

FL,b, there exists a path from x to y in G(FL,b, S). Note the difference between a generating set of

a lattice and a spanning set of a lattice: a spanning set of L is any set S ⊆ L such that any point

in L can be represented as an linear integer combination of the vectors in S. A generating set of L

is a spanning set of L, but the converse is not necessarily true.

Recall that for any lattice L, we have L = Lσ
A for some matrix A ∈ Zn×d and some index set

σ ⊆ {1, ..., n}. Hence,

FL,b = Fσ
A,b

:= {x ∈ Z
|σ|
+ : Aσx ≡ b (mod AσZ)}

for all b ∈ Zn and all b ∈ Zd where b = Aσb. So, FL,b and Fσ
A,b

are dual representations of feasible

sets.
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Example 7.2.2 Let S := {(1,−1,−1,−3,−1, 2), (1, 0, 2,−2,−2, 1)}, and let L ⊆ Z6 be the lattice

spanned by S. So, by definition, S is a spanning set of L, but S is not a generating set of L. Observe

that L = LA where

A = (Ã, I), Ã =











−2 −3

+2 −1

+2 +1

−1 +1











, and I =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











.

So, for every b ∈ Z6, FL,b = FA,b = {(x, s) : Ãx + Is = b, x ∈ Z2
+, s ∈ Z4

+} where b = Ab ∈ Z4.

Hence, the projection of FL,b onto the (x1, x2)-plane is the set of integer points in the polyhedron

{x ∈ Rn
+ : Ax ≤ b}, and the s variables are the slack variables. Consider b := (2, 2, 4, 2, 4, 1); then,

FL,b = FA,b where b = Ab = (−6, 4, 10, 1) (see Figure 7.1a).
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Figure 7.1: The set FL,b and the graphs G(FL,b, S) and G(FL,b, S
′) projected onto the (x1, x2)-

plane.

The graph of G(FL,b, S) is not connected because the point (3, 4, 12, 2, 0, 0) ∈ FL,b is discon-

nected (see Figure 7.1b). Consider the enlarged set S′ := S ∪ {(1, 1, 5,−1,−3, 0)}. The graph

of G(FL,b, S
′) is now connected (see Figure 7.1c); however, S′ is still not a generating set of

L since we have FL,b′ = {(0, 0, 0, 0, 1, 1), (0, 1, 3, 1, 0, 0)} for b′ := (0, 0, 0, 0, 1, 1), and the graph

G(FL,b′ , S
′) is disconnected; since there are only two feasible points in FL,b′ , the vector between

them (0, 1, 3, 1,−1,−1) must be in any generating of L. Finally, S′′ := S′ ∪ {(0, 1, 3, 1,−1,−1)} is

a generating set of L. �
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For the definition of a Gröbner basis, we need a term ordering ≻ for L. We call ≻ a term ordering

for L if ≻ is a total well-ordering on FL,b for every b ∈ Zn and ≻ is an additive ordering meaning

that for all b ∈ Zn and for all x, y ∈ FL,b, if x ≻ y, then x + γ ≻ y + γ for every γ ∈ Zn
+ (note

that x + γ, y + γ ∈ FL,b+γ). We also need the notion of a decreasing path: a path (x0, . . . , xk) in

G(FL,b, G) is ≻-decreasing if xi ≻ xi+1 for i = 0, . . . , k − 1. We define L≻ := {u ∈ L : u+ ≻ u−}.

Definition 7.2.3 A set G ⊆ L≻ is a ≻-Gröbner basis of L if for every x ∈ Zn
+ there exists a

≻-decreasing path in G(FL,x, G) from x to the unique ≻-minimal element in FL,x.

If G ⊆ L≻ is a ≻-Gröbner basis, then G is a generating set of L since given x, y ∈ G(FL,b, G) for

some b ∈ Zn, there exists a ≻-decreasing path from x to the unique ≻-minimal element in FL,b

and from y to the same element, and thus, x and y are connected in G(FL,b, G). Also, G ⊆ L≻ is a

Gröbner basis if and only if for every x ∈ Zn
+, x is either the unique ≻-minimal element in FL,b or

there exists a vector u ∈ G such that x − u ∈ FL,b and x ≻ x − u; consequently, a Gröbner basis

G is a test set for (IP)σ
A,c where Lσ

A = L if c and ≻ are compatible.

The defining property of a Gröbner basis is very strong, so we redefine it in terms of reduction

paths. A path (x0, . . . , xk) in G(FL,b, G) is a ≻-reduction path if for no i ∈ {1, . . . , k − 1}, we have

xi ≻ x0 and xi ≻ xk. For example, see Figure 7.2.
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Figure 7.2: Reduction path between x and y.

Lemma 7.2.4 A set G ⊆ L≻ is a ≻-Gröbner basis of L if and only if for each b ∈ Zn and for

each pair x, y ∈ FL,b, there exists a ≻-reduction path in G(FL,b, G) between x and y.

Proof. If G(FL,b, G) contains ≻-decreasing paths from x, y ∈ FL,b to the unique ≻-minimal element

in FL,b, then joining the two paths (and removing cycles if necessary) forms a ≻-reduction path

between x and y.

For the other direction, we assume that there is a ≻-reduction path between each pair x, y ∈ FL,b.

Denote by x∗ the unique ≻-minimal element in FL,b; thus, every x ∈ FL,b is connected to x∗ by a

≻-reduction path. In particular, by the definition of a ≻-reduction path, if x 6= x∗, then the first

node x1 6= x in this path must satisfy x ≻ x1. Repeating this argument iteratively with x1 instead

of x, we get a ≻-decreasing path from x to x∗. This follows from the fact that ≻ is a term ordering,

which implies that every ≻-decreasing path must be finite. However, the only node from which the

≻-decreasing path cannot be lengthened is x∗. �

Checking for a given G ⊆ L≻ whether there exists a ≻-reduction path in G(FL,b, G) for every

b ∈ Zn and for each pair x, y ∈ FL,b involves infinitely many situations that need to be checked.
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In fact, far fewer checks are needed: we only need to check for a ≻-reduction path from x to y if

there exists a ≻-critical path from x to y.

Definition 7.2.5 Given G ⊆ L≻ and b ∈ Zn, a path (x, z, y) in G(FL,b, G) is a ≻-critical path

if z ≻ x and z ≻ y.

If (x, z, y) is a ≻-critical path in G(FL,b, G), then x + u = z = y + v for some pair u, v ∈ G, in

which case, we call (x, z, y) a ≻-critical path for (u, v) (see Figure 7.3).
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Figure 7.3: A critical path for (u, v) between x, z, and y.

The following lemma will be a crucial ingredient in the correctness proofs of the algorithms pre-

sented in Section 7.3. It will guarantee correctness of the algorithm under consideration, since

the necessary reduction paths have been constructed during the run of the algorithm. In the next

lemma, we cannot assume that G is a generating set of L, since often this is what we are trying to

construct.

Lemma 7.2.6 Let x, y ∈ FL,b for some b ∈ Zn, and let G ⊆ L≻ where there is a path between x

and y in G(FL,b, G). If there exists a ≻-reduction path between x′ and y′ for every ≻-critical path

(x′, z′, y′) in G(FL,b, G), then there exists a ≻-reduction path between x and y in G(FL,b, G).

Proof. Assume on the contrary that no such ≻-reduction path exists from x to y. Among all

paths (x = x0, . . . , xk = y) in G(FL,b, G) choose one such that max
≻

{x0, . . . , xk} is minimal. Such a

minimal path exists since ≻ is a term ordering. Let j ∈ {0, . . . , k} where xj attains this maximum.

By assumption, (x0, . . . , xk) is not a ≻-reduction path, and thus, xj ≻ x0 and xj ≻ xk, and since

xj is maximal, we have xj ≻ xj−1 and xj ≻ xj+1. Let u = xj − xj−1 and v = xj − xj+1. Then

(xj−1, xj , xj+1) forms a ≻-critical path. Consequently, we can replace the path (xj−1, xj , xj+1)

with the ≻-reduction path (xj−1 = x0, . . . , xs = xj+1) in the path (x0, . . . , xk) and obtain a new

path between x and y with the property that the ≻-maximum of the intermediate nodes is strictly

less than xj = max
≻

{x1, . . . , xk−1} (see Figure 7.4). This contradiction proves our claim. �

The following corollary is a straight-forward consequence of Lemma 7.2.6, but nonetheless, it is

worthwhile stating explicitly.

Corollary 7.2.7 Let G ⊆ L≻. If for all b′ ∈ Zn and for every ≻-critical path (x′, z′, y′) in

G(FL,b′ , G), there exists a ≻-reduction path between x′ and y′, then for all b ∈ Zn and for all

x, y ∈ FL,b where x and y are connected in G(FL,b, G), there exists a ≻-reduction path between x

and y in G(FL,b, G).
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Figure 7.4: Replacing a critical path by a reduction path

Combining Corollary 7.2.7 with Lemma 7.2.4, we arrive at the following result for Gröbner bases.

Corollary 7.2.8 A set G ⊆ L≻ is a ≻-Gröbner basis of L if and only if G is a generating set of L

and if for all b ∈ Zn and for every ≻-critical path (x, z, y) in G(FL,b, G), there exists a ≻-reduction

path between x and y in G(FL,b, G).

In Corollary 7.2.7 and Corollary 7.2.8, it is not necessary to check for a ≻-reduction path from

x to y for every ≻-critical path (x, y, z) in G(FL,b, G) for all b ∈ Zn. Consider the case where

there exists another ≻-critical path (x′, y′, z′) in G(FL,b′ , G) for some b′ ∈ Zn such that (x, y, z) =

(x′ + γ, y′ + γ, z′ + γ) for some γ ∈ Zn
+. Then, a ≻-reduction path from x′ to y′ in G(FL,b′ , G)

translates by γ to a ≻-reduction path from x to y in G(FL,b, G). Thus, we only need to check for

a ≻-reduction path from x′ to y′.

A ≻-critical path (x, y, z) is minimal if there does not exist another ≻-critical path (x′, y′, z′)

such that (x, y, z) = (x′ + γ, y′ + γ, z′ + γ) for some γ ∈ Zn
+ where γ 6= 0, or equivalently,

min{xi, yi, zi} = 0 for all i = 1, . . . , n. Consequently, if there exists a ≻-reduction path between x

and y for all minimal ≻-critical paths (x, y, z), then there exists a ≻-reduction path between x′ and

y′ for all ≻-critical paths (x′, y′, z′). Also, for each pair of vectors u, v ∈ L, there exists a unique

minimal ≻-critical path (x(u,v), z(u,v), y(u,v)) determined by z(u,v) := max{u+, v+} component-

wise, x(u,v) := z(u,v) − u and y(u,v) := z(u,v) − v. So, any other ≻-critical path for (u, v) is of the

form (x(u,v) + γ, z(u,v) + γ, y(u,v) + γ) for some γ ∈ Zn
+. Using minimal ≻-critical paths, we can

rewrite Corollary 7.2.7 and Corollary 7.2.8, so that we only need to check for a finite number of

≻-reduction paths.

Lemma 7.2.9 Let G ⊆ L≻. If there exists a ≻-reduction path between x(u,v) and y(u,v) for every

pair u, v ∈ G, then for all b ∈ Zn and for all x, y ∈ FL,b where x and y are connected in G(FL,b, G),

there exists a ≻-reduction path between x and y in G(FL,b, G)

Corollary 7.2.10 A set G ⊆ L≻ is a ≻-Gröbner basis of L if and only if G is a generating

set of L and for each pair u, v ∈ G, there exists a ≻-reduction path between x(u,v) and y(u,v) in

G(FL,z(u,v) , G).

We now turn Lemma 7.2.9 into an algorithmic tool. The following algorithm, Algorithm 7.2.12

below, called a completion procedure [27], guarantees that if for a set S ⊆ L the points x and y



Chapter 7. Computation of generating sets of lattice ideals 81

are connected in G(FL,x, S), then there exists a ≻-reduction path between x and y in G(FL,x, G),

where G denotes the set returned by the completion procedure. Thus, if S is a generating set of L,

then Algorithm 7.2.12 returns a set G that is a ≻-Gröbner basis of L by Corollary 7.2.10.

Given a set S ⊆ L, the completion procedure first sets G := S and then directs all vectors in G

according to ≻ such that G ⊆ L≻. Note that at this point G(FL,b, S) = G(FL,b, G) for all b ∈ Zn.

The completion procedure then determines whether the set G satisfies Lemma 7.2.9; in other words,

it tries to find a reduction path from x(u,v) to y(u,v) for every pair u, v ∈ G. If G satisfies Lemma

7.2.9, then we are done. Otherwise, no ≻-reduction path was found for some (u, v), in which case,

we add a vector to G so that a ≻-reduction path exists, and then again, test whether G satisfies

Lemma 7.2.9, and so on.

To check for a ≻-reduction path, using the “Normal Form Algorithm”, Algorithm 7.2.11 below, we

construct a maximal ≻-decreasing path in G(FL,z(u,v) , G) from x(u,v) to some x′, and a maximal

≻-decreasing path in G(FL,z(u,v) , G) from y(u,v) to some y′. If x′ = y′, then we have found a ≻-

reduction path from x(u,v) to y(u,v). Otherwise, we add the vector r ∈ L≻ to G where r := x′ − y′

if x′ ≻ y′, and r := y′ − x′ otherwise, so therefore, there is now a ≻-reduction path from x(u,v) to

y(u,v) in G(FL,z(u,v) , G). Note that before we add r to G, since the paths from x to x′ and from

y to y′ are maximal, there does not exist u ∈ G such that x′ ≥ u+ or y′ ≥ u+. Therefore, there

does not exist u ∈ G such that r+ ≥ u+. This condition is needed to ensure that the completion

procedure terminates.

Algorithm 7.2.11 (Normal Form Algorithm)

Input: a vector x ∈ Zn
+ and a set G ⊆ L≻.

Output: a vector x′ where there is a maximal ≻-decreasing path from x to x′ in G(FL,x, G).

x′ := x

while there is some u ∈ G such that u+ ≤ x′ do

x′ := x′ − u

return x′

We write normalForm(x, G) for the output of the Normal Form Algorithm.

Algorithm 7.2.12 (Completion procedure)

Input: a term ordering ≻ and a set S ⊆ L.

Output: a set G ⊆ L≻ such that if x, y are connected in G(FL,x, S), then there exists a ≻-reduction

path between x and y in G(FL,x, G).

G := {u : u+ ≻ u−, u ∈ S} ∪ {−u : u− ≻ u+, u ∈ S}

C := {(u, v) : u, v ∈ G}

while C 6= ∅ do



7.3. Computing a generating set 82

Select (u, v) ∈ C

C := C \ {(u, v)}

r := normalForm(x(u,v), G) − normalForm(y(u,v), G)

if r 6= 0 then

if r− ≻ r+ then r := −r

C := C ∪ {(r, s) : s ∈ G}

G := G ∪ {r}

return G.

We write CP(≻, S) for the output of the Completion Procedure.

Lemma 7.2.13 Algorithm 7.2.12 terminates and satisfies its specifications.

Proof. Let (r1, r2, . . . ) be the sequence of vectors r that are added to the set G during the

Algorithm 7.2.12. Since before we add r to G, there does not exist u ∈ G such that r+ ≥ u+, the

sequence satisfies ri+ 6≤ rj+
whenever i < j. By the Gordan-Dickson Lemma, Lemma 1.1.1, such

a sequence must be finite and thus, Algorithm 7.2.12 must terminate.

When the algorithm terminates, the set G must satisfy the property that for each u, v ∈ G, there

exists a ≻-reduction path from x(u,v) to y(u,v), and therefore, by Lemma 7.2.9, there exists a ≻-

reduction path between x and y in G(FL,b, G) for all x, y ∈ FL,b for all b ∈ Zn where x and y are

connected in G(FL,b, G). Moreover, by construction, S ⊆ G ∪ −G, and therefore, if x and y are

connected in G(FL,b, S), then x and y are connected in G(FL,b, G). �

Note that the completion procedure preserves connectivity: given x, y ∈ FL,b for some b ∈ Zn, if x

and y are connected in G(FL,b, S), then x and y are also connected in G(FL,b, G).

7.3 Computing a generating set

In this section, we finally present three algorithms to compute a generating set of L:

• the “Saturation” algorithm (Hoşten and Sturmfels [78]),

• the “Lift-and-Project” algorithm (Bigatti, LaScala, and Robbiano [21]), and

• our “Project-and-Lift” algorithm (Hemmecke and Malkin [75]).

Each algorithm produces a generating set of L that is not necessarily minimal, and so, once a

generating set of L is known, a minimal generating set of L can be computed by a single Gröbner

basis computation (see [29] for more details). The fundamental idea behind all three algorithms is

essentially the same, and the main algorithmic building block of the algorithms is the completion

procedure.



Chapter 7. Computation of generating sets of lattice ideals 83

7.3.1 The “Saturation” algorithm

Let x, y ∈ FL,b for some b ∈ Zn, and let S ⊆ L. Observe that if x and y are connected in G(FL,b, S),

then x + γ and y + γ are connected in G(FL,b, S) for any γ ∈ Zn
+ since we can just translate any

path from x to y in G(FL,b, S) by γ giving a path from x + γ to y + γ in G(FL,b+γ , S). However, it

is not necessarily true that x + γ and y + γ are also connected for any γ ∈ Zn (γ may be negative)

where x + γ ≥ 0 and y + γ ≥ 0.

Given a set S ⊆ L, the Saturation algorithm constructs a set T such that if x and y are connected

in G(FL,b, S) for some b ∈ Zn, then x + γ and y + γ are connected in G(FL,b, T ) for any γ ∈ Zn

where x + γ ≥ 0 and y + γ ≥ 0. Importantly then, if S spans L, then T must be a generating set

of L. This follows since if S spans L, then for all b ∈ Zn and for all x, y ∈ FL,b, there must exist a

γ ∈ Zn
+ such that x + γ and y + γ are connected in G(FL,b, T ), and hence, x and y must also be

connected in G(FL,b, T ) from our assumption about T .

For convenience, we need some new notation. Given x, y ∈ Zn
+, we define x∧y as the component-wise

minimum of x and y – that is, (x∧y)i = min{xi, yi} for all i = 1, . . . , n. Also, given σ ⊆ {1, . . . , n},

we define x∧σ y as the component-wise minimum of x and y for the σ components and 0 otherwise

– that is, (x ∧ y)i = min{xi, yi} if i ∈ σ and (x ∧ y)i = 0 otherwise.

Definition 7.3.1 Let σ ⊆ {1, . . . , n}, and let S, T ⊆ L. The set T is σ-saturated on S if and

only if for all b ∈ Zn and for all x, y ∈ FL,b where x and y are connected in G(FL,b, S), the points

x − γ and y − γ are also connected in G(FL,b−γ , T ) where γ = x ∧σ y.

So, when T is σ-saturated on S, if x and y are connected in G(FL,b, S), then x + γ and y + γ

are connected in G(FL,b, T ) for any γ ∈ Zn (γ can be negative) where x + γ ≥ 0, y + γ ≥ 0,

and supp(γ) ⊆ σ. Saturation is thus concerned with the connectivity of a set T in relation to the

connectivity of another set S. Note that, by definition, a set S ⊆ L is ∅-saturated on itself. Also

observe that if S spans L, then T ⊆ L is {1, . . . , n}-saturated on S if and only if T is a generating

set of L.

The fundamental idea behind the Saturation algorithm is given S, T ⊆ L where T is σ-saturated on

S for some σ ⊆ {1, . . . , n}, we can compute a set T ′ that is a (σ∪{i})-saturated on S for any i ∈ σ.

Therefore, given a set S ⊆ L that spans L, starting from a set T = S, which is ∅-saturated on S, if

we do this repeatedly for each i ∈ {1, . . . , n}, we arrive at a set T ′ ⊆ L that is {1, . . . , n}-saturated

on S and, therefore, a generating set of L.

The following two lemmas are fundamental to the saturation algorithm. First, we extend the

definition of reduction paths. Given ϕ ∈ Qn, a path (x0, . . . , xk) in G(FL,b, G) is an ϕ-reduction

path if for no j ∈ {1, . . . , k − 1}, we have ϕ⊺xj > ϕ⊺x0 and ϕ⊺xj > ϕ⊺xk. Also, we define ei to be

the ith unit vector and ei = −ei. So, given b ∈ Zn, the path (x0, . . . , xk) ⊆ FL,b is a ei-reduction

path if xj
i ≥ x0

i or xj
i ≥ xk

i for j = 1, . . . , k − 1.

Lemma 7.3.2 Let S, T ⊆ L and i ∈ {1, ..., n}. The set T is {i}-saturated on S if and only if

for all b ∈ Zn and for all x, y ∈ FL,b where x and y are connected in G(FL,b, S), there exists a

ei-reduction path from x to y in G(FL,b, T ).
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Proof. Let x, y ∈ FL,b for some b ∈ Zn where x and y are connected in G(FL,b, S) and let

γ = x ∧{i} y.

Assume that T is {i}-saturated on S, and so, x − γ and y − γ are connected in G(FL,b−γ , T ).

Let (x − γ = x0, . . . , xk = y − γ) be a path from x − γ and y − γ in G(FL,b−γ , T ). The path

(x = x0 + γ, . . . , xk + γ = y) is a ei-reduction path from x to y in G(FL,b, T ).

Conversely, by assumption, there exists a ei-reduction path (x = x0, . . . , xk = y) in G(FL,b, T ).

The path (x − γ = x0 − γ, . . . , xk − γ = y − γ) is thus a feasible path from x − γ to y − γ in

G(FL,b−γ , T ). �

Given any vector ϕ ∈ Qn and a term order ≺, we define the order ≺ϕ where x ≺ϕ y if ϕ⊺x < ϕ⊺y

or ϕ⊺x = ϕ⊺y and x ≺ y. Since we assume L ∩ Zn
+ = {0}, the order ≺ei is thus a term ordering

for L. Importantly then, a ≺ei -reduction path is also an ei-reduction path. Let T = CP(≺ei , S).

Then, by the properties of the completion procedure, for all b ∈ Zn and x, y ∈ FL,b where x and

y are connected in G(FL,b, S), there exists a ≺ei -reduction path from x to y in G(FL,b, T ); T is

therefore {i}-saturated on S.

Let S, T ⊆ L and T is σ-saturated on S for some σ ⊆ {1, . . . , n}. Let T ′ = CP(≺ei , T ). So, T ′

is therefore {i}-saturated on T . For the saturation algorithm to work, we need that T ′ is also

(σ ∪ {i})-saturated on S, which follows from Lemma 7.3.3 below.

Lemma 7.3.3 Let σ, τ ⊆ {1, . . . , n} and S, T, U ⊆ L. If U is σ-saturated on S, and T is τ-

saturated on U , then T is (σ ∪ τ)-saturated on S.

Proof. Let b ∈ Zn, and x, y ∈ FL,b where x and y are connected in G(FL,b, S). Let α = x ∧σ y.

Since T is σ-saturated on S, x−α and y−α are connected in G(FL,b−α, T ). Let β = x−α∧τ y−α.

Then, since U is τ -saturated on T , x− α− β and y − α− β are connected in G(FL,b−α−β , U). Let

γ = α + β; then, γ = x ∧(σ∪τ) y. Therefore, there is a path from x − γ to y − γ in G(FL,b−γ , U) as

required. �

We now arrive at the Saturation algorithm below.

Algorithm 7.3.4 (Saturation algorithm)

Input: a spanning set S of L.

Output: a generating set G of L.

G := S

σ := ∅

while σ 6= {1, ..., n} do

Select i ∈ σ

G := CP(≺ei , G)

σ := σ ∪ {i}

return G.
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Lemma 7.3.5 Algorithm 7.3.4 terminates and satisfies its specifications.

Proof. Algorithm 7.3.4 terminates, since Algorithm 7.2.12 always terminates. We show at the

beginning of each iteration that G is σ-saturated on S, and so, at the end of the algorithm G

is {1, . . . , n}-saturated on S; therefore, G is a generating set of L. At the beginning of the first

iteration, G is σ-saturated on S since σ = ∅ and G = S. So, we can assume it is true for the

current iteration, and now, we show it is true for the next iteration. Let G′ := CP(≺ei , G). Then,

by Lemma 7.3.2, G′ is {i}-saturated on G, and so, by Lemma 7.3.3, G′ is (σ ∪ {i})-saturated on

S. So, G is σ-saturated on S at the beginning of the next iteration. �

During the Saturation algorithm, we saturate n times, once for each i ∈ {1, . . . , n}. However, as

proven in [77], it is in fact only necessary to perform at most ⌊n
2 ⌋ saturations. Given S, T ⊆ L, we

can show that there always exists a σ ⊆ {1, . . . , n} where |σ| ≤ ⌊n
2 ⌋ such that if T is σ-saturated

on S, then T is {1, . . . , n}-saturated on S. The following two lemmas prove the result.

Lemma 7.3.6 Let σ ⊆ {1, . . . , n}, S, T ⊆ L where T is σ-saturated on S, and u ∈ S. If

supp(u−) ⊆ σ or supp(u+) ⊆ σ, then T is (supp(u) ∪ σ)-saturated on S.

Proof. Assume that supp(u−) ⊆ σ. Let x, y ∈ FL,b for some b ∈ Zn where x and y are connected

in G(FL,b, S). Let α = x ∧supp(u+) y and β = x − α ∧σ y − α. We must show that x − α − β and

y−α−β are connected in G(FL,b−α−β , T ) since α+β = x∧(supp(u+)∪σ) y. By translating the path

from x to y by α, we get a path from x−α to y−α that is non-negative on all components except

supp(u+). This path can transformed into a path that is non-negative on all components except

supp(u−) by adding u to the start of the path as many times as necessary and subtracting u from

the end of the path the same number of times. Therefore, x−α+ γ and y−α+ γ are connected in

G(FL,b−α+γ , S) for some γ ∈ Zn
+ where supp(γ) ⊆ supp(u−) ⊆ σ. Observe that supp(β + γ) ⊆ σ.

Thus, since T is σ-saturated, x−α−β and y−α−β are connected in G(FL,b−α−β , T ) as required.

The case where T is supp(u+) ⊆ σ is essentially the same as above. �

Lemma 7.3.7 Let S, T ⊆ L. There exists a σ ⊆ {1, . . . , n} where |σ| ≤ ⌊n
2 ⌋ such that if T is

σ-saturated on S, then T is {1, . . . , n}-saturated on S.

Proof. We show this by construction. Without loss of generality, we assume that L is not contained

in any of the linear subspaces {xi : xi = 0, x ∈ Rn} for i = 1, . . . , n; otherwise, we may simply

delete this component.

Let σ = ∅, τ = ∅, and U = ∅. Repeat the following steps until τ = {1, . . . , n}.

1. Select u ∈ S such that supp(u) \ τ 6= ∅.

2. If | supp(u+) \ τ | ≥ | supp(u−) \ τ |, then σ := σ ∪ supp(u−), else σ := σ ∪ supp(u+).

3. Set τ := τ ∪ supp(u), and set U := U ∪ {u}.



7.3. Computing a generating set 86

The procedure must terminate since during each iteration we increase the size of τ . Note that, at

termination, U ⊆ S,
⋃

u∈U supp(u) = τ = {1, . . . , n}, and for all u ∈ U either supp(u+) ⊆ σ or

supp(u−) ⊆ σ. Therefore, by applying Lemma 7.3.6 recursively for each u ∈ U , we have that if T

is σ-saturated on S, then T is {1, . . . , n}-saturated on S. Lastly, since in each iteration we add at

least twice as many components to τ as to σ, we conclude that at termination |σ| ≤ ⌊n
2 ⌋. �

Example 7.3.8 Consider again the set S := {(1,−1,−1,−3,−1, 2), (1, 0, 2,−2,−2, 1)}. Let L be
the lattice spanned by S, and let σ = {1, 6}. Then, since supp((1,−1,−1,−3,−1, 2)+) = {1, 6}
and supp((1,−1,−1,−3,−1, 2)) = {1, 2, 3, 4, 5, 6}, we conclude by Lemma 7.3.6 that if a set T ⊆ L
is {1, 6}-saturated on S, then T is {1, 2, 3, 4, 5, 6}-saturated on S. So, to compute a generating set
of L, we only need to saturate on {1, 6}. The following table gives the values of σ, i, and G at
each stage of the Saturation algorithm when constructing a set that is {1, 6}-saturated on S, and
hence, a generating set of L.

σ i G := CP(≺ei , G)

∅ 1 {(−1, 0,−2, 2, 2,−1), (−1, 1, 1, 3, 1,−2), (−1, 2, 4, 4, 0,−3), (0,−1,−3,−1, 1, 1)}

{1} 6 {(0, 1, 3, 1,−1,−1), (−1, 1, 1, 3, 1,−2), (−1, 0,−2, 2, 2,−1), (−1,−1,−5, 1, 3, 0), (1, 2, 8, 0,−4,−1)}

Observe that after the first iteration, that G is not a generating set of L. The set G does not contain

the vector (−1,−1,−5, 1, 3, 0), and so, the graph G(FL,b, G) where b = (0, 0, 0, 1, 3, 0) is discon-

nected. Note that the final set G is not a minimal generating set of L; the vector (1, 2, 8, 0,−4,−1)

is not needed. See [29] for an algorithm to compute a minimal generating set. �

We now introduce the concept of a σ-generating set of L for some σ ⊆ {1, . . . , n} – a generalization

of a generating set of L. These new generating sets provide useful insights into saturation and the

inspiration for the Project-and-Lift algorithm as well as a point of reference to compare the two

algorithms.

Firstly, we define Fσ
L,b := {z : z ≡ b (mod L), zσ ≥ 0, z ∈ Zn} where σ ⊆ {1, . . . , n}, so we now

allow the σ components to be negative. Given S ⊆ L, analogous to G(FL,b, S), we define G(Fσ
L,b, S)

to be the undirected graph with nodes Fσ
L,b and edges (x, y) if x − y ∈ S or y − x ∈ S. Observe

that a path in G(Fσ
L,b, S) is non-negative on the σ components and may be negative on the σ

components. Analogous to a generating set of L, a set S ⊆ L is a σ-generating set of L if the graph

G(Fσ
L,b, S) is connected for every b ∈ Zn. Note that ∅-generating sets are equivalent to generating

sets and {1, . . . , n}-generating sets are equivalent to spanning sets.

Lemma 7.3.9 Let σ ⊆ {1, . . . , n} and S, T ⊆ L where S spans L. If T is σ-saturated on S, then

T is a σ-generating set of L.

Proof. Let x, y ∈ Fσ
L,b for some b ∈ Zn. We must show that x and y are connected in G(Fσ

L,b, S).

Since S spans L, there must exist a γ ∈ Zn
+ such that x+γ and y+γ are connected in G(FL,b+γ , S).

Let α, β ∈ Zn
+ where α + β = γ, supp(α) ⊆ σ, and supp(β) ⊆ σ. Since T is σ-saturated on S and

supp(α) ⊆ σ, the points x + β = x + γ − α and y + β = y + γ − α are connected in G(FL,b+β , S).

Therefore, since supp(β) ⊆ σ, x and y are connected in G(Fσ
L,b, S). �
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Interestingly, the converse of Lemma 7.3.9 is not true in general: a σ-generating set is not necessarily

a σ-saturated set. Let S, T ⊆ L where S spans L, σ ⊆ {1, . . . , n}, and let x, y ∈ FL,b for some

b ∈ Zn where x and y are connected in G(FL,b, S). If T is a σ-generating set of L, then x − γ

and y − γ are connected in G(FLσ ,b−γ , T ) where γ = x ∧σ y. In other words, there is a path from

x − γ and y − γ that remains non-negative on the σ components but may be negative on the σ

components. On the other hand, if T is σ-saturated on S, then x − γ and y − γ are connected

in G(FL,b−γ , T ) where again γ = x ∧σ y. In other words, there is a path from x − γ and y − γ

that remains non-negative on all the components. So, while σ-generating sets, like σ-saturated sets,

ensure path non-negativity on the σ components, they do not preserve existing path non-negativity

on the other σ components like σ-saturated sets do. Indeed, σ-generating sets say nothing at all

about the path non-negativity of the σ components. So, σ-saturation is a stronger concept than

σ-generation.

In the Project-and-Lift algorithm, we compute σ-generating sets instead of σ-saturated sets. By do-

ing so, we can effectively ignore the σ components, and therefore, we compute smaller intermediate

sets, although we start and finish at the same point.

7.3.2 The “Project-and-Lift” algorithm

Given σ ⊆ {1, . . . , n}, we define the projective map πσ : Zn 7→ Z|σ| that projects a vector in Zn

onto the σ = {1, . . . , n} \ σ components. For convenience, we write Lσ where σ ⊆ {1, . . . , n} as the

projection of L onto the σ components – that is, Lσ = πσ(L). Note that Lσ is also a lattice.

The fundamental idea behind the Project-and-Lift algorithm is that using a set S ⊆ L{i} that is

a generating set of L{i} for some i ∈ {1, . . . , n}, we can compute a set S′ ⊆ L{i} such that S′

lifts to a generating set of L. So, for some σ ⊆ {1, . . . , n}, since Lσ is also a lattice, starting with

a generating set of Lσ, we can compute a generating of Lσ\{i} for some i ∈ σ. So, by doing this

repeatedly for every i ∈ σ, we attain a generating set of L.

First, we extend the definition of Gröbner bases. Given ϕ ∈ Qn, recall that a path (x0, . . . , xk) in

G(FL,b, G) is a ϕ-reduction path if for no j ∈ {1, . . . , k−1}, we have ϕ⊺xj > ϕ⊺x0 and ϕ⊺xj > ϕ⊺xk.

A set G ⊆ L is a ϕ-Gröbner basis of L if for all b ∈ Zn and for every pair x, y ∈ FL,b, there exists

a ϕ-reduction path from x to y in G(FL,b, G).

The following lemma is fundamental to the Project-and-Lift algorithm. Note that the property

that ker(π{i}) ∩ L = {0} for some i ∈ {1, . . . , n} means that each vector in L{i} lifts to a unique

vector in L, and thus, the inverse map π−1
{i} : L{i} 7→ L is well-defined. Moreover, by linear algebra,

there must exist a vector ωi ∈ Qn−1 such that for all u ∈ L{i}, we have ωi⊺u = (π−1
{i}(u))i. We will

always write such a vector as ωi, and also, we define ωi = −ωi.

Lemma 7.3.10 Let i ∈ {1, . . . , n} where ker(π{i}) ∩ L = {0}, and let S ⊆ L{i}. The set S is a

ωi-Gröbner basis of L{i} if and only if π−1
{i}(S) is a ei-Gröbner basis of L.

Proof. Assume S is a ωi-Gröbner basis of L{i}. Let x, y ∈ FL,b for some b ∈ Zn. We need to show

that there is a ei-reduction path from x to y in G(FL,b, π
−1
{i}(S)). Let x = π{i}(x), y = π{i}(y), and
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b = π{i}(b). By assumption, there exists a ωi-reduction path (x = x0, . . . , xk = y) in G(FL{i},b, S).

So, we have ωi⊺xj ≥ ωi⊺x or ωi⊺xj ≥ ωi⊺y for all j. We now lift this ωi-reduction path in

G(FL{i},b, S) to a ei-reduction path in G(FL,b, π
−1
{i}(S)).

Let xj = x + π−1
{i}(x

j − x) = y + π−1
{i}(x

j − y) for all j = 0, . . . , k. Hence, π{i}(x
j) = xj and

xj
i = xi + ωi⊺xj − ωi⊺x = yi + ωi⊺xj − ωi⊺y, and so, xj

i ≥ xi or xj
i ≥ yi. Also, xj − xj−1 =

π−1
{i}(x

j − xj−1) ∈ π−1
{i}(S) for all j = 1, . . . , k. Therefore, (x = x0, . . . , yk = y) is an ei-reduction

path in G(FL,b, π
−1
{i}(S)) as required.

Assume that π−1
{i}(S) is a ei-Gröbner basis of L. Let x, y ∈ FL{i},b for some b ∈ Zn−1, and let

γ = ωi⊺(x − y). If γ > 0, then let x = (x, γ) and y = (y, 0), else let x = (x, 0) and y = (y,−γ);

hence, x, y ∈ FL,b for some b ∈ Zn, and π{i}(b) = b, π{i}(x) = x, π{i}(y) = y, and min{xi, yi} = 0.

By assumption, there exists a ei-reduction path (x = x0, . . . , xk = y) in G(FL,b, π
−1
{i}(S)). Let

xj = π{i}(x
j). So, (x = x0, . . . , xk = y) is a path in G(FL{i},b, S). Moreover, since xj

i ≥ xi or

xj
i ≥ yi for all j, we have ωi⊺xj ≥ ωi⊺x or ωi⊺xj ≥ ωi⊺y for all j. Therefore, the path is a ωi-

reduction path. �

By definition, a ei-Gröbner basis of L is also a generating set of L. On the other hand, a generating

set of L is also a ei-Gröbner basis of L. This follows since, given a generating set of L, for any

x, y ∈ FL,b for any b, there must exist a path from x − γ to y − γ where γ = x ∧{i} y, and by

translating such a path by γ, we get a ei-reduction path from x to y. This can also be shown using

Lemma 7.3.2. So, we arrive at the following corollary.

Corollary 7.3.11 Let i ∈ {1, . . . , n} where ker(π{i}) ∩ L = {0}, and let S ⊆ L{i}. The set S is a

ωi-Gröbner basis of L{i} if and only if π−1
{i}(S) is a generating set of L.

Given a vector ϕ ∈ Qn, any ≺ϕ-reduction path is also a ϕ-reduction path, and so, any ≺ϕ-Gröbner

basis is also a ϕ-Gröbner basis. So, given a set S ⊆ L{i} that generates L{i}, we can compute a

ωi-Gröbner basis S′ ⊆ L{i} of L{i} by running the completion procedure with respect to ≺ωi on

S. That is, S′ = CP(≺ωi , S). Hence, by Lemma 7.3.10, π−1
{i}(S

′) is a generating set of L.

We can apply the above reasoning to compute a generating set of Lσ\{i} from a generating set of

Lσ for some σ ⊆ {1, . . . , n} and i ∈ σ. First, analogously to π{i} and ≺ωi in the context of L{i}

and L, we define πσ
{i} and ≺σ

ωi in the same way except in the context of Lσ and Lσ\{i} respectively.

We can now present our Project-and-Lift algorithm.

Algorithm 7.3.12 (Project-and-Lift algorithm)

Input: a set S ⊆ L that spans L.

Output: a generating G set of L

Find a set σ ⊆ {1, . . . , n} such that ker(πσ) ∩ L = {0} and Lσ ∩ Z
|σ|
+ = {0}.

Compute a set G ⊆ Lσ such that G is a generating set of Lσ using S.



Chapter 7. Computation of generating sets of lattice ideals 89

while σ 6= ∅ do

Select i ∈ σ

G := (πσ
{i})

−1(CP(≺σ
ωi , G))

σ := σ \ {i}

return G.

Lemma 7.3.13 Algorithm 7.3.12 terminates and satisfies its specifications.

Proof. Algorithm 7.3.12 terminates, since Algorithm 7.2.12 always terminates.

We claim that for each iteration of the algorithm, G is a generating set of Lσ, ker(πσ) ∩ L = {0},

and Lσ ∩Z
|σ|
+ = {0}; therefore, at termination, G is a generating set of L. This is true for the first

iteration, so we assume it is true for the current iteration.

If σ = ∅, then there is nothing left to do, so assume otherwise. Since by assumption, Lσ∩Z
|σ|
+ = {0}

and ker(πσ)∩Lσ = {0}, we must have ker(πσ
{i})∩Lσ\{i} = {0}, and so, the inverse map (πσ

{i})
−1 :

Lσ → Lσ\{i} is well-defined. Let i ∈ σ, G′ := (πσ
{i})

−1(CP(≺σ
{i}, G)), and σ′ := σ \ {i}. Then, by

Corollary 7.3.11, G′ is a generating set of Lσ′

. Also, since σ′ ⊆ σ, we must have ker(πσ′ )∩L = {0}

and Lσ′

∩ Z
|σ′|
+ = {0}. Thus, the claim is true for the next iteration. �

In our Project-and-Lift algorithm, we need to find a set σ ⊆ {1, . . . , n} such that ker(πσ)∩Lσ = {0}

and Lσ ∩ Z
|σ|
+ = {0}, and then, we need to compute a generating set of Lσ.

For our purposes, the larger σ the better. However, in general, finding the largest σ is difficult; thus,

we use the following method for finding a good σ. Let B be a basis for the lattice L (L is spanned

by the rows of B). Let k := rank(B). Any k linearly independent columns of B then suffice to give

a set σ such that every vector in Lσ lifts to a unique vector in L; that is, ker(πσ)∩Lσ = {0}. Such

a set σ can be found via Gaussian elimination. If Lσ ∩ Z
|σ|
+ 6= {0}, then remove some i ∈ σ from σ

(σ := σ \ {i}) and recompute Lσ ∩ Z
|σ|
+ . Continue to do so until Lσ ∩ Z

|σ|
+ = {0}. This procedure

must terminate since L ∩ Zn
+ = {0} by assumption. To check if Lσ ∩ Z

|σ|
+ = {0}, we can either

solve a linear programming problem or compute the extreme rays of Lσ ∩ Z
|σ|
+ (see for example

[11, 60, 74]). In practice, we compute extreme rays using the algorithm in [74].

Once we have found such a σ, we can compute a generating set of Lσ using either the Saturation

algorithm, the Min-Max algorithm, or any other such algorithm. In practice and for this chapter,

we use the Saturation algorithm. It is possible that there does not exist such a σ except the

trivial case where σ = ∅, and so, the Project-and-Lift algorithm reduces to just the initial phase of

computing a generating set of L using some other algorithm. Though in practice, we usually found

a non-trivial σ. We refer the reader to Section 7.4 for a description of a complete Project-and-Lift

algorithm whereby we do not need another algorithm to start with.

Example 7.3.14 Consider again the set S := {(1,−1,−1,−3,−1, 2), (1, 0, 2,−2,−2, 1)}. Let L

be the lattice spanned by S. Let σ = {3, 4, 5, 6}. Then, ker(πσ) ∩ Lσ = {0}. Note that we have
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πσ(S) = {(1,−1), (1, 0)}. However, Lσ ∩ Z
|σ|
+ 6= {0}. So, we set σ = {3, 4, 6}, which leads to

πσ(S) = {(1,−1,−1), (1, 0,−2)}, and Lσ ∩ Z
|σ|
+ = {0}.

The set G = {(0,−1, 1), (−1, 2, 0)} is a generating set of Lσ. We can compute this using the
saturation algorithm. The following table gives the values of σ, i, ωi, and G at each stage of the
Project-and-Lift algorithm.

σ i ωi CP(≺σ
ωi,G

) G := (πσ
{i}

)−1(CP(≺σ
ωi , G))

{3, 4, 6} 3 (2, 3, 0) {(0,−1, 1), (1,−2, 0)} {(0,−1,−3, 1), (1,−2,−4, 0)}

{4, 6} 4 (−2, 1, 0, 0) {(0,−1,−3, 1), (1,−2,−4, 0)} {(0,−1,−3,−1, 1), (1,−2,−4,−4, 0)}

{6} 6 (1,−1, 0, 0, 0) {(0, 1, 3, 1,−1), (−1, 1, 1, 3, 1) , {(0, 1, 3, 1,−1,−1), (−1, 1, 1, 3, 1,−2) ,

(−1, 0,−2, 2, 2), (−1,−1,−5, 1, 3), (−1, 0,−2, 2, 2,−1), (−1,−1,−5, 1, 3, 0),

(1, 2, 8, 0,−4)} (1, 2, 8, 0,−4,−1)}

The final G is a generating set of L. Again note that it is not minimal; the vector (1, 2, 8, 0,−4,−1)

is not needed and can be removed from G, and G will still be a generating set of L. �

The concepts of σ-generating sets of L and generating sets of Lσ are, in fact, equivalent. So,

as discussed before, unlike that Saturation algorithm, the Project-and-Lift algorithm computes

σ-generating sets and thus does less work than the Saturation algorithm.

Lemma 7.3.15 Let σ ⊆ {1, . . . , n} where ker(πσ)∩L = {0} and S ⊆ Lσ. The set S is a generating

set of Lσ if and only if π−1
σ (S) is a σ-generating set of L.

Proof. Recall that a σ-generating set of L is a set where for all b ∈ Zn and for all x, y ∈ Fσ
L,b,

there exists a path from x to y in G(Fσ
L,b, S). Observe that πσ(Fσ

L,b) = FLσ ,πσ(b), and moreover,

a path in G(Fσ
L,b, S) projects to a path in G(FLσ ,πσ(b), S). Hence, a σ-generating set of L projects

to a generating set of Lσ. So, if S is a σ-generating set of L, then πσ(S) is a generating set of Lσ.

Also, assuming ker(πσ)∩L = {0}, if S is a generating set of Lσ, then π−1
σ (S) is a σ-generating set

of L. This follows since a path in G(FLσ ,b, S) can be lifted to a path in G(Fσ
L,b

, S) where πσ(b) = b.

�

Observe that if ker(πσ) ∩L 6= {0}, then a path in G(FLσ ,b, π
−1
σ (S)) cannot necessarily be lifted to

a path in G(Fσ
L,b

, π−1
σ (S)) – the path may become disconnected – although, we can easily rectify

this by adding a spanning set of the lattice ker(πσ) ∩ L to π−1
σ (S).

The Project-and-Lift algorithm has some interesting properties. As we saw in Lemma 7.3.10, ωi-

reduction paths lift to ei-reduction paths and ei-reduction paths project to ωi-reduction paths.

The same holds true for ≺ωi -reduction paths and ≺ei -reduction paths, shown in exactly the same

way, giving the following lemma.

Lemma 7.3.16 Let i ∈ {1, . . . , n} where ker(π{i}) ∩ L = {0}, and let S ⊆ L{i}. Let ≺ be a term

order. The set π−1
{i}(S) is a ≺ei-Gröbner basis of L if and only if S is a ≺ωi-Gröbner basis of L{i}.

So, during the Project-and-Lift algorithm, we compute a ≺ωi -Gröbner basis for some i and then

lift it to a ≺ei-Gröbner basis. We then compute a ≺ωj -Gröbner basis using some j 6= i and
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again lift it to a ≺ej Gröbner basis, and repeat. So effectively, the Project-and-Lift algorithm just

converts one Gröbner basis into another and lifts to another Gröbner basis. We therefore could use

a Gröbner walk algorithm to move from one Gröbner basis to another (see [32, 59]). We have not

yet implemented such an algorithm. It would be interesting to see its performance.

There are, in fact, two essentially equivalent ways to compute a ≺ei-Gröbner basis of L from a

set S ⊆ L{i} that generates L{i} for some i ∈ {1, . . . , n} where ker(π{i}) ∩ L = {0}, as needed by

the Project-and-Lift algorithm. Firstly, as we have already seen, the set T = π−1
{i}(CP(≺wi , S)) is

a ≺ei-Gröbner basis of L, but also, the set T ′ = CP(≺ei , π−1
{i}(S)) is also a ≺ei -Gröbner basis of

L. Essentially, to compute a ≺ei -Gröbner basis of L, we do not need a generating set of L, but

instead, we only need a {i}-generating set of L. This follows from the following Lemmas, which

are analogous to Lemmas 7.3.10 and 7.3.16 respectively.

Lemma 7.3.17 Let i ∈ {1, . . . , n} where ker(π{i}) ∩ L = {0}, and let S, T ⊆ L where S is a

{i}-generating set of L. The set T is a ei-Gröbner basis of L if and only if for all b ∈ Zn and for

all x, y ∈ FL,b where x and y are connected in G(FL,b, S), there exists an ei-reduction path from x

to y in G(FL,b, T ).

Proof. The forwards direction must hold by definition. Conversely, let x, y ∈ FL,b for some b ∈ Zn.

Since S is a {i}-generating set of L, there must exist γ ∈ Zn
+ where supp(γ) ⊆ {i}, such that x+γ is

connected to y+γ in G(FL,b+γ , S). So, by assumption, there exists an ei-reduction path from x+γ

to y + γ in G(FL,b+γ , T ), which translates to a path from x to y in G(FL,b, T ) since supp(γ) ⊆ {i}.

�

An analogous results holds for ≺ei -Gröbner bases for similar reasons.

Lemma 7.3.18 Let i ∈ {1, . . . , n} where ker(π{i}) ∩ L = {0}, and let S, T ⊆ L where S is a

{i}-generating set of L. The set T is a ≺ei-Gröbner basis of L if and only if for all b ∈ Zn and for

all x, y ∈ FL,b where x and y are connected in G(FL,b, S), there exists an ≺ei-reduction path from

x to y in G(FL,b, T ).

Therefore, if S ⊆ L{i} generates L{i}, then π−1
{i}(S) is a {i}-generating set of L by Lemma 7.3.15. So,

the set T ′ = CP(≺ei , π−1
{i}(S)) is a ≺ei -Gröbner basis of L. Moreover, when computing CP(≺wi , S)

and computing CP(≺ei , π−1
{i}(S)), the completion procedure performs essentially the same sequence

of steps producing essentially the same output data and intermediate data with the exception that

they perform the computation in different spaces. These two approaches are thus algorithmically

equivalent.

In one iteration, the Saturation algorithm computes CP(≺ei , T ), in the space L, for some set T ⊆ L

that is σ-saturated on some spanning set for some σ ⊆ {1, . . . , n} and i ∈ σ. On the other hand, in

one iteration, the Project-and-Lift algorithm effectively computes, in the space Lσ\{i}, CP(≺ei , T )

for some set T ⊆ Lσ\{i} that is a {i}-generating set of Lσ for some σ ⊆ {1, . . . , n} and i ∈ σ. So,

the algorithms are very similar, but the Project-and-Lift algorithm performs intermediate steps in

subspaces whereas the Saturation algorithm performs intermediate steps in the original space.
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7.3.3 The “Lift-and-Project” algorithm

The idea behind this algorithm is to lift a spanning set S of L ⊆ Zn to a spanning set S′ ⊆ Zn+1

of L′ ⊆ Zn+1 in such a way that we can compute a set G′ ⊆ L′ that generates L′ in only one

saturation step. Then, we project G′ to G ⊆ L, so that G is a generating set of L.

Let S be a spanning set of L ⊆ Zn. Let S′ := {(u, 0) : u ∈ S}∪ {(1, . . . , 1,−1)}, and let L′ ⊆ Zn+1

be the lattice spanned by S′. Since the vector (1, . . . , 1,−1) is in S′, it follows from Lemma 7.3.6,

that if a set G′ ⊆ L′ is {n+1}-saturated on S′, then G′ is {1, . . . , n+1}-saturated on S, and hence,

G′ is a generating set of L′. Also, since L ∩ Zn
+ = {0}, then L′ ∩ Zn+1

+ = {0}. Now, using exactly

the same idea behind the Saturation algorithm, if we let G′ := CP(≺en+1 , S′), then G′ must be a

generating set for the lattice L′ by Lemma 7.3.2.

So, at the moment, we have a generating set G′ for L′, and from this, we need to extract a

generating set of L. We define the linear map ρ : Zn+1 7→ Zn where

ρ(u′) := (u′
1 + u′

n+1, u
′
2 + u′

n+1, . . . , u
′
n + u′

n+1).

Observe that ρ maps Zn+1 onto Zn, maps L′ onto L, and maps FL′,b′ onto FL,b where b = ρ(b′).

Let G := {ρ(u′) : u′ ∈ G′} \ {0}. So, G ⊂ L, and we now show that in fact G generates L. Let

(x′0, . . . , x′k) be a path in G(FL′,b′ , G
′). Then, (ρ(x′0), . . . , ρ(x′k)) is a walk from ρ(x′0) to ρ(x′k)

in G(FL,ρ(b), G), so after removing cycles, we have a path from ρ(x′0) to ρ(x′k). Cycles may exist

because the kernel of ρ is non-trivial – ker(ρ) = {(γ, . . . , γ,−γ) : γ ∈ Z}. Let x, y ∈ FL,b for some

b ∈ Zn, and let x′ := (x, 0), y′ := (y, 0), and b′ := (b, 0); hence, ρ(x′) = x, ρ(y′) = y, and ρ(b′) = b.

Then, since G′ is a generating set of L′ there must exist a path from x′ to y′ in G(FL′,b′ , G
′), and

therefore, there exists a path from x to y in G(FL,b, G). Hence, G is a generating set of L. We thus

arrive at the Lift-and-Project algorithm.

Algorithm 7.3.19 (Lift-and-Project algorithm)

Input: a set S ⊆ L that spans L.

Output: a generating set G of L

S′ := {(u, 0) : u ∈ S} ∪ {(1, . . . , 1,−1)}

G′ := CP(≺n+1, S
′)

G := {ρ(u′) : u′ ∈ G′} \ {0}

return G.

To make the algorithm more efficient, we can use a different additional vector to (1, . . . , 1,−1). By

Lemma 7.3.7, we know that given a spanning set S, there exists a σ where |σ| ≤ ⌊n
2 ⌋ such that if T

is σ-saturated on S, then T is a generating set of L. Then, instead of (1, . . . , 1,−1), it suffices to use

the additional vector sσ =
∑

i∈σ ei − en+1, which has the important property that supp(s+
σ ) = σ

and supp(s−σ ) = {n + 1}. Recall that ei is the ith unit vector. Set S′ := {(u, 0) : u ∈ S} ∪ {sσ},

and let L′ be the lattice spanned by S′. Then, from Lemma 7.3.6, since sσ ∈ S′, if a set G′ ⊆ L′ is
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{n+1}-saturated on S′, then G′ is (σ∪{n+1})-saturated on S′. Also, since {(u, 0) : u ∈ S} ⊆ S′,

from the proof of Lemma 7.3.7, it follows that if G′ is σ-saturated on S′, then G′ is {1, . . . , n}-

saturated. Hence, G′ is {1, . . . , n+1}-saturated, and therefore, a generating set of L′. So again, we

can compute a generating set G′ of L′ in one saturation step. Also, we similarly define the linear map

ρσ : Zn+1 7→ Zn where ρσ(x′) := (x′
1, x

′
2, . . . , x

′
n) + (

∑

i∈σ ei)xn+1. Then, G := {ρσ(x′) : x′ ∈ G′}

is a generating set of L. As a general rule, the smaller the size of σ, the faster the algorithm.

7.4 What if L ∩ Zn
+ 6= {0}?

If L∩Zn
+ 6= {0}, then computing a generating set of the lattice L is actually more straight-forward

than otherwise. The vectors in L ∩ Zn
+ are very useful when constructing generating sets.

We say that component i ∈ {1, . . . , n} is unbounded if there exists a u ∈ L∩Zn
+ where i ∈ supp(u)

and bounded otherwise. From Farkas’ lemma, i is unbounded if and only if the linear program

max{xi : x ≡ 0 (mod L), x ∈ Rn
+} is unbounded. To find a u ∈ L such that u 
 0 and i ∈ supp(u),

and so also, to check whether i is unbounded, we can solve a linear program or compute the extreme

rays of L ∩ Zn
+ (see for example [11, 60, 74]). Given a term order ≺ of L, the order ≺ei is a term

order if and only if i is bounded.

Using the following lemma, we can extend the Saturation algorithm to the more general case where

L ∩ Zn
+ 6= {0}.

Lemma 7.4.1 Let S ⊆ L. If there exists u ∈ S where u ∈ L ∩ Zn
+ and u 6= 0, then S is supp(u)-

saturated (on S).

Proof. By definition, S is ∅-saturated (on S). Since u ≥ 0, we have supp(u−) = ∅, and so it follows

immediately from Lemma 7.3.6 that S is supp(u)-saturated (on S). �

We can now extend the Saturation algorithm. Let τ ⊆ {1, . . . , n} be the set of unbounded com-

ponents, and let S be a spanning set of L. Then, for each i ∈ τ , find a u ∈ L such that u ≥ 0

and ui > 0 and add u to S. Or equivalently, find a single u ≥ 0 such that supp(u) = τ and add it

to S. Now S is τ -saturated (on S) by Lemma 7.4.1. So, if a set T is τ -saturated on S, then T is

{1, . . . , n}-saturated on S by Lemma 7.3.3, and so, T is a generating set of L. So, we iteratively

compute T := CP(≺ei , T ) for every i ∈ τ ; then, T is τ -saturated on S as required.

The Project-and-Lift algorithm can also be extended to the more general case where L∩Zn
+ 6= {0}.

First, we need the following lemma.

Lemma 7.4.2 Let σ ⊆ {1, . . . , n}, S ⊆ L, and u ∈ L ∩ Zn
+ and u 6= 0. If S is a σ-generating set

of L and u ∈ S, then S is a (σ \ supp(u))-generating set of L.

Proof. Let x, y ∈ FL,b for some b ∈ Zn. Since S is a σ-generating set of L, there exists a path

from x to y in G(Fσ
L,b, S). This path can transformed into a path in G(F

(σ\supp(u))
L,b , S) by adding

u to the start of the path as many times as necessary and subtracting u from the end of the path

the same number of times. �
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Let σ ⊆ {1, . . . , n} where ker(πσ) ∩ Lσ = {0}. Let S ⊆ Lσ where S is a generating set of Lσ.

Also, let i ∈ σ. We now show how to construct a generating set of Lσ\{i}, and thus by induction, a

generating set of L. Firstly, since S is a generating set of Lσ, π−1
{i}(S) is a {i}-generating of Lσ\{i}

from Lemma 7.3.15. If i is unbounded for Lσ\{i}, then there exists a u ∈ Lσ\{i} such that u ≥ 0

and ui > 0. Thus, after adding u to (πσ
{i})

−1(S), we then have a generating set of Lσ\{i}. If i is

bounded, then compute S := CP(≺ωi , S), and (πσ
{i})

−1(S) is then a generating set of Lσ\{i}.

We first need to find an initial σ and S such that ker(πσ) ∩ Lσ = {0} and S is a generating set

of Lσ. Let B be a lattice basis of L where the rows of B span L. Let σ be any rank(B) linearly

independent columns of B. Let S = πσ(B). Then, every vector in Lσ lifts to a unique vector in L.

Then, computing a u ∈ Lσ such that u > 0 can be done by Gaussian elimination. After adding u

to S, S is a generating set of Lσ as required.

We can also extend the Lift-and-Project algorithm in a similar way. As above, we can find a set S

such that S is τ -saturated (on S). The set

S′ := {(u, 0) : u ∈ S} ∪

{

∑

i∈τ

ei − en+1

}

is also τ -saturated (on S′) for the same reasons. If a set T ′ ⊆ L′ is {n + 1}-saturated on S′, then

T ′ is (τ ∪ {n + 1})-saturated on S′ by Lemma 7.4.1, and so, by Lemma 7.3.3, T ′ is {1, ..., n + 1}-

saturated on S′ since S′ is τ -saturated (on S′); thus, T ′ is then a generating set of L′. Hence, in

one saturation step, we can compute a generating set of L′. Note that the component n + 1 is

bounded by construction. Then, the set T := {ρτ (u′) : u′ ∈ T ′} is a generating set of L.

7.5 Speeding-up the completion procedure

Finally, before presenting computational experience, we talk about ways in which the key algorithm,

Algorithm 7.2.12, can be improved. This leads us to the critical pair criteria.

Algorithm 7.2.12 has to test for a reduction path between x(u,v) and y(u,v) for all critical pairs

C := {(u, v) : u, v ∈ G}. In the case of lattice ideals, computational profiling shows that this is the

most time consuming part of the computation. So, we wish to reduce the number of critical pairs

that we test, and avoid this expensive test as often as possible. We present three criteria that can

reduce the number of critical pairs that need to be tested.

Criteria 1 and 3 (see [25, 26, 63]) are translated from the theory of Gröbner bases into a geometric

context. Criterion 2 is specific to lattice ideals and corresponds to using the homogeneous Buch-

berger algorithm [29, 117], but we give a slightly more general result. Note that all three criteria

can be applied simultaneously.

Criterion 1: The Disjoint-Positive-Support criterion

For a pair u, v ∈ G, the Disjoint-Positive-Support criterion is a simple and quick test for a ≻-

reduction path from x(u,v) to y(u,v). So, using this quick test for a ≻-reduction path, we can
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sometimes avoid the more expensive test.

Given u, v ∈ G, if supp(u+) ∩ supp(v+) = ∅, then there exists a simple ≻-reduction path from

x(u,v) to y(u,v) using u and v in reverse order (see Figure 7.5).
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Figure 7.5: Criterion 1.

Criterion 2: The Cancelation criterion

Let G be a generating set of L. If supp(x(u,v))∩supp(y(u,v)) 6= ∅ for some u, v ∈ G (or equivalently,

supp(u−) ∩ supp(v−) 6= ∅), then we do not need to check for a ≻-reduction path from x(u,v) to

y(u,v) (we can remove the pair (u, v) from C).

To show that this criteria holds, we need the concept of a grading. Let w ∈ Qn. If w⊺x = w⊺y

for all x, y ∈ FL,b for all b ∈ Zn, then we call w a grading of L, and we define degw(FL,b) := w⊺b

called the w-degree of FL,b. Importantly, if L ∩ Zn
+ = {0} (which we assume), then it follows from

Farkas’ lemma that there exists a strictly positive grading w ∈ Qn
+ of L.

First, we prove an analogous result to Corollary 7.2.8.

Lemma 7.5.1 A set G ⊆ L≻ is a ≺-Gröbner basis of L if and only if G is a generating set of L

and if for every ≻-critical path (x, z, y) in G(FL,b, G) for all b ∈ Zn where supp(x) ∩ supp(y) = ∅,

there exists a ≻-reduction path between x and y in G(FL,b, G).

Proof. The forwards implication follows from Corollary 7.2.8. For the backwards implication, we

need to show that for every ≻-critical path (x, y, z) where supp(x) ∩ supp(y) 6= ∅, there exists a

≻-reduction path from x to y in G(FL,x, G), in which case, there is a ≻-reduction path for all

≻-critical paths, and so by Corollary 7.2.8, G is a Gröbner basis. Assume on the contrary that this

is not the case. Let w be a strictly positive grading of L. Among all such ≻-critical paths (x, z, y)

where supp(x) ∩ supp(y) 6= ∅ and there is no ≻-reduction path from x to y, choose a ≻-critical

path (x, z, y) such that degw(FL,x) is minimal. Let γ := x ∧ y, x := x − γ, and y := y − γ. Note

that γ 6= 0 since supp(x)∩ supp(y) 6= ∅. Because G is a generating set of L, there must exist a path

from x to y in G(FL,x, G). Also, since w is strictly positive, degw(FL,x) < degw(FL,x); therefore,

by the minimality assumption on degw(FL,x), we can now conclude that for all ≻-critical paths

in G(FL,x, G) there exists a ≻-reduction path. Consequently, by Lemma 7.2.6, there exists a ≻-

reduction path between x and y in G(FL,x, G). This ≻-reduction path, however, can be translated

by γ to a ≻-reduction path from x to y in G(FL,x, G) (see Figure 7.6a). But this contradicts our

assumption that there is no such path between x and y. �
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Figure 7.6: Criterion 2.

Now, for all u, v ∈ G, if supp(x(u,v))∩supp(y(u,v)) 6= ∅, then supp(x)∩supp(y) 6= ∅ for all ≻-critical

paths (x, z, y) for (u, v). Using this observation, we arrive at an analogous result to Corollary 7.2.10.

Corollary 7.5.2 Let G ⊆ L be a generating set of L; then, G is a ≺-Gröbner basis of L if and

only if for each pair u, v ∈ G where supp(x(u,v))∩ supp(y(u,v)) = ∅, there exists a ≻-reduction path

between x(u,v) and y(u,v) in G(FL,z(u,v) , G).

We can extend these results further leading to a more powerful elimination criterion. Let u, v ∈ G.

We say the pair (u, v) satisfies Criterion 2 if there exists x′, y′ ∈ FL,z(u,v) such that there exists a ≻-

decreasing path in G(FL,z(u,v) , G) from x(u,v) to x′ and from y(u,v) to y′, and supp(x′)∩supp(y′) 6= ∅.

Importantly, if (u, v) satisfies Criterion 2, then we do not have to test for a ≻-reduction path from

x(u,v) to y(u,v). Thus, we arrive at an extension of Corollary 7.5.2. Observe that the previous results

are just a special case where x′ = x(u,v) and y′ = y(u,v).

Lemma 7.5.3 Let G ⊆ L be a generating set of L; then, G is a ≺-Gröbner basis of L if and only

if for each pair u, v ∈ G where (u, v) does not satisfy Criterion 2, there exists a ≻-reduction path

between x(u,v) and y(u,v) in G(FL,z(u,v) , G).

If there is a ≻-reduction path from x′ to y′, then there exists a ≻-reduction path from x(u,v) to

y(u,v). Since supp(x′)∩supp(y′) 6= ∅, then γ = x′∧y′ 6= 0. Let x = x′−γ and y = y′−γ. So, if there

exists a ≻-reduction path from x to y, then there must exist a ≻-reduction path from x′ to y′, and

therefore also, there must exist a ≻-reduction path from x(u,v) to y(u,v) (see Figure 7.6b). Again, we

let w be a strictly positive grading of L, and so similarly to above, degw(FL,x) < degw(FL,z(u,v)).

So, the proof of Lemma 7.5.3 is essentially as before.

For a pair u, v ∈ G, Criterion 2 can be checked not only before we search for a ≻-reduction path from

x(u,v) to y(u,v) but also while searching for a ≻-reduction path. When searching for a ≻-reduction

path, we construct a ≻-decreasing path from x(u,v) to normalForm(x(u,v), G) and a ≻-decreasing

path from y(u,v) to normalForm(y(u,v), G). Therefore, we can take any point x′ on the ≻-decreasing

path from x(u,v) to normalForm(x(u,v), G) and any point y′ on the decreasing path from y(u,v) to
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normalForm(y(u,v), G) and check Criterion 2, that is, we check if supp(x′)∩ supp(y′) 6= ∅. If this is

true, then we can eliminate (u, v).

We wish to point out explicitly here that Criterion 2 can be applied without choosing the vector

pairs u, v ∈ G in a particular order during Algorithm 7.2.12. In fact, when running Algorithm

7.2.12, if we apply Criterion 2 to eliminate a pair u, v ∈ G, it does not necessarily mean that there

is a ≻-reduction path from x(u,v) to y(u,v) in G(FL,z(u,v) , G) at that particular point in time in

the algorithm but instead that a ≻-reduction path will exist when the algorithm terminates. This

approach is in contrast to existing approaches that use the homogeneous Buchberger algorithm to

compute a Gröbner basis whereby vector pairs u, v ∈ G must be chosen in an order compatible

with increasing degw(FL,z(u,v)) for some strictly positive grading w. This can be computationally

costly. When we use these existing approaches, if a pair (u, v) is eliminated by Criterion 2, then it

is necessarily the case that there already exists a ≻-reduction path from x(u,v) to y(u,v).

Since we need a generating set of L for Criterion 2, we cannot apply Criterion 2 during the

Saturation algorithm (Algorithm 7.3.4), and also, we cannot apply Criterion 2 when L∩Zn
+ 6= {0}.

However, we can apply a less strict version. Given u, v ∈ G and τ ⊆ {1, . . . , n}, we say that (u, v)

satisfies Criterion 2 with respect to τ , if there exists x′, y′ ∈ FL,z(u,v) such that there exist decreasing

paths in G(FL,z(u,v) , G) from x(u,v) to x′ and from y(u,v) to y′, and supp(x′) ∩ supp(y′) ∩ τ 6= ∅.

Let S, T ⊆ L where S spans L and T is a σ-saturated set on S for some σ ⊆ {1, . . . , n}. During an

iteration of the Saturation algorithm 7.3.4, we compute a (σ∪{i})-saturated set of S, by computing

CP(≺ei , T ). While computing CP(≺ei , T ) here, we may apply Criterion 2 with respect to σ. For

an algebraic proof of this, see [21].

Also, we can use Criterion 2 when L∩Zn
+ 6= {0} if we have a generating set of L. Let τ be the set

of bounded components. Then, we may apply Criterion 2 with respect to τ . Moreover, if we do not

have a generating set and we are running the Saturation algorithm when L ∩ Zn
+ 6= {0}, we may

apply Criterion 2 with respect to σ ∩ τ .

Criterion 3: The (u, v, w) criterion

Before presenting the (u, v, w) criterion, we need a another result, Lemma 7.5.4, that is a less

strict version of Lemma 7.2.6. First, we need to define a new type of path. A path (x0, . . . , xk) is

z-bounded (with respect to ≺) if xi ≺ z for all i = 0, . . . , k. So, z is a strict upper bound on the

path. Note that for a ≻-critical path (x, z, y), a ≻-reduction path from x to y is a z-bounded path.

Lemma 7.5.4 Let b ∈ Zn, x, y ∈ FL,b, and let G ⊆ L≻ where there is a path between x and y in

G(FL,b, G). If there exists a z′-bounded path between x′ and y′ for every ≻-critical path (x′, z′, y′)

in G(FL,b, G), then there exists a ≻-reduction path between x and y in G(FL,b, G).

If we now re-examine the proof of Lemma 7.5.4, we find that we only need z′-bounded paths

between x′ and y′ for every ≻-critical path (x′, z′, y′) in G(FL,b, G), and that, a ≻-reduction path

from x′ and y′ is more than we need. The proof proceeds in the same way as Lemma 7.2.6.
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From Lemma 7.5.4, we arrive at an analogous result to Corollary 7.2.10.

Corollary 7.5.5 A set G ⊆ L≻ is a ≺-Gröbner basis of L if and only if G is a generating set

of L and if for each pair u, v ∈ G, there exists a z(u,v)-bounded path between x(u,v) and y(u,v) in

G(FL,z(u,v) , G).

Corollary 7.5.5 does not fundamentally change Algorithm 7.2.12 since to test for a z(u,v)-bounded

path from x(u,v) to y(u,v), we still test for a ≻-reduction path from x(u,v) to y(u,v) which is a

z(u,v)-bounded path. However, we can use Corollary 7.5.5 to reduce the number of critical pairs

u, v ∈ G for which we need to compute a ≻-reduction path.

Now, we are able to present the (u, v, w) criterion. Let u, v, w ∈ G where z(u,v) ≥ w+ (or equiva-

lently, z(u,v) ≥ z(u,w) and z(u,v) ≥ z(w,v)), and let z = z(u,v)−w. Then, a z(u,v)-bounded path from

x(u,w) to z, and a z(u,v)-bounded path from z to y(w,v) combine to form a z(u,v)-bounded path from

x(u,v) to y(u,v). Moreover, (x(u,v), z(u,v), z) is a ≻-critical path for (u, w) and (z, z(u,v), y(u,v)) is a

≻-critical path for (w, v) (see Figure 7.7). Therefore, a z(u,w)-bounded path from x(u,w) to y(u,w)

and a z(w,v)-bounded path from x(w,v) to y(w,v) combine to form a z(u,v)-bounded path from x(u,v)

to y(u,v), and so, we can remove (u, v) from C.
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Figure 7.7: Criterion 3.

Note that in Figure 7.7a, a ≻-reduction path from x(u,v) to z and a ≻-reduction path from z to

y(u,v) do combine to give a ≻-reduction path from x(u,v) to y(u,v); however, this is not the case in

Figure 7.7b which is why we need the concept of bounded paths.

We can extend the previous result. Let u, v,∈ G, and w1, . . . , wk ∈ G where z(u,v) ≥ (wi)
+

for all

i = 1, . . . , k. If there exists a bounded path for the critical pairs (u, w1), (wk, v), and (wi, wi+1) for

all i = 1, . . . , k − 1, then there is a bounded path for (u, v). However, note that this can also be

implied by a bounded path for (u, wi) and (wi, v) for any i = 1, . . . , k.

Unfortunately, we cannot just remove from C all pairs u, v ∈ G where there exists a w ∈ G such

that z(u,v) ≥ w+. It may happen that in addition to z(u,v) ≥ w+, we also have z(u,w) ≥ v+, in

which case, we would eliminate both the pairs (u, v) and (u, w) leaving only (v, w) which is not

sufficient. Moreover, at the same time, we may also have z(w,v) ≥ u+, and we would eliminate all

three pairs. To avoid these circular relationships, Gebauer and Möller [63] devised the following

critical pair elimination criteria which we use in practice in 4ti2 v1.2.

Let G = {u1, u2, . . . , u|G|}, and let ui, uj ∈ G where i < j. We define that the pair (ui, uj) satisfies

Criterion 3 if there exists uk ∈ G such that one of the following conditions hold:
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1. z(ui,uj) 
 z(ui,uk), and z(ui,uj) 
 z(uj ,uk);

2. z(ui,uj) = z(ui,uk), z(ui,uj) 
 z(uj,uk), and k < j;

3. z(ui,uj) 
 z(ui,uk), z(ui,uj) = z(uj,uk), and k < i; or

4. z(ui,uj) = z(ui,uk) = z(uj ,uk), and k < i < j.

So, if a pair (ui, uj) satisfies Criterion 3, we can eliminate it. For example, if G = {u1, u2, u3}

where zu1u2

= zu1u3


 zu2u3

, then applying Criterion 3 to all three pairs (u1, u2), (u1, u3), and

(u2, u3) would eliminate only (u1, u3).

After eliminating all pairs that satisfy Criterion 3, we are left with a set C′ ⊆ C = {(u, v) : u, v ∈ G}

of critical pairs such that if there exists a z(u′,v′)-bounded path from x(u′,v′) to y(u′,v′) for all

(u′, v′) ∈ C′, then there exists a z(u,v)-bounded path from x(u,v) to y(u,v) for all (u, v) ∈ C.

However, this set of pairs may not be minimal. In [29], Caboara, Kreuzer, and Robbiano describe

an algebraic algorithm for computing a minimal set of critical pairs with computational results.

Their computational results show that the Gebauer and Möller criteria give a good approximation

to the minimal set of critical pairs. We found that the Gebauer and Möller criteria were sufficient

for our computations.

7.6 The 4 × 4 × 4-challenge

The challenge posed by Seth Sullivant amounts to checking whether a given set of 145, 512 integer

vectors in Z64 is a Markov basis for the statistical model of 4 × 4 × 4 contingency tables with

2-marginals. If x = (xijk)i,j,k=1,...,4 denotes a 4 × 4 × 4 array of integer numbers, the defining

equations for the sampling moves are

4
∑

i=1

xijk = 0 for j, k = 1, . . . , 4,

4
∑

j=1

xijk = 0 for i, k = 1, . . . , 4,

4
∑

k=1

xijk = 0 for i, j = 1, . . . , 4.

This leads to a problem matrix A444 ∈ Z48×64 of rank 37 and LA444 = {z : A444z = 0, z ∈ Z64}.

Note that the 145, 512 vectors in the conjectured Markov basis fall into 14 equivalence classes under

the natural underlying symmetry group S4 × S4 × S4 × S3.

In [9], Aoki and Takemura have computed these 14 symmetry classes via an analysis of sign patterns

and under exploitation of symmetry. They claimed that the corresponding 145, 512 vectors form

the unique inclusion-minimal Markov basis of A444.
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Using our Project-and-Lift algorithm, however, we have computed the Markov basis from the

problem matrix A444 within less than 7 days on a Sun Fire V890 Ultra Sparc IV processor with

1200 MHz. Note that the symmetry of the problem was not used by the algorithm. This leaves

room for a further significant speed-up. Our computation produced 148, 968 vectors; that is, there

are additionally 3, 456 Markov basis elements. These vectors form a single equivalence class under

S4 × S4 × S4 × S3 of a norm 28 vector z15 (or equivalently, of a degree 14 binomial).

A quick check via a Hilbert basis computation with 4ti2 shows that these Markov basis elements

are indispensable, since {z ∈ Z64
+ : A444z = A444z

+
15} = {z+

15, z
−
15}. As also all the other 145, 512

Markov basis elements were indispensable, the Markov basis of 4 × 4 × 4 contingency tables with

2-marginals is indeed unique. At least this claim can be saved from [9], although we have finally

given a computational proof. Here is the list of the 15 orbit representatives, written as binomials:

1. x111x144x414x441 − x114x141x411x444

2. x111x144x334x341x414x431 − x114x141x331x344x411x434

3. x111x122x134x143x414x423x432x441 − x114x123x132x141x411x422x434x443

4. x111x144x324x333x341x414x423x431 − x114x141x323x331x344x411x424x433

5. x111x144x234x243x323x341x414x421x433 − x114x141x233x244x321x343x411x423x434

6. x111x122x133x144x324x332x341x414x423x431 − x114x123x132x141x322x331x344x411x424x433

7. x111x144x222x234x243x323x341x414x421x432 − x114x141x223x232x244x321x343x411x422x434

8. x111x144x222x233x324x332x341x414x423x431 − x114x141x223x232x322x331x344x411x424x433

9. x111x112x133x144x223x224x232x241x314x322x413x421 −

x113x114x132x141x221x222x233x244x312x324x411x423

10. x111x112x133x144x224x232x243x313x322x341x414x421 −

x113x114x132x141x222x233x244x312x321x343x411x424

11. x111x134x143x222x233x241x314x323x342x412x424x431 −

x114x133x141x223x231x242x312x324x343x411x422x434

12. x111x134x143x224x232x241x314x323x342x412x421x433 −

x114x133x141x221x234x242x312x324x343x411x423x432

13. x2
111x124x133x144x214x223x242x313x332x341x414x424x431 −

x2
114x123x131x141x213x222x244x311x333x342x411x424x432

14. x2
111x124x133x144x214x232x243x312x323x341x414x422x431 −

x2
114x123x131x141x212x233x244x311x322x343x411x424x432

15. x2
111x133x144x223x224x232x242x313x322x341x414x422x431 −

x113x114x131x141x
2
222x233x244x311x323x342x411x424x432

7.7 Computational experience

We now compare the implementation of our new algorithm in 4ti2 v.1.2 [70] with the implementa-

tion of the Saturation algorithm [78] and the Lift-and-Project algorithm [21] in Singular v3.0.0 [66]

(algorithmic options ‘hs’ and ‘blr’) and in CoCoA 4.2 [30] (functions ‘Toric’ and ‘Toric.Sequential’).
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Name Software Function Algorithm

Sing-blr Singular v3.0.0 toric, option “blr” Lift-and-Project

Sing-hs Singular v3.0.0 toric, option “hs” Saturation

CoCoA-t CoCoA v4.2 Toric Lift-and-Project

CoCoA-ts CoCoA v4.2 Toric.Sequential Saturation

P&L 4ti2 v1.2 groebner Project-and-Lift

4ti2-gra 4ti2 v1.2 graver Graver basis [76]

The first 4 problems correspond to three-way tables with 2-marginals, whereas K4 and K5 cor-

respond to the binary models on the complete graphs K4 and K5, respectively. The problem

s-magic333 is taken from an application in [3] and computes the relations among the 66 elements

of the Hilbert basis elements of 3× 3× 3 semi-magic hypercubes. The example grin is taken from

[78], while the examples hppi10-hppi14 correspond to the computation of homogeneous primitive

partition identities, see for example Chapters 6 and 7 in [114]. Finally, the examples cuww1-cuww5

arise from knapsack problems presented in [35].

The computations were done on a Sun Fire V890 Ultra Sparc IV processor with 1200 MHz. Com-

putation times are given in seconds, rounded up. See Figure 7.8. The running times give a clear

ranking of the implementations: from left to write the speed increases and in all problems, the

presented Project-and-Lift algorithm wins significantly.

Problem Vars. GB size Sing-blr Sing-hs CoCoA-t CoCoA-ts P&L 4ti2-gra

333 27 110 30 4 1 1 1

334 36 626 − 197 3, 024 5 1

335 45 3, 260 − 23, 700 − 233 27

344 48 7, 357 − − − 2, 388 252

K4 16 61 1 1 1 1 1

K5 32 13, 181 − − 13, 366 2, 814 715

s-magic333 66 1, 664 − − 35 55 3

grin 8 214 4 4 1 1 1

hppi10 20 1, 830 1, 064 483 16 14 3 2

hppi11 22 3, 916 15, 429 3, 588 129 82 13 11

hppi12 24 8, 569 − 43, 567 1, 534 554 60 51

hppi13 26 16, 968 − − 8, 973 4, 078 290 259

hppi14 28 34, 355 − − − 30, 973 1, 219 1, 126

cuww1 5 5 − − − − 1

cuww2 6 15 − − − − 1

cuww3 6 16 − − − − 2

cuww4 7 7 − − − − 1

cuww5 8 27 − − − − 2

Figure 7.8: Comparison of computing times.

The advantage of our Project-and-Lift algorithm is that it performs computations in projected

subspaces of L. Thus, we obtain comparably small intermediate sets during the computation.

Only the final iteration that deals with all variables reaches the true output size. In contrast to
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this, the Saturation algorithm usually comes close to the true output size already after the first

saturation and then continues computing with as many vectors. See Figure 7.9, for a comparison

of intermediate set sizes in each iteration for computing 3 × 4 × 4 tables.
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Figure 7.9: Comparison of intermediate set sizes in each iteration.

Moreover, the Project-and-Lift algorithm, performs Gröbner basis computations using a generating

set, and thus can take full advantage of Criterion 2 which, as computational experience shows, is

extremely effective. In fact, we only applied Criterion 2 and 1 (applied in that order) for the

Project-and-Lift algorithm since Criterion 3 only slowed down the algorithm. However, for the

Saturation algorithm where we cannot apply Criterion 2 fully, Criterion 3 was very effective. In

this case, we applied Criterion 1, then 3, and then 2, in that order.

Note that in the knapsack problems cuww1-cuww5 the initial set σ chosen by the Project-and-Lift

Algorithm 7.3.12 is empty. Thus, Algorithm 7.3.12 simplifies to the Saturation Algorithm 7.3.4. In

fact, only a single saturation is necessary for each problem.

To us, the following observations were surprising.

• While Singular did not accept the inhomogeneous problems cuww1-cuww5 as input, CoCoA

either could not solve them or produced incorrect answers.

• It is not clear why the CoCoA function Toric works well on problems hppi10-hppi14, but

runs badly on the table problems 334, 335, 344.

• Problems hppi10-hppi14 are in fact Graver basis computations (see for example Chapter 14

in [114]), for which 4ti2 has the state-of-the-art algorithm and implementation. Initially, it

was a surprise to us that our Project-and-Lift Algorithm 7.3.12 comes so close to the speed

of the state-of-the-art algorithm that computes Graver bases directly, Chapter 2. However, it

turns out that our Project-and-Lift Algorithm 7.3.12 is an extension of the Project-and-Lift

algorithm presented in Chapter 2 to lattice ideal computations.
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Short rational generating functions
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Chapter 8

Counting via Hilbert bases

8.1 The counting problem

Counting lattice points inside convex rational polyhedra is a truly fundamental and useful step

in many mathematical investigations. It appears, for instance, in the context of Combinatorics

[94, 110], Representation Theory [87, 107], Statistics [49, 57], and Number Theory [17, 98]. Lattices

and polytopes are also at the foundation of Discrete Optimization [67, 106]. This justifies the

development of algorithms and of computer software that could count or list all lattice points in

an arbitrary rational convex polyhedron.

In fact, we are not only interested in counting the lattice points in P , but we wish to do the same

for dilations of P , where for P = {x : Ax ≤ b, x ∈ Rn} and t > 0 we call

tP := {tx : x ∈ P} = {x : Ax ≤ tb, x ∈ Rn}

the t-dilation of P . Then the function iP : Z+ → Z+ defined by

iP (t) := |tP ∩ Zn|

is what we are interested in. This function iP was first studied by Ehrhart [53] and has received

a lot of attention in combinatorics. It is known to be a polynomial when all vertices of P are

integral and it is a quasi-polynomial for arbitrary rational polytopes. It is called the Ehrhart

quasi-polynomial in honor of its discoverer [110, Chapter 4]. A function f : N → C is called a

quasi-polynomial if there is an integer N > 0 and polynomials f0, . . . , fN−1 such that f(s) = fi(s)

if s ≡ i (mod N). The integer N is called a quasi-period of f . Therefore, by counting the number of

lattice points for sufficiently many dilations of a rational polytope, we could interpolate its Ehrhart

quasi-polynomial.

In this chapter and in the following chapter, we present two algorithms to find iP . Both algorithmic

approaches find a “short” rational function expression that encodes the infinite sum
∑∞

t=0 iP (t)zt,

the so-called Ehrhart series. While the first approach uses only concepts already introduced in this

105
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thesis, Hilbert bases of cones and Gröbner bases of toric ideals, the second approach introduces short

rational generating functions to encode sets of lattice points together with Barvinok’s algorithm

to find such a representation.

As a simple application of counting, let us present the problem of counting magic squares and

hypercubes. Magic squares and cubes are very popular combinatorial objects (see [7, 61, 101] and

their references).

A magic square is a square matrix whose entries are non-negative integers and whose row sums,

column sums, and main diagonal sums add up to the same integer number s. We call s the magic

sum of the square. In the literature there have been many variations on the definition of magic

squares. For example, one popular variation of our definition adds the restriction of using the

integers 1, . . . , n2 as entries (such magic squares are commonly called natural or pure and a large

part of the literature consists of procedures for constructing such examples, see [7, 61, 101]). We

restrict the entries of the squares to arbitrary non-negative integers and consider other kinds of

restrictions instead:

Semi-magic squares is the case when only the row and column sums are considered. This apparent

simplification has in fact a very rich theory and several open questions remain (see [31, 55, 111] and

references within. Semi-magic squares are called magic squares in these references). Pandiagonal

magic squares are magic squares with the additional property that any broken-line diagonal sum

adds up to the same integer (see Figure 8.1).

5

12 0 5 7

0 12 7 5

7 5 0 12

5 7 12 0

Figure 8.1: Four broken diagonals of a square and a pandiagonal magic square.

There are analogous definitions in higher dimensions. A semi-magic hypercube is a d-dimensional

n× n× · · · ×n array of nd non-negative integers, which sum up to the same number s for any line

parallel to some axis. A magic hypercube is a semi-magic cube that has the additional property that

the sums of all the main diagonals, the 2d−1 copies of the diagonal x1,1,...,1, x2,2,...,2, . . . , xn,n,...,n

under the symmetries of the d-cube, are also equal to the magic sum. For example, in a 2 × 2 × 2

cube there are 4 diagonals with sums x1,1,1 +x2,2,2 = x2,1,1 +x1,2,2 = x1,1,2 +x2,2,1 = x1,2,1+x2,1,2.

We can see a magic 3× 3× 3 cube in Figure 8.2 (the number 14 is at the central (2, 2, 2) position).

From now on, when referring to any of these structures, we will use the terminology magic arrays.
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10 23 9

26 3 13

6 16 20

24 7 11

21 417

19

2515

8 12 22

2

185
1 14 27

Figure 8.2: A magic cube.

Example 8.1.1 As an example we consider the case of 3×3 magic squares of magic sum t, whose

counting formula has been know at least since 1915 [94]. Any magic 3 × 3 square with magic sum

t lies in the t-dilation of the polytope P3×3 described by the system of equations

x11 + x12 + x13 = 1,

x21 + x22 + x23 = 1,

x31 + x32 + x33 = 1,

x11 + x21 + x31 = 1,

x12 + x22 + x32 = 1,

x13 + x23 + x33 = 1,

x11 + x22 + x33 = 1,

x31 + x22 + x13 = 1,

and the inequalities xij ≥ 0.

Using for example the method described in the next section, we obtain the counting formula

∞
∑

t=0

iP3×3(t)z
t =

(1 + z3)2

(1 − z3)3
= 1 + 5z3 + 13z6 + 25z9 + 41z12 + . . .

or more explicitly

iP3×3(t) =

{

2
9 t2 + 2

3 t + 1 if 3|t,

0 otherwise.

The latter counting formula tells us that there exist magic 3×3 squares only for magic sums which

are divisible by 3. In fact, it can be shown that this is true for any magic 3×3×· · ·×3 hypercube.

8.2 Hilbert bases for counting and element generation

In this section, we use Hilbert bases to find a short rational expression for
∑∞

t=0 iP (t)zt for given

polytope P ⊆ Rn. We use computational polyhedral geometry and commutative algebra techniques
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to derive this explicit counting formula. Similar derivations had been done earlier for semi-magic

squares [110, Chapter 4].

Let us consider the homogenization C of P , which is the (pointed rational polyhedral) cone of all

(continuous) dilations tP , t ≥ 0:

C := {(x, t) : x ∈ tP, x,∈ Rn, t ≥ 0}.

Then, the lattice points in C are in one-to-one correspondence to the lattice points in tP where t

ranges over all non-negative integers. Let H denote the unique inclusion-minimal Hilbert basis of

C. Thus, every lattice point in C can be represented as a non-negative integer linear combination

of elements from H . Unfortunately, this representation is not unique.

Example 8.2.1 Let us consider the cone of magic 3×3 squares. This cone is defined by the system

of equations

t = x11 + x12 + x13 magic sum t

x11 + x12 + x13 = x21 + x22 + x23 = x31 + x32 + x33 row sums

x11 + x12 + x13 = x11 + x21 + x31 = x12 + x22 + x32 = x13 + x23 + x33 column sums

x11 + x12 + x13 = x11 + x22 + x33 = x31 + x22 + x13 diagonal sums

and the inequalities xij , t ≥ 0. This cone C of magic 3× 3 squares lives in R10 and is of dimension

3, it is a cone based on a quadrilateral, thus it has 4 rays (see Figure 8.3). The 5 elements in the

Hilbert basis of C correspond to those magic 3× 3 squares that cannot be written as a non-trivial

sum of two other magic 3 × 3 squares.

0 2 1
2 1 0
1 0 2

1 1 1
1 1 1
1 1 1

1 0 2
2 1 0
0 2 1

0
2 0 1

1 2
1 2 0

1 2 0
0 1 2
2 0 1

Figure 8.3: The Hilbert basis for the cone of 3×3 magic squares projected down to the x-components

living in R9. The top four squares are the rays of the cone.

We can already recover from the Hilbert basis the fact that there exist only magic 3 × 3 squares

of magic sums that are divisible by 3, since every Hilbert basis element has magic sum 3.

To compute the above Hilbert bases, we use 4ti2 as follows. First, we specify the problem matrix

in a file, say “3x3”:
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8 10

1 1 1 0 0 0 0 0 0 -1

1 1 1 -1 -1 -1 0 0 0 0

1 1 1 0 0 0 -1 -1 -1 0

0 1 1 -1 0 0 -1 0 0 0

1 0 1 0 -1 0 0 -1 0 0

1 1 0 0 0 -1 0 0 -1 0

0 1 1 0 -1 0 0 0 -1 0

1 1 0 0 -1 0 -1 0 0 0

and then call “hilbert 3x3” which produces a file named “3x3.hil”:

5 10

1 0 2 2 1 0 0 2 1 3

2 0 1 0 1 2 1 2 0 3

0 2 1 2 1 0 1 0 2 3

1 2 0 0 1 2 2 0 1 3

1 1 1 1 1 1 1 1 1 3

containing the desired 5 Hilbert basis elements. �

Having a Hilbert basis of C available, let us show how it can be used to find
∑∞

t=0 iP (t)zt as a

rational expression in z.

With any d-dimensional rational pointed polyhedral cone C = {Ax = 0, x ≥ 0} and a field k we

associate a semigroup SC = (C ∩ Zn, +) and a semigroup ring RC = k[ya : a ∈ SC ], where there

is one monomial ya = ya1
1 ya2

2 . . . yan
n in the ring for each element a = (a1, . . . , an) of the semigroup

SC . By the definition of a Hilbert basis we know that every element of SC can be written as

a finite linear combination
∑

µihi where the µi are non-negative integers. Thus RC is in fact a

finitely generated k-algebra, with one generator per element of a Hilbert basis. Therefore RC can be

written as the quotient k[x1, x2, . . . , xN ]/IC : Once we have the Hilbert basis H = {h1, . . . , hN} for

the cone C, IC is simply the kernel of the polynomial map φ : k[x1, x2, . . . , xN ] −→ k[y1, y2, . . . yn],

where φ(xi) = yhi and for hi = (a1, a2, . . . , an) we set yhi = ya1
1 ya2

2 . . . yan
n . There are standard

techniques for computing this kind of kernel. It is in fact a toric ideal computation, see for example

Chapter 7.

Example 8.2.1 cont. Let us illustrate this algebraic construction for magic 3× 3 squares, where

x5 corresponds to the matrix with all entries one, at the bottom of Figure 8.3, and the other 4

variables x1, x2, x3, x4 correspond to the magic squares on top of Figure 8.3, as they appear from

left to right. The ideal IC is the toric ideal defined by the matrix whose columns are the 5 Hilbert
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basis elements:








































1 2 0 1 1

0 0 2 2 1

2 1 1 0 1

2 0 2 0 1

1 1 1 1 1

0 2 0 2 1

0 1 1 2 1

2 2 0 0 1

1 0 2 1 1

3 3 3 3 3









































.

Using 4ti2, we see that IC is generated by the two relations x2
5 − x1x4, x2x3 − x1x4. The first

relation means, for example, that the sum of magic square 1 with magic square 4 is the same as

twice the magic square 5.

In order to compute the two relations x2
5 − x1x4, x2x3 − x1x4 with 4ti2, store the above matrix

into a file, say again “3x3”:

5 10

1 2 0 1 1

0 0 2 2 1

2 1 1 0 1

2 0 2 0 1

1 1 1 1 1

0 2 0 2 1

0 1 1 2 1

2 2 0 0 1

1 0 2 1 1

3 3 3 3 3

and then type “groebner 3x3” which creates the file “3x3.gro”:

2 5

-1 0 0 -1 2

-1 1 1 -1 0

containing the desired two vectors that encode the two binomials stated above. �

It is important to observe that we can give a natural grading to RC . A lattice point in C can be

thought of as a monomial in the ring and its degree will be t, the dilation factor.

Example 8.2.1 cont. All elements of the Hilbert basis of magic 3× 3 squares have degree 3. �

Once we have a graded k-algebra we can talk about its decomposition into the direct sum of its

graded components RC =
⊕

RC(i), where each RC(i) collects all elements of degree i and it is a
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k-vector space (where RC(0) = k). The function H(RC , i) = dimk(RC(i)) is the Hilbert function

of RC . Similarly one can construct the Hilbert-Poincaré series of RC , HRC
(t) =

∑∞
i=0 H(RC , i)ti.

Lemma 8.2.2 Let C be a pointed rational cone, with Hilbert basis H = {h1, . . . , hN}. Let the

degree of a variable xi in the ring k[x1, . . . , xN ] be given by the t-component of hi. Let RC be the

(graded) semigroup ring obtained from the minimal Hilbert basis of a cone C. Then the number of

distinct lattice points in C with last component s equals the value of the Hilbert function H(RC , s).

Proof. By the definition of a Hilbert basis we have that every lattice point in the cone C can

be written as a linear integer combination of the elements of the Hilbert basis. The elements

of H = {h1, h2, . . . , hN} are not affinely independent therefore there are different combinations

that produce the same lattice point. We have some dependencies of the form
∑

aihi =
∑

ajhj

where the sums run over some subsets of {1, . . . , N}. We consider such identities as giving a

single lattice point. The dependencies are precisely the elements of the toric ideal IC , that give

RC = k[x1, x2, . . . , xN ]/IC . Every such dependence is a linear combination of generators of any

Gröbner basis of the ideal IC . Thus, if we encode a lattice point X ∈ C as a monomial in variables

x1, . . . , xN whose exponents are the coefficients of the corresponding Hilbert basis elements that

add to X , we are counting the equivalence classes modulo IC . These are called standard monomials.

Finally, it is known that the number of standard monomials of graded degree i equals the dimension

of RC(i) as a k-vector space [36, Chapter 9]. �

It is known that the Hilbert-Poincaré series of RC can be expressed as a rational function of the

form

HRC
(t) =

p(t)
∏r

i=1(1 − tδi)
,

where δi can be read from the rays of the cone C; they correspond to the denominators of the

vertices of the polytope of stochastic arrays whose dilations give the cone C (see Theorem 4.6.25

[110] and Theorem 2.3 in [111]). To compute the Hilbert-Poincaré series we relied on the computer

algebra package CoCoA [30], that has implementations for different algorithms of Hilbert series

computations [20]. The basic idea comes from the theory of Gröbner bases (see [36, Chapter 9]).

It is known that the initial ideal of IC with respect to any monomial order gives a monomial ideal

J and the Hilbert functions of k[x1, x2, . . . , xN ]/IC and k[x1, x2, . . . , xN ]/J are equal. Computing

the Hilbert function of the monomial ideal J is a combinatorial problem which can be solved by

an inclusion-exclusion type procedure [20] that eliminates variables at each iteration.

Example 8.2.1 cont. The CoCoA commands that compute the Hilbert-Poincaré series for the

ideal IC are

L:=[3,3,3,3,3];

Use S::=Q[x[1..5]],Weights(L);

I:=Ideal(x[1]*x[4]-x[5]^2,x[1]*x[4]-x[2]*x[3]);

Poincare(S/I);

--- Non-simplified HilbertPoincare’ Series ---

(1 - 2x[1]^6 + x[1]^12) / ( (1-x[1]^3) (1-x[1]^3) (1-x[1]^3) (1-x[1]^3) (1-x[1]^3) )
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In simplified form this reads
∞
∑

t=0

iP (t)zt =
z6 + 2z3 + 1

(1 − z3)3
.

Note that in order to carry out the computation it is necessary to specify weights for the variables.

In our case the weights are simply the magic sums of the arrays.

It is known that from a rational representation like this one can directly recover a quasi-polynomial

(see [110, Chapter 4]).

iP3×3(t) =

{

2
9 t2 + 2

3 t + 1 if 3|t,

0 otherwise.

�

It remains to clarify how we can get an explicit formula for the quasi-polynomial iP (t) from
∑∞

t=0 iP (t)zt. Here, the following lemma due to Ehrhart tells us bounds both for the degree and

for the period of the quasi-polynomial iP (t).

Lemma 8.2.3 ([54]) For a rational k-polytope P embedded in Rn, the counting function iP (t) is

a quasi-polynomial in t whose degree equals k and whose period is less than or equal to the least

common multiple of the denominators of the vertices of P .

With this information, we only have to find the Taylor series expansion of
∑∞

t=0 iP (t)zt at t = 0 to

a sufficiently high degree and then interpolate iP (t) from the coefficients (function values of iP (t)).

For example, for magic 3× 3 squares of magic sum 1, the vertices of the two-dimensional polytope

P3×3 are obtained by dividing the first 4 magic squares in Figure 8.3 by 3. Thus, the degree of

iP3×3(t) is two and the periodicity of the quasi-polynomial should be a divisor of 3. In this case,

the periodicity of the quasi-polynomial iP3×3(t) equals indeed the given bound of 3. Although in all

our computations the period of the quasi-polynomial turned out to be equal to the least common

multiple of the denominators of the vertices of P , this is not true in general (see Example 4.6.27

in [110]).

8.3 Families of magic arrays.

Let us now apply the above method to derive counting formulas for some families of magic and

semi-magic arrays.

8.3.1 Magic 4 × 4 squares

In [18], the authors presented a counting formula for magic 4×4 squares, whose constant term was

corrected in [3] via the approach presented above. In this example, the Hilbert basis consists of 20
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elements, 8 of magic sum 1 and 12 of magic sum 2. They lead to the following counting formula

∞
∑

t=0

iP4×4(t)z
t = =

z8 + 4z7 + 18z6 + 36z5 + 50z4 + 36z3 + 18z2 + 4z + 1

(1 − z)4(1 − z2)4

= 1 + 8z + 48z2 + 200z3 + 675z4 + 1904z5 + 4736z6 + 10608z7 + . . . ,

or more explicitly

iP4×4(t) =











1
480 t7 + 7

240 t6 + 89
480 t5 + 11

16 t4 + 49
30 t3 + 38

15 t2 + 71
30 t + 1 if 2|t,

1
480 t7 + 7

240 t6 + 89
480 t5 + 11

16 t4 + 779
480 t3 + 593

240 t2 + 1051
480 t + 13

16 otherwise.

8.3.2 Magic 5 × 5 squares

The Hilbert basis for magic 5 × 5 squares consists of 4828 elements of magic sums ranging from 1

up to 9. The subsequent toric ideal computation in 4828 variables, however, could not be done by

CoCoA, Macaulay2, or 4ti2. Thus, although we were able to compute the Hilbert basis within a

few seconds of computation time, we could not produce the counting formula iP (t) for magic 5× 5

squares via this approach.

8.3.3 Pandiagonal magic 4 × 4 squares

Let PP4×4 denote the polytope of pandiagonal magic 4 × 4 squares of magic sum 1. The Hilbert

basis for pandiagonal magic 4 × 4 squares consists of 8 elements, all of magic sum 2. From them

we obtain the counting formula

∞
∑

t=0

iPP4×4(t)z
t = =

z6 + 3z4 + 3z2 + 1

(1 − z2)5

= 1 + 8z2 + 33z4 + 96z6 + 225z8 + 456z10 + . . . ,

or more explicitly

iPP4×4(t) =











1
48 (t2 + 4t + 12)(t + 2)2 if 2|t,

0 otherwise.

8.3.4 Pandiagonal magic 5 × 5 squares

Let PP5×5 denote the polytope of pandiagonal magic 5 × 5 squares of magic sum 1. The Hilbert

basis for pandiagonal magic 5 × 5 squares consists of 10 elements, all of magic sum 1. From them

we obtain

∞
∑

t=0

iPP5×5(t)z
t = =

z4 + z3 + z2 + +z + 1

(1 − z)9

= 1 + 10z + 55z2 + 220z3 + 715z4 + 2001z5 + 4995z6 + 11385z7 + . . . ,
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or more explicitly

iPP5×5(t) =
1

8064
(t + 4)(t + 3)(t + 2)(t + 1)(t2 + 5t + 8)(t2 + 5t + 42).

8.3.5 Magic 3 × 3 × 3 hypercubes

The Hilbert basis for magic 3× 3× 3 hypercubes consists of 19 elements all of magic sum 3. From

them we obtain

∞
∑

t=0

iP3×3×3(t)z
t =

z12 + 14z9 + 36z6 + 14z3 + 1

(1 − z3)5

= 1 + 19z3 + 121z6 + 439z9 + 1171z12 + 2581z15 + . . . ,

or more explicitly

iP3×3×3(t) =

{

11
324 t4 + 11

54 t3 + 25
36 t2 + 7

6 t + 1 if 3|t,

0 otherwise.

8.3.6 Semi-magic 3 × 3 × 3 hypercubes

The Hilbert basis for semi-magic 3 × 3 × 3 hypercubes consists of 66 elements, 12 of magic sum 1

and 54 of magic sum 2. Thus, the polytope of stochastic semi-magic 3 × 3 × 3 cubes is not equal

to the convex hull of integral semi-magic cubes. This follows because the 54 elements of degree

two in the Hilbert basis, when appropriately normalized, give rational stochastic matrices that are

all vertices. In other words, the Birkhoff-von Neumann Theorem [106, page 108] about stochastic

semi-magic matrices is false for 3 × 3 × 3 stochastic semi-magic cubes.

For semi-magic 3 × 3 × 3 cubes we have the counting formula

∞
∑

t=0

iP3×3×3s
(t)zt =

z8 + 5z7 + 67z6 + 130z5 + 242z4 + 130z3 + 67z2 + 5z + 1

(1 − z)9(1 + z)2

= 1 + 12z + 132z2 + 847z3 + 3921z4 + 14286z5 + 43687z6 + 116757z7 + . . .

In other words,

iP3×3×3s
(t) =

8

>

<

>

:

9
2240

t8 + 27
560

t7 + 87
320

t6 + 297
320

t5 + 1341
640

t4 + 513
160

t3 + 3653
1120

t2 + 627
280

t + 1 if 2|t,

9
2240

t8 + 27
560

t7 + 87
320

t6 + 297
320

t5 + 1341
640

t4 + 513
160

t3 + 3653
1120

t2 + 4071
2240

t + 47
128

otherwise.



Chapter 9

Counting via Barvinok’s algorithm

9.1 Introduction

In the 1980’s, H. Lenstra created an algorithm to detect integer points in polyhedra, based on the

LLL-algorithm and the idea of short vectors [67, 93]. As a consequence, solving integer programming

problems with a fixed number of variables can be done in time polynomial in the size of the input.

In the 1990’s, based on work by the geometers Brion, Khovanski, Lawrence, and Pukhlikov, Barvi-

nok created an algorithm to count integer points inside polyhedra that runs in polynomial time

for fixed dimension (see [13, 14] and the references within). Shortly after Barvinok’s breakthrough,

Dyer and Kannan [52] modified the original algorithm of Barvinok, which originally relied on

Lenstra’s result, giving a new proof that integer programming problems with a fixed number of

variables can be solved in polynomial time. In this chapter, extending the work initiated in [48],

we describe the first ever implementation of Barvinok’s algorithm valid for arbitrary rational poly-

topes; the program LattE [41].

In this chapter, we go through the steps of Barvinok’s algorithm, showing how they are implemented

in LattE. Barvinok’s algorithm relies on two important new ideas: the use of rational functions as

efficient data structures and the signed decompositions of cones into unimodular cones.

Given a polyhedron P = {x ∈ Rd : Ax ≤ b}, we encode the lattice points of P in the generating

function f(P ; z) =
∑

a∈P∩Zd za, where za = za1
1 za2

2 . . . zad

d . Note that when P is a polytope (i.e. a

bounded polyhedron), the monomials of f(P ; z) are in bijection with the lattice points and thus

f(P ; z) is a (Laurent) polynomial. Counting the lattice points in P is equivalent to evaluating the

expression f(P ; ) at z = 1, the vector with all entries 1.

Example 9.1.1 Consider the interval P = [0, 1000] ⊆ R. Its lattice points 0, 1, . . . , 1000 can be

encoded into the rather long polynomial f(P ; z) = 1 + z1 + z2
1 + . . . + z1000

1 . �

In this chapter, it is our goal to rewrite f(P ; z) as a “short” (polynomial size) sum of rational

115
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functions in z from which we can solve feasibility, counting, or even optimization questions, about

the lattice points in P .

Example 9.1.1 cont. For the interval above, we obtain the following short rational expression:

f(P ; z) =
1

(1 − z1001
1 )

−
z1

(1 − z1001
1 )

Indeed, by adding the rational functions we recover the polynomial 1 + z1 + z2
1 + . . . + z1000

1 . �

9.2 Brion’s formula

One crucial component of Barvinok’s algorithm is the ability to distribute the computation on the

vertices of the polytope. Let v be a vertex of P . Then, the supporting cone K(P, v) of P at v is

K(P, v) = v + {u ∈ Rd : v + δu ∈ P for all sufficiently small δ > 0}. Then the seminal theorem of

Brion [23] states:

Theorem 9.2.1 [23] Let P be a rational polyhedron and let V (P ) be the vertex set of P . Then,

f(P ; z) =
∑

v∈V (P )

f(K(P, v); z).

Thus, once we know how to encode the lattice points in the shifted cones K(P, v) efficiently, we

are done.

Example 9.2.2 Consider the integral quadrilateral shown in Figure 9.1. The vertices of this

quadrilateral are V1 = (0, 0), V2 = (5, 0), V3 = (4, 2), and V4 = (0, 2).

V

V

1

4

V2

V
3

Figure 9.1: A quadrilateral.

We obtain the generation function

f(P ; z) = z
5
1 + z

4
1z

2
2 + z

4
1z2 + z

4
1 + z

3
1z

2
2 + z

3
1z2 + z

3
1 + z

2
1z

2
2 + z

2
1z2 + z

2
1 + z1z

2
2 + z1z2 + z1 + z

2
2 + z2 + 1.
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In terms of supporting cones, this expression can be rewritten as the sum of four rational generation

functions (one for each supporting cone) whose formulas are

f(K(P, V1); z) =
1

(1 − z1) (1 − z2)
,

f(K(P, V2); z) =
(z5

1 + z4
1z2)

(1 − z−1
1 )(1 − z2

2z
−1
1 )

,

f(K(P, V3); z) =
(z4

1z2 + z4
1z2

2)

(1 − z−1
1 )(1 − z1z

−2
2 )

,

f(K(P, V4); z) =
z2
2

(1 − z−1
2 )(1 − z1)

.

Indeed, the result of adding the rational functions is equal to the polynomial

z
5
1 + z

4
1z

2
2 + z

4
1z2 + z

4
1 + z

3
1z

2
2 + z

3
1z2 + z

3
1 + z

2
1z

2
2 + z

2
1z2 + z

2
1 + z1z

2
2 + z1z2 + z1 + z

2
2 + z2 + 1.

�

9.3 Reducing the problem to simplicial cones

In order to use Brion’s theorem for counting lattice points in convex polyhedra, we need to know

how to compute the rational generating function of the supporting cone K(P, v) = v + Kv, where

Kv is a rational pointed polyhedral cone attached at v. If the cone Kv is simplicial, this generating

function is a rational function whose numerator and denominator have a well-understood geometric

meaning (see in [110, Chapter 4], and in [113], Corollary 4.6.8, for a clear explanation).

Let us derive such a formula for f(K(P, v); z) when Kv is simplicial: Let {u1, u2, . . . , uk} be a set

of k ≤ d linearly independent integral vectors of Rd and let

Kv = cone(u1, u2, . . . , uk) = {λ1u1 + λ2u2 + . . . + λkuk : λi ≥ 0, i = 1, 2, . . . , k}.

Then we denote by

Fv = {v + λ1u1 + λ2u2 + . . . + λkuk, 0 ≤ λi < 1, i = 1, 2, . . . , k}

the fundamental parallelepiped of Kv at v. With these definitions, it is well-known [110] that the

generating function for the lattice points in K equals

∑

β∈K∩Zd

zβ =





∑

τ∈Fv∩Zd

zτ





k
∏

i=1

1

1 − zui
. (9.3.1)

Thus, to derive a formula for arbitrary pointed cones Kv one could decompose Kv into simplicial

cones, via a triangulation, and then apply Formula 9.3.1 above and the inclusion-exclusion principle

in [113], Proposition 1.2 to compute f(K(P, v); z).
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Example 9.2.2 cont. The four pieces

f(K(P, V1); z) =
1

(1 − z1) (1 − z2)
,

f(K(P, V2); z) =
(z5

1 + z4
1z2)

(1 − z−1
1 )(1 − z2

2z−1
1 )

,

f(K(P, V3); z) =
(z4

1z2 + z4
1z

2
2)

(1 − z−1
1 )(1 − z1z

−2
2 )

,

f(K(P, V4); z) =
z2
2

(1 − z−1
2 )(1 − z1)

.

for the quadrilateral were constructed as described in this section. Note that since all vertices v

are integral, we simply have f(K(P, v); z) = zvf(Kv; z). �

Implementational details. To decompose a cone into simplicial cones the first step is to do a

triangulation. (Let us remind the reader here again that a triangulation of a cone C in dimension

d is a collection of d-dimensional simplicial cones such that their union is C, their interiors are

disjoint, and any pair of them intersect in a (possibly empty) common face.)

When the dimension is fixed, there are efficient algorithms to compute such a triangulation (see

[10, 92] for details). In LattE we use the well-known Delaunay triangulation which we compute

via a convex hull calculation. The idea is to “lift” the rays of the cone into a higher dimensional

paraboloid by adding a new coordinate which is the sum of the squares of the other coordinates,

take the lower convex hull of the lifted points, and then “project” back those simplicial facets. We

use Fukuda’s implementation in cdd [58] of this lift-and-project algorithm. Note that this is not

the only choice of triangulation, and definitely not the smallest one.

In principle, one could at this point list the lattice points of the fundamental parallelepiped Fv at

v, for example, using a fast Hilbert basis code such as 4ti2 [73] or NORMALIZ [24], and then use

formula (9.3.1) for a general simplicial cone Kv. Theoretically, this is a bad idea because the number

of lattice points in the parallelepiped Fv at v is exponentially large already for fixed dimension. In

practice, however, this can often be done and is useful in some situations. �

9.4 Barvinok’s idea of signed cone decompositions

Formula 9.3.1 together with Brion’s Theorem 9.2.1 already allow us to rewrite the generating

function f(P ; z) =
∑

a∈P∩Zd za into a rational generating function

f(P ; z) =
∑

i∈I

Ei
zui

∏d
j=1(1 − zvij )

.

However, as there may be exponentially many lattice points in a fundamental parallelepiped, even

when we fix the dimension, this rational generating function f(P ; z) is not a representation of the

lattice points of P of polynomial size in the encoding length of P = {x ∈ Rd : Ax ≤ b}, that is, in

the encoding lengths of A and b.
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Instead, Barvinok’s idea is that it is more efficient to further decompose each simplicial cone into

simplicial unimodular cones. A unimodular cone is a simplicial cone with generators {u1, . . . , uk} ⊆

Zd, k ≤ d, that form a lattice basis for the lattice R{u1, . . . , uk} ∩ Zd. Note that in this case the

numerator of Formula 9.3.1 has a single monomial, since the parallelepiped Fv has only one lattice

point.

Unfortunately, not every (simplicial) cone can be written as the sum of (simplicial) unimodu-

lar cones. This problem was resolved by Barvinok. Instead of decomposing simplicial cones into

sums of simplicial unimodular cones, Barvinok suggested to decompose each simplicial cone into

a signed sum of simplicial unimodular cones. This, together with Formula 9.3.1 and with Brion’s

Theorem 9.2.1, allows us to write f(P ; z) as a “short” rational generating function of polynomial

size representation in the encoding length of P .

To be more formal, for a set A ⊂ Rd, the indicator function [A] : Rd → R of A is defined as

[A](x) =

{

1 if x ∈ A,

0 if x 6∈ A.

We want to express the indicator function of a simplicial cone as an integer linear combination of

the indicator functions of unimodular simplicial cones. There is a nice valuation from the algebra

of indicator functions of polyhedra to the field of rational functions [14], and many of its properties

can be used in the calculation. For example, the valuation is zero when the polyhedron contains a

line.

Theorem 9.4.1 ([14], Theorem 3.1) There is a valuation f from the algebra of indicator func-

tions of rational polyhedra into the field of multivariate rational functions such that for any poly-

hedron P , f([P ]) =
∑

α∈P∩Zd xα.

Therefore once we have a unimodular cone decomposition, the rational generating function of

the original cone is a signed sum of “unimodular” rational functions. Next we focus on how to

decompose a simplicial cone into unimodular cones.

9.5 Performing the signed cone decomposition

Let u1, u2, . . . , ud be linearly independent integral vectors which generate a simplicial cone K. We

denote the index of K by ind(K) which tells us how far K is from being unimodular. That is,

ind(K) = | det(u1|u2| . . . |ud)| which is the volume of the parallelepiped spanned by u1, u2, . . . , ud.

It is also equal to the number of lattice points inside the half-open parallelepiped spanned by

u1, u2, . . . , ud. K is unimodular if and only if the index of K is 1. Now we discuss how we imple-

mented the following key result of Barvinok:

Theorem 9.5.1 ([14],Theorem 4.2) Fix the dimension d. Then, there exists a polynomial time

algorithm with a given rational polyhedral cone K ⊂ Rd, which computes unimodular cones Ki,
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i ∈ I = {1, 2, . . . , l}, and numbers ǫi ∈ {−1, 1} such that

[K] =
∑

i∈I

ǫi[Ki].

Let K be a rational pointed simplicial cone. Consider the closed parallelepiped

Γ = {α1u1 + α2u2 + . . . + αdud : |αj | ≤ (ind(K))−
1
d , j = 1, 2, . . . , d}.

Note that this parallelepiped Γ is centrally symmetric and one can show that the volume of Γ is 2d.

Minkowski’s First Theorem [106] guarantees that because Γ ⊂ Rd is a centrally symmetric convex

body with volume ≥ 2d, there exists a non-zero lattice point w inside of Γ. We will use w to build

the decomposition.

However, we need to find such a vector w explicitly. We take essentially the approach suggested by

[52]. We require a subroutine that computes the shortest vector in a lattice. For fixed dimension

this can be done in polynomial time using lattice basis reduction (this follows trivially from [106],

Corollary 6.4b, page 72). It is worth observing that when the dimension is not fixed the problem

becomes NP-hard [5]. We use the basis reduction algorithm of Lenstra, Lenstra, and Lovász [67, 106]

to find a short vector. Given A, an integral d × d matrix whose columns generate a lattice, LLL’s

algorithm outputs A′, a new d× d matrix, spanning the same lattice generated by A. The column

vectors of A′, u′
1, u

′
2, ..., u

′
d, are short and nearly orthogonal to each other, and each u′

i is an

approximation of the shortest vector in the lattice, in terms of Euclidean length. It is well-known

[106] that there exists a unique unimodular matrix U such that AU = A′.

The method proposed in [52] to find w is the following: Let A = (u1|u2| . . . |ud), where the ui are

the rays of the simplicial cone we wish to decompose. Compute the reduced basis A′ of A−1 using

the LLL algorithm. Dyer and Kannan observed that we can find the smallest vector with respect

to the l∞ norm by searching over all linear integral combinations of the column vectors of A′ with

small coefficients. We call this search the enumeration step. Let λ be the smallest vector in the

lattice spanned by A′ with respect to the l∞ norm. We know that there exists a unique unimodular

matrix U such that A′ = A−1U . Minkowski’s theorem for the l∞ norm implies that for the non-

singular matrix A′, there exists a non-zero integral vector z such that λ = ‖A′z‖∞ ≤ | det(A′)|1/d,

where ‖.‖ is the infinity norm of the vector space Rd, see statement 23 on page 81 in [106]. We can

set
‖λ‖∞ ≤ | det(A′)|1/d = | det(A−1U)|1/d = | det(A−1) det(U)|1/d

= | det(A−1)|1/d = | det(A)|−1/d = |ind(K)|−1/d.

Since A−1 and A′ span the same lattice, there exists an integral vector w ∈ Rd such that λ = A−1w.

Then, we have

w = Aλ.

Note that w is a non-zero integral vector which is a linear integer combination of the generators

ui of the cone K with possibly negative coefficients, and with coefficients at most |ind(K)|−1/d.

Therefore, we have found a non-zero integral vector w ∈ Γ.

Implementational details. In LattE, we try to avoid the enumeration step because it is very

costly. Instead, we choose λ to be the shortest of the columns in A′. This may not be the smallest
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vector, but for practical purposes, it often decreases |ind(K)| just like the shortest vector. Experi-

mentally we have observed that we rarely use the enumeration step. �

In the next step of the algorithm, for i = 1, 2, . . . , d, we set

Ki = cone{u1, u2, . . . , ui−1, w, ui+1, . . . , ud}.

Now, we have to show that for each i, ind(Ki) is smaller than ind(K). Let w =
∑d

i=1 αiui. Then,

since |αi| ≤ ind(K)−
1
d , we have

ind(Ki) = | det(u1|u2| . . . |ui−1|w|ui+1| . . . |ud)|

= |αi|| det(u1|u2| . . . |ui−1|ui|ui+1| . . . |ud)|

= |αi|ind(K) ≤ (ind(K))
d−1

d .

There is one more technical condition that w needs to satisfy. This is that w and u1, . . . , ud belong

to an open half-space [13, Lemma 5.2]. This is easy to achieve as either the w we found or −w

satisfies this condition. We can now decompose the original cone K into cones K1, . . . , Kd of smaller

index, [K] =
∑

±[Ki]. This sum of indicator functions carries signs which depend on the position

of w with respect to the interior or exterior of K. We iterate this process until each Ki becomes a

unimodular cone for i = 1, 2, . . . , d.

Implementational details. For implementing Barvinok’s decomposition of cones, we use the

package NTL [109] to compute the reduced basis of a cone and to compute with matrices and

determinants. All our calculations were done in exact long integer arithmetic using the routines

integrated in NTL. �

9.6 Pseudo-code of signed cone decomposition algorithm

Algorithm 9.6.1 (Barvinok’s Decomposition of a Simplicial Cone)

Input: A simplicial cone K = cone{u1, u2, . . . , ud} given by its generators.

Output: A list of unimodular cones and numbers ǫi as in Theorem 9.5.1.

Set two queues Uni := ∅ and NonUni := ∅.

if K is unimodular

then Uni := Uni{K}

else NonUni := NonUni∪{K}

while NonUni 6= ∅ do

Choose a cone K ∈ NonUni.

NonUni := NonUni \{K}

Set A := (u1, . . . , ud) to be a matrix whose columns are the rays of K.

Compute a smallest vector λ w.r.t. l∞ in the lattice spanned by the column vectors of A−1.
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Find a non-zero integral vector w such that λ = A−1w.

if vectors w, u1, . . . , ud lie in an open half-space

then w := w

else w := −w

for i = 1, 2, . . . , d do

Ki := cone{u1, . . . , ui−1, w, ui+1, . . . , ud}

Ai := (u1, . . . , ui−1, w, ui+1, . . . , ud)

for i = 1, 2, . . . , d do

if det(Ai) and det(A) have the same sign

then ǫKi
:= ǫK

else ǫKi
:= −ǫK

for i = 1, 2, . . . , d do

if Ki is unimodular

then Uni := Uni∪{Ki}

else NonUni := NonUni∪{Ki}

return Uni

9.7 Example of a signed cone decomposition

Here is an example of how we carry out the decomposition. Let K be a cone generated by (2, 7)T

and (1, 0)T . Let

A =

(

2 1

7 0

)

.

Then, we have det(A) = −7 and

A−1 =

(

0 1/7

1 −2/7

)

.

The reduced basis A′ of A−1 and the unimodular matrix U for the transformation from A−1 to A′

are:

A′ =

(

1/7 3/7

−2/7 1/7

)

and U =

(

0 1

1 3

)

.

By enumerating the column vectors, we can verify that (−2/7, 1/7)⊺ is the smallest vector with

respect to l∞ in the lattice generated by the column vectors of A−1. So, we have w = (1, 0)⊺. Then,

we have two cones:

cone

((

2

0

)

,

(

7

1

))

and cone

((

0

1

)

,

(

1

0

))

.

The first cone has determinant 2. As det(A) < 0, we assign ǫ = −1 to the first cone. Since the first

cone is not unimodular, we have

NonUni = NonUni∪

{

− cone

((

2

0

)

,

(

7

1

))}

.
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The second cone is unimodular of with determinant −1 which is the same sign as the determinant

of A. Thus, we assign to it ǫ = 1 and put

Uni = Uni∪

{

+ cone

((

0

1

)

,

(

1

0

))}

.

Next we choose

cone

((

2

0

)

,

(

7

1

))

∈ NonUni

and set

A =

(

2 0

7 1

)

.

Then, we have det(A) = 2 and

A−1 =

(

1/2 0

−7/2 1

)

, A′ =

(

1/2 1/2

−1/2 1/2

)

, and U =

(

1 1

3 4

)

.

Since λ = (1/2,−1/2)⊺ is the smallest vector with respect to l∞, we have w = (1, 3)⊺. So, we get

two cones:

cone

((

2

1

)

,

(

7

3

))

and cone

((

1

0

)

,

(

3

1

))

.

The first cone has a negative determinant which is not the same sign as the determinant of its

parent cone K. Since ǫK = −1, we assign to the first cone ǫ = −ǫK = 1. The second cone has a

positive determinant, so we assign to it ǫ = ǫK = −1. Since both cones are unimodular, we put

them into Uni. Since NonUni is empty, we end while loop and print all elements in Uni.

This gives a full decomposition:

cone

( 

2

7

!

,

 

1

0

!)

= cone

( 

0

1

!

,

 

1

0

!)

⊕cone

( 

2

7

!

,

 

1

3

!)

⊖cone

( 

1

3

!

,

 

0

1

!)

,

see Figure 9.2. �

9.8 Brion’s polarization trick

It is very important to remark that, in principle, one also needs to keep track of lower dimensional

cones present in the decomposition for the purpose of writing the inclusion-exclusion formula of

the generating function f(K). For example in Figure 9.3 we have counted a ray twice, and thus it

needs to be removed.

But this is actually not necessary, if we remember that the generating function of a polyhedron

containing a line is 0 [14, Corollary 2.8]. This fact is crucial for Brion’s polarization trick [14],

Remark 4.3: Let K∗ be the dual cone to K. Apply the iterative procedure above to K∗ instead

of K, ignoring the lower dimensional cones. This can be done because once we polarize the result

back, the contribution of the lower dimensional cones is zero with respect to the valuation that

assigns to an indicator function its generating function counting the lattice points [14, Corollary

2.8].
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=

- +

(2, 7)

(2, 7)

(1, 3)(1, 3)

(1, 0)

(1, 0)

(0, 1) (0, 1)

Figure 9.2: Example of Barvinok’s decomposition.

+= −

Figure 9.3: Contribution of lower dimensional cones.

9.9 From cones to rational functions

Once we have decomposed all cones into simplicial unimodular cones, it is easy to find the gener-

ating function of the ith cone Ki attached at the vertex v of the input polytope. We only have to

employ a bit of linear algebra.

In the denominator there is a product of binomials of the form (1− zBij ) where Bij is the jth ray

of the cone Ki. Thus the denominator is the polynomial
∏

(1 − zBij ).

How about the numerator? The cone Ki is unimodular, thus it must have a single monomial

zAi, corresponding to the unique lattice point inside the fundamental parallelepiped of Ki at v.

If the vertex v has all integer coordinates then Ai = v, or else v can be written as a linear

combination
∑

λjBij where all the λi are rational numbers and can be found by solving a system

of equations (remember the Bij form a vector space basis for Rd). The unique lattice point inside

the parallelepiped of the cone Ki at v is simply
∑

⌈λj⌉Bij [14, Lemma 4.1].
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9.10 Summary of overall algorithm

In the current implementation of LattE, we do the following:

1. Find the vertices of the polytope and their defining supporting cones.

2. Compute the polar cone to each of these cones.

3. Apply Barvinok’s decomposition to each of the polars.

4. Polarize back all these unimodular cones to obtain a decomposition of the original supporting

cones into full-dimensional unimodular cones.

5. Recover the generating function of each cone and, by Brion’s theorem, of the whole polytope.

9.11 From rational functions to counts

Brion’s theorem says the sum of the rational functions coming from the unimodular cones at the

vertices is a polynomial with one monomial per lattice point inside the input polytope. One might

think that to compute the number of lattice points inside of a given convex polyhedron, one could

directly substitute the value of 1 for each of the variables. Unfortunately, (1, 1, . . . , 1) is a singularity

of all the rational functions. Instead we discuss the method used in LattE to compute this value,

which is different from that presented by Barvinok [14]. The typical generating function of lattice

points inside a unimodular cone forms:

E[i]
zAi

∏

(1 − zBij)
,

where za is monomial in d variables, each Ai (cone vertex) and Bij (a generator of cone i) are integer

vectors of length d, i ranges over all cones given, j ranges over the generators of cone i, and E[i]

is 1 or −1. Adding these rational functions and simplifying would yield the polynomial function

of the lattice point of the polytope. This is practically impossible as the number of monomials

is too large. However, calculating the number of monomials in this polynomial is equivalent to

evaluating the limit as zi goes to 1 for all i. We begin by finding an integer vector λ and making

the substitution zi → tλi . This is with the intention of obtaining a univariate polynomial. To do

this, λ must be picked such that there is no zero denominator in any cone expression, i.e. no dot

product of λ with a Bij can be zero. Barvinok showed that such a λ can be picked in polynomial

time by choosing points on the moment curve. Unfortunately, this method yields large values in the

entries of λ. Instead we try random vectors with small integer entries, allowing small increments if

necessary, until we find λ. Since we are essentially trying to avoid a measure zero set, this process

terminates very quickly in practice.

After substitution, we have expressions of the form ±tNi/
∏

(1 − tDij ), where Ni and Dij are

integers. Notice that this substitution followed by summing these expressions yields the same

polynomial as would result from first summing and then substituting. This follows from the fact



9.11. From rational functions to counts 126

that we can take Laurent series expansions, and the sum of Laurent series is equal to the Laurent

series of the sum of the original expressions.

Also, note that we have the following identity:

∑

α∈P∩Zd

zα =

# of cones
∑

i=1

E[i]
zAi

∏

(1 − zBij )
.

After substitution we have the following univariate (Laurent) polynomial such that:

∑

α∈P∩Zd

t
Pd

i=1 λiαi =

# of cones
∑

i=1

E[i]
tNi

∏

(1 − tDij )
.

With the purpose of avoiding large exponents in the numerators, we factor out a power of t, say

tc. Now we need to evaluate the sum of these expressions at t = 1, but we cannot evaluate these

expressions directly at t = 1 because each has a pole there. Consider the Laurent expansion of the

sum of these expressions about t = 1. The expansion must evaluate at t = 1 to the finite number
∑

α∈P∩Zd 1. It is a Taylor expansion and its value at t = 1 is simply the constant coefficient. If we

expand each expression about t = 1 individually and add them up, it will yield the same result as

adding the expressions and then expanding (again the sum of Laurent expansions is the Laurent

expansion of the sum of the expressions). Thus, to obtain the constant coefficient of the sum, we

add up the constant coefficients of the expansions about t = 1 of each summand. Computationally,

this is accomplished by substituting t = s+1 and expanding about s = 0 via a polynomial division.

Summing up the constant coefficients with proper accounting for E[i] and proper decimal accuracy

yields the desired result: the number of lattice points in the polytope. Before the substitution

t = s + 1 we rewrite each rational function in the sum (recall tc was factored to keep exponents

small)
∑

E[i]
tNi−c

∏

(1 − tDij )
=
∑

E′[i]
tN

′
i

∏

(tD
′
ij − 1)

,

in such a way that D′
ij > 0 for all i, j. This requires that the powers of t at each numerator to be

modified, and the sign E[i] is also adjusted to E′[i]. Then the substitution t = s + 1 yields

∑

E′[i]
(1 + s)N ′

i

∏

((1 + s)D′
ij − 1)

,

where it is evident that, in each summand, the pole s = 0 has an order equal to the number of

factors in the denominator. This is the same as the number of rays in the corresponding cone and

we denote this number by d.

Thus the summand for cone i can be rewritten as E′[i]s−dPi(s)/Qi(s) where Pi(s) = (1 + s)Ni

and Qi(s) =
∏d

((1 + s)D′
ij − 1)/s). Pi(s)/Qi(s) is a Taylor polynomial whose sd coefficient is the

contribution we are looking for (after accounting for the sign E′[i] of course). The coefficients of

the quotient Pi(s)/Qi(s) can be obtained recursively as follows: Let Qi(s) = b0 + b1s + b2s
2 + . . .

and Pi(s) = a0 +a1s+a2s
2 + . . . and let Pi(s)

Qi(s)
= c0 + c1s+ c2s

2 + . . .. Therefore, we want to obtain
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cd which is the coefficient of the constant term of Pi/Qi. So, how do we obtain cd from Qi(s) and

Pi(s)? We obtain this by the following recurrence relation:

c0 =
a0

b0
,

ck =
1

b0
(ak − b1ck−1 − b2ck−2 − . . . − bkc0) for k = 1, 2, . . . .

In order to obtain cd, only the coefficients a0, a1, . . . , ad and b0, b1, . . . , bd are required.

9.12 Example for limit computation

Let us consider three points in 2 dimensions such that V1 = (0, 1), V2 = (1, 0), and V3 = (0, 0).

Then, the convex hull of V1, V2, and V3 is a triangle in 2 dimensions. We want to compute the

number of lattice points by using the residue theorem. Let Ki be the vertex cone at Vi for i = 1, 2, 3.

Then, we have the rational functions:

f(K1; x, y) =
y

(1 − y−1)(1 − xy−1)
,

f(K2; x, y) =
x

(1 − x−1)(1 − x−1y)
,

f(K3; x, y) =
1

(1 − x)(1 − y)
.

We choose a vector λ such that the inner products of λ and the generators of Ki are not equal to

zero. We choose λ = (1,−1) in this example. Then, reduce multivariate to univariate with λ, so

that we have:

f(K1; t) =
t−1

(1 − t)(1 − t2)
,

f(K2; t) =
t

(1 − t−1)(1 − t−2)
,

f(K3; t) =
1

(1 − t)(1 − t−1)
.

We want to have all the denominators to have positive exponents. We simplify them in order to

eliminate negative exponents in the denominators with simple algebra. Then, we have:

f(K1; t) =
t−1

(1 − t)(1 − t2)
,

f(K2; t) =
t4

(1 − t)(1 − t2)
,

f(K3; t) =
−t

(1 − t)(1 − t)
.
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We factor out t−1 from each rational function, so that we obtain:

f(K1; t) :
1

(1 − t)(1 − t2)
,

f(K2; t) :
t5

(1 − t)(1 − t2)
,

f(K3; t) :
−t2

(1 − t)(1 − t)
.

We substitute t = s + 1 and simplify them to the form P (s)
sdQ(s)

:

f(K1; s) :
1

s2(2 + s)
,

f(K2; s) :
1 + 5s + 10s2 + 10s3 + 5s4 + s5

s2(2 + s)
,

f(K3; s) :
−(1 + 2s + s2)

s2
.

Now we use the recurrence relation to obtain the coefficient of the constant terms. We have c2 = 1
8

for f(K1), c2 = 31
8 for f(K2), and c2 = −1 for f(K3). Thus, if we sum up all these coefficients, we

have 3, which is the number of lattice points in this triangle.

9.13 What if the polytope P is not full-dimensional?

Before we end our description of LattE, we must comment on how we deal with polytopes that

are not full-dimensional (e.g. transportation polytopes). Given the lower-dimensional polytope

P = {x ∈ Rn : Ax = a, Bx ≤ b} with the d×n matrix A of full row-rank, we will use the equations

to transform P into a polytope Q = {x ∈ Rn−d : Cx ≤ c} in fewer variables, whose integer points

are in one-to-one correspondence to the integer points of P . This second polytope will be the input

to the main part of LattE. The main idea of this transformation is to find the general integer

solution x = x0 +
∑n−d

i=1 λigi to Ax = a and to substitute it into the inequalities Bx ≤ b, giving a

new full-dimensional system Cx ≤ c in n − d variables λ1, . . . , λn−d. This can be done using the

Hermite normal form of A and is explained in Chapter 3.

9.14 Computing an example with LattE

Let us demonstrate how to count with the LattE. We wish to count the number of 4 × 4 (non-

negative integer) tables that have pre-described row counts and column counts as given in the

following table. In other words, in how many different ways can we replace the question marks by

non-negative integers such that we obtain a table with the given row and column counts.
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220

215

93

64

108 286 71 127

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

First we encode the polytope into a file, say “4x4”:

8 17

220 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

215 0 0 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0 0 0

64 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1

108 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0

286 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0

71 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0

127 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1

linearity 8 1 2 3 4 5 6 7 8

nonnegative 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note that a polytope {x : Ax ≤ b}, where A is a d × n matrix, is encoded as

d n+1

b -A

similar to the cdd [58] input format. To simplify the input, one may specify which of the inequalities

are in fact equations and which variables are in fact non-negative. In both cases, we first state the

number of equations or non-negative variables and then we list the indices.

Now we call the count function of LattE:

./count 4x4

Pretty quickly, Latte returns the answer. There are in fact

1, 225, 914, 276, 768, 514

such tables. If we wished, instead, to compute the full Ehrhart series, we simply need to run

./ehrhart 4x4

The (unsimplified) Ehrhart series will be stored into the file “4x4.rat”.



9.15. Computational experience 130

9.15 Computational experience

9.15.1 Height of signed decomposition tree

From the example in Section 9.7, we notice that the determinant of each cone gets much smaller in

each step. This is not an accident as Theorem 9.5.1 guarantees that the cardinality of the index set

I of cones in the decomposition is bounded polynomially in terms of the determinant of the input

matrix. We have looked experimentally at how many levels of iteration are necessary to carry out

the decomposition. We observed experimentally that it often grows linearly with the dimension.

We tested two kinds of instances. We used random square matrices whose entries are between 0

and 9, thinking of their columns as the generators of a cone centered at the origin. We tested from

2 × 2 matrices all the way to 8 × 8 matrices, and we tested fifteen random square matrices for

each dimension. We show the results in Table 9.1. For computation, we used a 1 GHz Pentium PC

machine running Red Hat Linux.

Dimension Height of tree # of cones | determinant| Time (seconds)

2 1.33 2.5 11.5 0

3 2.87 12.5 55.7 0

4 3.87 65.7 274.7 0.2

5 5.87 859.4 3875.9 0.3

6 7.47 10308.0 19310.4 3.7

7 8.53 91029.4 72986.3 41.6

8 10.67 2482647.5 1133094.7 2554.5

Table 9.1: Averages of 15 random matrices for computational experiences

The second set of examples comes from the Birkhoff polytope Bn of doubly stochastic matrices

[106]. Each vertex of the polytope is a permutation matrix which is a 0/1 matrix whose column

sums and row sums are all 1 [106]. We decompose the cone with vertex at the origin and whose

rays are the n! permutation matrices. The results are reported in Table 9.2.

Dimension # of vertices # of unimodular cones at a vertex cone Time (seconds)

B3 = 4 6 3 0.1

B4 = 9 24 16 0.2

B5 = 16 120 125 0.5

B6 = 25 720 1296 7.8

Table 9.2: The numbers of unimodular cones for the Birkhoff polytopes
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9.15.2 Counting with LattE – knapsacks and the Frobenius number

At the moment, we have been able to handle polytopes of dimension 30 and several thousands

vertices. It is known that the theoretical upper bound of the number of unimodular cones is 2dh,

where h = ⌊ log log 1.9−log log D
log(d−1/d) ⌋ and where D is the volume of the fundamental parallelepiped of the

input cone [13]. If we fix the dimension this upper bound becomes polynomial time. Unfortunately, if

we do not fix the dimension, this upper bound becomes exponential. In practice this might be costly

and some families of polytopes have large numbers of unimodular cones. The cross polytope family,

for instance, has many unimodular cones and behaves badly. For example, for the cross polytope

in 6 dimensions, with cross6.ine input file [58], LattE took 147.63 seconds to finish computing.

The number of lattice points of this polytope is obviously 13. Also, for the cross polytope in 8

dimensions, with cross8.ine input file [58], LattE took 85311.3 seconds to finish computing, even

though this polytope has only 16 vertices and the number of lattice points of this polytope is 17.

For all computations, we used a 1 GHz Pentium PC machine running Red Hat Linux.

Let us now report on computations with some hard knapsack-type problems. Suppose we have

a set of positive relatively prime integers {a1, a2, . . . , ad}. Denote by a the vector (a1, a2, . . . , ad).

Consider the following problem: does there exist a non-negative integral vector x satisfying a⊺x = a0

for some positive integer a0? We take several examples from [1] which have been found to be

extremely hard to solve by commercial quality branch-and-bound software. This is very surprising

since the number of variables is at most 10.

Problem a Frobenius # Time

cuww1 12223 12224 36674 61119 85569 89643481 0.55s

cuww2 12228 36679 36682 48908 61139 73365 89716838 1.78s

cuww3 12137 24269 36405 36407 48545 60683 58925134 1.27s

cuww4 13211 13212 39638 52844 66060 79268 92482 104723595 2.04s

cuww5 13429 26850 26855 40280 40281 53711 53714 67141 45094583 16.05s

prob1 25067 49300 49717 62124 87608 88025 113673 119169 33367335 47.07s

prob2 11948 23330 30635 44197 92754 123389 136951 140745 14215206 60.58s

prob3 39559 61679 79625 99658 133404 137071 159757 173977 58424799 88.30s

prob4 48709 55893 62177 65919 86271 87692 102881 109765 60575665 59.04s

prob5 28637 48198 80330 91980 102221 135518 165564 176049 62442884 101.78s

prob6 20601 40429 40429 45415 53725 61919 64470 69340 78539 95043 22382774 225.86s

prob7 18902 26720 34538 34868 49201 49531 65167 66800 84069 137179 27267751 177.64s

prob8 17035 45529 48317 48506 86120 100178 112464 115819 125128 129688 21733990 509.78s

prob9 3719 20289 29067 60517 64354 65633 76969 102024 106036 119930 13385099

prob10 45276 70778 86911 92634 97839 125941 134269 141033 147279 153525 106925261 264.67s

Table 9.3: Infeasible knapsack problems.

It is not very difficult to see that if the right-hand-side value a0 is large enough, the equation will

surely have a non-negative integer solution. The Frobenius number for a knapsack problem is the

largest value a0 such that the knapsack problem is infeasible. Aardal and Lenstra [1] solved them

using the reformulation in [2]. Their method works significantly better than branch-and-bound

using CPLEX 6.5. Here we demonstrate that our implementation of Barvinok’s algorithm is fairly

fast and, on the order of seconds, we resolved the first 15 problems in Table 1 of [1] and verified

all are infeasible except prob9, where there is a mistake. The vector (3480, 1, 4, 4, 1, 0, 0, 0, 0, 0) is a

solution to the right-hand-side 13, 385, 099. In fact, using LattE we know that the exact number

of solutions is 838, 908, 602, 000. For comparison we named the problems exactly as in Table 1 of

[1]. We present our results in Table 9.3. To measure the hardness of the Frobenius problem, it is
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very interesting to know the number of lattice points if we add 1 to the Frobenius number for each

problem. In Table 9.4, we find the number of solutions if we add 1 to the Frobenius number on

each of the (infeasible) problems. The speed is practically the same as in the previous case.

problem RHS # of lattice points.

cuww1 89643482 1

cuww2 89716839 1

cuww3 58925135 2

cuww4 104723596 1

cuww5 45094584 1

prob1 33367336 859202692

prob2 14215207 2047107

prob3 58424800 35534465752

prob4 60575666 63192351

prob5 62442885 21789552314

prob6 22382775 218842

prob7 27267752 4198350819898

prob8 21733991 6743959

prob10 106925262 102401413506276371

Table 9.4: The number of lattice points if we add 1 to the Frobenius number.

9.15.3 Magic 5 × 5 squares

We were able to use Barvinok’s algorithm to compute sufficiently many counts in order to recover

all the counting formulas presented in the previous chapter. However, our challenging example

of computing a counting formula for magic 5 × 5 squares was also not tractable via Barvinok’s

algorithm. Although it was easy to determine the 1940 vertices of tP5×5 and their adjacencies for

any given t, we already failed to dualize the supporting tangent cones for some of the vertices

with many (∼ 500) adjacent vertices. Seemingly, tP5×5 is too degenerate to be attacked directly

by Barvinok’s algorithm.

9.16 Homogenization of Barvinok’s algorithm

We observed in [44] that a major practical bottleneck of the original Barvinok algorithm in [13]

is the fact that a polytope may have too many vertices. Since originally one visits each vertex

to compute a rational function at each tangent cone, the result can be costly. For example, the

well-known polytope of semi-magic 4×4×4 cubes has over two million vertices, but only 64 linear

inequalities describe the polytope. As described above, we encountered another bottleneck in the

dualization step due to the degeneracy of the given polytope.
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In such cases we propose a homogenization of Barvinok’s algorithm working with a single cone.

Instead of encoding the lattice points in P , or in tP in general, we encode the lattice points in the

homogenization of P :

C := {(x, t) : x ∈ tP, x ∈ Rd, t ≥ 0}.

Note that C is a rational polyhedral cone. Thus, we can apply Barvinok’s algorithm to find a short

rational generating function
∑

(x,t)∈C∩Zd+1

yxzt.

in order to encode the lattice points of C. If we substitute y = 1 into this expression, using for

example the analytical methods from Section 9.11 to deal with possible singularities, we obtain

∞
∑

t=0

iP (t)zt,

where, as in the previous chapter, iP (t) = |tP ∩ Zd|. Note that this substitution step can be done

in polynomial time by [15]. We call this approach, that takes P and returns the Ehrhart series
∑∞

t=0 iP (t)zt the Homogenized Barvinok Algorithm. Clearly, in fixed dimension d, this algorithm

runs in polynomial time in the size of the input data.

Clearly, a major advantage of this simple homogenization idea is that we do not only compute

iP (t) for fixed values of t, but we compute in fact a short rational expression for the Ehrhart series
∑∞

t=0 iP (t)zt, from which we can then extract any particular value of the quasi-polynomial iP (t).

Another possible advantage is that we can get the extreme rays of the polar cone C∗ of C for free,

since the normal vectors of the facets of C (which we can easily construct from the facets of P ,

are exactly the extreme rays of C∗. If the polytope P has far fewer facets then vertices, then the

number of rays of the cone C∗ is small. As in the end, we polarize back only simplicial unimodular,

the polarization steps never cause a bottleneck in the Homogenized Barvinok Algorithm.

9.17 Challenging counting formulas found with LattE

We have also implemented the Homogenized Barvinok Algorithm in LattE. We called Maple to

simplify the sum of rational expressions encoding
∑∞

t=0 iP (t)zt into a single rational expression in

z. Finally, we were able to find a counting formula for magic 5 × 5 squares. Currently, only the

Homogenized Barvinok Algorithm has been able to compute it.

9.17.1 Magic 5 × 5 squares

The Ehrhart series for magic 5 × 5 squares is given by

∞
∑

t=0

iP5×5(t)z
t = p(z)/q(z),
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where

p(z) = z
76 + 28z

75 + 639z
74 + 11050z

73 + 136266z
72 + 1255833z

71 + 9120009z
70 +

54389347z
69 + 274778754z

68 + 1204206107z
67 + 4663304831z

66 + 16193751710z
65 +

51030919095z
64 + 147368813970z

63 + 393197605792z
62 + 975980866856z

61 +

2266977091533z
60 + 4952467350549z

59 + 10220353765317z
58 + 20000425620982z

57 +

37238997469701z
56 + 66164771134709z

55 + 112476891429452z
54 +

183365550921732z
53 + 287269293973236z

52 + 433289919534912z
51 +

630230390692834z
50 + 885291593024017z

49 + 1202550133880678z
48 +

1581424159799051z
47 + 2015395674628040z

46 + 2491275358809867z
45 +

2989255690350053z
44 + 3483898479782320z

43 + 3946056312532923z
42 +

4345559454316341z
41 + 4654344257066635z

40 + 4849590327731195z
39 +

4916398325176454z
38 + 4849590327731195z

37 + 4654344257066635z
36 +

4345559454316341z
35 + 3946056312532923z

34 + 3483898479782320z
33 +

2989255690350053z
32 + 2491275358809867z

31 + 2015395674628040z
30 +

1581424159799051z
29 + 1202550133880678z

28 + 885291593024017z
27 +

630230390692834z
26 + 433289919534912z

25 + 287269293973236z
24 +

183365550921732z
23 + 112476891429452z

22 + 66164771134709z
21 +

37238997469701z
20 + 20000425620982z

19 + 10220353765317z
18 +

4952467350549z
17 + 2266977091533z

16 + 975980866856z
15 + 393197605792z

14 +

147368813970z
13 + 51030919095z

12 + 16193751710z
11 + 4663304831z

10 +

1204206107z
9 + 274778754z

8 + 54389347z
7 + 9120009z

6 + 1255833z
5 + 136266z

4 +

11050z
3 + 639z

2 + 28z + 1,

q(z) =
`

z
2 − 1

´10 `

z
2 + z + 1

´7 `

z
7 − 1

´2 `

z
6 + z

3 + 1
´ `

z
5 + z

3 + z
2 + z + 1

´4
(1 − z)3

`

z
2 + 1

´4
.

9.17.2 Magic 3 × 3 × 3 × 3 cubes

We were now also able to compute the Ehrhart series for magic 3× 3 × 3 × 3 cubes. It is given by

∞
∑

t=0

iP3×3×3×3(t)z
t = p(z)/q(z),

where

p(z) = z54 + 150z51 + 5837z48 + 63127z45 + 331124z42 + 1056374z39 + 2326380z36 +

3842273z33 + 5055138z30 + 5512456z27 + 5055138z24 + 3842273z21 + 2326380z18 +

1056374z15 + 331124z12 + 63127z9 + 5837z6 + 150z3 + 1,

q(z) =
(

z3 + 1
)4 (

z12 + z9 + z6 + z3 + 1
) (

1 − z3
)9 (

z6 + z3 + 1
)

.



Chapter 10

Integer linear programming using

Barvinok’s rational functions

This chapter presents two algebraic-analytic algorithms for solving integer linear programming

problems based on the generating function techniques of Barvinok [13] and the recent advances by

Barvinok and Woods [16]. These are the BBS algorithm based on Barvinok’s binary search idea

proposed in [14] and the digging algorithm, our improvement of Lasserre’s heuristic method for

solving integer programs [91].

10.1 The BBS algorithm

In 1993, Barvinok gave an algorithm that counts lattice points in convex rational polyhedra in

polynomial time when the dimension of the polytope is fixed, Chapter 9. Originally, Barvinok’s

counting algorithm relied on Lenstra’s polynomial time algorithm for integer programming in a

fixed number of variables [93], but shortly after Barvinok’s breakthrough, Dyer and Kannan [52]

showed that this step can be replaced by a short-vector computation using the LLL algorithm.

Therefore, using binary search, one can turn Barvinok’s counting oracle into an algorithm that

solves integer programming problems with a fixed number of variables in polynomial time (i.e. by

counting the number of lattice points in P that satisfy c⊺x ≥ α, we can narrow the range for the

maximum value of c⊺x, then we iteratively look for the largest α where the count is non-zero).

This idea was proposed by Barvinok in [14]. We call this IP algorithm the BBS algorithm.

10.2 The digging algorithm

More recently, Lasserre outlined a very easy asymptotic heuristic method for solving integer pro-

grams [91], or at least providing an upper bound on the optimal value, which is also based on

135
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Barvinok’s rational functions (it comes without complexity guarantees). Unfortunately, Lasserre’s

criteria, needed to find an optimum value, often fail in practice.

We improve Lasserre’s heuristic and give a deterministic IP algorithm based on Barvinok’s rational

function algorithms, the digging algorithm. In this case the algorithm can have an exponential

number of steps even for fixed dimension, but performs well in practice.

10.2.1 General setup

We consider the integer programming problem max{c⊺x : Ax ≤ b, x ≥ 0, x ∈ Zd}, where c ∈ Zd

is arbitrary, and A ∈ Zm×d, b ∈ Zm are fixed. We assume that the input system of inequalities

Ax ≤ b, x ≥ 0 defines a bounded polytope P ⊂ Rd, such that P ∩ Zd is nonempty. As before, all

integer points are encoded as a short rational function

f(P ; z) =
∑

i∈I

Ei
zui

∏d
j=1(1 − zvij )

. (10.2.1)

for P , where the rational function is given in Barvinok’s form. Remember that if we were to expand

Equation (10.2.1) into monomials (generally a very bad idea!) we would get f(P ; z) =
∑

α∈P∩Zd zα.

For a given c ∈ Zd, we make the substitution zi = tci , Equation (10.2.1) yields a univariate rational

function in t:

f(P ; t) =
∑

i∈I

Ei
tc

⊺ui

∏d
j=1(1 − tc

⊺vij )
. (10.2.2)

The key observation is that if we make that substitution directly into the monomial expansion of

f(P ; z), we have that zα → tc
⊺α. Moreover we would obtain the relation

f(P ; t) =
∑

α∈P∩Zd

tc
⊺α = ktM + (lower degree terms), (10.2.3)

where M is the optimal value of our integer program and where k counts the number of optimal

integer solutions. Unfortunately, in practice, M and the number of lattice points in P may be huge

and we need to avoid the monomial expansion step altogether. All computations have to be done

by manipulating short rational functions.

10.2.2 Lasserre’s approach

Lasserre [91] suggested the following approach: For i ∈ I, define sets ηi by

ηi = {j ∈ {1, . . . , d} : c⊺vij > 0},

and define vectors wi by wi = ui −
∑

j∈ηi
vij . Let ni denote the cardinality of ηi. Now define

M = max{c⊺wi : i ∈ I},

S = {i ∈ I|c⊺wi = M},

σ =
∑

i∈S

Ei(−1)ni .
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Note that M simply denotes the highest exponent of t appearing in the expansions of the rational

functions defined for each i ∈ I in (10.2.2). The number σ is in fact the sum of the coefficients of

tM in these expressions, that is, σ is the coefficient of tM in f(P ; t). Now with these definitions

and notation we can state the following result proved by Lasserre [91].

Theorem 10.2.1 (Theorem 3.1 in [91]) If c⊺vij 6= 0 for all i ∈ I, j ∈ {1, . . . , d}, and if σ 6= 0,

then M is the optimal value π of the integer program max{c⊺x : Ax ≤ b, x ≥ 0, x ∈ Zd}.

When the hypotheses of Theorem 10.2.1 are met, from an easy inspection, we could recover the

optimal value of an integer program. If we assume that c is random, the first condition is not

difficult to obtain. Unfortunately, our computational experiments (see Section 10.3) indicate that

the condition σ 6= 0 is satisfied only occasionally. Thus an improvement on the approach that

Lasserre proposed is needed to make the heuristic terminate in all instances. Here we explain the

details of an algorithm that digs for the coefficient of the next highest appearing exponent of t.

For simplicity our explanation assumes the easy-to-achieve condition c⊺vij 6= 0.

10.2.3 Digging approach

As before, take Equation (10.2.1) computed via Barvinok’s algorithm. Now, for the given c ∈ Zd,

we make the substitutions zk = yktck , for k = 1, . . . , d. Then substitution into (10.2.1) yields, for

the right-hand side of Equation (10.2.1), a sum of multivariate rational functions in the vector

variable y and scalar variable t:

g(P ; y, t) =
∑

i∈I

Ei
yuitc

⊺ui

∏d
j=1(1 − yvij tc

⊺vij )
. (10.2.4)

On the other hand, the substitution on the left-side of Equation (10.2.1) gives a sum of monomials,

also shown grouped in terms of t.

g(P ; y, t) =
∑

α∈P

yαtc
⊺α =

∑

α∈Zd,n∈Z

aα,nyαtn. (10.2.5)

Both equations, (10.2.4) and (10.2.5), represent the same function g(P ; y, t), so the corresponding

coefficients of the Laurent series expansions of both expressions must be equal. What Barvinok’s

algorithm provides us is the right-hand side of Equation (10.2.4) and we need to manipulate it to

obtain the coefficient of highest degree in t from Equation (10.2.5) (because P is a polytope, there

will be a highest degree monomial, from which we recover the optimal value). The process is the

following. Apply the identity

1

1 − yvij tc
⊺vij

=
−y−vij t−c⊺vij

1 − y−vij t−c⊺vij
(10.2.6)

to Equation (10.2.4), so that any vij such that c⊺vij > 0 can be changed in “sign” to be sure that,

for all vij in (10.2.4), c⊺vij < 0 is satisfied (we may have to change some of the Ei, ui and vij using
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our identity, but we abuse notation and still refer to the new signs as Ei and the new numerator

vectors as ui and the new denominator vectors as vij). Then, for each of the rational functions in

the sum of Equation (10.2.4) compute a Laurent expansion of the form

Ei yuitc
⊺ui

d
∏

j=1

(1 + yvij tc
⊺vij + (yvij tc

⊺vij )
2

+ . . .). (10.2.7)

Add terms of the same degree in t from the different resultant series. We obtain the coefficients

aα,n appearing in the terms of the series (10.2.5). Thus, we have an algorithm to solve integer

programs:

Algorithm 10.2.2 (Digging Algorithm)

Input: A, b, c.

Output: optimal value and optimal solution of max{c⊺x : Ax ≤ b, x ≥ 0, x ∈ Zd}.

1. Use the identity (10.2.6) as necessary to enforce that all vij in (10.2.4) satisfy c⊺vij < 0.

2. Via the expansion formulas (10.2.7), find (10.2.5) by calculating the terms’ coefficients. Then

proceed in decreasing order with respect to the degree of t. This can be done because, for

each series appearing in the expansion formulas (10.2.7), the terms of the series are given in

decreasing order with respect to the degree of t.

3. Continue calculating the terms of the expansion (10.2.5), in decreasing order with respect to

the degree of t, until a degree n of t is found such that for some α ∈ Zd, the coefficient of

yαtn is non-zero in the expansion (10.2.5).

4. Return “n” as the optimal value of the integer program and return α as an optimal solution.

We close this section mentioning that we can recover not only the optimal value, but also an explicit

optimal solution.

Remark. There is also a variation of the digging algorithm where instead of using Barvinok’s

rational function for the whole polytope, one uses the Barvinok rational function only of a tangent

cone at a chosen vertex (typically the vertex is LP relaxation optimal solution). Then we dig in

this cone for a lattice point of the polytope with an optimal objective value. We observed speed

ups in practice in some of the cases. �

10.3 Computational experiments

In this section we report our experience solving hard knapsack problems from [1, 35]. See Table 10.1

for the data used here. Their form is max{c⊺x : a⊺x = b, x ≥ 0, x ∈ Zd}, where b ∈ Z and where

a ∈ Zd with gcd(a1, . . . , ad) = 1. For the cost vector c, we choose the first d components of the vector
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(213,−1928,−11111,−2345, 9123,−12834,−123, 122331, 0, 0). We compared the digging algorithm

and the BBS algorithm, both implemented in LattE, with CPLEX version 6.6. The computations

were done on a 1 GHz Pentium PC running Red Hat Linux. Table 10.2 provides the optimal values

and an optimal solution for each problem. As it turns out, there is exactly one optimal solution

for each problem.

Problem a b

cuww1 12223 12224 36674 61119 85569 89643482

cuww2 12228 36679 36682 48908 61139 73365 89716839

cuww3 12137 24269 36405 36407 48545 60683 58925135

cuww4 13211 13212 39638 52844 66060 79268 92482 104723596

cuww5 13429 26850 26855 40280 40281 53711 53714 67141 45094584

prob1 25067 49300 49717 62124 87608 88025 113673 119169 33367336

prob2 11948 23330 30635 44197 92754 123389 136951 140745 14215207

prob3 39559 61679 79625 99658 133404 137071 159757 173977 58424800

prob4 48709 55893 62177 65919 86271 87692 102881 109765 60575666

prob5 28637 48198 80330 91980 102221 135518 165564 176049 62442885

prob6 20601 40429 40429 45415 53725 61919 64470 69340 78539 95043 22382775

prob7 18902 26720 34538 34868 49201 49531 65167 66800 84069 137179 27267752

prob8 17035 45529 48317 48506 86120 100178 112464 115819 125128 129688 21733991

prob9 3719 20289 29067 60517 64354 65633 76969 102024 106036 119930 13385100

prob10 45276 70778 86911 92634 97839 125941 134269 141033 147279 153525 106925262

Table 10.1: Knapsack problems.

Problem Value Solution Digging BBS CPLEX 6.6

cuww1 1562142 [7334 0 0 0 0] 0.4 sec. 414 sec. > 1.5h

cuww2 -4713321 [3 2445 0 0 0 0] > 3.5h 6,600 sec. > 0.75h

cuww3 1034115 [4855 0 0 0 0 0] 1.4 sec. 6,126 sec. > 0.75h

cuww4 -29355262 [0 0 2642 0 0 0 0] > 1.5h 38,511 sec. > 0.75h

cuww5 -3246082 [1 1678 1 0 0 0 0 0] > 1.5h > 80h > 0.75h

prob1 9257735 [966 5 0 0 1 0 0 74] 51.4 sec. > 3h > 1h

prob2 3471390 [853 2 0 4 0 0 0 27] 24.8 sec. > 10h > 0.75h

prob3 21291722 [708 0 2 0 0 0 1 173] 48.2 sec. > 12h > 1.5h

prob4 6765166 [1113 0 7 0 0 0 0 54] 34.2 sec. > 5h > 1.5h

prob5 12903963 [1540 1 2 0 0 0 0 103] 34.5 sec. > 5h > 1.5h

prob6 2645069 [1012 1 0 1 0 1 0 20 0 0] 143.2 sec. > 4h > 2h

prob7 22915859 [782 1 0 1 0 0 0 186 0 0] 142.3 sec. > 4h > 1h

prob8 3546296 [1 385 0 1 1 0 0 35 0 0] 469.9 sec. > 3.5h > 2.5h

prob9 15507976 [31 11 1 1 0 0 0 127 0 0] 1,408.2 sec. > 11h 4.7 sec.

prob10 47946931 [0 705 0 1 1 0 0 403 0 0] 250.6 sec. > 11h > 1h

Table 10.2: Optimal values, optimal solutions, and running times for each problem.

With one exception, CPLEX 6.6. could not solve the given problems. Note that whenever the

digging algorithm found the optimal value, it did so much faster than the BBS algorithm. This

is interesting, as the worst-case complexity for the digging algorithm is exponential even for fixed

dimension, while BBS has polynomial complexity in fixed dimension. The digging algorithm fails

to find a solution for problems prob2, prob3, and prob5. What happens is that the expansion step

becomes costly when more coefficients have to be computed. In these three examples, we computed

coefficients for more than 2,500,000, 400,000, and 100,000 powers of t; all turning out to be 0.
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The Digging algorithm is slower than CPLEX in problem prob9 because during the execution

of Barvinok’s unimodular cone decomposition more than 160,000 cones are generated, leading

to an enormous rational function for f(P ; t). Moreover, for prob9 more than 3,500 coefficients

turned out to be 0, before a non-zero leading coefficient was detected. Finally, in problems cuww1,

cuww3, prob2, prob3, prob4, prob6, and prob8, no digging was necessary at all, that is, Lasserre’s

condition did not fail here. For all other problems, Lasserre’s condition did fail and digging steps

were necessary to find the first non-vanishing coefficient in the expansion of f(P ; t).



Chapter 11

Integer polynomial optimization in

fixed dimension

Mixed integer non-linear programs combine the hardness of combinatorial explosion with the non-

convexity of non-linear functions. For example, the well-known optimality conditions developed

for differentiable objective functions have no meaning when the variables are discrete. Thus, it is

perhaps not surprising that already linear integer programming with general quadratic constraints

is undecidable [83]. Nevertheless, when the number of variables is fixed discrete optimization prob-

lems often become tractable and efficient polynomial algorithms exist (e.g. [13, 86, 93]). It is thus

natural to ask what is the complexity of integer non-linear optimization assuming that the number

of variables is fixed? We study the problem

maximize f(x1, . . . , xd) subject to gi(x1, . . . , xd) ≥ 0, x ∈ Zd. (11.0.1)

Here f, gi are polynomials with integral coefficients. Note that all throughout this chapter we

assume that the number of variables is fixed. Here are our two contributions to the theory:

(1) We give a classification of the computational complexity of Problem (11.0.1) according to

special cases. Section 11.1 presents the details, but the reader can see the classification in Table

11.1. New results are marked with letters, known results are marked with asterisks, arrows indicate

implications:

(2) For problem (a), that of optimizing an arbitrary integral polynomial over the lattice points of

a convex rational polytope with fixed number of variables, we present an algorithm to compute a

sequence of upper and lower bounds for its optimal value. Our bounds can be used, for instance, in

a branch-and-bound search for the optimum. We use Barvinok’s algebraic encoding of the lattice

points of polytopes via rational functions [14]. In Section 11.2 we prove:

Theorem 11.0.1 Let the number of variables d be fixed. Let f(x1, . . . , xd) be a polynomial of

maximum total degree D with integer coefficients, and let P be a convex rational polytope defined

141
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Type of objective function

convex arbitrary

Type of constraints linear polynomial polynomial

Linear constraints, integer variables polytime (∗) ⇐ polytime (∗∗) NP-hard (a)

⇑ ⇑ ⇓

Convex semialgebraic constraints, integer variables polytime (∗∗) ⇐ polytime (∗∗) NP-hard (c)

Arbitrary polynomial constraints, integer variables undecidable (b) ⇒ undecidable (d) ⇒ undecidable (e)

Table 11.1: Computational complexity of Problem (11.0.1) in fixed dimension.

by linear inequalities in d variables. We obtain an increasing sequence of lower bounds {Lk} and

a decreasing sequence of upper bounds {Uk} to the optimal value

f∗ = max f(x1, x2, . . . , xd) subject to x ∈ P ∩ Zd. (11.0.2)

The bounds Lk, Uk can be computed in time polynomial in k, the input size of P and f , and the

maximum total degree D. If f is non-negative over the polytope (i.e. f(x) ≥ 0 for all x ∈ P ), they

satisfy the inequality Uk − Lk ≤ f∗ · ( k
√

|P ∩ Zd| − 1).

More strongly, if f is non-negative over the polytope, there exists a fully polynomial-time approxi-

mation scheme (FPTAS) for the optimization problem (11.0.2).

11.1 Computational complexity bounds

All the results we present refer to the complexity model where the number of operations is given in

terms of the input size measured in the standard binary encoding. The results of Lenstra Jr. [93]

imply the entry of Table 11.1 marked with (∗), i.e. solving linear integer programming problems with

a fixed number of variables can be done in time polynomial in the size of the input. More recently,

Khachiyan and Porkolab [86] have proved that in fixed dimension, the problem of minimizing a

convex polynomial objective function over the integers, subject to polynomial constraints that

define a convex body, can be solved in polynomial time in the encoding length of the input. Thus,

they settled all entries marked by (∗∗). By the natural containment exhibited by these complexity

classes, to show the validity of the remaining entries of Table 11.1 is enough to prove the following

lemma:

Lemma 11.1.1 1. The problem of minimizing a degree four polynomial over the lattice points

of a convex polygon is NP-hard (entry (a) in Table 11.1).

2. The problem of minimizing a linear form over polynomial constraints in at most 10 integer

variables is not computable by a recursive function (entry (b) in Table 11.1).

Proof. (1) We use the NP-complete problem AN1 on page 249 of [62]. This problem states it is

NP-complete to decide whether, given three positive integers a, b, c, there exists a positive integer
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x < c such that x2 is congruent with a modulo b. This problem is clearly equivalent to asking

whether the minimum of the quartic polynomial function (x2 − a − by)2 over the lattice points of

the rectangle {(x, y) : 1 ≤ x ≤ c − 1, 1−a
b ≤ y ≤ (c−1)2−a

b } is zero or not. This settles part (1).

(2) In 1973, Jeroslow [83] proved a similar result without fixing the number of variables. We follow

his idea, but resorting to a stronger lemma. More precisely our proof relies on a 1982 result [85]

which states that there is no recursive function that, given an integer polynomial f with nine

variables, can determine whether f has a non-negative integer zero, in the sense that it finds

an explicit zero or returns null otherwise. Jones paper is a strengthening of the original solution

of Hilbert’s tenth problem [95]. Now to each polynomial f in Z[x1, x2 . . . , x9] associate the ten-

dimensional minimization problem

minimize y subject to (1 − y)f(x1, x2, . . . , x9) = 0, (y, x1, . . . , x9) ∈ Z10
≥0. (11.1.1)

The minimum attained by y is either zero or one depending on whether f has an integer non-

negative solution or not. Thus part (2) is settled. �

11.2 FPTAS for optimizing non-negative polynomials over

integer points of polytopes

Consider now a polynomial function f ∈ Z[x1, x2, . . . , xd] of maximum total degree D and a convex

polytope P = {x|Ax ≤ b} where A is an m × d integral matrix and b is an integral m-vector. The

purpose of this section is to present an algorithm to generate lower and upper bounds Lk, Uk to

the integer global optimum value of

maximize f(x1, . . . , xd) subject to (x1, . . . , xd) ∈ P ∩ Zd. (11.2.1)

We should also remark that in our algorithm the polynomial objective function f can be arbitrary

(e.g. non-convex). As we have seen, the optimization problem is NP-hard already for two integer

variables and polynomials of degree four. Nevertheless we will see that, in fixed dimension and

when f(x) ≥ 0 for all x ∈ P , the algorithm gives a fully polynomial time approximation scheme

or FPTAS. This means that, in polynomial time on the input and (1/ǫ), one can compute a

(1 − ǫ)-approximation to the maximum. The algorithm we present is based on Barvinok’s theory

for encoding all the lattice points of a polyhedron in terms of short rational functions. The set

of lattice points is represented by a Laurent polynomial: gP (z) =
∑

α∈P∩Zd zα. From Barvinok’s

theory this exponentially-large sum of monomials gP (z) can instead be written as a polynomial-size

sum of rational functions (assuming the dimension d is fixed) of the form:

gP (z) =
∑

i∈I

Ei
zui

d
∏

j=1

(1 − zvij)

, (11.2.2)

where I is a polynomial-size indexing set, and where Ei ∈ {1,−1} and ui, vij ∈ Zd for all i and j.
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We need a way to encode via rational functions the values of the polynomial f over all the lattice

points in a polytope. The key idea, first introduced in Lemma 9 of [40] and generalized in [81], is that

differential operators associated to f can be used to compute a rational function representation

of
∑

a∈P∩Zd f(a)za. The following Lemma recently appeared in [16]. We are truly grateful to

Alexander Barvinok who communicated to us that Lemma 11.2.1 was true for variable D and thus

we had indeed obtained an FPTAS from the construction of the upper and lower bounds.

Lemma 11.2.1 Let gP (z) be the Barvinok representation of the generating function of the lattice

points of P . Let f be a polynomial in Z[x1, . . . , xd] of maximum total degree D. We can compute,

in time polynomial on D and the size of the input data, a Barvinok rational function representation

gP,f(z) for the generating function
∑

a∈P∩Zd f(a)za.

Proof. We give here the authors’ original proof the lemma for D fixed. The first proof without

this assumption was recently given by Barvinok in [16].

We begin assuming f(z) = zr, the general case will follow from it: Consider the action of the

differential operator zr
∂

∂zr
in the generating function gP (z) and on its Barvinok representation.

On one hand, for the generating function

zr
∂

∂zr
· gP (z) =

∑

α∈P∩Zd

zr
∂

∂zr
zα =

∑

α∈P∩Zd

αrz
α.

On the other hand, by linearity of the operator, we have that in terms of rational functions

zr
∂

∂zr
· gP (z) =

∑

i∈I

Eizr
∂

∂zr
·











zui

d
∏

j=1

(1 − zvij )











.

Thus it is enough to prove that the summands of the expression above can be written in terms of

rational functions computable in polynomial time. The standard quotient rule for derivatives says

that

∂

∂zr











zui

d
∏

j=1

(1 − zvij )











=
(∂zui

∂zr
)
∏d

j=1(1 − zvij ) − zui( ∂
∂zr

∏d
j=1(1 − zvij ))

∏d
j=1(1 − zvij)2

.

We can expand the numerator as a sum of no more than 2d monomials. This is a constant number

because d, the number of variables, is assumed to be a constant. This argument completes the

proof of our lemma when f(z) = zr.

For the case when f(z) is a general monomial, i.e. f(z) = c·zβ1

1 ·. . .·zβd

d , then we can compute again

a rational function representation of gP,f(z) by repeated application of basic differential operators:

c

(

z1
∂

∂z1

)β1

· . . . ·

(

zd
∂

∂zd

)βd

· gP (z) =
∑

α∈P∩Zd

c · αβzα.
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Thus we require no more than O(Dd) repetitions of the single-variable case.

Finally, if we deal with a polynomial f of many monomial terms, we compute and add up all

such expressions that we get for each term of f(x) and obtain our desired short rational function

representation for the generating function for
∑

α∈P∩Zd f(α)zα. Note that only polynomially many

steps are needed because d is fixed and the largest number of possible monomials in f of degree s

is
(

d+s−1
d−1

)

, thus for fixed d we will do no more than O(Dd) repetitions of the monomial case. �

Now we are ready to present our algorithm to obtain bounds Uk, Lk that reach the optimum.

Step 1 of preprocessing is necessary because we rely on the elementary fact that, for a collection

S = {s1, . . . , sr} of non-negative real numbers, maximum{si|si ∈ S} equals limk→∞
k

√

∑r
j=1 sk

j .

Algorithm 11.2.2 (Bounding Algorithm)

Input: A rational convex polytope P ⊂ Rd, a polynomial objective f ∈ Z[x1, . . . , xd] of maximum

total degree D.

Output: An increasing sequence of lower bounds Lk, and a decreasing sequence of upper bounds

Uk reaching the maximal function value f∗ of f over all lattice points of P .

1. If f is known to be non-negative in all points of P , then go directly to Step 2. Else, solving

2d linear programs over P , we find lower and upper integer bounds for each of the variables

x1, . . . , xd. Let M be the maximum of the absolute values of these 2d numbers. Thus |xi| ≤ M

for all i. Let C be the maximum of the absolute values of all coefficients, and r be the number

of monomials of f(x). Then

L := −rCMD ≤ f(x) ≤ rCMD =: U,

as we can bound the absolute value of each monomial of f(x) by CMD. Replace f by

f(x) = f(x) − L ≤ U − L, a non-negative polynomial over P . Go to Steps 2, 3, etc. and

return the optimal value of f. Trivially, if we find the optimal value of f over P we can

extract the optimal value for f .

2. Via Barvinok’s algorithm, compute a short rational function expression for the generating

function gP (z) =
∑

α∈P∩Zd zα. From gP (z) compute the number |P ∩ Zd| = gP (1) of lattice

points in P in polynomial time.

3. From the rational function representation gP (z) of the generating function
∑

α∈P∩Zd

zα compute

the rational function representation of gP,fk(z) of
∑

α∈P∩Zd fk(α)zα in polynomial time by

application of Lemma 11.2.1. We define

Lk := k

√

gP,fk(1)/gP,f0(1) and Uk := k

√

gP,fk(1).

When ⌊Uk⌋ − ⌈Lk⌉ < 1 stop and return ⌈Lk⌉ = ⌊Uk⌋ as the optimal value.

Lemma 11.2.3 The algorithm is correct.
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Proof. Using the fact that the arithmetic mean of a finite set of non-negative values is at most as

big as the maximum value, which in turn is at most as big as the sum of all values, we obtain the

sequences of lower and upper bounds, Lk and Uk, for the maximum:

Lk =
k

√

√

√

√

∑

α∈P∩Zd

f(α)k

|P ∩ Zd|
≤ max{f(α) : α ∈ P ∩ Zd} ≤ k

√

∑

α∈P∩Zd

f(α)k = Uk.

Note that as s → ∞, Lk and Uk approach this maximum value monotonously (from below and

above, respectively). Trivially, if the difference between (rounded) upper and lower bounds becomes

strictly less than 1, we have determined the value max{f(x) : x ∈ P ∩ Zd} = ⌈Lk⌉. Thus the

algorithm terminates with the correct answer. �

Theorem 11.0.1 will follow from the next lemma:

Lemma 11.2.4 Let f be a polynomial with integer coefficients and maximum total degree D that

is non-negative over the polytope P . When the dimension d is fixed,

1. the bounds Lk, Uk can be computed in time polynomial in k, the input size of P and f , and

the total degree D. The bounds satisfy the following inequality:

Uk − Lk ≤ f∗ ·

(

k

√

|P ∩ Zd| − 1

)

.

2. In addition, for k = (1 + 1/ǫ) log(|P ∩ Zd|), Lk is a (1 − ǫ)-approximation to the optimal

value f∗ and it can be computed in time polynomial in the input size, the total degree D, and

1/ǫ. Similarly, Uk gives a (1 + ǫ)-approximation to f∗. Moreover, with the same complexity,

one can also find a feasible lattice point that approximates an optimal solution with similar

quality.

Proof. Part (i). From Lemma 11.2.1 on fixed dimension d, we can compute gP,f =
∑

α∈P∩Zd f(α)zα

as a rational function in time polynomial in D, the total degree of f , and the input size of P . Thus,

because fk has total degree of Dk and the encoding length for the coefficients of fk is bounded

by k log(kC) (with C the largest coefficient in f), we can also compute gP,fk =
∑

α∈P∩Zd fk(α)zα

in time polynomial in k, the total degree D, and the input size of P . Note that using residue

techniques, see [16] or Section 9.11, we can evaluate gP,fk(1) in polynomial time. Finally observe

Uk − Lk = k

√

∑

α∈P∩Zd

fk(α) − k

√

∑

α∈P∩Zd fk(α)

|P ∩ Zd|
= k

√

∑

α∈P∩Zd fk(α)

|P ∩ Zd|

(

k

√

|P ∩ Zd| − 1

)

= Lk

(

k

√

|P ∩ Zd| − 1

)

≤ f∗

(

k

√

|P ∩ Zd| − 1

)

.

Part (ii). Note that if
(

k
√

|P ∩ Zd| − 1
)

≤ ǫ then Lk is indeed a (1 − ǫ)-approximation because

f∗ ≤ Uk = Lk + (Uk − Lk) ≤ Lk + f∗

(

k

√

|P ∩ Zd| − 1

)

≤ Lk + f∗ǫ.



Chapter 11. Integer polynomial optimization in fixed dimension 147

Observe that φ(ǫ) := (1+1/ǫ)/(1/ log(1+ǫ)) is an increasing function for ǫ < 1 and limǫ→0 φ(ǫ) = 1,

thus φ(ǫ) ≥ 1 for 0 < ǫ ≤ 1. Hence, for all

k ≥ log(|P ∩ Zd|) + log(|P ∩ Zd|)/ǫ ≥ log(|P ∩ Zd|)/ log(1 + ǫ),

we have indeed
(

k
√

|P ∩ Zd| − 1
)

≤ ǫ. Finally, from Lemma 11.2.1, the calculation of Lk for

k = log(|P ∩ Zd|) + log(|P ∩ Zd|)/ǫ would require a number of steps polynomial in the input size

and 1/ǫ. A very similar argument can be written for Uk but we omit it here.

To complete the proof of part (ii) it remains to show that not only we approximate the optimal value

f∗ but we can also efficiently find a lattice point α with f(α) giving that quality approximation of

f∗. Let k = (1 + 1/ǫ) log(|P ∩ Zd|), thus, by the above discussion, Lk is an (1 − ǫ)-approximation

to f∗. Let Q0 := [−M, M ]d denote the box computed in Step 1 of the algorithm such that P ⊆ Q0.

By bisecting Q0, we obtain two boxes Q′
1 and Q′′

1 . By applying the algorithm separately to the

polyhedra P ∩Q′
1 and P ∩Q′′

1 , we compute lower bounds L′
k and L′′

k for the optimization problems

restricted to Q′
1 and Q′′

1 , respectively. Because Lk
k is the arithmetic mean of fk(α) for α ∈ P ∩Zd,

clearly

min{L′
k, L′′

k} ≤ Lk ≤ max{L′
k, L′′

k}.

Without loss of generality, let L′
k ≥ L′′

k. We now apply the bisection procedure iteratively on Q′
k.

After d log M bisection steps, we obtain a box Q′
k that contains a single lattice point α ∈ P∩Q′

k∩Zd,

which has an objective value f(α) = L′
k ≥ Lk ≥ (1 − ǫ)f∗. �

We remark that if we need to apply the construction of Step 1 of the algorithm because f takes

negative values on P , then we can only obtain an (1−ǫ)-approximation (and (1+ǫ)-approximation,

respectively) for the modified function f in polynomial time, but not the original function f . We

also emphasize that, although our algorithm requires the computation of
∑

α∈P f q(α) for different

powers of f , these numbers are obtained without explicitly listing all lattice points (a hard task),

nor we assume any knowledge of the individual values f(α). We can access the power means
∑

α∈P f q(α) indirectly via rational functions. Here are two small examples:

Example 11.2.5 (Monomial optimization over a quadrilateral) The problem we consider

is that of maximizing the value of the monomial x3y over the lattice points of the quadrilateral

{(x, y)|3991 ≤ 3996 x− 4 y ≤ 3993, 1/2 ≤ x ≤ 5/2}.

It contains only 2 lattice points. The sum of rational functions encoding the lattice points is

x2y1000

(1 − (xy999)−1) (1 − y−1)
+

xy

(1 − xy999) (1 − y−1)
+

xy

(1 − xy999) (1 − y)
+

x2y1000

(1 − (xy999)−1) (1 − y)
.

In the first iteration, we get L1 = 4000.50 while U1 = 8001. After thirty iterations, we see that

L30 = 7817.279750 while U30 = 8000, the true optimal value. �
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Example 11.2.6 (nvs04 from MINLPLIB) A somewhat more complicated example, from a

well-known library of test examples (see http://www.gamsworld.org/minlp/), is the problem

given by

min 100

(

1

2
+ i2 −

(

3

5
+ i1

)2
)2

+

(

2

5
− i1

)2

s. t. i1, i2 ∈ [0, 200] ∩ Z.

(11.2.3)

Its optimal solution as given in MINLPLIB is i1 = 1, i2 = 2 with an objective value of 0.72. Clearly,

to apply our algorithm from page 145 literally, the objective function needs to be multiplied by a

factor of 100 to obtain an integer valued polynomial.

Using the bounds on i1 and i2 we obtain an upper bound of 165 · 109 for the objective function,

which allows us to convert the problem into an equivalent maximization problem, where all feasible

points have a non-negative objective value. The new optimal objective value is 164999999999.28.

Expanding the new objective function and translating it into a differential operator yields

4124999999947

25
Id − 28z2

∂

∂z2
+

172

5
z1

∂

∂z1
− 117

(

z1
∂

∂z1

)(2)

− 100

(

z2
∂

∂z2

)(2)

+ 240

(

z2
∂

∂z2

)(

z1
∂

∂z1

)

+ 200

(

z2
∂

∂z2

)(

z1
∂

∂z1

)(2)

− 240

(

z1
∂

∂z1

)(3)

− 100

(

z1
∂

∂z1

)(4)

.

The short generating function can be written as

g(z1, z2) =

(

1

1 − z1
−

z201
1

1 − z1

)(

1

1 − z2
−

z201
2

1 − z2

)

.

In this example, the number of lattice points is |P ∩ Z2| = 40401. As the first bounds we get

L1 = 139463892042.292155534, U1 = 28032242300500.723262442. After 30 iterations the bounds

become L30 = 164999998845.993553019 and U30 = 165000000475.892451381. �

http://www.gamsworld.org/minlp/


Chapter 12

FPTAS for mixed-integer

polynomial optimization in fixed

dimension

A well-known result by Lenstra Jr. states that linear mixed integer programming problems with

fixed number of variables can be solved in polynomial time on the input size [93]. It is a natural

question to ask what is the computational complexity, when the number of variables is fixed, of

the non-linear mixed integer problem

max f(x1, . . . , xd1 , z1, . . . , zd2) (12.0.1a)

s.t. Ax + Bz ≤ b (12.0.1b)

xi ∈ R for i = 1, . . . , d1, (12.0.1c)

zi ∈ Z for i = 1, . . . , d2, (12.0.1d)

where f is a polynomial function of maximum total degree D with rational coefficients, and where

A ∈ Zp×d1 , B ∈ Zp×d2 , b ∈ Zp (here we assume that Ax + Bz ≤ b describes a convex polytope,

which we denote by P ).

It was well-known that continuous polynomial optimization over polytopes, without fixed dimen-

sion, is NP-hard and that an FPTAS is not possible. Indeed the max-cut problem can be modeled

as minimizing a quadratic form over the cube [−1, 1]d [68]. More strongly, it turns out that, even

for dimension two and total degree of f four, problem (12.0.1) is an NP-hard problem too [42].

Thus the best we can hope for, even for fixed dimension, is an approximation result similar to that

for the pure integer situation. In this chapter, we present the best possible such result:

Theorem 12.0.1 Let the dimension d = d1 + d2 be fixed.

(a) There exists a fully polynomial time approximation scheme (FPTAS) for the optimization prob-

lem (12.0.1) for all polynomial functions f ∈ Q[x1, . . . , xd1 , z1, . . . , zd2 ] that are non-negative

149
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on the feasible region (12.0.1b–12.0.1d). (We assume the encoding length of f is at least as

large as its maximum total degree.)

(b) Moreover, the restriction to non-negative polynomials is necessary, as there does not even exist

a polynomial time approximation scheme (PTAS) for the maximization of arbitrary polynomials

over mixed-integer sets in polytopes, even for fixed dimension d ≥ 2.

The proof of Theorem 12.0.1 is presented in Section 12.3. As we will see, Theorem 12.0.1 is a non-

trivial consequence of the existence of an FPTAS for the problem of maximizing a non-negative

polynomial with integer coefficients over the lattice points of a convex rational polytope; see the

previous Chapter for such an algorithm.

Our arguments for the mixed-integer situation, however, are independent of which FPTAS is used

in the integral case. Our results come to complement other approximation schemes investigated

for continuous variables and fixed degree (see [39] and references therein).

Our main approach is to use grid refinements in order to approximate the mixed-integer optimal

value via auxiliary pure integer problems. One of the difficulties on constructing approximations

is the fact that not every sequence of grids whose widths converge to zero leads to a conver-

gent sequence of optimal solutions of grid optimization problems. This difficulty is addressed in

Section 12.1. In Section 12.2 we develop techniques for bounding differences of polynomial function

values. Finally, in Section 12.3 we combine the constructions from Sections 12.1 and 12.2 and give

a proof of our main theorem, Theorem 12.0.1.

12.1 Grid approximation results

An important step in the development of an FPTAS for the mixed-integer optimization problem is

the reduction of the mixed-integer problem (12.0.1) to an auxiliary optimization problem over a

lattice 1
mZd1 × Zd2 . To this end, we consider the grid problem

max f(x1, . . . , xd1 , z1, . . . , zd2)

s.t. Ax + Bz ≤ b

xi ∈
1
mZ for i = 1, . . . , d1,

zi ∈ Z for i = 1, . . . , d2.

(12.1.1)

We can solve this problem approximately using the integer FPTAS (Lemma 11.2.4):

Corollary 12.1.1 For fixed dimension d = d1 + d2 there exists an algorithm with running time

polynomial in log m, in the encoding length of f and of P , in the maximum total degree D of f , and

in 1
ǫ for computing a feasible solution (xm

ǫ , zm
ǫ ) ∈ P ∩

(

1
mZd1 × Zd2

)

to the grid problem (12.1.1),

where f is non-negative on the feasible region, with

f(xm
ǫ , zm

ǫ ) ≥ (1 − ǫ)f(xm, zm), (12.1.2)

where (xm, zm) ∈ P ∩
(

1
mZd1 × Zd2

)

is an optimal solution to (12.1.1).



Chapter 12. FPTAS for mixed-integer polynomial optimization in fixed dimension 151

Proof. We apply Lemma 11.2.4 to the pure integer optimization problem:

max f̃(x̃, z)

s.t. Ax̃ + mBz ≤ mb

x̃i ∈ Z for i = 1, . . . , d1,

zi ∈ Z for i = 1, . . . , d2,

(12.1.3)

where f̃(x̃, z) := mDf( 1
m x̃, z) is a polynomial function with integer coefficients. Clearly the binary

encoding length of the coefficients of f̃ increases by at most ⌈D log m⌉, compared to the coefficients

of f . Likewise, the encoding length of the coefficients of mB and mb increases by at most ⌈log m⌉.

By Theorem 1.1 of [42], there exists an algorithm with running time polynomial in the encoding

length of f̃ and of Ax+mBz ≤ mb, the maximum total degree D, and 1
ǫ for computing a feasible

solution (xm
ǫ , zm

ǫ ) ∈ P ∩
(

1
mZd1 ×Zd2

)

such that f̃(xm
ǫ , zm

ǫ ) ≥ (1− ǫ)f̃(xm, zm), which implies the

estimate (12.1.2). �

One might be tempted to think that for large-enough choice of m, we immediately obtain an

approximation to the mixed-integer optimum with arbitrary precision. However, this is not true,

as the following example demonstrates.

Example 12.1.2 Consider the mixed-integer optimization problem

max 2z − x

s.t. z ≤ 2x

z ≤ 2(1 − x)

x ∈ R+, z ∈ {0, 1},

(12.1.4)

whose feasible region consists of the point (1
2 , 1) and the segment {(x, 0) : x ∈ [0, 1]}.

Z

1

1
1
2

R

f( 1

2
, 1) = 1

Optimal solution
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The unique optimal solution to (12.1.4) is x = 1
2 , z = 1. Now consider the sequence of grid

approximations of (12.1.4) where x ∈ 1
mZ+.

1

Z

R1
2

1f(0, 0) = 0 1
1
2

R

Z

1
f( 1

2
, 1) = 1

Optimal solution

For even m, the unique optimal solution to the grid approximation is x = 1
2 , z = 1. However, for

odd m, the unique optimal solution is x = 0, z = 0. Thus the full sequence of the optimal solutions

to the grid approximations does not converge since it has two limit points. �

However we can prove that it is possible to construct, in polynomial time, a subsequence of finer

and finer grids that contain a lattice point (x, z∗) that is arbitrarily close to the mixed-integer

optimum (x∗, z∗). This is the central statement of this section and a basic building block of the

approximation result.

Theorem 12.1.3 (Grid Approximation) Let d1 be fixed. Let

P = { (x, z) ∈ Rd1+d2 : Ax + Bz ≤ b },

where A ∈ Zp×d1 , B ∈ Zp×d2 . Let M ∈ R be given such that

P ⊆ { (x, z) ∈ Rd1+d2 : |xi| ≤ M for i = 1, . . . , d1 }.

There exists a polynomial-time algorithm to compute a number ∆ such that for every mixed-integer

point (x∗, z∗) ∈ P ∩ (Rd1 × Zd2) and δ > 0 the following property holds:

Every lattice 1
mZd1 × Zd2 for m = k∆ and k ≥ 1

δ (d1 + 1)M contains a lattice point

(x, z∗) ∈ P ∩
(

1
mZd1 × Zd2

)

with ‖x− x∗‖ ≤ δ.

Theorem 12.1.3 follows directly from the next two lemmas.
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Lemma 12.1.4 (Integral Scaling Lemma) Let P = { (x, z) ∈ Rd1+d2 : Ax + Bz ≤ b }, where

A ∈ Zp×d1 , B ∈ Zp×d2 . For fixed d1, there exists a polynomial time algorithm to compute a number

∆ ∈ Z>0 such that for every z ∈ Zd2 the polyhedron

∆Pz =
{

∆x : (x, z) ∈ P
}

is integral. In particular, the number ∆ has an encoding length that is bounded by a polynomial in

the encoding length of P .

Proof. Because the dimension d1 is fixed, there exist only polynomially many simplex bases of the

inequality system Ax ≤ b−Bz, and they can be enumerated in polynomial time. The determinant

of each simplex basis can be computed in polynomial time. Then ∆ can be chosen as the least

common multiple of all these determinants. �

Lemma 12.1.5 Let Q ⊂ Rd be an integral polytope, i.e., all vertices have integer coordinates. Let

M ∈ R be such that Q ⊆ {x ∈ Rd : |xi| ≤ M for i = 1, . . . , d }. Let x∗ ∈ Q and let δ > 0. Then

every lattice 1
k Zd for k ≥ 1

δ (d + 1)M contains a lattice point x ∈ Q ∩ 1
kZd with ‖x − x∗‖∞ ≤ δ.

Proof. By Carathéodory’s Theorem, there exist d + 1 vertices x0, . . . ,xd ∈ Zd of Q and convex

multipliers λ0, . . . , λd such that x∗ =
∑d

i=0 λix
i. Let λ′

i := 1
k ⌊kλi⌋ ≥ 0 for i = 1, . . . , d and

λ′
0 := 1 −

∑d
i=1 λ′

i ≥ 0. Then x :=
∑d

i=0 λ′
ix

i ∈ Q ∩ 1
k Zd, and we have

‖x− x∗‖∞ ≤
d
∑

i=0

(λ′
i − λi)‖x

i‖∞ ≤ (d + 1)
1

k
M ≤ δ,

which proves the lemma. �

12.2 Bounding techniques

Using the results of Section 12.1 we are now able to approximate the mixed-integer optimal point

by a point of a suitably fine lattice. The question arises how we can use the geometric distance of

these two points to estimate the difference in objective function values. We prove Lemma 12.2.1

that provides us with a local Lipschitz constant for the polynomial to be maximized.

Lemma 12.2.1 (Local Lipschitz constant) Let f be a polynomial in d variables with maximum

total degree D. Let C denote the largest absolute value of a coefficient of f . Then there exists a

Lipschitz constant L such that |f(x)− f(y)| ≤ L‖x−y‖∞ for all |xi|, |yi| ≤ M . The constant L is

O(Dd+1CMD).

Proof. Using the usual multi-index notation, let f(x) =
∑

α∈D cαxα. Let r = |D| be the number

of monomials of f . Then we have

|f(x) − f(y)| ≤
∑

α6=0

|cα| |x
α − yα|.
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We estimate all summands separately. Let α 6= 0 be an exponent vector with n :=
∑d

i=1 αi ≤ D.

Let

α = α0 ≥ α1 ≥ · · · ≥ αn = 0

be a decreasing chain of exponent vectors with αi−1 − αi = eji for i = 1, . . . , n. Let β
i := α − αi

for i = 0, . . . , n. Then xα − yα can be expressed as the “telescope sum”

xα − yα = xα0

yβ0

− xα1

yβ1

+ xα1

yβ1

− xα2

yβ2

+ − · · · − xαn

yβn

=

n
∑

i=1

(

xαi−1

yβi−1

− xαi

yβi
)

=

n
∑

i=1

(

(xji
− yji

)xαi

yβi−1
)

.

Since
∣

∣xαi

yβi−1∣
∣ ≤ Mn−1 and n ≤ D, we obtain

|xα − yα| ≤ D · ‖x− y‖∞ · Mn−1,

thus

|f(x) − f(y)| ≤ CrDMD−1‖x − y‖∞.

Let L := CrDMD−1. Now, since r = O(Dd), we have L = O(Dd+1CMD). �

Moreover, in order to obtain an FPTAS, we need to put differences of function values in relation

to the maximum function value. To do this, we need to deal with the special case of polynomials

that are constant on the feasible region; here trivially every feasible solution is optimal. For non-

constant polynomials, we can prove a lower bound on the maximum function value. The technique

is to bound the difference of the minimum and the maximum function value on the mixed-integer

set from below; if the polynomial is non-constant, this implies, for a non-negative polynomial,

a lower bound on the maximum function value. We will need a simple fact about the roots of

multivariate polynomials.

Lemma 12.2.2 Let f ∈ Q[x1, . . . , xd] be a polynomial and let D be the largest power of any

variable that appears in f . Then f = 0 if and only if f vanishes on the set {0, . . . , D}d.

Proof. This is a simple consequence of the Fundamental Theorem of Algebra. See, for instance,

[36, Chapter 1, §1, Exercise 6 b]. �

Lemma 12.2.3 Let f ∈ Q[x1, . . . , xd] be a polynomial with maximum total degree D. Let Q ⊂ Rd

be an integral polytope of dimension d′ ≤ d. Let k ≥ D d′. Then f is constant on Q if and only if

f is constant on Q ∩ 1
kZd.
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Proof. Let x0 ∈ Q∩Zd be an arbitrary vertex of Q. There exist vertices x1, . . . ,xd′

∈ Q∩Zd such

that the vectors x1 − x0, . . . ,xd′

− x0 ∈ Zd are linearly independent. By convexity, Q contains the

parallelepiped

S :=
{

x0 +
∑d′

i=1 λi(x
i − x0) : λi ∈ [0, 1

d′ ] for i = 1, . . . , d′
}

.

We consider the set

Sk = 1
kZd ∩ S ⊇

{

x0 +
∑d′

i=1
ni

k (xi − x0) : ni ∈ {0, 1, . . . , D} for i = 1, . . . , d′
}

.

Now if there exists a c ∈ R with f(x) = c for x ∈ Q ∩ 1
kZd, then all the points in Sk are roots of

the polynomial f − c, which has only maximum total degree D. By Lemma 12.2.2 (after an affine

transformation), f − c is zero on the affine hull of Sk; hence f is constant on the polytope Q. �

Theorem 12.2.4 Let f ∈ Z[x1, . . . , xd1 , z1, . . . , zd2 ]. Let P be a rational convex polytope, and let

∆ be the number from Lemma 12.1.4. Let m = k∆ with k ≥ D d1, k ∈ Z. Then f is constant on

the feasible region P ∩
(

Rd1 × Zd2
)

if and only if f is constant on P ∩
(

1
mZd1 × Zd2

)

. If f is not

constant, then
∣

∣f(xmax, zmax) − f(xmin, zmin)
∣

∣ ≥ m−D, (12.2.1)

where (xmax, zmax) is an optimal solution to the maximization problem over the feasible region

P ∩
(

Rd1 × Zd2
)

and (xmin, zmin) is an optimal solution to the minimization problem.

Proof. Let f be constant on P ∩
(

1
mZd1 × Zd2

)

. For fixed integer part z ∈ Zd2 , we consider the

polytope ∆Pz =
{

∆x : (x, z) ∈ P
}

, which is a slice of P scaled to become an integral polytope.

By applying Lemma 12.2.3 with k = (D+1)d on every polytope ∆Pz, we obtain that f is constant

on every slice Pz. Because f is also constant on the set P ∩
(

1
mZd1 ×Zd2

)

, which contains a point

of every non-empty slice Pz, it follows that f is constant on P .

If f is not constant, there exist (x1, z1), (x2, z2) ∈ P ∩
(

1
mZd1 × Zd2

)

with f(x1, z1) 6= f(x2, z2).

By the integrality of all coefficients of f , we obtain the estimate

|f(x1, z1) − f(x2, z2)| ≥ m−D.

Because (x1, z1), (x2, z2) are both feasible solutions to the maximization problem and the mini-

mization problem, this implies (12.2.1). �

12.3 Proof of Theorem 12.0.1

Now we are in the position to prove the main result.

Part (a). Let (x∗, z∗) denote an optimal solution to the mixed-integer problem (12.0.1). Let ǫ > 0.

We show that, in time polynomial in the input length, the maximum total degree, and 1
ǫ , we can

compute a point (x, z) that satisfies (12.0.1b–12.0.1d) such that

|f(x, z) − f(x∗, z∗)| ≤ ǫf(x∗, z∗). (12.3.1)
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First we note that we can restrict ourselves to the case of polynomials with integer coefficients,

simply by multiplying f with the least common multiple of all denominators of the coefficients. We

next establish a lower bound on f(x∗, z∗). To this end, let ∆ be the integer from Lemma 12.1.4,

which can be computed in polynomial time. By Theorem 12.2.4 with m = D d1∆, either f is

constant on the feasible region, or

f(x∗, z∗) ≥ (D d1∆)−D, (12.3.2)

where D is the maximum total degree of f . Now let

δ :=
ǫ

2(Dd1∆)DL(C, D, M)
(12.3.3)

and let

m := ∆

⌈

2

ǫ
(Dd1∆)DL(C, D, M)(d1 + 1)M

⌉

, (12.3.4)

where L(C, D, M) is the Lipschitz constant from Lemma 12.2.1. Then we have m ≥ ∆1
δ (d1 +1)M ,

so by Theorem 12.1.3, there is a point (⌊x∗⌉δ, z
∗) ∈ P ∩

(

1
mZd1 ×Zd2

)

with
∥

∥⌊x∗⌉δ−x∗
∥

∥

∞
≤ δ. Let

(xm, zm) denote an optimal solution to the grid problem (12.1.1). Because (⌊x∗⌉δ, z
∗) is a feasible

solution to the grid problem (12.1.1), we have

f(⌊x∗⌉δ, z
∗) ≤ f(xm, zm) ≤ f(x∗, z∗). (12.3.5)

Now we can estimate
∣

∣f(x∗, z∗) − f(xm, zm)
∣

∣ ≤
∣

∣f(x∗, z∗) − f(⌊x∗⌉δ, z
∗)
∣

∣

≤ L(C, D, M)
∥

∥x∗ − ⌊x∗⌉δ

∥

∥

∞

≤ L(C, D, M) δ

=
ǫ

2
(D d1∆)−D

≤
ǫ

2
f(x∗, z∗), (12.3.6)

where the last estimate is given by (12.3.2) in the case that f is not constant on the feasible region.

On the other hand, if f is constant, the estimate (12.3.6) holds trivially.

By Corollary 12.1.1 we can compute a point (xm
ǫ/2, z

m
ǫ/2) ∈ P ∩

(

1
mZd1 × Zd2

)

such that

(1 − ǫ
2 )f(xm, zm) ≤ f(xm

ǫ/2, z
m
ǫ/2) ≤ f(xm, zm) (12.3.7)

in time polynomial in log m, the encoding length of f and P , the maximum total degree D, and

1/ǫ. Here log m is bounded by a polynomial in log M , D and log C, so we can compute (xm
ǫ/2, z

m
ǫ/2)

in time polynomial in the input size, the maximum total degree D, and 1/ǫ. Now we can estimate,

using (12.3.7) and (12.3.6),

f(x∗, z∗) − f(xm
ǫ/2, z

m
ǫ/2)

≤ f(x∗, z∗) − (1 − ǫ
2 )f(xm, zm)

= ǫ
2f(x∗, z∗) + (1 − ǫ

2 )
(

f(x∗, z∗) − f(xm, zm)
)

≤ ǫ
2f(x∗, z∗) + ǫ

2f(x∗, z∗)

= ǫf(x∗, z∗).
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≤ Lδ ≤ ǫ
2
f(xmax, zmax)

≤ ǫ
2
f(xm, zm) ≤ ǫ

2
f(xmax, zmax)

f(xm
ǫ/2, z

m
ǫ/2)

f(xmax, zmax)Optimal mixed-integer solution

Optimal grid solution

Rounded mixed-integer solution

Approximative grid solution

f(⌊xmax⌉δ , z
max)

f(xm, zm)

Hence f(xm
ǫ/2, z

m
ǫ/2) ≥ (1 − ǫ)f(x∗, z∗).

Part (b). Let the dimension d ≥ 2 be fixed. We prove that there does not exist a PTAS for

the maximization of arbitrary polynomials over mixed-integer sets of polytopes. We use the NP-

complete problem AN1 on page 249 of [62]. This is to decide whether, given three positive integers

a, b, c, there exists a positive integer x < c such that x2 ≡ a (mod b). This problem is equivalent

to asking whether the maximum of the quartic polynomial function f(x, y) = −(x2 − a− by)2 over

the lattice points of the rectangle

P =

{

(x, y) : 1 ≤ x ≤ c − 1,
1 − a

b
≤ y ≤

(c − 1)2 − a

b

}

is zero or not. If there existed a PTAS for the maximization of arbitrary polynomials over mixed-

integer sets of polytopes, we could, for any fixed 0 < ǫ < 1, compute in polynomial time a solution

(xǫ, yǫ) ∈ P ∩ Z2 with
∣

∣f(xǫ, yǫ) − f(x∗, y∗)
∣

∣ ≤ ǫ
∣

∣f(x∗, y∗)
∣

∣, where (x∗, y∗) denotes an optimal

solution. Thus, we have f(xǫ, yǫ) = 0 if and only if f(x∗, y∗) = 0; this means we could solve the

problem AN1 in polynomial time. �
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Chapter 13

Short rational functions for toric

algebra

In this chapter we present polynomial-time algorithms for computing with toric ideals. Our results

are a direct application of recent results by Barvinok and Woods [15] on short encodings of rational

generating functions.

Let A ∈ Zd×n and b ∈ Zd such that the convex polyhedron P = {u ∈ Rn : Au = b, u ≥ 0}

is bounded. Barvinok gave an algorithm for counting the lattice points in P in polynomial time

when n − d is a constant, see Chapter 9 for a detailed description. The input for Barvinok’s

algorithm is the binary encoding of the integers aij and bi, and the output is a formula for the

multivariate generating function f(P ) =
∑

a∈P∩Zn xa. This long polynomial with exponentially

many monomials is encoded as a much shorter sum of rational functions of the form

f(P ; z) =
∑

i∈I

±
xui

(1 − xc1,i)(1 − xc2,i) . . . (1 − xcn−d,i)
. (13.0.1)

Barvinok and Woods [15] developed a set of powerful manipulation rules for using these short

rational functions in Boolean constructions on various sets of lattice points. In this chapter we apply

their techniques to problems in combinatorial commutative algebra. Our first theorem concerns

the computation of the toric ideal IA of the matrix A. Remember that this ideal is generated

by all binomials xu − xv such that Au = Av. In what follows, we encode any set of binomials

xu − xv in n variables as the formal sum of the corresponding monomials yuzv in 2n variables

y1, . . . , yn, z1, . . . , zn.

Theorem 13.0.1 Let A ∈ Zd×n. Assuming that n and d are fixed, there is a polynomial time

algorithm to compute a short rational function G which represents the reduced Gröbner basis of the

toric ideal IA with respect to any given term order ≺. Given G and any monomial xa, the following

tasks can be performed in polynomial time:

1. Decide whether xa is in normal form with respect to G.

159
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2. Perform one step of the division algorithm modulo G.

3. Compute the normal form of xa modulo the Gröbner basis G.

The proof of Theorem 13.0.1 will be given in Section 13.1. Special attention will be paid to the Pro-

jection Theorem [15, Theorem 1.7] since projection of short rational functions is the most difficult

step to implement. Its practical efficiency has yet to be investigated. Our proof of Theorem 13.0.1

does use the Projection Theorem, but our Proposition 13.1.5 in Section 13.1 shows that a non-

reduced Gröbner basis can be computed in polynomial time without using the Projection Theorem.

13.1 Encoding Gröbner bases of toric ideals

Barvinok and Woods [15] showed:

Lemma 13.1.1 (Theorem 3.6 in [15]) Let S1, S2 be finite subsets of Zn, for n fixed. Let f(S1; z)

and f(S2; z) be their generating functions, given as short rational functions with at most k bino-

mials in each denominator. Then there exist a polynomial time algorithm, which, given f(Si; z),

computes

f(S1 ∩ S2; z) =
∑

i∈I

γi ·
zui

(1 − zvi1) . . . (1 − zvis)

with s ≤ 2k, where the γi are rational numbers, and ui, vij nonzero integers.

We will use this Intersection Lemma to extract special monomials present in the expansion of a

generating function. The essential step in the intersection algorithm is the use of the Hadamard

product [15, Definition 3.2] and a special monomial substitution. The Hadamard product is a

bilinear operation on rational functions (we denote it by ∗). The computation is carried out for

pairs of summands as in (13.0.1). Note that the Hadamard product m1 ∗ m2 of two monomials

m1, m2 is zero unless m1 = m2. We present an example of computing intersections.

Example 13.1.2 Let Si = {x ∈ R : i − 2 ≤ x ≤ i} ∩ Z for i = 1, 2. We rewrite their rational

generating functions as in the proof of Theorem 3.6 in [15]:

f(S1; z) =
z−1

(1 − z)
+

z

(1 − z−1)
=

−z−2

(1 − z−1)
+

z

(1 − z−1)
= g11 + g12, and

f(S2; z) =
1

(1 − z)
+

z2

(1 − z−1)
=

−z−1

(1 − z−1)
+

z2

(1 − z−1)
= g21 + g22.

We need to compute four Hadamard products between rational functions whose denominators

are products of binomials and denominators are monomials. Lemma 3.4 in [15] says that, for our

example, these Hadamard products are essentially the same as computing the functions (13.0.1)

of the auxiliary polyhedron {(ǫ1, ǫ2) : p1 + a1ǫ1 = p2 + a2ǫ2, ǫi ≥ 0} where p1, p2 are the exponents
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of numerators of the gij ’s involved and a1, a2 are the exponents of the binomial denominators. For

example, the Hadamard product g11 ∗ g22 corresponds to the polyhedron

{(ǫ1, ǫ2) : ǫ2 = 4 + ǫ1, ǫi ≥ 0}.

The contribution of this half line is − z−2

(1−z−1) . We find

f(S1; z) ∗ f(S2; z) = g11 ∗ g21 + g12 ∗ g22 + g12 ∗ g21 + g11 ∗ g22

=
z−2

(1 − z−1)
+

z

(1 − z−1)
−

z−1

(1 − z−1)
−

z−2

(1 − z−1)

=
z − z−1

1 − z−1
= 1 + z = f(S1 ∩ S2; z).

�

Another key subroutine introduced by Barvinok and Woods is the following Projection Theorem.

In both Lemmas 13.1.1 and 13.1.3, the dimension n is assumed to be fixed.

Lemma 13.1.3 (Theorem 1.7 in [15]) Assume the dimension n is a fixed constant. Consider

a rational polytope P ⊂ Rn and a linear map T : Zn → Zk. There is a polynomial time algorithm

which computes a short representation of the generating function f (T (P ∩ Zn); z).

We represent a term order ≺ on monomials in x1, . . . , xn by an integral n×n-matrix W as in [96].

Two monomials satisfy xα ≺ xβ if and only if Wα is lexicographically smaller than Wβ. In other

words, if w1, . . . , wn denote the rows of W , there is some j ∈ {1, . . . , n} such that w⊺

i α = w⊺

i β for

i < j, and w⊺

j α < w⊺

j β. For example, W = In describes the lexicographic term ordering. In what

follows, we will denote by ≺W the term ordering defined by W .

Lemma 13.1.4 Let S ⊂ Zn
+ be finite. Suppose the polynomial f(S; z) =

∑

β∈S zβ is represented

as a short rational function and let ≺W be a term order. We can extract the (unique) leading

monomial of f(S; z) with respect to ≺W , in polynomial time.

Proof. The term order ≺W is represented by an integer matrix W . For each of the rows wj

of W we perform a monomial substitution zi := z′it
wji

j . Such a monomial substitution can be

computed in polynomial time by [15, Theorem 2.6]. The effect is that the polynomial f(S; z) gets

replaced by a polynomial in the t and the z′s. After each substitution we determine the degree

in t. This is done as follows: We want to do calculations in univariate polynomials since this is

faster so we consider the polynomial g(t) = f(S,1, t), where all variables except t are set to the

constant one. Clearly the degree of g(t) in t is the same as the degree of f(S; z′, t). We create the

interval polynomial i[p,q](t) =
∑q

i=p ti which obviously has a short rational function representation.

Compute the Hadamard product of and i[p,q] with g(t). This yields those monomials whose degree

in the variable t lies between p and q. We will keep shrinking the interval [p, q] until we find

the degree. We need a bound for the degree in t of g(t) to start a binary search. A polynomial
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upper bound U can be found via the estimate in Theorem 3.1 of [91] by easy manipulation of

the numerator and denominator of the fractions in g(t). In no more than log(U) steps one can

determine the degree in t of f(S; z, t) by using a standard binary search algorithm.

Once the degree r in t is known, we compute the Hadamard product of f(S; z, t) and i[r,r], and

then compute the limit as t approaches 1. This can be done in polynomial time using residue

techniques. The limit represents the subseries H(S; z) =
∑

β:β⊺wj=r zβ. Repeat the monomial and

highest degree search for the row wj+1, wj+2, etc. Since ≺W is a term order, after doing this n

times we will have only one single monomial left, the desired leading monomial. �

Proposition 13.1.5 Let A ∈ Zd×n, W ∈ Zn×n specifying a term order ≺W , and assume that d

and n are fixed.

1) There is a polynomial time algorithm to compute a short rational function G which represents

a universal Gröbner basis of IA.

2) Given the term order ≺W and a short rational function encoding a (possibly infinite) set of

binomials
∑

yuzv, one can compute in polynomial time a short rational function encoding only

those binomials such that xv ≺W xu.

3) Suppose we are given a sum of short rational functions f(z) which is identical, in a monomial

expansion, to a single monomial za. Then in polynomial time we can recover the (unique) exponent

vector a.

Proof. 1) Denote by wi the i-th row of the matrix W which specifies the term order. Now set

M = (d + 1)(n− d)D(A) where D(A) is the largest absolute value of any d× d-subdeterminant of

A. Using Barvinok’s algorithm, we compute the following generating function in 2n variables:

G(y, z) =
∑

{yuzv : Au = Av, 0 ≤ ui, vi ≤ M} .

This is the sum over all lattice points in a rational polytope. Lemma 4.1 and Theorem 4.7 in

Chapter 4 of [114] imply that the toric ideal IA is generated by the finite set of binomials xu − xv

corresponding to the terms yuzv in G(y, z). Moreover, these binomials are a universal Gröbner

basis of IA.

2) Suppose we are given a short rational generating function G0(y, z) =
∑

yuzv representing a set

of binomials xu − xv in IA, for instance G0 = G in part (1). In the following steps, we will alter

the series so that a term yuzv gets removed whenever u is not bigger than v in the term order ≺W .

Starting with H0 = G0, we perform Hadamard products with short rational functions f(S; y, z)

for S ⊂ Z2n.

Set Hi = Hi−1 ∗ f({(u, v) : w⊺

i u = w⊺

i v}), and Gi = Hi−1 ∗ f({(u, v) : w⊺

i u ≥ w⊺

i v + 1}). All

monomials yuzv ∈ Gj have the property that w⊺

i u = w⊺

i v for i < j, w⊺

j u > w⊺

j v, and thus v ≺W u.

On the other hand, if v ≺W u then there is some j such that w⊺

i u = w⊺

i v for i < j, w⊺

j u > w⊺

j v,

and we can conclude that yuzv ∈ Gj . This proves that G = G1 ∪ G2 ∪ . . . ∪ Gn encodes exactly

those binomials in G0 that are correctly ordered with respect to ≺W . We have proved our claim

since all of the above constructions can be done in polynomial time.
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3) Given f(z) we can compute in polynomial time the partial derivative ∂f(z)/∂zi. This puts the

exponent of zi as a coefficient of the unique monomial. To compute the derivative can be done in

polynomial time by the quotient and product derivative rules. Each time we differentiate a short

rational function of the form

zbi

(1 − zc1,i)(1 − zc2,i) . . . (1 − zcd,i)

we add polynomially many (binomial) factors to the numerator. The factors in the numerators

should be expanded into monomials to have again summands in short rational canonical form
zbi

(1−zc1,i )(1−zc2,i )...(1−zcd,i )
. Note that at most 2d monomials appear (a constant) each time. Finally,

if we take the limit when all variables zi go to one we will get the desired exponent. �

13.2 Proof of Theorem 13.0.1

Proposition 13.1.5 gives a Gröbner basis for the toric ideal IA in polynomial time. We now show

how to get the reduced Gröbner basis.

Step 1. Compute the generating function which encodes all binomials in IA:

f(y, z) =
∑

{yuzv : Au = Av, u, v ≥ 0} .

This computation is similar to part 1 of Proposition 13.1.5 except that there is no upper bound

M . Next we wish to remove from f(y, z) all incorrectly ordered binomials (i.e. those monomials

yuzv with u ≺W v instead of the other way around). We do this following part 2 of Proposition

13.1.5. Abusing notation let us still call f(y, z) the resulting sum of rational functions. Let now

g(y) be the projection of f(y, z) onto the first group of variables. Thus g(y) is the sum over all

non-standard monomials, and it can be computed in polynomial time by Lemma 13.1.3.

Step 2. Write 1
1−y =

n
∏

i=1

1
1−yi

for the generating function of all y-monomials. We compute the

following Hadamard product of n rational functions in y:

(

1

1 − y
− y1 · g(y)

)

∗

(

1

1 − y
− y2 · g(y)

)

∗ · · · ∗

(

1

1 − y
− yn · g(y)

)

.

This is the generating function over those monomials all of whose proper factors are standard

monomials modulo the toric ideal IA.

Step 3. Let h(y, z) denote the ordinary product of the result of Step 2 with

1

1 − z
− g(z) =

∑

{zv : v standard monomial modulo IA} .

Thus h(y, z) is the sum of all monomials yuzv such that xv is standard and xu is minimally

non-standard. Compute the Hadamard product G(y, z) := f(y, z) ∗h(y, z). This is a short rational

representation of a polynomial, namely, it is the sum over all monomials yuzv such that the binomial

xu − xv is in the reduced Gröbner basis of IA with respect to W .
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We next prove claims 1 and 2. Let G(y, z) be the reduced Gröbner basis of IA encoded by the

rational function above, and let M be the degree bound of Proposition 13.1.5. Let b(y, z) be

the rational function representing {(u, v) : 0 ≤ u ≤ a, 0 ≤ v ≤ M}. The Hadamard product

G(y, z) = G(y, z) ∗ b(y, z) is computable in polynomial time and encodes exactly those binomials

in G that can reduce xa. If G is empty then xa is in normal form already, otherwise we use Lemma

13.1.4 to find an element (u, v) ∈ G and reduce xa to xa−u+v.

It is worth noting that analytic calculations may now be used as part of algebraic algorithms:

Suppose again we wish to decide whether xa is in reduced normal form or not. Take G(y, z) as

before and compute F (y) = G(y,1). This can be done using monomial substitution [15]. Next

compute the integral

1

(2πi)n

∫

|y1|=ǫ1

· · ·

∫

|yd|=ǫd

(y−a1
1 · · · y−an

n )F (y)

(1 − y1) · · · (1 − yn)
dy.

Here 0 < ǫ1, . . . , ǫd < 1 are different numbers such that we can expand all the 1
1−yk

into the power

series about 0. It is possible to do a partial fraction decomposition of the integrand into a sum of

simple fractions. The integral is a non-negative integer: it is the number of ways that the monomial

xa can be written in terms of the leading monomials of the Gröbner bases G.

We now present the algorithm for claim 3 in Theorem 13.0.1. A curious byproduct of representing

Gröbner bases with short rational functions is that the reduction to normal form need not be done

by dividing several times anymore:

Step 4. Let f(y, z) and g(y) as above and compute the Hadamard product

H(y, z) := f(y, z) ∗

((

1

1 − y

)

·

(

1

1 − z
− g(z)

))

.

This is the sum over all monomials yuzv where xv is the normal form of xu.

Step 5. We use H(y, z) as one would use a traditional Gröbner basis of the ideal IA. The normal

form of a monomial xa is computed by forming the Hadamard product

H(y, z) ∗
ya

1 − z
.

Since this is strictly speaking a sum of rational functions equal to a single monomial, applying Part

3 of Proposition 13.1.5 concludes the proof of Theorem 13.0.1. �



Chapter 14

Conclusions

In this thesis we dealt with explicit and implicit representations of lattice point sets, with the

computation of these representations and with some applications. This thesis demonstrates the

enormous algorithmic and theoretical progress in the computation and the applicability of Hilbert

bases of rational polyhedral cones, of Graver bases of lattices, of Gröbner and Markov bases of

lattice ideals, and of short rational generating functions.

These algorithms have been efficiently implemented by several people into the two software packages

4ti2 and LattE. Both codes have been already successfully tested in recent research projects, such

as in algebraic statistics, computational biology of combinatorics.

Some impressive results are the computation of the following objects:

• Hilbert basis of magic 6 × 6 squares: 522, 347 elements

• Homogeneous primitive partition identities for n = 20: 1, 254, 767 elements

• Markov basis of the toric ideal of 4 × 4 × 4 contingency tables: 145, 512 elements

• Markov bases of toric ideals of phylogenetic trees with 2, 048 variables

• Counting formula for magic 5× 5 squares

From a theoretical perspective, we were able to extend the applicability of both Hilbert bases and

short rational generating functions to certain classes of nonlinear (mixed-) integer optimization

problems over polyhedra. Both results were a bit unexpected as usually linearity of constraints

and objective function were used in proofs.

Further practically interesting problem classes, not considered in this thesis, for a suitable explicit

or implicit representation of all (mixed-) integer points in polyhedra are for example:

• Design of molecules with specific pharmaceutical properties,

• Decomposition of chemical/biological reactions into elementary reactions,
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• Reachability in Petri-nets,

• Decomposition von of networks and network flows.

It is to be expected that the theoretical and algorithmic achievements for the computation and

applicability

• of Hilbert bases of rational polyhedral cones,

• of Graver bases of lattices,

• of Gröbner bases and Markov bases of lattice ideals, and

• of short rational generating functions,

will lead to significant speed-ups in the solution of problems arising in research and in practice in

the near future.

However, since the sizes of these objects increase exponentially with the dimension, one probably

needs to incorporate these objects into already practically successful algorithms to achieve a faster

solution.
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bolic Computation 24 (1997), 456–469.

[33] E. Contejean and H. Devie. An efficient incremental algorithm for solving systems of linear

Diophantine equations. Information and Computation 113 (1994), 143–172.

[34] P. Conti and C. Traverso. Buchberger algorithm and integer programming. In: Proceedings

AAECC-9, (New Orleans), LNCS 539, Springer-Verlag, 1991, 130–139.

[35] G. Cornuejols, R. Urbaniak, R. Weismantel, and L. Wolsey. Decomposition of integer programs

and of generating sets. LNCS 1284, Springer-Verlag, 1997, 92–103.

[36] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, Algorithms. Springer-Verlag, 1992.

[37] L. H. Cox. Bounds on entries in 3-dimensional contingency tables. In: Inference Control in

Statistical Databases - From Theory to Practice. LNCS 2316, Springer, New York, 2002,

21–33.

[38] L. H. Cox. On properties of multi-dimensional statistical tables. J. Stat. Plan. Infer. 117

(2003), 251–273.

[39] E. de Klerk, M. Laurent, and P. A. Parrilo. A PTAS for the minimization of polynomials of

fixed degree over the simplex. Manuscript 2004, to appear in Theoretical Computer Science.

[40] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins, B. Sturmfels, and R. Yoshida. Short

rational functions for toric algebra and applications. J. of Symbolic Computation 38 (2004),

959–973.

[41] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins, J. Tauzer, and R. Yoshida.

A User’s Guide for LattE v1.1., 2003. Software package LattE is available at

http://www.math.ucdavis.edu/∼latte/



BIBLIOGRAPHY 170
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