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Zusammenfassung

Perfekte Graphen, Anfang der 1960er Jahre von Claude Berge eingeführt,
bilden eine Graphenklasse mit reichen strukturellen Eigenschaften. Charak-
terisierungen perfekter Graphen bezüglich so verschiedener Konzepte wie

• Färbungen von Graphen,

• Additivität der Graph-Entropie,

• Ganzzahligkeit von Polytopen,

verdeutlichen diese besonderen Eigenschaften und bilden gleichzeitig eine
Schnittstelle zwischen den Gebieten Graphentheorie, Informationstheorie,
Kombinatorischer Optimierung, Ganzzahliger Programmierung und Polye-
dertheorie, siehe Sektion 1.1.

Leider sind die meisten Graphen nicht perfekt und besitzen keine solche
herausragenden Eigenschaften. Es ist daher interessant zu erforschen, welche
Graphen zumindest hinsichtlich einiger Eigenschaften ‘fast perfekt’ sind und
wie man diese Nähe zu Perfektheit messen kann. Wir relaxieren dafür den
Perfektheitsbegriff bezüglich oben genannter Konzepte und untersuchen die
so erhaltenen Oberklassen perfekter Graphen sowie verschiedene Wege, um
den Grad von Imperfektheit auszudrücken.

Färbungen von Graphen. Das Färben der Knoten von Graphen ist
ein wichtiges Konzept mit vielfältigen Anwendungen, das Bestimmen der
Färbungszahl χ(G) eines Graphen ist jedoch i.a. NP-schwer. Die Cliquen-
zahl ω(G) ist eine natürliche untere Schranke für χ(G); für perfekte Graphen
G gilt stets Gleichheit (für alle induzierten Untergraphen), im Allgemeinen
können die beiden Parameter jedoch beliebig weit auseinander liegen [70].
Eine natürliche Frage ist also, für welche Graphenklassen die Differenz zwi-
schen Cliquenzahl ω(G) und Färbungszahl χ(G) unter Kontrolle ist. Wir be-
schäftigen uns mit zwei Konzepten, um diese Frage zu beantworten: oberen
Schranken für χ(G) als Funktion von ω(G) und dem Imperfektheitsgrad
eines Graphen.
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Eine Graphenklasse G ist χ-bound mit Bindingfunktion b, falls χ(G′) ≤
b(ω(G′)) für alle induzierten Untergraphen G′ von Graphen G ∈ G gilt [51].
Perfekte Graphen sind genau die Graphen mit Bindingfunktion b(x) = x
und Klassen mit linearer Bindingfunktion b(x) = bx + c haben ähnlich gute
Färbungseigenschaften. Wir untersuchen in Kapitel 2 verschiedene Klassen
mit Bindingfunktion b(x) = x + 1.

Gerke und McDiarmid führten in [45] als ähnliches Konzept den Imper-
fektheitsgrad eines Graphen G ein als

imp(G) = max

{

χf (G, c)

ω(G, c)
| c : V (G) → N \ {0}

}

wobei χf (G, c) die fraktionale gewichtete Färbungszahl und ω(G, c) die ge-
wichtete Cliquenzahl ist. Jeder perfekte Graph G hat imp(G) = 1 und
alle Graphen mit einem kleinen Imperfektheitsgrad können als ‘fast per-
fekt’ angesehen werden. Wir geben für einige Klassen obere Schranken für
den Imperfektheitsgrad an, siehe Sektion 5.2. Weiter leiten wir für Klassen
mit unbeschränktem Imperfektheitsgrad eine hinreichende Bedingung für
die Nichtexistenz von Bindingfunktionen her, siehe Sektion 2.3.

Additivität der Graph-Entropie. Körner [56] führte die Graph-Entropie

H(G, p) = lim sup
k→∞

min

{

1

k
log2 χ(Gk[U ]) : U ⊆ V (Gk),

∑

x∈U

pk(x) > 1 − ε

}

als Gütemaß für ein Kodierungsproblem ein, das sowohl vom Graphen G als
auch einer Wahrscheinlichkeitsverteilung p abhängt. Die Graph-Entropie ist
subadditiv bezüglich der Vereinigung von Graphen auf der gleichen Knoten-
menge, insbesondere gilt für Komplementärgraphen

H(p) ≤ H(G, p) + H(G, p) ∀p

wobei H(p) = H(Kn, p) die sog. Shannon-Entropie (d.h. die Entropie der
Wahrscheinlichkeitsverteilung p selbst) ist. Cziszár et al. [31] zeigten, dass
letztere Ungleichung genau dann für alle Wahrscheinlichkeitsverteilungen p
mit Gleichheit erfüllt ist, wenn G perfekt ist.

Dies legt nahe, mithilfe des Wertes H(G, p)+H(G, p)−H(p) die Imper-
fektheit eines Graphen G auszudrücken. Es gilt

min {H(G, p) + H(G, p) − H(p) : p} = 0
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genau dann, wenn G normal ist. Normale Graphen bilden eine bisher wenig
untersuchte Oberklasse perfekter Graphen. Körner und de Simone [59] ver-
muten, dass jeder Graph normal ist, der weder C5, C7 noch C7 als induzierte
Untergraphen enthält (Normale-Graphen-Vermutung). Wir zeigen diese
Vermutung für einige erste Graphenklassen (Sektion 3.3) und geben ver-
schiedene Wege zur Konstruktion normaler Graphen an (Sektion 3.2). Da-
raus resultierende Konsequenzen zeigen leider, dass normale Graphen nicht
als ‘fast perfekt’ angesehen werden können, wie bisher vermutet wurde (Sek-
tion 3.4). Insbesondere kann der Imperfektheitsgrad für normale Graphen
nicht beschränkt werden. Da

max {H(G, p) + H(G, p) − H(p) : p} = log2 imp(G)

gilt, existieren also normale Graphen G, für welche die Differenz zwischen
max {H(G, p)+H(G, p)−H(p) : p} und min {H(G, p)+H(G, p)−H(p) : p}
beliebig groß ist. Damit hängt der Wert H(G, p) + H(G, p)−H(p) für nor-
male Graphen G stark von der Wahrscheinlichkeitsverteilung p ab, und wir
folgern, dass nicht normale Graphen, sondern solche mit kleinem Imperfekt-
heitsgrad in dieser Hinsicht ‘fast perfekt’ sind (siehe Sektion 3.4).

Das Stabile-Mengen-Polytop. Das Stabile-Mengen-Polytop STAB(G)
ist definiert als die konvexe Hülle der Inzidenzvektoren aller stabilen Men-
gen von G; die Beschreibung durch facetten-definierende Ungleichungen
ist für die meisten Graphen unbekannt. Für alle Graphen bilden Nicht-
negativitätsbedingungen und Cliquebedingungen assoziiert mit maximalen
Cliquen Facetten von STAB(G), diese Facettentypen reichen jedoch nur
genau für perfekte Graphen aus [21, 40, 75]. Eine natürliche LP-Relaxierung
von STAB(G) ist daher das fraktionale Stabile-Mengen-Polytop

QSTAB(G) =







x ∈ R
|G|
+ :

∑

i∈Q

xi ≤ 1 ∀Q ⊆ G Clique







und es gilt STAB(G) ⊂ QSTAB(G) für alle imperfekten Graphen. Die Dif-
ferenz der beiden Polytope ist also ein natürliches Maß für die Imperfektheit.
Wir untersuchen dafür

• die Facettenmenge von STAB(G) (hinsichtlich Anzahl und Art der
zusätzlich benötigten Facetten),

• den disjunktiven Index von QSTAB(G) (als die kleinste Anzahl von
Disjunktionen, um QSTAB(G) in ein ganzzahliges Polytop zu über-
führen, was dem Imperfektheitsindex impI(G) entspricht [1]),
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• den Dilationsgrad von STAB(G) und QSTAB(G) (der nach Gerke und
McDiarmid [45] eine weitere Darstellung des Imperfektheitsgrades als
imp(G) = min{t : QSTAB(G) ⊆ t STAB(G)} liefert).

Wir geben verschiedene Resultate zu allen drei Konzepten an: wir be-
schreiben die Facetten der Stabile-Mengen-Polytope verschiedener Graphen
(Kapitel 4) und untersuchen sowohl Schranken für den Imperfektheitsgrad
als auch für den Imperfektheitsindex (Kapitel 5). Es zeigt sich, dass viele
Graphenklassen mit ‘einfach’ zu beschreibenden Stabile-Mengen-Polytopen
auch einen kleinen Imperfektheitsgrad aufweisen, während der Imperfekt-
heitsindex für fast alle untersuchten Graphenklassen unbeschränkt ist. Wir
folgern, dass der Imperfektheitsgrad auch im polyedertheoretischen Sinne
ein sinnvolles Maß für die Imperfektheit darstellt.

Schlussfolgerung. Der Imperfektheitsgrad hat eine Verbindung zu allen
untersuchten Konzepten, da er

• sowohl in seiner ursprünglichen Definition als auch in Verbindung mit
Bindingfunktionen gute Färbungseigenschaften wiedergibt,

• eine obere Schranke für den Wert H(G, p) + H(G, p) − H(p)) liefert,
die unabhängig von der Wahrscheinlichkeitsverteilung p ist,

• der Dilationsgrad von STAB(G) und QSTAB(G) ist und Graphen
mit ‘einfach’ zu beschreibenden Stabile-Mengen-Polytopen auch einen
kleinen Imperfektheitsgrad aufweisen.

Damit ist der Imperfektheitsgrad mit allen untersuchten Konzepten kompa-
tibel und liefert ein geeignetes Maß für die Imperfektheit eines Graphen, da
Graphen mit kleinem Imperfektheitsgrad tatsächlich hinsichtlich mehrerer
Eigenschaften als ‘fast perfekt’ angesehen werden können.
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Chapter 1

Introduction

Perfect graphs, introduced in the early 1960s by Claude Berge, constitute a
well-studied graph class with a rich structure. This is reflected by charac-
terizations of perfect graphs with respect to such different concepts as col-
oring properties, forbidden subgraphs, the integrality of certain polyhedra,
or splitting graph entropies, see Section 1.1. In addition, several otherwise
hard combinatorial optimization problems can be solved for perfect graphs
in polynomial time.

Thus, perfect graphs play a role in such various mathematical disciplines
as graph theory, information theory, combinatorial optimization, integer and
semidefinite programming, polyhedral and convexity theory, thereby linking
those disciplines in a truly unexpected way, see Section 1.1 as well.

Unfortunately, most graphs are imperfect and do not have such nice
properties. It is, therefore, natural to ask which imperfect graphs are close
to perfection in some sense and how to measure that. A canonical way is to
relax several concepts which characterize perfect graphs and investigate the
corresponding superclasses of perfect graphs, see Section 1.2.

We know that perfect graphs are exceptional with respect to all the
studied concepts. A canonical question is which graphs in the considered
superclasses are ‘almost’ perfect in several respects, and which are close to
perfection w.r.t. one concept only, but not w.r.t. the others.

In addition, we are also interested in linking the concepts that generalize
the notion of perfection in different ways, e.g., in polyhedral terms, by means
of splitting graph entropies, or w.r.t. more general coloring concepts. As
conclusion, it will turn out that the imperfection ratio is an appropriate
measure for imperfection in all these respects.

1



2 CHAPTER 1. INTRODUCTION

1.1 Why perfect graphs deserve their name

Berge introduced perfect graphs in 1960, motivated from Shannon’s famous
information-theoretical problem of finding the zero-error capacity of a dis-
crete memoryless channel [97]. Shannon’s problem has a graph-theoretical
formulation, regarding the asymptotic growth of the maximum cliques in
the co-normal product Gn of G = (V,E), where G2 has V × V as node set
and

{(a1, b1), (a2, b2) : (a1, a2) ∈ E or (b1, b2) ∈ E}

as edge set. The Shannon capacity of G is

C(G) = lim
n→∞

1

n
log ω(Gn)

where ω(Gn) denotes the size of a maximum clique in Gn. Shannon observed
that ω(Gn) = (ω(G))n holds for graphs G with ω(G) = χ(G) which makes
the otherwise difficult problem of determining C(G) tractable (χ(G) is the
chromatic number and denotes the least number of stable sets covering V ).
This led Berge [6] introduce perfect graphs as those graphs G, where ω(G′)
equals χ(G′) for each induced subgraph G′ ⊆ G.

Berge observed that all chordless odd cycles C2k+1 with k ≥ 2, called odd
holes, and their complements, the odd antiholes C2k+1, satisfy ω(G) < χ(G),
see Figure 1.1. (The complement G has the same node set as G, but two
nodes are adjacent in G if and only if they are non-adjacent in G.)

C 
7

C 
75      C  = C5      

Figure 1.1: Small odd holes and odd antiholes

This motivated Berge’s famous Strong Perfect Graph Conjecture:

G is perfect ⇔ G has no odd hole or odd antihole as induced subgraph.

In particular, Berge conjectured that the class of perfect graphs is closed
under taking complements (Perfect Graph Conjecture). Developing the an-
tiblocking theory of polyhedra, Fulkerson launched a massive attack to this
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conjecture, see [39, 40], before it was turned to the Perfect Graph Theorem
by Lovász [65], who gave two different proofs and established, in addition,
the following characterization of perfect graphs:

G is perfect ⇔ ω(G′)ω(G
′
) ≥ |G′| holds for all induced subgraphs G′ ⊆ G.

Many efforts to prove the Strong Perfect Graph Conjecture stimulated the
study of perfect graphs, but were not successful for over 40 years. Finally,
Chudnovsky, Robertson, Seymour, and Thomas [17] turned this conjecture
into the Strong Perfect Graph Theorem, thereby exploring the structure of
odd hole- and odd antihole-free graphs.

During the last decades, many fascinating structural properties of per-
fect graphs and interesting relationships to other fields of scientific enquiry
have been discovered, see [88] for a recent survey. In particular, both in
general hard to compute parameters ω(G) and χ(G) can be determined in
polynomial time if G is perfect [50]. The latter result relies on the characteri-
zation of the stable set polytope of perfect graphs by means of facet-inducing
inequalities.

The stable set polytope STAB(G) of a graph G is defined as the convex
hull of the incidence vectors of all stable sets of G. It is easy to see that
STAB(G) has a different representation, namely,

STAB(G) = conv{x ∈ {0, 1}|G| : x(Q) =
∑

i∈Q

xi ≤ 1, Q ⊆ G clique}

as a clique and a stable set have clearly at most one node in common and,
thus, all clique constraints x(Q) ≤ 1 are valid for STAB(G). A canonical
relaxation of STAB(G) is, therefore, the clique constraint polytope

QSTAB(G) = {x ∈ R
|G| :

∑

i∈Q

xi ≤ 1, Q ⊆ G clique}

obtained by dropping the integrality requirements. We have STAB(G) ⊆
QSTAB(G) for all graphs, but equality for perfect graphs only [21, 40, 75]:

G is perfect ⇔ STAB(G) = QSTAB(G).

Since the stable set problem, that is computing a stable set of maximum
size or weight α(G, c), is NP-hard one is tempted to look at the linear re-
laxation max cT x, x ∈ QSTAB(G) for determining α(G, c). The following
chain of inequalities and equations is typical for integer/linear programming
approaches to combinatorial problems:
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α(G, c) = max{
∑

i∈S ci : S ⊆ G stable}

= max{cT x : x ∈ STAB(G)}

= max{cT x : x(Q) ≤ 1 ∀cliques Q ⊆ G, x ≥ 0, x ∈ {0, 1}|G|}

≤ max{cT x : x(Q) ≤ 1 ∀cliques Q ⊆ G, x ≥ 0}

= min{
∑

Q yQ :
∑

Q∋i yQ ≥ ci ∀i ∈ G, yQ ≥ 0 ∀cliques Q ⊆ G}

≤ min{
∑

Q yQ :
∑

Q∋i yQ ≥ ci ∀i ∈ G, yQ ≥ 0, yQ ∈ Z+

∀cliques Q ⊆ G}

= χ(G, c)

The inequalities come from dropping or adding integrality constraints, one
of the equations is implied by linear programming duality. The last program
can be interpreted as an integer programming formulation of to determine
the weighted clique cover number χ(G, c).

It follows from the Perfect Graph Theorem that equality holds through-
out the whole chain for all 0/1-vectors c if and only if G is perfect. This, in
turn, is equivalent to

G is perfect ⇔ the value max cT x, x ∈ QSTAB(G) is integral ∀c ∈ {0, 1}|G|

and results of Fulkerson [39] and Lovász [65] imply that this is even true
for all c ∈ Z

|G|. This proves particularly that the constraint system defining
QSTAB(G) is totally dual integral for perfect graphs G.

However, maximizing a linear objective function cT x, x ∈ QSTAB(G)
in polynomial time does not work directly [50]. For the class of perfect
graphs, though, the optimization problem for QSTAB(G) (and, therefore,
for STAB(G)) can be solved in polynomial time–albeit via a detour involving
a geometric representation of graphs introduced by Lovász [67] in 1979.

Let G = (V,E) be a graph. An orthonormal representation of G is a
sequence (ui : i ∈ V ) of |V | vectors ui ∈ R

N , where N is some positive
integer, such that

• ||ui|| = 1 for all i ∈ V and

• uT
i uj = 0 for all ij 6∈ E.

Trivially, every graph has an orthonormal representation: just take all the
vectors ui mutually orthogonal in R

|V |, but also less trivial orthonormal
representations with N < |V | exist.
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For any orthonormal representation (ui : i ∈ V ), ui ∈ R
N of G and

any additional vector c ∈ R
N of unit length, the orthonormal representation

constraint (ONRC)
∑

i∈V

(cT ui)
2xi ≤ 1

is valid for STAB(G) due to the following reason. For any stable set S of G,
the vectors ui, i ∈ S are mutually orthogonal by construction and, therefore,
∑

i∈S(cT ui)
2 ≤ 1 follows. We obtain

∑

i∈V

(cT ui)
2χS

i =
∑

i∈S

(cT ui)
2

for the incidence vector of any stable set S of G yielding the validity of the
orthonormal representation constraints for STAB(G).

Moreover, taking an orthonormal basis B = {e1, . . . , e|V |} of R
|V | and a

clique Q of G, we obtain an orthonormal representation by setting ui = e1 for
all i ∈ Q and assigning different vectors of B−{e1} to all the remaining nodes
j ∈ G − Q (where ei denotes the i-th unit vector). Then the corresponding
orthonormal representation constraint for c = e1 is just the clique constraint
associated with Q (by cT ui = 1 for i ∈ Q and cT uj = 0 otherwise). Hence,
every clique constraint is a special orthonormal representation constraint.

For any graph G = (V,E), the set

TH(G) = {x ∈ R
V
+ : x satisfies all ONRC′s}

is the intersection of infinitely many half-spaces (since G admits infinitely
many orthonormal representations), so TH(G) is a convex set but no poly-
tope in general. The above remarks imply

STAB(G) ⊆ TH(G) ⊆ QSTAB(G)

and all three convex sets coincide if and only if G is perfect. This result is
particularly remarkable since it states that a graph

G is perfect ⇔ the convex set TH(G) is a polytope.

The key property of TH(G) for linear programming was established by
Grötschel, Lovász, and Schrijver [49]: If c ∈ R

V
+ is a vector of node weights,

the optimization problem (with infinitely many linear constraints) max cT x, x ∈
TH(G) can be solved in polynomial time for any graph G. This deep result
rests on the fact that the value ϑ(G, c) = max{cT x : x ∈ TH(G)} can be
characterized in many equivalent ways, e.g., as the maximum



6 CHAPTER 1. INTRODUCTION

• value of a semidefinite program,

• eigenvalue of a certain set of symmetric matrices,

• value of some function involving orthonormal representations,

see [50] for the details. As we have α(G, c) = ϑ(G, c) for all perfect graphs G,
this finally implies that the stable set problem can be solved in polynomial
time for perfect graphs.

Therefore, the clique cover number χ(G) = α(G), the chromatic number
χ(G) = χ(G), and the clique number ω(G) = α(G) can be computed in
polynomial time for perfect graphs G, even in the weighted versions.

A further important characterization of perfect graphs is obtained in in-
formation theory and relies on the generalization of Fulkerson’s antiblocking
theory [39, 40] to convex corners.

A subset A ⊂ R
n
+ is called convex corner if A is convex, compact, and

down-monotone in R
n
+, i.e., if a ∈ A, a′ ∈ R

n
+ and a′ ≤ a implies a′ ∈ A. (The

sets STAB(G), TH(G), and QSTAB(G) are examples of convex corners.)
Let p ∈ R

n
+ be a probability distribution, that is a vector where the

components sum up to one. The entropy of a convex corner A w.r.t. p is
given by

HA(p) = min







∑

i≤n

pi log2

1

ai
: a ∈ A







.

Körner [56] showed that the entropy of the stable set polytope of a graph G
is exactly

H(G, p) = HSTAB(G)(p)

where H(G, p) denotes the entropy of G w.r.t. a probability distribution

p ∈ R
|G|
+ on its node set. The graph-entropy was originally defined by

Körner [56] as

H(G, p) = lim sup
k→∞

min

{

1

k
log2 χ(Gk[U ]) : U ⊆ V (Gk),

∑

x∈U

pk(x) > 1 − ε

}

(involving the growth of the chromatic number of co-normal products of
certain subgraphs) as a performance measure for a certain coding problem:
The graph G = (V,E) reflects the distinguishabilty of symbols of an alphabet
V and p their probabilities, k · H(G, p) is the minimal length of 0/1-code
words required for encoding the distinguishable words of length k over V
having a certain probability > 1 − ε.
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The most important property of the graph-entropy is its sub-additivity
w.r.t. graphs on the same node set, in particular for complementary graphs:

H(p) ≤ H(G, p) + H(G, p) ∀p

where

H(p) =
∑

i≤n

pi log2
1

pi

stands for the entropy of the complete graph, i.e., for the entropy of p itself.
Körner raised the question for which graphs G the bound H(p) is attained,
that means when equality holds rather than just sub-additivity. According
to Cziszár, Körner, Lovász, Marton, and Simonyi [31], this is true for all
probability distributions p if STAB(G) is the antiblocker of STAB(G), i.e.,
if

abl(STAB(G)) = {x ∈ R
V
+ : xT y ≤ 1 ∀y ∈ STAB(G)} = STAB(G).

As abl(STAB(G)) = QSTAB(G) holds for all graphs, we obtain for perfect
graphs G that, indeed,

H(p) = HSTAB(G)(p) + HSTAB(G)(p)

for all p, since abl(STAB(G)) = STAB(G) holds in this case. This yields the
information-theoretic characterization of perfect graphs, namely, a graph

G is perfect ⇐⇒ H(p) = H(G, p) + H(G, p) for all p

obtained by Cziszár et al. [31]. Perfect graphs are, therefore, also called
strongly splitting graphs, as splitting their graph entropies yields the Shan-
non entropy for all probability distributions.

In summary, perfect graphs do not only have nice graph-theoretical prop-
erties and behave nicely from an algorithmic point of view, but the above
characterizations of perfect graphs also establish links to

• polyhedral theory (G is perfect iff certain polyhedra are identical);

• integer programming (a graph G is perfect iff certain linear programs
have integral objective values);

• semidefinite programming (a graph is perfect iff the feasible region of
a certain semidefinite program is a polytope);

• information theory (a graph G is perfect iff the entropies of G and G
add up to the Shannon-entropy for all probability distributions);

which indeed reflects the importance of perfect graphs in many different
fields of scientific enquiry.
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1.2 Beyond perfection

The above considerations show that perfect graphs are a class with an ex-
traordinarily rich structure. Unfortunately, most graphs are imperfect and
do not admit such nice properties. For instance, a result of Prömel and Ste-
ger [86] shows that a random graph is with high probability perfect only if
it is very sparse or, due to the invariance of perfection by complementation,
very dense.

Thus, it is natural to ask which imperfect graphs are close to perfection
in some sense and how to measure that. Canonical ways are to look for
imperfect graphs G

• where the maximal perfect induced subgraph is as large as possible
(e.g., such that removing only one node from G yields a perfect graph);

• with certain properties almost as nice as for perfect graphs (with re-
spect to, e.g., coloring or entropy splitting);

• where the difference between the polytopes STAB(G) and QSTAB(G)
is not ‘too large’ (as, e.g., only a few constraints have to be added to
QSTAB(G) in order to obtain STAB(G)).

For that, we relax several concepts which characterize perfect graphs and
investigate the corresponding superclasses of perfect graphs whether they
still share structural properties with perfect graphs or admit as good bounds
for certain interesting graph parameters as perfect graphs.

1.2.1 ‘Almost’ perfect graphs

Padberg was the first who asked which graphs are ‘almost’ perfect [75, 76].
He studied imperfect graphs with the property that all of their proper in-
duced subgraphs are perfect. Such graphs are nowadays called minimally
imperfect.

Using this term, the Strong Perfect Graph Conjecture reads that odd
holes and odd antiholes are the only minimally imperfect graphs. Thus,
characterizing minimally imperfect graphs was one possibility to verify or
falsify the Strong Perfect Graph Conjecture. Before the conjecture was
settled by Chudnovsky et al. [17], many fascinating properties of minimally
imperfect graphs have been discovered. First, the Perfect Graph Theorem
implies that a graph is minimally imperfect iff its complement is. Further
properties reflecting an extraordinary symmetry of their maximum cliques
and stable sets were given by Lovász [65] and Padberg [75]: Every minimally
imperfect graph G with α = α(G) and ω = ω(G) has
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• exactly αω + 1 nodes,

• for every node x of G, the graph G−x can be partitioned into α cliques
of size ω and into ω stable sets of size α,

• precisely |G| maximum stable sets and precisely |G| maximum cliques,

• each node of G is contained in precisely α(G) maximum stable sets
and in precisely ω(G) maximum cliques,

• for every maximum clique Q (maximum stable set S) there is a unique
maximum stable set S (maximum clique Q) with Q ∩ S = ∅.

Unfortunately, minimally imperfect graphs are not characterized by those
properties but share them with other graphs. Bland, Huang, and Trotter
suggested in [8] to call a graph partitionable if it satisfies the first two con-
ditions for some integers α, ω and verified the remaining properties for all
partitionable graphs (see Figure 1.2 for two partitionable graphs which are
not minimally imperfect). Thus, all potential counterexamples to the Strong
Perfect Graph Conjecture have to be partitionable, which caused the interest
in this class until the conjecture was settled (see [85] for more information
on minimally imperfect and partitionable graphs).

Figure 1.2: Examples of partitionable graphs.

Minimally imperfect graphs can also be seen as imperfect graphs such
that removing an arbitrary node yields a perfect graph. This motivated us
to generalize minimally imperfect graphs to almost-perfect graphs G where
one node v exists such that removing v yields a perfect graph G−v, see [61].

Clearly, every perfect graph is in particular almost-perfect and every
minimally imperfect graph as well (as even removing an arbitrary node yields
a perfect graph). Thus, almost-perfect graphs built the smallest superclass
of perfect graphs with respect to this concept (as the class of minimally
imperfect graphs does not contain any perfect graph). It is natural to expect
that almost-perfect graphs also satisfy properties almost as nice as perfect
graphs. We address this question in Section 2.2.1 and give several positive
answers.
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1.2.2 Graphs with ‘nice’ coloring properties

Coloring the nodes of a graph is an important concept with a large variety
of applications, but calculating χ(G) is an NP-hard problem in general. In a
clique all nodes have to be colored differently, thus the clique number ω(G)
is a trivial lower bound on χ(G). This bound is, in general, hard to evaluate
as well and can be arbitrarily bad [70].

For perfect graphs G, the chromatic number χ(G′) equals this lower
bound ω(G′) for all induced subgraphs G′ ⊆ G. Thus, a natural question is
for which other classes of graphs the difference between the clique number
ω(G) and the chromatic number χ(G) is under control. This motivated
Gyárfás [51] to introduce a concept using functions in ω(G) as upper bound
on χ(G): A class G of graphs is called χ-bound with χ-binding function b if
χ(G′) ≤ b(ω(G′)) holds for all induced subgraphs G′ of all graphs G ∈ G.

Thus, perfect graphs built exactly the class with χ-binding function
b(x) = x and graph classes with a linear binding function b(x) = bx + c can
be considered as close to perfect graphs with respect to coloring-properties.
We address such problems in Chapter 2. We show, for instance, that almost-
perfect graphs are χ-bound with the smallest non-trivial χ-binding function
b(x) = x + 1; the same is true for so-called circular-perfect graphs obtained
via a more general coloring concept (see Section 2.2 for more details).

As a concept similar to χ-binding functions, Gerke and McDiarmid in-
troduced in [45] the imperfection ratio of a graph G as

imp(G) = max

{

χf (G, c)

ω(G, c)
| c : V (G) → N \ {0}

}

where χf (G, c) denotes the fractional weighted chromatic number and ω(G, c)
the weighted clique number (thus, the imperfection ratio is some asymptotic
slope of a χ-binding function).

By definition, every perfect graph G has imp(G) = 1 and all graphs with
an imperfection ratio close to one can be considered as ‘not so imperfect’.
For instance, Gerke and McDiarmid showed in [45] that every minimally

imperfect graph G has imp(G) = |G|
|G|−1 which also reflects the fact that long

odd (anti)holes admit a larger perfect subgraph as short ones.

We discuss the relation of the imperfection ratio and χ-binding functions
for certain classes of graphs in Section 2.3, thereby exploring some conditions
for the (non-)existence of χ-binding functions. Furthermore, we present
several results on upper bounds for the imperfection ratio of several graph
classes in Section 5.2.
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1.2.3 Weakly splitting graphs

According to the information-theoretical characterization obtained by Cziszár
et al. [31], perfect graphs are exactly those graphs G with

H(p) = H(G, p) + H(G, p) ∀p

and are, therefore, called strongly splitting graphs as they split graph en-
tropies for all probability distributions. It is natural to call a graph G
weakly splitting if equality holds for at least one positive probability dis-
tribution p > 0. Körner [56] proved that weakly splitting graphs are ex-
actly the so-called normal graphs which come up in a natural way in an
information-theoretic context [57, 31] and are, in graph-theoretic terms, de-
fined by cross-intersecting families Q of cliques and S of stable sets, that is
every clique in Q intersects every stable set in S.

We investigate several problems concerning normal graphs in Chapter
3, involving the problem how to construct normal graphs (Section 3.2), the
so-called Normal Graph Conjecture as a natural analogue to the Strong
Perfect Graph Conjecture addressing forbidden subgraphs for normal graphs
(Section 3.3), and the question how close normal graphs are to perfection
(Section 3.1 and 3.4).

In particular, it is natural to consider the value

max {H(G, p) + H(G, p) − H(p) : p}

as a possible measure for imperfection (since this value is zero for perfect
graphs). Indeed, Simonyi [100] established the following link

log2 imp(G) = max {H(G, p) + H(G, p) − H(p) : p}

between the imperfection ratio and the graph entropy for any graph G (note
that this implies the invariance of the imperfection ratio under complementa-
tion). Thus, one might expect that normal graphs have a small imperfection
ratio since

0 = min {H(G, p) + H(G, p) − H(p) : p}

holds for every normal graph G, as they are weakly splitting.
However, we showed in [114] that the imperfection ratio of normal graphs

cannot be bounded. This result is fairly unexpected as it shows in particular
the existence of normal graphs G where the difference between the values
max {H(G, p)+H(G, p)−H(p) : p} and min {H(G, p)+H(G, p)−H(p) : p}
taken over all positive probability distributions p tends, in fact, to infinity,
see Section 3.4 for more details.
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1.2.4 The difference between STAB(G) and QSTAB(G)

Padberg [75, 76] investigated in the early seventies general set packing prob-
lems and studied the case when the polyhedron

P (A) = {x ∈ R
n
+ : Ax ≤ 1l}

associated with an m × n 0/1-matrix A has integral extreme points only
(where 1l = (1, . . . , 1)). He proved in [75] that P (A) coincides with PI(A),
the convex hull of the integer points of P (A), if and only if A is a perfect
0/1-matrix.

In order to translate this result in graph-theoretical terms [75], consider
the graph G associated with A where the nodes of G correspond to the n
columns of A and two nodes of G are linked by an edge if the corresponding
columns of A have a 1-entry in common. Consequently, A is the clique-
node incidence matrix of G and P (A) = QSTAB(G). Furthermore, we have
that PI(A) = STAB(G) and the result on perfect 0/1-matrices shows that
STAB(G) = QSTAB(G) if and only if G is perfect.

For all imperfect graphs G it holds that

STAB(G) ⊂ QSTAB(G)

and it is, therefore, natural to use the difference between the two polytopes
in order to decide how far an imperfect graph is away from being perfect; we
discuss different concepts, involving the facet set of STAB(G), the Chvátal-
rank and the disjunctive index of QSTAB(G), and the dilation ratio of the
two polytopes.

Facet descriptions of STAB(G). Padberg was, again, the first who stud-
ied imperfection in this context. He introduced in [75, 76] almost perfect
matrices as the clique-node incidence matrices of minimally imperfect graphs
and obtained the following characterization of minimally imperfect graphs
in polyhedral terms (long time before the graph-theoretical characteriza-
tion via the Strong Perfect Graph Theorem was achieved): A graph G is
minimally imperfect if and only if QSTAB(G) has exactly one fractional
extreme point (namely, 1

ω(G)1l which is adjacent to the |G| integer extreme

points coming from the maximum stable sets of G) and

STAB(G) = QSTAB(G) ∩ {x ∈ R
|G|
+ : x(G) =

∑

i∈G

xi ≤ α(G)}
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holds. This shows that, for minimally imperfect graphs, the two polytopes
are as close as possible and, hence, minimally imperfect graphs are indeed
‘almost perfect’.

Inspired by Padberg’s results, Shepherd [98] introduced the notions of
near-perfect matrices and graphs, where only the constraint x(G) ≤ α(G)
has to be added to QSTAB(G) in order to obtain STAB(G).

To generalize this concept further we consider 0/1-inequalities x(G′) ≤
α(G′) associated with arbitrary induced subgraphs G′ ⊆ G, called rank con-
straints, and rank-perfect graphs where such inequalities suffice as facets
of the stable set polytope. By restricting the facet set to rank constraints
associated with certain subgraphs only, several well-known graph classes
are defined, e.g., t-perfect graphs [21] and h-perfect graphs [50]. Further
well-known classes of rank-perfect graphs are, e.g., line graphs [33] and an-
tiwebs [110], see Section 4.1 for more details and more results.

A further way to generalize clique constraints is the concept of clique
family inequalities, investigating valid inequalities for the stable set polytope
which rely on the intersection of cliques within the family. As clique family
inequalities can be seen as a generalization of these constraints describing the
matching polytope, there is a strong link to line graphs and their superclasses
as, e.g., quasi-line graphs and claw-free graphs, see Section 4.2.

Chvátal-rank of QSTAB(G). A further way to see how ‘easy’ STAB(G)
can be obtained starting from QSTAB(G) is based on the following more
general concept. Chvátal [20] (and implicitly Gomory [48]) introduced a
general method to obtain approximations of PI(A) outgoing from a polytope
P (A). If

∑

aixi ≤ b is a valid inequality for P (A) and has integer coefficients
only, then

∑

aixi ≤ ⌊b⌋ is a Chvátal-Gomory cut for P (A). Define the
Chvátal-closure P ′(A) of P (A) as the set of points satisfying all Chvátal-
Gomory cuts for P (A), and let P 0(A) = P (A) and P t+1(A) = (P t)′(A) for
all non-negative integers t. Obviously,

PI(A) ⊆ P t(A) ⊆ P (A)

holds for every t. An inequality
∑

aixi ≤ b is said to have Chvátal-rank
at most t if it is a valid inequality for the polytope P t(A). Chvátal showed
that for each rational polyhedron P (A) there exists a finite t ≥ 0 with
P t(A) = PI(A). The smallest such t is the Chvátal-rank of P (A) which
can be seen as an indicator for the quality of the linear relaxation P (A).
The fractional matching polytope is a famous example of a polytope with
Chvátal-rank one (see Section 4.2 for more details).
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The Chvátal-rank of the clique constraint polytope P (A) = QSTAB(G)
is a further way to express the difference between QSTAB(G) and STAB(G).
We say that a graph class G has Chvátal-rank t if t is the minimum value
such that QSTAB(G)t = STAB(G) holds for all G ∈ G. Hence, perfect
graphs form exactly the class of graphs G where QSTAB(G) has Chvátal-
rank zero. Minimally imperfect graphs, t-perfect graphs, h-perfect graphs,
and line graphs are known to have Chvátal-rank one. However, the Chvátal-
rank cannot be bounded for general rank-perfect graphs [24]. We address
the Chvátal-rank for several subclasses of rank-perfect graphs (see Section
4.1) and for subclasses of claw-free graphs (see Section 4.2). Our main
result is to provide an upper bound for the Chvátal-rank of clique family
inequalities which particularly implies that all rank clique family inequalities
have Chvátal-rank one [82].

Disjunctive index of QSTAB(G). Besides considering the set of facets
which has to be added to QSTAB(G) in order to obtain STAB(G), one can
also look at the number and structure of the fractional extreme points of
QSTAB(G): the clique constraint polytope of a perfect graph has no frac-
tional extreme points, whereas QSTAB(G) of a minimally imperfect graph
G has exactly one.

More generally, Balas et al. [3] introduced the disjunctive procedure for
binary linear programs as a way to obtain a complete description of the
integer polytope PI(A) starting from the polytope P (A). Let V = {1, . . . , n}
denote the set of binary variables. For a subset J = {i1, . . . , ij} of the
variables,

PJ(P (A)) = conv{x ∈ P (A) : xj ∈ {0, 1}, j ∈ J}

holds. Balas et al. [3] showed that PJ (P (A)) = Pi1(Pi2(. . . Pij (P (A)))).
Clearly, PV (P (A)) = conv(P (A) ∩ {0, 1}n), but also proper subsets can
have this property. This result allows to define the disjunctive index of a
polytope P (A) as the minimum size of a set J ⊆ V such that PJ(P (A)) =
conv(P (A) ∩ {0, 1}n).

We can clearly apply this procedure to QSTAB(G) and Aguilera et al. [1]
suggested to define the imperfection index impI(G) of a graph G as the dis-
junctive index of QSTAB(G). Thus, we have impI(G) = 0 iff G is perfect
and impI(G) = 1 iff G is almost-perfect, including all minimal imperfect
graphs. Moreover, it is proved in [1] that impI(G) = impI(G) holds for all
graphs. The imperfection index has a graph-theoretical interpretation as the
minimum cardinality of a node subset J ⊂ V (G) such that G− J is perfect
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or, equivalently, as the cardinality of a minimum node subset meeting all
minimal imperfect subgraphs of G (see Section 5.3.1). This provides a new
and simpler proof of the invariance of the imperfection index under taking
complements and establishes the link of this concept to the previously men-
tioned question of maximal perfect induced subgraphs of imperfect graphs.

We further address the problem which graph classes have a small im-
perfection index. Unfortunately, we obtain in [61] that the imperfection
index cannot be bounded for many graph classes which are close to perfect
graphs in some sense. In particular, our results indicate that there are many
more graph classes with an unbounded imperfection index than with an un-
bounded imperfection ratio, including near-perfect graphs, t-perfect and h-
perfect graphs, line graphs, antiwebs, and general rank-perfect graphs (see
Section 5.4 for more details and some suggestions for refining the concept).

Dilation ratio of STAB(G) and QSTAB(G). In order to measure the
difference between two polytopes of antiblocking type or, more generally,
between two convex corners A,B ⊂ R

n
+, one can use their dilation ratio

dil(A,B) = min {t : B ⊆ t A}
= max{xT y : x ∈ abl(A), y ∈ B}.

In particular, there is the following link between the dilation ratio of two
convex corners and their entropies

log2 dil(A,B) = max{HA(p) − HB(p) : p}.

Recalling the previously mentioned characterization of the imperfection ratio

log2 imp(G) = max {H(G, p) + H(G, p) − H(p) : p}

established by Simonyi [100], we shall combine this with Körner’s [56] char-
acterization of the entropy of a graph as the entropy of its stable set polytope
H(G, p) = HSTAB(G)(p) and with the fact that abl(STAB(G)) = QSTAB(G).
Indeed, we finally obtain the following alternative characterization of the im-
perfection ratio

imp(G) = min {t : QSTAB(G) ⊆ t STAB(G)}
= max{xT y : x ∈ QSTAB(G), y ∈ QSTAB(G)}

as the dilation ratio of STAB(G) and QSTAB(G) [45]. This shows in partic-
ular, that imp(G) = imp(G) holds for all graphs and that computing imp(G)
is NP-hard.
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For most graph classes, it is even unknown whether it can be bounded,
but the above characterization suggests that the knowledge on the facet
system of STAB(G) should help to determine imp(G). Indeed, there are
upper bounds known for the imperfection ratio of some classes of rank-
perfect graphs, including minimally imperfect graphs, t-perfect, h-perfect,
and line graphs [45], antiwebs and several of their superclasses [27] (and the
corresponding complementary classes). We are going to discuss these results
in Section 5.2.

The main interest for bounding the imperfection ratio for all graphs in a
class G is due to the following: if imp(G) ≤ q for all G ∈ G, then ϑ(G) is at
least a q-approximation of α(G) due to STAB(G) ⊆ TH(G) ⊆ QSTAB(G).
Conversely, if there is no approximation-algorithm for α(G) for all G ∈ G,
then the imperfection ratio of the graphs in G is clearly unbounded.

1.2.5 Comparing different imperfection measures

Throughout the previous subsections, we surveyed several ways to relax such
different concepts as

• the relation of clique and chromatic number,

• splitting graph entropies of complementary graphs,

• the relation of the stable set polytope and its LP-relaxation QSTAB(G),

all characterizing perfect graphs, and how to measure imperfection of a
graph accordingly, namely, by means of

• χ-binding functions or the imperfection ratio,

• the value max {H(G, p)+H(G, p)−H(p) : p},

• the disjunctive index or the Chvátal-rank of QSTAB(G), or the dila-
tion ratio of STAB(G) and QSTAB(G).

Perfect graphs are exceptional in all these respects, and minimally im-
perfect graphs are, indeed, close to perfect graphs by means of all these con-
cepts. The objective of the following chapters is to explore the previously
introduced superclasses of perfect graphs in this sense. The main question
is whether graphs in those superclasses are close to perfection w.r.t. the one
studied concept only or share more (structural or algorithmic) properties
with perfect graphs w.r.t. the other concepts as well.

To streamline the presentation of the ideas and results, we refrain from
presenting proofs within the next chapters, but provide some selected proofs
in the appendix.



Chapter 2

Classes of χ-bound Graphs

Coloring the nodes of a graph is an important concept with a large variety
of applications, but calculating χ(G) is an NP-hard problem in general. In
a clique all nodes have to be colored differently, thus the clique number
ω(G) is a trivial lower bound on χ(G). This bound can be arbitrarily bad:
Mycielski [70] constructed a famous series of graphs G0, G1, G2, . . . with

G0 2G G1

and showed ω(Gi) = 2 for all i but χ(Gi) = 2 + i, thus

χ(Gi) − ω(Gi) → ∞ if i → ∞

follows. A natural question is, therefore, for which classes of graphs the
difference between the clique number ω(G) and the chromatic number χ(G)
is under control. Perfect graphs are the most famous such class, as we have
equality of the two parameters for all induced subgraphs. This motivated
Gyárfás [51] to introduce the concept of χ-bound classes of graphs where a
function in ω(G) is used as upper bound on χ(G).

The next section surveys several questions raised by Gyárfás [51] in this
context. In Section 2.2 we discuss graph classes with the smallest possi-
ble binding-function for a class containing imperfect graphs. In Section 2.3
we relate the imperfection ratio and χ-binding functions and discuss conse-
quences for the existence of binding-functions.

17
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2.1 Problems concerning χ-bound classes of graphs

A class G of graphs is χ-bound if there is a binding-function b with

χ(G′) ≤ b(ω(G′))

for all induced subgraphs G′ of G ∈ G. Here, b : N → N should satisfy
b(1) = 1 and b(x) ≥ x for all x ∈ N. Thus, b(x) = x is the smallest possible
binding-function and the class of χ-bound graphs with this binding-function
is precisely the class of perfect graphs.

Gyárfás addressed in [51] the following natural questions:

Problem 2.1 [51] For a given class G of graphs,

• is there a binding-function for G at all?

• what is the smallest possible binding-function for G?

• is there a linear binding-function for G?

Gyárfás presented in [51] several examples of χ-bound graph classes;
however, in most cases the order of magnitude or linearity of their smallest
binding function is not known.

The significance from an algorithmic point of view is, that χ-bound
classes of graphs are canonical candidates for polynomial approximation
algorithms for the coloring problem. Typically, the proof of the existence
of a binding-function b for a graph class G provides a polynomial algorithm
for coloring the graphs G ∈ G with at most b(ω(G)) colors. This gives a
polynomial approximation algorithm with a performance ratio of at most

b(ω(G))

ω(G)

and, for graph classes with a linear binding-function, the performance ratio
is even constant. This causes particular interest in graph classes G with the
smallest possible non-trivial binding-function b(x) = x+ 1. We discuss such
classes in Section 2.2.

In Section 2.3 we present a condition for the non-existence of linear
binding-functions for certain graph classes.

Gyárfás [51] further addressed the problem of complementary binding-
functions, i.e., the case when both G and its complementary graph class
G are χ-bound. Using this notion, the Perfect Graph Theorem states that
b(x) = x is a self-complementary binding function. The question is for which
other binding-functions there is a complementary binding-function at all.
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Gyárfás [51] showed that this is possible for “small” binding-functions

only, since inf b(x)
x = 1 is required if b(x) has a complementary binding-

function. This provides a necessary condition for the existence of a com-
plementary binding-function. As a sufficient condition, Gyárfás conjectures
the following:

Conjecture 2.2 [51] The function b(x) = x + c admits a complementary
binding-function for any fixed positive integer c.

At present, this conjecture is open even in the case c = 1. Any self-
complementary class G with binding-function b(x) = x+c clearly has b(x) =
x + c also as complementary binding-function. We present two classes with
this property for c = 1: almost-perfect graphs and strongly circular-perfect
graphs (see Section 2.2). But we also exhibit a class of χ-bound graphs
with binding-function b(x) = x + 1 such that there is no complementary
binding-function b(x) = x + c for any fixed positive integer c. In Section 2.3
we present a condition for the non-existence of binding functions for certain
self-complementary graph classes.

In addition, a generalization of the Perfect Graph Theorem states that
a graph G is perfect iff α(G′)ω(G′) ≥ |G′| holds for all induced subgraphs
G′ ⊆ G. Gyárfás raised the following problem:

Problem 2.3 [51] Is it true that a graph class G is χ-bound if every graph
G ∈ G satisfies α(G′)ω(G′) + 1 ≥ |G′| for all induced subgraphs G′ ⊆ G?

We cannot answer this question completely, but we give an affirmative
answer for almost-perfect graphs and strongly circular-perfect graphs, the
two self-complementary classes with binding-function b(x) = x+1 discussed
in Section 2.2.

Finally, classes of perfect graphs are often characterized by means of
forbidden induced subgraphs. Gyárfás formulated the analogue question:

Problem 2.4 [51] Which forbidden induced subgraphs make a graph class
χ-bound?

The case of an infinite or self-complementary set of forbidden subgraphs
is, thereby, of particular interest; the most prominent example was the
Strong Perfect Graph Conjecture itself. We address the problem of pos-
sible obstructions for χ-bound classes during the next sections.
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2.2 Classes with the binding-function b(x) = x+1

From an algorithmic point of view, there is a particular interest in graph
classes G with the smallest possible non-trivial binding-function b(x) = x+1;
we discuss some classes with this property in detail.

2.2.1 Almost-perfect graphs

The class of almost-perfect graphs was introduced in [61] as a smallest pos-
sible superclass of perfect graphs: that are graphs G containing a node v
such that removing v yields a perfect graph G − v.

Clearly, every perfect graph is in particular almost-perfect and every
minimally imperfect graph as well (such graphs even satisfy the property
that removing an arbitrary node yields a perfect graph).

It is natural to expect that almost-perfect graphs also satisfy properties
almost as nice as perfect graphs. Indeed, it is a routine to check that the class
of almost-perfect graphs is χ-bound with the smallest non-trivial binding-
function b(x) = x + 1. Since the class of almost-perfect graphs is self-
complementary due to the Perfect Graph Theorem, it clearly also admits a
complementary binding-function and is also χ-bound with binding-function
b(x) = x + 1.

In addition, an easy argumentation shows that any almost-perfect graph
G satisfies α(G′)ω(G′) + 1 ≥ |G′| for all induced subgraphs G′ ⊆ G. This
gives one affirmative answer to the above mentioned Problem 2.3 of Gyárfás.

Thus, almost-perfect graphs are indeed very close to perfect graphs and
it seems worth to explore which graphs are almost-perfect.

Every graph containing exactly one minimally imperfect subgraph is
clearly almost-perfect; we call such graphs uniquely imperfect. This class
includes all odd holes, odd antiholes, odd wheels, and odd antiwheels. The
latter graphs C2k+1 ∗ v and C2k+1 ∗ v are obtained by completely joining
an odd hole or odd antihole with a single node v. Actually, all graphs
obtained as complete join of an odd (anti)hole and a perfect graph are
uniquely perfect.

More generally, every almost-perfect graph is of the form G(P, V ′, v)
where P is a perfect graph, V ′ ⊆ V (P ) a node subset of P , and v a node
totally joined to V ′; see Figure 2.1 for two complementary almost-perfect
graphs (the node v is black-filled). In particular, if P is bipartite, then
G(P, V ′, v) is a so-called almost-bipartite graph since removing v yields a
bipartite graph.
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Figure 2.1: Two complementary almost-perfect graphs.

Finally, it is worth to address possible obstructions for almost-perfect
graphs. One infinite but easy to describe class of obstructions obviously
consists of all combinations of two disjoint minimally imperfect graphs. But
there exist also highly connected obstructions, namely, the imperfect webs
and antiwebs different from odd holes and odd antiholes.

A web is a graph W k
n with n nodes 1, . . . , n where ij is an edge if i and

j differ by at most k (i.e., if |i − j| ≤ k mod n) and i 6= j. W 1
n is a hole

and W k−1
2k+1 an odd antihole for k ≥ 2. Webs are also called circulant graphs

Ck
n in [22]. The complements of webs are called antiwebs or, alternatively,

circular cliques Kn/k, see [115] (note that Kn/k = W
k−1
n holds). Figure 2.2

shows some examples of webs and antiwebs.

W10
2 W10

3 W10
2 W10

3

Figure 2.2: Some examples of webs and antiwebs.

Due to the cyclic symmetry of webs and antiwebs, it is easy to see that
removing an arbitrary node from an imperfect but not minimally imperfect
web or antiweb still yields an imperfect graph. This implies in particular:

Lemma 2.5 The only imperfect almost-perfect webs and antiwebs are odd
holes and odd antiholes.

Note that odd holes and odd antiholes are the only graphs which are webs
and antiwebs at the same time [104]. Thus, the intersection of the classes of
all webs and antiwebs belongs to the class of almost-perfect graphs.
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2.2.2 Line graphs and their superclasses

A canonical example of graphs with χ-binding function b(x) = x + 1 is the
class of line graphs, since we can ‘translate’ a famous result of Vizing [108]
on edge-colorings.

The line graph L(G) of a root graph G is obtained by taking the edges
of G as nodes of L(G) and joining two nodes of L(G) if the corresponding
edges of G are incident.

In an edge-coloring of a graph G, incident edges have to be colored
differently, thus the maximum degree ∆(G) is a trivial lower bound for the
minimum number of required colors, called chromatic index γ(G). A famous
result of Vizing [108] shows that ∆(G) + 1 is an upper bound on γ(G), that
is we have

∆(G) ≤ γ(G) ≤ ∆(G) + 1

for every graph G. Turning to the line graph of G, we immediately see that
an edge-coloring of G corresponds to a node-coloring of its line graph L(G)
and, thus, γ(G) = χ(L(G)) holds. Furthermore, pairwise incident edges of
G correspond to cliques of L(G), thus cliques of L(G) come from edge-stars
or triangles in G. This implies ω(L(G)) = max{∆(G), 3} (if G contains a
triangle) and it is easy to see that

ω(L(G)) ≤ χ(L(G)) ≤ ω(L(G)) + 1

follows. As Vizing’s bound holds for all graphs, the latter inequality is true
for all induced subgraphs of line graphs which implies that line graphs are
χ-bound with binding-function b(x) = x + 1.

Choudom [15] raised the intriguing question whether this property also
holds for superclasses of line graphs. As line graphs are characterized by a
set F of nine forbidden subgraphs [5], it is natural to define such superclasses
by using subsets of the nine obstructions in F only. Choudom [15] considered
two such classes using four forbidden subgraphs from F and showed that
both classes are χ-bound with binding-function b(x) = x + 1.

Choudom further asked for smallest possible sets of obstructions with
this property. There is only one class of χ-bound graphs with binding-
function b(x) = x + 1 with exactly one forbidden subgraph, namely, the
P4-free graphs–which are perfect and have even binding-function b(x) = x.
This motivated the question which pairs of forbidden subgraphs from F
imply the studied bound.

Two first results with this spirit show that a triangle-free graph G is
3-colorable if G also does not contain a P5 [103] or a K1,4 [11].
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Randerath answered in [89] this problem by giving a complete list of
forbidden pairs from F that guarantee the studied bound. He proved that
one of the two obstructions has to be a tree, the other obstruction one of
the graphs depicted in Figure 2.3.

Figure 2.3: List of obstructions

There is another well-known superclass of line graphs, the quasi-line
graphs, where the neighbors of every node split into two cliques. Alterna-
tively, that are claw-free graphs not containing a node totally joined to an
odd antihole (i.e., quasi-line graphs form a superclass of line graphs with an
infinite set of forbidden subgraphs).

We exhibit that quasi-line graphs are not χ-bound with binding-function
b(x) = x+1, as a subclass of quasi-line graphs, the webs, does not have this
property.

Example 2.6 Consider the following sequence of webs W 2l
6l+2 for l ≥ 1. For

any web W k
n , we have that ω(W k

n ) = k + 1 and χ(W k
n ) = k + 1 +

⌈

r
α

⌉

holds
with r = n mod (k + 1) and α = ⌊ n

k+1⌋. A simple computation yields r = 2l
and α = 2 (since n = 6l + 2 = 2(2l + 1) + 2l) and, therefore,

χ(W 2l
6l+2) = 2l + 1 +

⌈

2l

2

⌉

= ω(W 2l
6l+2) + l

for all l ≥ 1.

This implies:

Corollary 2.7 For the class of webs there is no binding-function b(x) =
x + c for any positive integer c.

The same is obviously true for all superclasses; in particular we have:

Corollary 2.8 For the class of quasi-line graphs there is no binding-function
b(x) = x + c for any positive integer c.
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2.2.3 Circular-perfect graphs

As generalization of perfect graphs, Zhu [115] introduced recently the class of
circular-perfect graphs based on the following more general coloring concept.

Define a (k, d)-circular coloring of a graph G = (V,E) as a mapping
f : V → {0, . . . , k− 1} with |f(u)− f(v)| ≥ d mod k if uv ∈ E. The circular
chromatic number χc(G) is the minimum k

d taken over all (k, d)-circular
colorings of G; we immediately obtain χc(G) ≤ χ(G) since every (k, 1)-
circular coloring is a usual k-coloring of G. (Note that χc(G) is sometimes
called the star chromatic number in the literature, see [9, 107].)

In order to obtain a lower bound on χc(G), Zhu generalized cliques to
circular cliques Kk/d. Recall that circular cliques are the antiwebs and

include all cliques Kk = Kk/1, odd antiholes C2k+1 = K2k+1/2, and odd
holes C2k+1 = K2k+1/k, see Figure 2.4. The circular clique number is defined

as ωc(G) = max{k
d : Kk/d ⊆ G} and we immediately obtain ω(G) ≤ ωc(G).

K9/2 KK9/1 K9/49/3

6

0

6

0

5 4

3

7 2

8 11
0

55 4

3

7 2

8 18

6

5 4

3

7 2

8 1

6

0

27

3

4

Figure 2.4: The circular cliques on nine nodes.

Every circular clique Kk/d clearly admits a (k, d)-circular coloring (sim-
ply take the node numbers as colors, as in Figure 2.4) but no (k′, d′)-circular
coloring with k′

d′ < k
d by [9]. Thus we obtain, for any graph G, the following

chain of inequalities:

ω(G) ≤ ωc(G) ≤ χc(G) ≤ χ(G). (2.1)

Zhu [115] called a graph G circular-perfect if, for each induced subgraph
G′ ⊆ G, circular clique number ωc(G

′) and circular chromatic number χc(G
′)

coincide.
Obviously, every perfect graph has this property by (2.1) as ω(G′) equals

χ(G′). Also, every odd hole and odd antihole C is circular-perfect since all
proper induced subgraphs are perfect and ωc(C) = χc(C) follows from [9].
Thus, circular-perfect graphs form a proper superclass of perfect graphs.



2.2. CLASSES WITH BINDING-FUNCTION B(X) = X + 1 25

Since, in addition, for any graph G it holds ω(G) = ⌊ωc(G)⌋ by [115] and
χ(G) = ⌈χc(G)⌉ by [107], we obtain that circular-perfect graphs G satisfy

ω(G) ≤ χ(G) ≤ ω(G) + 1 (2.2)

and, thus, built a further class of χ-bound graphs with the smallest non-
trivial χ-binding function b(x) = x + 1. Hence, also circular-perfect graphs
admit coloring properties almost as nice as perfect graphs.

Our aim is to look for other parallels between the classes of perfect and
circular-perfect graphs.

First note that the class of circular-perfect graphs is not closed under
taking complements. For instance, the left graph in Figure 2.1 is circular-
perfect whereas its complement is not. So far, it is not clear whether there is
also a (linear) complementary binding function for circular-perfect graphs;
we show that it cannot be b(x) = x + c for any integer c if it exists at all.

As analogue to the Strong Perfect Graph Theorem, one might be tempted
to ask for an appealing conjecture on minimal forbidden subgraphs in circular-
perfect graphs. In addition, this would help to figure out which forbidden
subgraphs make a graph class χ-bound, as asked by Gyárfás [51]. We call
a graph G minimal circular-imperfect if G is not circular-perfect but every
proper induced subgraph is. The hope is to identify all classes of minimal
circular-imperfect graphs in order to characterize circular-perfect graphs by
means of forbidden subgraphs.

Alternatively, we try to identify subclasses of circular-perfect graphs.

Circular cliques and their superclasses. Zhu [115] verified that every
circular clique is circular-perfect. In [4] this has been extended to convex-
round graphs: that are graphs G where the node set can be labeled in a
cyclic order such that all neighbors of any node are consecutive w.r.t. this
order. (Circular cliques obviously admit such an order, thus convex-round
graphs constitute a proper superclass.)

Remark 2.9 In [27] we could show that every convex-round graph is the
complement of a so-called fuzzy circular interval graph (see Section 4.1.2 for
the definition). So fare, it is unknown whether also all fuzzy circular interval
graphs are circular-perfect. At least, there are no minimal circular-imperfect
graphs known within this class.

Note, in addition, that circular cliques different from odd holes and odd
antiholes are obstructions for almost-perfect graphs, but not for the class of
χ-bound graphs with binding function b(x) = x + 1.
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However, the circular cliques show that the class of circular-perfect graphs
does not admit a complementary binding-function of the form b(x) = x + c.

Recall from Example 2.6 the sequence of webs W 2l
6l+2 for l ≥ 1 with

χ(W 2l
6l+2) = 2l + 1 +

⌈

2l

2

⌉

= ω(W 2l
6l+2) + l

for all l ≥ 1. This implies

χ(W 2l
6l+2) − ω(W 2l

6l+2) → ∞ if l → ∞,

and, hence, we obtain:

Corollary 2.10 For the circular cliques (and their superclasses), there is
no complementary binding-function b(x) = x + c for any positive integer c.

Partitionable graphs. Recall that Lovász [65] and Padberg [75] intro-
duced partitionable graphs as a tool to study properties of minimal imper-
fect graphs, as every minimal imperfect graph is in particular partitionable.
Since, further, all circular cliques Kαω+1,α are partitionable and every par-
titionable graph G satisfies χ(G) = ω(G)+1, one might expect that at least
some subclasses of partitionable graphs are circular-perfect. However, we
obtained in [81] the following.

Theorem 2.11
• All partitionable graphs different from circular cliques are circular-

imperfect.

• The partitionable graphs K3ω+1,3 are minimal circular-imperfect for
all ω ≥ 3.

Even worse, the webs W 4l
3(4l+1)+1 for l ≥ 1 form a sequence of partition-

able graphs containing induced subgraphs with arbitrarily large difference
between clique and chromatic number. Trotter [104] showed that W k′

n′ is an
induced subgraph of W k

n if and only if

k + 1

k′ + 1
n′ ≤ n ≤

k

k′
n′

holds. With the help of this formula it is easy to check that the above
considered web W 2l

6l+2 is an induced subgraph of W 4l
3(4l+1)+1 for every l ≥ 1.

As the class of partitionable graphs is closed under complementation, this
implies:

Corollary 2.12 The class of partitionable graphs is neither χ-bound nor
χ-bound with binding-function b(x) = x + c for any positive integer c.
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Planarity and circular-perfection. As the only planar circular cliques
are odd holes, K3, and K4 it is easy to determine the circular clique number
of a planar graph [81]:

Lemma 2.13 The circular clique number of a planar graph G is

• ωc(G) = 1, 2 if G is bipartite,

• ωc(G) = 4 if G has an induced K4, or else

• ωc(G) = 2 + 1
d if C2d+1 is a shortest chordless odd cycle in G.

Note that, as a consequence, we obtain that a planar graph G can be
minimal circular-imperfect only if either ω(G) = 2 and χ(G) = 3 or ω(G) = 3
and χ(G) = 4 holds.

One result from [81] exhibits the circular-perfection of an interesting
subclass of planar graphs: the outerplanar graphs where all nodes lie on the
outer face.

Theorem 2.14 Outerplanar graphs are circular-perfect.

The proof relies on the fact that outerplanar graphs are closed under
clique-identification. As a by-product of Theorem 2.14, the circular chro-
matic number of an outerplanar graph is equal to 2 if all cycles have even
size, or 2 + 1

d where 2d + 1 is the size of the smallest odd cycle. This gives
a different proof of a recent result by Kemnitz and Wellmann [54].

Outgoing from the circular-perfection of outerplanar graphs, we intro-
duced in [81] the following class of minimal circular-imperfect planar graphs.
For every positive integers k and l such that (k, l) 6= (1, 1), let Tk,l denote the
planar graph with 2l + 1 inner faces F1, F2, . . . F2l+1 of size 2k + 1 arranged
in a circular fashion around a central node, where all other nodes lie on the
outer face, as depicted in Figure 2.5.

Figure 2.5: Examples of graphs Tk,l

Lemma 2.15 For every positive integers k and l such that (k, l) 6= (1, 1),
the graph Tk,l is minimal circular-imperfect.
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Remark 2.16 Note that we showed circular-imperfection for such graphs
by ωc(Tk,l) < χc(Tk,l), whereas minimality follows from Theorem 2.14 as
removing any node of Tk,l yields an outerplanar graph. The latter seems
to be a crucial property due to the following. One can interpret the graphs
Tk,l as certain subdivisions of odd wheels, where only the “rim edges” are
subdivided. One could consider more general subdivisions of odd wheels,
where all inner faces should become odd cycles of the same length, see Figure
2.6 for examples. However, as soon as spokes of the wheel become paths,
we loose the property that removing any node yields an outerplanar graph,
see Figure 2.6. In fact, among such subdivisions of odd wheels, there are
circular-perfect graphs (a), minimal circular-imperfect graphs (b),(c),(d), as
well as circular-imperfect graphs which are not minimal (e).

(e)(b) (c) (d)(a)

Figure 2.6: More general subdivisions of odd wheels.

It is not known yet which subdivisions of odd wheels are minimal circular-
imperfect. This shows in particular, that it is even hard to characterize the
(planar) minimal circular-imperfect graphs with clique number two. In ad-
dition, there are also infinite sequences of planar minimal circular-imperfect
graphs with clique number three. From the previously mentioned series,
all odd wheels are clearly planar. Furthermore, the partitionable graphs
K3ω+1,3 admit an embedding in the plane for any odd ω ≥ 3. Two addi-
tional sequences are shown below.

Example 2.17 We call the graphs in Figure 2.7 diamonded as they can
be constructed from a chain of diamonds by linking the first and the last
node by an edge. It is a routine to check that such graphs are mini-
mal circular-imperfect (note that adding the dashed edges yields minimal
circular-imperfect graphs again).

Example 2.18 The graphs M(C2k+1) in Figure 2.8 can be obtained via
the following Mycielski-like construction. Take a chordless odd cycle C2k+1
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Figure 2.7: Three diamonded graphs.

with nodes x1, . . . , x2k+1. Add the nodes y1, . . . , y2k+1 and connect every yi

exactly with xi and xi+1 (indices are considered modulo 2k + 1). Finally,
add a node z and link it to each of the nodes y1, . . . , y2k+1. By case analyses,
it is easy to verify that the graphs M(C2k+1) are minimal circular-imperfect
for all k ≥ 1.

Figure 2.8: Three Mycielski-like graphs.

Complete joins and circular-perfection. Motivated from the observa-
tion that all (imperfect) odd wheels are minimal circular-imperfect, we stud-
ied in [81] the behavior of circular-perfect graphs under taking complete joins
and completely characterized complete joins w.r.t. circular-(im)perfection
as follows:

Theorem 2.19 The complete join G1 ∗ G2 of two graphs G1 and G2 is

(i) circular-perfect if and only if both G1 and G2 are perfect;

(ii) minimal circular-imperfect if and only if G1 is an odd hole or odd
antihole and G2 is a single node (or vice versa).

Note that odd antiwheels C2k+1 ∗ v are examples of minimal circular-
imperfect graphs with arbitrarily large clique and chromatic number. Recall
further that odd wheels and odd antiwheels are almost-perfect graphs. Thus
they are certainly forbidden subgraphs for circular-perfect graphs, but not
for χ-bound graphs with binding-function b(x) = x + 1 in general.
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Conclusions. The previous results show that, at first sight, there is no
straightforward common structure in the known classes of minimal circular-
imperfect graphs. Thus, formulating an analogue to the Strong Perfect
Graph Theorem for circular-perfect graphs seems to be difficult.

However, there is an interesting link between minimal circular-imperfect
graphs G with ω(G) = ωc(G) and minimal k-chromatic graphs, that are
graphs G with χ(G) = k and χ(G − v) = k − 1 for all nodes v of G. We
have the following:

Observation 2.20 A graph G with ωc(G) = k is minimal circular-imperfect
only if G is minimal (k + 1)-chromatic.

The reason is the following. G is minimal circular-imperfect only if
ωc(G) < χc(G) ≤ χ(G) = k + 1 and ωc(G

′) = χc(G
′) holds for all proper

induced subgraphs G′ ⊂ G. In particular, ωc(G
′) ≤ k and ⌈χc(G

′)⌉ =
χ(G) imply that all G′ ⊂ G are k-colorable. Hence, every minimal circular-
imperfect graph G with ωc(G) = k is in particular minimal (k+1)-chromatic.

Furthermore, being minimal k-chromatic is a necessary condition for a
graph G to be k-critical, that is χ(G) = k and χ(G − e) = k − 1 for all
edges e of G. A famous result of Hajós [52] says that every k-critical graph
is Hajós-k-constructable, that means, it can be obtained from a clique Kk

by repeated applications of the following two operations:

(H1) If G1 and G2 are graphs constructed that way, remove an edge xiyi of
Gi for i = 1, 2, identify x1 and x2, join y1 and y2 by a new edge.

(H2) If G is a previoulsy constructed graph, identify two independent nodes
of G.

Several of the above minimal circular-imperfect graphs are 4-critical, e.g.,

• odd wheels,

• diamonded graphs (without the dashed edges, see Figure 2.7),

• the Mycielski-like graphs M(C2k+1) for all k ≥ 1.

(but neither odd antiwheels nor the graphs K3ω+1,3 with ω ≥ 3).
This implies that at least some minimal circular-imperfect graphs G

with ωc(G) = k are Hajós-(k + 1)-constructable. It is worth to check which
minimal circular-imperfect graphs admit this property. Furthermore, this
link to Hajós’ construction raises the interesting question about construction
techniques for minimal circular-imperfect graphs, in particular, when the
application of one of the two Hajós-operations (H1) and (H2) to a minimal
circular-imperfect graph preserves this property.
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2.2.4 Strongly circular-perfect graphs

As circular-perfect graphs are, in contrary to perfect graphs, not stable under
complementation, we shall study the complementary core of circular-perfect
graphs in order to get a better analogue to perfect graphs.

For that, we introduced strongly circular-perfect graphs as all those
circular-perfect graphs G where G is circular-perfect as well. Thus, strongly
circular-perfect graphs are a further class of χ-bound graphs admitting a
complementary binding function; here b(x) = x + 1 is both a χ- and a
χ-binding function.

The class of strongly circular-perfect graphs clearly entails all perfect
graphs, odd holes, and odd antiholes. In [28] we showed that, in fact, odd
holes and odd antiholes are the only prime circular cliques which can occur
in a strongly circular-perfect graph. As the class is closed under comple-
mentation, this is equivalent to prove that the only prime circular-perfect

webs W k
n are odd holes and odd antiholes (recall W

k
n = Kn,k+1). We fully

characterized the circular-(im)perfection of webs as follows:

Theorem 2.21 The web W k
n is

(i) circular-perfect if k = 1 or n ≤ 2(k + 1) + 1,

(ii) circular-perfect if k = 2 and n = 0 (mod 3),

(iii) minimal circular-imperfect if k = 2 and n = 1 (mod 3),

(iv) circular-imperfect if k = 2 and n = 2 (mod 3),

(v) circular-imperfect if k ≥ 3 and n ≥ 2(k + 2).

As a consequence, we obtained the following characterization of the
strongly circular-perfect circular cliques [28] .

Corollary 2.22 A circular clique is strongly circular-perfect if and only if
it is a clique, an odd antihole, an odd hole, a stable set, or of the form K3k/3

with k ≥ 3.

In particular, we have for circular clique and chromatic number of every
strongly circular-perfect graph:

Corollary 2.23 Let G be a strongly circular-perfect graph.

(i) If ω(G) = 2, then ωc(G) = 2 follows iff G is perfect and ωc(G) = 2+ 1
k

iff G is imperfect and C2k+1 the shortest odd hole in G.

(ii) If ω(G) ≥ 3, then ωc(G) = max{ω(G), k′ + 1
2} where C2k′+1 is the

shortest odd antihole in G.
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So fare, we were able to completely characterize the strongly circular-
perfect graphs G with ω(G) = 2 as follows [28]:

Theorem 2.24 A triangle-free graph G is strongly circular-perfect if and
only if G is either bipartite or an interlaced odd hole.

Here, a graph G is an interlaced odd hole if and only if the node set of G
admits a partition ((Ai)1≤i≤2p+1, (Bi)1≤i≤2p+1) into 2p + 1 non-empty sets
A1, . . . , A2p+1 and 2p + 1 possibly empty sets B1, . . . , B2p+1 such that p ≥ 2
and for all 1 ≤ i ≤ 2p + 1

1. |Ai| > 1 implies |Ai−1| = |Ai+1| = 1, (indices modulo 2p + 1),

2. Bi 6= ∅ implies |Ai| = 1,

and the edge set of G is equal to ∪i=1,...,2p+1(Ei ∪ E′
i), where Ei (resp. E′

i)
denotes the set of all edges between Ai and Ai+1 (resp. between Ai and Bi);
see Figure 2.9 for an example (the sets of nodes in Bi are grey).

Figure 2.9: An interlaced odd hole

In particular, we could prove in [28]:

Lemma 2.25 Interlaced odd holes are almost-bipartite.

As bipartite and almost-bipartite graphs are almost-perfect, this implies:

Corollary 2.26 All strongly circular-perfect graphs G with ω(G) = 2 or
α(G) = 2 are almost-perfect.

Moreover, almost-bipartite graphs are a subclass of the well-known t-
perfect graphs for which a maximum weighted stable set can be found in
polynomial time [50] (see Section 4.1.2 for more details). Thus, we have:
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Corollary 2.27 The weighted stable set problem can be solved in polynomial
time for triangle-free strongly circular-perfect graphs.

Further, a polynomial recognition algorithm for triangle-free strongly
circular-perfect graphs was derived in [28], outgoing from the above charac-
terization of the class. Thus, both the stable set problem and the recognition
problem are solvable in polynomial time for such graphs.

There is also one class of strongly circular-perfect graphs known which
does not consist of triangle-free graphs: the webs W 2

3α for α ≥ 2 and their
complements K3α,3 according to Theorem 2.21(ii).

By case analysis, it is also easy to show that every induced subgraph G′

of a web W 2
3α satisfies α(G′)w(G′)+1 ≥ |G′|. Thus, the webs W 2

3α and their
complements K3α,3 are a further graph classes giving an affirmative answer
to Gyárfás’ above mentioned Problem 2.3.

Remark 2.28 The webs W 2
3α are not almost-perfect, as for any node v of

W 2
3α holds that C2α−1 ⊂ W 2

3α − v. Thus, not all strongly circular-perfect
graphs are almost-perfect. The converse is also true, as the two complemen-
tary almost-perfect graphs in Figure 2.1 are not strongly circular-perfect
(for the right graph G, we have 3 = ω(G) = ωC(G) < χc(G) ≤ χ(G) = 4).

Finally, we addressed in [28] the problem of characterizing strongly
circular-perfect graphs by means of forbidden subgraphs. Recall that the
results from [81] suggest that formulating a corresponding conjecture for
circular-perfect graphs is difficult; it is even unknown which triangle-free
graphs are minimal circular-imperfect. For (general) minimally not strongly
circular-perfect graphs, there is also no conjecture at hand, but we were able
to give a complete answer in the triangle-free case again [28]:

Theorem 2.29 A triangle-free graph G is minimal strongly circular-imper-
fect if and only if G is either the disjoint union of an odd hole and a singleton
or an extended odd hole.

Here, a graph G is called an extended odd hole if it admits a proper
partition into an induced odd hole O = {o1, . . . , o2p+1} and a pair of nodes
{x, y} which is connected to O in one of the following ways:

(a) {o1x, xy, o4y} (d) {o1x, o3x, xy, o2y}
(b) {o1x, xy, o2y} (e) {o1x, o3x, xy, o2y, o4y}
(c) {o1x, o3x, xy, o4y} (f) {o1x, o3x, o2y, o4y}
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2.3 On the existence of linear binding-functions

Gyárfás raised in [51] the question to find conditions for the existence of a
χ-binding function for a given graph class G (Problem 2.1).

The existence of linear binding-functions b(x) = ax + c is of particular
interest since this gives approximation algorithm with a constant perfor-
mance ratio of at most ax+c

x = a and, in addition, complementary binding
functions can exist only in the case a = 1 according to [51].

We present a sufficient condition from [114] for the non-existence of a lin-
ear binding-function for certain graph classes, starting with the imperfection
ratio

imp(G) = max

{

χf (G, c)

ω(G, c)
| c : V (G) → N \ {0}

}

where χf (G, c) stands for the fractional weighted chromatic number and
ω(G, c) for the weighted clique number. Let

imp(G) = sup{imp(G) : G ∈ G}

stand for the supremum over the imperfection ratios of the graphs G in a
class G.

We call a graph class G simple if it suffices to consider the unweighted
versions of χf (G, c) and ω(G, c) in order to determine imp(G), that is if

imp(G) = sup

{

χf (G)

ω(G)
| G ∈ G

}

holds. For instance, triangle-free graphs form a simple class by [45]; in
addition, all graph classes G which are closed under replication (that is
substituting cliques for nodes) are simple as replicating every node vi of a
graph G in G by a clique of size ci yields a graph in G again.

For simple classes with unbounded imperfection ratio, we obtain in [114]:

Observation 2.30 If G is a simple class with imp(G) = ∞, then G has no
linear χ-binding function.

The reason is that, for every integer k ≥ 0, there is a graph Gk ∈ G with

k <
χf (Gk)

ω(Gk)
≤

χ(Gk)

ω(Gk)

and, thus, kω(Gk) < χ(Gk) follows. Combining this result with Gyárfás’
necessary condition for the existence of complementary binding-functions,
we obtain further:
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Corollary 2.31 If G is a simple class with imp(G) = ∞, then G has no
complementary binding-function.

If G is in addition self-complementary, this implies:

Corollary 2.32 If G is a simple, self-complementary class with imp(G) =
∞, then G does not have a binding-function at all.

Every graph class G which is closed under substitution and contains at
least on imperfect graph satisfies both conditions: G is simple and imp(G) =
∞ holds. Thus, we finally deduce:

Corollary 2.33 If a graph class G is closed under substitution and contains
at least on imperfect graph, then G has no complementary binding-function.
If G is in addition self-complementary, it has no binding-function at all.
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Chapter 3

Normal Graphs

Normal graphs come up in a natural way in an information-theoretical con-
text [57, 31] and are, in graph-theoretical terms, defined by cross-intersecting
families of cliques and stable sets.

The interest in normal graphs is caused by the fact that they form a
‘weaker variant’ of perfect graphs, e.g., by means of co-normal products [56]
or splitting graph entropies [31, 58], see next section for more details. This
motivated Körner and de Simone [59] to ask whether the similarity of the two
classes is also reflected in terms of forbidden subgraphs. In analogy to the
Strong Perfect Graph Conjecture, they conjectured that every (C5, C7, C7)-
free graph is normal (Normal Graph Conjecture).

At present, not many graphs are known to be normal. We are going to
address this issue in two ways: by considering several techniques to construct
normal graphs (Section 3.2) and by verifying the Normal Graph Conjecture
for certain graph classes (Section 3.3).

Finally, we discuss possible other parallels between perfect and normal
graphs (Section 3.4). Our results imply, unfortunately, that normal graphs
cannot be characterized by means of decomposition techniques or forbidden
subgraphs. Moreover, we exhibit negative consequences for the algorithmic
behavior of normal graphs and bounds for certain graph parameters, re-
flected by the fact that neither the imperfection ratio can be bounded for
normal graphs nor a χ-binding function exists. We show that the latter is
also true for the class of (C5, C7, C7)-free graphs.

37
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3.1 Weaker Perfect Graphs

A graph G is called normal if G admits a clique cover Q and a stable set
cover S s.t. every clique in Q intersects every stable set in S.

Two normal graphs are shown in Figure 3.1 (the bold edges are the clique
covers, {{1, 3, 5}, {1, 4, 6}, {2, 4, 5, 7}} resp. {{0, 2, 4, 6}, {0, 3, 5, 7}, {1, 3, 6}}
the stable set covers).

27

36
36

1

0

27

455 4

1

Figure 3.1: Two normal graphs

The interest in normal graphs is caused by the fact that they form, in
many ways, a “weaker variant” of perfect graphs.

Recall that Berge introduced perfect graphs in 1960, motivated from
Shannon’s information-theoretical problem of finding the zero-error capacity
of a discrete memoryless channel [97] which can be reformulated as

C(G) = lim
n→∞

1

n
log ω(Gn)

regarding the asymptotic growth of the maximum cliques in the co-normal
product Gn. Shannon observed that ω(Gn) = (ω(G))n holds for graphs G
with ω(G) = χ(G) which makes the otherwise difficult problem of deter-
mining C(G) tractable. This led Berge [6] introduce perfect graphs as those
graphs G, where ω(G′) equals χ(G′) for each induced subgraph G′ ⊆ G.

Outgoing from the fact that ω(Gn) = (ω(G))n holds for all graphs G with
ω(G) = χ(G), one might expect that the class of perfect graphs is closed
under taking co-normal products. This is not true as Körner and Longo [57]
showed that all co-normal products of a graph G are perfect only if G is the
union of disjoint cliques. However, all co-normal products of normal (and,
therefore, of perfect) graphs are normal by [56].

Thus, normal graphs built the closure of perfect graphs by taking co-
normal products.
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Another information-theoretical link between perfect and normal graphs
has been established by means of the graph entropy H(G, p) w.r.t. a prob-
ability distribution p on its node set, which is defined by

H(G, p) = lim sup
k→∞

min

{

1

k
log2 χ(Gk[U ]) : U ⊆ V (Gk),

∑

x∈U

pk(x) > 1 − ǫ

}

and is sub-additive w.r.t. complementary graphs, i.e.,

H(p) ≤ H(G, p) + H(G, p) ∀p

holds for all graphs G. An interesting question is when the minimum H(p)
is attained, i.e., when equality holds rather than just sub-additivity. By
Cziszár et al. [31], perfect graphs are characterized as precisely those graphs
G where equality holds for all probability distributions, thus

H(p) = H(G, p) + H(G, p) for all p ⇔ G is perfect

(called strong additivity). The relaxed condition that equality holds for at
least one nowhere vanishing probability distribution is true exactly for all
normal graphs by Körner and Marton [58], that is

H(p) = H(G, p) + H(G, p) for at least one p > 0 ⇔ G is normal

(called weak additivity). Thus, normal graphs form a superclass of perfect
graphs by means of splitting graph entropies.

Since normal graphs are “weaker” perfect graphs in several ways, Körner
and de Simone [59] asked for a similarity of the two classes in terms of
forbidden subgraphs. Körner [56] showed that an odd hole C2k+1 is normal
iff k ≥ 4. In particular, C5 and C7 are not normal, and so neither C7 is.
These three graphs are even minimally not normal since all of their proper
induced subgraphs are perfect and, hence, normal. This led Körner and de
Simone conjecture:

Conjecture 3.1 (Normal Graph Conjecture [59]) Any graph without
C5, C7, or C7 as induced subgraph is normal.

The validity of this conjecture would imply that the only minimally
not normal graphs are precisely C5, C7, and C7 – as the only minimally
imperfect graphs are precisely all odd holes and odd antiholes due to the
Strong Perfect Graph Theorem. However, the validity of the Normal Graph
Conjecture would provide us a sufficient condition for normality only, but
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no characterization: The non-existence of C5, C7, and C7 in a graph is not
necessary for its normality, see the graphs in Figure 3.1.

Note that the Normal Graph Conjecture claims that the (C5, C7, C7)-
free graphs built exactly the hereditary core of the normal graphs, called
strongly normal graphs. In particular, as Körner and de Simone remark in
[59], the recognition problem for the class of strongly normal graphs would
be solvable in polynomial time if the Normal Graph Conjecture is true.

In order to treat the Strong Perfect Graph Conjecture from a probabilis-
tic point of view, Prömel and Steger [86] asked for the relation of perfect
and odd hole, odd antihole-free graphs on the same number of nodes. For
that, they proved the following result.

Theorem 3.2 [86] Almost all C5-free graphs are perfect.

This theorem verified the Strong Perfect Graph Conjecture asymptoti-
cally since every odd hole, odd antihole-free graph is in particular C5-free.
Since every (C5, C7, C7)-free graph is C5-free as well, Theorem 3.2 implies
further that almost all (C5, C7, C7)-free graphs are perfect and, therefore,
normal. As a consequence, the Normal Graph Conjecture is asymptotically
true.

On the other hand, this result suggests that there are not many more
normal than perfect graphs. In fact, not many graphs are known yet to be
normal apart from perfect graphs, odd holes, and odd antiholes of length
≥ 9. We are going to address this issue in two ways: In Section 3.2 we
explore several ways to construct normal graphs outgoing from normal and
even not normal ones via substitution, composition, and clique identification
and consider decomposition techniques along the corresponding structures
homogeneous set, skew partition, and clique cutset. Furthermore, we verify
the Normal Graph Conjecture for certain graph classes, namely webs, 1-
trees, cacti, and line graphs, thereby showing that those classes do contain
many more normal than perfect graphs (Section 3.3).

Our results imply that normal graphs cannot be characterized by means
of decomposition techniques or forbidden subgraphs (Section 3.4). Moreover,
we address negative consequences for the algorithmic behavior of normal
graphs and bounds for certain graph parameters, reflected by the fact that
neither the imperfection ratio can be bounded for normal graphs nor a χ-
binding function exists. The latter is, unfortunately, also true for the class
of (C5, C7, C7)-free graphs.
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3.2 Composing and Decomposing Normal Graphs

As observed above, the class of normal graphs is closed under taking co-
normal products (by Körner [56]), yielding a closure of perfect graphs that
way. In particular, taking co-normal products of known normal graphs is
a way to obtain further normal graphs. In order to extend the knowledge
on examples of normal graphs, other graph construction techniques are dis-
cussed in [114], namely some which are known to preserve perfection (see
next subsection).

On the other hand, it is possible to decompose graphs along certain
structural faults, as it was done for odd hole, odd antihole-free graphs for
the proof of the Strong Perfect Graph Theorem [17]. Hence we also address
the problem how to decompose normal graphs.

In contrast to perfect graphs, we obtained in [114] that it is possible to
use non-normal components to built normal graphs and, analogously, obtain
non-normal blocks by decomposing normal graphs in certain ways.

3.2.1 Constructing normal graphs

From the definition of normal graphs, it is clear that they are closed under
taking complements, as perfect graphs are. Furthermore, both perfection
and normality are closed under substitution by Lovász [65] and Körner,
Simonyi, and Tuza [60]. Let v be a node of a graph G1 then substituting v
by another graph G2 means to delete v and to join every neighbor of v in G1

with every node of G2. If G1 and G2 are two graphs, then substituting G2

for all nodes of G1 yields their lexicographic product G1 ×G2. Thus, perfect
and normal graphs are closed under taking lexicographic products as well.

We are going to check for two further well-known perfection preserv-
ing graph transformations, composition [7] and clique identification [23],
whether they also preserve normality.

(a) (b)

Figure 3.2: Composing two graphs



42 CHAPTER 3. NORMAL GRAPHS

Composing two disjoint graphs G1 and G2 w.r.t. two nodes v1 and v2

means to delete v1 and v2 and to join every neighbor of v1 in G1 with every
node of G2 and every neighbor of v2 in G2 with every node of G1 (see the
composition of two 7-holes w.r.t. the black-filled nodes in Figure 3.2).

G arises by identification of two disjoint graphs G1 and G2 in a clique
if there are cliques Q1 ⊆ G1 and Q2 ⊆ G2 with |Q1| = |Q2| and a bijection
φ : Q1 → Q2 identifying every node v ∈ Q1 with φ(v) ∈ Q2, see Figure 3.3.

(b)(a) (c)
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Figure 3.3: Identifying two graphs in an edge

The canonical technique to show normality for a graph G obtained in
one of these ways is to construct a clique cover and a cross-intersecting sta-
ble set cover of G outgoing from the corresponding covers of its building
blocks G1 and G2. We present several such ways to construct new normal
graphs from normal ones. In addition, there exist normal graphs obtained
by composition or clique identification where one or even both of the build-
ing blocks are not normal. We show that this cannot happen by applying
substitutions or taking lexicographic products.

Finally, we provide a technique that allows us to construct normal graphs
from arbitrary ones.

In the sequel, we call a clique cover Q (resp. stable set cover S) of a graph
G valid if there exists a cross-intersecting stable set cover S (resp. clique
cover Q) and say that (Q,S) is a valid pair of G.

Substitution and lexicographic products

The result of Körner, Simonyi, and Tuza [60] implies that the normality of
both building blocks is sufficient for the normality of a graph constructed by
substitution. We established in [114] that it is, in addition, also a necessary
condition.

Lemma 3.3 A graph G obtained by substituting a node v of a graph G1 by
G2 is normal only if G1 and G2 are normal.
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This implies the following:

Theorem 3.4 A graph G obtained by substituting a node of a graph G1 by
G2 is normal if and only if G1 and G2 are normal.

Corollary 3.5 Any lexicographic product of two graphs G1 and G2 is nor-
mal if and only if G1 and G2 are normal.

Composition and normal graphs

This subsection treats the case of composition. A first result from [114] is
that the class of normal graphs is also closed under composition.

Lemma 3.6 A graph G obtained by composing two normal graphs G1 and
G2 w.r.t. the nodes v1 and v2 is normal.

Thus, the normality of the building blocks is sufficient for the normality
of the resulting graph. In contrast to the case of substitution this is, however,
not a necessary condition. Figure 3.2 shows a normal graph obtained by
composing two non-normal graphs, namely two 7-holes (to verify normality,
take the bold edges in Figure 3.2(b) as clique cover and four stable sets of
the form indicated by the black nodes).

However, the building blocks in this example are not too fare away from
being normal: they are graphs G such that G has a stable set cover S, G−v
has a clique cover Qv, for some node v, and S and Qv are cross-intersecting.
We call such a graph G almost normal, (Qv,S) an almost valid pair of G,
and v an unnormal node of G. Also this weaker form of normality suffices
for constructing a normal graph by composition, as shown in [114]:

Lemma 3.7 A graph G obtained by composing two almost normal graphs
G1 and G2 w.r.t. two unnormal nodes v1 and v2 is normal.

A natural question is whether there exist further ways to construct nor-
mal graphs by composition. The next lemma gives a negative answer.

Lemma 3.8 Let G be a normal graph obtained by composing two graphs G1

and G2 w.r.t. the nodes v1 and v2.

(1) If G admits a valid pair (Q,S) such that Q contains a clique meeting
neighbors of both v1 and v2, then G1 and G2 are normal;
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(2) If G admits a valid pair (Q,S) such that Q contains no clique meeting
neighbors of both v1 and v2, then G1 and G2 are almost normal with
unnormal nodes v1 and v2.

The above results finally imply the following characterization of normal
graphs obtained by composition.

Theorem 3.9 Let G be the graph obtained by composing two graphs G1 and
G2 w.r.t. the nodes v1 and v2. G is normal if and only if at least one of the
following conditions is satisfied:

(1) G1 and G2 are normal;

(2) G1 and G2 are almost normal with unnormal nodes v1 and v2.

Clique identification and normal graphs

Similar to substitution and composition, also clique identification is a well-
known perfection preserving graph transformation. As in the previous sub-
sections one might expect that the class of normal graphs is closed under
clique identification, too, and that a valid pair of the resulting graph can
be constructed starting from valid pairs of its building blocks. The most
natural way to do this would be the following. Consider a graph G obtained
by identifying G1 and G2 in a clique Q∗ and let (Q(Gi),S(Gi)) be valid
pairs of Gi for i = 1, 2. Canonically, one would choose

Q(G) = Q(G1) ∪ Q(G2)

as clique cover of G (possibly with removing cliques properly contained in
another one). Furthermore, one would combine the stable sets Si ∈ S(Gi)
according to their intersection with the common clique Q∗, i.e.,

S(G) = {S1 ∪ S2 : Si ∈ S(Gi), S1 ∩ Q∗ = S2 ∩ Q∗}

to obtain a cross-intersecting stable set cover. However, this construction
works only if S(G1) and S(G2) either both contain a stable set avoiding Q∗

or both contain only stable sets meeting Q∗. This is not always the case, as
the following example from [114] shows.

Example 3.10 The two graphs G1 and G2 depicted in Figure 3.3(a) and
(b), respectively, admit both a unique valid pair, namely,

Q(G1) = {{1, 4}, {2, 4}, {3, 4}}
S(G1) = {{1, 2, 3}, {4}}
Q(G2) = {{3, 4, 5}, {3, 4, 6}}
S(G2) = {{3}, {4}, {5, 6}}.
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Identifying G1 and G2 in the edge {3, 4} (emphasized as bold line in the
picture) yields the graph G drawn in Figure 3.3(c). According to the above
construction, we would obtain

Q(G) = {{1, 4}, {2, 4}, {3, 4, 5}, {3, 4, 6}}
S(G) = {{1, 2, 3}, {4}, {5, 6}}.

Thus, Q(G) is a clique cover and S(G) a stable set cover of G, but they are
not cross-intersecting. (However, G is certainly perfect and, hence, normal.)

Furthermore, similar to the case of composition, it is possible to create
normal graphs by identifying two not necessarily normal graphs in a clique.

The two graphs in Figure 3.1 are examples for normal graphs, con-
structed by identifying a non-normal C5 and C7 with two edges and one
edge, respectively. Moreover, Figure 3.4(b) shows a normal graph obtained
by identifying two non-normal graphs in an edge (the bold edges are cho-
sen as clique cover and {{0, 2, 4, 6, 9}, {0, 3, 5, 7, 9}, {1, 3, 6, 8}} as stable set
cover).

(a) (b)
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Figure 3.4: Identifying two non-normal graphs in an edge

However, the non-normal building blocks in the latter examples are again
not too fare away from being normal, but almost normal. Looking at the
above construction and the latter examples, it is obviously not required that
both clique families cover all nodes of G1 and G2: it suffices if the nodes in
the common clique Q∗ are covered in one of the two building blocks.

This suggests to relax the condition of the normality for the building
blocks appropriately. Let G be a graph such that G has a stable set cover
S, G − Q′ has a clique cover QQ′ , for some clique Q′, and S and QQ′

are cross-intersecting. We call such a graph G nearly normal, (QQ′ ,S) a
nearly valid pair of G, and Q′ an unnormal clique of G. (Note that a nearly
normal graph is normal (resp. almost normal) if its unnormal clique is empty
(resp. consists of one node only).)
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We show in [114] that this weaker form of normality suffices to construct
a normal graph by clique identification, provided the involved stable set
covers are suitable.

Lemma 3.11 Let G be obtained by identifying two nearly normal graphs G1

and G2 in a clique Q∗ and let Q1, Q2 ⊆ Q∗ be disjoint unnormal cliques. The
resulting graph G is normal if there exist nearly valid pairs (QQi

(Gi),S(Gi))
for i = 1, 2 satisfying at least one of the following conditions.

(1) S(Gi) contains a stable set S with S ∩ Q∗ = ∅ for i = 1, 2;

(2) S(Gi) contains no stable set S with S ∩ Q∗ = ∅ for i = 1, 2;

(3) S(G1) contains a stable set S with S ∩ Q∗ = ∅ but S(G2) does not,
and Q1 is non-empty (or vice versa).

Remark 3.12 There exist normal graphs G1, G2 not satisfying the above
conditions (1) or (2), e.g., the two graphs G1 and G2 depicted in Figure
3.3(a) and (b), respectively (to check this, look at their unique valid pairs
given in Example 3.10). However, removing the clique {3, 4} from Q(G1)
yields nearly valid pairs satisfying condition (3).

Lemma 3.11 provides three sufficient conditions to obtain a normal graph
via clique identification. It is not clear yet whether these conditions are also
necessary. However, condition (1) of Lemma 3.11 is certainly satisfied if
Q∗ is a non-maximal clique in Gi for i = 1, 2: In order to cover a common
neighbor v of all nodes in Q∗, S(Gi) has to contain a stable set S with v ∈ S
and, therefore, S ∩ Q∗ = ∅. This implies:

Corollary 3.13 The class of normal graphs is closed under identifying two
graphs in non-maximal cliques.

So far no proof is known yet that clique identification preserves normal-
ity in general, but also no counterexample has been found yet.

As we have seen that we can construct normal graphs by identifying two
unnormal ones in a clique (as in Figure 3.4), a natural question is whether
there exist further ways to construct normal graphs by clique identification.
The next lemma from [114] gives a negative answer showing that the nor-
mality or nearly normality of the building blocks is required if the resulting
graph is supposed to be normal.
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Lemma 3.14 Let G be a normal graph obtained by identifying two graphs
G1 and G2 in a clique Q∗.

(1) If G admits a valid pair (Q,S) such that S contains no stable set
avoiding Q∗, then G1 and G2 are normal;

(2) If G admits a valid pair (Q,S) such that S contains a stable set
avoiding Q∗, then G1 and G2 are nearly normal with unnormal cliques
Q∗

1 and Q∗
2 such that Q∗

i ⊆ Q∗ and Q∗
1 ∩ Q∗

2 = ∅.

Constructing normal graphs from arbitrary graphs

We were finally able to describe in [114] a way to construct normal graphs
from arbitrary ones; we include the short proof in order to give insight in
the construction.

Theorem 3.15 For any graph G, there is a normal graph G∗ containing G
as induced subgraph.

Proof. Consider a graph G, a clique partition Q(G) = {Q1, . . . , Qk}, and
a coloring S(G) = {S1, . . . , Sl}. (The gray-filled ellipses in Figure 3.5 stand
for the cliques in Q(G), where the black nodes represent a stable set in
S(G).) We construct a graph G∗ containing G as induced subgraph by
adding, for each clique Qi ∈ Q(G), a new node vi and joining vi to exactly
the nodes in Qi. Then Q(G∗) = {Qi ∪ vi : Qi ∈ Q(G)} is obviously a clique
partition of G∗, see Figure 3.5. We obtain a cross-intersecting stable set
cover S(G∗) by extending each stable set Si ∈ S(G) by those nodes vj with
Si ∩ Qj = ∅, i.e., by constructing S∗

i := Si ∪
⋃

Si∩Qj=∅ vj , see Figure 3.5

again. These sets S∗
i are obviously stable and intersect all cliques in Q(G∗).

Finally, S(G∗) = {S∗
1 , . . . , S∗

l } ∪ {v1, . . . , vk} covers all nodes of G∗. Hence,
G∗ admits the valid pair (Q(G∗),S(G∗)) and is, therefore, normal. 2

GG *

Figure 3.5: Constructing a normal graph G∗ from an arbitrary graph G
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3.2.2 Decomposing normal graphs

In this section we present straightforward consequences of the previous re-
sults for decomposing normal graphs alongside three structures: homoge-
neous sets, skew partitions, and clique cutsets.

Any graph G obtained by substituting a node v in G1 by a graph G2

has a partition of its node set into three subsets N1 and N1 consisting in all
neighbors and non-neighbors of v, respectively, and V2 containing all nodes
of G2. Recall that N1 and V2 are totally joined, where N1 and V2 are totally
unjoined. If all three subsets are nonempty and V2 has at least two nodes,
we say that V2 is a homogeneous set of G and that G can be decomposed
into two blocks: the minor G1 obtained by contracting V2 to a single node
and the subgraph G2 induced by all nodes in V2. Thus, a consequence of
Theorem 3.4 is:

Corollary 3.16 A graph with homogeneous set is normal if and only if its
blocks are both normal.

A graph G obtained by composing two graphs G1 and G2 w.r.t. nodes
v1 and v2 has a skew partition: that is a partition of its node set into the
four subsets N1, N1, N2,N2 where Ni and N i stand for the neighbors and
non-neighbors of vi, respectively, for i = 1, 2. Recall that N1 and N2 are
totally joined while N1 and N2 are totally unjoined. We can decompose G
into two blocks: the minor G1 induced by N1,N 1 where N2 is contracted to
a single node and the minor G2 induced by N2,N2 where N1 is contracted
to a single node. Hence, Theorem 3.9 implies:

Corollary 3.17 A graph with a skew partition is normal if and only if its
blocks are either both normal or both almost normal.

Finally, a graph G obtained by identifying two graphs G1 = (V1, E1) and
G2 = (V2, E2) in a clique Q has Q as clique cutset : that is the nodes of G
can be partitioned into the three subsets V ′

1 , V ′
2 , Q such that V ′

1 = V1 \ Q
and V ′

2 = V2 \Q are totally unjoined. G can be decomposed into two blocks,
namely the subgraphs Gi induced by V ′

i and Q for i = 1, 2.
Thus, a consequence of Lemma 3.14 is the following:

Corollary 3.18 A graph with a clique cutset Q is normal only if its blocks
are either both normal or both nearly normal with disjoint unnormal cliques
Q1, Q2 ⊆ Q.
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3.3 Progress on the Normal Graph Conjecture

Besides perfect graphs, no further graph class is known yet to be completely
contained in the class of normal graphs. For odd holes and odd antiholes,
we have a characterization which ones are normal (namely those with length
≥ 9). Körner and de Simone [59] found a sufficient and necessary condition
for the normality of connected triangle-free graphs: the existence of nice
edge covers. (An edge cover F of a graph G is nice if it is minimal w.r.t. set
inclusion and if every odd cycle C of G has at least three nodes which
are incident to an even number of edges in E(C) ∩ F ; the bold edges in
Figure 3.1 form nice edge covers.) However, this result by [59] does not
prove the Normal Graph Conjecture for triangle-free graphs.

We are going to characterize all normal graphs within certain graph
classes (webs and antiwebs in [113], two classes of sparse graphs in [90]),
thereby verifying the Normal Graph Conjecture for those classes. In addi-
tion, we verify the conjecture for all line graphs.

3.3.1 Graphs with circular structure

As mentioned above, odd holes and odd antiholes constitute one of the two
graph classes for which a characterization of all the normal graphs within
the class was previously known. We are going to consider, as common gen-
eralization of odd holes and odd antiholes, graphs with a circular structure
of their maximum cliques and stable sets, namely webs and antiwebs. Recall
that a web W k

n is the graph with nodes 1, . . . , n where ij is an edge if i and
j are distinct and differ by at most k mod n. W 1

n is the hole Cn and W k−1
2k+1

the odd antihole C2k+1. Antiwebs are precisely the complements of webs.

In order to verify the Normal Graph Conjecture for webs and antiwebs,
we characterized in [113] all the normal webs. The main idea is to consider
special clique covers, construct cross-intersecting stable set covers, and prove
that any web not admitting such a valid pair is not normal. Call a clique
cover Q = {Q1, . . . , Ql} of W k

n cyclic if each clique Qi is maximum and has
a non-empty intersection with precisely the cliques Qi−1 and Qi+1 (indices
taken modulo l). For any cyclic clique cover Q of odd size l = 2t − 1
and any node x belonging to exactly one clique Q ∈ Q, we construct a
cross-intersecting set S(x,Q) of size t (as Q − Q consists of t − 1 pairs of
intersecting cliques, we choose one node from each intersection and x itself
to built S(x,Q)). Figure 3.6 shows cyclic clique covers of size 3 (resp. 5, 7)
in W 4

12 (resp. W 3
12, W 2

12); the black nodes built such a cross-intersecting set
S(x,Q).
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x
x

x

Figure 3.6: Examples of cyclic clique covers

We ensured in [113] that those sets S(x,Q) are stable and that their
union covers the whole web, if the parameters n, k, t are suitable:

Theorem 3.19 For each t ≥ 2, a web W k
n with k ≥ 2 admits

• a cyclic clique cover Q of size 2t − 1 and

• a cross-intersecting stable set cover S of stable sets of size t

if t(k + 1) ≤ n ≤ (2t − 1)k holds.

It is left to check for which webs W k
n such a suitable t with t(k + 1) ≤ n ≤

(2t − 1)k exists. We obtained that this is true for any web W k
n with k ≥ 2

except the cases n = 3k + 1, 3k + 2 (gap between the ranges for t = 2 and
t = 3 for any k ≥ 2) and W 2

11 (gap between the ranges for t = 3 and t = 4
if k = 2). Proving the non-normality of these webs W k

3k+1, W k
3k+2 for k ≥ 2

and W 2
11 completes the following characterization of the normal webs:

Theorem 3.20 A web W k
n is normal if and only if

• k = 1 and n 6= 5, 7,

• k = 2 and n 6= 7, 8, 11,

• k ≥ 3 and n 6= 3k + 1, 3k + 2.

Since the non-normal webs are not (C5, C7, C7)-free, Theorem 3.20 verifies
the Normal Graph Conjecture for webs. The invariance of normal graphs
under taking complements finally implies:

Corollary 3.21 The Normal Graph Conjecture is true for webs and anti-
webs.
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3.3.2 Sparse normal graphs

It is well-known that a random graph is with high probability perfect only if
it is very sparse (i.e., it has less edges than nodes) or, due to the invariance
of perfection by complementation, very dense. This relies on the result of
Prömel and Steger [86] that almost all C5-free graphs are perfect–and graphs
with middle edge densities almost surely contain a C5 as induced subgraph.
This motivated us to study classes of sparse graphs w.r.t. normality in [90].

In particular, sparse graphs are known to consist of many small 1-tree
components, that are connected graphs with as many edges as nodes. Thus,
we start with 1-trees. Moreover, as adding random edges to such sparse
graphs links different 1-trees to larger components, we extend our study to
so-called cacti, obtained by linking 1-trees together.

A 1-tree is a connected graph G = (V,E) with |V | = |E|, obtained
from a tree by adding one edge since trees are precisely the graphs with
|V | − 1 = |E|. Hence, G contains exactly one cycle C and G−C is a forest.
In other words:

Observation 3.22 A 1-tree can be obtained from a cycle and certain trees
by a sequence of node-identifications.

Since trees and cycles different from C5 and C7 are normal and node-
identification preserves normality by Corollary 3.13, this already implies:

Corollary 3.23 The Normal Graph Conjecture is true for 1-trees and their
complements.

Even more, we were able to fully characterize the normal 1-trees in [90].
Let G1 +v G2 denote the graph obtained from G1 and G2 by identification
in the node v. We obtained the following:

Theorem 3.24 A 1-tree G is not normal iff one of the following holds.

(i) G = C5.

(ii) G = C5 +v T where T is a tree.

(iii) G = (C5 +v T ) +v′ T ′ where T, T ′ are trees and v, v′ are two nodes of
the C5 at distance two.

(iv) G = C7.

This implies in particular that there are many more normal than perfect
1-trees, since a 1-tree is perfect iff its only cycle is even or a triangle, whereas
almost all 1-trees are normal.
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We extend this result further to the larger class of cacti. A cactus is
a connected graph whose cycles are all edge-disjoint. Thus, a cactus G =
(V,E) with k cycles can be considered as a graph obtained from a tree by
adding k edges in a certain way (thus cacti admit |V | − 1 + k edges and are
still sparse). Alternatively, we can interpret cacti as follows:

Observation 3.25 Every cactus can be obtained from several 1-trees by a
sequence of node-identifications.

Thus, it is natural to apply our knowledge on the normality of 1-trees
and the behavior of normal graphs under node-identification in order to
figure out which cacti are normal.

Since all (C5, C7)-free 1-trees are in particular normal by Theorem 3.24
and node-identification preserves normality, we can already infer:

Corollary 3.26 The Normal Graph Conjecture is true for cacti and their
complements.

Obviously, there also exist normal cacti containing a C5 or a C7 as in-
duced subgraph, for instance the graph obtained by identifying the two
graphs from Figure 3.1 in a node. Our further goal is to decide whether or
not a given cactus is normal.

As a first step, we decompose a cactus G accordingly, i.e., into as many
1-trees as G has cycles. For that, we choose a set C of cut-nodes in G s.t.
each building block B(C) contains exactly one cycle C, that is each B(C) is
supposed to be a 1-tree. We define the block-tree T (G) of G as follows: Take
the chosen set C of cut-nodes and the set B of all the resulting building blocks
B(C) of G as nodes of T (G); join two nodes of T (G) iff one corresponds to
a cut-node q ∈ C, the other one to a block B(C) ∈ B, and q ∈ B(C). Figure
3.7 shows a cactus together with its block-tree.

C’

C C"

q q’

B(C")

q’

B(C)

B(C’)

q

Figure 3.7: A cactus and its block-tree
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As a second step, we have to classify each block B(C) of G whether it is
normal, almost normal, or none of them. Since each block B(C) is a 1-tree,
Theorem 3.24 clearly characterizes all the normal blocks; the failure cases
of the theorem are at least almost normal, except the C5 [90]:

Lemma 3.27 A 1-tree G is almost normal if and only if G = C7 or its
cycle C has length 5 and there are trees attached to C on either exactly one
node or on two non-consecutive nodes.

The main idea for deciding whether or not a given cactus G is normal is
to shrink T (G) by a suitable sequence of node-identifications in such a way
that we can classify normality of the resulting blocks in each step.

For that, we call a leaf of T (G) an end-block of G and say that two blocks
of G are adjacent if they share a cut-node in C. In each shrinking step, we

• choose an end-block B(C) and an adjacent block B(C ′),

• identify the two blocks in their common node q,

• classify how normal the resulting subgraph B(C) +q B(C ′) of G is.

In later iterations, the blocks of T (G) are cacti (and no more 1-trees). In
order to classify the normality of such a combined block B(C)+q B(C ′), we
use the following characterizations of normal and almost normal cacti [90]:

Lemma 3.28 Consider two cacti G1, G2 and let G = G1 +q G2.

(1) G is normal if and only if either both G1 and G2 are normal or one is
normal and the other one almost normal with unnormal node q.

(2) G is almost normal if and only if G1 is normal and either G2 almost
normal with all unnormal nodes 6= q or G2 = C5, or if G1 and G2 are
almost normal and q is an unnormal node in one of them.

Starting from this characterization, we can formulate the following suf-
ficient conditions for the not-normality of a cactus [90]:

Lemma 3.29 A cactus G is not normal if its block-tree T (G) contains

(1) only not normal blocks;

(2) a block B(C) s.t. C = C5 has three non-consecutive nodes of degree 2;

(3) an almost normal block s.t. all possible unnormal nodes have degree 2.
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There are cacti which satisfy none of the conditions of Lemma 3.29 but are
not normal, see the graph in Figure 3.7 for an example (the bold edges show
an almost nice edge cover). The reason is that “bad” cycles of length five
can share a node which has degree > 2 but cannot be covered properly (as
the node q in Figure 3.7). Thus, the above conditions characterize only
those not normal cacti where all cycles are node-disjoint. In the general
case, the following algorithm decides in polynomial time, whether or not a
given cactus G is normal:

Algorithm (Test for normality of a cactus)
Input: a cactus G;
Output: decision whether or not G is normal.

(0.) Initialization. Construct the block-tree T (G) = (B ∪ C, E) of G and
classify each block B(C) ∈ B as normal, almost normal, or unnormal.

(1.) Normality test. IF all blocks of T (G) are normal, THEN output “G
is normal” and STOP. IF one of the conditions in Lemma 3.29 is
satisfied, THEN output “G is not normal” and STOP.

(2.) Shrinking. Choose an endblock B(C) of T (G) and (one of) its adjacent
block(s) B(C ′) with common node q ∈ C. Let B′(C ′) := B(C)+qB(C ′)
and determine the normality status of B′(C ′). Shrink T (G) as follows:

– IF q has degree 2 in T (G)
THEN delete B(C) and q and replace B(C ′) by B′(C ′);

– IF q has degree > 2 in T (G)
THEN delete B(C) and replace B(C ′) by B′(C ′).

GOTO step (1.).

If a cactus G has k cycles, then applying this algorithm to T (G) decides in
at most k iterations whether G is normal (in [90], the algorithm is exhibited
in more detail and it is shown that it works indeed correctly).

Note that we use the knowledge on the normality of 1-trees only in
the initialization step of the algorithm, where all further steps rely on the
behavior of normal graphs under node-identification (see Lemma 3.28).

At present, no complete characterization of the normal cacti is known.
However, the above results suffice to conclude that there are, indeed, many
more normal cacti than perfect ones since a cactus is perfect iff all of its
cycles are even or triangles, whereas almost all cacti are normal.
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3.3.3 Normal line graphs

Recall that the line graph L(G) of a graph G is obtained by taking the edges
of G as nodes of L(G) and joining two nodes of L(G) if the corresponding
edges of G are incident. It is well-known that a line graph L(G) is perfect
if and only if G has triangles as only odd cycles. The reason is, that any
cycle of length k in G turns into a hole Ck in L(G); moreover, no antihole
of length ≥ 7 can occur in any line graph. Therefore, verifying the Normal
Graph Conjecture for line graphs means to ensure that a line graph L(G)
is normal whenever G has no cycles of length 5 or 7. This should be done
by exhibiting a clique cover Q and a cross-intersecting stable set cover S
in every (C5, C7)-free line graph L(G). As stable sets in L(G) come from
matchings in G and cliques from sets of pairwise adjacent edges, this is, in
terms of the root graph, equivalent to the following [95]:

Observation 3.30 A line graph L(G) is normal if and only if G contains
a family S of matchings and a cross-intersecting family Q of edge-stars and
triangles such that both families cover all edges of G.

The latter family Q an be represented as follows. In a graph G = (V,E),
let S(v) = {e ∈ E : e = uv} be the edge-star with central node v and define
for a node subset V ′ ⊆ V the star cover ES(V ′) = {ES(v) : v ∈ V ′} where

ES(v) =

{

T if there is a triangle T with S(v) ⊂ T
S(v) otherwise.

If V ′ is a vertex cover of G, i.e., a node subset meeting all edges, then
ES(V ′) clearly covers all edges of G. We introduced in [95] a domination
relation of vertex covers and called a vertex cover good if it is maximal w.r.t.
this relation. The main result from [95] is:

Theorem 3.31 In any graph G without cycles of length 5 or 7, there exist,
for every good vertex cover V ′ of G, a family of matchings covering all edges
of G and cross-intersecting ES(V ′).

This immediately implies:

Corollary 3.32 The Normal Graph Conjecture is true for line graphs and
their complements.

As the proof is constructive, it can be used to design an algorithm which
explicitly constructs the required covers for a given graph without cycles of
length 5 or 7 [96].
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At present, it is open to fully characterize which line graphs are normal,
but we can certainly conclude that there are many more normal than perfect
line graphs since a line graph L(G) is perfect iff all cycles of G are even or
triangles, whereas the non-existence of cycles of length 5 or 7 in G suffices
to make L(G) normal.

3.4 Some Consequences

This section presents some consequences from the above results. On the one
hand, the results from the last section indicate that there are many more
normal than perfect graphs. On the other hand, we are going to infer from
the results in Section 3.2 that normal graphs are not as rich as perfect graphs
but indeed only “normal”.

The results and examples from Section 3.2 show that there is no chance to
characterize normal graphs in a constructive way, by gluing together certain
building blocks, as we can also use not normal graphs as building blocks.
Similarly, we cannot expect to characterize normal graphs by decomposition
techniques, as Section 3.2.2 shows the existence of not normal blocks if a
normal graph has a skew partition or a clique cutset. In addition, Theorem
3.15 implies the following.

Corollary 3.33 Normal graphs cannot be characterized by means of forbid-
den subgraphs.

Another consequence of Theorem 3.15 is that normal graphs can contain
arbitrarily “bad” graphs as induced subgraphs. Thus, we cannot expect a
better algorithmic behavior of normal graphs than this of general graphs.
Moreover, we also cannot expect to find for normal graphs as good bounds
for certain interesting graph parameters as for perfect graphs. This is, e.g,
reflected by means of χ-binding functions, the imperfection ratio, and the
graph-entropy for normal graphs and even for (C5, C7, C7)-free graphs, as
shown in the sequel.

Recall that Mycielski [70] constructed a series of graphs G0, G1, G2, . . .
with ω(Gi) = 2 for all i ≥ 0 but χ(Gi) = 2 + i. According to Theorem
3.15 we can construct a series of normal graphs G∗

0, G
∗
1, G

∗
2, . . . containing

all Mycielski graphs G0, G1, G2, . . ., thus

χ(G∗
i ) = 2 + i → ∞ for i → ∞

follows and implies:
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Corollary 3.34 There exists no χ-binding function for the class of normal
graphs.

Recall that Gerke and McDiarmid [45] introduced the imperfection ratio

imp(G) = max

{

χf (G, c)

ω(G, c)
| c : V (G) → N \ {0}

}

as some asymptotic slope of a χ-binding function and that Simonyi [100]
established the following link to the graph entropy

log2 imp(G) = max {H(p) − H(G, p) − H(G, p) : p}

for any graph G. Every perfect graph G has imp(G) = 1 and one might
expect that normal graphs have an imperfection ratio close to 1 (as they are
weakly splitting). However, this is not true due to the following reason.

Gerke and McDiarmid [45] studied the behavior of the imperfection ratio
under taking lexicographic products G × H and showed that

imp(G × H) = imp(G) · imp(H)

holds for the imperfection ratios. Thus, the imperfection ratio cannot be
bounded for any class G of graphs which is closed under substitution (and,
therefore, closed under taking lexicographic products) and contains at least
one imperfect graph G as

imp(Gi) → ∞ for i → ∞

if imp(G) > 1 (where Gi stands for G× . . .×G, i times). As normal graphs
are closed under substitution, this implies the following.

Corollary 3.35 The imperfection ratio cannot be bounded for the class of
normal graphs.

This consequence is fairly unexpected as it shows in particular the exis-
tence of normal graphs G where the difference between

max {H(p) − H(G, p) − H(G, p) : p}

and
0 = min {H(p) − H(G, p) − H(G, p) : p}

taken over all positive probability distributions p tends to infinity.
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Even worse, the latter observations are also true for the class G of (C5, C7, C7)-
free graphs due to the following reason. It is easy to check that G is closed
under substitution. Thus, G is also closed under taking lexicographic prod-
ucts. For instance, the C9 is clearly (C5, C7, C7)-free and

imp((C9)
k) → ∞ if k → ∞

follows. This implies:

Corollary 3.36 The imperfection ratio cannot be bounded for (C5, C7, C7)-
free graphs.

In addition, the class G is also closed under replication and G is, therefore,
simple (as it suffices to consider χf (G, c) and ω(G, c) in their unweighted
versions in order to determine imp(G)). Recall from Section 2.3 that, for any
simple class with unbounded imperfection ratio, there is no linear χ-binding
function (Observation 2.30) and, thus, no complementary binding-function
due to Gyárfás [51]. As the class of (C5, C7, C7)-free graphs is clearly self-
complementary, we infer from Corollary 2.32:

Corollary 3.37 There is no χ-binding function for the class of (C5, C7, C7)-
free graphs.

Thus, the validity of the Normal Graph Conjecture would certainly pro-
vide us a sufficient condition for normality and characterize the hereditary
core of the normal graphs, but we even cannot expect nice properties of this
special subclass of normal graphs.

As a consequence, we conclude that normal graphs are not as close to
perfect graphs as expected–even not in the information-theoretical context
of splitting graph entropies, since for a normal graph G the value

H(p) − H(G, p) − H(G, p)

strongly depends on the probability distribution p. In contrary, for each
minimally imperfect graph G (including the non-normal graphs C5, C7, C7)
we have the small range

0 ≤ H(p) − H(G, p) − H(G, p) ≤ log2

(

|G|

|G| − 1

)

for all probability distributions p by [45]. This suggests to consider graph
classes G as close to perfection by means of splitting entropies if there is a
small upper bound u for imp(G) since

0 ≤ H(p) − H(G, p) − H(G, p) ≤ log2 u

holds for all (normal and non-normal) graphs G ∈ G and for all p.



Chapter 4

Rank-Perfect Graphs and
Beyond

For all perfect graphs, the stable set polytope STAB(G) coincides with the
clique constraint polytope QSTAB(G), whereas STAB(G) ⊂ QSTAB(G)
holds for all imperfect graphs G. Thus, besides clique constraints, additional
facets are required to describe the stable set polytope STAB(G) of any
imperfect graph.

Following a suggestion of Grötschel, Lovász, and Schrijver [50] one may
relax perfection by generalizing clique constraints to other classes of in-
equalities and investigating all graphs whose stable set polytope is entirely
described by nonnegativity constraints and the inequalities in question. We
follow up this concept in two different ways: by considering 0/1-constraints
associated with arbitrary subgraphs, called rank constraints, and constraints
associated with families of cliques, called clique family inequalities.

Recall that Padberg characterized those imperfect graphs for which the
difference between STAB(G) and QSTAB(G) is smallest possible [75, 76].
We develop this idea further and define three polytopes between STAB(G)
and QSTAB(G) by allowing certain types of (lifted) rank constraints only.
We obtain a chain of three superclasses of perfect graphs and survey in
Section 4.1 which graphs are known to belong to one of those superclasses.

Second, we follow the concept of clique family inequalities, investigating
valid inequalities for the stable set polytope which rely on the intersection
of cliques within the family. As clique family inequalities can be seen as
generalization of these constraints describing the matching polytope, there
is a strong link to line graphs and their superclasses as, e.g., quasi-line graphs
and claw-free graphs, see Section 4.2.

59
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4.1 Rank constraints and rank-perfect graphs

If G is an imperfect graph, STAB(G) ⊂ QSTAB(G) holds and the difference
between STAB(G) and QSTAB(G) indicates how far a graph is away from
being perfect. Recall that, in this sense, Padberg [75, 76] gave the following
polyhedral characterization of minimally imperfect graphs: G is minimally
imperfect if and only if QSTAB(G) has precisely one fractional vertex which
can be cut off by exactly one cutting plane, namely, the full rank constraint

∑

i∈G

xi ≤ α(G) (4.1)

associated with G itself. This shows that, for any minimally imperfect graph
G, the polytope QSTAB(G) is as close to STAB(G) as possible and, hence,
minimally imperfect graphs are indeed “almost perfect”. We are going to
generalize this further.

The next possible case is when QSTAB(G) may have more than one
fractional vertex but, again, the full rank constraint is required as only
cutting plane to cut off all of them. This lead Shepherd [98], inspired by
Padberg’s results, to define near-perfect graphs. Let denote FSTAB(G) the
polytope given by all nonnegativity and clique constraints together with the
full rank constraint (4.1). Shepherd [98] called a graph G near-perfect if
STAB(G) = FSTAB(G). Minimally imperfect graphs are obviously near-
perfect. Since there is no requirement that QSTAB(G) has at least one
fractional vertex but only that all fractional vertices are cut off by the full
rank constraint, perfect graphs are near-perfect, too, see Section 4.1.1 for
more examples and considerations on near-perfect graphs.

The next natural step is to generalize clique constraints and the full rank
constraint by considering all 0/1-inequalities, the rank constraints

∑

i∈G′

xi ≤ α(G′) (4.2)

associated with arbitrary induced subgraphs G′ ⊆ G (note α(G′) = 1 holds
iff G′ is a clique). Every rank constraint is obviously valid for the stable set
polytope, hence, the polytope RSTAB(G) given by all nonnegativity and
all rank constraints is a further relaxation of STAB(G) but contained in
FSTAB(G). We define all graphs G with STAB(G) = RSTAB(G) to be
rank-perfect (i.e., a graph is rank-perfect if we need only 0/1-inequalities
to cut off all fractional vertices of QSTAB(G)). Every perfect, every mini-
mally imperfect, and every near-perfect graph is obviously also rank-perfect.
Further classes of rank-perfect graphs are discussed in Section 4.1.2.
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If a rank constraint is associated with a proper subgraph G′ ⊂ G, then
it does not yield a facet of STAB(G) in general, even if

∑

i∈G′ xi ≤ α(G′) is
facet-defining for STAB(G′). In the latter case, we can determine a facet

∑

i∈G′

xi +
∑

i∈G−G′

ai xi ≤ α(G′) (4.3)

of the stable set polytope of the whole graph G by computing appropri-
ate coefficients ai for all nodes i in G − G′. We call facets of this form
(4.3) weak rank constraints if the base rank constraint associated with G′

is facet-defining for STAB(G′). Examples are lifted rank constraints where
an orthogonal projection is the full rank facet of STAB(G′), and complete
joins of different rank facet-producing subgraphs. Clearly, facet-defining
rank constraints are weak rank constraints with ai = 0 for i ∈ G − G′. Let
WSTAB(G) be the polytope given by all nonnegativity and all weak rank
constraints. WSTAB(G) is a further relaxation of STAB(G) but contained
in RSTAB(G). We define all graphs G with STAB(G) = WSTAB(G) to
be weakly rank-perfect (see Section 4.1.3 for classes of weakly rank-perfect
graphs).

Moreover, the stable set polytope itself is entirely described by all “triv-
ial” facets xi ≥ 0 for all nodes i and all “nontrivial” facets of the general
form

∑

i∈G

ai xi ≤ α(G, a) (4.4)

where we interpret the vector a = (a1, . . . , an) as a node weighting of G
associating the weight ai to i ∈ G and denote the weighted graph by
(G, a). Furthermore, α(G, a) = max{

∑

i∈S ai : S ⊆ G stable set} stands
for the weighted stability number. Thus, there is no further relaxation of
STAB(G) possible beyond WSTAB(G). By the obtained chain of relaxations
of STAB(G)

STAB(G) ⊆ WSTAB(G) ⊆ RSTAB(G) ⊆ FSTAB(G) ⊆ QSTAB(G)

we have finally achieved a hierarchy of polyhedral superclasses of perfect
graphs: near-perfect, rank-perfect, and weakly rank-perfect graphs. The
difference between QSTAB(G) and the largest polytope coinciding with
STAB(G) gives us some information on the stage of imperfection. In the
following subsections, we present several aspects of these three classes, and
close with some remarks on general, i.e., on not weakly rank-perfect graphs.
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4.1.1 Near-perfect graphs

We start with the class of graphs which is, in the polyhedral sense, the
smallest superclass of perfect graphs since we only have to add the full rank
constraint (4.1) to QSTAB(G) in order to arrive at STAB(G).

As shown by Padberg [75, 76], minimally imperfect graphs are exam-
ples of near-perfect graphs, see Section 1.2.4. Before the characterization of
minimally imperfect graphs via the Strong Perfect Graph Conjecture was
settled, Shepherd [98] found a further polyhedral characterization of mini-
mally imperfect graphs in terms of near-perfection:

Theorem 4.1 (Shepherd [98]) An imperfect graph G is minimally imperfect
if and only if both G and G are near-perfect.

That means, the part of the class of near-perfect graphs which is closed
under complementation consists exactly in all perfect and all minimally im-
perfect graphs. The further goal is to learn more about the remaining part
of the class. We call a near-perfect graph G proper if G is neither perfect
nor minimally imperfect. For such graphs, we proved in [62]:

Lemma 4.2 If G is a properly near-perfect graph, then both QSTAB(G)
and QSTAB(G) have at least two fractional extreme points.

In order to be (properly) near-perfect, an imperfect graph G has obvi-
ously to satisfy the condition that every minimally imperfect subgraph G′ of
G has the same stability number as G, and every lifting of the rank constraint
associated with G′ should result in the full rank facet of G. Shepherd [98]
conjectured that this property characterizes near-perfection and showed that
his conjecture is true if odd holes and odd antiholes are the only minimally
imperfect graphs. Hence, by the Strong Perfect Graph Theorem, we have:

Theorem 4.3 (Shepherd [98], Chudnovsky et al [17]) A graph G is near-
perfect if and only if each lifting of a rank constraint associated with a min-
imally imperfect subgraph of G yields the full rank facet x(G) ≤ α(G).

So fare, no graph-theoretical characterization of near-perfect graphs is
known and, besides perfect and minimally imperfect graphs, no other graph
class is known to belong (completely) to the class of near-perfect graphs.
Hence, it is of interest to study the intersection of near-perfect graphs with
such graph classes which are in some sense close to perfect or minimally
imperfect graphs. The first result in this direction was obtained by Shepherd
for graphs with stability number two.
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Theorem 4.4 (Shepherd [98]) A graph G with α(G) = 2 is near-perfect if
and only if the neighborhood of every node of G induces a perfect graph.

This is, e.g., true for all quasi-line graphs G with α(G) = 2, as in a
quasi-line graph the neighbors of every node induce a co-bipartite graph.

We studied in [111] the intersection of near-perfect graphs with three
classes all generalizing the odd holes and odd antiholes: partitionable graphs,
webs, and antiwebs.

For every partitionable graph G it is known from Bland, Huang, and
Trotter [8] that G and G produce the full rank facet, but at most one of G
and G is near-perfect by Theorem 4.1. Even more, we proved in [111]:

Theorem 4.5 A partitionable graph G is near-perfect if and only if G is
minimally imperfect.

Hence, being near-perfect is a so-called genuine property that holds ex-
actly for all minimally imperfect graphs, but for none of the other partition-
able graphs. In addition, we have from [62]:

Lemma 4.6 If G is a partitionable graph but not minimally imperfect, then
STAB(G) has at least two non-trivial, non-clique facets and QSTAB(G) has
at least two fractional extreme points.

Next we study two classes which contain all odd holes, all odd antiholes,
and many partitionable graphs: the webs and antiwebs. Trotter [104] showed
that a web W k−1

n produces the full rank facet iff k is not a divisor of n while

the same is true for antiwebs W
k−1
n iff k and n are relatively prime. We

studied in [111] for which webs and antiwebs the full rank facet is the only
non-trivial, non-clique facet of the stable set polytope.

Theorem 4.7 A web is near-perfect if and only if it is perfect, an odd hole,
W 2

11, or if it has stability number two.

As all webs are quasi-line, it follows from Theorem 4.4 that all webs with
stability number two are near-perfect. In contrary, there are no properly
near-perfect antiwebs [111]:

Theorem 4.8 An antiweb is near-perfect if and only if it is perfect, an odd
hole, or an odd antihole.
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4.1.2 Rank-perfect graphs

We now turn to the next superclass of perfect graphs: the class of rank-
perfect graphs G where 0/1-inequalities of the form (4.2)

x(G′) ≤ α(G′)

with G′ ⊆ G are needed as only nontrivial facets to describe STAB(G).
Since clique constraints are special rank constraints (namely those with
α(G′) = 1), all perfect graphs are rank-perfect in particular. Furthermore,
all near-perfect graphs are obviously rank-perfect, too. We survey which
other classes of rank-perfect graphs are known.

Chvátal [21] called a graph G t-perfect if STAB(G) has rank constraints
associated with edges and odd holes as only nontrivial facets. (Note that
”t” stands for ”trou”, the French word for hole, and that every C2k+1 with
k ≥ 1 is here considered to be a hole.) Bipartite graphs without isolated
nodes are obviously t-perfect. Chvátal conjectured in [21] and Boulala and
Uhry proved in [10] that series-parallel graphs are t-perfect (that are graphs
obtained from disjoint cycle-free subgraphs by repeated application of the
following two operations: adding a new edge parallel to an existing edge
and subdividing edges, i.e., replacing edges by paths). Further examples of
t-perfect graphs are almost-bipartite graphs (having a node whose deletion
leaves the graph bipartite) due to Fonlupt and Uhry [37] and strongly t-
perfect graphs (having no subgraph obtained from subdividing edges of a
K4 such that all four cycles corresponding to the triangles of the K4 are
odd) due to Gerards and Schrijver [43]. Further investigations of t-perfect
graphs without certain subdivisions of K4 can be found in Gerards and
Shepherd [44]. We identified in [27] outerplanar graphs as a new class of
strongly t-perfect graphs (recall that such graphs can be embedded into the
plane without edge crossing and such that all nodes lay in the outer face).

Theorem 4.9 Every outerplanar graph is strongly t-perfect.

By definition, a natural generalization of t-perfect graphs is the class of h-
perfect graphs (from hole-perfect) where, besides nonnegativity constraints,
rank constraints associated with cliques of arbitrary size and odd holes suffice
to describe the associated stable set polytopes [50]. One class of nontrivial
h-perfect graphs (that are neither perfect, nor t-perfect, nor combinations of
these) is the class of (P5,diamond)-free graphs due to Arbib and Mosca [2].
(For combinations, see Fonlupt and Uhry [37] and Sbihi and Uhry [93].)
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One could generalize this concept further to co-h-perfect graphs, where
rank constraints associated with cliques, odd holes, and odd antiholes are
used, or to p-perfect graphs, taking rank constraints associated with cliques
and arbitrary partitionable graphs. (Note: partitionable graphs are not
rank-perfect in general, as observed in [111].)

The key property of t-perfect and h-perfect graphs is that the stable
set problem can be solved in polynomial time due to [50]. The reason is
that the separation problems are polynomial time solvable for edge and odd
hole constraints as well as for orthonormal representation constraints (and,
therefore, clique constraints) and odd hole constraints. This result can be
extended to co-h-perfect graphs, as a superclass of odd antihole constraints
is polynomial time separable [68], but so far not to p-perfect graphs, as at
least the separation for partitionable antiweb constraints is NP-hard [14].

Whereas all the above classes are rank-perfect by definition, there are
also several “natural” classes of rank-perfect graphs: line graphs [33], semi-
line graphs [19], antiwebs [110], convex-round graphs [27], and complements
of fuzzy circular interval graphs [112].

Recall that a line graph is obtained by taking the edges of an original
graph as nodes and connecting two nodes iff the original edges are incident;
all facets of the stable set polytopes are known from matching theory [33]
implying that line graphs are rank-perfect, (see Section 4.2.2 for details).

Chudnovsky and Seymour [19] recently extended this result to all quasi-
line graphs not being fuzzy circular interval graphs. Let C be a circle and
I = {I1, . . . , Im} be a collection of intervals Ik = [lk, rk] in C s.t. there is no
proper containment of intervals in I and no two intervals share an endpoint.
Further, take a finite multiset V = {v1, . . . , vn} of points in C (i.e., vi ∈ C
may occur in V with a multiplicity > 1). The fuzzy circular interval graph
G(V,I, C) = (V,E1 ∪ E′

2) has node set V and edge set E1 ∪ E′
2 where

E1 = {vivj : ∃Ik ∈ I with vi, vj ∈ Ik and {vi, vj} 6= {lk, rk}}
E′

2 ⊆ {vivj : ∃Ik ∈ I with vi = lk, vj = rk} = E2.

We call a graph semi-line if it is a line graph or a quasi-line graph not
representable as fuzzy circular interval graph. Chudnovsky and Seymour [19]
showed that semi-line graphs are rank-perfect.

Note that there indeed exist quasi-line graphs which are neither line
graphs nor fuzzy circular interval graphs: in Figure 4.1, the gray-filled nodes
induce an obstruction for line graphs, the squared nodes an obstruction for
fuzzy circular interval graphs. Thus, semi-line graphs are a proper superclass
of line graphs.
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For both classes, the stable set problem can be solved in polynomial
time, using Edmonds’ matching algorithm for stable sets in line graphs and
using the extensions of this algorithm for general claw-free graphs.

Figure 4.1: Quasi-line graphs not being fuzzy circular interval or line graphs

In [110], we could show that antiwebs are rank-perfect. More precisely:

Theorem 4.10 The stable set polytope of an antiweb is given by nonneg-
ativity constraints and rank constraints associated with cliques and prime
antiwebs only.

Recall that an antiweb Kn/α is prime if gcd(n, α) = 1 and that anti-

webs include all cliques Kk = Kk/1, all odd antiholes C2k+1 = K2k+1/2, and
all odd holes C2k+1 = K2k+1/k. This motivated us to introduce, as com-
mon generalization of perfect, t-perfect, h-perfect graphs, and co-h-perfect
graphs, the class of a-perfect graphs as those graphs whose stable set poly-
topes are given by nonnegativity constraints and rank constraints associated
with cliques and prime antiwebs only (the “a” stands for “antiweb”).

We exhibited two further classes of a-perfect graphs: complements of
fuzzy circular interval graphs [112] and convex-round graphs [27].

Theorem 4.11 Co-fuzzy circular interval graphs are a-perfect.

Recall that convex-round graphs admit a node labeling in a cyclic order
such that all neighbors of any node are consecutive w.r.t. this order. As
antiwebs obviously admit such an order, convex-round graphs constitute a
proper superclass. We showed in [27] that convex-round graphs are special
complements of fuzzy circular interval graphs. This implies:

Theorem 4.12 Every convex-round graph is a-perfect.
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Unfortunately, there is no polynomial time algorithm known to solve
the stable set problem for a-perfect graphs, as the separation problem for
antiweb constraints is NP-hard by [14].

4.1.3 Weakly rank-perfect graphs

This section deals with the graphs G where, besides nonnegativity con-
straints, only weak rank constraints (4.3) of the form

x(G′, 1l) + x(G − G′, a) ≤ α(G′, 1l)

are required to describe STAB(G). Recall that such inequalities are ob-
tained from the base rank constraint associated with a facet producing sub-
graph G′ ⊆ G, i.e., that x(G′, 1l) ≤ α(G′, 1l) produces the full rank facet of
STAB(G′). Since every facet-defining rank constraint x(G′, 1l) ≤ α(G′, 1l)
is a weak rank constraint with ai = 0 for i ∈ G − G′, the class of weakly
rank-perfect graphs contains all rank-perfect graphs (and, therefore, all near-
perfect and all perfect graphs).

One general way to arrive at classes of weakly rank-perfect graphs is the
following. Consider a class of rank-perfect graphs where only nonnegativity
constraints and rank constraints associated with subgraphs of a certain type
C are required to describe the stable set polytope. Then define the “corre-
sponding” class of weakly C-perfect graphs by taking weak rank constraints
based on those special rank constraints as only nontrivial facets of the stable
set polytope. E.g., the class of weakly h-perfect graphs can be defined that
way to contain all graphs whose stable set polytope is given by nonnega-
tivity constraints, clique constraints, and lifted odd hole constraints. (See
Padberg [74] for a general description of the sequential lifting procedure.)

The 5-wheel in Figure 4.2(a) and the graph in Figure 4.2(b) are exam-
ples of weakly h-perfect graphs which are not h-perfect. (Note that the
classes of weakly t-perfect and weakly h-perfect graphs coincide since clique
constraints are liftings of edge constraints.)

Note that the lifted odd hole constraint associated with an odd wheel
can also be considered as a complete join facet, obtained by joining two rank
facet-producing subgraphs (namely, a clique and an odd hole).

Thus, outgoing from a class of C-perfect graphs, we can also define all
joined C-perfect graphs as those graphs where all nontrivial facets of the
stable set polytope arise from complete joins of graphs G1, . . . , Gk ∈ C and
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(a) (b)

Figure 4.2: Two weakly h-perfect graphs

have the form
∑

i≤k

1

α(Gi)
x(Gi) ≤ 1 (4.5)

(here we normalize the rank constraints associated with all subgraphs Gi to
have right hand side equal to 1).

A natural graph class of this type was found by Shepherd [99]. A graph
G is near-bipartite if removing all neighbors of an arbitrary node leaves the
graph bipartite. (That means, for all nodes v of G, the set G − N(v) can
be partitioned into two stable sets and near-bipartite graphs are, therefore,
the complements of quasi-line graphs.)

Theorem 4.13 (Shepherd [99]) The only nontrivial facets of stable set poly-
topes of near-bipartite graphs are constraints

∑

i≤k

1

α(Ai)
x(Ai) + x(Q) ≤ 1

associated with complete joins of prime antiwebs A1, . . . , Ak and a clique Q.

Recall that an antiweb W
k−1
n is prime if k and n are relatively prime.

In particular, all odd holes and odd antiholes are prime. To illustrate The-
orem 4.13, consider the complete join of a C7 and a C7 as near-bipartite
graph G. Its stable set polytope has as nontrivial facets

x(Q) ≤ 1 ∀ maximal cliques Q ⊆ G

x(C7) + 2x(Q) ≤ 2 ∀ maximal cliques Q ⊆ C7

x(C7) + 3x(Q) ≤ 3 ∀ maximal cliques Q ⊆ C7

2x(C7) + 3x(C7) ≤ 6

i.e., constraints (4.5) associated with either a maximal clique of G, the com-
plete join of one antiweb and a maximal clique of the other antiweb, or the
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complete join of both antiwebs (here, the facets are scaled to have integer
coefficients).

The above result shows in particular that near-bipartite graphs form a
class of joined a-perfect graphs. For subclasses of near-bipartite graphs, the
facet sets can be simpler as in the above theorem only if certain kinds of
prime antiwebs or certain complete joins can be excluded.

Shepherd proved in [99] further that odd antiholes are the only prime
antiwebs occurring in complements of line graphs. Since all odd antiholes
have stability number two, only 0,1,2-valued facets are required for their
stable set polytopes:

Theorem 4.14 (Shepherd [99]) The only nontrivial facets of stable set poly-
topes of complements of line graphs are constraints

∑

i≤k

x(Ai) + 2x(Q) ≤ 2

associated with complete joins of odd antiholes A1, . . . , Ak and a clique Q.

Hence, complements of line graphs are joined p-perfect graphs.

Remark 4.15 Antiwebs are a subclass of near-bipartite graphs, but the oc-
currence of certain antiwebs in this class can clearly not be excluded. In [110]
it was shown that no antiweb contains the complete join of a (smaller) prime
antiweb and a single node. Thus, neither complete joins of two prime anti-
webs nor of a prime antiweb and a non-empty clique are possible, implying
that any facet (4.5) has only one component and is, therefore, a 0,1-valued
rank constraint. In [112] this result was extended to the larger class of
complements of fuzzy circular interval graphs.

In contrary to antiwebs, the webs (and, thus, also fuzzy circular interval
graphs and general quasi-line graphs) are highly not rank-perfect [80]. A
recent result of Stauffer [101] implies that webs are weakly rank-perfect; we
address this question for fuzzy circular interval graphs in Section 4.2.2.

Further, a description of the facet-system of STAB(G) for all graphs
G with α(G) = 2 was found (but not published) by Cook, see [98]. He
showed that the stable set polytope of graphs G with α(G) = 2 is given by
nonnegativity constraints and weak rank constraints of the form

x(N ′(Q)) + 2x(Q) ≤ 2 (4.6)

for every clique Q where N ′(Q) denotes the set of all nodes v of G with
Q ⊆ N(v). We call inequalities of this type clique neighborhood constraints.
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Hence, graphs G with α(G) = 2 are weakly rank-perfect, too. In order
to figure out which graphs G with α(G) = 2 are rank-perfect, we determine
which rank facets may appear. The inequalities (4.6) can be scaled to have
no coefficients different from 0 and 1 only if Q is maximal (then N ′(Q) = ∅
follows) or Q is empty (then N ′(Q) = V (G) follows). Thus, the only possible
rank facets are maximal clique facets and the full rank facet. Hence, we have
obtained (see e.g. [111]):

Corollary 4.16 A graph G with α(G) = 2 is rank-perfect if and only if G
is near-perfect.

For further consideration on stable set polytopes of graphs with stability
number two, see also Section 4.2.4.

4.1.4 Beyond weakly rank-perfect graphs

We finally discuss for which graph classes considered to be close to perfect
graphs in some sense this relation is also reflected in polyhedral terms.

This is clearly true for minimally imperfect graphs by Padberg [75, 76],
but not for partitionable graphs and almost-perfect graphs: There exist
infinitely many not rank-perfect partitionable webs [80] (and it is not known
yet whether partitionable graphs are weakly rank-perfect). Even worse,
almost-perfect graphs are not weakly rank-perfect, as the two smallest not
weakly rank-perfect graphs are the almost-perfect graphs from Figure 2.1,
which is certainly unexpected. (Both examples have 1,2-valued facets where
the subgraph induced by the nodes with coefficient 1 is perfect.)

Moreover, there is a whole sequence of almost-perfect but not weakly
rank-perfect graphs. Denote by G(k, v, 1) the graph obtained by completely
joining a clique Kk with a node v, and inserting one additional node on each
edge incident to v (the left graph in Figure 2.1 is G(3, v, 1)). Such graphs are
obviously almost-perfect (as removing v yields a perfect graph); we showed
in [29] that G = G(k, v, 1) is circular-perfect for each k ≥ 1 and its stable
set polytope has a facet of the form

x(G − v) + (k − 1)xv ≤ k

which is not a weak rank constraint for any k ≥ 3 as the subgraph G − v
induced by the nodes with coefficient 1 is perfect. Thus, almost-perfect and
circular-perfect graphs can certainly be considered to be close to perfect
graphs, but this is not reflected in polyhedral terms. However, all the known
strongly circular-perfect graphs are rank-perfect [29].
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The other way round, there are also near-perfect graphs which are not
close to perfection in other respects. For any k ≥ 2, the lexicographic prod-
uct C2k+1×K2 is near-perfect (as near-perfection is closed under replication
[98], see Section 5.3.2 for more details). Our results imply that all graphs in
this sequence are neither almost-perfect [61] nor circular-perfect [29].

Furthermore, the class of perfect graphs is closed under complementa-
tion, but none of its polyhedral superclasses is: Theorem 4.1 shows this for
near-perfect graphs, the 5-wheel for rank-perfect graphs as its complement
is rank-perfect, and the so-called “wedges” depicted in Figure 4.3 for weakly
rank-perfect graphs, as they are not weakly rank-perfect, but their comple-
ments are. (These graphs produce 1,2-valued facets where the white nodes
in the figure have coefficient 1 and induce a perfect subgraph [47] and are
almost-perfect as removing the squared node yields a perfect graph. We are
going to discuss wedges in detail in Section 4.2.4.)

(a) (b)

Figure 4.3: Two not weakly rank-perfect graphs.

Line graphs and quasi-line graphs are the only not self-complementary
classes where a polyhedral description for the stable set polytope is known
for both the graph class and the complementary class. While line graphs
are rank-perfect and their complements as joined p-perfect graphs weakly
rank-perfect, we only know that near-bipartite graphs are joined a-perfect,
whereas we do not know whether the inequalities describing the stable set
polytope of quasi-line graphs are weak rank constraints (see next section for
more details).

However, it is clear that a further subclass of quasi-line graphs, the claw-
free graphs, cannot be weakly rank-perfect as, e.g., all wedges are claw-free
but not weakly rank-perfect by Giles and Trotter [47]. In addition, Pulley-
blank and Shepherd [87] showed that wedges belong to a certain subclass of
claw-free graphs, the distance claw-free graphs, hence such graphs are not
weakly rank-perfect, too.
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Figure 4.4 illustrates the inclusion relations of the studied graph classes,
including the informations which are near-perfect, rank-perfect, or weakly
rank-perfect.

??
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joined a−perf.
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t−perfect

h−perfect

a−perfect

line 

semi−line 

quasi−line
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perfect
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min. imperfect

rank−perfect

weakly rank−perf.

Figure 4.4: Inclusion relations of the studied graph classes.
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4.2 Clique Family Inequalities and Classes of Claw-

Free Graphs

In this section, we address the stable set problem for claw-free graphs, that
is the problem of finding a stable set of maximum size or weight. For mem-
bers of this class, the stable set problem can be solved in polynomial time
[69, 71, 92]; the existing algorithms are extensions of Edmonds matching
algorithm [34]. This implies that also the optimization problem over the
stable set polytope of a claw-free graph is solvable in polynomial time [50].
Hence, the stable set polytope of claw-free graphs is, in this respect, under
control. However, no explicit description by means of a facet-defining sys-
tem is known for the stable set polytope of claw-free graphs yet; even no
conjecture was at hand up to now.

Edmonds’ characterization of the matching polytope [33] implies such a
description of the facets for the stable set polytope of line graphs and implies
that line graphs are rank-perfect and have Chvátal-rank one (see next section
for more details). But, in contrary to the algorithmic aspect, this description
could not be extended to a facet-defining system for the whole class of claw-
free graphs. So far, only the rank facets of the stable set polytopes of
claw-free graphs are well-understood due to Galluccio and Sassano [41] who
showed that these rank facets essentially come from cliques, line graphs of
2-connected hypomatchable graphs, and partitionable webs. The structure
of the non-rank facets for stable set polytopes of claw-free graphs is still not
well-understood. This apparent asymmetry between the algorithmic and the
polyhedral status of the stable set problem in claw-free graphs gives rise to
the challenging problem of providing a complete description of the non-rank
facets of general claw-free graphs, a long-standing open problem originally
posed in [50]; as a first step, we formulate an appealing conjecture.

Edmonds’ odd set inequalities for the matching polytope [33] can be ex-
tended to so-called clique family inequalities: that are valid inequalities for
the stable set polytope which rely on the intersection of cliques within the
family and have at most two consecutive non-zero coefficients (see next sec-
tion for more details). For the intermediate class of quasi-line graphs, Ben
Rebea claimed in the early eighties that all non-trivial, non-clique facets
of their stable set polytopes belong to this class of clique family inequal-
ities. Oriolo [73] verified this conjecture for line graphs, Chudnovsky and
Seymour [19] extended this recently to semi-line graphs. The latter result
implies that every quasi-line but not fuzzy circular interval graph is rank-
perfect with matching-like facets. For the stable set polytopes of fuzzy circu-
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lar interval graphs, however, clique family inequalities with arbitrarily high
coefficients are required due to Giles and Trotter [47]. Even the subclass
of webs is highly not rank-perfect [78, 79, 80] and clique family inequalities
with arbitrarily high coefficients are required [63] (see Section 4.2.2).

Ben Rebea’s conjecture was recently proved by Eisenbrandt et al. [36];
thus clique family inequalities indeed suffice for this intermediate class. How-
ever, even for the stable set polytopes of quasi-line graphs, the following
questions remain open.

In analogy to Edmonds’ odd set inequalities for the matching polytope,
clique family inequalities built a huge class of valid inequalities, but only few
of them are essential. Thus, the question remains open which clique family
inequalities induce facets. Basing on results in [78, 79, 80] we conjecture
which clique family inequalities are the essential ones (see Section 4.2.2).
An affirmative answer to this conjecture would show that quasi-line graphs
are weakly rank-perfect.

Edmonds conjectured that all facets of the stable set polytopes of a
claw-free graph can be obtained through a single application of the Chvátal-
Gomory procedure to its clique constraint stable set polytope. This was
disproved by Giles and Trotter [47] for general claw-free graphs and by
Oriolo [73] for quasi-line graphs. Even worse, the Chvátal-rank of a claw-
free graph can be arbitrarily large [24]. We investigate the Chvátal-rank
of clique family inequalities for arbitrary graphs. Our main result is that
the highest coefficient in a clique family inequality is an upper bound for
its Chvátal-rank [82]. This provides an alternative proof for the validity of
clique family inequalities and shows that all rank clique family inequalities
have Chvátal-rank one. Hence, semi-line graphs have Chvátal-rank one, too
(see Section 4.2.3 for more details).

However, even for small claw-free but not quasi-line graphs clique family
inequalities do not suffice to describe all facets of the stable set polytope.
In Section 4.2.4, we collect examples of such claw-free graphs, including the
graphs with stability number two, wedges [47], and further small claw-free
graphs from [47, 63] producing facets with up to five consecutive non-zero
coefficients. (Recall that wedges induce non-weak rank facets, thus claw-free
graphs are not weakly rank-perfect.)

Our aim is to formulate an appropriate conjecture on the non-rank facets
for general claw-free graphs. The facets for graphs G with α(G) = 2 are
clique neighborhood constraints; claw-free graphs G with α(G) ≥ 4 are not
too far from quasi-line graphs [38] and it is conjectured that rank constraints
and certain clique neighborhood constraints suffice to describe their stable
set polytope [101]. In fact, all the known difficult facets of claw-free graphs
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occur if α(G) = 3. We analyze these facets in [83] and show that all of
them belong to only one class of inequalities, the so-called co-spanning 1-
forest constraints. Combining all those results enables us to formulate our
conjecture, see Section 4.2.4.

In addition, we extend the concept of clique family inequalities further
in order to cover this kinds of facets by more general inequality classes of
the same spirit [84]. For that we introduce general clique family inequalities
and discuss the validity of several classes of general clique family inequalities,
including the original ones.

We prove that all clique neighborhood constraints and some types of co-
spanning 1-forest constraints (including the facets induced by wedges) can
be expressed as general clique family inequalities. We conjecture that this
is true for all co-spanning 1-forest facets of claw-free graphs. An affirmative
answer to this conjecture would imply that also the polyhedral aspect of
the stable set problem for claw-free graphs is an extension of Edmonds’ de-
scription of the matching polytope, as every general clique family inequality
extends Edmonds’ odd set inequalities for the matching polytope.

4.2.1 From odd set inequalities to clique family inequalities

Firstly, we consider Edmonds’ odd set inequalities for the matching poly-
tope [33]. This result implies a description for the stable set polytopes of
line graphs; matching-like facets can be extended to so-called clique family
inequalities. We develop these ideas starting with the matching polytope.

A set of pairwise non-incident edges in a graph G is called matching,
the matching polytope M(G) is defined as the convex hull of the incidence
vectors of all matchings in G. Edmonds gave the following characterization:

Theorem 4.17 [33] The matching polytope M(G) of any graph G = (V,E)
is given by

(0) nonnegativity constraints xe ≥ 0 ∀e ∈ E,

(i) star constraints x(δ(v)) ≤ 1 ∀v ∈ V , δ(v) = {e ∈ E : e incident to v},

(ii) odd set constraints x(E(H)) ≤ |H|−1
2 ∀H ⊆ V with |H| ≥ 3 odd.

The fractional matching polytope Mf (G) is defined as the set of all points
in R

|G| satisfying the constraints (0) and (i). Chvátal [20] observed that
the constraints of type (ii) are obtained through a single application of the
Chvátal-Gomory procedure to Mf (G); hence, the odd set constraints (ii)
and Mf (G) have Chvátal-rank one.
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Note that not all constraints of type (ii) are essential: Edmonds and
Pulleyblank [35] proved later that an odd set constraint associated with H
defines a facet only if H is a 2-connected, hypomatchable induced subgraph
of G (i.e., H − v is connected and admits a matching meeting all nodes, for
all v, as the left graph in Figure 4.5).

Edges in a graph G turn to nodes of its line graph L(G), thus matchings
in G obviously correspond to stable sets in L(G) and edge-stars in G to
cliques in L(G), which implies the following:

Corollary 4.18 For any graph G, the stable set polytope of L(G) is given by

(0) nonnegativity constraints xv ≥ 0 ∀v ∈ V (L(G)),

(i) clique constraints x(Q) ≤ 1 ∀ cliques Q ⊆ L(G),

(ii) rank constraints x(V (L(H))) ≤ |H|−1
2 associated with the line graphs

of 2-connected, hypomatchable induced subgraphs H ⊆ G.

In particular, line graphs are rank-perfect and have Chvátal-rank one.
In order to interpret odd set inequalities for STAB(L(G)), consider an odd
set H ⊆ V (G). The edge stars of the nodes in H correspond to a family Q
of |H| cliques in L(G), two such cliques overlap if there is an edge between
the respective nodes in G, see the example in Figure 4.5.

G L(G)

2

3
5

45

1

3

2

4

1

Figure 4.5: From odd sets in G to clique families in L(G).

Denoting the set of nodes in G by V (Q, 2) which are covered twice by
the cliques in Q, we can reformulate the rank constraint (ii) associated with

L(H) ⊆ L(G) as
∑

i∈V (Q,2) xi ≤ ⌊ |Q|
2 ⌋.

The above corollary shows that such rank constraints are the only non-
trivial, non-clique facets required for the stable set polytope of line graphs.
Chudnovsky and Seymour [19] recently extended this result to all quasi-line
graphs not being fuzzy circular interval graphs, i.e., to the larger class of
semi-line graphs.
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However, rank constraints do not suffice to describe the stable set poly-
tope for quasi-line graphs; even most webs are not rank-perfect [80]. Ben
Rebea generalized the above matching-like constraints to so-called clique
family inequalities, involving two consecutive coefficients which are not equal
to 1 and 0 in general.

Let G = (V,E) be a graph, Q be a family of at least three inclusion-wise
maximal cliques of G, p ≤ |Q| be an integer, and define two sets

V (Q, p) = {i ∈ V : |{Q ∈ Q : i ∈ Q}| ≥ p},
V (Q, p − 1) = {i ∈ V : |{Q ∈ Q : i ∈ Q}| = p − 1}.

Then the clique family inequality (Q, p) is defined as

(p − r)
∑

i∈V (Q,p)

xi + (p − r − 1)
∑

i∈V (Q,p−1)

xi ≤ (p − r)

⌊

|Q|

p

⌋

(4.7)

with r = |Q|(modp) and r > 0. For example, choose the five grey triangles
of the line graph in Figure 4.5 as clique family Q and let p = 2. Then
V (Q, p) consists in the black nodes, V (Q, p − 1) in the grey nodes (whereas
the white node does not belong to any of the two sets). Moreover, r = 1
follows and we obtain that the clique family inequality (Q, p) is the rank
constraint

1x(V (Q, p)) + 0x(V (Q, p − 1)) ≤ 2

associated with the black nodes.
Oriolo [73] established that clique family inequalities are valid for the

stable set polytope of every graph. Thus it is natural to ask whether clique
and clique family inequalities are sufficient to describe stable set polytopes
of other graphs than line graphs.

4.2.2 Clique family inequalities for quasi-line graphs

Ben Rebea (see [73]) claimed that clique family inequalities suffice to de-
scribe the stable set polytopes of quasi-line graphs. This was recently proved
by Eisenbrandt, Oriolo, Stauffer, and Ventura:

Theorem 4.19 (Ben Rebea’s Theorem [36]) The stable set polytope of
any quasi-line graph admits only three types of facets:

(0) nonnegativity constraints,

(i) clique constraints,

(ii) clique family inequalities.
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Ben Rebea’s Theorem is the generalization of Edmonds’ description of
the matching polytope (Theorem 4.17) to quasi-line graphs. However, clique
family inequalities built, like Edmonds’ odd set inequalities, a huge class
of valid inequalities–and it remains open which of them are essential, i.e.,
the inequalities associated with which clique families induce indeed facets.
In the matching case, all odd set inequalities associated with 2-connected
hypomatchable graphs are the essential ones due to [35]; we address the
question which clique families are facet-inducing for quasi-line graphs.

Chudnovsky and Seymour [19] recently showed that semi-line graphs are
rank-perfect. Since the rank facets of claw-free graphs are well-understood
according to Galluccio and Sassano [41], the interesting part of the class of
quasi-line graphs consists in all fuzzy circular interval graphs.

We first summarize results from a series of papers [78, 79, 80] which
show that webs are the core of the class of fuzzy circular interval graphs, as
already almost all webs are not rank-perfect. Outgoing from these results,
we formulate a conjecture which clique family inequalities are essential for
the stable set polytopes of fuzzy circular interval graphs. An affirmative
answer to this conjecture would imply that quasi-line graphs are weakly
rank-perfect and that all facets of fuzzy circular interval graphs rely on
webs.

Stable set polytopes of webs

From the literature, the following was known about facets of webs. The
webs W 1

n are, as holes, perfect or rank-perfect [21, 75] and the webs W 2
n are

rank-perfect by Dahl [32]. On the other hand, Kind [55] found (by means of
the PORTA software1) examples of webs with clique number > 4 which are
not rank-perfect, e.g., W 4

31, W 5
25, W 6

29, W 7
33, W 8

28, W 9
31. Thus, it was open

whether the webs with clique number 3 are rank-perfect and whether there
exist only finitely many not rank-perfect webs. Results from [78, 79, 80]
answere both questions negatively, as described in the sequel.

Firstly, we presented in [78] an infinite sequence of not rank-perfect webs
W 3

33, W 3
42, W 3

51, W 3
60, ... with clique number equal to 4.

Next, we introduced in [79] a construction technique for non-rank facets
as key tool in order to answer the second question. For that, we need the
notion of proper weak non-rank facets. Recall that a facet aTx ≤ cα(G′) of
STAB(G) is a weak rank constraint w.r.t. G′ ⊆ G, if ai = c holds for every
node i of G′ and if G′ is rank facet-producing (i.e.,

∑

i∈V (G′) xi ≤ α(G′)

1By PORTA it is possible to generate all facets of the convex hull of a given set of
integer points, see http://www.zib.de
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defines a facet of STAB(G′)). As any rank facet is a particular weak rank
facet (with ai = c = 1 for every i ∈ V (G′) and ai = 0 otherwise), we call a
weak rank facet non-rank if it cannot be scaled to have 0/1-coefficients only
and proper if G′ is not a clique.

The main consequence of our construction technique introduced in [79]
is the following:

Theorem 4.20 If STAB(W k
n ) admits a proper weak non-rank facet then

also STAB(W k
n+k+1) has a proper weak non-rank facet.

Therefore, if STAB(W k
n ) has a proper weak non-rank facet then all webs

W k
n+l(k+1) are not rank-perfect for any l ≥ 0, too. Hence, an important

consequence of Theorem 4.20 is:

Corollary 4.21 If there is a base set of k+1 webs W k
n0

, . . . ,W k
nk

such that,
for 0 ≤ i ≤ k,

• STAB(W k
ni

) has a proper weak non-rank facet

• ni = i (mod k + 1)

then all webs W k
n with n ≥ max{n0, . . . , nk} − k are not rank-perfect.

This implies that, for every fixed k ≥ 3, constructing a finite base set of
webs W k

n0
, . . . ,W k

nk
with proper weak non-rank facets suffices to show that

almost all webs W k
n are not rank-perfect. In order to present such base

sets for all values of k ≥ 3, we considered special clique family inequalities
associated with proper subwebs which all yield proper weak non-rank facets.

A clique family inequality (Q, p) is associated with a proper subweb W k′

n′

of a web W k
n if Q = {Qi : i ∈ W k′

n′ } is chosen as clique family and p = k′ +1,
where Qi = {i, . . . , i + k} denotes the maximum clique of W k

n starting in
node i. (Recall that the clique number of a web W k

n is k+1 and the stability
number is ⌊ n

k+1⌋.) We obtained in [78]:

Lemma 4.22 Let W k′

n′ ⊂ W k
n be a proper induced subweb. The clique family

inequality (Q, k′ + 1) associated with W k′

n′ is

(k′ + 1 − r)
∑

i∈V (Q,k′+1)

xi + (k′ − r)
∑

i∈V (Q,k′)

xi ≤ (k′ + 1 − r)α(W k′

n′ )

where r = n′ mod (k′ + 1) and 0 < r < k′ + 1 holds; (Q, k′ + 1) is a valid
inequality for STAB(W k

n ) and W k′

n′ ⊆ V (Q, p).
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Every clique family inequality (Q, k′+1) associated with a subweb W k′

n′ ⊆
W k

n is particularly a proper weak rank constraint with base rank constraint
x(W k′

n′ ) ≤ α(W k′

n′ ), and is non-rank if r < k′.

For illustration, look at the smallest not rank-perfect web W 5
25. Its non-

rank facets are clique family inequalities associated with induced subwebs
W 2

10 ⊆ W 5
25 (the node sets 1, 2, 6, 7, 11, 12, 16, 17, 21, 22 and 1, 3, 6,

8, 11, 13, 16, 18, 21, 23 both induce a W 2
10 ⊆ W 5

25, see the black nodes in
Figure 4.6).

Figure 4.6: The two possible induced subwebs W 2
10 ⊆ W 5

25

Choosing Q = {Qi : i ∈ W 2
10} yields p = ω(W 2

10) = 3 in both cases. All
remaining nodes are covered twice, hence V (Q, p− 1) = W 5

25 −W 2
10 follows.

The corresponding clique family inequality (Q, 3) is

2
∑

i∈W 2
10

xi + 1
∑

i6∈W 2
10

xi ≤ 2α(W 2
10)

due to r = |Q| mod p = 1 and yields a non-rank facet of STAB(W 5
25).

The main results in [78, 80] prove that several clique family inequalities
(Q, k′+1) associated with different regular subwebs W k′

n′ induce proper weak
non-rank facets

A subweb W k′

n′ ⊂ W k
n is called (b1, w1, . . . , bt, wt)-regular, if the nodes

of W k′

n′ occur in W k
n in equal blocks where bi consecutive nodes from W k′

n′

alternate with wi consecutive nodes outside W k′

n′ , for 1 ≤ i ≤ t. The two
subwebs W 2

10 ⊆ W 5
25 presented in Figure 4.6 show a (2,3)-regular and a

(1,1,1,2)-regular subweb, respectively.

We proved the existence of a base set of webs W k
n for all k ≥ 3 by

presenting several clique family inequalities associated with different regular
subwebs which all yield proper weak non-rank facets.
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Theorem 4.23 [78] For k = 3, consider a (2, 1)-regular subweb W 2
2l ⊂ W 3

3l.
The clique family inequality (Q, 3)

2
∑

i∈W 2
2l

xi + 1
∑

i/∈W 1
1l

xi ≤ 2α(W 2
2l)

associated with W 2
2l is a proper weak non-rank facet of STAB(W 3

3l) if l = 2
(mod 3) and l ≥ 11 holds.

Thus, the stable set polytopes of the webs W 3
33, W 3

42, W 3
51, W 3

60 admit
proper weak non-rank facets and Corollary 4.21 implies that all webs W 3

n

with n > 56 are not rank-perfect.

Theorem 4.24 [80] For any k ≥ 5, consider a (k′, k − k′)-regular subweb
W k′

lk′ of W k
lk with 2 ≤ k′ ≤ k − 3 and odd l ≥ 3. The clique family inequality

(Q, k′ + 1)

2
∑

i∈W k′

lk′

xi + 1
∑

i/∈W k′

lk′

xi ≤ 2α(W k′

lk′)

associated with W k′

lk′ is a proper weak non-rank facet of STAB(W k
lk) if l = 2

(mod k′ + 1) and α(W k′

lk′) < α(W k
lk).

As a consequence, we obtain many different infinite sequences of not
rank-perfect webs, among them the required base sets for all even values of
k ≥ 6 (but not for the odd values k ≥ 5 since all webs in the latter sequences
have an odd number of vertices). For any even k ≥ 6, choosing k′ = k

2 if

k = 0 (mod 4) and k′ = k
2 − 1 if k = 2 (mod 4) and l = (k′ + 3) + (k′ +1)2j

for j ≥ 1 in both cases as odd values of l with l = 2 (mod k′ + 1) satisfies
the precondition of Theorem 4.24. Thus, we obtain the following infinite
sequences of not rank-perfect webs:

Theorem 4.25 [80] Let k ≥ 6 be even. Then for every integer j ≥ 1 holds
that STAB(W k

n ) has a proper weak non-rank facet if

• n =
(

k+6
2 + (k + 2)j

)

k and k = 0(mod 4);

• n =
(

k+4
2 + kj

)

k and k = 2(mod 4).

We showed in [80] that these sequences contain the required base sets
for the case of webs W k

n with even k ≥ 6. The remaining base sets for k = 4
and all odd values of k ≥ 5 are constructed as follows.



82 CHAPTER 4. RANK-PERFECT GRAPHS AND BEYOND

Theorem 4.26 [80] For k = 4, consider a (1,1)-regular subweb W 2
l ⊂ W 4

2l.
The clique family inequality (Q, 3)

2
∑

i∈W 2
l

xi + 1
∑

i6∈W 2
l

xi ≤ 2α(W 2
l )

associated with W 2
l is a proper weak non-rank facet of STAB(W 4

2l) if l = 1
(mod 3) and l ≥ 13.

Thus, the stable set polytopes of the webs W 4
26, W 4

32, W 4
38, W 4

44, and
W 4

50 have a proper weak non-rank facet and all webs W 4
n with n > 45 are,

therefore, not rank-perfect.
For each odd k ≥ 5, we extended our result for k = 3 from [78] by

considering the clique family inequality associated with the (k−1, 1)-regular
subweb W k−1

l(k−1) ⊂ W k
lk as follows:

Theorem 4.27 [80] For any odd k ≥ 5, consider a (k−1, 1)-regular subweb
W k−1

l(k−1) ⊂ W k
lk. The clique family inequality (Q, k)

2
∑

i∈W k−1
l(k−1)

xi + 1
∑

i6∈W k−1
l(k−1)

xi ≤ 2α(W k−1
l(k−1)

)

associated with W k−1
l(k−1) is a proper weak non-rank facet of STAB(W k

lk) if

l = l′k + 2 and l′ ≥ 3.

For any odd k ≥ 5, the sequence of the k + 1 webs W k
k(l′k+2) with 3 ≤

l′ ≤ 3 + k is the required base set. Thus, W k
n with n ≥ ((k + 3)k + 1)k is

not rank-perfect for any odd k ≥ 5.
In summary, all the above results from [78, 79, 80] show that there is,

for each fixed k ≥ 3, a value n(k) such that all webs W k
n with n ≥ n(k) are

not rank-perfect. In particularly, for any k ≥ 3 there are only finitely many
rank-perfect webs W k

n , which implies:

Corollary 4.28 Almost all webs with given clique size at least 4 are not
rank-perfect.

Note that the above results use clique family inequalities associated with
certain subwebs which yield 1/2-valued facets only. Since the construction
technique from [79] does not change the involved coefficients, the stable set
polytopes of almost all webs admit 1/2-valued facets.
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According to Ben Rebea’s Theorem [36], the stable set polytopes of
webs have clique and clique family inequalities as only non-trivial facets.
We conjectured [80] and Stauffer recently proved [101] that the essential
ones among them are precisely the clique family inequalities associated with
proper subwebs:

Theorem 4.29 [101] The only facets of STAB(W k
n ) are the following:

(0) nonnegativity constraints,

(i) clique constraints,

(ii) full rank constraint,

(iii) clique family inequalities (Q, k′+1) associated with proper subwebs W k′

n′

where (k′ + 1)6 | n′ and α(W k′

n′ ) < α(W k
n ) holds.

As a web W k
n can have subwebs W k′

n′ for all values 1 ≤ k′ < k, this
implies that the stable set polytope of W k

n admits (k − 2)/(k − 1)-valued
facets. In particular, the stable set polytopes of all webs W 3

n have 1/2-
valued facets only, where for all webs W k

n with k > 3 larger coefficients
are required. In fact, Liebling et al. [63] proved that, for any odd k ≥ 5,
the stable set polytope of W k

k2 has a (k − 2)/(k − 1)-valued facet. Hence,
the webs are indeed the not rank-perfect core of the class of fuzzy circular
interval graphs. Moreover, the above theorem combined with Lemma 4.22
yields that all webs are weakly rank-perfect.

A conjecture on facet-defining clique family inequalities

In order to figure out which clique family inequalities define facets for general
quasi-line graphs, we shall extend the above result for webs to the whole
class of fuzzy circular interval graphs (recall that the stable set polytopes of
semi-line graphs are described by [19]).

Firstly, note that we can interpret a clique family inequality (Q, k′ + 1)
associated with an induced subweb W k′

n′ ⊂ W k
n as follows: we take all the

n′ maximum cliques Q′
1, . . . , Q

′
n′ of W k′

n′ and extend them to a family Q =
{Q1, . . . , Qn′} of maximal cliques of the whole graph W k

n , and we choose
p = k′ + 1.

In particular, a clique family Q constructed this way is k′-cyclic, that is,
every clique Qi intersects the k′ cliques Qi−k′ , . . . , Qi−1 and the k′ cliques
Qi+1, . . . , Qi+k′ (all indices are taken modulo n′) as the cliques Q′

1, . . . , Q
′
n′

obviously satisfy this property. (Recall that all nodes of W k′

n′ are covered
(k′ + 1)-times by the cliques in Q and, thus, belong to the set V (Q, k′ + 1).)
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The task is to figure out which clique families are the crucial ones in
general fuzzy circular interval graphs G(V,I, C). We first show that they
are also k′-cyclic for some k′ ≥ 1.

As for the clique families only maximal cliques are required, we first
observe that a maximal clique of a fuzzy circular interval graph G(V,I, C)
corresponds to all points of V belonging to an interval I ∈ I, where the
endpoints of I have possibly less multiplicity due to fuzzyness.

Next, the subgraph G′(Q, p) of G(V,I, C) induced by the nodes in V (Q, p)
and V (Q, p−1) is imperfect, otherwise (Q, p) cannot be a (non-clique) facet.
Thus G′(Q, p) contains, according to the Strong Perfect Graph Theorem, an
odd hole or odd antihole and, hence, in particular a prime web.

We showed in [112] that every prime subweb W k′

n′ of a fuzzy circular
interval graph G(V,I, C) admits exactly one representation as fuzzy circular
interval graph, namely, the following canonical one: Consider a point set
V ′ = {1, . . . , n′} distributed on C in this order and without multiplicities.
Further, let I ′ = {I1, . . . , In′} be a collection of intervals in I with Ii ∩
V ′ = {i, . . . , i + k′} for 1 ≤ i ≤ n′ (indices are taken modulo n′). Then
G(V ′,I ′, C) obviously equals the web W k′

n′ . As an example, Figure 4.7 shows
the canonical representation of C7 = W 2

7 .

4

1

3

7

6 2

5

1

3

7

6 2

5

4

Figure 4.7: The canonical representation of W 2
7 .

This implies in particular that the intervals representing the maximum
cliques of W k′

n′ cover C completely and built a k′-cyclic clique family of
G(V,I, C). Moreover, every prime subweb W k′

n′ of G(V,I, C) is dominat-
ing [112], i.e., every node outside W k′

n′ is connected to some node in W k′

n′ .

The subgraph G′(Q, p) of G(V,I, C) induced by the nodes in V (Q, p) and
V (Q, p − 1) contains at least one prime subweb W k′

n′ , as it contains at least
one odd hole or odd antihole. In particular, the intervals representing the
cliques in Q cover C completely, as the intervals representing the maximum
cliques of W k′

n′ already do. More precisely, we proved in [84]:
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Lemma 4.30 If (Q, p) is a facet-defining clique family inequality for a fuzzy
circular interval graph G(V,I, C), then Q is a k-cyclic clique family for some
k ≥ max{k′ : W k′

n′ ⊆ G′(Q, p), prime}.

As only cyclic clique families can be essential, this motivates to consider
clique family inequalities (Q, k′ + 1) associated with prime subwebs W k′

n′

of fuzzy circular interval graphs, where Q is obtained by extending the n′

maximum cliques of W k′

n′ to maximal cliques of the whole graph.
All the known non-rank facets for fuzzy circular interval graphs are of

this type, e.g., the facets with arbitrarily high coefficients of the following
sequence of fuzzy circular interval graphs Gk, k ≥ 1, introduced in [47]:

Example 4.31 Take the webs W k+1
n and W k

n with n = 2k(k +2)+1 where
V (W k+1

n ) = {1, . . . , n} and V (W k
n ) = {1′, . . . , n′}. Construct the graph Gk

by taking W k+1
n and W k

n as induced subgraph and adding the edges {i, i′},
{i, (i + 1)′}, . . . , {i, (i + 2k + 1)′} for 1 ≤ i ≤ n where all indices are taken
modulo n. (The graph G1 is depicted in Fig. 4.8). Giles and Trotter [47]
showed that the clique family inequality (Q, k + 2)

(k + 1) x(W k+1
n ) + k x(W k

n ) ≤ (k + 1)α(W k+1
n )

is a facet of STAB(Gk) for every k ≥ 1, where Q is constructed as follows.
Let Qi = {i, . . . , i + k + 1} denote the maximum clique of W k+1

n starting
in node i and, analogously, Q′

j′ = {j′, . . . , (j + k)′} the maximum clique

of W k
n starting in node j′. Since every node i of W k+1

n is exactly linked
to the nodes i′, . . . , (i + 2k + 1)′, it is easy to see that Qi and Q′

(i+k+1)′

are totally joined for each 1 ≤ i ≤ n. Indeed, the chosen clique family is
Q = {Qi ∪ Q′

(i+k+1)′ : 1 ≤ i ≤ n}, which is associated with W k+1
n (every

maximum clique Qi is extended by Q′
(i+k+1)′ to a maximal clique of the

whole graph Gk) and (k + 1)-cyclic (see Fig. 4.8 for an example).

Figure 4.8: The graph G1 together with its cyclic clique family
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To support this feeling further, we extended in [84] our result from [79]
that no facet-defining line graphs different from odd holes can occur in webs:

Lemma 4.32 The only 2-connected, critical hypomatchable graphs H s.t.
L(H) occurs in a fuzzy circular interval graph are triangles and odd holes.

Combining this lemma with the characterization of the rank facets for
claw-free graphs due to Galluccio and Sassano [41], all rank-facets of fuzzy
circular interval graphs rely on webs. We believe that this is also true for
the non-rank facets and conjecture:

Conjecture 4.33 Every facet of the stable set polytope of a fuzzy circular
interval graph belongs to one of the following classes:

(0) nonnegativity constraints,

(i) clique constraints,

(ii) clique family inequalities associated with prime subwebs.

An affirmative answer would imply that all facets (not only the rank-
facets) of fuzzy circular interval graphs rely on prime webs. The facets of
semi-line graphs rely on line graphs of hypomatchable graphs only (they are
rank-facets, and webs are excluded by definition). Thus, we would have a
real partition of quasi-line graphs: in semi-line graphs with line graph-based
rank facets and in fuzzy circular interval graphs with web-based facets:

quasi−line

semi−line fuzzy circ.int.

line web

odd hole

line graph
based

rank facets

web−
based
facets

Figure 4.9: Facet types and classes of quasi-line graphs

In addition, we would obtain that all fuzzy circular interval graphs are
weakly rank-perfect. This would particularly imply that quasi-line graphs
are the largest graph class where weakly rank-perfection is known for the
class and the complementary class (the near-bipartite graphs).
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4.2.3 The Chvátal-rank of quasi-line graphs

Edmonds conjectured that the Chvátal-rank of a claw-free graph is one.
This was disproved by [47, 73]; the Chvátal-rank of a claw-free graph can
even be arbitrarily large [24].

We investigate the Chvátal-rank of general clique family inequalities
(Q, p). Our main result is that their Chvátal-rank is at most min{r, p − r}
with r = |Q| (mod p). The argumentation provides an alternative proof for
the validity of clique family inequalities and shows that all 0/1-valued clique
family inequalities have Chvátal-rank 1. We discuss consequences regarding
the Chvátal-rank of quasi-line graphs. In particular, all rank-perfect sub-
classes of quasi-line graphs have Chvátal-rank 1, which extends Edmonds
result on the Chvátal-rank of line graphs to semi-line graphs.

The Chvátal-rank of general clique family inequalities

Our first result from [82] is the following:

Theorem 4.34 Let (Q, p) be a clique family inequality and r = |Q| (mod p).
For every 1 ≤ i ≤ p − r, the inequality

i
∑

v ∈V(Q,p)

xv + (i − 1)
∑

v ∈V(Q,p−1)

xv ≤ i

⌊

|Q|

p

⌋

has Chvátal-rank at most i; thus (Q, p) has Chvátal-rank at most p − r.

The proof of Theorem 4.34 shows also validity of clique family inequali-
ties for the stable set polytope of any graph, involving only standard round-
ing arguments. Furthermore, as the largest coefficient of a clique family
inequality is an upper bound for its Chvátal-rank, we obtain:

Corollary 4.35 Every rank clique family inequality has Chvátal-rank one.

The latter consequence is particularly nice, as neither general rank con-
straints nor general clique family inequalities have this property [24, 73], but
the combination of both.

However, the upper bound established in Theorem 4.34 gets weaker if r
gets smaller; we improved this upper bound for r < p/2 in [82] as follows:

Theorem 4.36 Every clique family inequality (Q, p) with r = |Q| (mod p)
has Chvátal-rank at most r if 0 ≤ r < p − r.
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Thus, Theorem 4.34 and Theorem 4.36 together imply the following:

Corollary 4.37 Every clique family inequality (Q, p) has Chvátal-rank t ≤
min{r, p − r} ≤ p

2 .

Very recently, Stauffer and Ventura [102] established a lower bound by
showing that the Chvátal-rank of (Q, p) is at least log(1

2 min{r, p − r}),
provided (Q, p) defines a facet and V (Q, p) contains a node subset V ′ with
|V ′| = |Q| and ω(G[V ′]) ≤ p. We call a clique family inequality good if it
satisfies this property and infer:

Corollary 4.38 Every good clique family inequality (Q, p) has Chvátal-rank
t with log(1

2 min{r, p − r}) < t ≤ min{r, p − r}.

Consequences for quasi-line graphs

We are clearly interested in consequences of the above results for quasi-line
graphs, as all non-trivial, non-clique facets of their stable set polytope are
clique family inequalities according to Ben Rebea’s Theorem [36].

We conclude from Corollary 4.35 that all rank-perfect subclasses of quasi-
line graphs have Chvátal-rank one. This reproves Edmonds’ result on line
graphs and verifies his conjecture for the larger class of semi-line graphs, as
they are rank-perfect by [19]:

Corollary 4.39 Semi-line graphs have Chvátal-rank one.

Thus, in order to discuss the Chvátal-rank for quasi-line graphs, it suf-
fices to restrict to fuzzy circular interval graphs. The next example from
[47, 73] shows that fuzzy circular interval graphs can have Chvátal-rank at
least 2.

Example 4.40 Giles and Trotter [47] considered a fuzzy circular interval
graph G obtained by joining the webs W 7

37 and W 6
37 in a certain way and

showed that there is a clique family Q of size 37 such that (Q, 8) is a facet
of STAB(G). Oriolo noticed in [73] that this clique family inequality (Q, 8)
has Chvátal-rank at least 2.

This example disproves Edmonds’ conjecture for fuzzy circular interval
graphs. On the other hand, Theorem 4.34 shows that this clique family
inequality (Q, 8) has Chvátal-rank at most 3, since r = 5 and so p − r = 3.

Furthermore, consider again the sequence of fuzzy circular interval graphs
Gk, k ≥ 1 introduced by Giles and Trotter [47] from Example 4.31.
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Example 4.41 Recall that the graph Gk is obtained by joining the webs
W k+1

n and W k
n with n = 2k(k + 2) + 1 in a certain way. For every k ≥

1, STAB(Gk) admits a clique family facet (Q, k + 2) with arbitrarily high
coefficients k + 1, but Theorem 4.36 shows that they have Chvátal-rank 1,
since |Q| = n = 2k(k + 2) + 1 = 1 (mod k + 2).

We next discuss the Chvátal-rank of webs. The webs with either clique
number three or stability number two are the only further rank-perfect sub-
classes of quasi-line graphs [32, 111] and have, therefore, Chvátal-rank one.
Almost all other webs are not rank-perfect, as shown above. However, the
known non-rank facets of stable set polytopes of webs are clique family in-
equalities with Chvátal-rank at most two: Recall that all the non-rank facets
from [78, 79, 80] presented above are all 1,2-valued and have, therefore,
Chvátal-rank one. Even the following sequence of webs with clique family
facets having arbitrarily high coefficients turn out to have Chvátal-rank one:

Example 4.42 Liebling et al. [63] considered the following sequence of webs

W
2(a+2)
(2a+3)2

for every integer a ≥ 1. They showed that there exists a clique

family facet (Q, a+2) where Q is of size (a+2)(2a+3). Since (a+2)(2a+3) =
1 (mod a + 2), Theorem 4.36 shows that even these non-rank inequalities
with coefficients a and a + 1 for all a ≥ 1 have Chvátal-rank 1.

For any clique family inequality (Q, k′ + 1) associated with a proper
subweb W k′

n′ of a web or a general fuzzy circular interval graph G, Corollary

4.37 shows that (Q, k′ + 1) has Chvátal-rank at most k′

2 . Thus, Theorem
4.29 implies that, for any fixed k, the Chvátal-rank of all webs W k

n is at most
k−1
2 . For the whole class of webs, however, there could occur clique family

facets (Q, p) with arbitrarily high p and Chvátal-rank p
2 .

This was recently shown for fuzzy circular interval graphs by Stauffer
and Ventura [102]:

Example 4.43 Consider a web W 2a
a(2a+1)+a+1 in its canonical representa-

tion as fuzzy circular interval graph (without multiplicities and fuzzyness).
Construct a fuzzy circular interval graph Ga by adding n = a(2a+1)+a+1
new nodes, namely, one in between two consecutive nodes of the web w.r.t.
the circular ordering. Stauffer and Ventura [102] showed that, for each a ≥ 1,
STAB(Ga) has a facet-defining clique family inequality (Q, p) with |Q| = n,
p = 2a + 1, r = a + 1, and p − r = a, with Chvátal-rank t ≥ log(a

2 ).

Consequently, the Chvátal-rank of quasi-line graphs can be arbitrarily
large, as for general claw-free graphs.
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4.2.4 General claw-free graphs

The rank facets of the stable set polytopes of claw-free graphs are well-
understood by Galluccio and Sassano [41]. This is, however, not true for the
non-rank facets; our aim is to formulate an appropriate conjecture.

As clique family inequalities are valid for all graphs and can be non-rank,
it is natural to ask which role play such inequalities for general claw-free
graphs. However, already the smallest not quasi-line graph, the 5-wheel,
has a facet not associated with a clique family. We exhibit some small claw-
free graphs with non-clique family facets and discuss how the usual clique
family inequalities should be generalized to cover such kinds of facets.

The facets for graphs G with α(G) = 2 are given by Cook; we show that
they are generalized clique family inequalities.

All the known difficult facets of claw-free graphs occur if α(G) = 3 and
so far their structure was not well-understood. Starting from Giles and
Trotter’s construction for wedges, we analyze these facets and show that
they belong to only one inequality class [83]. In addition, we express several
such facets (including those induced by wedges) as generalized clique family
inequalities and conjecture that this is possible for all facets of this type.

We finally collect results from [19, 38, 101] about facets of claw-free
graphs G with α(G) ≥ 4 which suggest that such graphs are not too far
from quasi-line graphs and have “easy” non-rank facets obtained by lifting
5-wheel constraints. Combining all those results enables us to formulate our
conjecture on facets for general claw-free graphs.

General clique family inequalities

We exhibit that more general facets than clique family inequalities (Q, p)
are required to describe the stable set polytope of general claw-free graphs.

(c)

7 8
6

(b)

7

(d)

1 2

3

4

5

(a)

6

6

Figure 4.10: Graphs with facets different from clique family inequalities
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Example 4.44 The four claw-free graphs depicted in Figure 4.10 produce
facets which cannot be expressed as usual clique family inequalities.

(a) The 5-wheel drawn in Figure 4.10(a) induces

1(x1 + . . . + x5) + 2x6 ≤ 2

as facet. In a clique family inequality, we would need V (Q, p) = {x6}
and V (Q, p−1) = {x1, . . . , x5}; the nodes x1, . . . , x5 had to be covered
at least twice by the cliques in Q. Thus, we had to choose all five
maximal cliques for Q and p = 3, yielding r = 2 and

(p − r − 1)
∑

1≤i≤5

xi + (p − r) x6 ≤ (p − r)
⌊

|Q|
p

⌋

0
∑

1≤i≤5

xi + 1 x6 ≤ 1

which is only an upper bound for x6.

We can obtain the required facet by choosing a smaller value for r
than |Q| mod p, namely, r = 1.

(b) The graph in Figure 4.10(b) induces

1(x1 + . . . + x6) + 2x7 ≤ 2

as facet. In a clique family inequality, we would need V (Q, p) =
{x7} and V (Q, p − 1) = {x1, . . . , x6}; the nodes x1, . . . , x6 had to be
covered at least twice by the cliques in Q. In order to cover x1, . . . , x5

accordingly, we had to take all five maximal cliques for Q and p = 3
again, but then x6 and x7 would be covered three times, yielding r = 2
and

(p − r − 1)
∑

1≤i≤5

xi + (p − r) (x6 + x7) ≤ (p − r)
⌊

|Q|
p

⌋

0
∑

1≤i≤5

xi + 1 (x6 + x7) ≤ 1

but not the required facet.

We have to drop node x6 from one of the cliques in Q in order to
obtain V (Q, p) = {x7} and V (Q, p−1) = {x1, . . . , x6}. Thus, choosing
a non-maximal clique for Q and again adjusting r = 1 < |Q| mod p is
required.
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(c) The wedge shown in Figure 4.10(c) induces the facet

1(x1 +. . .+ x5) + 2(x5 + x6 + x7) ≤ 3.

In a clique family inequality, we would need V (Q, p) = {x5, x6, x7} and
V (Q, p − 1) = {x1, . . . , x5}; the nodes x1, . . . , x5 had to be covered at
least twice by the cliques in Q. This could be done by choosing the 7
grey-filled triangles for Q and p = 3, yielding r = 1 and

(p − r − 1)
∑

1≤i≤5

xi + (p − r)
∑

6≤i≤8

xi ≤ (p − r)
⌊

|Q|
p

⌋

1
∑

1≤i≤5

xi + 2
∑

6≤i≤8

xi ≤ 4

but not the required facet as the right hand side is too weak. Thus,
we have to strengthen the right hand side appropriately.

(d) The graph in Figure 4.10(d) induces the following facet

3(x1 + x2) + 1(x3 + x4 + x5) + 2(x6 + . . . + x10) ≤ 4.

As the two different non-zero coefficients of a clique family inequality
are clearly not enough to represent this facet, we have to look for a
more general setting that allows us to have more than two non-zero
coefficients.

Thus, there exist claw-free graphs producing facets which cannot be
expressed as usual clique family inequalities. We are going to generalize the
concept of clique family inequalities by introducing new parameters in such
a way that a greater variety of facets can be represented. According to the
previous examples, we have to adjust the following:

• allow non-maximal (and possibly multiple) cliques in the family Q;

• define more than the two sets V (Q, p) and V (Q, p − 1);

• allow values r < |Q| mod p;

• choose an appropriate right hand side.

Let G = (V,E) be a graph, Q be a family of at least three cliques of
G (the cliques are not necessarily maximal and distinct). Choose integers
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p ≤ |Q|, r with 0 ≤ r ≤ R = |Q| mod p, and J with 0 ≤ J ≤ p − r. Define
different types of sets as

V (Q, p) = {i ∈ V : |{Q ∈ Q : i ∈ Q}| ≥ p},
V (Q, p − j) = {i ∈ V : |{Q ∈ Q : i ∈ Q}| = p − j }

for 1 ≤ j ≤ J (some of the sets V (Q, p− j) might be empty). We define the
general clique family inequality (Q, p, r, J, b) by

∑

0≤j≤J

(p − r − j) x(V (Q, p − j)) ≤ b (4.8)

which is valid for the stable set polytope of every graph G by an appropriate
choice of the right hand side b, that is if b ≥ α(G, a) where ai = p − r − j
for vi ∈ V (Q, p − j).

Thus, two canonical questions arise in this context, namely, firstly which
choices of the right hand side b guarantee the validity of the general clique
family inequality (Q, p, r, J, b) and, secondly, for which graphs such inequli-
ties suffice to cover all facets of their stable set polytope. Our goal is to
exhibit valid classes of general clique family inequalities which include all
the non-rank facets of the stable set polytopes of claw-free graphs.

For that, we shall adjust the parameters in (Q, p, r, J, b) appropriately.
For instance, the original clique family inequalities (Q, p) are the special

cases (Q, p,R, 1, b) and with b = (p−r)⌊ |Q|
p ⌋ as right hand side; Ben Rebea’s

Theorem shows that this right hand side is best possible in the case of quasi-
line graphs.

We exhibit in [84] several valid inequalities of this type, for instance
the following (notice that taking J = 1 gives back the usual clique family
inequalities).

Theorem 4.45 Every general clique family inequality (Q, p,R, J, b) with

b = (p − R)⌊ |Q|
p ⌋ is valid.

As Example 4.44(c) shows that the latter choice of the right hand side is
too weak for wedges, we consider in [84] also general clique family inequalities

(Q, p,R, J, b) with b = (p−R)⌊ |Q|
p ⌋−δ for some δ. We can show under which

conditions such inequalities are valid if δ = min{R, p − R}. In addition, it
turns out that several facets of claw-free graphs G with α(G) = 3 are general
clique family inequalities of this type with δ = J .
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The graphs with stability number two

Recall that Cook described the stable set polytopes of graphs with stability
number two as follows (see [99]):

Theorem 4.46 For every graph G with α(G) = 2, all non-trivial facets of
STAB(G) are clique-neighborhood constraints F (Q)

2x(Q) + 1x(N ′(Q)) ≤ 2

where Q ⊆ G is a clique and N ′(Q) = {v ∈ V (G) : Q ⊆ N(v)} s.t. G[N ′(Q)]
has no bipartite component.

The graphs in Example 4.44 (a),(b) show that clique-neighborhood con-
straints F (Q) are not necessarily clique family inequalities. In order to re-
formulate F (Q) as general clique family inequality, we are going to analyze
the structure of such facets first. Clearly, F (Q) is

• the clique constraint associated with Q if and only if Q is a maximal
clique of G (and, therefore, N ′(Q) = ∅),

• the full rank constraint associated with G if and only if Q = ∅ (and,
therefore, N ′(Q) = G), or

• a proper weak non-rank constraint if both parts Q and N ′(Q) are
non-empty.

By definition of N ′(Q), the subgraph G[Q∪N ′(Q)] is the complete join
of Q and N ′(Q) and contains an odd antiwheel if F (Q) is a facet. As a claw-
free graph G is quasi-line if and only if it does not contain an odd antiwheel,
a graph G with α(G) = 2 is quasi-line if and only if G is near-perfect,
according to the above observations.

Moreover, any non-rank facet F (Q) of a graph G with α(G) = 2 is
obtained as the complete join of the clique constraint associated with Q
and the full rank constraint associated with N ′(Q). As a first step towards
our goal to express F (Q) as general clique family inequality, we proved
the following more general assertion on full rank constraints of graphs with
stability number two, which is interesting for its own.

Theorem 4.47 Let G be a graph with α(G) = 2 and C2k+1 be a shortest
odd antihole in G. Then the rank constraint x(G) ≤ 2 is a general clique
family inequality (Q, k, r, 1, 2) for some 0 ≤ r ≤ R.
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With the help of this result, we interprete the clique-neighborhood con-
straint F (Q) as follows:

• In a first step, we express the rank constraint x(N ′(Q)) ≤ 2 as general
clique family inequality (Q′, k, r, 1, 2) associated with a shortest odd
antihole C2k+1 in N ′(Q).

• In a second step, we consider the complete join of Q and N ′(Q). For
that, we adjust the family Q′ in such a way that each node of N ′(Q) is
covered exactly k times (by reducing the cliques in Q′ to appropriate
non-maximal cliques); we add Q to each such clique and obtain a new
clique family Q.

By construction, each node in N ′(Q) is covered exactly k times by the
cliques in Q, and each node in Q exactly |Q| times. Choosing p = k+1
and J = 1 yields V (Q, p) = Q and V (Q, p − 1) = N ′(Q).

By choosing r = k − 1 we finally obtain the general clique family
inequality (Q, k + 1, k − 1, 1, 2)

2 x(V (Q, k + 1)) +1 x(V (Q, k)) ≤ 2
⌊

2k+1
k+1

⌋

2 x(Q)) +1 x(N ′(Q))) ≤ 2

as required.

Thus, starting from the above theorem we have obtained:

Theorem 4.48 Let G be a graph with α(G) = 2, Q be a non-maximal
clique of G, and C2k+1 be a shortest odd antihole in N ′(Q). Then the clique-
neighborhood constraint F(Q) is a general clique family inequality of the form
(Q, k + 1, k − 1, 1, 2).

Note that all complete join facets of claw-free graphs are facets of type
F (Q) (as already the complete join of a single node and a graph with a stable
set of size 3 would contain a claw). Thus, the previous theorem implies the
following more general result:

Corollary 4.49 All complete join facets of claw-free graphs and all facets
associated with graphs of stability number two are general clique family in-
equalities.
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The graphs with stability number three

All the known difficult facets of claw-free graphs occur in the case α(G) = 3;
our goal is to describe their structure which was not well-understood so
far. Starting from Giles and Trotter’s construction for wedges, we analyze
these facets and show that they belong to only one inequality class [83]. In
addition, we express certain cases of such facets (including those induced
by wedges) as general clique family inequalities and conjecture that this is
possible for all facets of this type.

Giles and Trotter [47] introduced wedges as claw-free graphs G s.t. G has

• a unique triangle ∆,

• a spanning tree T with either two or three spokes around a central node
c with endnodes in ∆ where the two spokes have both even length ≥ 4
if c ∈ ∆ and the three spokes have either all even length (but not all
length 2) or all odd length (but at most one length 1) if c 6∈ ∆,

• additional edges linking inner nodes of T to exactly one node of ∆ (to
avoid claws in G) which must not create another triangle 6= ∆ in G;

see Figure 4.11 for the three smallest examples (the dashed lines indicate
the additional edges making G claw-free; the complement of the left graph
is the wedge from Figure 4.10(c)).

Figure 4.11: Three complements of wedges

Giles and Trotter [47] showed that each wedge G has a non-weak rank facet

1x(◦) + 2x(•) ≤ 3

with white and black nodes as in Figure 4.11. The |G| independent tight
stable sets, called roots, correspond to the following cliques of G:

• the |G| − 1 edges of the spanning tree T and

• the unique triangle ∆

(recall that ω(G) = 3 holds and no singleton of G can be a root due to the
claw-freeness of G).
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Our goal is to generalize this idea in order to obtain all non-complete
join facets of graphs G with α(G) = 3. (Note that it is well-known how
to built complete join facets [21] and recall that no complete joins occur in
claw-free graphs with α(G) > 2.)

Consider a graph G with α(G) = 3 and a facet aT x ≤ b of STAB(G).
We call aT x ≤ b a co-spanning tree constraint if all its roots correspond to
edges of a spanning tree and a triangle in G. The facets of wedges are of
this type, but there are also graphs G with α(G) = 3 containing a claw and
admitting such a facet: for instance, the complements of the graphs drawn
in Figure 4.11 without the dashed edges are of this type, the smallest graph
with this property is depicted in Figure 4.12(a) (recall that it is one of the
two smallest graphs which are not weakly rank-perfect).

(a) (b)

Figure 4.12: Complements of graphs with a facet 1x(◦) + 2x(•) ≤ 3

A simple analysis shows that a co-spanning tree constraint aT x ≤ b is
always a non-weak rank constraint with 0,1,2-valued coefficients and right
hand side 3. Furthermore, we exhibit in [84] the following:

Theorem 4.50 Every co-spanning tree facet of the stable set polytope of
a claw-free graph G with exactly one stable 3-set is a general clique family
inequality (Q, p,R, p−2, b) with |Q| = 7, p = 3, and b = (p−R)⌊ |Q|

p ⌋−J = p.

Note that the complement of the graph in Figure 4.12(b) has also stabil-
ity number three but does not induce a co-spanning tree facet. In addition,
we have to interprete non-complete join facets aT x ≤ b for graphs G with
α(G) = 3 involving more than two non-zero coefficients. For that, we extend
the idea of Giles and Trotter further. Instead of a spanning tree correspond-
ing to the “edge roots” of aT x ≤ b, we consider a spanning forest F in G
and obtain that also all |G| − k edges of F are independent where k is the
number of trees in F . We call a facet aT x ≤ b of STAB(G) a co-spanning
forest constraint if all its roots correspond to edges of a spanning forest F
and as many triangles of G as F has components. The complement of the
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graph in Figure 4.12(b) is the smallest graph with such a facet (the central
claw is one tree, the three remaining nodes built three further (edge-less)
trees, and all four triangles are roots as well). This graph contains a claw,
but there are also claw-free graphs with such facets:

(b)(a) (c)

xx

Figure 4.13: Complements of graphs with co-spanning forest facets

Example 4.51 The stable set polytopes of the three claw-free graphs whose
complements are depicted in Figure 4.13 admit the following co-spanning
forest facets (with node types as indicated in the figure), involving two trees
(with the bold edges) and two triangles (grey-filled) each; the dashed edges
make G claw-free.

(a) The complement of the graph in Figure 4.13(a) has

1x(◦) + 2x(•) ≤ 3

as co-spanning forest facet [83].

(b) The complement of the graph in Figure 4.13(b) has

1x(◦) + 2x(•) + 3x(2) ≤ 4

as co-spanning forest facet [83].

(c) The graph G whose complement is depicted in Figure 4.13(b) has

1x(◦) + 2x(•) + 3x(2) + 4x(⊗) ≤ 5

as co-spanning forest facet [63]; G is known as “fish in a net”.

The following facets of (claw-free) graphs G with α(G) = 3 can, however,
not be interpreted as co-spanning forest constraints:
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Figure 4.14: Complements of graphs with a co-spanning 1-forest facet

Example 4.52 The stable set polytopes of the graphs whose complements
G are depicted in Figure 4.14 admit facets different from co-spanning forest
constraints: the edge-roots form in G trees and odd holes (the bold edges;
triangle-roots are again grey-filled, the dashed edges make G claw-free).

(a) The complement of the graph in Figure 4.14(a) has

1x(◦) + 2x(•) + 3x(2) ≤ 4

as facet [47] (note that G is the graph in Figure 4.10(d)).

(b) The complement of the graph in Figure 4.14(b) has

2x(•) + 3x(2) + 4x(⊗) ≤ 6

as facet [83] (it is obtained by combining the facets associated with
the 5-hole and the smallest wedge).

(c) The complement of the graph in Figure 4.14(c) has

2x(•) + 3x(2) + 4x(⊗) + 5x(△) + 6x(⊙) ≤ 8

as facet [63]; adding appropriate edges to make G claw-free yields the
graph known as “fish in a net with bubble”.

These examples motivated us to generalize co-spanning forest constraints
further by using not only trees but also 1-trees in G, built from “root edges”
of the facet. Recall that a 1-tree is obtained from a tree by adding one
edge, that is we have as many edges as nodes. All edges of a 1-tree are
independent if its only cycle is an odd hole; we call such 1-trees odd.

A facet aT x ≤ b of STAB(G) is a co-spanning 1-forest constraint if all
its roots correspond to edges of a spanning 1-forest F consisting of trees and
odd 1-trees and as many triangles of G as F has tree-components.
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The facets of the graphs whose complements are shown in Figure 4.14
are examples of co-spanning 1-forest constraints.

In fact, we are able to show [83] that all non-rank, non-complete join
facets of graphs G with α(G) = 3 are of this type:

Theorem 4.53 Let G be a graph with α(G) = 3 and aT x ≤ b with b ≥ 3
a non-rank, non-complete join facet of STAB(G). Then aT x ≤ b is a co-
spanning forest constraint if b is odd and a co-spanning 1-forest constraint
if b is even.

Clearly, co-spanning tree and co-spanning forest constraints are special
co-spanning 1-forest constraints. In addition, there is a class of rank co-
spanning 1-forest constraints:

Observation 4.54 Every rank facet associated with a graph G with α(G) =
2 is a co-spanning 1-forest constraint.

The reason is that the condition when a clique neighborhood constraint
F (Q) is facet-inducing is equivalent to require that N ′(Q) is a spanning 1-
forest in the complementary graph: G[N ′(Q)] has no bipartite component.
Thus, we obtain:

Corollary 4.55 Every clique neighborhood constraint is the complete join
of a clique constraint and a co-spanning 1-forest constraint.

Considering such complete join facets as special kinds of co-spanning
1-forest constraints (where the nodes of the clique correspond to single-
node-roots with coefficient b in the complement), we deduce:

Corollary 4.56 Every non-rank facet aT x ≤ b of the stable set polytope of
a claw-free graph G with α(G) ≤ 3 is a co-spanning 1-forest constraint.

In addition, we address in [84] the problem of interpreting co-spanning
1-forest constraints as general clique family inequalities. We show:

Theorem 4.57 Let aT x ≤ 4 be a co-spanning 1-forest facet of the stable set
polytope of a claw-free graph G with α(G) = 3 such that the edge roots built
one tree and one odd hole in G. Then aT x ≤ 4 is a general clique family
inequality (Q, p,R, p − 2, p) with |Q| = 9 and p = 4.

We conjecture that every co-spanning 1-forest facet of the stable set
polytope of a claw-free graph can be interpreted as general clique family
inequality of the form (Q, p,R, p − 2, p) with |Q| = 2p + 1 (note that this

implies R = 1 and b = (p − R)⌊ |Q|
p ⌋ − J).
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A conjecture on the stable set polytope of claw-free graphs

The problem of characterizing the stable set polytope of claw-free graphs
has been open for almost three decades and is still open. So far, even no
appealing conjecture was at hand; we are now able to formulate such a
conjecture.

For that, we combine Cook’s result in the case α(G) = 2, our results
from the previous subsection for the case α(G) = 3, and a conjecture of
Stauffer [101] for the case α(G) ≥ 4 which is motivated as follows.

There are two reasons to beliefe that a claw-free graph G is not too far
from being quasi-line as soon as G contains a stable set of size four: On
the one hand, Chudnovsky and Seymour [19] established a decomposition
theorem for claw-free graphs G with α(G) ≥ 4 asserting that such graphs are
either fuzzy circular interval graphs or can be composed from certain linear
interval strips. On the other hand, Fouquet [38] showed that a connected
claw-free graph with α(G) ≥ 4 is quasi-line if and only if G does not contain
a 5-wheel.

Stauffer exhibited in [101] that the 5-wheels play indeed a central role to
describe the facets of claw-free but not fuzzy circular interval graphs with
α(G) ≥ 4, as 5-wheel constraints can be sequentially lifted to more general
inequalities of the form 1x(A) + 2x(B) ≤ 2 with suitable node subsets A
and B. This led Stauffer to conjecture:

Conjecture 4.58 [101] The stable set polytope of a claw-free but not fuzzy
circular interval graph G with α(G) ≥ 4 is given by

• non-negativity constraints,

• rank constraints,

• lifted 5-wheel constraints.

As each lifted 5-wheel constraint is in particular a clique neighborhood
constraint, we can combine this conjecture for the case of claw-free graphs
with α(G) ≥ 4 and the results in the cases with α(G) = 2, 3 to the following
conjecture on non-rank facets for general claw-free graphs:

Conjecture 4.59 Let G be a claw-free graph, aT x ≤ b a non-rank facet of
STAB(G), and Ga the subgraph of G induced by nodes i with ai > 0. Then
aT x ≤ b is a

• clique neighborhood constraint if α(Ga) = 2;

• co-spanning 1-forest constraint if α(Ga) = 3;

• clique family inequality if α(Ga) ≥ 4.
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Note that an affirmative answer to this conjecture would verify that in-
deed all complicated facets associated with claw-free graphs occur in the case
α(Ga) = 3 only, as clique-neighborhood constraints are 0,1,2-valued weak
rank constraints and clique family inequalities have also only two different
non-zero coefficients. The latter are weak rank constraints, provided Con-
jecture 4.33 is true. If this is indeed the case, then we have that a claw-free
graph is weakly rank-perfect iff it has no non-rank facet associated with a
subgraph having stability number three.

Moreover, we can specify Conjecture 4.59 further, taking into account
that every clique neighborhood constraint is a special co-spanning 1-forest
constraint (Corollary 4.55).

Conjecture 4.60 A non-rank facet of the stable set polytope of a claw-free
graph is either a co-spanning 1-forest constraint or a clique family inequality.

The structure of rank facets of claw-free graphs is well-understood by
Galluccio and Sassano [41]: all rank facets rely on cliques, line graphs, and
webs. We combine several results and conjectures together and obtain as
counterpart for the non-rank facets:

Conjecture 4.61 Every non-rank facet of the stable set polytopeof a claw-
free graph is based on

• an odd antiwheel (clique-neighborhood constraint);

• a co-spanning 1-forest;

• a web (clique family inequality).

The latter conjectures provide the answer to the long-time open problem
of having an idea of the structure of non-rank facets of claw-free graphs.

In addition, we showed that all clique-neighborhood constraints and sev-
eral co-spanning 1-forest constraints are general clique family inequalities.
We conjecture that similar constructions show that all co-spanning 1-forest
constraints can be interpreted as general clique family inequalities. An af-
firmative answer to this conjecture would imply that all facets of claw-free
graphs are certain types of general clique family inequalities. If this is true,
also the polyhedral aspect of the stable set problem for claw-free graphs is
an extension of Edmonds’ description of the matching polytope, as every
general clique family inequality extends Edmonds’ odd set inequalities for
the matching polytope.



Chapter 5

Imperfection ratio and
imperfection index

As we have STAB(G) ⊂ QSTAB(G) for all imperfect graphs G, it is natural
to use the difference between the two polytopes in order to determine how
far a certain imperfect graph is away from being perfect. Two ways to
describe the gap between the two polytopes is to look at the constraints
that have to be added to QSTAB(G) in order to arrive at STAB(G) or on
the Chvátal-rank of QSTAB(G), as done in Chapter 4.

Two other ways are to look at the dilation ratio of the two polytopes
or at the disjunctive rank of QSTAB(G), leading to imperfection ratio and
imperfection index of a graph.

Gerke and McDiarmid introduced in [45] the imperfection ratio imp(G)
of a graph G as some asymptotic slope of the minimal χ-binding function
and showed that imp(G) can be expressed as the dilation ratio of STAB(G)
and QSTAB(G) by

imp(G) = min{t : QSTAB(G) ⊆ t STAB(G)}.

Aguilera et al. [1] introduced the imperfection index impI(G) as the dis-
junctive index of QSTAB(G), that is

impI(G) = min{|J | : PJ (QSTAB(G)) = STAB(G), J ⊆ V }

where PJ (QSTAB(G)) = conv{x ∈ QSTAB(G) : xj ∈ {0, 1}, j ∈ J}.
We firstly discuss possibilities for determining imp(G) and impI(G) based

on the knowledge of facet-defining inequalities for STAB(G) and the extreme
points of QSTAB(G), respectively, see next section.
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If the complete facet-system of STAB(G) is known for a certain graph
class, and we are able to determine the strength of all facets, then we cer-
tainly can determine the imperfection ratio for such graphs. We use this
strategy for several superclasses of perfect graphs to obtain upper bounds
on imp(G) for such graphs, see Section 5.2.

Regarding the imperfection index, we first discuss its graph-theoretical
interpretation as the minimum cardinality of a node subset J ⊂ V (G) such
that G− J is perfect or, equivalently, as the cardinality of a minimum node
subset meeting all minimal imperfect subgraphs of G (see Section 5.3.1).

We further address the problem which graph classes admit a small im-
perfection index. Unfortunately, we obtain in [61] that the imperfection
index cannot be bounded for many graph classes which are close to perfect
graphs in some other sense. In particular, our results indicate that there
are many graph classes with an unbounded imperfection index, including
near-perfect graphs, t-perfect and h-perfect graphs, line graphs, antiwebs,
and general rank-perfect graphs.

Comparing the two concepts, we finally conclude that the imperfection
index measures imperfection for several graph classes much more rough than
the imperfection ratio (see Section 5.4 for more details and some suggestions
for refining the concept).

5.1 The extreme points of QSTAB(G)

By the definition of the imperfection index impI(G) as the disjunctive index
of QSTAB(G), the knowledge on the extreme points of QSTAB(G) clearly
helps to determine impI(G).

We infer the same for the imperfection ratio. Let F(G) = {a ∈ [0, 1]|V | :
aT x ≤ 1 facet of STAB(G)} denote the set of all normal vectors of nontrivial
facets of STAB(G) (scaled to have right hand side equal to one). Hence,

t STAB(G) equals {x ∈ R
|V |
+ : aT x ≤ t ∀a ∈ F(G)} and QSTAB(G) fits in

it if, for all y ∈ QSTAB(G), aT y ≤ t holds. Thus, we have

imp(G) = max{aT y : a ∈ F(G), y ∈ QSTAB(G)}

as any smaller t violates aT y ≤ t for some a ∈ F(G) and y ∈ QSTAB(G).
It clearly suffices to consider nontrivial facets of STAB(G) and (fractional)
extreme points of QSTAB(G) only.

Since QSTAB(G) is the anti-blocker of STAB(G), every facet of STAB(G)
is an extreme point of QSTAB(G) [40]. But not all extreme points of
QSTAB(G) are conversely of importance for the facet-defining system of
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its anti-blocker: here it suffices to consider the dominating extreme points
x ∈ STAB(G) where y ≥ x implies y 6∈ STAB(G). That way, we obtain

imp(G) = max{aT y : a ∈ F(G), y ∈ F(G)}
= max{aT y : a ∈ QSTAB(G), y ∈ QSTAB(G)}.

Since a complete description of STAB(G) (or STAB(G)) is typical not avail-
able, we do not know the dominating extreme points of the corresponding
clique relaxations either. However, it turns out that also knowledge on
dominated extreme points is of interest (as only the intersection supp(a)∩
supp(y) for a ∈ F(G) and y ∈ QSTAB(G) gives a contribution).

This motivates us to fully characterize the extreme points of QSTAB(G)
as follows [62].

Theorem 5.1 A vector a 6= 0 is an extreme point of QSTAB(G) if and only

if there is a subgraph G
′
of G such that supp(a) belongs to F(G

′
).

Note that, for an extreme point a of QSTAB(G), aT x ≤ 1 is not required

to be a facet of STAB(G) but only supp(a) of STAB(G
′
).

Example 5.2 Let G be a 5-wheel with center c. Its complement G is a
5-hole with an isolated node c. Obviously, G has this 5-hole C5 as only facet-
inducing subgraph different from a clique, thus QSTAB(G) has exactly one
fractional extreme point, namely (χC5 , 1

2 ) = (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 0). Conversely,

G has two facet-inducing subgraphs different from a clique, the 5-hole C5

and G itself, producing the rank constraint x(C5) ≤ 2 and the non-rank
constraint x(C5) + 2xc ≤ 2. Accordingly, QSTAB(G) has the two fractional
extreme points (1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 0) and (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1). (Note that x(C5) ≤ 2

is not a facet of STAB(G) but only of STAB(C5).)

Thus, we established a 1-1-correspondence between the extreme points
of QSTAB(G) and facet-inducing subgraphs of G. This complete character-
ization is of interest for our purpose since it helps to identify both

• minimum node subsets J ⊂ V such that PJ(QSTAB(G)) = STAB(G)
holds (here it even suffices to consider minimal extreme points which
do not dominate any other extreme point of QSTAB(G)),

• facet-defining subgraphs of G and G such that the associated extreme
point y of QSTAB(G) and normal vector a ∈ F(G) satisfy supp(y) =
supp(a) and yT a = imp(G).

With the help of Theorem 5.1 we are, in addition, able to easily reprove
several famous results.



106 CHAPTER 5. IMPERFECTION RATIO AND INDEX

5.1.1 Characterizing perfect graphs

The assertion of Theorem 5.1 follows for perfect graphs by the Perfect Graph
Theorem and STAB(G) = QSTAB(G): If G is perfect, then QSTAB(G) has
integral extreme points only, namely χG′

where G′ ⊆ G is an arbitrary stable
set; as G is perfect as well, its only facet-inducing subgraphs are all cliques
G

′
⊆ G.
Conversely, we obtain both the Perfect Graph Theorem and the poly-

hedral characterization of perfect graphs with the help of Theorem 5.1 as
follows. Recall the following chain of inequalities and equations, obtained by
dropping or adding integrality constraints and linear programming duality:

α(G, c) = max{cT x : x ∈ STAB(G)}

= max{cT x : x(Q) ≤ 1 ∀cliques Q ⊆ G, x ∈ {0, 1}|G|}

≤ max{cT x : x(Q) ≤ 1 ∀cliques Q ⊆ G, x ≥ 0}

= min{
∑

Q yQ :
∑

Q∋i yQ ≥ ci ∀i ∈ G, yQ ≥ 0 ∀cliques Q ⊆ G}

≤ min{
∑

Q yQ :
∑

Q∋i yQ ≥ ci ∀i ∈ G, yQ ∈ Z+ ∀cliques Q ⊆ G}

= χ(G, c)

The last program is an integer programming formulation of the weighted
clique cover problem, the intermediate steps yield the fractional stability
and clique cover numbers, αf (G, c) and χf (G, c), which are equal by linear
programming duality.

If STAB(G) = QSTAB(G) then obviously α(G, c) = αf (G, c) follows;
in particular αf (G, c) is integer valued for all c ≥ 0 and comes from an
integer solution. Thus, also the optimal solution of the fractional clique
cover problem is integral in this case, hence χf (G, c) is integer valued for
all c ≥ 0 and coincides with χ(G, c), i.e., we have equality through the
whole chain (totally dual integrality). Turning to the complementary graph
yields ω(G, c) = χ(G, c) for all c ≥ 0. This is particularly true for all 0/1-

weightings, implying equality for the unweighted case ω(G
′
, 1l) = χ(G

′
, 1l)

for all induced subgraphs G
′
of G. Hence, G cannot contain any minimal

imperfect graph as induced subgraph (as clique and chromatic number would
differ for such subgraphs) and is, therefore, perfect.

Conversely, if G contains a minimal imperfect subgraph G
′
, then we have

ω(G
′
, 1l) < χ(G

′
, 1l), implying α(G′, c) < χ(G′, c). We obtain STAB(G) ⊂

QSTAB(G) since otherwise we would have equality through the whole chain,
in particular α(G′, c) = αf (G′, c) = χf (G′, c) = χ(G′, c), a contradiction.

This implies that STAB(G) = QSTAB(G) if and only if G is perfect.
With the help of this fact and Theorem 5.1 we easily obtain the following:
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Corollary 5.3 For any graph G, the following assertions are equivalent:

(1) G is perfect;

(2) STAB(G) = QSTAB(G);

(3) STAB(G) = QSTAB(G);

(4) G is perfect.

5.1.2 Near-perfect graphs

For minimally imperfect graphs, Theorem 5.1 corresponds to the well-known
characterization of Padberg [75], stating that a graph G is minimally im-
perfect if and only if STAB(G) has the full rank facet as only nontrivial,
nonclique facet and QSTAB(G) has exactly one fractional extreme point,
namely (G, 1

ω(G)1l).

As G is minimally imperfect as well by the Perfect Graph Theorem, its
only facet-inducing subgraph different from a clique is G itself, producing
the full rank constraint x(G) ≤ α(G) = ω(G). Therefore, (G, 1

ω(G)1l) is the

only fractional extreme point of QSTAB(G), and conversely.
For properly near-perfect graphs G, we obtain [62] that both QSTAB(G)

and QSTAB(G) have at least two fractional extreme points. Even worse, the
following example exhibits a sequence of near-perfect graphs G where the
number of fractional extreme points of QSTAB(G) and QSTAB(G) tends to
infinity.

Example 5.4 According to Theorem 4.4 and Theorem 4.7, all webs with
stability number two are near-perfect, that are the webs W k

n with n <
3(k + 1). With the help of Trotter’s formula [104], it is easy to check that
the odd antihole W l

2(l+1)+1 is an induced subgraph of W k
2(k+1)+2 for all k ≥ 2

if l ≤ k
2 . In particular, we have

W l
2(l+1)+1 ⊂ W 2l

2(2l+1)+2 for all l ≥ 1.

Since, by this choice, the number of nodes 2(l + 1) + 1 of the odd antihole
does not divide the number of nodes 2(2l+1)+2 of the whole web, we obtain
that there are 2(2l + 1) + 2 different odd antiholes in W 2l

2(2l+1)+2, namely,

C(i) = {i, i + 1, (i + 1) + 2, . . . , (i + 1) + 2l, i + 2(l + 1), . . . , i + 2(2l + 1)}

for every node i (thus, we choose i, the next node i + 1, then l times the
next but one node, once more the next node, and finally l+1 times the next
but one node again).
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Thus, the web W 2l
2(2l+1)+2 contains as many different odd antiholes as

nodes (resp. the antiweb W
2l
2(2l+1)+2 as many different odd holes as nodes).

According to Theorem 5.1, each of them yields a fractional extreme point

of QSTAB(W
2l
2(2l+1)+2) (resp. QSTAB(W 2l

2(2l+1)+2)). Thus, the number of

fractional extreme points is at least 2(2l + 1) + 2 for both and tends to
infinity if l does. In particular, the odd antiholes in W 2l

2(2l+1)+2 correspond to

fractional extreme points of QSTAB(W
2l
2(2l+1)+2) which are not dominating

(as W 2l
2(2l+1)+2 does not have odd antihole facets).

5.1.3 Half-integral fractional stable set polytopes

We say that an inequality aT x ≤ b is given in its integer form if all entries
in a and the right hand side b are integers with greatest common divisor 1
(i.e., if it cannot be scaled down to smaller integer values).

An immediate consequence of Theorem 5.1 is the following.

Corollary 5.5 QSTAB(G) is half-integral if and only if any facet-producing

subgraph G
′
of G induces a facet having rhs ≤ 2 in its integer form.

This is clearly true for all graphs G such that α(G) ≤ 2 holds. This
implies, for any graph G with ω(G) ≤ 2, that QSTAB(G) is half-integral.
As for such graphs QSTAB(G) obviously coincides with the edge constraint
stable set polytope ESTAB(G) (given by nonnegativity and edge constraints
only), the above corollary yields the well-known result that ESTAB(G) has
half-integral extreme points only.

Further examples of such graphs are line graphs. Recall that Shepherd
[99] gave a complete description of the stable set polytopes of their comple-
ments by showing that the only nontrivial facets of stable set polytopes of
complements of line graphs are constraints

∑

i≤k

x(Ai) + 2x(Q) ≤ 2

associated with complete joins of odd antiholes A1, . . . , Ak and a clique Q.
The above corollary implies, that the fractional stable set polytopes of line
graphs are half-integral.

As the stable set polytopes of line graphs correspond to the matching
polytope introduced and described by Edmonds [33] (see Theorem 4.17),
we obtain an alternative proof that the fractional matching polytope has
half-integral extreme points only.
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5.2 Bounds for the imperfection ratio of several

graph classes

There does not exist a general upper bound on the imperfection ratio, as
observed in [45], due to the following reason. Mycielski constructed a famous
series of graphs G0, G1, G2, . . . with ω(Gi) = 2 for all i but χ(Gi) = 2 + i
(recall that G0 = K2, G1 = C5, and G2 is the well-known Grötzsch graph);
Larsen, Propp, and Ullman proved the unexpected recurrence

χf (Gi+1) = χf (Gi) +
1

χf (Gi)
.

As imp(G) =
χf (G)

2 holds for any triangle-free graph G by [45], we obtain

imp(Gi) → ∞ for i → ∞.

Thus the imperfection ratio of the class of graphs with clique number two
(containing the series G0, G1, G2, . . .) cannot be bounded. Invariance under
taking complements yields that there does also not exist an upper bound for
the imperfection ratio of the graphs with stability number two; the same is
true for all superclasses as, for instance, claw-free graphs and weakly rank-
perfect graphs.

The following two lower bounds for the imperfection ratio of any graph
are known from [45]:

imp(G) ≥ |G|
α(G)ω(G)

imp(G) ≥ imp(G′) ∀G′ ⊆ G

Combining the two bounds yields

imp(G) ≥ max{ |G′|
α(G′)ω(G′) : G′ ⊆ G}. (5.1)

For any imperfect graph G, this gives rise to two questions: which subgraphs
are the crucial ones and when does equality holds? Gerke and McDiarmid
answered these questions in [45] for line graphs, h-perfect, and co-h-perfect
graphs by proving that their imperfection ratio relies on odd (anti)holes
only and is, therefore, bounded by ≤ 5

4 . We are going to extend these
results further, see next subsection. Moreover, we present several graph
classes whose imperfection ratio relies on antiwebs only and is bounded by
≤ 3

2 , see Subsection 5.2.2.
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5.2.1 Graph classes with an imperfection ratio ≤ 5
4

The following results from [45] describe the imperfection ratio by

imp(G) = max{2k+1
2k : C2k+1 ⊆ G}

= max{2k+1
2k : C2k+1 shortest odd hole in G}

whenever G is a line graph or h-perfect and by

imp(G) = max{2k+1
2k : C2k+1, C2k+1 ⊆ G}

= max{2k+1
2k : 2k + 1 length of shortest odd (anti)hole in G}

for all co-h-perfect graphs G where STAB(G) is given by rank constraints
associated with cliques, odd holes, and odd antiholes only. As the C5 is the
shortest odd (anti)hole, this implies that imp(G) ≤ 5

4 holds for all graphs
G belonging to one of these classes. We are going to generalize the above
results from [45] for p-perfect graphs (with rank constraints associated with
arbitrary partitionable graphs, extending the results on odd (anti)holes, h-
perfect, and co-h-perfect graphs) and for semi-line graphs (extending the
results on line graphs).

We start with the result on p-perfect graphs from [61]:

Theorem 5.6 For any p-perfect graph G, we have

imp(G) = max{α′ω′+1
α′ω′ : P ⊆ G partitionable}

where α′ = α(P ) and ω′ = ω(P ) holds.

As a consequence, we have imp(G) ≤ 5
4 whenever STAB(G) is given by

nonnegativity, clique, and partitionable graph constraints only (since, again,
the C5 is the smallest crucial graph).

Now, we are going to extend the result on the imperfection ratio of line
graphs with the help of the following structural result on quasi-line graphs
from Chudnovsky and Seymour:

Theorem 5.7 [19] A connected quasi-line graph G is either a fuzzy circular
interval graph or STAB(G) is given only by nonnegativity constraints, clique
constraints, and rank clique family inequalities (Q, 2)

∑

i∈I(Q,2)

xi ≤
|Q|−1

2

with clique families of odd size |Q|.
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This theorem describes the stable set polytopes of a superclass of line
graphs, the semi-line graphs. We could extend the result on the imperfection
ratio for line graphs from [45] to this larger class in [27]:

Lemma 5.8 For any semi-line graph G, we have imp(G) ≤ 5
4 .

In addition, we discussed the imperfection ratio of almost-perfect graphs
in [61] and could obtain a rough upper bound of at most two (but we believe
that the truth is also 5

4 ).

5.2.2 Graph classes with an imperfection ratio ≤ 3
2

In this section we characterize and bound the imperfection ratio for a-perfect
graphs, where STAB(G) is given by rank constraints associated with anti-
webs only, thereby generalizing the above results from [45] for t-perfect,
h-perfect, and co-h-perfect graphs, as cliques, odd holes, and odd antiholes
are special antiwebs. We achieved in [27]:

Theorem 5.9 For any a-perfect graph G, the imperfection ratio is given by

imp(G) = max{ n′

α′ω′ : Kn′/α′ ⊆ G}

where ω′ = ⌊n′/α′⌋ holds.

Although we do not know yet the characterization of all antiwebs Kn/α

with imp(Kn/α) = n
αω , we can provide a polynomial time algorithm to com-

pute imp(Kn/α) for any antiweb [27]. In addition, we established an upper
bound on the imperfection ratio of antiwebs by

imp(Kn/α) <
3

2
.

As a consequence, we can characterize and bound the imperfection ratios of
all a-perfect graphs, including all antiwebs [110], convex-round graphs [27],
and the complements of fuzzy circular interval graphs [112]:

Corollary 5.10 For any a-perfect G, the imperfection ratio is imp(G) < 3
2 .

Combining this bound with the results from the previous subsection and
the invariance of the imperfection ratio under taking complements enables
us to bound the imperfection ratio of quasi-line graphs and near-bipartite
graphs by 3

2 .
Outgoing from Shepherd’s description of the stable set polytopes of near-

bipartite graphs (see Theorem 4.13) and our considerations on complete-
join-facets, we could further establish the following [27]:
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Theorem 5.11 For any near-bipartite graph G, we have

imp(G) = max{ n′

α′ω′ : Kn′/α′ ⊆ G} < 3
2

where ω′ = ⌊n′/α′⌋ holds.

Consequently, the imperfection ratio of any near-bipartite (resp. quasi-
line) graph is characterized by its induced antiwebs (resp. webs) only and
is, therefore, bounded by 3

2 .

Note that this result is best possible as, on the one hand, there exist
antiwebs with an imperfection ratio arbitrarily close to 3

2 [27] and, on the
other hand, claw-free graphs certainly constitute a superclass of quasi-line
graphs, but there is no upper bound for the imperfection ratio of claw-free
graphs (as they contain all graphs with stability number two, including the
complements of the Mycielski graphs with unbounded imperfection ratio).

Moreover, there is some hope that the imperfection ratio of two other
classes is bounded by 3

2 .

Firstly, the structure of a circular-perfect graph relies, by definition, on
its induced circular cliques, i.e., on its induced antiwebs. This indicates
that also the imperfection ratio of circular-perfect graphs should rely on its
induced antiwebs. According to the above consideration, this would imply
that the imperfection ratio of circular-perfect graphs is bounded by 3

2 .

Secondly, Gerke and McDiarmid [45] showed that for any planar graph
G we have that imp(G) ≤ 11

6 , but conjectured that the truth is imp(G) ≤ 3
2 .

5.2.3 Imperfection ratio and several graph constructions

Gerke and McDiarmid [45] studied the behavior of the imperfection ratio
under well-known perfection-preserving graph composition techniques. The
expectation is that the imperfection ratio should be invariant under applying
such techniques; the first result in this direction is clearly the invariance
under taking complements.

A further well-known perfection-preserving composition technique is the
identification of two graphs G1 and G2 in a clique Q. To learn about the
imperfection ratio of the resulting graph G1 +Q G2, it is helpful to make use
of Chvátal’s characterization [21] of the facet-system describing the stable
set polytope of G1+QG2: it is simply the union of all the facets of STAB(G1)
and STAB(G2). One can easily infer that

imp(G1 +Q G2) = max{imp(G1), imp(G2)}
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holds. This result includes in particular the special cases of taking disjoint
unions and, by the invariance of the imperfection ratio under complementa-
tion, taking complete joins of two graphs.

We extended this result in [27] to complete joins of facet-producing
subgraphs. Since imp(G) = max{aT y : a ∈ F(G), y ∈ QSTAB(G)}, this
suggests that

imp(G) = max{imp(Ga) : a ∈ F(G)}

where Ga denotes the subgraph of G induced by all nodes i with ai 6= 0. If
such a support graph Ga is the complete join of graphs G1, . . . , Gk, then

imp(G1 ∗ . . . ∗ Gk) = max{imp(G1), . . . , imp(Gk)}

holds by [45]. Hence, we have for any graph G where all non-trivial, non-
clique facets of STAB(G) are complete join facets of the form

∑

i≤k

1

α(Gi)
x(Gi) ≤ 1

associated with G1 ∗ . . . ∗ Gk and Gi ∈ C, that imp(G) relies on those
subgraphs Gi ⊆ G only which belong to C. This implies:

Theorem 5.12 For every joined C-perfect graph G, we have that

imp(G) = max{imp(Gi) : Gi ⊆ G,Gi ∈ C}

holds.

This result was, in fact, the key tool to characterize the imperfection
ratio of near-bipartite graphs (Theorem 5.11). Moreover, all facets of the
stable set polytopes of co-line graphs are complete joins of odd antiholes
and a clique by Shepherd [99]. Hence, the above result yields an alternative
proof that the imperfection ratio of co-line graphs relies on its induced odd
antiholes only and is bounded by 5

4 .

Furthermore, Gerke and McDiarmid [45] studied the behavior of the
imperfection ratio under taking lexicographic products. Recall that, for two
graphs G and H, substituting H for all nodes of G yields their lexicographic
product G × H and

imp(G × H) = imp(G) · imp(H)
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holds. Thus, the imperfection ratio cannot be bounded for any class C
of graphs closed under substitution (and, therefore, closed under taking
lexicographic products) and containing one imperfect graph G as

imp(Gi) → ∞ for i → ∞

since imp(G) > 1. Recall that we achieved this way that the imperfection
ratio cannot be bounded for normal graphs and for (C5, C7, C7)-free graphs
(see Section 3.4).

We use this result of Gerke and McDiarmid [45] to address for three fur-
ther superclasses of perfect graphs, namely for near-perfect, rank-perfect,
and circular-perfect graphs, the problem of upper bounds on the imperfec-
tion ratio. Such an upper bound on the imperfection ratio for all graphs
in a class G can exist only if G is at most closed under substituting perfect
graphs for nodes of any graph G ∈ G.

We established that the near-perfect, rank-perfect, and circular-perfect
graphs admit this property.

Theorem 5.13 Let G be obtained by substituting a node of a graph G1 by
a graph G2. G is rank-perfect if and only if G1 is rank-perfect and G2 is
perfect.

The proof of this result relies on the characterization of the facet-defining
system of STAB(G), outgoing from the facts of STAB(G1) and STAB(G2)
due to [21, 30], see [61].

In addition, we have for the class of circular-perfect graphs:

Theorem 5.14 Let G be obtained by substituting a node v of a graph G1

by a graph G2. G is circular-perfect only if G1 is circular-perfect and G2 is
perfect.

The proof relies on the easy fact that any imperfect graph G2 contains
an odd hole or odd antihole C and, by the construction of G, each neighbor
of v in G1 is totally joint to G2 and, thus, to C. Hence, G contains the odd
wheel or odd antiwheel C ∗ v and, therefore, a minimal circular-imperfect
subgraph due to Theorem 2.19.

Thus, Theorem 5.13 implies that all subclasses of rank-perfect graphs
satisfy this necessary condition for the existence of an upper bound on the
imperfection ratio, while Theorem 5.14 establishes this for all subclasses of
circular-perfect graphs. As circular-perfect graphs strongly rely on antiwebs,
we hope particularly that their imperfection ratio is also bounded by 3

2 .
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5.3 About the imperfection index

We first discuss a graph-theoretical characterization of the imperfection in-
dex as the cardinality of a minimum node subset meeting all minimal imper-
fect subgraphs of G. This motivates to introduce the hypergraph I(G) with
the same node set as G and all node subsets as hyperedges which induce a
minimal imperfect subgraph of G. By the invariance of perfection under tak-
ing complements, I(G) clearly equals I(G). Our results imply that finding
a minimum vertex cover in I(G) is equivalent to computing impI(G); thus
impI(G) = impI(G) holds for all graphs and evaluating impI(G) is NP-hard
(see Section 5.3.1).

Next we consider the behavior of the imperfection index under certain
graph composition techniques, namely, under taking disjoint unions, clique
identifications, and lexicographic products (Section 5.3.2). For the latter,
we characterize how several classes of rank-perfect graphs behave under
substitution. Our results have, however, negative consequences for possible
upper bounds on the imperfection index for several graph classes which are
close to perfection in some (other) sense.

5.3.1 The imperfection index in graph-theoretical terms

Recall that Balas et al. [3] introduced the disjunctive procedure for binary
linear programs as a way to obtain a complete description of the integer
polytope from the polytope described by the linear relaxation. Let V =
{1, . . . , n} denote the set of binary variables. For a subset J = {i1, . . . , ij}
of the variables,

PJ(X) = conv{x ∈ X : xj ∈ {0, 1}, j ∈ J}

follows. It is shown in [3] that PJ (X) = Pi1(Pi2(. . . Pij (X))). Obviously,
PV (X) = conv(X ∩ {0, 1}n) holds, but also proper subsets can have this
property. This result allows to define the disjunctive index of a polytope X
as the minimum size of a set J ⊆ V such that PJ(X) = conv(X ∩ {0, 1}n).

As the imperfection index of a graph G is defined as the disjunctive index
of QSTAB(G), the following result directly follows from the definition.

Lemma 5.15 (Ceria [13]) Pj(QSTAB(G)) = STAB(G) holds if and only
if G[V − j] is perfect.

Corollary 5.16 We have impI(G) = 1 if and only if there exists a node
j ∈ V such that G[V − j] is perfect.
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This shows in particular that the almost-perfect graphs are exactly those
graphs G with and imperfection index at most one (as they are defined to
admit one node whose removal results in a perfect graph).

Clearly, Lemma 5.15 can be generalized further as follows (this was in-
dependently observed in [61, 64, 72]).

Lemma 5.17 We have PJ (QSTAB(G)) = STAB(G) if and only if G[V −J ]
is perfect.

Therefore, J is a subset of nodes meeting all minimal imperfect sub-
graphs of G. By the Perfect Graph Theorem [65], an induced subgraph G′

of G is minimally imperfect if and only if its complement G
′
is minimally

imperfect. Hence, the same node-subset J meets all minimal imperfect sub-
graphs in the complementary graph, which implies:

Corollary 5.18 Let G = (V,E) be a graph. PJ(QSTAB(G)) = STAB(G)
holds for a subset of nodes J ⊆ V if and only if PJ (QSTAB(G)) = STAB(G).

This reproves the invariance of the imperfection index under taking com-
plements, originally achieved by Aguilera et al. [1].

We formalize the computation of the imperfection index further. For a
graph G = (V,E), we introduce the imperfection hypergraph I(G) = (V,F)
on the same node set as G and all node subsets inducing minimally imperfect
subgraphs of G as hyperedges. Obviously, we have I(G) = I(G). For our
purpose, we look for a minimum vertex cover of I(G), i.e., for a subset J ⊆ V
meeting all hyperedges. Obviously, any vertex cover of I(G) corresponds to a
subset J ⊆ V with G[V −J ] perfect resp. with PJ(QSTAB(G)) = STAB(G).
This implies that the imperfection index of G equals the vertex cover number
τ(I(G)).

Lemma 5.19 For any graph G, impI(G) = impI(G) = τ(I(G)) = τ(I(G)).

As the computation of the vertex cover number of a hypergraph is a
well-known NP-hard problem, also determining the imperfection index of a
graph is NP-hard.

5.3.2 The imperfection index and graph compositions

Similar to the imperfection ratio, we also consider the behavior of the im-
perfection index under well-known perfection-preserving graph composition
techniques. The expectation is, again, that the imperfection index should
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be invariant under applying such techniques; the first result in this direction
is, again, the invariance under taking complements.

From the above graph-theoretical reformulation of impI(G), we infer:

Lemma 5.20 The number of disjoint minimally imperfect subgraphs of G
is a lower bound on impI(G).

This immediately implies that for an unconnected graph G, the imper-
fection index equals the sum of the imperfection indices of its components
G1, . . . , Gk, that is

impI(G1 + . . . + Gk) = impI(G1) + . . . + impI(Gk).

Thus, only the imperfection index of perfect graphs is invariant under tak-
ing disjoint unions, whereas it cannot be bounded for several other classes
of graphs, as we can easily construct graphs within these classes having
arbitrarily many disjoint minimally imperfect subgraphs.

Example 5.21 Let kC9 be the disjoint union of k 9-holes. Then we obvi-
ously have impI(kC9) = k and, in particular,

impI(kC9) → ∞ if k → ∞.

As such graphs kC9, k ≥ 1 have clique number two and belong to the classes
of t-perfect graphs, line graphs, (C5, C7, C7)-free graphs, normal graphs, as
well as planar graphs, the imperfection index cannot be bounded for all
these classes and their superclasses.

Similar constructions are possible by linking odd holes through addi-
tional edges to a chain; even in highly connected graphs many disjoint odd
holes can occur:

Example 5.22 Consider the web W k
5k. For every node i ∈ {1, . . . , 5k}, it

contains the 5-hole C(i) = {i, i + k, i + 2k, i + 3k, i + 4k}. In particular, the
k 5-holes C(i) for 1 ≤ i ≤ k are disjoint which implies that impI(W

k
5k) ≥ k

and, thus,
impI(W

k
5k) → ∞ if k → ∞.

Thus, there is also no upper bound of the imperfection index for the classes
of webs and antiwebs as well as for any of their superclasses.

The previous examples imply:
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Corollary 5.23 For the following graph classes G, there exists no upper
bound on the imperfection index impI(G), G ∈ G:

• t-perfect graphs (and, therefore, also h-perfect, a-perfect, p-perfect,
rank-perfect graphs);

• line graphs (and, therefore, also quasi-line and claw-free graphs);

• graphs with clique number two (and, therefore, also graphs with stabil-
ity number two);

• webs and antiwebs (and, therefore, also quasi-line and near-bipartite
graphs as well circular-perfect graphs);

• (C5, C7, C7)-free graphs and normal graphs;

• planar graphs.

To learn about the imperfection index of a graph G1 +Q G2 obtained
by identifying two graphs G1 and G2 in a clique Q, we again make use of
the graph-theoretical characterization of the imperfection index. Let J (G)
denote the set of all minimum node subsets J of G such that G − J is
perfect. Then determining impI(G) means to look for a pair J1 ∈ J (G1)
and J2 ∈ J (G2) such that J1 ∩ J2 ⊆ Q is of maximum cardinality. One can
easily infer that

impI(G1 +Q G2) = min{|J1 ∪ J2| : Ji ∈ J (Gi) for i = 1, 2}

holds. This result clearly includes the special case of taking disjoint unions.
For almost-perfect graphs G1 and G2, the graph G1 +Q G2 is again

almost-perfect if and only if (J (G1) ∩ J (G2)) ∩ Q 6= ∅.
We finally consider the behavior of the imperfection index under taking

lexicographic products G1 × G2. In [61] we obtained the following:

Theorem 5.24 For two graphs G1, G2 we have

impI(G1 × G2) = |G2| impI(G1) + (|G1| − impI(G1)) · impI(G2)

as imperfection index of their lexicographic product.

Thus, also the imperfection index cannot be bounded for any class G
of graphs which is closed under substitution (and, therefore, closed under
taking lexicographic products) and contains at least one imperfect graph G.
In contrary to the imperfection ratio, we have even more:

Corollary 5.25 Let G1 be a graph. For any perfect graph G2, we have

impI(G1 × G2) = |G2| impI(G1).



5.3. ABOUT THE IMPERFECTION INDEX 119

As this result clearly also applies to the two special cases, namely taking
lexicographic products where G2 is a clique (replicating every node of G1)
or a stable set (multiplying every node of G1), we immediately obtain the
following:

Corollary 5.26 Let G be a graph class containing one imperfect graph.
If G is closed under substituting perfect graphs for nodes, replication, or
multiplication, then there exists no upper bound for the imperfection index
impI(G), G ∈ G.

Thus, a sufficient condition for the non-existence of an upper bound on
the imperfection index is that the graph class G in question contains an im-
perfect graph and is closed under substituting certain perfect graphs. This
motivates to study the behavior of the remaining graph classes of interest un-
der substitution, in particular for near-perfect and strongly circular-perfect
graphs.

We have already seen that precisely substituting perfect graphs for nodes
preserves rank-perfection. We are interested whether there are further re-
quirements in order to obtain near-perfect graphs by substitution. Note that
Shepherd [98] showed that the class of near-perfect graphs is closed under
replication. We ensured in [61] that there is no other way to produce a
near-perfect graph by substitution.

Theorem 5.27 Let G be obtained by substituting a node v of G1 by G2. G is
near-perfect if and only if either G1 and G2 are perfect or G1 is near-perfect
and G2 is a clique.

Combining this theorem with Corollary 5.26 yields that also the imper-
fection index of properly near-perfect graphs cannot be bounded.

Remark 5.28 We provided in [61] for further subclasses of rank-perfect
graphs which conditions are required to generate a member of this class by
substitution. The results for h-perfect, co-h-perfect, p-perfect, and a-perfect
graphs imply that taking lexicographic products with stable sets preserves
the membership in all those classes, and yield alternative proofs that the
imperfection index cannot be bounded for all those classes.

Finally, we address the imperfection index of strongly circular-perfect
graphs. We know from Section 5.2.3 that a graph obtained by substituting
a node of a graph G1 by a graph G2 is circular-perfect only if G2 is perfect.
However, the class of circular-perfect graphs is not closed under substituting
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perfect graphs for nodes: Let, e.g., G1 be one of the circular-perfect graphs in
Figure 5.1 and substitute v by a clique of size two. The resulting graph G has
ωc(G) = max{3, 5

2} = 3 as triangles and 5-holes are the only prime circular
cliques in G. If G would be circular-perfect, we had ωc(G) = χc(G) = 3 and
⌈χc(G)⌉ = χ(G) = 3, but χ(G) = 4 yields a contradiction.

However, circular-perfectness is certainly closed under multiplication
as both parameters ωc(G) and χc(G) clearly remain unchanged in this
case. This gives an alternative proof that the imperfection index cannot
be bounded for circular-perfect graphs.

v

v

(b)(a)

Figure 5.1: Replication does not preserve circular-perfectness

The complement of a graph obtained by multiplying a node v of G1 k-
times equals the graph obtained by replicating v in G1 k-times. Thus, as
circular-perfect graphs are not closed under replication, the class of strongly
circular-perfect graphs is neither closed under multiplication nor under repli-
cation and satisfies, therefore, a necessary condition for the existence of an
upper bound for the imperfection index. Note that all the strongly circular-
perfect graphs presented in Section 2.2.4 have bounded imperfection index.

5.4 Comparing imperfection ratio and imperfec-

tion index

In this chapter, we have studied the imperfection ratio and the imperfection
index as two different ways to classify how close certain imperfect graphs
are to perfection. The imperfection ratio has been shown to be bounded for
several classes, whereas the imperfection index turned out to be unbounded
for most of them, see Table 5.1 which gives an overview of the results.

An open question is in particular whether there exist a graph class such
that the imperfection index of all members is bounded by a constant k with
1 < k < ∞. The class of strongly circular-perfect graphs could be such a
class.
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From the achieved results it is fair to conclude that the disjunctive index of
QSTAB(G) measures too roughly whether a given graph G is close to the
class of perfect graphs. Possible refinements are suggested in [61] as follows:

• The disjunctive procedure can be carried out with any linear com-
bination πx of the variables. The resulting polytope is then defined
as

Pπ(X) = conv({x ∈ X : πx ≤ π0} ∪ {x ∈ X : πx ≥ π0 + 1})

For any near-perfect graph G and the full rank constraint x(G) ≤ α(G)
as πx ≤ π0, it directly follows Pπ(QSTAB(G)) = STAB(G) and the
disjunctive index would equal one. Unfortunately, kC5 still needs k
applications of the disjunctive procedure before STAB(G) is reached.

• The unboundedness of the imperfection index for classes of graphs
bases in all the above cases on the increase of the number of nodes
in the graph without leaving the class (disjoint union, substitution,
replication, multiplication). Scaling the imperfection index by the
number of nodes n = |V | could resolve this problem.

We, therefore, suggest to consider the normalized imperfection index

impn(G) =
impI(G)

n
.

As there are no imperfect graphs with four or less nodes, impI(G) can be at
most n − 4, and thus scaling yields a value impn(G) ∈ [0, 1).

All perfect graphs are exactly the graphs with impn(G) = 0; all almost-
perfect graphs satisfy impn(G) ≤ 1

n . Even for kC5, k ≥ 1, we obtain as

normalized imperfection index impI(kC5)
5k = 0.2, independent of k. Taking

the lexicographic product of k 5-holes yields a sequence with

impI((C5)
k)

|(C5)k|
→ 1 if k → ∞

(since impI((C5)
k) = 5k − 4k whereas |(C5)

k| = 5k), which is consistent
with the fact that also the imperfection ratios of these graphs tend to in-
finity. It is, however, interesting to observe that for the Mycielski graphs
G0, G1, G2, . . . the quotient of imperfection index and number of nodes tends
to 1

3 , whereas their imperfection ratios cannot be bounded.
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Graph class G sup{imp(G) : G ∈ G} sup{impI(G) : G ∈ G}

perfect = 1 = 0

minimal imperfect ≤ 5
4 = 1

almost-bipartite ≤ 5
4 ≤ 1

almost-perfect < 2 ≤ 1

t-perfect ≤ 5
4 ∞

h-perfect ≤ 5
4 ∞

co-h-perfect ≤ 5
4 ∞

p-perfect ≤ 5
4 ∞

(semi-)line ≤ 5
4 ∞

antiwebs/webs < 3
2 ∞

a-perfect < 3
2 ∞

near-bipartite < 3
2 ∞

quasi-line < 3
2 ∞

planar ≤ 11
6 ∞

strongly circular-perfect ?? ??

circular-perfect ?? ∞

near-perfect ?? ∞

rank-perfect ?? ∞

α(G)=2 ∞ ∞

weakly rank-perfect ∞ ∞

claw-free ∞ ∞

(C5, C7, C7)-free ∞ ∞

normal ∞ ∞

Table 5.1: Summary of the bounds



Chapter 6

Conclusions

Throughout the previous chapters, we considered superclasses of perfect
graphs, obtained by relaxing perfection w.r.t. such different concepts as

• the relation of clique and chromatic number,

• splitting graph entropies of complementary graphs,

• the relation of the stable set polytope and its LP-relaxation QSTAB(G),

which all characterize perfect graphs. We further surveyed several ways to
measure imperfection of a graph accordingly, namely, by means of

• χ-binding functions or the imperfection ratio,

• the value max {H(G, p)+H(G, p)−H(p) : p},

• the facets of STAB(G), the disjunctive index or the Chvátal-rank of
QSTAB(G), or the dilation ratio of STAB(G) and QSTAB(G).

It turned out that the imperfection ratio is compatible to all the considered
concepts, as it

• reflects nice coloring properties (as some asymptotic slope of the min-
imal χ-binding function for a family of replications of a graph G),

• is relevant for splitting graph entropies (as a small upper bound u for
imp(G) yields also a good upper bound for H(p)−H(G, p)−H(G, p),
independent of the probability distribution p),

• measures the difference between STAB(G) and QSTAB(G) (as the
dilation ratio of STAB(G) and QSTAB(G)).

Perfect graphs are exceptional in all these respects, and minimally imperfect
graphs are, indeed, close to perfect graphs by means of all these concepts.

123
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However, the results from the previous chapters imply that the graphs in
the studied superclasses tend to be close to perfection w.r.t. one concept
only (or to a few if they are related), but are typically not close to perfection
w.r.t. the other considered concepts.

For instance, almost-perfect graphs are exactly the graphs with imper-
fection index at most one, and are χ-bound with the smallest non-trivial
binding function. Circular-perfect graphs arise as a natural superclass of
perfect graphs by means of a more general coloring concept and as a further
important class of χ-bound graphs with the smallest non-trivial χ-binding
function χ(G) ≤ ω(G) + 1. But the graphs in both classes do not have a
nice description of the stable set polytope (see Section 4.1.4) and are not
weakly splitting.

Normal graphs are supposed to be ‘weaker perfect graphs’ by means of
splitting graph entropies. Körner and de Simone [59] conjectured a simi-
larity to perfect graphs in terms of forbidden subgraphs: In analogy to the
Strong Perfect Graph Conjecture, they conjectured that every (C5, C7, C7)-
free graph is normal. However, neither normal nor (C5, C7, C7)-free graphs
are χ-bound, their imperfection ratio cannot be bounded, and not even the
value max {H(G, p)+H(G, p)−H(p) : p}. Thus, the validity of the Normal
Graph Conjecture would certainly provide us a sufficient condition for nor-
mality and characterize the hereditary core of the normal graphs, but we
even cannot expect nice properties of this special subclass of normal graphs.

As a consequence, we conclude that normal graphs are not as close to
perfection as expected–even not in the context of splitting graph entropies,
since for a normal graph G the value H(G, p) + H(G, p) − H(p) strongly
depends on the probability distribution p.

In contrary, for each minimally imperfect graph G (including the non-
normal graphs C5, C7, C7) we have the small range

0 ≤ H(p) − H(G, p) − H(G, p) ≤ log2

(

|G|

|G| − 1

)

for all probability distributions p by [45]. This suggests to consider graph
classes G as close to perfection by means of splitting entropies if there is a
small upper bound u for imp(G) since

0 ≤ H(p) − H(G, p) − H(G, p) ≤ log2 u

holds for all (normal and non-normal) graphs G ∈ G and for all p. For
instance, all graph classes G have this property where the imperfection ratio
relies on the minimally imperfect subgraphs only as imp(G) ≤ 5

4 holds.
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Several classes of rank-perfect graphs admit the latter property, namely,
line graphs (whose stable set polytopes have as only nontrivial facets rank
clique family inequalities) and p-perfect graphs (whose stable set polytopes
have as only nontrivial facets rank constraints associated with partition-
able graphs). In addition, for a-perfect and near-bipartite graphs, both the
imperfection ratio and the nontrivial facets of the stable set polytope rely
on induced antiwebs only, thereby bounding the imperfection ratio by 3

2 .
Hence, such graphs can be considered as close to perfection.

The latter graph classes are obtained by considering the nontrivial facets
of the stable set polytope only. In order to describe the difference between
STAB(G) and QSTAB(G), also the fractional extreme points of QSTAB(G)
are of interest. The imperfection index impI(G) uses the latter approach,
as it equals the minimal number of disjunctions which are required to make
QSTAB(G) integral. In addition, we have for any graph G

χ(G) ≤ ω(G) + impI(G)

since impI(G) equals the cardinality of a minimum node subset V ′ of G
such that G − V ′ is perfect. This suggests that graph classes with a small
upper bound u for the imperfection index admit a linear χ-binding function
b(x) = x + u (as, for instance, almost-perfect graphs do). Unfortunately,
it turned out that the imperfection index cannot be bounded for the most
graph classes.

Thus, considering the fractional extreme points of QSTAB(G) only does
not help in general to decide whether a graph is close to perfection. It does
even not reflect the difference between STAB(G) and QSTAB(G) as, for
instance, almost-perfect graphs have imperfection index one, but arbitrarily
difficult facets are required to describe their stable set polytope. Conversely,
stable set polytopes of near-perfect graphs G have only facets associated
with cliques and the graph itself, but QSTAB(G) can have arbitrarily many
fractional extreme points.

We conclude that both knowledge on the facets of STAB(G) and the
fractional extreme points of QSTAB(G) has to be taken into account in
order to describe the difference between STAB(G) and QSTAB(G). The
imperfection ratio

imp(G) = max{aT y : a ∈ F(G), y ∈ QSTAB(G)}

takes both into account and is, therefore, also an appropriate measure for
imperfection from the polyhedral point of view.
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This supports our main assertion further that the imperfection ratio is
an appropriate (and probably the best) measure for imperfection and that
graphs with a small imperfection ratio are close to perfection by means of
several concepts.

We already observed that minimally imperfect graphs admit this prop-
erty; one further example is the class of line graphs: We can conclude from
the previous considerations that line graphs are ‘almost perfect’ as they

• have an imperfection ratio which relies on induced odd holes only and
is bounded by 5

4 ,

• are χ-bound with binding function b(x) = x + 1,

• satisfy 0 ≤ H(G, p) + H(G, p) − H(p) ≤ log2(
5
4) where the minimum

is attained for all (C5, C7, C7)-free line graphs,

• have both an easy to describe stable set polytope (with rank clique
family inequalities as only nontrivial facets) and an easy clique con-
straint stable set polytope (with half-integral extreme points only).

Note that all those properties can be translated to the complementary class:
Complements of line graphs

• have an imperfection ratio which relies on induced odd antiholes only
and is bounded by 5

4 ,

• are χ-bound with complementary binding function b(x) = x + 1,

• satisfy 0 ≤ H(G, p) + H(G, p) − H(p) ≤ log2(
5
4) where the minimum

is attained for all (C5, C7, C7)-free co-line graphs,

• have both an easy stable set polytope (with (0,1,2)-valued joined odd
antihole constraints as only nontrivial facets) and an easy clique con-
straint stable set polytope (with (0, 1

α′ )-valued extreme points only).

Hence, both line graphs and their complements can be seen as ‘almost per-
fect’. Note that the invariance of the imperfection ratio under complemen-
tation suggests that, in general, a graph class and its complementary class
are either both close to or far from perfection.



Chapter 7

Selected Proofs

7.1 On circular-perfect graphs

Circular-perfect graphs form an important superclass of perfect graphs with
the smallest non-trivial χ-binding function b(x) = x + 1. As not much is
known about members of this class yet, we address in [81] the problem of
finding out which graphs are circular-perfect. As partitionable graphs G
satisfy the property χ(G) = ω(G)+ 1 one might expect that at least several
subclasses of partitionable graphs are circular-perfect. However, we ob-
tained in [81] that all partitionable graphs different from circular cliques are
circular-imperfect and the partitionable graphs K3q+1,3 are minimal circular-
imperfect (Theorem 2.11).

More precisely, we prove the following. Given a graph G, an edge e
of G is called indifferent if e is not contained in any maximum clique of
G. The normalized subgraph norm(G) of G is obtained from G by deleting
all indifferent edges. We characterize all circular cliques whose normalized
subgraph is circular-imperfect, and show which of them are minimal with
respect to this property.

Theorem 7.1 Let Kp,q be any prime circular clique. Then norm(Kp,q) is

(i) circular-imperfect iff p 6≡ −1 (mod q) and ⌊p/q⌋ ≥ 3;

(ii) minimal w.r.t. this property iff p = 3q + 1 for all q ≥ 3;

(iii) equal to Kp,3 if p = 3q + 1 and q ≥ 3.

Given an integer p and a subset of integers S of [0, p − 1], the circulant
graph C(p, S) is the graph with node set {0, . . . , p−1} and edge set {ij| i−j ∈
S} with arithmetics performed modulo p.
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We first state the following observation which relates the normalized
sugraph of a partitionable circular clique to its complement.

Lemma 7.2 If p = ωq + 1, then norm(Kp,q) is isomorphic to the comple-
ment Kp,ω = Cω

p of Kp,ω.

Proof: Both norm(Kp,q) and Kp,ω are circulant graphs on the node set
V = {0, 1, . . . , p − 1}. The former has generating set

S = {q, q + 1, 2q, 2q + 1, . . . , (ω − 1)q, (ω − 1)q + 1}

and the latter has generating set

S′ = {1, 2, . . . , ω − 1, p − 1, p − 2, . . . , p − ω + 1}.

It is easy to verify that f : V → V defined as f(i) = iq (mod p) satisfies
f(S′) = S. Hence f is an isomorphism from Kp,ω to norm(Kp,q). 2

A proper variant of G is a subgraph H ′ of G obtained by removing a
non-empty set of indifferent edges (i.e., any graph H ′ with H ⊆ H ′ ⊆ G).

We shall now proceed to the proof of Theorem 7.1.

Proof: Consider a circular clique Kp,q with p = ωq + r and 0 ≤ r ≤ q − 1
and let V = V (Kp,q).

Claim 1 norm(Kp,q) is the circulant graph C[p, S] whith S = {q, q +1, · · · ,
q + r, 2q, 2q + 1, · · · , 2q + r, · · · , (ω − 1)q, (ω − 1)q + 1, · · · , (ω − 1)q + r}.

Consider an edge 0t. We have t = kq + r′, with 1 ≤ k ≤ ω − 1 and
0 ≤ r′ ≤ q − 1.

If 0 ≤ r′ ≤ r, then the set {0, q + r′, 2q + r′, · · · , (ω − 1)q + r′} induces a
maximum clique containing the edge 0t, and so the edge 0t is not indifferent.

Conversely, if r + 1 ≤ r′ ≤ q − 1, then let K be a clique containing
0, t. The other nodes of K belong to the intervals [q, (k − 1)q + r′] and
[(k + 1)q + r′, (ω − 1)q + r]. Therefore, K has at most ω − 1 nodes, namely,
at most k − 1 nodes in the interval [q, (k − 1)q + r′] and at most ω − k − 2
nodes from the interval [(k+1)q+r′, (ω−1)q+r]. Thus K is not a maximum
clique and so 0t is an indifferent edge. 3

In particular, norm(Kp,q) is isomorphic to Kp,3 if p = 3q + 1 due to
Lemma 7.2 which proves assertion (iii).
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Claim 2 Suppose I is a maximal stable set of norm(Kp,q) and i, i + t ∈ I
for some t ≤ r + 1. Then i + j ∈ I for all 0 ≤ j ≤ t.

If x is adjacent to i+ j in norm(Kp,q) for some 0 ≤ j ≤ t, then x is adjacent
to either i or i + t in norm(Kp,q). 3

Claim 3 Suppose I is a stable set of norm(Kp,q). There is a node i of
norm(Kp,q) such that i + j 6∈ I for any 1 ≤ j ≤ r.

Otherwise, Claim 2 would imply that all nodes of norm(Kp,q) belong to a
maximal stable set I ′ containing I, an obvious contradiction. 3

Claim 4 If I is a stable set of norm(Kp,q), then |I| ≤ q.

As norm(Kp,q) is a circulant graph, by Claim 3, we may assume w.l.o.g.
that S ∩ I = ∅, where S = {ωq, ωq + 1, · · · , ωq + r − 1}.

But V − S can be decomposed into the disjoint union of q cliques of
norm(Kp,q), namely, Qi = {i, i+q, i+2q, · · · , i+(ω−1)q}, for i = 0, 1, · · · , q−
1. As |I ∩ Qi| ≤ 1 for each i ∈ {0, 1, · · · , q − 1}, so |I| ≤ q. 3

Claim 5 We have χc(norm(Kp,q)) = χc (Kp,q) = p/q.

Since χc(Kp,q) = p/q, we have χc(norm(Kp,q)) ≤ p/q. On the other hand,
χc(norm(Kp,q)) ≥ χf (norm(Kp,q)) = p/α(norm(Kp,q)) ≥ p/q due to Claim
4 (where χf denotes the fractional chromatic number, a lower bound of the
circular chromatic number [116]). So equality holds everywhere. 3

Therefore the removal of indifferent edges of a circular clique does not
alter its circular chromatic number, but clearly its circular clique number.
This implies that normalization destroys circular-perfection:

Claim 6 If p 6= −1 (mod q) and ⌊p/q⌋ ≥ 3 then Kp,q is not normalized and
every of its proper variants is circular-imperfect.

We denote by ∆(G) the maximum degree of a graph G. We have
∆(Kp,q) = p−(2q−1) and ∆(norm(Kp,q)) = (r+1)(ω−1), where p = ωq+r
and r is the remainder modulo q, by Claim 1. Therefore, if Kp,q is normal-
ized (i.e., if Kp,q = norm(Kp,q)) then p − (2q − 1) = (r + 1)(ω − 1), that is
(ω − 2)q = (r + 1)(ω − 2). Since ω = ⌊p/q⌋ ≥ 3, this implies that r = q − 1,
and so p = −1 (mod q), a contradiction.
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Hence Kp,q is not normalized and the result follows from Claim 5: if H ′

is any proper variant of Kp,q then

ωc

(

H ′
)

< p/q = χc (H) = χc(H
′).

3

This completes the proof of the ”if part” of Theorem 7.1 (i). We now
treat the ”only if part” of assertion (i).

Claim 7 If ⌊p/q⌋ < 3 or p = −1 (mod q) then norm(Kp,q) is circular-
perfect.

Notice that ω = ⌊p/q⌋ is the clique number of Kp,q. Therefore, if ω < 3 then
norm(Kp,q) = Kp,q. Thus norm(Kp,q) is circular-perfect.

If p = −1 (mod q) then norm(Kp,q) = Kp,q follows due to the descrip-
tion of norm(Kp,q) for general p and q in Claim 1. Thus norm(Kp,q) is
circular-perfect. 3

This completes the proof of Theorem 7.1 (i). We now treat the ”only if
part” of assertion (ii).

Claim 8 If p 6= 1,−1 (mod q) and ω = ⌊p/q⌋ ≥ 3 then Kp,q has a circular
clique K(ωq′+1),q′ as an induced subgraph with at least one indifferent edge
of Kp,q, and q′ ≥ 3.

Let 2 ≤ r ≤ q − 2 such that p = qω + r. Notice that q 6= 2r as p and q are
relatively prime.

Case 1. If r < q
2 then let q′ = ⌈ q

r ⌉. We have q′ ≥ 3. For every 0 ≤ i < ω,

let Xi = {iq, iq + r, . . . , iq + (q′ − 1)r} and define X =
(

⋃

0≤i<ω Xi

)

∪ {ωq}.

We first show that X induces a circular clique K(ωq′+1),q′ ⊆ Kp,q.
For every 0 ≤ x < p, we denote by Sx the maximum stable set {x, x +

1, . . . , x + q − 1} of Kp,q (arithmetics performed modulo p). Due to Trotter
[104], it is enough to check that for every x ∈ X, Sx meets X in exactly q′

nodes.
Let x ∈ X: by the definition of X, there exist 0 ≤ i ≤ ω and 0 ≤ δ < q′

such that x = iq + δr.

• If i < ω − 1 then Sx ⊆ Siq ∪ S(i+1)q. Hence

Sx ∩ X = (Siq ∩ Sx ∩ X) ∪ (S(i+1)q ∩ Sx ∩ X)

= {iq + λr|δ ≤ λ < q′} ∪ {(i + 1)q + λr|0 ≤ λ < δ}
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as for every 0 ≤ λ < q′, we have (i + 1)q + λr ∈ Sx if and only if

0 ≤ (i + 1)q + λr − x = q + (λ − δ)r < q

holds. Therefore Sx meets X in exactly q′ nodes.

• If i = ω − 1 and δ = 0 then

Sx ∩ X = Siq ∩ X = {iq + λr|0 ≤ λ < q′}

holds and, again Sx meets X in exactly q′ nodes.

• If i = ω − 1 and δ > 0 then x = (ω − 1)q + δr. We have Sx =
{(ω−1)q+δr, (ω−1)q+δr+1, . . . , (ω−1)q+δr+q−1} (with arithmetics
performed modulo p). Hence Sx is the disjoint union S′

x ∪ S”x where
S′

x = {(ω − 1)q + δr, (ω − 1)q + δr + 1, . . . , ωq + r − 1} and S”x =
{0, 1, . . . , (δ − 1)r − 1} (S”x = ∅ if δ = 1). We have

X ∩ Sx = (Xω−1 ∪ X0 ∪ {ωq}) ∩ Sx

=
(

Xω−1 ∩ S′
x

)

∪ (X0 ∩ S”x) ∪ {ωq}

and thus, X ∩ S is of size q′ as

Xω−1 ∩ S′
x = {(ω − 1)q + λr|δ ≤ λ < q′} is of size q′ − δ;

X0 ∩ S”x = {λr|0 ≤ λ < δ − 1 } is of size δ − 1.

Therefore Sx meets X in exactly q′ nodes.

• If i = ω and δ = 0 then x = ωq. We have

Sx ∩ X = ({ωq, ωq + 1, . . . , ωq + r − 1} ∩ X)

∪ ({0, 1, . . . , q − r − 1} ∩ X)

= {ωq} ∪ {λr|0 ≤ λr ≤ q − r − 1 and 0 ≤ λ < q′}

= {ωq} ∪ {λr|0 ≤ λ ≤ ⌊q/r⌋ − 1 = q′ − 2 and 0 ≤ λ < q′}

= {ωq} ∪ {λr|0 ≤ λ ≤ q′ − 2}

which also implies that Sx meets X in exactly q′ nodes.

As Sx always meets X in exactly q′ nodes, X induces a circular clique
G′ = K(ωq′+1),q′ of Kp,q due to [104]. As ω ≥ 3 and 0 < r < q/2, we have
q + r < q + 2r < 2q and the edge {0, q + 2r} of G′ is indifferent by Claim 1.
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Case 2. If r > q
2 , we show that K(3ω+1),3 is an induced subgraph of Kp,q.

For j = 0, 1, . . . , 3ω, let xj = ⌊pj/(3ω + 1)⌋. Let X = {x0, x1, . . . , x3ω}.
We show that X induces this circular clique K(3ω+1),3: this is equivalent

to show that for every 0 ≤ i, j ≤ 3ω, {xi, xj} is an edge of Kp,q if and only
if 3 ≤ |i − j| ≤ 3ω − 2.

To prove this, we use the following simple observation several times: if
a and b are reals and δ is an integer such that a− b ≥ δ then ⌊a⌋ − ⌊b⌋ ≥ δ.

• Let 0 ≤ i, j ≤ 3ω such that {xi, xj} is an edge of Kp,q and assume
w.l.o.g. that i < j. We have xi < xj and q ≤ xj − xi ≤ p − q.

If j−i ≤ 2, then pj/(3ω+1)−pi/(3ω+1) ≤ 2(qω+r)/(3ω+1) follows.
If 2(qω + r)/(3ω + 1) > q − 1 then as ω ≥ 3 and q ≥ r + 2, a short
computation gives r < 1, a contradiction. Thus 2(qω + r)/(3ω + 1) ≤
q − 1 and so xj − xi ≤ q − 1, a contradiction. Hence j − i ≥ 3 follows.

If j − i ≥ 3ω − 1, then pj/(3ω + 1) − pi/(3ω + 1) ≥ (3ω − 1)(qω +
r)/(3ω+1) ≥ p−q+1 follows. Thus xj−xi ≥ p−q+1, a contradiction.

Therefore, we infer 3 ≤ j − i ≤ 3ω − 2.

• Conversely, let 0 ≤ i, j ≤ 3ω such that 3 ≤ j − i ≤ 3ω − 2 and assume
w.l.o.g. that i < j. We have xi < xj and we need to check that {xi, xj}
is an edge of Kp,q. On the one hand, j − i ≥ 3 and 3r ≥ q imply

pj/(3ω + 1) − pi/(3ω + 1) ≥ 3(qω + r)/(3ω + 1) ≥ q

and, hence, xj − xi ≥ q follows. On the other hand, j − i ≤ 3ω − 2
yields

pj/(3ω + 1) − pi/(3ω + 1) ≤ (3ω − 2)(qω + r)/(3ω + 1) ≤ p − q

and shows xj − xi ≤ p − q. Therefore {xi, xj} is an edge of Kp,q and
X induces a circular clique G′ = K(3ω+1),3 of Kp,q, as required.

At last, we need to exhibit an indifferent edge of Kp,q in G′.

By Claim 1, the neighbours of 0 in norm(Kp,q) are the nodes in S =
{q, q +1, · · · , q + r, 2q, 2q +1, · · · , 2q + r, · · · , (ω−1)q, (ω−1)q +1, · · · , (ω−
1)q + r}.

We have 2q − 5p/(3ω + 1) = (ωq + 2q − 5r)/(3ω + 1) > 0 as ω ≥ 3 and
r ≤ q − 2. Hence x5 < 2q.

If x5 ≥ q + r + 1 then x5 /∈ S and {x0, x5} is an edge of G′ which is
indifferent in Kp,q.
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It remains to check the case x5 ≤ q + r: identifying an edge of G′ which
is indifferent in Kp,q is more difficult to handle. We are going to exhibit one
in an induced circular clique G′′ sharing all nodes but one with G′.

For t = 1, 2, . . . , ω − 2, let δt = x3t+2 − (tq + r + 1). As x5 ≤ q + r, we
have δ1 < 0.

We first check that δω−2 ≥ 0: we have p(3ω−4)
3ω+1 − (ω − 2)q − r − 1 =

2q − 1 − 5p
3ω+1 . If 5p/(3ω + 1) > 2q − 1 then 5r > ωq − 3ω + 2q − 1. From

r ≤ q−2, we get ω < 3, a contradiction. Hence p(3ω−4)
3ω+1 −(ω−2)q−r−1 ≥ 0

and therefore δω−2 ≥ 0.
Let t∗ be the largest index such that δt∗ < 0: we have 1 ≤ t∗ < ω − 2.

Let x′
3t∗+2 = t∗q + r + 1 and let X ′ = (X − {x3t∗+2})∪ {x′

3t∗+2}. Let G′′ be
the subgraph of Kp,q induced by X ′. To prove that G′′ is an induced circular
clique K(3ω+1),3 of Kp,q, we have to check that the neighborhood of x′

3t∗+2

in G′′ is the same than the one of x3t∗+2 in G′, namely {x0, x1, . . . , x3t∗−1}∪
{x3t∗+5, x3t∗+6, . . . , x3ω}.

If (3t∗+5)p
3ω+1 − (t∗q + r + 1) < q then we have (3(t∗+1)+2)p

3ω+1 − ((t∗ + 1)q +
r + 1) < 0. Thus we infer δt∗+1 < 0, in contradiction with the maximality
of t∗. Hence x3t∗+2 ≤ x′

3t∗+2 ≤ x3t∗+5 − q, and so x′
3t∗+2 is adjacent to

{x0, x1, . . . , x3t∗−1} ∪ {x3t∗+5, x3t∗+6, . . . , x3ω} and x′
3t∗+2 is not adjacent to

x3t∗+3 and x3t∗+4.

We have t∗q + r + 1 − p3t∗

3ω+1 = r + 1 + t∗(q−3r)
3ω+1 < q as r ≤ q − 2 and

r > q/3. Hence x′
3t∗+2 is not adjacent to x3t∗ and x3t∗+1.

Therefore G′′ induces a circular clique K(3ω+1),3 of Kp,q. As t∗q + r <
x′

3t∗+2 = t∗q + r + 1 < (t∗ + 1)q the edge {x0, x
′
3t∗+2} of G′′ is an indifferent

edge of Kp,q. This finishes the second case.
Thus in both cases Kp,q contains an induced circular clique K(ωq′+1),q′

with q′ ≥ 3 and an indifferent edge of Kp,q. 3

Claim 9 If norm(Kp/q) is minimal circular-imperfect then it is a parti-

tionable web W ω−1
ωq+1, and q ≥ 3.

Since norm(Kp/q) is circular-imperfect we have p 6= −1 (mod q) and ω ≥ 3
due to Claim 7.

If norm(Kp/q) is not partitionable then p 6= 1 (mod q). By the previous
claim, Kp,q has an induced subgraph K(ωq′+1),q′ with q′ ≥ 3 and node set
W , containing an indifferent edge. As all non-indifferent edges of K(ωq′+1),q′

are non-indifferent in Kp,q (since these two graphs have the same maximum
clique size), the subgraph G[W ] of Kp,q induced by W , is a proper variant of
K(ωq′+1),q′ , and is, therefore, circular-imperfect by Claim 6. Hence Kp,q =
K(ωq′+1),q′ , and q = q′ ≥ 3.
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This implies that norm(Kp,q) is partitionable.
It follows that q ≥ 3 (as q = 2 implies that norm(Kp,q) is an odd antihole

and, therefore, circular-perfect, a contradiction). Due to Claim 7.2, this
shows that norm(Kp,q) is a partitionable web W ω−1

ωq+1 with q ≥ 3. 3

Claim 10 A claw-free graph does not contain any circular cliques different
from cliques, odd holes, and odd antiholes.

Assume Kp,q is a circular clique different from a clique, an odd hole, and
an odd antihole. Then q ≥ 3 and p ≥ 2q + 2. Thus {1, q + 1, q + 2, q + 3}
induces a claw. 3

Claim 11 If norm(Kp,q) is a minimal circular-imperfect graph, then it has
clique number 3.

We first recall the following result of Trotter [104]: a web W k′

n′ is an induced
subgraph of W k

n if and only if

k′ − 1

k − 1
n ≤ n′ ≤

k′

k
n (7.1)

holds. By Claim 9, norm(Kp,q) is a partitionable web W ω−1
ωq+1, with q ≥ 3.

If ω ≤ 2 then norm(Kp,q) is a stable set or an odd hole and is therefore
circular-perfect, a contradiction. Hence ω ≥ 3.

Assume that ω ≥ 4.
Due to Trotter’s inequality (7.1), the web W 2

3q−1 is an induced subweb
of norm(Kp,q) if and only if

2

ω − 1
(qω + 1) ≤ 3q − 1 ≤

3

ω
(qω + 1)

holds. Since the right inequality is always satisfied, this may be restated as
2

ω−1(qω + 1) ≤ 3q − 1 which is equivalent to 1 + 4/(ω − 3) ≤ q.
If q ≥ 5 (resp. ω ≥ 5) then q ≥ 1 + 4/(ω − 3) as 4/(ω − 3) ≤ 4 (resp.

q ≥ 3 and 4/(ω − 3) ≤ 2). Hence W 2
3q−1 is a proper induced subweb of

norm(Kp,q). If W k−1
2k+1 is any induced odd antihole of W 2

3q−1 then k < 3
due to Trotter’s inequality (7.1). Hence the previous claim implies that
ωc(W

2
3q−1) = 3. If W 2

3q−1 is 3-colorable, then it admits a partition into three
stables sets of size at most q − 1 = ⌊(3q − 1)/3⌋, a contradiction. Hence
χ(W 2

3q−1) ≥ 4 and so χc(W
2
3q−1) > 3 = ωc(W

2
3q−1). Thus W 2

3q−1 is a proper
induced circular-imperfect graph of norm(Kp,q), a contradiction.

Therefore, ω = 4 and (q = 3 or q = 4), that is norm(Kp,q) equals W 3
13 or

W 3
17:
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• W 3
13 is not minimal circular-imperfect as the subgraph induced by the

nodes {1, 2, 4, 5, 7, 9, 10, 12} is circular-imperfect, since it has circular-
clique number 3 and is not 3-colorable;

• W 3
17 is not minimal circular-imperfect as the subgraph induced by the

nodes {1, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16} is circular-imperfect, since it has
circular-clique number 3 and is not 3-colorable.

In both cases, we get a contradiction and infer, therefore, ω = 3. 3

This completes the proof of the ”only if part” of assertion (ii). We now
proceed to the proof of the ”if part”.

Claim 12 The webs W 2
3q+1 with q ≥ 3 are minimal circular-imperfect.

Let q ≥ 3. The web W 2
3q+1 is circular-imperfect by Claim 6.

If W 2
3q+1 is not minimal circular-imperfect, then there exists a proper

induced subgraph W , which is minimal circular-imperfect. Let v be a node
of W 2

3q+1 not in W .

If ω(W ) = 3 then ω(W ) = 3 ≤ ωc(W ) ≤ χc(W ) ≤ χ(W 2
3q+1 \ {v}) = 3,

a contradiction with the fact that W is minimal circular-imperfect.

If ω(W ) = 2 then let w be any node of W . If w is of degree at least
three then w belongs to a triangle of W , as the neighborhood of any node
of W 2

3q+1 can be covered with only two cliques (since W 2
3q+1 is a quasi-line

graph), a contradiction. Therefore, the degree of W is at most two and so
W is a disjoint union of cycles and paths, and thus is circular-perfect, a
contradiction.

Hence W 2
3q+1 is minimal circular-imperfect. 3

This finally proves Theorem 7.1. 2

We shall further prove that a partitionable graph G is circular-imperfect
unless G is a circular clique.

Proof: If ωc(G) = ω(G), then we have χc(G) > ω(G) = ωc(G) by χ(G) =
ω(G) + 1, therefore G is circular-imperfect.

Assume that ωc(G) = p/q > ω and let {0, . . . , p − 1} be the nodes
of an induced circular clique Kp,q (where the nodes are labeled the usual
way). For every 0 ≤ i < ω, let Qi be the maximum clique {jq|0 ≤ j ≤
i} ∪ {jq + 1|i < j < ω}. Obviously Q0, . . . , Qω−1 are ω distinct maximum
cliques of G containing the node 0.



136 CHAPTER 7. SELECTED PROOFS

If p > ωq+1 then the set (Q0 \{(ω−1)q+1})∪{(ω−1)q+2} is another
maximum clique containing 0, a contradiction as 0 belongs to exactly ω
maximum cliques of G [8]. Hence p = ωq + 1. This means that G contains
the partitionable circular clique K(ωq+1),q as an induced subgraph. Hence G
is the circular clique K(ωq+1),q. 2

In addition, it is of interest to know the complements of which circular
cliques are also circular-perfect or, equivalently, which circular cliques occur
as induced subgraphs of a strongly circular-perfect graph.

For that, we use the following result from [81] which says that a claw-
free graph does not contain any prime antiwebs different from cliques, odd
antiholes, and odd holes (see Claim 10 above).

This immediately implies the assertion of Corollary 2.23 for circular
clique numbers of claw-free graphs G:

1. If ω(G) = 2, then ωc(G) = 2 follows iff G is perfect and ωc(G) = 2+ 1
k

iff G is imperfect and C2k+1 the shortest odd hole in G.

2. If ω(G) ≥ 3, then ωc(G) = max{ω(G), k′ + 1
2} where C2k′+1 is the

shortest odd antihole in G.

This enables us to completely characterize the circular-(im)perfection of
webs as follows (Theorem 2.21): The web W k

n is

(1) circular-perfect if k = 1 or n ≤ 2(k + 1) + 1,

(2) circular-perfect if k = 2 and n = 0 (mod 3),

(3) minimal circular-imperfect if k = 2 and n = 1 (mod 3),

(4) circular-imperfect if k = 2 and n = 2 (mod 3),

(5) circular-imperfect if k ≥ 3 and n ≥ 2(k + 2)

(note that the proof of assertion (3) is given in [81], see Claim 12 above).

Proof: For that, we prove the following sequence of claims.

Claim 13 Any web W k
n with k = 1 or n ≤ 2(k + 1) + 1 is circular-perfect.

It is a simple observation that the webs W 1
n are all circular-perfect.

Moreover, W k
n is perfect as well if n ≤ 2(k + 1) and an odd antihole if

n = 2(k + 1) + 1, thus W k
n is circular-perfect if n ≤ 2(k + 1) + 1. 3

Thus Claim 13 verifies already assertion (1). In the sequel, we have to
consider webs W k

n with k ≥ 2 and n ≥ 2(k + 2) only. In [81] it is shown
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that the webs W 2
3α+1 are minimal circular-imperfect for α ≥ 3; this already

ensures assertion (3). In order to show circular-perfection for the webs W 2
3α

with α ≥ 3 and circular-imperfection for all remaining webs, we need the
following.

Claim 14 W k
n with k ≥ 2, n ≥ 2(k + 2) is circular-perfect only if ω(W k

n ) =
χ(W k

n ).

We have ω(W k
n ) ≥ 3 and Corollary 2.23(2) implies ωc(W

k
n ) = max{k +

1, k′ + 1
2} taken over all odd antiholes W k′−1

2k′+1 in W k
n . As W l

n′ ⊂ W k
n holds

only if l < k due to Trotter [104], we obtain that k + 1 > k′ + 1
2 for any odd

antihole W k′−1
2k′+1 in W k

n . Thus, ω(W k
n ) = k + 1 = ωc(W

k
n ) holds, implying

the assertion by ⌈χc(W
k
n )⌉ = χ(W k

n ). 3

Claim 15 For a web W k
n with n ≥ 2(k + 2), we have ω(W k

n ) < χ(W k
n ) if

and only if (k + 1)6 | n.

For any non-complete web W k
n , it is well-known that χ(W k

n ) = ⌈n
α⌉ holds

where α = α(W k
n ) = ⌊ n

k+1⌋. Assuming n = α(k + 1) + r with r < k + 1 we
obtain

χ(W k
n ) =

⌈n

α

⌉

=

⌈

α(k + 1) + r

α

⌉

= k + 1 +
⌈ r

α

⌉

implying k+1 = ω(W k
n ) < χ(W k

n ) whenever r > 0, i.e., whenever (k+1)6 | n.
3

Combining Claim 14 and Claim 15 proves assertion (4); the only possible
circular-perfect webs W k

n satisfy (k + 1)|n. This is obviously true for the
webs W 2

3α. In order to show their circular-perfection, we have to ensure
that none of them contains a minimal circular-imperfect induced subgraph.
By ω(W 2

3α) = 3 = χ(W 2
3α), every induced subgraph G′ of W 2

3α is clearly
3-colorable. Thus, ω(G′) = 3 implies ωc(G

′) = χc(G
′). The next claim also

excludes the occurrence of minimal circular-imperfect induced subgraphs
with less clique number:

Claim 16 No web W 2
n contains a (minimal) circular-imperfect graph with

clique number 2 as induced subgraph.

Suppose G′ ⊂ W 2
n is triangle-free. Then G′ does not admit any vertex of

degree 3 (since every vertex of W 2
n together with three of its neighbors con-

tains a triangle). The assertion follows since all graphs with maximal degree
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2 are collections of paths and cycles, thus circular-perfect. 3

Hence, assertion (2) is true. For the last assertion (5), it is left to show
that every web W k

n with k ≥ 3 and (k + 1)|n contains a circular-imperfect
induced subgraph.

Claim 17 Any web W k
α(k+1) with k, α ≥ 3 is circular-imperfect.

We show that all those webs W k
α(k+1) contain a circular-imperfect web

as induced subgraph. Claim 15 implies that W k−1
αk−1 is circular-imperfect as

k6 | (αk − 1). We show W 2
3α−1 ⊆ W k

α(k+1) if α < k and W k−1
αk−1 ⊆ W k

α(k+1) if

α ≥ k with the help of the following result of Trotter [104]:

W k′

n′ ⊆ W k
n if and only if

k′

k
n ≤ n′ ≤

k′ + 1

k + 1
n

Hence, we have W 2
3α−1 ⊆ W k

α(k+1) for α < k since

2

k
α(k + 1) = 2α +

2α

k
≤ 3α − 1 ≤

3

k + 1
α(k + 1) = 3α

holds: the first inequality is satisfied by 2α
k < 2 ≤ α− 1 if α < k and α ≥ 3;

the second one is trivial. Moreover, W k−1
αk−1 ⊆ W k

α(k+1) follows for α ≥ k
since

k − 1

k
α(k + 1) = α(k − 1) +

α(k − 1)

k
≤ αk − 1 ≤

k

k + 1
α(k + 1) = αk

holds: the first inequality is satisfied since α(k−1)
k ≤ α − 1 is true due to

α ≥ k; the second inequality obviously holds again. 3

Thus, a web W k
n with k ≥ 3 and n > 2(k + 1) + 1 is circular-imperfect:

if (k + 1)6 | n by Claim 15 and if (k + 1)|n by Claim 17, finally verifying
assertion (5). 2

As a consequence, we obtain that the only induced prime circular cliques
of a strongly circular-perfect graph are cliques, odd antiholes, odd holes,
and stable sets. This shows in particular that a circular clique is strongly
circular-perfect if and only if it is a clique, an odd antihole, an odd hole, a
stable set, or of the form K3k/3 with k ≥ 3 (Corollary 2.22).
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7.2 On normal graphs and the Normal Graph Con-

jecture

At present, not many graphs are known to be normal. We are going to
address this issue by verifying the Normal Graph Conjecture for certain
graph classes.

Our first goal is to characterize all the normal webs. For that, we ex-
plicitly construct the required set families. According to the circular struc-
ture of webs, we introduce cyclic clique covers Q of odd size 2t − 1 and
construct the corresponding cross-intersecting covers S consisting of stable
t-sets. We show that such a pair (Q,S) exists for each web W k

n satisfying
t(k + 1) ≤ n ≤ (2t − 1)k. Finally, we figure out for which webs W k

n such an
appropriate parameter t exists and for which not. Proving that the latter
webs are indeed not normal finishes the characterization.

Let Q = {Q1, . . . , Ql} be a clique cover of W k
n consisting of maximum

cliques only. We call Q cyclic if each clique Qi has a non-empty intersection
with precisely the cliques Qi−1 and Qi+1 (the indices are taken modulo l),
see Figure 7.1 for three examples.

x x
x

Figure 7.1: Cyclic clique covers of different size in W 4
11, W 3

12, and W 2
12

Lemma 7.3 W k
n with k ≥ 2 admits a cyclic clique cover of size l iff

1
2(k + 1)l ≤ n ≤ kl.

Proof: Consider a cyclic clique cover Q = {Q1, . . . , Ql} and denote by qi

the first node in Qi. Then qi is adjacent to qi−1 and qi+1 but not to qj with
i + 1 < j < i − 1(modl) by definition; thus q1, . . . , ql induce an l-hole in
W k

n . On the other hand, consider W 1
l ⊆ W k

n with nodes q1, . . . , ql and the
maximum cliques Q(qi) = {qi, . . . , qi + k} of W k

n starting in qi. A result of
Trotter [104] shows that Q(qi) contains precisely two nodes of W 1

l , namely
qi and qi+1; thus Q = {Q(q1), . . . , Q(ql)} is a cyclic clique cover. Hence
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cyclic clique covers of size l and holes W 1
l ⊆ W k

n correspond to each other.
Furthermore, Trotter [104] shows that

W 1
l ⊆ W k

n iff (k+1)
2 l ≤ n ≤ k

1 l (7.2)

holds, as required. 2

Note that the assertion of the above lemma remains true if l = 3. In this
case, inequality (7.2) shows that W k

n contains a triangle W 1
3 consisting of

non-consecutive nodes only if n ≤ 3k holds. This implies in particular that
W k

n has maximal cliques consisting of non-consecutive nodes only if n ≤ 3k.
Let q(x,Q) stand for the number of cliques in Q containing node x. We

have q(x,Q) ∈ {1, 2} for all nodes x (since Q covers all nodes but no three
cliques intersect). We call x a 1-node (resp. 2-node) w.r.t. Q if q(x,Q) = 1
(resp. q(x,Q) = 2) holds.

For our purpose, we are interested in cyclic clique covers Q of odd size
2t − 1 due to the following reason. If a 1-node x belongs to Q ∈ Q, then
Q−Q consists of 2t−2 cliques or, in other words, of t−1 pairs of intersecting
cliques. We denote by S(x,Q) a t-set containing x and one node from the
intersection of the t − 1 pairs of cliques (see the black nodes in Figure 7.1
and Figure 7.2). Thus S(x,Q) intersects all cliques in Q by construction; we
shall show that there exist stable sets S(x,Q) whose union covers all nodes.

Lemma 7.4 If t(k + 1) ≤ n ≤ (2t− 1)k and k, t ≥ 2, then W k
n has a cyclic

clique cover Q of size 2t − 1, and for each 1-node x w.r.t. Q of W k
n there is

a stable set S(x,Q) of size t in W k
n .

Proof: By (2t−1)(k+1)
2 < t(k + 1), W k

n has a cyclic clique cover Q =
{Q1, . . . , Q2t−1} due to Lemma 7.3. Furthermore, t(k + 1) ≤ n guarantees
that W k

n contains stable sets of size t by t ≤ α(W k
n ) = ⌊ n

k+1⌋.

Consider a 1-node x of W k
n and assume w.l.o.g. that x belongs to Q1 ∈ Q.

We construct a stable set S(x,Q) = {x, x1, . . . , xt−1} s.t. xi ∈ Q2i ∩ Q2i+1

for 1 ≤ i ≤ t − 1, see Figure 7.2.
Since x ∈ Q1 − Q2, there is a non-neighbor of x in Q2 ∩ Q3 (at least

the last node in Q2 is not adjacent to x but belongs to Q3). We choose
x1 = x + (k + 1) + d1 ∈ Q2 ∩ Q3 with d1 ∈ N ∪ {0} minimal.

In order to construct xi from xi−1 for 2 ≤ i ≤ t− 1, notice that we have
xi−1 ∈ Q2i−2 ∩Q2i−1, in particular xi−1 ∈ Q2i−1 −Q2i. As before, there is a
non-neighbor of xi−1 in Q2i∩Q2i+1 and we choose xi = xi−1 +(k+1)+di ∈
Q2i ∩ Q2i+1 with di ∈ N ∪ {0} minimal. Then S(x,Q) is a stable set if xt−1

and x are non-adjacent (all other nodes are non-adjacent by construction).
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Q

Q

3

2

Q 2i

x

1Q
Q

Q

2t−1

2t−2

2i+1 Q

xi

xt−1 1x

Figure 7.2: Constructing the stable set S(x,Q) for x ∈ Q1

If di = 0 for 1 ≤ i ≤ t − 1, then xt−1 = x + (t − 1)(k + 1). Hence, there
are at least k + 1 nodes between xt−1 and x (in increasing order modulo n)
due to n ≥ t(k + 1) and we are done. Otherwise, let j be the smallest index
s.t. dj > 0. Then xj is the first node in Q2j+1 since we choose dj minimal:
By xj−1 6∈ Q2j, we have xj−1 + (k + 1) ∈ Q2j . The only reason for choosing
dj > 0 was, therefore, xj−1 + (k + 1) + d′j 6∈ Q2j+1 for all 0 ≤ d′j < dj by the
minimality of dj . Hence, xj is indeed the first node in Q2j+1. This implies
that its first non-neighbor is the node xj +(k+1) belonging to Q2j+2−Q2j+1

and xj+1 = xj + (k + 1) + dj+1 ∈ Q2j+2 ∩ Q2j+3 is, by the minimality of
dj+1, the first node of Q2j+3. The same argumentation shows that every
further xi with i > j + 1 is the first node in Q2i+1; in particular, xt−1 is
the first node of Q2t−1. Hence, x ∈ Q1 − Q2t−1 shows that xt−1 and x are
non-adjacent. Thus S(x,Q) = {x, x1, . . . , xt−1} is a stable set of size t and
intersects all cliques of Q by x ∈ Q1 and xi ∈ Q2i ∩ Q2i+1 for 1 ≤ i ≤ t − 1.

2

This implies that there is, for each 1-node x, at least one stable set S(x,Q).
It is left to show that the union of all such stable sets covers the web.

Lemma 7.5 Consider a cyclic clique cover Q of W k
n of size 2t − 1 where

t(k + 1) ≤ n ≤ (2t − 1)k and k, t ≥ 2. Then the union S of the stable sets
S(x,Q), where x is a 1-node of W k

n w.r.t Q, covers all nodes of W k
n .

Proof: Assume to the contrary that there is a node y in W k
n not covered by

S. Then there is no stable set S(x,Q) with y ∈ S(x,Q). In particular, y is
a 2-node w.r.t. Q by Lemma 7.4. W.l.o.g. let y ∈ Q1 ∩Q2t−1. We first show
yl = y + l(k + 1) ∈ Q2l+1 for 0 ≤ l ≤ t − 2. Clearly, we have y = y0 = y +
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(b)(a)

x

yi

x

y
t−2

y

Q2t−3

Q2t−1
1Q

Q2t−2

Q

2iQ

Q2i+1

2i−1

yi−1

Figure 7.3: Constructing the nodes yi ∈ Q2i+1

0(k+1) ∈ Q1 by assumption and prove that yi−1 = y+(i−1)(k+1) ∈ Q2i−1

implies yi = y + i(k + 1) ∈ Q2i+1 for 1 ≤ i ≤ t − 2.

If there is a 1-node x in Q2i\(Q2i−1 ∪ Q2i+1), then x is adjacent to
yi−1 = y + (i − 1)(k + 1), see Figure 7.3(a) (otherwise, there is a stable set
S(x,Q) containing x and y0, . . . , yi−1 in contradiction to our assumption)
and x < y + i(k + 1) yields yi = y + i(k + 1) ∈ Q2i+1.

If Q2i\(Q2i−1 ∪ Q2i+1) = ∅, then yi = y + i(k + 1) clearly belongs to
Q2i+1 (since we have yi−1 = y + (i− 1)(k + 1) ∈ Q2i−1 and |Q2i−1| = k + 1).

In particular, we have yt−2 = y + (t − 2)(k + 1) ∈ Q2t−3. Any 1-node
x in Q2t−2\(Q2t−3 ∪ Q2t−1) is adjacent to yt−2 or to y, see Figure 7.3(b)
(otherwise, x together with y0, . . . , yt−2 would be a set S(x,Q) ∈ S in con-
tradiction to our assumption). We distinguish three cases:

If x is adjacent to y, then x > y − (k + 1) = y−1 follows and y−1 is
adjacent to yt−2: either y−1 belongs to Q2t−3 or is as 1-node adjacent to
yt−2; thus, y−1 = y − (k + 1) ≤ y + (t − 2)(k + 1) + k = yt−2 + k implies
y ≤ y + (t − 1)(k + 1) + k.

If x is adjacent to yt−2, we obtain x < yt−2 + (k + 1) = yt−1 and yt−1

either belongs to Q2t−1 or is a 1-node adjacent to y; here, yt−1 ≥ y − k and,
therefore, y + (t − 1)(k + 1) ≥ y − k holds.

The non-existence of a 1-node in Q2t−2 implies yt−1 ∈ Q2t−2 and, there-
fore, yt−1 ≥ y − k follows again.

All three cases imply n ≤ (t− 1)(k + 1) + k. By n ≥ t(k + 1), we obtain

t(k + 1) ≤ (t − 1)(k + 1) + k

yielding the final contradiction. Hence the union S of the stable sets S(x,Q),
where x is a 1-node of W k

n w.r.t Q, covers all nodes of W k
n . 2
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Since each S(x,Q) meets all cliques in Q by construction, S is the re-
quired stable set cover. Thus Lemma 7.3, Lemma 7.4, and Lemma 7.5
together imply the assertion of Theorem 3.19 that a web W k

n with k ≥ 2
admits, for t ≥ 2,

• a cyclic clique cover Q of size 2t − 1 and

• a cross-intersecting stable set cover S of stable t-sets

if t(k + 1) ≤ n ≤ (2t − 1)k holds.
This shows that a web W k

n with k ≥ 2 is normal if there is a t ≥ 2 with
t(k +1) ≤ n ≤ (2t−1)k. It is left to figure out for which W k

n such a t exists.

Lemma 7.6 W k
n with k ≥ 2 and n ≥ 2(k + 1) + 2 is normal if

• k = 2 and n 6= 8, 11,

• k ≥ 3 and n 6= 3k + 1, 3k + 2.

Proof: We shall ensure, for such a web W k
n , the existence of a t ≥ 2 with

t(k+1) ≤ n ≤ (2t−1)k. For that we check, for fixed k, whether there are gaps
between the ranges t(k+1) ≤ n ≤ (2t−1)k and (t+1)(k+1) ≤ n ≤ (2t+1)k
for two consecutive values of t ≥ 2. There is no gap between the two ranges
if

(t + 1)(k + 1) ≤ (2t − 1)k + 1

which is true for k = 2 if t ≥ 4 and for k ≥ 3 if t ≥ 3. Thus we have
normality for all webs W k

n with k ≥ 2 except the cases n = 3k + 1, 3k + 2
(gap between the ranges for t = 2 and t = 3) and W 2

11 (gap between the
ranges for t = 3 and t = 4). 2

It is a routine to check, by simple case analyzis, that W 2
11 and W k

3k+1,

W k
3k+2 are not normal for all k ≥ 2. As a consequence, we obtain the char-

acterization of all the normal webs (Theorem 3.20), namely, that a web W k
n

is normal if and only if

• k = 1 and n 6= 5, 7,

• k = 2 and n 6= 7, 8, 11,

• k ≥ 3 and n 6= 3k + 1, 3k + 2.

With the help of inequality (7.2) it is a routine to check that all the
non-normal webs W k

n different from C5, C7, C7 contain either a C5 (if n =
3k + 1, 3k + 2) or a C7 (for C2

11) as induced subgraph.
This finally verifies the Normal Graph Conjecturefor webs and, since the

class of normal graphs is closed under taking complements, we obtain the
same assertion for antiwebs.
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Next, we proof the characterization of the normal 1-trees, as this verifies
the Normal Graph Conjecturefor such graphs and is the starting point for
the forthgoing results on cacti. Recall that a 1-tree can be obtained from
one cycle C and certain trees by a sequence of node-identifications. Since
trees and cycles of length 6= 5, 7 are normal and node-identification preserves
normality by Corollary 3.13, we can already conclude that the Normal Graph
Conjecture is true for 1-trees.

In order to characterize the normal 1-trees we use, in addition, the result
that a connected triangle-free graph is normal iff it has a so-called nice edge
cover [59].

Let G = (V,E) be a graph and F be a minimal edge cover of G, i.e.,
an inclusion-wise minimal set F ⊆ E s.t. every node in V is the endnode
of some edge in F . Consider a (not necessarily chordless) odd cycle C in
G and the distribution of the edges of F alongside C. We say that a node
v of C is even w.r.t. F if v is the endnode of either none or two edges in
F ∩ E(C). Sine C is an odd cycle, C has obviously an odd number of even
nodes. An edge cover of a graph G is called nice if it is minimal and every
odd cycle in G has at least three even nodes. Körner and de Simone showed
in [59] that the existence of nice edge covers is sufficient for the normality
of any graph and also necessary for triangle-free graphs.

Let G1+vG2 denote the graph obtained from G1 and G2 by identification
in the node v. We show the assertion of Theorem 3.24 that a 1-tree G is not
normal if and only if one of the following conditions holds:

(i) G = C5,

(ii) G = C5 +v T where T is a tree,

(iii) G = (C5 +v T ) +v′ T ′ where T, T ′ are trees and v, v′ are two nodes of
the C5 at distance two,

(iv) G = C7.

Proof: A 1-tree G can be obtained from a cycle C and certain trees by a
sequence of node-identifications. We prove, dependent from the length of
C, whether G is normal or not.

Obviously, if C 6= C5, C7 then G is normal. It remains to consider the
cases C = C5 and C = C7. Let G5 denote the graph depicted in Figure
3.1(a).

Claim 18 If C = C5 then G is normal if and only if G contains the graph
G5 as subgraph.
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G is triangle-free in both cases, hence G is normal if and only if it admits a
nice edge cover. Every minimal edge cover F of G uses at most three edges
of the C5. All possible types of F ∩ C5 are shown in Figure 7.4 (edges in
F ∩ C5 are drawn with bold lines, even nodes w.r.t. F are black-filled).

(a) (b) (c) (d) (e)

Figure 7.4: Possible types of F ∩ C5

F is nice if and only if two consecutive nodes v, v′ of the C5 are not
covered by the edges in F ∩ C5 (the types (c), (d), and (e)). In order to
cover the nodes v, v′ by F , there must exist non-empty trees T, T ′ identified
with the C5 in v resp. v′. In other words, F is nice if and only if G contains
the graph G5 as subgraph.

(Note that G = C5 is not normal. If G = C5+v T or G = (C5+v T )+v′ T
′

where v, v′ are two non-consecutive nodes of the C5, then F has to be of
type (a) or (b) and is, therefore, not nice.) 3

Claim 19 If C = C7 then G is normal if and only if G 6= C7.

If G = C7 then G is clearly not normal. Otherwise, G can be obtained from
the C7 and certain trees by a sequence of node-identifications. The C7 is
almost normal and all of its nodes are unnormal. Thus identifying the C7

with a (non-empty) tree in a node yields a normal graph, and adding further
trees maintains normality. Hence G is normal. 2

This implies in particular that almost all 1-trees are normal. Since
every cactus can be obtained from several 1-trees by a sequence of node-
identifications, we can also conclude that the Normal Graph Conjecture is
true for cacti. Considering the normality of cacti under node-identification
leads further to a polynomial time algorithm to decidethe normality of a
given cactus.
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7.3 Classes of a-perfect graphs

Shepherd [99] achieved the result that the only nontrivial facets of stable set
polytopes of near-bipartite graphs are constraints

∑

i≤k

1

α(W i)
x(W i) + x(Q) ≤ 1 (7.3)

associated with complete joins of prime antiwebs W 1, . . . ,W k and a clique Q.

For subclasses of near-bipartite graphs, the facet sets can admit a simpler
structure only if certain kinds of prime antiwebs or certain complete joins
can be excluded. The former is true for complements of line graphs, as
no prime antiwebs different from odd antiholes occur [99]. We are going
to simplify the above constraints for co-fuzzy circular interval graphs by
excluding complete joins.

For that, we discuss whether fuzzy circular interval graphs may admit
the disjoint union of a prime web and a single node. This is obviously
possible in general quasi-line graphs, as they can even be the disjoint union
of a prime web and a single node. In addition, there exist fuzzy circular
interval graphs containing such a disjoint union, involving webs W k

2k+2 for

k = 1, 2, 3. Note that the nodes of any web W k
2k+2 can be partitioned into

two cliques {1, . . . , 1 + k} and {k + 2, . . . , 2k + 2} allowing a representation
by choosing the two cliques as multiple endpoints of one interval. We shall
ensure that this construction is possible for the webs W k

2k+2 only, but not
for any prime web.

The key tool is to prove that any web W k
n with n > 2k + 2 has precisely

one representation as fuzzy circular interval graph, namely, the canonical
one: distribute the point set V = {1, . . . , n} without multiplicities in this
order on C and take a collection I = {I1, . . . , In} of arcs in C with Ii ∩ V =
{i, . . . , i + k} for 1 ≤ i ≤ n; then G(V,I) obviously equals the web W k

n .

Lemma 7.7 Any web W k
n with n > 2k + 2 admits no other representation

as fuzzy circular interval graph than the canonical one.

Proof: Let G(V,I) be a representation of a web W k
n with n > 2k + 2 as

fuzzy circular interval graph. In order to verify the assertion of the lemma
we ensure first that V does not contain multiple points.

Claim 20 V does not contain points with a multiplicity > 1.
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Assume on the contrary, there are multiple points in V and consider, among
them, two points i and i + t at maximum distance in W k

n . Since multiple
points are adjacent, we obtain 0 < t ≤ k.

Consider the node (i+ t)− (k +1) in W k
n : by construction, it is adjacent

to i but not to i + t (by n > 2k + 2). Hence, I contains an interval I having
i and i + t as multiple endpoint and (i + t) − (k + 1) as opposite endpoint
(then we are free of linking i and (i + t) − (k + 1) by an edge but i + t and
(i + t) − (k + 1) not as both edges belong to E2); see Figure 7.5.

Further, consider the node i + (k + 1) in W k
n being adjacent to i + t but

not to i. As before, this is possible only if i, i+ t and i+(k+1) are opposite
endpoints of an interval in I. Since i and i + t cannot be endpoints of two
intervals in I, this has to be the same interval I implying that i + (k + 1) is
a multiple point of (i+ t)− (k+1), as shown in Figure 7.5. Hence i+(k+1)
and (i + t) − (k + 1) are adjacent in W k

n and, by the choice of t, we infer

(i + t) − (k + 1) ≤ i + (k + 1) + t
i ≤ i + (2k + 2)

and n ≤ 2k + 2 follows, yielding a contradiction.

i+t
i (i+t)−(k+1) 

(i+t)−(k+1)

i+(k+1) i+t

i

i+(k+1)

I

Figure 7.5: The case of multiple points.

Claim 21 G(V,I) is the canonical representation of W k
n .

As Claim 20 shows, adjacencies in W k
n cannot be realized by multiple points

in V but as different points belonging to the same interval in I only. In
particular, consecutive points in V form a clique in W k

n only if they be-
long to the same interval in I (as only other cliques, triangles formed by
non-consecutive points are possible). Denote by Q(i) = {i, . . . , i + k} the
maximum clique of W k

n starting in node i. Then, obviously, Q(i) and Q(i+1)
intersect precisely in the nodes {i + 1, . . . , i + k}. Consequently, there exist
intervals Ii, Ii+1 ∈ I with

(Ii \ Ii+1) ∩ V = {i}
(Ii ∩ Ii+1) ∩ V = {i + 1, . . . , i + k}
(Ii+1 \ Ii) ∩ V = {i + k + 1}.
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Repeating this argumentation for all maximum cliques Q(1), . . . , Q(n) finally
yields the assertion. 2

Thus, every prime web W k
n has only the canonical representation. This

implies that the intervals representing a web W k
n with n > 2k+2 as subgraph

of a fuzzy circular interval graph G already occupy the whole circle C. Thus
every node in G − W k

n has a neighbor in W k
n and no disjoint union of W k

n

and a node in G − W k
n is possible. This implies:

Corollary 7.8 No fuzzy circular interval graph contains the disjoint union
of a prime web and a single node.

Turning back to the complements we, therefore, obtain the nonexistence
of the complete join of a prime antiweb and a single node. Thus, the com-
plete join of two prime antiwebs as well as the complete join of a prime anti-
web and a nonempty clique are excluded. Hence, the above lemma implies:
the only nontrivial facets of the stable set polytope of a co-fuzzy circular
interval graph are constraints (7.3) not consisting of different facet blocks
but associated with either a prime antiweb or a clique. Since both prime
antiweb and clique constraints are rank constraints in particular, we obtain
the assertion of Theorem 4.11, namely, that the stable set polytope of a co-
fuzzy circular interval graph has as only nontrivial facets rank constraints
associated either with cliques or with prime antiwebs and is, therefore, a-
perfect.

The same is obviously true for all subclasses of co-fuzzy circular interval
graphs, in particular, for antiwebs (Theorem 4.10) and convex-round graphs
(Theorem 4.12).

7.4 Stable set polytopes of webs

In order to describe the non-rank facets of stable set polytopes of webs, we
first provide an appealing construction to obtain, starting from a web with
a known non-rank facet, an infinite sequence of not rank-perfect webs with
the same clique number. This construction is the main tool to obtain, for
all fixed clique numbers ≥ 5, that there are only finitely many rank-perfect
webs with this clique number.

Following Galluccio and Sassano [41], a graph G and its rank constraint
x(G) ≤ α(G) are called rank-minimal if and only if G is a clique or G is
rank facet-producing and, for each induced subgraph G′ ⊂ G, the inequal-
ity x(G′) ≤ α(G) does not define a facet of STAB(G′). All rank-minimal
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claw-free graphs were described in [41] as cliques, partitionable webs, or
line graphs of 2-connected, critical hypomatchable graphs. We show that
no rank-minimal line graphs different from odd holes occur as induced sub-
graphs of webs:

Lemma 7.9 Let H be a 2-connected, critical hypomatchable graph. If its
line graph L(H) is an induced subgraph of a web, then L(H) is a triangle or
an odd hole.

Proof: Consider a 2-connected, critical hypomatchable graph H. Since H
is 2-connected, H has at least 3 nodes. Since H is critical hypomatchable,
H must not admit parallel edges, i.e., H is simple. If |H| = 3, then H as
well as L(H) is a triangle. Hence assume |H| ≥ 5 in the sequel (note: every
hypomatchable graph has an odd number of nodes). We show that H as
well as L(H) is an odd hole if L(H) is an induced subgraph of a web.

Due to Lovász [66], a graph H is hypomatchable if and only if there is
a sequence H0,H1, . . . ,Hk = H of graphs such that H0 is a chordless odd
cycle and for 1 ≤ i ≤ k, Hi is obtained from Hi−1 by adding a chordless odd
path Ei that joins two (not necessarily distinct) nodes of Hi−1 and has all
internal nodes outside Hi−1. The odd paths Ei = Hi −Hi−1 are called ears
for 1 ≤ i ≤ k and the sequence H0,H1, . . . ,Hk = H an ear decomposition of
H.

If a hypomatchable graph H is 2-connected and has at least 5 nodes,
then H admits an ear decomposition H0,H1, . . . ,Hk = H s.t. every Hi is 2-
connected for 0 ≤ i ≤ k by Cornuéjols and Pulleyblank [26] and H0 is an odd
hole (i.e. |H0| ≥ 5) by [109]. Moreover, in [109] is shown that we can always
reorder the ears E1, . . . Ek of a given decomposition s.t. the decomposition
starts with all ears of length ≥ 3 and ends up with all ears of length one.
Thus, every 2-connected hypomatchable graph H with |V (H)| ≥ 5 has a
proper ear decomposition H0,H1, . . . ,Hk = H where H0 has length ≥ 5,
each Hi is 2-connected, and, if k > 0, there is an index j s.t. E1, . . . , Ej

have length ≥ 3 and Ej+1, . . . , Ek have length one.

Consider a 2-connected hypomatchable graph H with |V (H)| ≥ 5 and a
proper ear decomposition H0,H1, . . . ,Hk = H of H. We show in the next
two claims: the decomposition of H has neither ears of length 1 nor of length
≥ 3 if H is critical and L(H) is an induced subgraph of a web.

Claim 22 If H0,H1, . . . ,Hk = H contains an ear of length 1, then H is
not critical hypomatchable.
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In that case, the last ear Ek of the proper ear decomposition H0,H1, . . . ,Hk =
H of H is a single edge. Removing the edge Ek from Hk = H yields the
hypomatchable graph Hk−1 with the same node set. Thus, H is not critical
hypomatchable. 3

Claim 23 If H0,H1, . . . ,Hk = H contains an ear of length ≥ 3, then H is
not critical hypomatchable or L(H) is not an induced subgraph of a web.

In that case, the first ear E1 of the proper ear decomposition H0,H1, . . . ,Hk =
H of H is a path of length ≥ 3. If the endnodes u1 and v1 of E1 are ad-
jacent in H0 (see Fig. 7.6(a)), then H admits a proper ear decomposition
H ′

0,H
′
1, . . . ,H

′
k = H with H ′

0 = H0 ∪ E1 − {u1v1} and E2, . . . , Ek, {u1v1}
as ear sequence (i.e. H ′

i = H ′
i−1 ∪ Ei+1 for 1 ≤ i ≤ k − 1 and H ′

k =
H ′

k−1 ∪ {u1v1}). Thus, H admits an ear of length 1 and is not critical
hypomatchable by Claim 22.

H0

E1

E1

P0

P1
1L(H  )

N  (i) N  (i)

1L(H  )    W

(a) (b) (d)(c)

1u v1

1u v1

i

i’

j
j’ l

l’

i

i’

jj’
l

l’

i

l

j
i’

− +

k
n

Figure 7.6: Ear decompositions for Claim 23

If the endnodes u1 and v1 of E1 are non-adjacent in H0 (see Fig. 7.6(b)),
then there are 3 internally disjoint paths P0, P1, E1 between u1 and v1 in
H1: P0 with even length ≥ 2 and P1, E1 with odd length ≥ 3. Consider in
H1 the edges i, i′, j, j′, l, l′ as shown in Fig. 7.6(b). Then the edges i′, j′, l′

are pairwise disjoint (note: u1 may be an endnode of i′ but neither of j′ nor
of l′ because of the parity of the paths).

Assume L(H1) is an induced subgraph of a web W k
n . We have to find a

respective order of the nodes i, i′, j, j′, l, l′ in W k
n (recall that edges of H turn

into nodes of L(H), see Fig. 7.6(c)). Moreover, recall that the neighborhood
of every node x, denoted by N(x), of a web W k

n splits into two cliques
N−(x) = {x − k, . . . , x − 1} and N+(x) = {x + 1, . . . , x + k} (where all
indices are taken modulo n).
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Consider N(i) in W k
n : we have i′, j, l ∈ N(i) where jl is an edge but

neither i′j nor i′l (see Fig. 7.6(c)). W.l.o.g. let i′ ∈ N−(i). Then j, l ∈ N+(i)
follows since both N−(i) and N+(i) are cliques. Furthermore, let j < l (the
case l < j goes analogously due to ij, il ∈ E but ij′, il′ 6∈ E), i.e., assume
i + 1 ≤ j < l ≤ i + k (see Fig. 7.6(d)).

Now, consider the node j′. We have j′ ∈ N(j) but j′ 6∈ N(i) (see
Fig. 7.6(c)). This implies j′ ∈ N+(j) (since N−(j) ⊆ N(i) by j ∈ N+(i)),
i.e., we obtain j′ ∈ {j + 1, . . . , j + k}. But i + 1 ≤ j < l ≤ i + k implies
N+(j) ⊆ N(l), hence j′ ∈ N(l) in contradiction to j′ and l non-adjacent
(see Fig. 7.6(c)). Thus, L(H1) cannot be an induced subgraph of a web W k

n .

We conclude: if E1 connects two adjacent nodes of H0, then H is not
critical, if E1 connects two non-adjacent nodes of H0, then L(H) is not an
induced subgraph of a web. 3

Hence, we have obtained that for every 2-connected, critical hypomatch-
able graph H holds the following. If H has 3 nodes, then H and its line
graph L(H) are triangles. Otherwise, H admits a proper ear decomposition
H0,H1, . . . ,Hk = H with and index j s.t. E1, . . . , Ej have length ≥ 3 and
Ej+1, . . . , Ek have length one. By Claim 22, there is no ear of length 1 (i.e.
j = k). If the line graph of H is an induced subgraph of a web, then there is
no ear of length ≥ 3 by Claim 22 and Claim 23 (i.e. j = 0). In conclusion,
we obtain k = 0, thus H consists in the odd hole H0 of length ≥ 5 only and
L(H) is an odd hole, too. 2

Furthermore, we need the following characterization when a valid in-
equality aTx ≤ b is a facet of the stable set polytope of a general graph G. A
pair i, j of nodes is a-critical in G if there are two roots S1 and S2 of aTx ≤ b
such that {i} = S1\S2 and {j} = S2\S1. A subset V ′ of V (G) is a-connected
if the graph with node set V ′ and edge set {ij| i, j ∈ V ′, ij a-critical in G}
is connected.

Lemma 7.10 Let aTx ≤ b be a valid inequality for STAB(G) with b 6= 0.
Consider a partition V1, . . . , Vp of V (G) such that Vi is a-connected for every
1 ≤ i ≤ p. The inequality aTx ≤ b is facet-defining if and only if there are
p roots S1, . . . , Sp with

∣

∣

∣

∣

∣

∣

∣

|S1 ∩ V1| · · · |S1 ∩ Vp|
...

...
|Sp ∩ V1| · · · |Sp ∩ Vp|

∣

∣

∣

∣

∣

∣

∣

6= 0.
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Proof: In order to prove the If-part, let a′Tx ≤ b′ be a facet containing the
face induced by the inequality aTx ≤ b. For every 1 ≤ i ≤ p, the set Vi is
a-connected and so there exist λi such that aj = λi for all j ∈ Vi. Since for

every stable set S, aT χS = b implies that a′T χS = b′, Vi is a′-connected.
Therefore there exist λ′

i such that a′j = λ′
i for all j ∈ Vi. Hence we have for

every 1 ≤ i ≤ p:

λ1|Si ∩ V1| + . . . + λp|Si ∩ Vp| = b
λ′

1|Si ∩ V1| + . . . + λ′
p|Si ∩ Vp| = b′

Since
∣

∣

∣

∣

∣

∣

∣

|S1 ∩ V1| · · · |S1 ∩ Vp|
...

...
|Sp ∩ V1| · · · |Sp ∩ Vp|

∣

∣

∣

∣

∣

∣

∣

6= 0

holds we get λ′
i = b′

b λi for every 1 ≤ i ≤ b. Thus aTx ≤ b is facet-defining.

Now let us turn to the Only if-part. Since ∅ is not a root of the facet
aTx ≤ b, there exist n roots S1, . . . Sn whose incidence vectors are linearly
independent. Let M be the matrix with the incidence vectors of S1, . . . , Sn

as rows. Let vi be an element of Vi for 1 ≤ i ≤ p. We add to the v1-th
column of M the other columns related to the other elements of V1; we add
to the v2-th column of M the other columns related to the other elements
of V2 etc. This yields

∣

∣

∣

∣

∣

∣

∣

. |S1 ∩ V1| . |S1 ∩ Vp|

.
... .

...
. |Sn ∩ V1| . |Sn ∩ Vp|

∣

∣

∣

∣

∣

∣

∣

6= 0

and, thus, the (n, p)-matrix







|S1 ∩ V1| · · · |S1 ∩ Vp|
...

...
|Sn ∩ V1| · · · |Sn ∩ Vp|







has p linearly independent rows, as required. 2

Note that this lemma generalizes the well-known result of Chvátal [21]
that a graph produces the full rank facet if it is 1-connected.

We are now able to prove:
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Theorem 7.11 Let aTx ≤ cα1 be a proper weak rank facet of STAB(W k
n ).

Then STAB(W k
n+k+1) has the proper weak rank facet

∑

1≤i≤n

aixi +
∑

n<i≤n+k+1

c xi ≤ c (α1 + 1) (7.4)

Proof: By definition, the node set of W k
n is {1, . . . , n} and the node set of

W k
n+k+1 is {1, . . . , n + k + 1}. Hence we may use this convention to identify

a node of W k
n with the corresponding one of W k

n+k+1. Denote by G1 the

web W k
n and by G2 the web W k

n+k+1. Let ω = k + 1 be the clique number
of both G1 and G2 and, for every 1 ≤ i ≤ n (resp. 1 ≤ i ≤ n + ω), let
Q1

i = [i, i + k] (resp. Q2
i = [i, i + k]) be the maximum clique of G1 (resp.

G2) with ’first’ element i.

Since aTx ≤ cα1 is a proper weak rank facet of STAB(G1), there exists
a subset V1 of nodes of G1 such that α1 = α(G1[V1]) and G1[V1] is rank
facet-producing. Moreover, G1[V1] has a partitionable web with node set
W1, stability number α1, and clique number ω1 ≥ 2 as induced subgraph by
Lemma 7.9.

Notice that Q1
n−k is the maximum clique {n − k, . . . , n} of G1. Let

w1, . . . , wh be the elements in increasing order of W1 in Q1
n−k. We have

h = ω1 or ω1 − 1, by [104]. For every 1 ≤ i ≤ h, let qi be the element wi + ω
of Q2

n+1 and define:

W2 =

{

W1 ∪ {q1, . . . , qω1} if h = ω1

W1 ∪ {n + 1} ∪ {q1, . . . , qω1−1} if h = ω1 − 1

Let V2 = V1 ∪ Q2
n+1 = V1 ∪ {n + 1, . . . , n + k + 1}. Let v be the (n +

ω)-column vector (a1, . . . , an, c, . . . , c) and y be the (n + ω)-column vector
(a1, . . . , an, 0, . . . , 0).

Claim 24 Inequality (7.4) is valid for STAB(W k
n+k+1).

Let S be any stable set of G2. Let l be the node of S such that [l+1, n]∩S = ∅
and let t be the node of S such that [n+1, t−1]∩S = ∅. Notice that S \{t}

is a stable set of G1. Hence we have vT χS = (y + cχQ2
n+1)T χS ≤ cα1 + xt ≤

c(α1 + 1) as xt ≤ c if t /∈ Q2
n+1 and xt = c if t ∈ Q2

n+1. 3

Claim 25 The set of nodes W2 induces a partitionable web with stability
number α1 + 1 and clique number ω1.
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Let 1 ≤ v1 ≤ v2 ≤ . . . ≤ vn′ ≤ n be the nodes of W1 in increasing order. We
discuss the two cases h = ω1 and h = ω1 − 1.

If h = ω1 then let v be any node of W2. If v is a node qi of {q1, . . . , qω1}
then the set of nodes Q2

v meets W2 exactly in the ω1 nodes {qi, . . . , qω1} ∪
{v1, . . . , vi−1}, since W1 induces a web of G1 with clique number ω1 by
[104]. If v is a node wi of {w1, . . . , wω1} then Q2

v meets W2 precisely in the
ω1 nodes {wi, . . . , wω1}∪{q1, . . . , qi−1}. If v is a node of W1 \{w1, . . . , wω1},
we obviously have |Qv ∩W2| = ω1 since W1 induces a web of G1 with clique
number ω1 due to [104].

If h = ω1 − 1 then notice that w1 6= n − k (otherwise we would have
h = ω1). Hence n + 1 /∈ {q1, . . . , qh} follows. Let v be any node of W2.
If v is a node qi of {q1, . . . , qh} then Q2

v meets W2 exactly in the ω1 nodes
{qi, . . . , qh}∪ {v1, v2, . . . , vi−1, vi}, since W1 induces a web of G1 with clique
number ω1 by [104]. If v is a node wi of {w1, . . . , wh} then Qv meets W2

precisely in the ω1 nodes {wi, . . . , wh, n+1}∪{q1, . . . , qi−1}, as wh < n+1 <
q1. If v = n+1 then Qv meets W2 exactly in the ω1 nodes {n+1, q1, . . . , qh}.
If v is a node of W1 \ {w1, . . . , wh}, we obviously have |Qv ∩W2| = ω1 since
W1 induces a web of G1 with clique number ω1 due to [104]. Hence in both
cases, W2 induces a web with clique number ω1 and |W |+ω1 = (α1+1)ω1+1
nodes. Thus W2 is a partitionable web with stability number α1 + 1. 3

Claim 26 The node set V2 = W2 ∪ Q2
n+1 is v-connected.

We first show that W2 is v-connected. Since aTx ≤ cα1 is a weak rank facet
of STAB(G1), we have by definition ai = c for every i ∈ W1. Hence for every
i ∈ W2 follows vi = c. Since W2 is a partitionable web of stability number
α1 + 1 by Claim 25, this implies that W2 is v-connected.

Let w1 < w2 < . . . < wω1 be the elements of W2 in Q2
n+1 (by definition

of W2 there are exactly ω1 of them). Let S be a maximum stable set of
W2 disjoint from Q2

1 (S exists because W2 ∩ Q2
1 is a subset of a maximum

clique of W2, and for every maximum clique Q of a partitionable graph,
there exists a unique maximum stable set avoiding Q by [8]). Let s be the
element of S with maximal index. Then for every wω1 ≤ q ≤ n + ω, the set
(S\{s})∪{q}) is obviously a root of inequality (7.4). Hence W 2∪[wω1, n+ω]
is v-connected. Likewise, the set W 2 ∪ [n + 1, w1] is v-connected.

For every 1 ≤ i < ω1, there exists a maximum stable set of W2 disjoint
from Q2

wi+1
. Let s be the element of S with maximal index which is less

than or equal to wi. Then for every wi ≤ q ≤ wi+1, the set (S \ {s}) ∪ {q}
is a root of inequality (7.4). Hence W 2 ∪ [wi, wi+1] is v-connected and V2 is
v-connected as well. 3
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Let p = n−|W1| and {1, . . . , n}\W1 = {y1, . . . , yp}. Due to Lemma 7.10,
there are p roots S1, . . . , Sp of aTx ≤ cα1 such that the incidence vectors
of their restriction to {1, . . . , n} \ W1 = ({1, . . . , n} ∪ Qn}) \ V2 are linearly
independent, that is we have:

∣

∣

∣

∣

∣

∣

∣

|S1 ∩ {y1}| · · · |S1 ∩ {yp}|
...

...
|Sk′ ∩ {y1}| · · · |Sk′ ∩ {yp}|}

∣

∣

∣

∣

∣

∣

∣

6= 0

Claim 27 For every 1 ≤ i ≤ p, there exists a node qi of G2 such that
S′

i = Si ∪ {qi} is a root of inequality (7.4).

For every 1 ≤ i ≤ p, let li (resp. ti) be the element of Si with minimal
(resp. maximal) index. Let qi = ti + ω. Obviously, qi is not a neighbor
of ti in G2. If qi is a neighbor of li in G2 then qi + ω − 1 − (n + ω) ≥ li.
Thus ti + ω − 1 − n ≥ li, which implies that ti is a neighbor of li in G1: a
contradiction. Hence S′

i = Si ∪ {qi} is a stable set of G2. Since qi is a node
of the maximum clique Qn, it follows that S′

i is a root of inequality (7.4), as
required. 3

Since G2[W2] has stability number α1 + 1 (Claim 25), there is a stable
set S′

0 of G2[V2] which is a root of inequality (7.4).
For every 0 ≤ i ≤ p and 1 ≤ j ≤ p, let δi,j = 1 if yj ∈ S′

i, 0 otherwise. By
Claim 24 and 27, inequality (7.4) is a valid inequality with p + 1 v-critical
components V2, {y1}, . . . , {yp}, and p + 1 roots S′

0, S
′
1, . . . , S

′
p such that
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∣

∣

∣

∣

∣

|S′
0 ∩ V2| δ0,1 · · · δ0,p

|S′
1 ∩ V2| δ1,1 · · · δ1,p

...
...

...
|S′

p ∩ V2| δp,1 · · · δp,p
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∣

∣

∣

∣

∣

∣

∣
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∣
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α1 + 1 0 · · · 0
|S′

1 ∩ V2| |S1 ∩ {y1}| · · · |S1 ∩ {yp}|
...

...
...

|S′
p ∩ V2| |Sp ∩ {y1}| · · · |Sp ∩ {yp}|

∣

∣

∣

∣

∣

∣

∣

∣

∣

is non-zero and Lemma 7.10 implies that inequality (7.4) defines a facet of
STAB(G2). To finish the proof, it remains to show that it is a proper weak
rank facet.

Claim 28 The set V2 is rank facet-producing and α(G2[V2]) = α1 + 1.

We have α(G2[V2]) ≤ α(G2[V1])+α(Qn) ≤ α1+1 and α(G2[V2]) =α(G2[W2]).
Let v be any node of V2 \ W2. By the definition of V2, v is an element of
Q2

n+1. Therefore |N(v) ∩ W2| ≥ ω1 as |W2 ∩ Q2
n+1| = ω1, by the definition

of W2. Let δ be the element of W2 with maximal index.
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If v < δ then (δ−ω) ∈ N(v). As δ−ω is an element of W2 by the definition
of W2, we get |N(v)∩W2| ≥ ω1+1. If v ≥ δ then v has at least one neighbor
in Q2

v ∩ W 2, as |Q2
v ∩ W 2| ≥ ω1 − 1 ≥ 1. Hence |N(v) ∩ W2| ≥ ω1 + 1.

Thus, in both cases, |N(v)∩W2| ≥ ω1 +1. Hence α(N(x)∩W2) = 2 and
therefore, G2[V2] is rank facet-producing by Galluccio & Sassano [41] (recall
that W 2 is a partitionable web by Claim 25 and, therefore, rank-minimal).
3 2

An immediate consequence of Theorem 7.11 is the following: if STAB(W k
n )

has a proper weak non-rank facet then STAB(W k
n+k+1) has a proper weak

non-rank facet (Theorem 4.20).
Therefore, if STAB(W k

n ) has a proper weak non-rank facet then all webs
STAB(W k

n+l(k+1)) are not rank-perfect for any l ≥ 0, too. This implies that,

for every fixed k ≥ 3, constructing a finite base set of webs W k
n0

, . . . ,W k
nk

with proper weak non-rank facets and ni = i (mod k + 1) suffices to show
that almost all webs W k

n are not rank-perfect (Corollary 4.21).
We prove that several clique family inequalities (Q, k′+1) associated with

different regular subwebs W k′

n′ induce proper weak non-rank facets (note that
(Q, k′ + 1) is a proper weak non-rank constraint if r < k′). The main result
from [80] is Theorem 4.24 stating that for any k ≥ 5 and a (k′, k−k′)-regular
subweb W k′

lk′ ⊂ W k
lk with 2 ≤ k′ ≤ k − 3 and odd l ≥ 3, the clique family

inequality (Q, k′ + 1)

2
∑

i∈W k′

lk′

xi + 1
∑

i/∈W k′

lk′

xi ≤ 2α(W k′

lk′) (7.5)

associated with W k′

lk′ is a proper weak non-rank facet of STAB(W k
lk) if l = 2

(mod k′ + 1) and α(W k′

lk′) < α(W k
lk).

Proof: By assumption, we have l = 2(mod k′ + 1) and α(W k′

lk′) < α(W k
lk).

In order to prove the assertion of the theorem, we have to establish that the
inequality (7.5)

2
∑

i∈W k′

lk′

xi + 1
∑

i/∈W k′

lk′

xi ≤ 2α(W k′

lk′)

is valid and facet-inducing for STAB(W k
lk). Validity follows from Lemma

4.22: since l = 2 (mod k′+1), we have lk′ = −2 (mod k′+1) and, therefore,
the remainder r of the division of lk′ by k′ + 1 is equal to k′ − 1. Thus the
valid inequality associated with the subweb W k′

lk′ is

2
∑

i∈I(Q,k′+1)

xi +
∑

i∈O(Q,k′+1)

xi ≤ 2α(W k′

lk′) (7.6)



7.4. STABLE SET POLYTOPES OF WEBS 157

where W k′

lk′ ⊆ I(F , p) holds. Hence, inequality (7.5) is valid. To prove that
inequality (7.5) is facet-inducing, we may define the set of nodes V ′ of the
(k′, k − k′)-regular subweb W k′

lk′ w.l.o.g. as

V ′ =
⋃

0≤j<l

{k · j + 1, k · j + 2, . . . , k · j + k′}

(where l ≥ 5 and l = 2 (mod k′ + 1)).

For convenience, we call the nodes in V ′ black nodes and all remaining
nodes white nodes. A black set is a set of black nodes and likewise a white set
is a set of white nodes. Further, [i, i + l] denotes the set of l + 1 consecutive
nodes starting in node i.

Claim 29 The black set V ′ is a-connected w.r.t. inequality (7.5).

If lk′ = 0 (mod k′+1) then −l = 0 (mod k′+1) and thus l = 0 (mod k′+1),
in contradiction with l = 2 (mod k′ + 1), as k′ ≥ 2. Hence k′ + 1 is not
a divisor of lk′ and we have lk′ = α(G[V ′])(k′ + 1) + r with 1 ≤ r ≤ k′.
Let S1 = {1, 2 + (k′ + 1), 2 + 2(k′ + 1), . . . , 2 + (α(G[V ′]) − 1)(k′ + 1)} and
S2 = {2, 2 + (k′ + 1), 2 + 2(k′ + 1), . . . , 2 + (α(G[V ′]) − 1)(k′ + 1)}. Since
2 + (α(G[V ′]) − 1)(k′ + 1) = 2 + (lk′ − r) − (k′ + 1) ≤ lk′ − k′, S1 and S2

are both maximum stable sets of G[V ′]. Hence, the edge {1, 2} of G[V ′]
is α-critical. By the circular symmetry of G[V ′], this implies that G[V ′] is
α-connected. Since α(G[V ′]) = α′, we obtain that V ′ is a-connected. 3

Claim 30 We have lk′ > (α′ − 2)(k′ + 1) + 3k′.

Since l = 2 (mod k′ + 1), we have lk′ = k′ − 1 (mod k′ + 1). Hence lk′ −
α′(k′ + 1) = k′ − 1. It follows that lk′ − α′(k′ + 1) > 3k′ − 2(k′ + 1). Thus
lk′ > (α′ − 2)(k′ + 1) + 3k′. 3

Claim 31 We obtain α(W k′

lk′ \ [1, 3k′]) ≥ α(W k′

lk′) − 1.

By the previous claim, the set S′ := {3k′ + 1, 3k′ + (k′ + 1) + 1, . . . , 3k′ +
(α′ − 2)(k′ + 1) + 1} is a stable set of size α′ − 1 of W k′

lk′ \ [1, 3k′] and the
result follows. 3

Claim 32 For every 0 ≤ i < l, the white set Vi := ik + {k′ + 1, . . . , k} is
a-connected.
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V1

(a)

k+q

k

2k

3k

S’

V1

(b)

q+1

2k−1

2k

S’’

Figure 7.7: : The roots for the proof of Claim 32 with k = 5 and k′ = 2: (a)
the roots Sj = S′ ∪{3k, j} (b) the stable sets S1 = S′′ ∪{k′ + 1, 2k − 1} and
S2 = S′′ ∪ {k′ + 1, 2k}

We are going to prove that V1 is a-connected. By the previous claim, there
is a black stable set S′ of size α′− 1 in G\ [k +1, 4k]. For every k + k′ +1 ≤
j ≤ 2k − 1, the set Sj := S′ ∪ {3k, j} is obviously a root of (7.5), hence
the edges {k′ + k + 1, k′ + k + 2}, . . . , {2k − 2, 2k − 1}, are a-critical (see
Fig. 7.7(a)).

It remains to show that the edge {2k−1, 2k} is a-critical. By the previous
claim again, there exists a black stable set S′′ of size α′−1 in G\[k′−k+1, 3k].
The set S1 := S′′ ∪ {k′ + 1} ∪ {2k − 1} is a root as k′ + 1 + k < 2k − 1 (since
k′ ≤ k−3). The set S2 := S′′∪{k′+1}∪{2k} is also a root (see Fig. 7.7(b)).
Hence {2k − 1, 2k} is a-critical and, therefore, V1 is a-connected.

Likewise, the sets V0, V2 . . . , Vl−1 are a-connected. 3

Claim 33 For every 0 ≤ i < l there exists a stable set Si such that Si meets
V ′ in exactly α′ − 1 nodes, Vi in exactly one node, and Vi+1 in also exactly
one node.

For every 0 ≤ i < l, there exists a black stable set S′
i of size α′ − 1 in

G\[ik+1, (i+3)k]. Let Si be the stable set S′
i∪{ik+k′+1}∪{(i+1)k+k′+2}.

Then S0, . . . , Sl−1 give the result. 3
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Let S′ be a maximum stable set of G[V ′]. Then we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

|S′ ∩ V ′| |S′ ∩ V0| · · · |S′ ∩ Vl−1|
|S0 ∩ V ′| |S0 ∩ V0| · · · |S0 ∩ Vl−1|

...
...

...
|Sl−1 ∩ V ′| |Sl−1 ∩ V0| · · · |Sl−1 ∩ Vl−1|

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

α′ 0 · · · 0
α′ − 1

... C
α′ − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

where C is the (2, l)-circulant matrix with top row (1, 1, 0, . . . , 0) of size l.
The matrix C is invertible as l is odd. Hence the above determinant is
non-zero. This finishes the proof. 2

As a consequence, we obtain many different infinite sequences of not
rank-perfect webs, among them the required base sets for all even values of
k ≥ 6 (but not for the odd values k ≥ 5 since all webs in the latter sequences
have an odd number of vertices). The cases of even values k ≥ 4 is treated
separately in [80].

7.5 The Chvátal-rank of clique family inequalities

Clique family inequalities form an intriguing class of valid inequalities for the
stable set polytope of all graphs. We investigate the Chvátal-rank of these
inequalities for arbitrary graphs [82]. Our main result is that the highest
coefficient involved in the inequality is an upper bound for its Chvátal-rank.

More precisely, we proof that for a clique family inequality (Q, p) with
r = |Q| (mod p) and every 1 ≤ i ≤ p − r, the inequality

i
∑

v∈Vp

xv + (i − 1)
∑

v∈Vp−1

xv ≤ i

⌊

|Q|

p

⌋

has Chvátal-rank at most i. In particular, (Q, p) has Chvátal-rank at most
p − r (Theorem 4.34).

The following observation will be used several times in the proof: sum-
ming up the clique inequalities corresponding to the cliques in Q and pos-
sibly adding negative constraints −x(v) for those nodes v ∈ Vp which are
contained in more than p cliques, we obtain that

p
∑

v∈Vp

xv + (p − 1)
∑

v∈Vp−1

xv ≤ |Q| (7.7)

is valid for QSTAB(G).
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Proof: For every 1 ≤ i ≤ p − r, let H(i) be the assertion:

”i
∑

v∈Vp

xv + (i − 1)
∑

v∈Vp−1

xv ≤ i

⌊

|Q|

p

⌋

has Chvátal-rank at most i.”

The proof is performed by induction on i.
H(1) is true as Inequality (7.7) implies that

∑

Vp
xv ≤ |Q|

p is valid for

QSTAB(G), hence
∑

Vp
xv ≤

⌊

|Q|
p

⌋

has Chvátal-rank one, as required.

For the induction step, assume that H(i) is true and i < p− r. We have
to prove that H(i + 1) holds. We know that the following inequality has
Chvátal-rank at most i:

i
∑

v∈Vp

xv + (i − 1)
∑

v∈Vp−1

xv ≤ i

⌊

|Q|

p

⌋

(7.8)

Scaling Inequality (7.8) (p − i − 1)-times and adding Inequality (7.7), we
derive the following chain of inequalities with Chvátal-rank at most i + 1:

(p + i(p − i − 1))
∑

v∈Vp

xv

+(p − 1 + (i − 1)(p − i − 1))
∑

v∈Vp−1

xv ≤ |Q| + (p − i − 1)i

⌊

|Q|

p

⌋

(p − i)(i + 1)
∑

v∈Vp

xv + (p − i)i
∑

v∈Vp−1

xv ≤ |Q| + (p − i − 1)i

⌊

|Q|

p

⌋

(i + 1)
∑

v∈Vp

xv + i
∑

v∈Vp−1

xv ≤









|Q| + (p − i − 1)i
⌊

|Q|
p

⌋

p − i









It remains to check that the right hand side is at most (i+1)
⌊

|Q|
p

⌋

. A short

computation gives

|Q| + (p − i − 1)i
⌊

|Q|
p

⌋

p − i
− (i + 1)

⌊

|Q|

p

⌋

− 1 =
|Q| − p

⌊

|Q|
p

⌋

− (p − i)

p − i

=
i − (p − r)

p − i

which is negative as i < (p − r). Hence








|Q| + (p − i − 1)i
⌊

|Q|
p

⌋

p − i







 ≤ (i + 1)

⌊

|Q|

p

⌋
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follows, as required. 2

This provides an alternative proof for the validity of clique family in-
equalities, involving only standard rounding arguments. In addition, it
shows that all rank clique family inequalities have Chvátal-rank one. The
latter consequence is particularly nice, as neither general rank constraints
nor general clique family inequalities have this property [24, 73], but the
combination of both.

However, the upper bound established in Theorem 4.34 gets weaker when
r gets smaller; we improve this upper bound for r < p/2 as follows: Every
clique family inequality (Q, p) with r = |Q| (mod p) has Chvátal-rank at
most r if 0 ≤ r < p − r (Theorem 4.36).

Proof: Let (Q, p) be a clique family inequality

(p − r)
∑

v∈Vp

xv + (p − 1 − r)
∑

v∈Vp−1

xv ≤ (p − r)

⌊

|Q|

p

⌋

such that 0 ≤ r ≤ p − r. Let b0 = |Q| and for every 1 ≤ i < r, define

bi+1 =









(p − 2i − 1)bi + i
⌊

|Q|
p

⌋

p − 2i







 .

Claim 34 For every 0 ≤ i ≤ r, we have bi = (p − i)
⌊

|Q|
p

⌋

+ (r − i).

We use induction on i: let H(i) be the assertion bi = (p− i)
⌊

|Q|
p

⌋

+ (r − i).

H(0) is true as (p − 0)
⌊

|Q|
p

⌋

+ (r − 0) = |Q|. For the induction step,

assume that 0 ≤ i < r and that H(i) is true. We have to check that H(i+1)
holds. From H(i), we infer the following:

bi+1 =









(p − 2i − 1)bi + i
⌊

|Q|
p

⌋

p − 2i









=









(p − 2i − 1)(p − i)
(⌊

|Q|
p

⌋

+ (r − i)
)

+ i
⌊

|Q|
p

⌋

p − 2i









=









((p − 2i − 1)(p − i) + i)
⌊

|Q|
p

⌋

+ (p − 2i − 1)(r − i)

p − 2i









= (p − i − 1)

⌊

|Q|

p

⌋

+

⌊

(r − i) −
r − i

p − 2i

⌋
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Since i < r < p − r, we have 0 < r−i
p−2i ≤ 1. This implies

bi+1 = (p − i − 1)

⌊

|Q|

p

⌋

+ r − i − 1

and, hence, H(i + 1) holds. 3

In particular, we obtain

br = (p − r)

⌊

|Q|

p

⌋

. (7.9)

Claim 35 For every 0 ≤ i ≤ r, the inequality

(p − i)
∑

Vp

xv + (p − i − 1)
∑

Vp−1

xv ≤ bi

has Chvátal-rank at most i.

The proof is by induction on i: for every 0 ≤ i ≤ r, let H(i) be the assertion:
”The inequality

(p − i)
∑

Vp

xv + (p − i − 1)
∑

Vp−1

xv ≤ bi (7.10)

has Chvátal-rank at most i”.
H(0) is true due to Inequality (7.7). The induction step goes as follows.

let 0 ≤ i < r and assume that H(i) is true. We have to check that H(i + 1)
holds. Due to Theorem 4.34, Inequality (7.8) has Chvátal-rank at most i.
As H(i) holds, Inequality (7.10) also has Chvátal-rank at most i.

Scaling Inequality (7.10) (p − 2i − 1)-times and adding Inequality (7.8),
we get the following chain of inequalities:

(i + (p − 2i − 1)(p − i))
∑

Vp

xv

+((p − 2i − 1)(p − i − 1) + i − 1)
∑

Vp−1

xv ≤ (p − 2i − 1)bi + i

⌊

|Q|

p

⌋

(p − 2i)(p − i − 1)
∑

Vp

xv

+(p − 2i)(p − i − 2)
∑

Vp−1

xv ≤ (p − 2i − 1)bi + i

⌊

|Q|

p

⌋



7.6. GENERAL CLAW-FREE GRAPHS 163

Hence the inequality

(p − i − 1)
∑

Vp

xv + (p − i − 2)
∑

Vp−1

xv ≤









(p − 2i − 1)bi + i
⌊

|Q|
p

⌋

p − 2i









≤ bi+1

has Chvátal-rank at most i + 1, that is H(i + 1) holds. 3

Combining equation (7.9) and Claim 35 finishes the proof. 2

Thus, Theorem 4.34 and Theorem 4.36 together imply that every clique
family inequality (Q, p) has Chvátal-rank at most min{r, p−r} where r = |Q|
(mod p) (Corollary 4.37).

7.6 General clique family inequalities and claw-
free graphs

We observed in [84, 83] that clique family inequalities do not suffice to
describe the stable set polytope of general claw-free graphs. This motivated
us to introduce in [84] the concept of general clique family inequalities in
order to describe facets of claw-free but not quasi-line graphs.

One class of inequalities for such claw-free graphs are Cook’s clique neigh-
borhood constraints describing the stable set polytopes of graphs G with
α(G) = 2.

In order to express such constraints as general clique family inequalities,
we proved in [84] as a first step that the full rank facet x(G) ≤ 2 associated
with a graph with α(G) = 2 is a general clique family inequality (Q, k, r, 1, 2)
where C2k+1 is the shortest odd antihole in G (Theorem 4.47).

Proof: As G has stability number 2, all of its minimal imperfect subgraphs
are odd antiholes. Every odd antihole C2l+1 has 2l + 1 cliques of maximum
size l, namely Q(i) = {i, . . . , i + l − 1}, for 1 ≤ i ≤ 2l + 1 (indices are taken
modulo 2l+1); in particular, each node i of C2l+1 belongs to the l maximum
cliques Q(i − l + 1), . . . , Q(i).

In order to present the studied clique family Q, we show that the maxi-
mum cliques of a shortest odd antihole C2k+1 ⊆ G can be extended in such
a way that every node v ∈ G \ C2k+1 is covered at least k times (possibly
using more than 2k + 1 cliques).
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Claim 36 For any C2l+1 ⊆ G and v ∈ G \ C2l+1, the set of non-neighbors
of v on C2l+1 induces a clique.

Otherwise, α(G[C2l+1 ∪ {v})] = 3. 3

Claim 37 For any C2l+1 ⊆ G, each node v ∈ G \ C2l+1 is adjacent to
at least l + t consecutive nodes of C2l+1 where t ≥ 1; in particular, v is
completely joined to t + 1 maximum cliques of C2l+1.

Denote the maximum interval of consecutive neighbors of v on C2l+1 by
1, . . . , l+ t. Then v’s non-neighbors are among the nodes l+ t+1, . . . , 2l+1.
As those non-neighbors induce a clique by Claim 36, we have l+t+1 ≥ l+2,
i.e., t ≥ 1 follows. In particular, v is completely joined to the t+1 consecutive
maximum cliques Q(1) = {1, . . . , l}, . . . , Q(1+t) = {1+t, . . . , l+t} of C2l+1.
3

Claim 38 Let v ∈ G \ C2l+1 and 1, . . . , l + t be the maximum interval of
consecutive neighbors of v on C2l+1. If t+1 < l then G[C2l+1∪{v}] contains
a shorter odd antihole C2(t+1)+1.

In this case, v is certainly not adjacent to l + t + 1 and 2l + 1 (but v
might be adjacent to nodes in between). We show that the node subset
V ′ = {2l + 1, 1, . . . , t, v, l + 1, . . . , l + 1 + t} induces a C2(t+1)+1 in G. Note
that we can rewrite V ′ as 2l + 1, . . . , (2l + 1) + t, v, k + 1, . . . , (l + 1)t. By
construction, a node x ∈ V ′ has exactly the following non-neighbors in V ′:

x ∈ V ′ NV ′(x)

v l + t + 1 and 2l + 1
l + t′, 1 ≤ t′ ≤ t 2l + t′ and 2l + t′ + 1
(l + 1) + t 2l + t + 1 and v
2l + 1 v and l + t
(2l + 1) + t′, 1 ≤ t′ ≤ t l + t′ and l + t′ + 1

as required. 3

Claim 39 If C2k+1 ⊆ G is a shortest odd antihole in G, then each code
v ∈ G \ C2k+1 is completely joined to at least k maximum cliques of C2k+1.

This follows directly from Claim 37 and Claim 38. 3

Thus, extending the maximum cliques of C2k+1 appropriatly, we can
construct a clique family Q with |Q| ≥ 2k + 1 s.t. each node in G is covered
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at least k times by Q. Choosing p = k yields V (Q, k) = V (G) and, hence,
the cfi (Q, k) reads as

(p − r)x(G) ≤ (p − r)α(G) ≤ (p − r)

⌊

|Q|

k

⌋

wich finally yields x(G) ≤ 2 by ⌊ |Q|
k ⌋ ≥ 2 due to |Q| ≥ 2k +1, for any choice

of r with 0 ≤ r ≤ R. 2

As described in Section 4.2.4, this general clique family inequality (Q, k, r, 1, 2)
producing the full rank facet of a graph G with α(G) = 2 can easily be ex-
tended to a general clique family inequality (Q, k+1, k−1, 1, 2) representing
the complete join of x(G) ≤ 2 and a clique Q, i.e., the cliqie neighborhood
constraint F (Q) (see Theorem 4.48).

In addition, we express in [84] all co-spanning tree constraints

1x(◦) + 2x(•) ≤ 3

of claw-free graphs G containing exactly one stable set of size three as general
clique family inequality (Q, p,R, p − 2, b) with |Q| = 7, p = 3, and b =

(p − R)
⌊

|Q|
p

⌋

− J = p (Theorem 4.50).

Proof: The roots of this facet correspond in the complementary graph G
to one triangle ∆ = {1, 2, 3} and the edges of a spanning tree T , where the
triangle ∆ consists of ◦-nodes only and in the tree T alternate ◦-nodes and
•-nodes. Note that we have the following in G:

(i) all inner ◦-nodes of T form a stable set;

(ii) all •-nodes form a stable set;

(iii) each inner ◦-node of T has exactly one neighbor in ∆;

(iv) each •-node has exactly one neighbor in ∆.

The latter two conditions hold true since all nodes outside ∆ have at least
one neighbor in ∆ (otherwise G is not claw-free) and at most one neighbor
in ∆ (otherwise G contains a second triangle 6= ∆).

Let N◦(i) (resp. N•(i)) denote the set of all ◦-neighbors in T (resp. •-
neighbors) of node i in G. We construct the following clique family Q in
G as follows: we choose Qi,◦ = {i} ∪ N◦(i) and Qi,• = {i} ∪ N•(i) for each
i ∈ ∆ and Q• consisting of all •-nodes.

Each set Qi,◦ is a clique by (i) and the definition of N◦(i); all three cliques
Q1,◦, Q2,◦, and Q3,◦ cover the nodes in ∆ once and all inner ◦-nodes of T
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twice by (iii). Similarly, each set Qi,• is a clique by (ii) and the definition of
N•(i); all three cliques Q1,•, Q2,•, and Q3,• cover the nodes in ∆ once and
all •-nodes twice by (iv). Q• is a clique by (ii) and covers all •-nodes once.

In total, each ◦-node is covered twice and each •-node three times. We

have |Q| = 7 and choose p = 3, R = 1, J = 1, and b = (p−R)
⌊

|Q|
p

⌋

−J = p.

Thus, we obtain the studied facet

∑

0≤j≤1

(2 − j)x(V (Q, 3 − j)) = 1x(◦) + 2x(•) ≤ 2

⌊

7

3

⌋

− 1 ≤ 3

as a general clique family inequality (Q, p,R, p − 2, p). 2

With the help of similar techniques we show in [84] that basic co-spanning
1-forest constraints

1x(◦) + 2x(•) + 3x(2) ≤ 4

of claw-free graphs are general clique family inequalities (Q, p,R, p − 2, b)

with |Q| = 9, p = 4, and b = (p−R)
⌊

|Q|
p

⌋

− J = p (see Theorem 4.57). We

conjecture that every co-spanning 1-forest facet of a claw-free graph can be
expressed that way.

The main result from [83] is that every non-rank, non-complete join facet
aT x ≤ b with b ≥ 3 of the stable set polytope of a (not necessarily claw-free)
graph G with α(G) = 3 is a

• co-spanning 1-forest constraint if b is even,

• co-spanning forest constraint if b is odd

(see Theorem 4.53).

Proof: By the assumption α(G) = 3, all roots of aT x ≤ b have size at
most 3.

If there would be a root consisting of one single node s, then as = b
would follow and s must be adjacent to any other node i of G with ai > 0;
a contradiction that aT x ≤ b is not a complete join facet.

Thus, all roots of aT x ≤ b have size 2 or 3; denote by Re (resp. R△) the
set of edges (resp. triangles) in G which correspond to the roots of aT x ≤ b
in G.

Consider further the graph F = (V,Re) ⊆ G. Any component T of
F must have at least |T | − 1 edges (since it is connected), but at most |T |
edges (since all its edges are, as roots, linearly independent by construction).
Thus, any component T of F is either a tree (if it has |T | − | edges) or an
odd 1-tree (if it has |T | edges). Note that every 1-tree T has as many edges
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as nodes, but all edges are independent only if the only cycle of T has odd
length. Moreover, this odd cycle must have length > 3, otherwise its edges
would form a triangle and could not be roots).

Thus, F contains |G| − k roots of aT x ≤ b, where k is the number of
tree-components of F , and R△ contains the remaining k roots of aT x = b.
Hence, aT x ≤ b is a co-spanning 1-forest constraint.

Now suppose that b is odd, but that F has an odd 1-tree component T
and consider the odd hole H ⊆ T of length 2l + 1.

For every edge vivi+1 of H, we have ai + ai+1 = b. In particular, ai +
ai+1 = ai+1 + ai+2 = b implies that all nodes in H with odd (resp. even)
index should have the same weight. As also a1 + a2l+1 = b holds, we infer
that all nodes vi of H must have the same weight ai = b

2 . This is possible
only if 2|b.

Hence, whenever aT x ≤ b with b ≥ 3 odd is a non-rank, non-complete
join facet of a graph G with α(G) ≥ 3, then aT x ≤ b must be a co-spanning
forest constraint. 2

Every co-spanning forest constraint is obviously a co-spanning 1-forest
constraint; the only complete join facets in claw-free graphs are clique neigh-
borhood constraints which can also be considered as special co-spanning 1-
forest constraints. This immediatly implies that every non-rank facet of the
stable set polytope of a claw-free graph G with α(G) ≤ 3 is a co-spanning
1-forest constraint (Corollary 4.56).

7.7 The extreme points of QSTAB(G)

We observe in [62] that the complete knowledge on the extreme points of
QSTAB(G) helps to determine both the imperfection ratio imp(G) and the
imperfection index impI(G) (see Section 5.1).

For that we establish a 1-1 correspondence between the extreme points
of QSTAB(G) and facet-inducing subgraphs of G in [62]. More precisely, we
proof that a vector a 6= 0 is an extreme point of QSTAB(G) if and only if

there is a subgraph G
′
of G such that supp(a) belongs to F(G

′
) (Theorem

5.1).

Proof: If. Suppose that G contains a subgraph G
′
such that aT x ≤ 1 is a

facet of STAB(G
′
) with 0 < ai ≤ 1 for i ∈ G

′
(i.e. the facet is scaled to have

right hand side 1). Then there exist n′ = |G
′
| linearly independent roots

S′
1, . . . , S

′
n′ of G

′
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These stable sets clearly correspond to n′ cliques Q′
1, . . . , Q

′
n′ of G′. For

any such clique Q′
i, choose a maximal clique Qi ⊆ G with Qi ⊇ Q′

i. Then the
vector x′ = (χG′

, a) with x′
j = aj for j ∈ G′ and x′

j = 0 otherwise satisfies
the n′ clique constraints associated with the maximal cliques Q1, . . . , Qn′ at
equality, as

x′(Qi) =
∑

j∈Q′

i⊆Qi

aj = aT χQ′

i = aT χS′

i = 1

holds by the choice of G′. Furthermore, x′ satisfies the n − n′ = |G \ G′|
nonnegativity constraints −x′

j = 0 ∀j 6∈ G′ with equality. Hence, x′ belongs
to n = |G| facets of QSTAB(G). In order to show that x′ is an extreme
point it remains to ensure that these facets are linearly independent. For
that, construct an (n × n)-matrix A as follows: Let the first n′ columns of
A correspond to nodes in G′ and the last n−n′ columns to nodes in G \G′.
Choose further the incidence vectors of the cliques Q1, . . . , Qn′ as first n′ rows
and the incidence vectors of the nonnegativity constraints −x′

j = 0 ∀j 6∈ G′

as last n − n′ rows, see Figure 7.8.

A =

(

A1 A2

0 Id

)

Figure 7.8: The (n × n)-matrix A

As the submatrix A1 corresponds to the independent cliques Q′
1, . . . , Q

′
n′

of G′, the whole matrix A is invertible due to its block structure. Thus, x′

is indeed an extreme point of QSTAB(G). 3

Only if. Suppose conversely that a 6= 0 is an extreme point of QSTAB(G)

with 0 < ai ≤ 1 for i ∈ G
′
and ai = 0 otherwise. Then a satisfies n linearly

independent facets of QSTAB(G) with equality. Among them are clearly the
n − n′ nonnegativity constraints −xj = 0 ∀j 6∈ G′. As QSTAB(G) has only
two types of facets, a satisfies also n′ maximal clique facets with equality,
say the clique constraints associated with the maximal cliques Q1, . . . , Qn′

of G. Let Q′
i = Qi ∩ G′, then

x(Qi) =
∑

j∈Qi

aj =
∑

j∈Q′

i⊆Qi

aj = aT χQ′

i = 1

follows. Clearly, the cliques Q′
1, . . . , Q

′
n′ of G′ correspond to stable sets

S′
1, . . . , S

′
n′ of G

′
and aT χS′

i = 1 holds for 1 ≤ i ≤ n′. In order to show
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that aT x ≤ 1 is a facet of STAB(G
′
), it remains to verify that χS′

1 , . . . , χS′

n′

are linearly independent. For that, construct an (n×n)-matrix A as above,
choosing the nodes in G′ and in G \ G′ as first n′ and last n − n′ columns,
respectively, the incidence vectors of the cliques Q1, . . . , Qn′ as first n′ and
the unit vectors corresponding to −xj = 0 ∀j 6∈ G′ as last n − n′ rows, see
again Figure 7.8. As a is an extreme point, the matrix A is invertible. In
order to show invertibilty for the submatrix A1, we substract, for each 1-
entry in A2, the corresponding unit vector in (0, Id). That way, we turn A2

into a matrix with 0-entries only but maintain all entries in A1. This shows
that the rows of A1 are linearly independent and, therefore, the incidence
vectors of the cliques Q′

1, . . . , Q
′
n′ of G′ respectively of the corresponding

stable sets S′
1, . . . , S

′
n′ in G

′
. Hence, aT x ≤ 1 is indeed a facet of STAB(G

′
).
2

With the help of this characterization we can, in addition, easily reprove
famous characterizations of perfect and minimally imperfect graphs, as well
as the results that the edge constraint stable set polytope and the fractional
matching polytope have half-integral extreme points only, see Section 5.1 or
[62].

7.8 The imperfection ratio of a-perfect graphs

The imperfection ratio of a graph is NP-hard to compute and, for most graph
classes, it is even unknown whether it is bounded. For a-perfect graphs, that
are graphs G such that all non-trivial, non-clique facets of STAB(G) are rank
constraints associated with prime antiwebs, we characterize the imperfection
ratio as

imp(G) = max{ n′

α′ω′ : Kn′,α′ ⊆ G prime}

where ω′ = ⌊n′/α′⌋ holds (Theorem 5.9).

Proof: For any a-perfect graph G, we have

STAB(G) = QSTAB(G) ∩ {x ∈ R
n : x(Kn′,α′) ≤ α′ ∀Kn′,α′ ⊆ G}

where n stands for the number of nodes in G. In particular,

F(G) = { 1
α′ χ

Kn′,α′ : Kn′,α′ ⊆ G, gcd(n′, α′) = 1}

follows, where χKn′,α′ stands for the incidence vector of Kn′,α′ . This yields

imp(G) = max{ 1
α′ y(Kn′,α′) : Kn′,α′ ⊆ G prime, y ∈ QSTAB(G)}
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as we clearly have

(χKn′,α′ )T y =
∑

i∈Kn′,α′

yi = y(Kn′,α′).

Furthermore, y(Kn′,α′) ≤ n′

ω′ follows as each node of Kn′,α′ can be covered
ω′ times by the n′ maximum cliques Qi = {i, i + α′, . . . , i + (ω′ − 1)α′} for
1 ≤ i ≤ n′ of Kn′,α′ (all these cliques are distinct as gcd(α′, n′) = 1). Thus,

imp(G) ≤ max{ 1
α′

n′

ω′ : Kn′,α′ ⊆ G prime}

and combining this with inequality (5.1)

imp(G) ≥ max{ n′

α′ω′ : Kn′,α′ ⊆ G}

finally yields equality, as required. 2

We also give two important upper bounds on imp(Kn,α).

Lemma 7.12

(a) imp(Kn,α) ≤ n
n−α+1 < 1 + 1

ω−1

(b) imp(Kn,α) < 3
2

Proof:

(a) Every odd hole and odd antihole in an antiweb Kn,α meets a given
set of α − 1 consecutives nodes in Kn,α by Trotter [104]. Hence, due
to the Strong Perfect Graph Theorem [17], any node of the antiweb
can be covered n − α + 1 times with n induced perfect graphs, thus
imp(Kn,α) ≤ n/(n − α + 1) by [45].

(b) If ω ≥ 3, the result follows from (a). If ω = 2 then Kn,α is an odd
hole, and therefore its imperfection ratio is bounded by 5

4 .

2

As a consequence, for all subclasses of a-perfect graphs, including all
odd holes and odd antiholes, all h-perfect graphs, all antiwebs [110], and
the complements of co-fuzzy circular interval graphs [112], the imperfection
ratio relies on induced antiwebs only and is bounded by 3

2 .
Furthermore, we also characterize and bound the imperfection ratio for

near-bipartite graphs G as

imp(G) = max{ n′

α′ω′ : Kn′/α′ ⊆ G} < 3
2
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where ω′ = ⌊n′/α′⌋ holds (Theorem 5.11).

Proof: Recall that imp(G) = max{aT y : a ∈ F(G), y ∈ QSTAB(G)} taken
over all the nontrivial facets aT x ≤ 1 of STAB(G) and y ∈ QSTAB(G). This
suggests that

imp(G) = max{imp(Ga)} (7.11)

taken over all support graphs Ga of nontrivial facets aT x ≤ 1 of STAB(G)
(i.e., Ga is the subgraph of G induced by all nodes i with ai 6= 0).

Due to Theorem 4.13, all these support graphs Ga are complete joins
of prime antiwebs Kn1,α1 , . . . ,Knk,αk

. Further, the imperfection ratio of a
complete join G1 ∗ G2 is simply

imp(G1 ∗ G2) = max{imp(G1), imp(G2)}

by [45] (they proved this relation for the disjoint union of two graphs, thanks
to the invariance of the imperfection ratio under taking complements, the
same applies to complete joins). Hence, we have for any support graph
Ga = Kn1,α1 ∗ . . . ∗ Knk,αk

imp(Ga) = max{imp(Kn1,α1), . . . , imp(Knk,αk
)}

and equation (7.11) together with Theorem 5.9 imply the assertion. 2

Thus, we characterize the imperfection ratio of near-bipartite graphs in
terms of induced antiwebs and, by invariance under complementation, the
imperfection ratio of any quasi-line graph in terms of its induced webs.

7.9 The imperfection index and graph composi-
tion techniques

In order to discuss bounds on the imperfection index, we investigate the be-
haviour of the imperfection index by means of taking lexicographic products
and substituting nodes by other graphs.

Our first result (Theorem 5.24) is that for two graphs G1, G2 we have

impI(G1 × G2) = |G2| impI(G1) + (|G1| − impI(G1)) · impI(G2).

Proof: Let V ′
1 ⊆ V1 be a minimum node subset of G1 = (V1, E1) such that

G1[V1 − V ′
1 ] is perfect; in particular we have impI(G1) = |V ′| by Lemma

5.17. Similarly, let V ′
2 ⊆ V2 be a minimum node subset of G2 = (V2, E2)

such that G2[V2 − V ′
2 ] is perfect.
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For each of the nodes v ∈ V ′
1 there exists a minimally imperfect subgraph

G′
v of G1 which contains v but none of the other nodes in V ′

1 (by the min-
imality of V ′

1). Substituting the node v by a graph G2 creates |G2| disjoint
copies of G′

v; removing all |G2| copies of v is required in order to meet all
copies of G′

v.

Moreover, for each of the nodes v ∈ V1 −V ′
1 substitution with G2 results

in a disjoint subgraph isomorphic to G2. Hence, in order to obtain a perfect
subgraph of G1×G2, at least impI(G2) nodes have to be removed from each
of those subgraphs. Let us remove the copies of V ′

2 . Together, this implies
that

impI(G1 × G2) ≥ |G2| |V
′
1 | + (|G1| − |V ′

1 |) · impI(G2)

= |G2| impI(G1) + (|G1| − impI(G1)) · impI(G2).

Now, suppose that G1×G2 is still not perfect after removal of the nodes
specified above. Then, there exists a minimally imperfect subgraph G′. If
G′ is isomorphic to a subgraph of G2, then G2[V2 − V ′

2 ] cannot be perfect.
Otherwise, G′ has to contain nodes from different copies of G2. If it contains
at most one node from every copy, G′ is isomorphic to a subgraph of G1 and
G1[V1 − V ′

1 ] cannot be perfect.

Thus, G′ has to contain at least two nodes from one of the copies and
nodes from at least two copies. By the Strong Perfect Graph Theorem, G′

is either an odd hole or an odd antihole. First, assume G′ is an odd hole.
Consider a copy of G2 from which at least two nodes v1, . . . , vk (k ≥ 2)
belong to G′ and let u be a neighbor of one of the nodes, not part of the
copy. Node u is adjacent to all nodes v1, . . . , vk which implies that k = 2
(otherwise G′ is not an odd hole). Moreover, since G′ has at least 5 nodes,
there has to be another neighbor w of v1, v2, not part of the copy. Since w
is also adjacent to both v1 and v2, we obtain a C4 as subgraph of G′ which
violates the assumption G′ being an odd hole.

For G′ being an odd antihole, a similar argumentation on the complement
of G1 ×G2 can be carried out to prove that G′ cannot be an odd antihole as
well. Hence, G1 × G2 is perfect after removal of the nodes specified above.

2

Thus, the imperfection index cannot be bounded for any class G of
graphs which is closed under substitution (and, therefore, under taking lex-
icographic products) and contains at least one imperfect graph G. Even
more for any perfect graph G2, we have impI(G1×G2) = |G2| impI(G1) (see
Corollary 5.25).
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Thus, a sufficient condition for the non-existence of an upper bound on
the imperfection index is that the graph class G in question contains an
imperfect graph and is closed under substituting certain perfect graphs. A
necessary condition for the existence of an upper bound on the imperfection
ratio for G is that G is closed under substituting perfect graphs for nodes
only. For the latter, we characterize how several classes of rank-perfect
graphs behave under substitution.

For this purpose, we shall make use of the following result:

Theorem 7.13 [21, 30] Let G be obtained by substituting a node v of a
graph G1 = (V1, E1) by a graph G2 = (V2, E2). Then a non-trivial inequality
is facet-defining for STAB(G) if and only if it can be scaled to be a facet
product of the form

∑

i∈V1−v

a1
i xi + a1

v

∑

j∈V2

a2
jxj ≤ 1 (7.12)

where x(Gi, a
i) ≤ 1 is a non-trivial facet of STAB(Gi) for i = 1, 2.

Note that Chvátal [21] gave a linear description of STAB(G) outgo-
ing from the stable set polytopes of the original graphs, whereas Cunning-
ham [30] proved later that each of the inequalities found by Chvátal is in-
deed facet-defining. We study the consequences of this theorem for several
subclasses of rank-perfect graphs. Throughout this section, all non-trivial
inequalities are scaled to have right hand side equal to 1 (that means: only
clique constraints keep unchanged, rank constraints x(G′, 1l) ≤ α(G′) turn
to x(G′, a) ≤ 1 with a = ( 1

α(G′) , . . . ,
1

α(G′)), and non-rank constraints have

different non-zero coefficients).

Proposition 7.14 Consider a graph G obtained by substituting a node v of
a graph G1 by G2. If there is a non-trivial, non-clique facet of STAB(G2)
then STAB(G) has a non-trivial, non-rank facet.

Proof: Let G1 = (V1, E1) and G2 = (V2, E2) and take the facet product

∑

i∈Q−v

xi +
∑

j∈V2

a2
jxj ≤ 1

of a clique facet associated with Q ⊆ V1, v ∈ Q and a non-trivial, non-
clique facet x(G2, a

2) ≤ 1 of STAB(G2). Then there is a node k ∈ V2 with
0 < a2

k < 1 and the above facet product has different non-zero coeffients:
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every i ∈ Q − v has coefficient 1 but 0 < a2
k < 1 (recall: we exclude the

case that v does not have any neighbor, hence there is a clique Q ⊆ V1 with
Q − v 6= ∅). Thus, the above facet product is a non-trivial, non-rank facet
of STAB(G). 2

That means, whenever G2 is imperfect, the graph obtained by substi-
tuting G2 for a node cannot be rank-perfect. Hence, none of the classes
of rank-perfect graphs (different from the class of perfect graphs) is closed
under substitution. In addition, we are interested which graphs G1 and G2

are allowed in order to produce a rank-perfect graph G by substitution.
Our first result is the following (Theorem 5.13): Let G be obtained by

substituting a node v of G1 by G2. G is rank-perfect if and only if G1 is
rank-perfect and G2 is perfect.

Proof: Let G1 = (V1, E1) and G2 = (V2, E2). Assume first that G1 is rank-
perfect and G2 is perfect. Then STAB(G1) admits only non-trivial facets
x(G1, a

1) ≤ 1 with a1
i ∈ {0, c}. Each facet product

∑

i∈V1−v

a1
i xi + a1

v

∑

j∈Q

xj ≤ 1

of x(G1, a
1) ≤ 1 with an arbitrary clique facet associated with Q ⊆ V2 has

again a1
i ∈ {0, c} as only coefficients. Thus, the only non-trivial facets of

STAB(G) are rank constraints.
Conversely, if G is supposed to be rank-perfect then G2 has to be per-

fect (otherwise STAB(G2) has a non-trivial facet different from a clique
constraint and STAB(G) has a non-rank facet by Proposition 7.14). G1 has
to be rank-perfect (otherwise STAB(G1) has a non-trivial, non-clique facet
and its facet product with an arbitrary clique facet of STAB(G2) yields a
non-trivial, non-clique facet of STAB(G)). 2

Thus, precisely substituting perfect graphs for nodes preserves rank-
perfection and substituting imperfect graphs for nodes in near-perfect, h-
perfect, a-perfect, or p-perfect graphs cannot preserve the membership in
those classes, too. Thus, the class of perfect graphs is the only class of rank-
perfect graphs which is closed under substitution. As a further consequence
we obtain that all classes of rank-perfect graphs satisfy a necessary condition
for having a bounded imperfection ratio.
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[51] A. Gyárfás, Problems from the world surrounding perfect graphs. Zastos. Mat.
19 (1987) 413–431.
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