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ÖZET 
Bu çalışma İstanbul Menkul Kıymetler Borsası 100 endeksine ait günlük getirilerinin 
rassal yürüyüş gösterip göstermediği  Markov zincirleri yöntemi ile test edilmektedir. 
Eğer bir piyasada zayıf formda etkinlik hipotezi geçerli ise hisse senedi getirileri rassal 
yürüyüş özelliği gösterecektir. Rassal yürüyüş teorisi hisse senedi getirilerinin tarihsel 
fiyat verileriyle tahmin edilemeyeceğini öngörür. Böylece rassal yürüyüş özelliği 
gösteren bir piyasada tarihsel fiyat verilerine dayanılarak gerçekleştirilen teknik analiz 
yöntemleri geçersiz olacaktır.   
 
ABSTRACT 
In this study, Markov chain methodology is used to test whether or not the daily returns 
of the Istanbul Stock Exchange (ISE) 100 index follows a martingale (random walk) 
process. If the Weak Form Efficient Market Hypothesis (EMH) holds in any stock 
market, stocks prices or returns follow a random walk process. The random walk theory 
asserts that price movements will not follow any patterns or trends and that past price 
movements cannot be used to predict future price movements hence, technical analysis 
is no use. 

 
1. Introduction 
Efficient Market Hypothesis (EMH) is an issue of intense debate among academics and 
financial professionals. Much of the theory on these subjects can be traced to French 
mathematician Louis Bachelier whose Ph.D. dissertation titled "The Theory of 
Speculation" (1900)1. EMH evolved by Fama (1965) who proposed three forms of the 
efficient market hypothesis: (1) The "Weak" form asserts that all past market prices and 
data are fully reflected in securities prices. In other words, technical analysis is of no 
use. (2) The "Semistrong" form asserts that all publicly available information is fully 
reflected in securities prices. In other words, fundamental analysis is of no use. (3) The 

                                                 
1 Bachelier came to the conclusion that "The mathematical expectation of the speculator is zero" 
and he described this condition as a "fair game." Unfortunately, his insights were so far ahead of 
the times that they went largely unnoticed for over 50 years until his paper was rediscovered and 
eventually translated into English and published in 1964 (http://www.investorhome.com). 
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"Strong" form asserts that all information is fully reflected in securities prices. In other 
words, even insider information is of no use. 

The debate about EMH has resulted in hundreds of empirical studies 
attempting to determine whether specific markets are in fact "efficient" and if so to what 
degree. We summarize below only those studies which utilizes Markov Chain 
methodology in analyzing the stock prices and testing random walk hypothesis. 

In an early study, Ryan (1973) explained the relevance of the theory of Markov 
processes to the analysis of stock price movements and stated that Markov theory is 
seen to be relevant to the analysis of stock prices in two ways: “1. As a useful tool for 
making probabilistic statements about future stock price levels. In this role it constitutes 
an alternative to the more traditional regression forecasting techniques to which it is, in 
many ways, superior. 2. As an extension of the random walk hypothesis. 

McQueen and Thorley (1991) used Markov chain model to test the random 
walk hypothesis stock prices and showed that annual real returns exhibit significant non 
random walk behaviors in the post war period in the New York Stock Exchange (NSE).  

Los (1998) investigated the nonparametric efficiency testing of Asian stock 
markets and illustrate that all six Asian stock markets have strong price trend behavior 
and can be profitably exploited by technical analysis with first-order Markov filters. 
Mills and Jordanov (2003) examined the predictability of size portfolio returns 
supplementing  conventional autocorrelation analysis by Markov chain processes and 
found that predictabilities appear for the largest size portfolios rather than the smallest. 

Most of the other studies aimed to explore the underlying patterns of economic 
mechanisms that generate the time series of stock returns by using Markov chains 
regime-switching methodology; Hamilton (1989) first investigate to capture discrete 
changes in the underlying (unobservable) economic mechanism that generates the 
financial time series data by Markov regime switching model. Driffill and Sola (1998) 
show that a Markov-switching model is a more appropriate representation of stock 
dividends and that regime-switching provides a better explanation for stock prices than 
the bubble. Kanas (2003) examined the forecast performance of stock return of the 
Markov regime switching model for US stock market using annual observations and 
concluded that the Markov regime switching model is the most preferable non-linear 
empirical extension of the present-value model for the stock return forecasting. Takaki 
(2004) proposed a two-step procedure for predicting intraday returns consisting of the 
method of principal components and the EM algorithm to estimate the model 
parameters as well as the unobservable states. First, a rate of return of a `stock' in a 
single day is assumed to be generated by several common factors plus some additive 
error (`intraday equation'). Secondly, the joint distribution of those common factors is 
assumed to depend on the hidden state of the day, which fluctuates according to a 
Markov chain. 

In the next sections of this study, Markov chain methodology is used to test 
whether or not the daily returns of the ISE 100 index follows a random walk process. 
Daily returns of ISE 100 index is assumed to be a stochastic process with four discrete 
state space with Markov chain structure that, the conditional probability of any future 
return given any past return and the present return, is independent of the past return and 
depends only on the present return of the process. After determining the steady state 
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probabilities, given in any state, probabilities of  going in either directions that are 
below and above expected return are tested. 

 
2. The sample and normality test of the returns 
Daily values of Istanbul Stock Exchange (ISE) 100 index were obtained from the 
electronic data delivery system of Central Bank of Turkey 
(http://tcmbf40.tcmb.gov.tr/cbt-uk.html). The ISE 100 index can be considered as a 
large diversified portfolio that covers the stocks of 100 leading firms, which are being 
treaded in the ISE. Hence, the index sufficiently represents the ISE. The index values 
cover 4234 workdays of 17 years for the period 23.10.1987-2.11.2004. 

 
Daily returns (Rn) are computed as a percentage change of the ISE 100 index: 
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where, Pn is the ISE index  value in day n, ( n=1.,,,.4234) 
We initially estimated the daily expected return ( Rµ ) and standard deviation 

( Rσ ) of the ISE 100 index. We also investigated the distributional property and 
volatility of the daily returns and tested that the stock returns are normally distributed. 

Table 1 gives the descriptive statistics for the daily stock returns. The expected 
value of the daily return is 0.18765% and standard deviation is 3.146%, that is relatively 
high when compared to the mean. This means that the daily returns exhibit high 
volatility. Minimum and maximum daily returns are -20% and 30% respectively for the 
period considered. 

Table 1:Descriptive statistics for the normality test 
  

Sample size 
 

Min.Val. 
 

Max.Val. 
 

Exp. Return ( Rµ ) 
 

Std. Dev. ( Rσ ) 

   Return ( nR ) 4234 -.20 .30 0.001876 0.03146 

 
We applied the One-Sample Kolmogorov-Smirnov normality test to determine 

whether or not the daily returns are normally distributed.  This test compares the 
observed cumulative distribution function for the stock return with the cumulative 
normal distribution; the Kolmogorov-Smirnov Z statistic is computed from the largest 
difference (in absolute value) between the observed and theoretical cumulative normal 
distribution functions. This goodness-of-fit test tests whether the observations could 
reasonably have come from the normal distribution. 
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Figure 1: Histogram of the daily returns 
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Table 2: One-Sample Kolmogorov-Smirnov Test results 
Kolmogorov-Smirnov  Z statistic   3.706 
Asymp. Sig. (2-tailed)   .000 
 
Figure 1 shows the histogram of the daily returns, and the Table 2 gives the 

normality test results. In this test the null hypothesis is that the distribution is not 
normally distributed. Calculated Z statistics in Table 2 is 3.706 and corresponding two-
tailed significant level is almost zero that we can strongly reject the null hypothesis. The 
daily returns of the ISE 100 index are normally distributed. The results of normality test 
above support the well-known empirical evidence for stock markets that the 
distributions of longer-horizon returns are closer to the normal, (Takaki, 2004).  

 
3. Markov chain analysis for testing of random walk hypothesis 
After the calculation of mean ( Rµ ) and standard deviation ( Rσ ) of the daily 

returns of ISE 100 index (Rn), we transformed the returns into four discrete state space 
and analyzed these states as Markov chains. Table 3, presents the return states ( jS ), 
return intervals and descriptions of the states. We assumed that one standard deviation 
above the mean return as high the return.  

Table 3: Return interval and descriptions of the states 
Return states ( jS ) Return interval Description 

S1 Rn < 0 Negative return 
S2 0 ≤  Rn < Rµ  Positive low return 

S3 Rµ  ≤  Rn ≤ Rµ + Rσ  Between mean and high return 

S4 Rn> Rµ + Rσ   Above high return 
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We transformed the daily returns to the four states according to the function 2 
below and computed the frequencies of the occurrence of the transitions from states i to 
j in Table 4. 
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Table 4: Frequencies of the occurrence of the transitions from states i to j  

 S1 S2 S3 S4 Row totals 
S1 1029 66 682 226 2003 
S2 66 7 68 13 154 
S3 696 69 619 162 1546 
S4 212 12 177 130 531 

 
From the frequencies table (Table 4) we can compute the four state (4x4), one 

step (one day) transition probability matrix ( 1
ijP ) from state i to j by dividing the row 

elements to row totals:  
                        S1        S2          S3          S4     
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In the above one step transition probability matrix, the daily return states of 

ISE 100 index ( jS ) is assumed to be a stochastic process  with four discrete state space 
{S1, S2, S3 and S4} with Markov chain structure that, the conditional probability of any 
future return state )( 1 jSn =+ , given any past return state 

),...,( 1100 −− == nn iSiS and the present return state )( iSn = , is independent of the 
past return and depends only on the present return of the state: 

 
}{ iSiSiSiSjSP nnnn ===== −−+ ,,...,, 1111001

{ }iSjSP nn === +1               (4) 
 for all i, j, and for n=0,1,…                                                        
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Markov chain methodology do not require that the daily stock returns to be 
normally distributed but require the Markov chain to be stationary which is defined as 
constant transition probabilities in the long run. 

After the modeling the system as Markov chain we can analyze the long run 
behavior of the return states to determine the steady state probabilities. Since the above 
one step probability matrix (3) have all positive probability values it has the property of 
regular ergodic chain. An ergodic Markov chain can have only one invariant 
distribution, which is also referred to as its equilibrium distribution (see Neal (1993) for 
the properties of ergodic Markov chains). This means that after enough number of steps 
(n days) a given return state will tend to occur a fixed percent of time. 

 
 
The steady state probabilities can be stated as follows: 
For a regular ergodic Markov chain: 

∞→
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j
n
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where jπ ’s are the steady state probabilities and this limit is independent of i. The 

jπ ’s satisfy the following steady state equations: 
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We can find the value of jπ ’s that is independent of the initial probability 
distribution after an enough number of transitions. As n becomes larger, the values of 
the n

ijP  moves to fixed limit and each probability vector of tend to become equal for all 

values of i. Thus, each of the four rows of n
ijP  has identical probabilities: 
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We can see from the above probability matrixes that after the five transitions 

(n=5), the values of the n
ijP  moves to fixed limit and each of the four rows of 5

ijP  has 
identical probabilities. These results indicate that there is a limiting probability that the 
return states will be in steady state condition after the 5 days and this probability is 
independent of the initial state of i. 
 
From 5

ijP , the steady state probabilities are: 
 
              S1        S2          S3          S4   

[ ]125.0365.0036.0473.0=jπ                                                   (10) 
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From the steady state probabilities we can compute the expected recurrence 
time for each of the return states )( jT . Expected recurrence times are equal to the 
reciprocal of the expected steady state probabilities, 

j
jT

π
1

= ,  for j=1,2,3,4. 

or, 
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Hence, expected recurrence times for the states S1, S2, S3 and S4 are 2.1, 27.5,   

2.7 and 8 days respectively. This result indicates that the state of negative return (S1) 
occurs most frequently that stock returns experiences negative return for each of the 2 
days; when the ISE is in negative return state, it can be expected that it will be in 
negative state after two days later. Similarly, when the ISE is in S3, it can be expected 
that it will be in state S3 after 2.74 days later. When ISE is in high return state (S4) is 
expected that it will be in that state after approximately 8 days later. The state S2 have 
the least frequency and expected to be occurring for each of the 27.49 days. 

However, given in any state, probabilities of going in either directions that are 
below and above expected return ( Rµ ) are appears to be same. From the steady state 

probabilities ( jπ ) we can see that the sum of the probability of the states that are 
below the expected return {P (S1)+P(S2)} and  above the expected return {P(S3)+P(S4)} 
are 0.509 and 0.491 respectively. These probabilities are very close to each other and 
suggest that given in any state; probabilities of going in either directions below and 
above expected return are same. This situation can be treated as a one-dimensional 
random walk or a martingale with steps equally likely in either direction: 

Let N represents the number of days. Let p be the probability of taking a step to 
the below expected return states, q the probability of taking a step to the above expected 
return states, n1 the number of steps taken to the below, and n2 the number of steps 
taken to the above expected return states. The expected quantities p, q, n1, n2, and N are 
related by p+q=1, p=q=1/2=0.50, n1+n2=N and n1=n2=1/N.  

By applying the maximum likelihood goodness of fitness test, we can 
rigorously determine whether or not the probabilities of return states going below and 
above the expected return are equal to 0.50. 

From Table 4, we can calculate observed and expected number of frequencies 
of return states: 

N=4234 (total number observations) 

2117
2

4234
221 ====
NEE nn  (Expected number of frequencies of n1 

and n2) 
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21571 =nO (Observed number of frequencies of n1) 

20772 =nO  (Observed number of frequencies of n2) 

The null hypothesis is n1=n2=2117 and that we can calculate chi-square ( 2x ) 
statistics to test the null hypothesis: 
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Calculated x2 statistic is almost zero and statistically insignificant that we can 
not reject the null hypothesis of equal probabilities. The daily return states of ISE 100 
index follow a random walk (martingale) process with steps equally likely in either 
direction of below and above expected return. 

This results are consistent with the our previous study (Kılıç, 1997) that we 
applied Augmented Dickey-Fuller test to the series of ISE index, and found that the 
series have a unit root and follow a random walk process. Existence of random walk in 
ISE supports weak form efficiency hypothesis. 

The results of this paper do not indicate that the existence of  semi strong form 
or strong form efficiency in ISE; Muradoğlu and Metin (1996) applied cointegration test 
in ISE and found that the stock prices and monetary variables cointegrate; ISE 
assimilates publicly available information on monetary variables with a lag. Hence, 
stock returns could be predicted by monetary variables. This suggest that ISE is 
inefficient in the semi strong form until 1993 because the data of the study covers the 
period of 1986-1993. 

In another our previous study, Canbaş et al. (2002) we investigated the 
relationship between financial characteristics of the industrial firms and their annual 
stock returns in ISE, and found that three financial characteristics (liquidity, profitability 
to shareholders and growth) are useful for predicting stock returns; publicly available 
financial data did not reflected in the stock prices and it is possible to outperform in ISE 
by fundamental stock analysis.           

 
4. Conclusion 
Result of this study hold the weak-form EMH that at any given time, stock 

prices fully reflect all the available historical information. Under a random walk, 
historical data on prices and volume have no value in predicting future stock return. In 
other words, statistical analysis and "technical analysis" is useless. Buying and selling 
stocks by just depending only on historical stock prices in an attempt to outperform 
above the market return will effectively be a game of chance rather than skill. 

Further research could be conducted toward the high frequency returns, such as 
five minute intraday returns. In this way we can see if there is an opportunity to 
outperform by intraday buying and selling strategy.     
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