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Abstract

This paper uses a EGARCH method to model inflation uncertainty in Turkey.
Unlike ARCH and GARCH methods, the EGARCH method both hampers the effect
of outlying shocks in the estimation of inflation uncertainty and enables the separate
treatment of the negative and positive shocks to inflation.  As inflation uncertainty
itself may follow a seasonal pattern, the series is subjected to monthly seasonal
adjustment.  The inflation measure we use in this paper is the monthly CPI inflation
and covers the period from 1986:1 to 2000:12.  The evidence in the paper shows that
monthly seasonality has a significant effect on inflation uncertainty. Moreover, once
seasonal effects are accounted for, lagged inflation no longer appears to affect
inflation uncertainty.
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I. Introduction

Studying inflation uncertainty is not only highly important but also highly

feasible in Turkey where high and variable inflation rates over more than two decades

provides a laboratory environment.  Friedman (1977) argues that inflation uncertainty

is costly since it distorts relative prices and increases risk in nominal contracts.

Therefore, as inflation becomes highly unpredictable, investment and growth slows

down.  In Turkey, although the average growth of real GDP has been more than four

percent per annum since 1970s, growth has nevertheless been highly volatile, calling

into question the role of inflation uncertainty, among other factors.

This paper analyses the dynamics of inflation uncertainty in Turkey.  Various

studies in the literature provide empirical evidence on the positive relationship

between inflation and inflation uncertainty. 1  Using an autoregressive conditional

heteroskedasticity (ARCH) model, Neyapti (2000) shows that inflation significantly

raised the uncertainty of wholesale price inflation in Turkey between 1982 to 1999.

Evidence in Nas and Perry (2000) supports this finding, while the evidence on the

effect of inflation uncertainty on the level of inflation is mixed and depends on the

time period analysed.

In this paper, we model inflation and inflation uncertainty using the

exponential generalized ARCH (EGARCH) model.  This method is superior to the

class of ARCH models in various respects and has not yet been used in the literature

to model inflation uncertainty.

                                                                

1 See Holland (1984) for a review of such empirical studies.  Ball and Cecchetti (1990), Brunner and
Hess (1993), Caporale and McKiernan (1997) all provide evidence for the positive association between
the mean and the variance of inflation, both across countries and over time for the US.
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The data used in the current study is monthly CPI inflation from 1986 to 2000.

Given that the conditional variance of inflation might have a seasonal pattern2, we use

monthly dummies to estimate the model.  The organisation of the rest of the paper is

as follows.  Section II outlines the model, Section III reports the evidence and, finally,

Section IV concludes.

II. The Model

The class of ARCH models allows us to estimate time varying conditional

variance.  Generalised ARCH (GARCH) models include lags of the conditional

variance to estimate the conditional variance of the model.  Nelson (1991) proposes

an extended version of such models: EGARCH.  EGARCH method is more

advantageous than both ARCH and GARCH methods to model inflation uncertainty

for the following reasons.  First, it allows for the asymmetry in the responsiveness of

inflation uncertainty to the sign of shocks to inflation.  Second, unlike GARCH

specification, the EGARCH model, specified in logarithms, does not impose the non-

negativity constraints on parameters.  Finally, modelling inflation and its uncertainty

in logarithms hampers the effects of outliers on the estimation results.

The EGARCH model has been commonly used to examine the interest rates,

interest rate futures markets, to model foreign exchange rates and to analyse stock

returns (see, for example, Brunner and Simon [1996]; Hu, Jiang and Tsoukalas

[1997]; Koutmos and Booth [1995]; and Tse and Booth [1996]).  Although the

literature on the EGARCH models is quite extensive, to our knowledge, no paper has

yet examined the inflation uncertainty using this method.  This paper fills that gap in

                                                                

2 Stochastic seasonality is tested using Franses (1990). Evidence suggests that there are seasonal unit
roots in the log of CPI, but since all roots are not equal to zero, it is not appropriate to apply the Ä12
filter. However, CPI contains a nonseasonal unit root, and therefore it can be modelled in first
differences and using seasonal dummies.



3

the literature.  This paper has a further contribution to the literature due to the the

inclusion of seasonal terms in the conditional variance equation.

Following Berument and Guner (1997) and Berument and Malatyali (2001)

we model inflation by using lagged inflation and monthly seasonal dummies to

account for seasonality:

 

 where π t   represents inflation; mit stands for the monthly dummies (i=1,2....,12) that

account for monthly seasonal effects; D94t is the dummy variable that takes the value

of 1 for the 4th month of 1994 to account for the 1994 financial crisis, and takes the

value of zero otherwise.  ε t is the error term at time t.  Due to Nelson (1991), we

assume that ε t has General Error Distribution with mean zero and the variance h2
t , ie.

εt~(0, h2
t).

3  n is the lag order of the autoregressive process.  To avoid the dummy

variable trap, constant term is not included in the equation of conditional mean

inflation [equation (1)].

 

 Equation (2) is the EGARCH representation of the conditional variance of inflation at

time t.  |ε t-1|/ht-1 ,  εt-1/h t-1 and the log of the lagged value of the conditional variance

(h2
t) are used to explain the behaviour of the conditional variance [equation (2)].  We

also include a dummy for 1994:3 (D94t-1), since the presence of the D94t dummy

alone makes the residual term in Equation (1) zero for 1999:4.  In Equation (2),

several economically meaningful restrictions could be tested.  Here, the incorporation

                                                                

3 Quasi-robust standard errors are used (see Bollerslev and Woolridge, 1992).
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of the restrictions (â1+â2+â3)<1 and β3<1 implies that inflation volatility never

explodes. If  â2 >0, then volatility increases when the innovation is positive and

decreases when the innovation is negative.

 Equation (2) can be modified by adding monthly dummies in order to explore

the seasonal dynamics of the conditional variance equation.  We report below the

results of the estimation of two models.  The first model (Model 1) is based on

Equation (1) and Equation (2) reported above; and the second model (Model 2) is

based on Equation (1) and a version of Equation (2) modified with the inclusion of

seasonal dummies.

III. Empirical Results

The inflation measure used in this analysis is the first difference of the

logarithm of the seasonally unadjusted CPI over the period 1986:1 to 2000:12.  In

what follows, we report the estimation results of both Model 1 and Model 2.

III.1. Model 1

The optimal lag length (n) of the inflation rate in equation (1) is selected as 7

based on the Final prediction Error criteria (FPE).  The FPE allows us to select the

optimum lag order such that the errors of the regression are no longer autocorrelated.

If the error terms are autocorrelated, the ARCH-LM test of Engle (1982) incorrectly

suggests that the ARCH effect is present  (see, Cosimano and Jansen, 1988).  The

following are the joint estimates of equations (1) and (2) whose test statistics are

reported in the Appendix.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

π t : 42.75 18.11 11.92 26.46 -0.42 -7.69 9.30 18.65 38.83 30.59 16.42 8.63
(7.53) (3.25) (1.93) (4.55) (-0.08) (-1.28) (1.59) (4.63) (7.20) (5.58) (2.80) (1.27)
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D94 π t-1 π t-2 π t-3 π t-4 π t-5 π t-6 π t-7

160.09 0.44 0.02 -0.02 -0.09 0.13 0.05 0.07
(44.04) (6.32) (0.16) (-0.34) (-1.95) (2.60) (1.28) (1.81)

Constant |ε t-1|/h t-1 ε t-1/h t-1 Log ht-12 D94t D94t-1

Log h2
t 1.40 0.34 0.22 0.66 -13.39 10.57

(2.28) (2.01) (1.75) (5.34) (-13.06) (3.56)

Note: Reported under each variable are the estimated parameters and the t-statistics (in parentheses).

The Ljung-Box Q-statistics cannot reject the null hypothesis that there is no

autocorrelation for both the estimated and the standardised residuals (ε t/ht ) of

equation (1).  Moreover, the ARCH-LM statistics can not reject the null hypothesis

that there is no ARCH effect for the standardised residuals up to the 24th lag.

By using the standardised lagged residual (ε t-1/ht-1) in the variance equation

(Equation 2), we allow for the possibility of the leverage effect.  The estimated

coefficient of the standardised lagged residual is positive and statistically significant

at 10% level.  This suggests when there is an unanticipated increase in inflation,

inflation uncertainty increases more than when there is unanticipated decrease in

inflation.  Next, we estimate the same model by including the monthly dummies in the

conditional variance equation.

III.2. Model 2

The estimation results of Model 2 are reported below to test the significance of

seasonal effects on the conditional variance of inflation:

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12
π t 46.28 23.30 18.89 31.95 9.81 -2.92 12.05 21.30 41.24 36.15 24.73 14.87

(8.21) (5.40) (3.87) (6.02) (2.57) (-0.53) (1.97) (5.98) (7.62) (10.07) (5.40) (2.71)

D94 π t-1 π t-2 π t-3 π t-4 π t-5 π t-6 π t-7
161.19 0.35 0.00 -0.01 -0.08 0.09 0.08 0.04
(46.53) (21.83) (-0.04) (-0.20) (-2.79) (2.00) (2.47) (1.04)
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|ε t-1|/h t-1 ε t-1/h t-1 Log h t-12 D94t D94t-1 m1 m2 m3 m4 m5 m6
Log h2

t 0.55 0.09 0.05 -6.45 -7.64 5.20 4.19 3.58 4.09 3.64 4.58
(3.19) (0.78) (0.20) (-5.90) (-4.42) (4.09) (2.59) (2.56) (2.52) (2.89) (3.79)

m7 m8 m9 m10 m11 m12
4.80 3.67 4.62 3.84 3.49 4.14
(3.05) (2.35) (3.96) (2.63) (2.82) (3.34)

Note: Reported under each variable are the estimated parameters and the t-statistics (in parentheses).

This models yields different results than Model 1 in various respects.   First,

the leverage effect in the conditional variance is not statistically significant.  Among

the seasonal dummies added to the model, while all have positive and statistically

significant effects, the first, sixth, seventh and the ninth months have the highest

contribution to the conditional variability of inflation.  This finding makes sense since

in January, both the government launches its economic program and the private sector

sets its prices for the year ahead.  During the months of June and July, agricultural

sector prices start to be formed; susceptibility of the agricultural sector to weather

conditions may influence inflation volatility dynamics.  In September, agricultural

support prices are announced and education spending increases. Likelihood ratio tests

reject the null hypotheses that the months of January, June, July and September do not

differ from the rest of the months in the conditional variance equation.  This clearly

suggests a yearly pattern in the level of inflation uncertainty.

We also tried a specification where the conditional variance is estimated with

a lagged inflation term.  However, the effect of lagged inflation in the estimation is

statistically insignificant and also has a negligible magnitude.

IV. Conclusion

The main findings of the paper are as follows.   Firstly, the evidence shows

that, in Turkey, the effect on inflation uncertainty of positive shocks to inflation are

greater than that of negative shocks to inflation.  Secondly, when monthly dummies
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are used in modelling both inflation and inflation uncertainty, the effect of lagged

inflation on inflation uncertainty disappears.  It is, therefore, possible to conclude that

there is no significant lagged effect of inflation on inflation uncertainty.  Lastly, the

evidence presented in this paper of the significant seasonal effects of inflation on

conditional variability cautions against a further difficulty in inflation forecasting.
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APPENDIX

Table 1: Test statistics for Model (1):

Test Statistic for
residual (ε t)

Level of
Significance:

Test Statistic the for
standardised residual

(εt-1/h t-1)

Level of
Significance:

Skewness 0.65 0.106
Kurtosis 8.2 3.7
Jarque-Bera 191.95 3.7
Ljung Box Q(6) 4.85 0.56 3.03 0.80
Ljung Box Q(18) 8.48 0.97 10.96 0.90
Log-Likelihood -608.65
LM ARCH (6) 2.85 0.83
LM ARCH (12) 7.18 0.85
LM ARCH (18) 11.89 0.87
LM ARCH (24) 15.78 0.90

Table 2: Test statistics for Model (2):

Test Statistic for
residual (ε t)

Level of
Significance:

Test Statistic the for
standardised residual

(εt-1/h t-1)

Level of
Significance:

Skewness 1.013 0.17
Kurtosis 9.24 2.88
Jarque-Bera 285.16 0.85 0.65
Ljung Box Q(6) 5.51 0.48 6.88 0.33
Ljung Box Q(18) 8.52 0.97 13.46 0.76
Log-Likelihood -602.3
LM ARCH (6) 7.7 0.81
LM ARCH (12) 14.27 0.71
LM ARCH (18) 20.57 0.67
LM ARCH (24) 15.78 0.90


