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Abstract

We suggest a procedure for model update, based on detection of structural breaks
at unknown change-points.  The procedure makes use of the SupF test introduced by
Andrews (1993).  We apply this procedure for modelling the common stock index
returns in the Ýstanbul Stock Exchange for the 11 year period of 1989 - 1999. The
underlying model consists simply of a mean plus noise, with occasional jumps in the level
of mean at unknown time instances. The problem is the detection of this jump and the
corresponding model update.  We find critical values for the SupF test statistic by using
the Bootstrap method.  A trading rule that uses the forecasts from the suggested
procedure is observed to outperform the buy-and-hold strategy.



1. Introduction

Testing for the presence of a structural change in linear econometric models when the
change point is unknown, is still an active research area. In this paper we suggest a dynamic real
time procedure for the detection of structural breaks and the corresponding update of the
parameters of the model at hand. That way, we aim at having an up-to-date operating model to
be used for prediction or forecasting purposes.

If in a linear regression model the possible change point is known, the Chow (1960) test
can be applied.  The Chow test statistic has an F distribution under the null  hypothesis of no
change, hence the tabulated critical values can be used. However if the change point is not
known, one possibility is to calculate the F statistics for each potential change point and find
their maximum.  The test statistic obtained this way is called SupF.  The asymptotic critical
values of the SupF test are reported by Andrews (1993).

The detection method we propose here is based on the availability of a test statistic for an
unknown change point.  The method involves the addition of new observations to the sample, in
case the null of no change is not rejected.  If there is a rejection, then the change point is
estimated and the new starting point for the sample is set as the estimated change point.  Then
the regression model parameters to be used are estimated on this new and smaller sample.1

A simple special case of the regression model consists of just the constant and the noise
terms.  This special case has been studied by Hawkins (1977), Worsley (1979), James, James
and Seigmund (1987) and Chu (1990). Mainly they have obtained  asymptotic distributions of
Likelihood Ratio (LR) test statistic. The SupF test that we will use here is equivalent to LR test,
as also noted in Andrews (1993). Chernoff and Zacks (1964) derive a Bayesian test in this
setting by imposing a normal prior on the mean. Hinkley (1970) studies the issue of inference
about the location of change point.

We model the weekly common stock index returns as a mean plus noise with occasional
changes in the mean and possibly the variance.  With this model in mind, we use the proposed
method on the Ýstanbul Stock Exchange data by using the SupF test. We also report the profits
from a trading strategy based on the method.

The possibility that means of stock returns are changing over time has been explored in the
literature. For example Conrad and Kaul (1988, 1989) and Poterba and Summers (1988)
model expected returns as changing every period according to an autoregressive process.
Similarly, the ARCH and GARCH models suggest gradually but continuously changing
variances. In contrast, our procedure is that of continually testing for the presence of occasional
jumps in the mean and possibly the variance.

                                                                
1 A related procedure for predicting regime changes in macroeconomic data has been introduced and
applied by Neftçi (1982).  In his case however, there are two regimes and the parameters determining the
probability distribution functions under the two regimes are assumed to be known, so that there is no
problem of parameter estimation.



The paper is organized as follows. After the introduction, Section 2 describes the data.
Section 3 presents the method and the test statistics employed.  The final section is devoted to a
summary and discussion of the results.

2. The Data

The data we use is the Friday closing values of the ISE composite index expressed in US$
as calculated by the IFC.  We loaded it from the DATASTREAM database.  The data spans
the January 5, 1989 to October 29, 1998 period, which contains 513 observations of the index.
The natural logarithm of the level can be seen in Figure 1.  There seems to be several time points
at which the mean rate of increase has changed.  However this may be an illusion and hence a
formal statistical testing procedure will be applied.

The first difference of the natural logarithm of index gives us 512 observations on weekly
continuously compounded rates of return.  This data is plotted in Figure 2.  From this data, the
eye can not easily detect mean changes, while there seems to be changes in the volatility over
time.

[Insert Figures 1 and 2 here.]

3. The Method and Test Statistics

We model the weekly returns from ISE index by an independently and normally distributed
error term with occasional changes in mean and possibly variance at the same time instants.
Formally we can write

                                                  tttR εβ += 0                                                            (1)

where tR  is the return at time t , t0β  is the mean valid at time t  and ),0(~ 2σε iidNt .

The method we apply is based on testing for the validity of the most recent parameter
estimate after obtaining a new observation.2  To this end unknown change point tests will be
employed.  The null hypothesis is no change in the mean and the variance.  If the null is rejected,
then an estimate of the change point is used as the beginning index of our new sample. The new
mean is estimated as the average of returns on the new sample. The algorithm can be described
as follows:3

                                                                
2 We chose a window length of 52.  The test is conducted if and only if there are at least 52 sample
observations from the most recent estimated change point to the current week.  For a discussion of the
rationale behind fixing such a data window and on the choice of its length, see Section 4.
3 This algorithm is implemented in GAUSS, and the code is available upon request.



10 Let START=1;
20 Let T=1;
30 If T-START>=51, test for the null of no structural break on the most
                                                                                                       recent 52 return data;
40 If rejected set START=Estimated change-point;
50 MEAN=Average of returns from START to T;
60 Obtain the following week’s return;
70 Let T=T+1;
80 Go to 30;

In implementing our algorithm, we use the SupF test statistic, large sample properties of
which are studied by Andrews (1993). This test statistic assumes a regression model of the form

                                             tttt XY εβ +=                                                        (2)

Under this setting the null and alternative hypotheses are,

0H :  no change in the regression model parameters  over the observed sample period

1H :  one change in the regression model parameters

The statistic for the SupF test is calculated as,

                                                    tTt
FSupF
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where  tF  is the usual F  statistic calculated at the change point t. If this statistic is greater than

some critical value we reject the null hypothesis of no change. The asymptotic critical values are
reported in Andrews (1993).  The estimated change point then is the time index that maximizes
the F  statistic.

In our case, where the model is that of a mean plus a noise term, we only have a  constant
term in the regression equation. For this reason, we set the independent variable,  tX  equal to

one for all t .

In order to make the algorithm described above operational, we need the critical values for
the sample size of 52.  We calculated the 5% and 10% critical values of the SupF test statistic
by using a numerical simulation method called Bootstrap.  Diebold and Chen (1995) show that
bootstrap critical values for the SupF test are more accurate, in finite samples, than their
asymptotic counterparts. This method is a numerical procedure for finding finite sample critical
values, where rather than using a pseudo normal random variable generator, the estimated error
terms themselves are resampled and used in Monte-Carlo simulations.  This method has the
advantage of being immune to deviations from the normality assumption on residuals.  Details
and the justification for the use of Bootstrap can be found in Efron (1982).



The 5% and 10% critical values found for the ISE $ return data are found as 11.13 and
8.82 from simulations with a Monte-Carlo sample size of 10,000. In contrast, for example, the
5% critical value for a usual Chow test would be 4.04.  As it should be, the SupF test is
observed to be more conservative than the Chow test. That is, it rejects the null less frequently.

4. Results and concluding remarks

The algorithm is applied to the stock index return data by using the two critical values
reported in Section 3.  As a result, the algorithm produced a list of signalled change points and
the time that they are signalled.  These times are reported in Table 1.  For example we observe
from the left panel of Table 1, that the first time the test has rejected the null is in week 99 for
observations between 48 to 99, reporting an estimated change point in week 58.  In such a
case, for forecasting the period 100 return, a new mean would be estimated by using data from
period 59 to period 99.

Although there is a large overlap in the signalled and estimated change points by the two
significance levels, the use of 10% level increased the number of signalled breaks.  This is due to
the increase in the power of the test obtained at the cost of increase in the probability of Type 1
error. The signalled change points for the 10% level are plotted in Figure 3.

Table 1
The estimated change points and their signalling times for the period

January 5, 1989- October 29, 1998

At 5% Significance Level At 10% Significance Level

Estimated Change Point Signal Time Estimated Change Point Signal Time

58 99 58 98
149 151 149 151
153 201 153 201

- - 165 213
212 216 212 217
264 265 264 265
265 316 265 316
268 319 268 319
278 320 278 320
329 330 329 330
420 421 420 421
421 472 421 472

- - 500 504



[Insert Figure 3 here.]

In order to observe the trading profits by using the forecasts generated by our algorithm,
we employ the following trading strategy on our sample. If the expected weekly return is
positive, we are in the market and obtain the following week’s index return.  Otherwise, we are
out of the market and stay in US$ during the following week to get a $ return of 0%. The
resulting buy and sell periods for the procedure using the test at 10% significance level are
indicated in Figure 4. The most striking aspect of the Figure is  the rather infrequent trading
advice provided by the method.  Moreover, in most cases the forecasts on the direction of the
market seem to be justified.

[Insert Figure 4 here.]

The resulting weekly average returns corresponding to the 5% and 10% crtitical values are
reported in Table 2.  For the overall sample period, the trading rule yielded weekly $ returns of
0.442% and 0.517% for the 5% and 10% critical values respectively. These values correspond
to continuously compounded annual returns of 23.0% and 26.9% respectively. In contrast, the $
returns from a buy and hold strategy for the same period would be 0.178% weekly or 9.2%
annual, continuously compounded. Transaction costs are ignored in these calculations.
However, as seen from Table 2, these costs are indeed negligible. The calculations were made
assuming a transaction cost of 2% per each transaction.  Since the total number of transactions
in the overall 10 year period does not exceed 7 in either case, we get a negligible effect on
average.

Table 2
The US$ returns from various trading rules for the period

January 5, 1989- October 29, 1998

Trading rule Weekly return Annual return

Buy and hold 0.178  % 9.2  %

Always out 0 .000 % 0.0  %

Buy if E(R)>0 (No test) 0.178  % 9.2  %

Buy if E(R)>0 (5% test) 0.443  % 23.0 %

Buy if E(R)>0 (10% test) 0.517  % 26.9 %

Buy if E(R)>0 (5% test, net of trans.costs) 0.440 % 22.9 %

Buy if E(R)>0 (10% test, net of trans.costs) 0.514 % 26.7 %



A weakness of this procedure is that it assumes homoskedastic noise terms under the null.
Figure 2, however, suggests that our sample has heteroskedasticity.  This weakness could be
remedied as soon as a test for stuctural test in GARCH models is made available.
Nevertheless, the overall performance of the procedure seems quite satisfactory.  This can be
attributed to our fixing of a test window of 52 weeks.4  In a preliminary version of this paper we
did not fix a test window and tested for the presence of structural breaks each and every week,
as new data comes.  This resulted in a too frequent rejection of the null, possibly due to changes
in the variance of the data rather than changes in the mean.   A large window length seems to
have helped in reducing such undesirable rejections due to variance changes.  But at the same
time, of course, larger window lengths have the disadvantage of delaying the detection time of a
possible change in mean that can actually take place before the window duration is reached.

These results indicate the presence of occasional changes in the mean of the underlying
return generating process in the Turkish stock market.  The question of whether these changes in
mean can be attributed to changes in equilibrium expected returns and hence are consistent with
the efficient markets hypothesis or whether they are due to the presence of rational of irrational
bubbles in stock prices is a debatable issue and needs further study.
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Özet

Yapýsal kýrýlmalarýn farkedilmesi için bir yöntem
ve Türk hisse senedi piyasasýna uygulanmasý

Bu makalede bilinmeyen deðiþme noktalarýnda gerçekleºen yapýsal kýrýlmalarýn farkedilmesine
dayanan bir model yenileme yöntemi önerilmektedir.  Yöntem Andrews (1993) tarafýndan
literatüre sunulan SupF testini kullanmaktadýr.  Bu yöntem 1989-1998 arasýndaki 10 yýllýk
dönemde Ýstanbul Menkul kýymetler borsasýnýn endeks getirilerini modellemede
kullanýlmýþtýr.  Temel model bir ortalama getiri ve ona eklenen rassal gürültüden ibarettir.
Ancak ortalama getirinin arada sýrada bilinmeyen zamanlarda sýçramalar yapma olasýlýðýný
dikkate alýnarak, problem, bu tür sýçramalarýn farkýna varýlmasý ve modelin buna göre
yeniden tahmini olarak tanýmlanmýþtýr.  Kullanýlan SupF test istatistiðinin kritik deðerleri bir
nümerik benzetme algoritmasý ile bulunmuºtur.  Yöntemden elde edilen kestirimlerin
kullanýlmasýna dayanan bir alýþ-veriþ kuralýnýn ‘al ve tut’ kuralýndan daha iyi getiri saðladýðýný
gözlemlenmiºtir.



Figure 1: ISE index (ln of $ value) 
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