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1. INTRODUCTION 

1.1 Proteases 

Mammalian proteases form one of the largest and most diverse families of enzymes 

known. They are divided into five major classes identified to date: serine proteases (EC 3. 4. 

21); cysteine proteases (EC 3. 4. 22); aspartate proteases (EC 3. 4. 23); metalloproteases (EC 

3. 4. 24) and threonine proteases (EC 3. 4. 25), according to their mechanisms of cleavage and 

active sites [1]. Of these, serine proteases constitute one third of all proteases found in 

eukaryotes, prokaryotes, archaea and viruses. This class of enzymes was originally defined by 

the presence of three residues, aspartate, histidine and serine in the catalytic site, forming a 

hydrogen bonding system often referred to as the “charge relay system” or “catalytic triad” 

[2]. Since serine proteases cleave diverse substrates, they are involved in many important 

physiological and pathological processes including digestion, hemostasis, reproduction, 

immune response, as well as signal transduction.  

In the brain, serine proteases, e.g. thrombin (EC 3. 4. 21. 5), tissue plasminogen 

activator (tPA, EC 3. 4. 21. 68) and plasmin (EC 3. 4. 21. 7), regulate the consequences of 

ischemic stroke, synaptic plasticity, neurodegeneration and neuroregeneration [3, 4]. 

Preclinical studies demonstrate that thrombin at low concentrations protects neurons from 

damage by ischemic injury, whereas at higher concentrations, thrombin causes 

neurodegeneration and brain insults [3, 5]. It was also reported that overexpression of tPA in 

neurons could enhance long-term potentiation and thereby improve learning and memory [6]. 

However, some studies have already demonstrated that tPA activates microglia cells, and 

exogenous administration of recombinant tPA into mice exacerbates injury in several 

ischemic models [4]. In the clinic, serine proteases have developed as important therapeutic 

targets. Recombinant tPA has been used to treat ischemic stroke patients in USA, since it is 

involved in degrading fibrin clots and thereby improves patient outcomes after ischemic 

stroke [7]. 

 

1.2 Protease-activated receptor 

 Serine proteases regulate cells by activating certain membrane receptors. Protease-

activated receptors (PARs) are a unique family of the seven-transmembrane domain G 

protein-coupled receptors (GPCRs), which mediates the signal transduction to extracellular 

serine proteases like thrombin and trypsin (EC 3. 4. 21. 4). So far, four members (PAR-1 to 

PAR-4) of this family have been identified [8-11]. PAR has been shown by reverse 

transcription-polymerase chain reaction (RT-PCR) and immunochemistry to be ubiquitously 
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expressed in multiple cell types, including platelets, cardiomyocytes, endothelium, smooth 

muscle cells, epithelium, fibroblasts, hepatocytes, macrophage, lymphocytes, neutrophils, 

mesangial cells, kerotinocytes, neurons, astrocytes, oligodendrocytes, and microglia [9, 12-

21]. Accumulating evidence reveals that PAR is involved in diverse signalling events with 

numerous consequences in multiple systems, including the cardiovascular system, respiratory 

system, gastrointestinal system, immune system, renal system, and nervous system (Reviewed 

in [20-28]). 

 

1.2.1 Subtypes of PAR 

1.2.1.1 PAR-1 

Thrombin was originally established as a key mediator in the coagulation process. 

However, it was observed that thrombin strongly induces platelet aggregation in the absence 

of other factors of the coagulation cascade, suggesting the potential of cellular effects in 

addition to a role in clot formation. In addition, several studies found that thrombin has direct 

effects on a number of cell types, including monocytes, endothelium, smooth muscle cells, 

lymphocytes, and others [29-34]. Notably, serine protease inhibitors could block the effect of 

thrombin on cells, suggesting that the protease activity of thrombin is essential for these 

cellular effects [35]. Although several thrombin-binding proteins like thrombomodulin had 

been identified [36], a functional thrombin receptor had not been discovered until 1990.  

In 1991, Coughlin and colleagues isolated the cDNA clone encoding the thrombin 

receptor, expressed in Xenopus oocytes [9]. Sequencing of this clone revealed a 3.5-kb insert, 

containing an open reading frame encoding a 425-amino acid (aa) protein. Hydropathy 

analysis further indicates that this protein belongs to a new family of seven-transmembrane 

domain GPCRs. Afterwards, this family was termed as PAR family by International Union of 

Pharmacology Committee on Receptor Nomenclature and Drug Classification, and the 

thrombin receptor was named PAR-1 [37]. The extracellular N-terminus of human PAR-1 

contains an amino-terminal signal sequence, three potential N-linked glycosylation sites, a 

hirudin-like binding domain (DKYEPF) and a putative thrombin cleavage site 

(R41↓S42FLLRN) [9], whereas the intracellular domains of human PAR-1 including 

intracellular loops and C-tail contain a G protein binding site, two palmitoylation sites, 

several potential phosphorylation sites and receptor trafficking signal sequences [38-40]. 

Recent studies demonstrate that human PAR-1 possesses the 8th α-helix that is likely to be the 

4th intracellular loop anchored by the 7th transmembrane domain and the dual cysteine 

palmitoylation sites at the C-tail. This helix domain is essential for Gαq coupling and 
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subsequent signal transductions [40]. Interestingly, there is an ionic interaction between the 

8th helix and the intracellular loop 1 of PAR-1, which is also involved in Gαq coupling to the 

PAR-1 [40]. PAR-1 is abundantly expressed in platelets, epithelium, endothelium, smooth 

muscle cells, fibroblasts, myocytes, neurons, astrocytes, oligodendrocytes, and microglia [9, 

12-15, 17, 41-43]. 

 

1.2.1.2 PAR-2 

PAR-2 was identified by a low-stringency hybridization screening of a mouse genomic 

library using primers corresponding to the second and sixth transmembrane domains of the 

bovine substance K receptor [10]. Human PAR-2 was cloned later by using the mouse PAR-2 

as a probe [44]. Human PAR-2 contains 397 aa with the typical characteristics of a GPCR and 

with ~30% homology to human PAR-1. By fluorescence in situ hybridization, the human 

PAR-2 gene is mapped to chromosomal region 5q13, only 90 kb of DNA away from the PAR-

1 gene [44]. The extracellular N-terminus of human PAR-2 contains an amino-terminal signal 

sequence, a potential N-linked glycosylation site and a trypsin cleavage site (R36↓S37LIGKV), 

but no hirudin-like binding domains [45, 46], whereas G protein binding sites, potential 

phosphorylation sites and one palmitoylation site are found at the intracellular domains of 

human PAR-2. Similar to PAR-1, human PAR-2 also possesses a 7-8-1 structure that the 7th 

transmembrane domain interacts with the 8th helix domain, which in turn binds to the adjacent 

intracellular loop 1. Distribution studies demonstrate that PAR-2 is abundantly present in 

epithelium, endothelium, smooth muscle cells, fibroblasts, myocytes, monocytes, neurons, 

astrocytes, and microglia [10, 12, 13, 15-17, 42-45, 47]. 

 

1.2.1.3 PAR-3 

Although PAR-1 was shown to mediate thrombin-induced signal transduction, murine 

platelets which lack PAR-1 still respond strongly to thrombin, but not to PAR-1-activating 

peptide (AP), suggesting the existence of other thrombin receptors [48]. By using primers 

corresponding to the conserved regions of PAR-1 and PAR-2, another thrombin receptor 

PAR-3 was cloned from rat platelets mRNA [11]. PAR-3 is also a typical GPCR, and is found 

to share 27% sequence homology with human PAR-1 and 28% with human PAR-2. It has 

been identified that the thrombin cleavage site (K38↓T39FRGAP) also locates upstream of the 

hirudin-like binding domain (FEEFP) at the extracellular N-terminus of PAR-3 [11]. Genomic 

analysis reveals that the human PAR-3 gene locates at the chromosome 5q13, like both PAR-1 

and PAR-2, and it also contains two exons [49]. The distribution of PAR-3 is also similar to 
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that of other PARs, mainly in platelets (mouse), endothelium, epithelium, smooth muscle 

cells, microglia, astrocytes and neurons [13, 50-55]. Although PAR-3 appears to be a second 

thrombin receptor, PAR-3 AP fails to activate PAR-3 in Jurkat T cells and A-498 cells [56, 

57]. It was reported that murine PAR-3 acts as a cofactor to facilitate thrombin binding to 

low-affinity murine PAR-4 [50]. Therefore, PAR-3 may not be a fully functional thrombin 

receptor, which is apparently distinct from PAR-1. 

 

1.2.1.4 PAR-4 

PAR-4 is the third thrombin receptor, and it was cloned by searching expressed 

sequence tag libraries [8]. Human PAR-4 is 385 aa in length, has a markedly distinct cleavage 

site (R47↓G48YPGQV) for thrombin and trypsin at the extracellular N-terminus, but lacks a 

hirudin-binding site [8]. PAR-4 shares 33% sequence homology with other human PAR 

subtypes, but with some distinct difference in the N- and C-terminus. Human PAR-4, like 

human PAR-3, lacks cysteine palmitoylation sites at the C-tail and an ionic interaction 

between the 8th helix and the adjacent intracellular loop 1, implying that human PAR-4 and 

PAR-3 have less coupling efficacy with Gαq [40]. Although human PAR-4 has the same two-

exon structure as the other PARs, it is mapped to a different chromosomal locus-19p12 [8]. 

Since it has a low affinity for thrombin, PAR-4 activation occurs in the presence of high 

concentrations of thrombin [8]. Like the other PARs, PAR-4 is also expressed in platelets 

(human), endothelium, epithelium, myocytes, astrocytes, microglia and neurons [8, 13, 53, 55, 

58-61]. 

 

1.2.2 Agonists and antagonists of PAR 

In addition to the wound repair in the coagulation cascade, thrombin at the picomolar 

concentration range could activate PAR-1 to mediate cellular signal transduction (Table 1.1) 

[3]. Thrombin is generated by the cleavage of prothrombin in the presence of activated factors 

Xa (EC 3. 4. 21. 6) and Va, calcium and membrane phospholipids [62]. Prothrombin is 

mainly produced in the liver [62]. Now it is known that prothrombin is also expressed in the 

brain throughout development [63]. Like the other zymogens, prothrombin is essentially 

inactive and appears to have no biological activity [64]. Besides PAR-1 [9], it was found that 

thrombin could also activate two additional receptors of the PAR family, PAR-3 (human) and 

PAR-4, by cleavage of their extracellular N-termini (Table 1.1) [8, 11]. 

PAR-2 is the second member of the PAR family, and it is activated by multiple trypsin-

like serine proteases including trypsin, tryptase (EC 3. 4. 21. 59), but not by thrombin (Table 
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1.1) [10, 65]. The active trypsin is generated from the zymogen by enteropeptidase (EC 3. 4. 

21. 9) in the small intestine [66]. Trypsin mainly contains three isoforms, cationic trypsin, 

anionic trypsin and mesotrypsin, which are encoded, respectively, by PRSS (protease, serine) 

genes PRSS1, PRSS2, and PRSS3 in the pancreas [67, 68]. Although trypsin is the main 

physiological agonist of PAR-2, it is not present in most tissues such as in the brain. Since 

mast cells have been found in the choroid plexus, in parenchymal and perivascular areas in 

the central nervous system, and in close contact with peripheral nerves [69, 70], mast-cell 

tryptase is a good candidate agonist for PAR-2 in the brain. P22 is another trypsin-like serine 

protease in the brain that has been found to activate PAR-2 [71]. Recently, it has been shown 

that trypsin IV (mesotrypsin) is expressed in the brain, and is able to activate PAR-2 and 

PAR-4 in transfected KNRK cells [72]. However, our recent data indicate that mesotrypsin 

uniquely activates PAR-1, but not PAR-2 in rat astrocytes [73]. Therefore, it is still an open 

question which PARs are activated by mesotrypsin. 

Besides serine proteases that can activate PARs, it was found that the short peptide with 

sequences matching that of the tethered ligand domain could also fully activate PARs without 

proteolytic cleavage (Table 1.1). SFLLR-NH2 (thrombin receptor agonist peptide, TRAP) 

could activate PAR-1 to mimic thrombin functions in most cell types [9]. Among these 

TRAPs, Ala-parafluoroPhe-Arg-Cha-Cit-Tyr-NH2 (TRag) was developed as the most potent 

and selective PAR-1 peptide agonist [74, 75]. The EC50 value of TRag is 0.01 µM, and it has 

much higher potency (1000-fold) than TRAP14 Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-

Tyr-Glu-Pro-Phe-OH [74]. Moreover, TRag (≤50 µM) selectively activates PAR-1, and does 

not cross-activate other PARs [75]. However, SFLLR-NH2 could also activate PAR-2, 

although it possesses higher potency for PAR-1 [76, 77]. This implies the interaction of PAR-

1 with neighboring PAR-2. Similar to TRAP, SLIGKV-NH2 (human) or SLIGRL-NH2 

(rodent) (PAR-2 AP) and GYPGQV-NH2 (human), GFPGKP-NH2 (rat) or GYPGKF-NH2 

(mouse) (PAR-4 AP) are also able to activate their respective receptors [8, 10, 44, 78]. 

Accumulating evidence demonstrates that PAR-2 AP (SLIGKV-NH2 or SLIGRL-NH2) only 

activates PAR-2, but not PAR-1, because of a lack of an essential aromatic amino acid 

substituent at position 2 of the activating peptide [79, 80]. Compared to SLIGKV-NH2, 

SLIGRL-NH2 is much more potent for PAR-2 activation [81]. Recently, a new PAR-2 AP 2-

furoyl-LIGRLO-NH2 has been developed, which possesses 10 to 20 times higher potency than 

SLIGRL-NH2 [82]. Moreover, this peptide selectively activates PAR-2 and does not cause a 

non-PAR-2-mediated contraction of murine femoral arteries [82]. Interestingly, PAR-3 does 

not appear to respond to its activating peptide [56, 57].  
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Many studies have already shown that other proteases can also cleave and activate 

PARs (Table 1.1), and may exert their functions in vivo. Coagulation factors VIIa (EC 3. 4. 

21. 21) and Xa that act upstream of thrombin have been shown to potently activate PAR-1, 

PAR-2 and PAR-4 when allosterically associated with the integral membrane protein tissue 

factor [21, 83]. Another coagulation protease, activated protein C (APC) (EC 3. 4. 21. 69) 

could activate PAR-1, which protects neuronal death [54]. Under inflammatory conditions, 

leukocytes release some proteases (e.g., cathepsin G, elastase, proteinase-3), which may also 

activate certain PARs. Now it is known that cathepsin G (EC 3. 4. 21. 20) is released from 

activated neutrophils and causes platelets aggregation. This effect is mediated by PAR-4 [84]. 

Another neutrophil-derived protease, proteinase-3 (EC 3. 4. 21. 76) was shown to activate 

PAR-2 in epithelial cells [85]. Interestingly, it was reported that an integral membrane 

protein, called membrane-type serine protease 1 (MT-SP1) (EC 3. 4. 21. -), can target PAR-2 

and thereby activates it [86]. In addition, a number of nonmammalian proteases from mites, 

bacteria, and fungi have been found to activate PARs in mammalian cells. Bacterial protease 

arginine-specific gingipains-R (RgpB) (EC 3. 4. 22. 37) was shown to activate PAR-1 and 

PAR-2 in human oral epithelial cells, and further induces interleukin (IL)-6 secretion [87]. 

Similarly, the mite cysteine and serine proteases Der P3 and P9 activate PAR-2 to induce 

cytokines GM-CSF and eotaxin secretion in lung epithelial cells [88]. Therefore, these 

interesting data might reveal a mechanism by which some pathogens induce inflammatory 

reactions in the airway. 

Since thrombin is a key agent for atherosclerosis, thrombosis and other diseases, the 

development of antagonists for thrombin receptor, especially for PAR-1, has been widely 

studied. To date, several peptides and peptidomimetic compounds derived from PAR-1 

tethered ligand domain have been shown to block thrombin’s actions on platelets (Table 1.1). 

The first developed antagonist of PAR-1, 3-mercaptopropionyl-Phe-Cha-Cha-Arg-Lys-Pro-

Asn-Asp-Lys-amide, was designed based on SFLLRN domain and was reported to inhibit low 

concentrations of thrombin-induced calcium mobilization, GTPase activation, phospholipase 

A2 activation, Na+/H+ exchange activation and platelet aggregation [89]. Later on, this peptide 

was found to be an agonist for PAR-2 [75]. Similarly, another PAR-1 peptide antagonist 

trans-cinnamoyl-parafluoro-Phe-paraguanidino-Phe-Leu-Arg-NH2 at micromolar 

concentrations could inhibit thrombin-induced platelet aggregation, but it likely acts as a 

PAR-2 agonist as well [90]. The poor specificity of peptide-derived PAR-1 antagonists might 

be due to the fact that PAR is activated by its tethered ligand domain. Therefore, it might be 

not the optimal strategy to find out specific PAR-1 antagonists based on the tethered ligand 
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domain. Another class of antagonists, nonpeptide PAR-1 antagonists have also been 

developed (Table 1.1). RWJ58259 and RWJ56110 both have a high affinity for PAR-1, and 

selectively inhibit thrombin-induced platelet aggregation in vitro [91, 92]. Moreover, 

RWJ56110 has been shown to significantly improve the cardiovascular hemodynamic profile 

in vivo [93]. Similarly, RWJ58259 could prevent thrombus formation and vascular occlusion 

in nonhuman primates [94]. Other nonpeptide PAR-1 antagonists SCH79797 and FR171113 

were also shown to strongly inhibit thrombin-induced platelet aggregation [95, 96].  

Similar to PAR-1 antagonists, the peptide trans-cinnamoyl-Tyr-Pro-Gly-Lys-Phe-NH2, 

based on the murine PAR-4 tethered ligand domain, could inhibit PAR-4 AP-induced rat 

platelet aggregation (Table 1.1) [97]. Interestingly, palmitoylated peptides derived from the 

intracellular loop 3 of PAR-1 and PAR-4 both act as antagonists of thrombin in vitro and in 

vivo (Table 1.1) [98, 99]. N-palmitoyl-RCLSSSAVANRS-NH2 (PAR-1 antagonist) and N-

palmitoyl-SGRRYGHALR-NH2 (PAR-4 antagonist) both efficiently inhibit their respective 

receptor-mediated intracellular calcium rise in platelets [98]. Moreover, both antagonists 

could strongly block thrombin-induced human platelet aggregation, which is confirmed in the 

mouse model in vivo [98]. These studies provide new insights for the development of small 

molecule drugs. However, the development of selective and potent PAR antagonists is still a 

difficult task, and no antagonists for PAR-2 and PAR-3 have been discovered so far. 
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Table 1.1. Protease-activated receptors: subtypes, agonists, inactivators, and antagonists 

 PAR-1    PAR-2 PAR-3 PAR-4

Activating   
   Proteases 

Thrombin  
Trypsin  
FVIIa 
FXa 
APC 
Granzyme A 
RgpB 

Trypsin 
Tryptase 
Trypsin IV 
P22 
FVIIa 
FXa 
MT-SP1 
Proteinase-3 
Acrosien 
Der P3 and P9 
RgpB 

Thrombin  Thrombin
Trypsin 
Trypsin IV 
Cathepsin G 
FVIIa 
FXa  
RgpB 
 

Inactivating   
  Proteases 

Cathepsin G 
Plasmin 
Elastase 
Proteinase-3 
Chymase 

Cathepsin G  
Elastase 
Chymase 

Cathepsin G unknown 

Cleavage sites R41↓S42FLLRN (h) 
R41↓S42FFLRN (r, m) 

R36↓S37LIGKV (h) 
R36↓S37LIGRL (r) 
R34↓S35LIGRL (m) 

K38↓T39FRGAP (h) 
K37↓S38FNGGP (m) 

R47↓G48YPGQV (h) 
R58↓G59FPGKP (r) 
R59↓G60YPGKF (m) 

Activating APs SFLLR-NH2
TFLLR-NH2 

a 

TRag b
TFRIFD 

SLIGKV-NH2  
SLIGRL-NH2 

a  

SFLLR-NH2 
Trans-cinnamoyl-LIGRLO-NH2
2-furoyl-LIGRLO-NH2 

c

None 

 
  

GYPGQV-NH2
GFPGKP-NH2  
GYPGKF-NH2
AYPGKF-NH2

 a

Inactivating APs FTLLR-NH2 LSIGRL-NH2 None YAPGKF-NH2

Antagonists 3-mercapto-propionyl-Phe-Cha-Cha-Arg-
Lys-Pro-Asn-Asp-Lys-NH2

Trans-cinnamoyl-parafluoro-Phe-  
   paraguanidino-Phe-Leu-Arg-NH2 
N-palmitoyl-RCLSSSAVANRS-NH2 
RWJ56110 
RWJ58259 
SCH79797 
FR171113 

None None Trans-cinnamoyl-YPGKF-NH2 
N-palmitoyl-SGRRYGHALR- 
   NH2

NOTE: 
a: standard PAR activating peptide.                             c: most potent and selective PAR-2 peptide agonist.   
b: putative and selective PAR-1 peptide agonist.         h, human; r, rat; m, mouse; ↓, cleavage site. 
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1.2.3 Mechanisms of PAR activation 

The mechanism of PAR activation was initially established for PAR-1 [9] and appears 

to be a general paradigm for other PARs. The extracellular N-terminus of human PAR-1 

contains a sequence of charged amino acids (D50KYEPF55) , which resembles a domain of the 

leech anticoagulant hirudin. This negatively charged domain interacts with an anion binding 

site on thrombin, facilitating the putative cleavage site (R41↓S42FLLRN) to insert into the 

thrombin catalytic subsite and finally resulting in receptor hydrolysis. The interaction is very 

critical for efficient cleavage at low concentrations of thrombin. The importance of this 

negative domain is further clarified on PAR-4 which lacks the hirudin-like domain. PAR-4 

requires higher concentrations of thrombin for activation than the other thrombin receptors 

[8]. Thrombin cleaves the peptide bond between receptor residues Arg 41 and Ser 42 in PAR-

1. Cleavage of PAR-1 by thrombin is irreversible, and this cleavage generates a new N-

terminus that functions as a tethered ligand domain (S42FLLRN). The tethered ligand domain 

binds intramolecularly to the second extracellular loop of PAR-1 to initiate transmembrane 

signalling. 

 

1.2.4 PAR-mediated intracellular signal transductions 

Upon receptor cleveage by proteases or AP binding to the receptor, PAR’s 

conformation is significantly changed [100], acting as a switch to relay the signal to 

heterotrimeric G proteins including Gαi, Gαq, Gα12/13 [101-104]. Subsequently, diverse 

signalling pathways are initiated, which result in different biological consequences [20]. The 

mechanisms of PAR-mediated signalling pathways, especially PAR-1 signalling, have been 

elucidated in detail and reviewed (Fig. 1.1 A) [21, 105, 106]. One of the important PAR-1 

signalling pathways is that Gαq binds to activated PAR-1 and thereby activates the 

downstream factor phospholipase C (PLC)-β [103, 104]. PLC-β in turn cleaves phosphatidyl 

inositol 4,5 bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) that triggers 

intracellular calcium release by action on its receptor at the endoplasmic reticulum (ER), and 

diacylglycerol (DAG) that activates protein kinase C (PKC) [107]. Calcium and PKC have 

been shown to mediate PAR-1-dependent cellular effects. Increase in intracellular calcium 

and activation of PKC induced by PAR-1 result in proline-rich tyrosine kinase 

phosphorylation, which causes activation of mitogen-activated protein kinase (MAPK) 

cascade [108]. 

The MAPK pathway has been extensively considered in PAR-1 signalling events. The 

MAPK family consists of three members, the extracellular signal regulated kinase (ERK) 1/2, 
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c-Jun N-terminal kinase (JNK) and p38 MAPK [109]. Upon thrombin or PAR-1 AP 

stimulation, all three members could be activated rapidly [20, 110, 111]. The activated 

ERK1/2 and p38 MAPK subsequently induce cell proliferation and differentiation [111], and 

release of the proinflammtory factor IL-6 that might trigger inflammation responses [112]. It 

was shown that PI3 kinase is required for ERK1/2 activation, indicating that PI3 kinase is an 

upstream factor of ERK1/2 [111]. Interestingly, activation of JNK by PAR-1 leads to the 

secretion of chemokine growth-regulated oncogene/cytokine-induced neutrophil 

chemoattractant-1 (GRO/CINC-1) from astrocytes, which prevents cell death induced by C2-

ceramide [110]. Also in this case, PI3 kinase and PKC as upstream factors play the important 

role in JNK activation [110]. JNK contains three subisoforms JNK1, JNK2 and JNK3 [113]. 

Wang et al. further found that JNK2 and JNK3 both are involved in this PAR-1-dependent 

protective pathway [114]. However, JNK1 activates the downstream transcription factor c-

Jun, which regulates other cellular processes in rat astrocytes [114]. 

It is well known that c-Jun associates with the other Jun members, the basic leucine-

zipper proteins and the Fos proteins, so that the activator protein-1 (AP-1) complex is 

generated, which could bind to its DNA motif (5’-TGAG/CTCA-3’) to regulate gene 

expression [115]. It has been shown that thrombin induces activation of AP-1 in human 

1321N1 astrocytoma cells [116]. PAR-1 agonists could also activate other transcription 

factors such as nuclear factor-κB (NF-κB) and signal transducers and activators of 

transcription 1, which lead to cell growth, apoptosis or inflammation reactions [117-119]. 

PAR-1-mediated signal transductions have been widely investigated, but only relatively 

few studies about signalling pathways mediated by PAR-2 were done (Fig. 1.1 B). 

Nevertheless, it is well established that activation of PAR-2 could increase intracellular 

calcium via PLC-β pathway, similar to PAR-1 [20]. The calcium rise in turn leads to diverse 

cellular effects including neuropeptide release, kinase activation and ion channel activation 

[107, 120]. The MAPK cascade is also associated with PAR-2. Similar to the events in PAR-

1, the MAPK cascade relays PAR-2 signals to cell proliferation [121] or to inflammatory 

responses [122]. Our recent study demonstrates that activation of PAR-2 leads to release of 

GRO/CINC-1 regulated by JNK1, which is obviously different from that in PAR-1 signalling 

events [114]. Similarly, PAR-2-induced GRO/CINC-1 also protects rat astrocytes from C2-

ceramide-mediated cell death [114]. These results indicate that PAR-1 and PAR-2 could be 

selectively activated under different pathological conditions to rescue neural cells from death.  
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Additionally, the effects of PAR-2 agonists on activation of transcription factors have 

been demonstrated. PAR-2 agonists could induce activation of NF-κB [123] and AP-1 [124, 

125] in multiple cell types, which regulate inflammatory responses. 

To date, little is known about the signalling pathway mediated by PAR-3 and PAR-4. 

Murine PAR-3 is a co-factor for PAR-4 and does not respond to thrombin stimulation [11, 

50]. Therefore, it appears possible that there are no signalling pathways mediated by PAR-3 

in rodents.  

Although PAR-4 could be activated by high concentrations of thrombin, PAR-4 has 

distinct downstream signalling kinetics relative to PAR-1. It was shown that PAR-4 AP (200 

µM) induces a prolonged phosphorylation of ERK1/2 with a maximum at 60 min, whereas 

PAR-1 AP (200 µM) causes a transient ERK1/2 signal in vascular smooth muscle cells [52]. 

Similar results were also observed recently in mouse microglia cells showing that activation 

of PAR-4 by PAR-4 AP induces a prolonged ERK1/2 phosphorylation up to 6 h [59]. Also in 

the case of p38 MAPK, p38 MAPK was shown to be slowly activated by PAR-4 AP in mouse 

cardiomyocytes [58]. The mechanism of the unique PAR-4 signalling might be due to the 

slow receptor activation and desensitization kinetics of PAR-4. 
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.1. Schematic representation of PAR-1- and PAR-2-mediated intracellular signalling
ays. Upon receptor cleavage by proteases like thrombin (A) and trypsin (B), PAR’s

ation is significantly changed that facilitates the coupling with heterotrimeric G proteins.
nt G proteins selectively relay PAR signals to their downstream factors, such as PLC-β, MAPK
e, Rho family, and PI3 kinase. Finally, the cellular effects are triggered in response to agonist
tion under certain conditions. These diagrams are from literature [105]. 
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1.2.5 Termination of PAR signalling 

PAR is activated by a unique mechanism, i.e. proteases cleave the receptor at the special 

domain. Although proteolysis is important for receptor activation, some proteases can also 

inactivate PARs (Table 1.1). It was reported that cathepsin G, in addition to the Arg41↓Ser42 

activation site, mainly cleaves human PAR-1 at Phe43↓Leu44 and Phe55↓Trp56 sites, which 

removes the tethered ligand domain and disables the receptor [126]. Also in the case of 

neutrophil-derived proteases elastase and proteinase-3, both of them can cleave human PAR-1 

at the Val72↓Ser73 site to inactivate PAR-1 [127]. Similarly, tryptase cleaves human PAR-2 at 

the Lys41↓Val42 site, which inactivates PAR-2 [128]. Therefore, these proteases could remove 

the tethered ligand domain from the cleaved receptors to terminate the signalling. 

The classic GPCR, for example the β2-adrenergic receptor (β2-AR), is rapidly 

desensitized after ligand binding and activation [129, 130]. Likely, signalling by PAR is also 

rapidly terminated after proteolytic cleavage activation [131], although the tethered ligand 

domain does not diffuse away. Receptor desensitization is another physiological mechanism 

to attenuate the signalling by PAR. The rapid desensitization of PAR is regulated by either G 

protein-coupled receptor kinases (GRKs) or PKC [38, 132]. The C-tails of PAR-1 and PAR-2 

contain multiple potential phosphorylation sites, and the phosphorylation in the C-tail of 

receptors enhances binding to β-arrestin, leading to dissociation of G proteins from receptors, 

and finally downregulating PAR singalling. PAR-1 is rapidly phosphorylated after thrombin 

stimulation, and overexpression of GRK3 inhibits intracellular calcium signals induced by 

PAR-1 [38]. A mutant PAR-1 that lacks all potential phosphorylation sites at the C-tail is 

resistant to inhibition by GRK3 [38]. In addition, the second messenger kinase PKC could 

also phosphorylate PAR-1, which might contribute to receptor desensitization [133]. Similar 

results were also observed with PAR-2. PKC, but not another second messenger kinase, 

protein kinase A (PKA), mediates desensitization of PAR-2 by receptor phosphorylation, 

which could be blocked by the PKC inhibitor GF109203X in transfected KNRK cells and 

hBRIE380 cells [132]. Human PAR-2 contains several PKC consensus sites at intracellular 

loop 3 and C-tail, as well as one GRK consensus site at intracellular loop 3, suggesting that 

the intracellular loop 3, besides C-tail, also plays a critical role in receptor desensitization. 

Interestingly, PAR-4 appears not to be phosphorylated upon thrombin stimulation, and its 

signalling is shut off less rapidly than PAR-1. Moreover, mutation of all potential 

phosphorylation sites at the C-tail of PAR-4 does not affect agonist-triggered signalling [134]. 

PAR-3 has a short C-tail and less phosphorylation sites, and the mechanisms responsible for 

termination of PAR-3 signalling have not been determined yet. 
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Distinct from other classic GPCRs, PAR after receptor activation is internalized, and 

predominantly sorted into lysosomes for degradation [135]. This is another mechanism for 

permanent termination of PAR signalling. It has been shown that PAR-1 is targeted to 

lysosomes at 30 min after activation [136, 137]. We found that PAR-2 is colocalized with the 

lysosomal marker LAMP-1 at 15 min after trypsin stimulation in transfected HEK293 cells. 

These results suggest that PAR-1 and PAR-2 are rapidly inactivated due to protein 

degradation in lysosomes. Again, no evidence so far has shown the association of PAR-3 or 

PAR-4 with lysosomes. 

 

1.2.6 PAR trafficking 

Once activated by the receptor ligand, the GPCR is rapidly internalized into intracellular 

compartments. This represents the important physiological mechanisms that protect against 

receptor overstimulation [130], and mediate sustained signalling as well [138]. The processes 

of PAR trafficking, especially for PAR-1 and PAR-2, have been extensively investigated. 

Similar to other classic GPCRs, PAR-1 and PAR-2, after activation, are rapidly recruited to 

clathrin-coated pits [136, 139]. The C-tails of PAR-1 and PAR-2 are mainly responsible for 

this process [39, 138]. It was shown that β-arrestin as an adaptor protein binds to the C-tail of 

activated PAR-2, and mediates the internalized receptor into clathrin-coated pits [138, 139]. 

In contrast, β-arrestin is not required for PAR-1 internalization, since agonist-triggered PAR-

1 internalization occurs normally in β-arrestin-deficient MEF cells [140]. Recently, it was 

reported that the tyrosine-based motif (YXXL) that locates at the C-tail of PAR-1 mediates 

internalization of the activated PAR-1 [39]. The tyrosine-based motif could recognize the µ2 

subunit of AP-2 adaptor complex [130], and thereby might mediate translocation of the 

activated PAR-1 into clathrin-coated pits. 

It has been shown that GTPase plays the important role in PAR trafficking. Dynamin is 

one of such GTPases, and mediates detachment of clathrin-coated pits from the plasma 

membrane. The detached complex is further translocated into early endosomes [141, 142]. It 

has been known that another GTPase rab5a mediates trafficking of internalized PAR-2 into 

early endosomes [143]. Rab5a locates at early endosomes, as well as in the cytosol in 

unstimulated cells. After 15 min stimulation with trypsin, PAR-2 colocalizes with rab5a in 

early endosomes. Moreover, overexpression of dominant negative mutants of rab5a (rab5a 

S34N) impedes internalization of PAR-2 [143].  

It is well known that the classic GPCRs, such as the β2-AR, dissociate from their 

ligands and are dephosphorylated within endosomes, then recycle back to the cell surface for 
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signalling again. Totally distinct from the classic GPCR, PAR is a “one-way” receptor. The 

activated PAR is predominantly sorted to lysosomes for degradation after internalization 

[137]. The chimeric PAR-1 where its intracellular C-tail is exchanged by the C-tail of 

substance P receptor recycles back to the cell surface after activation and internalization, 

behaves like the wild-type substance P receptor. In contrast, the chimeric substance P receptor 

bearing the C-tail of PAR-1 is sorted to lysosomes and fails to recycle after stimulation with 

substance P [144]. Therefore, the C-tail of PAR-1 controls the receptor’s fate, degradation in 

lysosomes, but not recycling after receptor activation and internalization. Some studies have 

shown that tyrosine- and di-leucine-based motifs and protein ubiquitination are implicated in 

sorting of membrane receptors to lysosomes [145-147]. However, there is no evidence that 

they are involved in this process in the PAR-1 case so far. Strikingly, it was shown that the 

membrane-associated protein sorting nexin 1 interacts with PAR-1 and mediates passage of  

internalized receptors to lysosomes for degradation [148]. Sorting nexin 1 and its homologous 

proteins are associated with diverse membrane receptors and might be involved in their 

intracellular traffickings [149]. 

Interestingly, a recent report demonstrates that PAR-2 ubiquitination by ubiquitin E3 

ligase c-Cbl mediates receptor sorting to lysosomes [150]. Mutant PAR-2 lacking all 

intracellular lysine residues (PAR-2∆14K/R) that cannot be ubiquitinated is normally 

internalized after activation, but remains in early endosomes and fails to be sorted into 

lysosomes. On the other side, activation of PAR-2 induces c-Cbl phosphorylation and 

promotes receptor ubiquitination. The dominant negative c-Cbl construct inhibits 

ubiquitination of PAR-2 and induces retention of internalized receptors in early endosomes. 

Although most of the internalized PARs are degraded in lysosomes, PAR still 

resensitizes to thrombin, trypsin and other proteases within 30-90 min after receptor 

endocytosis. Receptor resensitization protects cells against prolonged desensitization. PAR 

resensitization is regulated by the large intracellular PAR stores and newly synthesized 

proteins [132, 137], although it was found that a few cleaved PARs recycle back to cell 

surface [151]. The intracellular PAR pools locate in the Golgi apparatus in most cells. In 

endothelial cells and fibroblasts which have large intracellular PAR-1 stores, the receptor 

resensitization is rapid and initially independent of new receptor synthesis [137, 152]. In 

contrast, the recovery of PAR-1 is quite a slow process that depends on the synthesis of new 

receptor in megakaryoblastic HEL and CHRF-288 cells [151]. Recently, it was shown that the 

GTPase rab11a as a signal molecule partially mediates resensitization of PAR-2 [143]. 

Rab11a locates at the Golgi apparatus in KNRK-PAR-2 cells, and translocates to prominent 
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perinuclear vesicles upon trypsin exposure for 15 min. After 60 min of recovery, rab11a is 

detected in vesicles containing PAR-2 beneath the plasma membrane. Moreover, the 

dominant negative construct rab11aS25N causes retention of PAR-2 in the Golgi apparatus 

after trypsin stimulation in KNRK-PAR-2 cells. However, rab11aS25N does not completely 

prevent resensitization of PAR-2. Therefore, other adaptor proteins might mediate 

resensitization of PAR-2. 

 

1.2.7 Post-translational modification of PAR 

1.2.7.1 Glycosylation 

Most GPCRs are glycoproteins in eukaryote cells. Glycosylation plays an important role 

in receptor functions such as protein folding, ligand binding, receptor trafficking and signal 

transduction [153-156]. Protein glycosylation is divided into two classes, N-linked 

glycosylation and O-linked glycosylation, based on the binding site of oligosaccharide. N-

linked glycosylation is most common, and generated co-translationally by the addition of a 

Glc3Man9GlcNAc2 precursor from a dolichol carrier onto the nitrogen in the asparagine side 

chain of the sequon (Asn-X-Ser/Thr, where X is any amino acid except proline) [157]. Each 

of the four PAR members possesses this putative N-linked glycosylation sequon within their 

extracellular domains (Table 1.2). It has been shown that N-linked glycosylation is important 

for human PAR-2 expression in HEK293 cells and in the fibroblast cell line Pro5-PAR-2. The 

glycosylation-deficient mutants of PAR-2 result in a loss of receptor expression by 50% [46]. 

Moreover, the treatment with tunicamycin that could inhibit the cellular N-linked 

glycosylation process also dramatically reduces cell surface PAR-2 expression in HEK293 

cells [158]. Importantly, it was shown that human PAR-2 glycosylated at the extracellular N-

terminus is resistant to tryptase stimulation [158]. PAR-1 possesses five potential N-linked 

glycosylation sites, and some reports demonstrate that PAR-1 is also N-glycosylated [159], 

which is confirmed by peptide N-glycosidase F (PNGase F) treatment [159]. However, little is 

known about the effect of glycosylation on PAR-1 functions. To date, no data on the 

glycosylation of either PAR-3 or PAR-4 were shown, although they possess potential N-

linked glycosylation sequons. 

Meanwhile, oligosaccharides can also be linked through the oxygen of serine or 

threonine by post-translational sequential enzymatic additions of monosaccharides directly to 

a protein, normally beginning with N-acetyl-galactosamine [157]. This process is so-called O-

linked glycosylation. The deglycosylated PAR-1 treated with PNGase F migrates at 36-43 

kDa shown by western blot analysis [159]. Similar results were also observed with PAR-2 
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[125]. These results imply that both PAR-1 and PAR-2 might possess O-linked glycosylation. 

However, it is not clear whether O-linked glycosylation exerts effects on PAR biological 

functions. 

 

 

Table 1.2. Putative N-linked glycosylation sequons within human PARs. 

 PAR-1 PAR-2 PAR-3 PAR-4 

N-terminus 
N35A36T37

N62E63S64

N75K76S77

N30R31S32 N25D26T27 

N82A83T84 N56D57S58

EL1 - - - - 

EL2 
N252I253T254

N262E263T264
N222I223T224 - - 

EL3 - - N331N332T333 - 

 

 

 

1.2.7.2 Palmitoylation 

Protein palmitoylation, also called S-acylation, is a reversible post-translational lipid 

modification, which occurs through covalent linkage of palmitic acid via a labile thioester 

bond to cysteine residues by palmitoyltransferase or acyltransferase [160]. Palmitoylation has 

been shown to regulate GPCR functions such as receptor activity, desensitization and 

internalization [129]. Blockade of palmitoylation of β2-AR results in an increase of basal 

receptor phosphorylation and rapid desensitization in response to agonist stimulation [161]. 

This is due to the fact that receptor palmitoylation masks the neighboring PKA site [162]. It 

was also reported that palmitoylation regulates serotonin 4A receptor activity [163], and 

controls Gαi protein coupling to serotonin 1A receptor as well [164]. All PAR members 

except PAR-3 and human PAR-4 possess one or two putative cysteine palmitoylation site(s) 

at the C-tail, which results in a fourth intracellular loop [37, 40]. A recent study demonstrates 

that mutation of palmitoylation sites of PAR-1 causes 4-9 fold increases in the EC50 for 

thrombin and SFLLRN, but does not affect PAR-1 expression and functions [40].  
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1.3 Scope and aims of project 

1.3.1 Background 

Protein-protein interactions play a crucial role in controlling and regulating diverse 

cellular processes. Kinases, phosphatases and transferases bind to their protein substrates to 

exert the enzymatic function. Protein scaffolds and adaptors interact with kinases, or with 

activated membrane receptors to transmit signals or to facilitate signal transduction. It is also 

clear that heterotrimeric G proteins, through their α and βγ subunits, couple to activated 

GPCRs and thereby relay extracellular signals to second messengers, such as cyclic AMP, 

DAG, IP3, and calcium. These general interactions are also observed with PARs. It has been 

shown that activated PARs are coupled to Gαi, Gαq, or Gα12/13, which trigger diverse 

intracellular processes [101-104]. Besides the association with G proteins, PARs also interact 

with other proteins. Several protein kinases such as GRKs and PKC, through interaction with 

membrane-bound Gβγ subunits and phosphatidylinositol bisphosphate, target to the consensus 

sequence at intracellular domains of the receptor, and thereby phosphorylate them [38, 132]. 

The adaptor protein, β-arrestin, binds to phosphorylated PAR-1 and PAR-2, and regulates 

receptor desensitization and/or internalization [138-140]. Only for PAR-1, two proteins were 

identified as interacting protein partners (i.e. creatine kinase and Hsp90) [165, 166]. Both 

proteins specifically bind to PAR-1 C-tail and relay PAR-1 signalling to RhoA, which 

eventually regulates cell morphological changes. This study provides a clue that multiple 

proteins might directly interact with PARs and control receptor functions. 

PAR is activated by the tethered ligand domain at the extracellular N-terminus of the 

receptor [9]. Following tethered ligand binding, the transmembrane domains of the PAR 

undergo conformational changes that result in signals transmitted to intracellular domains 

[100]. The C-tail is the largest intracellular domain of the PAR. It is accepted that the 

intracellular C-tail of the PAR is a critical domain that regulates receptor functions [39, 40]. 

Therefore, the C-tail is considerated as the predominant target of PAR-interacting proteins. 

However, recent evidence shows that besides the C-tail, the intracellular loops of the PAR are 

also important for PAR functions [150]. 

 

1.3.2 Specific aims 

Although PAR-2 has been shown to be significantly involved in proliferation, pain, and 

inflammatory reactions, its intracellular signalling mechanisms are not completely clear. It is 

also largely unknown what the role of PAR-2 in the central nervous system (CNS) might be. 

To improve understanding of PAR-2 functions in the CNS, the plan of the current project was 
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to perform yeast two-hybrid screening to identify PAR-2-interacting proteins. Then it should 

be investigated by which mechanisms the interacting proteins regulate PAR-2 functions. 

 

1.3.3 Strategy 

To find out protein partners that interact not only with the PAR-2 C-tail, but also with 

intracellular loops and other domains of PAR-2, here the full-length human PAR-2 was used 

as bait to fish PAR-2-interacting partners from the human brain cDNA library by the 

MATCHMAKER GAL4 yeast two-hybrid system.  

Further, the candidate interacting protein found in the yeast two-hybrid system should 

be confirmed to interact with PAR-2 in vitro by the GST pull-down assay. Then the domain 

that is responsible for protein interaction should be also analyzed in the GST pull-down assay.  

The final two aims were, firstly, to study whether there is a real physiological 

interaction in the native system. The interaction of PAR-2 with candidate partners should be 

tested within mammalian cells under physiological conditions by both immunoprecipitation 

(IP) and immunostaining. Secondly, and most importantly, the physiological function of the 

interaction of these proteins with PAR-2 also had to be addressed in the present project. 
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2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals and reagents 

Z-Phe-Ala-diazomethylketone (ZPAD) and PAR-2 AP (SLIGKV-NH2) from Bachem.  

Linearized BaculoGold virus DNA from BD Bioscience Pharmingen.  

HEPES and Tris base from Biomol.  

Bio-Rad protein assay dye reagent concentrate from Bio-Rad.  

Brefeldin A, cycloheximide and phenylarsine oxide (PAO) from Calbiochem.  

Herring testis Carrier DNA from Clontech.  

Ammonium peroxodisulfate, sodium azide and paraformaldehyde (PFA) from Fluka.  

Protein A Sepharose CL-4B and glutathione-Sepharose 4B from GE Healthcare.  

Magnet assisted transfection from IBA GmbH.  

Lipofectin from Invitrogen.  

Fura-2 AM from Molecular Probes.  

TRag (Thrombin receptor agonist peptide) from NeoMPS SA.  

DOTAP, protease inhibitor cocktail tablets, trypsin and ponceau S solution (0.2% in 3% 

       acetic acid) from Roche Diagnostics.  

Acrylamide (2 ×), N, N’-Methylenbisacrylamide (2 ×), Triton X-100 and Brij 58 from  

       SERVA.  

Bromphenol blue, Dimethyl sulfoxide (DMSO), glass beads (425-600 µm, acid- 

       washed), Igepal CA630, β-mercaptoethanol, PAP pen for immunostaining, protein  

       G-Agarose, poly-L-lysine, TEMED, Tween 20, and X-gal from Sigma.  

All other chemical reagents from Carl Roth. 

     
2.1.2 Antibodies 

2.1.2.1 Primary antibodies 

mouse monoclonal anti-EEA1 (BD Transduction Laboratories) 

mouse monoclonal anti-LAMP1 (BD Transduction Laboratories) 

mouse monoclonal anti-GM130 (BD Transduction Laboratories) 

rabbit anti-phospho-c-Jun antibody (Cell signaling technology) 

rabbit anti-c-Jun antibody (Cell signaling technology) 

mouse monoclonal anti-HA (6E2) antibody (Cell signaling technology) 

rabbit polyclonal anti-GFP antibody (Cell signaling technology)  

mouse monoclonal anti-myc antibody (Invitrogen) 

goat polyclonal anti-PAR-2 (C-17) antibody (Santa Cruz Biotechnology) 
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mouse monoclonal anti-Jab1 (B-7) antibody (Santa Cruz Biotechnology) 

rabbit polyclonal anti-GST antibody (Santa Cruz Biotechnology) 

            anti-rabbit normal IgG (Santa Cruz Biotechnology) 

rabbit polyclonal anti-HA antibody (Sigma) 

mouse monoclonal anti-β-tubulin I antibody (Sigma) 

rabbit polyclonal anti-p24A serum, a gift from Prof. I. Schulz, Institute of Physiology  

                  II, University of Saarland, and Dr. R. Blum, Institute of Physiology, University of   

                  Munich. 

 

2.1.2.2 Secondary antibodies 

goat anti-mouse-HRP IgG (Dianova, Hamburg, Germany) 

goat anti-rabbit-HRP IgG (Dianova, Hamburg, Germany) 

mouse anti-goat-HRP IgG (Dianova, Hamburg, Germany)     

Alexa Fluor 488 goat anti-mouse IgG (Molecular Probes) 

Alexa Fluor 568 goat anti-rabbit IgG (Molecular Probes) 

Alexa Fluor 633 goat anti-mouse IgG (Molecular Probes) 

 

2.1.3 Cells, medium and related reagents 

2.1.3.1 Mammalian cells 

HEK293 cells 

DMEM/Ham’s F-12 (1:1) supplemented with heat-inactivated 10% fetal calf  

serum (FCS), 100 U/ml penicillin, 100 µg/ml streptomycin (Biochrom, Berlin,  

Germany) 

   Normal primary human astrocytes (Cambrex Bio Science Verviers SPRL, Belgium) 

AGMTM astrocytes medium (Cambrex Bio Science Verviers SPRL, Belgium) 

   Rat primary astrocytes (kindly provided by Yingfei Wang) 

DMEM supplemented with heat-inactivated 10% fetal calf serum (FCS), 100  

            U/ml penicillin, 100 µg/ml streptomycin (Biochrom, Berlin, Germany) 

   Hank’s solution (w/o Ca2+ and Mg2+) and Accutase were from PAA. G418 sulphate 

was from Calbiochem. Puromycin was from Sigma.  

 

2.1.3.2 Insect cells 

Spodoptera frugiperda (Sf9) cells 

          IPL-41 insect medium with L-amino acids (Gibco), supplemented with 10% heat- 
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          inactivated FCS (Biochrom), 2% (v/v) yeast extract (Sigma), 1% (v/v) lipid  

          medium supplements (Sigma), 100 µg/ml gentamycin sulfate (Cell Concepts),  

          and 2.5 µg/ml amphotericine B (Cell Concepts). 

 

2.1.3.3 Bacterial cells 

XL 1-Blue cells and DH5a cells 

   LB medium 

         10 g/l Bacto-tryptone (BD Bioscience), 5 g/l Bacto-yeast extract (BD Bioscience),  

         10 g/l NaCl, pH 7.0 

   LB agar plates 

         LB medium, 18 g/l Bacto-agar (BD Bioscience), appropriate antibiotics (100  

         µg/ml ampicillin or 50 µg/ml kanamycin) 

   Hanahan’s SOC medium 

         2% Bacto-tryptone (BD Bioscience), 0.5% Bacto-yeast extract (BD Bioscience),  

        10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose, pH  

        7.0 

 

2.1.3.4 Yeast cells 

AH109 cells and Y187 cells (Clontech) 

   YPDA medium 

         20 g/l Difco peptone (BD Bioscience), 10 g/l Bacto-yeast extract (BD Bioscience),  

0.003% adenine hemisulfate (Sigma), 2% glucose, 20 g/l Bacto-agar (for plates  

         only) (BD Bioscience), pH 5.8 

   SD medium 

         6.7 g/l yeast nitrogen base without amino acids (BD Bioscience), appropriate  

         Dropout powder (Clontech), 2% glucose, 20 g/l Bacto-agar (for plates only) (BD  

         Bioscience), pH 5.8 

 

2.1.4 Vectors 

pGBKT7 from Clontech 

pEGFP-N1 from Clontech 

pcDNA3.1-Myc-His (B) from Invitrogen 

pVL1392 from Invitrogen 

pDrive from Qiagen 
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pEAK10, a gift from Dr. T. Koch, Institut für Pharmakologie und Toxikologie, Otto-  

         von-Guericke-Universität Magdeburg 

pBL CAT2 and AP-1-driven pBL CAT2, gifts from Dr. J. Kraus, Institut für  

                   Pharmakologie und Toxikologie, Otto-von-Guericke-Universität Magdeburg 

            pEGFP-hP2Y1, a gift from Denise Ecke. 

    

2.1.5 Small interfering RNAs (siRNAs) 

            Human Jab1 siRNA from Santa Cruz Biotechnology. 

            Non-silencing siRNA labeled with Alexa Fluor 488 from Qiagen. 

 

2.1.6 Enzymes 

All restriction enzymes from MBI Fermentas. 

T4 DNA ligase from Invitrogen. 

RNase A from Carl Roth. 

N-glycosidase F from New England Biolabs. 

 

2.1.7 Markers 

Precision Plus Protein All Blue Standard from Bio-Rad. 

SeeBlue® Plus2 Pre-Stained Standard from Invitrogen. 

GeneRuler™ 1 kb and 100 bp DNA ladders from MBI Fermentas. 

 

2.1.8 Buffers 

10 × TE buffer  

100 mM Tris/HCl, pH 7.5, 10 mM EDTA 

10 × LiAc 

1 M Lithium acetate, pH 7.5 with acetic acid 

PEG/LiAc solution 

40% PEG 4000, 1 × TE buffer, 1 × LiAc 

Z buffer 

16.1 g/l Na2HPO4·7H2O, 5.5 g/l NaH2PO4·H2O, 0.75 g/l KCl, 0.246 g/l  

MgSO4·7H2O, pH 7.0. 

X-gal stock solution 

20 mg/ml X-gal in dimethylformamide. 

Z buffer/X-gal solution  
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100 ml Z-buffer with 0.27 ml β-mercaptoethanol and 1.67 ml X-gal stock  

solution 

PBS 

137 mM NaCl, 2.6 mM KCl, 8.1 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.4 

Yeast lysis buffer 

10 mM Tris/HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 2% Triton X-100, 1%  

(w/v) SDS 

HEK293 cell lysis buffer 

50 mM Tris/HCl, pH 7.5, 1 mM β-mercaptoethanol, 150 mM NaCl, 1% Igepal,  

and Protease Inhibitor Cocktail (one tablet per 50 ml) 

Modified RIPA buffer 

50 mM Tris/HCl, pH 7.4, 1% Igepal, 0.25% Na-deoxycholate, 150 mM NaCl, 1  

mM EDTA, 1 mM Na3VO4, 1 mM NaF and Protease Inhibitor Cocktail 

Sf9 lysis buffer 

50 mM Tris/HCl, pH 7.5, 150 mM NaCl, 10 mM NaF, 1% Triton X-100, and  

Protease Inhibitor Cocktail 

Sf9 membrane fraction buffer 1 

50 mM HEPES, pH 8.0, 300 mM NaCl, 0.1 mM EDTA, 10 mM β- 

mercaptoethanol, and Protease Inhibitor Cocktail  

Sf9 membrane fraction buffer 2 

50 mM HEPES, pH 8.0, 300 mM NaCl, 10 mM β-mercaptoethanol, 1% Brij 58,  

and Protease Inhibitor Cocktail 

HBS buffer 

20 mM HEPES, pH 7.4, 150 mM NaCl 

4 × Laemmli buffer 

500 mM Tris/HCl, pH6.8, 8% SDS, 40% glycerol, 0.01% bromphenol blue, 20%  

β-mecaptoethanol (fresh) 

60% Acrylamide/Bis 

58.4% Acrylamide (2 ×), 1.6% N,N’-Methylen-bisacrylamide (2 ×) 

Resolving buffer 

750 mM Tris/HCl, pH 8.8 

Stacking buffer 

250 mM Tris/HCl, pH 6.8 

TBST 
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20 mM Tris/HCl, pH 7.6, 137 mM NaCl, 0.1% Tween 20 

Membrane Stripping buffer 

62.5 mM Tris/HCl, pH 6.8, 100 mM β-mercaptoethanol, 2% SDS 

Coomassie brilliant blue solution 

0.25% Coomassie brilliant blue R 250, 45% methanol, 10% acetic acid 

Destaining solution 

30% methanol, 10% acetic acid 

Coomassie gel fixing solution 

20% ethanol, 10% glycerol 

4% PFA 

4% PFA, 120 mM Na2HPO4, pH 7.4, 4% saccharose 

Mounting buffer 

PBS, 10% glycerol, 0.1% sodium azide 

TCM buffer 

10 mM Tris/HCl, pH 7.5, 10 mM CaCl2, 10 mM MgCl2

0.5 × TBE buffer 

44.5 mM Tris, 44.5 mM Boric acid, 1 mM Na2EDTA, pH 8.0 

1 × TAE buffer 

40 mM Tris, 20 mM acetic acid, 1 mM Na2EDTA 

NaHBS buffer 

145 mM NaCl, 5.4 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 25 mM glucose, 20  

mM HEPES, pH 7.4 adjusted with Tris (hydroxymethyl) aminomethane. 

 

2.1.9 Kits 

BigDye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems) 

Supersignal West Pico Chemiluminescent Substrate (Pierce) 

HiSpeed Plasmid Midi kit (Qiagen) 

HotStarTaqTM Master Mix kit (Qiagen) 

MinElute Gel Extraction kit (Qiagen) 

MinElute PCR Purification kit (Qiagen) 

QIAquick PCR Purification kit (Qiagen) 

OmniscriptTM Reverse Transcription kit (Qiagen) 

RNeasy Mini kit (Qiagen) 

CAT ELISA (Roche Diagnostics) 
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2.1.10 Instruments 

ABI PRISMTMTM 310 Genetic Analyzer from Applied Biosystems (CA, USA).  

Ultrasonic homogenizer from Bandelin electronic (Berlin, Germany).  

T3 Thermocycler from Biometra (Göttingen, Germany).  

Electrophoresis power supply, Semi-dry Transfer Cell, GS-800 Calibrated  

Densitometer, Gel document system and Gene pulser II from Bio-Rad (Munich,  

Germany).  

LSM510 laser scanning confocal microscope from Carl Zeiss (Jena, Germany).  

Thermomixer comfort from Eppendof (Hamburg, Germany).  

Mighty Small II and UV/visible Spectrophotometer from GE Healthcare (Munich,  

        Germany).  

Biofuge pico and 13 R centrifuges, Megafuge 1.0 R centrifuge, Sorvall® RC-5B  

Refrigerated Superspeed Centrifuge, Sorvall® discoveryTM 90 ultraspeed  

centrifuge, Heraeus cell culture incubator, and Heraeus refrigerate (-80oC) from  

Kendro (Hanau, Germany).  

HT waterbath shaker from Infors AG (Germany).  

Tecnoflow bench from Integra Biosciences (Fernwald, Germany).  

Rotator from Labinco BA (The Netherlands).  

Waterbath from Bachofer (Reutlingen, Germany).  

Refrigerates (4oC and –20oC) from Liebherr (Hamburg, Germany).  

Millipore purification system and ultra-pure water system from Millipore  

        (Schwalbach, Germany).  

Microplate reader from Molecular Devices (CA, USA).  

Innova 4230 refrigerated incubator shaker from New Brunswick Scientific (NJ, USA).  

Balance (analytical and preparative) from Sartorius (Göttingen, Germany).  

Ca2+ imaging system from TILL Photonics GmbH (Gräfelfing, Germany).  

Sf9 cell culture incubator from WTC binder (Tuttlingen, Germany).  

PH Meter (pH526) from WTW (Weilheim, Germany). 
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2.2 Methods 

2.2.1 RT-PCR 

Total RNA was extracted from cultured cells using RNeasy Mini kit (Qiagen). One 

microgram of RNA was reverse-transcribed using Omniscript™ Reverse Transcription kit 

(Qiagen), and the resulting cDNA was amplified in the presence of indicated primers (Table 

2.1) for 30-35 cycles by PCR using HotStarTaq™ Master Mix kit (Qiagen) for 15 min at 

95ºC, followed by repeat cycles of 30 s at 94ºC, 90 s at 51-60ºC, 30-90 s at 72ºC, then a final 

10 min extension at 72ºC. The reaction products were analyzed by electrophoresis with 1-2% 

agarose gel containing ethidium bromide, and visualized by Bio-Rad gel document system 

(Bio-Rad). 

 

2.2.2 Plasmid constructs 

For yeast two-hybrid screening, the full-length human PAR-2 cDNA was amplified by 

RT-PCR using hsPAR2Y1F and hsPAR2YR primers (Table 2.1) (GenBankTM accession 

number: AY336105), and cloned into the GAL4 DNA-binding domain vector pGBKT7 

(Clontech) at EcoR I/BamH I sites, generating the bait plasmid, pGBKT7-hsPAR-2.  

For GST pull-down assays, the GST cDNA was amplified by PCR using GSTFW and 

GSTRV primers (Table 2.1) and cloned into pDrive cloning vector (Qiagen). The linker 

sequence (Table 2.1) was hybridized and inserted at the N-terminus of GST. The resulting 

GST cDNA containing the linker sequence was subcloned into pVL1392 vector at the BamH 

I site (Invitrogen), generating the C-terminal GST baculoviral expression vector, pVL1392-

GST. The cDNA fragments corresponding to the different regions of human PAR-2 (Fig. 

3.2.2) were amplified by PCR and subcloned into pVL1392-GST at EcoR I/BamH I sites.  

The cDNA fragments of human Jab1, p24A and p23 containing a consensus Kozak 

sequence upstream of the initiator ATG all were amplified by RT-PCR and cloned into 

pcDNA3.1mycHis vector (Invitrogen), respectively. The cDNA fragments corresponding to 

the different regions of human p24A (Fig. 3.4.3 A) were amplified by PCR and subcloned 

into pEGFP-N1 at Hind III/Sac II sites. 

For co-IP, PCR products of the full-length and truncated human PAR-2 with a 

consensus Kozak sequence upstream of the initiator ATG and the haemagglutinin epitope 

(YPYDVPDYA, HA) at the C-terminus both were cloned into pEAK10 vector at Hind 

III/Xba I sites.  
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The cDNA fragment of human PAR-1 containing a consensus Kozak sequence upstream 

of the initiator ATG all was amplified by RT-PCR and cloned into pEAK10-HA vector at 

Hind III/EcoR I sites. 

All of the DNA sequences of plasmid constructs were confirmed to be in-frame by ABI 

310 sequencer. 

 

2.2.3 Yeast two-hybrid screening 

2.2.3.1 Small-scale LiAc yeast transformation 

The yeast AH109 cells were transformed using LiAc-mediated methods, according to 

Clontech yeast protocols handbook. Briefly, one day before transformation, the fresh AH109 

yeast was shaken overnight in the YPDA medium at 30oC. On the following day, the 

overnight culture was further shaken for 3 h in the fresh YPDA medium at 30oC, washed, and 

suspended in 1.5 ml freshly prepared 1 × TE/1 × LiAc buffer on ice. These fresh competent 

cells were used for transformation. The bait plasmid pGBKT7-hsPAR-2 (0.1 µg) together 

with 0.1 mg of herring testes carrier DNA were incubated for 30 min with AH109 competent 

cells in the presence of PEG/LiAc solution. After adding DMSO, the mixture was heat-

shocked for 15 min at 42oC, and separately spread on 100-mm SD/-Trp, SD/-Trp-His and 

SD/-Trp-Leu-His-Ade media, followed by incubation at 30oC until colonies appear. 

 

2.2.3.2 Yeast mating 

The transformed AH109 with pGBKT7-hsPAR-2 was incubated overnight with shaking 

in the SD/-Trp medium at 30oC, and resuspended in 5 ml 2 × YPDA medium. The 

concentrated overnight culture of bait strain was combined with commercial pretransformed 

Y187 cells with human brain MATCHMAKER cDNA library for further gently shaking 

overnight at 30oC. The entire mating mixture was spread on 150-mm SD/-Trp-Leu-His media, 

also on 100-mm SD/-Trp, SD/-Leu and SD/-Trp-Leu media for mating efficiency controls. 

After 6-day incubation at 30oC, Trp+Leu+His+ colonies were spread on 150-mm SD/-Trp-Leu-

His media again for further selection. Afterwards, the true Trp+Leu+His+ colonies were spread 

on 150-mm SD/-Trp-Leu-His-Ade media, and incubated for 4 days at 30oC. 

 

2.2.3.3 β-galactosidase assay (LacZ colony-lift filter assay) 

The fresh colonies grown on SD/-Trp-Leu-His-Ade media were transferred to a sterile 

clean filter, and permeabilized by liquid nitrogen. The filter sticked with permeabilized 

colonies was placed on another filter presoaked with Z buffer/X-gal solution, and incubated at 
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Table 2.1. Oligonuleotides for cloning, PCR and sequencing. 

cDNA Primer name Primer sequence* Tm Application 

hsPAR-2 hsPAR2Y1F 
hsPAR2YR 

5’ CCGGAATTCAGGATGCGGAGCCCCAGCGCG 3’ 
5’ CGCGGATCCTCAATAGGAGGTCTTAAC 3’ 58 oC  cloning

GST GSTFW 
GSTRV 

5’ GATCTGATATCATGTCCCCTATACTAG 3’ 
5’ GAAGATCTTCAATCCGATTTTGGAGGATGGTCGCC 3’ 60 oC  cloning

GST linker 

GSTlinkerFW 
 
GSTlinkerRV 

5’ GATCCATCGAGGGCCGCGGCGGTGGCGGTTCCGGAGGTGGCGGT 
TCCGGCGGTGGCGGTTCCGGCGGTGGCGGTTCC 3’ 
5’ GGAACCGCCACCGCCGGAACCGCCACCGCCGGAACCGCCACCTC 
CGGAACCGCCACCGCCGCGGCCCTCGATG 3’ 

---  cloning

hsPAR-2 pVLPAR2fw 
pVLPAR2rev 

5’ CCGGAATTCGCCACCATGCGGAGCCCCAGCGCG 3’ 
5’ CGCGGATCCATAGGAGGTCTTAAC 3’ 58 oC  cloning

hsPAR-2∆(246-397) pVLPAR2fw 
pVLPAR2NTrev 

5’ CCGGAATTCGCCACCATGCGGAGCCCCAGCGCG 3’ 
5’ CGCGGATCCAGAGAGGAAGTAATTGAAC 3’ 58 oC  cloning

hsPAR-2∆(1-213) pVLPAR2CTfw 
pVLPAR2rev 

5’ CCGGAATTCGCCACCATGGTGAAGCAGACCATC 3’ 
5’ CGCGGATCCATAGGAGGTCTTAAC 3’ 58 oC  cloning

hsPAR-2IL1 pVLPAR2fw 
pVLPAR2IL1rev 

5’ CCGGAATTCGCCACCATGCGGAGCCCCAGCGCG 3’ 
5’ CGCGGATCCAGGGTGCTTCTTCTTAGTTCG 3’ 58 oC  cloning

hsPAR-2IL2 pVLPAR2IL2fw 
pVLPAR2IL2rev 

5’ CCGGAATTCGCCACCATGGCTCTTTGTAATGTG 3’ 
5’ CGCGGATCCCTGCTTCACGACATACAAAGG 3’ 58 oC  cloning

hsPAR-2IL3 pVLPAR2IL3fw 
pVLPAR2IL3rev 

5’ CCGGAATTCGCCACCATGCTCTCTCTGGCCATTG 3’ 
5’ CGCGGATCCATAATGCACCACAAGCAG 3’ 58 oC  cloning

hsPAR-2C pVLPAR2Cfw 
pVLPAR2rev 

5’ CCGGAATTCGCCACCATGGTTTCACATGATTTC 3’ 
5’ CGCGGATCCATAGGAGGTCTTAAC 3’ 58 oC  cloning

hsPAR-2EL2 pVLPAR2CTfw 
pVLPAR2NTrev 

5’ CCGGAATTCGCCACCATGGTGAAGCAGACCATC 3’ 
5’ CGCGGATCCAGAGAGGAAGTAATTGAAC 3’ 58 oC  cloning

Jab1 Jab1mychisfw 
Jab1mychisrev 

5’ CCCAAGCTTGCCACCATGGCGGCGTCCGGGAGC 3’ 
5’ TCCCCGCGGAGAGATGTTAATTTGATTAAACAG 3’ 58 oC  cloning

p24A RNP24cfw 
RNP24crev 

5’ CGGGATCCACCATGGTGACGCTTGCTGAACTG 3’ 
5’ TCCCCGCGGAACAACTCTCCGGACTTC 3’ 58 oC  cloning

p23 p23fw 
p23rev 

5’ CGGGATCCGCCACCATGTCTGGTTTGTCTGGC 3’ 
5’ TCCCCGCGGCTCAATCAATTTCTTGGCCTTG 3’ 58 oC  cloning

p24A∆N rnp∆NGFPfw 
RNP24crev 

5’ CCCAAGCTTGTG GTCCTTTGGTCCTTC 3’ 
5’ TCCCCGCGGAACAACTCTCCGGACTTC 3’ 55 oC  cloning

p24A∆C RNP24cfw 
rnp∆Cmycrev 

5’ CGGGATCCACCATGGTGACGCTTGCTGAACTG 3’ 
5’ TCCCCGCGGGTAGATCTGTCCCAATGTC  3’ 58 oC  cloning

p24A∆CT rnp∆CGFPfw  
rnp∆CGFPrev 

5’ CCCAAGCTTGCCACCATGGTGACGCTTG 3’ 
5’ TCCCCGCGGTCTGCTGTTTGTGTTGTC 3’ 58 oC  cloning
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              Continued 

p24AGOLD rnp∆CGFPfw 
rnpGOLDGFPrev 

5’ CCCAAGCTTGCCACCATGGTGACGCTTG 3’ 
5’ TCCCCGCGGAATATCAATGGTGAACATCAC 3’ 58 oC  cloning

p24AGL rnp∆CGFPfw 
rnp125GFPrev 

5’ CCCAAGCTTGCCACCATGGTGACGCTTG 3’ 
5’ TCCCCGCGGAGCTTCTGTTTCCATATC 3’ 58 oC  cloning

p24A∆GOLD rnp∆GOLDGFPfw 
rnp∆GOLDGFPrev 

5’ CCCAAGCTTGGGGAGGCTCCAAAAG 3’ 
5’ TCCCCGCGGAATATCAATGGTGAACATCAC 3’ 58 oC  cloning

p24ASP 

SPfw 
 
SPrev 

5’ GATCTGCCACCATGGTGACGCTTGCTGAACTGCTGGTGCTCCTGG 
CCGCTCTCCTGGCCACGGTCTCGGGCA 3’ 
5’ AGCTTGCCCGAGACCGTGGCCAGGAGAGCGGCCAGGAGCACCAG 
CAGTTCAGCAAGCGTCACCATGGTGGCA  3’ 

---  cloning

hsPAR-2HA 
peakPAR2kfw 
hsPAR2peakrev 

5’ CCCAAGCTTGCCACCATGCGGAGCCCCAGCGCG 3’ 
5’ GCTCTAGATCAAGCGTAGTCTGGGACGTCGTATGGGTAGAATTCA 
TAGGAGGTCTTAAC 3’ 

58 oC  cloning

hsPAR-2∆(1-213)HA 
peakPAR2CTfw 
hsPAR2peakrev 

5’ CCCAAGCTTGCCACCATGGTGAAGCAGACCATC 3’ 
5’ GCTCTAGATCAAGCGTAGTCTGGGACGTCGTATGGGTAGAATTCA 
TAGGAGGTCTTAAC 3’ 

58 oC  cloning

hsPAR-1HA peakhsPAR1fw 
peakhsPAR1rev 

5’ CCCAAGCTTGCCACCATGGGGCCGCGGCGGCTG 3’ 
5’ CCGGAATTCAGTTAACAGCTTTTTGTATATG 3’ 58 oC  

  

  

  

  

  

  

  
       
       
       

  
    
    

  

cloning

hsPAR1 hsPAR1LnF 
hsPAR1LnR 

5’ CGCCTGCTTCAGTCTGTGCGGC 3’ 
5’ GGCCAGGTGCAGCATGTACACC 3’ 60 oC PCR

hsPAR2 hsPAR2LnF 
hsPAR2LnR 

5’ GCCATCCTGCTAGCAGCCTCTC 3’ 
5’ GATGACAGAGAGGAGGTCAGCC 3’ 60 oC PCR

hsPAR3 hsPAR3LF 
hsPAR2LCNR 

5’ TTGTCAGAGTGGCATGGAA 3’ 
5’ TGGCCCGGCACAGGACCTCTC 3’ 60 oC PCR

hsPAR4 hsPAR4LnF 
hsPAR4LnR 

5’ CAGCGTCTACGACGAGAGCGG 3’ 
5’ CACTGAGCCATACATGTGACCAT 3’ 60 oC PCR

GAPDH hGAPfw 
hGAPrev 

5' TCCAAAATCAAGTGGGGCGATGCT 3' 
5' ACCACCTGGTGCTCAGTGTAGCCC 3' 60 oC PCR

Jab1 COP9S5fw 
COP9S5rev 

5’ CATATGAATACATGGCTGCA 3’ 
5’ GGCTTCTGACTGCTCTAAC 3’ 53 oC PCR

--- T7fw 5’ TAATACGACTCACTATAGGGA 3’ 52 oC sequencing
--- BGHrev 5’ AACTAGAAGGCACAGTCGAGG 3’ 52 oC sequencing
--- pEAK10fw 5’ TTCTCAAGCCTCAGACAGTGG 3’ 52 oC sequencing
--- pEAK10rev 5’ GATGCAGGCTACTCTAGGGCA 3’ 52 oC sequencing
--- pEGFP N1rev 5’ CGTCGCCGTCCAGCTCGACCAG 3’ 52 oC sequencing
--- pVL1392fw 5’ TATTCCGGATTATTC 3’ 52 oC sequencing
--- pVL1392rev 5’ CAACGACAAGCTTCATCGTGTCG 3’ 52 oC sequencing

--- MATCHMAKER  
AD LD-Insert fw 5’ CTATTCGATGATGAAGATACCCCACCA 3’ 52 oC sequencing

*The restriction enzyme sites are underlined.
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30oC for 8 h. Colonies that turned blue within 8 h were regarded as positive for further 

analysis. 

 

2.2.3.4 Plasmids isolation from yeast 

His+Ade+LacZ+ colonies were incubated for 3 days in SD/-Leu medium with shaking at 

30oC. Yeast cells were collected and lysed in yeast lysis buffer with the help of acid-washed 

glass beads. Plasmid DNA was extracted with phenol/chloroform/isoamylalcohol (25:24:1), 

and precipitated with 1/10 vol of 3 M sodium acetate (pH 5.2) and 0.77 vol of isopropanol. 

After washing with 70% ethanol, DNA pellet was dried and dissolved in TE buffer. 

 

2.2.3.5 Rescue AD/library plasmids by transformation of E. coli 

Yeast plasmids were transformed into E. coli XL 1-Blue cells by the standard 

electroporation methods. The plasmid DNA was amplified and isolated from E.coli cells 

using the standard plasmid mini-prep methods. The rescued pACT2 plasmids containing 

cDNA insert were sequenced, and analyzed with the program BLAST in the GenBankTM 

database. 

 

2.2.4 Cell culture and transfection 

The HEK293 cells were grown in DMEM/Ham’s F-12 1:1 medium (Biochrom, 

Germany) supplemented with 10% heat-inactivated FCS, 100 units/ml penicillin and 100 

µg/ml streptomycin at 37ºC and 5% CO2.  

Normal primary human astrocytes (NHA) were obtained from Cambrex Bio Science 

Verviers SPRL (Verviers, Belgium). These astrocytes were established from normal human 

brain tissue. NHAs were grown in the AGMTM Astrocyte Medium (Cambrex) at 37ºC and 5% 

CO2. NHA cultures were used within 10 passages in the present study, since their 

characteristic properties are impaired with subsequent passages. 

Rat primary astrocytes were prepared, as described previously [110], and grown in 

DMEM medium (Biochrom, Germany) supplemented with 10% heat-inactivated FCS, 100 

units/ml penicillin and 100 µg/ml streptomycin at 37ºC and 10% CO2. For experiments, cells 

were used between days 10 and 13 in culture. 

Cells (80% confluent) were transfected using DOTAP liposomal transfection reagent, 

according to the manufacturer’s protocol (Roche Diagnostics, Germany). Briefly, one day 

before transfection the cells were plated on a 6-well plate. On the following day, the 

subconfluent cells were transfected or co-transfected with the indicated plasmids using 
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DOTAP. To generate the stable clone, the transfected cells were selected with 500 µg/ml of 

G418 (for HEK293-Jab1myc, HEK293-p24Amyc, HEK293-p23myc, HEK293-p24A-GFP, 

HEK293-p24A∆N-GFP, HEK293-p24A∆C-GFP, HEK293-p24A∆CT-GFP, HEK293-

p24AGOLD-GFP, HEK293-p24AGL-GFP, HEK293-p24A∆GOLD-GFP, and HEK293-GFP 

cells), 1 µg/ml of puromycin (for HEK293-PAR-2-HA cells and HEK293-PAR-2∆(1-213)-

HA cells) or both (for HEK293-PAR-2-HA+Jab1myc, HEK293-PAR-2∆(1-213)-

HA+Jab1myc, HEK293-PAR-2-HA+p24Amyc, HEK293-PAR-2∆(1-213)-HA+p24Amyc, 

HEK293-PAR-2-HA+p23myc cells, and HEK293-PAR-1-HA+p24Amyc). 

 

2.2.5 PAR-2 activation and inhibitor treatment   

To activate PAR-2, cells were rinsed with Hank’s solution, and stimulated in serum-free 

medium with bovine pancreatic trypsin (100 nM, Roche Diagnostics, Germany) as a 

physiological agonist or with PAR-2 AP SLIGKV-NH2 (100 µM, Bachem) as a specific 

agonist. To prevent receptor endocytosis, cells were pretreated with 80 µM phenylarsine 

oxide (Calbiochem) for 15 min prior to agonist stimulation. To prevent receptor degradation, 

cells were pretreated with 100 µM Z-Phe-Ala-diazomethylketone (ZPAD, Bachem) for 30 

min prior to agonist stimulation. To prevent receptor resensitization, cells were pretreated 

with 10 µg/ml brefeldin A for 30 min prior to agonist stimulation. To inhibit new protein 

synthesis, cells were pretreated with 70 µM cycloheximide (Calbiochem) for 30 min prior to 

agonist stimulation. To study the localization of internalized PAR-2 in lysosomes, cells were 

pretreated with 10 mM NH4Cl for 30 min prior to agonist stimulation. The inhibitors were 

included in the medium throughout the experiments. 

 

2.2.6 GST pull-down assays 

The different GST fusion protein constructs were transfected into Sf9 cells, using 

lipofectin (Invitrogen) in the presence of the linearized BaculoGoldTM virus DNA (BD 

Bioscience Pharmingen). The recombinant baculovirus was amplified and tested for the 

production of the fusion protein. Cells infected with recombinant baculovirus containing 

PAR-2-GST, PAR-2∆(246-397)-GST, or PAR-2∆(1-213)-GST were homogenized on ice in 

membrane fraction buffer 1. After centrifugation for 10 min at 1000 g and 4oC, the 

supernatant was further centrifuged for 1 h at 100000 g and 4oC. Afterwards, pellets were 

resuspended in membrane fraction buffer 2, sonicated, stirred and centrifuged again for 1 h at 

100000 g and 4oC. The resulting supernatant contained the membrane fraction of the 
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recombinant fusion proteins. On the other hand, cells infected with recombinant baculovirus 

containing GST, PAR-2IL1-GST, PAR-2IL2-GST, PAR-2IL3-GST, PAR-2C-GST or PAR-

2EL2-GST were homogenized in Sf9 lysis buffer. After centrifugation for 5 min at 35000 g 

and 4oC, the resulting supernatant contained the cytosolic fraction of the recombinant fusion 

proteins. The recombinant fusion proteins were purified by using glutathione-Sepharose beads 

(GE Healthcare). The expression of GST fusion proteins was determined by Coomassie blue 

staining and western blot analysis. 

To determine protein-protein interaction in vitro and PAR-2 domains responsible for the 

interaction, equal amounts of GST and full-length or truncated PAR-2-GST fusion proteins 

immobilized on glutathione-Sepharose beads were incubated overnight at 4oC with either the 

crude HEK293-Jab1myc cell extracts or the crude HEK293-p24Amyc cell extracts in 

HEK293 lysis buffer. After washing three times with the HEK293 lysis buffer without 

protease inhibitor, the bound proteins were separated by SDS-PAGE, and immunoblotted 

with the anti-myc antibody (1:5000, Invitrogen). 

To determine p24A domains involved in interaction with PAR-2, the cell lysates from 

HEK293-p24A-GFP, HEK293-p24A∆N-GFP, HEK293-p24A∆C-GFP, HEK293-p24A∆CT-

GFP, HEK293-p24AGOLD-GFP, HEK293-p24AGL-GFP, HEK293-p24A∆GOLD-GFP, as 

well as HEK293-GFP cells were incubated overnight with full-length PAR-2-GST fusion 

proteins immobilized on glutathione-Sepharose beads at 4oC. After washing three times with 

the HEK293 lysis buffer without protease inhibitor, the bound proteins were separated by 

SDS-PAGE, and immunoblotted with the anti-GFP antibody (1:5000, Cell signaling 

technology). 

 

2.2.7 Immunoprecipitation 

In the overexpressed systems, equal amounts of cell lysates were rotated with the anti-

HA antibody (1:200, Sigma), the rabbit IgG (1:200, Santa Cruz) or the anti-GFP antibody 

(1:200, Cell signaling technology) for 6 h, followed by incubating with protein A Sepharose 

beads (GE Healthcare) overnight at 4oC. After washing three times with HEK293 lysis buffer 

without protease inhibitor, the bound beads were incubated in Laemmli buffer for 60 min on 

ice (for immunoprecipitating PAR-1-HA, PAR-2-HA and P2Y1-GFP receptor), or boiled in 

Laemmli buffer for 5 min at 100oC (for immunoprecipitating PAR-2∆(1-213)-HA), separated 

by SDS-PAGE, and immunoblotted with the anti-myc antibody (1:5000, Invitrogen). To 

confirm the specific immunoprecipitation by PAR-1 and PAR-2, the membrane was stripped, 
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blocked, and reprobed overnight with the anti-HA antibody (1:2000, Cell signaling 

technology). 

In the native systems, equal amounts of cell lysates were rotated with the anti-PAR-2 

(C-17) antibody (1:25, Santa Cruz), the anti-GST antibody (1:25, Santa Cruz), the anti-p24A 

antibody (1:100), or the rabbit IgG (1:100, Santa Cruz) for 6 h, followed by incubating with 

protein G agarose beads (Sigma) overnight at 4oC. After washing three times with HEK293 

lysis buffer without protease inhibitor, the bound beads were incubated in Laemmli buffer for 

60 min on ice, separated by SDS-PAGE, and immunoblotted with the anti-Jab1 antibody 

(1:1000, Santa Cruz), or with the anti-PAR-2 antibody (1:100, Santa Cruz). To confirm that 

Jab1 was specifically immunoprecipitated by PAR-2, the membrane was stripped, blocked, 

and reprobed overnight with the anti-PAR-2 antibody (1:100, Santa Cruz). 

 

2.2.8 Western Blot 

Cells were rinsed with cold PBS, and lysed on ice for 30 min in the HEK293 lysis 

buffer. After centrifugation for 15 min at 13000 rpm and 4oC, the resulting supernatant was 

collected and quantitated by Bradford methods using bovine serum albumin (BSA) as 

standard. To detect endogenous c-Jun phosphorylation, cells were lysed in the modified RIPA 

buffer.  

To remove N-linked oligosaccharides of PAR-2, the whole cell lysates were incubated 

overnight with N-glycosidase F (500 units/reaction, New England Biolabs) at 4oC. The 

reaction was stopped by dissolving in Laemmli buffer. 

The proteins with Laemmli buffer were boiled for 5 min or incubated on ice for 1 h (for 

detecting PAR-1, PAR-2 and P2Y1 receptor), electrophoresed on a 10% or 12.5% SDS-PAGE 

gel, and transferred to nitrocellulose membrane. The membrane was blocked and incubated 

overnight with the primary antibody (anti-GST, 1:80000, Santa Cruz; anti-Jab1, 1:2500, Santa 

Cruz; anti-phospho-c-Jun (Ser63), 1:1000, Cell signaling technology; anti-c-Jun antibody, 

1:1000, Cell signaling technology; anti-HA (6E2), 1:1000, Cell signaling technology; or anti-

β-tubulin I, 1:40000, Sigma) at 4ºC, followed by goat anti-rabbit or goat anti-mouse IgG 

conjugated to HRP for 1 h at room temperature. After washing, the immune complexes were 

detected by the SuperSignal West Pico Chemiluminescent Substrate (Pierce).  

 

2.2.9 Immunofluorescence analysis 

Cells were fixed with 4% PFA for 20 min at room temperature, and permeabilized by 

incubation in PBS with 0.2% Triton X-100 and 3% BSA for 60 min.  
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For single staining, cells were incubated overnight with either mouse anti-Jab1 antibody 

(8 µg/ml, Santa Cruz) or rabbit anti-HA antibody (4 µg/ml, Sigma) at 4ºC, washed, and 

incubated with respective Alexa Fluor 488 goat anti-mouse IgG antibody (20 µg/ml, 

Molecular Probes) or Alexa Fluor 568 goat anti-rabbit IgG antibody (20 µg/ml, Molecular 

Probes) for 120 min at room temperature in the dark.   

For double staining, cells were incubated overnight with mouse anti-myc antibody (2 

µg/ml, Invitrogen) and rabbit anti-HA antibody (4 µg/ml, Sigma), with mouse anti-Jab1 

antibody (8 µg/ml, Santa Cruz) and rabbit anti-HA antibody (4 µg/ml, Sigma), or with mouse 

anti-GM130 antibody (5 µg/ml, BD) and rabbit anti-HA antibody (4 µg/ml, Sigma) at 4ºC, 

washed, and incubated with Alexa Fluor 488 goat anti-mouse IgG antibody (20 µg/ml, 

Molecular Probes) and Alexa Fluor 568 goat anti-rabbit IgG antibody (20 µg/ml, Molecular 

Probes), or with Alexa Fluor 633 goat anti-mouse IgG antibody (20 µg/ml, Molecular Probes) 

and Alexa Fluor 568 goat anti-rabbit IgG antibody (20 µg/ml, Molecular Probes) for 120 min 

at room temperature in the dark.  

Mounted slides were observed with a LSM510 confocal laser scanning microscope 

(Carl Zeiss, Germany). 

 

2.2.10 Reporter gene assays 

Cells were transfected with an AP-1-driven chloramphenicol acetyltransferase (CAT) 

reporter plasmid (a gift from Dr. J. Kraus, Institut für Pharmakologie und Toxikologie, Otto-

von-Guericke-Universität Magdeburg) using DOTAP, as described above. Six hours after 

transfection, the cells were treated with 100 µM PAR-2 AP for 48 h in DMEM/Ham’s F-12 

medium supplemented with 1% FCS. The CAT activity in cell lysates was analyzed by 

enzyme-linked immunosorbent assay (ELISA) (Roche Diagnostics, Germany), and 

normalized to protein concentration. The empty CAT reporter vector was also transfected in 

parallel, as a negative control. 

 

2.2.11 siRNA 

Human Jab1 siRNA was obtained from Santa Cruz Biotechnology, Inc. HEK293-PAR-

2-HA cells were transfected with human Jab1 siRNA by using magnet assisted transfection, 

according to the manufacturer’s protocol (IBA GmbH, Germany). Briefly, one day before 

transfection cells were plated on a 6-well plate. On the following day, the subconfluent cells 

(80%) were incubated for 15 min with human Jab1 siRNA or scrambled siRNA and magnet 

 35



assisted transfection reagents mixture on the magnet plate. Afterwards, transfected cells were 

cultured for 48 h under normal conditions. Non-silencing siRNA labeled with Alexa Fluor 

488 served as a scrambled siRNA control (Qiagen). Jab1 knockdown was assessed by western 

blot and RT-PCR at 48 h after transfection.  

 

2.2.12 Cytosolic calcium measurements 

The free intracellular calcium concentration ([Ca2+]i) was determined using the calcium 

sensitive fluorescent indicator Fura-2 AM. For dye loading the cells grown on a coverslip 

were removed from the culture dish and placed in 1 ml NaHBS buffer for 30 min at 37ºC, 

supplemented with 2 µM Fura-2 AM. Loaded cells were transferred into a perfusion chamber 

with a bath volume of about 0.2 ml and mounted on an inverted microscope (Zeiss, Axiovert 

135). During the experiments the cells were continuously superfused with NaHBS buffer, 

which was heated to 37ºC. The perfusion system allowed to switch between solutions 

containing different agonists to be tested. 

Single-cell fluorescence measurements of [Ca2+]i were performed using an imaging 

system from TILL Photonics GmbH. Cells were excited alternately at 340 nm and 380 nm for 

20 to 100 ms at each wavelength with a rate of 0.33 Hz and the resultant emission collected 

above 510 nm. Images were saved on a personal computer and subsequently the changes in 

fluorescence ratio (F340 nm /F380 nm) were determined from selected regions of interest covering 

a single cell. 

 

2.3 Statistical analysis 

Data were expressed as mean ± S.E.M. Differences were examined by Student’s t-test 

between two groups or one-way analysis of variance within multiple groups. p<0.05 was 

considered significant. 
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3. RESULTS 

Part I. Identification of interacting proteins of human PAR-2 by using yeast two-hybrid 

screening 

PAR-2, a GPCR, mediates the intracellular signal transduction in response to 

stimulation with the extracellular proteases trypsin and tryptase. To identify intracellular 

proteins that are involved in PAR-2 signalling events, a yeast two-hybrid screening was 

performed. The full-length human PAR-2 cDNA was fused in-frame to the GAL4 DNA 

binding domain as a bait. The yeast strain AH109 transformed with bait plasmids nicely grew 

on SD/-Trp media, but not on SD/-Trp-His and SD/-Trp-Leu-His-Ade media, indicating that 

human PAR-2 protein itself does not autonomously activate the histidine and adenine reporter 

genes. Further experiments demonstrated that the bait strain grew normally in SD/-Trp liquid 

medium supplemented with 20 µg/ml kanamycin (OD600: 1.3, after 24 h-incubation), 

compared to AH109 cells transformed with empty pGBKT-7 vector (OD600: 1.5, after 24 h-

incubation). These data suggest that there are no toxic effects of the bait protein on yeast cells. 

Small-scale yeast mating experiments showed that the mating efficiency between the bait 

strain and Y187 transformed with GAL4 activation domain vector fused with SV40 large T 

antigen pTD1-1 (Y187 [pTD1-1]) was about 8.6%. This value is slightly, but not significantly 

lower than that of the positive control that AH109 cells transformed with pGBKT7-53 were 

mating with Y187 [pTD1-1] cells (9.7%), suggesting that the bait protein does not affect 

mating efficiency. 

Next, using this bait, a pretransformed human brain cDNA library was screened. From 

1.6 × 106 clones screened that were grown on nutritional deficient media and which activated 

the β-galactosidase, 308 colonies were found positive for the selection markers histidine, 

adenine and LacZ. Subsequent sequencing and BLAST analysis further revealed that the 

cDNAs from 34 colonies encoded 19 potential PAR-2-interacting proteins. Many others either 

encoded mitochondrial proteins (ATP synthase subunit 6, COX3, NADH dehydrogenase 

subunit 1) and the transcription factor (PAX6) that were unlikely to interact with cell surface 

receptors under physiological conditions, or they were scrambled sequences that did 

apparently not encode any proteins. 

To further verify the protein interaction in yeast, we transformed yeast Y187 cells with 

bait plasmids and yeast AH109 cells with candidate prey plasmids isolated from the library, 

and then performed yeast two-hybrid tests. The transformants grown on SD/-Trp-Leu-His-

Ade media were tested by LacZ colony-lift filter assay. 24 colonies that encoded 12 different 

proteins were found again to activate the LacZ reporter gene, indicating that they are truly 
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positive in yeast (Table 3.1). Other candidate partners, such as RanBPM, tetraspan 3, 

tetraspan 5, cysteine-rich with EGF-like domain 1, connexin47 and minor histocompatibility 

antigen 13, were shown to be negative by LacZ colony-lift filter assay. 
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Table 3.1. The candidate PAR-2-interacting proteins identified in the yeast two-

hybrid screening. 

Clone Insert  
size (kb) Protein   Position  

     (aa) 
DNA 

Accession # 
Protein 

Accession # 
17/8a 2.3 HUEL 360-568 NM_006345 NP_006336 
58/1a 2.0 HUEL 360-568 NM_006345 NP_006336 
1/1a 2.0 HUEL 360-568 NM_006345 NP_006336 
21/5b 2.3 HUEL 360-568 NM_006345 NP_006336 
20/9a 2.0 HUEL 360-568 NM_006345 NP_006336 
7/1b 2.3 HUEL 360-568 NM_006345 NP_006336 
7/14b 2.3 HUEL 360-568 NM_006345 NP_006336 
5/6a 1.3 SLC21A11 470-692 BC000585 AAH00585 
42/4c 1.8 MLC1 162-377 NM_015166 NP_055981 
12/9b 1.8 Jab1 31-334 BC001859 AAH01859 
23/14a 1.0 Jab1 49-334 BC001859 AAH01859 
10/15b 1.6 COP9S4 1-406 NM_016129 NP_057213 
54/2b 1.6 COP9S4 1-406 NM_016129 NP_057213 
54/3c 1.6 COP9S4 1-406 NM_016129 NP_057213 
28/6b 1.9 RERE 59-133 NM_012102 NP_036234 
28/7b 1.9 RERE 59-133 NM_012102 NP_036234 
28/8a 1.9 RERE 59-133 NM_012102 NP_036234 
T28/Aa 1.8 RERE 59-133 NM_012102 NP_036234 
45/3b 1.5 TM4SF2 115-249 NM_004615 NP_004606 
24/9b 1.0 p24A 63-201 NM_006815 NP_006806 
36/34b 3.3 MRP7 983-1098* NM_033450 NP_003170 
59/26b 2.4 synaptophysin 52-313 NM_003179 NP_003170 

Integrin VLA-4 beta 
subunit, isoform 1A 572-667* NM_002211 NP_002202 

Integrin VLA-4 beta 
subunit, isoform 1B 572-667* NM_033666 NP_389647 

Integrin VLA-4 beta 
subunit, isoform 1C-1 572-667* NM_033667 NP_391987 

Integrin VLA-4 beta 
subunit, isoform 1C-2 572-667* NM_033669 NP_391989 

23/6c 2.0 

Integrin VLA-4 beta 
subunit, isoform 1D 572-667* NM_033668 NP_391988 

Reticulon 1, isoform 
A 609-776 NM_021136 NP_066959 

Reticulon 1, isoform 
B 189-356 L10334 AAA59951 

3/8c 1.4 

Reticulon 1, isoform 
C 41-208 L10335 AAA59952 

       *sequenced by MATCHMAKER AD LD-Insert fw only. 
 

Prey plasmids were isolated from His+Ade+LacZ+ colonies, amplified in XL-1 Blue E. coli cells, 
and digested with the Hind III enzyme. Afterwards, the insert was sequenced, and analyzed with 
the program BLAST in the GenBankTM database. 
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Part II. PAR-2 overexpression in insect and mammalian cells 

3.2.1 PAR-2 overexpression in Sf9 cells 

To confirm the protein-protein interaction between PAR-2 and candidate interacting 

partners by GST pull-down assays, we engineered exogenous PAR-2-GST expression in 

insect Sf9 cells. We generated a novel baculovirus GST expression vector pVL1392-GST in 

order to facilitate the expression of the transmembrane protein tagged with GST in Sf9 cells, 

and inserted the full-length human PAR-2 cDNA at the N-terminus of GST. Sf9 cells were 

transfected with pVL1392-PAR-2-GST in the presence of the linearized BaculoGold virus 

DNA using lipofectin. Afterwards, the recombinant baculovirus was amplified and tested for 

the production of the fusion protein. The expression of PAR-2-GST (lane 4) was detectable 

by Coomassie blue staining with two major bands (~60-70 kDa and ~140-160 kDa) in Sf9 

cells (Fig. 3.2.1 A), which was confirmed by subsequent western blot analysis using the 

antibody against GST (Fig. 3.2.1 B). The high molecular mass band might represent the PAR-

2 homodimer.  

 

A B 

Sf9 

70 kDa 

150 kDa

PAR-2-GST   -       + 

WB: GST 

Fig. 3.2.1. The expression of PAR-2-GST in Sf9 cells. The cytosolic GST and membrane fraction
of PAR-2-GST were extracted from infected Sf9 cells, purified by glutathione-Sepharose beads, and
separated by 10% SDS-PAGE. (A). The expression of PAR-2-GST and GST were detected by
Coomassie brilliant blue staining. The purified PAR-2-GST fusion protein (lane 4) was visible with
two major bands (~60-70 kDa and ~140-160 kDa). The purified GST (lane 2) served as control. The
respective cell lysates are also shown (lanes 1 and 3). (B). The expression of PAR-2-GST was
determined by western blot analysis (WB). Cell lysates from uninfected (-) and PAR-2-GST-
infected Sf9 cells (+) were immunoblotted by using a polyclonal anti-GST antibody. A
representative blot from three independent experiments is given. The molecular mass marker is
indicated on the right. Note: The band with higher molecular mass (~140-160 kDa) might represent
the PAR-2 homodimer. 
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          In order to map the domain of PAR-2 that is responsible for the interaction with 

candidate partners in the GST pull-down assay, we further constructed a series of truncated 

PAR-2-GST fusion proteins, which are given schematically in Figure 3.2.2, below the wild-

type PAR-2-GST. As shown in Fig. 3.2.3 A, PAR-2∆(246-397)-GST (lane 4) and PAR-2∆(1-

213)-GST (lane 6) purified by glutathione-Sepharose beads both were detectable by 

Coomassie blue staining. The purified GST served as control (lane 2, Fig. 3.2.3 A). In 

parallel, the expression of PAR-2EL2-GST (Fig. 3.2.3 B, lane 4), PAR-2IL1-GST (Fig. 3.2.3 

C, lane 4), PAR-2IL2-GST (Fig. 3.2.3 C, lane 6), PAR-2IL3-GST (Fig. 3.2.3 C, lane 8) and 

PAR-2C-GST (Fig. 3.2.3 C, lane 10) was also observed after being purified by glutathione-

Sepharose beads from Sf9 cells. The expression of truncated PAR-2-GST fusion proteins was 

confirmed by western blot with the anti-GST antibody (data not shown). 

Interestingly, PAR-2∆(246-397)-GST was present as a dimer in Sf9 cells (lane 4, Fig. 

3.2.3 A), similar to the wild-type PAR-2-GST (Fig. 3.2.1). The receptor dimerization was 

eliminated by deletion mutants PAR-2IL1-GST (lane 4, Fig. 3.2.3 C), but not by PAR-2IL2-

GST (lane 6, Fig. 3.2.3 C). Therefore, the transmembrane domains 3 and 4 and the 

intracellular loop 2 of PAR-2 contribute to receptor homodimer formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.2.2. Schematic representation of full-length PAR-2-GST and PAR-2 deletion GST
constructs. The position of amino acids of PAR-2 are noted below constructs. The oligomeric
state of fusion proteins is indicated on the right. WT, full-length PAR-2-GST; ∆(246-397),
PAR-2∆(246-397)-GST; ∆(1-213), PAR-2∆(1-213)-GST; IL1, PAR-2IL1-GST; IL2, PAR-
2IL2-GST; IL3, PAR-2IL3GST; C, PAR-2C-GST; EL2, PAR-2EL2-GST. 
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Fig. 3.2.3. The expression of truncated PAR-2 GST fusion proteins in Sf9 cells. (A). The
cytosolic fraction of GST and the membrane fractions of PAR-2∆(246-397)-GST (∆(246-397)) and
PAR-2∆(1-213)-GST (∆(1-213)) were extracted from infected Sf9 cells, purified by glutathione-
Sepharose beads, and separated by 10% SDS-PAGE. The expression of PAR-2∆(246-397)-GST,
PAR-2∆(1-213)-GST and GST was detected by Coomassie brilliant blue staining. The purified
PAR-2∆(246-397)-GST fusion protein (lane 4) was present as a homodimer (~50 kDa and ~100
kDa), whereas PAR-2∆(1-213)-GST (lane 6) was a monomer  (~50 kDa). The purified GST (lane 2)
served as control. The respective cell lysates are also shown (lanes 1, 3 and 5). (B and C). The
cytosolic fractions of GST, PAR-2EL2-GST (EL2, in B), PAR-2IL1-GST (IL1, in C), PAR-2IL2-
GST (IL2, in C), PAR-2IL3-GST (IL3, in C) and PAR-2C-GST (C, in C) were extracted from
infected Sf9 cells, purified by glutathione-Sepharose beads, separated by 10% SDS-PAGE, and
detected by Coomassie brilliant blue staining. Similar to PAR-2-GST and PAR-2∆(246-397)-GST,
PAR-2IL2-GST (lane 6, in C) was also present as a homodimer. In contrast, PAR-2EL2-GST (EL2,
in B), PAR-2IL1-GST (lane 4, in C), PAR-2IL3-GST (lane 8, in C) and PAR-2C-GST (lane 10, in
C) were monomers. Interestingly, PAR-2IL1-GST (lane 4, in C) had two bands, suggesting that it
might be N-glycosylated, since this protein contains the extracellular N-terminus of the receptor that
possesses a N-glycosylation site. The purified GST (lane 2) served as control. The respective cell
lysates are also shown (lanes 1, 3, 5, 7 and 9). Representative blots from at least three independent
experiments are given. The molecular mass marker is indicated on the right. 



3.2.2 PAR-2 overexpression in HEK293 cells 

We constructed a mammalian expression vector pEAK10 inserted with the full-length 

PAR-2 cDNA fused with HA at the C-terminus. Therefore, PAR-2 protein would be easily 

detected by the anti-HA antibody. PAR-2-HA was stably expressed in HEK293 cells, to 

determine the protein-protein interaction in the mammalian system. As shown in Fig. 3.2.4 A, 

PAR-2-HA expression was detected in the whole cell lysates from HEK293-PAR-2-HA cells, 

by using an antibody against HA. PAR-2-HA protein appeared as a smear band (mainly at 

~37-70 kDa), which is consistent with previous reports by others [46, 150]. It is known that 

human PAR-2 possesses two potential N-linked glycosylation sites [46]. Receptor 

glycosylation is important for PAR-2 expression and activation [46, 158]. To study whether 

the smear band of PAR-2 resulted from receptor N-glycosylation, the whole cell lysates from 

HEK293-PAR-2-HA were incubated with PNGase F. As shown in Fig. 3.2.4 B, PNGase F 

treatment significantly reduced the molecular mass of PAR-2-HA to ~32-44 kDa, suggesting 

that PAR-2-HA is a N-glycosylated glycoprotein. PAR-2 might also be O-glycosylated, 

because N-deglycosylated PAR-2 in Fig. 3.2.4 B still appeared as a smear band. 
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PAR-2-HA   -      + 
WB: HA WB: HA 
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PNGase F   -     -     +  

 

Fig. 3.2.4. The expression of PAR-2-HA in HEK293 cells. (A). The whole cell lysates from
HEK293-PAR-2-HA cells were analyzed in 10% SDS-PAGE, and immunoblotted by using a
monoclonal anti-HA (6E2) antibody. (B). The whole cell lysates (20 µg) from HEK293-PAR-2-HA
cells were incubated overnight with peptide N-glycosidase F (PNGase F, 500 units/reaction) at 4oC.
Afterward, the reaction was stopped by dissolving in Laemmli buffer, electrophoresed, and
immunoblotted by using a monoclonal anti-HA (6E2) antibody. Both experiments were repeated three
times with comparable results. The molecular mass marker is indicated on the right. WB, western blot.
 43



         Next, we asked whether PAR-2-HA was functionally expressed in HEK293 cells. We 

stimulated transfected cells with PAR-2 agonists trypsin or PAR-2 AP, to investigate the 

receptor internalization by immunofluorescence staining using the antibody against HA. As 

shown in the left top panel of Fig. 3.2.5, PAR-2-HA was strongly expressed at the plasma 

membrane and in intracellular stores in unstimulated cells, which is consistent with other 

reports [139]. Wild-type HEK293 cells stained by anti-HA antibody and HEK293-PAR-2-HA 

cells without anti-HA antibody staining both served as negative control (Fig. 3.2.5, middle 

and right top panels). At 10 min after stimulation with either 100 nM trypsin or 100 µM PAR-

2 AP, some of PAR-2 was internalized, and localized beneath the plasma membrane (Fig. 

3.2.5, middle and bottom panels in the left column). After 30 min, the receptor was 

completely internalized (Fig. 3.2.5, middle and bottom panels in the center column). Similar 

results were also observed at 60 min incubation with PAR-2 agonists (Fig. 3.2.5, middle and 

bottom panels in the right column). Further experiments showed that PAR-2-HA was 

colocalized with the early endosome marker EEA1 at 15 min after trypsin stimulation (Fig. 

3.2.6 A), suggesting that PAR-2 was rapidly internalized to early endosomes after activation. 

After 60 min, PAR-2-HA was detected in lysosomes, shown by colocalization with the 

lysosome marker LAMP1 (Fig. 3.2.6 B). These data support previous findings by others 

[139]. 

Taken together, our data above indicate that PAR-2-HA is functionally expressed in 

HEK293 cells. Moreover, the HA tag has no effect on the receptor expression and functions. 

In addition, we investigated the expression of truncated PAR-2, PAR-2∆(1-213)-HA 

and PAR-2∆(246-397)-HA, in HEK293 cells as well. As shown in Fig. 3.2.7 A, PAR-2∆(1-

213)-HA was strongly expressed in transfected HEK293 cells. Immunofluorescence staining 

studies revealed that PAR-2∆(1-213)-HA localized at the plasma membrane, and abundantly 

in the cytosol in HEK293-PAR-2∆(1-213)-HA cells (Fig. 3.2.7 B). However, the expression 

of PAR-2∆(246-397)-HA was very weak in HEK293 cells (data not shown). 
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w/o 1st AbControl WT 
 

Try 10 min Try 30 min Try 60 min 

PAR-2 AP 10 min PAR-2 AP 30 min PAR-2 AP 60 min
Fig. 3.2.5. Immunofluorescence staining of PAR-2-HA in transfected HEK293 cells. HEK293
cells stably expressed with PAR-2-HA were stimulated for indicated times with either 100 nM trypsin
(Try) or 100 µM PAR-2 AP. Afterwards, cells were fixed, permeabilized, stained, and observed by a
confocal microscope. PAR-2-HA was visualized by polyclonal anti-HA antibody and Alexa Fluor 568
goat anti-rabbit IgG. Wild-type HEK293 cells (WT) and HEK293-PAR-2-HA cells without anti-HA
antibody (w/o 1st Ab) staining both served as negative control. All images are representative for three
independent experiments. Scale bar, 10 µm. 
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Fig. 3.2.6. PAR-2 was detected in both early endosomes and lysosomes after activation.  HEK293
cells stably expressed with PAR-2-HA were incubated with 100 nM trypsin for either 15 min (A) or 60
min (B). Afterwards, cells were fixed, permeabilized, stained, and observed by a confocal microscope.
EEA1 (green) was visualized by monoclonal anti-EEA1 antibody and Alexa Fluor 488 goat anti-mouse
IgG (A). LAMP1 (green) was visualized by monoclonal anti-LAMP1 antibody and Alexa Fluor 488
goat anti-mouse IgG (B). PAR-2-HA (red) was visualized by polyclonal anti-HA antibody and Alexa
Fluor 568 goat anti-rabbit IgG (A, B). The overlay image (Merge, yellow) revealed the colocalization
of PAR-2 with either EEA1 or LAMP1. All images are representative for three independent
experiments. Scale bar, 10 µm. 
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Fig. 3.2.7. The expression of PAR-2∆(1-213)-HA in transfected HEK293 cells. (A). The whole
cell lysates from HEK293-PAR-2∆(1-213)-HA cells were analyzed in 10% SDS-PAGE, and
immunoblotted by using a monoclonal anti-HA (6E2) antibody. The representative blot from at least
three independent experiments is given. The molecular mass marker is indicated on the right. WB,
Western blot. (B). HEK293 cells stably expressing PAR-2∆(1-213)-HA were fixed, permeabilized,
stained, and observed by a confocal microscope. PAR-2∆(1-213)-HA was visualized by polyclonal
anti-HA antibody and Alexa Fluor 568 goat anti-rabbit IgG. Wild-type HEK293 cells (WT) and
HEK293-PAR-2∆(1-213)-HA cells without anti-HA antibody staining (w/o 1st Ab) both served as
negative control. All images are representative for three independent experiments. Scale bar, 10 µm.
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Part III. Jun activation domain-binding protein 1 (Jab1) is involved in PAR-2-induced 

activation of AP-1 

Jab1 was initially identified as a coactivator of c-Jun [167], and was later shown to be 

the fifth subunit of the COP9 signalosome complex [168]. The COP9 signalosome is a 

conserved multiprotein complex that has been found in plants, mammals, Drosophila and the 

fission yeast [169]. It consists of eight subunits, which exhibit significant similarity to the 

eight subunits of the lid of the 26S proteasome [169, 170]. Previous work has already 

demonstrated that a number of diverse proteins interact with the subunits of the COP9 

signalosome, especially with Jab1. Using the yeast two-hybrid system, it was found that Jab1 

binds to the N-terminal activation domain of c-Jun and thereby activates c-Jun [167]. 

Interestingly, Jab1 was shown to regulate the cell cycle by degrading the cyclin-dependent 

kinase inhibitor p27Kip1 [171]. Recently, Jab1 was found to interact with the transmembrane 

protein integrin adhesion receptor LFA-1, and to mediate the activation of LFA-1-induced 

AP-1 [172]. It was also reported that Jab1 interacts with the transcription factor hypoxia-

inducible factor-1 α (HIF-1 α), as well as the nuclear receptor progesterone receptor and the 

steroid receptor coactivator-1 (SRC-1), which control the transcription and expression of a 

number of genes [173, 174]. 

 

3.3.1. Multiple intracellular domains of PAR-2 are responsible for interaction with Jab1 

We performed GST pull-down assays in vitro, to confirm the interaction between PAR-

2 and Jab1 found in yeast. The PAR-2-GST fusion protein expressed in Sf9 cells was purified 

by glutathione-Sepharose beads. These beads with immobilized PAR-2-GST fusion protein 

were incubated overnight with the whole cell lysates from HEK293-Jab1myc cells to examine 

the interaction of PAR-2-GST with Jab1myc. The interaction was detected by western blot 

analysis using the anti-myc antibody. As shown in Fig. 3.3.1, Jab1 specifically interacted with 

the full-length PAR-2-GST fusion protein (lane 3). To exclude the possible interaction of Jab1 

with the GST tag protein, we, in parallel, incubated GST protein on glutathione-Sepharose 

beads with the crude HEK293-Jab1myc cell lysates. Western blot analysis showed that Jab1 

did not interact with GST protein alone (Fig. 3.3.1, lane 2). Aliquots from the HEK293-

Jab1myc cell lysates, which were used for the pull-down assay served also as control for the 

western blot (Fig. 3.3.1, lane 1). 

To map the domain of PAR-2 responsible for the interaction with Jab1, the truncated 

PAR-2-GST fusion proteins were tested similarly for their capacities to bind to Jab1 in the 

GST pull-down assay. As shown in Fig. 3.3.1, PAR-2∆(246-397)-GST fusion protein (aa 1-

 48



245 of PAR-2) weakly interacted with Jab1 (lane 4), but a stronger interaction occurred with 

the PAR-2∆(1-213)-GST fusion protein (aa 214-397 of PAR-2) and Jab1 (lane 5), which was 

comparable to that between the full-length PAR-2-GST fusion protein and Jab1 (lane 3). 

These results suggest that the intracellular loop 3 and C-tail of PAR-2 were mainly 

responsible for the interaction with Jab1. Several previous studies have revealed that the C-

tail of PAR-2 contributes to receptor trafficking and receptor-induced signal transduction 

[138, 175]. Interestingly, our studies here demonstrated that the PAR-2 C-tail alone (aa 346-

397 of PAR-2) weakly interacted with Jab1 (Fig. 3.3.1, lane 7). The interaction of PAR-2IL3-

GST fusion protein (aa 243-311 of PAR-2) with Jab1 (Fig. 3.3.1, lane 6) was notably weaker 

than that between PAR-2∆(1-213)-GST fusion protein and Jab1 (Fig. 3.3.1, lane 5), although 

it seemed to be stronger than that between PAR-2C-GST fusion protein and Jab1 (Fig. 3.3.1, 

lane 7). Taken together, our GST pull-down findings imply that PAR-2 interacts with Jab1 

through several intracellular domains. 
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antibody. As shown in Fig. 3.3.2 A, Jab1 was specifically co-immunoprecipitated by PAR-2-

HA in HEK293-PAR-2-HA+Jab1myc cells (lane 6), but not in the negative control wild-type 

HEK293 cells (lane 4) and HEK293-Jab1myc cells (lane 5). The same lysates from the 

respective cells which were used for the IP experiment, served as control for the western blot 

(lanes 1-3). The nitrocellulose membrane was reprobed with the anti-HA antibody to confirm 

the specificity of the co-immunoprecipitation of PAR-2-HA. These results suggest that Jab1 

interacts with PAR-2 within cells. 

We further asked whether interaction between endogenous Jab1 and native PAR-2 

could occur. The western blot analysis using the anti-Jab1 antibody showed that endogenous 

Jab1 was specifically co-immunoprecipitated by anti-PAR-2 antibody from wild-type 

HEK293 cells (Fig. 3.3.2 B, lane 3), which are known to express endogenous PAR-2 [75], but 

not by the unrelated antibody against GST (Fig. 3.3.2 B, lane 2). The cell lysate for the IP 

experiment is shown in lane 1. The membrane reprobed with the anti-PAR-2 antibody 

confirmed the specificity of the co-immunoprecipitation of PAR-2 (data not shown). These 

data demonstrate that Jab1 interacts with PAR-2 in vivo.  

Next, we tested whether Jab1 could be immunoprecipitated by PAR-2∆(1-213)-HA in 

vivo. The whole cell lysates were immunoprecipitated by anti-HA antibody, and the 

interaction of PAR-2∆(1-213)-HA with Jab1myc was examined by western blot analysis 

using the anti-myc antibody. As shown in Fig. 3.3.2 C, Jab1 specifically associated with 

PAR-2∆(1-213)-HA in HEK293-PAR-2∆(1-213)-HA+Jab1myc cells (lane 3), but not in the 

negative control wild-type HEK293 cells (lane 1) and HEK293-Jab1myc cells (lane 2). The 

same lysates from the respective cells which were taken for the IP experiment served as 

control (lanes 4-6). The membrane was reprobed with the anti-HA antibody to confirm the 

specificity of the co-immunoprecipitation of PAR-2∆(1-213)-HA. These results confirm the 

GST pull-down data above in Figure 3.3.1 showing that Jab1 interacts with the intracellular 

loop 3 and the C-tail of PAR-2. 
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Fig. 3.3.2. Interaction of Jab1 with PAR-2 in vivo. (A). HEK293 cells were stably co-transfected
with PAR-2-HA and Jab1myc or transfected with Jab1myc. The whole cell lysates from HEK293-
PAR-2-HA+Jab1myc cells, as well as wild-type HEK293 cells (negative control) and HEK293-
Jab1myc cells (negative control) were immunoprecipitated (IP) by anti-HA antibody in the presence
of protein A Sepharose beads and the immunocomplex was detected by western blot (WB) using the
anti-myc antibody. The immunoprecipitation was further confirmed by reprobing with the anti-HA
antibody. (B). The whole cell lysates from wild-type HEK293 cells were immunoprecipitated by
anti-PAR-2 (C-17) antibody or by the unrelated antibody against GST (negative control) in the
presence of protein G agarose beads and the immunocomplex was detected by WB with the anti-
Jab1 antibody. (C). HEK293 cells were stably co-transfected with PAR-2∆(1-213)-HA and Jab1myc
or transfected with Jab1myc. The whole cell lysates from HEK293-PAR-2∆(1-213)-HA+Jab1myc
cells, as well as wild-type HEK293 cells (negative control) and HEK293-Jab1myc cells (negative
control) were immunoprecipitated by anti-HA antibody in the presence of protein A Sepharose
beads and the immunocomplex was detected by WB using the anti-myc antibody. The
immunoprecipitation was further confirmed by reprobing with the anti-HA antibody. All
experiments were repeated at least three times with identical results. The molecular mass marker is
indicated on the right. Note: Lower bands in the myc blot are unspecific staining by the myc
antibody. 
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3.3.3 Colocalization of Jab1 with PAR-2 in vivo   

We next examined whether the interaction of Jab1 with PAR-2 is reflected by 

colocalization of the two proteins in vivo using double immunofluorescence staining. 

HEK293 cells were transiently co-transfected with pEAK10-PAR-2-HA and pcDNA-

Jab1myc plasmids. 24 h after transfection, Jab1myc was shown to be diffusely distributed in 

the cytosol and in the nucleus, and was also detected at the plasma membrane (Fig. 3.3.3 A, 

left top panel). PAR-2-HA, on the other side, was predominantly localized at the plasma 

membrane and in intracellular stores (Fig. 3.3.3 A, middle top panel), where it colocalized 

with Jab1myc, as given by the merge in the right top panel of Figure 3.3.3 A. In parallel, we 

co-stained wild-type HEK293 cells as negative control (Fig. 3.3.3 A, lower panels).  

We further asked whether the endogenous Jab1 protein could colocalize with PAR-2-

HA. As shown in Fig. 3.3.3 B, the endogenous Jab1 (left panel) was shown to have the same 

distribution pattern as the transfected protein (Fig. 3.3.3 A, left top panel). Endogenous Jab1 

was clearly colocalized with PAR-2-HA at the plasma membrane and in intracellular stores in 

HEK293-PAR-2-HA cells (Fig. 3.3.3 B, right panel).  
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Fig. 3.3.3. Colocalization of Jab1 with PAR-2 in vivo. HEK293 cells transiently co-transfected
with pEAK10-PAR-2-HA and pcDNA-Jab1myc plasmids (A, upper panel), wild-type HEK293 cells
(A, lower panel, wt), and HEK293 cells stably transfected with pEAK10-PAR-2-HA plasmids (B)
were fixed, permeabilized, stained, and observed by a confocal microscope. Jab1 (green) was
visualized by monoclonal anti-myc antibody (A) or by monoclonal anti-Jab1 antibody (B) and Alexa
Fluor 488 goat anti-mouse IgG. PAR-2-HA (red) was visualized by polyclonal anti-HA antibody
and Alexa Fluor 568 goat anti-rabbit IgG (A, B). The overlay image (Merge, yellow) revealed the
colocalization of Jab1 with PAR-2. Wild-type HEK293 cells served as negative control. All images
are representative for three independent experiments. Scale bar, 10 µm. 
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3.3.4 Jab1 interacts with PAR-2 in normal primary human astrocytes 

We asked to test the interaction of PAR-2 with Jab1 in neural cells. Normal human 

astrocytes (NHA) were chosen as cell model here, because astrocytes represent a critical cell 

type in the brain and it has been shown that PARs mediate important functions in astrocytes 

[13, 108, 111]. Data from RT-PCR shown in Fig. 3.3.4 A demonstrated that NHA cells 

abundantly express PAR-1 (lane 3) and PAR-2 (lane 4), and to a lower extent PAR-3 (lane 5), 

but not PAR-4 (lane 6). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as an 

internal control (lane 2, Fig. 3.3.4 A) To assure that NHA cells functionally express PAR-2, 

we measured [Ca2+]i in response to PAR-2 agonists trypsin or PAR-2 AP. As shown in Fig. 

3.3.4 B and C, both trypsin (100 nM) and PAR-2 AP (100 µM) induced a transient [Ca2+]i 

rise, which rapidly declined to the basal level. These results indicate that PAR-2 is 

functionally expressed in normal primary human astrocytes. 

Next, we performed the immunoprecipitation experiment to detect the interaction of 

Jab1 with PAR-2 in NHA cells. The astrocyte lysates were immunoprecipitated by anti-PAR-

2 antibody in the presence of protein G agarose beads. The subsequent western blot analysis 

(Fig. 3.3.5 A) using the anti-Jab1 antibody demonstrated that Jab1 was specifically 

immunoprecipitated by anti-PAR-2 antibody (lane 2), but not by the antibody against GST 

(lane 3), indicating that Jab1 associates with PAR-2 in normal primary human astrocytes. The 

membrane reprobed with the anti-PAR-2 antibody confirmed the specificity of the co-

immunoprecipitation of PAR-2 (data not shown). 

We further studied the colocalization of Jab1 with PAR-2 in NHA cells. NHA cells 

were transiently transfected with pEAK10-PAR-2-HA plasmids. At 24 h after transfection, 

cells were stained to detect the Jab1 and PAR-2-HA proteins by double immunofluorescence 

staining. As shown in Fig. 3.3.5 B, Jab1 was mainly localized in the cytosol, as well as at the 

plasma membrane in NHA cells (left panel). PAR-2-HA, on the other side, was 

predominantly localized at the plasma membrane (middle panel), where it colocalized with 

Jab1, as shown by the merge in the right panel of Figure 3.3.5 B. Therefore, these data 

demonstrate that PAR-2 interacts with Jab1 in normal primary human astrocytes. 
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Fig. 3.3.4. The functional expression of PAR-2 in normal primary human astrocytes (NHA). (A).
Determination of four types of PAR mRNA by RT-PCR in NHA cells. Fragments were amplified by
RT-PCR with specific primers, separated on 2% agarose gel, and stained with ethidium bromide.
PAR-1 (415 bp, lane 3), PAR-2 (341 bp, lane 4) and PAR-3 (452 bp, lane 5) mRNAs but no PAR-4
(424 bp, lane 6) mRNA, are detected in astrocytes. GAPDH (600 bp, lane 2) served as an internal
control. Lane 1 represents 100-bp DNA standard. Data are representative of three independent
exper ents. (B-C) Determination of functional expression of PAR-2 by calcium measurements in
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NHA cells. Cells were loaded with Fura-2 AM to measure the changes of the intracellular free calcium
concentration indicated by the change in the fluorescence ratio (F340 nm /F380 nm). The time periods of
application of 100 nM trypsin (B) and 100 µM PAR-2 AP (C) are indicated by the respective bars. The
traces are the mean responses from at least 10 single cells measured in a single experiment.
Experiments were repeated three times with comparable data. 
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Fig. 3.3.5. The interaction of Jab1 with PAR-2 in normal primary human astrocytes. (A). The
whole cell lysates from normal primary human astrocytes were immunoprecipitated (IP) by anti-
PAR-2 (C-17) antibody or by the unrelated antibody against GST (negative control) in the presence
of protein G agarose beads and the immunocomplex was detected by western blot (WB) with the
anti-Jab1 antibody. Typical blot from three independent experiments is given. The molecular mass
marker is indicated on the right. (B) Primary human astrocytes (NHA) were transiently transfected
with pEAK10-PAR-2-HA plasmids. 24 h after transfection, cells were fixed, permeabilized, stained,
and observed by a confocal microscope. Jab1 (green) was visualized by monoclonal anti-Jab1
antibody and Alexa Fluor 488 goat anti-mouse IgG. PAR-2-HA (red) was visualized by polyclonal
anti-HA antibody and Alexa Fluor 568 goat anti-rabbit IgG. The overlay image (Merge, yellow)
revealed the colocalization of Jab1 with PAR-2. All images are representative for three independent
experiments. Scale bar, 10 µm. 

 

 

 

 

 

 

 

 

 

 

 56



3.3.5 PAR-2 activation reduces interaction with Jab1 

To evaluate whether activation of PAR-2 affects the interaction with Jab1, HEK293-

PAR-2-HA+Jab1myc cells were treated with 100 nM trypsin for 2 and 30 min in serum-free 

medium. The whole cell lysates were immunoprecipitated by anti-HA antibody, and the 

immunocomplex was detected by western blot analysis using the anti-myc antibody. As 

shown in Fig. 3.3.6 A, the co-immunoprecipitation of Jab1 was slightly reduced at 2 min 

stimulation, compared to that in unstimulated cells (0 min). However, very little Jab1 protein 

was co-immunoprecipitated by PAR-2-HA at 30 min after stimulation, indicating that the 

interaction of Jab1 with PAR-2 was disrupted. The membrane reprobed with HA antibody 

revealed the specificity of the co-immunoprecipitation. To rule out any unspecific proteolytic 

activity of trypsin and to determine the specific activation of PAR-2, we treated the cells with 

the specific PAR-2 peptide agonist PAR-2 AP (100 µM), which has been shown to 

specifically activate PAR-2 [17]. PAR-2 activation by PAR-2 AP similarly reduced the 

interaction between Jab1 and PAR-2 at 2 min and abolished it at 30 min after stimulation 

(Fig. 3.3.6 B). The time course was similar to that observed with trypsin stimulation (Fig. 

3.3.6 A). These data obviously demonstrate that PAR-2 interacts with Jab1 in an agonist-

dependent manner. 
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Fig. 3.3.6. Agonist-dependent dynamic interaction of Jab1 with PAR-2. HEK293-PAR-2-
HA+Jab1myc cells were treated with 100 nM trypsin (A) or 100 µM PAR-2 AP (B) for 0, 2 and 30
min in serum-free medium. The whole cell lysates from HEK293-PAR-2-HA+Jab1myc cells, as
well as wild-type HEK293 cells (negative control) and HEK293-Jab1myc cells (negative control)
were immunoprecipitated (IP) by anti-HA antibody in the presence of protein A Sepharose beads,
and the immunocomplex was detected by western blot (WB) using the anti-myc antibody. The
immunoprecipitation was further confirmed by reprobing with the anti-HA antibody. Experiments
were repeated at least three times with comparable results. The molecular mass marker is indicated
on the right. Note: Lower bands in the myc blot are unspecific staining by the myc antibody. 
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         The activated PAR-2 is rapidly internalized, and predominantly sorted into lysosomes 

for degradation [132]. To clarify whether the reduction of the interaction between Jab1 and 

PAR-2 results from protein dissociation or from PAR-2 degradation, we pretreated HEK293-

PAR-2-HA+Jab1myc cells for 30 min with the lysosomal protease inhibitor ZPAD (100 µM) 

[150] followed by 100 µM PAR-2 AP stimulation for another 30 min. As shown in Fig. 3.3.7 

A, also in this case PAR-2 AP stimulation significantly reduced the interaction of PAR-2 with 

Jab1. However, ZPAD did not block the reduction of the interaction induced by PAR-2 

activation. The data summarized in Fig. 3.3.7 B demonstrate that activation of PAR-2 induced 

a 64±2% loss of interaction of PAR-2 with Jab1 at 30 min after PAR-2 AP stimulation (p < 

0.001), and ZPAD had no significant effect on this reduction (p > 0.05). The inhibitory effect 

of ZPAD was confirmed, as shown in Fig. 3.3.7 C. Long-term stimulation (3 h and 5 h) by 

PAR-2 AP time-dependently led to PAR-2 degradation in the presence of the protein 

synthesis inhibitor cycloheximide (70 µM). This apparently was prevented by the lysosomal 

protease inhibitor ZPAD (100 µM). These results indicate that protein dissociation, but not 

PAR-2 degradation, leads to a loss of the interaction at 30 min after PAR-2 activation. 

On the other side, we treated cells for 15 min with the inhibitor of receptor endocytosis 

PAO (80 µM) [132] prior to PAR-2 AP stimulation. Interestingly, PAO partially inhibited the 

PAR-2-induced reduction of the interaction at 30 min (Fig, 3.3.7 D). The summarized data 

demonstrate that activation of PAR-2 led to only 33±3% loss of interaction of PAR-2 with 

Jab1 after the pretreatment with PAO, and the reduction of the interaction was much less than 

that induced by PAR-2 AP alone (p < 0.001, Fig, 3.3.7 E). Therefore, the dynamic interaction 

between PAR-2 and Jab1 is dependent on agonist stimulation and receptor endocytosis. 
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Fig. 3.3.7. Agonist-dependent reduction of interaction is prevented by the inhibitor of receptor
endocytosis PAO, but not by lysosomal protease inhibitor ZPAD. HEK293-PAR-2-HA+Jab1myc
cells were preincubated with 100 µM ZPAD for 30 min (A) or with 80 µM PAO for 15 min (D) prior
to a 30 min-PAR-2 AP stimulation (100 µM). The whole cell lysates were immunoprecipitated (IP)
by anti-HA antibody in the presence of protein A Sepharose beads, and the immunocomplex was
detected by western blot (WB) using the anti-myc antibody. (A and D). Representative blots from
three independent experiments. The molecular mass marker is indicated on the right. (B and E). The
signal for the interaction was quantitated by analyzing the density by Quantity One software (Bio-
Rad), and values were normalized to that in control cells. Mean ± SEM, ***p < 0.001, compared to
control; ###p < 0.001, compared to PAR-2 AP stimulation alone. (C). The inhibitory effect of ZPAD
on PAR-2 degradation. HEK293-PAR-2-HA cells were preincubated with cycloheximide (70 µM)
alone or together with ZPAD (100 µM) for 30 min, followed by PAR-2 AP stimulation for 3 h and 5
h. PAR-2-HA expression was determined by western blot analysis. Representative blots from three
independent experiments are given. β-tubulin I detection served as loading control. HEK, wild-type
HEK293 cells. The molecular mass marker is indicated on the right. 



3.3.6 The effect of PAR-2 activation on Jab1 distribution and expression   

We further studied the effect of PAR-2 activation on the distribution of endogenous 

Jab1 in HEK293-PAR-2-HA cells by immunofluorescence staining. As shown in Fig. 3.3.8, 

the endogenous Jab1 was localized in the cytosol and nucleus, as well as at the plasma 

membrane in unstimulated cells. After 10 min incubation with 100 nM trypsin or with 100 

µM PAR-2 AP, Jab1 was detected beneath the plasma membrane. After 30 min, Jab1 was 

accumulated in the cytosol and was not detected at the plasma membrane. Therefore, 

activation of PAR-2 induces the rapid redistribution of endogenous Jab1. 

 

 

 

 

 Fig. 3.3.8. The effect of PAR-2
agonists on the distribution of
endogenous Jab1 in HEK293-
PAR-2-HA cells. HEK293-
PAR-2-HA cells were treated
with 100 nM trypsin or with 100
µM PAR-2 AP for 0, 10 and 30
min in serum-free medium. The
endogenous Jab1 was stained
using the monoclonal antibody
against Jab1, and visualized with
the Alexa Fluor 488 goat anti-
mouse IgG by a confocal
microscope. Areas marked by a
square are enlarged and shown
on the right. The endogenous
Jab1 was translocated to beneath
the plasma membrane at 10 min
after PAR-2 agonist treatment,
and was redistributed to the
cytosol at 30 min. All images are
representative for three
independent experiments. Scale
bar, 10 µm. 
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We also examined whether Jab1 expression was upregulated by PAR-2 activation. 

HEK293-Jab1myc cells were treated with 100 nM trypsin for 0-120 min in serum-free 

medium. Western blot analysis using the anti-Jab1 antibody demonstrated that the transfected 

(upper bands) and endogenous (lower bands) Jab1 expression are both not influenced by 

PAR-2 activation. The membrane was reprobed with β-tubulin I to confirm the comparable 

loading for all lanes (Fig. 3.3.9). 

Trypsin   0         2          5        30      60      120  (min) 

Jab1 

β-tubulin I 50 kDa

37 kDa

Fig. 3.3.9. The effect of trypsin on Jab1 expression in HEK293-Jab1myc cells. HEK293-
Jab1myc cells were treated with 100 nM trypsin for 0-2 h in serum-free medium. Western blot
analysis showed that trypsin stimulation did not influence the Jab1 expression in HEK293-Jab1myc
cells. The upper bands represent the transfected Jab1myc protein, whereas the lower bands represent
the endogenous Jab1 protein. β-tubulin I served as loading control. Experiments were repeated three
times with identical results. The molecular mass marker is indicated on the right. 
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3.3.7 Jab1 mediates PAR-2-induced c-Jun activation 

Because Jab1 is known as a coactivator of c-Jun [167], here we studied whether 

activation of PAR-2 increases endogenous c-Jun phosphorylation in HEK293-Jab1myc cells. 

HEK293-Jab1myc cells and wild-type HEK293 cells were rinsed with Hank’s solution, and 

treated with 100 µM PAR-2 AP for 0-2 h in serum-free medium. As shown in Fig. 3.3.10 A 

and B, PAR-2 AP stimulation time-dependently increased c-Jun phosphorylation in HEK293-

Jab1myc cells. The peak was obtained at 5 min, then the phosphorylation decreased gradually 

during 30 min. Further studies demonstrated that the increase in c-Jun phosphorylation 

induced by PAR-2 activation was significantly higher at 10 min in HEK293-Jab1myc cells 

than that in wild-type HEK293 cells (p < 0.01, Fig. 3.3.10 C), although c-Jun was also 

activated by PAR-2 AP at 10 min in wild-type HEK293 cells (Fig. 3.3.10 A and C).  

Our recent observations demonstrated that activation of PAR-1 could significantly 

upregulate total c-Jun, besides c-Jun phosphorylation [110]. Therefore, here we investigated 

whether activation of PAR-2 could also regulate total c-Jun concentration via interaction with 

Jab1. As shown in Fig. 3.3.10 A, D and E, a similar pattern was observed. Total c-Jun was 

slightly increased in a time-dependent manner by PAR-2 AP (100 µM) stimulation in 

HEK293-Jab1myc cells, but not in wild-type HEK293 cells. Moreover, total c-Jun was 

significantly upregulated at 10 min upon PAR-2 activation in HEK293-Jab1myc cells, 

compared to that in wild-type HEK293 cells (p < 0.05). These results suggest that the 

interaction of PAR-2 with Jab1 results in activation of c-Jun. 
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Fig. 3.3.10. Jab1 mediates PAR-2-induced c-Jun activation. Wild-type HEK293 cells (HEKwt) and
HEK293-Jab1myc cells (HEK-Jab1) were treated with 100 µM PAR-2 AP for the indicated times in
serum-free medium. The c-Jun phosphorylation was determined by western blot analysis. (A).
Representative blots from three independent experiments. The molecular mass marker is indicated on
the right. (B-E). Data from three independent experiments were quantitated by Quantity One software
(Bio-Rad). Densities of phospho-c-Jun (P-c-Jun)/β-tubulin I and c-Jun/β-tubulin I were normalized to
the unstimulated HEKwt cells. Mean ± SEM, *p < 0.05; **p < 0.01; ###p < 0.001, compared to
unstimulated HEK-Jab1 cells. P-c-Jun and c-Jun were time-dependently increased upon 100 µM PAR-
2 AP stimulation in HEK-Jab1 cells. Moreover, the increase was significant in HEK-Jab1 cells,
compared to that in HEKwt cells at 10 min after PAR-2 AP stimulation. β-tubulin I served as loading
control. 
 64



3.3.8 Jab1 potentiates PAR-2-induced AP-1 activation  

The activated c-Jun translocates into the nucleus, and interacts with Fos and other Jun 

proteins to generate a dimer called the AP-1 complex. This AP-1 complex binds to a 

conserved DNA motif to regulate gene transcription and expression [115]. Therefore, here we 

studied whether activation of PAR-2 further regulated AP-1 activity via interaction with Jab1, 

by using an AP-1-driven CAT reporter gene. HEK293-Jab1myc cells and wild-type HEK293 

cells were transiently transfected with pBL AP-1-CAT2 plasmids as well as the negative 

control pBL CAT2 plasmids. We treated these cells for 48 h with 100 µM PAR-2 AP at 6 h 

after transfection. The CAT activity in cell lysates was measured by CAT ELISA. As shown 

in Fig. 3.3.11, PAR-2 AP stimulation significantly increased the CAT activity by 36% in 

HEK293-Jab1myc cells (p < 0.05; middle columns in Fig. 3.3.11), indicating that activation 

of PAR-2 increased the AP-1 activity in HEK293-Jab1myc cells. The CAT activity itself was 

not influenced by PAR-2 activation which was shown in cells transfected with control pBL 

CAT2 plasmid (p > 0.05). However, activation of PAR-2 stimulated by PAR-2 AP did not 

induce AP-1 activation in wild-type HEK293 cells (left columns in Fig. 3.3.11). Therefore, 

these results suggest the existence of a physiological interaction between PAR-2 and Jab1. 

We then asked whether AP-1 activity could be further upregulated in HEK293-Jab1myc cells 

transfected with PAR-2. As shown in the right columns in Fig. 3.3.11, the PAR-2-induced 

AP-1 activity was dramatically enhanced by 93% in HEK293-PAR-2-HA+Jab1myc cells (p < 

0.001). Taken together, these findings clearly demonstrate that Jab1 mediates PAR-2-induced 

activation of AP-1. 
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Fig. 3.3.11. Jab1 potentiates PAR-2-induced AP-1 activation. Wild-type HEK293 cells,
HEK293-Jab1myc cells, and HEK293-PAR-2-HA+Jab1myc cells, all transiently transfected with
either pBL AP-1-CAT2 plasmids or negative control pBL CAT2 plasmids, were treated with 100
µM PAR-2 AP for 48 h. The CAT activity in cell lysates was determined by CAT ELISA. The
relative CAT activity was normalized to the unstimulated control. *p < 0.05; ##p < 0.01; ***p < 0.001.
PAR-2 AP stimulation significantly increased the AP-1 activity in HEK293-Jab1myc cells. The AP-
1 activity was further strongly enhanced in HEK293-PAR-2-HA+Jab1myc cells upon PAR-2 AP
stimulation. 
 

 

To further confirm the specific function of Jab1 in PAR-2-induced AP-1 activation, we 

knocked down the endogenous Jab1 using Jab1 siRNA. Transfection of Jab1 siRNA (100 nM) 

significantly reduced the endogenous Jab1 expression at both mRNA and protein levels in 

HEK293-PAR-2-HA cells (Fig. 3.3.12 A and B). Scrambled siRNA did not affect Jab1 

expression (Fig. 12 A and B), confirming the specificity of Jab1 siRNA. Next, we transfected 

HEK293-PAR-2-HA cells with Jab1 siRNA, followed after 24 h by transfection with AP-1-

driven CAT reporter plasmid. As shown in Fig. 3.3.12 C, activation of PAR-2 by PAR-2 AP 

significantly enhanced AP-1 activity by 67% in HEK293-PAR-2-HA cells. This stimulation 

was blocked by Jab1 siRNA, but not affected by scrambled siRNA transfection.   

To determine the specificity of Jab1 in the PAR-2 signaling events, we stimulated 

HEK293-Jab1myc cells with the specific PAR-1 agonist TRag (10 µM) [74] to examine AP-1 

activity. Activation of PAR-1 failed to increase the AP-1 activity in HEK293-Jab1myc cells 

(data not shown). These results suggest that Jab1 is specifically involved in PAR-2-induced 

activation of AP-1. 
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 Fig. 3.3.12. Jab1 siRNA inhibits PAR-2-induced AP-1 activation. HEK293-PAR-2-HA cells
were transfected with either scrambled siRNA (control siRNA) or Jab1 siRNA. At 48 h after
transfection, Jab1 knockdown was determined by RT-PCR (A) and western blot analysis (B).
Representative data from three independent experiments are given. GAPDH served as an internal
control for PCR (A), and β-tubulin I served as loading control for western blot (B). The molecular
mass marker is indicated on the right. (C). Blockade of AP-1 activation by Jab1 siRNA in HEK293-
PAR-2-HA cells. Cells were transfected with either Jab1 siRNA (100 nM) or scrambled siRNA (100
nM), followed after 24 h by AP-1-driven CAT reporter plasmid transfection. Then cells were treated
with PAR-2 AP (100 µM) for 48 h. The CAT activity in cell lysates was determined by CAT
ELISA. The relative CAT activity was normalized to the unstimulated control. *p < 0.05; ***p <
0.001; ###p < 0.001. 
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Part IV. p24A binds to the intracellular PAR-2, and might regulate resensitization of 

PAR-2. 

The mammalian p24A was initially isolated from Golgi-derived coatomer-coated 

vesicles in CHO cells [176]. Human p24A was cloned later from a human brain cDNA 

library, by using the rat sequence as a probe [177]. Based on aa sequence homology, p24A 

belongs to coat protein (COP) I-coated vesicle membrane protein p24 family, which was 

supposed to act as cargo receptors and mediate protein trafficking between the ER and the 

Golgi apparatus and within the Golgi apparatus [176, 178-181].  

p24A is a type I transmembrane protein, which was shown to localize in membranes of 

the intermediate compartment and the cis-Golgi network, with a large N-terminus at the Golgi 

lumen and a highly conserved short cytoplasmic tail at the cytosol (Fig. 3.4.1) [177, 181, 

182]. The GOLD (Golgi dynamics) domain, which is found in several eukaryotic Golgi and 

lipid-traffic proteins, has been identified at the N-terminal lumen of p24A by computational 

sequence analysis [183], and is predicted to bind to cargo proteins. However, no specific 

cargo proteins have been demonstrated so far. The N-terminal lumen near the transmembrane 

domain contains the heptad repeats of hydrophobic residues suggestive of a capability to 

participate in coiled-coil interactions. This coiled-coil domain is likely to mediate the hetero- 

and homo-oligomeric complex formation within members of the p24 family [184, 185]. It has 

been shown that the cytoplasmic tail of p24A is able to bind to COPI and COPII subunits 

[179, 182, 186], ADP-ribosylation factor 1 (ARF1) [187], as well as Golgi matrix proteins 

[188]. Therefore, p24A might be involved in the vesicle biogenesis and subsequent cargo 

protein transport in the early secretory pathway [189].  

Interestingly, data from the Caenorhabditis elegans demonstrate that loss-of-function of 

p24A regulates the transport to the cell surface of mutant LIN-12 and GLP-1 that would 

otherwise accumulate within cells, suggesting that p24A functions as quality control in the 

early secretory pathway, and then p24A might not mediate cargo protein sorting directly 

[190]. Similar results were also observed in yeast cells that lack all members of the p24 

family [191]. p24 gene deletions do not cause a significant defect in protein transport in the 

early secretory pathway in yeast [191]. Therefore, the precise functions of p24A are still a 

puzzle. 
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Fig. 3.4.1. Schematic representation of p24A domains and localization. (A).  p24A
has a GOLD domain (orange) and a coiled-coil domain (green) at the large N-terminus,
a transmembrane domain (red), and a short C-terminal domain (blue). (B). p24A locates
at membranes of the intermediate compartment and the cis-Golgi network. The
oligomeric complex formation is mediated by the coiled-coil domain. The GOLD
domain at the Golgi lumen is predicted to bind to cargo proteins; whereas the C-
terminus that is exposed to the cytosol interacts with COPI and/or COPII (189). 
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3.4.1. PAR-2 interacts with p24A in vitro 

To confirm the finding in yeast, we tested the interaction of PAR-2 with p24A by in 

vitro GST pull-down assays. HEK293-p24Amyc cell lysates were incubated overnight with 

either purified GST or purified PAR-2-GST fusion proteins bound on glutathione-Sepharose 

beads. Western blot analysis using the anti-myc antibody demonstrated that p24A specifically 

interacted with the full-length PAR-2-GST fusion protein (Fig. 3.4.2 A, lane 3), but not with 

GST alone (Fig. 3.4.2 A, lane 2). Subsequent experiments revealed that p24A also interacted 

with both PAR-2∆(246-397)-GST (1- 245 aa of PAR-2, Fig. 3.4.2 A, lane 4) and PAR-2∆(1-

213)-GST (214-397 aa of PAR-2, Fig. 3.4.2 A, lane 5). Interestingly, their binding capacities 

were comparable to that of the full-length PAR-2-GST. Since p24A is an intracellular protein, 

it is generally thought that the intracellular loops and C-tail of the receptor would be required 

for the interaction. Therefore, we further tested the interaction of p24A with the intracellular 

loops and C-tail of PAR-2 in the GST pull-down assay. Interestingly, the intracellular loops 

and C-tail of PAR-2 failed to interact with p24A (Fig. 3.4.2 B). Instead, we found that the 

second extracellular loop of PAR-2 (EL2, 214-245 aa of PAR-2) strongly interacted with 

p24A (Fig. 3.4.2 C, lane 3). 

Next, we generated a series of truncated p24A-GFP fusion proteins in HEK293 cells 

(Fig. 3.4.3 A), to map the domain of p24A that is responsible for the interaction with PAR-2. 

The wild-type and truncated p24A-GFP fusion proteins in HEK293 cell lysates were 

incubated overnight with the full-length PAR-2-GST immobilized on glutathione-Sepharose 

beads in the GST pull-down assay. Western blot analysis using the anti-GFP antibody 

demonstrated that deletion of the N-terminal lumen of p24A (∆N) completely abolished the 

interaction with PAR-2-GST (Fig. 3.4.3 B, lane 8). However, C-terminal deletions (∆C, Fig. 

3.4.3 B, lane 9) and deletions of the transmembrane domain and C-terminal domain (∆CT, 

Fig. 3.4.3 B, lane 10) both efficiently interacted with PAR-2-GST. GFP alone served as 

negative control (Fig. 3.4.3 B, lane 6). These data strongly suggest that the N-terminus of 

p24A is required for the interaction with PAR-2. 

The GOLD domain located at the N-terminus of p24A is supposed to bind to cargo 

proteins [183]. Thus, we further tested whether the GOLD domain is involved in the 

interaction with PAR-2 in the GST pull-down assay. As expected, p24A∆GOLD-GFP (∆G) 

failed to interact with PAR-2 (Fig. 3.4.3 C, lane 10), suggesting that the GOLD domain is 

required for the interaction with PAR-2. However, the single GOLD domain (G) only weakly 

bound to PAR-2 (Fig. 3.4.3 C, lane 8). Therefore, the GOLD domain is necessary, but not 

sufficient to interact with PAR-2. Further experiments indicated that p24AGL-GFP (GL) 
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which contains the GOLD domain and a neighboring linker indeed strongly interacted with 

PAR-2 (Fig. 3.4.3 C, lane 9). These results clearly demonstrate that p24AGL (residues 1-125) 

is responsible for the interaction with PAR-2.  

Taken together, our data show that the N-terminal region of p24A (residues 1-125) 

specifically interacts with the second extracellular loop (EL2) of PAR-2. 
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Fig. 3.4.3. Domains of p24A required for the interaction with PAR-2 in vitro. (A). Schematic
representation of wild-type p24A-GFP (WT) and truncated p24A-GFP constructs. The position of
amino acids of p24A is noted below constructs. SP, signal peptide. GOLD, GOLD domain. L, the
linker between the GOLD domain and the coiled-coil domain. CC, coiled-coil domain. TM,
transmembrane domain. C, C-tail. (B-C). The whole cell lysates from HEK293 cells transfected with
different WT, truncated p24A-GFP or empty GFP plasmids were incubated overnight with the full-
length PAR-2-GST fusion protein immobilized on glutathione beads followed by western blot
analysis (WB) with the anti-GFP antibody. Experiments were repeated three times with identical
results. The molecular mass marker is indicated on the right. ∆N, p24A∆N-GFP; ∆C, p24A∆C-GFP;
∆CT, p24A∆CT-GFP; G/GOLD, p24AGOLD-GFP; GL, p24AGL-GFP; ∆G/∆GOLD,
p24A∆GOLD-GFP.  
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3.4.2. PAR-2 interacts with p24A in vivo 

We next performed the co-IP assay, to confirm the interaction of PAR-2 with p24A 

under physiological conditions. HEK293 cells co-expressing PAR-2-HA and p24Amyc were 

generated as cell model. The whole cell lysates were immunoprecipitated with anti-HA 

antibody, and the interaction of PAR-2-HA with p24Amyc was examined by western blot 

analysis using the anti-myc antibody. As shown in Fig. 3.4.4 A, p24A was specifically co-

immunoprecipitated by PAR-2-HA in HEK293-PAR-2-HA+p24Amyc cells (lane 6), but not 

in the negative control wild-type HEK293 cells (lane 4) and HEK293-p24Amyc cells (lane 5). 

The same lysates from the respective cells which were used for the IP experiment, served as 

control for the western blot (Fig. 3.4.4 A, lanes 1-3). The nitrocellulose membrane was 

reprobed with the anti-HA antibody to confirm the specificity of the co-immunoprecipitation 

of PAR-2-HA. These results suggest that p24A interacts with PAR-2 within cells. 

We found that p24A bound to PAR-2∆(1-213)-GST in the GST pull-down assay (Fig. 

3.4.2 A, lane 5). To further confirm this interaction in vivo, similar co-IP experiments were 

performed in HEK293-PAR-2∆(1-213)-HA+p24Amyc cells. Western blot analysis using the 

anti-myc antibody demonstrated that p24A was also immunoprecipitated by anti-HA antibody 

in HEK293-PAR-2∆(1-213)-HA+p24Amyc cells (Fig. 3.4.4 B, lane 6), but not in the negative 

control wild-type HEK293 cells (Fig. 3.4.4 B, lane 4) and HEK293-p24Amyc cells (Fig. 3.4.4 

B, lane 5), suggesting that PAR-2∆(1-213) was involved in the interaction with p24A within 

cells. 
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Next, we asked whether the interaction of PAR-2 with p24A could occur in a relevant 

physiological system and whether this interaction was species-specific. We performed 

immunoprecipitation experiments with anti-p24A antibody in rat primary astrocytes, and the 

interaction between PAR-2 and p24A was determined by western blot using anti-PAR-2 

antibody. As shown in Fig. 3.4.5, the anti-p24A antibody strongly immunoprecipitated PAR-2 

from rat astrocytes (lane 2), whereas the control antibody (IgG) did not (lane 1). 

Immunoprecipitation by anti-PAR-2 antibody from rat astrocyte lysates served as control 

(Fig. 3.4.5, lane 3). These results indicate that there is endogenous interaction between PAR-2 

and p24A in the native system. Moreover, this interaction is not restricted to human proteins. 
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3.4.3 Colocalization of PAR-2 with p24A in vivo 

We next examined whether the interaction of p24A with PAR-2 is reflected by 

colocalization of the two proteins in vivo using double immunofluorescence staining. 

HEK293-PAR-2-HA+p24Amyc cells were stained with anti-HA antibody to detect PAR-2-

HA and with anti-myc antibody to detect p24Amyc. As shown in Fig. 3.4.6 A, p24Amyc was 

distributed beneath the plasma membrane and mainly accumulated in the cytosol. On the 

other side, PAR-2-HA was predominantly localized at the plasma membrane and in 

intracellular stores in HEK293-PAR-2-HA+p24Amyc cells (Fig. 3.4.6 B). From the merge in 

Figure 3.4.6 C, we found that p24A predominantly colocalizes with the intracellular PAR-2, 

but not with the cell surface receptor in unstimulated cells. In parallel, we co-stained wild-

type HEK293 cells as negative control (Fig. 3.4.6 D-F).  
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It has been known that the intracellular PAR-2 locates at the Golgi stores [132]. p24A is 

also shown to be a Golgi protein [181]. To test whether the colocalization of PAR-2 with 

p24A occurs at the Golgi apparatus, HEK293-PAR-2-HA cells were transiently transfected 

with pEGFP-p24A plasmids. At 24 h after transfection, cells were fixed, and co-stained with 

the anti-HA antibody and the anti-GM130 antibody, a Golgi apparatus marker. As shown in 

Fig. 3.4.7 A-C, the intracellular PAR-2 predominantly colocalized with the Golgi marker 

GM130, suggesting that the intracellular PAR-2 stores are present at the Golgi apparatus. We 

further found that p24A in p24A-GFP-overexpressing HEK293-PAR-2-HA cells strongly 

colocalized with the intracellular PAR-2, as well as with the GM130 (Fig. 3.4.7 E). Cells 

without staining of primary antibodies served as negative control (Fig. 3.4.7 F). Therefore, 

these data clearly indicate that PAR-2 interacts with p24A at the Golgi apparatus. 
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3.4.4 PAR-2 interacts with p23, another member of the p24 family 

The mammalian p24 family is divided into p25 (α), p24A (β), p23 (γ) and p26 (δ) 

subfamilies [182]. It is well known that p24A and p23 form a hetero-oligomer. Interaction is 

mediated by the coiled-coil domain at the N-terminal lumen [184, 185, 192]. Therefore, here 

we also investigated the interaction of PAR-2 with p23 by co-IP. The whole cell lysates from 

HEK293-PAR-2-HA+p23myc cells were immunoprecipitated with anti-HA antibody, and the 

interaction of PAR-2-HA with p23myc was examined by western blot analysis using the anti-

myc antibody. As shown in Fig. 3.4.8, p23 was specifically co-immunoprecipitated by PAR-

2-HA in HEK293-PAR-2-HA+p23myc cells (lane 6), but not in the negative control wild-

type HEK293 cells (lane 4) and HEK293-p23myc cells (lane 5). The same lysates from the 

respective cells which were used for the IP experiment, served as control for the western blot 

(Fig. 3.4.8, lanes 1-3). The nitrocellulose membrane was reprobed with the anti-HA antibody 

to confirm the specificity of the co-immunoprecipitation of PAR-2-HA. These results suggest 

that PAR-2 interacts with p23 within cells. 
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3.4.5 p24A interacts with further receptors: PAR-1 and P2Y1 receptor 

Since PAR-1 and PAR-2 both belong to the PAR family, and they share similar 

structure and functions [21], it is of interest to test whether PAR-1 is also capable of 

interacting with p24A. To this end, we generated a stable HEK293 cell line co-expressing 

PAR-1-HA and p24Amyc. The interaction between PAR-1-HA and p24Amyc within cells 

was determined by co-IP. As shown in Fig. 3.4.9, p24Amyc was strongly immunoprecipitated 

by PAR-1-HA with the anti-HA antibody (lane 3), but not by the control antibody (IgG, lane 

2) in HEK293-PAR-1-HA+p24Amyc cells. The nitrocellulose membrane was reprobed with 

the anti-HA antibody to confirm the specificity of the co-immunoprecipitation of PAR-1-HA. 

These data clearly reveal that PAR-1 also interacts with p24A within cells. 
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were repeated at least three times
with identical results. The
molecular mass marker is
indicated on the right.  
1          2           3       
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PARs belong to the class I family of the GPCR [193]. To know whether other GPCRs 

within the class I family can also interact with p24A, we tested the possible interaction of 

p24A with a purinergic receptor, the P2Y1 receptor (P2Y1R). To this aim, HEK293 cells were 

transiently co-transfected with pEGFP-P2Y1R and pcDNA-p24Amyc plasmids. At 24 h after 

transfection, the whole cell lysates were immunoprecipitated with the anti-GFP antibody, and 

the interaction of P2Y1-GFP receptor with p24Amyc was examined by western blot analysis 

using the anti-myc antibody. In parallel, HEK293-GFP+p24Amyc cells were also generated, 

as negative control. As shown in Fig. 3.4.10, the GFP antibody specifically 

immunoprecipitated p24Amyc in HEK293-P2Y1R-GFP+p24Amyc cells, but not in HEK293-

GFP+p24Amyc cells, suggesting that the P2Y1 receptor also interacts with p24A within cells. 
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Fig. 3.4.10. Interaction of P2Y1 receptor with p24A in vivo. HEK293 cells were transiently  co-
transfected with pEGFP-P2Y1 and pcDNA-p24Amyc plasmids or with pEGFP and pcDNA-
p24Amyc plasmids for 24 h. The whole cell lysates from HEK293-P2Y1R-GFP+p24Amyc cells,
as well as from HEK293-GFP+p24Amyc cells were immunoprecipitated (IP) by anti-GFP
antibody in the presence of protein A Sepharose beads, and the immunocomplex was detected by
western blot (WB) using the anti-myc antibody. A representative blot from three independent
experiments is given. The molecular mass marker is indicated on the right.  
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3.4.6 PAR-2 activation disrupts the interaction with p24A and p23 

To evaluate whether activation of PAR-2 affects the interaction with p24A, HEK293-

PAR-2-HA+p24Amyc cells were treated with the specific PAR-2 agonist PAR-2 AP (100 

µM) for 30 and 60 min in serum-free medium. The whole cell lysates were 

immunoprecipitated by anti-HA antibody, and the immunocomplex was detected by western 

blot analysis using the anti-myc antibody. As shown in Fig. 3.4.11 A, the co-

immunoprecipitation of p24A was significantly reduced at 30 min after stimulation with 

PAR-2 AP, compared to that in unstimulated cells (0 min). The reduction in interaction was 

also observed at 60 min after receptor activation (Fig. 3.4.11 A). The summarized data in Fig. 

3.4.11 B demonstrate that activation of PAR-2 significantly reduced the interaction with 

p24A. It was decreased by 64% at 30 min, and by 57% at 60 min, respectively (Fig. 3.4.11 B). 

The membrane reprobed with anti-HA antibody revealed the specificity of the co-

immunoprecipitation. Similar results were also observed in trypsin-treated HEK293-PAR-2-

HA+p24Amyc cells (data not shown). Therefore, these data indicate that the interaction of 

p24A with PAR-2 is disrupted by receptor activation. 

Next, we also tested the effect of PAR-2 activation on the interaction between PAR-2 

and p23. HEK293-PAR-2-HA+p23myc cells were treated with the specific PAR-2 agonist 

PAR-2 AP (100 µM) for 30 and 60 min in serum-free medium, and the whole cell lysates 

were used for co-IP. Interestingly, activation of PAR-2 resulted in the reduction of interaction 

with p23 by 26% at 30 min (Fig. 3.4.11 C and D). However, p23 was dramatically dissociated 

from PAR-2 by 65% at 60 min after stimulation with PAR-2 AP (Fig. 3.4.11 C and D). The 

membrane reprobed with anti-HA antibody revealed the specificity of the co-

immunoprecipitation. Therefore, activation of PAR-2 also reduces the interaction with p23, 

but in a different pattern. 
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Fig. 3.4.11. Agonist-dependent dynamic interaction of PAR-2 with p24A and p23. HEK293-
PAR-2-HA+p24Amyc cells (A and B) and HEK293-PAR-2-HA+p23myc cells (C and D) were
treated with 100 µM PAR-2 AP for 0, 30 and 60 min in serum-free medium. (A and C). The whole
cell lysates were immunoprecipitated (IP) by anti-HA antibody or control antibody (IgG) in the
presence of protein A Sepharose beads, and the immunocomplex was detected by western blot (WB)
using the anti-myc antibody. The immunoprecipitation was further confirmed by reprobing with the
anti-HA antibody. Typical blots from three independent experiments are shown. The molecular mass
marker is indicated on the right. (B and D). The intensity of the interaction was quantitated by
Quantity One software (Bio-Rad), and the values were normalized to that in control cells (0 min).
Mean ± SEM, **p < 0.01, ***p < 0.001, compared to control. 
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We then asked mechanisms underlying protein dissociation of p24A from PAR-2 after 

receptor activation. HEK293-PAR-2-HA+p24Amyc cells were pretreated with brefeldin A, 

followed by human PAR-2 AP stimulation. As shown by co-IP in Fig. 3.4.12, we found that 

brefeldin A completely prevented protein dissociation of p24A from PAR-2 after PAR-2 

activation, both at 30 and 60 min. 

The intracellular PAR-2 would be triggered to be sorted to the plasma membrane for 

resensitization, once the cell surface receptor is activated and internalized. Brefeldin A has 

been previously shown to inhibit PAR-2 resensitization [132]. Therefore, our data suggest that 

protein dissociation between PAR-2 and p24A might be required for PAR-2 resensitization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4.12. The inhibitory
effect of brefeldin A on protein
dissociation. (A). HEK293-
PAR-2-HA+p24Amyc cells were
pretreated with 10 µg/ml
brefeldin A for 30 min, followed
by 100 µM PAR-2 AP
stimulation for another 30 and 60
min in serum-free medium. The
control cells were treated with
vehicle (Veh, ethanol). The
whole cell lysates were
immunoprecipitated (IP) by anti-
HA antibody or control antibody
(IgG) in the presence of protein
A Sepharose beads, and the
immunocomplex was detected by
western blot (WB) using the anti-
myc antibody. The
immunoprecipitation was further
confirmed by reprobing with the
anti-HA antibody. Typical blots
from three independent
experiments are given. The
molecular mass marker is
indicated on the right. (B). The
intensity of the interaction was
quantitated by Quantity One
software (Bio-Rad), and the
values were normalized to that in
control cells (0 min). Mean ±
SEM. 
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4. DISCUSSION 

4.1 General background and scenario for assessing the significance of the present 

findings 

It is well accepted that protein–protein interactions play crucial roles not only in 

structural but also in the functional organization of the cell. The formation of cellular 

structures such as the cytoskeleton, the nuclear scaffold and the 26S proteasome results from 

multiple protein-protein interactions. Protein–protein interactions also regulate signalling 

within cells. Kinases, phosphatases and transferases bind to their protein substrates to exert 

the enzymatic function. Protein scaffolds and adaptors interact with kinases, or with activated 

membrane receptors to transmit signals. Furthermore, the protein interaction has been shown 

to be a key determinant to initiate the transcriptional and translational machineries. Therefore, 

uncovering of protein interactions often sheds light on molecular mechanisms underlying 

biological processes. Since the completion of the human genome project enables us to predict 

novel proteins, it is of special interest to discover the biological functions of such proteins in 

nature. For such novel proteins, interactions with known proteins serve as invaluable clues to 

their biological roles. On the other hand, the study of protein-protein interactions could also 

give insight into functions of known proteins. 

PAR-2, a seven-transmembrane domain GPCR, was identified as the second member of 

the PAR family in 1994. Accumulating evidence has demonstrated that PAR-2 relays signals 

from extracellular serine proteases trypsin, tryptase and others to intracellular targets, and 

exerts important physiological and pathological functions in multiple systems. Studies on the 

biochemical properties of PAR-2 have demonstrated that PAR-2, upon activation, is rapidly 

desensitized. At the same time, the activated receptors are recruited to clathrin-coated pits for 

internalization, like the classic GPCRs. However, the internalized PAR-2 is predominantly 

sorted into lysosomes where it is degraded by lysosomal proteases. Therefore, cellular 

receptor resensitization depends on the intracellular presynthesized PAR-2 that is stored at the 

Golgi apparatus and the newly synthesized receptor.  

In the present study, we identified 12 candidate interacting partner proteins of the 

human PAR-2 by the yeast two-hybrid screening. These PAR-2 partner proteins range from 

cell surface proteins to intracellular proteins, functioning differently in protein degradation, 

protein transport, gene expression, apoptosis, and cell growth. For some partner proteins, such 

as p24A, COP9S4, and HUEL, the biological functions are largely unclear so far. Therefore, 

our data would provide important clues to investigate PAR-2 properties and functions. As a 

result, we could improve understanding of receptor functions.  
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Most importantly, in the part III of results, we demonstrate that one of the partners, 

Jab1, was confirmed to interact with the PAR-2 within cells. We further found that Jab1 

regulated PAR-2-mediated activation of AP-1 via interaction with the plasma membrane 

receptor under physiological conditions. In the part IV of results, we show the interaction of 

PAR-2 with p24A in vitro and in vivo. Our functional studies imply that p24A regulates 

resensitization of PAR-2. 

 

4.2 Jab1 as a signal messenger mediates the signalling of extracellular proteases trypsin, 

tryptase and others to the nucleus 

Here, we for the first time show that Jab1 directly interacts with the human PAR-2 and 

potentiates PAR-2-induced c-Jun/AP-1 activation. GST pull-down findings clearly 

demonstrate that Jab1 mainly bound to the intracellular loop 3 and the C-tail of PAR-2. 

However, the isolated intracellular loop 3 alone and the PAR-2 C-tail alone both weakly 

interacted with Jab1. This indicates that several domains of PAR-2 are required to promote a 

synergistic interaction with Jab1. The intracellular loops and the C-tail of PAR-2 are essential 

for the interaction with heterotrimeric G proteins and other signal effectors [40, 101-103], as 

well as for receptor desensitization, internalization and degradation [39, 132, 150], which lead 

to initiation or termination of PAR-2-mediated signal transduction. Therefore, Jab1 may be an 

important signal effector to mediate PAR-2-induced signal transduction. Several reports 

already demonstrated that the MPN (Mpr1p and Pad1p N-terminal) domain (aa 54-190), the 

conserved functional domain of Jab1, mediated the interaction of Jab1 with DNA 

topoisomerase IIα [194], or with macrophage migration inhibitory factor (MIF) [195]. In our 

work, the truncated Jab1 proteins isolated from yeast (aa 31-334 and aa 49-334) include this 

MPN domain, suggesting that the MPN domain might be responsible for the interaction 

between Jab1 and PAR-2.  

Here, we found that only a part of the amount of Jab1 present in cells interacts with 

PAR-2. To date, apart from the interaction with other subunits of the COP9 signalosome 

[170], many diverse proteins were found to interact with Jab1, e.g., c-Jun, HIF-1 α, 

progesterone receptor, SRC-1, Bcl-3, p27Kip1, MIF, LFA-1, p53, Smad4 and Smad7 [167, 

169, 171-174, 196, 197]. Therefore, PAR-2 might bind to Jab1 competitively with other Jab1-

interacting partners. 

The activated PAR-2 is rapidly internalized, translocated to endosomes, and then 

predominantly sorted into lysosomes. Our data and others [139] demonstrated that the 

internalized PAR-2 was localized in endosomes, and partially in lysosomes at 30 min after 
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agonist stimulation. Here, we found that PAR-2 was almost completely dissociated from Jab1 

at this time. However, the lysosomal protease inhibitor ZPAD did not prevent protein 

dissociation of PAR-2 from Jab1. In contrast, the inhibitor of receptor endocytosis PAO 

clearly inhibited the reduction of protein interaction. Furthermore, immunofluorescence 

staining studies demonstrated that Jab1 was redistributed from the plasma membrane to the 

cytosol after PAR-2 activation. Therefore, our data support a model, which is given in Fig. 

4.1. Jab1 constitutively interacts with PAR-2 in the steady state (Fig. 4.1 A). After PAR-2 

activation, the receptor is internalized, which promotes dissociation of Jab1 from PAR-2 (Fig. 

4.1 B-C). The internalized receptor is translocated to early endosomes, where Jab1 is 

completely dissociated from PAR-2 (Fig. 4.1 D). Subsequently, PAR-2 is further sorted into 

lysosomes for degradation. On the other hand, the dissociated Jab1 acting as a signal 

messenger mediates the PAR-2 signaling to activate downstream factors (Fig. 4.1 E).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Model for Jab1-mediated signaling pathway for PAR-2. Jab1 constitutively interacts
with PAR-2 in the steady state (A). After PAR-2 activation, the receptor is phosphorylated, and
internalized in a clathrin-dependent manner, which promotes dissociation of Jab1 from PAR-2 (B
and C). The internalized receptor is translocated to early endosomes, where Jab1 is completely
dissociated from PAR-2 (D). Subsequently, PAR-2 is further sorted into lysosomes for degradation.
On the other hand, the dissociated Jab1 binds to c-Jun and thereby activates it (E). The activated c-
Jun then translocates to the nucleus, and binds to AP-1 motif to initiate gene expression. 
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         Furthermore, we found that activation of PAR-2 induced c-Jun phosphorylation, and 

subsequently activated the transcription factor AP-1. Importantly, here we provide new 

insights that Jab1, as a protein partner of PAR-2, mediated PAR-2-induced c-Jun/AP-1 

activation. It is well known that JNK as a major protein kinase mediates c-Jun 

phosphorylation [113]. Previous work already demonstrated that tryptase, acting on PAR-2, 

induced IL-6 and IL-8 release by activation of MAPK/AP-1 in human peripheral blood 

eosinophils, which may result in inflammatory responses [124]. Recently, it has been shown 

that Jab1 is also able to phosphorylate c-Jun and to increase AP-1 activation [167, 197]. Jab1 

is the fifth subunit of the COP9 signalosome, and all eight subunits of the COP9 signalosome 

form a complex to exert the biological functions in mammals [169]. It was reported that the 

COP9 signalosome possesses the protein kinase activity, which is able to phosphorylate c-Jun, 

IκBα, and p105 [198]. In addition, other studies also demonstrated that the COP9 

signalosome associates with protein kinase CK2 and protein kinase D, which phosphorylate c-

Jun and p53 [199]. However, COP9 signalosome-induced c-Jun phosphorylation is 

independent of JNK [200]. Therefore, our data here demonstrate that Jab1-induced c-Jun/AP-

1 activation might be a novel alternative signal transduction pathway for PAR-2, suggesting 

that Jab1 regulates the signalling of extracellular proteases trypsin, tryptase and others to the 

nucleus.  

Loss-of-function studies using specific Jab1 siRNA confirmed that Jab1 was involved in 

this novel signalling transduction pathway. This pathway put forward by us here might 

explain mechanisms of gene regulation by proteases, neurotransmitters or hormones through 

their cognate GPCRs. 

Interestingly, a previous report has shown that Jab1 is able to interact with an 

intracellular membrane protein, the precursor of lutropin/choriogonadotropin receptor (LHR), 

but not with the mature cell surface LHR [201]. That study further found that Jab1 failed to 

potentiate the activity of AP-1 in the presence of overexpressed LHR. The explanation given 

by the authors was that the precursor of LHR competitively interacts with Jab1 to prevent the 

binding of c-Jun to Jab1. The precursor of LHR is different from the mature receptor, and it is 

impossible for the precursor of LHR to interact with receptor ligands and to further exert the 

physiological actions, as does the mature LHR [202]. Therefore, it is not surprising that Jab1 

functions differently in both cases interaction with PAR-2 on the one side and with LHR 

precursor on the other side.  

Here, the reporter gene assay demonstrated that Jab1 specifically potentiated PAR-2-

induced AP-1 activation. However, Jab1 failed to increase AP-1 activity induced by the PAR-
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1 agonist TRag, although it has been reported that thrombin, through PAR-1, could induce 

AP-1-mediated gene expression in 1321N1 astrocytoma cells [116]. Therefore, other 

effectors, rather than Jab1, are involved in PAR-1-induced gene expression mediated by 

activated AP-1. 

It is well known that PAR-2 is involved in inflammatory processes, since the proteases 

tryptase and trypsin are released during inflammation [203, 204], and PAR-2 expression is 

upregulated upon stimulation by some proinflammatory factors [205]. Moreover, PAR-2 

agonists caused an increase in IL-1β, IL-6, IL-8, nitric oxide, prostaglandin E2, matrix 

metalloproteinase-9, and tumor necrosis factor-α (TNF-α) productions in vivo and in vitro, 

which mediate the inflammatory reactions [55, 124, 206, 207]. It has been reported that AP-1 

regulates the gene transcription and expression of several proinflammatory factors, such as 

IL-1β, IL-6, IL-8, and TNF-α [208]. Therefore, our findings imply that Jab1 might mediate 

PAR-2-dependent inflammatory responses by regulating the release of proinflammatory 

factors. 

 

4.3 p24A interacts with intracellular PAR-2: possible functions of p24A-PAR-2 

interaction 

Here, we identified the interaction of PAR-2 with p24A, by using different biochemical 

and cell biological methods. This is the first report that PAR-2 directly interacts with vesicle 

proteins. We have discovered that several intracellular domains of PAR-2 were responsible 

for the interaction with Jab1. However, here we found that the intracellular loops, C-tail and 

transmembrane domains of PAR-2 failed to interact with p24A. Instead, we observed a strong 

interaction between the second extracellular loop of PAR-2 and p24A in the GST pull-down 

assay. Data from immunostaining demonstrated that p24A colocalized with the intracellular 

PAR-2 at the Golgi stores, but not with the cell surface receptor. Therefore, these findings 

strongly support our in vitro binding data showing that p24A specifically interacts with the 

second extracellular loop of PAR-2. 

By computational sequence analysis, it was found that the N-terminal lumenal region of 

p24A contains a GOLD domain that was postulated to interact with cargo proteins [183]. 

However, our mutagenesis studies clearly revealed that the aa sequence 1-125 of p24A was 

required for the interaction with PAR-2. The GOLD domain is necessary, but not sufficient to 

interact with PAR-2.  

Altogether, our findings concerning p24A protein clearly demonstrated that p24A, via 

its N-terminus, interacts with the second extracellular loop of PAR-2 at the lumen of the 
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Golgi apparatus. The second extracellular loop of PAR-2 is critical for receptor activation, 

since the tethered ligand domain at the extracellular N-terminus of the receptor binds 

intramolecularly to the second extracellular loop to activate the receptor. Therefore, our data 

suggest that novel receptor agonists or antagonists could be developed based on the N-

terminal aa sequence of p24A. 

It has been demonstrated that the short conserved C-tail of p24A binds to COPI and 

COPII [179, 182, 186]. COPI and COPII are involved in bi-directional protein transport 

between the Golgi apparatus and the ER and within the Golgi network [209]. Therefore, p24A 

was suggested, as the cargo receptor, to mediate protein transport in the early secretory 

pathway [189]. However, no specific cargo proteins have been found so far. Significantly, 

here we discovered PAR-2 as the first cargo protein of the p24A. In addition, we reported that 

PAR-1 and P2Y1 receptor also specifically interacted with p24A. One possible hypothesis is 

that these three receptors interact with each other, since most GPCRs exist as homo- or 

hetero-dimers [210]. By aa sequence analysis [211], we found that the second extracellular 

loop of PAR-1 has very high homology (~64%) with that of PAR-2 (Fig. 4.2). A significantly 

homologous extracellular loop 2 is also present in the P2Y1 receptor (~27%, Fig. 4.2). 

Therefore, the second extracellular loop of these receptors would be a general binding motif 

for p24A, and such receptors that contain a domain homologous to the second extracellular 

loop of PAR-2 might be cargo proteins specifically that are selected by p24A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. The aa sequence alignment of PAR-1, PAR-2 and P2Y1 receptor. The alignment is
performed by multalin on the Internet (http://prodes.toulouse.inra.fr/multalin/multalin.html). The
consensus sequence is also shown. The second extracellular loop of receptors is marked by the green
box. Red color indicates that the aa is highly conserved, whereas blue color indicates that the aa is low
conserved. 
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We have shown that Jab1 interacted with PAR-2, and relayed PAR-2 signalling to the c-

Jun/AP-1 complex, which could further regulate gene expression [125]. Therefore, Jab1 

regulates functions of the PAR-2 at the plasma membrane, although Jab1 also interacts with 

the intracellular PAR-2. On the other side, we found that p24A interacted with the 

intracellular PAR-2 only, but not with the plasma membrane receptor, indicating that p24A 

mainly regulates functions of the intracellular PAR-2 at the Golgi apparatus. Furthermore, we 

distinguished the PAR-2 domain that is responsible for the interaction with both Jab1 and 

p24A. Several intracellular domains of PAR-2 were involved in the interaction with Jab1 

[125]. In contrast, p24A specially bound to the second extracellular loop of PAR-2, but not to 

intracellular domains. This difference in interaction domain implies that both Jab1 and p24A 

have equal chances to interact with the same intracellular PAR-2 in the cytosol. 

We furthermore found that PAR-2 also associated with the member of p24 family p23, 

besides p24A. Interestingly, p24A and p23 display a different pattern in the interaction with 

PAR-2 after PAR-2 activation. Activation of PAR-2 dramatically dissociated p24A from 

PAR-2 both at 30 min and 60 min. In contrast, p23 still strongly interacted with PAR-2 at 30 

min after PAR-2 activation, but was dissociated from PAR-2 at 60 min. It has been shown 

that PAR-2 was completely resensitized at 30-60 min after agonist stimulation [132]. 

Moreover, the intracellular presynthesized PAR-2 contributes to receptor resensitization 

[132]. Therefore, our data suggest that the dissociation between PAR-2 and p24A enables the 

intracellular PAR-2 sorting to the plasma membrane. Based on our findings above, we 

speculate that both p23 and p24A trap PAR-2 at the Golgi apparatus in unstimulated cells, to 

exclude the receptor from transport vesicles that are operated in the secretory pathway. As a 

result, the intracellular PAR-2 pool is formed at the Golgi apparatus, as depicted in Figure 

4.3. Upon PAR-2 activation, p24A loses its ability to interact with the intracellular PAR-2 at 

the Golgi apparatus. This facilitates PAR-2 to be incorporated into transport vesicles. Then 

PAR-2 can be further sorted to the plasma membrane for resensitization (Fig. 4.3). On the 

other side, p23 is synergistically incorporated into transport vesicles with PAR-2. However, 

p23 seems to dissociate from PAR-2 after the receptor is fused to the plasma membrane. 

Interestingly, we found that brefeldin A completely prevented the protein dissociation 

between PAR-2 and p24A induced by PAR-2 AP. Previous data have shown that brefeldin A 

is able to attenuate resensitization of PAR-2 [132]. Therefore, these data support our 

hypothesis that p24A and p23 regulate the post-Golgi transport of PAR-2. It is also known 

that brefeldin A is an inhibitor of the guanine nucleotide exchange factors (GEFs) specific for 

ARF1, and can prevent ARF1 activation within cells [212]. Thus, our finding also suggests 
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that ARF1 might regulate the interaction of PAR-2 with p24A. Recently, it has been shown 

that p23, possibly p24A as well, recruit inactive ARF1-GDP to the Golgi membrane, which is 

a pre-requisite for conversion of ARF1-GDP to ARF1-GTP catalyzed by the GEF [213]. On 

the other side, the activated ARF1-GTP is likely to induce the dissociation of p23 from p24A 

[214], which are present as hetero-oligomeric complexes in resting conditions, essential for 

correct localization and stability [185, 192, 215]. Eventually, the homo-oligomeric complex 

of p23 or p24A is generated to assist the vesicle assembly and budding [189, 213, 214]. 

Therefore, we hypothesize that activation of PAR-2 leads to ARF1 activation, which in turn 

disrupts the interaction of p23 with p24A. As a consequence, the intracellular PAR-2 is 

released from p24A, and sorted to the plasma membrane for resensitization under the 

assistance of p23 (Fig. 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.3. The hypothesis for p23 and p24A functions in the PAR-2 signalling. Both p23 and
p24A trap PAR-2 at the Golgi apparatus, to exclude it from transport vesicles in unstimulated
cells. As a result, the intracellular PAR-2 pool is formed at the Golgi apparatus. Upon PAR-2
activation, ARF1 is recruited to the Golgi membrane and activated by the GEF, which results in
the dissociation of p23 from p24A. Subsequently, the intracellular PAR-2 is released from p24A,
and sorted to the plasma membrane for resensitization under the assistance of p23. 

 

 

 

 

 

4.4 Conclusion 

Here, we identified 12 interacting partner proteins of the human PAR-2 by the yeast 

two-hybrid screening. These PAR-2 partner proteins regulate diverse biological functions 

within cells, such as protein degradation, protein transport, gene expression, apoptosis, and 

cell growth. For some partner proteins such as p24A, COP9S4, and HUEL, the biological 
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functions are largely unclear so far. Therefore, these findings suggest many novel aspects of 

PAR-2 properties and functions. 

Importantly, we confirmed that Jab1 physically interacts with human PAR-2 in the 

native system. Moreover, several intracellular domains of PAR-2 are required for the 

interaction with Jab1. Activation of PAR-2 induces the redistribution of Jab1 from the plasma 

membrane to the cytosol. Meanwhile, the internalization of the activated receptor promotes 

the dissociation of PAR-2 from Jab1. As a result, PAR-2 and Jab1 are finally dissociated in 

the endosomes. Upon PAR-2 activation, Jab1 acting as a signal messenger potentiates PAR-2-

induced c-Jun/AP-1 activation, which might mediate the release of proinflammatory factors 

and trigger PAR-2-dependent inflammatory responses (Fig. 4.1). These data demonstrate a 

novel alternative signal transduction pathway for PAR-2-dependent gene expression [125]. 

In the next part, we for the first time report that PAR-2 physically interacts with the 

coated-vesicle protein p24A. In vitro biochemical binding data and in vivo immunostaining 

studies clearly reveal that the aa sequence 1-125 of p24A at its N-terminus binds to the second 

extracellular loop of the intracellular PAR-2 at the Golgi apparatus. We also observed a 

comparable interaction between PAR-2 and p23, another member of the p24 family. 

Interestingly, activation of PAR-2 dramatically dissociates p24A from PAR-2 at the time, 

when the intracellular receptor is sorted to the plasma membrane for resensitization. The 

dissociation is completely prevented by the GEF inhibitor brefeldin A, which has been known 

to attenuate resensitization of PAR-2. In contrast, p23 is dissociated from PAR-2 at 60 min 

after agonist stimulation, when PAR-2 is already completely resensitized. Therefore, we 

speculate that both p23 and p24A trap the PAR-2 at the Golgi apparatus. This interaction is 

essential for the formation of the intracellular PAR-2 pool. Upon PAR-2 activation, p24A 

releases the trapped receptors and further regulates receptor resensitization. On the other side, 

p23 assists PAR-2 sorting to the plasma membrane (Fig. 4.3). This model has wide 

implications for GPCR physiology. It could possibly also explain the molecular mechanism 

underlying post-Golgi sorting of PAR-1 and P2Y1 receptor, as well as other GPCRs, since we 

found that both PAR-1 and P2Y1 receptor strongly interact with p24A. 
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5. ABSTRACT 

5.1 Search for novel signalling proteins interacting with PAR-2 

Protease-activated receptor-2 (PAR-2), a seven-transmembrane domain G protein-

coupled receptor (GPCR), relays signals from extracellular serine proteases, like trypsin, 

tryptase and others, to intracellular targets. PAR-2 has been shown to exert important 

physiological and pathological functions in multiple systems. However, the role of PAR-2 in 

the central nervous system (CNS) is largely unknown. The PAR-2-mediated intracellular 

signal transduction pathways are also not yet understood. To improve our understanding of 

PAR-2 functions in the CNS, we used full-length human PAR-2 as bait to search for PAR-2-

interacting partner proteins in the yeast two-hybrid system. We screened 1.6 × 106 clones of a 

human brain cDNA library. From there, 308 colonies were found positive for the selection 

markers histidine, adenine and LacZ. Subsequent sequencing and BLAST analysis revealed 

that the cDNAs from 34 colonies encoded 19 potential PAR-2-interacting proteins. The 

further yeast two-hybrid tests confirmed that 12 candidate proteins were truly positive in 

yeast.  

5.2 Jab1 regulates PAR-2-dependent gene expression 

Importantly, here we demonstrate the functional interaction of PAR-2 with Jab1, a 

interacting protein found in yeast. Jab1 was initially identified as a coactivator of c-Jun, and 

was later shown to be the fifth subunit of COP9 signalosome. Our data from in vitro 

glutathione S-transferase (GST) pull-down assays and in vivo co-immunoprecipitation assays 

clearly revealed that Jab1 physically interacted with PAR-2 within cells. Moreover, several 

intracellular domains of PAR-2 are required for the interaction with Jab1. Jab1 was also 

shown to be colocalized with PAR-2 both in transfected HEK293 cells and in normal primary 

human astrocytes by double immunofluorescence staining. We then showed that stimulation 

with PAR-2 agonists (trypsin or specific PAR-2-activating peptide) dissociated Jab1 from 

PAR-2 in a time-dependent manner. This dissociation could be prevented by the inhibitor of 

receptor endocytosis phenylarsine oxide, but not by the lysosomal protease inhibitor ZPAD. 

Interestingly, we found that activation of PAR-2 induced the redistribution of Jab1 from the 

plasma membrane to the cytosol, but had no effect on expression of Jab1. Furthermore, Jab1 

mediated PAR-2-induced c-Jun activation, which was followed by increased activation of 

activator protein-1 (AP-1). Loss-of-function studies, using Jab1 small interfering RNA, 

demonstrated that Jab1 knockdown significantly blocked PAR-2-induced AP-1 activation. 

Therefore, these data demonstrate that Jab1 is an important effector that mediates a novel 

signal transduction pathway for PAR-2-dependent gene expression. 
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5.3 p24A might regulate post-Golgi sorting of PAR-2 to the plasma membrane 

Furthermore, we characterized another PAR-2-interacting protein, p24A, as also found 

in the yeast screening. p24A belongs to the p24 family of coated vesicle membrane proteins. 

Binding studies by in vitro GST pull-down assays clearly demonstrate that the second 

extracellular loop of PAR-2 strongly bound to the aa 1-125 of p24A at its N-terminus. 

However, the intracellular domains and transmembrane domains of PAR-2 failed to interact 

with p24A. The physical interaction of PAR-2 with p24A was further confirmed by co-

immunoprecipitation assays in vivo. Interestingly, p24A was shown by double 

immunofluorescence staining to be colocalized with the intracellular PAR-2 at the Golgi 

stores, but not with cell surface receptors in double transfected HEK293 cells. We then 

demonstrate the interaction of PAR-2 with p23, another member of p24 family, by co-

immunoprecipitation assays in vivo. When we studied the functional significance of the PAR-

2-p24A interaction, we found that activation of PAR-2 resulted in protein dissociation of 

p24A from PAR-2 at the time, when the intracellular receptor was sorted to the plasma 

membrane for resensitization. In contrast, p23 was dissociated from PAR-2 later only at 60 

min after agonist stimulation, when PAR-2 is completely resensitized. The dissociation 

between PAR-2 and p24A was completely inhibited by brefeldin A, which has been known to 

attenuate resensitization of PAR-2. Brefeldin A is an inhibitor of guanine nucleotide exchange 

factor that was known to prevent conversion of inactive ADP-ribosylation factor 1 (ARF1)-

GDP to active ARF1-GTP. Activation of ARF1 results in the dissociation of hetero-

oligomeric complexes of p24A and p23. Therefore, our data imply that p23 and p24A trap the 

PAR-2 at the Golgi apparatus, which is essential for the intracellular PAR-2 pool formation. 

Upon PAR-2 activation, p24A releases the PAR-2 and regulates receptor resensitization. On 

the other side, p23 assists PAR-2 sorting to the plasma membrane. Here, we also demonstrate 

that p24A strongly interacted with PAR-1 and P2Y1 receptor, suggesting that our model might 

explain the molecular mechanism underlying post-Golgi transport of certain GPCRs to the 

plasma membrane. 
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6. ZUSAMMENFASSUNG 

6.1 Suche nach unbekannten, mit PAR-2 interagierenden Proteinen 

Der Protease-aktivierte Rezeptor-2 (PAR-2) ist ein 7-TMD (Siebentransmembrandomänen) 

G-Protein-gekoppelter Rezeptor. PAR-2 vermittelt Signale von extrazellulären 

Serinproteasen, wie Trypsin, Tryptase, an intrazelluläre Ziele. PAR-2 hat in verschiedenen 

Systemen wichtige physiologische und pathologische Funktionen. Die Funktion von PAR-2 

im zentralen Nervensystem (CNS) ist noch weitgehend unbekannt. Auch die PAR-2-

vermittelten intrazellulären Signaltransduktionswege sind kaum klar. Um unser Verständnis 

der PAR-2 Funktionen im CNS zu erweitern, suchten wir nach Partnerproteinen. Dazu 

verwendeten wir die vollständige humane PAR-2 cDNA-Sequenz als Köder, um in einem 

Hefe Two-Hybrid System die mit PAR-2 interagierenden Proteine zu identifizieren. Unter den 

gefundenen Kandidaten bestätigten die Kontrolltests im Hefe Two-Hybrid-System 12 

Proteine als wirklich positiv. Davon studierten wir im Detail die Proteine Jab1 und p24A. 

6.2 Funktion des als PAR-2 Interaktionsprotein identifizierten Jab1: Regulation der 

PAR-2 abhängigen Genexpression 

Wir konnten die funktionelle Wechselwirkung von PAR-2 mit Jab1 zeigen. Jab1 wurde 

ursprünglich als Koaktivator für c-Jun beschrieben. Später wurde gezeigt, dass Jab1 außerdem 

die fünfte Untereinheit des COP9-Signalosoms darstellt. Die Ergebnisse der in-vitro 

Glutathion-S-Transferase (GST) Pull-down Assays und der in-vivo Coimmunpräzipitationen 

bestätigten, dass Jab1 biochemisch mit PAR-2 in Zellen interagiert. Für die Wechselwirkung 

mit Jab1 sind mehrere intrazelluläre Domänen von PAR-2 notwendig. Für Jab1 konnte durch 

Doppelimmunfluoreszenzfärbung eine Kolokalisation mit PAR-2 in transfizierten HEK293-

Zellen, aber auch in humanen Astrozyten-Primärkulturen nachgewiesen werden. Weiter 

zeigten wir, dass nach Stimulierung mit PAR-2-Agonisten (Trypsin oder das spezifische 

PAR-2-aktivierende Peptid) das interagierende Jab1 zeitabhängig von PAR-2 abdissoziiert. 

Diese Dissoziation konnte durch einen Inhibitor der Rezeptorendozytose, aber nicht durch 

einen Inhibitor lysosomaler Proteasen, verhindert werden. Interessanterweise fanden wir, dass 

die Aktivierung von PAR-2 eine Umverteilung von Jab1 von der Plasmamembran ins Cytosol 

induzierte, aber keinen Effekt auf die Expression von Jab1 hatte. Weiter vermittelte Jab1 die 

PAR-2-induzierte c-Jun-Aktivierung, welcher die Aktivierung des Transkriptionsfaktors 

Aktivator-Protein-1 (AP-1) verstärkte. Funktionelle Hemmung durch Einsatz von kleinen, mit 

der Jab1-Expression interferierenden RNA (siRNA) ergab, dass die PAR-2-induzierte AP-1-

Aktivierung signifikant blockiert war. Diese Ergebnisse beweisen, dass Jab1 ein wichtiger 

Effektor für einen neuen Signaltransduktionsweg der PAR-2-abhängigen Genexpression ist. 
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6.3 Das „coated vesicle“-Membranprotein p24A reguliert als PAR-2 Interaktionsprotein 

die Post-Golgi-Sortierung von PAR-2 zur Plasmamembran 

Als zweites charakterisierten wir p24A, ein weiteres mit PAR-2 interagierendes Protein. Auch 

dieses wurde von uns im Hefe-Two-Hybrid Screening als positiv identifiziert. p24A gehört 

zur p24-Familie der 'coated vesicle'-Membranproteine. Bindungsstudien mittels in-vitro GST 

Pull-down Assays ergeben, dass die extrazelluläre Schleife Nr. 2 (loop-2) von PAR-2 stark an 

die Aminosäuren 1 bis 125 am N-Terminus von p24A bindet. Die intrazellulären Domänen 

und die Transmembrandomänen von PAR-2 zeigten keine Interaktion mit p24A. Die in-vivo 

Wechselwirkung von PAR-2 mit p24A wurde durch Coimmunpräzipitation bestätigt. 

Interessanterweise ergab sich bei der Doppelimmunfluoreszenzfärbung an 

doppeltransfizierten HEK293-Zellen, dass p24A mit intrazellulärem PAR-2 am Golgi-

Apparat und nicht mit zellmembranständigen Rezeptoren kolokalisiert war. Auch mit p23, 

einem weiteren Mitglied der p24-Familie fanden wir durch Coimmunpräzipitation eine in-

vivo Wechselwirkung von PAR-2. Bei der Untersuchung der funktionellen Bedeutung der 

PAR-2-p24A Wechselwirkung entdeckten wir, dass nach Aktivierung von PAR-2 die 

Abdissoziation von p24A vom PAR-2 zu jenem Zeitpunkt erfolgte, wenn bei der 

Resensitisierung die Sortierung der intrazellulären Rezeptoren zur Plasmamembran 

stattfindet. Im Gegensatz dazu dissoziierte p23 vom PAR-2-Rezeptor erst 60 min nach der 

Stimulation mit dem Agonisten ab. Dann PAR-2 war vollständig resensitisiert. Die 

Dissoziation von p24A vom PAR-2 wurde durch Brefeldin A vollständig gehemmt. Brefeldin 

A ist ein Inhibitor für Guaninnukleotid-Austauschfaktoren, und Brefeldin A verhindert die 

Umwandlung von inaktivem ADP-Ribosylierungsfaktor 1 (ARF1)-GDP in aktives ARF1-

GTP. Die Aktivierung von ARF1 führt zur Dissoziation der hetero-oligomeren Komplexe aus 

p24A und p23. Daher legen unsere Ergebnisse nahe, dass p23 und p24A den PAR-2 im 

Golgi-Apparat zurückhalten. Dies ist für die Bildung eines intrazellulären PAR-2-Pools 

fundamental. Nach PAR-2-Aktivierung gibt p24A PAR-2 frei, und reguliert so die 

Rezeptorresensitisierung, während p23 an der Sortierung von PAR-2 zur Plasmamembran 

beteiligt ist. In weiteren Untersuchungen konnten wir zeigen, dass p24A auch stark mit 

anderen Rezeptoren, nämlich PAR-1 und P2Y1 Rezeptor interagiert. Dies legt nahe, dass 

unser Modell den molekularen Mechanismus erklärt, der dem Post-Golgi-Transport von 

bestimmten G-Protein-gekoppelten Rezeptoren zur Plasmamembran zugrunde liegt. Damit 

identifizieren wir eine molekulare Komponente, die für einen grundlegenden Prozess der 

Rezeptorphysiologie verantwortlich ist, nämlich die Resensitisierung nach 

Rezeptorinternationalisierung. 
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8. ABBREVIATION 
 

aa      amino acid(s) 

AP activating peptide 

AP-1 activator protein-1 

APC activated protein C 

β2-AR β2-adrenergic receptor 

ARF1 ADP-ribosylation factor 1 

BSA bovine serum albumin 

[Ca2+]i intracellular calcium concentration 

CAT chloramphenicol acetyltransferase 

CNS central nervous system 

COP coat protein 

DMSO dimethyl sulfoxide 

DAG diacylglycerol 

EL extracellular loop  

ELISA enzyme-linked immunosorbent assay 

ER endoplasmic reticulum 

ERK 1/2 extracellular signal regulated kinase 1/2 

FCS fetal calf serum 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

GEF guanine nucleotide exchange factor 

GPCR G protein-coupled receptor 

GRK G protein-coupled receptor kinase 

GRO/CINC-1 growth-regulated oncogene/cytokine-induced neutrophil 

chemoattractant-1 

GST glutathione S-transferase 

HA haemagglutinin epitope 

HIF-1 α hypoxia-inducible factor-1 α 

IL interleukin 

IP3 inositol 1,4,5-trisphosphate 

IP immunoprecipitation 

Jab1 Jun activation domain-binding protein 1 

JNK c-Jun N-terminal kinase 
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LHR lutropin/choriogonadotropin receptor 

MAPK mitogen-activated protein kinase 

MIF migration inhibitory factor 

MT-SP1 membrane-type serine protease 1 

NF-κB nuclear factor-κB 

NHA normal (primary) human astrocytes 

PAO phenylarsine oxide 

PAR protease-activated receptor 

PFA paraformaldehyde 

PKA protein kinase A 

PKC protein kinase C 

PLC-β phospholipase C-β 

PNGase F peptide N-glycosidase F 

PRSS protease, serine 

RgpB arginine-specific gingipains-R 

RT-PCR reverse transcription-polymerase chain reaction 

Sf9 Spodoptera frugiperda 9 

siRNA small interfering RNA 

SRC-1 steroid receptor coactivator-1 

TNF-α tumor necrosis factor-α 

tPA tissue plasminogen activator 

TRag Ala-parafluoroPhe-Arg-Cha-Cit-Tyr-NH2

TRAP thrombin receptor agonist peptide 

WT wild-type 

ZPAD Z-Phe-Ala-diazomethylketone 
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9. APPENDIX 

I  Publications 

1. Luo W., Wang Y., Reiser G. (2005) Two types of protease-activated receptors (PAR-1 

and PAR-2) mediate calcium signaling in rat retinal ganglion cells RGC-5. Brain Res 

1047: 159-67. 

We characterized the functional expression of PAR-1 and PAR-2 in RGC-5 cells.  

2. Luo W., Wang Y., Hanck T., Stricker R., Reiser G. (2006) Jab1, a novel protease-

activated receptor-2 (PAR-2)-interacting protein, is involved in PAR-2-induced activation 

of activator protein-1. J Biol Chem 281: 7927-36. 

We identified Jab1 as a novel PAR-2-interacting protein, and delineated its physiological 

function in the PAR-2 signalling pathway. 

3. Wang Y., Luo W., Stricker R., Reiser G. (2006) Protease-activated receptor-1 protects rat 

astrocytes from apoptotic cell death via JNK-mediated release of the chemokine 

GRO/CINC-1. J Neurochem, 98: 1046-60. 

We investigated the biological functions of JNK in the PAR-1 signalling pathway, and 

delineated a novel mechanism underlying the PAR-1-mediated protection in astrocytes. 

4. Wang Y., Luo W., Wartmann T., Halangk W., Sahin-Tόth M., Reiser G. (2006) 

Mesotrypsin, a brain trypsin, activates selectively proteinase-activated receptor-1, but not 

proteinase-activated receptor-2, in rat astrocytes. J Neurochem, 99: 759-69.  

We identified a novel specific PAR-1 agonist in the brain. 

5. Wang Y., Luo W., Reiser G. Proteinase-activated receptor-1 and proteinase-activated 

receptor-2 induce the release of chemokine GRO/CINC-1 from rat astrocytes via 

differential activation of JNK isoforms, evoking multiple protective pathways in brain. 

Biochem J. 2006 Aug 30; [Epub ahead of print]. 

We distinguished the functions of different JNK isoforms in the PAR-1 and PAR-2 

signalling pathways. 

6. Luo W., Wang Y., Reiser G. Regulation of post-Golgi transport of the protease-activated 

receptor-2 by p24A and p23. In preparation. 

 

 

II  Conference abstracts 

1. Luo W and Reiser G. Expression of protease-activated receptors (PARs) and PAR-

mediated calcium signaling in rat RGC-5 cells. Molecular Mechanisms of 

Neurodegeneration and Neuroprotection—Experimental Approaches and the Diseased 
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Brain, annual Meeting of the Study Group Neurochemistry of the German Society of 

Biochemistry and Molecular Biology (GBM) in Leipzig, Germany, Sep. 9-11th, 2004. Int. 

J. Devl Neuroscience 22, p588, 2004. 

2. Wang Y., Luo W., Stricker R., Reiser G. Protease-activated receptors (PARs)-induced 

IL-8-like chemokine GRO/CINC-1 release from rat astrocytes. Molecular Mechanisms of 

Neurodegeneration and Neuroprotection—Experimental Approaches and the Diseased 

Brain, annual Meeting of the Study Group Neurochemistry of the German Society of 

Biochemistry and Molecular Biology (GBM) in Leipzig, Germany, Sep. 9-11th, 2004. Int. 

J. Devl Neuroscience 22, p598, 2004. 

3. Luo W., Wang Y., Reiser G. Two types of protease-activated receptors (PAR-1 and PAR-

2) mediate calcium signalling in rat retinal ganglion (RGC-5) cells. 6th Meeting of the 

German Neuroscience Society-30th Göttingen Neurobiology Conference and Joint 

symposium of the DFG Neuroscience Graduate Schools in Göttingen, Germany, Feb. 16-

20th, 2005. 

4. Wang Y., Luo W., Stricker R., Reiser G. The mechanism of IL-8-like chemokine 

(GRO/CINC-1) release from rat astrocytes mediated by protease-activated receptor-1. 6th 

Meeting of the German Neuroscience Society-30th Göttingen Neurobiology Conference 

and Joint symposium of the DFG Neuroscience Graduate Schools in Göttingen, Germany, 

Feb. 16-20th, 2005. 

5. Luo W., Wang Y., Stricker R., Hanck T., Reiser G. Identification and characterization of 

human protease-activated receptor (PAR-2) interacting proteins. VII. European Meeting 

on Glial Cell Function in Health and Disease in Amsterdam, Netherlands. May 17-20th, 

2005. 

6. Wang Y., Luo W., Stricker R., Reiser G. Different mechanisms of GRO/CINC-1 release 

from rat astrocytes mediated by protease-activated receptor 1 and 2. VII. European 

Meeting on Glial Cell Function in Health and Disease in Amsterdam, Netherlands. May 

17-20th, 2005. 

7. Luo W., Wang Y., Stricker R., Hanck T., Reiser G. A proteasome subunit regulates a 

novel human protease-activated receptor-2 (PAR-2)-mediated inflammatory response 

pathway. Neural signal transduction in health and disease-cytokines, mitochondrial 

dysfunction and transport processes, annual Meeting of the Study Group Neurochemistry 

of the German Society of Biochemistry and Molecular Biology (GBM) in Leipzig, 

Germany, Oct. 6-8th, 2005. Int. J. Devl Neuroscience 24, p218, 2006. 

 114



8. Wang Y., Luo W., Hanck T., Stricker R., Reiser G. Protease-activated receptor (PAR)-1 

and –2 differently mediate release of the chemokine GRO/CINC-1 from rat astrocytes. 

Neural signal transduction in health and disease-cytokines, mitochondrial dysfunction and 

transport processes, annual Meeting of the Study Group Neurochemistry of the German 

Society of Biochemistry and Molecular Biology (GBM) in Leipzig, Germany, Oct. 6-8th, 

2005. Int. J. Devl Neuroscience 24, p218, 2006. 

 

III DNA sequences published in the GenBankTM

1. AY336105, human PAR-2 cDNA sequence 

      Our sequence shows the alternative human PAR-2 cDNA. 

2. AY594282, human HUEL cDNA sequence 

      Our sequence shows the alternative human HUEL cDNA. 
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Bachelor of Science in Biochemistry and Microbiology 

Thesis: Studies on mitochondrial DNA of Macrobrachium 

nipponese. 
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                                               Project:  

1) Identification and characterization of human PAR-2-

interacting partner proteins. 

2) The expression of protease-activated receptors in retinal 

ganglion cells (RGC-5 cells). 
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