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1 Introduction  

 

 

1.1 The concept of stress 

 

The ability of mammals to adequately respond to environmental challenges by physiological 

and behavioural alterations is a prerequisite for their survival in a permanently changing 

environment. All these responses are aimed at controlling the disturbing stimuli and, thus, 

reducing their potential harmfulness (for review, see Koolhaas et al., 1999). Relevant stimuli 

are emotionally evaluated by the limbic system that controls the endocrine and the autonomic 

nervous system simultaneously with the behavioural response. The outcome of the emotional 

evaluation depends on the genetic background, earlier conditioning and individual past life 

experiences. Thus, the interpretation of stimuli as “challenging” or “disturbing” is a highly 

subjective event. If, because of innate or acquired capabilities, the individual is able to 

efficiently respond to a defined stimulus, no significant physiological or behavioural efforts 

will be required. However, if a stimulus was never encountered before or a known stimulus is 

perceived in an unexpected strength or duration, the individual must either refine an available 

strategy or develop a new one. The immediate responses that are set in motion in the latter 

case are defined coping strategies (Chrousos & Gold, 1992). Active coping mechanisms help 

animals to successfully control sudden aversive encounters: physiological (tachycardia, 

increased blood pressure) and behavioural (startle, fight or flight) adaptive responses are 

linked to the activation of the sympatho-adrenal system (SAS), and are characterised by the 

release of catecholamine into the blood. If the potentially threatening stimulus can not be 

controlled by “fight or flight” behaviour, animals adopt passive coping strategies. These are 

linked to the activation of the hypothalamic-pituitary-adrenal (HPA) axis, which triggers the 

release of glucocorticoids into the bloodstream, leading to significant physiological changes, 

such as lipolysis, gluconeogenesis, inhibition of growth, immune and reproductive systems, 

suppression of feeding, increased state of vigilance, arousal and cognition.  

Hans Selye was the first who introduced the concept of stress to characterise the responses of 

the organism to challenging stimuli. He named it more specifically “general adaptive 

syndrome”, since he observed that, although different stimuli evoke distinct patterns of 

adaptive responses, their specificity is gradually reduced as the gravity of the stressor 

augments (Selye, 1936; 1950; 1955). Although Selye’s approach has been widely accepted, 

his definition of “stress” and “stressor” have been criticised as circular by other researches 
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(Lazarus & Folkman, 1984) and alternative definitions were proposed. Since there is still no 

general agreement among the scientific community concerning the definition of “stress” and 

“stressor”, the present work will be referring to Chrousos (1998) who defined stress as “an 

animal threatened homeostasis”, and stressor as “the disturbing forces or threats to 

homeostasis”. Since in animals, unlike in humans, it is not possible to evaluate directly the 

emotional interpretation of an external stimulus, a physiological parameter must be used as an 

indicator to determine whether a defined stimulus has threatened the animal homeostasis and, 

thus, elicited stress. In the present study we defined Cort blood values higher than 100 ng/ml 

to be a sufficient sign of an ongoing stress reaction, since the occurrence of a significant rise 

of blood corticosterone (Cort) levels is regarded to as the principal endocrine marker of the 

stress response (Maier et al., 1986; Mormede et al., 1988),.   

As an acute and time-limited phenomenon, the physiological consequences of a stress 

response have beneficial effects to gain control over a stressor. However, if the stress is 

protracted for a long time, or if its magnitude exceeds a certain threshold, a severe 

pathological state can arise predominantly due to a sustained action of the HPA-axis. For 

instance, a prolonged state of stress-related arousal can lead to anxiety, and increased 

vigilance can become insomnia, which are characteristic traits of melancholic depression 

(Gold et al., 1988b; a). Similarly, decreased attention to feeding, which is advantageous for 

the organism in the context of the stress response, becomes exaggerated in illnesses like 

anorexia nervosa (Gold et al., 1986; Kaye et al., 1987). Also panic disorder (Roy-Byrne et al., 

1986; Gold et al., 1988c) and obsessive-compulsive disorders (Insel et al., 1982) have been 

associated with a pathological activation of the systems involved in the stress. Thus, 

understanding the mechanisms that modulate the stress response may help develop new tools 

to successfully treat a number of psychiatric diseases. 

Under laboratory conditions, several experimental stressor paradigms have been established 

to examine the activity of the SAS, the HPA-axis and also the hypothalamic-

neurohypophysial system (HNS), which has been postulated to be involved in coordinating 

the neuroendocrine response (Engelmann & Ludwig, 2004) to acute or chronic exposure to 

stressors. Stressors are generally categorised as inducing two different types of stress, 

“systemic” (also referred to as physical) and “neurogenic” (also referred to as predictive, 

emotional or psychological). Systemic stress is the response to real, physical threats that 

cannot be consciously appreciated, since they are perceived through distinct central or 

peripheral receptors and relayed via hard-wired viscero-somatic pathways: Inflammatory 

reactions, pain and osmotic alterations are examples of this type of stressors. By contrast, 
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neurogenic stress, for instance induced by immobilisation or electrical footshock, are 

predominantly emotional perturbations that involve cognitive and limbic processing. 

Although the two types of stress may result in selective activation of defined brain areas, both 

culminate in increasing the level of circulating glucocorticoids (Pacak & Palkovits, 2001). If 

these adaptive responses are sufficient to re-establish control over the stressor, the state of 

stress has no deleterious effects on the organism. The overall response remains physiological 

and is, therefore, called “eustress”. Conversely, states of chronic hyper- or hypoactivation of 

the HPA-axis are termed “distress”, as they are harmful to the body, thus leading to a 

pathological state (Chrousos, 1998).  

As indicated above, a thorough understanding of the mechanisms underlying the regulation of 

a normal stress response under physiological conditions might help to delineate new 

therapeutic approaches for the treatment of stress-related psychiatric disorders. Therefore, we 

decided to employ an experimental approach, namely forced swimming, that leads to an 

“eustress” state. By exposure to this stressor, the lab animal is forced to cope with a new, 

acute challenge from which it can not escape, but with which it can cope. Moreover, forced 

swimming, inducing both systemic and neurogenic stress, resembles most naturally occurring 

stressors, and allows to measure simultaneously different variables of the stress response, 

including behaviour of the animals and their neuroendocrine activity. Thus, a more complete 

answer to the questions posed can be provided. Previous studies have shown that, in rodents, 

forced swimming activates brain regions deputed to control the stress response (Engelmann et 

al., 1998; Wotjak et al., 1998; Wotjak et al., 2001; Salchner et al., 2004; Drugan et al., 2005). 

Therefore, this stressor seems to be an appropriate stimulus to investigate the regulatory 

mechanisms that modulate the endocrine stress response.  

 

1.2 The sympatho-adrenal system 

 

The neuroendocrine stress response follows a determined time course, which begins with the 

activation of the SAS within a few seconds from stressor onset and proceeds with the 

glucocorticoid peak around 30 min later. The activation of the SAS is characterised by the 

increased release of catecholamines into the bloodstream to allow for and modulate the “fight 

or flight” reaction. In laboratory rodents, a subpopulation of oxytocin (OXT)-containing 

parvocellular neurones of the hypothalamic paraventricular nucleus (PVN) regulates the SAS 

activity (Swanson & Sawchenko, 1980). These neurones provide the main input to the 

medulla, where they make synaptic contacts to neurones that descend to the sympathetic 
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system in the spinal cord (Swanson, 1987). Via this pathway, the hypothalamus gains direct 

control over catecholamine release since the adrenal medulla receives preganglionic 

sympathetic innervation from the greater (major supply) and lesser thoracic splanchnic nerve 

(Fig. 1). The synaptic nature of this transmission renders the “fight or flight” response an 

immediate reaction. The release of norepinephrine (NE) and epinephrine (E) into the 

bloodstream in response to stressor exposure is aimed at promoting alertness and elevated 

perfusion of skeletal muscle, brain, and liver, increased heartbeat and blood pressure, rise in 

blood sugar. Catecholamines are produced by sequential enzymes located in chromaffin cells: 

tyrosine hydroxylase (TH), which is the rate-limiting enzyme in catecholamine biosynthesis, 

aromatic L-amino acid decarboxylase and dopamine beta-hydroxylase. The final biosynthetic 

step occurs inside catecholamine storage vesicles, while the other biosynthetic enzymes are 

cytosolic. In chromaffin cells of the adrenal medulla (as well as epinephrinergic neurons of 

the central nervous system), another biosynthetic step occurs in the cytosol: 

phenylethanolamine N-methyltransferase (PNMT) N-methylates NE to form E. Forced 

swimming and chronic isolation are among the stressors that have been reported to enhance 

catecholamine plasma levels (Itoh et al., 2006; for review, see Nankova & Sabban, 1999).  
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Fig 1.  Schematic representation of the SAS. The synaptic pathways originating in the PVN 

lead to catecholamine (NE, E) exocytosis from the adrenal medulla into the blood 

(arrow). PVN neurones synaptically contact a population of neurones in the medulla, 

which in turn project to sympathetic pre-ganglionic neurones of the spinal cord that, 

through the splanchnic nerve, directly relay the information to chromaffin cells. PVN: 

paraventricular nucleus; III: third ventricle; SNS: sympathetic nervous system; NE: 

norepinephrine; E: epinephrine.  

 

 

1.3  The hypothalamic-pituitary–adrenal axis  

 

In addition to the cells that constitute the central origin of the SAS, the PVN harbours also 

another population of parvocellular neurosecretory neurones to which stress-related 

information is relayed. These neurones comprise the central nervous structure of the HPA-
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axis, and initiate the neuroendocrine stress cascade by secreting corticotropin-releasing 

hormone into the portal blood (CRH; Vale et al., 1981). CRH consists of 41-amino acid 

residues and is produced by cleavage of the 196-amino acid C-terminus of prepro-CRH in the 

parvocellular neurosecretory neurones of the PVN. Corticotrope cells of the anterior pituitary 

express high levels of the G-protein-coupled receptor subtype designated CRH-R1 (Sanchez et 

al., 1999b), which mediates CRH-induced adrenocorticotropic hormone (ACTH) release into 

the peripheral blood that in turn promotes the release of glucocorticoids (Cort in rodents and 

cortisol in humans) from the adrenal cortex (Fig. 2; for review, see Angelucci, 2000; Korte, 

2001; Makara & Haller, 2001).  

 

Fig. 2. Schematic representation of the SAS and the HPA-axis. CRH-containing neurones (red 

somata) of the PVN project to the adenohypophysis, where they release CRH  into the 

portal blood (brown arrow). Upon CRH stimulation, corticotropes secrete ACTH into 

the general circulation (black arrow), which in turn elicits Cort release from the 

adrenal cortex (red arrow): CRH: corticotrophin-releasing hormone; ACTH: 

CRH 

ACTH 

Cort  
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adrenocorticotropin; Cort: corticosterone.; arrows represent neurohormones released 

into the portal blood and into the peripheral blood. See Fig. 1 for more details. 

 

The levels of CRH in the hypophyseal blood peak within 1 minute from stressor onset 

(Plotsky et al., 1987). CRH mRNA levels in the parvocellular cells of the PVN increase 

between 2 to 4 h in response to acute stressor exposure to replenish cellular stores (Ma et al., 

1997). Chronic stress conditions, however, produce a more pronounced increase of plasma 

ACTH compared to that under acute stress (Antoni, 1986). This is due to the action of 

vasopressin (AVP), which is co-secreted by parvocellular neurones into the portal blood (for 

review, see Antoni, 1993; Aguilera & Rabadan-Diehl, 2000). In fact, AVP of parvocellular 

origin robustly enhances the action of CRH on corticotropes in a synergistic manner, 

suggesting an important role for AVP during excessive stimulation of the HPA-axis.  

ACTH is secreted into the blood in a constant, pulsatile manner, which shows a diurnal 

variation. During normal, non-stressful situations, the release of ACTH in humans follows a 

circadian rhythm with the highest levels occurring around 8:00 am in the morning and the 

lowest levels around midnight. Exposure to acute stressors increases the frequency and the 

amplitude of hypothalamic hormonal pulses towards the anterior pituitary, to cope with higher 

demand of circulating glucocorticoids (for review, see Jacobson, 2005).  

ACTH enters the systemic circulation and binds to high affinity receptors located on the 

surface of adrenal cortical cells, thereby triggering the secretion of Cort. Cort is not stored in 

the adrenal cortex, but is quickly secreted upon production. The adrenal cortex synthesizes 

Cort to preserve basal serum levels for only few minutes, thus the effect of ACTH on Cort 

production can be observed in the blood within minutes from its stimulation.  

Interestingly, the integrity of the sympathetic innervation is required to maintain normal basal 

levels of Cort, which persists also in CRH knock-out (KO) mice (Ottenweller & Meier, 1982; 

Edwards & Jones, 1987; Dijkstra et al., 1996). Therefore, it has been suggested that 

splanchnic nerve stimulation influences also the activity of the adrenal cortex (Ehrhart-

Bornstein et al., 1995). The mechanism by which the SAS promotes glucocorticoid secretion 

into the blood is still elusive, but the close anatomical localisation of the medulla and the 

cortex, as well as the presence of chromaffin cells also in the cortical area (Bornstein et al., 

1991), and, conversely, cortical cells within the medulla (Bornstein et al., 1994), implies an 

intensive cross-talk between the two systems. Indeed, there is evidence for a direct influence 

of catecholamines on cortical function (Bornstein et al., 1990). 
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1.4  The hypothalamic-neurohypophyseal system  

 

A third population of cells that reside within the PVN and are involved in the processing of 

stress-related information are the magnocellular neurones of the HNS. The HNS is composed 

of magnocellular neurones of the PVN and of the supraoptic nucleus (SON), which extends 

atop the optical chiasma. The axons of these neurones project through the internal part of the 

median eminence to the neurohyphysis, where AVP and OXT are released from their 

terminals into the bloodstream. These hormones govern body fluid homeostasis (AVP), 

reproduction and mating behaviour (OXT, for review, see Cunningham & Sawchenko, 1991), 

but are also released in response to defined stressor exposure (Lang et al., 1983; Wotjak et al., 

1996b; Wotjak et al., 1998; Fig. 3).  

Since the HNS was the first neuroendocrine system discovered, it was originally believed to 

modulate ACTH secretion through the release of AVP of magnocellular origin (Bargmann, 

1949; Bargmann & Scharrer, 1951; McCann & Brobeck, 1954; Mirsky et al., 1954; Martini & 

Monpurgo,1955). However, this theory lost importance after the discovery of the 

parvocellular pathway to the adenohypophysis and after Vale et al. (1981) demonstrated that 

these parvocellular neurones secrete CRH, the most potent secretagogue of ACTH. In the past 

years, the interaction between AVP/OXT and ACTH release gained renewed interest. Several 

studies revaluated the HNS with regard to its function in modulating the HPA-axis and the 

stress response (for review, see Engelmann et al., 2004a).  
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Fig. 3. Schematic representation of the SAS, the HPA-axis and the HNS with the focus on the 

latter endocrine system. Magnocellular neurones of the PVN and the SON project to 

the neurohypophysis and release AVP and OXT from their axon terminals into the 

peripheral blood (black arrow). AVP: vasopressin; OXT: oxytocin; SON: supraoptic 

nucleus. See Fig. 1 and 2 for more details. 

 

In fact, increasing evidence indicates that the HPA-axis and the HNS closely interact with 

each other (Wotjak et al., 2001; Engelmann et al., 2004a) to orchestrate a finely tuned stress 

response. Numerous studies have shown that in the rat, other than in humans, OXT, but not 

AVP, levels increase in the blood in response to a variety of stressors (Lang et al., 1983; 

Gibbs, 1984). Moreover, both AVP and OXT may be released from somata and dendrites of 

magnocellular neurones into the extracellular space of the PVN and the SON (Di Scala-

Guenot et al., 1987; Pow & Morris, 1989; Hattori et al., 1990; Landgraf & Ludwig, 1991; 

Hattori et al., 1992; Ludwig et al., 1994) not only during thirst (Ludwig et al., 1996), suckling 
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and parturition (Neumann et al., 1993), but also in response to defined stressor exposure, 

including forced swimming (Wotjak et al., 1998). In the rat, the intra-hypothalamic release of 

OXT induced by forced swimming is paralleled by an enhanced secretion of this neuropeptide 

into the blood. In contrast, AVP plasma levels remain unchanged after forced swimming, 

despite AVP intra-hypothalamic release being significantly increased. The latter dichotomy 

reflects a peculiar feature of HNS neurones, which is the capability of independently 

regulating the central, i.e. somato-dendritic, from the peripheral, i.e. axonal, release of AVP 

and OXT. The peripheral secretion of AVP in the rat, unlike in humans (Kohl, 1992; Dugue et 

al., 1993), appears therefore to be tightly regulated and limited to situations linked to body 

hydro-mineral balance. For instance, electrical stimulation of the SON (Makara et al., 1982) 

evoke a significant rise also in Cort plasma levels. Moreover, animal models characterised by 

a disrupted magnocellular AVP tone display a pronounced hypo-activity of the HPA-axis 

(Conte-Devolx et al., 1982; Dohanics et al., 1991).  

On the other hand, several studies have pointed out the contribution of AVP of magnocellular 

origin in modulating the activity of the HPA-axis. More detailed analysis revealed that AVP 

and OXT synthesised by magnocellular neurones may reach the adenohypophysis through the 

short portal vessels that connect the posterior and the anterior pituitary. In addition, both 

neuropeptides can be released en passant from axons at the neurohypophysis into the long 

portal vessels that run from the median eminence to the anterior pituitary (Holmes et al., 

1986; Wotjak et al., 1996a). AVP can promote ACTH secretion into the bloodstream by 

activating the V1b receptor subtype located on corticotropes of the adenohypophysis. In 

contrast to this action as secretagogue at the level of the pituitary, AVP released from somata 

and dendrites within the SON and the PVN inhibits the ACTH secretion and the activation of 

magnocellular neurones (Hermes et al., 2000; Wotjak et al., 2002; Hirasawa et al., 2003). 

This effect is mediated by the V1a receptor subtype, which is widely expressed throughout 

the hypothalamus (Ostrowski et al., 1994). Finally, other investigators have reported the 

existence of a finely tuned mechanism depending on the initial state of activation of AVP 

neurones, with an excitatory autocrine effect of somato-dendritically released AVP on quasi-

silent neurones and an inhibitory effect on highly active neurones (Gouzenes et al., 1998).  

The peripheral secretion of OXT following defined stressor exposure, like forced swimming 

(Wotjak et al., 1998) or shaker stress (Nishioka et al., 1998), is a well characterised feature of 

the stress response in the rat. However, its biological significance is still unclear. Some 

investigators have suggested that OXT might be involved in metabolic regulation by acting on 

the pancreas (Stock et al., 1990) and on adipocytes (Lederis et al., 1985), but whether such 
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effects explain the increased peripheral secretion of OXT in response to stressor exposure 

remains speculative. Like AVP, also OXT has been shown to act at the level of the median 

eminence/neurohypophysis to promote ACTH release from the adenohypophysis, although 

less efficiently than AVP (Schlosser et al., 1994). Similarly, intra-PVN released OXT appears 

to reduce ACTH and Cort secretion (Neumann et al., 2000a; Neumann et al., 2000b; for 

review, see Neumann, 2002), which is seems to be a counterbalancing mechanism most likely 

aimed at preventing an overshooting of the HPA-axis. Conversely, it remains contentious the 

role intra-SON released OXT plays, with reports of auto-inhibitory and auto-excitatory 

actions on magnocellular neurones via modulation of pre- and post-synaptic inputs (Brussaard 

et al., 1996; Pittman et al., 2000; Kombian et al., 2002; Landgraf & Neumann, 2004). Taken 

together, the findings collected above indicate that the influence of the HNS on the activity of 

the HPA axis is an important player in the game of balancing forces that coordinate the stress 

response.  

 

1.5  Nitric oxide modulation of the stress response 

 

The neuroendocrine stress response is modulated by an intricate interplay of various 

neurotransmitters, among which, not only intrahypothalamically released AVP and OXT, but 

also nitric oxide (NO) have emerged as significant factors. NO is a highly diffusible free 

radical gas that is derived through an oxidative reaction catalysed by the nitric oxide synthase 

(NOS) from L-arginine and oxygen to produce citrulline and NO (Alderton et al., 2001). Due 

to its diffusible nature and its ability to freely cross cell membranes, NO can act in an 

autocrine and paracrine manner also on targets relatively distant from the place of its 

production (Wood & Garthwaite, 1994). To date, three subtypes of NOS have been described: 

1) the inducible NOS (iNOS), which may be induced in macrophages, hepatocytes, microglia 

and other cell types (Bandaletova et al., 1993) upon stimulation with lipopolysaccharides and 

cytokines (Xie et al., 1992), 2) the endothelial NOS (eNOS), which is mainly found in the 

endothelium of blood vessels (Marsden et al., 1993) (Xue et al., 1994; Reiling et al., 1996; 

Wang et al., 1996; Abe et al., 1997; Helfrich et al., 1997; Colasanti et al., 1998), and 3) the 

neural NOS (nNOS; Bredt et al., 1990), which is almost exclusively expressed in neurones 

and astrocytes (Arbones et al., 1996; Cork et al., 1998; Asano et al., 1994; Kobzik et al., 

1994; Magee et al., 1996; Shimizu et al., 1997; Xu et al., 1999). Interestingly, nNOS 

expression has been observed also in the adrenal medulla, which is a tissue of ectodermal 

origin, as are neurones. High levels of nNOS have been demonstrated by biochemical and 
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immunocytochemical methods in chromaffin cells (Oset-Gasque et al., 1994; Schwarz et al., 

1998), and also in fibres closely associated with them (Afework et al., 1994; Heym et al., 

1994; Tanaka & Chiba, 1996). Data derived from pharmacological studies suggest that NO 

inhibits catecholamine release evoked by depolarising stimuli like acetylcholine, nicotine and 

high potassium chloride (KCl). NO acts by elevating intracellular cyclic guanidine-

monophosphate (cGMP) and activating protein kinase G (PKG), which selectively inhibit 

voltage-dependent Ca++ influx and therefore reduce catecholamine exocytosis (Oset-Gasque 

et al., 1994; Uchiyama et al., 1994; Rodriguez-Pascual et al., 1996; Schwarz et al., 1998). 

These data suggest that NO controls catecholamine secretion under conditions of high levels 

of stimulation.  

NO has also attracted considerable attention as potential modulator of the HPA-axis (Givalois 

et al., 2002). Indeed, nNOS is widely present in the HPA-axis or in closely related anatomical 

structures. In the PVN, the most abundant subtype is nNOS (Bhat et al., 1996), which is 

expressed in the HPA-axis and in medullary-projecting preautonomic neurones (Rodrigo et 

al., 1994; Siaud et al., 1994; Nylen et al., 2001a). It is activated by the glutamate-driven 

opening of the ionotropic N-methyl-D-aspartate (NMDA) receptor, which leads to increased 

cytosolic levels of free calcium. iNOS is not evident in the PVN under basal conditions but 

only upon lipopolysacchride stimulation (Lopez-Figueroa et al., 1998), while eNOS is not 

expressed within the PVN itself, but has been described in endothelial cells of hypophyseal 

blood vessel (Ceccatelli et al., 1996). The external zone of the median eminence, where 

parvocellular axonal terminals project towards the anterior pituitary, shows only little nNOS 

immunoreactivity, whereas at the level of the anterior pituitary nNOS is present in folliculo-

stellate cells and gonadotrophs, but not in corticotrophs (Ceccatelli et al., 1993; Wang et al., 

1997). Finally, nNOS is expressed in the adrenal cortex, where nNOS mRNA has been shown 

to increase markedly following immobilisation stress (Kishimoto et al., 1996; Tsuchiya et al., 

1996). 

Finally, nNOS is widely expressed also throughout the HNS. Several studies have 

demonstrated the presence of nNOS and nicotinamide dinucleotide phosphate (NADPH)-

diaphorase activity, a histochemical marker of NOS, in magnocellular neurones of both the 

SON and the PVN (Summy-Long et al., 1984; Arevalo et al., 1992; Rodrigo et al., 1994). Co-

localisation studies have shown that nNOS is present in a large percentage of oxytocinergic 

magnocellular cells, and to a lesser extent, also in vasopressinergic neurones (Nylen et al., 

2001a; Nylen et al., 2001b). This enzyme is also abundant at the level of the neurohypophysis 

(Rodrigo et al., 1994; Alm et al., 1997). In vivo (Okere et al., 1996) and in vitro (Liu et al., 
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1997b; Ozaki et al., 2000; Stern & Ludwig, 2001) electrophysiological studies speak in 

favour of an inhibitory action of NO on the electrical activity of vasopressinergic and 

oxytocinergic neurones, which seems to be exerted through a potentiation of gamma-

aminobutyric acid (GABA) innervation (Bains & Ferguson, 1997; Stern & Ludwig, 2001; Li 

et al., 2004).  

Despite there is increasing agreement that NO of nNOS origin is involved in the control of all 

three neuroendocrine systems that coordinate the stress response, conflicting data have been 

reported and the influence of NO on these systems remains contentious. For instance, the role 

of NO on basal catecholamine secretion is still a matter of debate: Some investigators have 

shown a stimulatory effect (Oset-Gasque et al., 1994; Uchiyama et al., 1994), while some 

have reported an inhibitory action (Ward et al., 1996) or no effect (Marley et al., 1995; 

Rodriguez-Pascual et al., 1995) of NO on intracellular Ca++ concentration and catecholamine 

exocytosis under resting conditions. A third group of authors observed a long-term up-

regulation by NO of the genes encoding for the catecholamine biosynthetic enzymes (Kim et 

al., 2003). These contradictory results might be due to the use of dissociated chromaffin cell 

cultures, which contain a different proportion of adrenergic/noradrenergic cells according to 

the method of separation. NOS is clearly asymmetrically distributed among chromaffin cells, 

with noradrenergic cells being the main NOS-immunoreactive subpopulation of the adrenal 

medulla (Dun et al., 1993; Heym et al., 1994). Thus, the average response, for instance in 

terms of Ca++ influx, observed in a mixed population following pharmacological stimulation 

might be significantly affected by the proportion of noradrenergic versus adrenergic cells 

present in culture. The different subcellular localisation of NOS in the adrenal medulla speaks 

in favour of a functional segregation of this enzyme, with noradrenergic cells specialised in 

producing NO, whereas adrenergic cells might represent its main target (Oset-Gasque et al., 

1998). 

As for the SAS, there is little agreement amongst investigators on the influence of NO on the 

HPA-axis. Earlier investigations addressing this issue yielded conflicting results, which can 

be ascribed to different experimental approaches, for instance in vivo versus in vitro 

experiments, or peripheral versus central pharmacological treatment (Costa et al., 1993; 

Rivier & Shen, 1994; Giordano et al., 1996; Lee et al., 1999; Riedel, 2000). However, in the 

past years it has became increasingly apparent that NO may exert mutually opposing 

influences on the activity of the HPA-axis depending on the nature of the stressor. In 

particular, in case of stressors inducing both systemic or neurogenic stress, such as 

immobilisation, electroshocks or water avoidance, NO appears to play a stimulatory role on 
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the neurones of the PVN and on the peripheral ACTH release (Rivier, 1994; Amir et al., 

1997), whereas in response to immune challenges, such as lipopolysaccharide or interleukin-1 

injection, it seems to exert an inhibitory effect upon CRH release at the level of the median 

eminence, thereby blunting ACTH and Cort release. This suggests that, since each type of 

stressors evokes a unique hypothalamic response, the related activation of brain areas 

involved in PVN modulation under stress may define the role NO plays (Rivier, 1998).  

Finally, also measurements of plasma levels of AVP and OXT after administration of NO 

donors or NOS inhibitors have provided incongruent results, with reports documenting 

stimulation (Ota et al., 1993; Raber & Bloom, 1994), inhibition (Goyer et al., 1994; Lutz-

Bucher & Koch, 1994; Kadekaro & Summy-Long, 2000) or no change (Srisawat et al., 2000; 

Yamaguchi & Hama, 2003) in the basal release of AVP and OXT in response to osmotic 

stimulation or reproductive conditions. The effect of stressor exposure on nNOS expression in 

magnocellular neurones has been less investigated. Forced swimming was shown to increase 

the number of NADPH-diaphorase-positive magnocellular cells in the PVN (Sanchez et al., 

1999a) as well as the expression of nNOS mRNA (Engelmann et al., 2004b; Salchner et al., 

2004). However, the importance of NO with regard to the interaction HNS/HPA-axis in 

response to stressor exposure remains to be elucidated. 

At least some of the reported discrepancies might be attributed not only to different 

experimental approaches, but also to the fact that in most studies addressing these issues 

pharmacological administration of NO donors and NOS inhibitors have been employed. In 

particular, the use of the latter compounds have several limitations (Horn et al., 1994; 

Alderton et al., 2001), which can account for the conflicting results reported in the literature. 

Some chemical agents originally used as nNOS inhibitors, for instance 7-nitroindazole, turned 

out to inhibit also other isoforms of NOS. In addition, the expression of eNOS in blood 

vessels represents a difficulty per se in studies whose target is primarily nNOS, since 

systemic as well as local administration of inhibitors inevitably affect also eNOS due to the 

close anatomical vicinity of blood vessels with cells of any tissue.  

The availability of nNOS KO mice (for details, see Materials and Methods, chapter 2.1) 

allows to circumvent some of the problems associated with the administration of 

pharmacological agents and gives a privileged access to the mechanisms underlying the 

modulation of the stress response. These animals show no apparent differences with wild type 

(WT) mice, as they are viable and fertile, with normal locomotor and breeding activity, and 

overall sensorimotor function. The peripheral nervous systems is also normal, with no evident 

anatomical or histological anomalies (Huang et al., 1993). Nevertheless, it deserves noticing 
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that a residual NOS immunoreactivity has been shown to persist in these mice, which, 

however, could be observed exclusively in skeletal muscle cells and not in the brain (Rothe et 

al., 2005). Other investigators reported detectable levels of nNOS mRNA due to the up-

regulated catalytic activity of the splice isoforms nNOS-beta and, to a lesser extent, nNOS-

gamma in several brain regions of these animals, such as olfactory bulb, cerebellum and 

mesencephalic nuclei (Putzke et al., 2000). However, none of the nNOS mRNA-splice 

variants were detected in the hypothalamus (Eliasson et al., 1997). A lower number of beta-

endorphine producing neurones was observed in the hypothalamic arcuate nucleus in mutant 

mice, whereas the expression of the precursor proopiomelanocortin as well as of other 

proopiomelanocortin-derived peptides was found to be unchanged. In addition, fewer beta-

endorphine immunoreactive fibers were found in the hypothalamus of KO mice in 

comparison to WT animals (Bernstein et al., 1998a). In the pituitary, the lack of nNOS affects 

cellular levels of opioid peptides, since proopiomelanocortin mRNA was shown to be here 

considerably reduced. However, this reduction was most pronounced in the intermediate lobe, 

while the anterior lobe was only marginally affected (Keilhoff et al., 2001). 

 

1.6  Aim of the study 

 

The critical analysis of the aforementioned findings reveals that the role NO plays in 

controlling the stress response is still matter of debate. This is predominantly due to the fact 

that an exhaustive characterisation of the effect of NO on the activity of all three systems is 

still missing. The present study was designed to comprehensively characterise the influence of 

NO/nNOS on the basal and the activated state of the SAS, the HPA-axis and the HNS. We 

decided to focus on in vivo experiments in order to avoid misinterpretation that might come 

from using isolated tissues, as results obtained from these preparations are difficult to extend 

to the whole animal. In this context, we used genetically modified mice in order to examine in 

the intact animal the effect that a congenital absence of neural NO might have on the 

regulation of the three aforementioned systems under resting conditions and in response to 

defined stressor exposure. In the first set of experiments, we compared the SAS, the HPA-axis 

and the HNS between WT and nNOS KO animals under basal conditions. By western blot 

analysis we examined the expression of catecholamine biosynthetic enzymes in both 

genotypes, to determine whether nNOS KO mice express a normal content of biosynthetic 

enzymes. We subsequently moved the focus to the hypothalamic level, where all three 

systems originate. We employed immunohistochemistry to determine whether the absence of 
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NO of NOS origin induces any change in the number of AVP- and OXT-immunolabelled 

cells of the PVN and the SON of nNOS KO mice. We examined the same hypothalamic 

nuclei also by in situ hybridisation, using anti-AVP, -OXT and also -CRH radioactive probes, 

to verify possible alterations at the transcription level. In the second set of experiments, we 

characterised the effect of  a 10-min forced swimming session on the activity of the SAS, the 

HPA-axis and the HNS with respect to the impact of NO/nNOS on the release of Cort. For 

this purpose, we monitored the peripheral secretory activity of the three systems at different 

time points, to investigate if and to what extent NO of neural origin is involved under acute 

stress conditions in the modulation of AVP, OXT and ACTH secretion from the pituitary, as 

well as in Cort and catecholamine exocytosis from the adrenal glands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MMaatteerriiaallss  uunndd  mmeetthhooddss    

 

17

2 Materials and methods 
 

 

2.1 Animals 

 

Adult male WT and nNOS KO mice from our breeding colony were used in this study. The 

colony was originally established with breeders derived from the Cardiovascular Research 

Center, General Hospital, Massachusetts, USA. KO animals bear a targeted deletion of the 

exon 2 of the nNOS gene, which was achieved by homologous recombination. Mutant mice 

show >95% loss of nNOS production in the brain due to the disruption of the alpha isoform of 

the nNOS enzyme (Huang et al., 1993). Their genetic background is derived from multiple 

backcrossings with C57BL/6J mice. Animals were housed in groups of six under standard 

laboratory conditions (22 ± 1 °C, 60 ± 5% humidity, 12-h light : 12-h dark cycle with lights 

on at 06:00h, food and water ad libitum). Mice were single-housed a week before the 

experiments to avoid uncontrolled stress reactions. Experimental protocols were approved by 

the local governmental body (Regierungspräsidium, Halle) and all efforts were made to 

minimise animal suffering during the experiments.  

The status of each nNOS KO and WT mouse was verified by genotyping. Briefly, genomic 

DNA was isolated from mouse tails (Invisorb Spin Tissue Mini Kit, Invitek, Berlin, 

Germany). PCRs were carried out with approximately 200 ng genomic DNA in a total volume 

of 25 µl containing 100 mM Tris–HCl (Sigma, Steinheim, Germany), pH 8.8, 500 mM KCl 

(Sigma, Steinheim, Germany), 15 mM MgCl2 (Sigma, Steinheim, Germany), 200 µM of each 

of the four deoxyribonucleotides triphosphate (dNTPs, PeqLab, Erlangen, Germany), 2 U Taq 

polymerase (PeqLab, Erlangen, Germany), and 0.3 µM each primer, respectively. Primer 

sequences for nNOS were used as detailed by P.L. Huang, Harvard Medical School, 

Charlestown, Massachusetts (personal communication): B1 primer 5’-

CCTTAGAGAGTAAGG AAGGGGGCGGG-3’ and B2 primer 5’-GGGCCGA 

TCATTGACGGCGAGAATGATG-3’, giving raise to a 404bp PCR product. The sequence of 

the standard Neo primers was 5’-TGCCGAGAAAGTATCCATCATGGCTGATGC-3’ and 

5’-CAGAAGAACTCGTCA AGAAGGCGATAGAAGG-3’ producing a 460bp product 

(MWG-Biotech, Ebersberg, Germany). 
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2.2 Stressor exposure and behavioural observations  

 

Animals were forced to swim for 10 minutes in a glass cylinder 27 cm high and 15 cm large, 

which was filled with tap water (20 ± 1°C) to a height of  15 cm. Mice were assigned to one 

of three different groups and forced to swim for either 5 min (T5) or 10 min (T15 and T60). The 

animals of group T5 were immediately sacrificed after the end of a 5 minute-swimming 

session, whereas those of groups T15 and T60 were gently dried with a towel after a 10-minute 

swimming session and returned to their home cages for 5 and 50 minutes respectively before 

being sacrificed. Fresh water was used in every swimming trial. In order to minimize 

circadian differences, forced swimming was always carried out early in the morning (between 

8:00 and 9:30). Control animals were left undisturbed in an adjacent room while stress 

experiments were being performed.  

The behaviour of the animals during each swimming session was recorded with a camera and 

later analysed by typing pre-set keys on a computer. Three different behaviours were scored: 

swimming, struggling and floating. Swimming was defined as movements of both hindlimbs 

and forelimbs below the surface of the water, struggling when the forelimbs break the surface 

of the water (for instance by scratching the walls) and floating when the animal simply keeps 

itself afloat, with little limb and no trunk movements.  

 

 

2.3 Western Blot 

 

Animals (WT = 7, KO = 8) were deeply anaesthetised with 0.15 ml i.p. of Ketavet 

(Pharmacia, Karlsruhe, Germany) + Domitor (OrionPharma, Finnland) (5:3) and quickly 

decapitated. Adrenal glands were excised, carefully freed from fat, homogenised in a lysis 

buffer containing 50 mM K-/Na-phosphate buffer (pH 6.7), 0.2% Triton X-100 and a cocktail 

of protein inhibitors (Roche Diagnostics GmbH, Mannheim, Germany) and finally 

centrifuged at 4°C 10000 x g for 20 min. Only the supernatant (soluble proteins) was used for 

Western blot. Protein concentration was determined at a spectrometer (Perkin Elmer, Rodgau-

Juegesheim, Germany) using a bicinchoninic acid protein assay kit (BCA kit, Pierce, 

Rockford, IL). The homogenates were stored at –80°C until use. Samples were thawn, diluted 

1:4 with Rotiload 4x (Roth, Karlsruhe, Germany), which contains mercaptoethanol and 

sodium dodecylsulfate (SDS) to unfold and negatively charge the proteins, and then boiled at 

96°C for 4 min. The denaturated samples (5 µg for TH and 10 µg for PNMT) were 
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electrophoresed on a SDS-polyacrylamide gel (gradient gel from 5% to 20%; Laemmli, 1970) 

for 2h at 8-10 mA/gel. Samples from WT and KO mice were loaded on the same gel for 

comparison. 

Gels were washed briefly in blot buffer and then the electrophorased protein extracts were 

transferred onto nitrocellulose membranes (Amersham Biotech, Little Chalfont, UK) by 

blotting for 1h 30 min at 200 mA.  

After blotting, the correct transfer of all proteins from the gels to the nitrocellulose 

membranes was verified by incubating 5-10 min in Ponceau 0.2% solution at RT. The 

membranes were then blocked with 5% non-fat dry milk in Tris buffered saline with 0.1% 

Tween-20 and then incubated with either rabbit anti-TH polyclonal antibody (1:500, 

Chemicon, Chandlers Ford, UK) or rabbit polyclonal anti-PNMT (1:200, Acris Antibodies 

GmbH, Hiddenhausen, Germany) at 4°C overnight, washed three times 10 min and then 

incubated with goat anti-rabbit secondary antibody conjugated to horseradish peroxidase 

(1:10000, Jackson ImmunoResearch Lab., West Grove, PA) at room temperature (RT) for 2h. 

To assure equal sample loading, the membrane blots were co-incubated with mouse anti-beta-

actin monoclonal antibody (1:2500, Sigma, Steinheim, Germany). After three washing steps, 

TH and PNMT were visualised by enzymatic chemiluminescence (ECL assay kit, Amersham 

Biosciences, Little Chalfont, UK). Blots were exposed to hyperfilm ECL autoradiographic 

film (Amersham Biosciences, Little Chalfont, UK) for 5 sec (TH) or 1 min (PNMT) and 

bands were quantitated using Kodak 1D Image Analysis Software (Kodak, Rochester, NY). 

Graphs indicate densitometric analysis normalised to beta-actin values.  

       

   Table 5: Electrophoresis and blot buffers composition            

   

Components Electrophoresis buffer Blot buffer  

Tris 25 mM 48 mM 

Glycin (Merck, Darmstadt, 

Germany) 
250 mM 39 mM 

SDS (Serva, Heidelberg, 

Germany) 
0.1% 0.0375% 

Methanol - 20% 

H2O + + 
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2.4 Immunohistochemistry 

 

2.4.1 Tissue processing 

 

Animals were deeply anaesthatised with 0.15 ml i.p. of Ketavet + Domitor (5:3) and 

transcardially perfused with 0.1 N NaPi phosphate buffer solution followed by 80 ml of 

phosphate-buffered 4% paraformaldehyde (PFA; Merck, Darmstadt, Germany) + 0.05% 

glutarhaldehyde (Sigma, Steinheim, Germany). Brains were carefully removed from the skull, 

post-fixed overnight at 4°C in 4% PFA and then transfered to 30 % sucrose (Roth, Karlsruhe, 

Germany) as cryoprotectant until they sank (48 h). All the brains were frozen at – 40°C in dry 

ice-chilled methylbutane (Roth, Karlsruhe, Germany) and stored at – 80°C. 

Serial 25-µm coronal frozen sections were cut in a cryostat (model CM3050 S, Leica, 

Nussloch, Germany) transfered either in cold phosphate buffered saline (PBS) and processed 

within 24 h, or in ethylenglycol (Merck, Darmstadt, Germany) + 15% sucrose in 0.05M NaPi 

phosphate buffer as a cryoprotectant solution and stored at –20°C until immunohistochemistry 

was performed. For each animal, all sections spanning the hypothalamus according to the 

Atlas of Franklin & Paxinos (1997) were collected (from bregma – 0.10 mm to bregma – 1.34 

mm). 

 

2.4.2  Immunohistochemical analysis 

 

Sections were processed as free-floating slices. After three initial washing steps in PBS, they 

were incubated in 1% Na-borohydride (Sigma, Steinheim, Germany) for 15 minutes to reduce 

the aldehydeic groups of paraformaldehyde and glutaraldehyde in order to obtain a better 

interaction between antigens and antibodies. After washing again three times, a pre-

incubation of 30 minutes at RT with PBS containing normal goat serum (NGS; PAN, 

Aidenbach, Germany) or horse serum (HS, Gibco, Eggenstein, Germany), in the case of goat 

anti-rabbit or donkey anti-goat secondary antibodies respectively. This was performed to 

block unspecific binding sites. The sections were then incubated with primary antibodies as 

follows: polyclonal guinea-pig anti AVP antibody (Peninsula laboratories, Inc., Belmont, CA) 

diluted 1:3000; polyclonal rabbit anti OXT antibody (Peninsula Laboratories, Inc., Belmont, 

CA) diluted 1:10000; goat nNOS antiserum (produced at the Institute of Medical 

Neurobiology, Magdeburg) diluted 1:100. All the incubations with primary antibodies were 

performed in PBS with 10% NGS or HS, 0.3% Triton X-100 (Serva, Heidelberg, Germany) 
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and 0.1% Sodium Azide (Serva, Heidelberg, Germany) for 2 days at 4°C. After washing steps 

and a pre-incubation of 1h at RT with PBS + 10% bovine serum albumine (BSA, PAA 

Laboratories, Cölbe, Germany), the slices were incubated 3h at RT with a secondary antibody 

anti guinea-pig Alexa 488 nm for AVP (Initrogen, Karlsruhe, Germany), donkey anti-goat 

Cy2 for nNOS (Dianova, Hamburg, Germany) or goat anti-rabbit Cy3 for OXT (Dianova, 

Hamburg, Germany). Finally the sections were washed in PBS, mounted on gelatine coated 

glass slides, air-dried and covered with Immunomount (Thermo Shandon, Pittsburg, PA) to 

prevent fading. Slides were stored at 4°C in darkness. Appropriate negative controls were 

performed by omission of the primary antibody. All the antibodies were tested  before use. 

Fluorescence images were taken using a Zeiss confocal laser microscope (Axiovert 100 M, 

Jena, Germany) which is equipped with a 488 nm-argon and a 546 nm-krypton laser. Pictures 

were obtained by an integrated Zeiss software (LSM 5 Pascal, Jena, Germany) with a 20x lens 

using a 505-530 nm bandpass filter for the 488 nm excitation wavelenght and a longpass filter 

for the 546 nm excitation wavelenght.  

Cell counting was performed following a blinded protocol. Immunopositive cells were 

counted bilaterally in two representative SON sections (from Bregma –0.58 to –0.70;  

Franklin & Paxinos, 1997) and in three representative PVN sections (from Bregma –0.70 to –

0.94). The immunofluorescent signal of nNOS in the SON and PVN of KO mice was in the 

range of background levels in all cases. 

 

 

2.5 In Situ Hybridisation 

 

2.5.1 Tissue processing 

 

In situ hybridisation was performed using radioactive cRNA probes. Animals were deeply 

anaesthetised with 0.15 ml i.p. of Ketavet and Domitor (5:3) and killed by decapitation. 

Brains were quickly removed from the skull, frozen at – 40°C in dry ice-chilled methylbutane 

and stored at – 80°C. 16 µm-coronal sections were cut in a cryostat spanning the region of the 

hypothalamus according to the Atlas of Franklin & Paxinos (1997), with every fifth slice 

being thaw-mounted on the same glass slide. Fat-free glass slides were previously rinsed with 

alchool and let dry at 180°C for 3 hours to avoid RNAase contamination.  

Sections were stored at – 80°C until use.  
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2.5.2 Plasmid preparation 

 

The preparation of cRNA probes for OXT and AVP required a preliminary step to produce 

bacteria containing plasmids with the DNA of the two peptides. This procedure was not 

necessary for the CRH and nNOS probes, since these plasmids were already available in our 

laboratory from previous experiments.  

The two vectors containing the sequence of DNA specific either for OXT or AVP, together 

with the ampicillin resistence as selective agent, have been kindly provided by Dr. Evita 

Mohr, Institute of Cellular Biochemistry and Clinical Neurobiology, Hamburg-Eppendorf  

University, Germany. To obtain a large amount of DNA, Escherichia Coli XL-1 Blue were 

transformed with the vectors as follows. Bacteria were taken from – 80°C, thawn on ice for 5 

minutes and incubated 20 minutes on ice with 0.5 µl of either Tris-EDTA buffer-eluted OXT-

DNA or AVP-DNA. They were transfered to 42°C for 90 seconds, cooled on ice for 2-3 

minutes and then incubated 1 hour at 37°C in standard Luria Bertani buffer (Gibco, 

Eggenstein, Germany). At the end of the incubation, 50 µl of cell suspension were spread on 

an agar plate (Gibco, Eggenstein, Germany) containing ampicillin and grown overnight at 

37°C. Only the bacteria which have incorporated the vectors survived and were able to give 

rise to colonies. A single colony was then inoculated into 30 ml of Luria Bertani medium 

containing ampicillin and grown with vigorous shaking at 37°C for ~12 hours, which is 

tipically the transition from logarithmic into stationary growth phase. After 15 minutes of 

centrifugation at 6000 x g at the end of the incubation, the pellet was frozen at –20°C until 

plasmid purification was performed.  

The isolation of the plasmid from the transformed bacteria was carried out using the QIAfilter 

Plasmid Midi Kit (Qiagen, Hilden, Germany), following the manifacturer’s instructions.  

The amount of plasmid DNA harvested at the end of the procedure and its purity (expressed 

as „R“, the ratio between the absorbance at 260 nm to the absorbance at 280 nm), were 

assessed by spectrophotometry (see table 1). 

The samples were stored at – 20°C. 

 

 

 

 

 

 



MMaatteerriiaallss  uunndd  mmeetthhooddss    

 

23

      Table 1: Concentration and purity of OXT and AVP plasmid DNA 

 

 Concentration R 

OXT  0.542 µg/µl 1.63 

 

AVP 0.707 µg/µl 1.83 

 

 

 

2.5.3 DNA linearisation 

 

The plasmid DNA is linearised with a restriction enzyme, which is chosen such that the 

plasmid is cut only at one site. Antisense and sense probes (as negative controls) 

corresponding to a total of 15 µg of linearised DNA were prepared as follows: 

 

 

    Table 2: nNOS and CRH antisense probes preparation. 

 

Components nNOS antisense  CRH antisense  

Plasmid DNA 28.8 µl 65.2 µl 

Buffer  10 µl (AGS) 10 µl (Bol A) 

Restriction enzyme 10 µl (PST I) 10 µl (APA I) 

DEPC-treated water 51.2 µl 14.8 µl 

Total 100 µl 100µl 

 

 

Sense probes for nNOS and CRH were already available from previous experiments in our 

laboratory and therefore were not newly synthesised. 
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   Table 3: AVP and OXT antisense and sense probes preparation. 

 

Components AVP antisense  OXT antisense  AVP sense OXT sense 

Plasmid DNA 21.2  µl 27.7 µl 21.2 µl 27.7 µl 

Buffer  10 µl (B) 10 µl (H) 10 µl (H) 10 µl (B) 

Restriction enzyme 10 µl (Hind III) 10 µl (Eco RI) 10 µl (Eco RI) 10 µl (Hind III) 

DEPC-treated water 58.8 µl 52.3 µl 58.8 µl 52.3 µl  

Total 100 µl 100µl 100 µl 100 µl 

 

 

Plasmid DNAs were incubated for 3 hours at 37°C with different restriction enzymes. The use 

of specific buffers which were supplied by the manifacture (Qiagen, Hilden, Germany) 

ensures the optimal ionic concentration necessary to each enzyme. 

At the end of the incubation, a 0.8% agarose gel was run for 1h at 70 mV to examine the 

quality of the linearisation. The gel revealed that the DNA has been properly linearised, so we 

proceeded to its extraction after having destroyed all the proteins in the mixture with 10 

mg/ml of proteinase K (Roche, Mannheim, Germany) for 45 minutes at 37°C. This was done 

to eliminate all Rnase in the preparation. From now on, only diethyl pyrocarbonate (DEPC)-

treated water and material were used. 

The linearised DNA mixture was extracted twice with phenol/chlorophorm (Roth, Karlsruhe, 

Germany). The upper phase was transfered to a clean tube and the extraction was repeated 

only with chlorophorm for 1 minute at 14000 x g. The upper phase was transfered again in an 

other clean tube and the DNA was precipitated by adding sodium acetate 3M 1:10 (ph 5.2) 

and 2.5x of 100% ethanol at –20°C for 1h. After centrifuging at maximum speed twice (30 

minutes and 20 minutes) and washing respectively with 70% and 100% ethanol, the pellet 

was resuspended in 15 µl of water. The quality and the quantity of the preparation was 

verified by running 1 µl of the solution on a 0.8% agarose gel for 1h at 70 mV.  

All the linearised DNA probes were stored at –20°C. 

 

2.5.4 cRNA probe labeling 

 

The linearised DNA template was used in a transcription reaction to produce 35S- uracil tri-

phosphate (UTP) cRNA radioactive probes. 25 µl of 35S-UTP solution (Amersham, Little 
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Chalfont, UK) was pipetted into a microfuge tube and let dry completely. This volume 

ensures in solution the minimal amount of UTP (12 µM) which is required for the 

transcription reaction to proceed, being this nucleotide the rate limiting component of the 

process. After resuspending the 35S-UTP in 4 µl of DEPC-treated water, the following 

reagents were added and incubate at 37°C for 90 minutes: 1 µl of 10x transcription buffer, 1 

µl of a NTPs solution without UTP (containing 5 mM ATP, GTP and CTP), 1 µl of RNAase 

inhibitor (Boehringer Manneheim, Germany), 1 µl of 100 mM dithiothreitol (DTT, 

Boehringer Manneheim, Germany), 1 µl of linearised DNA, 1 µl of RNA polymerase 

(Boehringer Mannheim, Germany).  

 

    Table 4: Composition of 10x transcription buffer. 

 

Components 10x Transcription buffer 

Tris 400 mM pH 7.4 

MgCl2 60 mM 

DTT 100 mM 

Spermidine (Sigma, Steinheim, Germany) 40 mM 

 

 

At the end of the incubation 5 µl yeast tRNA (5mg/ml) (Boehringer Mannheim, Germany), 4 

µl 10x transcription buffer, 1 µl RNAse inhibitor (Boehringer Mannheim, Germany), 29 µl of 

DEPC-treated water and 1 µl DNAase (Boehringer Mannheim, Germany) were added and 

incubate 15 minutes at 37°C to digest the DNA template. 

An extraction with phenol/chlorophorm was performed and then the free 35S-UTP in solution 

was separated from the labeled probes on Sephadex G50-50 spin columns (Roche, Mannheim, 

Germany). 1 µl of each fraction was counted and probes were diluted to appropriate 

concentration ( 106/30 µl) in the following hybridisation buffer: 

 

75% hybridisation buffer 

7.5 ml formamide (Gibco, Eggenstein, Germany) 

1.5 ml 20x standard sodium citrate (SSC) 

200 µl 50x Denhardts (Sigma, Steinheim, Germany) 

400 µl yeast tRNA (5 mg/ml) 
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500 µl 1 M sodium phosphate buffer pH 7.4 

1 g dextran sulfate (Sigma, Steinheim, Germany) 

 

Since probes with 35S need to be maintained under reducing conditions, 1/100 volume of DTT 

was added to the mixture.  

Probes were used immediately to avoid high background during hybridisation. 

 

2.5.5 Tissue hybridisation 

 

Slides were taken out from – 80°C and soaked in PFA 4% for 1h at RT. After 2 washing steps 

in PBS, sections were treated with proteinase K (0.1 µg/ml) in 100 ml Tris-HCl pH 8.0, 50 

mM EDTA for 10 min at 37°C. Subsequent washing steps were performed in DEPC-treated 

water for 5 min, 0.1 M triethanolamine (TEA; Sigma, Steinheim, Germany) ph 8.0 for 5 min, 

0.1 M TEA pH 8.0 with freshly added acetic anhydride (Roth, Karlsruhe, Germany) for 10 

min and finally 2x SSC for 5 min. Sections were dehydrated in graded ethanol 50% to 100% 

and air dried.  

30 µl of cRNA radioactive probe was used for each slide. Hybridisation was carried out at 

55°C for 16 hours in humid chambers with 75 % formamide. 

The post-hybridisation procedure consists of an initial washing step in 2x SSC, a treatment 

with RNAase A (40 µg/ml; Roche, Mannheim, Germany) at 37 °C to eliminate all single 

stranded RNA and several washing steps in 2x SSC, 1x SSC and 0.5x SSC at RT for 10 min, 

and in 0.1x SSC at 60°C for 45 min. After having been dehydrated in graded ethanol 50% to 

100%, slides were air dried. 

 

2.5.6 Autoradiography emulsion dipping 

 

To visualise silver grains at the cellular level, the slides were dipped in a photographic 

emulsion (Integra, Fernwald, Germany) which had been diluted 1:1 in 0.5% glycerol (Merck, 

Darmstadt, Germany). Slides were dipped manually in the emulsion, let dry at RT for 2 hours 

and developed at 4°C in the dark. After being exposed, the slides were developed in Kodak D-

19 photographic solution (Kodak, Rochester, NY) and fixed in 30% sodium thiosulfate 

(Kodak, Rochester, NY). In order to observe single cells in the tissue, the sections were 

counterstained with hematoxylin-eosin and then coverslipped with mounting medium (Serva, 

Heidelberg, Germany). Grey levels were measured bilaterally in dark-field images 
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(AxioVision 4.2, Carl Zeiss Vision, Jena, Germany) at two different representative SON and 

three representative PVN sections. Each image was adjusted for equal background. The 

hybridisation signal of nNOS in the PVN of KO mice was in the range of background levels 

in all cases. 

 

 

2.6 Blood sampling and neuroendocrine measurements 

 

2.6.1 Blood sampling procedure 

 

Blood sampling (n = 6-8/group, carried on between 8:00 and 11:00 a.m.) was performed by 

heart puncture from three separate groups of mice as follows: 5 minutes (T5), 15 minutes (T15) 

and 60 minutes (T60) after stressor onset. The animals of group T5 were immediately 

anaesthetised with isofluorane (Abbott GmbH, Wiesbaden, Germany) at the end of a 5 

minute-swimming session, whereas those of groups T15 and T60 were gently dried with a 

towel after a 10 minute-swimming session and returned to their home cages for 5 and 50 

minutes respectively before being anaesthetised. The interval between anaesthesia and blood 

sampling was less than 1 minute. Blood (0.6-0.8 ml) was collected in ice chilled-EDTA-

coated vials (Kabe Labortechnik, Nümbrecht-Elsenroth, Germany) containing a protease 

inhibitor (10 µl aprotinin; Trasylol, Bayer, Leverkusen, Germany) and centrifuged (3000 x g, 

5 minutes at 4°C; Eppendorf Centrifuge 5417R, Leipzig, Germany) to separate plasma from 

cellular components. Control mice were left undisturbed in their home cages until blood 

sampling was performed. Aliquots of the supernatants were stored frozen at –80°C until 

peptide content measurement. Plasma OXT and AVP levels were determined by 

Radioimmunoassay (RIA) at the Department of Behavioural Neuroendocrinology, Max Plank 

Institute of Psychiatry, Munich, Germany. Cort and ACTH plasma values were measured 

using commercially available RIA kits at the Department of Endocrinology and Metabolism, 

Otto von Guericke University, Magdeburg. NE and E plasma values were measured by 

Enzyme Immunoassay (2 CAT EIA, LDN, Nordhorn, Germany). See below for all details. 

 

2.6.2 AVP and OXT plasma values measurement 

 

AVP and OXT were measured by specific and sensitive RIAs that were established by 

Landgraf (1981). 160 µl of plasma were used for each measurement. To isolate the peptides 
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from substances in plasma that may interfere with their quantitation, prior to RIA 

determination all samples were extracted as follows. 20mg/sample of Vycor glass powder 

were activated for 8h at 700°C and then, once cooled down to RT, diluted in 1 ml water. Each 

sample was diluted with 1 ml glass powder-containing water and mixed on a rotating shaker 

at 4°C for 30 min. After a quick centrifugation at 14000 x g for 5 sec, the supernatant was 

discarded and the pellet resuspended with 0.5 ml of water. The samples were centrifuged 

again, the supernatant discarded and the pellet resuspended in 0.5 ml of 0.1 N HCl. After a 

third centrifugation, the remaining pellet was diluted in 0.5 ml of 60% aceton, the tubes were 

capped and let stand for 10 min at –20°C. After being mixed on a rotating shaker for 30 min 

at 4°C, the samples were centrifuged at 14000 x g for 5 sec and the supernatant was 

transferred into a clean tube. Finally, the tubes were air-dried overnight at 4°C and the rest 

lyophilised. 

To assess the AVP/OXT concentration, 100 µl of assay buffer were added to the lyophilised 

extract and 50 µl aliquots were used for the determination of both nonapeptides. 50 µl of 

rabbit antibodies, which were made at the Department of Behavioural Neuroendocrinology, 

Max Plank Institute of Psychiatry, Munich, Germany, and 10 µl of either AVP-125 I or OXT-
125 I were then added. After 3 days of incubation at 4°C, unbound counts were precipitated by 

charcoal (Norit A) and samples were measured in a gamma counter. Synthetic AVP and OXT 

(Ferring Pharmaceuticals, Malmo, Sweden) were used as standard controls. A blank tube 

without AVP or OXT anti-serum was used to assess non specific binding. The calibrator 

curve was obtained by plotting the percent bound versus the concentration of AVP and OXT 

for all the standards. Sample values were then read directly from this curve. 

 

2.6.3 ACTH and Cort plasma values measurement 

 

ACTH and Cort plasma values were measured with two different RIA kits (ICN Biomedicals, 

Inc., Costa Mesa, CA). For ACTH, 50 µl of plasma were used for each measurement. Prior, to 

assay, all lyophilised reagents were reconstituted with water, mixed gently and let stand for 15 

min at 4°C. 50 µl of ACTH-125 I, 50 µl of ACTH anti-serum and 50 µl of standard controls 

(10 pg/ml to 1000 pg/ml) or plasma sample were mixed in each test tube, vortexed 

thouroughly and incubated at 4°C for 16 h. After adding 500 µl of precipitant solution, all 

tubes were centrifuged at 1000 x g at 6°C for 15 min. Supernatants were discarded and the 

precipitates were counted in a gamma counter. A blank tube without ACTH anti-serum was 

used to assess non specific binding. 
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For Cort, 10 µl of plasma for each measurement were diluted 1:200 with steroid diluent. 200 

µl of Cort-125 I, 200 µl of Cort anti-serum and 100 µl of standard controls (25 ng/ml to 1000 

ng/ml) or plasma diluted sample were mixed in each test tube and incubated at RT for 2 h. 

After incubation, 500 µl of precipitant solution was added and all tubes were centrifuged at 

1000 x g for 15 min. Supernatants were discarded and the precipitates were counted in a 

gamma counter. A blank tube without Cort anti-serum was used to assess non specific 

binding. 

Both ACTH and Cort assays were set up in duplicate. The percent bound was calculated by 

subtracting the blank counts from the average of all duplicate tubes, and then dividing the 

corrected values by the corrected zero standard value. The calibrator curve was obtained by 

plotting the percent bound versus the concentration of Cort for all the standards. Sample 

values were then read directly from this curve. All the solutions were provided by the 

manifacturer. 

 

2.6.4 NE and E plasma values measurement 

 

To extract NE and E from blood, 100 µl of plasma were diluted with 200 µl of distilled water 

and incubated for 30 min at RT on an orbital shaker with 50 µl of Assay Buffer and 50 µl of 

Extraction Buffer. After decanting, each well was washed twiced with 1 ml of Wash Buffer 

Concentrate. 150 µl of Acylation Buffer were then incubated with 25 µl of Acylation Reagent 

in all wells for 15 min at RT on an orbital shaker. After decanting and washing twice with 

Wash Buffer Concentrate, NE and E were eluted with 150 µl of hydrochloric acid from all 

wells.  

100 µl of the extracted and acylated samples were used for E EIA and 20 µl for NE EIA. 

After 30 min of incubation at RT with 25 µl of a freshly prepared Enzyme Solution, 50 µl of 

Adrenaline or Noradrenaline Antiserum were pipetted into all wells and incubated 2 h at RT. 

Three washing steps were performed, and then 100 µl of Enzyme Coniugate was added to all 

wells and incubated for 30 min. After repeated washings, a subsequent incubation with 100 µl 

of Substrate was carried on for 30 min. The reaction was stopped with 100 µl of Stop Solution 

and the absorbance of the solution in the wells was read within 10 min using a microplate 

reader set to 450 nm with a reference wavelenght between 620 nm and 650 nm. 

The linear mean absorbance readings of six standards were plotted along the y-axis versus log 

of the standard concentrations in ng/ml along the x-axis. The concentrations of the samples 

were determined from this standard curve by matching their mean absorbance readings with 
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the corresponding analyte concentrations. All the solutions were provided by the 

manifacturer. 

 

 
2.7 Statistical Analysis 

 

Behavioural data were analysed using the Student’s t-test. Neuroendocrine measures data 

were analysed by two-way analysis of variance (Two-way ANOVA, GraphPad Software, San 

Diego, California; genotype x time points) followed by Fischer LSD post-hoc test (GB-Stat 

6.0, Dynamic Microsystems, Silver Spring, MD, U.S.A). 

Data from Western blot, in situ hybridisation and immunohistochemical analysis were 

analysed by Mann-Whitney U-test (GraphPad Software, San Diego, California). 

All values are reported as mean + SEM. A p < 0.05 was considered statistically significant. 
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3 Results 
 

 

3.1 Basal conditions  

 

3.1.1 Western Blot analysis 

 

TH. TH signal was seen as a single band at ~60 kDa (Fig. 4), which is consistent with 

previous studies. Analysis of Western blot data revealed a reduced expression of TH in 

adrenal gland homogenates of KO mice compared to WT (Mann Whitney U-test, p < 0.05, U 

= 9, Fig. 5).  

 

PNMT. PNMT signal was seen at ~27 kDa (Fig. 4). Beta-actin blot is also shown to confirm 

equal loading of samples. Similarly to TH, quantitative analysis of PNMT-stained 

immunoblots revealed a significantly lower expression of this enzyme in KO mice compared 

to WT (Mann Whitney U-test, p < 0.05, U = 7, Fig. 5).  

 

 
 
 
 
Fig. 4. Western blot gel lanes for tyrosine hydroxylase (TH), phenylethanolamine N-

methyltransferase (PNMT) and beta-actin from adrenal gland homogenates of WT 

and KO mice. The positions of the respective molecular weight markers are 

indicated.  
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Fig. 5. Semi-quantitative histogram showing tyrosine hydroxylase (TH) and 

phenylethanolamine N-methyltransferase (PNMT) expression in adrenal gland 

homogenates of WT and KO mice. Data were normalised to the respective beta-actin 

values and presented as mean + SEM. * =  p < 0.05 vs WT, Mann Whitney U-test.  

 
 
 
 
 
3.1.2 AVP- and OXT-immunopositive cell count in the PVN 

 

AVP. AVP-immunopositive cell count was performed bilaterally in three PVN sections of 

each WT and KO mouse. No statistical difference was observed between the genotypes, 

although KO mice showed a tendency towards a lower number of positively stained cells (p = 

0.15, U = 5, Mann Whitney U-test; Fig. 6A and Fig. 7A and B).   

 

OXT. OXT-immunopositive cells were counted bilaterally in three PVN sections of each WT 

and KO mouse. The total number of OXT positive cells was similar in both genotypes (p = 

0.54, U = 9, Mann Whitney U-test; Fig. 6B and Fig. 7C and D). 
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Fig. 6. AVP- (A) and OXT- (B) immunofluorescent cell number in the PVN of KO and WT 

under basal conditions. Data are expressed as means + SEM (n = 5/genotype). No 

statistical difference was observed between the genotypes.  

 

Fig. 7. Representative immunofluorescence pictures of AVP- (green) and OXT- (red) labelled 

magnocellular neurones in the PVN of WT (A and C) and KO (B and D) animals. III = 

third ventricle. Scale bar: 20 µm. 
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3.1.3 Expression of AVP, OXT and CRH mRNA in the PVN 

 

AVP. The relatively high intensity of the hybridisation signal did not allow to count 

individual cells. Quantification of the emulsion-dipped slices was performed bilaterally in 

three PVN sections, and it revealed that AVP mRNA grey value intensity in the PVN of KO 

mice was significantly lower than in WT animals (p < 0.01, U = 0, Mann Whitney U-test; Fig. 

8A and 9A1 and A2).  

 

OXT. KO mice displayed a tendency to lower OXT mRNA expression if compared to WT, 

without, however, reaching statistical significance (Mann Whitney U-test, p = 0.12, U = 6; 

Fig. 8B and 9B1 and B2).  

 

CRH. Figure 8C shows the CRH mRNA grey values in the two groups. The intensity of the 

hybridisation signal in KO animals was similar to that seen in WT mice (Mann Whitney U-

test, p = 1, U = 15). Representative pictures of CRH mRNA levels in WT and KO mice are 

shown in Fig. 9C1 and C2. 
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Fig. 8. Hybridisation signal of (A) AVP mRNA, (B) OXT mRNA and (C) CRH mRNA in the 

PVN of KO and WT mice under resting conditions. Data are expressed as means + 

SEM (n = 5-6). ** =  p < 0.01 versus WT. Mann Whitney U-test. 

 

 

 

Fig. 9. Representative bright-field microphotographs illustrating the hybridisation signal in 

the PVN of WT (left panels: A1, B1, C1) and KO (right panels: A2, B2, C2) for (A) 

AVP mRNA, (B) OXT mRNA and  (C) CRH mRNA. Scale bar: 20 µm. 
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3.1.4 AVP- and OXT-immunopositive cell count in the SON 

 

AVP. AVP-immunopositive cells were counted bilaterally in two representative SON sections 

of each animal. No statistical difference was observed between the genotypes (p = 0.42, U = 

8, Mann Whitney U-test; Fig. 10A and Fig. 11A and B).   

 

OXT. Although the number of OXT-immunopositive cells tended to be higher in KO than in 

WT, the difference failed to reach statistical significance (p = 0.09, U = 4.5, Mann Whitney 

U-test; Fig. 10B and Fig. 11C and D). 

 

 

Fig. 10. AVP- (A) and OXT- (B) immunopositive cell number in the SON of KO and WT 

under basal conditions. Data are expressed as means + SEM (n = 5/genotype). No 

statistical difference was observed between the groups.  

 

 

 

0

10

20

30

40

50

60
WT
KO

C
el

l 
n

u
m

b
er

 (
m

ea
n

)

A 

0

5

10

15

20

25

30

35

C
el

l 
n

u
m

b
er

 (
m

ea
n

)

B 



RReessuullttss  

 

37

 

 

 

Fig. 11. Representative immunofluorescence pictures of AVP- (green) and OXT- (red) 

labelled magnocellular neurones in the SON of WT (A and C) and KO (B and D) 

animals. OX = optical chiasm. Scale bar: 20 µm. 

 

 

 

3.1.5 Expression of AVP and OXT mRNA in the SON 

 

AVP. We evaluated AVP mRNA expression bilaterally in two different SON sections of each 

WT and KO mouse by grey value analysis. Quantification of the emulsion-dipped slices 

revealed that AVP mRNA levels in KO animals were significantly higher than in WT (p < 

0.02, U = 3, Mann Whitney U-test; Fig. 12A and Fig. 13). 

 

OXT. Analysis of emulsion-dipped slices revealed OXT mRNA levels in KO and WT mice 

were similar (p = 0.14, U = 8, Mann Whitney U test; Fig. 12B and Fig. 14).  
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Fig. 12. Hybridisation signal of mRNA coding for AVP (A) and OXT (B) in the SON of KO 

and WT under basal conditions. Data are expressed as means + SEM (n = 5-6). * =  p 

< 0.02 vs WT control. Mann Whitney U-test.  

 

 

 

Fig. 13. Representative bright and dark-field microphotographs of AVP mRNA expression in 

the SON of  WT (A1, A2) and KO mice (B1, B2). OX = optical chiasm. Scale bar: 20 

µm. 
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Fig. 14. Representative bright- and dark-field microphotographs of OXT mRNA expression in 

the SON of  WT (A1, A2) and KO mice (B1, B2). OX = optical chiasm. Scale bar: 20 

µm. 
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3.2 Stress conditions 

 

3.2.1 Behavioural observations 

 

Figure 15 shows the behaviour of the mice during a 5 min- (A) and a 10 min- (B) swimming 

session in 20°C cold water. No statistically significant difference was observed between the 

two genotypes in terms of time spent either floating (Student’s t-test, p = 0.59 for A and p = 

0.14 for B), or swimming (p = 0.26 for A and p = 0.19 for B) or struggling (p = 0.19 for A and 

p = 0.19 for B). 

 

Fig. 15. Behavioural parameters of nNOS KO and WT mice observed during a 5 min- (A) and 

a 10 min-forced (B) swimming session at 20 °C. Values are means + SEM (in A n = 

8 for both genotypes; in B n = 43 for WT and n = 31 for KO). Data were analysed by 

Student’s t-test between the genotypes and the same behavioural parameters. 
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3.2.2 Neuroendocrine measurements 

 

E. Plasma E levels in KO control mice were slightly higher than in WT, but without reaching 

statistical significance. In WT animals, forced swimming caused an increase in E plasma 

values which peaked 15 min after stressor onset (Two-way ANOVA, Fischer LSD post-hoc 

test, p < 0.05 compared to control, Fig. 16A). A biphasic response was observed in KO 

animals after forced swimming: at T15 the E levels dropped significantly if compared to T5, 

and rose again at T60 (Two-way ANOVA, Fischer LSD post-hoc test, p < 0.05 compared to T5 

and T60, Fig. 16A). 

 

NE. NE plasma concentrations in unstressed WT and KO mice were very similar. After 

stressor exposure, the overall NE release profile of KO animals was slightly higher than that 

of WT, but it failed to reach statistical significance (Two-way ANOVA, Fischer LSD post-

hoc test, p = 0.06, Fig. 16B). 

 

 

Fig. 16. Plasma concentrations of (A) E and (B) NE in KO and WT mice under resting 

conditions (control) and 5 min after forced swimming, as well as 5 min and 50 min 

after a 10-min forced swimming session (T5, T15 and T60, respectively). Data are 

expressed as means + SEM (n = 6-8). In (A): ◆ = p < 0.05 versus the respective 

control; * = p < 0.05 versus KO T5 and T60. Two-way ANOVA followed by Fisher’s 

LSD post-hoc analysis. 

 

 

 

0

1

2
WT
KO

ng
/m

l

* 

◆ 

Control T5 T15 T60 

A

0

5

10

15

20

25

ng
/m

l

Control T5 T15 T60 

B 



RReessuullttss  

 

42

 

ACTH. Basal plasma ACTH concentrations did not differ between the genotypes. Upon 

stressor exposure, we observed at T5 a significant rise of plasma ACTH levels in both groups 

(Two-way ANOVA, Fischer LSD post-hoc test, p < 0.05, Fig. 17A). At T15 and T60 plasma 

ACTH concentration returned close to basal levels without revealing differences between WT 

and KO animals. 

 

Cort. Basal plasma Cort concentrations were similar in KO and WT control animals. In WT 

animals plasma values rose 5 min after stressor onset, peaked at T15 (Two-way ANOVA, 

Fischer LSD post-hoc test, p < 0.01, Fisher LSD test compared to control, Fig. 17B) and 

decreased at T60. KO animals mounted a faster response to forced swimming, as plasma 

values at T5 were already markedly different from control (Two-way ANOVA, Fischer LSD 

post-hoc test, p < 0.01, Fig. 17B). The overall release profile looked, however, analogous to 

WT mice, reaching a peak at T15 (Two-way ANOVA, Fischer LSD post-hoc test, p < 0.01, 

compared to controls, Fig. 17B) and decreasing at T60. 

 

 

Fig. 17. Plasma concentrations of (A) ACTH and (B) Cort in KO and WT mice under resting 

conditions (control) and 5 min after forced swimming, as well as 5 min and 50 min 

after a 10-min forced swimming session (T5, T15 and T60, respectively). Data are 

expressed as means + SEM (n = 6-8). In (A): * = p < 0.05 versus the respective 

controls. In (B): ** = p < 0.01 versus the respective controls. Two-way ANOVA 

followed by Fisher’s LSD post-hoc analysis. 
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AVP. Basal plasma AVP concentrations did not differ between the genotypes. Forced 

swimming tended to induce in both stressed groups a subtle increase of AVP plasma values at 

T5, which however failed to reach statistical significance. At T15 plasma values in WT animals 

remained similar to basal levels, but dropped in KO mice to levels significantly lower than in 

controls and at T5 (Two-way ANOVA, Fischer LSD post-hoc test, p < 0.05; Fig. 18A). At T60 

the AVP concentration markedly rose again if compared to T15 (Two-way ANOVA, Fischer 

LSD post-hoc test, p < 0.01; Fig. 18A), whereas in WT animals it remained unchanged. 

 

 

OXT. Basal OXT plasma concentrations were similar in KO and WT control animals. 

Stressed WT stressed animals showed at all time points measured plasma values 

indistinguishable from those seen under control conditions. In contrast, KO animals 

responded to forced swimming with an altered release profile of OXT. Interestingly, OXT 

plasma concentration was significantly lower in KO mice at T15 (Two-way ANOVA, Fischer 

LSD post-hoc test, p < 0.05, Fig. 18B), whereas at T60 it was robustly increased compared to 

control, T5 and T15 of the KO group as well as T60 of the WT group (Two-way ANOVA, 

Fischer LSD post-hoc test, p < 0.01, Fig. 18B). 

 

Fig. 18. Plasma concentrations of AVP (A) and OXT (B) in KO and WT mice under untreated 

conditions (control) as well as 5 min, 15 min and 60 min after forced swimming (T5, 

T15 and T60, respectively). Data are expressed as means + SEM (n = 6-8). In (A): * = 

p < 0.05 vs KO control and KO T5; ◆ p < 0.01 vs KO T60.  In (B): * = p < 0.05 vs 

KO control; ◆ p < 0.01 vs KO control, T5, T15 and T60 as well as WT T60. Two-way 

ANOVA followed by Fisher’s LSD post-hoc analysis. 
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4 Discussion 
 

 

This study aims at elucidating the role NO of nNOS origin plays in regulating the activity of 

the SAS, the HPA-axis and the HNS under resting conditions and following acute stressor 

exposure. We examined in WT and nNOS KO mice the main physiological blood parameters 

that, in the periphery, are index of the status of the above mentioned systems, and the 

transcriptional and protein levels of the key molecules that govern the function of each system 

at the level of the brain and the adrenal gland.  

   

 

4.1 Considerations about transgenic mice 

 

Before discussing in detail the results obtained in this study, some remarks are due regarding 

the use of mutant mice as a tool to characterize in vivo the function of molecules that have 

previously been studied in vitro or by using pharmacological agents. The generation of 

transgenic animals boosted studies concerning the physiological relevance of genes/proteins 

at many levels, reaching from biochemistry to cell and system biology up to behaviour. 

Precious information have already been obtained in the past decade by the use of mutant mice 

(Picciotto & Wickman, 1998; Ryan & Sigmund, 2002), and the convergence of data from 

pharmacological studies and from in vivo experiments using KO mice models have 

undoubtedly deepened our knowledge of nervous system function. However, different 

variables can influence the phenotype of the mutant mouse. The existence of different 

subtypes or splicing isoforms, for instance, might cover up the disruption of the target protein. 

Furthermore, the occurrence of compensatory mechanisms should also be taken into 

consideration, as the ablation of a single protein, if does not result in a lethal phenotype, 

might be balanced by other pathways. In addition, one has also to consider the impact of the 

genetic background of mutant mice that have been develop using cultured embrionic stem 

cells derived from the mouse strain 129, and backcrossed to mice from a different strain, for 

example C57Bl/6. The offspring of such matings, even after several backcrossings to the 

C57Bl/6, still maintain a small amount of genetic material of 129 origin, which extends on 

either side of the disrupted allele of the targeted gene. As the likelihood of cross-over events 

occurring precisely on both sides of the targeted gene is infinitesimally small, the 129-derived 

flanking regions of the mutated allele of the gene of interest will be most probably transmitted 
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together with the mutation. Conversely, wild-type offspring will not carry the 129-derived 

genes located close to the disrupted allele, but will carry C57Bl/6-type alleles instead. 

Therefore, the different genetic background due to the presence of residual material from the 

129 strain in mutants might account, at least partially, for phenotypical differences between 

mutant and control mice (for review, see: Gerlai, 1996; Lathe, 1996). Also epigenetic effects 

induced by breeding have to be taken into consideration. This seems to be of particular 

relevance with respect to early life experience on the development of the neuroendocrine 

response to stress. Maternal care during the first weeks of life can influence profoundly the 

capacity of pups of mounting an appropriate defensive response to environmental challenges 

once reached the adult age. Previous studies showed that maternal behaviour is an important 

epigenetic process whereby the HPA-axis response to stress can be affected (Liu et al., 1997a) 

(for review, see: Meaney, 2001). Several attempts have been made to overcome both the 

genetic and the epigenetic problems. The future of gene-targeting technique seems to be 

oriented to expand and improve existing methods to generate, for instance, inducible KO 

mice, where the gene of interest can be turned off at particular times. The phenotype of the 

animals could be then compared within the same genetic background before and after gene 

inactivation. Another valid alternative might be the generation of conditional KO mice, where 

the gene disruption can be achieved in a specific subset of cells, leaving the rest of the 

organism genotypically unchanged. This allows to investigate the role of a molecule in the 

exact contest it normally works. Regarding breeding-related epigenetic effects, cross-fostering 

studies using heterozygous parents may help rule out that observed neuroendocrine and 

behavioural differences in mutant mice bred by mutant parents are not due to impaired 

parental care, and thus to non-genomic effects, but primarily to the genetic disruption.  

In the present study, the influence of epigenetic factors should be considered, as the colony of 

mice was initially established with WT and KO breeders that were then kept separated and 

further bred as two independent colonies. Thus, albeit several benefits can come from mutant 

mice studies and assumptions with respect to normal physiological situation can be made 

from such studies, conclusions are necessarily restricted. In this context, as to date there is no 

inducible or conditional KO model for nNOS available, the results of the present work are 

subjected to the above mentioned limitations that hold true for our conventional KO animals. 

Nevertheless, the findings obtained in the course of this study provided new insight into the 

role NO/nNOS plays in neuroendocrine regulation.  
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4.2 Effect of nNOS gene inactivation on behaviour  

 

Previous investigators have reported that nNOS KO mice displayed altered behavioural 

parameters, such as excessive sexual behaviour and increased aggression (Nelson et al., 1995; 

Chiavegatto et al., 2001; Chiavegatto & Nelson, 2003). Cerebellar functions such as balance 

and coordination appeared unchanged in these animals, although some investigators reported 

abnormalities in balance and motor coordination selectively during the night (rodent active 

phase; Kriegsfeld et al., 1999). With regard to cognitive functions, KO mice showed impaired 

cognitive performance in the Morris water maze test under stressful conditions (Weitzdoerfer 

et al., 2004). It has also been reported that nNOS KO mice showed an altered behavioural 

response during a 10-min swimming session at a rather warm temperature of 25 °C (Salchner 

et al., 2004), with a considerably reduced time of immobility than WT mice and an enhanced 

duration of swimming behaviour. Since the intensity with which the stressor is perceived by 

the animals determines the behavioural response, we decided to use a lower water temperature 

(20 °C), as this is perceived more aversive. As can be seen in Fig. 15, our results differ from 

those of the above mentioned authors as the behaviour of the KO mice in our hands failed to 

significantly differ from WT animals. This discrepancy is likely to be ascribed to different 

experimental conditions, in particular the water temperature, which has been reported to be an 

important parameter in the forced swim test (Peeters, 1991; Jefferys & Funder, 1994; Drugan 

et al., 2005). The fact that in our hands both genotypes respond to the defined stressor 

exposure with the same behavioural strategy indicates that the differences in the endocrine 

parameters observed in response to forced swimming are due to the congenital absence of 

nNOS, and not to a different interpretation of the stressor within the limbic system.  

 

4.3  Effect of nNOS gene inactivation on the adrenal activity under basal 

conditions and in response to forced swimming 

 

There is growing evidence that NO decreases catecholamine secretion in response to a defined 

stressor exposure. This paracrine and/or autocrine mechanism is most likely aimed at 

controlling acetylcholine-evoked adrenal medulla activation under stress (Uchiyama et al., 

1994; Rodriguez-Pascual et al., 1996). However, the physiological role of NO on chromaffin 

cells, in particular under resting conditions, is still a matter of debate. Some studies have 

shown that NO triggers basal catecholamine secretion and that different NO donors increase 

intracellular calcium concentrations (Oset-Gasque et al., 1994; Uchiyama et al., 1994), 
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whereas other authors reported that N-methyl L-arginine, a NOS inhibitor, increased efflux of 

catecholamine in perfused dog adrenal glands (Ward et al., 1996). Finally, some investigators 

even failed to observe any effect of NO on chromaffin cells activation  and calcium levels 

(Marley et al., 1995). In KO mice the activity of the sympathetic nervous system, measured in 

terms of NE and E plasma values, appeared normal under resting conditions (see Fig. 16). 

After stressor exposure, E plasma levels in WT animals rose and peaked at 15 min, whereas in 

KO mice the E profile release showed a biphasic nature with a drop at 15 min and a later 

increase at 60 min. The reduced E plasma values at 15 min speaks in favour of a change in E 

synthesis, which is then reflected by a lower amount of E stored in vesicles ready to be 

released upon stimulation. The activity of catecholamine biosynthetic enzymes is regulated by 

different protein kinases through phosphorylation (Zigmond et al., 1989) and gene expression 

(Sabban & Kvetnansky, 2001). Previous reports have shown that NO up-regulates activity and 

transcript levels of these enzymes through a cGMP/PKG-activated pathway (Kim et al., 

2003). Our findings correlate well with this view, as in KO animals TH and PNMT protein 

levels were significantly reduced if compared to WT (see Fig. 5). The lower E plasma levels 

observed in KO mice 15 min after stressor onset may be ascribed to reduced amounts of both 

TH and PNMT, which seem be sufficient to ensure normal basal levels of E, but become 

inadequate in case of higher demand, such as under acute stress conditions. Conversely, the 

plasma concentration of E in genetically modified mice was robustly increased 60 min after 

stressor onset. The literature suggests a dual role for cGMP in modulating the function of 

chromaffin cells. Beyond stimulating catecholamine synthesis through TH activation, cGMP 

also inhibits catecholamine secretion by reducing calcium influx (O'Sullivan & Burgoyne, 

1990; Torres et al., 1994). The latter effect seems to be due to inhibition of voltage-dependent 

calcium channels through a mechanism that involves PKG. There is evidence that the 

mechanism that links PKG activation to calcium influx inhibition appears to be rather slow, 

since long times of incubation with the NO donor sodium nitroprusside are required in vitro to 

observe an inhibition of catecholamine secretion (Rodriguez-Pascual et al., 1996). In 

agreement with this view, our results confirm the dual effect of the NO/cGMP/ PKG pathway 

with an initial stimulatory and a later inhibitory role on E release. 

Interestingly, the reduced TH levels in KO mice seem to have no significant effect on stressor 

exposure-induced NE release. NOS is preferentially expressed by noradrenergic chromaffin 

cells in the human (Heym et al., 1994) and rat adrenal medulla (Dun et al., 1993), while 

adrenergic cells show a lower expression of this enzyme. However, adrenergic cells are more 

responsive to NO donors than noradrenergic cells. NO may, therefore, act in a paracrine 
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manner, diffusing from noradrenergic cells to adrenergic cells, which constitute its main 

target (Oset-Gasque et al., 1998). It is then plausible that the constitutive absence of NO could 

affect more prominently the function of adrenergic chromaffin cells rather than that of 

noradrenergic ones. 

 

4.4  Effect of nNOS gene inactivation on stress-related PVN structures 

under basal conditions and in response to forced swimming 

 

Previous studies suggested a role for nNOS in the ontogeny of AVP and OXT-expressing 

cells of the hypothalamus. In particular, the time course of nNOS expression in hypothalamic 

structures has been shown to coincide with the maturation of vasopressinergic and 

oxytocinergic neurones, which strongly suggests an important role of NO of nNOS origin on 

the correct postnatal development of these cells (Yuan et al., 2006). We therefore evaluated 

by cell count the number of AVP- and OXT- expressing neurones in the PVN of mutant mice, 

as possible variations in the number of cells expressing these two neuropeptides in the PVN 

might be associated with alterations of the HPA-axis activity, given that both AVP and OXT 

are known to enhance the effects of CRH. Surprisingly, the number of OXT- and AVP-

immunoreactive cells in the PVN of KO mice was not different from that of WT mice (see 

Fig. 6). This suggests that the chronic absence of nNOS had no impact on the number of 

immunopositive cells that produce the two neuropeptides in this part of the hypothalamus. 

This finding is concordant with a previous observation (Bernstein et al., 1998a) that reported 

no significant changes between WT and mutant mice in the number of neurophysin-positive 

cell bodies in the PVN. We further evaluated the intensity of the hybridisation signal of 

mRNA coding for AVP and OXT in the neurones of the PVN, to verify whether the 

production of these neuropeptides might be affected by the congenital absence of nNOS/NO. 

Interestingly, KO mice displayed a remarkably reduced AVP mRNA content in the PVN (see 

Fig. 8A), which suggests NO to promote mRNA synthesis for AVP in this hypothalamic 

nucleus already at resting conditions. This is in agreement with previous reports showing that 

AVP transcriptional activity was enhanced after intracerebroventricular injection of the NO 

donor 3-morpholino-sydnonimine, mostly in the parvocellular division of the PVN in the 

intact rat (Lee et al., 1999). Our hybridisation protocol did not allow to easily discriminate 

between parvocellular and magnocellular neurones. This is predominantly due to the peculiar 

anatomical structure of the murine PVN, where parvocellular and magnocellular neurones are, 

unlike the rat, intensively intermingled with one another (Schonemann et al., 1995; Dijkstra et 
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al., 1998; Reyes et al., 2003). Nonetheless, the striking difference in AVP mRNA content 

between the two neuronal populations in naïve animals (Sawchenko, 1987) makes it rather 

unlikely that parvocellular neurones contribute significantly to the detected AVP mRNA 

levels of the PVN. Earlier studies in this regard focused mainly on the effect of NO on AVP 

peripheral release, and reported contradictory results (Ota et al., 1993; Yasin et al., 1993; 

Lutz-Bucher & Koch, 1994; Cao et al., 1996; Kadekaro et al., 1997). Furthermore, these 

studies were based almost exclusively on the rat as experimental subject, which differs from 

the mouse not only in the cyto-architectural organisation of the PVN, but also in the general 

distribution of NOS-like immunoreactivity (Ng et al., 1999). Our data suggest that, in the 

mouse, endogenous NO of nNOS origin exerts a stimulatory influence on the activity of AVP 

magnocellular cells in the PVN.  

In contrast to AVP, OXT mRNA levels in KO mice did not significantly differ from WT (see 

Fig. 8B). The responsiveness of OXT magnocellular neurones to NO seems to be different 

from that of AVP cells, a functional heterogeneity that has been observed also by other 

authors (Roberts et al., 1993). 

The involvement of NO in the modulation of ACTH secretion may be conceivable due to the 

subcellular localisation of nNOS in the PVN of rodents (Torres et al., 1993; Siaud et al., 

1994; Hatakeyama et al., 1996), which implies NO to participate in an autocrine and/or 

paracrine manner into the regulation of CRH release into the portal blood. In fact, recent 

studies conform to the view that NO is involved in the control of the CRH neurosecretory 

system (Riedel, 2000). However, previous investigations addressing this issue yielded 

conflicting results, which can be ascribed to different experimental approaches, for instance 

peripheral versus central pharmacological administrations (Giordano et al., 1996; Lee et al., 

1999). Other investigators reported no effect of NO precursors or NOS inhibitors on basal 

CRH release (Costa et al., 1993). We extend these findings by our data showing in KO mice 

baseline CRH mRNA levels comparable to WT animals (see Fig. 8C). Consistently with this 

observation, plasma ACTH levels were equivalent in both genotypes under resting conditions. 

Also, we observed in WT and KO mice a similar rise in ACTH blood levels 5 min after 

stressor onset (see Fig. 17A). These results suggest that the responsiveness of the HPA-axis 

has not been impaired by nNOS gene disruption and that, consequently, NO does not play an 

important role in CRH gene expression and ACTH release. However, we can not totally rule 

out the possibility that normal plasma values of ACTH might result from complementary 

effects of NO at the levels of the median eminence and/or anterior pituitary. In fact, some 

investigators have reported a stimulatory role of NO at the anterior pituitary (Brunetti et al., 
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1993), while others have suggested an inhibitory influence at the level of the median 

eminence (Rivier & Shen, 1994). Thus, the general absence of nNOS in our mice may have 

caused effects that compensate each other, and this might explain the unaltered ACTH release 

in defined stressor exposure. 

Baseline Cort plasma levels in KO mice were indistinguishable from those seen in WT (see 

Fig. 17B). This is in disagreement with a previous study reporting significantly higher Cort 

plasma levels in KO mice under resting conditions (Bilbo et al., 2003). However, the study by 

Bilbo et al. (2003) was performed using mice that were single-housed at weaning, whereas we 

used group-housed animals, single-housed only during the week antecedent the experiment. 

Since long-term individual-housing has been shown to lead to chronic stress-like responses 

per se (Sharp et al., 2002), the different husbandry conditions are likely to explain this 

discrepancy. KO animals displayed a more pronounced increase in Cort release 5 min after 

the beginning of the swimming session. A recent study (Mohn et al., 2005) suggested a 

facilitatory role of NO through activation of cyclooxygenase on ACTH-induced Cort release. 

This study, though, was performed in vitro on isolated adrenal glands and did not take in 

consideration the contribution of the sympathetic nervous system, which may alter Cort 

release via secretion of catecholamines (Bornstein et al., 1990; Bornstein et al., 1994). 

Because the response of the sympathetic nervous system precedes that of the HPA axis to 

stressors, it is plausible that it may control Cort release in a paracrine fashion through NE 

and/or E secretion from chromaffin cells located in the adrenal medulla (Ehrhart-Bornstein et 

al., 1998). It was originally believed that the adrenal gland is clearly separated in two 

different endocrine tissues, an outer Cort-producing cortex and an inner NE- and E-producing 

medulla (Rittmaster & Cutler, 1990). However, chromaffin cells can be found also in the 

cortical area (Bornstein et al., 1991), and, conversely, cortical cells are scattered in the 

medulla (Bornstein et al., 1994). This close intercalation of the two cell types implies a wide 

cross-talk between the two systems, which, thus, might influence one another.  

 

4.5  Effect of nNOS gene inactivation on stress-related SON structures 

under basal conditions and in response to forced swimming 

 

A previous study (Salchner et al., 2004) showed a modified pattern of protooncogene (c-Fos) 

expression in the SON in response to forced swimming, which suggests neuronal activation of 

SON  magnocellular neurones and, consequently, their involvement in the response to acute 

stressor exposure. It is therefore reasonable to expect the increased SON cellular activity to be 
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mirrored peripherally by altered AVP and OXT plasma levels. As up-regulated levels of c-fos 

are index of rapid transcriptional activation (Yoshida et al., 2006), increased c-fos levels may 

indicate ongoing de novo synthesis of neuropeptides, which usually occurs upon secretion to 

refill intracellular stores. AVP of magnocellular origin is released from axon terminals into 

the peripheral circulation and, in rats, plasma levels can be elevated by ether, haemorrhage, 

electric shock, hypoglycaemia, hypoxia (for review, see: Gibbs, 1986) and body compression 

(Husain et al., 1979). Previous studies have reported that AVP plasma values are not affected 

by forced swimming in the rat, except for a fast and transient increase one min after stressor 

onset (Engelmann & Ludwig, 2004). The present study shows that this is valid also in the 

mouse, as forced swimming induced no significant changes in AVP plasma concentration in 

WT stressed mice at any of the time points investigated (see Fig. 18A). These findings 

suggest that, unlike in humans (Dugue et al., 1993; Kohl, 1992), AVP blood values in rodents 

appear to be tightly regulated, and noticeable variations occur mostly in response to stressors 

that affect body fluid homeostasis. Mutant mice displayed AVP plasma values equal to WT 

animals under resting conditions, whereas the release profile during stress was equivalent to 

the corresponding values in WT at T5 and T60, but significantly lower at T15 (see Fig. 18A). 

Plasma OXT levels in KO animals were also significantly reduced at T15, resembling the 

release profile of AVP at the same time point, whereas a robust increment of OXT plasma 

concentration was observed at T60. This dichotomy in the peripheral secretion of OXT after 

stressor exposure suggests the presence of two different mechanisms acting in the same 

direction, or of a common mechanism,that controls the secretion of both neuropeptides in KO 

mice in the initial phase of the stress response, and the existence of another mechanism that 

controls the secretion of oxytocinergic rather than vasopressinergic cells at a later stage. 

Studies in the rat have demonstrated that the regulation of peripheral AVP release is 

predominantly accomplished at the level of the hypothalamus by excitatory inputs that 

primarily originate in other brain regions and act via glutamate (Csaki et al., 2002) and NE 

(Vacher et al., 2002). Inhibitory signals are perceived by magnocellular neurones either 

synaptically (GABA originating from local interneurones; Gies & Theodosis, 1994) or in a 

non-synaptic manner (taurine originating from glial cells; Decavel & Hatton, 1995). Previous 

investigations have shown that forced swimming triggered the release of glutamate and 

taurine within the SON in the rat, whereas GABA levels remained unchanged (Engelmann et 

al., 2001; Engelmann & Ludwig, 2004). Glutamate-mediated activation of NMDA channels 

located on NOS-containing neurones enhances NOS activity (Esplugues, 2002), thereby 

promoting NO diffusion in the surrounding area where it has been proposed, among other 
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mechanisms (Boeckxstaens et al., 1991; Peunova & Enikolopov, 1993; Choi et al., 2000; Kiss 

& Vizi, 2001), to reversibly inhibit the re-uptake of glutamate (Pogun et al., 1994) and NE 

(Kaye et al., 1997) from the synaptic cleft. By increasing the half-life of these 

neurotransmitters in the extracellular space around the synapse, NO amplifies their excitatory 

effect on target cells (Kiss & Vizi, 2001). Our data, however, imply that in WT animals this 

stimulatory effect on AVP SON magnocellular neurones after forced swimming is 

counterbalanced by inhibitory inputs, since AVP plasma values were indistinguishable from 

those seen under resting conditions. This may be achieved through the non-synaptic action of 

taurine, which selectively inhibits the firing activity of AVP-containing cells (Engelmann et 

al., 2001). The absence of NO-mediated inhibition of monoamines transporters in our mutant 

mice might therefore result in a reduced glutamatergic and noradrenergic stimulation of 

vasopressinergic magnocellular cells during forced swimming. This finding conforms well 

with the assumption that NO inhibits the neuronal activity of vasopressinergic magnocellular 

neurones, as it has been reported by several pharmacological studies (Liu et al., 1997b; Stern 

& Ludwig, 2001). In addition AVP released from somata/dendrites of magnocellular cells has 

been proposed to provide a negative feedback on SON neurones themselves (Ludwig & Leng, 

1998; Kombian et al., 2000).  

Like for the PVN, also the number of vasopressinergic and oxytocinergic magnocellular 

neurones in the SON was unchanged in mutant animals (see Fig. 10). We, therefore, further 

evaluated the intensity of the hybridisation signal for AVP and OXT in these cells by grey 

values analysis. This revealed that in KO mice AVP gene transcription is up-regulated if 

compared to WT mice (see Fig. 12A). Increased mRNA levels suggest a longer-lasting AVP-

mediated autocrine inhibition on magnocellular neurones, which is aimed at preventing an 

overshoot of the hypothalamic-pituitary-adrenal axis under stress conditions (Wotjak et al., 

2002) and is independently controlled from the peripheral release (Di Scala-Guenot et al., 

1987). In light of these findings, the reduced AVP plasma levels in the blood of KO mice at 

15 min might reflect a disproportion between non-synaptically driven excitatory and 

inhibitory inputs on SON vasopressinergic cells. However, further experiments are needed to 

determine whether the small, albeit significant, increase of AVP mRNA levels observed in 

KO mice is indeed of biological significance. It may well be that this difference is mirrored 

by altered plasma levels only in case of strong osmotic challenge, when AVP is massively 

released into the bloodstream. 

As alluded to earlier, the profile of OXT release in KO animals after stressor exposure 

differed from AVP in that it showed a biphasic pattern (see Fig. 18B). Since grey value 
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analysis of the intensity of OXT hybridisation signal in the SON revealed no difference 

between KO and WT mice (see Fig. 12B), it is reasonable to hypothesise that the lack of 

nNOS does not affect OXT gene expression and that the amount of releasable pools of OXT 

is similar in both genotypes. Other mechanisms must, therefore, come into play in KO mice to 

elicit a delayed rise in OXT plasma levels. Previous studies carried on in this laboratory 

(Bernstein et al., 1998a) showed a reduced number of β-endorphine positive cells and fibers 

in the hypothalamus of mutant animals. Further studies will have to reveal whether this 

reduced endorphinergic innervation may indeed account for the delayed increase in plasma 

OXT observed in our mutant mice (Soldo & Moises, 1998; Muller et al., 1999; for review, see 

Brown et al., 2000).  

OXT plasma values in WT mice remained surprisingly unchanged after forced swimming at 

all time points investigated (see Fig. 18B). Earlier studies have reported a pronounced 

augment of OXT plasma levels following forced swimming in the rat (Wotjak et al., 1998). 

Our data indicate that, in the mouse, a different orchestra of modulators is activated at the 

level of the SON to control the secretory activity of oxytocinergic neurones. It appears likely 

that the regulatory mechanism that is set in motion to control the peripheral release of OXT 

under defined stressor exposure is species-specific.  

Fig. 19 summarises the data obtained in this study concerning the possible role of NO/nNOS 

in the regulation of the structures coordinating the stress response. 
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Fig. 19. Impact of the congenital absence of nNOS on the release of AVP and OXT from the 

PVN, the SON, the pituitary and the adrenal gland either under basal conditions or in 

response to defined stressor exposure. Arrows indicate an inhibitory (↓) or a 

stimulatory action (↑). 

AVP: vasopressin; Cort: corticosterone; E: epinephrine; NE: norepinephrine; OXT: 

oxytocin; PNMT: phenylethanolamine N-methyltransferase; PVN: paraventricular 

nucleus; SON: SON: supraoptic nucleus; TH: tyrosine hydroxilase. 
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4.6 Clinical implications 

 

Affective disorders have become a distinctive trait of modern society. Several studies have 

demonstrated that a dysregulation of the systems deputed to organise the stress response is 

critically involved in the pathogenesis of these diseases, which include anorexia nervosa 

(Gold et al., 1986; Kaye et al., 1987), panic disorders (Roy-Byrne et al., 1986; Gold et al., 

1988c), obsessive-compulsive disorders, depression, anxiety and post-traumatic stress 

disorders (for review, see: Yehuda et al., 1991; Scott & Dinan, 1998; Holsboer, 1999; Strohle 

& Holsboer, 2003; Shelton, 2004). A pathological state may arise from either a decreased 

stress system activity, like post-traumatic stress disorder (Marshall & Garakani, 2002), or 

from an increased stress system activity, like melancholic depression, anxiety or anorexia 

nervosa (for review, see: Licinio et al., 1996; Ninan, 1999; Mello Ade et al., 2003). Our 

findings suggest that NO is implicated in the control of the systems involved in the 

pathogenesis of mood disorders, and can therefore be listed among the signals that link the 

emotional to the endocrine response under stressful conditions. These results gain added 

significance in view of recent studies concluding that a dysregulation of nNOS activity and, 

hence, of NO production, is likely to contribute to behavioural abnormalities linked to 

neuropsychiatric disorders, such as schizophrenia and depression (Bernstein et al., 1998b; 

Masood et al., 2003; Bernstein et al., 2005; Sevgi et al., 2006). Our data provide evidence 

that congenital absence of nNOS results in altered endocrine responses associated with stress 

coping and this may, thus, open new diagnostic and therapeutical perspectives for the 

treatment of mood disorders. 

 

4.7 Perspectives 

 

As our data imply that NO of nNOS origin is called into play primarily in response to stressor 

exposure, future studies will have to investigate possible alterations of transcriptional and 

translational activity at the level of the hypothalamus and the adrenal gland in mutant mice 

following forced swimming. Also the cellular and molecular mechanisms underlie the action 

of NO in shaping the patterns of neuronal activation under stress conditions still remain 

elusive. Given that numerous studies conducted in the rat have demonstrated the importance 

of AVP and OXT somato-dendritic release on the regulation of vasopressinergic and 

oxytocinergic cells of the SON and the PVN, it is reasonable to infer that similar mechanisms 

may be of utmost importance also in the mouse. Therefore, future investigations should 
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implement the microdialysis technique to measure the intranuclear secretion of AVP and 

OXT as well as of excitatory and inhibitory amino acids, such as glutamate, taurine and 

GABA, in the extracellular space of the SON and the PVN in KO mice exposed to forced 

swimming. This would shed light on the role NO has in the intricate interplay of 

neurotransmitters that act centrally on the hypothalamic nuclei to govern the peripheral 

release of neurohormones. Additionally, since NO regulates the activity of the HPA-axis and 

the HNS at multiple levels, with supposingly opposite actions centrally and peripherally, in 

vitro experiments employing posterior and anterior pituitary slices, or hypothalamic 

organotypic cell slices containing the SON and the PVN of WT and KO animals may clarify 

mechanisms that are called into play at structures located within and outside the blood-brain 

barrier. Finally, our findings that KO mice express reduced levels of catecholamine 

biosynthetic enzymes and an altered release of E into the blood in response to forced 

swimming seem to indicate that NO acts in the adrenal medulla preferentially on adrenergic 

chromaffin cells, despite being produced mostly by noradrenergic cells. It could be therefore 

noteworthy to extend these results by investigating more closely the interaction between the 

two subtypes of chromaffin cells and the role NO plays in it. This could be done by using 

dissociated chromaffin cell cultures of WT and KO mice to measure, for instance, the 

intracellular calcium flow upon stimulation with external agents, such as acethylcoline or 

nicotine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SSuummmmaarryy  aanndd  ccoonncclluussiioonnss  

 

57

 

5 Summary and conclusions 
 

This study was undertaken to elucidate the role nitric oxide (NO) plays in the regulation of the 

stress response in mammals. As previous reports investigating this issue with the aid of 

pharmacological agents yielded conflicting results, we decided to use neural nitric oxide 

synthase (nNOS) KO mice as animal model to examine the activity of the hypothalamic-

pituitary-adrenal (HPA) axis, the hypothalamic-neurohypophyseal-system (HNS) and the 

sympatho-adrenal system (SAS) under physiological conditions and in response to a 10 

minute-forced swimming session. Our findings suggest that, under basal conditions, NO 

inhibits vasopressin (AVP) gene transcription at the level of the supraoptic (SON), whereas it 

promotes it at the level of the paraventricular (PVN). Seemingly, its action is exercised 

through two mechanisms that differentially affect the activity of vasopressinergic neurones of 

the SON and the PVN, which supports the hypothesis of the existence of a functional 

diversity between the two hypothalamic nuclei. The reason of such a dichotomy might lie in 

the higher cellular complexity that characterises the PVN, which assembles different neuronal 

and glial cell types, and coordinates autonomic and neuroendocrine inputs in concert with 

other stressor-exposure sensitive brain areas, including the amygdala. A similar dichotomy 

appears evident also between vasopressinergic and oxytocinergic neurones, as mutant mice 

showed normal oxytocin (OXT) mRNA levels in both the SON and the PVN. Thus, NO of 

nNOS origin seems to modulate, at hypothalamic level, preferentially AVP production. The 

peripheral release of both neuropeptides under resting conditions in KO mice is unchanged, 

indicating that AVP and OXT secretion into the bloodstream from the neurohypophysis 

occurs as normal. Similarly, corticotropin-releasing hormone (CRH) mRNA at the 

hypothalamus as well as plasma adrenocorticotropic hormone (ACTH) and corticosterone 

(Cort) basal values were found to be unaffected by the absence of nNOS. Conversely, nNOS 

gene inactivation appeared to affect catecholamine biosynthetic enzymes, which are 

significantly reduced in KO mice, although this did not impair plasma norepinephrine (NE) 

and epinephrine (E) basal values. Overall, mutant mice manifest under resting conditions a 

mild phenotype, which is in accordance with previous observations. 

However, upon acute stressor exposure NO seems to collaborate in maintaining constant 

AVP, OXT and E plasma profile release, as KO animals revealed anomalous AVP, OXT and 

E blood levels in response to forced swimming. The HPA-axis peripheral activity appeared to 

be affected only with respect to plasma Cort levels, which rose faster in KO than in WT mice 

following forced swimming. This is, however, not surprising, given the fact that we applied 
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conditions of acute stressor exposure, and a direct effect of the absence of NO/nNOS on the 

HPA-axis is probably evident only under conditions of chronic stressor exposure. Further 

studies are necessary to investigate in mutant mice the response of this system to chronic 

stressor exposure. 

Taken together, our findings suggest that NO may be an important intermediary in the 

network engaged in modulating the endocrine stress response, and might, therefore, be 

implicated in the pathophysiology of diseases, such as anxiety and depression, that reflect a 

dysregulation of the stress response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ZZuussaammmmeennffaassssuunngg  uunndd  SScchhlluussssffoollggeerruunngg  

 

59

 

6 Zusammenfassung und Schlussfolgerung 

 

Ziel dieser Promotionsarbeit war die Untersuchung der Rolle, die nNOS/NO in der 

Regulation der Stressantwort des Säugers spielt. Angesichts der widersprüchlichen 

Ergebnisse, die bislang aus pharmakologischen Untersuchungen vorlagen, wurde ein nNOS-

KO-Mausmodell gewählt und an diesem die Aktivität der HPA-Achse, des HNS und des SAS 

unter Basalbedingungen und nach akuter Exposition zu einer 10-minütigen forcierten 

Schwimmsession analysiert. Die Ergebnisse der vorliegenden Arbeit legen die Vermutung 

nahe, dass unter Basalbedingungen nNOS/NO die Transkription von AVP im SON inhibiert 

und im PVN begünstigt. Demzufolge erfolgt die Wirkung von nNOS/NO über Mechanismen, 

die einen unterschiedlichen Einfluss auf die Aktivität von vasopressinergen Neuronen des 

SON gegenüber dem PVN. Dieser Befund unterstützt die Hypothese der funktionellen 

Verschiedenheit der zwei hypothalamischen Kerngebiete. Eine mögliche Ursache dieser 

Verschiedenheit könnte in der zellulären Komplexität des PVN liegen, welcher sich aus 

verschiedensten Neuronen- und Gliazelltypen zusammensetzt und in Zusammenspiel mit 

anderen für die Stressgeneration/-verarbeitung relevanten Hirnarealen (einschließlich 

Amygdala) autonome und neuroendrokrine Signale koordiniert. Eine vergleichbare 

Dichotomie besteht auch zwischen vasopressinergen und oxytocinergen Neuronen, da KO-

Mäuse in SON und PVN OXT-mRNA-Expressionsprofile aufweisen, die denen der WT 

entsprechen. Demnach scheint von der nNOS produziertes NO auf Ebene des Hypothalamus 

vorzugsweise die Expression von AVP zu modulieren. Die periphere Freisetzung von AVP 

und OXT unter Basalbedingungen ist in KO-Mäusen unverändert. Das weißt daraufhin hin, 

dass die basale AVP- und OXT-Sekretion aus den Axonenterminalen magnozellulärer HNS-

Neuronen in der Neurohypophyse vom Fehlen der nNOS unbeeinflusst bleibt. Das gilt auch 

für die basalen Konzentrationen für CRH-mRNA im Hypothalamus, sowie die vom Plasma 

ACTH und Cort. Demgegenüber reduziert die Inaktivierung des nNOS-Gens die Synthese der 

Katecholaminbiosynthese-Enzyme signifikant, jedoch ohne die basalen NE- und E-

Plasmawerte zu verändern. Insgesamt stimmen unsere Befunde mit den Literaturbefunden 

überein, die einen milden Phänotyp für nNOS-KO-Mäuse unter Ruhebedingungen 

postulieren. 

Unter akuten Stressbedingungen (forciertes Schwimmen) ist nNOS/NO offensichtlich an der 

adäquaten Freisetzung von AVP, OXT und E ins Plasma beteiligt. Die Befunde suggerieren, 

dass die Unterschiede in der Plasma-Cort-Konzentration zwischen WT-und KO-Mäusen, die 

in letzteren nach forciertem Schwimmen schneller ansteigt, ein sekundärer Effekt auf die 
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HPA-Achse sein könnte. Ein direkter Effekt von nNOS/NO auf die HPA-Achse ist 

möglicherweise nur unter chronischen Stressbedingungen nachweisbar, was diesbezügliche, 

weitergehende Untersuchungen mit Mutantenmäusen impliziert. 

Unsere Ergebnisse suggerieren, dass NO ein wichtiger Modulator im Netzwerk ist, das die 

endokrine Stressantwort kontrolliert. Unsere Daten lassen zudem die Vermutung zu, dass die 

modulierende Funktion von nNOS produziertem NO erst in Antwort auf akute 

Stressorexposition, nicht aber unter Basalbedingungen, zur Geltung kommt. Allerdings sind 

weitere Studien hinsichtlich der Veränderung der Transkription und der Translation im 

Hypothalamus bzw. der Nebenniere bei KO-Mäusen erforderlich, um diesbezüglich 

detaillierte Aussagen treffen zu können.  

Nimmt man die hier vorgelegten Befunde zusammen, so scheint es nicht ausgeschlossen, dass 

nNOS/NO eine Rolle beim Zustandekommen psychiatrischer Erkrankungen wie 

Angsterkrankungen und Depression spielen, die mir einer Änderung der HPA-Achsen-

Aktivität einhergehen. 
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