
The SMPI model:
A stepwise process model to facilitate software
measurement process improvement along the

measurement paradigms

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieuer (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von: Dipl.-Inform. René Braungarten
geb. am 08.02.1980 in Stendal, Deutschland

Gutachter:
Prof. Dr.-Ing. habil. Reiner Dumke
Prof. Dr. Juan José Cuadrado-Gallego
Prof. Dr. Alain Abran

Magdeburg, den 18. Mai 2007

To Claudia, the wind beneath my wings. . .

and

To Angelika, Gunter, Marko, and Dina.

Acknowledgments

“If I have seen further than most men,
it is because I stood on the shoulders of giants.”

– Isaac Newton –

Several people considerably contributed to the successful completion of this re-
search project and the resulting PhD thesis by continuously providing me with their
guidance, encouragement, and support during the years 2004–2007. I would like to
express my sincerest gratitude to all of you!

First of all, I am grateful to Prof. Dr. Reiner R. Dumke, the supervisor of this
research at the Otto-von-Guericke-University Magdeburg. Working on and writing this
dissertation has never been a bed of roses — and without his guidance on all concerns
of the research, our numerous fruitful discussions over the years, and the valuable
comments he has given on the draft versions of this thesis, by far the result would not
have been that successful. Moreover, Prof. Dr. Juan-José Cuadrado-Gallego and Prof.
Dr. Alain Abran deserve my sincere thanks for their efforts in reviewing and providing
their expert opinions on the thesis at hand.

In retrospect on the entire period that I have been working on that research project,
I cannot thank enough Martin Kunz and Daniel Reitz. As PhD candidates in the Soft-
ware Engineering Group we have been sharing the same office space, goals, and sor-
rows for years. Together we look back on interesting academic and private discussions
as well as on joint research work and conference travels. All of this has resulted in a
deep friendship and atmosphere of trust and mutual encouragement, which was essen-
tial in completing my thesis. Especially Martin was always pushing me a bit further
towards completion. I have many good memories from these years and I hope to be
able to tie up to that somewhere along the way. Good luck for your research, guys!

Furthermore, my thanks go to the other former and present team members that
were instrumental in performing the work, especially Dr. Mathias Lother, Prof. Dr.
Cornelius Wille, Prof. Dr. Andreas Schmietendorf, Dr. Fritz Zbrog, Dagmar Dörge,
Martin Tröger, and Ayaz Farooq. I am also very much obliged to the management
and employees of the host organization that offered me to validate the results of that
research.

Parallel to the last year of my thesis work, I took the opportunity to work as a soft-
ware quality engineer at the Bosch Rexroth Electric Drives and Controls GmbH (BRC)
in Lohr am Main, Germany. It has been (and still is) very interesting to be confronted
with hardware and software engineers being thirsty for practicable methodologies and
research results of any kind to continuously assure the high quality of their complex
products. But mastering the span between fulltime employment in industry and com-
pleting the PhD thesis meant a considerable challenge to me. Without the provident
backing and flexibility of my line manager at BRC, Christian Steinisch, I would not
have been able to succeed. Additionally, he was very inspirational and a great partner
in coffee kitchen discussions! Thus, I want to acknowledge my deep gratitude to him.

v

Ultimately, let me extend my deepest gratitude to those, who made all of this pos-
sible: Starting from my earliest childhood until now, my parents, Angelika and Gunter,
have attached importance to my education as a tool and prerequisite for my future live.
With all their love, benignity, and belief in my capabilities they got never tired of en-
couraging me and offering me their invaluable moral support during all the times. I am
proud to have those parents and I will be eternally grateful. Moreover, I am indebted
to my brother, Marko, who never doubted me and provided vital support in hard times.

During the time of this research project the heaviest burden was put on my fiancee,
Claudia. In consequence of my research work, she had do without me longer than
being able to absorb weekday by weekday and weekend by weekend, especially during
the last year. Thus, I highly impute Claudia that she shouldered much of my worries
with patience and also got never tired to understand, motivate, and encourage me. I
will also be eternally grateful to her. My final thanks shall go to my future parents-in-
law, Silvia and Bernd, and my sister-in-law, Anita, for supporting Claudia and me that
strong in this endeavor.

Retzstadt, June 2007
René Braungarten

This research has been in parts funded by a research scholarship of the German Federal
State “Saxony-Anhalt”.

vi

Abstract

Undoubtedly, measuring artifacts such as development processes, employed resources,
intermediate deliverables, and the completed software product itself turns out to be
a root discipline for the field of software engineering. Due to its importance, there
are supportive documents, guidelines, and experiences with software measurement in
industrial software engineering settings that can be a significant aid for organizations
willing to shoulder its implementation. But establishing and sustaining a software mea-
surement process in a particular industrial environment is often regarded as a difficult
venture; these ventures are not infrequently reported to fail in practice.

It is the dedicated task of this research project to address the lack of maturity in
implementing and sustaining software measurement processes in software engineer-
ing industry through a stepwise process improvement model along the measurement
paradigms. In order to tackle that issue, the engineering research path is taken to be
able to adopt advantageous features of prior, incomplete attempts to the problem.

Part I of the thesis deals with the observation and evaluation of those existing solu-
tions using previously elicited criteria in terms of required content- and model-related
properties of software measurement process improvement models. Starting from the
evaluation’s results, the most promising of the prior solution attempts is adopted as
basis model and its shortcoming is analyzed.

Afterwards, in part II a development concept and a design rationale for a process
model to overcome the shortcoming of the basis model are proposed, and the comple-
mented SMPI (Software Process Improvement Model) is developed. The SMPI model
is then presented graphically using diagrams according to the BPMN (Buisiness Process
Modeling Notation) and textually using the EITVOX (Entry criteria - Inputs - Tasks -
Validation - Outputs - Exit criteria) process modeling methodology.

Finally, in part III of the dissertation the external case-study validation of the devel-
oped SMPI is presented and interpreted by means of statistical test of hypotheses.

vii

Contents

List of Tables xiii

List of Figures xvi

List of Acronyms xvii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Research setting . 2

1.2.1 Software engineering . 2
1.2.2 Research problem . 3
1.2.3 Research questions . 3
1.2.4 A retrospect on research in software engineering 4
1.2.5 Validation methods in empirical software engineering 8
1.2.6 Classification of the research project 11
1.2.7 Striking the engineering research path 11

1.3 Structure of the thesis . 12

I Observation of existing solutions 15

2 Measurement in software engineering industry 17
2.1 Introduction . 17
2.2 Clarification of terminology . 18
2.3 Entities and attributes of interest . 20

2.3.1 Process entity . 21
2.3.2 Product entity . 22
2.3.3 Resource entity . 23
2.3.4 Projects as conglomerate of entities 24

2.4 The importance of software measurement 24
2.4.1 Intentional functions and negative effects 24
2.4.2 Aspired value . 26
2.4.3 Concerned audiences and information needs 27

2.5 Software measurement paradigms . 29
2.5.1 The top-down approach . 30
2.5.2 The bottom-up approach . 31
2.5.3 The mixed approach . 33

2.6 Synthesis of elements: The software measurement system 33
2.7 Software measurement process models 34

2.7.1 The ami measurement process model 36
2.7.2 The general Jacquet and Abran model 37
2.7.3 The GQM-based measurement process of van Solingen et al. . . . 38

ix

2.7.4 The PSM (and ISO/IEC Standard 15939) process model 39
2.7.5 Other top-down measurement process models 42

2.8 Software measurement programs . 42
2.8.1 Examination of the current situation 43
2.8.2 Costs and benefits of SMPs . 43
2.8.3 Pitfalls of SMP implementation and sustainment 44
2.8.4 Best practices for SMP implementation and sustainment 45
2.8.5 SMP implementation steps along the measurement paradigms . . 49
2.8.6 Phases of SMP acceptance . 51

2.9 Conclusion . 53

3 Software process assessment and improvement models 55
3.1 Introduction . 55
3.2 Basics of software process engineering 56

3.2.1 Software process modeling . 57
3.2.2 Software process establishment 60
3.2.3 Software process assessment . 61
3.2.4 Software process improvement 63
3.2.5 Software process standardization 65

3.3 SPA/SPI under the terms of ISO/IEC Standard 15504 65
3.3.1 SPA-related regulations . 65
3.3.2 SPI-related guidelines . 69

3.4 Conclusion . 70

4 Review and evaluation of related work 73
4.1 Introduction . 73
4.2 Implicit models . 74

4.2.1 CMM v1.1 . 74
4.2.2 ISO/IEC Standard 9001:2000 . 77
4.2.3 CMMI Framework v1.1 . 77

4.3 Explicit models . 82
4.3.1 Software measurement technology maturity 82
4.3.2 The measurement maturity model 85
4.3.3 The META Measurement Maturity Model (4M) 86
4.3.4 Mendonça’s approach to improving existing measurement frame-

works . 86
4.3.5 The Measurement-CMM . 88

4.4 Conclusion . 90

II Proposal and development of a better solution 93

5 The Software Measurement Process Improvement (SMPI) model 95
5.1 Introduction . 95
5.2 Concept and design of the complemented model 96

5.2.1 The development concept . 97
5.2.2 The design and development rationale 97

5.3 Development of the complemented model 99
5.3.1 Consensus of measurement paradigm-specific process phases . . 99
5.3.2 Imbueing the process models’ phases with life 100

5.4 Presentation of the SMPI model . 101
5.4.1 The whole model at a glance . 102

x

5.4.2 PB — The bottom-up sub-model in detail 103
5.4.3 PM — The mixed sub-model in detail 119
5.4.4 PT — The top-down sub-model in detail 126

5.5 Conclusion . 130

III Measure, analyze, evaluate 135

6 Work Validation 137
6.1 Introduction . 137
6.2 The case study’s industrial context . 138
6.3 Discussion of hypotheses . 138
6.4 Case study design . 139
6.5 Conduct of the case study and data collection 140

6.5.1 Application of treatment one . 140
6.5.2 Application of treatment two . 140

6.6 Result interpretation and conclusion . 142

7 Summary 145
7.1 Main contributions . 146
7.2 Future work . 147

Bibliography 149

Appendix 191

A Fundamentals of measurement theory 191
A.1 Introduction . 191
A.2 Measurement — the detour for the intelligence barrier 192
A.3 Empirical and numerical relational systems 193
A.4 Mapping between the systems . 194

A.4.1 Underlying models . 194
A.4.2 Axioms and theorems . 195
A.4.3 Measurement and measures . 196
A.4.4 Scales and scale types . 196
A.4.5 Units and dimensions . 200

A.5 Distinguishing measurement . 201
A.6 Procedures of measurement . 202
A.7 Measurement issues . 203

A.7.1 Measurement error . 203
A.7.2 Validity and reliability . 204

A.8 Conclusion . 205

B A glimpse of mainstream models for SPA/SPI 207
B.1 Introduction . 207
B.2 CMM v1.1 . 207
B.3 ISO/IEC Standard 9001:2000 . 210
B.4 BOOTSTRAP v2.22 . 212
B.5 TRILLIUM v3.0 . 215
B.6 CMMI Framework v1.1 . 217
B.7 Other models . 221
B.8 Typology and conclusion . 223

xi

List of Tables

1.1 Classification of research topics in computer science, software engineer-
ing, and information systems (adapted from [GVR02, p. 495]) 7

1.2 Classification of research approaches, methods, disciplines, and levels of
analysis (adapted from [GRV04, p. 91]) 8

1.3 Scopes of empirical evaluation (adapted from [Bas93]) 9

2.1 Examples of selected process attributes 22
2.2 Examples of selected product attributes 23
2.3 Examples of selected resource attributes 23
2.4 Elements of a software engineering measurement system 34
2.5 Cost versus benefit of Software Measurement Programs (SMPs) (adapted

from [Gil92]) . 44
2.6 Phases and tasks of the ‘project-approach’ to implementation of SMPs

(adapted from [IFP04]) . 50

3.1 Corresponding values of the process attribute rating scale of ISO/IEC
Standard 15504-2:2003 (adapted from the standard) 67

3.2 Capability level rating scheme of ISO/IEC Standard 15504-2:2003 (adapted
from the standard) . 68

4.1 Advocated measures dominant for each process maturity level of the
CMM (adapted from [WM93, p. 455]) 76

4.2 Maturity grid for software measurement maturity assessment (taken from
[DBY91]) . 84

4.3 Results of the observation of existing methods with implicit or explicit
coverage . 91

5.1 Consensus of bottom-up software measurement process models phases . 99
5.2 Consensus of top-down software measurement process models phases . 99
5.3 Consensus of mixed software measurement process models phases . . . 100
5.4 Confrontation of the general process system taxonomy with the process

elements of the Software Measurement Process Improvement (SMPI)
model . 131

A.1 Measurement scale types and relevant statistics (adapted from [SC88]) . 200

B.1 Characteristics of different sigma levels 221

xiii

List of Figures

1.1 General paradigms in software engineering research (based on [Adr93]) 5

2.1 An exemplified tree of the GQM model 30
2.2 An exemplified tree of the MQG method 33
2.3 The glue between the ami method’s four activities and 12 steps 36
2.4 High-level and detailed models of the software measurement process

(adapted from [JA97, p. 130]) . 37
2.5 The GQM method of van Solingen and Berghout (adapted from [vSB99,

p. 22]) . 38
2.6 The ISO/IEC 15939:2002 measurement process model (taken from the

standard) . 40
2.7 Stepwise improvement of the implementation of the software measure-

ment process along the measurement paradigms (adapted from [Fuc95,
p. 75]) . 51

2.8 Stages of SMP acceptance among concerned personnel (adapted from
[RH96a]) . 51

3.1 A simplified visualization of the software process 57
3.2 A simplified visualization of software process establishment 60
3.3 A simplified visualization of the relationships in a software process im-

provement model . 64
3.4 Reference model underlying ISO/IEC Standard 15504-2:2003 (adapted

from the standard) . 66
3.5 Process improvement model of ISO/IEC Standard 15504-4:2004 (adapted

from the standard) . 69

5.1 The design rationale behind the SMPI model 97
5.2 The elements of SEI’s EITVOX process modeling paradigm (adapted from

[aC94]) . 101
5.3 The SMPI model at a glance . 102
5.4 BPMN diagram of PB . 103
5.5 BPMN diagram of PB1 . 104
5.6 BPMN diagram of PB1,1 . 106
5.7 BPMN diagram of PB1,2 . 107
5.8 BPMN diagram of PB1,3 . 109
5.9 BPMN diagram of PB1,4 . 111
5.10 BPMN diagram of PB2 . 112
5.11 BPMN diagram of PB2,1 . 112
5.12 BPMN diagram of PB2,2 . 113
5.13 BPMN diagram of PB3 . 114
5.14 BPMN diagram of PB3,1 . 115
5.15 BPMN diagram of PB3,2 . 116

xv

5.16 BPMN diagram of PB,4 . 116
5.17 BPMN diagram of PB4,1 . 117
5.18 BPMN diagram of PB4,2 . 118
5.19 BPMN diagram of PM . 119
5.20 BPMN diagram of PM1 . 121
5.21 BPMN diagram of PM1,1 . 122
5.22 BPMN diagram of PM1,2 . 124
5.23 BPMN diagram of PM1,3 . 126
5.24 BPMN diagram of PT . 127
5.25 BPMN diagram of PT1 . 128
5.26 BPMN diagram of PT1,1 . 129
5.27 BPMN diagram of PT1,2 . 130

A.1 Intelligence barrier (adapted from [Kri88]) 193

B.1 The structural elements of the SW-CMM (adapted from [PCCW93a, p.
29]) . 210

B.2 Structure of ISO/IEC 9000 Standards series before and after 2000 revision211
B.3 Selected ISO/IEC Standard 9001:2000 processes in the context of TQM

(adapted from the standard) . 213
B.4 BOOTSTRAP breakdown of key process attributes and clusters (adapted

from [KB94, p. 123]) . 214
B.5 Attribute-based structure of BOOTSTRAP (adapted from [HMK+94, p.

27]) . 215
B.6 Hierarchical architecture of the TRILLIUM model (adapted from [Coa95])216
B.7 Model components in the staged representation of the CMMI Framework

v1.1 (adapted from [SEI02b, p. 10]) . 218
B.8 Model components in the continuous representation of the CMMI Frame-

work v1.1 (adapted from [SEI02a, p. 12]) 219
B.9 Basic characteristics of the Six Sigma approach (adapted from Dumke

[Dum05]) . 222
B.10 The relationship between the service standards and ITIL 223

xvi

List of Acronyms

ACM Association for Computing Machinery

ami application of metrics in industry

ARC Appraisal Requirements for CMMI

BPMN Business Process Modeling Notation

BSc Balanced Scorecard

CAF CMM Appraisal Framework

CAR Causal Analysis & Resolution

CASE Computer-Aided Software Engineering

CBA CMM-based Appraisal Method

CBA-IPI CMM-based Appraisal Method for Internal Process Improvement

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMMI-MA CMMI – Measurement & Analysis

CMU Carnegie Mellon University

COCOMO Constructive Cost Model

DMAIC Define – Measure – Analyze – Improve – Control

DoD U. S. Department of Defense

ESA European Space Agency

ESPRIT European Strategic Programme for Research and Development in
Information Technology

ESSI European System and Software Initiative

ETVX Entry criteria – Tasks – Validation – Exit criteria

EITVOX Entry criteria – Inputs – Tasks – Validation – Outputs – Exit criteria

FCM Factor-Criteria-Metric

GQM Goal-Question-Metric

GQ(I)M Goal-Question-(Indicator-)Measure

xvii

HP Hewlett-Packard Inc.

IDEAL Initiation – Diagnosis – Establishment – Acting – Leveraging

IEC International Electrotechnical Commission

IEEE Institute of Electrical & Electronics Engineers

IFPUG International Function Point Users Group

iNTACS International ISO/IEC 15504 Assessor Certification Scheme

IPD-CMM Integrated Product Development CMM

IPPD Integrated Product and Process Development

ISO International Standardization Organization

IT information technology

ITIL IT infrastructure library

ITSM IT service management

JTC Joint Technical Committee

KPA Key Process Area

M-CMM Measurement-CMM

MBNQA Malcom Baldridge National Quality Award

MDD Method Description Document

MF Measurement Framework

MIS Management Information System

MQG Metric-Question-Goal

NATO North Atlantic Treaty Organization

NIST U.S. National Institute of Standards and Technology

OMG Object Management Group

P-CMM People Capability Maturity Model

PAM Process Assessment Model

PDCA ‘Plan-Do-Check-Act’

PDL Process Design Language

PDSA ‘Plan-Do-Study-Act’

PIL Process Implementation Language

PML Process Modeling Language

PRM Process Reference Model

PSL Process Specification Language

xviii

PSM Practical Software Measurement

PSP Personal Software Process

QFD Quality Function Deployment

QIP Quality Improvement Paradigm

QMMG Quality Management Maturity Grid

RCA Root Cause Analysis

ROI return on investment

SA-CMM Software Acquisition CMM

SC Sub-Committee

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SCE Software Capability Evaluation

SE Systems Engineering

SECM Systems Engineering Capability Model

SEI Software Engineering Institute

SLIM Software Lifecycle Model

SMP Software Measurement Program

SMPI Software Measurement Process Improvement

SPA Software Process Assessment

SPC Statistical Process Control

SPI Software Process Improvement

SPICE Software Process Improvement and Capability Determination

SPR Software Productivity Research

SPU Software Producing Unit

SS Supplier Sourcing

STSC Software Technology Support Center

SW Software Engineering

SW-CMM Capability Maturity Model for Software

SWEBOK Software Engineering Body of Knowledge

TQM Total Quality Management

TSP Team Software Process

VIM International Vocabulary of Basic and General Terms of Metrology

xix

Chapter 1

Introduction

“Research is formalized curiosity.
It is poking and prying with a purpose.”

– Zora Neale Hurston∗ –

1.1 Background and motivation

In the era of progressive globalization, organizations of all industrial sectors have to
face various challenges to stand up to the market: Competitors usually have to respond
to customers’ demands for low-priced but high quality products, along with extended
service capabilities and severely shortened development life-cycles. These requirements
are orthogonally and apparently irreconcilable. Although software is a complex prod-
uct of human mental creativity and/or keen perception and comparison to conventional
production is difficult, software development industry cannot be excluded from those
problematic requirements. Even worse, it has to cope with additional intractable chal-
lenges, as well. The subject-matter guru Capers Jones [Jon01] characterizes the sad
state of software production efforts today and subsumes: “In general, software is a
troubled technology plagued by project failures, cost overruns, schedule overruns, and
poor quality levels. Even major companies such as Microsoft have trouble meeting
published commitments, or shipping trouble-free software.”

However, Jones finds leading organizations among the ones he assessed, which can
achieve better results than their fallen behind competitors and seem to have mastered
software development to a large extent. Beyond certain minor factors such as excellent
management, technical staff, or a cultivated professional work climate these leading
organizations stand out and are able to reach software excellence, because they apply
a quantitative approach to software development, which has been well-tested in other
disciplines. Therefore, measurement of software development processes, employed re-
sources, software intermediate deliverables and the completed product itself turns out
to be an essential assistance in successfully tackling intractable customer requirements,
in particular, and thus software production, in general. Without the means of mea-
surement as foundation for the deduction of reliable, quantitative information those
remits would fizzle, without doubt, let alone that optimizations were not possible, a
fortiori. [Lig02]
∗American folklorist and writer, *1903 – †1960

1

CHAPTER 1. INTRODUCTION

1.2 Research setting

This section is intended to briefly introduce the discipline of interest, highlight the main
problem to be addressed by the research project as well as related sub-questions. More-
over, an abridgement of methodologies available for software engineering research is
provided and mapped on the approach taken for this thesis.

1.2.1 Software engineering

As late as in 1968 the term ‘software engineering’ was given to a software produc-
tion status workshop convened by the North Atlantic Treaty Organization (NATO) as
sign of aspiration and has been used for the profession, since. The discipline of soft-
ware engineering draws upon the knowledge of certain theories: In a retrospective of
Boehm [Boe06] entitled ‘A View of 20th and 21st Century of Software Engineering’ a
definition of the topic is given as “the application of science and mathematics by which
the properties of software are made useful to people.” Different from possible guesses,
the sciences include not only computer science but also behavioral sciences, manage-
ment sciences, and economics. While software engineering — as the term implies —
mainly focuses on the development of software, computer science theory is also posi-
tioned to lay the foundation for developing, using, and improving computer hardware
and software in a scientifically sound and an engineer’s controlled way with the other
sciences acting as foundation. That intuitive explanation is backed up by the following
definition that originates from the Institute of Electrical & Electronics Engineers (IEEE)
Computer Society’s standard 610.12 [IEE90]:

(1) [Software Engineering is:] “The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance
of software; that is, the application of engineering to software.

(2) The study of approaches in (1).”

Being grown in the course of the last decades, that definition can be found with
different flavors in the technical literature [Bau72], [Boe84], [FP97], [Pre97], [Pfl01],
[Dum03], [Mun03]. In the IEEE Computer Society’s Software Engineering Body of
Knowledge (SWEBOK) [AMBD04] the covered areas are listed and also described as
software requirements, design, construction, testing, maintenance, configuration man-
agement, engineering management, processes, tools and methods as well as software
quality.

Dumke et al. [Dum05, p. 3] postulate that the entities involved in software en-
gineering comprise methods, support tools of Computer-Aided Software Engineering
(CASE), a system of measures, standards, the produced systems, gained experiences
that are shared through communities. They formally describe software engineering
(SE) as a system that comprises a set of elements (MSE) and a set of all relationships
(RSE) between the elements ofMSE .

SE = (MSE , RSE) (1.1)

= ({SE −Methods, CASE, SE − SystemOfMeasures, SE − Standards,
SE − SoftwareSystems, SE − Experience, SE − Communities}, RSE)

2

1.2. RESEARCH SETTING

1.2.2 Research problem

By no means, the concept of applying measurement as a root technology for the pur-
poses of transparency and evaluation of multiple aspects in industrial software en-
gineering environments is a new approach. It is taken for granted that it “. . . has
one of the best returns on investment of any known software technology“ [Jon01]
and, additionally, reams of references report on positive aspects of so-called software
measurement programs (SMPs) for organizations and characterize them for instance
as [AMBD04] “. . . cornerstones of organizational maturity.” So, software development
organizations usually should not be averse to it. As with any complex task, organiza-
tions willing to shoulder the implementation and sustainment efforts for SMPs strongly
depend on guidelines and process support. Accordingly, authors of the technical liter-
ature frequently suggest conducive or disavow detrimental implementation activities.
Apart from industry surveys [Rub90] [Het90] [Des94] [DB99] that respectively con-
clude information sanitized from traceable facts which would permit inferences on
conducting companies, those SMPs that come to grief are often kept secret by conduct-
ing companies for understandable reasons. The real situation with SMP is reported
to be as following: According to Kaner and Bond [KB04] just a few companies estab-
lish SMPs and even fewer can finally succeed with them. Although experiences with
software measurement programs are available, establishing and sustaining software
measurement processes is still regarded as a difficult undertaking. [BDR96] [HG98]
Corroborating, Abran et al. [ALB99] summarize the complicacy to the point and state
“. . . software measurement programs exhibit some of the undesirable characteristics of
software development projects in the sense that they are very risky undertakings in
themselves. . . . one could argue that software measurement programs constitute an
emerging technology which has not yet reached maturity.”

It is therefore the dedicated task of this research project to address the lack of ma-
turity [BWD+04] in implementing (and thus sustaining) software measurement pro-
cesses in software engineering industry through a stepwise process improvement model
along software measurement paradigms applicable to any form and dimension of or-
ganization. While there have been prior attempts to that problem, to date there has
been no process improvement model reported in the literature that offers step-wise
improvement of the software measurement processes on the lines of models like the
Capability Maturity Model for Software (SW-CMM) and/or Capability Maturity Model
Integration (CMMI) of Software Engineering Institute (SEI), or International Standard-
ization Organization (ISO)/International Electrotechnical Commission (IEC) Standard
15504 Software Process Improvement and Capability Determination (SPICE).

1.2.3 Research questions

The main research objective that is investigated by the thesis at hand is:

How can the implementation and sustainment of the software measurement
process in industrial settings be improved?

To address the primary research objective, several problem complexes need to be in-
vestigated. The accordingly derived research questions can thus be characterized as:

RQ1. Which are general characteristics, specific cornerstones, and best practices that form
content-related criteria for a potential, stepwise software measurement process im-
provement model?

3

CHAPTER 1. INTRODUCTION

RQ2. Which are the requirements for process improvement models in software engineer-
ing that form model-related criteria for a potential, stepwise software measurement
process improvement model?

RQ3. Find and evaluate current process improvement models that deal with the implemen-
tation of the software measurement process using criteria from RQ1/RQ2! Expose
a basis model, that satisfies at least a large share of the criteria, together with its
specific shortcomings!

RQ4. What would be the concept to overcome the specific shortcomings of the process im-
provement model finally extracted in RQ3 with respect to the criteria of RQ1/RQ2?

RQ5. How can the approach proposed as result of RQ4 be transferred into a stepwise
software measurement process improvement model?

RQ6. What is the result of a case study validation in industry of the stepwise software
measurement process improvement model resulting from RQ5?

1.2.4 A retrospect on research in software engineering

Unlike conventional sciences or engineering fields, in which research paradigms like
double-blind studies in medicine are well-established, researchers in software engineer-
ing cannot fall back on guidance paving the way for meaningful scientific investigation
and its presentation. [Sha03] Added to it, the history of computer science education
was eventful in Germany. [BKD06] The short historical view on the evolution of re-
search methods and models in software engineering provided beneath highlights the
steps of evolution and the current state of guidance available for structuring and con-
ducting this research project, in particular.

From software crisis to research crisis
In the 1950s early research on the field of software engineering was made on an ad
hoc base with only a few published findings of principles that were already in place
in practice. Indeed, at that time there was not yet established a separation of the
research tracks of computer science and software engineering. [GVR02] As a matter
of fact, starting in the 1960s the trailblazing changes of the second half of the last
century, known as ‘computing era’, began to stumble across the problems of early soft-
ware development projects in the 1970s, which were constantly over budget, exceeded
their schedule, and were difficult to be controlled. [Gla94] The software crisis was
then born. [Roy91] It culminated between the 1980s and 1990s giving rise to practi-
tioners listening to and following whatever new theory was invented by hard-pushed
researchers, who took refuge in a advocacy research style of frequently developing,
publishing, and advocating new theories without evaluation of applicability in prac-
tice. Even worse, the typical researcher of that time did never work in industry and
was stuck in that form of narrow research. Consequently, the quantity of published
research results was increasing, but the quality and credibility was questionable, if
not lost. When research and practice diverged from each other, analyzes indicated
that the crisis shifted from practice to a research crisis and the mistake was slowly
and painfully recognized. Different researchers advanced their opinions and spoke out
hostilities expressing for instance that the discipline was not fulfilling the criteria for
being a true engineering science [Sha90], that research in software engineering was
‘unscientific’ [FPG94], and that the whole discipline navigates between craft and sci-
ence. [FG96] [Ebe97] In order to provide a way out, Tichy et al. [THP93] proclaimed
that it was time for “a paradigm shift . . . from purely theoretical and building-oriented
to experimental . . . ” research in software engineering.

4

1.2. RESEARCH SETTING

Recommended research paradigms
At the 1992 ‘Dagstuhl Workshop on Future Directions in Software Engineering’ Adrion
[Adr93] presented material on the possible scientific, engineering, empirical, and ana-
lytic research paradigms in software engineering as illustrated in figure 1.1. With a
slightly different focus, Basili [Bas93] integrated scientific, engineering, and empirical
paradigms to the group of experimental research, but retained the analytical research
paradigm. Later in 1993, Potts [Pot93] confronted the disadvantages of the old, ill-
omened research procedure he called research-then-transfer with the advantages of the
new, promising procedure called industry-as-laboratory. The former procedure has its
deficiencies in the limited, academic field of origin for problems to be solved, the purely
technical refinement of the solution found, problems in evaluating detached researches
in industrial settings due to possibly not commonly used technologies, large transfer
delays, or lost confidence in academic solutions. The advantages of the latter proce-
dure lay in the better understanding of the problem to be solved due to direct industry
involvement in all research activities. Hence, a separate technology transfer phase
can be omitted while early problem-focused evaluation of the proposed solution can
be performed along the way. Additionally, the need for a systematic investigation of
organizational social and cognitive factors for rather people-oriented than technical
solutions was recognized. The premise that research ideas have to meet the test of
practical application via validation [BSH86] [Gla94] [FPG94] [TLPH95] [Tic98], went
into the mind of every researcher only cumbersomely. In 1995, Jeffery [Jef95] pro-
vided empirical evidence from the analysis of two software engineering journals still
indicating a lack of validation activities. A subsequent study of Zelkowitz et al. [ZW98]
does not draw significantly different conclusions and summarizes that besides the fact
that authors often omit to characterize their research goals at the outset of the project,
“validation was generally insufficient”. They furthermore complain about the loose us-
age of terms of empirical software engineering not distinguishing between case studies,
controlled experiments, and lessons learned.

Observe the real world

Propose a model or theory
of some real world phenomena

Measure and analyze above

Validate hypotheses of
the model or theory

If possible, repeat

The scientific paradigm

Observe existing solutions

Propose better solutions

Build or develop better solution

Measure, analyze, evaluate

Repeat until nor further
improvements are possible

The engineering paradigm
(applied in this research)

Propose a model

Develop statistical or other
basis for the model

Apply to case studies

Measure and analyze

Validate and then repeat

The empirical paradigm

Propose a formal theory
or set of axioms

Develop a theory

Derive results

If possible, compare
with empirical observations

Refine theory if necessary

The analytical paradigm

Figure 1.1: General paradigms in software engineering research (based on [Adr93])

Suggested research phases
In a subsequent paper, Glass [Gla95] seized the different paradigms again and proposed
to breakdown research in software engineering into four general intervals, that is, the
informational, propositional, analytical, and evaluation phase.

• The informational phase (Gather or aggregate information via reflection, liter-
ature survey, people/organizational survey, or poll)

• The propositional phase (Propose and/or build a hypothesis, method or algo-
rithm, model, theory, or solution)

5

CHAPTER 1. INTRODUCTION

• The analytical phase (Analyze and explore a proposal, leading to a demonstra-
tion/or formulation of a principle or theory)

• The evaluation phase (Evaluate a proposal or analytic finding by means of ex-
perimentation (controlled) or observation (uncontrolled, such as a case study or
protocol analysis), perhaps leading to a substantial model, principle, or theory)

Research classification patterns
Classifying a research project is made for two main reasons, Kitchenham et al. [KPP+02]
dwell on: First, a certain degree of reliance of the research that readers can have in
the results should be established. And second, for the purpose of meta-analyses the
research should be previously categorized to be a suitable input.

Therefore, as early as in 1990, Shaw [Sha90] provided classification patterns in her
preferred field of action, that is, software architecture research. Being especially suited
for experimental research, Fukuda et al. [FO97] provide a detailed taxonomy. Also
Zelkowitz et al. [ZW98] proposed and applied another classification scheme for meth-
ods of software engineering research as part of their literature study. Finally, presented
sequentially in several papers, Glass et al. [GVR02] [GRV04] developed and applied
classification patterns for computer science, software engineering, and information sys-
tem research. They provide classifications for research topics, research approaches and
methods as well as reference disciplines and levels of analysis, which are listed in tables
1.1 and 1.2.

Trying to induce a new debate on the connection between science and engineering
in software engineering, Lazaro et al. [LM05] refer to Vincenti [Vin93] who reports on
fundamental differences in the respective research problems and thus in the distinct ap-
proaches and methods applied. They put on record that “. . . whereas engineering prob-
lems deal with the creation of new artifacts, scientific problems deal with the study of
existing ones.” Being well aware of the constantly growing elicitation of research guide-
lines and the work for example of Shaw [Sha90] [Sha01] [Sha02] [Sha03] Wohlin et
al. [WRH+00] that is being done on that field, they still recognize the immaturity of
holistic research guidance in software engineering. Lazaro et al. further found out that
scientific problems being either of empirical or social/cultural nature can be broached
by conventional quantitative and/or qualitative research methods. Because of interces-
sors like Basili [Bas96] that have promoted the use of the scientific paradigm calling
for more experimentation and validation, sophisticated guidelines for doing empirical
research have been developed for instance by Kitchenham and colleagues [KPP+02]
who draw parallels to research in medicine.

But for broaching engineering problems no precise methodology exists, so far, be-
cause the major engineering component ‘human creativity’ complicates universal ap-
proaches. Fortunately, for the issue of research of engineering problems, Klein et
al. [KH03] propose a promising method. It is similar to the engineering research pro-
cedure proposed by Adrion [Adr93]: Starting with the study of existing solutions, their
advantages and shortcomings are recognized and used to design a better proposition
thereby retaining all the advantages but dismissing as much disadvantages as possible.

6

1.2. RESEARCH SETTING

Topic categories

1 Problem-solving concepts 6 System/software management

1.1 Algorithms concepts

1.2 Mathematics / computational 6.1 Project/product management

science (incl. risk management)

1.3 Methodologies 6.2 Process management

(object, function/process, . . .) 6.3 Measurement/metrics

1.4 Artificial intelligence (development and use)

2 Computer concepts 6.4 Personnel issues

2.1 Computer/hardware principles or 6.5 Acquisition of (packaged/custom)

architecture software

2.2 Intercomputer communication 7 Organizational concepts

(networks, . . .) 7.1 Organizational structure

2.3 Operating systems 7.2 Strategy

2.4 Machine/assembler-level 7.3 Alignment

data/instructions 7.4 Organizational learning/

3 Systems/software concepts knowledge management

3.1 System architecture/engineering 7.5 Technology transfer

3.2 Software life cycle/engineering 7.6 Change management

3.3 Programming languages 7.7 Information technology

3.4 Methods/techniques implementation

(patterns, process models) 7.8 Information technology usage

3.5 Tools 7.9 Management of “computing”

3.6 Product quality function

3.7 Human-computer interaction 7.10 IT impact

3.8 System security 7.11 Computing/information as business

4 Data/information concepts 7.12 Cultural/legal/ethical/political

4.1 Data/file structures implications

4.2 Data base/warehouse/mart 8 Societal concepts

organization 8.1 Cultural implications

4.3 Information retrieval 8.2 Legal implications

4.4 Data analysis 8.3 Ethical implications

4.5 Data security 8.4 Political

5 Problem domain-specific concepts 9 Disciplinary issues

5.1 Scientific engineering 9.1 “Computing” research

(incl. bioinformatics) 9.2 “Computing” curriculum/teaching

5.2 Information systems

(decision support, . . .)

5.3 Systems programming

5.4 Real-time (incl. robotics)

5.5 Edutainment (incl. graphics)

Table 1.1: Classification of research topics in computer science, software engineering,
and information systems (adapted from [GVR02, p. 495])

7

CHAPTER 1. INTRODUCTION

Research approaches Research methods Reference Level of

disciplines analysis

Descriptive - Action research - Cognitive - Society

- Descriptive system - Conceptual analysis psychology - Profession

- Review of literature - Conceptual analysis - Social and be- - External

- Descriptive other mathematics havioral science business

Evaluative - Concept - Science context

- Evaluative-deductive implementation - Economics - Organizational

- Evaluative-interpretive - Case study - Management context

- Evaluative-critical - Data analysis - Management - Project

- Evaluative-other - Ethnography science - Group/team

Formulative - Field experiment - Mathematics - Individual

- Formulative-concept - Field study - Other - Abstract

- Formulative- - Grounded theory - Not applicable concept

framework - Hermeneutics - Self reference - System

- Formulative- - Instrument - Computing

guidelines/standards development element

- Formulative-model - Laboratory experiment

- Formulative-process, – human subjects

method, algorithm - Literature review/

- Formulative- analysis

classification/taxonomy - Laboratory experiment

– software

- Mathematical proof

- Protocol analysis

- Simulation

- Descriptive/

exploratory survey

Table 1.2: Classification of research approaches, methods, disciplines, and levels of
analysis (adapted from [GRV04, p. 91])

1.2.5 Validation methods in empirical software engineering

Undoubtedly, an empirical validation of software engineering research results is de-
sirable to obtain confidence in the proposed theoretical structures. Accordingly, a va-
riety of different special-purpose methods for conducting empirical studies has been
proposed and a certain experimental terminology could be established as it is e. g.
recapitulated by Kitchenham et al. [KPP95]. But to be able to choose the most appro-
priate empirical validation approach, the purpose of the study, its group of participants,
intended observations, and the way of analyzing the observations have to be consid-
ered. [Ari01]

The probably earliest proponent of experimental, that is, empirical research in soft-
ware engineering, Basili [Bas93], describes an approach to experimenting character-
ized by the scope in terms of the number of teams used for the replication of the
project and the number of distinct projects under analysis; the related four experimen-
tal treatments (cf. table 1.3) are blocked subject-project, replicated project, multi-project

8

1.2. RESEARCH SETTING

variation, and single project case study. With respect to different notes of Kitchenham
et al. [KPP95] [KPP+02], today the most renowned and thus established validation
methods in empirical software are, in descending order of their scopes, surveys, exper-
iments, and case studies. To select an adequate validation approach out of this set, a
brief reflection on it shall ease making a choice.

One project Multiple projects

One team per project Single project (case study) Multi-project variation

Multiple teams per project Replicated project Blocked subject-project

Table 1.3: Scopes of empirical evaluation (adapted from [Bas93])

Surveys — research in the large
Survey research in its intrinsic form is scientifically advantageous to gather large scale
information from a sample of a population of a significant number of projects, thereby
applying standardized instruments or protocols. [Jar04] Because of the multitude of
projects examined, this kind of evaluation is called research in the large [KPP95]. Krae-
mer [Kra91] characterizes doing survey research as following:

1. Some aspects of interest of a study’s population are examined with the aid of a
survey that has been designed to gain quantitative observations.

2. In general, the data collection is performed by the principal means of gathering
answers to structured, predefined questions.

3. The data collection is solely directed at a portion of the study’s population (sam-
ple) and the circumstances facilitate the generalization of the findings to the en-
tire population.

Imposed by the targeted quantity of observations, the potential benefit of a survey
research’s representativeness in terms of generalizing the findings, that is confirming
or falsifying a proposed theoretical structure, to many projects and/or organizations
stands to reason. While most often a questionnaire is the means of choice for sur-
vey research, it is just one data collection technique among others, which can demon-
strate association but fails in establishing a relationship to causality. [Kit96c] Another
problem may arise when the premise of random samples is violated by a researcher,
who might rather prefer samples being sympathetic to the research object under study
convenience samples than real random samples possibly leading to a refutation of hy-
pothesis. [Cun97] After all, the consistency of a survey’s questions formulation is an
important factor contributing to the validity of the entire research. [Ari01]

Guidelines and/or proven criteria for consistently formulating a questionnaire are
given by Kerlinger et al. [KL99]

Experiments — research in the small
In order to control as many factors as possible, which may have an impact on the
research object of interest, formal and carefully controlled experiments are applied.
Because the necessary control of these factors is most probably cost-intensive the ex-
periments can often only take place in small scale studies and are hence called re-
search in the small. [KPP95] For a certain amount of time, this approach has been the
preferred way for confirming or falsifying hypothesis and/or theories. [Ari01] Unfortu-
nately, besides problems of assembling an appropriate and pristine sample the mapping
of findings from controlled experiments on an environment outside the origin is at least
questionable, if not impossible at all. [KPP95] Because conducting formal experiments

9

CHAPTER 1. INTRODUCTION

was very widespread and has proven to be successful several times [BC91] [BMA96]
[ALB99] [Apr05], its proponents like Basili et al. [Bas93] [BSH86] or Pfleeger [Pfl95a]
provide a good deal of support on how to conduct them.

Case studies — research in the typical
Observation: Case study or observation research as defined by Yin [Yin02, p. 13]
deals with “an empirical inquiry that investigates a contemporary phenomenon within
its real-life context, especially when the boundaries between phenomenon and context
are not clearly evident.” Owing to the fact that this is the bread-and-butter research
method to gain a deep understanding of a certain case being part of e. g. a development
project, Kitchenham et al. [KPP95] denominate it research in the typical. Moreover, case
study research using qualitative and quantitative techniques is of elevated importance
for the evaluation of software engineering methods and tools in industrial settings,
because scale-up issues can be circumvented. [KPP95] [Ari01] Despite all the good,
there is also a negative side to be mentioned: Not only that the scientific rigor familiar
from surveys and formal experiments cannot be achieved by case studies [KPP95],
more or less the generalization of findings turns out to be questionable due to either
the lack of control or sudden influences. Potts [Pot93] complains: “When working on
a case study, there is always a nagging doubt that it is not representative.”

However, conducting a case study can be very significant for validation aspects and
provided that guidelines for instance of Kitchenham et al. [KPP95] or of Arisholm et
al. [AAJS99] exist, its success seems to be very likely.

Action research: In contrast to case study research, where almost no intervention
from the researcher is needed, Argyris et al. [AS91] classify empirical studies in which
the pertinent researcher is about to bring deliberate changes to the affected organi-
zation as action research. Avison et al. [ALMN99] expand this intuitive understand-
ing of this approach when they notice: “Action research combines theory and practice
(and researchers and practitioners) through change and reflection in an immediate
problematic situation within a mutually acceptable ethical framework.” Baskerville et
al. [BWH96] characterize doing action research as following:

1. Resulting in the anticipated benefit for the researcher and the organization under
study, the researcher is actively involved in the study on site.

2. Because action research is based on the idea of an actively participating re-
searcher, who recognizes and refines new cognitions with respect to an concep-
tual framework, immediate usage of obtained knowledge is aimed at.

3. Forming a link between theory and practice, the research is conducted in cycles.

Regrettably, a major challenge of this approach, which was not at all used in soft-
ware engineering at least until the report of Glass et al. in 2004 [GRV04], exists. There
are detractors, who are emphatic on their prejudice of the researcher’s lack of impar-
tiality [BWH96] and complain about “consulting masquerading as research”. [Gum99]

But with the addition of an explicit statement of the approach taken, the goal of the
research, the proposed theory, and method at the very beginning of the research and in
contributing publications, these critiques can be disposed of, once and for all. [Rob97]
Guidelines and a five-step cycle related to the action research process are provided by
Susman et al. [SE78]

10

1.2. RESEARCH SETTING

1.2.6 Classification of the research project

Recognizing the importance of further classifying the software engineering research
according to the topic, utilized approaches, referenced disciplines, and the targeted
level of analysis as argued for by Glass et al. [GVR02] [GRV04], these facts shall not be
left out and are stated as following:

• Research discipline: Software engineering

• Research topics:

– 6.1 Process management

– 6.2 Measurement/metrics

– 7.7 Information technology implementation

– 7.8 Information technology usage

• Research approaches:

– Descriptive: Review of literature

– Formulative: Formulative-model

• Research methods:

– Literature review/analysis

– Case study

• Referenced disciplines:

– Mathematics

– Social and behavioral sciences

• Level of analysis: Organizational context

1.2.7 Striking the engineering research path

While several sketchy solutions to the problem of finding a panacea already have been
proposed and seem to exist for years, they could obviously not help in paving the way
for successfully implementing and sustaining SMPs in industrial software engineering
settings. With respect to Klein et al. [KH03] who suggest a similar methodology for
solving engineering research issues, the engineering research paradigm provides an
adequate, viable framework for the development, evaluation, and further improve-
ment of a proposition including all advantages but excluding all shortcomings of prior
solutions. Seizing the critical suggestions of the software engineering pioneer and lu-
minary, Watts S. Humphrey [Hum02, p. 50], the approach of improving a suboptimal
solution to the research problem is favored for this academic project:

“Every time software people have faced a new problem, instead of building
on prior work, we have invented some new language, tool, or method. This
forces us to start over, and it also forces our users to start over.”

By and large, the research project followed the given structure of the engineering
research paradigm. [Adr93] [Bas93] The research cycle, as its synopsis is described
beneath, was run through once:

11

CHAPTER 1. INTRODUCTION

I Observation of existing solutions
The research step of observing existing solutions was threefold: First important as-
pects of software measurement programs in industrial settings had to be extracted to
propose content-related evaluation criteria for existing solutions. Second, based on
the fundamentals of software process engineering and a review of characteristics of
mainstream Software Process Assessment (SPA)/Software Process Improvement (SPI)
models in software engineering as well as figures of merit set by the up-to-date ISO/IEC
Standard 15504, model-related evaluation criteria for existing had to be formed. Third
and finally, the related implicit or explicit work and its respective appropriateness for
the improvement of software measurement process implementation and sustainment
called for an assessment against these criteria and for choosing a promising model to
adopt.

II Proposal and development of a better solution
As the result of the shortcoming of a selected existing solution as extracted by the steps
before, a concept for improving the selected basis solution was to be formulated and
afterwards imbued with life. Apart from consensus mapping of reference literature, sev-
eral different techniques like informal subject-matter expert interviews, brainstorming
sessions with chummy researchers, or industry and conference presentations with sub-
sequent, fruitful discussions were conducted to provide the model under development.
The gained experiences and critiques were incorporated and lead to the improvement
of the model as is.

III Measure, analyze, evaluate
Having the confidence to be right from the theoretical point of view because of the
voluminous literature study, the model had to demonstrate its usefulness in a case
study in an industrial environment as practical validation background.

1.3 Structure of the thesis

While the introductory chapter of the thesis at hand dealt with general aspects such
as the addressed problem’s motivation and the research methodology, the subsequent
chapters will focus on the research and its validation. The remainder of the thesis is
structured in the following way:

Chapter 2 examines and investigates important aspects of SMPs in industrial settings
and proposes content-related, mandatory evaluation criteria for existing solutions of
software measurement process improvement models.

Chapter 3 examines, based on the fundamentals of software process engineering
and a supplementary review of characteristics of mainstream SPA/SPI models in soft-
ware engineering as well as figures of merit set by the up-to-date ISO/IEC Standard
15504, model-related, mandatory evaluation criteria for existing solutions of software
measurement process improvement models.

Chapter 4 briefly reviews the related implicit or explicit solutions of software mea-
surement process improvement models and evaluates its respective appropriateness
against the content-related and model-related specific criteria as revealed in both chap-
ters before. Furthermore, the most promising model of the evaluation is selected as
basis and its shortcomings to be addressed by this research are exposed.

12

1.3. STRUCTURE OF THE THESIS

Chapter 5 seizes the shortcoming of the basis model as selected in chapter four and
proposes a concept to overcome it. Moreover, the design and development rationale for
this concept is conceived and the development of the SMPI model being complementary
to the selected basis model is presented.

Chapter 6 reflects the external validation endeavors on the base of a case study
in an industrial setting. Furthermore, it discusses the experiences gained during the
performance of the validation.

Chapter 7 gives a summary of the research’s contributions compared with the ques-
tions asked, and outlines prospects.

13

Part I

Observation of existing solutions

15

Chapter 2

Measurement in software
engineering industry

“I don’t see how we can have software engineering
in the 21st century without measurement.”

– David N. Card∗ [McC00] –

2.1 Introduction

Due to measurement being apparently one key to success and sophistication of any
engineering discipline, the area of software engineering must not be and is not an
exception in trying to apply measurement to this end, actually. [KBS94] [PJCK97]

As many endeavors to translate the concepts of classic measurement theory to the
area of engineered software production, operation, and maintenance have been under-
taken during the last two decades like the one of Wang [Wan03], they have also become
documented in the professional literature. But, software measurement, being a rela-
tively young discipline within software engineering, still suffers from some teething
troubles as any other young discipline in engineering or science does. [BMB02] García
et al. [GBC+06] corroborate this assertion and mention that “. . . software measure-
ment is currently in the phase in which terminology, principles, and methods are still
being defined, consolidated, and agreed.” Furthermore, the literature review on mea-
surement in software engineering gives also good evidence of the discipline’s shaky
terminology, methods, and concepts. In numerous references important researchers
of that area tried to coin different terms for the application of measurement to soft-
ware engineering, from which some have been proven obsolete by their own eponyms.
Those denominations are e. g.: software metrication [FW86], software engineering mea-
surement [BMB96] [FP97] [Mun03], software measurement [FW95] [OJ97] [AD99]
[DA99] [Cla02] [AMBD04] [LB06], computing measurement [KB04], software met-
rics [CL95] [HS96] [FN99] [AM06].

Based on the fundamentals of measurement theory as recognized by the author and
presented accordingly in appendix A, this section will at first clarify the terminology of
measurement in software engineering as far as it will be used in this thesis and then
present assorted concepts and principles.
∗Technical lead for development of Practical Software Measurement, editor-in-chief of the Journal of

Systems and Software, listed as top U. S. researcher in the Who’s Who in Science and Technology

17

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

2.2 Clarification of terminology

In textbooks, articles, and papers on metrology in traditional sciences like physics or
mathematics as well as in software engineering some authors use the terms ‘measure-
ment’, ‘measure’, and even ‘metric’ interchangeably as for example observed by Jacquet
and Abran [JA97]. They also revealed that the noun ‘measurement’ is not only being
interpreted from a procedure’s name perspective, but as the application of that proce-
dure, its result, or the design and exploitation of the method.

In 2002, in their papers Abran and Sellami examined [AS02a] [AS02b] the body of
knowledge in metrology as manifested in the 1993 version of the International Vocab-
ulary of Basic and General Terms of Metrology (VIM) of ISO/IEC. [ISO93] In doing so,
they ascertained that it represents an “official national and international consensus”,
but complained about the absence of its consideration in their professional community,
which is concerned with measurement research and application in development, opera-
tion, and maintenance of software. To pave the way for recognition and understanding
of the vocabulary’s textually described number of 120 terms and inter-related concepts
in their community, Abran and Sellami presented one high-level and several low-level
models in a graphical representation.

Following up these efforts, Martin et al. [dlAMO03] and afterwards García et al.
[GRB+04, GBC+06], who received suggestions by Professor Abran, presented a pro-
posal to address the need for a common terminology of all audiences involved in soft-
ware measurement, that is, practitioners, researchers and standard developers. There-
fore, they examined software engineering international standards provided by major
standardization bodies, such as IEEE Standard 610.12 [IEE92], ISO/IEC VIM [ISO93],
IEEE Standard 1061 [IEE98], ISO/IEC 14598 [ISO01], ISO/IEC 9126 [ISO04], ISO/IEC
15939 [ISO02], Practical Software Measurement (PSM) [MCJ+01], and others. The
authors compared the pertinent definitions and produced a preliminary ontology of
the terms concerned with measurement in software engineering in order to provide a
basis for discussion among researchers and practitioners. Once, that ontology will have
been completed and fully agreed, it could serve as a foundation for harmonization
efforts of international standards in terms of metrology.

Over and above, other parts of the recognized literature for this thesis also con-
tribute to the understanding of the denominations and will be consulted to clarify the
terminology. Hence, in order to base that research on definite wording, the terms
‘software measurement’, ‘software measure’, ‘software metric’, and ’software meter’ are
clarified based on the results of the literature study. For any other terms the reader
should refer to Garcia et al. [GBC+06]

Software measurement
There are numerous, frequently used definitions in the literature around the term soft-
ware measurement or similar neologisms. [Rag95] [FP97] [IEE98] [Pre97] [Mun03]
[KB04] However, a unified meaning of the compound noun, that corresponds to the
appendix, section A.4.3 is to be established, thereby expelling the separate occurrence
of the term ‘measurement’ in the context of software engineering.

Definition 2.1: Software measurement is the procedure of an empirical, ob-
jective assignment of numbers or symbols, according to a rule derived from
a model or theory, to attributes of instanced software engineering entities
with the intent of describing them.

18

2.2. CLARIFICATION OF TERMINOLOGY

The software measure vs. To measure software
Again, there is an ambivalence in the meanings of the term’s constituent ‘measure’,
since it can also be used as both, a verb and a noun. While the verb characterizes the
application of software measurement, the noun describes its result. [BBFG90] [Fen91]
[Het93] That ambiguity is to be compensated by expelling the singular usage of the
word ‘measure’ and shall be clarified with the aid of the following two definitions that
correspond to the appendix, section A.4.3:

Definition 2.2: The verb to measure software denominates the activities of
software measurement.

Definition 2.3: The noun the software measure describes the result of the
execution of activities of software measurement.

Software metric
Primarily originating from the ancient Hellenic noun ‘métron’ (measure), the term ‘met-
ric’ denominated since the time of the old Hellenic poets like Homer or Hesiod the
art of measurement of verses in poetry, actually known as the theory of tact and tact
stressing. [Raa86] Nowadays, the term is widely used and interpreted in areas differ-
ent from poetry such as music, chemistry, mathematics, and software engineering, of
course. One might probably suspect that the meanings in mathematics and software
engineering match, but that is actually not the case.

In mathematics, more specifically in the subarea of analysis and/or geometry [Die68],
a metric room (M,d) is defined as a setM provided with a function d :M×M → [0,∞)
on it satisfying the following axioms for all elements x, y, z ofM :

• d(x, y) ≥ 0, d(x, y) = 0⇔ x = y (definite)

• d(x, y) = d(y, x) (symmetric)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

A function d specifies the distance between in each case two points of a plane, x and
y, and is thus in analysis called a metric on M . Those distance metrics are frequently
used in mathematics in both, Euclidean (i. e. Euclidean distance) and Non-Euclidean
geometry (i. e. Manhattan and/or Minkowski metric). [Kra87]

Though, software measurement is a procedure that, when following the princi-
ples of general measurement theory as presented in appendix A, a software measure
results from the predefined mapping process between a numerical and an empirical
relational system within software engineering. The concept underlying software mea-
surement completely differs from the one of a distance function such as the Hamming
distance [Ham50] in information theory between strings of equal length. From the the-
oretical point of view, these differences must not be mixed up by using the terms ‘soft-
ware metric’ and ‘software measurement’ interchangeably. However, the term is widely
established under North American practitioners like Grady [GC87], Hetzel [Het93], or
Goodman [Goo04] and internationally recognized researchers like Kitchenham [KL87],
Pigoski [Pig97] or Kaner [KB04]. For instance, Kaner asserts that a “metric is a mea-
surement function”. Many authors of textbooks or articles on software measurement
like Conte [CDS86], Baker [BBGM87] [BBFG90], Melton [MGBB90], Offen and Jef-
fery [OJ97], or Fenton and Pfleeger [FP97] advise for cautious and sensible exposure
with the term. Fenton and Whitty [FW95, p. 6] back up that opinion and state that
“. . . much work was criticized for its failure to adhere to the basic principles of mea-
surement that are central to the physical and social sciences.” Corroborating that in-
dictment, among others, e. g. Whitmire [Whi97] or Zuse [Zus98] strictly, and in fact

19

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

correctly, decline the usage of the term ‘metric’ because being reserved for purposes
of geometry in mathematics. Hereunto Whitmire argues on page 208: “The use of
the term ‘metric’ for any other type of measure is imprecise at best and misleading
at worst.” However, it is felt that the definition of IEEE’s Standard 610.12 [IEE90]
Glossary of Software Engineering Technology does contribute to irritation because it
defines a metric as “a quantitative measure of of the degree to which a system, com-
ponent, or process possesses a given attribute.” So, even though the term ’metric’ is
imprecise or misleading from the measurement theory point of view, as can be seen,
it has encroached upon (especially) North American professionals and their standard-
ization communities like the IEEE or the Association for Computing Machinery (ACM),
which are concerned with aspects of software engineering measurement. But García et
al. [GBC+06] report on current harmonization efforts on those standardization bodies,
that will “avoid the use of metric in order to be aligned with the rest of measurement
disciplines, which normally use the vocabulary defined in Metrology” (VIM).

Nevertheless, ignoring its existence and strictly deleting it from the register cannot
be a satisfying solution and shall be overcome by adopting its meaning in practice.
Fenton and Pfleeger [FP97, p. 14] share that view and state: “Software metric[s] is
a term that embraces many activities, all of which involve some degree of software
measurement.” Goodman [Goo04, p. 6] provides a definition stressing the practical
use of software measurement for management. It is therefore accepted with merely
minor modifications:

Definition 2.4: A software metric is the continuous application of measure-
ment-based techniques to software engineering processes and its products
or artifacts to supply meaningfully and timely management information,
together with the use of those techniques to improve those processes and
its products or artifacts.

Software meter
In general, a meter or indicator can be used to draw an individual’s attention to a
particular situation. In particular, when software engineering processes are performed
in the scope of projects, project managers are urged to manage their projects in a
stringent corsage of given economic, temporary, and qualitative constraints or con-
ditions. [PM03] Software meters or indicators are the results of comparisons between
those project constraints or conditions and software measures, which mirror the current
state of some software engineering project entity of interest that might be eligible for
a constraint. [Het93] [Car93] [Rag95] Then, these results can be interpreted and used
for decision making in the project. [Pre97] IEEE’s Standard 610.12 [IEE90] Glossary
of Software Engineering Technology provides a disambiguation that shall be adapted
with some alignment, here:

Definition 2.5: A software meter or indicator is a device or variable, such
as a flag or semaphore, that reflects the result of analysis or comparison be-
tween the current state of some software engineering project entity gained
by software measurement and a specified project constraint.

2.3 Entities and attributes of interest

Referring to definition 2.1, software measurement is intended to quantify attributes of
instances of entities that are either used as means or inputs or that are in some way
produced by and thus also involved in software engineering processes. However, as

20

2.3. ENTITIES AND ATTRIBUTES OF INTEREST

already experienced during the review of related literature for other aspects, no real
consensus on how to classify those entities for software measurement could be found.

Classification of entities
Initially in 1991, Fenton [Fen91] presented a framework comprising the three classes
of software engineering entities relevant for measurement, namely, processes, products,
and resources. Daskalantonakis [Das92] exchanges resources with projects. In later
publications [Fen94] [FP97] Fenton, again seized and further substantiated his original
classification. Whitmire [Whi97] enhanced Fenton’s framework and added the class
of projects to it. Because the classification of Fenton is probably the most verisimilar
one, it is adapted for this thesis. However, the conglomerate of the process, product,
and resources entities as ‘project’ entity is highlighted in the last section. There is
another view of Munson [Mun95,Mun03] that shall be mentioned, as well: He accepts
the Fenton framework’s classes ‘processes’ and ‘products’, but splits the virtual class
‘resources’ into ‘people’ and ‘environment’.

Classification of attributes
When trying to classify attributes of entities, one usually falls back to the classifications
of measurement of those attributes as given in the appendix, section A.5: fundamental
and derived, extensive and intensive, or subjective and objective attributes.

2.3.1 Process entity

Based on the deeper insights of researchers with pioneering tasks like Watts S. Humphrey
[Hum88, Hum89] the software engineering community has been painfully made be-
lieve that “product quality is evidence of process success.” [PJCK97] But what is the
entity ‘process’? There is an often cited definition in literature of Fenton [Fen91, p.
43]: “[A process is a set of] . . . software related activities which normally have a time
factor.” However, it seems to be inappropriate because it implies the existence of a
time-period like a project as prerequisite. While projects are per se nonrecurring, pro-
cesses and especially the notion of process improvement are based on (potentially re-
vised) repeatable activities and/or processes. In order to eliminate this misreading,
a sound definition from a software engineering point of view is required. Despite a
description of the term can merely be found with different flavors in related publi-
cations [Hum88, Hum89] [Lon93] [KJ03] and even SWEBOK [AMBD04] recognizes
the term’s equivocation, a definition of Pall [Pal87, p. 27] shall put it in contextual
perspective:

Definition 2.6: “A process can be defined as the logical organization of
people, materials, energy, equipment, and procedures into work activities
designed to produce a specified end result.”

Among other process constituents, in fact, there are small-grained procedures or
activities of an area [KBD05] [XXN+06] which shall be characterized appropriately
by certain attributes of interest, like e. g. the elapsed time, the expended effort, or
the number of requirements changes for the requirements specification process. Large-
grained initiatives of software process quantifications or rather assessments such as for
instance the SW-CMM of SEI at the Carnegie Mellon University (CMU) [PCCW93a]
integrate measures of those small-grained activities of all software engineering pro-
cesses to assess an organization’s processes and at the same time identify a way for
improvement in areas, in which the software measures indicate weaknesses.

21

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

Dumke et al. [DSZ05, p. 8] formally summarize their understanding of a soft-
ware development process (SD) as cooperation between entities from development
methods, the lifecycle, or software management and required resources (SR) for the
purpose of producing a product:

SD = (MSD, RSD) (2.1)

= ({developmentMethods, lifecycle, softwareManagement} ∪MSR,
RSD)

Selected examples for different types of process attributes are listed in table 2.1.

Type of attribute
(measurement)

Instance of process
entity

Example

Fundamental Detailed design Time elapsed
Derived Maintenance Mean cost per introduced error
Extensive Coding Resource usage
Intensive Testing Appropriateness felt by staff
Subjective Testing Process stability felt by staff
Objective Requirements Number of elicited requirements

Table 2.1: Examples of selected process attributes

2.3.2 Product entity

Long before the quantification of process entities has come into vogue, measurement of
software engineering products was encouraged by customers, which are usually greedy
for information on the final product’s characteristics. [PJCK97] The field of software
measurement concerned with the software products or any intermediate artifacts of it
is a broad one: Starting for instance relatively early in a product’s life-cycle the quality
of requirements specifications can be assessed. [MD03] Then, one could want to have
quantitative information about the emerged design’s complexity [HK81] [CA88] or
several object-oriented measures of design and code artifacts [CK94] (An overview of
numerous proposed software measures applicable to software design is given by Yu
and Lamb [YL95]). Finally, after determining the source code’s cyclomatic complexity
[McC76], both, a number of quality assessments according to ISO/IEC 9126 [ISO04]
[FBD05] [BFK+06] [KSBD06] [FBK+06] and the risk at the software’s release time
or its reliability could be measured and/or predicted [MIO87]. The above examples
are only a small excerpt of the instantly growing number of attributes which can be
measured of the multiple intermediate and final artifacts in software engineering.

Again, a formal definition of Dumke et al. [DSZ05, p. 4] shall be used to formally
define a software product (SP). From a general point of view, the potential entities of
a software product consist of any form of software programs and documentation:

SP = (MSP , RSP) (2.2)

= ({programs, documentations}, RSP)

Selected examples for different types of product attributes are listed in table 2.2.

22

2.3. ENTITIES AND ATTRIBUTES OF INTEREST

Type of attribute
(measurement)

Instance of product
entity

Example

Fundamental Code Size (as per lines of code)
Derived Design Modularity
Extensive Specification Syntactic correctness
Intensive Specification Comprehensibility
Subjective Object code Usability
Objective Test data Coverage level

Table 2.2: Examples of selected product attributes

2.3.3 Resource entity

Several decades of experience [Wei71] [DeM82a] [DL99] show that especially the vari-
ations in mental conditions of human resources are likely to be a main reason for vari-
ations of the resulting software product’s quality or complexity. In 1983, Basili and
Hutchens [BH83] reported such a case from real-life.

Apart from human resources, also non-human resources like monetary budget, time
schedules, available development tools, other production equipment and the work-
ing environment are important factors somehow contributing to the resulting software
product, too. Dumke et al. [DSZ05, p. 6] provide a formal definition of the resources
(SR) used in software development:

SR = (MSR, RSR) (2.3)

= ({personnelResources, softwareResources, hardwareResources,
financialResources}, RSR)

Software measurement in that area does not only focus on quantification but also on
the prediction of those resource factors. Among the tools and techniques that are used
for effort prediction, range e. g. Boehm’s Constructive Cost Model (COCOMO) [Boe81]
and its updated successor COCOMO 2.0 [BCH+95] and/or COCOMO II [BHM+00]. Be-
yond that, also Putnam’s Software Lifecycle Model (SLIM) [Put78] and possible varia-
tions of Albrecht’s [Alb79] [AG83] primary function points are often applied for reasons
of effort estimation in software engineering.
Selected examples for different types of resource attributes are listed in table 2.3.

Type of attribute
(measurement)

Instance of re-
source entity

Example

Fundamental Hardware Memory size
Derived Software Cost per month of usage
Extensive Personnel Age
Intensive Personnel Intelligence
Subjective Office Temperature
Objective Team Structuredness

Table 2.3: Examples of selected resource attributes

23

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

2.3.4 Projects as conglomerate of entities

As a conglomerate of all software engineering entities of interest for software mea-
surement, the ‘project’ stands out. Gray [Gra81] defines projects as “a complex of
non-routine activities that must be completed with a set amount of resources within a
set interval.” Starting from this definition, Whitmire [Whi97] describes the term by in-
terrelating the problem to be solved by the software product, internal or external goals
or standards, processes, techniques, resources, internal and external constraints as well
as the software product itself. Because project goals and available resources can have a
material impact on the result of the project, two projects working on the same problem
can result in different products. This has been corroborated empirically several times
in literature as for instance by the evaluation of Weinberg’s Coding Wars. [DeM82a]

Owing to the project’s multi-layer arrangement, which acts as the glue between the
instances of process, resource and product entities and can be best described as the
cross-section of all, software measurement for the project entity can be fairly complex:
In addition to software measurement for the applied processes, expended resources and
the product together with its intermediate artifacts to assess the performance related to
project goals, standards, and requirements, progress and effective, commercial project
performance comparisons with schedules and given budgets are required. Project level
measures can assist in that [Jon01] as e. g. Pearse et al. [PFO99] report of a case at
Hewlett-Packard Inc. (HP).

Based on the formal notation as proposed by Dumke et al. [DSZ05], a software
development project (SDP) is defined for the context of this thesis as following:

SDP = (MSDP , RSDP) (2.4)

= (MSD ∪MSP ∪MSR, RSDP)

The examples for different attributes corresponding to the project entity arise from
its constituents and have been already covered. For further reading on this topic the
interested reader is referred to the paper titled A Framework for Software Project Metrics
of Woodings and Bundell. [WB01]

2.4 The importance of software measurement

In his textbook named Measuring and managing performance in organizations, Austin
[Aus96] exposes the central role of measurement for organizations not only in soft-
ware engineering but across the board, thereby emphasizing people-related aspects.
Withal, Austin highlights both, the intended functions and the dysfunction of (software)
measurement, in the last resort.

When studying other related literature for benefits and dysfunction of software
measurement, only a partition of the general aspects introduced by Austin are exam-
ined and the rest is missed out. Thus, at first the generally intended measurement
functions and also occurring negative dysfunctional behavior are presented. Then, dif-
ferent views and the potential consumers of measurement data are specified before
revealing the state of recognition as reported in software measurement literature.

2.4.1 Intentional functions and negative effects

Motivational measurement
Organizations of any industry branch have always been interested in increasing their

24

2.4. THE IMPORTANCE OF SOFTWARE MEASUREMENT

employees’ efficiency in terms of goods produced or services performed by them within
a set period of time. In order to judge, whom to reward for performing beyond the
call of duty and whom to punish for decreased efficiency, they quantify their staff’s
performance. Because it is manifested in the nature of men to perform better when
the anticipated work results are being observed, organizations might want to affect
or rather motivate their staff to provoke greater expenditure of effort in pursuit of
organizational goals.

The described psychological phenomenon became documented as early as in 1939
by Roethlisberger and Dickson [RD39] as the Hawthorne effect. This term was coined
because certain psychological studies at the Hawthorne Works of Western Electric Com-
pany in Chicago, Illinois, USA were performed to investigate the impact of environmen-
tal, social, and other factors on the staff’s general behavior in a period between 1924
and 1933. As a result, the studies revealed common reactive behavioral changes of
individuals, once they recognize special treatment or (unintended) participation in ex-
perimental conditions. Because this effect is associated with these trailblazing studies,
it is commonly called Hawthorne effect.

Informational measurement
The most often primarily intended use of software measurement is, without doubt,
its informational purpose. With its aid the necessary logistical, status, and research
information can be retrieved. Austin distinguishes informational measurement further
into process refinement measurement and coordination measurement.

On the one hand, process refinement measurement as pioneered by Taylor
[Tay16] is being used in organizations to gather detailed insights into the structure
of the internal workings of activities and/or processes applied. This helps in both,
long-term management and organizational process improvement by quantitatively re-
vealing, which processes are suboptimal and need to be redesigned. On the other hand,
coordination measurement is being performed in organizations for its purely logistical
purpose. It is thought to provide the information necessary for real-time management
of flows and schedules of the organization. This helps senior and middle management
in deciding when and where to reserve additional or cut excrescent resources.

Dysfunction of measurement
Beyond the positive and intended aspects of measurement in organizations, the tide
may also turn and do psychologically and often consequently economically more harm
than good. Blau [Bla63, p. 10] calls this phenomenon dysfunction and defines it as
“those observed consequences of social patterns that change existing conditions in the
direction opposite to socially valued objectives, or consequences that interfere with the
attainment of valued objectives.” Based on this definition, Austin [Aus96, p. 10] inter-
prets dysfunctional behavior as “consequences of organizational actions that interfere
with attainment of the spirit of stated intentions of the organization.”

Blau further states that this effect can be provoked when measures are not perfectly
related to the abstract concept they are intended to measure. Believing in his notes, an
ill-designed measurement system failing to measure the actually important aspects is
the reason for dysfunctional measurement. Owing to several years of experience, Blau
recognizes that even the most sophisticated and best-designed measurement systems
do not necessarily prevent individuals from reacting with dysfunctional behavior.

25

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

2.4.2 Aspired value

As can be recognized from the notes in section 2.3 above, software measurement in
general deals with the quantification of attributes of process, product, and resource en-
tities or their aggregation in project entities. In its application in commercial software
production organizations, possibly elaborate and cost intensive initiatives of software
measurement cannot be legitimated to senior management without having tangible
objectives in mind, which actually bear chances to pay out and be profitable. That
is, software measurement for the sake of bureaucracy will most probably very soon
fail. Isolated measurement for motivational issues is questionable, too. But software
measurement does make sense, if is introduced to cover aspects of motivational and
informational measurement.

Restriction on informational measurement
However, this combined point of view gets a raw deal in the related literature, where
particularly informational software measurement is described. The reason behind that
is very simple: the work products necessary for the computations of motivational soft-
ware measurement require a high degree of human creativity, which could be too easily
negatively affected by being measured or by being forced to deliver private performance
data. As long as the data lead to reward of staff there is no danger, but the other way
round it cannot be applied without fear. Goodman [Goo04, p. 9] spots on that: “The
first time that a manager uses data supplied by an individual against that individual is
the last time that the manager will get accurate or true data from that person.”

So, most often a restriction on informational measurement applies in industrial soft-
ware engineering environments and in the reporting literature. For instance, Pfleeger
[Pfl95b, p. 45] restricts her view of meaningful software measurement to process as-
sessment and improvement: “However, measurement is useful only in the larger con-
text of process assessment and improvement. Moreover, choosing metrics, collecting
data, analyzing the results and taking appropriate action require time and resources;
these activities make sense only if they are directed at specific improvement goals.”
But Pfleeger’s point of view does not reflect the whole story. Hetzel [Het93] states that
a certain amount of activities in software engineering potentially profit from software
measurement and Fenton [Fen91] suggests that the basic uses of software measurement
fall at least into the two broad categories of assessment and prediction. In the reviewed
literature, this categorization and the level of detailed background examination of uses
and their virtual provenience is subject to the authors’ comprehension. But when syn-
chronizing the notes of Humphrey [Hum89], Ejiogu [Eji91], DeMarco [DeM95], Oman
and Pfleeger [OP96], Fenton and Pfleeger [FP97], Pfleeger [Pfl97], Whitmire [Whi97],
MacDonnell [MSS97], de Champeaux [dC97], Briand et al. [BDR96] [BMB02], Garcia
et. al. [GBC+06] the corresponding uses of informational measurement in software
engineering spread on:

• Understanding the processes and their outcomes in the current situation, establish
baselines or objectives to set future behavior.

• Assessing / evaluating some product, process activity, or resource to see if it meets
predefined (most often quality-related) acceptance criteria like those of laws,
standards, project-specific goals, constraints, or customer requirements.

• Monitoring / controlling what actually happens in projects to make changes to
products, processes, and resources to meet the goals set.

26

2.4. THE IMPORTANCE OF SOFTWARE MEASUREMENT

• Investigation / experimentation to support or refute a hypotheses or an experi-
ment in terms of the most appropriate software engineering methodologies or
technologies.

• Predicting future software product characteristics on the base of measures of ex-
isting software products.

• Estimating the effort of process activities in terms of the combination of mea-
sures of existing products with environmental data producing e.g. rates or trend
indicators.

• Improving of product, processes, resources.

After all, Barnett [Bar05] recognizes the importance of software measurement to
prove regulatory compliance e. g. with respect to the U.S. Sarbanes-Oxley Act.

2.4.3 Concerned audiences and information needs

Commercial software measurement must not degenerate into an end in itself and shall
provide the basic data for further analysis and derivation of information to satisfy the
needs of different organizational audiences.

Consequently, the cross-section of analyses of targeted consumers of software mea-
surement data in literature [Das92] [PJCK97] [Kue00] [Wes02] [LBK05] yields to these
person subgroups:

• Senior or functional management,

• Project management,

• Software engineers,

• Specialist groups (software quality management, marketing, process engineering,
software configuration management, . . .),

• Customers/users.

Whitmire [Whi97] takes on that and relates different views to different consumers
of software measures. He recognizes the fact that in usual software development com-
panies, the points of view spread on the strategic issues for senior or functional man-
agement, tactical issues for project management, and technical or even combined ex-
ploitation of software measurement data for groups like software engineers, specialist
groups, and customers, after all.

Strategic view
Being an executive for an organization is obviously a complex task, which not only
requires sure instinct and intuition of the senior management and/or the managing
director, but also deep insight into the long-term viability of the entire business with
the aid of corporate measures. [Jon01] From the strategic point of view, the different
projects that might use different tools and techniques have to be overseen in terms of
the entire range of aspects like financial, qualitative, or legal ones. Should certain lim-
its of those aspects exceed, the managing director is demanded to urge the particular
project managers to intervene to pave the way for continuous economic success. Be-
cause established processes may be subject to alignment or improvement, the strategic
view strongly relies on the comparison of software measures of different periods in time
to develop trends and possibly derive corrective actions problems in process or resource

27

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

efficiency. At this executive level of information need, summarized and precomputed
information are preferred. [MG98] That is, apart from being the base for computation,
detailed and raw software measures can be counterproductive. In turn, it can be risky
to draw more than trend-setting conclusions from the pooled information reflecting
solely a high-level view of the story.

The computation of trends for processes or their peculiarities using mathematical
constructs like mean or median with report of variability yields to the class of derived
measurement (cf. appendix A.5). Whitmire [Whi97] provides usual examples such as:

• Defect rate (e. g.: delivered defects / function point)

• Maintenance efficiency (e. g.: function points / equivalent full-time person)

Tactical view
At the next lower level of decision-making power, often called junior or project manage-
ment, the performance of particular projects comes to the fore. These project managers
are responsible to animate the codified processes and potentially build their project
plans with the aid of detailed, historical software measures. Because in commercial
software development industry a major part of a project manager’s salary consists of
premium payment, he or she adamantly explores possible deviations from plans and
tries to eliminate or control them. Once in a blue moon, a project manager will own up
not having planned correctly.

Despite the tactician merely being interested in activity-oriented software measures,
derived measurement of processes, products, or resources is used. Whitmire [Whi97]
mentions that while software measures of the product entity are for instance used to
predict project characteristics for planning, the process entity is quantified for control-
ling aspects like resource usage. Examples for related software measures are e. g.:

• Planning:

– Time consumption for each task of the work breakdown structure.

– Cost of operating resources for a certain project.

• Controlling:

– Effort-to-date for every activity or the entire software product.

– Defect data (defect rates, containment effectiveness, correction efficiency,
cost of rework).

Technical view
Whereas both of the beforehand described views do rely on precomputed, trend-setting
data, the technical point of view is either way detached from pure commercial interests
and deals with detailed software measures needed for engineering purposes. The mea-
sures are reactive and strongly depend on the technology the software engineer uses
for the production of the software or of intermediate artifacts.

Being the fundament for all other views, these measures affect technical decisions
e. g. regarding requirement acceptance, appropriateness of the design, complexity of
algorithms, and so forth. Whitmire [Whi97] illustrates the view with examples, from
which some are listed beneath:

• Coupling and cohesion for assessment of the appropriateness of high-level soft-
ware architecture design.

• Size and complexity for the selection of better, alternative algorithms for software
implementation.

28

2.5. SOFTWARE MEASUREMENT PARADIGMS

2.5 Software measurement paradigms

As should be undoubtedly clear from common sense, multi-faceted software measure-
ment of the complete range of available characteristics asks too much of any orga-
nization and does not necessarily make sense. Over the time an immense and not
accurately quantifiable number of measures has been proposed in the literature: For
instance Zuse [Zus98] reports more than 1,500 and Fenton and Neil [FN00] count
about 1,000 general software measures; restricted to the area of object-oriented soft-
ware measures, Purao and Vaishnavi [PV03] determined a count of more than 370.
An early citation of Hetzel [Het93, p. 26] makes clear the problem: “Since we cannot
do everything at once, we need some practical guides for prioritizing and selecting the
measures we will provide.”

Indeed, researchers and practitioners have been trying to address the topic and
developed different methodologies to reduce the amount of characteristics to be mea-
sured. [Dum05] Today, there are three basic philosophies available: First, there is the
top-down and/or goal-oriented approach that is aimed at planning and executing the
data collection for a lean but most expressive set of software measures. Second, it
coexists with the bottom-up and/or fixed set of measures approach, which aims at dis-
covering useful information from a set of existing, legacy software measures to allow
shaping, attainment, or alignment of organizational goals based on statistical analyses.
After all, a mix between both paradigms is conceivable, too.

Lassenius [Las06] adds Statistical Process Control (SPC) to the measurement paradigms.
This point of view is not shared because all of the introduced paradigms can be utilized
to obtain base measurement data necessary for SPC. Furthermore, SPC can solely be
meaningfully applied in organizations with repeatable software development processes
in place. Although that special topic is worth being investigated further, beyond doubt,
for gaining both, brief and in-depth, knowledge the reader is referred to our technical
report [DBB+06a] or to other pertinent literature. [BO96] [FPC97] [FC99] [Wel00]
[Pan03]

Independent from the software measurement paradigm, that is, whether measure-
ment goals exist or not, a measurement outline (true to the original a ‘metrics plan’)
[FP97] should be produced before data collection that gives answers to the important
questions of:

1. Why shall be measured? (Measurement goals G)

2. What entities and attributes shall be quantified by what software measures? (En-
tities E, attributes A, software measuresM)

3. Where and when shall the measurements be made during the software process?
(Time and frequency as part of operational definitions O)

4. How shall be measured, that is, with the help of which tools, collection and analy-
ses techniques, and who shall perform it? (DirectivesD and responsible personnel
R)

In accordance with the formal description methodology of Dumke et al. [DSZ05]
the set of entities of a measurement outline (MMO or shortMO) shall be defined as:

MO = {G,E,A,M,O,D,R} (2.5)

29

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

2.5.1 The top-down approach

The top-down, also called goal-oriented measurement, approach is grounded in early
intellectual efforts of US-American researchers around Basili [BZM77] to breakdown
the abstract concept ‘quality’ into a set of factors and sub-factors (criteria) for later
quantification (metric). This was the hour of birth for the Factor-Criteria-Metric (FCM)
framework. As an intended result, those factors were initially proposed by McCall
[MRW77] and subsequently seized again by Evans [EM87] or Deutsch and Willis
[DW88]. However, these efforts did lead to a more generalized documentation of
the commonsense, threepart principle (cf. figure 2.1) to decompose abstract concepts
into measurable factors as a by-product: At first the measurement goals have to be es-
tablished and stated formally on a conceptual level in order to then develop a list of
questions of interest on an operational level that need to be answered to meet the docu-
mented goals. Finally, on a quantitative level, measures (true to original called ‘metrics’)
that support or deliver the quantitative answers for the acquainted questions have to be
found. Apart from the FCM, the probably best-known, academic top-down approaches
are the Quality Function Deployment (QFD) of Kogure and Akao [KA83] and the Goal-
Question-Metric (GQM) of Basili and colleagues [BW84] [BR88] [BCR94a] from the
University of Maryland.

Metric
(measure)

Q1 Q2 Qn-1 Qn

M1 M2 M3 Mm-2 Mm-1Mm-3 Mm-1M4

GGoal

Question

Figure 2.1: An exemplified tree of the GQM model

Early operating experience especially with the GQM has shown that it is superior
compared with no systematics at all or any informal, ad hoc approaches, when re-
sources are largely constrained and expert knowledge in the application of software
measurement has been established. [RL01] Although being a relatively straightforward
method, there have been also many legitimate complaints. For instance Card [Car93]
argues: “Despite its popularity as a measurement tool, the GQM paradigm is really
better used as a brainstorming technique.”

Accordingly, several researchers [Het93] [She95] [BN95] [RL01] provide stagger-
ing lists of conceptual problems of the GQM. They mention problems being inherent
in top-down approaches as e. g. the need for defining the top. At this point a chicken-
and-egg problem may occur, because organizations often strongly depend on reliable
(software) measurement to set their goals at the top. Another psychological problem
might arise, when practitioners feel that they are not involved in defining and/or in-
terpreting the measures they have to implement. Connected with the latter problem, a
determined goal of management at the top might lead to dysfunctional behavior among
practitioners like ‘finagling’ the data to meet the goal, because of the phenomenon that
“No one enjoys bearing bad news either, so it gets softened without real intent to de-
ceive.” [Bro75] Furthermore, there is the danger immanent in hypotheses-theories to
leave out important aspects of the phenomena under study. [RL01] Moreover, it is often

30

2.5. SOFTWARE MEASUREMENT PARADIGMS

neglected that the software measures materialized once, should evolve as the underly-
ing software development processes evolve to prevent from ‘metric monsters’ [ZZW95].
Also the number of questions to ask for a certain goal might be unlimited and difficult
to quantify with software measures. Lassenius [Las06] mentions another important
aspect. Despite of the fact that the behavior of starting the GQM process from scratch
every time, a new project comes to the fore, might produce best results for every dis-
tinct situation, but, with respect to limited resources, a reuse of developed measures is
preferred. The list of issues can be arbitrarily enhanced.

Addressing specifically the lack of process support for the GQM method to some
extent, researchers have been trying to mend its basic concepts: Gresse et al. [GHW95]
provide an enhanced process model, Briand et al. [BDR96] introduce abstraction sheets,
and van Solingen and Berghout [vSB99] document the principles in fine-grained steps.
As part of their research Park et al. [PGF96] enhanced GQM’s concepts and suggested
an advanced Goal-Question-(Indicator-)Measure (GQ(I)M) model. Be it as it may, to-
day the GQM method has been continuously refined and proven to be useful by both,
researchers [BvSJ98] [vSB01] [BMB02] [Sch02] [BJ06] [Men97] [MBBD98] [MB00]
and practitioners [Lav00] [Kil01] [BH03a].

All things considered, the concept of goal-orientation in measurement is also a very
important and common issue in performance measurement of businesses, in general.
With respect to the topic of software measurement paradigms and finding the right
software measures and/or at least their categories, Herbsleb et al. [HCR+94, p. 53]
observe: “Approaches that have worked well elsewhere may also be good candidates
for software organizations.” In performance measurement multiple approaches exist.
Among them range e.g. the ‘Three Levels of Performance’ by Rummler et al. [RB95],
‘Performance Pyramid’ by Lynch et al. [LC95] or the Balanced Scorecard (BSc) ap-
proach by Kaplan and Norton [KN92] [KN93]. The latter one is aimed at the quantifi-
cation and controlling of an organization’s performance with the kind of performance
being dependent on its strategic alignment. Kaplan and Norton propose a balanced
picture of four categories of general measures to track: (1) financial, (2) customer
satisfaction, (3) internal processes, and (4) innovation and improvement processes.
Especially this approach, having the potential to prevent from lopsided points of view,
can be simply used and combined with the GQM for software organizations. [BB99]

2.5.2 The bottom-up approach

An alternative measurement philosophy especially for the introduction of software
measurement in an organization is the bottom-up and/or fixed set of measures ap-
proach. As a kind of ‘rapid measurement prototyping’ [Buc90a] [Buc90b] it is, backed
up by the author’s own experience, widely spread in the mental horizon of software en-
gineers and commonly used due to its ability to be a start of software measurement that
can be run on a shoestring. It is less frequently documented or cited in software mea-
surement literature, but put forward as the only meaningful starting point to software
measurement by proponents like Hetzel and Silver [Het93], Bache and Neil [BN95], or
Fuchs [Fuc95]. Moreover, Brown [Bro96] reports that even the Airlie Software Coun-
cil members like Victor Basili, Grady Booch, Tom DeMarco, or Roger Pressman also
recommend the use of this approach.

The suggested procedure was coined ‘bottom-up’ [Fuc95] or ‘Metric-Question-Goal’
(MQG) [BN95], because at the time of software measurement it might not be com-
pletely obvious why it is done or how to interpret the data. However, experiences of
numerous failed software measurement initiatives in industrial settings [Car93] have
shown that a top-down paradigm, such as the GQM approach, could not lead to success
because no one knew, or could agree upon a measurement goal at the top. Conversely,

31

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

organizations were in need to analyze the already existing basic software measures
captured in legacy systems to extract their goals, as a start. [Het93] Following the idea
of the ‘bottom-up’ paradigm two scenarios are thinkable:

• On the one hand, one could apply a brute force solution, that stores and/or in-
tegrates any legacy, genuine data available in a single system. Based on complex
analyses [Men97] of the raw data, a set of software measures can be defined
a posteriori. Although storage and analyses of a maximum of data would most
probably exceed the budget and technical feasibility in any organization, these ef-
forts do not promise an added value equivalent to the expenses. More specifically,
there is “the danger of having too much data with the likelihood of systematic and
directed analysis much reduced.” [RL01] However, a limitation of the amount of
legacy, genuine data to regular snapshots could offer a meaningful trade-off.

• On the other hand, an a priori definition of a fixed set of primary software mea-
sures, on which secondary software measures could be computed (cf. appendix,
section A.5) can promise success. Hetzel and Silver [Het93] argument that this
set should focus on the fundamental objects of software engineering, that is, on
the work products and resources used to create them. It is then to be collected on
every software (intermediate) product and should cover the vector of inputs (such
as resources or activities), outputs (the technical work products), and results (us-
age and effectiveness of the work products according to the requirements. The
interpretation of the data then can stimulate the development of questions that
may lead to the setting and/or realignment or of organizational goals or to cor-
rective actions for goal-attainment. [Fuc95]

When utilizing the a priori bottom-up approach, the challenge of finding a suit-
able set of well-established software measures has to be coped with: For instance,
Rubin proposes ten categories of software measures to build a ‘universe’. [Rub93]
Furthermore, driven by the need of the U. S. Department of Defense (DoD) to
evaluate their software acquisitions, a set of core software measures has been
assembled by the commissioned SEI in 1992. [CPG+92] This set of measures
for characteristics of size, effort, schedule, quality, and even rework the DoD
required to be collected by their contractors and thus became a de-facto stan-
dard. [CPG94] [Hei01] Other well-known proponents of fixed-sets of software
measures are e.g. Putnam and Myers [PM97]. In general they [PM03, p. 33]
suggest software measures “that enable software development to operate suc-
cessfully in a market economic system.” Within their book “Five Core Measures”
they discuss and recommend the following five core derived measures that fit
best for the tactical view: quantity of function (size), productivity, time, effort,
reliability.

In particular, and based on profound understanding of the processes at hand, the
MQG method as adumbrated in figure 2.2, should start with the collection of all legacy
data or a respective set of software measurement results and analyzing them. Afterwards,
questions should be asked in order to feel out why results are the way they are and,
whether there is demand for improvement to reduce deviations from expectations. As
a result, people in charge of pertinent management positions are aware of possible
problems and can lay out corrective actions or set goals, eventually.

When performing a cost-benefit analysis, the factor of effort and cost reduction
due to having a fixed set of predefined measures at hand cannot be dismissed. Be-
yond the saved effort for not being forced to redevelop from scratch arbitrary measures
every time a new software development project comes up, also the question of tool
support has to be answered only once. Due to large involvement and direct benefits

32

2.6. SYNTHESIS OF ELEMENTS: THE SOFTWARE MEASUREMENT SYSTEM

Metric
(measure)

Q1 Q2 Qn-1 Qn

M1 M2 M3 Mm-2 Mm-1Mm-3 Mm-1M4

GGoal

Question

Figure 2.2: An exemplified tree of the MQG method

for practitioners, this approach is likely to redeem from dysfunctional behavior caused
by fear. Moreover, this philosophy promotes asking questions and having raw data
to answer nearly all upcoming, technical questions. However, the old phrase holds
true: “What you gain on the swings, you loose on the roundabouts.” Because the de-
scribed philosophy assumes that the characteristics of all software projects are similar,
this approach can be problematic since the opposite holds. [McG01] Even if, in the
best case, certain factors might match, there will most probably remain factors that
make lumping together error-prone. While this paradigm for software measurement
is a sublime starting point in general, it should be applied carefully to prevent ‘data
cemeteries’ [DFS93] [Deb00] and thus very soon sophisticated towards the top-down
approach in order not to “. . . cause a measurement process to fail.” [Hol02]

2.5.3 The mixed approach

As its label implies, the mixed approach is an intermediate step on the way from the
application of the bottom-up to the top-down paradigm. As a hybrid it has the potential
to combine elements of both philosophies to provide an effective, efficient, and feasible
evolutionary step. Ramil et al. [RL01] summarize the synergy of both in three steps:

1. The application of the top-down paradigm (e. g. using the GQM or BSc) will lead
to a minimum but expressive set of software measures.

2. Then, the application of the bottom-up paradigm will lead to the storage of a
certain amount of legacy, genuine data.

3. After all, it is to be verified by analyses that the set of software measures mate-
rialized in step one can by entirely derived from the legacy, genuine data of step
two. If this were not the case, missing information were to be added to step two.

2.6 Synthesis of elements: The software measurement sys-
tem

Summarizing the findings of appendix A and chapter 2, the synthesis of the described
elements forms a software engineering measurement system (SMS). With respect
to the formal representation of an exemplar measurement system by Dumke et al.
[DSZ05, p. 31] as well as the remarks with collaboration of the author of this thesis
[DBK+06], it has been slightly modified by the author in order to be consistent with
the argumentation within this thesis. Thus, it shall be defined as:

33

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

SMS = (MSMS , RSMS) (2.6)

= ({MO} ∪ {Q, I}, RSMS)
= ({G,E,A,M,O,D,R,Q, I}, RSMS)

For better comprehensibility, the description and as well as the reference in brackets
of the respective constituents of the set of entities,MSMS , is given in table 2.4 putting
up some redundancy to the information given in the sections before.

G = The possibly empty set of business goals and/or measure-
ment information needs from the empirical relative being
the driver behind software measurement.
[Refer to sections A.3 and 2.4]

E = The non-empty set of software engineering entities to be
measured.
(In the complete case E = {SD,SP, SR} = {SDP})
[Refer to section 2.3]

A = The non-empty set of attributes of the software engineering
entities to be measured.
[Refer to section 2.3]

M = The non-empty set of software measures representing the
mapping rule from the empirical relative to the numerical
relative.
[Refer to section A.4]

O = The non-empty set of operational definitions such as points
in time or frequencies for collecting and analyzing the data.
[Refer to section 2.5]

D = The non-empty set of measurement directives including data
collection and analysis.
[Refer to sections A.6 and 2.5 and to the author’s technical
report [BKD05]]

R = The non-empty set of responsible personnel for data collect-
ing and analysis.
[Refer to section 2.5]

Q = The non-empty set of quantities and/or formal objects (num-
bers, symbols, or structures).
[Refer to section A.3]

I = The possibly empty set of information products. These can be
represented by the cartesian product of software measures
(values V with V ⊆ Q) and units (U) as V × U −→ I.
[Refer to section A.6]

Table 2.4: Elements of a software engineering measurement system

2.7 Software measurement process models

Following the notes of McAndrews [McA93] software measurement must support and
hence be aligned with the overall software processes of an organization. Hence and
based on the notes of Liptak [Lip92] and McAndrews, the following is postulated:

34

2.7. SOFTWARE MEASUREMENT PROCESS MODELS

Definition 2.7: The software measurement process is a certain portion of an
organization’s software engineering process that provides for the identifi-
cation, definition, collection, storage, and analysis of software measures of
used, consumed, or produced entities of the software process.

Suggested by the above definition, the general software measurement process en-
tails more than just the core of involving the rule-based and objective assignment of
numbers or symbols to attributes of software engineering entities. Subject to the cho-
sen, particular measurement paradigm a number of steps has to be performed. For
instance, the data gained by software measurement has to be stored and analyzed
to derive information. For software measurement to be performed by individuals, a
guideline consisting of the very coarse activities, that come under the umbrella of the
software measurement process, should be declared in a conceptional and/or graphical
form. This is being done with the aid of software measurement process models. It is
common among all these models that they are based on the Quality Circle ‘Plan-Do-
Study-Act’ (PDSA) of Shewhart [She31] dating back to the late 1920s.

Taking a SMS for granted as represented in equation 2.6, with respect to a similar,
formal definition of Dumke et al. [DSZ05], the software measurement process (MP)
shall be formally defined a certain instantiation of a SMS:

MP = (G× E)SMS −→Pmaterialization MOSMS (2.7)

−→Pcollection QSMS −→Panalysis ISMS −→Pexploitation G
′′
SMS

= (G× E)SMS −→Pmaterialization (G′ × E′ ×A×M ×O ×D ×R)SMS
−→Pcollection QSMS −→Panalysis ISMS −→Pexploitation G

′′
SMS

(G′ extends G trough more refinement relating to E and A, E′ extends E

by modeling or abstractions, and G′′ extends G′ by exploitation of obtained

measurement information products and experience.)

The above equation embodies the materialization of (possibly non-existent) goals
(G) for an entity of interest (E) under certain starting constraints using a subset of mea-
surement procedures (Pmaterialization). These can either be special goal materialization
techniques or elicitation of predefined sets of software measures. The transformation
leads to a measurement outline (MO), which consists of the singular constituents as
described in section 2.5, and more tightened constraints such as cost or elevated ones
as e. g. the experience of measurement personnel. On the base of the measurement
outline and the constraints, data collection (Pcollection) can be performed. This results
in quantities (Q), which can be analyzed using analysis procedures (Panalysis) and even
more interfered constraints. Once, the analysis has produced the measurement infor-
mation products (I) they can be exploited together with procedures (Pexploitation) and
constraints to either set measurement goals for the first time or to sharpen them (G′′).

Furthermore, equation 2.7 provides the foundation for the formalization of measure-
ment-based software engineering product improvement: For the context of this thesis it
shall be defined as the application (use U) of the software measurement process (MP)
in the following manner:

35

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

U(MP) = (Gimprovement × E)SMS −→Pmaterialization MOSMS (2.8)

−→Pcollection QSMS −→Panalysis ISMS −→Pimprovement E
improved
SMS

with Gimprovement = {increaseQuality, decreaseCost, . . .} being the set of goals for
measurement-based improvement and Pimprovement being the procedures and/or cor-
rective actions to the software development life cycle based on the software measures.

The dominance of top-down oriented software measurement process models
As mentioned before, over the time the most flexible but at the same time most com-
plex, top-down measurement paradigm together with the related GQM method have
proven to be superior in a majority of cases yielding to a de facto autarchy. [Fuc95]
Despite being a sophisticated concept, in general, the application of an entire soft-
ware measurement methodology based on the top-down measurement paradigm for
industrial purposes requires concrete support concerning process guidance, in particu-
lar. That demand did not die away unheard and has been addressed multiply by both,
practitioners and/or researchers: In the first place, the top-down paradigm could find
proliferation due to those supportive software measurement process models. [BvSJ98]

Hence, this section presents the most prevalent measurement process models fol-
lowing the top-down paradigm. Up to date, to the knowledge of the author, there are
neither software measurement process models for the bottom-up nor for the mixed
paradigm publicly available.

2.7.1 The ami measurement process model

Already in 1992 a project called application of metrics in industry (ami), sponsored by
the Commission of the European Communities via the European Strategic Programme
for Research and Development in Information Technology (ESPRIT), culminated in a
method and/or process model of the same name, ami. [KCCHS92]

ASSESS

ANALYZE

1. Assess the environment
2. Define primary management goals

3. Check goals against the assessment

4. Break down management goals into sub-goals
5. Check consistency of the resulting goal tree

6. Identify measures from sub-goals

MEASURE
7. Write and validate measurement plan

8. Collect primitive data
9. Verify primitive data

IMPROVE
10. Distribute, analyze and review measurement data

11. Validate the measures
12. Relate the data to goals and actions

primary goals

specification of
measures

resources
processes
products
(projects)

reference to
assessment

reference to
goals

Figure 2.3: The glue between the ami method’s four activities and 12 steps

36

2.7. SOFTWARE MEASUREMENT PROCESS MODELS

The elaboration of the method was backed up by full-scale trials in practice driven
by the developing consortium that consisted of experts and users of software mea-
surement. [PKCS95] Starting again from the large-grained four-step PDSA cycle, the
circular ami software measurement process model intends to serve all audiences as
illustrated in figure 2.3 and consists of four distinct activities with each having three
own tasks to be fulfilled. The cycle starts with a dedicated set of improvement goals
Gimprovement for software engineering entities E and should end with them being im-
proved (E′).

2.7.2 The general Jacquet and Abran model

Contributing to a better understanding, Jacquet and Abran [JA97] provide a high-level
model as overview and a more detailed model of the (software) measurement process.
The authors recognized the need for a formal methodology as already argued for by
others like Gustafson et al. [GTW93] and thus structured the process with their high-
level model into four activities: (1) Design of the measurement method; (2) Application
of the measurement method rules; (3) Analysis of the measurement results; and (4)
Exploitation of the measurement results. Obviously, the existence of measurement
goals (G) is presumed and the exploitation step deals with the virtual exploitation of
the software measures rather than with sharpening the measurement goals (G′′).

Design of the
measurement

method

Application of
the measurement

method rules

Analysis of the
measurement

results

Exploitation of
the measurement

results

Step 1 Step 2 Step 3 Step 4

Definition of
the

objectives

Characterization
of the concept to

be measured

Design or
selection of

the meta-model

Definition of
the numerical

assignment rules

Software
documentation

gathering

Construction of
the software

model

Application
of the numerical
assignment rule

Result

Audit

Productivity
model

Estimation
model

Estimation

Productivity
model

Productivity
model

…

…

High-level model

Detailed model

Figure 2.4: High-level and detailed models of the software measurement process
(adapted from [JA97, p. 130])

While for the design and the application of the measurement method’s rules struc-
ture models can be used, for the analysis and exploitation of the software measurement
results entity population models are available for disposal. [KPF95] As can also be rec-
ognized in figure 2.4 in the activities, detailed models have a right to exist, in turn.
These detailed models involve a number of specific tasks to be fulfilled.

37

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

2.7.3 The GQM-based measurement process of van Solingen et al.

After the GQM process model of Gresse et al. [GHW95], in an additional endeavor to
enrich the GQM with an especially compiled, supporting process model for application
in industry, van Solingen and Berghout [vSB99] compiled steps and procedures con-
tributing to software measurement following the top-down paradigm. They arrange
these steps around the four different phases of (1) Planning; (2) Definition; (3) Data
collection; and (4) Interpretation as depicted in figure 2.5. As the denomination of
the measurement process model implies, the existence of measurement goals (G) is a
requirement for using that model.

Planning

Definition Interpretation

Data collection

Collected data

Pr
oj

ec
t p

la
n

Goal

Question

Metric

Goal attainment

Answer

Measurement

Figure 2.5: The GQM method of van Solingen and Berghout (adapted from [vSB99, p.
22])

The basic steps and procedures that constitute the respective phases of their subjec-
tive interpretation of the GQM are as following [vSB99]:

1. “Planning

(a) Establish GQM team.

(b) Select improvement area.

(c) Select application project.

(d) Create project plan.

(e) Training and promotion.

2. Definition

(a) Define measurement goals.

(b) Review or produce software process models.

(c) Conduct GQM interviews.

(d) Define questions and hypotheses.

(e) Review questions and hypotheses.

(f) Define metrics.

(g) Check metrics on consistency and completeness.

(h) Produce GQM plan.

38

2.7. SOFTWARE MEASUREMENT PROCESS MODELS

(i) Produce measurement plan.

(j) Produce analysis plan.

(k) Review plans.

3. Data collection

(a) Hold trial period.

(b) Hold kick-off session.

(c) Create metrics base.

(d) Collect and check data collection forms.

(e) Store measurement data in metrics base.

(f) Define analysis sheets and presentation slides.

4. Interpretation

(a) Prepare feedback session.

i. Update the analysis sheets.
ii. Create additional material.

iii. Update presentation slides.
iv. Review presentation slides.
v. Save copies.

vi. Create & distribute handouts.

(b) Organize and hold feedback session.

(c) Report measurement results.”

2.7.4 The PSM (and ISO/IEC Standard 15939) process model

Having notice of the fact that an organization’s performance essentially depends on the
economic success of its projects, the creators of the PSM guidebook — headed up by
the luminary McGarry [MCJ+01] — intended to address predominantly information
needs and characteristics at the project entity level (cf. section 2.3.4). They provide a
common measurement process model as well as a common measurement information
model. Because the PSM guidebook’s principles and models represent subject-matter
agreements among international experts, the ISO/IEC standardization bodies have ac-
cepted the models of PSM as standard 15939 [ISO02] in 2002. Moreover, PSM has
become the intellectual foundation [Jon03a] for the ‘Measurement and Analysis’ sup-
port process area of SEI’s CMMI. [SEI02a,SEI02b]

With the measurement process model being of elevated importance it shall be
stressed in the context of this thesis. The model’s version as manifested in ISO/IEC
Standard 15939:2002 is therefore illustrated in figure 2.6. Once more in accordance
with the PDSA cycle, the four process categories ‘establish & sustain measurement
commitment’, ‘plan the measurement process’, ‘perform the measurement process’,
and ‘evaluate measurement’ go into the model together with a number of tasks to
be fulfilled having a ‘technical or management process’ as initiator and concerned au-
dience. [DBH05] Thus, this enhanced process model extends the software measure-
ment process (MP) as defined in equation 2.7 by preparatory activities to establish
and sustain commitment (MPCommittment(MP)) and following-up evaluation activi-
ties (MPEvaluation(MP)) of the software measurement process.

39

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

Requirements for measurement

Information products

Measurement user feedback

Core measurement process

Improvement actions

Measurement experience base

Planning
InformationEstablish &

sustain
measurement
commitment

Technical
and management

processes

Plan the
measurement

process

Perform the
measurement

process

Information needs

Commitment

Information
products &

performance
measures

Evaluate
measurement

Information products &
evaluation results

Scope of ISO/IEC 15939

Legend

Activity Data Flow Data Store

Figure 2.6: The ISO/IEC 15939:2002 measurement process model (taken from the
standard)

The pertinent activities are as per the standard:

1. “Establish and sustain measurement commitment

(a) Accept the requirements for measurement

i. The scope of measurement shall be identified.
ii. Commitment of management and staff to measurement shall be estab-

lished.
iii. Commitment shall be communicated to the organizational unit.

(b) Assign resources

i. Individuals shall be assigned responsibility for the measurement process
within the organizational unit.

ii. The assigned individuals shall be provided with resources to plan the
measurement process.

2. Plan the measurement process

(a) Characterize organizational unit

i. Characteristics of the organizational unit that are relevant to selecting
measures and interpreting the information products shall be explicitly
described.

(b) Identify information needs

i. Information needs for measurement shall be identified.
ii. The identified information needs shall be prioritized.

iii. Information needs to be addressed shall be selected.
iv. Selected information needs shall be documented and communicated.

40

2.7. SOFTWARE MEASUREMENT PROCESS MODELS

(c) Select measures

i. Candidate measures that satisfy the selected information needs shall be
identified.

ii. Measures shall be selected from the candidate measures.
iii. Selected measures shall be documented by their name, the unit of mea-

surement, their formal definition, the method of data collection, and
their link to the information needs.

(d) Define data collection, analysis, and reporting procedures

i. Procedures for data collection, including storage and verification shall
be defined.

ii. Procedures for data analysis and reporting of information products shall
be defined.

iii. Configuration management procedures shall be defined.

(e) Define criteria for evaluating the information products and the measurement
process

i. Criteria for evaluating information products shall be defined.
ii. Criteria for evaluating the measurement process shall be defined.

(f) Review, approve, and provide resources for measurement tasks

i. The results of measurement planning shall be reviewed and approved.
ii. Resources shall be made available for implementing the planned mea-

surement tasks.

(g) Acquire and deploy supporting technologies

i. Available supporting technologies shall be evaluated and appropriate
ones selected.

ii. The selected supporting technologies shall be acquired and deployed

3. Perform the measurement process

(a) Integrate procedures

i. Data generation and collection shall be integrated into the relevant pro-
cesses.

ii. The integrated data collection procedures shall be communicated to the
data providers.

iii. Data analysis and reporting shall be integrated into the relevant pro-
cesses.

(b) Collect data

i. Data shall be collected.
ii. The collected data shall be stored, including any context information

necessary to verify, understand, or evaluate the data.
iii. The collected data shall be verified.

(c) Analyze data and develop information products

i. The collected data shall be analyzed.
ii. The data analysis results shall be interpreted.

iii. The information products shall be reviewed.

(d) Communicate results

41

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

i. The information products shall be documented.
ii. The information products shall be communicated to the measurement

users.

4. Evaluate measurement

(a) Evaluate information products and the measurement process

i. The information products shall be evaluated against the specified eval-
uation criteria and conclusions on strengths and weaknesses of the in-
formation products drawn.

ii. The measurement process shall be evaluated against the specified eval-
uation criteria and conclusions on strengths and weaknesses of the mea-
surement process drawn.

iii. Lessons learned from the evaluation shall be stored in the ‘Measurement
Experience Base’.

(b) Identify potential improvements

i. Potential improvements to the information products shall be identified.
ii. Potential improvements to the measurement process shall be identified.

iii. Potential improvements shall be communicated.”

2.7.5 Other top-down measurement process models

Similar, but less frequently utilized approaches to promote the acceptance of goal-
oriented software measurement in industry from a rather scientific perspective are e.
g. reported from Paulish and Möller [PM92], McAndrews [McA93], van Solingen and
Berghout [vSB01] or Dumke et al. [Dum03] [EDBS05].

2.8 Software measurement programs

Translating the theoretical foundations, concepts and the exemplary software mea-
surement process into practice of software engineering industry has been a demand of
progress and thus a favored topic of publications for practitioners and researchers as
can be recognized from the number of references examined. In this vein, the virtual ap-
plication of software measurement in commercial software engineering settings for the
main purpose of SPI has been suggested to be established in the course of Software Mea-
surement Programs, for which the denominations ‘metrication programme’ [Kit96b],
‘metrics program’ [HG98] [PPS03] [Goo04], or ‘measurement framework’ [Men97]
hold, too. Liptak [Lip92], Abran et al. [ALB99], or Berry and Jeffery [BJ00] similarly
define:

Definition 2.8: “A software measurement program is the set of on-going
organizational processes required to define, design, construct, implement,
operate and maintain an information system for collecting, analyzing and
communicating measures of software processes, products and services.”

Having in mind equations 2.1, 2.2, 2.3, and 2.5, a SMP shall be formally described
as shown in equation 2.7. It is worth to be noted that the entities process (SD), product
(SP), and resource (SR) might act as both, as an entity of interest to be quantified as
well as a building block of the SMP itself.

42

2.8. SOFTWARE MEASUREMENT PROGRAMS

SMP = (MSP , RSMP) (2.9)

= (MSDP ∪MSMS , RSMP)
= (MSD ∪MSP ∪MSR ∪MSMS , RSMP)

2.8.1 Examination of the current situation

When examining the current situation as it is reflected by the reference material of the
technical literature [KLBD06] [KBD06] [WBD06], one can receive the impression that,
across the board, the companies having embarked on SMPs could succeed with their at-
tempts. The literature is for instance rife with an impressive number of often cited pub-
lications of Grady [GC87] [Gra92] [Gra94], who describes — not without pride — how
HP Inc. could successfully establish such an initiative that he used to be the lead of. Re-
ports of predominantly major players and/or companies such as the U. S. Army [Fen90]
[Pau93a], Motorola [Das92], Contel [Pfl93], Bull Honeywell [Wel94], Eastman Kodak
Company [Sed97], Nokia [Kil01], or Lockheed Martin [Jon03b] seem to mirror an
ideal world of SMP implementation. And even from a few smaller companies like
for instance Modern Technologies [Bak91], Loral [NB93], Schlumberger [vLvSO+98],
Electronic Data Systems [dS02], Financial Software Solutions [IM00] [IM03], or Sogeti
Nederland B. V. [Dek05] and other anonymous ones [Kau99], measurement program
successes are reported.

However, the real situation with SMPs is fairly different and rather disastrous than
optimistic: According to Kaner and Bond [KB04] just a few companies establish mea-
surement programs and even fewer can finally succeed with it. But those that come to
grief are often kept secret. [HF97] As early as from 1988 the researcher and analyst
Howard Rubin [Rub90] prepared statistics of SMPs’ successes or failures. Since then,
these statistics continuously show a consistent failure rate of 78% or higher before two
years of the program’s successful operation have passed. In addition, in the same study
he observes that oblivion of the SMP’s exploitation is usually at high 15% and real us-
age at very low 5%. Also in the 1980s, an industry survey [Het90] financed by Xerox
and Software Quality Engineering revealed that not even 10% of the respondents had a
positive image of software measurement due to bad own experiences. Another corrob-
orating study of Desharnais [Des94] among twenty Canadian companies analyzed the
successes and failures in the implementation of SMPs and exhibits a similar failure rate
of 60%. The most recent and multiply cited [Dek99] [DM02] [MD04] of those surveys
of Rubin dates back to 1998. It mirrors the even worse situation of nearly 80% failure
rate before their second anniversary out of an population of up till then 800 examined
SMPs in industry.

2.8.2 Costs and benefits of SMPs

Implementing and sustaining SMPs in industry are most often cost and labor inten-
sive undertakings [Ket06], which organizations do not perform for an end in measure-
ment itself but to generate extra value by deeper insights into their entities of inter-
est. [NvV01] Apart from organizations that do not really have the choice whether to risk
implementing and sustaining a SMP or not because of being forced by contract or legal
regulation, it usually comes down to a cost-benefit analysis for those organizations be-
ing free in their decisions. Needless to say that the return must be worth the investment
of financial and personnel resources. [RH96b] [RH96a] [RH97] [Der00] Usually, a cost
portion of 2% up to 8% of the annual development or project total has to be accounted

43

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

for, when believing in experiences reported in literature. [Gil92] [FN99] [GJPD99]
However, this amount strongly depends on contextual aspects of the organization and
the desired extent of the SMP. [IFP04] Herbsleb and Grinter [HG98] summarize their
cost-related lesson learned in implementing a SMP and alert their audience: “Meaning-
ful organization-wide metrics may be prohibitively expensive, even when they appear
simple, and these costs are likely to be grossly underestimated.”

As partly listed in table 2.5 benefits of SMP endeavors are often intangible and
difficult to express in numbers. [vSB99] In contrast, the cost of not implementing and
sustaining it can be determined quantitatively in terms of failing projects or even the
entire business.

Item Cost Benefit
Training Class costs Future expertise

Less time on project Consistency, standardization
Management More management time Less management time
Engineering Start-up costs Increase productivity

Data collection time Reduce development time
Analysis time Fewer defects

Reduce defect find/fix time
Reduce maintenance
Increase reusability
Increase user satisfaction

Capital expenses Purchase hardware/software

Table 2.5: Cost versus benefit of SMPs (adapted from [Gil92])

2.8.3 Pitfalls of SMP implementation and sustainment

The reasons, why a large share of SMPs has been discontinued within a short pe-
riod of time after set-up, are of a complex nature and span more on managerial and
cultural than on technical or measure-related issues. [JB93] Accordingly, McQuaid et
al. [MD04] argue that “. . . there is more to measurement than technical implementa-
tion.” As early as in 1990, Verdugo shared his knowledge on reasons for SMP failures in
one of Rubin’s early surveys. [Rub90] Although the pitfalls extracted from former expe-
riences with SMP implementation have been pointed out frequently in the meanwhile
of the last two decades, nowadays the complaints still range among the road bumps on
the way to successful industrial software measurement. Even worse, the issues can now
be complemented by a list of extra hazards reported in more recent publications. Ap-
parently, the hitherto drawn consequences have not been sufficient enough to address
the emerging issues, which shall be exemplarily summarized as following:

1. Basic misunderstanding of the theory underlying software measurement [Kan00]
[DM02]

2. Absence of verifiable objectives (unmanaged expectations) of the SMP, measure-
ment overkill, mismatch, or unplanned measurement to meet criteria of SPI nor-
mative maturity models [Rub90] [Fen91] [Wie97b] [KB99] [BH03a] [MD02]
[Den02] [MD04] [KB04];

3. Lack of ongoing education, ignorance, or misunderstanding of the underlying mea-
surement theory among staff [Eji91] [PJCK97] [Zus98] [DB99] [Den02] [DM02]
[BH03a] [KB04];

44

2.8. SOFTWARE MEASUREMENT PROGRAMS

4. Undervaluation of the highly complex interrelations between process, products,
and people in software engineering by management [RJ94] [Zus98] [ALB99]
[DB99] [DM02];

5. Resistance and fear of staff against performance monitoring, added effort, and
misinterpretation of numbers [Rub90] [Eji91] [Fen91] [Aus96] [DB99] [KB99]
[Min00] [MD02] [dS02] [Den02] [MD04];

6. Management’s mislead punishment attempts for the bearer of bad measurement
data reflecting the current state [Aus96] [Hof00] [DM02];

7. Nonexistence or expensiveness of automated tool support [Fen91] [BH03a];

8. Disability to generate measurement-based action / measurement as an end in itself
[Rub90] [Fen91] [dS02] [Den02] [MD04];

9. Lack or withdrawal of senior management’s commitment yielding insufficient staffing
and discontinuation of founding [Rub90] [Fen91] [DB99] [KB99] [Den02];

10. Omission of extensive communication and advertisement of goals, procedures and
results of the SMP with staff members [DB99] [KB99] [dS02] [Den02] [MD04];

11. Expectation that measurement be a finite project causing change automatically.
[KB99]

2.8.4 Best practices for SMP implementation and sustainment

Because it lies in the general nature of engineers to learn their lessons from mistakes
made once, based on research or on comparisons of operating experiences with SMP
implementation attempts, a multitude of authors has published lists of success and risk
factors, characteristics of highly successful SMPs, determinants of success, and other
measurement-related, recommended activities that call for their compilation towards
complete works. But these factors have to be seen with a pinch of salt, too, as Niessink
and van Vliet [NvV98] observe: “The success factors for software measurement, though
highly useful, do not differ all that much from the hit list for software reuse, formal
specifications, or any major organizational change relating to the software process.
The give premises for success, not roads to get there.” Be it as it may, while many
authors [Abr01] [RHB03] [Rif03] [Dyb05] [NWZ06] have published extensive lists of
generally applicable factors of which software measurement is a major one, e. g. Gopal
et al. [GGM99,GKMG02,GMK05] or Umarji and Emurian [UE05] extracted factors spe-
cific to SMPs. In general software engineering, recommended activities that have been
proven to yield to success are commonly called best practices. [DLW99] Fortunately, the
situation is now alike in the area of software measurement, where an evolution from
tentative experiments to best practices is taking place. [Gra92] That is the motivation
to provide an inventory of SMP implementation best practices as extracted from a vo-
luminous literature survey. Over and above, it should be noted here that the literature
on SMP best practices nearly exclusively presumes the top-down paradigm and omits
to respond to the bottom-up paradigm. Nevertheless, both categories are dwelled on.

Best practices for SMPs following the top-down paradigm
For a long period of time, at first Fenton [Fen91] and then Jeffery and Berry [JB93]
were the only authors, who published a fairly comprehensive list of those success fac-
tors being structured according to the few main focal points around the context, the
inputs, the process, and the final product of a SMP in industry. Later and with the in-
tention to provide an inventory of SMP risk factors, Abran et al. [ALB99] enhanced the

45

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

existing list of beneficial aspects (as for instance published by Hall and Fenton [HF97])
by cognitions evolved from their own literature study and proposed a measurement pro-
gram implementation reference model. Their model subdivides the factors in relation to
five distinct focal points around the preparation of an implementation context for the
SMP, the set-up of an adequate organization of structures, the program’s components,
its results, and its advancement referring to maintenance and evolution. Although,
Gopal et al. [GKMG02,GMK05] subdived their revealed critical success factors for SMP
implementation and sustainment into technical and organizational factors, the model
of Jeffery and Berry yields a sufficient and straightforward level of abstraction, it shall
serve as structural element for the description of an updated set of SMP best practices
as extracted during this research’s literature study. Thus, a subjectively selected sub-
set of the revealed and most often mentioned best practices are logically collocated,
assigned to the proposed dimensions in the following list and labeled according to the
mentioning publications.

Context-related best practices

• Do research in software measurement theory. [GC87] [JB93] [Dek05]

• Ensure that a quality assurance environment is in place. [JB93]

• Ensure that software process and methodology bear stability (e. g. software
process maturity level) [JB93] [She94] [Den02]

• Define and clearly state the objectives of the SMP for different audiences in con-
gruency with the overall business goals and/or organizational triggers. [GC87]
[MIO87] [Rub87] [Mil88] [CG90] [Fen91] [JB93] [Rub93] [Kit96b] [OJ97]
[KB99] [Kul00] [Min00] [NvV01] [Hol02] [DM02] [Den02] [DN03] [Goo04]
[IFP04] [EDBS05] [Dek05] [Dyb05]

• Build a participatory management style involving all levels of audiences. [JB93]

• Ensure a supportive industrial climate of trust, respect, and esteem among all lev-
els of staff with a predisposition to improvement [JB93] [Rus02] [DM02] [IM03]

• Ensure that the level of technical difficulty of the software development process
and products is within the capability of staff members. [JB93]

• Identify an internal software measurement champion having the responsibility
for SMP implementation and sustainment as well as for obtaining the benefits
from the SMP. [Das92] [JB93] [GCWF95] [HF97] [Cla02] [Goo04]

• Provide a realistic assessment of the implementation and sustainment cost and
period as well as pay-back period. [GC87] [RC91] [JB93] [Kit96b] [GJPD99]
[KB99] [DN03]

• Realign the corporate reward system to promote software measurement and col-
lection of unbiased data. [Pfl93] [DB99] [IM00] [IM03] [Dek05] [UE05]

Input-related best practices

• Convince all involved audiences of the importance and meaningfulness of soft-
ware measurement to ensure commitment via promotion. [GC87] [MIO87]
[Fen91] [JB93] [GCWF95] [Kit96b] [Wie97b] [HF97] [Wie97a] [GGM99]
[GJPD99] [KB99] [Kau99] [LR99] [BJ00] [Min00] [Cla02] [GKMG02] [Rus02]
[Jon03b] [Dyb05]

46

2.8. SOFTWARE MEASUREMENT PROGRAMS

• Ensure proper raising of resources by senior management. (Extra tasks require
extra resource, not on top.) [GC87] [Fen91] [JB93] [She94] [Wie97a]

• Provide training to software measurement data collectors on how software mea-
surement relates to the problems to be solved. [GC87] [RC91] [Das92] [JB93]
[Pfl93] [Kit96b] [Wie97b] [Wie97a] [HF97] [GJPD99] [Kau99] [KB99] [LR99]
[NvV01] [DM02] [GKMG02] [Rus02] [Jon03b] [IFP04] [EDBS05] [Dek05]

• Ensure sufficient managerial experience and training of concerned audiences to
use the software measurement data. [JB93] [Wie97b] [Wie97a] [Kau99] [LR99]
[Jon03b] [DM02] [EDBS05] [Dek05]

• Contemplate external consultants where needed to get additional experience and
authority. [JB93] [HF97]

• If possible, make use of existing knowledge and materials of software measure-
ment in the organization. [BR88] [HF97] [Wie99] [DN03] [Goo04]

Process-related best practices

• Perform a feasibility study or a pilot. [RC91] [GJPD99] [Goo04]

• Implement the SMP incrementally (with a small set of software measures bottom-
up, enlarge this set according to the top-down paradigm) in the manner of a high-
priority and high-risk development project according to the objectives with both,
a project and a risk aversion plan. [GC87] [BR88] [RC91] [Fen91] [JB93] [Pfl93]
[Rub93] [GCWF95] [PGF96] [HF97] [Wie97b, Wie99] [DB99] [Kau99] [KB99]
[LR99] [vSB99] [IM00] [NvV01] [Cla02] [DM02] [Den02] [Rus02] [IM03]
[Jon03b] [Goo04] [IFP04] [EDBS05] [Dek05]

• State the criteria for evaluating the SMP’s achievements upfront. [JB93]

• Involve all stakeholders and the developers in the SMP implementation. [RC91]
[JB93] [HF97] [Kau99] [KB99] [vSB99] [GGM99] [Min00] [NvV01] [DM02]
[GKMG02] [Dyb05]

• Establish a small and independent software measurement team (a user interface)
of highly motivated, volunteer staff members with a huge amount of software de-
velopment expertise and communication skills. [DeM82a] [GC87] [Fen91]
[Das92] [JB93] [HF97] [Rus02] [Goo04] [Dek05] [Dyb05]

1. Assign three people half-time to the team. [DeM82a]

2. Ensure that the other half of their time is spent on something entirely differ-
ent from the projects the team will be measuring. [DeM82a]

3. Assign clear and distinct implementation and data collection responsibility
and send a signal of importance. [GC87] [Mil88] [JB93] [BDT96] [Kit96b]
[Den02] [Hol02] [IFP04] [EDBS05]

4. Have the group report to someone outside the project(s) being measured.
[DeM82a]

• Provide simple, complete, and consistently documented operational definitions
and process descriptions for the artifacts to be measured in a certain way. [Das92]
[She94] [GCWF95] [Kit96b] [Wie97b] [GGM99, GKMG02] [DM02] [Den02]
[Hol02] [Goo04] [Dek05] [GMK05]

47

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

• Document procedures for the collection and analyzes of the software measures.
[GC87] [Mil88] [GCWF95] [Kit96b] [BDT96] [Goo04]

• Start with projects in trouble to demonstrated the capabilities of software mea-
surement as a valuable tool. [Pfl93] [Wie97a]

• Sell the initial collection of software measures to the collectors. [GC87] [JB93]
[Min00] [Rus02] [DN03] [UE05]

• Publish what is being measured and why to ensure transparency of the soft-
ware measurement process. [JB93] [Pfl93] [HF97] [GGM99] [IM00] [Cla02]
[GKMG02] [DN03] [IM03] [IFP04] [Dek05] [Dyb05] [GMK05] [UE05]

• Make the software measurement data collection sufficiently easy and unobtru-
sive by getting tools for automatic data collection and analysis. [GC87] [MIO87]
[BR88] [Fen91] [RC91] [Das92] [JB93] [Pfl93] [Kit96b] [HF97] [DFK98]
[GJPD99] [vSB99] [Kul00] [Min00] [KSPR01] [Den02] [Hol02] [DN03]
[Jon03b] [UE05]

• Collect and scrub the software measurement data in real-time, ensure data in-
tegrity and consistency by procedures for data entry, validation, deletion, modifi-
cation and retrieval. [MIO87] [JB93] [She94] [GCWF95] [HF97] [DB99] [Rus02]
[EDBS05] [Dek05]

• Store the software measurement data in an organizational database and/or repos-
itory to allow for normalization. [GC87] [Das92] [JB93] [GJPD99] [Kul00]
[Rus02] [PPS03] [Har04] [Dek05]

• Integrate software measurement with the normal software processes of the orga-
nization. [SPSB91] [JB93] [KB99] [Min00] [Rus02] [DM02] [Den02] [Hol02]
[DN03] [GMK05]

• Establish a review, monitor, or other mechanism to allow for the improvement
and alignment the SMP’s objectives and procedures to improved software pro-
cesses. [GC87] [Mil88] [SPSB91] [RC91] [JB93] [PGF96] [Kit96b] [HF97] [OJ97]
[Kau99] [Min00] [Den02] [IM03] [Mun03] [PPS03] [Dek05]

Measurement product-related best practices

• Ensure that measurement data offer clarity of interpretation and obvious appli-
cability. [Rub87] [JB93]

• Ensure that the chosen software measures are relevant and acceptable to the
target community. [JB93] [Jon03b]

• Facilitate actions to be taken on the basis of the observed and promptly cleaned
software measurement data to display clear benefits. [GC87] [Rub87] [Fen91]
[Das92] [JB93] [Wie97b] [HF97] [KB99] [DB99] [LR99] [IM00] [Kul00] [DM02]
[IM03] [Jon03b] [EDBS05]

• Analyze software measurement data only for pre-defined objectives and do not
abuse the results of the SMP against individuals and/or staff members. Better
criticize processes or products. [GC87] [Fen91] [JB93] [Pfl93] [Wie97b] [LR99]
[Min00] [Rus02] [EDBS05] [UE05]

• Grant access onto the software measures to its collectors. [Pfl93]

48

2.8. SOFTWARE MEASUREMENT PROGRAMS

• Retain anonymity of individuals even if anonymity of projects and departments is
impractical. [Fen91] [Wie97b] [Min00]

• Provide capabilities for users to explain events and phenomena associated with a
certain, measured project. [SPSB91] [JB93] [Cla02]

• Monitor trends that key project measures exhibit over time and do not overact at
single data points. [Wie97b]

• Provide prompt feedback on software measure analyses’ results. [MIO87] [BR88]
[JB93] [Pfl93] [Kit96b] [HF97] [Wie97a] [GJPD99] [KB99] [Wie99] [IM00]
[Jon03b] [IFP04] [Dek05]

• Provide feedback and allow debate on the quality and the relevance of the SMP.
[DB99] [Wie97a] [IM00] [IM03] [Dek05]

• Publicize success stories of software measurement and encourage exchange of
ideas. [GC87] [JB93] [Pfl93] [Kau99] [EDBS05] [Dek05]

Best practices for SMPs following the bottom-up paradigm
Although, the bottom-up paradigm for software measurement bears a number of ad-
vantages that qualify its usage for the initial implementation cycle of a SMP, there is
only a couple of authors that share their experiences with the activities contributing
to success. Two of those are Hetzel and Silver [Het93, p. 33], on whose notes the
following list of best practices is mainly oriented:

• Focus on the software practitioner and the work products produced.

• Define and build in software measures as part of the engineering activity bottom-
up.

• Measure the inputs, outputs, and results primitives for each work product.

• Measure perceptions — what people who produce and use the work products
think.

• Measure the use and results of measurements.

• Understand that the SMP will continuously evolve and change.

• Drive toward establishing validated software measures of the processes and de-
rive meters.

• Stimulate knowledge and prepare for the next question.

• Educate management to expect and require software measures as inputs to deci-
sions and goal setting.

2.8.5 SMP implementation steps along the measurement paradigms

In many different fields of science stage theories have been useful for developing
knowledge. For instance, in the 19th century Karl Marx formulated a sceptical the-
ory of economic development [Mar05], in which nations and their economies pass
through the five sequential stages: Primitive Culture, feudalism, capitalism, socialism,
or communism. The general concept behind stage theories is the premise of a descrip-
tion of system elements that move through a pattern of stages over time. Based on
Kuznets [Kuz65], Nolan [Nol73] provides two key characteristics of stage theories: (1)

49

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

The identification of elements as characteristics for each stage, and (2) The concept of
growth over time based on an analytical relationship of processes causing the change.

From an engineering point of view as proposed by Dahlbohm et al. [DM97], there
is the widely established [KB99] [Dek99] [IM00] [IM00] [Col02] [BH03a] opinion
that the implementation of a SMP is to be regarded as a rational engineering endeavor
usually executed in the frame of a development project. A SMP is regarded like a
general engineering project having the mission to transform a set of requirements under
certain conditions into a deliverable and/or product. Withal, in a project requested and
authorized resources are applied to complete the product within a given time frame.
In so far, the project can be seen as an instance of an organization’s processes. [LVJ01]
This ensures the clarity of objectives, sufficient planning for staffing and/or funding
and does prevent from undesired and costly surprises.

Phase Tasks
Plan/evaluate - Definition of goals, objectives, and benefits

- Establishment of sponsorship
- Communication and promotion of measurement
- Identification of roles and responsibilities

Analyze - Audience analysis & target software measure identification
- Definition of software measures
- Definition of the data collection, analysis,

and data storage approach
Implement/measure - Education

- Reporting and publishing results
Improve - Managing with expectations

- Managing with software measures

Table 2.6: Phases and tasks of the ‘project-approach’ to implementation of SMPs
(adapted from [IFP04])

In table 2.6, taken with modifications from the International Function Point Users
Group (IFPUG) [IFP04], the sequential phases and the pertinent tasks are confronted.
Similar lists of phases and tasks are provided by the software measurement luminaries
such as Grady and Caswell [GC87], Card and Glass [CG90], or Goodman. [Goo04]

Fuchs [Fuc95] makes a good point, when he regards the evolution in the usage
of software measurement paradigms from bottom-up over a mixed approach between
bottom-up/top-down up to the clean top-down paradigm as stages that “. . . suggest
how companies can introduce software measurement in an evolutionary way taking
account of the company’s specific experience.”

Figure 2.7 illustrates the steps of implementing software measurement processes
which are typically gone through along the measurement paradigm shift. A number of
literature findings back up that observation. [CC93] [DFS93] [HF94] [GCWF95] More-
over, once the described staged implementation of a SMP has resulted in a definitive
top-down process of software measurement, a continuous improvement of the SMP
with respect to most probably ever changing measurement goals, can take place.

In recent times, especially Powell [Pow01], who examined the situation at the UK-
based Rolls-Royce company, Mohagheghi [MC04, Moh04] at Ericsson in Norway, and
Prechtel et al. of the German division of DaimlerChrysler AG [PSS05] corroborate the
opinion of Fuchs. The latter for instance analyzed that “most companies’s repositories
are not collected following the GQM paradigm” and that projects being laggards of
software measurement according to the top-down paradigm must be able to relate
their legacy, genuine data to goals.

50

2.8. SOFTWARE MEASUREMENT PROGRAMS

Project
attributes

Product
attributes

Process
attributes

Resource
attributes

Objectives

Objectives
G1 … Gn

Process
attributes

Product
attributes

Project
attributes

Resource
attributes

Objectives
G1 … Gn

Process
attributes

Product
attributes

Project
attributes

Resource
attributes

Fi
rs

t e
xp

er
ie

nc
es

w
ith

SM
P

So
ph

is
tic

at
io

n
of

 th
e

SM
P

 1 2 Time

Improvement
stage

3

2

1

Figure 2.7: Stepwise improvement of the implementation of the software measurement
process along the measurement paradigms (adapted from [Fuc95, p. 75])

2.8.6 Phases of SMP acceptance

Based on their experience, for the particular topic of SMP implementation and sustain-
ment, Rosenberg and Hyatt [RH96b] [RH96a] [RH97] take a chance to propose an
initial try to describe four stages of personnel’s acceptance of SMP implementation and
sustainment endeavors as depicted in figure 2.8.

Denial Reaction Acceptance Dependency

time

acceptance
level

Figure 2.8: Stages of SMP acceptance among concerned personnel (adapted from
[RH96a])

They suggest the following:

1. Denial stage
Personnel resists to the idea in general, completely refuses to interact. Feelings of
threatening can only be overcome by persuasive and social skills.

2. Reaction stage
Contrary to all believes the SMP is not going to dissolve, developers must learn
to live with it. Here relevant add-on value must be shown.

51

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

3. Acceptance stage
Development units recognize the benefits of the SMP and incorporate software
measurement into the common development structure.

4. Dependency stage
The development units fully depend on software measurement in their decision-
making process. Its has been adopted as cultural element.

Perceiving the term information technology (IT) in its broad sense of an artifact
being based on computer communications hardware and software, Cooper and Zmud
[CZ90] propose a more general, six-staged model of IT implementation activities
founded on several prior models such as the famous but controversial [KK84] stage
hypothesis of managing computer resources by Nolan [Nol73] or studies by Redwine
and Riddle. [RR85] In doing so, Cooper and Zmud split their reflections on the process-
and product-related parts:

1. “Initiation stage
Process: Active and/or passive scanning of organizational problems/opportunities
and IT solutions are undertaken. Pressure to change evolves from either organi-
zational need (pull), technological innovation (push), or both.
Product: A match is found between an IT solution and its application in the orga-
nization.

2. Adoption stage
Process: Rational and political negotiations ensue to get organizational backing
for implementation of the IT application.
Product: A decision is reached to invest resources necessary to accommodate the
implementation effort.

3. Adaptation stage
Process: The IT application is developed, installed, and maintained. Organi-
zational procedures are revised and developed. Organizational members are
trained both in the new procedures and in the IT application.
Product: The IT application is available for use in the organization.

4. Acceptance stage
Process: Organizational members are induced to commit to IT application usage.
Product: The IT application is employed in organizational work.

5. Routinization stage
Process: Usage of the IT application is encouraged as a normal activity.
Product: The organization’s governance systems are adjusted to account for the
IT application; the IT application is no longer perceived as something out of the
ordinary.

6. Infusion stage
Process: Increased organizational effectiveness is obtained by using the IT appli-
cation in a more comprehensive and integrated manner to support higher level
aspects of organizational work.
Product: The IT application is used within the organization to fullest potential.”

Despite the sequence of acceptance growth over time promoted by pertinent activi-
ties to countersteer cultural issues, Weinberg [Wei92, p. 31] claims “maturity is not the
right word for subcultural patterns because it implies superiority when none can be in-
ferred.” Thus, the connection between acceptance growth and maturity is disregarded
from further investigation.

52

2.9. CONCLUSION

2.9 Conclusion

As one part of the preparatory literature study for this thesis, the first sub-question of
this research project has been addressed by this chapter:

RQ1. Which are general characteristics, specific cornerstones, and best
practices that form content-related criteria for a potential, stepwise
software measurement process improvement model?

With respect to the theory as presented in the appendix, chapter A, the terminol-
ogy of software measurement was clarified to ensure an unified vantage point for this
research, in the beginning. Then, the classes of entities and possible attributes of in-
terest for software measurement in industrial settings were presented. Afterwards, the
importance of software measurement was investigated describing intentional and nega-
tive aspects, the aspired value as well as the respectively concerned audiences. When it
came to paradigms applicable to software measurement, it was described, that beyond
the multiply praised top-down paradigm, the bottom-up paradigm is often preferred as
a good starting point. Furthermore, a mix between both can be a meaningful interme-
diate step, as well. Although the top-down paradigm, that is, the goal-driven software
measurement process is the only commonly recommended one in literature, a subsec-
tion of this chapter threw light on the discussion of the category of top-down process
models and a single, but invaluable mixed software measurement process model. The
final section of this chapter entirely dealt with the topic of software measurement pro-
grams. After pointing on the situation of those initiatives in industry, costs and benefits
were confronted. After all, typical implementation and sustainment pitfalls, but also
an inventory of related best practices were compiled. The chapter was rounded off
by exposing the typical steps of software measurement process implementation and
sustainment along the software measurement paradigms.

What remains as the most important quintessence from this chapter with respect to
a step-wise improvement model of software measurement process implementation as
answer to the fundamental research question and sub-question number one, is reflected
by the following model-related evaluation criteria.

Content-related evaluation criteria
Because it is the dedicated task of this research project to improve the implementation
of software measurement processes in industrial settings, the scope of any current pro-
cess improvement models to be assessed or of a one to be newly developed, must be
on that aspect, as well.

C1. The scope of the process improvement model must be (at least par-
tially) on software measurement process implementation in indus-
trial settings.

53

CHAPTER 2. MEASUREMENT IN SOFTWARE ENGINEERING INDUSTRY

Already early opinions of i. e. El-Emam et al. [EMM93] see a major criteria, poten-
tial process improvement models should meet irrespective of their scope: They claim
that those models should reflect sophisticated research with scientific rigor and sig-
nificant merit to the community. Among others, especially the relevant measurement
theory as described by the author in the appendix, chapter A must be observed in order
to give evidence of sophisticated research in the area of software measurement. This
leads to the following generic criterion, which requires such a model to be free from
obvious evidence of design flaws:

C2. The process improvement model must have been developed with sci-
entific rigor.

After all, the result of the examination of industrial SMPs as described in the chapter
at hand forms the last content-related evaluation criteria:

C3. The process improvement model must be able to reflect the sequen-
tial application of the ‘bottom-up’, ‘mixed’, and ‘top-down’ measure-
ment paradigms during implementation of software measurement
processes in industrial settings.

Ultimately, the lesson learnt from this chapter is that the view of the process model
of ISO/IEC Standard 15939, that is, one being merely aligned with the top-down
paradigm, might require to be complemented with the other paradigms.

54

Chapter 3

Software process assessment and
improvement models

“It’s not enough that we do our best;
sometimes we have to do what’s required.”

– Sir Winston L. S. Churchill ∗ –

3.1 Introduction

When the American statistician W. Edwards Deming introduced his closed-loop qual-
ity improvement approach, later slightly modified and denominated as Total Quality
Management (TQM) by the U. S. Naval Air Systems Command [KBS94], to the hit rock
bottom Japanese industry after World War II, there was probably no portent of how
helpful his ideas could become for quality improvement of software products. [Ish85]
[Zul01] Teaching the Japanese how to combine highest quality demands with fast and
cheap production of goods and/or deliverance of services Deming laid the foundations
for the initial and ongoing economic success of Japanese industry [Ima86] [SG02] with
the Toyota Motor Company leading the way. [JMPW93] Beyond cultural changes focus-
ing on the empowerment of quality management staff, encouragement of their ques-
tioning attitude, and creating an industrial climate that promotes a fruitful exchange
of ideas [Geo03], one of his promising premises was the general concept of SPC: It
urges management to disengage intervening low performance — for the time being —
and to get people and processes whose performance is out of (statistical) control, that
is unpredictable, under control. An improvement of the low performance of people
or processes is feasible as soon as predictability is ensured. [Dem82b, Dem86] Other
luminaries of the field of quality such as Feigenbaum [Fei61], Crosby [Cro79, Cro96]
or Juran [Jur03, Jur06] confirm this opinion.

In the second half of the last century the gold rush fever of the ‘computing age’
[Gla94] did stumble about the already mentioned software crisis [Roy91] caused by
software development projects that constantly exceeded their allotted budget and/or
schedule and yielded to software products not being competitive because of their dis-
astrous quality levels. Painfully the software engineering industry had to discover that
permanently correcting bad software is inefficient and tantamount to “scraping burnt
toast”. [Dem86] Because the successes of solely trying to solve the problem by inserting
technology were modest [VCW+84], three methodology-based approaches to tackle the
issues causing the software crisis evolved.
∗Prime Minister of the United Kingdom of Great Britain and Northern Ireland during World War II and

winner of the 1953 Nobel Prize in literature, *1874 – †1965

55

CHAPTER 3. SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT MODELS

First, emphasis was placed on Deming’s idea of quality improvement by predomi-
nantly improving processes, once they could be brought into a state of statistical con-
trol. Despite Deming’s approach being intrinsically intended for manufacturing in-
dustries, it seemed applicable to all industries, in principle. Tracing back to the psy-
chologist Maslow [Mas43] and having been seized by Likert [Lik67] and at first for
the IT sector by Nolan [Nol73] in his staged hypothesis of computer resources, Crosby
[Cro79] [Cro96] developed the idea of a Quality Management Maturity Grid (QMMG).
Applying these concepts together, practitioners such as Radice [RROC85, RHMP85]
treated the task of developing a software product as a process, which can be defined,
implemented, measured, controlled, and thus stage-wise improved. Later on, having
the mission to develop a contractor assessment methodology for the DoD Humphrey
[HS87, Hum88, Hum89] evolved this approach to a maturity framework for software
processes. Resulting in elevated significance in research and important guidance for se-
nior management in practice, SPA and its natural consequence SPI became the means
of choice not merely for software quality improvement and software project control,
but also for endeavors to increase productivity. [EMM93] Second, based on a cognition
of the software development task different from a conceptualized process and involv-
ing a certain amount of human heroism needed to take initiative for solving ambiguous
problems [Bac95] [Jak00], the Peopleware-approach of DeMarco et al. [DL99] was
proposed. By regarding software mainly as a product of the developers and project
managers that solve a problem under usage of processes in place, the focus was on im-
proving people-related issues. [Wei92] Third and last, there was and still is the “Cow-
boy” or “Big magic” approach to software development, where a single individual, the
pathological hero, can create extraordinary superb software with the aid of magic and
with no other obvious support.

Probably due to the economic power of the DoD, which favored the process defini-
tion and control approach, and because it was probably in large shares the pathological
heroism approach, which caused the software business to make a false step, the notion
of SPA/SPI could finally succeed. [Bac95] Today, so-called capability maturity models
represent specific subject-matter best-practice guidelines and assessment methods al-
together. Similar to the task of developing software, the supportive sub-process of soft-
ware measurement can also be regarded as a process which can be defined, measured
itself, controlled, and also improved when under control. Thus, the characteristics of
current software engineering capability maturity models as presented in the appendix,
chapter B that also have been manifested in the ISO/IEC Standard 15504, might rep-
resent the yardstick for the process improvement models that have been proposed for
software measurement implementation.

3.2 Basics of software process engineering

For scholars with a background of conventional computer science, the term ‘process’
will certainly imply the execution of a software program’s subroutine. [Han73] Con-
trary, within the discipline of software engineering, processes may have an additional
meaning that is strongly influenced by management sciences. [JMPW93] With the
intention to provide an agreed-upon terminology around the concepts of software
processes to enable others to understand and build on it, beyond others like Lon-
champ [Lon93] the process pioneers Feiler and Humphrey [FH92, FH93] have gained
an undisputable, major stake in the apparent triumph of software process engineer-
ing as dedicated field of software engineering. [Kin99] Beyond general terms, they
structured the description of concepts in frameworks relative to the logical sequence of
defining, engineering, and enacting a process. Moreover, static and dynamic process

56

3.2. BASICS OF SOFTWARE PROCESS ENGINEERING

properties are described and domain-specific interpretations are given, too. In general,
their pioneering work is thorough and felicitous and therefore often referred. [Apr05]

But because research and practice have not persisted on their viewpoints and con-
cepts, e. g. Wang et al. [WKDW99, WK00] prepared a more recent and unified frame-
work and terminology of process system standards and models in software engineering.

3.2.1 Software process modeling

For software process engineering, where the development of software is set in anal-
ogy to a conventional manufacturing activity, two problems exist: On the one hand,
the software product is intangible and invisible thereby hindering the entire develop-
ment activity. On the other hand, in the context of more and more complex software
products, detailed and understood process descriptions are required that can be easily
instantiated to guide software engineers through imponderableness. [Ost87] While the
first issue has to be accepted, process descriptions as part of a process system modeling
methodology [Mad91, MS91] aid in resolving the latter issue and make the software
process explicit as prerequisite for SPA/SPI. Wang et al. [WKDW99] summarize:

Definition 3.1: “A process model is a model of a process system for describ-
ing process organization, categorization, hierarchy, interrelationship, and
tailorability.”

Withal, process models “. . . are used to help people explore the possible consequences
of actions before they take them;” and “. . . for routine decision support where the mod-
els form an essential and automatic part of the management and control of an organi-
zation.” [Pid99] [BH03b] A simplified visualization of the software process is provided
in figure 3.1. [DBB+06b]

ApplicationDomain

Requirements Process Product

Resources

OrganizationBusinessSociety IT area

Functional
Non-

functional
Methodology Life cycle Management Programs Documen-

tations

Personnel
CASECOTS

Software

Platforms

Figure 3.1: A simplified visualization of the software process

Process model categories
From the historical perspective, relative to the intended rigor of the respective pro-
cess models, Madhavji [Mad91] or Lonchamp [Lon93] distinguish between descriptive
process models [Dow86] focusing on the description of existing ways for reasons of
expressing or analyzing and defined and/or prescriptive process models [Zav86] focus-
ing on the desired ways of producing software for reasons of guiding and enforcing.
Scarcely established, there are proscriptive process models [Hei90], as well, that shall

57

CHAPTER 3. SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT MODELS

prohibit false programmer actions. However, the features of a process are mainly re-
lated to the structure. The more recent view of Wang et al. [WK00, p. 40] is reflected
by the following categorization:

Definition 3.2: “An empirical process model is a model that defines an or-
ganized and benchmarked software process system and best practices cap-
tured and elicited from the software industry.”

Because there is a number of empirical process models, a note on bench-
marking a software process system shall be allowed: In chapter 2 equation
2.7 (SDP = (MSDP , RSDP) = (MSD ∪ MSP ∪ MSR, RSDP)) was used
to describe a software development project. In that context, benchmark-
ing should be understood as compiling and highlighting (predominantly
structural) promising software development project features from in-house
or external investigations. Most often, the advantages of these project fea-
tures have been proven quantitatively in terms of measurement information
products (I):

rbenchmarkingSDP ∈ RSDP :MSD ×MSP ×MSR −→ I

Definition 3.3: “A formal process model is a model that describes the struc-
ture and methodology of a software process system with an algorithmic
approach or by an abstractive process description language.”

Definition 3.4: “A descriptive process model is a model that describes ‘what
to do’ according to a certain software process system.”

Definition 3.5: “A prescriptive process model is a model that describes ‘how
to do’ according to a certain software process system.”

Process system taxonomy
Moreover, Wang et al. [WK00, p. 52] provide a taxonomy of elements generally appli-
cable to all process system modeling. From a top-down view a process system consists
of process subsystems, process categories, processes, and practices:

Definition 3.6: “A practice is an activity or a state in a software engineering
process which carries out a specific task of the process.”

Definition 3.7: “A process is a set of sequential practices, which are func-
tionally coherent and reusable for software project organization, implemen-
tation, and management.” [similar to the definition 2.6 of a software engi-
neering process]

Definition 3.8: “A process category is a set of processes that are functionally
coherent and reusable in an aspect of software engineering.”

58

3.2. BASICS OF SOFTWARE PROCESS ENGINEERING

Definition 3.9: “A process subsystem is a set of process categories that are
functionally coherent and reusable in a main part of software engineering.”

Definition 3.10: “A process system is an entire set of structured software
processes described by a process model.”

While the complete terminological framework for software process modeling can be
found elsewhere [FH92, FH93] [Lon93] [WKDW99, WK00], based on Curtis et al.
[CKO92] there are three more basic terms to be defined:

Definition 3.11: “A process agent is an actor (human or machine) who
performs a process element.”

Definition 3.12: “A process role is a coherent set of process elements to be
assigned to an agent as a unit of functional responsibility.”

Definition 3.13: “A process artifact is a product created or modified by the
enactment of a process element.”

Process modeling perspectives
According to Curtis et al. [CKO92] meaningful process modeling should encompass the
following four perspectives:

• The functional perspective allows to recognize, ‘what elements’ of the process sys-
tem taxonomy are performed and ‘what information entities’ are affected by the
flow.

• The behavioral perspective makes clear, ‘when’ and ‘how’ the elements of the pro-
cess system taxonomy have to be performed.

• The organizational perspective clarifies ‘where’ and ‘by whom’ the elements of the
process system taxonomy have to be performed and what physical communica-
tion is required.

• The informational perspective points out, ‘which information entities’ are pro-
duced or manipulated by the performed elements of the process system taxon-
omy.

Process modeling domains
The “set of functional coverage that a process model specifies at different levels of the
process taxonomy” [WKDW99] is reflected by the domain of a process model. There-
fore, Wang et al. distinguish between processes applicable to the entire software devel-
oping organization (organizational domain), to technical software producers (develop-
ment domain), and to management of software development (management domain).

Process Modeling Language (PML) types
Over the time numerous PMLs have been proposed and developed. While authors
such as Curtis et al. [CKO92] provide classifications that received rather minor at-
tention, Ambriola et al. [ACF97] prepared the probably best known classification of
PMLs. [Zam01] They distinguish three different kinds according to their usefulness in
process modeling:

59

CHAPTER 3. SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT MODELS

• Process Specification Languages (PSLs) supporting requirement specification and
assessment.

• Process Design Languages (PDLs) offering features of importance for the design
phase.

• Process Implementation Languages (PILs) being mainly used for implementation
and monitoring.

A list of the assignment of existing PMLs to the categories is provided by Ambriola et
al. ibidem.

3.2.2 Software process establishment

Organizations willing to jump on the bandwagon of process-based software engineering
basically follow a sequence of steps at organizational and process level: Initially, an
appropriate process system reference model has to be selected and then tailored by
the organization. Then, a process model for the project level has to be derived and
possibly extended. After all, the resulting model should by applied and/or adapted in
every-day’s software development practice. Hence, the activities of tailoring, extending,
and adapting to the organization’s structure and culture are of essential importance.
Accordingly, Wang et al. [WK00, p. 41] define:

Definition 3.14: “Software process establishment (SPE) is a systematic
procedure to select and implement a process system by model tailoring,
extension, and/or adaption techniques.”

A simplified visualization of starting software process establishment is given in fig-
ure 3.2. [DBB+06b]

ApplicationDomain

Requirements Process Product

Resources

Organization
Society

IT area

Functional Non-
functional

Methodology
Life cycle Management

Programs Documen-
tations

Personnel
CASECOTS

Software
Platforms

Companies
committment

Client satis-
faction

Defects

Size

Reliability

Team

Virtual
team

SPI
training

Scenarios

Project
plan

Feedback
techniques

Process
time

Project
status report

Promoting
corporate quality

Measurement
data

Process
effort

Specification
project managmt.

IT balanced
scorecard

Productivity

Figure 3.2: A simplified visualization of software process establishment

Wang et al. [WK00, p. 103] further specify the activities:

Definition 3.15: “Process model tailoring is a model customization method
for making a process model suitable for a specific software project by delet-
ing unnecessary processes.”

60

3.2. BASICS OF SOFTWARE PROCESS ENGINEERING

Definition 3.16: “Process model extension is a model customization method
for making a process model suitable for a specific software project by adding
additional processes.”

Definition 3.17: “Process model adaptation is a model customization method
for making a process model suitable for a specific software project by mod-
ifying, updating, and fine-tuning related processes.”

3.2.3 Software process assessment

Having done excellent work in producing an encyclopedic repository of terms and con-
cepts extracted from prevalent quality improvement initiatives in the area of software
engineering, Ibrahim et al. [IH95] published a related technical report which clarifies
basic terminology of importance to SPA. They summarize their findings and postulate
that a characterization of processes should span on aspects of capability, performance,
and maturity, which Paulk et al. [PCCW93b] describe as following:

Definition 3.18: “Software process maturity is the extent to which a specific
process is explicitly defined, managed, measured, controlled and effective.”

Definition 3.19: “Software process capability describes the range of ex-
pected results that can be achieved by following a (software) process.”

Definition 3.20: “Software process performance represents the actual re-
sults achieved by following a (software) process.”

Especially Card [Car91] and later Florac et al. [FC99] alert to strictly distinguish
between process capability and process maturity. Accordingly, he states that initial
efforts are required to establish maturity by gaining statistical control of the process,
then minimizing variation around an expected level of process performance. Not earlier
than then, process capability, to which other disciplines refer as a quantitative level
of performance in terms of special rates, can be improved. Hence, process maturity
enables the improvement of process capability as a cornerstone for increased process
performance.

Ultimately, providing ‘ripeness’ connected with the notion of evolution or ageing as
the literal meaning of the term ‘maturity’, Fraser et al. [FMG02] engross the thoughts.

Software process assessment vs. process maturity determination
Apparently, a general misunderstanding poaches among the contemporary community
concerned with SPA/SPI expressing the fear that current software process improvement
methods could just serve as instruments for an assessment-based rating, and hence a
comparison, of competing organizations. [Jar00] Quite the contrary holds: Software
process assessments are the logical preconditions for and thus typically come together
with software process improvement initiatives that shall make software development
organizations more competitive. [Zah98] [She01] They are basically conducted to gain
situational process evaluations for baselining (rating) the status quo, planning improve-
ments on weak process areas, and monitoring the improvement progress in cycles.

While so called audits of the software process aid in checking the compliance with
a certain standard [KT04], under the umbrella of the assessments of the software pro-
cess different types and modes occur, for which e. g. Jarvinen [Jar00] provides the

61

CHAPTER 3. SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT MODELS

attempt of a typology. Wang et al. [WK00, pp. 42] proceed further and make strong
differences between two distinct but chronologically dependent steps: The assessment
of the software process and the subsequent determination of the software process’ ca-
pability based on the assessment results. But attention, this statement has to be taken
with a pinch of salt! Wang et al. obviously ignore the existing relations between pro-
cess maturity, capability, and performance as explained by Card [Car91] when they
delusively speak of ‘software process capability determination’ instead of the correct
term ‘software process maturity determination’. To circumvent any fallacy, the latter
denomination will be used for the context of this thesis. Any other adopted definition
of Wang et al. exhibiting this weakness in terminology is corrected in the same manner
and earmarked, accordingly.
After all, the only slightly modified definitions of Wang et al. [WK00, p. 42] are as
following:

Definition 3.21: “Software process assessment SPA is a systematic proce-
dure to investigate the existence, adequacy, and performance of an imple-
mented process system against a model, standard, or benchmark.”

Definition 3.22: “Process maturity determination is a systematic proce-
dure to derive a maturity level for a process, project, and/or an organi-
zation based on the evidence of existence, adequacy, and performance of
the required practices defined in a software engineering process system.”
[‘Capability’ replaced by ‘maturity’!]

Process assessment model
So, when tying all together, SPA refers to the first step of the on-site activity of assessing
the performance of an organization’s implemented software engineering process system
and the process maturity determination is the subsequent step. In the literature as per
Wang et al. [WK00, p. 54] both steps are supported by a process assessment model that
consists of a process maturity model and a process maturity determination method:

Definition 3.23: “A process maturity model is a measurement scale of soft-
ware process maturity for quantitatively evaluating the existence, effective-
ness, and compatibility of a process.” [‘Capability’ replaced by ‘maturity’!]

Definition 3.24: “A process maturity determination method is an opera-
tional model that specifies how to apply the process maturity scales to mea-
sure a given process system by a process model.” [‘Capability’ replaced by
‘maturity’!]

For the process maturity model, these auxiliary means are commonly manifested:

• Practice performance scale (Measurement in terms of confidential degrees for the
existence, adequacy, and effectiveness of the activities of the software process.)

• Process maturity scale (The set of process maturity levels.)

• Process maturity scope (The restriction of the assessment’s statements to a single
practice, a process, a project, or the entire organization.)

62

3.2. BASICS OF SOFTWARE PROCESS ENGINEERING

Believing in the notes of Greenstein [Gre05], maturity in IT and in software engi-
neering is a concept which is applicable from different point of views. One aspect of
maturation is that of the technical equipment, where “technical maturity describes the
rate and direction of technical progress along an experimental frontier.” Another aspect
is market maturity expressing that “markets mature when returning users, instead of
new users, dominate demand.” After all, highly valued organizational maturity: occurs,
when “mature organizations embody a set of routines and processes that reflect man-
agement principles for describing how the company will deliver value. The primary
benefit of organizational maturity is strategic consistency.”

Ultimately, Paulk et al. [Pau93b] define a process maturity level as following:

Process maturity level: “A process maturity level is a well-defined evolution-
ary plateau toward achieving a mature software process.”

In professional parlance, the term ‘capability maturity model’ is the more often used
denomination for both, process assessment models and process improvement models
as they are introduced in the next section. For instance, Aaen [Aae03] defines:

Capability maturity model: “A capability maturity model describes the stages
software organizations go through as they define, implement, measure, con-
trol, and improve their processes.”

3.2.4 Software process improvement

As a natural consequence, the results of SPAs should be fed into improvement action
plans [FR89] for weak process areas that promise tremendous return on investments
(ROIs). Despite dichotomies being present in ROI’s definition and having general diffi-
culties to attribute these ROIs to those initiatives [BJ95], ratios of up to 19:1, with an
average of 7:1 are often stated. [Dio93] [HCR+94] [Kra01] [Ric04] [vS04] In general,
this attempt is called SPI and defined by Wang et al. as following [WK00, p. 42]:

Definition 3.25: “Software process improvement SPI is a systematic proce-
dure to improve the performance of an existing process system by changing
the current processes or updating new processes in order to correct or avoid
problems identified in the old system by means of a process assessment.”

Note that in SPI it holds that software measurement goals are identical with improve-
ment goals (G = Gimprovement) and must be specified in the IT area depending on the
concrete process, product, and resource, situation of a software development project.

Apart from brute force, nowadays, there are at least two basic approaches to SPI
[Car91] that can be either conducted either in a bottom-up [Zuc95] or top-down
[Jak98] manner: Analysis and benchmarking. Moreover, Mutafelija and Stromberg
[MS03] provide a more detailed description of improvement approaches. However,
because Card’s argumentation that all standards and models have been derived from
benchmarking in industry can be comprehended more, his categorization is used.

On the one hand, the analysis approach, or ‘inductive approach’ as Briand et al.
[BEM95a] call it, is mainly based on the situational assessment in terms of quantitative
data that can be analyzed to identify areas where corrective action is required. It is to-
day for example manifested in the PDSA cycle of Shewhart [She31], its variations like
Deming’s ‘Plan-Do-Check-Act’ (PDCA) [Dem86], or as the underlying principle of the
evolutionary Quality Improvement Paradigm (QIP) concept for learning and improve-
ment of Basili et al. [BG94] [BC95] [Sta02]

63

CHAPTER 3. SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT MODELS

Alternatively, there are more structured approaches and/or methodologies that aid
in conducting meaningful SPI that Wang et al. [WK00] p. 61 define as:

Definition 3.26: “A process improvement model is an operational model that
provides guidance for improving a process system’s capability by changing,
updating, or enhancing existing processes based on the findings provided
in a process assessment.”

A simplified visualization of the relationships in a software process improvement
model is provided in figure 3.3. [DBB+06b]

ApplicationDomain

Requirements Process Product

Resources

Organization
Society

IT area

Functional Non-
functional

Methodology
Life cycle Management

Programs
Documen-

tations

Personnel
CASECOTS

Software
Platforms

better
life

Job
security

Supply chain

Enterprise project
management model

Requirements
value chain

Detailed
requ.

Practice for
eliciting requ.

Responsibility
matrixError pre-

vention

Fagans law Project plan

Business and
application idea

defects

Functionality
& capability

quality

Test tool
Software
vendor

Moore’s law

Virtual machine
volatility

Productivity

Team

Practice for manage-
ment personnel to fellow

S
af

e
tim

e
fo

r

considersstarts with
identify reasons for

developing a system

ends with

ends with

Prevent more

Prevent more

in
sp

ec
tio

n
in

cr
ea

se

requires

starts w
ith

ke
ep

increase

as
se

ss
the

matu
rity

supports

prioritizes

entails
is driver for

Figure 3.3: A simplified visualization of the relationships in a software process improve-
ment model

The Benchmarking approach tries to identify organizations that outperform an in-
dustrial sector’s performance. Resting on the assumption, that activities and processes
of the extracted organization ensure excellence, they are proposed to be adopted. The
probably most renowned and first representative of the benchmarking approach is the
SW-CMM of the SEI together with its process appraisal methods and the improvement
methodology Initiation – Diagnosis – Establishment – Acting – Leveraging (IDEAL).
[McF96] However, by copying superior processes from the leading organization as ex-
tracted by benchmarking activities without understanding background principles and
tailoring them to the own context, a company seems to be condemned to be an imitator
lacking of knowledge for autonomous improvement and innovation. Thus, Deming was
strictly opposed to the SW-CMM because by copying processes organizations can only
catch up close, but not surpass leaders. [Zul01] Another obstacle of the benchmarking
approach turns out to be the abstracting away from what is running bad.

From the vantage point of presence, the analytic/inductive and benchmarking ap-
proaches have to be necessarily combined in order to use their advantages to full ca-
pacity and retain a minimum of obstacles. [Jar00] [WKDW99] This procedure is for in-
stance acknowledged in the criteria for the Malcom Baldridge National Quality Award
(MBNQA)∗ of the U.S. National Institute of Standards and Technology (NIST). [Kan95]
∗http://www.quality.nist.gov/

64

3.3. SPA/SPI UNDER THE TERMS OF ISO/IEC STANDARD 15504

3.2.5 Software process standardization

Almost all standardization attempts in the area of software engineering aim at putting
on record and optimizing existing best practices of software development either pro-
posed by research or successfully applied in industry over years. [KS04] Apart from
semi-governmental organizations such as the DoD or the European Space Agency (ESA)
that urge their subcontractors to observe their standards and to use the proposed vocab-
ulary, there are other important standardization bodies in software engineering such as
the ISO, the IEC, the IEEE, or the ACM. [WK00] The probably most renowned stan-
dards in the field of SPA/SPI are ISO/IEC Standards 9000:2000, 9001:2000, 15504
(SPICE) †, and SWEBOK ‡ [AMBD04] of IEEE.

3.3 SPA/SPI under the terms of ISO/IEC Standard 15504

After some two years of preparatory work, there was consensus among international
experts that the software engineering community was in desperate need for an in-
ternational standard unifying and harmonizing the myriad of different approaches to
SPA/SPI. [DB98] Thus the deliberately created Working Group 10 of ISO/IEC Joint
Technical Committee #1/Sub-Committee 7 (JTC1/SC7) approved a special project
called SPICE in 1993 [Dor93], that should pave the way for fast development and ex-
pert involvement. Having in mind the vision of a repeatable, comparable, and verifiable
assessment method for (software) processes that can be also beneficial for SPI , the SPICE
project tried to integrate experiences from mainstream SPA/SPI models such as the Ca-
pability Maturity Model (CMM), TRILLIUM, BOOTSTRAP, and the like. [Dro95,DB98]
After the release of ISO/IEC Technical Report 2 15504:1998 [EDM98] indicating a fu-
ture opportunity for an affirmation, the following five parts have step-by-step become
approved and standardization of the entire ISO/IEC Standard 15504 Information Tech-
nology — Process Assessment has been completed in the year 2006:

• ISO/IEC 15504-1:2004 — Concepts and vocabulary (normative)

• ISO/IEC 15504-2:2003 — Performing an assessment (normative)

• ISO/IEC 15504-3:2004 — Guidance on performing an assessment

• ISO/IEC 15504-4:2004 — Guidance on use for process improvement and process
capability determination

• ISO/IEC 15504-5:2006 — An exemplar process assessment model

3.3.1 SPA-related regulations

In the strict sense, the normative part one of the standard defines a reference model
for externally or internally performed SPA which is given in figure 3.4. On the base of
a Process Reference Model (PRM) and the standard’s unique Measurement Framework
(MF), a Process Assessment Model (PAM) can be instantiated, which is applied during
the assessment process using the inputs by responsible personnel to produce assessment
output. A brief overview of particularities of the model’s constituents is given beneath.

†Standards with costs available from ISO/IEC under http://www.iso.org/
‡Available for free under http://www.swebok.org/

65

CHAPTER 3. SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT MODELS

Process reference model
• Domain and scope
• Process purpose
• Process outcomes

Measurement framework
• Capability levels
• Process attributes
• Rating scale

Process assessment model
• Scope
• Indicators
• Mapping
• Translation

Roles and responsibilities
• Sponsor
• Competent assessor
• Assessor(s)

OUTPUT
• Date
• Assessment input
• Identification of

evidence
• Assessment process

used
• Process profiles
• Additional information

INPUT
• Purpose
• Scope
• Constraints
• Identities
• Approach
• Assessor competence

criteria
• Additional information

ASSESSMENT PROCESS
• Planning

• Data collection
• Data validation

• Process atribute rating
• Reporting

Figure 3.4: Reference model underlying ISO/IEC Standard 15504-2:2003 (adapted
from the standard)

Process Reference Model
In order to ensure universal validity and optional extensibility, the standard pursuits
the concept of rather relegating to PRMs, so called plug-ins, than providing a most
probably ever incomplete process model by itself. [RS98]

ISO/IEC 15504-2 manifests the following requirements, a compliant PRM has to meet:

1. Contents: Declaration of the domain, description of the processes, description of
the relationship between the process reference model and its context of use, and
description of the relationship between the processes;

2. General constraints: Community consensus, uniqueness of definition and iden-
tification, limitation on normative content;

3. Process description: Description in terms of purpose and outcomes, set of pro-
cess outcomes shall be necessary and sufficient to achieve the purpose, process
description must not contain or imply parts of the measurement framework, out-
come statement (production of an artifact, significant changes of state, meeting
of specified constraints).

The list of available PRMs compliant with ISO/IEC Standard 15504 is already remark-
able and growing [CVS+02] [KT04]:

• ISO/IEC 12207:1995/Amendment 2:2004 – Information technology – Software
lifecycle processes

• ISO/IEC 15288:2002 – Systems engineering – System lifecycle processes

• ISO/IEC Technical Report 18529:2000 – Ergonomics – Ergonomics of human-
system interaction – Human-centred lifecycle process descriptions

66

3.3. SPA/SPI UNDER THE TERMS OF ISO/IEC STANDARD 15504

• OOSPICE Project – Component-based development processes

• SPICE-9000 for Space (S9kS) – Lifecycle processes for space-related software

• Automotive SPICE – Lifecycle processes for automotive embedded software

• Medi SPICE – Lifecycle processes for medical device software

Measurement Framework
In order to determine a certain capability level (in ascending order: 0 – Incomplete, 1
– Performed, 2 – Managed, 3 – Established, 4 – Predictable, 5 – Optimizing) of each
process of the selected PRM, a rating of nine process attributes [GND98] has to be per-
formed. There are eight generic process attributes (Performance Management, Work
Product Management, Process Definition, Process Deployment, Process Measurement,
Process Control, Process Innovation, Process Optimization) that are valid for all pro-
cess and process reference models. Moreover, there is one (Process Performance) that
covers requirements specific to the selected process reference model. [Cra98] Then,
according to a ordinal process attribute rating scale the extent of achievement of each
attribute is measured relative to corresponding values as provided in table 3.1.

Values in percent Levels of achievement

0 to 15 N, Not achieved

>15 to 50 P, Partially achieved

>50 to 85 L, Largely achieved

>85 to 100 P, Fully achieved

Table 3.1: Corresponding values of the process attribute rating scale of ISO/IEC Stan-
dard 15504-2:2003 (adapted from the standard)

This represents a peculiarity, because instead of assigning a capability level relative
to a discrete value from one to five, a free percentage scale from zero to 100 % can be
used. [KT04] Finally, the mean of the nine process attributes is computed to rate the
capability of the process under examination in terms of a rating scheme that is given
in table 3.2. The confrontation of processes (process dimension) with the computed
capability levels (capability dimension) turns out to be two-dimensional. [DB98]

Process Assessment Model
For the instantiation of a customized PAM on the base of the selected PRM and the
unique MF, the ISO/IEC Standard 15504 establishes four categories of requirements:

1. Scope: Relation to at least one process of the specified PRM, addressing and dec-
laration of all or a continuous subset of the MF’s capability levels starting at level
one, declaration of the scope of the selected PRM and the extracted processes;

2. Process assessment indicators: Declaration of indicators for performance and
capability of the PRM’s selected processes for explicitly addressing purposes and
outcomes and demonstrating achievement of the process attributes;

3. Mapping of the PAM to the PRM: Complete, clear, and unambiguous mapping
of the fundamental elements of the PAM to the processes selected out of the PRM;

4. Expression of assessment results: Provision of a formal and verifiable mecha-
nism for the representation of the assessment results in terms of a set of process
attribute ratings for each process selected out of the PRM.

67

CHAPTER 3. SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT MODELS

Scale Process attributes Rating

Level 1 – Performed Process performance Largely or fully

Level 2 – Managed Process performance Fully

Performance management Largely or fully

Work product management Largely or fully

Level 3 – Established Process performance Fully

Performance management Fully

Work product management Fully

Process definition Largely or fully

Process deployment Largely or fully

Level 4 – Predictable Process performance Fully

Performance management Fully

Work product management Fully

Process definition Fully

Process deployment Fully

Process measurement Largely or fully

Process control Largely or fully

Level 5 – Optimizing Process performance Fully

Performance management Fully

Work product management Fully

Process definition Fully

Process deployment Fully

Process measurement Fully

Process control Fully

Process innovation Largely or fully

Process optimization Largely or fully

Table 3.2: Capability level rating scheme of ISO/IEC Standard 15504-2:2003 (adapted
from the standard)

Roles and responsibilities
By and large, there are three different roles with their distinct responsibilities to be
filled in an assessment compliant with this standard [Col98]: the sponsor, the compe-
tent assessor, and multiple assessors as worker bees. The sponsor usually cares for the
appropriateness of the competent assessor for the assessment, ensures the provision of
sufficient resources and grants access rights to all required sources of information for
the assessment. Being in charge of directing the entire assessment, the competent as-
sessor sees about issues such as the observation of the standard’s regulations during the
assessment, qualification of downstream assessors, and the like. After all, the worker
bees of an assessment are represented by multiple assessors carrying out the activities
required for the assessments including the rating process procedure.

In order to ensure the comparability and traceability of the assessment’s results by
customers [KT04], the International ISO/IEC 15504 Assessor Certification Scheme (iN-
TACS)∗ has been brought into being to oversee the certification of assessors and regu-
late accreditation of certification bodies. Most notably, recently a three-level certifica-
tion scheme for assessors has been produced [INT06] that distinguishes between the
∗http://www.intacs.info/

68

3.3. SPA/SPI UNDER THE TERMS OF ISO/IEC STANDARD 15504

entry level of Provisional Assessors, the intermediate level of Competent Assessors, and
the superior level of Principal Assessors.

The assessment process
To meet the purpose of the assessment, it must be conducted according to a docu-
mented assessment process. This process comprises the following five phases embrac-
ing the mentioned aspects:

1. Planning: Assessment inputs, activities, resources, responsibilities, criteria for
compliance with this standard, description of the planned assessment outputs;

2. Data collection: Demonstration of the data collection technique, matching be-
tween the organizational unit’s processes and the elements of the PAM, assess-
ment of each identified process, recording of objective evidences for verification
of ratings;

3. Data validation: Confirmation of objective data collection, ensuring of evidence’s
sufficiency for the assessment, ensuring of consistency;

4. Process attribute rating: Recording of process attribute ratings as process pro-
file, usage of the gathered indicators to support judgement, recording of the
decision-making process for the judgement, ensuring of traceability between the
attribute ratings and the objective evidences, and recording of their relationship;

5. Reporting: Communication of the assessments results and defined results to the
assessment sponsor.

3.3.2 SPI-related guidelines

In one of its informative parts, more precisely in number four, the ISO/IEC Standard
15504 provides a comprehensive, eight-step model (cf. 3.5) exhibiting how to embed
SPA in the SPI cycle. A very brief overview is given below:

1. Examine
organization‘s
business goals

2. Initiate process
improvement

cycle

3. Assess current
capability

4. Develop action
plan

5. Implement
improvements

6. Confirm
improvements

7. Sustain
improvements

8. Monitor
performance

Process
improvement
objectives

Process improvement
implementation plan

Current
capability

Approved
action
plan

Implemented
improvements

Confirmed
improvements

Institutionalized
improvements

Current
performance

Analyzed
re-assessment

results

Re-assessment
request

Process
improvement
initiation

Organization‘s
needs

Figure 3.5: Process improvement model of ISO/IEC Standard 15504-4:2004 (adapted
from the standard)

(1) Once, the idea of process improvement has been seeded, the organization’s
needs and business goals have to be examined to form the entire program’s objectives.

69

CHAPTER 3. SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT MODELS

(2) Then, a preparatory step is performed: The sponsor chooses the processes to be ex-
amined from the specific PRM and provides target profiles for each process in terms of
relevant process’ attributes and the respectively anticipated capability. Together with
that information additional characteristics such as roles, responsibilities, milestones,
and the like are specified in the process improvement plan. (3) Now the virtual deter-
mination of the current capabilities of the chosen processes can take place according to
the instantiated PAM. (4) On the base of the determined process capabilities an action
plan can be developed that defines improvement objectives and sets appropriate tar-
gets to be traced. (5) In case the action plan could gain agreement the improvements
should be implemented by a project running through to typical phases of e. g. detailed
planning, design, etc. (6) After completion of the implementation project(s) the or-
ganization should confirm that the improvements result in the planned objectives and
that adoption and the anticipated process capability have been established. An inter-
mediate progress check can also be performed for multi-step improvements by means
of re-assessments. Because in those cases comparability is of elevated importance, the
PAM insists upon stringent documentation. (7) Now, that the improvement has been
confirmed, it has to be sustained at the set level of capability and possibly extended
from pilot projects to the full range of an organization’s projects. (8) After all, the per-
formance of the organization’s processes should be monitored in a continuous manner
and new process improvements should be considered, where required. Then, the cycle
starts over, again.

3.4 Conclusion

As the result of the final part of the literature study for this thesis, answers to the second
sub-question of this research project have been found within this chapter:

RQ2. Which are the requirements for process improvement models in soft-
ware engineering that form model-related criteria for a potential,
stepwise software measurement process improvement model?

This chapter started with a historical journey into the genesis of process improve-
ment models and provided essential background knowledge of software process en-
gineering as required in the course of this thesis. Finally, SPA regulations and SPI
guidelines posed by ISO/IEC standard 15504 were exposed as the base for further
investigation of the process improvement models software measurement process im-
plementation.

Model-related evaluation criteria
To be able to evaluate existing solutions from the modeling point of view, a framework
of model-related criteria is needed to prescribe the desired solution. The deduction of
figures of merit from the contents of this chapter leads to these results:

70

3.4. CONCLUSION

M1. The process improvement model must provide a process reference
model compliant with the requirements of ISO/IEC Standard 15504.

M2. The process improvement model must be compatible with the mea-
surement framework of ISO/IEC Standard 15504.

M3. The process improvement model’s process assessment model must
represent a mapping of the process reference model and the measure-
ment framework of ISO/IEC Standard 15504.

M4. The process improvement model’s assessment process must observe
the regulations of ISO/IEC Standard 15504.

M5. The process improvement model must provide process improvement
guidelines for the specified scope.

71

Chapter 4

Review and evaluation of related
work

“Do not go where the path may lead;
go instead where there is no path and leave a trail!”

– Ralph Waldo Emerson∗ –

4.1 Introduction

During the extended search for existing SPA/SPI models concerned with the scope of
software measurement process implementation in industrial settings it became obvious
that the importance of measurement as an engineering-relevant issue has penetrated
the software engineering community for years. [JZ97] However, there are differences
in the foci of the models found: Particularly, the findings fall into two categories:

• Implicit models do not solely focus on the maturation of the software measure-
ment processes but require a step-by-step improvement along software engineer-
ing process maturation, on the very spot.

• Explicit models are those that directly deal with the structured improvement of
software measurement processes.

Beneath, appreciating the previous work done by Buglione and Abran [BA03], the
findings of both categories are briefly reviewed [BKFD05] [BKF+05] [Bra05] and eval-
uated according to the following proposed figures of merit as revealed as quintessence
from chapters 2 and 3:

RQ1 (Content-related criteria)

C1. The scope of the process improvement model must be (at least
partially) on software measurement process implementation in in-
dustrial settings.

C2. The process improvement model must have been developed with
scientific rigor.

∗U.S.-American poet, essayist and lecturer at Harvard University, Cambridge, MA, USA, *1803 – †1882

73

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

C3. The process improvement model must be able to reflect the se-
quential application of the ‘bottom-up’, ‘mixed’, and ‘top-down’
measurement paradigms during implementation of software
measurement processes in industrial settings.

RQ2 (Model-related criteria)

M1. The process improvement model must provide a process refer-
ence model compliant with the requirements of ISO/IEC Standard
15504.

M2. The process improvement model must be compatible with the
measurement framework of ISO/IEC Standard 15504.

M3. The process improvement model’s process assessment model
must represent a mapping of the process reference model and the
measurement framework of ISO/IEC Standard 15504.

M4. The process improvement model’s assessment process must ob-
serve the regulations of ISO/IEC Standard 15504.

M5. The process improvement model must provide process improve-
ment guidelines for the specified scope.

4.2 Implicit models

As can be recognized from the short overview of mainstream models for SPA/SPI of
software processes in the appendix, chapter B, the investigation of aspects of SMP
and/or software measurement process maturation can be cut down to the models that
serve as common base: CMM v1.1, ISO/IEC Standard 9001:2000, and CMMI v1.1.

4.2.1 CMM v1.1

Contents perspective
Criterion C1: Partly acknowledging the importance of measurement, the authors of

the CMM and/or SW-CMM provided initial elements to assess the measurement pro-
cess within software process improvement, but set aside the coherent, individual treat-
ment of a viable software measurement process [GJR03] — not to mention processes
needed for SMP implementation and sustainment. The CMM requires each Key Process
Area (KPA) to be measured, analyzed, and tracked. It manifests this measurement and
analysis task for the status and effectiveness of the software processes in one of the
five common features (‘Measurement and Analysis’) applicable to all KPAs. [BA04b]
Imposed by the model’s structure presented in the appendix, section B.2, the accom-
plishment of the set of goals associated with each software process is being unearthed
by collecting data for a break down of the specific goals into a series of indicators. A

74

4.2. IMPLICIT MODELS

first classification of indicating software measures dominant for each process maturity
level has been published by Pfleeger and McGowan. [PM90] Another one, that has
been advocated by the SEI, is presented by Baumert et al. [BM92] and adopted from
Walrad et al. [WM93] in table 4.1.

Criterion C2: With increasing software process maturation on each distinct process
maturity level, the focus of information needs changes and/or sophisticates thereby
dictating a change of the focus of software measurement. [WM93] By shifting software
measurement to more challenging measures [GRS98], increasing software measurement
maturity is thought to be adumbrated. Accordingly, Weller [Wel94] of Bull Honey-
well company proposed a staggered model of increased project management capability
based on the increased visibility promoted by the introduction of more challenging
software measures.

Moreover, an implicit software measurement program maturity model is arranged
as the ‘Quantitative Process Management’ KPA on capability maturity level four, in
which some basic practices are under consideration and used for compliance assess-
ment. [WL02] Comer et al. [CC93] view the implications two-tiered: While for the
specific KPA the state of conformance might inform on a SMP’s maturity earliest on
organizational maturity level four, measurement maturity may be deduced from the
organization’s maturity level. This opinion is vehemently criticized by John McGarry
and colleagues [BJC+96]: They agree that measurement maturity of an organization
be one specific dimension of process maturity, but observe that very often SMPs im-
plementation and sustainment processes’s maturity lacks behind the overall software
process maturity level. Because the implicit SMP maturity model has been refuted by
reductio ad absurdum, it will be disregarded for a lack of scientific rigor.

Criterion C3: In addition to the practices covered in the common features that
generally contribute to SPI and software measurement endeavors, the CMM provides
merely a small set of seven only partially related best practices specific to software mea-
surement process implementation and sustainment first in the level 4 KPA ‘Quantitative
Process Management’. These abridged practices are listed beneath [PWG+93, p. A-57]:

• “The software project’s plan for quantitative process management is developed
according to a documented procedure.

• The software project’s quantitative process management activities are performed
in accordance with the project’s quantitative process management plan.

• The strategy for the data collection and the quantitative analyses to be performed
are determined based on the project’s defined software process.

• The measurement data used to control the project’s defined software process
quantitatively are collected according to a documented procedure.

• The project’s defined software process is analyzed and brought under quantitative
control according to a documented procedure.

• Reports documenting the results of the software project’s quantitative process
management activities are prepared and distributed.

• The process capability baseline for the organization’s standard software process
is established and maintained according to a documented procedure.”

As can be easily recognized from a simple comparison of the best practices as intro-
duced in subsection 2.8.4 with the short list above, the statements are a few generalities
that do not even mention a single measurement paradigm. Thus this criterion is not
met, at all.

75

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

CMM level Aim to advance Dominant software measures, samples

Level 1 Achieve rudimentary Post-ship measures

schedule - Customer-detected defects

predictability - Production failures

- Application size at time of delivery

- Total development cost and time

Level 2 Stable process, cost Project control

predictability - Trouble report density

- Actual vs. planned completions/costs

- Number of requirements changes

- Application size growth

Level 3 Formal life cycle, Product control

methodology, tools, - Defect detection efficiency

and technology - Defect frequency by defect type

- Requirement change distribution by

requirement type

- Actual vs. planned completions/costs

with range

Level 4 Productivity plans, goals Process control

measures, tracking; process - Progress in relation to control limits

improvement, increased - Cost in relation to control limits

defect prevention - Size growth in relation to control limits

- Defect removal efficiency

- Rework measures

Level 5 Continuous improvement Quality management

of the process(es); - Actual vs. predicted process improvement

measurement system results

evaluation and refinement - Reductions in process variance

- actual vs. predicted process innovation

effects

- Innovation adoption rates

- Rework effort as percentage of total effort

Table 4.1: Advocated measures dominant for each process maturity level of the CMM
(adapted from [WM93, p. 455])

Model perspective
Criterion M1: Obviously, the PRM of the CMM does not comply with the specifica-

tions made by the regulations of ISO/IEC Standard 15504. Although, the basic contents
and the general constraints are mentioned, the process description lacks the description
of purposes and specific outcomes.

Criterion M2: Because the measurement framework of the CMM cannot be com-
pletely mapped onto the regulation set out by ISO/IEC Standard 15504, also this crite-
rion has to be regarded as failed.

Criterion M3: Caused by the failing of criteria M1 and M2, the process assessment
model is condemned to fail for criterion M3, as well.

76

4.2. IMPLICIT MODELS

Criterion M4: The assessment processes of the CMM, which have been manifested
in the CMM-based Appraisal Method for Internal Process Improvement (CBA-IPI) and
Software Capability Evaluation (SCE) follow the basic regulations of ISO/IEC Standard
15504. So this criterion can be regarded as successfully passed.

Criterion M5: With the improvement guidelines being given with the aid of a stag-
gered structure of processes of the CMM, this criterion is not a problem.

4.2.2 ISO/IEC Standard 9001:2000

The focus of that standard is predominantly on implementing the processes required
for a quality management system and deals with the assessment of compliance and
continuous improvement of weak areas. [GRS98] Though measurement in general is
recognized to be of elevated importance as for instance in clause eight by stressing
its usefulness in enabling continuous improvement, a specific model is not provided.
[Sch03] Thus, this standard is completely disregarded for further evaluation.

4.2.3 CMMI Framework v1.1

Contents perspective
Criterion C1: Compared with its predecessor models, in the CMMI Framework v1.1

software measurement has gained “considerable recognition among software engineer-
ing professionals”. [BA04b] With the integration of several models (cf. section B.6)
resulting in a staged and a continuous architecture of process arrangement, a gen-
eral reduction of common features by one, and the related relocation of important
(software) measurement activities to the fundamental, maturity level two, support
process area ‘Measurement and Analysis’, the elevated importance can apparently be
corroborated. The framework’s authors make a good point when they state the in-
tention of the process area: “The purpose of Measurement and Analysis is to develop
and sustain a measurement capability that is used to support management informa-
tion needs.” [SEI02a, p. 476] It is assumed that the information needs act as input
which has been previously identified by calling processes. [Zub01] In doing so, the
process area is structured around two specific goals. [GJR03] A fine-grained overview
of specific-practice-to-specific-goal relationships adapted from the CMMI documenta-
tion [SEI02a, pp. 478] is presented next. It is applicable for the CMMI – Measurement
& Analysis (CMMI-MA) support process area of both representations:

“Specific goal 1: Align measurement and analysis activities

– Specific practice 1.1-1: Establish measurement objectives

Sub-practices:
1. Document information needs and objectives.
2. Prioritize information needs and objectives.
3. Document, review, and update measurement objectives.
4. Provide feedback for refining and clarifying information needs and ob-

jectives as necessary.
5. Maintain traceability of the measurement objectives to the identified

information needs and objectives.

– Specific practice 1.2-1: Specify measures

Sub-practices:
1. Identify candidate measures based on documented measurement objec-

tives.

77

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

2. Identify existing measures that already address the measurement objec-
tives.

3. Specify operational definitions for the measures.
4. Prioritize, review, and update measures.

– Specific practice 1.3-1: Specify data collection and storage procedures

Sub-practices:
1. Identify existing sources of data that are generated from current work

products, processes, or transactions.
2. Identify measures for which data are needed, but are not currently avail-

able.
3. Specify how to collect and store the data for each required measure.
4. Create data collection mechanisms and process guidance.
5. Support automatic collection of the data where appropriate and feasi-

ble.
6. Prioritize, review, and update data collection and storage procedures.
7. Update measures and measurement objectives as necessary.

– Specific practice 1.4-1: Specify analysis procedures

Sub-practices:
1. Specify and prioritize the analyses that will be conducted and the re-

ports that will be prepared.
2. Select appropriate data analysis methods and tools.
3. Specify administrative procedures for analyzing the data and communi-

cating the results.
4. Review and update the proposed content and format of the specified

analyses and reports.
5. Update measures and measurement objectives as necessary.
6. Specify criteria for evaluating the utility of the analysis results, and of

the conduct of the measurement and analysis activities.

Specific goal 2: Provide measurement results

– Specific practice 2.1-1: Collect measurement data

Sub-practices:
1. Obtain the data for base measures.
2. Generate the data for derived measures.
3. Perform data integrity checks as close to the source of the data as possi-

ble.

– Specific practice 2.2-1: Analyze measurement data

Sub-practices:
1. Conduct initial analyses, interpret the results, and draw preliminary

conclusions.
2. Conduct additional measurement and analysis as necessary, and prepare

results for presentation.
3. Review the initial results with relevant stakeholders.
4. Refine criteria for future analyses.

78

4.2. IMPLICIT MODELS

– Specific practice 2.3-1: Store data and results

Sub-practices:
1. Review the data to ensure their completeness, integrity, accuracy, and

currency.
2. Make the stored contents available for use only by appropriate groups

and personnel.
3. Prevent the stored information from being used inappropriately.

– Specific practice 2.4-1: Communicate results

Sub-practices:
1. Keep relevant stakeholders apprised of measurement results on a timely

basis.
2. Assist relevant stakeholders in understanding the results.”

While for both representations these specific goals can be accomplished with the
specific practices and related sub-practices of the process area, the achievement of
generic goals differs between the representations. There are five generic goals in as-
cending order (each belonging to the pertinent capability level in the continuous ver-
sion), for which generic practices should be performed; the staged version does solely
rely on generic goals two and three. Other guidance for good measurement prac-
tices are distributed and integrated with other process areas requiring measurement
and analysis to be performed. Additionally, the common feature ‘Direct Implementing’
demands ongoing process measurement. According to Goldenson et al. [GJR03], a
maturation of measurement capabilities with respect to the continuous representation
in the context of performing other processes can be achieved as for any other pro-
cess area: At first base practices required by specific goals should be implemented and
then generic goals with the aid of generic practices accomplished. The following list
reflects the generic-practice-to-generic-goal relationships relevant to the maturation
of software measurement in the CMMI Framework as extracted from its documenta-
tion [SEI02a, pp. 478]:

“Generic goal 1: Achieve specific goals

– Generic practice 1.1: Perform base practices

Sub-practice:

* Perform the base practices of the measurement and analysis process to
develop work products and provide services to achieve the specific goals
of the process area.

Generic goal 2: Institutionalize a managed process

– Generic practice 2.1: Establish an organizational policy

Sub-practice:

* Establish and maintain an organizational policy for planning and per-
forming the measurement and analysis process.

– Generic practice 2.2: Plan the process

Sub-practice:

* Establish and maintain the plan for performing the measurement and
analysis process.

79

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

– Generic practice 2.3: Provide resources

Sub-practice:

* Provide adequate resources for performing the measurement and anal-
ysis process, developing the work products, and providing the services
of the process.

– Generic practice 2.4: Assign responsibility

Sub-practice:

* Assign responsibility and authority for performing the process, develop-
ing the work products, and providing the services of the measurement
and analysis process.

– Generic practice 2.5: Train people

Sub-practice:

* Train the people performing or supporting the measurement and analy-
sis process as needed.

– Generic practice 2.6: Manage configurations

Sub-practice:

* Place designated work products of the measurement and analysis pro-
cess under appropriate levels of configuration management.

– Generic practice 2.7: Identify and involve relevant Stakeholders

Sub-practice:

* Identify and involve the relevant stakeholders of the measurement and
analysis process as planned.

– Generic practice 2.8: Monitor and control the process

Sub-practice:

* Monitor and control the measurement and analysis process against the
plan for performing the process and take appropriate corrective action.

– Generic practice 2.9: Objectively evaluate adherence

Sub-practice:

* Objectively evaluate adherence of the measurement and analysis pro-
cess against its process description, standards, and procedures, and ad-
dress noncompliance.

– Generic practice 2.10: Review status with higher level management

Sub-practice:

* Review the activities, status, and results of the measurement and analy-
sis process with higher level management and resolve issues.

Generic goal 3: Institutionalize a defined process

– Generic practice 3.1: Establish a defined process

Sub-practice:

* Establish and maintain the description of a defined measurement and
analysis process.

80

4.2. IMPLICIT MODELS

– Generic practice 3.2: Collect improvement information

Sub-practice:

* Collect work products, measures, measurement results, and improve-
ment information derived from planning and performing the measure-
ment and analysis process to support the future use and improvement
of the organizationŠs processes and process assets.

Generic goal 4: Institutionalize a quantitatively managed process

– Generic practice 4.1: Establish quantitative objectives for the process

Sub-practice:

* Establish and maintain quantitative objectives for the measurement and
analysis process that address quality and process performance based on
customer needs and business objectives.

– Generic practice 4.2: Stabilize subprocess performance

Sub-practice:

* Stabilize the performance of one or more sub-processes to determine
the ability of the measurement and analysis process to achieve the es-
tablished quantitative quality and process performance objectives.

Generic goal 5: Institutionalize an optimizing process

– Generic practice 5.1: Ensure continuous process improvement

Sub-practice:

* Ensure continuous improvement of the measurement and analysis pro-
cess in fulfilling the relevant business objectives of the organization.

– Generic practice 5.2: Correct root causes of problems

Sub-practice:

* Identify and correct the root causes of defects and other problems in the
measurement and analysis process.”

Criterion C2: Starting from the vantage point of presence, in which no major scien-
tific flaws disturb the usage of the CMMI in general and the CMMI-MA support process
area in particular, this criterion is fully satisfied.

Criterion C3: When comparing the set of best practices for SMP implementation and
sustainment as listed in section 2.8.4 with the above listed ones of CMMI, it becomes
clear that it covers nearly all best practices with either specific or generic practices.
However, the measurement and analysis support process area of the CMMI is slanted
toward the top-down paradigm and completely ignores the bottom-up paradigm as
basic starting point. However, sub-practice 2 of specific practice 1.2-1 and sub-practice
2 of specific practice 1.3-1 indicate that the mixed paradigm is indeed not exhaustively
covered but at the same time not completely ignored.

Model perspective
Criterion M1 – M5: To all intents and purposes, the CMMI Framework v1.1 and

the basic components of its PRM have been designed along the specifications made by
ISO/IEC Standard 15504. Consequently, the decision criteria from the model perspec-
tive are completely met.

81

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

4.3 Explicit models

Apparently, software measurement has been regarded as a valuable means for software
engineering for years. [Ebe99] But when looking at the works explicitly addressing
the topics of the improvement of its implementation and sustainment in the course of
SMPs, it seems that it has been treated stepmotherly. There have been some unassertive
approaches as e. g. the one of Sage [Sag97], who pretends to have provided a mea-
surement maturity model but solely aligns information needs and pertinent software
measures into a sequence. In a similar manner Gantzer et al. [GRS98] do with their
opinion of ‘measurement capability’ based on a cross-section of pertinent standards re-
lated to software measurement. Also the approach of Baxter [Bax98], who provides a
framework for assessing the effectiveness of the software measurement process relative
to the expected results, remains silent to a large extent. However, the process model of
Mendonça [Men97] is not disregarded from the evaluation despite it is only intended
to work as an improvement model.

In sum, the number of candidate models being explicitly geared towards the process
improvement for software measurement process implementation and sustainment can
be counted on the fingers of one hand and shall be briefly examined beneath.

4.3.1 Software measurement technology maturity

In a seminal paper, Daskalantonakis et al. [DBY91] proposed a way to assess the ma-
turity of software measurement technology, which strongly emulates the assessment
methodology for software development processes as initially proposed by Humphrey
and Sweet [HS87] as the foundation for the SEI’s CMM. Based on similar assumptions
as the CMM, they define a pared-down version of a maturity grid (cf. appendix, subsec-
tion B.8) of themes lacking practices, for which they propose five evolutionary stages
as adumbrated in table 4.2. For the purpose of assessment, the different stages of the
themes have been transformed into a Likert-like questionnaire (also cf. the Fraser ty-
pology in the appendix, subsection B.8), in which respondents score the software mea-
surement technology maturity according to the same procedure as in the SEI’s CMM.
Unfortunately, the concrete model and questionnaire is only available as sample from
the paper, what hinders evaluation.

Later customization of the model: Motivated by a policy of the U. S. Air Force [Dru94]
prescribing the use of software measurement for internal reviews and for the evalua-
tion of external contractors, the affiliated Software Technology Support Center (STSC)
developed the ‘software metrics capability evaluation guide’. [BP95] [BP96a] Besides
other materials, the guide developed by the STSC comprised descriptions of the frame-
work and of the evaluation methodology and/or process. Withal, the framework was
not created from scratch but turns out to be identical with the theme-based matu-
rity grid (cf. table 4.2) for software measurement technology maturity as defined by
Daskalantonakis et al. [DBY91] As a peculiarity in a first (and from the vantage point
of today also last) step, the STSC does merely use a shrunk subset of themes from one
to six with evolutionary stages from level one to three.

Contents perspective
Criterion C1: Although the model is designed on the lines of the CMM that concen-

trates on the assessment and improvement of the capability maturity of the software
development process, the scope of this model is on software measurement technology
for SMP. Because criterion C1 requires a model to be geared towards software mea-
surement process implementation and sustainment, the criterion is satisfied.

82

4.3. EXPLICIT MODELS

Le
ve

l1
Le

ve
l2

Le
ve

l3
Le

ve
l4

Le
ve

l5

T
he

m
e

(I
ni

ti
al

)
(R

ep
ea

ta
bl

e)
(D

efi
ne

d)
(M

an
ag

ed
)

(O
pt

im
iz

ed
)

1.
Fo

rm
al

iz
at

io
n

of
th

e
-P

ro
ce

ss
un

pr
ed

ic
ta

bl
e

-R
ep

ea
t

pr
ev

io
us

ly
-P

ro
ce

ss
ch

ar
ac

te
ri

ze
d

-P
ro

ce
ss

m
ea

su
re

d
an

d
-O

pt
im

iz
ed

pr
oc

es
s

de
ve

lo
pm

en
t

pr
oc

es
s

-P
ro

je
ct

de
pe

nd
s

on
m

as
te

re
d

ta
sk

s
an

d
re

as
on

ab
ly

co
nt

ro
lle

d
-F

oc
us

on
pr

oc
es

s

ex
pe

ri
en

ce
d

an
d

-P
ro

ce
ss

de
pe

nd
s

on
un

de
rs

to
od

im
pr

ov
em

en
t

se
as

on
ed

pr
of

es
si

on
al

s
ex

pe
ri

en
ce

d
pe

op
le

-R
ew

ar
d

pr
oc

es
s

-N
o/

po
or

pr
oc

es
s

fo
cu

s
im

pr
ov

em
en

ts

2.
Fo

rm
al

iz
at

io
n

of
th

e
-L

it
tl

e
or

no
-F

or
m

al
pr

oc
ed

ur
es

-D
oc

um
en

te
d

st
an

da
rd

s
-I

m
pr

ov
em

en
t

-O
rg

an
iz

at
io

n
ha

s

m
ea

su
re

m
en

t
pr

oc
es

s
fo

rm
al

iz
at

io
n

es
ta

bl
is

he
d

-S
ta

nd
ar

ds
ap

pl
ie

d
m

ec
ha

ni
sm

s
in

pl
ac

e
le

ar
ne

d
an

d
im

pr
ov

ed

-S
ta

nd
ar

ds
ex

is
t

-I
nt

er
na

ls
ta

nd
ar

ds

ap
pl

ie
d

3.
Sc

op
e

of
-D

on
e

oc
ca

si
on

al
ly

on
-D

on
e

on
pr

oj
ec

ts
w

it
h

-G
oa

l/
Q

ue
st

io
n/

M
et

ri
c

-M
et

ri
c

pa
ck

ag
es

be
in

g
-H

av
e

le
ar

ne
d

an
d

m
ea

su
re

m
en

t
pr

oj
ec

t
w

it
h

ex
pe

ri
en

ce
d

pe
op

le
pa

ck
ag

e
de

ve
lo

pm
en

t
ap

pl
ie

d
an

d
m

an
ag

ed
ad

ap
te

d
m

et
ri

c
pa

ck
ag

es

ex
pe

ri
en

ce
d

pe
op

le
,o

r
-P

ro
je

ct
es

ti
m

at
io

n
an

d
so

m
e

us
e

-P
ro

bl
em

ca
us

e
an

al
ys

is
-P

ro
bl

em
pr

ev
en

ti
on

no
t

at
al

l
m

ec
ha

ni
sm

s
ex

is
t

-D
at

a
co

lle
ct

io
n

an
d

-E
xi

st
en

ce
of

in
te

gr
at

ed
-P

ro
ce

ss
op

ti
m

iz
at

io
n

-P
ro

je
ct

fo
cu

s
an

d
re

co
rd

in
g

au
to

m
at

ed
to

ol
s

-E
xi

st
en

ce
of

sp
ec

ifi
c

-P
ro

ce
ss

fo
cu

s

au
to

m
at

ed
to

ol
s

-P
ro

du
ct

fo
cu

s

4.
Im

pl
em

en
ta

ti
on

-N
o

da
ta

or
da

ta
ba

se
-P

er
pr

oj
ec

t
da

ta
ba

se
-P

ro
du

ct
da

ta
ba

se
-P

ro
ce

ss
da

ta
ba

se
-K

no
w

le
dg

e
ba

se

su
pp

or
t

-S
ta

nd
ar

di
ze

d
da

ta
ba

se
-C

om
m

on
co

rp
or

at
e

-I
m

pr
ov

em
en

t
an

d

ac
ro

ss
pr

oj
ec

ts
da

ta
ba

se
an

d
pr

oc
es

s
le

ar
ni

ng
da

ta
ba

se

in
fo

rm
at

io
n

5.
M

ea
su

re
m

en
t

-L
it

tl
e

or
no

-P
ro

je
ct

m
ea

su
re

m
en

t
-P

ro
du

ct
m

ea
su

re
m

en
t

-P
ro

ce
ss

m
ea

su
re

m
en

t
-C

on
ti

nu
ou

s
fe

ed
ba

ck

ev
ol

ut
io

n
m

ea
su

re
m

en
t

an
d

m
an

ag
em

en
t

-a
nd

m
an

ag
em

en
t

an
d

m
an

ag
em

en
t

an
d

im
pr

ov
em

en
t

co
nd

uc
te

d

83

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

6.
M

ea
su

re
m

en
t

-M
an

ag
em

en
t

no
t

-S
om

e
su

pp
or

t
by

-P
ro

du
ct

m
ea

su
re

m
en

t
-M

an
ag

em
en

t
pr

oc
es

s
-C

an
de

fin
e

te
ch

no
lo

gy

su
pp

or
t

fo
r

su
pp

or
te

d
by

m
ea

su
re

m
en

t
an

d
co

nt
ro

l
m

ea
su

re
d

an
d

va
lu

es
an

d
ne

ed
s

m
an

ag
em

en
t

co
nt

ro
l

m
ea

su
re

m
en

t
-B

as
ic

co
nt

ro
lo

f
co

nt
ro

lle
d

-C
an

ch
ec

k
ac

hi
ev

em
en

t

7.
Pr

oj
ec

t
-N

o
st

at
is

ti
ca

lp
ro

ce
ss

-D
is

ci
pl

in
ed

pr
oj

ec
t

-D
ed

ic
at

ed
pr

oc
es

s
-N

ee
d

di
sc

ip
lin

e
to

tr
ac

k
-Q

ua
nt

it
at

iv
e

pr
oj

ec
t

im
pr

ov
em

en
t

co
nt

ro
l

an
d

co
nfi

gu
ra

ti
on

re
so

ur
ce

s
an

d
el

im
in

at
e

pr
ob

le
m

s
fe

ed
ba

ck

-N
o

se
ni

or
m

an
ag

em
en

t
m

an
ag

em
en

t
-P

ro
ce

ss
da

ta
no

t
-I

m
pr

ov
in

g
te

ch
no

lo
gy

-E
ff

ec
ti

ve
re

us
e

in
vo

lv
em

en
t

an
d

-R
is

k
m

an
ag

em
en

t
re

ta
in

ed
no

r

un
de

rs
ta

nd
in

g
-S

ub
co

nt
ra

ct
or

s
an

al
yz

ed
pr

op
er

ly

ev
al

ua
te

d
-S

ub
co

nt
ra

ct
or

s
co

nt
ro

lle
d

8.
Pr

od
uc

t
-P

oo
r

co
nfi

gu
ra

ti
on

-E
ff

ec
ti

ve
-Q

ua
lit

at
iv

e
fo

un
da

ti
on

-H
av

e
so

m
e

m
ec

ha
ni

sm
s

-C
an

an
al

yz
e

pr
ob

le
m

im
pr

ov
em

en
t

m
an

ag
em

en
t

an
d

(i
nd

ep
en

de
nt

)
qu

al
it

y
fo

r
ap

pl
yi

ng
fo

r
de

te
rm

in
in

g
ca

us
es

an
d

pr
ev

en
t

qu
al

it
y

as
su

ra
nc

e
as

su
ra

nc
e

te
ch

no
lo

gy
pr

ob
le

m
ca

us
es

th
em

-R
ev

ie
w

s
co

nd
uc

te
d

-N
ot

m
an

y
qu

an
ti

ta
ti

ve

-P
er

io
di

c
cu

st
om

er
m

ea
su

re
s

of
pr

ob
le

m

in
te

rf
ac

e
fo

r
fe

ed
ba

ck
ca

us
es

9.
Pr

oc
es

s
-H

ar
d

to
pl

an
an

d
-H

ar
d

to
im

pr
ov

e
th

e
-Q

ua
nt

it
at

iv
e

-M
et

ho
ds

an
d

to
ol

s
-S

ig
ni

fic
an

t
pr

od
uc

ti
vi

ty

im
pr

ov
em

en
t

co
m

m
it

m
ea

su
re

m
en

t
pr

oc
es

s
fo

un
da

ti
on

fo
r

ta
ilo

re
d

to
ne

ed
s

im
pr

ov
em

en
t

-N
o

fo
cu

s
on

-N
o

fo
un

da
ti

on
fo

r
im

pr
ov

em
en

t
-Q

ua
lit

y
im

pr
ov

em
en

t

im
pr

ov
em

en
t

im
pr

ov
em

en
t

-T
ra

in
in

g
re

qu
ir

ed
-T

ra
in

in
g

as
se

ss
ed

an
d

im
pr

ov
ed

10
.

Pr
ed

ic
ta

bi
lit

y
-U

np
re

di
ct

ab
le

re
su

lt
s

-P
re

di
ct

ab
le

re
su

lt
s

-A
bl

e
to

pr
oj

ec
t

an
d

-P
ro

ce
ss

qu
al

it
y

an
d

-H
ig

h
pr

ed
ic

ta
bi

lit
y

du
e

fo
r

si
m

ila
r

w
or

k
fo

r
si

m
ila

r
w

or
k

tr
ac

k
pr

od
uc

t
qu

al
it

y
pr

od
uc

ti
vi

ty
pr

oj
ec

ti
on

to
pr

oc
es

s
fo

rm
al

iz
at

io
n

-U
ns

ta
bl

e
pl

an
s

an
d

-T
oo

ls
us

ed
fo

r
pa

ra
m

et
er

s
an

d
tr

ac
ki

ng
an

d
op

ti
m

iz
at

io
n

sc
he

du
le

s
pr

oj
ec

t
pl

an
ni

ng
-C

an
an

al
yz

e
pr

ob
le

m

ca
us

es
an

d
pr

ev
en

tt
he

m

Ta
bl

e
4.

2:
M

at
ur

it
y

gr
id

fo
r

so
ft

w
ar

e
m

ea
su

re
m

en
t

m
at

ur
it

y
as

se
ss

m
en

t
(t

ak
en

fr
om

[D
BY

91
])

84

4.3. EXPLICIT MODELS

Criterion C2: The model is based on a number of assumptions Daskalantonakis et
al. extracted from their own beliefs and observations. Consequently, the degree of
scientific rigor is at least questionable if not absent.

Criterion C3: The maturity grid rather describes the result of certain practices dis-
tributed over different, staggered levels of software measurement maturity than pro-
vides best practices. However, it should be noted that the authors recognize the fact that
the application of the top-down measurement paradigm (they propose GQM) reflects
a degree of sophistication in the scope of measurement (theme 3). Unfortunately, they
omit to provide information on the bottom-up measurement paradigm that mirrors the
preceding step of maturation when believing the notes of Hetzel and Silver. [Het93]
Taken altogether, this criterion is not satisfied.

Model perspective
Criterion M1 – M4: Connected with the absence of best practices caused by the

pared-down version of a maturity grid, as a logical consequence the model-related
criteria are not satisfied, at all.

Criterion M5: Since the model obviously does not provide a process model with best
practices or any improvement guidelines other than the desired results for each theme
embodied in questions of a Likert-like questionnaire, this criterion is not satisfied.

4.3.2 The measurement maturity model

In 1993, Comer and Chard [CC93] published initial results of a research project aimed
at the development of a methodology to assess the software measurement process as
logical precondition for an improvement approach, called the measurement maturity
model. Having the premise to build a process model, in which the software measure-
ment process can be reduced to a sequence of key processes that can be assessed in-
dividually, the researchers dismiss the idea of prescribing certain software measures
to be collected as previous researchers did. Fortunately, Comer and Chard recognize
at least the top-down and bottom-up types of measurement paradigms and propose
their coverage in the model. Moreover, they also recognize that the “maturity of the
measurement programme is directly related to the ability of the organization to define
adequate goals.” [CC93, p. 288] The key processes of software measurement and a
working excerpt of activities of the key processes as identified during their research
project are:

1. Process definition (specification of entities and attributes, identification of goals,
derivation of software measures);

2. Collection (operational definition of software measures, data gathering, data stor-
age, verification, examination for patterns);

3. Analysis; and

4. Exploitation.

The approach to the development of an assessment methodology is characterized
by the pursuit of compatibility with the one of the SEI’s CMM as proposed by Humphrey
and Sweet [HS87] using the transformation of answers to a questionnaire to a grading
system. In doing so, weighted questions check the conduction of activities, the laying
of general organizational foundations to support the activities, and the effectiveness
of the activities. However, the researchers do explicitly state their intention to high-
light improvement areas rather than grading an organization on a scale of software
measurement maturity.

85

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

With the model exhibiting a considerable share of the desired attributes, it is a pity
that the mentioned working paper remained the only proof of life leaving an incomplete
and only adumbrated model for the public. Because there is not enough material to
review and evaluate further this model, it is disclosed from further recognition.

4.3.3 The META Measurement Maturity Model (4M)

In contrast to what the title threatens, the marketing-based term ‘META Measurement
Maturity Model (4M)’ does not keep its promise when believing in the appearance of
Malcolm Slovin’s article. [Slo97] It rather represents a minimum maturity grid that
is (for reasons of better marketing through a recognition factor) loosely coupled with
elements similar to those of the SEI’s CMM. The five-level maturity grid along more
extensive and META-group consulted software measurement can be summarized as:

1. Level 1 — Chaotic
Unpredictable costs, schedules, quality, and performance.

2. Level 2 — Intuitive
Costs and quality are variable while schedules are better controlled.

3. Level 3 — Qualitative
Costs and schedules are more tightly controlled but quality is still variable.

4. Level 4 — Quantitative
Reasonable control over cost, schedule, and quality.

5. Level 5 — Integrated
Quantitative basis for continual improvement of cost, quality, and responsibility.

This attempt does lack any meaningful software measurement related best practices
and even the scientific rigor. So, it will be entirely omitted.

4.3.4 Mendonça’s approach to improving existing measurement frame-
works

In his PhD thesis, Mendonça [Men97] seizes the question of how to improve existing
measurement frameworks and proposes a measurement process model that integrates
both paradigms, the top-down and the bottom-up, in his own way . The iterative
model consists of the three different phases: First, the measurement framework shall
be characterized in order to ease the understanding of the data user’s measurement
information needs. In doing so, structured interviews and document reviews aid in
identifying key components such as software measures, attributes, existing data, user
groups, data uses. Second, a top-down analysis shall be conducted on the lines of the
GQM to enable a judgment, how well the legacy data that is already being collected
in the organization satisfies the elicited needs. Third and finally, a bottom-up analysis
of the legacy, genuine data shall be conducted to extract novel information. Although
Mendonça limits his model to the attribute focusing data mining technique, it seems
to be applicable using any other analysis techniques, as well. However, the bottom-up
processes of phase three would then need to be changed, accordingly. The activities for
each of the three phases are listed below [Men97, pp. 35]:

1. “Measurement framework characterization

(a) Identify metrics
(Review available measurement or software process documents.)

86

4.3. EXPLICIT MODELS

(b) Identify available data
(Use descriptions of software measures and review data repositories’ docu-
mentation. Examine data repositories directly and interview data managers
responsible for the repositories if necessary.)

(c) Identify data uses and user groups
(Interview data managers. Talk to specific user group representatives.)

(d) Identify attributes
(Interview data user representatives or, if possible, extract the description
directly from the measurement framework documentation.)

2. Top-down analysis (GQM)

(a) Capture data user goals
(Interview group representatives. Use a GQM goal template.)

(b) Identify relevant entities
(Interview the group representatives and/or, if possible, extract the descrip-
tion directly from available documentation about the object of study.)

(c) Identify relevant attributes
(Extract the comprehensive list of attributes directly from available docu-
mentation or use the existing attribute lists. Interview the group representa-
tives to produce an updated list of relevant attributes. Ask them to rate the
importance of each attribute. Describe the attribute implicitly, textually, or
formally.)

(d) Map attributes to existing metrics
(Establish the mapping between metrics and relevant attributes by compar-
ing the description of relevant attributes with the attributes associated with
the existing metrics. Interview data user group representatives to validate if
the mapped metrics are consistent with the user goals.)

3. Bottom-up analysis

(a) Establish relationship questions
(Interview the group representatives or use the group goals and description
of available data to determine the generic relationship questions.)

(b) Define the analysis
(Interview the group representatives or use the group goals to determine
the analysis scope and granularity. Use description of available data, metrics,
and the analysis scope to extract the data. Use the description of the analysis
granularity to pre-process the data.)

(c) Run the analysis
(Use the generic relationship questions to identify metric groups (each at-
tribute class corresponds to a group). Manipulate the cutoff and maximum
number of diagrams to obtain a reasonable number of ‘interesting’ diagrams.
Set the analysis dimension based on the number of attribute classes.)

(d) Organize the diagrams
(Review available diagrams one by one. Discard useless diagrams and orga-
nize the others using some consistent criteria.)

(e) Review the diagrams
(Review diagrams together with data users or managers.)”

87

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

Contents perspective
Criterion C1: With the focus of this approach being on improving existing SMPs —

or as the author calls ‘measurement frameworks’ — the criterion is fully satisfied.
Criterion C2: The model is based on a number of assumptions that have been de-

rived from literature and practice. Because the model could expose its usefulness and
the absence of flaws during evaluation in practice [Men97] [MB00], also this criterion
is satisfied.

Criterion C3: In his own manner, Mendonça integrates the top-down and bottom-
up paradigm in his approach into a mixed model. However, the entry level of software
measurement represented by the a posteriori or a priori bottom-up paradigm is not
reflected. Mendonça and Basili [MB00] bring forward the following: “It is aimed at
applying the principles of goal-oriented measurement in an environment that is already
functional, instead the more common view of defining a measurement process from
scratch based on the measurement goals of data users.” Because of that omission, this
criterion is not satisfied.

Model perspective
Criterion M1: The process model underlying that improvement approach for SMPs

does provide entry criteria, inputs, procedures, methodologies, outputs, and exit cri-
teria. These are similar to the description of purposes and outcomes as demanded by
ISO/IEC Standard 15504. So this criterion is satisfied.

Criterion M2 – M4: Owing to the fact that the author of this model did not intend
to assess the capabilities to implement and sustain SMPs, the aspect of assessing the ca-
pabilities has been disregarded during its development. So, this criteria are apparently
not fulfilled.

Criterion M5: Since the improvement approach of Mendonça is based on a three-
part process model that highlights a straightforward path for improvement, this crite-
rion is satisfied.

4.3.5 The Measurement-CMM

As part of the PhD research of Niessink the Measurement-CMM (M-CMM) [NvV98]
[Nie00] was developed to assess and — based on that assessment — to improve the
capabilities of organizations in terms of software measurement. In contrast to its ded-
icated archetype, that is the CMM of SEI, the focus of this model does not lay in the
capability of an organization’s software development process but in its ‘measurement
capability’, Niessink [Nie00, p. 83] defines as: “the extent to which an organization
is able to take relevant measures of its products, processes and resources in a cost
effective way resulting in information needed to reach its business goals.”

Having been rudimentarily designed on the lines of the CMM, the M-CMM avails
itself of two basic structural elements, that is, KPAs are assigned to capability maturity
levels denominated as in the CMM according to their increase of sophistication. As
indicated by Niessink himself, the model lacks a description of practices for each KPA
as well as a questionnaire for them. It turns out to be in large parts incomplete and
scientifically shallow. However, the assignment of key process areas to maturity levels
as word-by-word taken from Niessink [Nie00, pp. 85] is presented next:

88

4.3. EXPLICIT MODELS

1. “Initial:

• No KPAs

2. Repeatable:

• Measurement design: Measurement goals, measures and measurement pro-
tocols are established according to a documented procedure, and goals,
measures and protocols are kept consistent with each other. Measurement
protocols are managed and controlled.

• Measure collection: Measures are collected according to the measurement
protocol.

• Measure analysis: The collected measures are analyzed with respect to the
measurement goals.

• Measurement feedback: The measurement goals, the measurement protocols,
the collected measures and the results of the analysis are made available to
the people involved in the measurement process.

3. Defined:

• Organization measurement focus: Software measurement activities are co-
ordinated across the organization. Strengths and weaknesses of the mea-
surement process are identified and related to the standard measurement
process.

• Organization measurement design: A standard measurement process for the
organization is developed and maintained and information with respect to
the use of the standard measurement process is collected, reviewed and
made available.

• Organization measure database: Collected measures are stored in an organi-
zation-wide database and made available.

• Training program: People are provided with the skills and knowledge needed
to perform their roles.

4. Managed:

• Measurement cost management: Costs of measurement are known and used
to guide the ‘measurement design’ process and the ‘organization measure-
ment design’ process.

• Technology selection: The information of measurement costs is used to choose
and evaluate technology support for the measurement process.

5. Optimizing:

• Measurement change management: The measurement capability is constantly
being improved by monitoring the measurement processes and by anticipat-
ing changes in the software process or its environment.”

89

CHAPTER 4. REVIEW AND EVALUATION OF RELATED WORK

Contents perspective
Criterion C1: The model has been designed to assess and improvement an organiza-

tion’s capabilities with special respect to measurement. This criterion is fully satisfied.
Criterion C2: Although the model has been developed in the course of a research

project, the expected degree of scientific rigor could not been found during the evalu-
ation. Neither the related papers nor the PhD thesis provides information on the foun-
dation, on which the model’s elements were extracted and aligned. It is for instance
questionable to locate the elementary training process for software measurement on
level three instead on level one. Since the justifications for a number of those issues is
not given, the lack of scientific rigor leads to the failure of this criterion.

Criterion C3: The KPAs assigned to the pertinent levels of software measurement
capability maturity do neither reflect best practices as elicited in subsection 2.8.4 nor
do they dwell on different paradigms of software measurement. Also, this criterion
fails.

Model perspective
Criterion M1 – M5: Because the model’s development has been scientifically shal-

low and rudimentarily, it did not take account for any model-related aspects. This fact
is reflect in the negative evaluation of all model-related criteria.

4.4 Conclusion

Within this chapter the brief review and evaluation of SPA/SPI models implicitly and
several models explicitly dealing with the implementation and sustainment of the soft-
ware measurement process was presented to answer the third sub-question of this re-
search work:

RQ3. Find and evaluate current process improvement models that deal
with the implementation of the software measurement process using
criteria from RQ1/RQ2! Expose a basis model, that satisfies at least
a large share of the criteria, together with its specific shortcomings!

Results of the evaluation
In the course of the investigations it became obvious that only two of the three pro-
posed implicit and two of the four explicit candidate models exhibit meaningfulness
or sufficient material for an observation according to the set context. The results of
the evaluations with respect to the criteria developed in the previous chapters shall be
summarized with the aid of the following table 4.3. It can be easily recognized that
none of the models fully satisfies all of the set criteria.

90

4.4. CONCLUSION

Decision criteria

Model C1 C2 C3 M1 M2 M3 M4 M5

Implicit coverage:

- CMM v1.1 – – – – – – X X

- ISO/IEC Standard 9001:2000 Disregarded from evaluation

- CMMI Framework v1.1 X X – X X X X X

Explicit coverage:

- Software measurement technology
X – – – – – – –

maturity

- Measurement maturity model Disregarded from evaluation

- META Measurement Maturity model (4M) Disregarded from evaluation

- Mendonça’s approach to improving
X X – X – – – X

existing measurement frameworks

- Measurement-CMM (M-CMM) X – – – – – – –

Legend: X = Satisfied | – = Not satisfied

Table 4.3: Results of the observation of existing methods with implicit or explicit cov-
erage

Exposition of the basis model and its shortcomings
The implicit software measurement process improvement model covered in the CMMI-
MA support process area of CMMI Framework v1.1 is second to none, because it solitar-
ily satisfies a large share of the evaluation criteria. However, it shipwrecks and shows a
shortcoming when it comes to the support of the sequence of measurement paradigms
starting from bottom-up over mixed to top-down during software measurement process
implementation.

Basis model:

B1 ‘Measurement & Analysis’ (CMMI-MA) support process area of the
CMMI Framework v1.1

Shortcoming to be addressed:

B2 Lack of support of the sequential application of the ‘bottom-up’,
‘mixed’, and ‘top-down’ measurement paradigms during imple-
mentation of the software measurement process.

91

Part II

Proposal and development of a
better solution

93

Chapter 5

The Software Measurement Process
Improvement (SMPI) model

“If we had management that knew what the right goals and questions to ask were,
we wouldn’t need better measurement as badly as we do!”

– Bill Hetzel∗ [Het93, p. 25] –

5.1 Introduction

In the previous chapter it has been shown by the author that neither mainstream
SPA/SPI models, which implicitly cover aspects of SMP implementation and sustain-
ment processes, nor those models that have been explicitly designed for this purpose,
satisfy the criteria imposed. More specifically, the evaluation of the previous chapter
revealed that the CMMI-MA process area of the CMMI Framework v1.1 exemplarily im-
plements the related, up-to-date standards. That is, it fully complies with the software
measurement process model of ISO/IEC Standard 15939 from the contents perspective
and, roughly speaking, with the regulations of ISO/IEC Standard 15504 (SPICE) from
the model perspective. Because of that, the CMMI-MA is preferred as basis model.
But as suggested in chapter 2, the ISO/IEC Standard 15939 does exclusively address
the top-down paradigm for software measurement and omits an exhaustive coverage
of the bottom-up and mixed paradigms; and so the CMMI does, as well. Thus, the
evaluation was positive for all but criterion C3 that turned out to be a shortcoming.
For reasons of transparency the evaluation criteria and results of the previous chapters
are compiled, once more:

RQ1 (Content-related criteria) CMMI-MA

C1. The scope of the process improvement model must be
(at least partially) on software measurement process
implementation in industrial settings.

X

C2. The process improvement model must have been de-
veloped with scientific rigor.

X

∗Software measurement and testing guru; fellow of Software Practices Research Center at Jacksonville,
FL, USA

95

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

C3. The process improvement model must be able to re-
flect the sequential application of the ‘bottom-up’,
‘mixed’, and ‘top-down’ measurement paradigms
during implementation of software measurement pro-
cesses in industrial settings.

–

RQ2 (Model-related criteria) CMMI-MA

M1. The process improvement model must provide a pro-
cess reference model compliant with the require-
ments of ISO/IEC Standard 15504.

X

M2. The process improvement model must be compatible
with the measurement framework of ISO/IEC Stan-
dard 15504.

X

M3. The process improvement model’s process assess-
ment model must represent a mapping of the process
reference model and the measurement framework of
ISO/IEC Standard 15504.

X

M4. The process improvement model’s assessment pro-
cess must observe the regulations of ISO/IEC Stan-
dard 15504.

X

M5. The process improvement model must provide process
improvement guidelines for the specified scope.

X

5.2 Concept and design of the complemented model

According to Comer and Chard [CC93] the maturity of an organization’s software
measurement process is directly correlated to the ability to define adequate business
and/or software measurement goals. This implies an improvement in terms of the
used software measurement paradigms from less goal-oriented (bottom-up paradigm)
over more goal-oriented (mixed paradigm), to entirely goal-oriented (top-down). Such
a shift is neither considered in prevalent software measurement process models nor in
related process improvement models. But as Fuchs [Fuc95, p. 75] admonishes: “Only
in a reasonably mature development environment can a top-down approach be ex-
pected to work. The majority of companies will be at a low level of maturity and
should avoid starting with a top-down approach . . . companies having already started
a measurement programme should try to move towards a mixed approach as a first
step . . . and not directly towards a top-down one.” To put things right, the solution of
CMMI-MA process area selected as basis model, shall be complemented to that effect
towards the SMPI model.

96

5.2. CONCEPT AND DESIGN OF THE COMPLEMENTED MODEL

5.2.1 The development concept

Based on the results of the evaluation recapitulated in the introduction of this chapter,
the shortcoming of the selected basis model, CMMI-MA, in terms of criterion C3 can be
paraphrased to the following development concept (DC):

DC. Extend the ‘Measurement & Analysis’ support process area of the
CMMI Framework v1.1 so that it can support the sequential ap-
plication of the ‘bottom-up’, ‘mixed’, and ‘top-down’ measurement
paradigms during implementation of the software measurement
process in industrial settings!

5.2.2 The design and development rationale

The rationale behind the improvement approach is to keep the general contents and
structure of the CMMI Framework v1.1 because it satisfactorily meets the model-related
criteria extracted in chapter 3, but to improve the revealed lack of paradigm shift of the
software measurement process as manifested in the CMMI-MA support process area.

Maturity level 1
(Initial)

Maturity level 2
(Managed)

Maturity level 3
(Defined)

Maturity level 4
(Quantitatively

managed)

Maturity level 5
(Optimizing)

Capability level 0 -
Capability level 1 GG1 Achieve specific goals (base practices)

SG1 Align measurement and
SG1 analysis activities
SG2 Provide measurement results

Capability level 2 GG2 Institutionalize a managed process
Capability level 3 GG3 Institutionalize a defined process
Capability level 4 GG4 Institutionalize a quantitatively managed process
Capability level 5 GG5 Institutionalize an optimizing process

Support process area: ‘Measurement & Analysis‘

CMMI Framework v1.1
Staged representation

CMMI Framework v1.1
Continuous representation

1. Bottom-up sub-model
2. Mixed sub-model
3. Top-down sub-model

SMPI

Figure 5.1: The design rationale behind the SMPI model

97

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

As illustrated in figure 5.1, this includes leaving the assignment of the otherwise
well-designed process area unchanged at maturity level two in the staged representa-
tion and allow the improvement of that process area along the process capability levels
zero to five in the continuous representation, as established.

Given the continuous representation, the contempt of the software measurement
paradigm shift outcrops as early as in capability level one of the process area: It has
the generic goal to ‘Achieve specific goals’ by conducting the base practices of the top-
down paradigm connected with specific goals one (‘Align measurement and analysis
activities’) and two (‘Provide measurement results’). This would not be a mistake if
there only was one paradigm to observe. As shown before, goal-oriented measurement
is indeed a sublime goal, but already mirrors a state of fundamental experiences gained
by running through the software measurement paradigm shift.

Keeping in mind the intention to leave the general contents and structure of the
CMMI unchanged while adding essential processes for software measurement accord-
ing to the bottom-up and mixed paradigms, which have been obviously omitted, as
well as the well-established top-down paradigm, a supplemental process model cov-
ering the progress through these measurement paradigms should be developed. Such
a model can ensure that a practicable course of improvement of the software mea-
surement process can be reproduced without having the need to develop the model
from scratch with high costs. [FLZ05] Moreover, by incorporating best practices into
the reference model, ‘best-of-breed’ knowledge is manifested and shared among the
community. Insofar, reference models provide a sound foundation for the creation of
models tailored to specific conditions [Tho05] such as an organizational context. Ow-
ing to the fact, that this model is thought to facilitate stepwise software measurement
process improvement along the measurement paradigms as presented in section 2.5, it
should bear the name Software Measurement Process Improvement (SMPI).

With respect to the development concept (DC), the design and development ratio-
nale (DR1, DR2, DR3) for the complemented SMPI model can be summarized from the
above remarks as the following procedure:

DR1. Establish consensus among the phases of the different software mea-
surement process models specific for each measurement paradigm.

DR2. Perform a mapping of processes and activities onto the consensus
phases of the different software measurement process models specific
for each paradigm. Bring life into topics not covered.

DR3. Provide a graphical and a textual formulation for each of the differ-
ent software measurement process models specific for each measure-
ment paradigm.

These parts of the development rationale will be worked off one by one in the
following.

98

5.3. DEVELOPMENT OF THE COMPLEMENTED MODEL

5.3 Development of the complemented model

5.3.1 Consensus of measurement paradigm-specific process phases

With respect to the formal definition of the core software measurement process (MP)
in equation 2.7, several procedures and/or practices (Pmaterialization, Pcollection, Panalysis,
Pexploitation) have to be performed to conduct this process. As could be easily seen from
previous remarks (especially in section 2.5), different measurement paradigms exist
that strongly influence the course of action to be taken. In order to reveal a consensus
between the building blocks of the major process suggestions, which is the case for soft-
ware measurement according to the bottom-up and mixed measurement paradigms, or
measurement process models for the top-down paradigm, the respectively proposed
process phases have been confronted in tables 5.1, 5.2, and 5.3 with the respective
consensus phases printed in the first column.

Phases of the measurement process in reference material

Bottom-up model Hetzel et al. Bache et al. ISO/IEC Standard

phases of SMPI [Het93] [BN95] 15939 [ISO02]

Selection of 1. Definition of 0. Process 2. Plan the

software measures software measures investigation measurement process

1. Selection of (general part)

software

measures

Data collection 2. Data collection 2. Data collection

3. Perform the

Data analysis 3. Analysis and 3. Analysis measurement process

modeling

Causal analysis 4. Question triggering 4. Causal study,

goal deduction goal setting

Table 5.1: Consensus of bottom-up software measurement process models phases

Phases of the measurement process in reference material

Top-down model Gresse et al. Solingen et al. ISO/IEC Standard

phases of SMPI [GHW95] [vSB99] 15939 [ISO02]

Goal materiali- 1. Prestudy

zation to 2. Identify GQM goals 2. Definition 2. Plan the

software measures 3. Produce GQM plan measurement process

Data collection 4. Collect and 3. Data collection

validate data 3. Perform the

Data analysis 5. Analyze data 4. Interpretation measurement process

Table 5.2: Consensus of top-down software measurement process models phases

99

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

Phases of the measurement process in reference material

Mixed model Fuchs Mendonça Ramil et al. ISO/IEC Standard

phases of SMPI [Fuc95] [Men97] [RL01] 15939 [ISO02]

Goal materiali- 1. Measurement

zation to framework

software measures characteri-

zation 2. Plan the

1. Top-down 2. Top-down 1. Top-down measurement

definition analysis definition process

of software of software

measures measures

Selection of 2. Selection of 2. Bottom-up 2. Plan the

software measures software selection of measurement

measures software process

measures (general part)

Reconciliation 3. Reconcili-

ation

between

sets of

measures

Data collection

3. Perform the

measurement

Data analysis 3. Bottom-up process

analysis

Table 5.3: Consensus of mixed software measurement process models phases

5.3.2 Imbueing the process models’ phases with life

Subsequent to the derivation of process phases for the three, paradigm-specific mea-
surement process models by consensus the contents (activities) of each phase for each
sub-model needs to be defined. Once more, this activity is characterized by a consensus-
based mapping procedure from the reference material, especially of the ‘Measurement
& Analysis’ process area of the CMMI Framework v1.1 as well as the applicable part of
best practices for SMP implementation and sustainment as revealed in section 2.8.4.

Since the Root Cause Analysis (RCA) methodology, which is predestinated to pro-
vide activities for the phase ‘Causal analysis’ of the bottom-up sub-model of the SMPI,
has been treated stepmotherly by both, the reference material as well as the best
practices, additional and sound knowledge of its procedural steps as per Wilson et
al. [WDA93], Rooney and Vanden Heuvel [RH04], or Jucan [Juc05] has been quested
and used. The possibly arising and undoubtedly legitimate critic that RCA (more specif-
ically CMMI’s process area Causal Analysis & Resolution (CAR) assigned to maturity
level five of the staged representation) could be off scope for process areas required
earlier, such as ‘Measurement & Analysis’, can be answered back: The author of this
thesis feels vindicated because Buglione and Abran [BA06] recently proposed the relo-
cation of the CAR process area to CMMI’s maturity level two as a basic support process.

100

5.4. PRESENTATION OF THE SMPI MODEL

5.4 Presentation of the SMPI model

Having the aim to provide an empirical, descriptive software measurement process
improvement model covering the improvement steps along the distinct measurement
paradigms from the functional, behavioral, organizational, and informational perspec-
tives for the management domain (cf. section 3.2), both, a graphical and a textual
formulation using two different PDLs is preferred to accentuate the purpose of describ-
ing a process to easily communicate it to other people. [Oul95]

Based on a comparison between different graphical PDLs, e. g. Nysetvold and
Krogstie [NK05] found out that especially the Business Process Modeling Notation
(BPMN) of the Object Management Group (OMG) [Gro06] comes off well. Moreover,
recently List et al. [LK06] provided evidence of the multiple advantages of that nota-
tion for the modeling of business processes. Because the core software measurement
process can be also regarded as a business process, the BPMN shall be used to model
diagrams.

According to a survey of Paulk et al. [PGW01] most high maturity organizations
use either the Entry criteria – Tasks – Validation – Exit criteria (ETVX) process model-
ing methodology of Radice and Phillips [RP88] or the Entry criteria – Inputs – Tasks
– Validation – Outputs – Exit criteria (EITVOX) being an offshoot of ETVX methodol-
ogy that has been proposed by the SEI [aC94]. While ETVX addresses the basic set of
mandatory information needed to perform a work activity independent from the level
of abstraction with nesting being possible [PGW94], EITVOX has been enhanced by
helpful information concerning the inputs and the outputs of the work activity as illus-
trated in figure 5.2. Having both shortlisted, the choice fell on the EITVOX methodology
to describe the sub-models and their constituents in detail.

E
(Entry criteria for

beginning the
activity)

I
(Inputs required
during execution

of the activity)

T
(Tasks to carry

out the described
activity)

V
(Collected data
to validate the

activity)

O
(Artifacts produced
during execution

of the activity)

X
(Criteria defining
completion of the

activity)

Figure 5.2: The elements of SEI’s EITVOX process modeling paradigm (adapted from
[aC94])

101

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

5.4.1 The whole model at a glance

From a bird’s eye view, the SMPI provides the three paradigm-specific sub-models
bottom-up (PBottom−up = PB), mixed (PMixed = PM), and top-down (PTop−down = PT)
that provide different activities within the software measurement process improvement
model depending on the starting conditions.

P = {Software Measurement Process Improvement model} = {PB, PM, PT}

PB
= {Bottom-up

measurement process}

PM
= {Mixed measurement

process}

PT
= {Top-down

measurement process}

E

G’’

Q I

MOBottom-up

Q I

No

Q I

No

MOMixed

MOTop-down G’ MOTop-down MOTop-down

Abort?

Yes

Abort?

Yes

Figure 5.3: The SMPI model at a glance

The general structure of the SMPI model is illustrated in figure 5.3 using the graph-
ical elements of BPMN. Here, the bottom line is that the general aim of each sub-model
is to quantify software engineering entities (E) into quantities (Q), which are then
transformed into measurement information products (I). Depending on an organiza-
tion’s ability to solely adopt foreign software measures or to define measurement goals,
the processes of the sub-models produce measurement outlines (MO). These measure-
ment outlines comprise the set of established measurement thresholds and/or mea-
surement goals (G′), the selected software engineering entities (E′), their attributes
(A) quantified by software measures (M), operational definitions (O) as well as data
collection and analysis directives (D) and the related responsible personnel (R).

Another aspect of the model as a whole is the fact that an organization can directly
jump to the sub-model being most suitable in dependence of the requirements (entry
criteria) of each sub-model. Moreover, it is also possible to iteratively conduct the
processes of a sub-model or to abort it after each iteration.

102

5.4. PRESENTATION OF THE SMPI MODEL

5.4.2 PB — The bottom-up sub-model in detail

If a SMP has never been in place before in an organization and it is about to start —
driven by its own, unsettled measurement interest or it has been urged from external
side to jump on the bandwagon — the most suitable starting point would definitively
be the a priori bottom-up sub-model (PB) as depicted in figure 5.4. However, this pre-
sumes that the measurement initiative was set up as a properly staffed, well-funded
project having experienced personnel. An improvement would then take place by pro-
ceeding through the mixed and later the top-down sub-models, one after another.

PB = {A priori bottom-up software measurement process}

PB1
= {Selection of software

measures}

PB2
= {Data collection}

PB3
= {Data analysis}

PB4
= {Causal analysis}

E

MOBottom-up = {G’, E’, A, M, O, D, R}

Q I G’’

Figure 5.4: BPMN diagram of PB

The first step in the bottom-up sub-model is the selection of software measures
(PB1) for software engineering entities of interest (E) despite having no predefined
measurement goals. This results in a bottom-up measurement outline (MOBottom−up),
which is then used as foundation for the second step of data collection (PB2). To-
gether with the measurement outline the collected quantities (Q) serve as input for
the subsequent data analysis (PB3) intended to produce the measurement information
products(I). Due to the absence of real measurement goals, which have been substi-
tuted in step one by thresholds (G′) for the adopted software measures, the step of
causal analysis (PB4) to derive real measurement goals (G′′) required for the improve-
ment of the software measurement process has to go along. Using the EITVOX process
modeling paradigm, the situation is as following:

PBottom−up = PB
Entry criteria: - G = ∅

- MOBottom−up = ∅
- E 6= ∅

Inputs: - E

Tasks: - PB1 = {Selection of software measures}
- PB2 = {Data collection}
- PB3 = {Data analysis}
- PB4 = {Causal analysis}

Validation data: - The element counts of the subsets ofMOBottom−up
- The element counts of the sets Q, I,G′′

Outputs: - MOBottom−up, Q, I,G
′′

EXit criteria: - G′′ 6= ∅, I 6= ∅

103

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

5.4.2.1 Examining the process group PB1 at close quarters

To select meaningful software measures based on the software engineering entities (E)
at hand, a universe of software measures should be built (PB1,1). Together with these
measures (M), an initial share of the bottom-up measurement outline (MOBottom−up)
consisting of the software engineering entities (E′) and their attributes (A) to quantify
as well as operational definitions (O), can be prepared. Afterwards and depending on
the selected software measures, thresholds are revealed and imposed (PB1,2) as mea-
surement goals (G′) failing which top-down defined ones. Having done this, data col-
lection and storage procedures (DCollection) and the responsible personnel (RCollection)
can be specified (PB1,3). Furthermore, in a final process step, the analysis procedures
(DAnalysis) and the personnel responsible for the conduct of the analysis (RAnalysis)
should be specified (PB1,4). Ultimately, the result should be a complete and available
bottom-up measurement outline as formulated according to the EITVOX process mod-
eling paradigm beneath and illustrated in figure 5.5:

PB1 = {Selection of software measures}
Entry criteria: - G = ∅

- MOBottom−up = ∅
- E 6= ∅

Inputs: - E

Tasks: - PB1,1 = {Build a universe of software measures}
- PB1,2 = {Impose thresholds as measurement goals}
- PB1,3 = {Specify data collection/storage procedures}
- PB1,4 = {Specify analysis procedures}

Validation data: - The element counts of the subsets of the measurement outline.
({G′, E′, A,M,O,D,R} ⊂MOBottom−up)

Outputs: - MOBottom−up

EXit criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅;D 6= ∅;R 6= ∅

PB1 = {Selection of software measures}

PB1,1
= {Build a universe of
software measures}

PB1,2
= {Impose thresholds as

measurement goals}

PB1,3
= {Specify data

collection/storage
procedures}

PB1,4
= {Specify analysis

procedures}

E {E’, A, M, O} MOBottom-up

G’ MOBottom-up

Rcollection R MOBottom-up

DCollection D MOBottom-up

RAnalysis R MOBottom-up

DAnalysis D MOBottom-up

Figure 5.5: BPMN diagram of PB1

104

5.4. PRESENTATION OF THE SMPI MODEL

The inner life of process PB1,1
The first activity (PB1,1−1) of this process requires one to identify the software en-
gineering entities of interest (E′) from the general ones (E). Only for these enti-
ties of interest a list of candidate software measures is produced (PB1,1−2), this list
is balanced (PB1,1−1) and base measures (M) from the candidate ones are selected
(PB1,1−4). Once, the measures have been chosen, the attributes (A) that are observed
by the selected software measures can be derived (PB1,1−5) and operational definitions
(O) specified (PB1,1−6). After all, the results of the process should be documented and
publicized (PB1,1−7).

The following remarks according to the EITVOX process modeling paradigm and
the BPMN diagram in figure 5.6 describe the activities, as well:

PB1,1 = {Build a universe of software measures}
Entry criteria: - G = ∅

- MOBottom−up = ∅
- E 6= ∅

Inputs: - E

Tasks: - PB1,1−1 = {Identify software engineering entities of interest.}
- PB1,1−2 = {Prepare a list of well− established candidate software

measures.}
- PB1,1−3 = {Balance the list of candidate measures with available

software engineering entities.}
- PB1,1−4 = {Select base measures from the candidate ones.}
- PB1,1−5 = {Derive the attributes that are observed by the

chosen software measures.}
- PB1,1−6 = {Specify operational definitions for the selected

software measures.}
- PB1,1−7 = {Document results of the process and publicize

to all involved stakeholders.}
Validation data: - The element counts of the subsets of the measurement outline.

({E′, A,M,O} ⊂MOBottom−up)
Outputs: - E′

- List of candidate software measures

- Balanced list of candidate software measures

- A

- M

- O

EXit criteria: - E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅

105

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

P
B

1,1 = {B
uild a universe of softw

are m
easures}

P
B

1,1-1
= {Identify softw

are
engineering entites of

interest}

P
B

1,1-2
= {Prepare a list of w

ell-
established candidate
softw

are m
easures}

P
B

1,1-3
= {Balance the list of

candidate m
easures w

ith
available softw

are
engineering entities}

P
B

1,1-4
= {S

elect base
m

easures from
 the

candidate ones}

E
E’

 M
O

Bottom
-up

List of
candidate
softw

are
m

easures

M
 M

O
Bottom

-up

B
alanced

list of
candidate
softw

are
m

easures

P
B

1,1-5
= {D

erive the attributes
that are observed by the

chosen softw
are

m
easures}

P
B

1,1-6
= {Specify operational

definitions for the
selected softw

are
m

easures}

P
B

1,1-7
= {D

ocum
ent results of

the process and
publicize to all involved

stakeholders}

A
 M

O
B

ottom
-up

{E
’, A

, M
, O

}
 M

B
ottom

-up

O
 M

O
B

ottom
-up

Figure 5.6: BPMN diagram of PB1,1

106

5.4. PRESENTATION OF THE SMPI MODEL

The inner life of process PB1,2
Taking the completed bottom-up definition of software engineering entities of inter-
est (E′), attributes (A), software measures (M), and operational definitions (O) for
granted, a list of candidate thresholds for the selected software measures can be iden-
tified (PB1,2−1). Form that list, specific thresholds should be reduced (PB1,2−2) to a
balanced list of candidate thresholds. Next, a sound argumentation that justifies im-
posing the selected thresholds as measurement goals failing which real, top-down de-
fined ones, should be given (PB1,2−3). Afterwards, the selected thresholds should be
defined (PB1,2−4) as measurement goals (G′) and the results of the process, that is, the
argumentation and the set of proxy measurement goals, should be documented and
publicized. (PB1,2−5) That context is also described in the table beneath and in figure
5.7:

PB1,2 = {Impose thresholds as measurement goals}
Entry criteria: - E′ 6= ∅, A 6= ∅,M 6= ∅, O 6= ∅
Inputs: - {E,A,M, T, F} ⊂MOBottom−up
Tasks: - PB1,2−1 = {Identify candidate thresholds for the selected software

measures.}
- PB1,2−2 = {Select specific thresholds from the list of candidate

thresholds.}
- PB1,2−3 = {Provide a sound argumentation that justifies imposing

the selected thresholds as measurement goals.}
- PB1,2−4 = {Define the selected tresholds as measurement goals.}
- PB1,2−5 = {Document results of the process and publicize

to all involved stakeholders.}
Validation data: - The element counts of the subset of established goals of the mea-

surement outline. ({G′} ⊂MO)
Outputs: - List of candidate thresholds

- Balanced list of candidate thresholds

- Argumentation

- G′

EXit criteria: - G′ 6= ∅

PB1,2 = {Impose thresholds as measurement goals}

PB1,2-1
= {Identify candidate

thresholds for the
selected software

measures}

PB1,2-2
= {Select specific

thresholds from the list
of candidate thresholds}

PB1,2-3
= {Provide a sound
argumentation that

justifies imposing the
selected thresholds as
measurement goals}

PB1,2-4
= {Define the selected

thresholds as
measurement goals}

List of
candidate
thresholds

G’ MOBottom-up

Argumentation

PB1,2-5
= {Document results of

the process and
publicize to all involved

stakeholders}

{G’, E’, A, M, O} MOBottom-up{E’, A, M, O} MOBottom-up
Balanced list
of candidate
thresholds

Figure 5.7: BPMN diagram of PB1,2

107

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

The inner life of process PB1,3
After identifying (PB1,3−1) a list of existing sources of data, that list should be used to-
gether with the results of the previous process step ({G′, E′, A,M,O}) to identify a list
of measures for which data are needed, but are not currently available (PB1,3−2) and
to specify, how to collect and store data (DCollection, RCollection) for each required soft-
ware measure (PB1,3−3). Based on these information, data collection mechanisms and
process guidance (DCollection) for the responsible personnel can be created (PB1,3−4).
Then, the automatic collection of data where appropriate and feasible should be fo-
cused on (PB1,3−5). After all, the procedures for data collection and storage as well
as the data on responsible personnel should be prioritized, reviewed, and updated
(PB1,3−6). Should arise a need to align software measures and measurement goals due
to the data collection and storage procedures, this (PB1,3−7) should be done on the
results ({G′, E′, A,M,O}) of the previous process step. That context is also described
in the table beneath and in figure 5.8:

PB1,3 = {Specify data collection/storage procedures}
Entry criteria: - G′ 6= ∅, E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅)
Inputs: - {G′, E′, A,M,O} ⊂MO
Tasks: - PB1,3−1 = {Identify existing sources of data that are generated

from current work products, processes, or
transactions.}

- PB1,3−2 = {Identify measures for which data are needed, but are
not currently available.}

- PB1,3−3 = {Specify how to collect and store the data for each
required measure.}

- PB1,3−4 = {Create data collection mechanisms and process
guidance for repsonsible personnel.}

- PB1,3−5 = {Support automatic collection of the data where
appropriate and feasible.}

- PB1,3−6 = {Prioritize, review, and update data collection and
storage procedures.}

- PB1,3−7 = {Update measures and measurement goals as
necessary.}

Validation data: - The element count of the subset Dcollection
- The element count of the subset Rcollection

Outputs: - List of existing sources of data

- List of measures with unavailable data

- DCollection ⊂ D ∈MO
- RCollection ⊂ R ∈MO

EXit criteria: - DCollection 6= ∅
- RCollection 6= ∅

108

5.4. PRESENTATION OF THE SMPI MODEL

P B
1,

3
=

{S
pe

ci
fy

 d
at

a
co

lle
ct

io
n/

st
or

ag
e

pr
oc

ed
ur

es
}

P
B

1,
3-

1
=

{Id
en

tif
y

ex
is

tin
g

so
ur

ce
s

of
 d

at
a

th
at

 a
re

ge

ne
ra

te
d

fro
m

 c
ur

re
nt

w

or
k

pr
od

uc
ts

, p
ro

-
ce

ss
es

, o
r t

ra
ns

ac
tio

ns
}

P
B

1,
3-

2
=

{Id
en

tif
y

m
ea

su
re

s
fo

r
w

hi
ch

 d
at

a
ar

e
ne

ed
ed

,
bu

t a
re

 n
ot

 c
ur

re
nt

ly

av
ai

la
bl

e}

P B
1,

3-
3

=
{S

pe
ci

fy
 h

ow
 to

 c
ol

le
ct

an

d
st

or
e

da
ta

 fo
r e

ac
h

re
qu

ire
d

m
ea

su
re

}

P
B

1,
3-

4
=

{C
re

at
e

da
ta

 c
ol

le
ct

io
n

m
ec

ha
ni

sm
s

an
d

pr
oc

es
s

gu
id

an
ce

 fo
r

re
sp

on
si

bl
e

pe
rs

on
ne

l}

P
B

1,
3-

5
=

{S
up

po
rt

au
to

m
at

ic

co
lle

ct
io

n
of

 th
e

da
ta

w

he
re

 a
pp

ro
pr

ia
te

 a
nd

fe

as
ib

le
}

{G
’,

E
’,

A
, M

, O
}

 M
O

Li
st

 o
f

m
ea

su
re

s
w

ith

un
av

ai
la

be
 d

at
a

P B
1,

3-
6

=
{P

rio
rit

iz
e,

 re
vi

ew
, a

nd

up
da

te
 d

at
a

co
lle

ct
io

n
an

d
st

or
ag

e
pr

oc
ed

ur
es

}

P
B

1,
3-

7
=

{U
pd

at
e

m
ea

su
re

s
an

d
m

ea
su

re
m

en
t g

oa
ls

 a
s

ne
ce

ss
ar

y}

Li
st

 o
f e

xi
st

in
g

so
ur

ce
s

of
 d

at
a

D
C

ol
le

ct
io

n
 D

 M

O

R
C

ol
le

ct
io

n
 R

 M

O

Figure 5.8: BPMN diagram of PB1,3

109

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

The inner life of process PB1,4
The final process step PB1,4 in the process group PB1 deals with the specification of
analysis procedures. In doing so, the first activity (PB1,4−1) urges to specify and priori-
tize analyses that will be conducted and reports (DAnalysis) that will be prepared on the
base of the up-till-then available information ({G′, E′, A,M,O}) of process step PB1,2.
Consequently, appropriate data analysis methods and tools can be selected (PB1,4−2)
and administrative procedures including the responsible personnel (RAnalysis) for an-
alyzing and communicating the results specified (PB1,4−3). After completion of the
activities, the proposed contents and format of the specified analyses and reports can
be updated (PB1,4−4). In case measures and measurement goals were also subject to
an alignment, they should be updated (PB1,4−5). Finally, criteria (DAnalysis) for the
evaluation of the analysis results and of the conduct of the measurement and analysis
activities as utility should be specified (PB1,4−3).

The following remarks according to the EITVOX process modeling paradigm and
the BPMN diagram in figure 5.9 describe the activities, as well:

PB1,4 = {Specify analysis procedures}
Entry criteria: - G′ 6= ∅, E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅

- DCollection 6= ∅
- RCollection 6= ∅

Inputs: - {G′, E′, A,M,O} ⊂MO
Tasks: - PB1,4−1 = {Specify and prioritize the analyses that will be

conducted and the reports that will be prepared.}
- PB1,4−2 = {Select appropriate data analysis methods and tools.}
- PB1,4−3 = {Specify administrative procedures for analyzing

the data and communicate the results.}
- PB1,4−4 = {Review and update the proposed content and format

of the specified analysies and reports.}
- PB1,4−5 = {Update measures and measurement goals as

neceassary.}
- PB1,4−6 = {Specify criteria for evaluating the utility of the

analysis results, and of the conduct of the
measurement and analysis activities.}

Validation data: - The element count of the subset DAnalysis
- The element count of the subset RAnalysis

Outputs: - DAnalysis ⊂ D ∈MO
- RAnalysis ⊂ R ∈MO

EXit criteria: - DAnalysis 6= ∅
- RAnalysis 6= ∅

110

5.4. PRESENTATION OF THE SMPI MODEL

P B
1,

4
=

{S
pe

ci
fy

 a
na

ly
si

s
pr

oc
ed

ur
es

}

P
B

1,
4-

1
=

{S
pe

ci
fy

 a
nd

 p
rio

rit
iz

e
th

e
an

al
ys

es
 th

at
 w

ill
 b

e
co

nd
uc

te
d

an
d

th
e

re
po

rts
 th

at
 w

ill
 b

e
pr

ep
ar

ed
}

P
B

1,
4-

2
=

{S
el

ec
t a

pp
ro

pr
ia

te

da
ta

 a
na

ly
si

s
m

et
ho

ds

an
d

to
ol

s}

P B
1,

4-
3

=
{S

pe
ci

fy
 a

dm
in

is
tra

tiv
e

pr
oc

ed
ur

es
 fo

r a
na

ly
zi

ng

th
e

da
ta

 a
nd

co

m
m

un
ic

at
e

th
e

re
su

lts
}

P
B

1,
4-

4
=

{R
ev

ie
w

 a
nd

 u
pd

at
e

th
e

pr
op

os
ed

 c
on

te
nt

an

d
fo

rm
at

 o
f t

he

sp
ec

ifi
ed

 a
na

ly
se

s
an

d
re

po
rts

}

P
B

1,
4-

5
=

{U
pd

at
e

m
ea

su
re

s
an

d
go

al
s

as
 n

ec
es

sa
ry

}

{G
’,

E
’,

A
, M

, O
}

 M
O

P B
1,

4-
6

=
{S

pe
ci

fy
 c

rit
er

ia
 fo

r
ev

al
ua

tin
g

th
e

ut
ili

ty
 o

f
th

e
an

al
ys

is
 re

su
lts

, a
nd

of

 th
e

co
nd

uc
t o

f t
he

m

ea
su

re
m

en
t a

nd

an
al

ys
is

 a
ct

iv
iti

es
}

D
An

al
ys

is
 D

 M

O

R
An

al
ys

is
 R

 M

O

Figure 5.9: BPMN diagram of PB1,4

111

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

5.4.2.2 Examining the process group PB2 at close quarters

Being in the convenient situation to be able to resort to a complete and available mea-
surement outline (MO) that provides all the required information about established
measurement goals (G′), selected software engineering entities of interest (E′), their
attributes (A), operational definitions (O) as well as measurement directives (D) and
the responsible personnel (R), the data collection process group can be started. Based
on the measurement outline, measurement data (Q) can be collected (PB2,1), and
afterwards stored (PB2,2) as formulated according to the EITVOX process modeling
paradigm beneath and illustrated in figure 5.10:

PB2 = {Data collection}
Entry criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅;D 6= ∅;R 6= ∅
Inputs: - {G′, E′, A,M,O,D,R} ⊆MO
Tasks: - PB2,1 = {Collect and validate measurement data.}

- PB2,2 = {Store measurement data.}
Validation data: - The element count of the set Q

Outputs: - Q

EXit criteria: - Q 6= ∅

PB2 = {Data collection}

PB2,1
= {Collect and validate

measurement data}

PB2,2
= {Store measurement

data}

{G’, E’, A, M, O, D, R} MO Q

Figure 5.10: BPMN diagram of PB2

The inner life of process PB2,1
Taking the measurement outline (MO) as input, the base measures and/or quanti-
ties (QBase) can be obtained (PB2,1−1), on the means of which the derived measures
(QDerived) can be generated (PB2,1−2), then. Finally, for both kinds of measures data
integrity checks should be performed (PB2,1−3) as close to the source of the data as
possible. That context is also described in the table beneath and in figure 5.11:

PB2,1 = {Collect and validate measurement data}

PB2,1-1
= {Obtain the data base

measures}

PB2,1-2
= {Generate the data for

derived measures}

{G’, E’, A, M, O, D, R} MO

{QBase} Q

PB2,1-3
= {Perform data integrity
checks as close to the
source of the data as

possible}

{QDerived} Q

Figure 5.11: BPMN diagram of PB2,1

112

5.4. PRESENTATION OF THE SMPI MODEL

PB2,1 = {Collect and validate measurement data}
Entry criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅;D 6= ∅;R 6= ∅
Inputs: - {G′, E′, A,M,O,D,R} ⊆MO
Tasks: - PB2,1−1 = {Obtain the data base measures.}

- PB2,1−2 = {Generate the data for derived measures.}
- PB2,1−3 = {Perform data integrity checks as close to the

source of the data as possible.}
Validation data: - The element count of the subsets QBase and QDerived
Outputs: - QBase ⊂ Q

- QDerived ⊂ Q
EXit criteria: - QBase 6= ∅

- QDerived 6= ∅

The inner life of process PB2,2
Once more, taking the measurement outline (MO) as reference guideline, the mea-
sured quantities (Q) comprising base measures (QBase) and derived measures (QDerived)
should be reviewed (PB2,2−1) to ensure their completeness, integrity, accuracy, and
currency. The stored quantities should only be made available (PB2,2−2) for use by
appropriate personnel and prevented (PB2,2−3) from being used inappropriately. That
context is also described in the table beneath and in figure 5.12:

PB2,2 = {Store measurement data}
Entry criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅;D 6= ∅;R 6= ∅;Q 6= ∅
Inputs: - Q

- {G′, E′, A,M,O,D,R} ⊆MO
Tasks: - PB2,2−1 = {Review the data to ensure their completeness,

integrity, accuracy and currency.}
- PB2,2−2 = {Make the stored contents available for use only

by appropriate groups and personnel.}
- PB2,2−3 = {Prevent the stored information from being used

inappropriately.}
Validation data: - None

Outputs: - None

EXit criteria: - None

PB2,2 = {Store measurement data}

PB2,2-1
= {Review the data to

ensure their
completeness, integrity,
accuracy, and currency}

PB2,2-2
= {Make the stored

contents available for
use only by appropriate
groups and personnel}

{G’, E’, A, M, O, D, R} MO

Q

PB2,2-3
= {Prevent the stored

information from being
used inappropriately}

Figure 5.12: BPMN diagram of PB2,2

113

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

5.4.2.3 Examining the process group PB3 at close quarters

After completion of collecting measurement data and/or quantities (Q) according to
the measurement outline (MO) the quantities can be analyzed (PB3,1), thereby pro-
ducing measurement information products (I), which should be communicated (PB3,2)
as formulated according to the EITVOX process modeling paradigm beneath and illus-
trated in figure 5.13:

PB3 = {Data analysis}
Entry criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅;D 6= ∅;R 6= ∅

- Q 6= ∅
Inputs: - {G′, E′, A,M,O,D,R} ⊆MO

- Q

Tasks: - PB3,1 = {Analyze measurement data.}
- PB3,2 = {Communicate results.}

Validation data: - The element count of the set I

Outputs: - I

EXit criteria: - I 6= ∅

PB3 = {Data analysis}

PB3,1
= {Analyze

measurement data}

PB3,2
= {Communicate results}

{G’, E’, A, M, O, D, R} MO

Q

I

Figure 5.13: BPMN diagram of PB3

The inner life of process PB3,1
The measured base and derived quantities (Q) should be initially analyzed, interpreted,
and conclusions should be drawn (PB3,1−1) with respect to the information of the
measurement outline (MO). This results in measurement information products (I),
for which additional analysis should be performed and corresponding results prepared
(PB3,1−2). Because the information products are the potential foundation for decision
making, the initial results should be reviewed together with the relevant stakeholders
(PB3,1−3) and analyses criteria should be refined for the future (PB3,1−4). That context
is also described in the table beneath and in figure 5.14:

114

5.4. PRESENTATION OF THE SMPI MODEL

PB3,1 = {Analyze measurement data}
Entry criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅;D 6= ∅;R 6= ∅

- Q 6= ∅
Inputs: - {G′, E′, A,M,O,D,R} ⊆MO

- Q

Tasks: - P3,B1−1 = {Conduct initial analyses, interpret the results and draw
preliminary conclusions.}

- P3,B1−2 = {Conduct additional measurement and analysis as
necessary, and prepare results for interpretation.}

- P3,B1−3 = {Review the initial results with relevant stakeholders.}
- P3,B1−4 = {Refine criteria for future analyses.}

Validation data: - The element count of the set I

Outputs: - I

EXit criteria: - I 6= ∅

PB3,1 = {Analyze measurement data}

PB3,1-1
= {Conduct initial

analyses, interpret the
results, and draw

preliminary conclusions}

PB3,1-2
= {Conduct additional

measurement and
analysis as necessary,
and prepare results for

interpretation}

{G’, E’, A, M, O, D, R} MO

Q

PB2,1-3
= {Review the initial

results with the relevant
stakeholders}

PB2,1-4
= {Refine criteria for

future analyses}

I

Figure 5.14: BPMN diagram of PB3,1

The inner life of process PB3,2
The final process PB3,2 of the process group PB3 addresses the activities (PB3,2−1) of
keeping relevant stakeholders apprised of the measurement information products (I)
on a timely basis as defined in parts of the measurement outline (MO) and the activities
of assisting them in understanding the results (PB3,2−2). That context is also described
in the table beneath and in figure 5.15:

PB3,2 = {Communicate results}
Entry criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅;D 6= ∅;R 6= ∅

- I 6= ∅
Inputs: - {G′, E′, A,M,O,D,R} ⊆MO

- I

Tasks: - PB3,2−1 = {Keep relevant stakeholders apprised of measurement
results on a timely basis.}

- PB3,2−2 = {Assist relevant stakeholders in understanding the results.}
Validation data: - None

Outputs: - None

EXit criteria: - None

115

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

PB3,2 = {Communicate results}

PB3,2-1
= {Keep relevant

stakeholders apprised of
measurement results on

a timely basis}

PB3,2-2
= {Assist relevant
stakeholders in

understanding the
results}

{G’, E’, A, M, O, D, R} MO

I

Figure 5.15: BPMN diagram of PB3,2

5.4.2.4 Examining the process group PB4 at close quarters

Because the SMP has not been initiated with top-down defined measurement goals,
but with proxy thresholds for the adopted software measures, causal analysis should
be conducted. In combination with the information of the measurement outline (MO),
variations of the measurement information products (I) from the defined thresholds
should be appraised (PB4,1) resulting in a list of revealed issues. Based on that list,
pertinent root causes can be derived and translated to measurement goals (G′′), which
can then be used as input for the mixed (PM) or top-down (PT) sub-model of the SMPI
model. The peculiarities are formulated according to the EITVOX process modeling
paradigm beneath and illustrated in figure 5.16:

PB4 = {Causal analysis}
Entry criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅;D 6= ∅;R 6= ∅

- I 6= ∅
Inputs: - {G′, E′, A,M,O,D,R} ⊆MO

- I

Tasks: - PB4,1 = {Appraise variations from thresholds}
- PB4,2 = {Translate root causes to measurement goals}

Validation data: - The element count of the set G′′

Outputs: - List of revealed issues

- G′′

EXit criteria: - G′′ 6= {∅}

PB4 = {Causal analysis}

PB4,1
= {Appraise variations

from thresholds}

PB4,2
= {Translate root causes
to measurement goals}

{G’, E’, A, M, O, D, R} MO

I

List of
revealed
issues

G’’

Figure 5.16: BPMN diagram of PB,4

116

5.4. PRESENTATION OF THE SMPI MODEL

The inner life of process PB4,1
In order to conduct an appraisal of variations from thresholds, the variations of the
measurement information products (I) from the defined thresholds and/or proxy goals
(G′) should be identified (PB4,1−1) as a list of variations. Having compiled such a
list, the indicated issues and their impact should be examined concerning the degree
of truth represented by the variations (PB4,1−2). The resulting list of truly revealed
issues should then be review, prioritized, and documented, accordingly (PB4,1−3). That
context is also described in the table beneath and in figure 5.17:

PB4,1 = {Appraise variations from thresholds}
Entry criteria: - G′ 6= ∅, I 6= ∅
Inputs: - {G′} ⊂MOBottom−up

- I

Tasks: - PB4,1−1 = {Identify variations of the measurement information
products from the defined thresholds.}

- PB4,1−2 = {Identify indicated issues and their impact by
examining the degree of truth represented by these
variations.}

- PB4,1−3 = {Review, prioritize and select the revealed issues.}
Validation data: - The element count of the set G′′

Outputs: - List of variations

- List of revealed issues

- G′′

EXit criteria: - G′′ 6= ∅

PB4,1 = {Appraise variations from thresholds}

PB4,1-1
= {Identify variations of

the measurement
information products

from the defined
thresholds}

PB4,1-2
= {Idenitify indicated

issues and their impact
by examining the degree
of truth represented by

these variations}

I

List of
variations

List of
revealed
issues

G’ MOBottom-Up

PB4,1-3
= {Review, prioritize,
and document the
revealed issues}

Figure 5.17: BPMN diagram of PB4,1

117

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

The inner life of process PB4,2
In order to translate root causes of variations from thresholds of selected software mea-
sures, the list of revealed issues should be analyzed and the reasons that underlay the
documented issues should be identified until the root cause has been reached (PB4,2−1).
Then, from the produced list a number of root causes should be selected (PB4,2−2) that
are to be translated. Traversing the list of selected root causes, each of them should be
rephrased (PB4,2−3) to measurement goals (G′). Ultimately, these revealed measure-
ment goals should be reviewed, prioritized, and documented (PB4,2−4). That context
is also described in the table beneath and in figure 5.18:

PB4,2 = {Translate root causes to goals}
Entry criteria: - The list of revealed issues is complete and available.

Inputs: - The list of revealed issues

Tasks: - PB4,2−1 = {Identify the reasons underlying the documented issues
until the root cause has been reached.}

- PB4,2−2 = {Select a number of root causes to be translated.}
- PB4,2−3 = {Rephrase the root causes to measurement goals.}
- PB4,2−4 = {Review, prioritize, and document the revealed

measurement goals.}
Validation data: - The element count of the set G′′

Outputs: - List of root causes

- List of selected root coot causes

- G′′

EXit criteria: - G′′ 6= ∅

PB4,2 = {Translate root causes to measurement goals}

PB4,2-1
= {Identify the reasons

underlying the
documented issues until
the root cause has been

reached}

PB4,2-2
= {Select a number of

root causes to be
translated}

List of root
causes

List of
revealed
issues

PB4,2-3
= {Rephrase the

selected root causes to
measurement goals}

PB4,2-4
= {Review, prioritize,
and document the

revealed measurement
goals}

List of
selected
root causes

G’’

Figure 5.18: BPMN diagram of PB4,2

118

5.4. PRESENTATION OF THE SMPI MODEL

5.4.3 PM — The mixed sub-model in detail

The mixed sub-model (PM) as illustrated in figure 5.19 would then fit best for an
interested organization, if there was a successful bottom-up software measurement
program in place, which should be aligned with a set of defined measurement goals
to drive the software measurement process. In connection with a properly staffed,
well-funded measurement project this is a sign of basic software measurement expe-
riences, on which more sophisticated software measurement processes towards the
holistic goal-orientation can be implemented.

PM = {Mixed software measurement process}

PT1
= {Goal materialization
to software measures}

PM1
= {Measurement outline

reconciliation}

PM2 = PB2
= {Data collection}

PM3 = PB3
= {Data analysis}

E

MOBottom-up = {G’, E’, A, M, O, D, R}

Q I

G MOTop-down = {G’, E’, A, M, O, D, R}

MOMixed = {G’, E’, A, M, O, D, R}

Figure 5.19: BPMN diagram of PM

The first step in the mixed model is the materialization (PT1) of measurement
goals (G) that have been defined in a top-down manner under usage of software en-
gineering entities (E). In the next step, the resulting top-down measurement out-
line (MOTop−down) is reconciliated (PM1) with the bottom-up measurement outline
(MOBottom−up) of a previous measurement process conduct following the bottom-up
measurement paradigm. The mixed measurement outline (MOMixed), which results
from the reconciliation process, is then used for data collection (PM2) of measured
quantities (Q), which are used for data analysis (PM3) to derive measurement infor-
mation products (I), in turn. As becomes clear from figure 5.19, because the process
of ‘goal materialization to software measures’ (PT1) is identical to the one defined in
the next subsection and the data collection and data analysis processes do not differ
from the ones of the bottom-up sub-model (PB) of the SMPI model, they are referenced
(PM2 = PB2, PM3 = PB3) but not modeled again for reasons of space.

119

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

PMixed = PM
Entry criteria: - G 6= ∅, E 6= ∅,MOBottom−up is complete and available

Inputs: - G

- E

- MOBottom−up

Tasks: - PT1 = {Goal materialization to software measures}
- PM1 = {Measurement outline reconciliation}
- PM2 = {Data collection} = PB2

- PM3 = {Data analysis} = PB3

- PM4 = ∅
Validation data: - The element counts of the subsets ofMOMixed

- The element count of the sets Q, I

Outputs: - MOTop−down

- MOMixed

- Q

- I

EXit criteria: - MOMixed is complete and available, Q 6= ∅, I 6= ∅

5.4.3.1 Examining the process group PM1 at close quarters

The process group PM1 of measurement outline reconciliation avails itself of the in-
formation of the top-down measurement outline (MOTop−down) as defined within the
preceding process group and the bottom-up measurement outline (MOBottom−up) of a
previous measurement process run. The first process (PM1,1) consolidates both mea-
surement outlines resulting in reconciliated established measurement goals (G′), soft-
ware engineering entities of interest (E), their measured attributes (A), software mea-
sures (M), and operational definitions (O) as part of the mixed measurement outline
(MOMixed). Adjacently, the data collection and storage procedures and the analysis
procedures and/or directives (D) together with the respectively responsible personnel
(R) are aligned (PM1,2)(PM1,3) with these reconciliated sets as formulated according
to the EITVOX process modeling paradigm beneath and illustrated in figure 5.20:

PM1 = {Measurement outline reconciliation}
Entry criteria: - MOTop−down is complete and available

- MOBottom−up is complete and available

Inputs: - MOTop−down

- MOBottom−up

Tasks: - PM1,1 = {Consolidate measurement outlines.}
- PM1,2 = {Consolidate data collection procedures.}
- PM1,3 = {Consolidate analysis procedures.}

Validation data: - The element count of the subsets ofMOMixed
Outputs: - MOMixed

EXit criteria: - MOMixed is complete and available

120

5.4. PRESENTATION OF THE SMPI MODEL

PM1 = {Measurement outline reconciliation}

PM1,1
= {Consolidate

measurement outlines}

PM1,1
= {Consolidate data
collection/storage

procedures}

PM1,3
= {Consolidate analysis

procedures}

MOBottom-up = {G’, E’, A, M, O, D, R}

MOTop-down = {G’, E’, A, M, O, D, R}

{G’, E’, A, M, O} MOMixed RCollection R MOMixed

DCollection R MOMixed

RAnalysis R MOMixed

DAnalysis R MOMixed

Figure 5.20: BPMN diagram of PM1

The inner life of process PM1,1
To consolidate the measurement outlines towards a mixed measurement outline
(MOMixed), software measures (MBottom−up ⊂MMixed) from the bottom-up measure-
ment outline (MOBottom−up) that are of avail for the ones of the goal-oriented measure-
ment outline (MOTop−down) have to be identified (PM1,1−1). Together with these mea-
sures the goal-oriented measurement outline is examined to identify (PM1,1−2) addi-
tional software measures to be added (MTop−down ⊂MMixed). After having completed
the set of mixed software measures (MMixed) the resulting mixed measurement outline
is to be replenished (PM1,1−3) with information concerning software engineering enti-
ties (E) to quantify, their attributes (A), and operational definitions (O). In fact, there
is the reconciliated set of mixed software measures, but the measurement goals have
not been reconciliated and documented yet. This is to be catched up by tracing back
(PM1,1−4) the software measures from the mixed measurement outline to measure-
ment goals (G′). Afterwards, the results of the process ({G′, E′, A,M,O} ⊂MOMixed)
should be reviewed as well as documented (PM1,1−5) and communicated to all in-
volved stakeholders (PM1,1−6). That context is also described in the table beneath and
in figure 5.21:

121

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

P
M

1,1 = {C
onsolidate m

easurem
ent outlines}

P
M

1,1-1
= {Identify softw

are
m

easures from
 the

bottom
-up m

easurem
ent

outline that are of avail
for the ones of the goal-
oriented m

easurem
ent

outline}

P
M

1,1-3
= {R

eplenish the resul-
ting m

ixed m
easurem

ent
outline w

ith inform
ation

concering m
easured

entities, attributes, and
operational definitions}

M
O

B
ottom

-up = {G
’, E’, A, M

, O
, D

, R
}

M
O

Top-dow
n = {G

’, E
’, A

, M
, O

, D
, R

}

M
B

ottom
-up

 M
M

ixed
 M

O
M

ixed P
M

1,1-2
= {Identify additional

softw
are m

easures from

the goal-oriented
m

easurem
ent outline}

M
Top-dow

n
 M

M
ixed

 M
O

M
ixed

P
M

1,1-4
= {Trace back the

softw
are m

easures of
the m

ixed m
easurem

ent
outline to m

easurem
ent

goals}

{E
’, A, O

}
 M

O
M

ixed
G

’
 M

O
M

ixed

P
M

1,1-5
= {R

eview
 and

docum
ent the results of

the process}

P
M

1,1-6
= {P

rovide feedback to
all involved

stakeholders}

{G
’, E

’, A, M
, O

}
 M

O
M

ixed

Figure 5.21: BPMN diagram of PM1,1

122

5.4. PRESENTATION OF THE SMPI MODEL

PM1,1 = {Consolidate measurement outlines}
Entry criteria: - MOTop−down,MOBottom−up are complete and available

Inputs: - MOTop−down

- MOBottom−up

Tasks: - PM1,1−1 = {Identify software measures from the bottom− up
measurement outline that are of avail for the ones
of the goal− oriented measurement outline.}

- PM1,1−2 = {Identify additional software measures from the
goal− oriented measurement outline.}

- PM1,1−3 = {Replenish the resulting mixed measurement outline
with information concerning measured entities,
attributes, and operational definitions.}

- PM1,1−4 = {Trace back the software measures of the mixed
measurement outline to measurement goals.}

- PM1,1−5 = {Review and document the results of the process.}
- PM1,1−6 = {Provide feedback to all involved stakeholders.}

Validation data: - The element count of the subsets {G′, E′, A,M,O} ⊂MOMixed
Outputs: - {G′, E′, A,M,O} ⊂MOMixed
EXit criteria: - G′ 6= ∅;E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅

The inner life of process PM1,2
The consolidation of data collection and storage procedures follows the consolidation
of the measurement outlines. On the base of both measurement outlines, the bottom-
up (MOBottom−up) and the top-down (MOTop−down) one, existing data collection and
storage procedures (DCollectionBottom−up , DCollectionTop−down) as well as the responsible
personnel (RCollectionBottom−up , RCollectionTop−down) for the software measures comprised
in the mixed measurement outline (MOMixed) should be identified (PM1,2−1). Then,
the mixed measurement outline (MOMixed) should be replenished with these informa-
tion (PM1,2−2) and afterwards reviewed and corrected (PM1,2−3) as necessary. That
context is also described in the table beneath and in figure 5.22:

123

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

PM1,2 = {Consolidate data collection/storage procedures.}
Entry criteria: - MOTop−down,MOBottom−up are complete and available

Inputs: - MOTop−down

- MOBottom−up

Tasks: - PM1,2−1 = {Identify existing data collection/storage procedures
and responsible personnel for the software measures
comprised in the mixed measurement outline.}

- PM1,2−2 = {Replenish the mixed measurement outline with
information concerning data collection/storage
procedures and responsible personnel.}

- PM1,2−3 = {Review and correct the results of the process as
neceassary.}

Validation data: - The element count of the subsets DCollection ⊂ D ∈MOMixed
- The element count of the subsets RCollection ⊂ R ∈MOMixed

Outputs: - DCollection ⊂ D ∈MOMixed
- RCollection ⊂ R ∈MOMixed

EXit criteria: - DCollection 6= ∅, RCollection 6= ∅

PM1,2 = {Consolidate data collection/storage procedures}

PM1,2-1
= {Identify existing data

collection/storage
procedures and

responsible personnel
for the software

measures comprised in
the mixed measurement

outline}

PM1,2-3
= {Review and correct

the results of the
process as necessary}

MOBottom-up = {G’, E’, A, M, O, D, R}

MOTop-down = {G’, E’, A, M, O, D, R}

DCollection_Bottom-up DMixed MOMixed

PM1,2-2
= {Replenish the mixed
measurement outline

with information
concerning data

collection/storage
procedures and

responsible personnel}

{DCollection, RCollection} MOMixed

DCollection _Top-Down DMixed MOMixed

RCollection_Bottom-up RMixed MOMixed

RCollection_Top-Down RMixed MOMixed

{G’, E’, A, M, O} MOMixed

Figure 5.22: BPMN diagram of PM1,2

124

5.4. PRESENTATION OF THE SMPI MODEL

The final process of reconciliation between a bottom-up measurement outline
(MOBottom−up) and a top-down one (MOTop−down) deals with the consolidation of
analysis procedures. Therefore, existing analysis procedures (DAnalysisBottom−up ,
DAnalysisTop−down) and responsible personnel (RAnalysisBottom−up , RAnalysisTop−down) for
the measures comprised in the mixed measurement outline (MOMixed) should be iden-
tified (PM1,3−1). Once, the information are available and the activity is completed, the
mixed measurement outline should be replenished (PM1,3−2) with these information as
well as reviewed and corrected (PM1,3−3), if necessary. That context is also described
in the table beneath and in figure 5.23:

PM1,3 = {Consolidate data collection/storage procedures.}
Entry criteria: - MOTop−down,MOBottom−up are complete and available

Inputs: - MOTop−down

- MOBottom−up

Tasks: - PM1,3−1 = {Identify existing analysis procedures and responsible
personnel for the software measures comprised in
the mixed measurement outline.}

- PM1,3−2 = {Replenish the mixed measurement outline with
information concerning data analysis procedures
and responsible personnel.}

- PM1,3−3 = {Review and correct the results of the process as
neceassary.}

Validation data: - The element count of the subsets DAnalysis ⊂ D ∈MOMixed
- The element count of the subsets RAnalysis ⊂ R ∈MOMixed

Outputs: - DAnalysis ⊂ D ∈MOMixed
- RAnalysis ⊂ R ∈MOMixed

EXit criteria: - DAnalysis 6= ∅, RAnalysis 6= ∅

125

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

PM1,3 = {Consolidate analysis procedures}

PM1,3-1
= {Identify existing

analysis procedures and
responsible personnel

for the software
measures comprised in
the mixed measurement

outline}

PM1,3-3
= {Review and correct

the results of the
process as necessary}

MOBottom-up = {G’, E’, A, M, O, D, R}

MOTop-down = {G’, E’, A, M, O, D, R}

DAnalysis_Bottom-up DMixed MOMixed

PM1,3-2
= {Replenish the mixed
measurement outline

with information
concerning data analysis

procedures and
responsible personnel}

{DCollection, RCollection} MOMixed

DAnalysis_Top-Down DMixed MOMixed

RAnalysis_Bottom-up RMixed MOMixed

RAnalysis_Top-Down RMixed MOMixed

{G’, E’, A, M, O} MOMixed

Figure 5.23: BPMN diagram of PM1,3

5.4.4 PT — The top-down sub-model in detail

After all, at the top scale of the paradigm-specific sub-models of the SMPI model, the
top-down sub-model (PT) resides. Apart from a perfectly set up measurement project,
software measurement at this stage of process improvement is only conducted accord-
ing to important business goals. There are no data collection activities that end up
in data cemeteries. This pinpoints on a huge amount of experience with software
measurement processes. By following the top-down sub-model these processes can
be stabilized for later improvement of their capability according to the ‘Measurement
& Analysis’ support process area being part of the continuous representation of SEI’s
CMMI.

Analog to the mixed sub-model (PM), the materialization of measurement goals
(G) that have been defined in a top-down manner under usage of software engineering
entities (E) forms the first step (PT1). The resulting top-down measurement outline
(MOTop−down) is then taken as input for collecting (PT2) measurement data and/or
quantities (Q), which are analyzed (PT3) in order to gain measurement information
products (I). As becomes clear from figure 5.24, because the data collection and data
analysis processes do not differ from the ones of the bottom-up sub-model (PB) of the
SMPI model, they are referenced (PT2 = PB2, PT3 = PB3) but not modeled again for
reasons of space, once more.

126

5.4. PRESENTATION OF THE SMPI MODEL

PT = {Top-down software measurement process}

PT1
= {Goal materialization
to software measures}

PT2 = PB2
= {Data collection}

PT3 = PB3
= {Data analysis}

E

MOTop-down = {G’, E’, A, M, O, D, R}

Q I

G

Figure 5.24: BPMN diagram of PT

PTop−down = PT
Entry criteria: - G 6= ∅, E 6= ∅
Inputs: - G

- E

Tasks: - PT1 = {Goal materialization to software measures}
- PT2 = {Data collection} = PB2

- PT3 = {Data analysis} = PB3

- PT4 = {∅}
Validation data: - The element counts of the subsets ofMOTop−down

- The element count of the sets Q, I

Outputs: - MOTop−down

- Q

- I

EXit criteria: - MOTop−down is complete and available

- Q 6= ∅, I 6= ∅

5.4.4.1 Examining the process group PT1 at close quarters

Starting from a set of general measurement goals (G), the first process addresses the
establishment (PT1,1) of specific measurement objectives and/or goals (G′). Together
with the set of software engineering entities of an organization, the specification of
measures (PT1,2) yields to the selection of software engineering entities of interest (E′),
their attributes (A), software measures (M), and operational definitions (O). Based
on these information, procedures for data collection/storage (DCollection) and analy-
sis (DAnalysis) as well as the respectively responsible personnel (RCollection, RAnalysis)
shall be produced (PT1,3, PT1,4). Taken altogether, a top-down measurement outline
(MOTop−down)

As depicted in figure 5.25 the processes of specifying data collection/storage pro-
cedures and specifying analysis procedures are identical to the ones defined in the
bottom-up model (PB) of the SMPI model, it is, once more, forbeared from present-
ing it with redundancy. In lieu thereof, the processes are solely referenced ((PT1,3 =
PB1,3, PT1,4 = PB1,4)).

127

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

PT1 = {Goal materialization to software measures}
Entry criteria: - G 6= ∅, E 6= ∅
Inputs: - G

- E

Tasks: - PT1,1 = {Establish measurement objectives}
- PT1,2 = {Specify measures}
- PT1,3 = {Specify data collection/storage procedures} = PB1,3

- PT1,4 = {Specify analysis procedures} = PB1,4

Validation data: - The element counts of the subsets ofMOTop−down
Outputs: - MOTop−down

EXit criteria: - MOTop−down is complete and available

PT1 = {Goal materialization to software measures}

PT1,1
= {Establish

measurement
objectives}

PT1,2
= {Specify measures}

PT1,3 = PB1,3
= {Specify data

collection/storage
procedures}

PT1,4 = PB1,4
= {Specify analysis

procedures}

G

{E’, A, M, O} MOTop-down

G’

Rcollection R MOTop-down

DCollection D MOTop-down

RAnalysis R MOTop-down

DAnalysis D MOTop-down

E

Figure 5.25: BPMN diagram of PT1

The inner life of process PT1,1
In order to establish specific measurement objectives and/or goals, the set of general
measurement goals (G) is taken as input for the documentation (PT1,1−1) of informa-
tion needs and objectives. As a result the records on the list of information needs and
objectives should be prioritized (PT1,1−2) yielding to a prioritized list. In turn, that list
should be taken to document, review, and update (PT1,1−3) the specific measurement
objectives and/or goals (G′). Then, feedback for refining and clarifying the informa-
tion needs and objectives as necessary, should be given (PT1,1−4) and traceability of
the measurement objectives to the identified information needs and objectives should
be maintained (PT1,1−5). That context is also described in the table beneath and illus-
trated in figure 5.26:

128

5.4. PRESENTATION OF THE SMPI MODEL

PT1,1 = {Establish measurement objectives}
Entry criteria: - G 6= ∅
Inputs: - G

Tasks: - PT1,1−1 = {Document information needs and objectives.}
- PT1,1−2 = {Prioritize information needs and objectives.}
- PT1,1−3 = {Document, review, and update measurement

objectives.}
- PT1,1−4 = {Provide feedback for refining and clarifying

information needs and objectives as necessary.}
- PT1,1−5 = {Maintain traceability of the measurement objectives

to the identified information needs and objectives.}
Validation data: - The element count of the set G′

Outputs: - List of information needs and objectives

- List of prioritized information needs and objectives

- G′ ∈MOTop−down
EXit criteria: - G′ 6= ∅

PT1,1 = {Establish measurement objectives}

PT1,1-1
= {Document information

needs and objectives}

PT1,1-2
= {Prioritize information
needs and objectives}

PT1,1-3
= {Document, review,

and update
measurement

objectives}

PT1,1-4
= {Provide feedback for
refining and clarifying
information needs and

objectives as necessary.

G’G

PT1,1-5
= {Maintain traceability

of the measurement
objectives to the

identified information
needs and objectives}

List of
information
needs and
objectives

List of
prioritized
information
needs and
objectives

Figure 5.26: BPMN diagram of PT1,1

The inner life of process PT1,2
Accompanied by the revealed set of established, specific measurement goals (G′) and
the general set of software engineering entities (E) of an organization, candidate soft-
ware measures should be identified (PT1,2−1) with respect to the documented specific
measurement goals. This results in a set of selected software engineering entities (E′),
their attributes to be quantified (A) by identified software measures (M). Next, exist-
ing measures that already address the specific measurement goals should be identified
(PT1,2−2) yielding to a list of existing measures. With the aid of that list, operational
definitions (O) can be either adopted from existing software measures or specified from
scratch for new ones (PT1,2−3). After all, the measures should be prioritized, reviewed,
documented, and if necessary updated (PT1,2−4). That context is also described in the
table beneath and illustrated in figure 5.27:

129

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

PT1,2 = {Specify measures}
Entry criteria: - G′ 6= ∅, E 6= ∅
Inputs: - G′

- E

Tasks: - PT1,2−1 = {Identify candidate measures based on documented}
measurement goals.}

- PT1,2−2 = {Identify existing measures that already address}
the measurement goals.}

- PT1,2−3 = {Specify operational definitions for the measures.}
- PT1,2−4 = {Prioritize, review, document and update measures.}

Validation data: - The element count of the subsets {E′, A,M,O}.
Outputs: - {E′, A,M,O} ⊂MOTop−down
EXit criteria: - E′ 6= ∅;A 6= ∅;M 6= ∅;O 6= ∅

PT1,2 = {Specify measures}

PT1,2-1
= {Identify candidate
measures based on

documented
measurement goals}

PT1,2-2
= {Identify existing

measures that already
address the

measurement goals}

PT1,2-3
= {Specify operational

definitions for the
measures}

PT1,2-4
= {Prioritize, review,

document, and update
measures}

G’ List of
existing
measures

O MOTop-down

{E’, A, M} MOTop-downE

Figure 5.27: BPMN diagram of PT1,2

5.5 Conclusion

By means of the chapter at hand, the author of this thesis addressed the fourth and
fifth sub-questions of this research project:

RQ4. What would be the concept to overcome the specific shortcomings of
the process improvement model finally extracted in RQ3 with respect
to the criteria of RQ1/RQ2?

RQ5. How can the approach proposed as result of RQ4 be transferred into
a stepwise software measurement process improvement model?

As revealed in chapter 4 the CMMI-MA support process area of the CMMI Frame-
work v1.1 exemplarily implements the related, up-to-date standards, thereby fully com-
plying with the software measurement process model of ISO/IEC Standard 15939 and

130

5.5. CONCLUSION

with the regulations of ISO/IEC Standard 15504 SPICE, roughly speaking. Thus, it was
accepted as a basis model for software measurement process improvement. Recog-
nizing its shortcoming of dealing with the top-down software measurement paradigm
alone and disregarding the important bottom-up and mixed approaches, the model of
the ‘Measurement & Analysis’ support process area was selected as intellectual foun-
dation. In order to overcome its revealed shortcoming, the design and development
concept (DC) was to develop a supplemental process model covering the improve-
ment of the software measurement process by running through all of the measurement
paradigms, one after another. At the same time a jump into a paradigm-specific sub-
model relative to the level of ability to define measurement goals should be possible,
too.

In order to answer the sixth sub-question of this research work, three development
rationales (DR1, DR2, DR3) were set up: A consensus of phases of the software mea-
surement process as extracted from reference literature and specific for each of the
software measurement paradigms, was produced. This provided a framework for the
process model of the complemented SMPI model and its paradigm-related sub-models.
Next, the distinct phases of the process sub-models were filled with life. That is, appli-
cable contents was mapped from reference literature and best practices as mentioned
in chapter 2, where possible. In the cases where the reference literature kept quiet, the
development of the contents was pursued independently by the author. Starting from
the CMMI-MA as basis model, the in the described manner complemented model forms
the empirical, descriptive SMPI model seen from the functional, behavioral, organiza-
tional, and informational perspectives for the management domain (cf. section 3.2).
After all, the SMPI model as product of the author’s scientific work was presented both,
the whole model at a glance and each of the paradigm-specific sub-models in detail. In
doing so, the graphical diagrams using the BPMN of OMG was complemented by a tex-
tual formulation using the EITVOX process modeling paradigm, which is very common
in industry and should ease the adoption of the model in the target group in industry.

When reducing the SMPI model to the basic building blocks, a process system tax-
onomy different from the one presented in chapter 3 by Wang et al. [WK00] was chosen
to provide a contrast. A mapping between the taxonomy of Wang et al. and the virtual
process elements of the model can be easily conducted as shown in table 5.4∗.

Process system taxonomy [WK00] Process elements of the SMPI model

Process system SMPI model (Count: 1)

(P)

Process subsystem Paradigm-specific sub-models (Count: 3)

(PB , PM , PT)

Process category Process groups (Count: 10)

(PBa, PMh, PTx)

Process Processes (Count: 15)

(PBa,b, PMh,i, PTx,y)

Practice Activities (Count: 65)

(PBa,b−c, PMh,i−j , PTx,y−z)

Table 5.4: Confrontation of the general process system taxonomy with the process
elements of the SMPI model

∗The count of distinct process elements of the SMPI model model is provided in brackets.

131

CHAPTER 5. THE SOFTWARE MEASUREMENT PROCESS IMPROVEMENT (SMPI)
MODEL

Ultimately, the features of the SMPI model as adopted from the CMMI-MA and
developed in this chapter, shall be recapitulated again:

RQ1 (Content-related criteria) CMMI-MA SMPI

C1. The scope of the process improvement model must be
(at least partially) on software measurement process
implementation in industrial settings.

X X

C2. The process improvement model must have been de-
veloped with scientific rigor.

X X

C3. The process improvement model must be able to re-
flect the sequential application of the ‘bottom-up’,
‘mixed’, and ‘top-down’ measurement paradigms
during implementation of software measurement pro-
cesses in industrial settings.

– X

RQ2 (Model-related criteria) CMMI-MA SMPI

M1. The process improvement model must provide a pro-
cess reference model compliant with the require-
ments of ISO/IEC Standard 15504.

X X

M2. The process improvement model must be compatible
with the measurement framework of ISO/IEC Stan-
dard 15504.

X X

M3. The process improvement model’s process assess-
ment model must represent a mapping of the process
reference model and the measurement framework of
ISO/IEC Standard 15504.

X X

M4. The process improvement model’s assessment pro-
cess must observe the regulations of ISO/IEC Stan-
dard 15504.

X X

M5. The process improvement model must provide process
improvement guidelines for the specified scope.

X X

RQ3 (Basis model and its shortcomings)

B1. ‘Measurement & Analysis’ (CMMI-MA) support pro-
cess area of the CMMI Framework v1.1

CMMI-MA

132

5.5. CONCLUSION

B2. Lack of support of the sequential application of the
‘bottom-up’, ‘mixed’, and ‘top-down’ measurement
paradigms during implementation of the software
measurement process.

CMMI-MA

RQ4 (Development concept) CMMI-MA SMPI

DC. Extend the ‘Measurement & Analysis’ support pro-
cess area of the CMMI Framework v1.1 so that it can
support the sequential application of the ‘bottom-up’,
‘mixed’, and ‘top-down’ measurement paradigms
during implementation of the software measurement
process in industrial settings!

– X

RQ5 (Development rationale) CMMI-MA SMPI

DR1. Establish consensus among the phases of the differ-
ent software measurement process models specific for
each measurement paradigm.

– X

DR2. Perform a mapping of processes and activities onto
the consensus phases of the different software mea-
surement process models specific for each paradigm.
Bring life into topics not covered.

– X

DR3. Provide a graphical and a textual formulation for each
of the different software measurement process models
specific for each measurement paradigm.

– X

After the completion of the development work as presented in this chapter, the
validation of the SMPI model in the target area of industry application has to follow.
Two different models, that is the ones of CMMI-MA and of SMPI, are available. Thus,
a statistical test of two different hypotheses has to be performed: The null-hypothesis
(H0) and the alternative hypothesis (H1), which can be defined as following:

RQ6 (Case-study validation using statistical test of hypotheses)

H0 Validating appropriately, there is no difference in improving the implementation
and sustainment of the software measurement process for an unexperienced orga-
nization between the usage of the CMMI-MA model and the SMPI model.

H1 Validating appropriately, the SMPI model better supports the implementation and
sustainment of the software measurement process for an unexperienced organiza-
tion than the CMMI-MA.

133

Part III

Measure, analyze, evaluate

135

Chapter 6

Work Validation

“Case studies help industry evaluate the benefits of methods and
tools and provide a cost-effective way to ensure that

process changes provide the desired results.”

– Barbara A. Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger∗ [KPF95] –

6.1 Introduction

Undoubtedly, the stepwise SMPI process model for improving the implementation and
sustainment of the software measurement process in industrial settings should be tested,
whether a real improvement compared with the effects of a traditional approach to the
problem might be attested for industrial software engineering settings. Only if this was
the case, the improvement approach would be useful and the research project could be
successfully completed.

As mentioned earlier (cf. 1.2.5) there are several ways to validate methods or mod-
els in empirical software engineering such as surveys, experiments, and case studies,
with each of them depending on the scope and/or extent of the validation efforts. The
author counts himself lucky for having been given the opportunity to prove the case for
the SMPI model in a single project in an industrial software engineering organization
as a validation procedure that is commonly called case study or pilot study. Fortunately,
there is some good advice available on how to perform experimental research in soft-
ware engineering in general, and on how to perform case studies as ‘research in the typ-
ical’ in particular. [FPG94] [KPP95] [Kit96a] [Gla97] [KPP+02] And it was felt that ad-
herence to those good advices is more than necessary for a case study itself to cope with
the four criteria of research-design quality (construct, internal, external validity, and ex-
perimental reliability) Yin [Yin02, p. 34] postulates. To ensure research-design quality,
the seven-step ‘Case Study Guidelines’ proposed by Kitchenham et al. [KPP95] [Kit96a]
were adopted and brought together with their later remarks [KPP+02] concerning the
experimental context, experimental design, the conduct of the study and data collec-
tion, analysis, presentation of results, and interpretation of results. Furthermore, be-
cause a successful application has been multiply reported [BC91] [BMA96] [ALB99]
[Apr05] elements of Basili’s framework [BSH86, Bas93] were interspersed, too. In the
following, the conducted case study will be described successively according to the key
points.
∗English researchers and practitioners in software engineering, luminaries of software measurement

137

CHAPTER 6. WORK VALIDATION

6.2 The case study’s industrial context

Because describing the circumstances, under which the empirical case study evaluation
was conducted, can aid interested organizations in deciding, whether the improve-
ment approach is viable to be replicated in the own environment, it is described next.
A precondition to conduct the empirical investigation in the host organization was the
author’s commitment to sign and respect a non-disclosure agreement. In it, the orga-
nization, being different from the author’s current employer, obligates him to withhold
any information that allows one to draw conclusions on the organization’s brand name,
its projects, or products, because it was considered strategically important. However,
the anonymity achieved by sanitizing the information should not pose a problem or
affect the general validity of the results.

After having been separated from the parent group and bought up, the host organi-
zation, being situated in the southern part of Germany, purely operated in the software
engineering sector. Starting from a significantly higher but not communicated number
of software developers, who developed a wider range of software products before the
separation, merely fifty of them bearing a good deal of experience remained in the
organization, at the time of the case study. Then, just exclusively developing appli-
cation software in the trenches of an evolutionary, incremental development process,
the company navigated in choppy water. However, the top management of the asset
stripper triggered the introduction of a SPI initiative based on the SEI’s CMMI Frame-
work v1.1 in the organization. Having set the target profile of process areas required
in maturity level two of the model’s staged representation, the preparation of process
descriptions was already completed. In contrast, the achievements in other process
areas were proceeding unassertively or simply failed. A failure was especially the case
for the support process area ‘Measurement & Analysis’, because software measurement
had been neglected ever before.

Thus, a predisposition to try out the improvement approach of the author’s SMPI
model to implement and sustain a SMP from scratch in the course of a case study was in
place, backed up by funding and commitment of the host organization’s management.
Due to the narrow schedule of a remaining preparation phase for an internal Standard
CMMI Appraisal Method for Process Improvement (SCAMPI) class C assessment of one
year, the sponsoring management of the host organization set the timescale for the case
study to three months at maximum. Therefore, a special ‘Measurement & Analysis’
project was set up having adequate funding and unprejudiced personnel consisting of
one employee full-time and two people working half-time and on other projects and
having been assigned by normal staff-allocation procedures. Because all of the project
team members were not experienced in leading a project, a role of the project leader
was appointed arbitrarily to one of them.

6.3 Discussion of hypotheses

The lack of experience with the software measurement process within the small project
team paired with the urgent need to show off results, set the stage for testing both ap-
proaches independently. That is, the traditional top-down software measurement pro-
cess model as manifested in the CMMI Framework’s ‘Measurement & Analysis’ support
process area as well as the SMPI model that additionally provides processes following
the bottom-up and mixed measurement paradigms on top. Having the top manage-
ment’s implied engagement to test the traditional approach to SMP implementation
and sustainment at first as treatment one and in case of failure, the improved approach

138

6.4. CASE STUDY DESIGN

of the author as treatment two, the null-hypothesis (H0) and the alternative hypothesis
(H1) to be tested were formulated as following:

H0 There is no difference in improving the implementation and sustain-
ment of the software measurement process for an unexperienced or-
ganization between the usage of the CMMI-MA model and the SMPI
model.

H1 The SMPI model better supports the implementation and sustainment
of the software measurement process for an unexperienced organiza-
tion than the CMMI-MA.

6.4 Case study design

The single project case study approach yields to the restriction of its population to a
single organization with the primary unit of analysis being the unparalleled project of
implementing and sustaining a SMP for pilot project producing application software
X. Because the author, as researcher planning and organizing the performance of the
case study, has had only a small stake in the build-up of the project team for the ‘Mea-
surement & Analysis’ project of the host organization, no sampling procedure could be
used. However, the concerns of the author to take across the team of the previously
failed ‘Measurement & Analysis’ project led to the allocation of three unprejudiced staff
members having the same lack of measurement experience as any other employee of
the organization. So it was hoped that the effects of learning from mistakes or elevated
enthusiasm and/or skepticism of the team members would not interfere the case study.

Because there was vested interest of the author to prove the case for the SMPI
model, apart from an introduction of the constituents of both treatments, the project
staff should be left alone with the process descriptions to reduce bias. Moreover, the
author should solely be in the position of an observer. The general outcomes of the
case study were then defined by the management of the company relatively fuzzy:

• “Implement a working software measurement program with respect to the ‘Mea-
surement & Analysis’ support process area of the CMMI Framework v1.1 within
three months.”

• “Sustain the implemented measurement program at least until the SCAMPI class
C assessment in approximately one year.”

These guidelines have been translated into the following outcome measures for the end
of the case study (1) and/or a revisit after the SCAMPI class C assessment (2):

1. The existence of a set of top-down defined measurement goals (G), a resulting
measurement outline (MO), accordingly measured quantities (Q) as well as the
measurement information products (I) satisfying the top-down defined measure-
ment goals.

2. The existence of (1) at the time of the SCAMPI class C assessment.

139

CHAPTER 6. WORK VALIDATION

6.5 Conduct of the case study and data collection

Owing to the considered strategic importance, the non disclosure agreement with the
host organization forbids the unvarnished publication of intermediate work products.
Thus, the description of the conduct of the case study, is restricted to rather summa-
rized events. However, the author feels that this does not hinder the description’s
significance.

6.5.1 Application of treatment one

At the beginning, the project team members familiarized themselves with the ‘Measure-
ment & Analysis’ support process area of the CMMI Framework v1.1, once more. When
they recognized that a set of measurement goals was required as input to the mea-
surement process, management was asked to provide their measurement goals. But
because in management only a fuzzy need for improvement prevailed that was rather
caused by gut-feel than by being able to assess the current position, no measurement
information needs and/or goals could be provided. After two weeks of intensive discus-
sions, the project team capitulated with the application of treatment one. This decision
was backed up by hindsight of management that goal-oriented measurement without
goals was a useless undertaking and resembled willful waste of resources.

Thus the application of treatment one for that organization and/or measurement
project with management and staff being completely unexperienced in software mea-
surement in general and goal-setting in particular, was suspended without any outcome
after two calendar weeks and approximately 20 person days of effort of the measure-
ment project team.

6.5.2 Application of treatment two

The application of treatment two, that is the author’s SMPI model, was started at the
beginning of the fourth calendar week by the same project members. In consequence
of the early failure of treatment one, the improved model was studied. Because the
inability of management to set solid measurement goals did not die away, the improved
process model was given a chance because it helps in setting these goals by running
through all of its sub-models, successively. A sketch of events that occurred during the
execution of the process groups of each sub-model is given beneath.

1. Execution of the bottom-up sub-model of the SMPI model
PB1 — Selection of software measures: Based on a small literature study and on an
inquiry of a German professional association dealing with software measurement in
general, a universe of software measures was selected. After informal discussions with
management, the number of software measures was restricted to only one, that was
quality of software X in terms of the number of post-release defects after one month
of usage, as similarly proposed by Putnam and Myers [PM03]. For that software mea-
sure, a threshold was set by discussing with other software developers and compliance
with that threshold was set as proxy measurement goal. Fostered by the completed,
parallel and stumbled in introduction of a commercial-off-the-shelf defect data base,
the data collection and storage procedures for the number of post-release defects for a
product within the one-month post-release period were provided as part of the technol-
ogy introduction project of the company. For this simple software measure the analysis
obligations were easily provided.

140

6.5. CONDUCT OF THE CASE STUDY AND DATA COLLECTION

PB2 — Data collection: Benefiting from the parallel introduction of the defect data
base and the obligation for software developers to track incoming defects according to
the process defined by the technology introduction project, data collection and storage
were performed exemplarily.
PB3 — Data analysis: The analysis of the measured quantities with respect to the

set measurement goal or rather threshold, yielded to a disclosure of strong variances
which were communicated to management.
PB4 — Causal analysis: After having been pointed to a variation from the set thresh-

old for the quality-related software measure, management appraised the variation and
regarded this to be of importance. During a closed meeting, management identified
the root cause and rephrased it into the first top-down defined measurement goals: (1)
Identify failure-prone components of software X prior to release. (2) Identify defects of
software X in the first month after release.

The execution of the bottom-up sub-model of the SMPI model as a first step could
be completed after six calendar weeks (approximately 60 person days of effort of the
measurement project team) resulting in an intermediate results (measured quantities
(Q), measurement information products (I), a measurement outline (MOBottom−up),
and a set of measurement goals (G) derived by causal analysis) that satisfied all stake-
holders, at least for the moment.

2. Execution of the mixed sub-model of the SMPI model
PT1 — Goal materialization to software measures: The two measurement goals defined
as the result of the execution of the bottom-up sub-model of the SMPI model, were
reckoned as mandatory. Accordingly, two software measures (size in terms of lines
of code, and complexity in terms of McCabe’s cyclomatic complexity [McC76]) were
defined for goal (1) and one (the already established defect count for the first month
after release) for goal (2). Especially for the two software measures, required for the
quantification of goal (1) the definition of data collection/storage and analysis proce-
dures, which would fit to the defined operational definitions of the software measures,
was tedious but could be successfully completed. To promote the later collection of the
software measures for goal (1), a small parser was provided as plug-in module to the
integrated development environment used by the software developers.
PM1 — Measurement outline reconciliation: Having the opportunity to resort on the

measurement outline of the bottom-up sub-model of the SMPI model, the reconcilia-
tion between the newly defined mixed measurement outline and the previous one was
relatively easy. Because the only one software measure of the bottom-up measurement
outline was still of interest and thus also comprised in the recent measurement outline,
in this special case the measures as well as the data collection/storage and analysis
procedures were not subject to reconciliation.
PM2 — Data collection: While the data collection for the defect count rapidly be-

came a routine activity of the software developers, data collection for the chosen size
and complexity software measures was burdensome despite of the provided plug-in
tool. However, face-to-face promotion of these software measures and the measure-
ment goals behind them yielded to appreciation among software developers and sup-
port — some times grudgingly.
PM3 — Data analysis: The result of analyzing the measured quantities towards

measurement information products was twofold: On the one hand side, the analysis
of the software measures used for the quantification of goal (1) pointed on weak spots
in the development process and also on failure-prone components of software X. On
the other hand side, the ongoing analysis of the defect count for the first month after
release of software X did not yield to an improved situation of the faults that occurred
at the user sites as defects. But the team of the ‘Measurement & Analysis’ project

141

CHAPTER 6. WORK VALIDATION

understood that this was not due. Moreover, the similar observations of the bottom-
up sub-model were used to improve goal-setting that resulted in the exposition of the
weak points, which could only then be addressed because they have been made explicit.
Communicating the results to management, appropriate corrective action was planned
and taken.

The conduct of mixed sub-model of the SMPI as the second step of software mea-
surement process improvement could be completed after a period of eight weeks (ap-
proximately 80 person days of effort of the measurement project team), what meant
not meeting the case study’s timescale by three weeks. However, since the measure-
ment project was prosperous and management had confidence, this did not turn out to
be a major problem but unavoidable point of critique. The prosperity of the ‘Measure-
ment & Analysis’ project of the host company was mirrored by an increased number
of measured quantities (Q), a mixed measurement outline (MOMixed) , and the provi-
sion of measurement information products (I) that led to corrective actions. But more
important from the vantage point of software measurement process improvement, was
the apparently emerged ability of management to set measurement goals (G) as result
of the mixed sub-model based on the results of the bottom-up sub-model of the SMPI
model.

At the closure of the case study, the mixed sub-model was run through successfully
and the preconditions for conducting a top-down software measurement process as
required by the ‘Measurement & Analysis’ support process area of the CMMI Framework
v1.1 were established for the first time. All stakeholders expressed their contentedness
and relaxation.

3. Execution of the mixed sub-model of the SMPI model
Now, that some months have gone by, since the conduct of the case study, a follow-
up telephone call with the leader (and today process owner) of the ‘Measurement &
Analysis’ project at the host organization attested the continued prosperity and useful-
ness of the now top-down oriented software measurement process and/or SMP. Also
the SCAMPI class C assessment gave evidence of the conformity of the SMP with the
‘Measurement & Analysis’ support process area of the CMMI Framework v1.1. Thus, all
expectations of the host organization’s management could be obviously satisfied.

6.6 Result interpretation and conclusion

This chapter dealt with the last sub-question of this research project:

RQ6. What is the result of a case study validation in industry of the step-
wise software measurement process improvement model resulting
from RQ5?

Interpreting the results of the above mentioned case study, the following can be
summarized for the given industrial context: First, treatment one, that is the appli-
cation of the traditional top-down measurement process model as manifested in the
CMMI-MA support process area, failed and did not produce any utilizable outcome
measure. Second, all the outcome measures for treatment two, that is the application

142

6.6. RESULT INTERPRETATION AND CONCLUSION

of the SMPI model that provides measurement process improvement along the bottom-
up and mixed measurement paradigms on top of the process model of treatment one,
were positively satisfied.

With respect to the hypotheses as stated in section 6.3, the author comes to the
logical conclusion that there are very well differences between the two approaches.
More specifically, the author’s improved approach of the SMPI model better supports
implementation and sustainment of a SMP for an unexperienced organization than
the process model of the ‘Measurement & Analysis’ support process area of the CMMI
Framework v1.1. Thus, the quintessence is:

Reject H0 in favor of H1!

Owing to the fact that, the proposed SMPI model gave evidence of its validity in
practice, the research project is regarded to have been successfully completed.

143

Chapter 7

Summary

“Discovery consists of seeing what everybody has seen
and thinking what nobody has thought.”

– Albert Szent-Györgi∗ –

The thesis at hand presents the steps taken and the results of a PhD research project
to answer the following main research objective:

How can the implementation and sustainment of the software measurement
process in industrial settings be improved?

In 2004, at the time of initially being confronted with this task from process engi-
neering, the author was aware of the fact that this research objective must have been
addressed before with the results not preventing the question from being asked, unde-
viatingly. Thus, the engineering research paradigm was chosen to tackle the research
issue thereby trying to adopt the advantageous features of prior attempts and/or soft-
ware measurement process improvement models, find their weak points, and overcome
or improve them. The research was then subdivided into three distinct parts:

Part I — Observation of existing solutions: In order to be able to evaluate prior
attempts to the problem, evaluation criteria had to be set up. Similarly to semantical
and syntactical properties of source code, content-related and model-related criteria
for existing software measurement process improvement models had to be found. By
means of the second chapter the most important aspects having an impact on the imple-
mentation and sustainment of the software measurement process in software engineer-
ing industry have been elicited and positioned in a whole picture. Based on that, the
content-related evaluation criteria for potential solutions to the research objective were
proposed. Afterwards in chapter three, and based on the theory of software process
engineering, model-related evaluation criteria were extracted from a review of charac-
teristics of mainstream SPA/SPI models and of figures of merit set by the ISO/IEC Stan-
dard 15504. Once the criteria were fully explored and documented, existing software
measurement process improvement models were reviewed and assessed against these
criteria from chapter four. The result of this evaluation was that the ‘Measurement &
Analysis’ (CMMI-MA) support process area of the SEI’s CMMI Framework v1.1 enjoyed
supremacy when compared with other models. Because of that it was adopted as basis
model for this research. However, it shipwrecked when it came to support software
measurement process improvement along the measurement paradigms as revealed in
chapter two. This shortcoming provided the opportunity to improve the model in the
second part of the research project.
∗Hungarian physiologist, winner of the 1937 Nobel Prize in medicine, and former professor at the

University of Budapest, Hungary, *1893 – †1986

145

CHAPTER 7. SUMMARY

Part II — Proposal and development of a better solution: Having exposed the omis-
sion of the selected basis solution, CMMI-MA, in terms of the support for software
measurement processes following paradigms being less challenging than the top-down
one, a development concept for a complemented model could be formulated. Because
it intends to support software measurement process improvement along all the mea-
surement paradigms, this complemented model was then coined the Software Mea-
surement Process Improvement (SMPI) model. Subsequently, the conceived design and
development rationale envisaged a consensus mapping of available reference material
concerning phases and contents of the process sub-models specific to each distinct mea-
surement paradigm. Moreover, to ease adaptation in industrial software engineering
settings the SMPI model was presented graphically with the aid of diagrams compliant
with the BPMN of OMG and textually using the EITVOX notation.

Part III — Measure, analyze, evaluate: Although being based on an up-to-date, en-
cyclopedical inventory of software measurement best practices, the developed SMPI
model had to prove its applicability in an external case study in practice. In addition
to that, a progress in terms of a better capability to improving the implementation of
the software measurement process in an industrial software engineering setting had
to be substantiated. A host organization in need of implementing software measure-
ment processes, which is situated in the southern part of Germany, agreed to evaluate
the SMPI model and could prove the model’s advancement in software measurement
process improvement capabilities, when compared with the CMMI-MA support process
area.

7.1 Main contributions

The principal part of this thesis makes the following main contributions to research
within the field of software measurement in the discipline of software engineering:

(1) An up-to-date, encyclopedical inventory of best practices and aspects to be ob-
served for implementation and sustainment of the software measurement process
in industrial settings.

(2) The set of specific, content-related and generally-applicable, model-related crite-
ria to be fulfilled by software measurement process improvement models dwelling
on its implementation and sustainment.

(3) The evaluation of existing implicit or explicit software measurement process im-
provement models according to the criteria mentioned above.

(4) The empirical, descriptive Software Measurement Process Improvement (SMPI)
model that stepwise facilitates the improvement of the software measurement
process along the measurement paradigms. This can be a significant aid in im-
plementing and sustaining SMPs.

(5) The presentation of an industrial case study corroborating the validity of the de-
veloped SMPI model.

The secondary products of this thesis, which can be found in the appendix, are:

(A1) The clear and brief presentation of measurement theory applicable to software
engineering settings.

(A2) A glimpse of mainstream models for SPA/SPI in software engineering.

146

7.2. FUTURE WORK

7.2 Future work

As already mentioned in the introductory part of this thesis, the engineering research
cycle was run through once to assure theoretical correctness at first and later the appli-
cability and usefulness in practice. From present appreciation can be guessed that due
to further advancements in theory and practice of software measurement process im-
plementation and sustainment minor factors of the model might be subject to change
but major aspects will remain universally valid.

However, it is felt that the success of the developed SMPI model should be validated
in a broader field. This could be done in a diversified empirical investigation spanning
on different companies of different sizes and orientations. By following a piggyback
manner to process improvement endeavors the users that still were doubtfully of the
model’s advantages could be convinced. With the aid of further empirical studies,
the complex interrelations could also be investigated further and the model could be
enhanced and/or optimized, accordingly.

Together with the author, mentoring researchers came to the recommendation that
the developed and validated SMPI model should be proposed for being considered in a
future revision of the SEI’s CMMI Framework, and more specifically in its ‘Measurement
& Analysis’ support process area.

147

Bibliography

[Aae03] Ivan Aaen. Software process improvement: Blueprints versus recipes.
IEEE Software, 20(5):86–93, 2003.

[AAJS99] Erik Arisholm, Bente Anda, Magna Jørgensen, and Dag I. K. Sjøberg.
Guidelines on conducting software process improvement studies in in-
dustry. In Proceedings of the 22nd IRIS Conference (Information Systems
Research Seminar In Scandinavia). Department of Informatics, University
of Oslo, Norway, 1999.

[Abr01] Pekka Abrahamsson. Commitment development in software process im-
provement: critical misconceptions. In ICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering, pages 71–80, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[aC94] SEI at CMU. Course notebook for defining software processes. a process
improvement course offered by the SEI, 1994. Pittsburgh, PA, USA.

[AC95] Alain April and François Coallier. Trillium: a model for the assessment
of telecom software system development and maintenance capability. In
ISESS ’95: Proceedings of the 2nd IEEE Software Engineering Standards
Symposium, pages 175–183, Washington, DC, USA, August 1995. IEEE
Computer Society.

[ACF97] Vincenzo Ambriola, Reidar Conradi, and Alfonso Fuggetta. Assessing
process-centered software engineering environments. ACM Transactions
on Software Engineering Methodology (TOSEM), 6(3):283–328, July 1997.

[ACT03] Dennis M. Ahern, Aaron Clouse, and Richard Turner. CMMI Distilled: A
Practical Introduction to Integrated Process Improvement. Addison-Wesley
Professional, Boston, MA, USA, 2nd edition, September 2003. ISBN:
0321186133.

[AD99] Alain Abran and Reiner R. Dumke, editors. Proceedings of the 9th Interna-
tional Workshop on Software Measurement IWSM, Montreal, QC, Canada,
September 8–10 1999.

[Adr93] W. Richards Adrion. Research methodology in software engineering:
Summary of the dagstuhl workshop on future directions in software engi-
neering. ACM SIGSoft Software Engineering Notes, 18(1):36–37, January
1993.

[AG83] Allan J. Albrecht and John E. Gaffney. Software function, source lines of
code, and development effort prediction: A software science validation.
IEEE Transactions on Software Engineering, SE-9(6):639–648, November
1983.

149

BIBLIOGRAPHY

[Alb79] Allan J. Albrecht. Measuring applications development productivity. In
Proceedings of IBM Application Development Joint SHARE/GUIDE Sympo-
sium, pages 83–92, Monterey, CA, USA, 1979. IBM.

[ALB99] Alain Abran, Lucie Laframboise, and Pierre Bourque. A risk assessment
method and grid for software measurement programs. Technical Report
99-03, Département d’informatique, Université du Québec à Montréal,
Montréal, QC, Canada, 1999.

[ALMN99] David E. Avison, Francis Lau, Michael D. Myers, and Peter Axel Nielsen.
Action research. Communications of the ACM, 42(1):94–97, 1999.

[Alp87] Theodore M. Alper. A classification of all order-preserving homeomor-
phism groups of the reals that satisfy finite uniqueness. Journal of Math-
ematical Psychology, 31(2):135–154, 1987.

[AM06] Kiumi Akingbehin and Bruce Maxim. A three-layer model for software en-
gineering metrics. In Proceedings of the Seventh ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking, and Par-
allel/Distributed Computing (SNPD’06), pages 17–20, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[AMBD04] Alain Abran, James W. Moore, Pierre Bourque, and Robert Dupuis, edi-
tors. SWEBOK — Guide to the Software Engineering Body of Knowledge.
IEEE Computer Society, Los Alamitos, CA, USA, February 2004.

[Apr05] Alain April. S3m — Model to Evaluate and Improve the Quality of Soft-
ware Maintenance Process. PhD thesis, Department of Computer Science,
University of Magdeburg, Germany, November 2005.

[Ari01] Erik Arisholm. Empirical Assessment of Changeability in Object-Oriented
Software. PhD thesis, Department of Informatics, Faculty of Mathematics
and Natural Sciences, University of Oslo, Oslo, Norway, February 2001.

[AS91] Chris Argyris and Donald A. Schön. Participatory Action Research, chapter
Participatory Action Research and Action Science Compared: A Commen-
tary, pages 85–98. Sage, Newbury Park, CA, USA, 1991.

[AS02a] Alain Abran and Asma Sellami. Initial modeling of the measurement con-
cepts in the iso vocabulary of terms in metrology. In Software Measure-
ment and Estimation — Proceedings of the 12th International Workshop
on Software Measurement IWSM2002, Magdeburg, Germany, pages 9–20,
Aachen, Germany, 2002. Shaker Verlag. ISBN 3-8322-0765-1.

[AS02b] Alain Abran and Asma Sellami. Measurement and metrology require-
ments for empirical studies in software engineering. In Proceedings of
the 10th International Workshop on Software Technology and Engineering
Practice (STEP’02). IEEE Computer Society, 2002.

[Aus96] Robert D. Austin, editor. Measuring and Managing Performance in Organi-
zations. Dorset House Publishing, New York, NY, USA, 1996.

[BA03] Luigi Buglione and Alain Abran. Assessment of measurement indicators
in software process improvement frameworks. In Investigations in Soft-
ware Measurement: Proceedings of the 13th International Workshop on

150

BIBLIOGRAPHY

Software Measurement (IWSM 2003), Montréal, QC, Canada, pages 287–
309, Aachen, Germany, September 23–25 2003. Shaker Verlag. ISBN:
3832218807.

[BA04a] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change. The XP Series. Addison-Wesley Professional, Boston, MA, USA,
2nd edition, November 2004. ISBN: 0321278658.

[BA04b] Luigi Buglione and Alain Abran. The software measurement body of
knowledge. In Proceedings of SMEF 2004, Software Measurement Euro-
pean Forum, January 28-30, pages 84–94, Rome, Italy, 2004. ISBN 88-
86674-33-3.

[BA06] Luigi Buglione and Alain Abran. Introducing root-cause analysis and or-
thogonal defect classification at lower cmmi maturity levels. In Alain
Abran, Reiner R. Dumke, and Mercedes Ruiz, editors, Proceedings of the
International Conference on Software Process and Product Measurement
(MENSURA 2006), pages 29–41, Cádiz, Spain, 6-8 November 2006. Ser-
vicio de Publicaciones de la Universidad de Cádiz.

[Bac94] James Bach. The immaturity of the cmm. The American Programmer,
7(9):13–18, September 1994.

[Bac95] James Bach. Enough about process: What we need are heroes. IEEE
Software, 12(2):96–98, March 1995.

[Bak91] Mark D. Baker. Implementing an initial software metrics program. In
Proceedings of the IEEE 1991 National Aerospace and Electronics Confer-
ence (NAECON 1991), volume 3, pages 1289–1294. IEEE Aerospace and
Electronics Society, May 1991.

[Bam97] Judy Bamberger. Essence of the capability maturity model. IEEE Com-
puter, 30(6):112–114, June 1997.

[Bar05] Liz Barnett. Metrics for application development. Online, May 2005.

[Bas90] Victor R. Basili. Recent advances in software measurement (abstract and
references for talk). In ICSE ’90: Proceedings of the 12th international
conference on Software engineering, pages 44–49, Los Alamitos, CA, USA,
1990. IEEE Computer Society Press.

[Bas93] Victor R. Basili. The experimental paradigm in software engineering. In
Hans-Dieter Rombach, Victor R. Basili, and Richard Selby, editors, Exper-
imental Software Engineering Issues: Critical Assessment and Future Direc-
tions, Heidelberg, Germany, September 1993. Springer Verlag. published
as Lecture Notes in Computer Science #706.

[Bas96] Victor R. Basili. The role of experimentation in software engineering:
past, current, and future. In ICSE ’96: Proceedings of the 18th interna-
tional conference on Software engineering, pages 442–449, Washington,
DC, USA, 1996. IEEE Computer Society.

[Bau72] Frederick L. Bauer. Software Engineers: Information Processing. Elsevier
North Holland, 1972.

[Bax98] Peter Baxter. Framework for assessing measurement process effective-
ness. INCOSE Insigth, 1:21–23, 1998.

151

BIBLIOGRAPHY

[BB99] Shirley A. Becker and Mitchell L. Bostelman. Aligning strategic and
project measurement systems. IEEE Software, 16(3):46–51, May/June
1999.

[BBB+97] Vic Barnett, Roger Bate, William Bradford, Kerinia Cusick, Lesley Fos-
ter, Tom Ferguson, Rod Freudenberg, Suzanne Garcia, William Gibbs,
Debbie Guagliardo, Wayne Lobbestael, Pete Malpass, Mac H. McIntyre,
Richard Turner, and Richard VandeMark. An integrated product devel-
opment capability maturity model, draft. Technical Report CMU/SEI-97-
MM-001, SEI at CMU, Pittsburgh, PA, USA, April 1997. Only available at:
ftp://ftp.sei.cmu.edu/pub/IPD.

[BBFG90] Albert L. Baker, James M. Bieman, Norman Fenton, and David A.
Gustafson. A philosphy for software measurement. Journal Of Systems
and Software, 12(3):277–281, 1990.

[BBGM87] Albert L. Baker, James M. Bieman, David A. Gustafson, and Austin C.
Melton. Modeling and measuring the software development process. In
Proceedings of the 20th Hawaii International Conference on System Sciences
(HICSS-20), volume II, pages 23–30, Western Periodicals, North Holly-
wood, CA, USA, January 1987.

[BC91] Pierre Bourque and Vianney Coté. An experiment in software sizing with
structured analysis metrics. Journal of Systems and Software, 15(2):159–
172, 1991.

[BC95] Victor R. Basili and Gianluigi Caldiera. Improve software quality by
reusing knowledge and experience. Sloan Management Review, 37(1):55–
64, Fall 1995. MIT Press.

[BCH+95] Barry W. Boehm, C. Clark, E. Horowitz, C. Westland, R. Madachy, and
R. Selby. Cost models for future life cycle processes: Cocomo 2.0. Annals
of Software Engineering, 1(1):57–94, 1995.

[BCR94a] Victor Basili, G. Caldiera, and H. D. Rombach. Encyclopedia of Software En-
gineering, volume 2, chapter The Goal Question Metric Approach, pages
528–532. John Wiley & Sons, Inc., New York, USA, 1994.

[BCR94b] Victor R. Basili, G. Caldiera, and H. D. Rombach. Encyclopedia of Software
Engineering, volume 1, chapter Measurement, pages 646–661. John Wiley
& Sons, 1994.

[BD93] Robert C. Bamford and William J. Deibler. Standards-comparing, con-
trasting iso 9001 and the sei capability maturity model. IEEE Computer,
26(10):68–70, Oct. 1993.

[BDR96] Lionel C. Briand, Christiane M. Differding, and H. Dieter Rombach. Prac-
tical guidelines for measurement-based process improvement. Technical
Report ISERN-96-05, Fraunhofer Institute for Experimental Software En-
gineering, Kaiserslautern, Germany, May 1996.

[BDT96] Alfred Bröckers, Christiane Differding, and Günter Threin. The role
of software process modeling in planning industrial measurement pro-
grams. In Proceedings of the Third International Software Metrics Sympo-
sium (METRICS ’96), pages 31–40. IEEE Computer Society, March 1996.

152

BIBLIOGRAPHY

[BEM95a] Lionel Briand, Khaled El Emam, and Walcélio L. Melo. Ainsi: an inductive
method for software process improvement: concrete steps and guidelines.
Technical Report CS-TR-3498, University of Maryland at College Park,
College Park, MD, USA, 1995.

[BEM95b] Lionel Briand, Khaled El Emam, and Sandro Morasca. On the application
of measurement theory in software engineering. Technical Report ISERN-
95-04, International Software Engineering Research Network, 1995.

[BFK+06] René Braungarten, Ayaz Farooq, Martin Kunz, Andreas Schmietendorf,
and Reiner R. Dumke. Applying service-oriented software measurement
to derive quality indicators of open source components. UPGRADE - The
European Journal for the Informatics Professional, 7(1), February 2006.

[BG94] Victor Basili and Scott Green. Software process evolution at the sel. IEEE
Software, 11(4):58–66, 1994.

[BH83] Victor R. Basili and David H. Hutchens. An empirical study of a syn-
tactic complexity family. IEEE Transactions on Software Engineering, SE-
9(6):664–672, November 1983.

[BH03a] Emanuel R. Baker and Peter Hantos. Implementing a successful metrics
program: Using the gqm-rx concept to navigate the metrics minefield.
In Proceedings of the 15th Annual Software Technology Conference (STC)
2003, Salt Lake City, UT, USA, April/May 2003.

[BH03b] Sarah Beecham and Tracy Hall. Building a requirements process improve-
ment model. Technical Report 378, Department of Computer Science,
University of Hertfordshire, Hertfordshire, UK, 2003.

[BHM+00] Barry W. Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K.
Clark, Bert Steece, A. Winsor Brown, Sunita Chulani, and Chris Abts.
Software Cost Estimation with Cocomo II (with CD-ROM). Prentice Hall
Ptr, Upper Saddle River, NJ, USA, 1st edition, January 2000.

[BHR05] Sarah Beecham, Tracy Hall, and Austen Rainer. Defining a requirements
process improvement model. Software Quality Control, 13(3):247–279,
2005.

[BJ95] Judith G. Brodman and Donna L. Johnson. Return on investment (roi)
from software process improvement as measured by us industry. Software
Process: Improvement and Practice, 1(1):35–47, 1995.

[BJ00] Michael Berry and Ross Jeffery. An instrument for assessing software
measurement programs. Empirical Software Engineering, 5(3):183–200,
November 2000.

[BJ06] Patrik Berander and Per Jönsson. A goal question metric based approach
for efficient measurement framework definition. In ISESE ’06: Proceed-
ings of the 2006 ACM/IEEE International symposium on empirical software
engineering, pages 316–325, New York, NY, USA, 2006. ACM Press.

[BJC+96] Elizabeth Bailey, Cheryl Jones, David Card, Beth Layman, Joseph Dean,
and John McGarry. Practical Software Measurement, Version 2.1. U. S.
Naval Undersea Warfare Center, Newport, RI, USA, 1996.

153

BIBLIOGRAPHY

[BKD05] René Braungarten, Martin Kunz, and Reiner R. Dumke. An approach
to classify software measurement storage facilities. Technical Report 2,
University of Magdeburg, Department of Computer Science, Magdeburg,
Germany, January 2005.

[BKD06] René Braungarten, Martin Kunz, and Reiner R. Dumke. Historical evolu-
tion of courses of study in computer science: A german experience report.
UPGRADE - The European Journal for the Informatics Professional, 7(4),
August 2006.

[BKF+05] René Braungarten, Martin Kunz, Aayaz Farooq, Cornelius Wille, Andreas
Schmietendorf, and Reiner R. Dumke. A metrics data base maturity
model. In Proceedings of the 9th IEEE International Multitopic Conference
(INMIC’2005), Karachi, Pakistan, December 2005. IEEE Computer Soci-
ety.

[BKFD05] René Braungarten, Martin Kunz, Ayaz Farooq, and Reiner R. Dumke.
Towards meaningful metrics data bases. In Alain Abran and Reiner R.
Dumke, editors, Proceedings of the 15th International Workshop on Soft-
ware Measurement (IWSM2005), pages 1–34, Montréal, QC, Canada, 12–
14 September 2005. Shaker Publishing, Aachen.

[BKW+95] Roger Bate, Dorothy Kuhn, Curt Wells, James Armitage, Gloria Clark,
Kerinia Cusick, Suzanne Garcia, Mark Hanna, Robert Jones, Peter Mal-
pass, Ilene Minnich, Hal Pierson, Tim Powell, and Al Reichner. A sys-
tems engineering capability maturity model, version 1.1. Technical Re-
port SECMM-95-01, CMU/SEI-95-MM-003, SEI at CMU, Pittsburgh, PA,
USA, November 1995.

[Bla63] Peter M. Blau. The Dynamics of Bureaucracy: A Study of Interpersonal
Relations in Two Government Agencies. The University of Chicago Press,
Chicago, IL, USA, second edition, 1963.

[BM91] Terry B. Bollinger and Clement McGowan. A critical look at software
capability evaluations. IEEE Software, 8(4):25–41, July 1991.

[BM92] John H. Baumert and Mark S. McWhinney. Software measures and the
capability maturity model. Technical Report CMU/SEI-92-TR-25, ESD-
TR-92-25, SEI at CMU, Pittsburgh, PA, USA, September 1992.

[BMA96] Pierre Bourque, Marcela Maya, and Alain Abran. A sizing measure for
adaptive maintenance work products. In International Function Points
Users Group — 1996 Spring Conference, Atlanta, GA, USA, 1996.

[BMB96] Lionel C. Briand, Sandro Morasca, and Victor R. Basili. Property-based
software engineering measurement. IEEE Transactions on Software Engi-
neering, 22(1):68–86, January 1996.

[BMB02] Lionel C. Briand, Sandro Morasca, and Victor R. Basili. An operational
process for goal-driven definition of measures. IEEE Transactions on Soft-
ware Engineerin, 28(12):1106–1125, December 2002.

[BN95] Richard Bache and Martin Neil. Software quality assurance and measure-
ment: a world-wide perspective, chapter 4 — Introducing metrics into
industry: a perspective on GQM, pages 59–68. International Thomson
Computer Press, London, UK, 1995.

154

BIBLIOGRAPHY

[BO96] Adrian Burr and Mal Owen. Statistical Methods for Software Quality: Using
Metrics to Control Process and Product Quality. International Thomson
Computer Press, Boston, MA, USA, 1996.

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice Hall, Engle-
wood Cliffs, NJ, USA, 1981.

[Boe84] Barry W. Boehm. Software engineering economics. IEEE Transactions on
Software Engineering, SE-10(1), January 1984.

[Boe06] Barry W. Boehm. A view of 20th and 21st century software engineering.
In ICSE ’06: Proceeding of the 28th international conference on Software
engineering, pages 12–29, New York, NY, USA, 2006. ACM Press.

[BP95] Faye Budlong and Judi Peterson. Software metrics capability evaluation
guide 2.0. Technical Report AD-A325 385/3, Software Technology Sup-
port Center, Hill AFB, UT, USA, October 1995. STSC, Ogden Air Logistics
Center, Hill Air Force Base, UT, USA.

[BP96a] Faye C. Budlong and Judi A. Peterson. Software metrics capability evalu-
ation methodology and implementation. CrossTalk, (01), January 1996.
http://www.stsc.hill.af.mil/crosstalk/1996/01/metrics.asp.

[BP96b] Paul Byrnes and Mike Phillips. Software capability evaluation version 3.0
method description. Technical Report CMU/SEI-96-TR-002, ESC-TR-96-
002, SEI at CMU, Pittsburgh, PA, USA, April 1996.

[BR88] Victor R. Basili and H.-D. Rombach. The tame project: Towards
improvement-oriented software environments. IEEE Transactions on Soft-
ware Engineering, 14(6):758–773, June 1988.

[Bra05] René Braungarten. A proposal for a metrics data base maturity
model. Metrics News — Journal of GI-Interest Group on Software Metrics,
10(1):13–27, August 2005.

[Bri31] Percy William Bridgman, editor. Dimensional Analysis. Yale University
Press, Yale, CT, USA, revised edition edition, 1931.

[Bro75] Fred Brooks. The Mythical Man Month. Addison-Wesley, New York, NY,
USA, 1975.

[Bro96] Norm Brown. Industrial-strength management strategies. IEEE Software,
13(4):94–103, 1996.

[BSC96] Ilene Burnstein, Taratip Suwanassart, and Robert Carlson. Developing a
testing maturity model for software test process evaluation and improve-
ment. In Proceedings of the International Test Conference (ITC’96), pages
581–590, Los Alamitos, CA, USA, 1996. Illinois Institute of Technology,
IEEE Computer Society.

[BSH86] Victor R. Basili, Richard W. Selby, and David H. Hutchens. Experimenta-
tion in software engineering. IEEE Transactions on Software Engineering,
SE-12(7):733–743, July 1986.

[Buc90a] Fletcher J. Buckley. Establishing a standard metrics program. IEEE Com-
puter, pages 85–86, June 1990.

155

BIBLIOGRAPHY

[Buc90b] Fletcher J. Buckley. Rapid prototyping a metric program. In Proceedings of
the First International Conference on Applications of Software Measurement,
November 1990.

[Bun67] Mario Bunge, editor. Scientific Research I and II. Springer-Verlag, Berlin
Heidelberg, Germany, 1967.

[BvSJ98] Andreas Birk, Rini van Solingen, and Janne Järvinen. Business impact,
benefit, and cost of applying gqm in industry: An in-depth, long-term
investigation at schlumberger rps. In Proceedings of the Fifth International
Symposium on Software Metrics (METRICS’98), pages 93–96, Bathesda,
ML, USA, November 1998.

[BW84] Victor R. Basili and D.M. Weiss. A methodology for collecting valid
software engineering data. IEEE Transactions on Software Engineering,
10(6):728–738, June 1984.

[BWD+04] Pierre Bourque, Sibylle Wolff, Robert Dupuis, Asma Sellami, and Alain
Abran. Lack of consensus on measurement in software engineering: In-
vestigation of related issues. In Alain Abran, Manfred Bundschuh, Günter
Büren, and Reiner Dumke, editors, Prooceedings of the IWSM/MetriKon
2004, pages 1–14. Shaker, November 2004.

[BWH96] Richard L. Baskerville and A. Trevor Wood-Harper. A critical perspective
on action research as a method for information systems research. Journal
of Information Technology, 11(3):235–246, September 1996. Routledge,
Taylor & Francis Group.

[BZM77] Victor R. Basili, M. Zelkowitz, and F. McGarry. The software engineer-
ing laboratory. Technical Report TR-535, University of Maryland, College
Park, May 1977.

[CA88] David Card and Bill Agresti. Measuring software design complexity. Jour-
nal of Systems and Software, 8(3):185–197, June 1988.

[Cam20] Norman Robert Campbell, editor. Physics: the elements. London, UK.
Cambridge University Press, 1920. (Reprinted as Foundations of Science.
New York, NY, USA: Dove, 1957).

[Car91] David Card. Understanding process improvement. IEEE Software,
08(4):102–103, July/August 1991.

[Car92] David Card. Capability evaluations rated highly variable. IEEE Software,
09(5):105–111, September/October 1992.

[Car93] David Card. What makes for effective measurement? IEEE Software,
10(6):94–95, 1993.

[CC93] Peter Comer and Jonathan Chard. A measurement maturity model. Soft-
ware Quality Journal, 2(4):277–289, December 1993.

[CDS86] Samuel Daniel Conte, H. E. Dunsmore, and V. Y. Shen, editors. Soft-
ware Engineering Metrics and Models. The Benjamin/Cummings Publish-
ing Company, Inc., Reading, MA, USA, 1986.

156

BIBLIOGRAPHY

[CF02] Jack Cooper and Mattew Fisher. Software acquisition capability maturity
model (sa–cmm), version 1.03. Technical Report CMU/SEI-2002-TR-010,
ESC-TR-2002-010, SEI at CMU, Pittsburgh, PA, USA, March 2002.

[CG90] David N. Card and Robert L. Glass. Measuring Software Design Quality.
Prentice-Hall Inc., Englewood Cliffs, NJ, USA, 1990.

[CHM95] Bill Curtis, William Hefley, and Sally Miller. Overview of the people ca-
pability maturity model (p-cmm). Technical Report CMU/SEI-95-MM-01,
SEI at CMU, Pittsburgh, PA, USA, September 1995.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering, 20(6):476–
493, June 1994.

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Communica-
tions of the ACM, 35(9):75–90, September 1992.

[CKS03] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum. CMMI: Guidelines
for Process Integration and Product Improvement. Addison-Wesley Profes-
sional, Boston, MA, USA, 1st edition, February 2003. ISBN: 0321154967.

[CL95] Rita J. Costello and Dar-Biau Liu. Metrics for requirements engineering.
Journal of Systems and Software, 29(1):39–63, 1995.

[Cla02] Betsy Clark. Eight secrets of software measurement. IEEE Software,
19(5):12–14, 2002.

[CMWH96] François Coallier, Richard McKenzie, John F. Wilson, and Joe Hatz. Tril-
lium — model for telecom product development & support process capa-
bility. Technical report, Bell Canada, 1996.

[Coa94a] François Coallier. How iso 9001 fits into the software world. IEEE Soft-
ware, 11(1):98–100, January 1994.

[Coa94b] François Coallier, editor. Trillium — Model for Telecom Product Develop-
ment & Support Process Capability, Release 3.0. Bell Canada, 1994.

[Coa95] François Coallier. Trillium: A model for the assessment of telecom product
development and support capability. IEEE Software Process Newsletter,
3(2):3–8, Winter 1995.

[Col98] Antonio Coletta. SPICE: The theory and practice of software process im-
provement and capability determination, chapter 5 — Process assessment
using SPICE: The assessment activities, pages 99–122. IEEE Computer
Society, Los Alamitos, CA, USA, 1998.

[Col02] Dawn Coley. IT Measurement: Practical Advice from the Experts, chapter 28
— Considerations for getting maximum benefit from an enterprise-wide
metrics repository, pages 455–462. Addison-Wesley Information Technol-
ogy Series. Addison-Wesley, Boston, MA, USA, 2002.

[CPG+92] Anita D. Carleton, Robert E. Park, Wolfhart B. Goethert, William A. Florac,
Elizabeth K. Bailey, and Shari Lawrence Pfleeger. Software measurement
for dod systems: Recommendations for initial core measures. Technical
Report CMU/SEI-92-TR-019 ESC-TR-92-019, Software Engineering Insti-
tute, Pittsburgh, PY, USA, September 1992.

157

BIBLIOGRAPHY

[CPG94] Anita D. Carleton, Robert E. Park, and Wolfhart B. Goethert. The sei core
measures: Background information and recommendations for use and
implementation. STSC CrossTalk, 5, May 1994.

[Cra98] Mac Craigmyle. SPICE: The theory and practice of software process improve-
ment and capability determination, chapter 6 — Process assessment using
SPICE: The rating framework, pages 99–122. IEEE Computer Society, Los
Alamitos, CA, USA, 1998.

[Cro79] Philip B. Crosby. Quality Is Free (Signet Shakespeare). McGraw-Hill Com-
panies, New York, NY, USA, signet shakespeare; reissue edition edition,
January 1979. ISBN: 0451625854.

[Cro96] Philip B. Crosby. Quality Is Still Free: Making Quality Certain In Uncertain
Times. McGraw-Hill Companies, New York, NY, USA, 2nd revised edition,
October 1996. ISBN: 0070145326.

[Cun97] J. Barton Cunningham. Case study principles for different types of cases.
Quality and Quantity, 31(4):401–423, November 1997.

[CVS+02] Ann Cass, Christian Völcker, Philipp Sutter, Alec Dorling, and Hans
Stienen. Spice in action - experiences in tailoring and extension. In Pro-
ceedings of the 28th Euromicro Conference (EUROMICRO’02), pages 352–
360. IEEE Computer Society, 4-6 September 2002.

[CZ90] Randolph B. Cooper and Robert W. Zmud. Information technology im-
plementation research: A technological diffusion approach. Journal of
Management Science, 36(2):123–139, February 1990. The Institute of
Management Sciences.

[DA99] Reiner R. Dumke and Alain Abran, editors. Software Measurement —
Current Trends in Research and Practice. Deutscher Univertsitätsverlag,
Wiesbaden, Germany, 1999.

[Das92] Michael K. Daskalantonakis. A practical view of software measurement
and implementation experiences within motorola. IEEE Transactions on
Software Engineering, 18(11):998–1010, November 1992.

[Das94] Michael K. Daskalantonakis. Achieving higher sei levels. IEEE Software,
pages 17–24, July 1994.

[DB98] Jean-Normand Drouin and Henry Barker. SPICE: The theory and prac-
tice of software process improvement and capability determination, chapter
2 — Introduction to SPICE, pages 19–30. IEEE Computer Society, Los
Alamitos, CA, USA, 1998.

[DB99] Carol Dekkers and Mary Bradley. It is the people who count in mea-
surement: The truth about measurement myths. STSC CrossTalk, pages
12–14, June 1999.

[DB01] Donna Dunaway and Michele Baker. Analysis of cmm-based appraisal
for internal process improvement (cba ipi) assessment feedback. Techni-
cal Report CMU/SEI-2001-TR-021, ESC-TR-2001-021, SEI at CMU, Pitts-
burgh, PA, USA, November 2001.

158

BIBLIOGRAPHY

[DBB+06a] Reiner Dumke, René Braungarten, Martina Blazey, Heike Hegewald,
Daniel Reitz, and Karsten Richter. Software process measurement and
control: A measurement-based point of view of software processes. Tech-
nical Report 11, Otto-von-Guericke University, Department of Computer
Science, Magdeburg, Germany, 2006.

[DBB+06b] Reiner R. Dumke, René Braungarten, Martina Blazey, Heike Hegewald,
Daniel Reitz, and Karsten Richter. Structuring software process metrics
- a holistic semantic network based overview. In Alain Abran, Manfred
Bundschuh, and Reiner R. Dumke, editors, Proceedings of the International
Workshop on Software Measurement and DASMA Software Metrik Kongress
(IWSM/MetriKon 2006), pages 483–498, Potsdam, Germany, 2–3 Novem-
ber 2006. Shaker Publishing, Aachen.

[DBH05] Reiner R. Dumke, René Braungarten, and Heike Hegewald. An iso 15939-
based infrastructure supporting the it software measurement. In Praxis
der Software-Messung — Tagungsband des DASMA Software Metrik Kon-
gresses (MetriKon 2005), pages 87–106, Kaiserslautern, Germany, 2005.
Shaker Publishing, Aachen.

[DBK+06] Reiner R. Dumke, René Braungarten, Martin Kunz, Andreas Schmi-
etendorf, and Cornelius Wille. Strategies and appropriateness of soft-
ware measurement frameworks. In Alain Abran, Reiner R. Dumke, and
Mercedes Ruiz, editors, Proceedings of the International Conference on Soft-
ware Process and Product Measurement (MENSURA 2006), pages 150–170,
Cádiz, Spain, 6-8 November 2006. Servicio de Publicaciones de la Univer-
sidad de Cádiz.

[DBY91] Michael Daskalantonakis, Victor R. Basili, and Robert Yacobellis. A
method for assessing software measurement technology. Quality Engi-
neering, 3(1):27–40, 1991.

[dC97] Dennis de Champeaux. Object-oriented development process and metrics.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[DCL+99] Christophe Debou, Daniel Courtel, H. Lambert, N. Fuchs, and M. Haux.
Better Software Practice for Business Benefit: Principles and Experiences,
chapter Alcatel’s Experience with Process Improvement, pages 281–301.
Wiley-IEEE Computer Society Press, Los Alamitos, CA, USA, September
1999. ISBN: 978-0-7695-0049-2.

[Deb00] Christophe Debou. Process maturity: the momentum behind metrics.
Software in Focus, 12:2–3, June 2000.

[Dek99] Carol A. Dekkers. The secrets of highly successful measurement pro-
grams. Cutter IT Journal, 12(4):29–35, April 1999.

[Dek05] Ton Dekkers. Basic measurement implementation: away with the crystal
ball. In Ton Dekkers, editor, Proceedings of Software Measurement Eu-
ropean Forum (SMEF 2005), pages 113–122, Rome, Italy, 2005. Sogeti
Nederland B.V., The Netherlands.

[DeM82a] Tom DeMarco. Controlling Software Projects - Management, Measurement
& Estimation. Prentice Hall PTR, Englewood Cliffs, NJ, USA, June 1982.

159

BIBLIOGRAPHY

[Dem82b] W. Edwards Deming. Quality, Productivity, and Competitive Position. Mas-
sachusetts Institute of Technology, Boston, MA, USA, June 1982. ISBN:
0911379002.

[Dem86] W. Edwards Deming. Out of the Crisis. The MIT Press, Cambridge, MA,
USA, August 1986. ISBN: 0262541157.

[DeM95] Tom DeMarco. Why Does Software Cost So Much?: And Other Puzzles of
the Information Age. Dorset House Publishing, 1995.

[Den02] Sheila P. Dennis. IT Measurement: Practical Advice from the Experts, chap-
ter 18 — Avoiding Obstacles and Common Pitfalls in the Building of an
Effective Metrics Program, pages 295 –304. 1. Addison-Wesley, Boston,
MA, USA, 2002.

[Der00] Esther Derby. Designing useful metrics. Software Testing & Quality Engi-
neering Journal, pages 50–53, May/June 2000.

[Des94] Jean-Marc Desharnais. Statistics on function point measurement pro-
grams in 20 canadian organizations. In Software Measurement Pro-
grams in Industry and Administration — A Joint DASMA – CIM Workshop,
Koblenz, Germany, November 1994.

[DFK98] Reiner Dumke, Erik Foltin, and Reinhard Koeppe. Softwarequalität
durch Messtools. Assessment, Messung und instrumentierte ISO 9000.
Vieweg Verlagsgesellschaft, Braunschweig, Germany, April 1998. ISBN:
3528055278.

[DFS93] Christophe Debou, Norbert Fuchs, and Heinz Saria. Selling believable
technology. IEEE Software, 10(6):22–27, November 1993.

[Die68] Jean Dieudonne, editor. Foundations of Modern Analysis. Academic Press,
San Diego, CA, USA, October 1968.

[Dio93] Raymond Dion. Process improvement and the corporate balance sheet.
IEEE Software, 10(4):28–35, July 1993.

[DL81] R. A. DeMillo and R. J. Lipton. Software Metrics, chapter Software project
forecasting, pages 77–89. MIT Press, Cambridge, MA, USA, 1981.

[DL99] Tom DeMarco and Timothy Lister, editors. Peopleware: Productive Projects
and Teams. Dorset House Publishing, New York, NY, USA, second edition,
December 1999.

[dlAMO03] Maria de los Angeles Martin and Luis Olsina. Towards an ontology for
software metrics and indicators as the foundation for a cataloging web
system. In Proceedings of the First Latin American Web Congress (LA-
WEB’03), pages 103–113. Universidad Nacional de La Pampa, November
2003.

[DLW99] Soumitra Dutta, Michael Lee, and Luk Van Wassenhove. Software engi-
neering in europe: A study of best practices. IEEE Software, pages 82–90,
May/June 1999.

[DM97] Bo Dahlbom and Lars Mathiassen. The future of our profession. Commu-
nications of the ACM, 40(6):80–89, 1997.

160

BIBLIOGRAPHY

[DM02] Carol A. Dekkers and Patricia A. McQuaid. The dangers of using software
metrics to (mis)manage. IEEE IT Professional, pages 24–30, March 2002.

[DN03] Ray Dawson and Andrew J. Nolan. Towards a successful software metrics
programme. In Proceedings of the Eleventh Annual International Workshop
on Software Technology and Engineering Practice (STEP’04), pages 48–51,
2003.

[Dor93] Alec Dorling. Spice: Software process improvement and capability deter-
mination. Software Quality Journal, 2(4):209–224, December 1993.

[Dow86] Mark Dowson. The structure of the software process. ACM SIGSOFT
Software Engineering Notes, 11(4):6–8, August 1986.

[Dro95] Jean-Normand Drouin. The spice project: An overview. IEEE Software
Process Newsletter, 3(2):8–9, Winter 1995.

[Dru94] Darleen A. Druyun. New air force software metrics policy 93m-017. STSC
CrossTalk, 4, April 1994.

[DS97] Michael Diaz and Joseph Sligo. How software process improvement
helped motorola. IEEE Software, 14(5):75–81, September/October 1997.

[dS02] Márcio Luiz Barroso da Silveira. IT Measurement: Practical Advice from
the Experts, chapter 5 — EDS Brazil Metrics Program: Measuring for Im-
provement, pages 85–96. Addison-Wesley Information Technology Series.
Addison-Wesley, Boston, MA, USA, 2002.

[DSZ05] Reiner R. Dumke, Andreas Schmietendorf, and Horst Zuse. Formal de-
scriptions of software measurement and evaluation - a short overview
and evaluation. Technical Report 4, Otto-von-Guericke University, De-
partment of Computer Science, Magdeburg, Germany, 2005.

[Dum03] Reiner R. Dumke. Software Engineering. Vieweg Verlag, Wiesbaden, Ger-
many, 4th, revised and enhanced edition, 2003.

[Dum05] Reiner R. Dumke. Software measurement frameworks. In Proceedings
of the 3rd World Congress for Software Quality, volume III, Online Sup-
plement, pages 75–84, Munich, Germany, September 2005. International
Software Quality Institute (isqi), Erlangen, Germany. ISBN: 3-9809145-
3-4.

[DW88] Michael S. Deutsch and Ronald R. Willis. Software Quality Engineering, A
Total Technical Management Approach, chapter 3, pages 31–37. Prentice
Hall, Englewood Cliffs, NJ, USA, 1988.

[Dyb05] Tore Dybå. An empirical investigation of the key factors for success in
software process improvement. IEEE Transactions on Software Engineer-
ing, 31(5):410–424, May 2005.

[Ebe97] Christof Ebert. The road to maturity: Navigating between craft and sci-
ence. IEEE Software, 14(6):77–82, November 1997.

[Ebe99] Christof Ebert. Technical controlling and software process improvement.
Journal of Systems and Software, 46(1):25–39, April 1999.

161

BIBLIOGRAPHY

[EC91] Board for Software Standardization ESA and Control. Esa software engi-
neering standards, 1991. European Space Agency, Paris, France.

[EDBS05] Christof Ebert, Reiner Dumke, Manfred Bundschuh, and Andreas Schmi-
etendorf. Best Practices in Software Measurement — How to use metrics
to improve project and process performance. Springer, Berlin Heidelberg,
2005.

[EDM98] Khaled El Emam, Jean-Normand Drouin, and Walcelio Melo, editors.
SPICE: The theory and practice of software process improvement and ca-
pability determination. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1998.

[EFF+99] Wolfgang Emmerich, Anthony Finkelstein, Alfonso Fuggetta, Carlo Mon-
tangero, and Jean-Claude Derniame. Software Process: Principles, Method-
ology, and Technology, chapter 2 Software Process — Standards, Assess-
ments and Improvement, pages 15–25. Lecture Notes in Computer Sci-
ence 1500. Springer-Verlag, Berlin Heidelberg, Germany, February 1999.
ISBN: 3540655166.

[EG99] Khaled El Emam and Dennis R. Goldenson. An empirical review of soft-
ware process assessments. Technical Report ERB-1065, National Research
Council Canada, Institute for Information Technology, November 1999.

[Eji91] Lem O. Ejiogu. Software Engineering with Formal Metrics. QED Technical
Publishing Group, Boston, MA, USA, 1991.

[EL06] Fredrik Ekdahl and Stig Larsson. Experience report: Using internal
cmmi appraisals to institutionalize software development performance
improvement. In 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA’06), pages 216–223. IEEE Computer So-
ciety, August 2006.

[EM87] Michael W. Evans and John J. Marciniak. Software Quality Assurance and
Management, chapter 7 and 8. John Wiley & Sons, New York, NY, USA,
1987.

[EMM93] Khaled El Emam, Nadir Moukheiber, and Nazim H. Madhavji. An em-
pirical evaluation of the g/q/m method. In CASCON ’93: Proceedings of
the 1993 conference of the Centre for Advanced Studies on Collaborative re-
search, pages 265–289. National Research Council of Canada (NRC) and
IBM Centre for Advanced Studies (CAS), IBM Press, 1993.

[FBD05] Ayaz Farooq, René Braungarten, and Reiner R. Dumke. An empirical anal-
ysis of object-oriented metrics for java technologies. In Proceedings of the
9th IEEE International Multitopic Conference (INMIC’2005), Karachi, Pak-
istan, December 2005. IEEE Computer Society.

[FBK+06] Ayaz Farooq, René Braungarten, Martin Kunz, Andreas Schmietendorf,
and Reiner R. Dumke. Towards soa-based approaches for it quality as-
surance. In Proceedings of the CONQUEST 2006 - Software Quality in
Service-Oriented Architectures, Berlin, Germany, pages 45–54, Heidelberg,
Germany, 2006. dpunkt.verlag.

162

BIBLIOGRAPHY

[FC99] William A. Florac and Anita D. Carleton. Measuring the Software Process
— Statistical Process Control for Software Process Improvement. The SEI
Series in Software Engineering. Addison-Wesley Professional, New York,
NY, USA, July 1999.

[Fei61] Armand V. Feigenbaum. Total Quality Control. McGraw-Hill Book Com-
pany, New York, NY, USA, 1961.

[Fen90] Stewart Fenick. Implementing management metrics: An army program.
IEEE Software, pages 65–72, March 1990.

[Fen91] Norman E. Fenton. Software Metrics: A Rigorous Approach. Kluwer Ac-
demic Publishers, Boston, MA, USA, April 1991.

[Fen94] Norman E. Fenton. Software measurement: A necessary scientific basis.
IEEE Transactions on Software Engineering, 20(3):199–206, March 1994.

[FG96] Gary Ford and Norman E. Gibbs. A mature profession of software engi-
neering. Technical Report CMU/SEI-96-TR-004, ESC-TR-96-004, SEI at
CMU, Pittsburgh, PA, USA, September 1996.

[FH92] Peter H. Feiler and Watts S. Humphrey. Software process development
and enactment: Concepts and definitions. Technical Report CMU/SEI-92-
TR-004, SEI at CMU, Pittsburgh, PA, USA, 1992.

[FH93] Peter H. Feiler and Watts S. Humphrey. Software process development
and enactment: concepts and definitions. In Second International Con-
ference on the Software Process ’Continuous Software Process Improvement’,
Berlin, Germany, pages 28–40, Los Alamitos, CA, USA, February 1993.
SEI at CMU, IEEE Computer Society.

[Fin82] Larry Finkelstein. Handbook of Measurement Science, volume 1, chap-
ter Theoretical Fundamentals: Theory and Philosophy of Measurement,
pages 1–30. John Wiley & Sons, Chichester, UK, 1982.

[Fin84] Larry Finkelstein. A review of the fundamental concepts of measurement.
Measurement, 2(1):25–34, 1984.

[FLZ05] Peter Fettke, Peter Loos, and Jörg Zwicker. Business process refer-
ence models: Survey and classification. In Ekkart Kindler and Markus
Nüttgens, editors, Proceedings of the First International Workshop on Busi-
ness Process Reference Models (BPRM’05), Nancy, France, 5-7 September
2005.

[FMG02] Peter Fraser, James Moultire, and Mike Gregory. The use of maturity
models / grids as a tool in assessing product development capability. In
Proceedings of the IEEE International Engineering Management Conference,
IEMC’02, pages 244–249, Cambridge, UK, 2002. IEEE Computer Society.

[FN99] Norman E. Fenton and Martin Neil. Software metrics: successes, failures
and new directions. Journal of Systems and Software, 47(2-3):149–157,
1999.

[FN00] Norman E. Fenton and Martin Neil. Software metrics: roadmap. In ICSE
’00: Proceedings of the Conference on The Future of Software Engineering,
pages 357–370, New York, NY, USA, 2000. ACM Press.

163

BIBLIOGRAPHY

[FO97] Haruhiko Fukuda and Yasuo Ohashi. A guideline for reporting results
of statistical analysis in japanese journal of clinical oncology. Japanese
Journal of Clinical Oncology, 27(3):121–127, 1997.

[Fol94] Stephan Foldes, editor. Fundamental Structures of Algebra and Discrete
Mathematics. John Wiley & Sons, New York, NY, USA, 1994.

[Fou22] Joseph Fourier, editor. The analytical theory of heat (A. Freeman Trans.).
Stechert, New York, NY, USA, reprint edition, 1822. (Original work pub-
lished in 1822).

[FP97] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics — A
Rigorous and Practical Approach. International Thomson Computer Press,
London, UK, 2nd edition, 1997.

[FPC97] William A. Florac, Robert E. Park, and Anita D. Carleton. Practical soft-
ware measurement: Measuring for process management and improve-
ment. Guidebook, Online, April 1997. CMU/SEI-97-HB-003.

[FPG94] Norman Fenton, Shari Lawrence Pfleeger, and Robert L. Glass. Science
and substance: A challenge to software engineers. IEEE Software, pages
86–95, July 1994.

[FR89] Priscilla Fowler and Stanley Rifkin. Software engineering process group
guide. Technical Report CMU/SEI-90-TR-024, ESD-90-TR-225, SEI at
CMU, Pittsburgh, PA, USA, September 1989.

[Fuc95] Norbert Fuchs. Software quality assurance and measurement: a world-
wide perspective, chapter 5 — Software measurement – an evolutionary
approach, pages 59–68. International Thomson Computer Press, London,
UK, 1995.

[FV97] Martin D. Fraser and Vijay K. Vaishnavi. A formal specifications maturity
model. Communications of the ACM, 40(12):95–103, December 1997.

[FW86] Norman Fenton and Robin Whitty. Axiomatic approach to software met-
rication through program decomposition. Computer Journal, 29(4):330–
339, 1986.

[FW95] Norman Fenton and Robin Whitty. Software Quality Assurance and Mea-
surement: A Worldwide Perspective, chapter 1 — Introduction, pages 1–20.
International Thomson Publishing, London, UK, 1995.

[GBC+06] Félix García, Manuel F. Bertoa, Coral Calero, Antonio Vallecillo, Francisco
Ruiz, Mario Piattini, and Marcela Genero. Towards a consistent termi-
nology for software measurement. Information & Software Technology,
48(8):631–644, August 2006.

[GC87] Robert B. Grady and Deborah L. Caswell. Software Metrics: Establishing
a Company-Wide Program. Prentice Hall PTR, Englewood Cliffs, NJ, USA,
1987.

[GCWF95] John Gaffney, Robert Cruickshank, Richard Werling, and Henry Felber.
The Software Measurement Guidebook. International Thomson Computer
Press, Boston, MA, USA, September 1995. ISBN: 1850321957.

164

BIBLIOGRAPHY

[Geo03] Elli Georgiadou. Software process and product improvement: A historical
perspective. Cybernetics and Systems Analysis, 39(1):125–142, January
2003.

[GGM99] Dennis R. Goldenson, Anandasivam Gopal, and Tridas Mukhopadhyay.
Determinants of success in software measurement programs: Initial re-
sults. In Proceedings of the Sixth International Software Metrics Symposium
(METRICS’99), pages 10–21, 1999.

[GHW95] Christiane Gresse, Barbara Hoisl, and Jürgen Wüst. A process model
for gqm-based measurement. Technical Report STTI-95-04-E, Software-
Technologie-Transfer-Initiative Kaiserslautern, Universität Kaiserslautern,
Kaiserslautern, Germany, 1995.

[Gib98] Rick Gibson. Software process modeling: Theory, results and commen-
tary. In Proceedings of the Thirty-First Annual Hawaii International Confer-
ence on System Sciences-Volume 3, pages 399–408, January 1998.

[Gil92] Alan Gillies. Software Quality, Theory and Management. Chapman & Hall
Computing, London, UK, 1992.

[GJPD99] Ross Grable, Jacquelyn Jernigan, Casey Pogue, and Dale Divis. Metrics
for small projects: Experiences at the sed. IEEE Software, 16(2):21–29,
March/April 1999.

[GJR03] Dennis R. Goldenson, Joe Jarzombek, and Terry Rout. Measurement and
analysis in capability maturity model integration models and software
process improvement. STSC CrossTalk, pages 20–24, July 2003.

[GKMG02] Anandasivam Gopal, M.S. Krishnan, Tridas Mukhopadhyay, and Dennis R.
Goldenson. Measurement programs in software development: Determi-
nants of success. IEEE Transactions on Software Engineering, 28(9):863–
875, September 2002.

[Gla94] Robert L. Glass. The software-research crisis. IEEE Software, 11(6):42–47,
November 1994.

[Gla95] Robert L. Glass. A structure-based critique of contemporary computing
research. Journal of Systems and Software, 28(1):3–7, 1995.

[Gla97] Robert L. Glass. Pilot studies: what, why, and how. Journal of Systems
and Software, 36(1):85–97, 1997.

[GMK05] Anandasivam Gopal, Tridas Mukhopadhyay, and M.S. Krishnan. The im-
pact of institutional forces on software metrics programs. IEEE TRANS-
ACTIONS ON SOFTWARE ENGINEERING, 31(8):679–694, August 2005.

[GND98] Alan W. Graydon, Risto Nevalainen, and Jean-Normand Drouin. SPICE:
The theory and practice of software process improvement and capability de-
termination, chapter 4 — The reference model, pages 75–98. IEEE Com-
puter Society, Los Alamitos, CA, USA, 1998.

[Goo04] Paul Goodman. Software Metrics — Best Practices for Successful IT Man-
agement. Philip Jan Rothstein, FBCI, Brookfield, CT, USA, 2004. ISBN
1-931332-26-6.

165

BIBLIOGRAPHY

[Gra81] Charles Gray, editor. Essentials of Project Management. Petrocelli Books,
Princeton, NJ, USA, 1981.

[Gra92] Robert B. Grady. Practical Software Metrics for Project Management and
Process Improvement. Prentice Hall, Englewood Cliffs, NJ, USA, 1992.

[Gra94] Robert B. Grady. Successfully applying software metrics. IEEE Computer,
27(9):18–25, September 1994.

[GRB+04] Felix García, F. Ruiz, M. F. Bertoa, C. Calero, M. Genero, L. Olsina, Martín,
C. Quer, N. Condori, S. Abrahao, A. Vallecillo, and M. Piattini. An ontol-
ogy for software measurement. Technical Report UCLM DIAB-04-02-2,
Computer Science Department, University of Castilla-La Mancha, Spain,
2004.

[Gre05] Shane Greenstein. Not a mellifluous march to maturity. IEEE Micro, pages
102–104, January 2005.

[Gro06] Object Management Group. Business process modeling notation (bpmn)
final adopted specification 1.0, February 2006.

[GRS98] Donald J. Gantzer, Garry Roedler, and Sarah Sheard. Measurements, stan-
dards and models. INCOSE Insight, 1(4a):5–9, 1998.

[GRV04] Robert L. Glass, V. Ramesh, and Iris Vessey. An analysis of research in
computing disciplines. Communications of the ACM, 47(6):89–94, June
2004.

[GS98] Eddie M. Gray and W. L. Smith. On the limitations of software process
assessment and the recognition of a required re-orientation for global
process improvement. Software Quality Control, 7(1):21–34, 1998.

[GTW93] David A. Gustafson, Joo T. Tan, and Perla Weaver. Software measure
specification. In SIGSOFT ’93: Proceedings of the 1st ACM SIGSOFT sym-
posium on Foundations of software engineering, pages 163–168, New York,
NY, USA, 1993. ACM Press.

[Gum99] Evert Gummesson. Qualitative Methods in Management Research. Number
2nd. Sage Publications, Thousand Oakes, CA, USA, 1999.

[GVR02] Robert L. Glass, Iris Vessey, and V. Ramesh. Research in software engi-
neering: an analysis of the literature. Information and Software Techology,
44:491–506, June 2002.

[HA05] Bill C. Hardgrave and Deborah J. Armstrong. Software process improve-
ment: it’s a journey, not a destination. Communications of the ACM,
48(11):93–96, November 2005.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes. Bell
System Technical Journal, 26(2):147–160, 1950.

[Han73] Per Brinch Hansen. Operating System Principles. Prentice-Hall Series in
Automatic Computation. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1973. ISBN: 0136378439.

[Har04] Warren Harrison. A flexible method for maintaining software metrics
data: a universal metrics repository. Journal of Systems and Software,
72(2):225–234, 2004.

166

BIBLIOGRAPHY

[HCR+94] James Herbsleb, Anita Carleton, James Rozum, Jane Siegel, and David
Zubrow. Benefits of cmm-based software process improvement: Initial
results. Technical Report CMU/SEI-94-TR-013, ESC-TR-94-013, SEI at
CMU, Pittsburgh, PA, USA, August 1994.

[Hei90] Dennis Heimbinger. Proscription versus prescription in process-centered
environments. In Proceedings of the 6th International Software Process
Workshop, Hokkaido, Japan, October 1990.

[Hei01] James T. Heires. What i did last summer: A software development bench-
marking case study. IEEE Software, pages 33–39, September/October
2001.

[Hei04] Lauren Heinz. Cmmi myths and realities. CrossTalk, (6):8–10, June 2004.

[Het90] Bill Hetzel. The software measurement challenge. In Proceedings of the
First International Conference on Applications of Software Measurement,
November 1990.

[Het93] Bill Hetzel. Making Software Measurement Work: Building an Effective
Measurement Program. John Wiley & Sons, New York, NY, USA, 1993.

[HF94] Tracy Hall and Norman Fenton. Implementing software metrics — the
critical success factors. Software Quality Journal, 3(4):195–208, Decem-
ber 1994.

[HF97] Tracy Hall and Norman Fenton. Implementing effective software metrics
programs. IEEE Software, 14(2):55–64, 1997.

[HG98] James D. Herbsleb and Rebecca E. Grinter. Conceptual simplicity meets
organizational complexity: Case study of a corporate metrics program. In
Proceedings of the 20th International Conference on Software Engineering
(ICSE’98), pages 271–280, 1998.

[HJPH98] Anne Mette Jonassen Hass, Jorn Johansen, and Jan Pries-Heje. Does iso
9001 increase software development maturity? In Proceedings of the 24th
Euromicro Conference, volume 2, pages 860–866, 25-27 August 1998.

[HK81] Sallie Henry and Dennis Kafura. Software structure metrics based on in-
formation flow. IEEE Transactions on Software Engineering, SE-7(5):510–
518, September 1981.

[HM95] Ian J. Hayes and Brendan P. Mahony. Using units of measurement in for-
mal specifications. Formal Aspects of Computing, 7(3):329–347, February
1995.

[HMK+94] Volkmar Haase, Richard Messnarz, Günter Koch, Hans J"urgen Kugler,
and Paul Decrinis. Bootstrap: Fine-tuning process assessment. IEEE Soft-
ware, 11(4):25–35, June/August 1994.

[Hof00] Douglas Hoffman. The darker side of metrics. In Pacific Northwest Soft-
ware Quality Conference, Portland, Oregon, 2000.

[Hol02] Lori Holmes. IT Measurement: Practical Advice from the Experts, chapter 6
— Measurement Program Implementation Approaches, pages 97–111. 1.
Addison-Wesley, addison-wesley edition, May 2002. ISBN: 0-201-74158-
X.

167

BIBLIOGRAPHY

[HS87] Watts S. Humphrey and W. L. Sweet. A method for assessing the software
engineering capability of contractors. Technical Report CMU/SEI-87-TR-
23, SEI at CMU, Pittsburgh, PA, USA, 1987.

[HS96] Brian Henderson-Sellers. Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[HT01] Robin B. Hunter and Richard H. Thayer, editors. Software Process Im-
provement. IEEE Computer Society, Los Alamitos, CA, USA, 2001. ISBN:
0-7695-0999-1.

[HT03] Shihong Huang and Scott Tilley. Towards a documentation maturity
model. In SIGDOC ’03: Proceedings of the 21st annual international con-
ference on Documentation, pages 93–99, New York, NY, USA, 2003. ACM
Press.

[Hum87] Watts S. Humphrey. Characterizing the software process: A maturity
framework. Technical Report CMU/SEI-87-TR-11, ADA182895, SEI at
CMU, Pittsburgh, PA, USA, June 1987.

[Hum88] Watts S. Humphrey. Characterizing the software process: A maturity
framework. IEEE Software, 5(2):73–79, March/April 1988.

[Hum89] Watts S. Humphrey. Managing the Software Process. Addison-Wesley,
Reading, MA, USA, reprinted with corrections august 1990 edition, 1989.

[Hum96] Watts S. Humphrey. Introduction to the Personal Software Process.
Addison-Wesley Professional, Boston, MA, USA, December 1996. ISBN:
0201548097.

[Hum99] Watts S. Humphrey. Introduction to the Team Software Process. Addison-
Wesley Professional, Boston, MA, USA, August 1999. ISBN: 020147719X.

[Hum02] Watts S. Humphrey. Three process perspectives: Organizations, teams,
and people. Annals of Software Engineering, 14(1-4):39–72, December
2002.

[Hum05a] Watts S. Humphrey. PSP: A Self-Improvement Process for Software Engi-
neers. SEI Series in Software Engineering. Addison-Wesley Professional,
Boston, MA, USA, March 2005. ISBN: 0321305493.

[Hum05b] Watts S. Humphrey. TSP — Leading a Development Team. SEI Series
in Software Engineering. Addison-Wesley Professional, Boston, MA, USA,
September 2005. ISBN: 0321349628.

[HY05] Scott Y. Harmon and Simone M. Youngblood. A proposed model for sim-
ulation validation process maturity. JDMS, (4):179–190, October 2005.
The Society for Modeling and Simulation International.

[IEE90] Computer Society IEEE. Ieee 610.12:1990 standard glossary of software
engineering terminology, 1990.

[IEE92] Computer Society IEEE. Ieee 610.12:1992 standard glossary of software
engineering terminology, 1992.

[IEE98] Standards Department IEEE. Ieee 1061:1998 standard for a software
quality metrics methodology, revision, 1998.

168

BIBLIOGRAPHY

[IFP04] IFPUG. Guidelines to Software Measurement (GSM), volume 2. The In-
ternational Function Point Users Group (IFPUG), Princeton Junction, NJ,
USA, August 2004.

[IH95] Rosalind L. Ibrahim and Iraj Hirmanpour. The subject matter of process
improvement:a topic and reference source for software engineering ed-
ucators and trainers. Technical Report CMU/SEI-95-TR-003, ESC-TR-95-
003, SEI at CMU, Pittsburgh, PY, USA, May 1995.

[IM00] Jakob Iversen and Lars Mathiassen. Lessons from implementing a soft-
ware metrics program. In Proceedings of the 33rd Hawaii International
Conference on System Sciences - 2000, volume 7. Alborg University, Den-
mark, IEEE Computer Society Press, 2000.

[IM03] Jakob Iversen and Lars Mathiassen. Cultivation and engineering of a soft-
ware metrics program. Information Systems Journal, 13(1):3–19, January
2003.

[Ima86] Masaaki Imai. Kaizen (Ky’zen): The Key to Japanese Competitive Success.
Random House Trade, New York, NY, USA, 1st edition, November 1986.
ISBN: 0394551869.

[INT06] INTACS. Intacs international assessor certification scheme. Online,
November 2006. http://www.intacs.info/pdf_downloads/iNTACS06-
004E%20PROC%20ASSESSOR%20CERT.pdf.

[Ish85] Kaoru Ishikawa. What is total quality control? The Japanese Way. Prentice
Hall Ptr., Englewood Cliffs, NJ, USA, 1985.

[ISO93] ISO/IEC. International Vocabulary of Basic and General Terms in Metrology
(VIM). International Organization for Standardization, Geneva, Switzer-
land, 1993.

[ISO01] ISO/IEC. ISO/IEC 14598 Information Technology — Software Product Eval-
uation. International Organization for Standardization, Geneva, Switzer-
land, 2001.

[ISO02] ISO/IEC. ISO/IEC 15939 — Information Technology — Software Engi-
neering — Software Measurement Process. International Organization for
Standardization, Geneva, Switzerland, 2002.

[ISO04] ISO/IEC. ISO/IEC 9126-1 Information Technology – Software engineering
– Product quality – Part 1: Quality model. International Organization for
Standardization, Geneva, Switzerland, 2004.

[ISO05] ISO/IEC. The iso survey — 2005. http://www.iso.org/iso/en/iso9000-
14000/pdf/survey2005.pdf, December 2005. Geneva, Siwtzerland.

[ITI06] The itil homepage. http://www.itil.ork.uk/what.htm, (last visited 24 July,
2006) 2006.

[JA97] Jean-Philippe Jacquet and Alain Abran. From software metrics to soft-
ware measurement methods: A process model. In Proceedings of the
3rd International Software Engineering Standards Symposium (ISESS ’97),
pages 128–135. Research Lab. in Software Engineering Management, De-
partment of Computer Science, UQAM, Montreal, QC, Canada, IEEE Com-
puter Society, 1997.

169

BIBLIOGRAPHY

[Jak98] Allan Baktoft Jakobsen. Bottom-up process improvement tricks. IEEE
Software, 15(1):64–68, January 1998.

[Jak00] Allan Baktoft Jakobsen. Software processes: Live and let die. IEEE Soft-
ware, 17(03):71–75, May/June 2000.

[Jar00] Janne Jarvinen. Measurement based continuous assessment of software en-
gineering processes. PhD thesis, Faculty of Science, University of Oulu,
Finland, Oulu, Finland, 2000.

[Jar04] Pertti Jarvinen. On research methods. Opinpaja Oy, Tampere, Finland,
July 2004. ISBN: 951-97113-9-2.

[JB93] Ross Jeffery and Mike Berry. A framework for evaluation and prediction
of metrics program success. In Proceedings of the 1st International Soft-
ware Metrics Symposium, pages 28–39, Los Alamitos, CA, USA, 1993. IEEE
Computer Society Press.

[Jef95] Ross Jeffery. Software engineering research validation. In APSEC ’95: Pro-
ceedings of the Second Asia Pacific Software Engineering Conference, page
522, Washington, DC, USA, 1995. IEEE Computer Society.

[JG70] Joseph M. Juran and Frank M. Gryna, editors. Quality Planning and Anal-
ysis: From Product Development Through Use. McGraw-Hill, New York,
NY, USA, 1970.

[JMF97] Michael Jones, Uffe K. Mortensen, and Jon Fairclough. The esa software
engineering standards: past, present and future. In ISESS ’97: Proceed-
ings of the 3rd International Software Engineering Standards Symposium
(ISESS ’97), pages 119–126, Washington, DC, USA, 1-6 June 1997. IEEE
Computer Society.

[JMPW93] Henry J. Johansson, Patrick McHugh, A. John Pendlebury, and William A.
Wheeler. Business Process Reengineering: Breakpoint Strategies for Market
Dominance. John Wiley & Sons, New York, NY, USA, August 1993. ISBN:
0471938831.

[Jok01] Timo Jokela. Assessment Of User-Centred Design Processes As A Basis For
Improvement Action. PhD thesis, Faculty of Science, University of Oulu,
Oulu, Finland, November 2001.

[Jon96] Capers Jones. The economics of software process improvement. IEEE
Computer, 29(1):95–97, 1996.

[Jon01] Capers Jones. Software measurement programs and industry leadership.
STSC CrossTalk, 14(2):4–7, February 2001.

[Jon03a] Cheryl Jones. Making measurement work. STSC CrossTalk, pages 15–19,
January 2003.

[Jon03b] Cheryl L. Jones. Implementing a successful measurement program: Tried
and true practices and tools. Cutter IT Journal, 16(11):12–18, November
2003.

[Juc05] George Jucan. Root cause analysis for it incidents investigation.
http://hosteddocs.ittoolbox.com/GJ102105.pdf, October 2005.

170

BIBLIOGRAPHY

[Jur03] Joseph M. Juran. Juran on Leadership for Quality: An Executive Handbook.
Free Press, Old Tappan, NJ, USA, May 2003. ISBN: 0743255771.

[Jur06] Joseph M. Juran. Juran On Quality By Design. Free Press, Old Tappan,
NJ, USA, revised edition, 2006. ISBN: 0029166837.

[JZ97] Ross Jeffery and Benjamin Zucker. The state of practice in software met-
rics. Technical Report 97/1, Centre for Advanced Emprirical Software
Research (CAESAR), University of New South Wales, Sydney, Australia,
1997.

[KA83] Masao Kogure and Yoji Akao. Quality function deployment and cwqc in
japan. ASQ Quality Progress, pages 25–29, October 1983.

[KA94] Taghi M. Khoshgoftaar and Edward B. Allen. Applications of information
theory to software engineering measurement. Software Quality Journal,
3(2):79–103, June 1994.

[Kan95] Stephen H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley, Reading, MA, USA, 1995.

[Kan00] Cem Kaner. Rethinking software metrics: Evaluating measurement
schemes. Software Testing & Quality Engineering, 2(2):50–57, March
2000.

[Kau99] Karlheinz Kautz. Making sense of measurement for small organizations.
IEEE Software, 16(2):14–20, March/April 1999.

[KB94] Pasi Kuvaja and Adriana Bicego. Bootstrap a european assessment
methodology. Software Quality Journal, 3(3):117–127, September 1994.

[KB99] Ron Kenett and Emanuel Baker. Software Process Quality : Management
and Control. Computer Aided Engineering. CRC, New York, NY, USA,
January 1999. ISBN: 0824717333.

[KB04] Cem Kaner and Walter P. Bond. Software engineering metrics: What do
they measure and how do we know? In Proceedings of the 10th Interna-
tional Software Metrics Symposium METRICS 2004, pages 1–12, 2004.

[KBD05] Martin Kunz, René Braungarten, and Reiner R. Dumke. Measuring elearn-
ing - a classification approach for elearning systems. In Alain Abran and
Reiner R. Dumke, editors, Proceedings of the 15th Workshop on Software
Measurement (IWSM’2005), pages 79–94, Montréal, QC, Canada, 12–14
September 2005. Shaker Publishing, Aachen.

[KBD06] Martin Kunz, René Braungarten, and Reiner R. Dumke. Bewertungsan-
sätze und modelle für unternehmensweite software-messinitiativen. In
Arbeitskonferenz Softwarequalität und Test (ASQT) 2006, Klagenfurt, Aus-
tria, 14–15 September 2006.

[KBS94] Stephen H. Kan, Victor R. Basili, and Lary N. Shapiro. Software qual-
ity: An overview from the perspective of total quality management. IBM
Systems Journal, 33(1):4–19, 1994.

[KCCHS92] Annie Kuntzmann-Combelles, Peter Comer, J. Holdsworth, and Stephen
Shirlaw, editors. A Quantitative Approach to Software Management, Eu-
rope: Application of Metrics in Industry Consortium Esprit Project. South.
Bank University, London for the ami Consortium, 1992.

171

BIBLIOGRAPHY

[KCF+96] Mike Konrad, Mary Beth Chrissis, Jack Ferguson, Suzanne Garcia, Bill
Hefley, Dave Kitson, and Mark Paulk. Capability maturity modeling at the
sei. Software Process: Improvement and Practice, 2(1):21–34, March 1996.

[Ket06] Richard Kettelerij. Designing a measurement programme for software de-
velopment projects. Master’s thesis, Univeristy of Amsterdam, University
of Amsterdam Faculty of Science 1098 SM Amsterdam The Netherlands,
August 2006.

[KH03] Heinz K. Klein and Rudy Hirschheim. Crisis in the is field? a critical
reflection on the state of the discipline. Journal of the Association for
Information Systems, 4(10), 2003.

[KHL01] Barbara A. Kitchenham, Robert T. Hughes, and Stephen G. Linkman.
Modeling software measurement data. IEEE Transactions on Software En-
gineering, 9(9):788–804, September 2001.

[Kil01] Tapani Kilpi. Implementing a software metrics program at nokia. IEEE
Software, pages 72–77, November/December 2001.

[Kin99] Atte Kinnula. Software Process Engineering in a multi-site organization: An
architectural design of a Software Process Engineering system. PhD thesis,
University of Finland, 1999.

[Kit96a] Barbara A. Kitchenham. Desmet: A method for evaluating software en-
gineering methods and tools. Technical Report TR96-09, Department of
Computer Science, University of Keele, Keele, Staffordshire, UK, August
1996.

[Kit96b] Barbara A. Kitchenham. Software Metrics — Measurement for Software
Process Improvement. NCC Blackwell, Oxford, UK, 1996.

[Kit96c] Barbara Ann Kitchenham. Evaluating software engineering methods and
tool part 1: The evaluation context and evaluation methods. ACM SIG-
SOFT Software Engineering Notes, 21(1):11–14, January 1996.

[KJ03] Margaret Kulpa and Kent A. Johnson. Interpreting the CMMI. Auer-
bach, Boca Raton, FL. USA, book & cd-rom edition, April 2003. ISBN:
0849316545.

[KK84] John Leslie King and Kenneth L. Kraemer. Evolution and organizational
information systems: an assessment of nolan’s stage model. Communica-
tions of the ACM, 27(5):466–475, May 1984.

[KKM+94] P. Koch, Pasi Kuvaja, L. Mila, A. Krzanik, S. Bicego, and G. Saukkonen.
Software Process Assessment and Improvement: The BOOTSTRAP Approach.
Blackwell Publishers, Boston, MA, USA, July 1994. ISBN: 0631196633.

[KL87] Barbara A. Kitchenham and B. Littlewood, editors. Measurement for Soft-
ware Control and Assurance. Elsevier Applied Science, Barking, Essex,
England, 1987.

[KL99] Fred N. Kerlinger and Howard B. Lee. Foundation of Behavioral Research.
Wadsworth Publishing, Belmont, CA, USA, August 1999.

172

BIBLIOGRAPHY

[KLBD06] Martin Kunz, Marek Leszak, René Braungarten, and Reiner R. Dumke.
Design of an integrated measurement database for telecom systems de-
velopment. In Alain Abran, Manfred Bundschuh, and Reiner R. Dumke,
editors, Proceedings of the International Workshop on Software Measure-
ment and DASMA Software Metrik Kongress (IWSM/MetriKon 2006), pages
471–482, Potsdam, Germany, 2–3 November 2006. Shaker Publishing,
Aachen.

[KLST71] David H. Krantz, R. Duncan Luce, Patrick Suppes, and Amos Tversky,
editors. Foundations of Measurement, volume Volume 1: Additive and
Polynomial Representations. Academic Press, New York, NY, USA, 1971.

[KLST89] David H. Krantz, R. Duncan Luce, Patrick Suppes, and Amos Tversky,
editors. Foundations of Measurement, volume Volume 2: Geometrical,
Threshold, and Probabilistic Representations. Academic Press, New York,
NY, USA, 1989.

[KM94] Hans-Jürgen Kugler and Richard Messnarz. From the software process
to software quality: Bootstrap and iso 9000. In Software Engineering
Conference, 1994. Proceedings., 1994 First Asia-Pacific, pages 174–182,
Tokyo, Japan, 7–9 December 1994. IEEE Computer Society.

[KM01] Mira Kajko-Mattsson. Corrective Maintenance Maturity Model: Problem
Management. PhD thesis, Department of Computer and Systems Sciences
(DSV), Stockholm University and Royal Institute of Technology, Sweden,
Stockholm, Sweden, 2001. ISBN Nr 91-7265-311-6.

[KN92] Robert S. Kaplan and David P. Norton. The balanced scorecard — mea-
sures that drive performance. Harvard Business Review, pages 71–79,
January-February 1992.

[KN93] Robert S. Kaplan and David P. Norton. Putting the balanced scorecard
to work. Harvard Business Review, pages 134–147, September-October
1993.

[Kne06] Ralf Kneuper. CMMI. Dpunkt Verlag, Heidelberg, Germany, 2nd, revised
and enhanced edition, January 2006. ISBN: 3898643735.

[KPF95] Barbara A. Kitchenham, Shari Lawrence Pfleeger, and Norman Fenton.
Towards a framework for software measurement validation. IEEE Trans-
actions of Software Engineering, 21(12):929–944, December 1995.

[KPP95] Barbara A. Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger.
Case studies for method and tool evaluation. IEEE Software, 12(4):52–
62, July 1995.

[KPP+02] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Pe-
ter W. Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg.
Preliminary guidelines for empirical research in software engineering.
IEEE Transactions On Software Engineering, 17(8):721–734, August 2002.

[KR95] Hans-Jürgen Kugler and Santiago Rementeria. Software engineering
trends in europe. Technical report, European Software Institute (ESI),
Bilbao, Spain, 1995.

173

BIBLIOGRAPHY

[Kra87] Eugene Krause. Taxicab Geometry: An Adventure in Non-Euclidean Geom-
etry. Dover Publications Inc., Mineola, NY, USA, February 1987. ISBN:
0486252027.

[Kra91] K. L. Kraemer, editor. The information systems research challenge: survey
research methods, volume 3 of Harvard Business School Research Collo-
quium. Harvard Business School Press, Boulder, CO, USA, August 1991.

[Kra01] Herb Krasner. Accumulating the Body of Evidence for The Payoff of Software
Process Improvement, chapter 12, pages 519–539. IEEE Computer Society,
2001.

[Kri88] Jürgen Kriz, editor. Facts and Artefacts in Social Science: An Ephistemolog-
ical and Methodological Analysis of Empirical Social Science. McGraw Hill
Research, New York, NY, USA, 1988.

[KS04] Seija Komi-Sirviö. Development and Evaluation of Software Process Im-
provement Methods. PhD thesis, Faculty of Science, University of Oulu,
Oulu, Finland, June 2004. VTT Publications, Espoo, Finland.

[KSBD06] Martin Kunz, Andreas Schmietendorf, René Braungarten, and Reiner R.
Dumke. Serviceorientierte ausrichtung von test- und messwerkzeugen.
In Andreas Schmietendorf and Reiner R. Dumke, editors, 1st Workshop
Bewertungsaspekte serviceorientierter Architekturen (BSOA06), pages 11–
20, Berlin, Germany, 24 November 2006. Private publishing venture of
Otto-von-Guericke-University Magdeburg.

[KSPR01] Seija Komi-Sirviö, Päivi Parviainen, and Jussi Ronkainen. Measurement
automation: Methodological background and practical solutions — a
multiple case study. In Proceedings of the Seventh International Software
Metrics Symposium (METRICS ’01), Oulu, Finland, 2001. VTT Electronics.

[KT04] Christoph Kollmar and Jörg Thamm. Assessments nach der iso 15504.
Information Management & Consulting, (4):62–69, 2004.

[Kue00] Peter Kueng. Process performance measurement system — a tool to sup-
port process-based organizations. Total Quality Management, 11(1):67–
85, January 2000.

[Kul00] Peter Kulik. A practical approach to software metrics. IT Professional,
2(1):38–42, January/February 2000.

[Kuv93] Pasi Kuvaja. Bootstrap: Europe’s assessment method. IEEE Software,
10(3):93–95, May/June 1993.

[Kuv99] Pasi Kuvaja. Bootstrap 3.0 — a spice conformant software process as-
sessment methodology. Software Quality Journal, 8(1):7–19, September
1999.

[Kuz65] Simon Smith Kuznets. Economic growth and structure; selected essays. W.
W. Norton, New York, NY, USA, 1965.

[Kyb84] Henry E . Kyburg, editor. Theory and Measurement. Cambridge University
Press, Cambridge, UK, 1984.

174

BIBLIOGRAPHY

[Las06] Casper Lassenius. Software Development Control Panels — Concepts, a
Toolset and Experiences. PhD thesis, Helsinki University of Technology,
April 2006. ISBN 951228197X.

[Lav00] Luigi Lavazza. Providing automated support for the gqm measurement
process. IEEE Software, pages 56–62, May/June 2000.

[LB06] Linda M. Laird and M. Carol Brennan. Software Measurement and Esti-
mation: A Practical Approach. Quantitative Software Engineering Series.
Wiley-IEEE Computer Society, New York, NY, USA, June 2006.

[LBK05] Beate List, Robert M. Bruckner, and Jochen Kapaun. Holistic software
process performance measurement from the stakeholders’ perspective.
In Proceedings of the 16th International Workshop on Database and Ex-
pert Systems Applications (DEXA’05), pages 941–947. Vienna University of
Technology, Austria, IEEE Computer Society, August 2005.

[LC95] Richard L. Lynch and Kelvin F. Cross. Measure Up!: Yardsticks for Con-
tinuous Improvement. Blackwell Publishers, Cambridge, MA, USA, 2nd
edition, June 1995. ISBN: 1557867186.

[Lig02] Peter Liggesmeyer, editor. Software Qualität — Testen, Analysieren und
Verifizieren von Software. Spektrum Akademischer Verlag, Heidelberg;
Berlin, Germany, 2002.

[Lik67] Rensis Likert. The Human Organization: Its Management and Value.
McGraw-Hill Book Company, New York, NY, USA, 1967. ISBN:
0070378517.

[Lip92] J. Liptak. Incremental implementation of the esa software metrics pro-
gramme. Technical report, European Space Research and Technology
Centre, Product Assurance and Safety Department, Nordwijk, The Nether-
lands, 1992.

[LK06] Beate List and Birgit Korherr. An evaluation of conceptual business pro-
cess modelling languages. In SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, pages 1532–1539, New York, NY, USA,
2006. ACM Press.

[LKST90] R. Duncan Luce, David H. Krantz, Patrick Suppes, and Amos Tversky,
editors. Foundations of Measurement, volume Volume 3: Representation,
Axiomatization, and Invariance. Academic Press, New York, NY, USA,
1990.

[LM05] María Lázaro and Esperanza Marcos. Research in software engineering:
Paradigms and methods. In Jaelson Castro and Ernest Teniente, editors,
17th International Conference Advanced Information Systems Engineering
CAiSE 2005, Proceedings of the CAiSE’05 Workshops, Vol. 2, volume 2,
pages 517–522, Porto, Portugal, June 2005. FEUP Edições, Porto. ISBN
972-752-077-4.

[LN84] R. Duncan Luce and Louis Narens. Classification of real measurement
representations by scale type. Measurement, 2(1):39–44, January–March
1984.

175

BIBLIOGRAPHY

[Lon93] Jacques Lonchamp. A structured conceptual and terminological frame-
work for software process engineering. In ICSP, volume Session II: Soft-
ware Process Conceptual Frameworks, pages 41–53, Berlin, Germany,
1993.

[LR99] Beth Layman and Sharon Rohde. Experiences implementing a software
project measurement methodology. Software Quality Professional, 2(1),
December 1999.

[LVJ01] Marion Lepasaar, Timo Varkoi, and Hannu Jaakkola. Models and success
factors of process change. In PROFES ’01: Proceedings of the Third In-
ternational Conference on Product Focused Software Process Improvement,
pages 68–77, Kaiserslautern, Germany, 2001. Springer-Verlag, Berlin Hei-
delberg, Germany.

[Mad91] Nazim H. Madhavji. The process cycle. IEE Software Engineering Journal,
6(5):134–242, September 1991.

[Mar94] John J. Marciniak, editor. Encyclopedia of software engineering. Wiley-
Interscience, New York, NY, USA, 1994.

[Mar05] Karl Marx. Das Kapital, volume I and II. Dietz, Berlin, Germany, 37th
edition, April 2005.

[Mas43] Abraham H. Maslow. Conflict, frustration, and the theory of threat. Jour-
nal of Abnormal and Social Psychology, 38:81–86, 1943.

[Mas86] B. S. Massey, editor. Measures in Science and Engineering: Their Expres-
sion, Relation and Interpretation. Ellis Horwood, West Sussex, UK, ellis
horwood series in mathematics & its applications) edition, 1986.

[May96] Jean Mayrand. Assessment of tools in the telecommunications industry:
A customer perspective. In SAST ’96: Proceedings of the Proceedings of the
Fourth International Symposium on Assessment of Software Tools (SAST
’96), pages 69–70, Washington, DC, USA, 1996. Bell Canada, IEEE Com-
puter Society.

[MB95] Steve Masters and Carol Bothwell. Cmm appraisal framework version
1.0. Technical Report CMU/SEI-95-TR-001, ESC-TR-95-001, SEI at CMU,
Pittsburgh, PA, USA, February 1995.

[MB97] Sandro Morasca and Lionel Briand. Towards a theoretical framework for
measuring software attributes. In Proceedings of the 4th International Soft-
ware Metrics Symposium METRICS 1997, Albuquerque, NM, USA, 1997.

[MB00] Manoel G. Mendonça and Victor R. Basili. Validation of an approach
for improving existing measurement frameworks. IEEE Transactions on
Software Engineering, 26(6):484–499, June 2000.

[MBBD98] Manoel Gomes Mendonça, Victor R. Basili, I. S. Bhandari, and J. Daw-
son. An approach to improving existing measurement frameworks. IBM
Systems Journal, 37(4):484–501, October 1998.

[MC04] Parastoo Mohagheghi and Reidar Conradi. Exploring industrial data
repositories: where software development approaches meet. In Proceed-
ings of the 8th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE’04), pages 61–77, Oslo, Norway,
15 June 2004.

176

BIBLIOGRAPHY

[McA93] Donald R. McAndrews. Establishing a software measurement pro-
cess. Technical Report CMU/SEI-93-TR-16 ESC-TR-93-193, SEI at CMU,
Carnegie Mellon University Pittsburgh, PY, USA, July 1993.

[McC76] Thomas J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, December 1976.

[McC00] Steve McConnell. The best influences on software engineering. IEEE
Software, 17(1):10–17, January/February 2000.

[McF96] Robert McFeeley. Ideal: A user’s guide for software process improvement.
Technical Report CMU/SEI-96-HB-001, SEI at CMU, Carnegie Mellon Uni-
versity Pittsburgh, PY 15213, USA, February 1996.

[McG01] John McGarry. When it comes to measuring software, every project is
unique. IEEE Software, pages 18–21, September/October 2001.

[MCJ+01] John McGarry, David Card, Cheryl Jones, Beth Layman, Elizabeth Clark,
Joseph Dean, and Fred Hall. Practical Software Measurement: Objective In-
formation for Decision Makers. Addison-Wesley, Reading, MA, USA, 2001.

[MD02] Frank McGarry and Bill Decker. Attaining level 5 in cmm process maturity.
IEEE Software, pages 87–96, November 2002.

[MD03] Maricel Medina Mora and Christian Denger. Requirement metrics. an ini-
tial literature survey on measurement approaches for requirement spec-
ifications. Technical Report 096.03/E, Fraunhofer IESE, Kaiserslautern,
Germany, October 2003.

[MD04] Patricia A. McQuaid and Carol A. Dekkers. Steer clear of hazards on
the road to software measurement success. Software Quality Professional,
6(2):27–33, March 2004.

[Mel98] Werner Mellis. Software quality management in turbulent times —
are there alternatives to process oriented software quality management?
Software Quality Journal, 7(3–4):277–295, September 1998.

[Men97] Manoel Gomes Mendonça. An Approach to Improving Existing Measure-
ment Frameworks in Software Development Organizations. PhD thesis,
University of Maryland, 1997.

[MG98] Dorothy McKinney and Don Gantzer. Executive use of metrics: Observa-
tions and ruminations. INCOSE Insight, 1(4a):10–13, 1998.

[MGBB90] Austin C. Melton, David A. Gustafson, James M. Bieman, and Albert L.
Baker. A mathematical perspective for software measures research.
IEE/BCS Software Engineering Journal, 5(5):246–254, 1990.

[Mic05] Joel Michell, editor. Measurement in Psychology: A Critical History of a
Methodological Concept. Ideas in Context (No. 53). Cambridge University
Press, Cambridge, UK, 2005.

[Mil88] Everald E. Mills. Software metrics. Online, SEI Curriculum Module SEI-
CM-12-1.1, December 1988.

[Min00] Arlene Minkiewicz. Software measurement? what’s in it for me? In
Proceedings of the SM /ASM 2000 Conference, 2000.

177

BIBLIOGRAPHY

[Min02] Ilene Minnich. Cmmi appraisal methodologies: Choosing what is right
for you. CrossTalk, (1):7–8, January 2002.

[MIO87] John D. Musa, Anthony Iannino, and Kazuhira Okumoto. Software Re-
liability: Measurement, Prediction, Application. IEEE Computer Society,
1987.

[MM04] Stephen Marshall and Geoff Mitchell. Applying spice to e-learning: an
e-learning maturity model? In CRPIT ’04: Proceedings of the sixth con-
ference on Australian computing education, pages 185–191, Darlinghurst,
Australia, Australia, 2004. Australian Computer Society, Inc.

[Moh04] Parastoo Mohagheghi. The Impact of Software Reuse and Incremental De-
velopment on the Quality of Large Systems. PhD thesis, Faculty of Infor-
mation Technology, Mathematics and Electrical Engineering, Norwegian
University of Science and Technology, Trondheim, Norway, July 2004.

[MRW77] Jim A. McCall, Paul K. Richards, and Gene F. Walters. Factors in software
quality. Technical Report NTIS AD-A049-014, 015, 055, NTIS, November
1977.

[MS91] Nazim H. Madhavji and Wilhelm Schäfer. Prism — methodology and
process-oriented environment. IEEE Transactions on Software Engineering,
17(12):1270–1283, December 1991.

[MS03] Boris Mutafelija and Harvey Stromberg. Systematic Process Improvement
Using ISO 9001: 2000 and CMMI. Artech House Computer Library. Artech
House, Boston, MA, USA, May 2003. ISBN: 1580534872.

[MSS97] Stephen G. MacDonell, Martin J. Shepperd, and Philip J. Sallis. Metrics
for database systems: An empirical study. In Proceedings of the 4th Inter-
national Software Metrics Symposium (METRICS’97), pages 99–107, Los
Alamitos, CA, USA, 1997. University of Otago, IEEE Computer Society.

[MT99] Richard Messnarz and Colin J. Tully, editors. Better Software Practice for
Business Benefit: Principles and Experiences. Wiley-IEEE Computer Society
Press, Los Alamitos, CA, USA, September 1999. ISBN: 978-0-7695-0049-
2.

[Mun95] John C. Munson. Software measurement: Problems and practice. An-
nals of Software Engineering, 1(1):255–285, December 1995. Springer
Netherlands.

[Mun03] John C. Munson. Software Engineering Measurement. Auerbach Publica-
tions, New York, NY, USA, 2003.

[Nar84] Louis Narens, editor. Abstract Measurement Theory. MIT Press, Cam-
bridge, MA, USA, 1984.

[NB93] Ronald E. Nusenoff and Dennis C. Bunde. A guidebook and a spreadsheet
tool for a corporate metrics program. Journal of Systems and Software,
23(3):245–255, December 1993.

[Nie00] Frank Niessink. Perspectives on Improving Software Maintenance. PhD
thesis, SIKS, Dutch Graduate School for Information and Knowledge Sys-
tems, 2000.

178

BIBLIOGRAPHY

[NK05] Anna Gunhild Nysetvold and John Krogstie. Assessing business process-
ing modeling languages using a generic quality framework. In Proceedings
of the Tenth International Workshop on Exploring Modeling Methods in Sys-
tems Analysis and Design (EMMSAD 2005), 2005.

[NL93] Louis Narens and R. Duncan Luce. Further comments on the "nonrevo-
lution" arising from axiomatic measurement theory. Psychological Science,
4(2):127–130, March 1993.

[Nol73] Richard L. Nolan. Managing the computer resource: a stage hypothesis.
Communications of the ACM, 16(7):399–405, July 1973.

[NvV98] F. Niessink and H. van Vliet. Towards mature measurement programs. In
Proceedings of the Euromicro Working Conference on Software Maintenance
and Reengineering, pages 82–88. IEEE Computer Society, 1998.

[NvV01] Frank Niessink and Hans van Vliet. Measurement program success factors
revisited. Information and Software Technology, 43(10):617–628, August
2001.

[NWZ05] Mahmood Niazi, David Wilson, and Didar Zowghi. A maturity model for
the implementation of software process improvement: an empirical study.
The Journal of Systems and Software, 74(2):155–172, January 2005.

[NWZ06] Mahmood Niazi, David Wilson, and Didar Zowghi. Critical success factors
for software process improvement implementation: an empirical study.
Software Process: Improvement and Practice, 11(2):193–211, 2006.

[OHK89] Timothy G. Olson, Watts S. Humphrey, and Dave Kitson. Conducting
sei-assisted software process assessments. Technical Report CMU/SEI-89-
TR-7, ESD-89-TR-7, SEI at CMU, Pittsburgh, PA, USA, February 1989.

[OIM06] Hideto Ogasawara, Takashi Ishikawa, and Tetsuro Moriya. Practical ap-
proach to development of spi activities in a large organization: Toshiba’s
spi history since 2000. In ICSE ’06: Proceeding of the 28th international
conference on Software engineering, pages 595–599, New York, NY, USA,
2006. ACM Press.

[OJ97] Raymond J. Offen and D. Ross Jeffery. Establishing software measure-
ment programs. IEEE Software, 14(2):45–53, 1997.

[OP96] Paul Oman and Shari Lawrence Pfleeger, editors. Applying Software Met-
rics. Wiley-IEEE Computer Society Press, New York, NY, USA, first edition,
1996.

[Ost87] Leon Osterweil. Software processes are software too. In Proceedings of the
9th International conference on Software Engineering, pages 2–13, Mon-
terey, CA, USA, 1987. University of Colorado Boulder, Colorado, USA,
IEEE Computer Society Press. ISBN:0-89791-216-0.

[Oul95] Martyn A. Ould. Business Processes : Modelling and Analysis for Re-
Engineering and Improvement. John Wiley & Sons, Hoboken, NJ, USA,
August 1995. ISBN 0471953520.

179

BIBLIOGRAPHY

[PA03] Edgardo Palza and Christopher Fuhrmanand Alain Abran. Establishing
a generic and multidimensional measurement repository in cmmi con-
text. In Proceedings of the 28th Annual NASA Goddard Software Engineer-
ing Workshop (SEW’03), Greenbelt, Marylind, December 2003. École de
Technologie Supérieure - ETS, Québec, Canada.

[Pal87] Gabriel A. Pall. Quality Process Management. Prentice Hall, Englewood
Cliffs, NJ, USA, 1st edition, May 1987.

[Pan03] C. Ravindranath Pandian. Software Metrics. Auerbach Publications, New
York, NY, USA, 2003.

[Pau93a] Raymond A. Paul. Metrics to improve the us army software development
process. In Proceedings of the First International Software Metrics Sympo-
sium, Baltimore, MD, USA, May 1993.

[Pau93b] Mark C. Paulk. Comparing iso 9001 and the capability maturity model
for software. Software Quality Journal, 2(2):245–256, December 1993.

[Pau95] Mark C. Paulk. How iso 9001 compares with the cmm. IEEE Software,
12(1):74–83, January 1995.

[PBH71] Johann Pfanzagl, V. Baumann, and H. Huber. Theory of Measurement.
Physica-Verlag, Würzburg, Germany, 2nd, revised edition, 1971.

[PC94] Daniel J. Paulish and Anita D. Carleton. Case studies of software-process-
improvement measurement. IEEE Computer, 27(9):50–57, 1994.

[PCCW93a] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber.
Capability maturity model for software, version 1.1. Technical Report
CMU/SEI-93-TR-024, ADA263403, SEI at CMU, Pittsburgh, PY, USA,
February 1993.

[PCCW93b] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Ca-
pability maturity model version 1.1. IEEE Software, 10(4):18–27, 1993.

[Pfl93] Shari Lawrence Pfleeger. Lessons learned in building a corporate metrics
program. IEEE Software, 10(3):67–74, May 1993.

[Pfl95a] Shari Lawrence Pfleeger. Experimental design and analysis in software
engineering: Part 2: how to set up and experiment. ACM SIGSOFT Soft-
ware Engineering Notes, 20(1):22–26, January 1995.

[Pfl95b] Shari Lawrence Pfleeger. Software Quality Assurance and Measurement: A
Worldwide perspective, chapter 3 - Setting up a metrics pogram in industry,
pages 45–58. International Thomson Computer Press, London, UK, 1995.

[Pfl97] Shari Lawrence Pfleeger. Assessing measurement. IEEE Software,
14(2):25–26, March/April 1997.

[Pfl01] Shari Lawrence Pfleeger. Software Engineering: Theory and Practice. Pren-
tice Hall, Englewood Cliffs, NJ, USA, 2nd, hardcover edition, February
2001.

[PFO99] Troy Pearse, Tracy Freeman, and Paul Oman. Using metrics to manage the
end-game of a software project. In METRICS ’99: Proceedings of the 6th In-
ternational Symposium on Software Metrics, pages 207–215, Washington,
DC, USA, 1999. IEEE Computer Society.

180

BIBLIOGRAPHY

[PGF96] Robert E. Park, Wolfhart B. Goethert, and William A. Florac. Goal-driven
software measurement — a guidebook. Handbook, Online, August 1996.

[PGW94] Robert E. Park, Wolfhart B. Goethert, and J. Todd Webb. Software cost
and schedule estimating: A process improvement initiative. Special Re-
port CMU/SEI-94-SR-3, SEI at CMU, Pittsburgh, PA, USA, May 1994.

[PGW01] Mark C. Paulk, Dennis Goldenson, and David M. White. The 2001 survey
of high maturity organizations. Technical Report CMU/SEI-2001-SR-013,
SEI at CMU, Pittsburgh, PA, USA, 2001.

[Pid99] Michael Pidd. Just modeling through: A rough guide to modeling. IN-
TERFACES, 29(2):118–132, March-April 1999.

[Pig97] Thomas M. Pigoski. Practical Software Maintenance - Best Practices for
Managing your Software Investment. John Wiley & Sons, 1997.

[PJCK97] Shari Lawrence Pfleeger, Ross Jeffery, Bill Curtis, and Barbara Kitchen-
ham. Status report on software measurement. IEEE Software, pages 33–
43, March/April 1997.

[PKCS95] Kevin Pulford, Annie Kuntzmann-Combelles, and Stephen Shirlaw, edi-
tors. A Quantitative Approach to Software Management: The ami Hand-
book. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[PM90] Shari Lawrence Pfleeger and Clement McGowan. Software metrics in the
process maturity framework. Journal of Systems and Software, 12(3):255–
261, July 1990.

[PM92] Daniel J. Paulish and Karl-Heinrich Möller. Software Metrics: A Practi-
tioner’s Guide to Improved Product Development. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1st edition edition, 1992.

[PM97] Lawrence H. Putnam and Ware Myers. Industrial Strength Software: Effec-
tive Management Using Measurement. Institute of Electrical & Electronics
Engineers, Los Alamitos, CA, USA, February 1997.

[PM03] Lawrence H. Putnam and Ware Myers. Five Core Metrics: Intelligence be-
hind Successful Software Management. Dorset House Publishing Co., Inc.,
New York, NY, USA, 2003.

[Pot93] Colin Potts. Software-engineering research revisited. IEEE Software,
10(5):19–28, September 1993.

[Pow01] Antony Lee Powell. Right on Time: Measuring, Modelling and Managing
Time-Constrained Software Development. PhD thesis, Department of Com-
puter Science, University of York, Heslington, York, UK, August 2001.

[PPS03] Tim Perkins, Ronald Peterson, and Larry Smith. Back to the basics: Mea-
surement and metrics. STSC CrossTalk, pages 9–12, December 2003.

[Pre97] Roger S. Pressman. Software Engineering — A Practitioner’s Approach.
McGraw Hill, New York, NY, USA, 4th edition, 1997.

181

BIBLIOGRAPHY

[PSS05] Markus Prechtel, Jürgen Sellentin, and Franz Schweiggert. Test and soft-
ware measures for software platforms / frameworks. In Proceedings of the
3rd World Congress for Software Quality, volume II, Online Supplement,
pages 77–88, Munich, Germany, September 2005. International Software
Quality Institute (isqi), Erlangen, Germany. ISBN: 3-9809145-3-4.

[Put78] Lawrence H. Putnam. A general empirical solution to the macro software
sizing and estimating problem. IEEE Transactions on Software Engineering,
SE-4(4):345–361, July 1978.

[PV03] Sandeep Purao and Vijay Vaishnavi. Product metrics for object-oriented
systems. ACM Comput. Surv., 35(2):191–221, 2003.

[PWG+93] Mark Paulk, Charlie Weber, Suzanne Garcia, Mary Beth Chrissis, and
Marilyn Bush. Key practices of the capability maturity model version
1.1. Technical Report CMU/SEI-93-TR-025, ESC-TR-93-178, SEI at CMU,
Pittsburgh, PA, USA, February 1993.

[Raa86] Marlein Van Raalte. Rhythm and Metre: Towards a Systematic Description
of Greek Stichic Verse. Studies in Greek & Latin Linguistics. Van Gorcum
Ltd., 1986.

[Rag95] Bryce Ragland. Measure, metric, or indicator: What’s the difference?
STSC CrossTalk, 8(3):29–30, March 1995.

[RB95] Geary A. Rummler and Alan P. Brache. Improving Performance: How to
Manage the White Space in the Organization Chart. Jossey Bass Business
and Management Series. Jossey-Bass, San Fransisco, CA, USA, 2nd edi-
tion, May 1995. ISBN: 0787900907.

[RC91] Stan Rifkin and Charles Cox. Measurement in practice. Technical Report
CMU/SEI-91-TR-016 ESD-TR-91-016, SEI at CMU, Pittsburgh, PA, USA,
July 1991.

[RD39] F. J. Roethlisberger and W. J. Dickson. Management and the worker: An
account of a research program conducted by the Western Electric Company,
Hawthorne Works, Chicago. Harvard University Press, Cambridge, MA,
USA, 1939.

[RH96a] Linda Rosenberg and Lawrence Hyatt. Developing a successful metrics
program. In Proceedings of the 8th Annual Software Technology Conference,
Utah, USA, April 1996.

[RH96b] Linda Rosenberg and Lawrence Hyatt. Developing an effectivel met-
rics program. In Michael Perry, editor, Proceedings of the Product Assur-
ance Symposium and Software Product Assurance Workshop, 19-21 March,
1996, number ESA SP-377, pages 213–216, Noordwijk, The Netherlands,
May 1996. European Space Agency.

[RH97] Linda Rosenberg and Lawrence Hyatt. Developing a successful metrics
program. In Proceedings of the International Conference on Software Engi-
neering (ICSE 1997), San Fransisco, CA, USA, November 1997.

[RH04] James J. Rooney and Lee N. Vanden Heuvel. Root cause analysis for
beginners. Quality Progress, 37(7):45–53, July 2004.

182

BIBLIOGRAPHY

[RHB03] Austen Rainer, Tracy Hall, and Nathan Baddoo. Persuading developers
to ’buy into’ software process improvement: Local opinion and empirical
evidence. In ISESE ’03: Proceedings of the 2003 International Symposium
on Empirical Software Engineering, pages 326–335, Washington, DC, USA,
2003. IEEE Computer Society.

[RHGH97] Ivan Rozman, Romana Vajde Horvat, József Györkös, and Marjan
Herčuko. Processus — integration of sei cmm and iso quality models.
Software Quality Journal, 6(1):37–63, March 1997.

[RHMP85] Ronald A. Radice, John T. Harding, Paul E. Munnis, and Richard W.
Phillips. A programming process study. IBM Systems Journal, 24(2):91–
101, 1985.

[Ric04] David F. Rico. ROI of Software Process Improvement: Metrics for Project
Managers and Software Engineers. J. Ross Publishing, Inc., Boca Raton,
FL, USA, February 2004. ISBN: 193215924X.

[Rif03] Stan Rifkin. Two good reasons why new software processes are not
adopted. In Workshop Adoption-Centric Software Engineering (ACSE
2003), Proceedings of the International Conference on Software Engineer-
ing, Portland, OR, USA, May 2003. Master Systems Inc.

[RJ94] John Roche and Mike Jackson. Software measurement methods: Recipes
for success. Information and Software Technology, 36(3):173–189, March
1994.

[RL01] Juan F. Ramil and Meir M. Lehman. Defining and applying metrics in
the context of continuing software evolution. In METRICS ’01: Proceed-
ings of the 7th International Symposium on Software Metrics, page 199,
Washington, DC, USA, 2001. IEEE Computer Society.

[Rob79] Fred S. Roberts. Measurement Theory with Applications to Decision Making,
Utility, and the Social Sciences. Addison-Wesley, New York, NY, USA, 1979.

[Rob97] Daniel Robey. Research commentary: Diversity in information systems
research — threat, promise, and responsibility. Information Systems Re-
search, 7(4):400–408, 1997.

[Roy91] Winston Royce. Current problems. In Christine Anderson and Merlin
Dorfman, editors, Aerospace Software Engineering: A Collection of Con-
cepts, volume V-136 of Progress in Astronautics and Aeronautics Series,
pages 5–15, Washington, D.C., USA, 1991. American Institute of Aero-
nautics and Astronautics (AIAA).

[RP88] Ronald A. Radice and Richard W. Phillips. Software engineering: an in-
dustrial approach, volume 1. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, January 1988. ISBN: 0138232202.

[RR85] Samuel T. Redwine and William E. Riddle. Software technology mat-
uration. In ICSE ’85: Proceedings of the 8th international conference on
Software engineering, pages 189–200, Los Alamitos, CA, USA, 1985. IEEE
Computer Society Press. ISBN:0-8186-0620-7.

[RROC85] Ronald A. Radice, Norman K. Roth, Almerin C. O’Hara, and William A.
Ciarfella. A programming process architecture. IBM Systems Journal,
24(2):79–90, 1985.

183

BIBLIOGRAPHY

[RS98] Terry P. Rout and Peter G. Simms. SPICE: The theory and practice of soft-
ware process improvement and capability determination, chapter 3 — In-
troduction to SPICE documents and architecture, pages 31– 74. IEEE
Computer Society, Los Alamitos, CA, USA, 1998.

[Rub87] Howard A. Rubin. Critical success factors for measurement programs.
In Proceedings of the 1987 Spring Conference of the International Function
Point Users Group (IFPUG), Scottsdale, AZ, USA, 1987.

[Rub90] Howard A. Rubin. Measurement — where we’ve been. The Rubin Review,
3(3), July 1990.

[Rub93] Howard A. Rubin. Debunking metric myths. The American Programmer,
February 1993.

[Rug93] David Rugg. Using a capability evaluation to select a contractor. IEEE
Software, 10(4):36–45, July 1993.

[Rus02] Janet Russac. IT Measurement: Practical Advice from the Experts, chapter
18 — Cheaper, Better, Faster: A Measurement Program That Works, pages
147–158. 1. Addison-Wesley, Boston, MA, USA, 2002.

[Sag97] Andrew P. Sage. Systematic measurements: At the interface between
information and systems management, systems engineering, and oper-
ations research. Annals of Operations Research, 71(0):17–35, January
1997. Springer Netherlands.

[Sai03] Hossein Saiedian. Practical recommendations to minimize software ca-
pability evaluation risks. Software Process: Improvement and Practice,
8(3):145–156, 2003.

[SC88] S. Siegel and N. J. Castellan, editors. Nonparametrics Statistics for the
Behavioral Sciences. McGraw-Hill, New York, NY, USA, 2 edition, 1988.

[Sch02] Norman F. Schneidewind. Body of knowledge for software quality mea-
surement. IEEE Computer, pages 77–83, February 2002.

[Sch03] Jay J. Schlickman. ISO 9001: 2000 Quality Management System Design.
rtech House Technology Management and Professional Development.
Artech House, Boston, MA, USA, January 2003. ISBN: 1580535267.

[SE78] Gerald I. Susman and Roger D. Evered. An assessment of the scientific
merits of action research. Administrative Science Quarterly, 23(4):582–
603, December 1978.

[Sed97] Carl Seddio. Applying review and product metrics to the software engi-
neering process: a case study. Software Quality Journal, 1(3):133–145,
September 1997. ISSN: 0963-9314.

[SEI01a] SEI. Appraisal requirements for cmmi, version 1.1 (arc, v1.1). Techni-
cal Report CMU/SEI-2001-TR-034, ESC-TR-2001-034, SEI at CMU, Pitts-
burgh, PA, USA, December 2001.

[SEI01b] SEI. Standard CMMI Appraisal Method for Process Improvement (SCAMPI),
Version 1.1: Method Definition Document. Number CMU/SEI-2001-HB-
001. SEI at CMU, Pittsburgh, PA, USA, December 2001.

184

BIBLIOGRAPHY

[SEI02a] SEI. Capability maturity mode integration (cmmi), continuous repre-
sentation, version 1.1. Technical Report CMU/SEI-2002-TR-012 ESC-TR-
2002-012, SEI at CMU, Pittsburgh, PA, USA, March 2002.

[SEI02b] SEI. Capability maturity model integration (cmmi), staged representa-
tion, version 1.1. Technical Report CMU/SEI-2002-TR-012 ESC-TR-2002-
012, SEI at CMU, Pittsburgh, PA, USA, March 2002.

[SEI06] SEI. Cmmi for development, version 1.2. Technical Report CMU/SEI-
2006-TR-008, ESC-TR-2006-008, SEI at CMU, Pittsburgh, PA, USA, Au-
gust 2006.

[SEL97] Hans Stienen, Franz Engelmann, and Ernst Lebsanft. Bootstrap: Five
years of assessment experience. In 8th International Workshop on Software
Technology and Engineering Practice (STEP’97) (including CASE’97), pages
371–, Los Alamitos, CA, USA, 1997. IEEE Computer Society.

[SG02] Kerstin V. Siakas and Elli Georgiadou. Empirical measurement of the
effects of cultural diversity on software quality management. Software
Quality Journal, 10(2):169–180, September 2002.

[Sha90] Mary Shaw. Prospects for an engineering discipline of software. IEEE
Software, 7(6):15–24, 1990.

[Sha01] Mary Shaw. The coming-of-age of software architecture research. In ICSE
’01: Proceedings of the 23rd International Conference on Software Engi-
neering, pages 657–664, Washington, DC, USA, 2001. SEI at CMU, IEEE
Computer Society.

[Sha02] Mary Shaw. What makes good research in software engineering. Interna-
tional Journal of Software Tools for Technology Transfer, 4(1):1–7, 2002.

[Sha03] Mary Shaw. Writing good software engineering research papers. In
Proceedings of the 25th International Conference on Software Engineering,
pages 726–736, Pittsburgh, PA, USA, May 2003. SEI at CMU. ISBN: 0-
7695-1877-X.

[She31] Walter A. Shewhart. Economic Control of Quality of Manufactured Product.
Van Nostrand Reinhold Company, New York, NY, USA, 1931.

[She94] C. C. Shelley. Experience of implementing software measurement pro-
grammes in industry. Software Quality Management, pages 95–106, 1994.

[She95] Martin Shepperd. Foundations of Software Measurement. Prentice Hall
PTR, London, UK, 1995.

[She01] Sarah A. Sheard. Evolution of the frameworks quagmire. IEEE Software,
pages 96–98, July 2001.

[SL74] Patrick C. Suppes and R. Duncan Luce. Encyclopaedia Britannica, chapter
Theory of Measurement, pages 739–745. Encyclopaedia Britannica, Inc.,
Chicago, IL, USA, 1974.

[Slo97] Malcolm Slovin. Measuring measurement maturity. Cutter IT Metrics
Strategies, 3(4):11–13, 1997.

185

BIBLIOGRAPHY

[SMH96] Dirk Stelzer, Werner Mellis, and Georg Herzwurm. Software process im-
provement via iso 9000? results of two surveys among european software
houses. In Proceedings of the Twenty-Ninth Hawaii International Confer-
ence on System Sciences, volume 1, pages 703–712, 3-6 January 1996.

[SPSB91] Richard W. Selby, Adam A. Porter, Doug C. Schmidt, and Jim Berney.
Metric-driven analysis and feedback systems for enabling empirically
guided software development. In ICSE ’91: Proceedings of the 13th inter-
national conference on Software engineering, pages 288–298, Los Alamitos,
CA, USA, 1991. IEEE Computer Society Press.

[SR05] Ian Sommerville and Jane Ransom. An empirical study of industrial
requirements engineering process assessment and improvement. ACM
Transaction on Software Engineering and Methodology, 14(1):85–117, Jan-
uary 2005.

[Sta02] Michael Stark. Integrating theory and practice: Applying the quality im-
provement paradigm to product line engineering. In ICSE 2002: Interna-
tional Conference on Software Engineering, Orlando, FL, USA, May 2002.
NASA Goddard Space Flight Center.

[Ste46] Stanley Smith Stevens. On the theory of scales of measurement. Science,
103:677–680, 1946.

[Ste75] Stanley Smith Stevens. Psychophysics: Introduction to its Perceptual, Neu-
ral, and Social Prospects. John Wiley & Sons, New York, NY, USA, 1975.

[Sup72] Patrick C. Suppes, editor. Axiomatic Set Theory. Dover Publications, New
York, NY, USA, 1972.

[SW49] Claude E. Shannon and Warren Weaver. The mathematical theory of com-
munication. University of Illinois Press, Urbana, IL, USA, October 1949.
ISBN: 0252725484.

[Syd82] Peter H. Sydenham, editor. Handbook of Measurement Science, volume 1.
Wiley, New York, NY, USA, 1982.

[SZ63] Patrick Suppes and Joseph L. Zinnes. Handbook of Mathematical Psychol-
ogy, volume 1, chapter I Basic measurement theory, pages 1–76. John
Wiley, New York, NY, USA, 1963.

[Tay16] Frederick Winslow Taylor. The principles of scientific management. Bul-
letin of the Taylor Society, December 1916.

[Tay02] Christine B. Tayntor. Six Sigma Software Development. Auerbach Publish-
ers Inc., Boca Raton, FL, USA, July 2002. ISBN: 0849311934.

[Tho05] Oliver Thomas. Understanding the term reference model in information
systems research: History, literature analysis and explanation. In Ekkart
Kindler and Markus Nüttgens, editors, Proceedings of the First Interna-
tional Workshop on Business Process Reference Models (BPRM’05), Nancy,
France, 5-7 September 2005.

[THP93] Walter F. Tichy, Nico Habermann, and Lutz Prechelt. Future directions
in software engineering: Summary of the 1992 dagstuhl workshop. ACM
SIGSoft Software Engineering Notes, 18(1), January 1993.

186

BIBLIOGRAPHY

[Tic92] TickIT. A guide to software quality management system construction and
certification using en29001. Technical Report Issue 2.0, UK Department
of Trade and Industry and the British Computer Society, London, UK,
1992.

[Tic98] Walter F. Tichy. Should computer scientists experiment more? IEEE Com-
puter, 31(5):32–40, May 1998.

[TLPH95] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Exper-
imental evaluation in computer science: A quantitative study. Journal of
Systems and Software, 28(1):9–18, January 1995.

[Tor58] Warren S. Torgerson. Theory and Methods of Scaling. John Wiley & Sons,
London, UK, 1958.

[UE05] Medha Umarji and Henry Emurian. Acceptance issues in metrics pro-
gram implementation. In Proceedings of the 11th IEEE International Soft-
ware Metrics Symposium (METRICS 2005), pages 20–30. University of
Maryland Baltimore County, Baltimore, ML, USA, IEEE Computer Soci-
ety, September 2005.

[Ull88] Jeffrey D. Ullman, editor. Principles of Database and Knowledge-Base Sys-
tems, volume 1. Computer Science Press, Rockville, MD, USA, 1988.

[VCW+84] J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben, and
Y. Liu. Productivity factors and programming environments. In ICSE ’84:
Proceedings of the 7th international conference on Software engineering,
pages 143–152, Piscataway, NJ, USA, 1984. IEEE Press.

[Vin93] Walter G. Vincenti. What Engineers Know and How They Know It — Ana-
lytical Studies from Aeronautical History. John Hopkins Studies in the His-
tory of Technology. John Hopkins University Press, Baltimore, MD, USA,
reprint edition, February 1993.

[vLvSO+98] Frank van Latum, Rini van Solingen, Markku Oivo, Barbara Hoisl, Dieter
Rombach, and Günther Ruhe. Adopting gqm-based measurement in an
industrial environment. IEEE Software, 15(1):78–86, January 1998.

[vS04] Rini van Solingen. Measuring the roi of software process improvement.
IEEE Software, 21(3):32–38, May/June 2004.

[vSB99] Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method.
McGraw-Hill, London, UK, 1999.

[vSB01] Rini van Solingen and Egon Berghout. Integrating goal-oriented mea-
surement in industrial software engineering: Industrial experiences with
and additions to the goal/question/metric method (gqm). In Proceedings
of the Seventh International Software Metrics Symposium (METRICS ’01),
pages 246–259, 2001.

[Wal99] Alastair J. Walker. A software quality perspective on the evolution of iso
9001:1994 to iso 9001:2000. In Proceedings of the Fourth IEEE Interna-
tional Symposium and Forum on Software Engineering Standards, pages
58–66, 17-21 May 1999.

187

BIBLIOGRAPHY

[Wan03] Yingxu Wang. The measurement theory for software engineering. In
Canadian Conference on Electrical and Computer Engineering, 2003. IEEE
CCECE 2003., volume 2, pages 1321–1324, Montréal, QC, Canada, May
2003.

[WB01] Terence L. Woodings and Gary A. Bundell. A framework for software
project metrics. In ESCOM’01: Proceedings of the 12th European Confer-
ence on Software Control and Metrics, 2001.

[WBD06] Cornelius Wille, René Braungarten, and Reiner R. Dumke. Addressing
drawbacks of software measurement data integration. In Proceedings of
the 3rd Software Measurement European Forum (SMEF 2006), Rome, Italy,
10–12 May 2006. (online part).

[WDA93] Paul F. Wilson, Larry D. Dell, and Gaylord F. Anderson. Root Cause Analy-
sis: A Tool for Total Quality Management. ASQ Quality Press, Milwaukee,
WI, USA, September 1993. ISBN: 0873891635.

[WDK+99] Yingxu Wang, Alec Dorling, Graham King, Margaret Ross, Jeff Staples,
and Ian Court. A worldwide survey on best practices toward software
engineering process excellence. ASQ Journal of Software Quality Profes-
sional, 2(1):34–43, December 1999.

[Wei71] Gerald M. Weinberg. The Psychology of Computer Programming. Van Nos-
trand Reinhold, New York, NY, USA, 1971.

[Wei92] Gerald M. Weinberg. Quality Software Management: Systems Thinking,
volume 1. Dorset House Publishing Company, New York, NY, USA, 1992.
ISBN: 0-932633-22-6.

[Wel94] Edward F. Weller. Using metrics to manage software projects. IEEE Com-
puter, 27(9):27–33, September 1994.

[Wel00] Edward F. Weller. Practical applications of statistical process control. IEEE
Software, 17(3):48–55, May/June 2000.

[Wes02] Linda Westfall. 12 steps to useful software metrics. In Proceedings of the
International Conference on Software Quality 2002, Ottawa, ON, Canada,,
volume 12, pages 1–11. The Westfall Team, Plano, TX, USA, 2002.

[Whi97] Scott A. Whitmire. Object-Oriented Design Measurement. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1997.

[Wie97a] Isabella Wieczorek. On the establishment of successful measurement pro-
grams in industry. Software Process: Improvement and Practice, 3(3):191–
194, 1997.

[Wie97b] Karl E. Wiegers. Software metrics: Ten traps to avoid. Software Develop-
ment, 5(10), October 1997.

[Wie99] Karl E. Wiegers. A software metrics primer. Software Development, July
1999.

[WK00] Yingxu Wang and Graham King. Software Engineering Processes: Principles
and Applications. CRC Press LLC, Boca Raton, FL, USA, 2000.

188

BIBLIOGRAPHY

[WKDW99] Yingxu Wang, Graham King, Alec Dorling, and Hakan Wickberg. A unified
framework for the software engineering process system standards and
models. In Software Engineering Standards, 1999. Proceedings. Fourth IEEE
International Symposium and Forum on, pages 132–141, 17-21 May 1999.

[WL02] Charles Weber and Beth Layman. Measurement maturity and the cmm:
How measurement practices evolve as processes mature. Software Quality
Professional, 4(3):6–20, June 2002.

[WM93] Charlene Walrad and Eric Moss. Measurement: The key to application
development quality. IBM Systems Journal, 32(3):445–460, 1993.

[WNHS94] Roselyn Whitney, Elise Nawrocki, Will Hayes, and Jane Siegel. Interim
profile development and trial of a method to rapidly measure software
engineering maturity status. Technical Report CMU/SEI-94-TR-4, ESC-
TR-94-004, SEI at CMU, Pittsburgh, PA, USA, March 1994.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Reg-
nell, and Anders Wesslén. Experimentation in software engineering: an in-
troduction. Kluwer Academic Publishers, Norwell, MA, USA, 2000. ISBN:
0792386825.

[XXN+06] Ruzhi Xu, Yunjiao Xue, Peiyao Nie, Yuan Zhang, and Desheng Li. Re-
search on cmmi-based software process metrics. In Proceedings of the First
International Multi-Symposiums on Computer and Computational Sciences
(IMSCCS’06). IEEE Computer, 2006.

[Yin02] Robert K. Yin. Case Study Research: Design and Methods, volume 5 of
Applied Social Research Methods. Sage Publications Inc., Thousand Oaks,
CA, USA, 3rd edition, December 2002. ISBN: 0761925538.

[YL95] Xiaobao Yu and David Alex Lamb. Metrics applicable to software design.
Annals of Software Engineering, 1(1):23–41, December 1995.

[Zah98] Sami Zahran. Software Process Improvement: Practical Guidelines for Busi-
ness Success. Addison-Wesley Professional, Essex, UK, 1st edition, Febru-
ary 1998. ISBN: 020117782X.

[Zam01] Kamal Zuhairi Zamli. Process modeling languages: A literature review.
Malaysian Journal of Computer Science, 14(2):26–37, December 2001.

[Zav86] Pamela Zave. Let’s put more emphasis on prescriptive methods. ACM
SIGSOFT Software Engineering Notes, 11(4):98–100, August 1986.

[Zub01] Dave Zubrow. The measurement and analysis process area in cmmi.
Newsletter of the American Society for Quality, 2001.

[Zub03] Dave Zubrow. Current trends in the adoption of the cmmi product suite.
In Proceedings of the 27th Annual International Computer Software and Ap-
plications Conference (COMPSAC’03), pages 126–129, Los Alamitos, CA,
USA, November 2003. IEEE Computer Society.

[Zuc95] Lin Zucconi. Software process improvement paradigms for it industry:
Why the bottom-up approach fits best. In APSEC ’95: Proceedings of the
Second Asia Pacific Software Engineering Conference, page 511, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

189

BIBLIOGRAPHY

[Zul01] Richard E. Zultner. The deming way to software quality. Online,
http://www.softwaredioxide.com/Channels/Events/download/zultner.pdf,
2001.

[Zus91] Horst Zuse. Software Complexity: Measures and Methods. Walter de
Gruyter & Co., Berlin, Germany, 1991.

[Zus92] Horst Zuse. Properties of software measures. Software Quality Journal,
1(4):225–260, December 1992.

[Zus98] Horst Zuse. A Framework of Software Measurement. Walter de Gruyter &
Co., Berlin, Germany, 1998.

[ZW98] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental models for
validating technology. IEEE Computer, 31(5):23–31, 1998.

[ZZW95] Wayne M. Zage, Dolores M. Zage, and C. Wilburn. Avoiding metric mon-
sters: A design metrics approach. Annals of Software Engineering, 1:43–
55, 1995.

190

Appendix A

Fundamentals of measurement
theory

“The essence of mathematics is not to make simple things complicated,
but to make complicated things simple.”

– Stan Gudder∗ –

A.1 Introduction

Especially experimental sciences live on the opportunity to quantify certain aspects of
theories in order to substantiate or reject hypotheses. Several centuries ago, Galileo
Galilei (*1564 – †1642) coined the slogan: “Measure what is measurable, and what
is not measurable, make it measurable.” Despite not being novel, that motto is still
valid today and is corroborated for instance by a recent statement: “The history of
science has been, in good part, the story of quantification of initially qualitative con-
cepts.” [Bun67] But measurement, or more precisely the “discipline of measurement”
called metrology [Pal87, p. 108] [AS02a] is also fundamental in any engineering dis-
cipline, where continuous control over the applied processes, resources and created
products is key to success. Tom DeMarco’s [DeM82a] paraphrase “You can’t control
what you can’t measure” gives good evidence of its importance. If the production of
software shall open out an engineering branch of software engineering, control and
thus sophisticated measurement has to be applied right from the beginning. That jus-
tification of measurement via an engineering analogy is popular and often utilized in
related textbooks, which use it as a raison d’être. [Bas90] [Kit96b]

A good deal more than two decades ago, DeMillo and Lipton [DL81] argued for
paying more attention to the relevance of theory of metrology when applying measure-
ment in software engineering. But, obviously, it has been “largely ignored by both,
practitioners and researchers.” [Fen94] With this criticism still being up-to-date in re-
cent times, Kaner and Bond [KB04] argue: “Our experience with graduate and under-
graduate students in our Software Metrics courses, and with practitioners that we have
worked with, taught, or consulted to, is that theory is profound, deep, intimidating,
and not widely enough used in practice.” To counteract that springe right from the
beginning, this chapter is intended to highlight basic aspects of measurement theory
and general metrology.

∗John Evans Professor of Mathematics, University of Denver, Denver, CO, USA

191

APPENDIX A. FUNDAMENTALS OF MEASUREMENT THEORY

Reference material
When studying the technical literature, one can find interpretations of measurement
theory based on representational theory with different degrees of profundity relative
to the specific scientific and/or engineering backgrounds of the authors. [KLST71]
[PBH71] [Rob79] [Fin82] [Syd82] [Fin84] [Kri88] [KLST89] [LKST90] Also aspects
of classical information theory [SW49] contribute to a better understanding. [KA94]
However, it should be noted here that representational theory is not absolutely free of
dispute as it for instance under harsh critique by Michell. [Mic05]

In the area of software engineering there are mainly the two research groups of lu-
minaries around Norman Fenton in the UK and around Horst Zuse in Germany. Having
tried to explain the underlying theory and to press ahead its translation into practice,
they are probably the most cited authors in that direction. Hence it is not astonishing
to predominantly find publications of both groups. [Fen91] [Fen94] [FW95] [FP97]
[Zus91] [Zus92] [Zus98] Beyond that, few and far between also other research groups
like the one around Barbara A. Kitchenham [KL87] [KPF95] [Kit96b] [KHL01], Lionel
Briand [BEM95b] [BMB96] [MB97], or John C. Munson [Mun95] [Mun03] touch as-
pects of measurement theory in their publications.

Solely, the book of Scott A. Whitmire [Whi97, p. 142] disrupts the idyll of ex-
haustive description by revealing wrong or incomplete cognitions at least in the early
publications of Fenton and Zuse. In 1997 he concludes that: “No discussion on mea-
surement theory in the context of software engineering is based on complete informa-
tion.” In turn, he thoroughly addresses the problem and provides a brilliant chapter on
it that mainly draws upon the three volumes Foundations of Measurement by Krantz et
al. [KLST71, KLST89, LKST90] Thus, the structure of the section is geared to the one
of Whitmire but reflects knowledge compiled, equalized, and culminated out of the
several sources.

A.2 Measurement — the detour for the intelligence barrier

As initially provided by Kriz [Kri88] and later adapted in the measurement-related part
of the Encyclopedia of Software Engineering [Mar94], figure A.1 illustrates the mo-
tivation for measurement efforts: There is a general mental weakness or inability of
human beings, also called intelligence barrier, to construe observations and/or empir-
ical statements from the real-world (empirical relational system) towards empirically
relevant results. More formally, those observations are called attributes or properties
of instances or objects of empirical entities. In order to overcome that weakness the
representational theory of measurement is applied. With its aid, the observations from
the real-world are converted by means of special procedures to their representation
in the world of numbers or symbols (numerical relational system), thereby preserving
all contained information. Then, using possibly combinations of mathematical and/or
statistical procedures, numeric results can be extracted and on their part construed
by human interpretation. This by-pass or detour towards empirically relevant results
sometimes makes construing possible at all or at least significantly easier than without.

So, the representational approach to measurement tries to find a formal, numeri-
cal way of expressing our intuitive empirical understanding of the real-world’s back-
ground stories as an essential foundation and basic requirement for later processing
in the mathematical world. Beyond the concept of empirical and numerical relations,
three major components are of elevated importance: empirical relational structures,
numerical relational structures, and the mapping from the empirical structure into the
numerical structure.

192

A.3. EMPIRICAL AND NUMERICAL RELATIONAL SYSTEMS

empirical
relation
system

numerical
relation
system

empirically
relevant
result

numeric
result

measurement

interpretation

intelligence
barrier

statistics/
mathemtics

Figure A.1: Intelligence barrier (adapted from [Kri88])

A.3 Empirical and numerical relational systems

Relations
The terms empirical relation [FP97] or empirical statement [Zus98] are used to charac-
terize the human being’s understanding of things by qualitatively comparing them with
already known instances of entities (e. g. ‘x is taller than y’) and approving them by
means of direct observation. Often, there can be more than one empirical relation for
the same set and while often preferred, relations need not necessarily to be binary.

In contrast to that, a numerical relation R on two given sets A and B (binary rela-
tion) can be defined [Whi97] as a mapping of elements of A to elements of B resulting
in a set of ordered pairs (a, b) with a ε A and b ε B. This is exactly the same as (a, b) ε R,
a 7→ b ε R or aRb or

R : A↔ B (A.1)

Members of the source set A of a relation R are called the domain of R and members of
the target setB of a relationR are termed codomain or range. For a complete discussion
of relations and their multiple manifestations the reader could for instance refer to the
exquisite book of Foldes [Fol94].

Relational systems
Relational systems or relational structures are member of algebraic structures, where
an algebra stands for a set, called carrier set, together with a set of relations or op-
erations and where structure refers to the conditions which are applied on the opera-
tions. [Whi97] Those structures can take the form of group structures like groups, rings
and fields, vector or topological spaces as well as forms of graphs or categories. Fur-
thermore, the term’s constituent ‘relational’ refers to a relational kind of algebra. The
operations of a relational algebra are set union, set intersection, set difference, and
Cartesian product as well as concatenations, such as projection, selection, quotient,
join, and semijoin. [Ull88]

Concluding, a relational system consists of a set of objects, relations between them
and/or operations. As defined by Zuse [Zus91] on the basis of Roberts [Rob79], one
can distinguish between empirical and numerical relational systems being important
for measurement:

193

APPENDIX A. FUNDAMENTALS OF MEASUREMENT THEORY

Let A be a non-empty carrier set of empirical objects, which are to be quantified,
and RAj be ki-ary empirical relations on A with i = 1, ..., n, and oAj be closed binary
operations with j = 1, ...,m on the empirical objects in A, then, presuming a well-
established empirical interpretation for all constituents of the algebra, the empirical
relational system is defined as:

A = (A,RA1, ..., RAn, oA1, ..., oAm) (A.2)

Typically, RA1 is a weak or total empirical ordering relation � at the same time being
the most basic condition for measurement and oA1 is the closed binary concatenation
operation ◦.

Let B be the non-empty set of formal objects (numbers, symbols, or structures) and
RBr be the ki-ary numerical relations on B with r = 1, ..., n and oBs closed binary
operations which on the formal objects in B with s = 1, ...,m that are chosen to actu-
ally preserve the empirical relations and operations of A then the numerical relational
system is defined as:

B = (B,RB1, ..., RBn, oB1, ..., oBm) (A.3)

Usually but not throughout, the domain of real numbers R will be the set of numbers
B and RB1 could be no or an arbitrary like ordering relation ≥ on R. In this case
B is termed an ordered numerical structure. Over and above, oB1 could be no or an
arbitrary closed binary operation ⊗ on R,

A.4 Mapping between the systems

When talking about mapping, the intuitive meaning of the term ‘function’ will most
probably come into one’s mind. Universally, a function can be seen as a predefined
mapping rule, which transforms an argument or input quantity into a resulting output.
In the area of mathematics the term ’mapping’ resides in the subarea of set theory
and/or abstract algebra which is a major foundation of measurement theory. Here, the
theorists distinguish mappings or rather homomorphisms for universal algebras into
epimorphisms, monomorphisms, isomorphisms, endomorphisms, and automorphisms
depending on the property of the mapping function. Despite being acutely important
as basic knowledge, for a well understandable comprehension the reader should for
instance refer to Suppes. [Sup72]

A structured approach to the mapping between the empirical and numerical rela-
tional systems requires the existence of three major components: First, models should
be provided which are an essential aid in understanding the derivation of the mapping
between the systems and in later interpreting the behavior of the formal representation.
Second, there must be "basic assumptions of reality" [Zus98] characterized by so-called
axioms that are imposed on an empirical object by the numerical representation and do
not need to be proved but provide a frame of knowledge. Starting from those axioms,
theorems [Fen91] can be logically deduced that are applied in the mapping models.
Finally and third, there have to be basic procedures which actually allow one to assign
numbers or symbols to empirical objects, that is, to construct measurements.

A.4.1 Underlying models

Without doubt, the universal but complex mapping (later called measurement) ap-
proach from the empirical to the numerical relational system requires a sequence of
steps [BBFG90] [Kit96b] [Whi97] [Wan03]:

194

A.4. MAPPING BETWEEN THE SYSTEMS

1. Identification of objects of empirical entities being of interest.

2. Identification of attributes or properties in question of those objects.

3. Development of a mapping model being appropriate for the current environment
and the questioned attributes of those objects.

4. Selection of a mapping procedure qualified and built upon the mapping model.

5. Performance of the mapping itself.

As one can easily recognize in step 3, a prerequisite for the mapping between the
systems is a model of the current environment and the property of interest. [Fen91]
Withal, models can be generally characterized as “an abstraction of reality, allowing us
to strip away detail and view an entity or concept from a particular perspective.” [FP97,
p. 36]

Formats: text, diagrammatic, and algorithmic models
Laird et al. [LB06] list three distinct types of models to be considered to describe the
mapping between the systems: text models, diagrammatic models, and algorithmic
models. Although text models can be decorated with metaphors and heuristics, among
the presented ones they are least effective and powerful because describing complex
relations and dynamics can be a difficult undertaking. Especially diagrammatic and
algorithmic models bear the ability to clearly describe potential interrelations between
entities. However, to all intents and purposes it possible to formulate more than one
model, which can come in different forms like equations or diagrams, for the same
questioned attribute of an object.

A.4.2 Axioms and theorems

There are three classes of axioms that can be used to frame measurement: First, there
are necessary axioms which are mathematically important and result from the construc-
tion of the representation itself. Second, there are non-necessary or structural axioms
which are used to embank the number of sets, that correctly answer the axiom set, to
a manageable count. The resulting set might still require additional, complex proof of
theorems. There are three sub-types of structural axioms with different requirements
on the set: Those, that urge for a non-empty set, or those requiring a finite and/or
countable set, or those that stipulate solvability for a class of equations. Third and
finally, there are necessary Archimedean axioms which originate from the Archimedean
property of the real numbers that expresses the following: For any positive number x
and for any number y there is an integer n so that n ∗ x ≥ y holds true. Usually, this
axiom is stated as “Every strictly bounded standard sequence is finite.” [Whi97] In case
that requirement is not satisfied, the empirical object must not be mapped to the real
numbers.

As mentioned before, theorems can be logically deduced from the axiomatic the-
ories of measurement constraining the mapping: There are mainly three theorems
important for the mapping between the systems, namely the representation theorem,
the uniqueness theorem, and the meaningfulness theorem. Comprehensive and concise
examinations of those theorems connected with the pertinent structures is provided by
the related technical literature. [SZ63] [Rob79] [LN84]

195

APPENDIX A. FUNDAMENTALS OF MEASUREMENT THEORY

Representation theorem
First, the representation theorem expresses the different axioms, which have to be
satisfied by the empirical structure for the mapping to be meaningful, that is structure-
preserving. In short, it is concerned with the problem of the “justification of the assign-
ment of numbers to objects or phenomena.” [SZ63, p. 4] Every single of the already
mentioned structures of the numerical relational system has its own representation the-
orem, since it determines and thus articulates the conditions, under which a mapping
from the empirical relational system to it is possible.

Uniqueness theorem
Second, the uniqueness theorem formulates the class of mathematical transformations
which map one homomorphism to another one, thereby defining relationships or trans-
formations between different mappings. Put another way, it deals with the tensions of
“the specification of the degree to which this assignment is unique.” [SZ63, p. 4] Fen-
ton and Pfleeger [FP97] assert that this theorem affects “our ability to determine which
representation is the most suitable for measuring an attribute of interest.” This directly
leads over to the introduction of scales and scale types which establish the uniqueness
theorem.

Meaningfulness theorem
Third, the sometimes controversial meaningfulness theorem first mentioned by Suppes
and Zinnes [SZ63] defines the class of statements that can be asserted in a mean-
ingful way. Put another way, it largely deals with the invariance of statements un-
der alternative numerical representations achieved by means of the uniqueness theo-
rem. [KLST71] [Rob79] [LN84]

A.4.3 Measurement and measures

Generally speaking, the process of measurement can be defined [Ste75] [Fin84] [FW95]
[FP97] [Zus98] as the mapping m from an empirical relational system A (cf. Equation
A.2) on an numerical relational system B (cf. Equation A.3) by means of a formal, valid
and repeatable mechanism to describe properties of objects of entities from the empir-
ical relational system. This mechanism can be seen as “the essence of measurement:
the construction of an isomorphism from some empirical structure . . . onto a numerical
structure.” [Whi97, p. 155]

Presuming, that for the mapping m from A on B the condition a RA1...n b ⇔
m(a) RB1...u m(b) holds true for all a, b ε A, measurement m is defined as:

m : A→ B (A.4)

Taking the above definition for granted, a measure is consequently the member of B
assigned to a member of A by the mappingm in order to characterize an attribute while
preserving the given operations and relations RA1...n in RB1...u. After all, many authors
[BCR94b] [FP97] unanimously define the term ‘measure’ textually as following: “A
measure is used to characterize some property of a class of objects quantitatively.”

A.4.4 Scales and scale types

Authors of the literature on representational measurement theory like e.g. Briand et
al. [BEM95b] unanimously share Zuse’s [Zus98] view that the ordered triple construct
containing the empirical relational system A = (A,RA1, ..., RAn, oA1, ..., oAm), the nu-
merical relational system B = (B,RB1, ..., RBn, oB1n, ..., oBm), and the measurement

196

A.4. MAPPING BETWEEN THE SYSTEMS

m : A→ B is to be referred to as a scale

(A,B,m) (A.5)

if and only if for all n (index of respective relations),m (index of respective operations)
and for all a1, ..., ak, b, c ε A the following conditions hold true:

• RAn(a1, ..., ak)⇔ RBn(m(a1), ...,m(ak))

• m(a oAm b) = m(a) oBm m(b)

Taking into account the uniqueness theorem, the number of different numerical
representations for a given empirical relational system shrinks with its number or em-
pirical relations [Fen91] [FP97]. In order to know, which representations other than
a found one might be acceptable, too, there is a set of admissible transformations that
determines the scale type. [Whi97]

In his 1946 book the Harvard psychologist Stevens [Ste46] coined the terms for a
set of five different scale types based and identified by the invariance of their meaning
under different classes of transformations. Although, more recent literature [Alp87]
[NL93] argues that these five scale types were too limited in scope and miss scale types
which might exhibit periodicities, they form a de-facto standard in measurement theory.
The scale types are sorted in ascending order with regard to uniqueness in mapping,
that is, their restrictiveness: nominal, ordinal, interval, ratio, and absolute. They are
respectively expressed in terms of their defining relations and/or axioms — those that
remain invariant under the set of permissible transformations. [LKST90]

Nominal scale type
The usage of a nominal scale type is the most basic form of measurement and rather
a kind of classification, where equivalence classes built of sequences of numbers or
symbols from the carrier set B of the numerical relational system B are assigned to el-
ements of the carrier set A of the empirical numerical system A according to a specified
scheme.

While this kind of mapping does not allow to make statements about the ordering or
magnitude of elements of A, the basic statement about their equivalence when having
the same name after being classified is possible, anyway. [FP97] So, the only meaning-
ful relation or operation for nominal scale types is the empirical equivalence ≈ relation
for two objects a, b ε A that is reflected by the numerical equivalence relation =. This
can be expressed formally as a ≈ b ⇔ m(a) = m(b). [Zus92] Putting this information
into the contexts of Equation A.2 and Equation A.3, a scale of nominal type is mirrored
by the ordered triple:

(A,B,m) = ((A,≈), (B,=),m) (A.6)

Withal, the set of allowable transformations spans on any different symbolic class de-
nominations and can be characterized best as any one-to-one mapping that assigns the
same equivalence class to equivalent instances. Because almost any transformations
except combinations or confusing of class identities are permitted, only the weakest
information have the ability to survive such a arbitrariness.

Ordinal scale type
A ordinal scale type distinguishes itself from the nominal scale type by the augmen-
tation of information about the previously missing ordering of the equivalence classes
with symbolic denominations. This creates the base for more sophisticated mappings.

So, in addition to statements about the empirical equivalence relation ≈ between
two objects a, b ε A, that scale type allows statements about the empirical ranking

197

APPENDIX A. FUNDAMENTALS OF MEASUREMENT THEORY

and/or ordering relation � between a and b with respect to a special attribute which is
reflected by the numerical ordering relation ≥. [Whi97] Because merely a ranking can
be represented by ordinal scale types, so addition, subtraction, and other arithmetic
operations have no meaning. Put in the formal way of Equation A.2 and Equation A.3,
a scale of ordinal type is mirrored by the ordered triple:

(A,B,m) = ((A,�), (B,≥),m) (A.7)

In order for a scale to be of ordinal type, the mappingm has to be of a weak order, that
is, it has to satisfy the following axioms for all a, b, c ε A [Lig02]:

• a � a (reflexive)

• a � b and b � a⇒ a � c (transitive)

• a � b or b � a (connected)

The set of allowable transformations contains any monotone function (either in-
creasing or decreasing) that preserves the empirical object’s ordering. [SZ63] Thereby,
a functionm(a) is monotone increasing if and only if for all objects a and b in the func-
tion’s pertinent domain the following holds true: if a < b, then m(a) < m(b). Finally,
a function m(a) is monotone decreasing if and only if for all objects a and b in the
function’s pertinent domain the following holds true: if a < b, then m(a) > m(b).

Interval scale type
Over and above, the interval scale type enhances it predecessor in the hierarchy of
Steven’s scale types by retaining the interval size between two empirical objects in the
course of the transformation.

Translated into formalism the following picture can be drawn on the notes of Zuse
[Zus98]. Given the objects a, b, c, d, a′, b′, c′, d′ which are elements of the non-empty
carrier set A of the empirical relational system A and let � be a quaternary relation
(e.g. the preference relation defined on intervals) on A, then the pair (A × A,�) is
called an algebraic structure if beyond weak order the following axioms are satisfied:

• if ab � cd, then dc � ba

• if ab � a′b′ and bc � b′c′, then ac � a′c′

• if ab � cd � aa, then there exists d’, d”εA, such that ad′ ≈ cd ≈ d′′b

• if a1, ..., ai, ... is a strictly bounded sequence (ai+1ai ≈ a2a1 for every ai, ai+1 in the
sequence; not a2a1 ≈ a1a1; and there exist d′, d′′εA such that d′d′′ � aia1 � d′′d′
for all ai in the sequence), then it is finite.

To complete the formal view of the interval scale type, the numerical relational system
B together with its carrier set B, and the mapping m have to be placed into Equation
A.2 and Equation A.3, too. While addition and subtraction are acceptable but not
mandatory, multiplication and division are not. [FP97] Thus, the interval scale type
can be represented formally by the ordered triple:

(A,B,m) = ((A×A,�), (B ×B,≥),m) (A.8)

There are two forms of allowable transformations depending on the carrier set B of the
numerical relational system B. First, there is the so-called positive affine group [LN84]
[Whi97] defined on B as the entire set of real numbers R allowing transformations of
the form m(a) = ra + s, with the coefficient r > 0 and the constant s. Second, when

198

A.4. MAPPING BETWEEN THE SYSTEMS

B embraces the reduced set of positive real numbers R+, there is the so-called power
group being prevalent in transformations in physics which allows transformations of the
form m(a) = tar, with t as coefficient and exponent r > 0. In case the transformations
form the power group, the scale type is renamed as log-interval scale. [Whi97] Withal,
an admissible transformation is called translation if r = 1 or dilation if r 6= 1.

Ratio scale type
Arriving at the highest scale type of measurement, the already sophisticated mapping
of the interval scale type that preserves ratio and ordering of the intervals is augmented
by preserving the ratio of scale values under a transformation. This scale is common
and preferred in physical sciences as well as in all-day’s life. [FP97] According to Zuse
[Zus98] one idea behind that type is the introduction of an additive property over a
concatenation operation which increases over equal intervals. That also implies having
a zero element, that is, total lack of the characteristic of interest.

Given two objects a and b being elements of the non-empty carrier set A of the em-
pirical relational system A, and a binary relation � on A, and a closed binary operation
◦ on A, then the ordered triple (A,�, ◦) is called a closed extensive structure if there is
a function u (all arithmetics are unprohibited, now) on the domain R such that for all
a, bεA holds true [KLST71]:

• a � b⇔ u(a) ≥ u(b)

• u(a ◦ b) = u(a) + u(b)

Additionally, there is the condition, that a different function u′ satisfies the above state-
ments, when there is an α > 0 such that u′(a) = αu(a). It is important to note, that
Whitmire pointed out that there are other possibilities to achieve a ratio scale type than
using closed extensive structures.

Similarly to the structure of permissible transformation for the interval scale type
there exists a distinction according to domain of the carrier set B of the numerical re-
lational system B, as well. In case its domain completely embraces R, transformations
of the form m(a) = a + s with the constant s, called translation group or difference
scale [Whi97], are possible. In the other case, where R+ stands for B, transformations
conforming to m(a) = ra with the coefficient r > 0 are admissible. Those are then
called transformations of the similarity group. [LN84]

Absolute scale type
The most restrictive scale type of all of those proposed by Stevens is the absolute scale
type representing integer counts of elements of the carrier set A of the totally ordered
empirical relational system A. It can always be expressed in the form ‘number of
occurrences a in A’. Withal, the zero point is to be determined by the respective repre-
sentation. [Whi97]

Expressed formally with the cognitions of Narens [Nar84], a mapping m is of an
absolute scale type for A, if there is a numerical relational system B that is the set of
N-representations for A but exactly has one element:

(A,B,m) = ((A,�, oA1, oA2, ...), (R+,≥,⊗B1,⊗B2,...),m) (A.9)

Although, the only admissible measurement mapping is the actual count, all arithmetics
on it are meaningful. [FP97]

The set of admissible transformations can be characterized as a function of the form
m(a) = r∗a with the constant a = 1. Thus, it represents a mapping on itself, also called
automorphism. [Zus98]

199

APPENDIX A. FUNDAMENTALS OF MEASUREMENT THEORY

Appropriate statistics for each scale type
A summary of the four major measurement scale types and statistics appropriate for
each has been produced by Siegel and Castellan [SC88] and is reproduced in table
A.1. This supports the application of measurement theory and related scale types in
exhibiting, which statistical operations or tests might be applied to a measure being on
hand of a special scale type.

Scale
type

Defining relations Examples of appropriate
statistics

Appropriate sta-
tistical tests

Nominal 1. Equivalence Mode Non-parametric
Frequency statistical
Contingency tests

Ordinal 1. Equivalence Median Non-parametric
2. Greater than Percentile statistical

Kendall τ tests
Spearman rS
KendallW

Interval 1. Equivalence Mean Non-parametric
2. Greater than Standard deviation and parametric
3. Known ratio of Pearson product-moment statistical tests
any intervals correlation

Multiple product-moment
correlation

Ratio 1. Equivalence Non-parametric
2. Greater than and parametric
3. Known ratio of statistical tests
any two intervals Geometric mean
4. Known ratio of Coefficient of variation
any two scale values

Table A.1: Measurement scale types and relevant statistics (adapted from [SC88])

A.4.5 Units and dimensions

Physical sciences and engineering disciplines strongly rely on the application of units
and dimensions of measurement as valuable components of measures in exposing
and comparing physical systems. [HM95] Referring to the classical view of Finkel-
stein [Fin84] they can merely be meaningfully applied when measures use at least
interval, or better ratio or absolute scale types implying to have a subset of the math-
ematical domain of the real numbers, R, as the carrier set for the numerical relational
system.

Melton et al. [MGBB90] render the definition of a measure (cf. equation A.4) more
precisely as they regard it as a function to a set of ranked magnitudes with a magnitude
being the product of a real number and a unit of measurement. Thus, units distinguish
magnitudes of distinct types of quantities. [Mas86]

200

A.5. DISTINGUISHING MEASUREMENT

With a spot of contrast to the notes of Melton et al., Hayes et al. [HM95] conceive a
unit as a synonym for a scale. They mention that two scales are similar, in case there is
a strict ratio conversion factor between both what expels at least nominal and ordinal
scale types from having meaningful units. The notion of similarity of scales that are
intended to measure the same quantity is then used to define the dimension. Hayes et
al. also are of the view that units address cognitive interests of human beings when
applying arithmetic on measurement values. Units provide a system for annotations of
those values with a particular symbol or sequence of symbols as error checking device
against foolish combination errors. Moreover the unit symbol can serve as a guide,
which operations are admissible. When algebra of equations with variables of real
values shall be applied, Hayes et. al put forward to focus on the check of dimensions
for dimensional invariance by means of dimensional analysis which has was first put in
formal form by Fourier [Fou22] and is exhaustively discussed in the literature. [Bri31]

Again with a slightly different flavor but having the same intention of ratio con-
version in mind, Wang [Wan03] comprehends a unit µ as “the minimum differences
between two marks of a scale”, that is:

µ = ωi − ωi−1 (A.10)

Additionally, he also cherishes units of measurements since they assign a “physical or
cognitive meaning of a measure on a specific attribute” of objects of the numerical
relational system and/or measurement result.

After all, Kitchenham [KPF95] [Kit96b] brings up that units can be defined at least
in four different ways: They can either be defined by reference to a standard and/or
example, by reference to a certain theory, by reference to conversion from another
unit, or by reference to a model incorporating other attributes. Moreover, she supposes
practically to regard a measurement unit as an indicator of the way we measure a
certain attribute of interest.

A.5 Distinguishing measurement

Fundamental and derived measurement
When talking about measurement the technical literature [Tor58] [Rob79] [Fen91]
[FP97] [Zus98] distinguishes between fundamental and derived or its alternative de-
nominations, direct and indirect or internal and external, measurement. This viewpoint
again strongly adheres to Campbell [Cam20, p. 14], who initially proposed this dis-
tinction: “Measurement is fundamental if it involves no previous measurement. If it
does it is derived.” On that basis, Krantz et al. [KLST71] for instance are of the opin-
ion that a measure is fundamental, if it directly characterizes an empirical attribute
of the object in question and does not require the quantification of one or more other
properties. In contrast, Kitchenham [Kit96b] describes indirect measures as those, that
can be obtained with the aid of mathematical expressions which involve other direct
measures.

In the same breath, Kitchenham cautions against a number of special problems
connected with indirect measures, since the distinction of usage between a scalar or
vector is non-trivial. She accompanies the problems with the illustrative example of
measuring position as a vector in a Cartesian space, but distance as a scalar: When the
coordinates are transposed, their distance to the origin remains untouched, while their
position has obviously changed. Several years before, Conte et al. [CDS86] already
pointed at those problems and used the term ‘composite’ measures instead of indirect
ones.

201

APPENDIX A. FUNDAMENTALS OF MEASUREMENT THEORY

Finally, Roberts [Rob79] subscribes to the view that direct measurement is being
performed at early stages of scientific development, while derived measurement usu-
ally takes place later and avails itself of existing direct measures when constructing
derived ones. This opinion implies that later, derived measurement should be more so-
phisticated than earlier, direct measurement because the underlying scientific concepts
should have been improved over time. Fenton [Fen91] agrees and cites Kyburg [Kyb84]
as proof, who asserts and demonstrates via the example of speed that more accurate
measurements may be achieved indirectly.

Extensive and intensive measurement
Measurement theorists like Munson [Mun03] follow the notes of Campbell
[Cam20], who initially distinguished between two categories of measurement, namely
intensive or qualitative and extensive or quantitative measurement. With the aid of ex-
tensive measurement quantities, which represent properties for each of which there is
a similar empirical operation with regard to a arithmetical additive operation. [SZ63]
This enables one to answer questions like how much or how many. [Mun03] In con-
trast, intensive measurement deals with the quantification of intensive and/or qual-
itative properties that can be characterized by an absence of an additive operation.
Usually, by means of qualitative measurement the degree of the relationship between
instances of an entity can be determined.

Subjective and objective measurement
After all, the technical literature mentions the category of subjective and objective or
algorithmic measurement. Conte et al. [CDS86, p. 18] state: “An objective, or algorith-
mic, measurement is one that can be computed precisely according to an algorithm. Its
value does not change due to changes in time, place, or observer.” Taking into account
those eligible properties of measurement, there seems to be a myriad of disadvantages
for the opposite of objective measurement, that is, subjective measurement. It is non-
replicable, because it is, per se, based on the cognitions of an observer yielding most
probably to different results, when performed by different individuals. Even when the
same observer should be asked to replicate the measurement, it is not sure to gain the
same results, the second time. Additionally, the involvement of human observers is
not contemporary due to an elevated cost factor when compared with automated de-
vice. However subjective measurement owns its place and cannot be evaded e. g. for
intensive measurement.

A.6 Procedures of measurement

Usually, measurement falls back on one of the following procedures as described by
Whitmire [Whi97]: ordinal measurement, counting of units, or solving of inequalities.
Over and above, authors like Suppes and Zinnes [SZ63] also describe pointer measure-
ment procedures.

Zuse [Zus98] goes a more stringent way in describing types of measures reflecting
different sub-procedures of measurement, when he lists: counting one attribute, addi-
tive measure, hybrid measure by additivity, hybrid measure additive plus a constant,
etc. In order not to exceed the given scope of the thesis, these types shall only be
referred to but not explained in detail.

202

A.7. MEASUREMENT ISSUES

Ordinal measurement
The concept of ordinal measurement tries to find representation objects in the numeric
world which exactly mirror the relative order of a set of empirical objects concerning a
certain attribute by an identified ordering relation. In doing so, the number sequence
has to exactly match the object sequence. Zuse [Zus98] terms ordinal measurement as
ranking.

Counting of units
Counting units depends on an empirical concatenation operation as well as on the com-
pilation of a standard sequence of empirical objects. This assignment method is also
known as extensive measurement and at the same time the foundation for measure-
ment in the whole physical science.

Solving of inequalities
There might by circumstances, in which one might not be able to compile a standard
sequence of empirical objects, but a set of inequalities describing the sequence. Then,
one can try to map any empirical element on a formal element and check for poten-
tial concatenation operations like numeric addition in real number domain. If at all,
any simultaneous solution of the transformed mathematical inequalities is a valid rep-
resentation, then. However, two essential assumptions must hold true: The numbers
assigned to the elements must be additive and the ratios of the numerical assignments
must be unique, no matter what unit chosen.

Pointer measurement
Over and above, one can frequently find the point of view in the technical litera-
ture [SZ63] that so-called pointer measurement, either fundamental or derived, is a
special procedure of measurement based on direct reading of some validated instru-
ment. It starts from the attitude that measurement instruments replicate complex mea-
surement and are validated by showing to yield values that correspond to those of some
fundamental or derived mapping procedure.

A.7 Measurement issues

A.7.1 Measurement error

Similarly to laboratory experiments of i. e. chemical processes in clean-room envi-
ronments that work as the theory explains but fail, when outside influences perish the
ideal environment, measurement attempts are most often thwarted by noise of natural
origin. The art in measurement is, to be aware of that noise and reduce it as much as
possible, since the absence of noise is a sublime desire but will only occur in an ideal
world.

Munson [Mun03] describes two categories of sources of measurement error to be
taken into account: methodological (systematic) and propagation errors. The former one
represents the introduction of bias or measurement error owing to a problem with the
method of collecting the measurements. He mentions three different types, as there
are: variations in the measurement instrument or tool, errors inherent in the applied
method, or truncation and/or rounding errors introduced by the usage of constrained
computers. Propagation errors emerge, when cumulative effects of measurement er-
rors materialize. As a result accuracy suffers more and more from computation to
computation.

203

APPENDIX A. FUNDAMENTALS OF MEASUREMENT THEORY

Stephen H. Kan [Kan95] and Laird et al. [LB06] maintain the notion of method-
ological and/or systematical errors but dismiss propagation errors. Moreover, they
introduce the notion of random errors which cannot be explained logically and occur
sporadically. However, because noise or rather these disturbances are thought to be
random, that is, positive errors are as likely to occur as negative errors, they will cancel
each other when computing the average in the long run.

Kan provides a short mathematical summary of the topic that shall not be detained,
here: Let M be the observed and/or measured score, T be the true score as it would
occur in an ideal world, s be the systematic error, and ε the random error, then

M = T + s+ ε (A.11)

In Equation A.11 the absolute measurement error is the sum of terms s and ε. But more
often, one is interested rather in the relative measurement error [Mun03]. The relative
measurement error can be easily gained by shifting around the equation, so that it can
be computed as the quotient of the absolute measurement error and the observed score
M .

By and large, these sources of error are being described by the chapter Theory of
Measurement in the Encyclopedia Britannica [SL74], too.

A.7.2 Validity and reliability

For measurement to be meaningful, its validity and reliability (in traditional engineer-
ing disciplines called accuracy and precision [JG70]) are important factors.

Validity
However, Munson [Mun03, p. 28] uses the term ‘accuracy’ of a particular measure-
ment and describes it as “the closeness of an answer to the correct value”. Other au-
thors [Kan95] [FP97] [LB06] mention that validity refers to the fact whether mapping
(model) does really express what it is thought to express. Therefore, they refer to a
classification of validity into:

• Construct validity (correct construction of the measurement procedure),

• Criterion-related validity (the measurement procedure’s ability to predict future
behavior of the abstract concept measured), and

• Content validity (the extent to which a measure covers the entire range of mean-
ings associated with the abstract concept).

Kan also states that the systematic measurement error leads to invalidity of yielded
measures.

Reliability
On the other hand, at the same place Munson describes ’precision’ as the “the number
of significant digits in our estimate for a population value.” After all, Kan connects
reliability with the amount of measurement error in different measures taken and refers
to an index of variation that is computed as the quotient of the measure’s standard
deviation and its mean.

Laird et al. [LB06] summarize the topic to the point with a practical example of
a watch working without irregularity, which some people might have set five minutes
ahead of time. Then, the watch provides a reliable measure of time — but with a lack
of validity.

204

A.8. CONCLUSION

A.8 Conclusion

The chapter started with the general motivation of human beings to bypass the intel-
ligence barrier by using the detour of a mapping from an empirical relational system
to a numerical one. That procedure enables one to apply statistics and mathematics
yielding to a numeric result, which can then be interpreted towards an empirically
relevant result. Subsequently, it was dwelled on more theoretical aspects of the map-
ping between the two systems. Here, the focus was not only on the underlying models
and axioms, but also on the fundamentals of measurement and measures, the possible
scales and scale types as well as the importance of units and dimensions. After all,
this chapter dealt with ways expressing, how to distinguish and perform measurement.
Moreover, measurement issues such as measurement errors and the difference between
validity and reliability of the measurement results have been pointed out.

205

Appendix B

A glimpse of mainstream models
for SPA/SPI

“The only source of knowledge is experience.”

– Albert Einstein∗ –

B.1 Introduction

Over the time, numerous software and system process standards, recommended prac-
tices, guidelines, capability maturity models, and the like have been proposed by dif-
ferent standardization bodies. As illustrated in Sheard’s [She01] article ‘Evolution of
the Frameworks Quagmire’ a continual coming and going prevails with only a few of
them standing up to the ravages of time resulting in organizations being spoilt for
choice. However, an elitist sphere of the probably most widely established models
for SPA/SPI exists. [MT99] Previous worldwide studies by other researchers [KR95]
[WDK+99] indicate that ISO 9001 spearheads the popularity, followed by the CMM of
SEI, and ISO/IEC Standard 15504 (SPICE). In addition to these, some regional and/or
industry sector specific models that apparently have been clearly influenced by the
CMM [HT01] enjoy a good reputation: The European BOOTSTRAP and the Canadian
TRILLIUM model for use in telecommunication industry. Since recently, CMM’s promis-
ing successor CMMI that combines several auxiliary special-purpose maturity models
of the SEI stands the test of time.

Strikingly, the Software Productivity Research (SPR) model of Capers Jones [Jon96]
formidably competes with these mainstream models.

Beneath a brief analysis of major characteristics of the above listed mainstream
models made up of general information as well as the respectively pursued process
modeling, SPA and/or SPI approaches is presented in chronological order.

B.2 CMM v1.1

The Capability Maturity Model (CMM) was developed at the U.S. government-funded
SEI at Carnegie Mellon University on the lines of Deming’s notion of SPC to pro-
duce an assessment methodology for the DoD to choose among software development
contractors. [Hum87, HS87] Once the method was documented properly [PCCW93a,
∗German physicist who went into American exile, developer of the special and general theories of

relativity, and winner of the 1921 Nobel Prize in physics, *1879 - †1955

207

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

PCCW93b] [PWG+93] [Pau93b] it very soon became also a compendium for subcon-
tractor process improvement initiatives and later even for any organization. After the
latest 1993 CMM version 1.1, the model was bit-by-bit complemented by supplemen-
tary models of the SEI and was renamed to SW-CMM. Before further development was
stopped with only a draft of version 2.0 in 1998, the following supplementary models
had been produced:

• The People Capability Maturity Model (P-CMM) [CHM95] was designed to help
organizations in improving the ability to attract, form, motivate, structure, and
keep the talents required for improving capabilities in software development.

• The Systems Engineering Capability Model (SECM) [BKW+95] was produced to
foster measurement and enhancement of organization’s performance to effec-
tively translate the requirements of customers into excellent products.

• The Integrated Product Development CMM (IPD-CMM) [BBB+97] draft was pre-
pared to improve the timely collaboration of product development disciplines.

• The Software Acquisition CMM (SA-CMM) [CF02] was created to support U.S.
government software acquisition managers and improve their acquisition projects.

The SW-CMM is the oldest, most renowned model which has helped organiza-
tions such as Raytheon [Dio93], Siemens [PC94], Motorola [Das94] [DS97], Alca-
tel [DCL+99], Computer Sciences Corporation [MD02], or Toshiba [OIM06] all around
the world in effectively and continuously improving their software processes. However,
the method has its critics, too: Card [Car91] complains about the inferred, synthetic
benchmark approach due to the absence of excellent organizations in the model’s de-
sign stage. Bollinger et al. [BM91] are bothered by the dubiety of the factory paradigm
underlying Deming’s SPC approach for software production, because the assumption of
replication risks does not hold. Others [Bac94] [Bam97] [Mel98] [KS04] [HA05] pro-
vide similar lists of obstacles and come to the conclusion that it should be better treated
as a list of issues to look after rather than to be implemented by the letter, what most
often results in inflexibility. Due to the bad performance of the IBM Corporation resid-
ing at SW-CMM’s highest capability (maturity) level five in the 1990ies, the approach
is generally put into question because it does obviously not guarantee excellence.

Process modeling approach
The SW-CMM was built with the premise to create a process model of the empirical,
descriptive category. [KCF+96] From the process system taxonomy point of view, the
model is comprised of four kinds of elements thereby leaving out the element of sub-
systems: SW-CMM as the process system, capability maturity levels form the process
categories, KPAs constitute the single processes and key practices are equivalent to
the general practices. All in all, the SW-CMM arranges 316 key practices around 18
KPAs that are organized by five distinct levels of process capability maturity. In order
to model all perspectives of the process (functional, behavioral, organizational, and
informational) for the organizational as well as the development and management
domains, the SW-CMM’s authors selected a natural language description instead of a
virtual PDL.

SPA approach
In 1995 the SEI released a framework for the development, definition, and usage of ap-
praisal methods for the SW-CMM with the denomination CMM Appraisal Framework
(CAF). [MB95] Because previous SW-CMM appraisals as described by Olson et al.

208

B.2. CMM V1.1

[OHK89] were seen as highly variable [Car92], the requirements and demanded as-
pects of a CMM-based Appraisal Methods (CBAs) were listed in that document to foster
consistency and reliability of the appraisal results. Withal, it covered the appraisal fam-
ilies in terms of customers in need of accrediting software suppliers, suppliers in need
for internal SPI, or joint SPI or risk management efforts between both groups. By laying
down clearly specified rules for a compliant appraisal methodology, the SEI countered
the uncontrolled growth of assessment methods predating the SW-CMM. Consequently,
two forms of process appraisals have been manifested to ensure comparability:

• CBA-IPI [DB01]

• SCE [BP96b]

Both methods are highly structured, team-based, on-site document reviewing and
interviewing examinations of an organization’s software processes. The difference lies
in the expectations: The CBA-IPI method is voluntarily, confidentially, and in most
cases by representatives of the development organization itself performed to reveal
and foster improvement potentials in areas being truly in need. [Rug93] This relaxed
appraisal is commonly called self-assessment. [Coa94a] In contrast, the SCE method
is a downstream validation of the development organization’s self-assessment by SEI-
trained and duly accredited (U.S. governmental) assessors, that re-check documents
and examine answers during interviews. [Rug93] For the method that turns out to be
a license to print money, but predominantly for the assessment body, several problems
and also improvements have been considered. [Sai03] Provided that the examined
areas and the observed time interval are nearly congruent, the results of both appraisal
methods should be consistent. To monitor the status of organizational process maturity
in between of the appraisals with one of the mentioned methods, so-called interim
profiles [WNHS94] are meaningful.

Process maturity model
The first part of CMM’s process assessment model, the process maturity model, is con-
structed of a practice performance scale that is based on completing a questionnaire
of level-specific key questions acting as sensors with 101 process-related questions that
offer decisions concerning process conformance spanning on conformance appraisal
values of ‘Yes’, ‘No’, ‘Doesn’t apply’, and ‘Don’t know’. [Jar00] Using a questionnaire is
typically regarded as problematic, because of issues like interpretative leeway of the
semantics of the questions and the inadequacy of sampling. [GS98] Furthermore, SW-
CMM’s process maturity scale takes the shape of five levels of software process capabil-
ity maturity following the staged concept proposed by Crosby [Cro79], the SW-CMM
assigns the KPAs to five distinct levels of process maturity: 1 – Initial, 2 – Repeatable,
3 – Defined, 4 – Managed, 5 – Optimizing. With the exception of the entry capability
maturity level one, the hierarchical architecture of the SW-CMM follows the scheme,
which is illustrated in figure B.1. From level two on, each maturity level comprises
a set of process goals. Accomplishing these goals with the aid of the KPAs for each
maturity level is a step towards getting processes under (statistical) control and a pre-
condition for capability improvement. Then, each of those KPAs comprises five sections,
the so-called common features. After all, common features outline key practices which
collectively lead to accomplishment of the KPA’s process goals.

Be it as it may, the SW-CMM stretches its performance ratings on the scopes of
practice and process. Despite dismissing ratings on the project level, the organizational
scope is satisfied by an assignment of a capability maturity level. [WK00]

209

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

Key practices

Maturity levels

Key process areas

Common features

contain

contain

organized by

indicate

achieve

address

describe

Process capability

Goals

Implementation or
institutionalization

Infrastructure or
activities

Figure B.1: The structural elements of the SW-CMM (adapted from [PCCW93a, p. 29])

Process maturity determination method
The second part of the process assessment model, the process maturity determina-
tion method, distinguishes between critical questions of the process maturity model, of
which at least 90% have to be answered positively, and non-critical questions, of which
merely 80% positive answers are required [BD93] for successfully climbing the specific
level. As a precondition to climb on capability maturity level i+ 1, all goals of the KPAs
related to level i must have been achieved in addition to the ones of level i+ 1. While
its authors [PCCW93b] claim to have defined an “ordinal scale for measuring process
maturity and evaluating process capability” it is vehemently challenged i. e. by Pfleeger
et al. [PJCK97]

SPI approach
Being based on the cognition that evolutionary and systematic process improvement
steps, one at a time, are more likely to lead to success than revolutionary process inno-
vations, the staged CMM framework assigns sets of process areas to five distinct levels
of organizational process maturity. Following the prescribed order of the process areas
according to maturity levels aids in the prioritization of efforts. Moreover, process evo-
lution and/or improvement towards the next higher maturity level is achieved, when all
practices at lower levels are enacted and hence the process goals are fulfilled. [Hum88]
This is an excellent member of the benchmarking-based family of SPI models.

B.3 ISO/IEC Standard 9001:2000

In 1987, when Humphrey published his process maturity framework based on best
software engineering practices in a first technical report [Hum87] and a rating scheme
in a second one [Hum87] that should relate the answers provided by the first one to
101 questions, ISO and IEC adopted this method as ISO/IEC Standard 9001 Quality
Systems — Model for Quality Assurance in Design/Development, Production, Installation
and Servicing. [BD93] Hence, this standard is in some way also connected with the
DoD. [RHGH97] With the concern of quality and process management applicable to
all industrial sectors, ISO/IEC Standard 9001 describes minimal characteristics of a

210

B.3. ISO/IEC STANDARD 9001:2000

quality system [Pau95], which represented basic business requirements imposed by
governmental contractors in the European Union. Then, in 1991, the companion guide
ISO/IEC Standard 9000-3 Guidelines for the Application of ISO 9001 to the Develop-
ment, Supply, and Maintenance of Software was published to facilitate the translation
of ISO/IEC Standard 9001 in software engineering settings. [Coa94a] In the course
of time, as illustrated in figure B.2, a related quality standards family emerged under
the generic term ISO/IEC 9000. [SMH96] But most often software development orga-
nizations are solely urged to observe ISO/IEC Standard 9004-1 to establish a quality
management system and either ISO/IEC Standard 9000-3 or TickIT’s [Tic92] [Gib98]
interpretation of ISO/IEC Standard 9001.

ISO 9000
Standards series

ISO 9000
Introduction

ISO 9001 - 9003
Certification/registration

ISO 9004
Quality management

ISO 9000-1
Selection and use of

ISO 9001, 9002, 9003

ISO 9000-2
Application of

ISO 9001, 9002, 9003

ISO 9000-3
Application of

ISO 9001 for software

ISO 9000-4
Dependability program

management

ISO 9001
Design, development, pro-

duction, installation, servicing

ISO 9002
Production, installation,

servicing

ISO 9003
Final inspection and test

ISO 9004-1
Guidelines

ISO 9004-1
Services

ISO 9004-1
Processed materials

ISO 9004-4
Quality improvement

ISO 9000
Quality management systems:
Fundamentals and vocabulary

ISO 9001
Quality management systems:

Requirements

ISO 9004
Quality management systems:

Guidance for perf. improvement

2000 revision 2000 revision 2000 revision

Figure B.2: Structure of ISO/IEC 9000 Standards series before and after 2000 revision

However, ISO/IEC Standard 9001 as amended and promulgated in 1994 has been
criticized [Coa94a] for not really promoting the TQM notion of continuous improve-
ment and for omitting factors contributing to quality like excellent leadership, human
resources, marketing, and process engineering. Contrary to this argumentation, expe-
riences [HJPH98] show that certification against ISO/IEC Standard 9001 has a SPI
spin-off effect in related engineering areas. Indeed, in combination with other is-
sues [Wal99] ISO and IEC decided to promulgate a major, more process-oriented re-
vision in the year 2000. Simultaneously, the comprised standards were reorganized
and joined together forming ISO/IEC Standards 9000, 9001, and 9004. In 2004, the
ISO/IEC Standard 90003 has been published as concretion of Standard 9001 for the
software engineering sector building a bridge to other IT-related de jure and de facto
standards. Until December 2005, nearly 800,000 organizations have been examined
for certification against ISO/IEC Standard 9001:2000 in 161 different countries with
more and more buoyancy. [ISO05]

211

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

Process modeling approach
As representative of strictly prescriptive process models, what is indicated by numerous
‘shall’ statements [MS03], the rejuvenated ISO/IEC Standard 9001:2000 covers merely
three elements of the process system taxonomy: Apart from general requirements, 21
processes relative to five process categories are communicated by means of clauses
that represent the practices. [Sch03] In order to model all perspectives in all domains
but not at the project domain, the model does not use a real PDL. The processes for
implementing a quality management system are rather specified in natural language.

SPA approach
An appraisal of compliance with the requirements of the ISO/IEC Standard 9001:2000,
is basically conducted via so-called certifications and/or registrations. [Coa94a]
ISO/IEC do not certify any organization itself; instead many countries have accredited
certification bodies (registrars) that perform the ISO certification process for applying
organizations with costs. In doing so, the registrars and/or auditors themselves have to
observe the ISO/IEC Standard 19011:2002 Guidelines for quality and/or environmental
management systems auditing. To obtain an ISO/IEC 9001:2000 certification, organi-
zations must apply to a national ISO registrar. Then, a rough on-site pre-assessment
by the registrar of the organization predates the document review and adequacy au-
dits, where the registrar can impose conditions to the management (‘action requests’ or
‘non-compliances’) to be remedied until the final compliance audit. After all, the reg-
istrar awards the compliance certificate once all requirements have been successfully
met. However, the awarded and commonly treasured compliance certificate is only
valid until the next surveillance visit of the registrar.

Process maturity model
The practice performance scale of the ISO/IEC Standard 9001:2000 falls back on the
appraisal of the compliance with the standard’s requirements and offers ratings of ei-
ther ‘Satisfied’ or ‘Not satisfied’. Despite the general trend, the standard does not pro-
vide a process maturity scale with multiple stages but offers the binary ‘Fail’ or ‘Pass’
decision at the organizational scope.

Process maturity determination method
Requiring full compliance, that is 100% positive answers for all requirements accom-
modated in pertinent questions, the process maturity determination model seems to be
very straightforward but strict for the purpose of certification.

SPI approach
The alignment of the standard’s processes as illustrated in figure B.3 on the lines of
Shewhart’s PDSA cycle [She31] and/or key elements of the TQM philosophy [KBS94]
such as customer focus, the human side of quality, data, measurement, and analyses
enables process-oriented continuous improvement of the quality management system.
The rather analysis than real benchmarking approach fosters final quality targets of
customer satisfaction, increased productivity, and short time-to-market periods.

B.4 BOOTSTRAP v2.22

To all intents and purposes, the mission of the BOOTSTRAP project under the ESPRIT
was to fertilize the ground for the introduction of good software engineering prac-
tices in Europe by means of process assessment. [KKM+94] Predating the European
System and Software Initiative (ESSI), a technology transfer program for European
producers and users of software proposed by the Commission of European Countries,

212

B.4. BOOTSTRAP V2.22

Continuous improvement of the
quality management system

Customer

Requirements

Satisfaction

Customer

Product
realization

Resource
management

Management
responsibility

Measurement,
analysis, impr.

Product
Input Output

Figure B.3: Selected ISO/IEC Standard 9001:2000 processes in the context of TQM
(adapted from the standard)

the BOOTSTRAP project had its phase-out in February 1993 with methodology version
2.22. [KB94] Despite the expiration of official support, the project was carried on by the
homonymous consortium, the BOOTSTRAP Institute, which recently released version
3.0. [Kuv99] Being aware of the fact that SPA should predate SPI, the initial BOOT-
STRAP methodology availed itself of the SEI’s CMM together with guidelines from
ISO/IEC Standard 9000-3:1987 and a classical software engineering standard PSS-
05 [EC91] of ESA. [HJPH98] Between 1991 and 1997 over 100 assessments [SEL97]
have been performed including major European companies like the German Robert
Bosch GmbH or Siemens AG and its affiliated business divisions. [KM94] Because in
the following years other methods could gain ground, the BOOTSTRAP methodology
has become less important i. e. for that company.

Process modeling approach
In search of a “reasonable approach for referring any company-specific processes to a
single model” [KB94], the authors of BOOTSTRAP committed themselves to the em-
pirical, descriptive ESA software engineering standard PSS-05 [EC91], which was also
adopted outside ESA by companies like General Motors or Ford [EFF+99] and ad-
mired for its tolerable level of detail. [SEL97] The process system taxonomy for the
BOOTSTRAP process system turns out to provide the full range of elements: The pro-
cess system is split into the two process subsystems of production and management
that are organized by six categories, called key process clusters for 21 key process at-
tributes (processes). In doing so, PSS-05 covers all modeling perspectives and describes
processes of the complete life-cycle (either waterfall, incremental, or evolutionary de-
livery) by some 201 mandatory practices. [JMF97] Apart from mandatory practices,
also recommended and guiding ones are given. Based on ESA’s PSS-05 process model,
BOOTSTRAP’s authors modeled the goal of process quality at organizational or project
level by providing certain key process attributes and/or key process clusters according
to the three dimensions of organization, methodology, and technology. This attribute-
based quality attribute hierarchy [HMK+94] is the foundation of the questionnaires and
illustrated in figure B.4. Again, the process model is provided in natural language.

213

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

Organization Methodology Technology

Product
engineering

- Management practices
- Quality management
- Resource management

-Technology management & integration
- Product engineering technology
- Engineering support technology

Process
engineering

Engineering
support

- Project management
- Quality assurance
- Configuration and change management
- Risk management
- Supplier/subcontractor management

- User and software requirements
- Architectural design
- Detailed design & coding
- Testing & integration
- Acceptance & transfer
- Operational support & maintenance

- Process description
- Process measurement
- Process control

Software
producing unit

Software
project

Figure B.4: BOOTSTRAP breakdown of key process attributes and clusters (adapted
from [KB94, p. 123])

SPA approach
Imposed by the opinion that self-assessments do not share the same effectiveness as
assisted assessments, the BOOTSTRAP methodology prescribes assessments by espe-
cially trained and experienced assessors and/or licensed consultants behaving with
integrity. [KB94] [HJPH98] Because assessments can be conducted at organizational
(‘global site assessment’) and project (‘project assessment’) level with the aid of re-
spective questionnaires, the methodology is suited best for small and medium Software
Producing Units (SPUs). [Kuv93] During the assessment activities several briefings pre-
date guided interviews and document reviews, in which the respective questionnaires
are completed by the assessor team with a minimum manning of two consultants, on-
site. [HJPH98] To each of the 21 processes, a set of questions is devoted. [Kuv93]

Process maturity model
For answering the pertinent attribute-related questions according to the process matu-
rity model binary decisions have been avoided by scaling the answers to three positive
adjectives (‘Weak’, ‘Fair’, ‘Extensive’) of different severity, one neutral (‘Non-applicable’),
and one negative (‘Absent’) adjectives. [KB94] In a further contrast to its paragon, the
SW-CMM, the strict sequence of questions for processes according to a certain capability
maturity level has been suspended by also examining processes on all levels. [HMK+94]
However, the process maturity scale of the SW-CMM has been adopted to fulfill the
method’s design requirements for the addressing the process and organizational scopes
in a manner similar to the SW-CMM.

Process maturity determination method
Because the process maturity determination method for an assessment’s results should
be objective and follow clear-cut rules, a standardized algorithm compatible with the

214

B.5. TRILLIUM V3.0

SEI model was produced. Taking care of the quartiles, the algorithm labels an assessed
company or project with a maturity level on the basis of the questionnaire’s answers
to each key process attribute and/or key process cluster as described in figure B.5.
[KM94], if the overall score is within the maturity level’s preset thresholds. [Kuv93]
Because the number of questions decreases as the maturity levels increases, a dynamic
step scale defines the percentage distances between the respective levels. [HMK+94]
Moreover, with the aid of the BOOTSTRAP methodology absolute and relative capabil-
ity profiles can be generated to pinpoint attribute-related process strengths and weak-
nesses that impact the maturity level and/or benchmark against competitor’s overall
mean score profiles stored in the BOOTSTRAP database. [SEL97]

Key practice for
maturity level 2

Process maturity

Key process
cluster maturity

Key process
attribute maturity

contains

derived from

derived from

indicates

measured by

measured by

contains

Key practice for
maturity level 3

Key practice for
maturity level 4

Key practice for
maturity level 5

Process capability

Key process cluster

Key process attribute

Figure B.5: Attribute-based structure of BOOTSTRAP (adapted from [HMK+94, p. 27])

SPI approach
In order to act on reliable, complete, and consistent assessment results, all intervie-
wees agree on, the assessment’s results have to be verified. Afterwards, based on the
maturity level, model target profiles for SPI have to be found, that will most probably
be one-step improvements for each process category following the staged improvement
approach that has been adopted from the SW-CMM. Predating the preparation of a
virtual improvement schedule, priorities in terms of most urgent issues are set. This
SPI model is again a representative of the benchmarking approach.

B.5 TRILLIUM v3.0

The TRILLIUM model, with the most recent version 3.0 of 1995, has been developed
since 1991 by a joint-venture project of Bell Canada, Northern Telecom, and Bell-
Northern Research to minimize acquisition risks of predominantly embedded-systems
software in the telecommunications sector on the base of an assessment of a supplier’s
development process maturity. [Coa94b] [May96] Despite being strongly influenced by
the SW-CMM and other cutting-edge models and standards, its authors placed empha-
sis on a product rather than pure software perspective and geared the model towards

215

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

customer satisfaction, which is one of the fundamental ideas of TQM. Besides au-
diting, TRILLIUM is also appropriate as a sound foundation for vendors’ continuous
improvement programs of product development and support capabilities. [AC95] In
industrial applications at Bell Sygma Telecom Solutions the model could show its value
and viability. [CMWH96] Additionally, starting from the Anglophone TRILLIUM model,
the cooperative project Camélia funded by the French government and the Canadian
province Québec translated and optimized the model for assessing Management Infor-
mation Systems (MISs). [Apr05]

Process modeling approach
On the whole, the practices of the empirical, descriptive TRILLIUM process model
have been derived from a ‘benchmarking exercise’ [AC95] [Coa95] which availed it-
self mainly of SEI’s SW-CMM but also on ISO/IEC Standard 9001:1994 together with
the associated guidelines of ISO/IEC Standard 9003-1994, proprietary Bellcore stan-
dards, MBNQA criteria of 1995, and 1993 version of software engineering standards
of IEEE and IEC Standard 300:1984. Additional practices not covered by the above
listed material were incorporated, as well. In the taxonomy of TRILLIUM’s process sys-
tem, there are eight process categories, the capability areas, that contain one or more
and altogether 28 processes, called road maps, of which each contains a set of related
practices. All in all, 508 practices constitute the extent of the model that addresses
all perspectives of the organizational, development, and management domain by the
process model in natural language.

SPA approach
Although the documentation of the TRILLIUM model [Coa94b] remains relatively silent
about conducting appraisals [Jok01], it provides some general information on as-
sessment activities to be conducted by assessors having been trained either on the
TickIT [Tic92] interpretation of ISO/IEC 9001-1987, ISO/IEC Standard 10011-2 that
has been replaced by ISO/IEC Standard 19011:2002 in the meanwhile, early assess-
ment scheme of CMM [OHK89], or MBNQA criteria. Withal, three distinct types of
assessments are proposed: Supplier capability evaluations, joint-assessments between
customer and vendor, and self-assessments of the supplier. [AC95] Due to the explicit
closeness of the TRILLIUM model to its parent the CMM, the process maturity model
as well as the process maturity determination model are relatively congruent with their
respective archetypes of CMM. For reasons of completeness the hierarchical maturity
model’s architecture is presented in figure B.6.

Practices

Process
capability

Goals:
-Organization
- Commitment
- Culture

Processes
Functions
Techniques

Capability

Roadmaps

contain

contain

contain

indicate

impact

influence

cover

TRILLIUM

Activities:
-Implementation
- Deployment

- Institutionalization

Figure B.6: Hierarchical architecture of the TRILLIUM model (adapted from [Coa95])

216

B.6. CMMI FRAMEWORK V1.1

SPI approach
Again, the improvement approach immanent in the TRILLIUM model is that of She-
whart’s [She31] PDSA cycle connected with the ideas of TQM. [Ish85] The model sug-
gests to have at least one representative of a customer on-site to interact with the
supplier’s improvement program to communicate and enforce issues important for his
satisfaction. [AC95] [Coa95] Here, the yardstick for benchmarking is represented by
the best practices as manifested in the TRILLIUM model.

B.6 CMMI Framework v1.1

After the initial promulgation of SEI’s framework in 1987 that evolved to the CMM,
a myriad of CMMs has been developed for specific disciplines. [Kne06] Even though
the specific models proved to be useful when applied isolated, the usage of multiple
models in parallel bore problems that limited organizations in their successes with SPI
initiatives, let alone additional cost and effort for training and appraisals. [CKS03]
Motivated by that obstacle, the mission of the Capability Maturity Model Integration
(CMMI) project was to combine the latest versions of three main CMMs of the SEI,
namely SW-CMM, SECM, IPD-CMM, and to integrate them to their designated succes-
sor CMMI. [SEI02b] [SEI02a] A premise in doing so was to maintain consistency and
compatibility with the then-emerging ISO/IEC Standard 15504 Technical Report, on
which is dwelled on in section 3.3. Mirroring expertise knowledge from the bodies of
knowledge of Systems Engineering (SE), Software Engineering (SW), Integrated Prod-
uct and Process Development (IPPD), and Supplier Sourcing (SS), the combinations
most useful to the interested organization like CMMI-SE/SW or CMMI-SE/SW/IPPD/SS
can be instantiated.

Although the CMMI Framework had to struggle because the SEI or rather the deci-
sion makers at DoD acted ungratefully to the contributors of the parent models, “. . . the
users of the model are in fact utilizing the variety of choices in representation, model
scope, and whether to do a formal rating.” [Zub03] After debunking cut and dried
opinions against CMM’s successor [Hei04], successful application of the framework
can be found multiply in the literature, with increasing frequency. [PA03] [EL06] Be-
cause the up-to-date version 1.2 of the CMMI Framework for development [SEI06] has
been released as recently as in August 2006, it is out of scope here.

Process modeling approach
The CMMI Framework integrates the above mentioned empirical, descriptive process
models of the SEI. Because CMMI’s authors recognized different, either staged or con-
tinuous approaches to SPA/SPI being immanent in the parent models, they provide
these two representations of the underlying process model. [CKS03] Dependent on the
form of the representation the taxonomy for the CMMI process system differs with the
staged representation being similar to the well-known SW-CMM: In the staged repre-
sentation, there are five maturity levels organizing 25 process areas comprising 185
specific and twelve generic practices; in the continuous form, the basic structure is
slightly modified while the basic information is retained. There are six levels of process
capability that span on 25 process areas, in which 189 specific and 17 generic practices
are covered.

For modeling the entire spectrum of process perspectives with respect to the organi-
zational, development, and management domain, the authors of the CMMI combined
the parenting models into natural language representation.

217

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

SPA approach
To specify the SPA approach for the CMMI Framework version 1.1 two major documents
have been developed over time:

• The Appraisal Requirements for CMMI (ARC) [SEI01a] setting out requirements
for three different classes of appraisal methods with decreasing amount of rigor
and significance, and

• The SCAMPI Method Description Document (MDD) [SEI01b] comprising the
methodology for the only approved class A appraisal method. [KJ03]

The ARC distinguishes between assessments, mainly performed by personnel inter-
nal to the organization with the purpose of assessing SPI efforts, process appraisals,
conducted by a trained team of professionals on the base of an appraisal reference
model to determine strengths and weaknesses, and evaluations. The latter are ap-
praisals, in which external groups examine an organization’s process and decide about
future performance of business. According to these three different appraisal types, the
three classes A, B, C of appraisals with decreasing amount of rigor are defined by the
ARC, as well. [Min02]

Until recently, the SCAMPI, which is based on experiences with methods known
from the SW-CMM such as CBA-IPI or SCE, was the only class A method, that has
been approved by the SEI for evaluations and for providing ratings of the organization.
Besides SPI, the use of the SCAMPI method is, however, also encouraged for supplier
selection and process monitoring with internal appraisal teams. [KJ03] The most rigor-
ous and expensive SCAMPI evaluation must be led by an SEI-authorized Lead Appraiser
who is supported by a full range of work aids, maturity questionnaires, and the like that
altogether form the SCAMPI Product Suite. Several steps like gathering and reviewing
documentation, conducting interviews, discovering strengths and weaknesses, and pre-
senting the findings have are run through in the course of an evaluation.

Generic practices

Maturity levels

Process areas

Generic goals

satisfied by

organize

achieveachieve

satisfied by

Specific goals

Specific practices Common features

organized by

Staged representation:

Figure B.7: Model components in the staged representation of the CMMI Framework
v1.1 (adapted from [SEI02b, p. 10])

218

B.6. CMMI FRAMEWORK V1.1

Process maturity model
As already indicated, two representations, that is the staged and the continuous, dom-
inate the process maturity model of the CMMI Framework version 1.1 as depicted in
figures B.7 and B.8, respectively.

Process areas

Generic goals

achieveachieve

satisfied by

Specific goals

Specific practices Generic practices

satisfied by

Capability
levels

Continuous representation:

Figure B.8: Model components in the continuous representation of the CMMI Frame-
work v1.1 (adapted from [SEI02a, p. 12])

In doing so, two different paths for improvement are offered:

• First, an organization could avail itself of the staged representation. Then it
could improve its maturity by addressing predefined, successive sets of process
areas that encounter at each maturity level.

• Second, an organization might choose the continuous representation to select one
or more specific process areas out the four groups: ‘Process Management’, ‘Project
Management’, ‘Engineering’, ‘Support’). Consequently, an incremental improve-
ment of the chosen process area’s capabilities can take place along capability levels
towards a targeted level.∗

This leads to the following definitions as per [CKS03, p. 75] that are valid in the
context of the CMMI Framework v1.1:

Definition B.1: “Maturity levels, which belong to a staged representation,
apply to an organization’s process improvement achievement across multi-
ple process areas.”

Definition B.2: “Capability levels, which belong to a continuous represen-
tation, apply to an organization’s process improvement achievement in in-
dividual process areas.”

In the staged form, five levels of overall process maturity organize key process areas
which are performed to achieve goals. While the goals specific to the process areas shall
be satisfied by performing specific practices, two generic goals, that are of importance
to any process area, are organized by four common features (‘Commitment to Perform’,
‘Ability to Perform’, ‘Directing Implementation’, and ‘Verifying Implementation’), which
shall be satisfied by a number of generic practices. It is important to note that the
model offers a different stringency of interpretation: It requires goals to be achieved,
only expects practices to be performed, and provides elements like sub-practices to
inform the user. [ACT03]
∗While the selection of the process area(s) together with the target capability is called ‘target profile’,

the actually tracked progress is reflected by an ‘achievement profile’.

219

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

In the continuous form, the sophistication of performed practices is indicated by
different levels of capability for a singular process area. Both, specific and generic
goals (each for one capability level above zero) have to be achieved with the aid of a
quantity of specific and generic practices. There are base practices, that are situated
at entry capability level one and advanced practices showing more sophistication and
rigor. Withal, a capability level higher than one is seen as the degree to which advanced
practices are performed in the organization. [KJ03]

For the purpose of the assessment the process maturity model does not differ be-
tween the two representations of the model but between required, expected, and in-
formative model components during the evaluation: The appraiser has to judge (rate)
on the base of the available materials for any specific and generic goals of the process
areas under evaluation, whether they are satisfied. Therefore, he uses a four-point
practice performance scale, in which the goals are indicated to be either ‘Satisfied’,
‘Unsatisfied’, ‘Not applicable’, or ‘Not rated’. [SEI01b] Afterwards, relative to the kind
of representation the process maturity scale is structured: To rate an organization’s
overall process maturity the range of five maturity levels is available: 1 – Initial, 2 –
Managed, 3 – Defined, 4 – Quantitatively managed, 5 – Optimizing. Over and above, it
is also possible to rate the capability of a single process out of the organization’s soft-
ware engineering process system on a scale of six capability levels: 0 – Incomplete, 1
– Performed, 2 – Managed, 3 – Defined, 4 – Quantitatively managed, 5 – Optimizing.
In doing so, practices, processes, projects, and even organizations can be rated using
those scales by assigning in a 2-D manner, either a capability level or a maturity level.

Process maturity determination method
Contrary to the process maturity model, the process maturity determination method
does distinguish between the continuous and staged representation of the model: For
the continuous representation, a certain process area is labeled with certain capability
level, when all specific and the respective generic goal of the process area for the capa-
bility level are rated with the label satisfied together with the cumulative specific and
generic goals of previous capability levels. Afterwards, a capability profile illustrating
the ratings of all process areas appraised can be produced. For the staged represen-
tation a certain maturity level is given to the entire organization. The maturity level
can only be awarded to the organization, when all capability levels of the process ar-
eas organized by the certain maturity level as well as all process areas of the previous
maturity levels have been rated with the label satisfied. [SEI01b]

SPI approach
Owing to the fact that the CMMI project team demonstrated longsightedness when
providing both, a staged and a continuous representation of the process model, two
accepted ways for benchmarking-based SPI are supported [CKS03]:

When an organization is in need of a systematic and structured way doing improve-
ments one step at a time, the staged representation offers cumulative, predefined sets
of process areas for each maturity level. By prescribing the order of implementing
each process area relative to the maturity level it offers a precise path for improve-
ment. [ACT03] In contrast, the continuous representation can be considered, when a
more flexible and narrowed down approach to SPI is desired. Then, an organization
might want to choose a process area, which has been identified as a trouble spot for
instance by an appraisal, and can try to improve relative to it. [KJ03]

220

B.7. OTHER MODELS

B.7 Other models

As reaction to the mainstream models for SPA/SPI derivatives have been developed
such as the Personal Software Process (PSP) [Hum96] [Hum05a], the Team Software
Process (TSP) [Hum99] [Hum05b], or eXtreme Programming. [BA04a] Since the spirit
of the age was sympathetic to the basic idea underlying those models, a myriad of niche
models geared towards special processes has been developed over the time, too. While
the author of this thesis provides a more comprehensive list in a recent technical report
together with Dumke et. al [DBB+06a], the probably best known are listed next:

• Testing Maturity Model [BSC96]

• Formal Specifications Maturity Model [FV97]

• IT Service Capability Maturity Model [Nie00]

• Corrective Maintenance Maturity Model [KM01]

• Documentation Maturity Model [HT03]

• E-Learning Maturity Model [MM04]

• Software Maintenance Maturity Model [Apr05]

• Requirements Engineering Process Maturity Model [SR05]

• Requirements Process Improvement Model [BHR05]

• SPI Implementation Maturity Model [NWZ05]

• Simulation Validation Process Maturity Model [HY05]

The Six Sigma approach
Sigma (σ) stands for standard deviation of anything. The Six Sigma approach in the
software development field was considered an interval (six: three at both sides) which
keeps a 99.9 percent correctness as absence of any defects. [Tay02] The following table
shows the defect percentage depending upon the different sigma levels.

Sigma level Percent correct #Defects per million opportunities
3 93.3193 66807
4 99.3790 6210
5 99.9767 233
6 99.99966 3.4

Table B.1: Characteristics of different sigma levels

The kernel process of the Six Sigma approach includes/uses five phases referred to
as the Define – Measure – Analyze – Improve – Control (DMAIC) model, which means:

1. Define the problem and identify what is important (define the problem, form a
team, establish a project charter, develop a project plan, identify the customers,
identify key outputs, identify and prioritize customer requirements, document
the current process).

2. Measure the current process (determine what to measure, conduct the measure-
ments, calculate the current sigma level, determine the process capability, bench-
mark the process leaders).

221

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

3. Analyze what is wrong and potential solutions (determine what causes the varia-
tion, brainstorm ideas for process improvements, determine which improvements
would have the greatest impact on meeting customer requirements, develop a
proposed process map, and assess the risk associated with the revised process).

4. Improve the process by implementing solutions (gain approval for the proposed
changes, finalize the implementation plan, implement the approved changes).

5. Control the improved process by ensuring that the changes are sustained (estab-
lish key metrics, develop the control strategy, celebrate and communicate success,
implement the control plan, measure and communicate improvements).

The general aspects of the Six Sigma approach are shown in the following figure:

Measurement
artifacts/objects

Product
(architecture,

Implementation,
documentation)

Process
(management,

life cycle,
CASE)

Resources
(personnel,
Software,
hardware)

Measurement
models

Flow graph

Call graph

Structure tree

Code schema

etc.

Measurement
evaluation

Analysis

Transformation

Visualization

Interpretation

etc.

Measurement
goals

Quality

Costs

Effort

Grade

etc.

Scale
types,

statistics

Correlation

Estimation

Adjustment

Calibration

artefactBased
operation

quantificationBased
operation

valueBased
operation

experienceBased
operation

DMAIC modelError
deviation

Figure B.9: Basic characteristics of the Six Sigma approach (adapted from Dumke
[Dum05])

Furthermore, the Six Sigma approach is available for the traditional software de-
velopment life cycle, legacy systems, package software implementation, and outsourc-
ing. [Tay02]

The ITIL approach
The IT infrastructure library (ITIL) is a set of documents that are used to aid in the
implementation of a framework for IT service management. [ITI06] This framework
characterizes how service management is applied within an organization. ITIL was
originally created by an UK Government agency; it is now being adopted and used
across the world as the de facto standard for best practice in the provision of IT services.

ITIL is organized into a series of sets as a best practice approach, which are divided
into eight main areas:

1. Service Support is the practice of those disciplines that enable IT services to be
provided effectively (service-desk, incident management, problem management,
change management, configuration management, release management).

2. Service Delivery covers the management of the IT services itself (service level man-
agement, financial management for IT services, capacity management, service
continuity management, availability management).

3. Security Management considers the installation and realization of a security level
for the IT environment (trust, integrity, availability, customer requirements, risk
analysis, authority, and authenticity).

4. Infrastructure Management describes four management areas: design and plan-
ning, deployment, operations, technical support.

222

B.8. TYPOLOGY AND CONCLUSION

5. Application Management describes the service life cycle as requirements - design
- build- deploy - operate - optimize.

6. Planning to Implement Service Management defines a guide in order to deploy the
ITIL approach in a concrete IT environment.

7. The Business Perspective describes the relationships of the IT to the customers and
users.

8. Software Asset Management defines the processes and the life cycles for managing
the software assets.

The following triangle characterizes the different relationships between the service
management standards and ITIL:

BS 15000
Specification

PD 0005
Code of Practice

ITIL
(IT Infrastructure Library)

In-house procedures

Self
assessment

Achieve this

Management overview

Process definition

Deployed solution

Figure B.10: The relationship between the service standards and ITIL

Here, BS 15000 is the service management standard, ISO/IEC Standard 20000 de-
scribes the specification for service management, and PD 0005 stands for code of prac-
tice for the IT service management (ITSM). Usually, the implementation of the ITIL
approach is supported by any ITIL toolkit.

B.8 Typology and conclusion

Typology
As a result of a comparative study among prevalent capability maturity models, Fraser
et al. [FMG02] summarize their findings in a brilliant typology of types of models:

1. Maturity grids containing textual descriptions of the pertinent practices at the
distinct levels of maturity.

2. Hybrids and Likert-like questionnaires embody the ‘good practices’ in the questions
for which respondents have to score the level of performance using e. g. an
ordinal scale from 1 to n.

3. CMM-like models stand for the sort models that bear a formal and complex but
concerted architecture of distinct process elements. (Note: All of the models
briefly visited in this chapter belong to that type of models!)

223

APPENDIX B. A GLIMPSE OF MAINSTREAM MODELS FOR SPA/SPI

Conclusion
Examining the constituents of cutting-edge capability maturity models and/or SPA/SPI
methods, researchers such as El-Emam et al. [EG99] or Kuvaja [Kuv99] found out that
commonly the main features are (1) a process reference model which together with (2)
principles for scoring and determining of the current process performance in terms of
capability levels as well as result presentation form (3) an assessment method. After all,
(4) process improvement guidelines top off the models. Despite the diversity of special
software engineering topics covered by those models, Fraser et al. [FMG02] observe
that “they share the common property of defining a number of dimensions or process
areas at several discrete stages or levels of maturity, with a description characteristic
performance at various levels of granularity.”

224

	Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Background and motivation
	1.2 Research setting
	1.2.1 Software engineering
	1.2.2 Research problem
	1.2.3 Research questions
	1.2.4 A retrospect on research in software engineering
	1.2.5 Validation methods in empirical software engineering
	1.2.6 Classification of the research project
	1.2.7 Striking the engineering research path

	1.3 Structure of the thesis

	I Observation of existing solutions
	2 Measurement in software engineering industry
	2.1 Introduction
	2.2 Clarification of terminology
	2.3 Entities and attributes of interest
	2.3.1 Process entity
	2.3.2 Product entity
	2.3.3 Resource entity
	2.3.4 Projects as conglomerate of entities

	2.4 The importance of software measurement
	2.4.1 Intentional functions and negative effects
	2.4.2 Aspired value
	2.4.3 Concerned audiences and information needs

	2.5 Software measurement paradigms
	2.5.1 The top-down approach
	2.5.2 The bottom-up approach
	2.5.3 The mixed approach

	2.6 Synthesis of elements: The software measurement system
	2.7 Software measurement process models
	2.7.1 The ami measurement process model
	2.7.2 The general Jacquet and Abran model
	2.7.3 The GQM-based measurement process of van Solingen et al.
	2.7.4 The PSM (and ISO/IEC Standard 15939) process model
	2.7.5 Other top-down measurement process models

	2.8 Software measurement programs
	2.8.1 Examination of the current situation
	2.8.2 Costs and benefits of SMPs
	2.8.3 Pitfalls of SMP implementation and sustainment
	2.8.4 Best practices for SMP implementation and sustainment
	2.8.5 SMP implementation steps along the measurement paradigms
	2.8.6 Phases of SMP acceptance

	2.9 Conclusion

	3 Software process assessment and improvement models
	3.1 Introduction
	3.2 Basics of software process engineering
	3.2.1 Software process modeling
	3.2.2 Software process establishment
	3.2.3 Software process assessment
	3.2.4 Software process improvement
	3.2.5 Software process standardization

	3.3 SPA/SPI under the terms of ISO/IEC Standard 15504
	3.3.1 SPA-related regulations
	3.3.2 SPI-related guidelines

	3.4 Conclusion

	4 Review and evaluation of related work
	4.1 Introduction
	4.2 Implicit models
	4.2.1 CMM v1.1
	4.2.2 ISO/IEC Standard 9001:2000
	4.2.3 CMMI Framework v1.1

	4.3 Explicit models
	4.3.1 Software measurement technology maturity
	4.3.2 The measurement maturity model
	4.3.3 The META Measurement Maturity Model (4M)
	4.3.4 Mendonça's approach to improving existing measurement frameworks
	4.3.5 The Measurement-CMM

	4.4 Conclusion

	II Proposal and development of a better solution
	5 The Software Measurement Process Improvement (SMPI) model
	5.1 Introduction
	5.2 Concept and design of the complemented model
	5.2.1 The development concept
	5.2.2 The design and development rationale

	5.3 Development of the complemented model
	5.3.1 Consensus of measurement paradigm-specific process phases
	5.3.2 Imbueing the process models' phases with life

	5.4 Presentation of the SMPI model
	5.4.1 The whole model at a glance
	5.4.2 PB --- The bottom-up sub-model in detail
	5.4.3 PM --- The mixed sub-model in detail
	5.4.4 PT --- The top-down sub-model in detail

	5.5 Conclusion

	III Measure, analyze, evaluate
	6 Work Validation
	6.1 Introduction
	6.2 The case study's industrial context
	6.3 Discussion of hypotheses
	6.4 Case study design
	6.5 Conduct of the case study and data collection
	6.5.1 Application of treatment one
	6.5.2 Application of treatment two

	6.6 Result interpretation and conclusion

	7 Summary
	7.1 Main contributions
	7.2 Future work

	Bibliography
	Appendix
	A Fundamentals of measurement theory
	A.1 Introduction
	A.2 Measurement --- the detour for the intelligence barrier
	A.3 Empirical and numerical relational systems
	A.4 Mapping between the systems
	A.4.1 Underlying models
	A.4.2 Axioms and theorems
	A.4.3 Measurement and measures
	A.4.4 Scales and scale types
	A.4.5 Units and dimensions

	A.5 Distinguishing measurement
	A.6 Procedures of measurement
	A.7 Measurement issues
	A.7.1 Measurement error
	A.7.2 Validity and reliability

	A.8 Conclusion

	B A glimpse of mainstream models for SPA/SPI
	B.1 Introduction
	B.2 CMM v1.1
	B.3 ISO/IEC Standard 9001:2000
	B.4 BOOTSTRAP v2.22
	B.5 TRILLIUM v3.0
	B.6 CMMI Framework v1.1
	B.7 Other models
	B.8 Typology and conclusion

