Kognitive Defizite und präfrontale Dysfunktion bei Patienten mit Major Depression- eine kombinierte neuropsychologische und fMRI- Studie

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

genehmigt durch die Fakultät für Naturwissenschaften
der Otto- von- Guericke- Universität Magdeburg

von Dipl. Psych. Simone Grimm
geb. am 05.12.1973 in Hagenow

Gutachter: Prof. Dr. Georg Northoff
PD. Dr. Stefanie Krüger

eingereicht am: 23.03.2007
verteidigt am: 11.06.2007
Dank

geht ganz besonders an Prof. Dr. Georg Northoff und PD Dr. Heinz Böker für die fachliche Unterstützung, die hilfreichen Anregungen und die geduldige Betreuung in allen Phasen der Arbeit.

Ich danke PD Dr. med. Stefanie Krüger für die Bereitschaft zur Begutachtung dieser Arbeit.

Meinen Eltern kann ich für ihre stete Unterstützung und Hilfe bei der Verwirklichung meiner Ziele gar nicht genug danken.
Zusammenfassung

Inhaltsverzeichnis

0 GEGENSTAND UND AUFBAU DER ARBEIT ... 1

1 EINLEITUNG .. 2

1.1 Symptomatik und Verlauf der Major Depression ... 2

1.2 Kognitive Störungen bei Depressionen .. 5
 1.2.1 Gedächtnis .. 6
 1.2.1.1 Gedächtnisfunktionen bei Depression .. 8
 1.2.2 Aufmerksamkeit .. 11
 1.2.2.1 Aufmerksamkeitsfunktionen bei Depression .. 14
 1.2.3 Exekutive Funktionen .. 16
 1.2.3.1 Exekutive Funktionen bei Depression ... 17
 1.2.4 Moderatorvariablen ... 20

1.3 Ätiologie der Depression .. 28
 1.3.1 Kognitive/ lerntheoretische Konzepte ... 28
 1.3.2 Genetische Einflussfaktoren .. 29
 1.3.3 Neurobiologische Korrelate .. 30
 1.3.3.1 Frontalhirn ... 30
 1.3.3.2 Hippocampus und Amygdala ... 34
 1.3.3.3 Subkortikale Strukturen und weiße Substanz .. 36
 1.3.4 Neurobiochemische Korrelate .. 37
 1.3.5 Neuroendokrinologische Korrelate ... 39
 1.3.6 Das Netzwerkmodell der Depression ... 40
 1.3.7 Zusammenfassung ... 44

1.4 Magnetresonanztomographie ... 44
 1.4.1 Kernspin und Magnetisierung ... 45
 1.4.2 Funktionelle Magnetresonanztomographie (fMRI) .. 48
 1.4.2.1 Design von fMRI- Experimenten ... 49
 1.4.2.2 Auswertung der fMRI- Daten ... 49
2 FRAGESTELLUNGEN UND HYPOTHESEN

3 METHODE

3.1 Datenerhebung

3.1.1 Patientenstichprobe

3.1.2 Probandenstichprobe

3.2 Versuchsplan

3.3 Operationalisierungen

3.3.1 Psychopathologie

3.3.1.1 Selbstbeurteilung

3.3.1.2 Fremdbeurteilung

3.3.2 Neuropsychologie

3.3.2.1 Mehrfachwahl- Wortschatz- Intelligenztest (MWT- B)

3.3.2.2 Cambridge Neuropsychological Testing Automated Battery (CANTAB)

3.3.3 fMRI- Untersuchung

3.3.3.1 Untersuchungssetting

3.3.3.2 Messung

3.3.3.3 fMRI Paradigma

3.4 Statistische Auswertung

3.4.1 Auswertung der neuropsychologischen und psychopathologischen Variablen

3.4.2 Auswertung der fMRI- Verhaltensdaten

3.4.3 Auswertung der fMRI- Daten

4 ERGEBNISSE

4.1 Stichprobenbeschreibung

4.2 Auswertung der neuropsychologischen Tests

4.2.1 Intellektuelle Fähigkeiten
4.2.2 Gedächtnisleistungen..87
4.2.3 Aufmerksamkeitsleistung...91
4.2.4 Exekutive Funktionen...93

4.3 Auswertung der fMRI- Untersuchung...104
 4.3.1 fMRI- Verhaltensdaten (Reaktionszeiten und Performanz)..104
 4.3.1.1 Bedingung: Emotionale Beurteilung...105
 4.3.1.2 Bedingung: Emotionale Wahrnehmung..106
 4.3.2 fMRI- Ergebnisse..107
 4.3.2.1 Kontrollgruppe...107
 4.3.2.2 Patientengruppe...111
 4.3.2.3 Gruppenvergleich...115
 4.3.2.4 Korrelation mit psychopathologischen Parametern..121
 4.3.2.5 Korrelation mit neuropsychologischen Parametern..125
 4.3.2.5.1 Probandengruppe...125
 4.3.2.5.1.1 IDR...125
 4.3.2.5.1.2 EDS...127
 4.3.2.5.2 Patientengruppe..129
 4.3.2.5.2.1 IDR...129
 4.3.2.5.2.2 EDS...131

5 DISKUSSION...135

5.1 Neuropsychologische Ergebnisse...135
 5.1.1 Gedächtnis..135
 5.1.2 Aufmerksamkeit..137
 5.1.3 Exekutive Funktionen..139
 5.1.4 Zusammenhänge zwischen neuropsychologischen, soziodemographischen und
 psychopathologischen Variablen...142

5.2 Ergebnisse der fMRI- Untersuchung...145
 5.2.1 fMRI- Verhaltensdaten (Reaktionszeiten und Performanz).......................................145
 5.2.2 fMRI-Ergebnisse...147
5.3 Zusammenfassung und Ausblick ... 159
5.4 Methodische Aspekte ... 161

6 LITERATURVERZEICHNIS .. 164

7 CURRICULUM VITAE ... 190
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Anteriores Cingulum</td>
</tr>
<tr>
<td>ALM</td>
<td>Allgemeines Lineares Modell</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Varianzanalyse</td>
</tr>
<tr>
<td>BA</td>
<td>Brodmann Areal</td>
</tr>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory</td>
</tr>
<tr>
<td>BOLD</td>
<td>Blood Oxygenation Level-Dependent</td>
</tr>
<tr>
<td>DLPFC</td>
<td>Dorsolateraler präfrontaler Cortex</td>
</tr>
<tr>
<td>DMPFC</td>
<td>Dorsomedialer präfrontaler Cortex</td>
</tr>
<tr>
<td>EDS</td>
<td>Extradimensional Shift (Aufmerksamkeitsverschiebung)</td>
</tr>
<tr>
<td>EPI</td>
<td>Echo-Planar-Imaging</td>
</tr>
<tr>
<td>fMRI / fMRT</td>
<td>Funktionelle Magnetresonanztomographie</td>
</tr>
<tr>
<td>HDRS</td>
<td>Hamilton Depression Rating Scale</td>
</tr>
<tr>
<td>HRF</td>
<td>Hemodynamic response function</td>
</tr>
<tr>
<td>IAPS</td>
<td>International Affective Picture System</td>
</tr>
<tr>
<td>IDR</td>
<td>Intradimensional Reversal (Reaktionsumkehr)</td>
</tr>
<tr>
<td>IED</td>
<td>ID/ ED Shift</td>
</tr>
<tr>
<td>IGT</td>
<td>Iowa Gambling Task</td>
</tr>
<tr>
<td>MNI</td>
<td>Montreal Neurological Institute</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>OFC</td>
<td>Orbitofrontaler Cortex</td>
</tr>
<tr>
<td>PET</td>
<td>Positronen Emissions Tomographie</td>
</tr>
<tr>
<td>PFC</td>
<td>Präfrontaler Cortex</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SPM</td>
<td>Statistical Parametric Mapping</td>
</tr>
<tr>
<td>TE</td>
<td>Echozeit</td>
</tr>
<tr>
<td>TR</td>
<td>Repetitionszeit</td>
</tr>
<tr>
<td>VLPFC</td>
<td>Ventrolateraler präfrontaler Cortex</td>
</tr>
<tr>
<td>VMPFC</td>
<td>Ventromedialer präfrontaler Cortex</td>
</tr>
<tr>
<td>WCST</td>
<td>Wisconsin Card Sorting Test</td>
</tr>
</tbody>
</table>
0 Gegenstand und Aufbau der Arbeit

1 Einleitung

1.1 Symptomatik und Verlauf der Major Depression

Die Major Depression ist durch einen klinischen Verlauf mit einer oder mehreren Episoden einer Major Depression ohne manische, gemischte oder hypomanische Episoden gekennzeichnet. Das wesentliche Merkmal einer Episode der Major Depression ist eine mindestens zweiwöchige Zeitspanne mit entweder depressiver Stimmung oder Verlust des Interesses oder der Freude an fast allen Aktivitäten.
Zudem müssen mindestens vier der unten aufgeführten Symptome über einen Zeitraum von mindestens zwei aufeinanderfolgenden Wochen zutreffen:

- Gewichtsverlust/-steigerung (mindestens 5 % des Körpergewichtes pro Monat; gilt nicht bei Diät) oder Appetitverlust/-steigerung
- Schlaflosigkeit oder vermehrter Schlaf
- psychomotorische Unruhe oder Verlangsamung
- Energieverlust oder Müdigkeit
- Gefühl der Wertlosigkeit oder unangemessene Schuldgefühle
- Konzentrations- oder Denkstörungen
- wiederkehrende Suizidgedanken oder Gedanken an den Tod

Die Episode muss mit klinisch bedeutsamem Leiden oder Beeinträchtigungen in sozialen, beruflichen oder sonstigen wichtigen Funktionsbereichen einhergehen. Als Ausschlusskriterium gelten reine Trauerreaktionen (d.h. nicht länger als 2 Monate nach Todesfall persistierend) sowie substanzinduzierte, organisch bedingt auftretende oder schizophrenietypische Symptome. Wenn die Kriterien für eine Episode einer Major Depression erfüllt sind, werden zudem Schweregrad und Verlaufsaspekte beschrieben. Die neben der depressiven Verstimmung und dem Interessenverlust wesentlichen Symptome der Depression werden im Folgenden kurz beschrieben.

Suizidalität: Das Spektrum reicht von kurzzeitigen, wiederkehrenden Suizidgedanken bis hin zu expliziten Plänen und Suizidversuchen.

1.2 Kognitive Störungen bei Depressionen

Da nicht alle depressiven Patienten von neuropsychologischen Defiziten betroffen zu sein scheinen, wird Moderatorvariablen eine besondere Bedeutung beigemessen. Als mögliche intervenierende Variablen werden die Schwere der depressiven Störung, das Alter, das Alter bei Erstmanifestation der depressiven Erkrankung, der Verlauf nach Remission, psychologische Faktoren wie Motivation und Verarbeitung von Misserfolg, die Art der antidepressiven Medikation, die Dauer der Hospitalisierung, die Anzahl depressiver Episoden und das Geschlecht der Patienten diskutiert.

Die nachfolgend ausgeführten Modelle sollen verdeutlichen, dass die in der vorliegenden Arbeit untersuchten Bereiche Aufmerksamkeit, Gedächtnis und exekutive Funktionen konzeptuell und experimentell nicht eindeutig zu trennen sind. Anschliessend werden Befunde zu den neuropsychologischen Defiziten depressiv Erkrankter entlang der kognitiven Funktionsbereiche beschrieben.
1.2.1 Gedächtnis

Einleitung

on vornehmlich in der Kontrolle und Koordination der anderen Subsysteme des Ar-
beitsgedächtnisses liegt. Diese kapazitätsbegrenzten Subsysteme sind eine „pho-
nologische Schleife“, die sprachliche Informationen kurzfristig speichert und verar-
beitet, ein „visuell- räumlicher Skizzenblock“, der für die Speicherung und Verar-
beitung visueller Informationen zuständig ist sowie ein „episodischer Puffer“. Die-
ser ist ein amodales Speichersystem, das die Integration von Informationen aus
den untergeordneten Systemen und dem Langzeitgedächtnis durch die zentrale
Exekutive ermöglicht. Dadurch soll ein kohärentes Modell der Umgebung kreiert
werden, das es erlaubt, Probleme zu lösen und zukünftiges Verhalten zu planen.
Die „Zentrale Exekutive“ ist entscheidend in die Selektion, die Initiation sowie den
Abbruch von Prozessroutinen (u.a. Enkodierung, Speicherung und Abruf von Infor-
mationen) involviert und kontrolliert eine Vielzahl von Funktionen:

- Orientierung der Aufmerksamkeit auf verhaltensrelevante und Inhibition ver-
haltensirrelevanter Reize
- Prozessplanung in komplexen Aufgaben, welche die Initiierung von Auf-
merksamkeitswechseln zwischen den Aufgaben erfordern
- Planung und Koordinierung von Unteraufgaben, um ein spezifisches Ziel zu
erreichen
- Überprüfung und Manipulation des Speicherinhalts des Arbeitsgedächtnis-
ses
- Kodierung der Repräsentation des Arbeitsgedächtnisses bezüglich Zeit und
Raum des Erscheinens

Das Konzept der zentralen Exekutive ist dem SAS- Modell von Normann und
Shallice (1986) angelehnt, das ein „Supervisory Attentional System“ als überge-
ordnetes Kontrollsystem postuliert. Auf dieses Modell der Informationsverarbeitung
wird im folgenden Abschnitt näher eingegangen.

Das Langzeitgedächtnis wird als ein Speicher mit enormer Kapazität postuliert. In
der hierarchischen Organisation des Langzeitgedächtnisses nach Markowitsch
(2003) werden fünf Langzeitgedächtnissysteme vorgeschlagen:
• *prozedurales Gedächtnis*: speichert motorische Fertigkeiten und Routinehandlungen

• *Primingsystem*: stellt eine bessere Wiedererkennensleistung von zuvor (unbewusst) Wahrgenommenem dar

• *perzeptuelles Gedächtnis*: ermöglicht das bewusste Erkennen von Objekten, Geräuschen oder Personen aufgrund ihrer wahrnehmbaren Eigenschaften, ohne dass hierzu eine semantische Zuordnung erforderlich ist

• *semantisches Gedächtnis*: beinhaltet kontextfrei das allgemeine Weltwissen

• *episodisches Gedächtnis*: speichert persönliche Erlebnisse mit klarem räumlichen, zeitlichen und situativen Bezug

Das episodische Gedächtnis, dessen Inhalte zumeist eine emotionale Konnotation aufweisen, stellt das hierarchisch höchste Gedächtnissystem dar.

1.2.1.1 Gedächtnisfunktionen bei Depression

Die verschiedenen Bereiche des Konstruktes Gedächtnis müssen hinsichtlich einer Beeinträchtigung im Rahmen depressiver Erkrankungen getrennt betrachtet werden.

Zusammenfassend lässt sich festhalten, dass die Befunde zu den Gedächtnisfunktionen depressiver Patienten sowohl in der visuell-räumlichen als auch der verbalen Modalität recht heterogen erscheinen. Auch hinsichtlich der stärkeren Beeinträchtigung bei komplexeren Aufgaben mit hohen Anforderungen an die kognitive Verarbeitung des zu lernenden Materials („effortful processing“) liegen bisher keine eindeutigen Ergebnisse vor.

1.2.2 Aufmerksamkeit

Aufmerksamkeit bezeichnet einen Zustand konzentrierter Bewusstheit, der von einer Bereitschaft des zentralen Nervensystems auf Stimulation zu reagieren, begleitet wird (Karnath und Sturm, 2002). Das Aufmerksamkeitssystem stellt jedoch keine einheitliche Funktion dar, sondern umfasst differenzierbare Teilfunktionen. Im Bereich der neuropsychologischen Forschung hat sich die Vorstellung eines Mehrkomponentenmodells der Aufmerksamkeit mit spezifischen Funktionen durchgesetzt. Die derzeit übliche Einteilung von Aufmerksamkeitsprozessen sieht vier zu unterscheidende Aufmerksamkeitskomponenten vor:

- Alertness
- Daueraufmerksamkeit und Vigilanz
Einleitung

- Selektive Aufmerksamkeit
- Geteilte Aufmerksamkeit

Alertness bezieht sich auf den Zustand allgemeiner Wachheit/ Aktiviertheit eines Individuums und wird unterteilt in die tonische und die phasische Aktivierung. Während die tonische Aktivierung vom physiologischen Zustand des Organismus bestimmt wird, beschreibt die phasische Aktivierung die Fähigkeit, das allgemeine Aufmerksamkeitsniveau auf einen Warnreiz hin kurzfristig zu steigern.

Selektive Aufmerksamkeit beschreibt die Fähigkeit, die Aufmerksamkeit auf bestimmte Merkmale einer Aufgabe zu fokussieren und Reaktionen auf irrelevante Merkmale zu unterdrücken.

Geteilte Aufmerksamkeit bezeichnet die simultane Beachtung von mehreren Informationskanälen. Je automatisierter Anteile dieser Aufgabe sind, umso weniger Aufmerksamkeitskapazität wird für die Bearbeitung benötigt.

Die Fähigkeit zur Aufmerksamkeitsteilung wird von Norman und Shallice (1986) als eine Funktion des „supervisory attentional system“ (SAS) bezeichnet. Es wer-

Eine Separation der dargestellten Modelle von Konzepten des Arbeitsgedächtnisses, die eine zentrale Kontrollinstanz annehmen bzw. von Konzepten der automatisierten vs. intentionalen Gedächtnisprozesse (Hasher und Zacks, 1979) ist nur schwer möglich. Auch in der neuropsychologischen Diagnostik werden Aufmerksamkeitsdefizite häufig als Basisvariable definiert, deren Störung zu Beeinträchtigungen auch in anderen kognitiven Bereichen führen (von Cramon et al., 1993). Ohne Aufmerksamkeit scheint es eine Weiterverarbeitung von Information nicht zu geben (Pessoa et al., 2003). Vor diesem Hintergrund wird deshalb schon länger diskutiert, ob beispielsweise die Gedächtnisdefizite depressiver Patienten tatsächlich Störungen im Gedächtnis reflektieren oder aber auf Beeinträchtigungen in anderen Bereichen, wie etwa der Aufmerksamkeit, beruhen (Beblo et al., 2004).
1.2.2.1 Aufmerksamkeitsfunktionen bei Depression

Weder Grant et al. (2001) noch Purcell et al. (1997) fanden bei jüngeren Patienten mit eher milder bis mittelschwerer depressiver Symptomatik Defizite der Informationsverarbeitungsgeschwindigkeit und gehen deshalb davon aus, dass die in anderen Untersuchungen berichtete kognitive Verlangsamung vermutlich ein alterskorreliertes Phänomen ist.

Wie bei den Gedächtnis- wird teilweise auch bei den Aufmerksamkeitsfunktionen zwischen Prozessen, die bewusst und intentional eingesetzte Kapazitäten beanspruchen („effortful“ bzw. kontrolliert) und solchen, die sehr geringe Aufmerksamkeitskapazitäten benötigen und eher implizit ablaufen („automatic“) unterschieden. Hartlage et al. (1993) kamen zu dem Schluss, dass bei Depressiven die kontrollierte, bewusste Informationsverarbeitung beeinträchtigt sei, während die automati-

1.2.3 Exekutive Funktionen

Einleitung

Smith und Jonides (1999) nehmen fünf Komponenten exekutiver Leistungen an, die es dem Individuum ermöglichen, planerisch und zielorientiert, dabei jedoch flexibel und effizient zu arbeiten:

- **Aufmerksamkeit und Inhibition**, d.h. Fokussierung der Aufmerksamkeit auf relevante Informationen bei gleichzeitiger Unterdrückung irrelevanter Inhalte
- **Ablauforganisation**, d.h. die Erarbeitung einer Reihenfolge von Teilhandlungen bei komplexen Handlungen
- **Planung**, d.h. die Bestimmung von Teilzielen, deren Erreichen zu einem definierten Gesamtziel führen sollen
- **Überwachung (monitoring)**, d.h. die andauernde Prüfung von Einzelhandlungen und gegebenenfalls deren Aktualisierung, um das Gesamtziel zu erreichen und
- **Kodierung** von Repräsentationen im Arbeitsgedächtnis nach Zeit und Ort ihres Auftretens.

Müller et al. (2004) schlagen eine Einteilung der exekutiven Funktionen in die drei Teilbereiche Arbeitsgedächtnis/ Monitoring, kognitive Flexibilität/ Flüssigkeit und Planungsfähigkeit vor. Exekutive Funktionen sind insbesondere dann relevant, wenn Routinehandlungen zum Lösen eines Problems nicht ausreichen oder ein Wechsel des Aufmerksamkeitsfokus notwendig wird.

1.2.3.1 Exekutive Funktionen bei Depression

Einleitung

Zusammenfassung: Die dargestellten Studien weisen auf deutliche Defizite depressiver Patienten in unterschiedlichen exekutiven Funktionen hin. In Übereinstimmung hiermit folgert Veiel (1997) aus seiner Metaanalyse zu Studien über ko-
Einleitung

kognitive Defizite bei Depression, dass insbesondere die kognitive Flexibilität verringert sei. Als Ursache hierfür nahm er eine global-diffuse Beeinträchtigung von Hirnfunktionen mit besonderer Beteiligung der Frontalappen an.

1.2.4 Moderatorvariablen

Die heterogene Befundlage zu den beschriebenen Bereichen kognitiver Beeinträchtigungen bei Vorliegen einer depressiven Störung und die Tatsache, dass nur ein Teil der Erkrankten Defizite aufweist, macht es sehr wahrscheinlich, dass eine Reihe weiterer Variablen an ihrer Vermittlung beteiligt sind. Als Moderatorvariablen werden unter anderem diskutiert:

- Psychiatrische Klassifikation
- Schwere der Depression
- Alter und Alter zu Beginn der Depression
- Verlauf nach Remission
- Motivation und der Effekt von Feedback auf die Leistung
- Stimmungskongruente Verzerrung der Informationsverarbeitung
- Art und Effekt der antidepressiven Medikation
- Dauer der Hospitalisierung
- Anzahl depressiver Episoden
- Geschlecht
- Weitere Einflussfaktoren

Psychiatrische Klassifikation

Bei der Beurteilung kognitiver Defizite bei depressiven Erkrankungen ergibt sich das Problem, dass die psychiatrischen Klassifikationssysteme sich durch Weiterentwicklungen und Modifikationen verändern und so die in den verschiedenen Studien definierten Patientengruppen nur bedingt vergleichbar sind. Ein weiterer Faktor ist die Unterscheidung von unipolaren und bipolaren affektiven Störungen, die in den Studien nicht immer getroffen wird. Ein Vergleich der Leistungsprofile unipolar und bipolar Erkrankter, die in der akuten Krankheitsphase untersucht wurden

Schwere der Depression

Verschiedene Studien beschäftigen sich mit der Frage, inwieweit die Schwere der Depression die kognitive Leistungsfähigkeit beeinflusst bzw. die festgestellten kognitiven Einschränkungen moderiert. Einige Studien fanden keine signifikante Korrelation zwischen der Schwere der Depression und den kognitiven Beeinträchtigungen (Abas et al., 1990; Elliott et al., 1996; Degl'Innocenti et al., 1998), während andere Untersuchungen entsprechende Zusammenhänge zeigen konnten (Austin et al., 1992; Brodaty et al., 2003; Porter et al., 2003; Elderkin-Thompson et al., 2003). Besonders häufig wird über eine signifikante Korrelation zwischen exekutiven Funktionen und der Schwere der Depression berichtet (Fossati et al.; 2002; Ravnkalde et al., 2003). Austin et al. (2001) kommen in einer Metaanalyse zu dem Schluss, dass die Anzahl der Studien, die einen Zusammenhang zwischen der Schwere der Depression und der Beeinträchtigung von kognitiven Funktionen nachweisen können, etwa der Anzahl der Studien entspreche, die einen solchen Zusammenhang nicht zeigen konnten.
Einleitung

Alter und Alter zu Beginn der Depression

Verlauf nach Remission

Auch bezüglich der Veränderungssensitivität neuropsychologischer Defizite sind die Forschungsergebnisse recht heterogen. Einige Studien berichten von weiterhin bestehenden kognitiven Leistungseinschränkungen bei Patienten mit unipolarer Depression, die im Bereich der exekutiven Funktionen und der Psychomotorik besonders ausgeprägt sind (Paradiso et al., 1997; Tham et al., 1997; Hammar et al., 2003; Portella et al., 2003; Reischies et al., 2000; Fossati et al., 2002). So fanden Alexopoulos et al. (2000) in einer Stichprobe älterer depressiver Patienten, die sich zum Zeitpunkt der Untersuchung in Remission befanden, dass exekutive Defizite für die Vorhersage des Wiederauftretens depressiver Symptome nach 2 Jahren geeignet waren. Weiland- Fiedler et al. (2004) postulieren Defizite in der Dauererumschlagsfähigkeit als Vulnerabilitätsmarker für eine Major Depression, da diese im Gegensatz zu Beeinträchtigungen des Arbeitsgedächtnisses und der Informationsverarbeitungsgeschwindigkeit auch nach Kontrolle auf residuale depressive Sym-

Motivation und der Effekt von Feedback auf die Leistung

Defiziten sind und sich somit auch eher ein Effekt auf kognitive Funktionen nachweisen ließe.

Stimmungskongruente Verzerrungen in der Informationsverarbeitung

Art und Effekt der antidepressiven Medikation

Einleitung

Dauer der Hospitalisierung

Zusammenhang zwischen der Häufigkeit der stationären Behandlungen in der Krankengeschichte und den kognitiven Beeinträchtigungen gezeigt werden. Die Autoren interpretieren die Dauer der bisherigen Hospitalisierungen als Indikator für die Schwere der Depression.

Anzahl depressiver Episoden

Geschlecht

Weitere Einflussfaktoren

Zusammenfassend weisen die Befunde darauf hin, dass mit zunehmendem Alter, Episodenzahl und Symptomschwere eine stärkere Beeinträchtigung der kognitiven Funktionen einhergeht, so dass ältere Patienten häufig ein generalisiertes Profil neuropsychologischer Defizite aufweisen.

1.3 Ätiologie der Depression

1.3.1 Kognitive/lerntheoretische Konzepte

Einleitung

1.3.2 Genetische Einflussfaktoren

Einleitung

Umwelt-Interaktion zum Tragen kommt und das Depressions- wie auch das Suizidrisiko stark steigen (Caspi et al., 2003).

1.3.3 Neurobiologische Korrelate

In zahlreichen Studien an Depressiven wurden strukturelle und funktionale Veränderungen in kortikalen und subkortikalen Gehirnarealen gezeigt. Die wesentlichen morphometrischen und funktionellen Befunde sollen im Folgenden dargestellt werden.

1.3.3.1 Frontalhirn

Morphometrische Studien

Einleitung

Funktionelle Studien

Studien an depressiven Patienten zeigen eine Hyperaktivierung in VMPFC/ACC (Canli et al., 2004; Lawrence et al., 2004; Surguladze et al., 2005, Beauregard et al., 2006) sowie eine verminderte Aktivierung im linken DLPFC und eine gesteigerte Aktivierung im rechten DLPFC (Phillips et al., 2003; Mayberg, 2003), was die Hypothese der präfrontalen Asymmetrie (Sackeim et al., 1982; Maeda et al., 2000; Davidson et al., 2003) zu unterstützen scheint. Hierbei wird davon ausgegangen, dass der rechte präfrontale Cortex eher mit negativen Emotionen und der linke präfrontale Cortex eher mit positiven Emotionen assoziiert werden kann (Davidson et al., 1990, 1999; Murphy et al., 2003; Wager et al., 2003). Brody et al. (2001) formulieren in einer Übersichtsarbeit eine Dissoziation zwischen dorsolateralen und ventrolateralen Cortex mit vermindert dorsolateraler Aktivierung und erhöhter ventrolateraler Aktivierung. In Remission bildet sich dieses Muster zurück (Kennedy et al. 2001).
PET-Untersuchungen an Depressiven fanden überwiegend eine metabolische Reduktion im (linken) dorsolateralen präfrontalen Cortex, im anterioren Cingulum und im Bereich der Insula (Kennedy et al., 1997), so dass vermutet wird, daß die modulatorische Funktion, die der präfrontale Cortex auf limbische Regionen ausübt, bei Depressiven gestört ist. Auch Drevets et al. (1997) berichten bei Patienten mit unipolarer und bipolarer Depression von einer Durchblutungsreduktion von 18,5% und einem reduzierten Glukosemetabolismus von 16,3% im präfrontalen Cortex, wobei diese Auffälligkeiten mit einer Volumenminderung in dieser Region assoziiert waren. Zudem wird von einem empirischen Zusammenhang zwischen der beobachteten Hypofrontalität und dem Ausprägungsgrad der depressiven Negativsymptomatik (Galynker et al., 1998), dem allgemeinen Schweregrad der Erkrankung sowie den kognitiven Einbußen der Patienten berichtet (Videbech et al., 2002; Navarro et al., 2002).

Die kombinierte Durchführung von neuropsychologischen und bildgebenden Verfahren, die einen besseren Schluss von gestörten Funktionen auf cerebrale Dysfunktionen erlauben, stützt die These von veränderten frontalen Aktivierungsmustern. Das Frontalhirn wird in erster Linie mit exekutiven Funktionen, aber auch mit
bei gesunden Kontrollen. Die Anhedonie, ein Hauptsymptom der Depression, wies eine positive Korrelation mit der Aktivität des ventromedialen Cortex bei der Darbietung positiver Stimuli auf (Keedwell et al., 2005).

1.3.3.2 Hippocampus und Amygdala

Morphometrische Studien

Funktionelle Studien

Hyperarousal in der linken Amygdala, der sich im Verlauf der antidepressiven Behandlung normalisiert. Die Aktivität der Amygdala in Reaktion auf emotional negative Reize scheint bei Depressiven verlängert, wobei eine Zusammenhang zwischen der verlängerten Aktivität und der depressiven Grübelneigung angenommen wird (Siegle et al., 2002).

1.3.3.3 Subkortikale Strukturen und weiße Substanz

Morphometrische Studien

Funktionelle Studien

Zusammenfassung: Obwohl die referierten Befunde teilweise eine erhebliche Heterogenität aufweisen, konnten bei Patienten mit Major Depression insbesondere im präfrontalen Cortex sowie im Hippocampus- Amygdala- Komplex strukturelle und funktionelle Veränderungen nachgewiesen werden. Läsionen in subkortikalen Strukturen und der weißen Substanz scheinen eher für die Subgruppe der Altersdepressionen relevant zu sein.

1.3.4 Neurobiochemische Korrelate

Die Monoamminhypothesе besagt, daß depressive Erkrankungen mit einer Verminde- rung der Neurotransmitter Noradrenalin und/ oder Serotonin zusammenhängen. Vermutet wird eine verringerte Produktion dieser Transmitter und/ oder eine gerin- gere Sensitivität postsynaptischer Rezeptoren in depressiven Zuständen. Unter- stützt wurde die Hypothese durch Befunde zur Wirkweise der Antidepressiva, die entweder die Wiederaufnahme von Serotonin und/oder Noradrenalin in das prä- synaptische Neuron hemmen oder durch die Blockade der Monoaminoxidase (MAO- Hemmer) die Konzentration von Monoaminen im synaptischen Spalt erhö- hen (Aldenhoff, 1997; Möller et al., 2001; Bremner et al., 2003). PET-Studien zei-
Einleitung

Neben Serotonin und Noradrenalin wird auch Dopamin eine Bedeutung in der Depressionsgenese zugeschrieben. Brunswick et al. (2003) fanden bei Depressiven eine veränderte dopaminerge Aktivität im Bereich der Basalganglien, die dazu führt, dass das verfügbare Dopamin sehr schnell wieder aufgenommen wird und daher intrasynaptisch nicht verfügbar ist.

Zusammenfassung: Depressive Patienten weisen eine reduzierte Verfügbarkeit der Transmitter Noradrenalin und Serotonin auf. Auch Veränderungen der Dopamin-
Einleitung

min-, Glutamat-, GABA- und Cholinkonzentration erscheinen relevant. Eine erfolgreiche antidepressive Behandlung geht mit einer Normalisierung der Transmitterkonzentrationen einher.

1.3.5 Neuroendokrinologische Korrelate

Einleitung
campusformation führen. Die verminderte Neuronenzahl lässt sich zumindest teilweise auf den anhaltenden Hyperkortisolismus zurückführen. Die strukturelle Schädigung des Hippocampus wiederum hat Auswirkungen auf die Feedback-Inhibition zum Hypothalamus, was den Hyperkortisolismus zusätzlich verstärken würde.

1.3.6 Das Netzwerkmodell der Depression

Dieses Modell (Mayberg et al., 1997, 2003) integriert Befunde zu den funktionellen und morphologischen Auffälligkeiten Depressiver und betont die Interaktion zwischen kognitiven und emotionalen Prozessen bei der Entstehung von Depressionen. Das auf bildgebenden Befunden beruhende Modell geht von einer gestörten funktionellen Interaktion zwischen dorsalen/lateralen kortikalen und ventralen/medialen (para-) limbischen Strukturen aus. Zwischen den ventralen Strukturen, die mit normalen und pathologischen affektiven Zuständen und den begleitenden vegetativen Symptomen in Verbindung gebracht werden, und den dorsalen Strukturen, die in die Bewältigung kognitiver Aufgaben und die Regulation affektiver Zustände involviert sind, besteht eine reziproke funktionelle Beziehung. Das Modell begründet sich im wesentlichen auf Daten zu sekundärer Depression (Depression in Folge neurologischer Erkrankungen), PET-Ruheaktivitätsuntersuchungen bei uni- und bipolar depressiven Patienten, PET-Untersuchungen zu induzierter Traurigkeit und Daten zu metabolischen Veränderungen nach pharmakologischer anti-depressiver Behandlung. Es steht damit für das depressive Syndrombild allgemein und trennt nicht zwischen verschiedenen Ätiologien. Es werden drei Hauptkomponenten definiert:

(1) Ein dorsales Kompartiment, involviert in Prozesse von Aufmerksamkeit und Kognition, die in der Erkrankung verändert sind. Diesem Kompartiment
werden der dorsolaterale präfrontale Cortex (DLPFC, BA 9/46), der dorsale Teil des Gyrus Cinguli (dCG), der inferiore Parietalcortex (BA 40) und das Striatum zugeordnet.

(2) Die zweite Komponente bildet eine ventrale Sektion, die sich aus paralimbischen und subkortikalen Arealen (Hypothalamus, Insula, subgenuales Cingulum) sowie Regionen des Hirnstammes zusammensetzt. Dieses Kompartment wird mit den vegetativen Symptomen der Depression (Schlaf, Appetit etc.) in Verbindung gebracht.

(3) Den dritten Hauptbestandteil des Modells bildet das rostrale Cingulum. Aufgrund seiner cytoarchitektonischen Verbindungen in das dorsale und das ventrale anteriore Cingulum und seiner „Potenz“, die Ansprechbarkeit auf pharmakologische antidepressive Therapie vorhersagen zu können, wird diesem Areal eine wichtige regulatorische Rolle in der Interaktion des dorsalen mit dem ventralen Kompartment zugesprochen.

Abbildung 1.1. Depressionsmodell nach Mayberg et al. (1997, 2003). Depressionen resultieren nach diesem Modell aus der verminderten Aktivität einer dorsalen (blaues/oberes Feld) und der gesteigerten Aktivität einer ventralen (rotes/unteres Feld) Komponente. dFr = dorsolateral präfrontal; inf Par = inferiorer Parietalcortex; dCG = dorsaler Gyrus Cinguli; pCG = posteriorer Gyrus Cinguli; die Zahlen entsprechen Brodman-Arealen); Cg 25 = subgenuales Cingulum; Hip = Hippocampus; Hypo = Hypothalamus; Insul = Insula; ergänzend die grau unterlegten subkortikalen Areale: BG = Basalganglien; Th = Thalamus; Amy = Amygdala; gelb: rCG 24a = rostrales Cingulum: Areale der reziproken Interaktion der dorsalen und ventralen Komponente.

Hinsichtlich der antidepressiven Behandlung konnte gezeigt werden, dass psychotherapeutische und pharmakologische Interventionen an unterschiedlichen Wirkorten eine funktionelle Normalisierung bewirken. Die durch Antidepressiva (Fluoxetine) induzierten Effekte weisen keinen statischen Verlauf auf. Während nach 1-wochiger Therapie zwar metabolische Veränderungen in subkortikalen und (para)-limbischen Strukturen, jedoch kein antidepressiver Effekt im Sinne einer Symptomreduktion nachweisbar war, zeigten sich nach 6-wochiger Therapie sowohl eine verhaltensmäßige Manifestation als auch ein dem frühen Behandlungsverlauf entgegengesetztes Aktivierungsmuster in subkortikalen und (para)-limbischen Strukturen sowie metabolische Veränderungen im Sinne einer gesteigerten Aktivierung in kortikalen Arealen. Die Umkehr des Aktivierungsmusters und die kortikale Aktivierung fanden sich jedoch nur bei den Patienten, die auf die antidepressi-
Einleitung

Das Netzwerkmodell integriert eine Vielzahl struktureller, biochemischer und funktioneller Befunde zur Depression. So steht die nachgewiesene dorsale präfrontale Funktionsstörung depressiver Patienten in gutem Einklang mit den volumetrisch belegten Substanzverlusten und den kognitiven Defiziten. Das intensivierte Aktivierungsverhalten von Amygdala und Hippocampus im ventral-limbischen Teil des Netzwerkes verdeutlicht die Entstehung pathologischer emotionaler Zustände und kann sowohl funktionell, volumetrisch als auch über das Zusammenwirken von fehlender Frontalhirnhemmung und neuroendokrinologisch bedingten Neuroplastizitätsdefiziten erklärt werden. Auch in Bezug auf die Annahme einer defizitären Schnittstellenfunktion des anterioren Cingulums reichen die unterstützenden bild-
gebenden Befunde vom dysfunktionalen Aktivierungsverhalten bei der Verarbeitung emotionaler Reize, über die allgemeine Blutflussminderung und Reduktion der grauen Substanz, bis hin zum Nachweis einer reduzierten glutamatergen Neurotransmission (Braus et al., 2005).

1.3.7 Zusammenfassung

1.4 Magnetresonanztomographie

Da das Wissen um die Funktionsweise und die zugrundeliegenden physikalischen Prinzipien der Magnetresonanztomographie für das Verständnis und die Interpretation der vorliegenden Arbeit unerlässlich sind, soll an dieser Stelle eine kurze Einführung gegeben werden. Weiterführende Informationen finden sich in verschiedenen Übersichtswerken (z.B. Weishaupt et al., 2006). Aus Gründen der
Einleitung

1.4.1 Kernspin und Magnetisierung

wiederholte Schalten der Frequenzkodiergradienten werden zusätzliche Inhomo-
genitäten erzeugt, die letztlich zu geometrischen Verzerrungen führen können.

1.4.2 Funktionelle Magnetresonanztomographie (fMRI)

Die funktionelle Magnetresonanztomographie (fMRI) ist die Anwendung von MR-
Techniken zur Untersuchung der cerebralen Physiologie unter Beibehaltung der
anatomischen Darstellung. Beim fMRI ist die lokale Oxygenierung des Blutes der
dentscheidende, die Signalintensität beeinflussende Parameter. Die Oxygenierung
ändert sich abhängig von der Perfusion und dem Metabolismus der Cortexareale.
Der im fMRI genutzte Kontrastmechanismus nutzt den sogenannten BOLD (Blood
Oxygenation Level Dependent)- Effekt aus, wobei der Oxygenierungsgrad des
Blutes als intravaskuläres Kontrastmittel dient. Innerhalb der ersten zwei Sekun-
den nach neuronaler Aktivierung steigt die Sauerstoffextraktion aus dem Blut bei
zunächst unverändertem regionalem Blutfuss an. Danach kommt es zu einer ra-
schen Erhöhung des Blutflusses, die nach weiteren 4 - 6 Sekunden in eine Sätti-
gung mündet und bei fortgesetzter neuronaler Stimulation konstant bleibt. Nach
Beendigung der neuronalen Erregung erfolgt mit einer Verzögerung von wenigen
Sekunden eine Verringerung des Blutfusses, welcher sich innerhalb von etwa 10
Sekunden wieder auf den ursprünglichen Wert vor der neuronalen Erregung ein-
pendelt. Diese verzögerte Reaktion der Blutflussregulation, die durch die so ge-
nannte hämodynamische Antwortfunktion (d.h. die Signalantwort auf eine sehr
kurze Aktivierung) charakterisiert wird, bestimmt die zeitliche Auflösung des fMRI.
Die magnetischen Eigenschaften des Hämoglobins in den Erythrozyten verändern
sich mit dem Zustand der Oxygenierung. Die magnetische Suszeptibilität von sau-
erstoffreichem Oxyhämoglobin liegt nahe der des Gewebes (diamagnetisch), wäh-
rend die von sauerstoffarmem Desoxyhämoglobin höher ist. Während der Aktivie-
rungsphase strömt sauerstoffreiches und damit weniger paramagnetisches Blut in
den aktivierten Hirnbereich ein. Da der starke Durchblutungsanstieg nicht mit ei-
nem vergleichbar starken Sauerstoffverbrauch verbunden ist, nimmt der relative
Anteil an Oxyhämoglobin im venösen Blut zu, während die Desoxygenierung dort
gleichzeitig abnimmt. Dies führt zu einer deutlichen Erhöhung der Magnetfeldho-
mogenität im venösen Bereich des aktivierten Gewebes und somit zu einer Verrin-
gerung der Signaldephasierung. Im Gradientenechobild drückt sich dies in einer Signalerhöhung aus. Der BOLD-Kontrast ist also eine Methode, die auf indirektem Wege neuronale Mechanismen misst. Aufgrund der mehrere Sekunden umfassenden zeitlichen Verzögerung der hämodynamischen Antwortfunktion ist die zeitliche Auflösung der fMRI limitiert und auch wesentlich von der kortikalen Blutgefäßarchitektur in der aktivierten Region abhängig.

1.4.2.1 Design von fMRI- Experimenten

1.4.2.2 Auswertung der fMRI- Daten

Bei der Auswertung funktioneller Daten werden signalspezifische Analysen auf der Basis von einzelnen Bildvolumen (voxel) durchgeführt, die dann in parametrischen Aktivierungskarten (Statistical Parametric Map, SPM) des Gehirns dargestellt werden. Da in Abwesenheit eines spezifischen Effektes eine Nullverteilung angenommen werden darf, kann durch die Testung der Nullhypothese, normalerweise mittels t- oder F- Statistik, die Region einer spezifischen Aktivierung bestimmt wer-
Die Analyse von fMRI-Daten beinhaltet mehrere Verarbeitungsschritte, die allgemein in:

(a) Vorverarbeitung (zeitliche Korrektur der Datenakquisition, Bewegungs-korrektur, räumliche Normalisierung, Glätten)
(b) Parameterschätzung des Statistischen Modells (ALM)
(c) Rückschlüsse über die Effekte (statistische Folgerung)

unterteilt werden können (Friston, 2000). Im Rahmen der Vorverarbeitung werden Fehlerquellen, wie z.B. thermisches Rauschen oder Kopfbewegungen der Versuchsperson reduziert und der individuelle Datensatz an eine allgemeinere Musterform angepasst. Im Rahmen der statistischen Analyse kommt eine voxelbasierte Auswertestrategie zum Einsatz, bei der die Voxelsignale der Bildmatrix über die Dimensionen Zeit und Raum anhand eines multiplen Regressionsansatzes ausgewertet werden (Friston, 1997). Die Auswertungsschritte des verwendeten Computerprogramms SPM stellt Abbildung 1.2 dar:
Einleitung

Der genaue Ablauf und die Hintergründe der einzelnen Bearbeitungsschritte werden im Folgenden dargestellt:

(a) Vorverarbeitung

Zeitliche Korrektur der Schichtakquisition (*Slice timing correction*)

Bei der Aufnahme des fMRI- Datensatzes wird in jeder Schicht das BOLD- Signal zu einem anderen Zeitpunkt gemessen, so dass ein Ausgleich des Effektes unterschiedlicher Akquisitionszeiten bei der Schichtmessung notwendig ist. Durch die Bestimmung einer Referenzschicht und die Korrektur der weiteren Schichten um die zeitliche Differenz zu dieser Referenzschicht wird der Verlauf des Signals interpoliert.

Bewegungskorrektur (*Realignment*)

Durch Kopfbewegungen in x-, y- und z-Richtung verändert sich die räumliche Position eines jeden Voxels im 3-D-Raum. Obwohl diese Bewegungen durch Fixation des Kopfes in der Spule minimiert werden können, tragen auch Pulsationen der cerebralen Blutgefäße dazu bei, dass sich die signalgebende Substanz im Messraum zwischen verschiedenen Aufnahmen an unterschiedliche Orte bewegt. Da bei der Analyse des Signalverlaufs nicht unterschieden werden kann, ob die Signalveränderung aufgrund einer hämodynamischen Antwort oder aufgrund der Bewegung einer anderen anatomischen Struktur mit einer anderen Signalintensität an den entsprechenden Ort zustande kam, muss vor der Datenauswertung unbedingt eine Bewegungskorrektur durchgeführt werden (Friston, 1997). Mit dem ersten Bild der Versuchserserie wird für jede Versuchsperson ein Referenzbild bestimmt, das mit den anderen Bildern der Zeitreihe verglichen wird. Hierfür werden über die korrespondierenden Voxel der aufeinander folgenden Bilder Abweichungsquadrate bestimmt. Ist der Kopf in einem dieser Bilder an einer anderen Position, so weisen viele Voxel aufgrund der unterschiedlichen Signalintensität der verschiedenen anatomischen Strukturen eine große Differenz auf. Abweichungen vom Referenzbild werden in sechs Bewegungsparametern dargestellt (drei Translationsbewegungen: x, y, z- Richtung; drei Rotationsbewegungen: Neigung, Sche-
Einleitung

Um zu bestimmen, wie weit ein Bild verschoben werden muss, um möglichst wenig Abweichung zum Referenzbild aufzuweisen, muss abgeschätzt werden, wie sich das Signal räumlich zwischen zwei gemessenen Voxeln verteilt. Diese Abschätzung wird mithilfe eines Interpolationsalgorithmus vorgenommen und so oft mit unterschiedlichen Verschiebungsparametern wiederholt, bis die Abweichung vom Referenzbild minimiert ist. Der gleiche Vorgang wird für jede Aufnahme der Zeitreihe wiederholt, so dass eine anatomische Struktur des Gehirns auf allen Aufnahmen eines Experimentes am gleichen Bildpunkt auftaucht.

Räumliche Normalisierung (Stereotactic normalisation)

Räumliche Glättung (Spatial smoothing)

(b) und (c) Statistische Analyse und Schlussfolgerungen

Bei der voxelweisen statistischen Analyse anhand des Allgemeinen Linearen Modells (ALM) wird das experimentelle Paradigma als lineares Modell definiert und die Modell-Zeitreihe mit dem tatsächlichen Signalverlauf eines jeden Voxels verglichen. Je größer die Abweichung (je größer die Residuen), desto schlechter beschreibt das Modell den Signalverlauf. Man erhält für jedes gemessene Voxel ein Regressionsgewicht, dass die Stärke des Zusammenhangs der Voxelzeitreihe mit der vorhergesagten Signaländerung repräsentiert.

Fragestellung (Kontrast) für jedes einzelne Voxel ein t- Wert berechnet. Je höher dieser Wert ist, desto stärker ist der Hinweis, dass diese Aktivierung nicht zufällig, sondern durch einen paradigminduzierten Effekt zustande gekommen ist. In jeden t- Wert geht die Höhe der durch den Kontrast gewichteten Parameter (je höher, desto mehr Effekt) und die geschätzte Fehlervarianz (je kleiner, desto sichere Aussage) ein. Für jeden Kontrast ergibt sich so eine statistische t- Karte (SPM(T)) mit einem t- Wert pro Voxel. Die SPM(T) kann in eine Normalverteilung in ein Gaussches Feld umgewandelt werden, woraus die SPM(Z) resultiert (Friston et al., 1995). Die Signifikanzwerte (p-Werte) der SPM(T)-Maps beziehen sich auf (1) jeden Voxel innerhalb eines Clusters (voxel level), (2) die Anzahl der aktivierten Voxel, die in einer bestimmten Region enthalten sind (cluster level) und (3) die Anzahl der aktivierten Regionen, d.h. die Anzahl der Cluster oberhalb der gewählten Schwelle (set level).

Der p- Wert des Voxels wird als p uncorrected, FDR oder FWE angegeben. Uncorrected bedeutet, dass die Berechnung der Irrtumswahrscheinlichkeit nur für diesen Voxel erfolgt ist, d.h. ohne zu berücksichtigen, für wie viele Voxel die Irrtumswahrscheinlichkeit bestimmt wird. FDR (False Discovery Rate) bestimmt den Anteil falsch positiver Resultate bei den über der Schwelle liegenden Voxeln. FWE (Family Wise Error Rate) ist das Resultat einer α- Korrektur für multiple Vergleiche (random field correction) und gibt die Wahrscheinlichkeit von falsch positiven Resultaten im Gesamtvolumen (nicht nur in den über der Schwelle liegenden Voxeln) an.

Bei der Analyse einzelner Versuchspersonen ergeben sich sehr viele Freiheitsgrade, da die vielen Messzeitpunkte der Zeitreihen in die statistische Analyse eingehen. Solche Analysen, die als fixed effects- Analysen bezeichnet werden, haben eine hohe statistische Effizienz (Power), da vor allem wegen der großen Anzahl von Freiheitsgraden die Wahrscheinlichkeit statistisch signifikanter Ergebnisse steigt. Fixed effects- Analysen sind nur geeignet, um Aussagen über die untersuchten Versuchspersonen zu ermöglichen. Will man auf die Grundgesamtheit schließen und damit allgemeine Aussagen machen, muss eine random effects-Analyse durchgeführt werden. Hierbei werden zunächst für jede Versuchsperson und für jeden Kontrast zusammenfassende Statistiken berechnet, die dann einer
Einleitung

weiteren Analyse (second level- Analyse) zugeführt werden. Es werden statistische Verfahren angewendet, die auf der Basis von angemessenen Schätzungen der Fehlervarianz Verallgemeinerungen auf die Population erlauben (z.B. t- Test, Regression). Die Freiheitsgrade erhöhen sich hier mit der Größe der Stichprobe (Friston et al., 1999).

Ergebnis der statistischen Analyse sind dreidimensionale inferenzstatistische Karten des gesamten Gehirns (Statistical Parametric Map, SPM), die für jeden Voxel einen entsprechenden t- Wert enthalten. Die SPMs lassen sich farbkodierter auf eine anatomische Referenz projizieren, wobei „aktivierte“ Gehirnregionen als farbige Flecken visualisiert werden.
2 Fragestellungen und Hypothesen

Bei der fMRI-Untersuchung zur Emotionsverarbeitung werden positive und negative Stimuli präsentiert, die lediglich passiv betrachtet (emotionale Wahrnehmung) oder beurteilt (emotionale Beurteilung) werden sollen. Hinsichtlich der Beurteilung der Stimuli, lassen einige Studien (Murphy et al., 1999; Dunn et al., 2004; Erickson et al., 2005) bei Depressiven stimmungskongruente Verzerrungen der Informati-
onsverarbeitung mit einem Bias für negative Informationen erwarten. Bildgebende Untersuchungen bei Gesunden zeigen eine reziproke Beteiligung medialer/ventraler und lateraler/dorsaler Areale während verschiedener Aspekte emotionaler Verarbeitung (emotionale Beurteilung, emotionale Wahrnehmung). Emotionale Wahrnehmung geht mit einer Signalzunahme in medialen präfrontalen Strukturen (VMPFC, DMPFC, ACC) und Signalabnahme in lateralen präfrontalen Regionen (DLPFC, VLPFC) einher (Northoff et al., 2004; Grimm et al., 2006, Goel et al., 2003). Da sich analoge Veränderungen in die entgegengesetzte Richtung mit Signalabnahme in medialen und -zunahme in lateralen Regionen während emotionaler Beurteilung zeigen, spricht man hier von reziproker Modulation. Ruheaktivitätsstudien, die eine Hyperaktivierung in VMPFC/ACC und Hypoaktivierung im linken DLPFC zeigen (Canli et al., 2004; Lawrence et al., 2004; Surguladze et al., 2005), lassen eine veränderte reziproke Beziehung zwischen medialen und lateralen präfrontalem Cortex bei depressiven Patienten vermuten. Ebenfalls in Ruheaktivitätsstudien fand sich eine verminderte Aktivierung im linken DLPFC und eine gesteigerte Aktivierung im rechten DLPFC bei depressiven Patienten (Phillips et al., 2003; Mayberg, 2003), was die Hypothese der präfrontalen Asymmetrie (Sackeim et al., 1982; Maeda et al., 2000; Davidson et al., 2003) zu unterstützen scheint. Hierbei wird davon ausgegangen, dass der rechte präfrontale Cortex eher mit negativen Emotionen und der linke präfrontale Cortex eher mit positiven Emotionen assoziiert werden kann (Davidson et al., 1999; Murphy et al., 2003; Wager et al., 2003). Obwohl auch Untersuchungen während emotionaler Stimulation eine DLPFC-Dysfunktion zeigen konnten, bleibt unklar, welche Komponente der Emotionsverarbeitung (Beurteilung, Wahrnehmung) mit der verminderten Aktivierung im linken DLPFC und der gesteigerten Aktivierung im rechten DLPFC verbunden ist, und ob es einen empirischen Zusammenhang zwischen den Aktivierungsmustern und dem Schweregrad der depressiven Symptomatik gibt. Die Untersuchung des Zusammenhanges von neuropsychologischen Variablen und neuronalen Aktivierungsmustern erlaubt einen eindeutigeren Schluss von einer kognitiven Beeinträchtigung auf cerebrale Dysfunktionen. Da der präfrontale Cortex in erster Linie mit exekutiven Funktionen, wie der Fähigkeit zur Verlagerung des Aufmerksamkeitsfokus, in Verbindung gebracht wird, wird diese Teilleistung als besonders re-
levant für den Zusammenhang mit medialen und lateralen präfrontalen Aktivierungsmustern angesehen.

Im Rahmen der vorliegenden Arbeit sollen folgende Fragestellungen geklärt werden:

1. Welche Beeinträchtigungen von Gedächtnis, Aufmerksamkeit und exekutiven Funktionen bestehen bei unmedizierten Patienten mit einer schweren Ausprägung einer depressiven Episode?
2. Gibt es einen Zusammenhang zwischen den kognitiven Beeinträchtigungen, soziodemographischen und psychopathologischen Variablen?
3. Zeigen depressiven Patienten bei der Beurteilung von positiven und negativen Stimuli stimmungskongruente Verzerrungen in der Informationsverarbeitung mit einem Bias für negative Informationen?
4. Besteht bei depressiven Patienten während emotionaler Beurteilung und emotionaler Wahrnehmung eine abnorme reziproke Modulation zwischen medialen (VMPFC, ACC) und lateralen (DLPFC, VLPFC) präfrontalen Regionen?
5. Welche Komponente der Emotionsverarbeitung (Beurteilung, Wahrnehmung) ist mit einer verminderten Aktivierung im linken DLPFC und einer gesteigerten Aktivierung im rechten DLPFC verbunden?
6. Besteht ein Zusammenhang zwischen präfrontalen Aktivierungsmustern und dem Schweregrad der Depression?
7. Gibt es einen Zusammenhang zwischen medialen und lateralen präfrontalen Aktivierungsmustern und exekutiven Teilleistungen (Reaktionsumkehr, Fähigkeit zur Verlagerung der Aufmerksamkeit zwischen Wahrnehmungsdimensionen/ Stimuluskategorien)?

Ausgehend von den dargestellten empirischen Befunden lassen sich zu den oben genannten Fragestellungen folgende Hypothesen formulieren:

4. Bei depressiven Patienten besteht eine abnorme reziproke Modulation zwischen medialen (VMPFC, ACC) und lateralen (DLPFC, VLPFC) präfrontalen Regionen. Die Signalveränderungen, die in medialen und lateralen präfrontalen Regionen auftreten, unterscheiden sich bei emotionaler Wahrnehmung und emotionalen Beurteilungen nicht signifikant.

5. Emotionale Beurteilung führt bei depressiven Patienten zu einer im Vergleich mit Gesunden verminderten Aktivierung im linken DLPFC und einer gesteigerten Aktivierung im rechten DLPFC.

7. Die gesteigerte Aktivierung in medialen präfrontalen Regionen (VMPFC, ACC) und verminderte Aktivierung im linken DLPFC während emotionaler Beurteilungen korreliert bei Depressiven mit Defiziten bei der Reaktionsumkehr und der Fähigkeit zur Verlagerung der Aufmerksamkeit zwischen Wahrnehmungsdimensionen/ Stimuluskategorien.
3 Methode

3.1 Datenerhebung

3.1.1 Patientenstichprobe

von Medikamenten mit potenziell zentral wirksamen Nebenwirkungen (z.B. ß-Blocker), (10) Herzschrittmacher oder metallische Implantate.

3.1.2 Probandenstichprobe

Die Stichprobe umfasste 30 gesunde Kontrollpersonen, die mittels Inseraten rekrutiert wurden. Ein Proband musste aufgrund struktureller Auffälligkeiten im kernspintomographischen Befund aus der Stichprobe ausgeschlossen werden. Die verbleibende Stichprobe setzte sich aus 21 Frauen (72%) und 8 Männern (28%) im Alter von 35.32 ± 7.26 Jahren (Altersbereich 27 bis 56 Jahre) zusammen. Alle Probanden waren Rechtshänder. Als Ausschlusskriterien für die Teilnahme an der Studie galten neben den für die Patientengruppe aufgeführten Kriterien das (1) Vorliegen einer depressiven Symptomatik, (2) psychiatrische Erkrankungen und (3) neurologische oder internistische Erkrankungen.

3.2 Versuchsplan

Methode

Die Untersuchung mit ausreichend Pausen zwischen den Tests dauerte im Schnitt 1.5 Stunden, wobei es aufgrund der unterschiedlichen Leistungsvoraussetzungen der Versuchspersonen erhebliche Unterschiede geben konnte. Die fMRI- Untersuchung dauerte ca. 1.5 Stunden.

Wird im Folgenden von Versuchspersonen berichtet, bezieht sich diese Beschreibung sowohl auf Patienten als auch auf gesunde Probanden.

3.3 Operationalisierungen

3.3.1 Psychopathologie

Zur psychopathologischen Charakterisierung der Versuchspersonen wurden etablierte und standardisierte psychiatrische Erhebungsinstrumente eingesetzt.

3.3.1.1 Selbstbeurteilung

3.3.1.2 Fremdbeurteilung

3.3.2 Neuropsychologie

Die verwendeten neuropsychologischen Testverfahren und die Zuordnung zu den Funktionsbereichen sind in Tabelle 3.1 aufgeführt. Da eine eindeutige Trennung der kognitiven Funktionsbereiche konzeptionell und experimentell schwer möglich ist, stellt die Zuordnung dieser Testverfahren zu den einzelnen Funktionsbereichen eine Vereinfachung dar, die aus Gründen der Übersichtlichkeit gewählt wurde.
Tabelle 3.1. Übersicht über die neuropsychologischen Testverfahren

<table>
<thead>
<tr>
<th>Test/Bereich</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufmerksamkeit</td>
<td></td>
</tr>
<tr>
<td>Rapid Visual Information Processing (CANTAB)</td>
<td>Daueraufmerksamkeit</td>
</tr>
<tr>
<td>Lernen und Gedächtnis</td>
<td></td>
</tr>
<tr>
<td>Paired Associates Learning (CANTAB)</td>
<td>visuell-räumliche Lern- und Merkfähigkeit</td>
</tr>
<tr>
<td>Pattern Recognition Memory (CANTAB)</td>
<td>visuelle Lern- und Merkfähigkeit</td>
</tr>
<tr>
<td>Spatial Working Memory (CANTAB)</td>
<td>visuelle räumliches Arbeitsgedächtnis</td>
</tr>
<tr>
<td>Rapid Visual Information Processing (CANTAB)</td>
<td>Arbeitsgedächtnis</td>
</tr>
<tr>
<td>Exekutive Funktionen</td>
<td></td>
</tr>
<tr>
<td>ID/ED Shift (CANTAB)</td>
<td>Wechsel des Aufmerksamkeitsfokus</td>
</tr>
<tr>
<td>Spatial Working Memory (CANTAB)</td>
<td>Strategienbildung und -nutzung</td>
</tr>
<tr>
<td>Iowa Gambling Task (IGT)</td>
<td>Entscheidungsverhalten</td>
</tr>
<tr>
<td>Intellektuelle Fähigkeiten</td>
<td></td>
</tr>
<tr>
<td>Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B)</td>
<td>bildungsabhängige verbale Intelligenz</td>
</tr>
</tbody>
</table>

Anmerkungen. CANTAB = Cambridge Automated Neuropsychological Testing Battery.

3.3.2.1 Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B)

3.3.2.2 Cambridge Neuropsychological Testing Automated Battery (CANTAB)

Die CANTAB (Robbins et al., 1994) ist eine computergestützte neuropsychologische Testbatterie, die aus 13 Tests zur Untersuchung motorischer Fähigkeiten, vi-
Methode

sueller Aufmerksamkeit, exekutiver Funktionen und Gedächtnis besteht. Die eingesetzten Stimuli sind nonverbal und bestehen aus geometrischen Formen oder einfachen Mustern, so dass ausreichende Sprachkenntnisse lediglich für das Instruktionsverständnis notwendig sind. Die Versuchspersonen geben ihre Antworten über einen Touchscreen bzw. eine Taste ein. Die 5 Untertests der CANTAB, die im Rahmen der Untersuchung eingesetzt wurden, werden nachfolgend beschrieben.

![Abbildung 3.1. Teststimuli des ID/ ED Shift (IED).](image)

später extradimensional (weiße Linien sind die einzig relevante Dimension). Die Aufgabe besteht aus 9 Phasen:

(1) Einfache Diskrimination (*Simple Discrimination, SD*): Unterscheidung zwischen 2 Mustern (1 und 2). Die Versuchsperson muss lernen, sich für Muster 1 zu entscheiden.

(2) Einfache Umkehr (*Simple Reversal, SR*): Präsentation derselben 2 Muster bei umgekehrter Kontingenz. Die Versuchsperson muss lernen, die Reaktion auf Muster 1 zu unterdrücken und sich stattdessen für Muster 2 entscheiden.

(4) Diskrimination zusammengesetzter, überlagerter Muster (*Compound Discrimination superimposed, CD*): Die weißen Linien überlagern die Muster bei unveränderten Kontingenzen (Versuchsperson soll sich für Muster 2 entscheiden).

(5) Umkehr bei zusammengesetzten, überlager ten Mustern (*Compound Reversal, CR*): Bei umgekehrten Kontingenzen werden die gleichen Muster mit den überlager ten weißen Linien präsentiert. Die Versuchsperson muss ihr Antwortverhalten verändern und sich für Muster 1 entscheiden.

(6) Intra- dimensionale Verschiebung (*Intra- dimensional shift, IDS*): Es werden neue Muster (3 und 4) und Linien (3 und 4) dargeboten, die eine Verschiebung des Aufmerksamkeitsfokus innerhalb der bisher verstärkten Wahrnehmungsdimension erforderlich machen. Die Versuchsperson muss lernen, sich für Muster 3 zu entscheiden, wobei gleichgültig ist, ob dieses mit Linie 3 oder 4 kombiniert ist.

(7) Intra- dimensionale Umkehr (*Intra- dimensional reversal, IDR*): Präsentation derselben Muster und Linien bei umgekehrter Kontingenz. Die Versuchsperson muss lernen, die Reaktion auf Muster 3 zu unterdrücken und sich stattdessen für Muster 4 entscheiden.

(8) Extra- dimensionale Verschiebung (*Extra-dimensional shift, EDS*): Es werden neue Muster (4 und 5) und Linien (4 und 5) dargeboten. Die Aufmerksamkeit muss
Methode

auf die ursprünglich irrelevante Stimulusdimension (weiße Linien) verlagert werden. Die Versuchsperson muss lernen, ihre Aufmerksamkeit von den Mustern auf die Linien zu verschieben und Linie 5 auswählen, gleichgültig, ob sie mit Muster 5 oder 6 dargeboten wird.

(9) Extra- dimensionale Umkehr (Extra-dimensional reversal, EDR): Präsentation derselben Muster und Linien bei umgekehrter Kontingenz. Die Versuchsperson muss lernen, die Reaktion auf Linie 5 zu unterdrücken und sich stattdessen für Linie 6 entscheiden.

Der Test wird automatisch beendet, sollte die Versuchsperson nach 50 Durchgängen nicht zu 6 aufeinanderfolgenden richtigen Antworten in der Lage gewesen sein. Für die Testphasen, die aufgrund des Abbruchs nicht mehr durchgeführt werden konnten, wird die maximale Fehleranzahl (25) aufgezeichnet. Es werden folgende Indikatoren der Testleistung aufgezeichnet: die Testphase, die erreicht wurde; die Gesamtzahl der Durchgänge; die Gesamtzahl der Fehler; die Anzahl der Durchgänge, die bis zum Erreichen einer Testphase benötigt wurde; die Fehleranzahl pro Testphase.

Abbildung 3.2. Teststimuli der Paired Associates Learning (PAL)-Aufgabe.

Wenn eine Versuchsperson 2 Durchgänge mit jeweils einem Muster erfolgreich bewältigt hat (Phase 1 und 2), wird die Anzahl der Muster erhöht. Zunächst wer-
den 2 Durchgängen mit je 2 Mustern (Phase 3 und 4), dann 2 Durchgänge mit je 3 Mustern (Phase 5 und 6) und schließlich je 1 Durchgang mit 6 und 8 Mustern präsentiert (Phase 7 und 8). Sollte die Position eines Musters nicht richtig erinnert werden, werden sämtliche Muster der entsprechenden Testphase bis zu 10 Mal wiederholt. Werden auch nach der 10. Präsentation nicht alle Positionen des Musters richtig erinnert, wird die Aufgabe automatisch beendet. Der Test untersucht 2 Aspekte der Fähigkeit, visuell-räumliche Assoziationen zu bilden. Zum einen wird die Anzahl der Muster, deren Position nach der ersten Präsentation eines Durchgangs richtig erinnert werden konnte, als Indikator für die Merkfähigkeit betrachtet. Die Anzahl der Präsentationen eines Durchgangs, die notwendig waren, bis die Versuchsperson die gezeigten Muster mit den richtigen Positionen assoziierte, wird als Indikator der Lernfähigkeit angesehen. Es werden die folgenden Parameter aufgezeichnet: die erreichte Testphase; die Anzahl der Präsentationen, die benötigt wurden, um alle Muster in den Testphasen korrekt zu lokalisieren (Maximum= 10 pro Testphase; bei vorzeitigem Testabbruch wird der Maximalwert für alle nicht durchgeführten Phasen aufgezeichnet); die Gesamtzahl der Fehler über alle Testphasen (bei vorzeitigem Testabbruch wird ein korrigierter Fehlerwert berechnet); der „first trial memory score“, der der Gesamtzahl der Muster entspricht, die über alle Testphasen nach der ersten Präsentation richtig erinnert wurden (Bereich= 0- 26)

Pattern Recognition Memory (PRM): Dieser Test untersucht die visuelle Merkfähigkeit nach der Wiedererkennungsmethode. Den Versuchspersonen wird eine Folge von abstrakten, schwer verbalisierbaren Mustern präsentiert. In der 5 sec später folgenden Testphase muss zwischen dem gesehenen und einem neuen Muster unterschieden werden.

Abbildung 3.3. Teststimuli der Pattern Recognition Memory (PRM)- Aufgabe.
Auf dem Bildschirm erscheint eine Rückmeldung darüber, ob das richtige Muster gewählt wurde. Die Muster werden in umgekehrter Reihenfolge präsentiert, so dass die zuletzt gesehenen Muster zuerst gezeigt werden. Es werden 2 Durchgänge mit je 12 Mustern durchgeführt. Der Testwert der Versuchsperson (Maximum=24) wird als Anzahl richtiger Antworten angegeben. Zudem wird die durchschnittliche Zeit in Millisekunden (ms), die eine Versuchsperson für die richtige Antwort benötigte, aufgezeichnet.

Abbildung 3.4. Teststimuli der Rapid Visual Information Processing (RVIP)-Aufgabe.

Die Versuchspersonen müssen insgesamt auf 3 definierte Zahlenfolgen, die während des gesamten Tests auf dem Bildschirm zu sehen sind, mit Tastendruck reagieren. Zu Beginn der Aufgabe (zweiminütige Trainingsphase) werden die Versuchspersonen durch farbige Markierungen (Cues) darauf hingewiesen, wann sie reagieren sollten und erhalten nach jedem Tastendruck eine Rückmeldung, ob
ihre Reaktion richtig oder falsch war. Im Verlauf der Trainingsphase werden sowohl die Cues als auch die Rückmeldungen allmählich ausgeblendet. Die eigentliche Testphase dauert 4 Minuten. Es werden die Gesamtzahl der richtigen Reaktionen, der falschen Reaktionen, der Auslassungen, die Gesamtzahl der Stimuli, auf die korrekterweise nicht reagiert wurde und die durchschnittliche Reaktionszeit in Millisekunden (ms) aufgezeichnet. Der Parameter RVIP A’ ist ein Indikator für die Fehlersensitivität (Bereich 0.00 bis 1.00) und gibt an, wie gut die Versuchsperson in der Lage ist, die definierten Zahlenfolgen zu detektieren.

Spatial Working Memory (SWM): Dieser Test untersucht visuelle Arbeitsgedächtnisleistungen und erfordert von den Versuchspersonen strategisches zielgerichtetes Arbeiten. Die Besonderheit der Aufgabe liegt in der Separierung mnestischer und strategischer Komponenten des Arbeitsgedächtnisses. Auf dem Bildschirm werden farbige Boxen präsentiert. Die Aufgabe besteht darin, in diesen Boxen blaue Quadrate zu finden und sie dazu zu verwenden, eine Säule am Bildschirmrand aufzufüllen. Innerhalb eines Suchdurchgangs muss die Versuchsperson die Boxen „öffnen“, bis sie in einer Box ein blaues Quadrat findet. Sie sollte nicht zu einer bereits überprüften leeren Box zurückkehren. Zudem muss sie sich die Boxen merken, in denen sie bereits ein blaues Quadrat gefunden hat und darf sie nicht nochmals zu öffnen. Für die erfolgreiche Bewältigung der Aufgabe sind also sowohl effiziente Suchstrategien als auch ungestörte Funktionen des Arbeitsgedächtnisses notwendig. Eine effiziente Strategie besteht in der Nutzung einer bestimmten Suchreihenfolge (z.B. indem die Suche immer mit derselben Box begonnen wird und sobald ein Quadrat in einer anderen Box gefunden wurde, wieder zur ersten Box zurückgekehrt und dort die nächste Suche begonnen wird). Die Farbe und Position der Boxen wird von Durchgang zu Durchgang variiert. Mit zunehmender Schwierigkeit erhöht sich die Anzahl der Boxen (3, 4, 6 und 8).
Methode

Abbildung 3.5. Teststimuli der Spatial Working Memory (SWM)-Aufgabe.

Der erhaltene Strategie-Score zeigt, wie gut die Versuchsperson in der Lage ist, ihre Suche so zu organisieren, dass der Gedächtnisaufwand minimiert wird. Ein hoher Strategie-Score (viele Suchsequenzen, die an verschiedenen Ausgangspunkten begonnen wurden) zeigt ein ineffizientes Suchverhalten, während ein niedriger Score (viele Suchsequenzen, die am gleichen Ausgangspunkt begonnen wurden) eine konsistente Strategienutzung reflektiert. Es gibt 2 mögliche Fehlertypen: die „between-search errors“ (Versuchsperson „öffnet“ innerhalb eines Suchdurchgangs nochmals eine Box, in der bereits ein Quadrat gefunden wurde) und „within-search errors“ (Versuchsperson „öffnet“ innerhalb eines Suchdurchgangs nochmals eine Box, die sich bereits als leer herausgestellt hat). Es wird sowohl die Gesamtzahl der Fehler als auch die Anzahl in den einzelnen Schwierigkeitsstufen (bei 4, 6 und 8 Boxen) angegeben.

Iowa Gambling Task (IGT)

Methode

Abbildung 3.6. Teststimuli der Iowa Gambling Task (IGT).

Millisekunden (ms), die eine Versuchsperson für eine Entscheidung benötigte, wird aufgezeichnet.

3.3.3 fMRI-Untersuchung

3.3.3.1 Untersuchungssetting

Die Untersuchung wurde an einem mit einer achtkanaligen Philips SENSE Kopfspule ausgestatteten Philips Intera 3.0 T MR-System am Universitätsspital Zürich durchgeführt. Für die funktionelle Bildgebung wurde eine T2*-gewichtete single-shot Echoplanar-Sequenz (SENSE-sshEPI, Pruessmann et al., 1999) genutzt. Die SENSE (SENSitivity Encoding)-Technik erhöht durch die gleichzeitige Erfassung der MR-Signale, die von den Spulenelementen empfangen werden, die Geschwindigkeit der Bilddatenerfassung um ein Vielfaches und liefert die Aufnahmegeschwindigkeit, die zur Beseitigung der bei 3.0 T auftretenden erhöhten magnetischen Suszeptibilität erforderlich ist. Für die Messung wurden folgende Parameter genutzt: TE = 35 ms, TR = 3000 ms (θ = 82°), FOV = 220 mm, matrix = 80x80 rekonstruiert auf 128 x128, voxel size: 2.75 x 2.75 x 4 mm³, SENSE acceleration factor R = 2.0. Es wurden 32 parallel zur interkommissuralen Ebene (anterioro-posterioren Commissur, AC-PC-Linie) liegende axiale Schichten in abwechselnder Folge (1 bis 31 in Zweierschritten, 2 bis 32 in Zweierschritten, von unten nach oben) aufgenommen. Nach der funktionellen Messung wurde ein T1-gewichteter anatomischer 3D-Scan mit 180 Schichten und den folgenden Parametern gemessen: FOV = 220 mm, matrix = 224 x 224 rekonstruiert auf 256 x 256, voxel size = 0.98 x 0.98 x 1.5 mm³.

Der zur Darbietung des Stimulusmaterials eingesetzte Projektor (Laser-Projektionssystem mit Spezialobjektiv) befand sich im Kontrollraum und projizierte die Stimuli auf eine direkt am Fußeende der Patientenliege positionierte Leinwand. Die Versuchsperson konnte im MR-Tunnel liegend die Stimuli über einen an der Kopfspule befestigten Spiegel betrachten. Mittels einer MRI-tauglichen Tastatur (Spezialanfertigung) konnte das Stimulusmaterial beurteilt werden. Für die Stimuluspräsentation wurde eine am Universitätsspital Zürich entwickelte Software verwendet (SCOPE V2.5.4 Display Program, Max R. Duersteler, Universitätsspital Zürich). Der Fortlauf des Experimentes wurde durch SCOPE V2.5.4 an das MR-Trig...
Methode

gersignal angepasst, wodurch ein synchroner Ablauf zwischen Paradigma und MR- Aufnahmen gewährleistet war.

3.3.3.2 Messung

Die Untersuchung war in 6 Messdurchgänge (Blöcke) aufgeteilt, die jeweils ca. 8 min in Anspruch nahmen. Die ersten drei Aufnahmen eines jeden Blocks wurden aufgrund der T_1-Sättigung verworfen (dabei keine Stimuluspräsentation). Insgesamt wurden 1020 Aufnahmen (Volumen) aufgenommen. Nach jedem Block wurde eine kurze Pause eingelegt und das Befinden der Versuchsperson erfragt. Nach Beendigung des letzten Blockes wurde eine dreidimensionale anatomische Aufnahme (T_1-Bild) erstellt.

3.3.3.3 fMRI Paradigma

Den Versuchspersonen wurden Bilder aus dem International Affective Picture System (IAPS, Lang et al., 1999) präsentiert. Das IAPS ist ein standardisiertes visuelles System zur Emotionsinduktion, das aus einer Anzahl von Farbfotografien besteht. Jedes Bild kann anhand der Dimensionen Valenz (positiv/negativ), Intensität (ruhig/erregt) und Dominanz (kontrollierend/ dominiert) beurteilt werden. Die im Rahmen des Paradigmas präsentierten Bilder stellten positive (z.B. lächelndes Baby; IAPS-Normwerte 7.32 ± 2.06) oder negative (z.B. Gesicht, das Angst ausdrückt; IAPS-Normwerte 2.24 ± 2.67) Emotionen dar. Die Anzahl der positiven und negativen Bilder war annähernd gleich. Die Untersuchung beinhaltete 2 Hauptbedingungen, die kognitiv unterschiedlich stark gewichtet waren:
• die *Emotionale Beurteilung* eines Bildes als positiv oder negativ
• die passive *Emotionale Wahrnehmung* eines Bildes

In der Versuchsbedingung *Emotionale Wahrnehmung* enthielten die Bilder die Buchstaben „A/A“ und sollten passiv betrachtet werden. Es sollte keine Beurteilung hinsichtlich ihrer Valenz abgegeben werden. Ein jeweils willkürlicher Tastendruck diente der Aufrechterhaltung der Aufmerksamkeit und der Kontrolle von Bewegungseffekten. Auch hier wurden die Reaktionszeiten (vom Erscheinen des Bildes bis zum Tastendruck) sowie die Reaktion (linker/ rechter Tastendruck) aufgezeichnet.

Methode

Insgesamt wurden 158 Bilder (79 für Emotionaler Beurteilung und 79 für Emotionaler Wahrnehmung) in 6 Blöcken präsentiert. Die Reihenfolge der Blöcke wurde pseudorandomisiert, um Habituationseffekte auszugleichen. Die IAPS- Bilder und Versuchsbedingungen (Emotionaler Beurteilung, Emotionaler Wahrnehmung) wurden innerhalb und zwischen den Blöcken pseudorandomisiert dargeboten. Inklusive der Erwartungsbedingungen sowie der Baseline beinhaltete das Paradigma also 7 Bedingungen:

(1) Erwartungsperiode „Emotionale Beurteilung“
(2) Erwartungsperiode „Emotionale Wahrnehmung“
(3) „Emotionale Beurteilung“ ohne Erwartungsperiode
(4) „Emotionale Wahrnehmung“ ohne Erwartungsperiode
(5) „Emotionale Beurteilung“ nach Erwartungsperiode
(6) „Emotionale Wahrnehmung“ nach Erwartungsperiode
(7) Baseline (Fixationskreuz)

Die Versuchsbedingungen des fMRI- Paradigmas sind in Abbildung 3.7 schematisch dargestellt.
Abbildung 3.7. fMRI- Paradigma.
Anmerkung. Bild A: Versuchsbedingungen Emotionale Beurteilung und Emotionale Wahrnehmung jeweils mit und ohne vorangehende Erwartungsperiode; Bild B: zeitlicher Ablauf der Versuchsbedingung Emotionale Beurteilung; Bild C: zeitlicher Ablauf der Versuchsbedingung Emotionale Wahrnehmung.
3.4 Statistische Auswertung

3.4.1 Auswertung der neuropsychologischen und psychopathologischen Variablen

Methode

ziert, um eine einheitliche Bedeutung negativer z-Werte zu erreichen. Ein Ergebnis wurde als beeinträchtigt klassifiziert, wenn es mehr als eine Standardabweichung unter dem Mittelwert lag, also ein z-Wert von <-1.0 vorlag. Dieser Wert wurde einerseits gewählt, um nicht zu leichtfertig Leistungen als beeinträchtigt zu klassifizieren, andererseits, um nicht nur sehr schwere Störungen aufzudecken. Eine Abweichung von 1.0 Standardabweichungen vom Mittelwert entspricht einem Prozentrang von 16 und kann als klinische relevante Beeinträchtigung interpretiert werden (Spreen et. al., 1998). Um zu überprüfen, ob sich der relative Anteil beeinträchtigter Patienten signifikant vom erwarteten Anteil unterschied, wurden χ²-Tests (Anpassungstests) durchgeführt. Die Auswertung erfolgte durch das Statistik- Programmpaket SPSS 11.0 (Statistical Package for the Social Sciences, SPSS Inc., Chicago, USA).

3.4.2 Auswertung der fMRI- Verhaltensdaten

Die Reaktionszeiten in Sekunden sowie die Korrektionsparameter (positive bzw. negative Beurteilung des Bildes entsprechend IAPS- Manual) wurden für die Bedingung Emotionale Beurteilung für jede Versuchsperson ausgewertet. Die zur Kontrolle von Bewegungseffekten aufgezeichneten Reaktionszeiten der Bedingung Emotionale Wahrnehmung wurden ebenfalls ausgewertet. Bei einer Verletzung der Voraussetzungen (Normalverteilung, Varianzhomogenität) kamen entsprechende nichtparametrische Verfahren zum Einsatz, so dass sich die im Ergebnis als signifikant dargestellten Ergebnisse und die angegebenen Signifikanzniveaus immer auf die jeweils konservativere Prüfung beziehen. Es kamen folgende interferenzstatistische Verfahren zur Anwendung: (1) t-Tests für unabhängige Stichproben/ Mann- Whitney- U- Test; (2) χ²- Tests für 2*2- Kreuztabellen (bei Zellenbesetzungen mit einer Häufigkeit unter 5 Berechnung mit dem exakten Test nach Fisher); (3) Mehr- Weg- Varianzanalyse. Die Auswertung erfolgte durch das Statistik- Programmpaket SPSS 11.0.

3.4.3 Auswertung der fMRI- Daten

Nach der Messung wurden die Daten in das ANALYZE- Format umgewandelt. Für die Auswertung der fMRI- Daten wurden die Programme (1) Statistical Parametric
Methode

Mapping (SPM2; Wellcome Department of Cognitive Neurology, Institute of Neurology, University College London, UK; http://www.fil.ion.ucl.ac.uk/spm), (2) MATLAB 6.5.1 (The Mathworks Inc., Natick, MA, USA) und (3) Marsbar (http://www.sourceforge.net/projects/marsbar) verwendet. Die bei der Analyse von fMRI-Daten durchgeführten Verarbeitungsschritte wurden bereits ausführlich im Abschnitt 1.4.2.2 dargestellt. Zunächst wurde eine Vorverarbeitung durchgeführt, die die folgenden Schritte beinhaltete:

(2) Mit dem ersten Bild der Versuchsreihe wurde für jede Versuchsperson ein Referenzbild bestimmt, das als Grundlage der Bewegungskorrektur (*realignment*) diente. Diejenigen Bildinhalte, die sich gegenüber dem Referenzbild aus ihrer ursprünglichen Position (128 x 128- Bildmatrix) bewegt hatten, wurden durch Translation und Rotation mit dem Referenzbild mittels eines mathematischen Optimierungsverfahrens zur Deckung gebracht. Resultierten im Rahmen der Bewegungskorrektur zu große Verschiebungen der Bewegungsparameter (über 3 mm in den 3 Raumachsen bzw. 3° Rotation um diese Achsen), wurden die entsprechenden Versuchsblöcke von der Analyse ausgeschlossen, da ansonsten die Möglichkeit besteht, dass fundierte Aktivierungen auf die nicht korrigierbaren Bewegungen zurückgeführt werden können.

(3) Im Rahmen der räumlichen Normalisierung (*stereotactic normalisation*) erfolgte eine Transformation der Bilddaten, d.h. die Angleichung von Bildstrukturen an die anatomisch korrespondierenden Strukturen eines Standardraums (Talairach & Tournoux, 1988, 1993; Brett et al., 2001). SPM2 verwendet hierfür das sog. MNI (Montreal Neurological Institute)- Template Die Daten wurden mit einer Auflösung von 2*2*2 mm auf das EPI- Standardtemplate normalisiert.

(4) Die räumliche Glättung (*spatial smoothing*) zur Verringerung der Varianz aufgrund funktioneller wie anatomischer Unterschiede zwischen den Versuchsper-
Methode

...sonen sowie zur Verbesserung des Signal-Rausch-Verhältnisses wurde mit einem Gaußfilter von 8 mm durchgeführt (FWHM).

Methode

In den Regions of interest (ROI)- Analysen wurden Signalintensitäten innerhalb einer ROI über multiple Voxel gemittelt, wodurch die statistische Power und das Signal- zu- Rausch- Verhältnis erhöht wird (Maccotta et al., 2004). Es wurden vier dreidimensionale funktionelle ROIs im präfrontalen Cortex definiert und hinsichtlich ihrer hämodynamischen Charakteristik analysiert. Grundlage für die Bestimmung der Lage der ROIs waren die o.g. Kontraste. Die Voxel, die in lateralen und medialen Regionen des präfrontalen Cortex lagen und im Gruppenvergleich Veränderungen der neuronalen Aktivität zeigten ($p < 0.001$ unkorrigiert, min. Clustergrösse 5 Voxel) wurden als spherische ROI mit einem Radius von 10 mm definiert. Das Zentrum der ROI stellte jeweils der Peakvoxel der betreffenden Region mit den folgenden Koordinaten dar: linker dorsolateraler präfrontaler Cortex (-42, 10, 30), rechter dorsolateraler präfrontaler Cortex (48, 28, 0), ventromedialer präfrontaler Cortex (12, 52, -2) sowie anteriores Cingulum (10, 38, 12). Die Signalintensität innerhalb einer ROI (Signaländerung in %) für die verschiedenen Versuchsbedingungen wurde für jede einzelne Versuchsperson bestimmt, pro Bedingung über die Versuchspersonen gemittelt und mittels t- Test zwischen den Bedingungen bzw. den Gruppen verglichen. Für die Definition der ROIs im stereotaktischen Raum und die Bestimmung der Signalintensität wurde das Programm Marsbar (http://www.sourceforge.net/projects/marsbar) verwendet. Der hämodynamische Signalverlauf in den ROIs wurde basierend auf dem „Finite Impulse Response Model“ (FIR), dass keine Annahmen über die Signaländerungen nach Stimuluspräsentation macht, geschätzt. Der Signalverlauf wurde für eine Zeitdauer von 24 Sekunden nach Stimuluspräsentation mit einer zeitlichen Auflösung von 1 TR (d.h. 3 sek) für jede Bedingung berechnet und über die Probanden gemittelt.
Zudem wurde eine Korrelationsanalyse durchgeführt (simple regression), indem die verschiedenen neuropsychologischen und psychopathologischen Parameter als Regressor in die Designmatrix der jeweiligen Gruppe eingingen. Für jeden Kontrast ergab sich so eine statistische t-Karte (SPM{T}) für die Korrelation der t-Werte mit den jeweiligen neuropsychologischen und psychopathologischen Parametern. Als Schwelle für eine signifikante Korrelation wurde ein p-Wert < 0.005 (unkorrigitet) und eine minimale Ausdehnung der Aktivierung von 10 Voxeln festgelegt. Mittels Marsbar (s.o.) wurde die Signalintensität der verschiedenen Versuchsbedingungen (Signaländerung in %) für die ROIs bestimmt, in denen sich signifikante Korrelationen zeigten. Diese Kennwerte für die Signalintensitätsveränderungen jeder Versuchsperson wurden dann mittels Produkt-Momentkorrelationen nach Pearson mit den entsprechenden individuellen neuropsychologischen und psychopathologischen Parametern korreliert.
4 Ergebnisse

4.1 Stichprobenbeschreibung

Tabelle 4.1 zeigt die soziodemographischen und klinischen Daten der Patienten- und Probandenstichprobe bei Einschluss in die Studie. Hinsichtlich des Alters, der Bildungsdauer und der Geschlechterverteilung zeigten sich keine signifikanten Unterschiede. Für die Patientenstichprobe entsprachen die durchschnittlichen Summenwerte der psychiatrischen Skalen einer schweren (BDI= 29.94; HDRS= 33.12) Ausprägung einer depressiven Episode. Die Gruppen unterscheiden sich hoch signifikant (p= .00) hinsichtlich der psychopathologischen Variablen. 3 der Patienten (15.6%) wurden zum Zeitpunkt der Untersuchungen mit niederpotenten Neuroleptika (25- 30 mg/ Tag) behandelt. Von den untersuchten Patienten hatten 3 (15.6%) niemals Antidepressiva eingenommen.

Tabelle 4.1. Soziodemographische und klinische Daten der Patienten- und Probandenstichprobe

<table>
<thead>
<tr>
<th></th>
<th>Probanden [N = 29, MW (SD)]</th>
<th>Patienten [N = 19, MW (SD)]</th>
<th>t/ χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>35.32 (7.26)</td>
<td>40.00 (9.89)</td>
<td>-1.84</td>
<td>0.07</td>
</tr>
<tr>
<td>Geschlecht (Männer/ Frauen, N (%))</td>
<td>8/ 21 (27.6/ 42.4)</td>
<td>8/ 11 (42.1/ 57.9)</td>
<td>1.08</td>
<td>0.35</td>
</tr>
<tr>
<td>Bildung (Jahre)</td>
<td>13.93 (2.82)</td>
<td>13.72 (4.70)</td>
<td>0.17</td>
<td>0.86</td>
</tr>
<tr>
<td>Alter bei Erkrankungsbeginn</td>
<td>35.4 (11.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erkrankungsdauer (Jahre)</td>
<td>6.6 (8.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der Episoden</td>
<td>1.8 (2.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauer der aktuellen Episode (Wochen)</td>
<td>15.83 (16.24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beck- Depression- Inventory (BDI; (Bereich))</td>
<td>3.86 (3.09; (0- 10))</td>
<td>29.94 (4.93; (24- 37))</td>
<td>-19.17</td>
<td>0.00**</td>
</tr>
<tr>
<td>Hamilton- Depression- Rating- Scale (HDRS; (Bereich))</td>
<td>3.69 (1.56; (0- 6))</td>
<td>33.12 (7.13; (24- 52))</td>
<td>-16.78</td>
<td>0.00**</td>
</tr>
<tr>
<td>Medikation: niederpotentes Neuroleptikum (Levomepromazin, Chlorprothixenhydrochlorid, Promazin)</td>
<td>N = 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauer der medikamentenfreien Zeit (Antidepressiva/ Benzodiazepine)</td>
<td>9.12 (7.98)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkungen. MW= Mittelwert; SD = Standardabweichung; t- Test für unabhängige Stichproben; Chi- Quadrat- Test (Fisher’s exact); **: p<0.01; *: p<0.05 (zweiseitig).
Die Zusammenhänge zwischen den soziodemographischen Variablen in der Patientenstichprobe sind in Tabelle 4.2 dargestellt. In der Patientenstichprobe stand das *Alter bei Depressionsbeginn* in einem signifikanten Zusammenhang zum *Alter* (p= .00), der *Bildung* (geringere Anzahl an Ausbildungsjahren, p= .00) sowie der *Anzahl der Episoden* (höhere Anzahl von Episoden, p= .04). Die *Dauer der Depression* war signifikant mit dem *Geschlecht* (längere Depressionsdauer bei Frauen, p= .02) sowie der *Anzahl der Episoden* (höhere Anzahl von Episoden, p= .00) korreliert. Die *Anzahl der Episoden* wies einen signifikanten Zusammenhang mit dem *Geschlecht* (mehr Episoden bei Frauen, p= .00) sowie der *Dauer der aktuellen Episode* (längere Episodendauer, p= .00) auf. Es fanden sich keine signifikanten Korrelationen zwischen den soziodemographischen Variablen und dem *BDI*- oder *HDRS*- Score, der *Medikation* sowie der *Dauer der wash-out-Phase*.

Tabelle 4.2. Korrelation zwischen soziodemographischen und klinischen Variablen in der Patientenstichprobe (N = 19)

<table>
<thead>
<tr>
<th></th>
<th>Alter bei Depressionsbeginn</th>
<th>Geschlecht</th>
<th>Bildung</th>
<th>Alter bei Depressionsbeginn</th>
<th>Dauer der Depression (Jahre)</th>
<th>Anzahl der Episoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>0.72**</td>
<td>-0.19</td>
<td>-0.61**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>0.30</td>
<td>0.56*</td>
<td>0.26</td>
<td>-0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bildung</td>
<td>0.05</td>
<td>0.64**</td>
<td>0.25</td>
<td>-0.47*</td>
<td>0.71**</td>
<td></td>
</tr>
<tr>
<td>Alter bei Depressionsbeginn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauer der Depression (Jahre)</td>
<td>0.26</td>
<td>-0.11</td>
<td>0.34</td>
<td>-0.32</td>
<td>0.12</td>
<td>0.61**</td>
</tr>
</tbody>
</table>

Anmerkungen. **: p<0.01; *: p<0.05 (zweiseitig).

In der Probandenstichprobe fand sich eine signifikante positive Korrelationen zwischen der *Bildung* (Anzahl an Ausbildungsjahren) und dem *BDI*- Score (p= .01)
4.2 Auswertung der neuropsychologischen Tests

Tabelle 4.3 zeigt die Ergebnisse der neuropsychologischen Tests.

Tabelle 4.3. Übersicht über die neuropsychologischen Testergebnisse der Probanden und Patienten

<table>
<thead>
<tr>
<th>Test</th>
<th>Probanden (MW, SD)</th>
<th>Patienten (MW, SD)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehrfachwahl-Wortschatztest (MWT-B)</td>
<td>113.93 (13.66)</td>
<td>109.31 (13.44)</td>
<td>1.15</td>
<td>0.25</td>
</tr>
<tr>
<td>ID/ ED Shift (IED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erreichte Testphase</td>
<td>8.76 (0.64)</td>
<td>7.74 (1.66)</td>
<td>2.56</td>
<td>0.02*</td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>88.37 (32.42)</td>
<td>131.53 (80.10)</td>
<td>-2.23</td>
<td>0.04*</td>
</tr>
<tr>
<td>Fehler</td>
<td>20.90 (17.29)</td>
<td>45.89 (43.77)</td>
<td>-2.37</td>
<td>0.03*</td>
</tr>
<tr>
<td>Paired Associates Learning (PAL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory Score</td>
<td>20.62 (3.90)</td>
<td>15.89 (4.67)</td>
<td>3.80</td>
<td>0.00**</td>
</tr>
<tr>
<td>erreichte Testphase</td>
<td>7.96 (0.18)</td>
<td>7.84 (0.37)</td>
<td>1.33</td>
<td>0.19</td>
</tr>
<tr>
<td>Fehler</td>
<td>12.65 (19.06)</td>
<td>26.31 (22.76)</td>
<td>-2.24</td>
<td>0.03*</td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>11.86 (4.41)</td>
<td>16.47 (6.78)</td>
<td>-2.62</td>
<td>0.01*</td>
</tr>
<tr>
<td>Rapid Visual Information Processing (RVIP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latenz (ms)</td>
<td>451.74 (115.62)</td>
<td>561.02 (200.57)</td>
<td>-2.39</td>
<td>0.04*</td>
</tr>
<tr>
<td>keine Reaktion/ korrekt</td>
<td>251.83 (13.34)</td>
<td>237.32 (27.01)</td>
<td>2.47</td>
<td>0.02*</td>
</tr>
<tr>
<td>Fehler</td>
<td>2.10 (3.94)</td>
<td>3.58 (6.17)</td>
<td>1.01</td>
<td>0.32</td>
</tr>
<tr>
<td>Richtige</td>
<td>18.62 (5.08)</td>
<td>14.79 (5.63)</td>
<td>2.44</td>
<td>0.02*</td>
</tr>
<tr>
<td>Auslassungen</td>
<td>8.45 (5.09)</td>
<td>12.21 (5.63)</td>
<td>-2.40</td>
<td>0.02*</td>
</tr>
<tr>
<td>RVIP A'</td>
<td>0.92 (0.05)</td>
<td>0.88 (0.06)</td>
<td>2.57</td>
<td>0.02*</td>
</tr>
<tr>
<td>Pattern Recognition Memory (PRM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latenz (ms)</td>
<td>2033.92 (409.24)</td>
<td>2390 (592.57)</td>
<td>-2.46</td>
<td>0.03*</td>
</tr>
<tr>
<td>Richtige</td>
<td>21.69 (2.82)</td>
<td>18.94 (3.44)</td>
<td>3.02</td>
<td>0.00**</td>
</tr>
<tr>
<td>Spatial Working Memory (SWM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategie</td>
<td>33.17 (5.64)</td>
<td>35.26 (3.77)</td>
<td>-1.41</td>
<td>0.16</td>
</tr>
<tr>
<td>Fehler (Gesamt)</td>
<td>27.83 (24.40)</td>
<td>37.68 (21.46)</td>
<td>-1.43</td>
<td>0.16</td>
</tr>
<tr>
<td>Fehler (Between)</td>
<td>24.41 (21.92)</td>
<td>35.94 (21.46)</td>
<td>-1.79</td>
<td>0.08</td>
</tr>
<tr>
<td>Fehler (Within)</td>
<td>6.86 (10.26)</td>
<td>3.84 (3.67)</td>
<td>1.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Iowa Gambling Task (IGT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>11.93 (31.72)</td>
<td>5.95 (27.13)</td>
<td>0.68</td>
<td>0.50</td>
</tr>
<tr>
<td>Latenz (ms)</td>
<td>2864.88 (600.00)</td>
<td>3895.57 (1390.88)</td>
<td>-3.05</td>
<td>0.01**</td>
</tr>
<tr>
<td>A</td>
<td>14.93 (6.79)</td>
<td>20.10 (8.81)</td>
<td>-2.29</td>
<td>0.03*</td>
</tr>
<tr>
<td>B</td>
<td>28.75 (13.98)</td>
<td>26.73 (9.86)</td>
<td>0.54</td>
<td>0.59</td>
</tr>
<tr>
<td>C</td>
<td>21.82 (15.79)</td>
<td>22.10 (8.02)</td>
<td>-0.71</td>
<td>0.49</td>
</tr>
<tr>
<td>D</td>
<td>34.48 (13.83)</td>
<td>30.84 (11.78)</td>
<td>0.94</td>
<td>0.35</td>
</tr>
<tr>
<td>AB</td>
<td>43.69 (15.70)</td>
<td>46.84 (13.30)</td>
<td>-0.72</td>
<td>0.47</td>
</tr>
<tr>
<td>CD</td>
<td>56.31 (15.70)</td>
<td>52.94 (13.60)</td>
<td>0.76</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Anmerkungen. MW= Mittelwert; SD = Standardabweichung; t- Test für unabhängige Stichproben; **: p<0.01; *: p<0.05 (zweiseitig).
4.2.1 Intellektuelle Fähigkeiten

Die Gruppen unterschieden sich nicht signifikant hinsichtlich der Leistung im MWT-B, so dass von vergleichbaren intellektuellen Leistungsvoraussetzungen auszugehen ist.

4.2.2 Gedächtnisleistungen

PAL: Der Memory Score, der der Gesamtzahl der Muster entspricht, die über alle Testphasen hinweg nach der ersten Präsentation richtig erinnert wurden und als Indikator für die Merkfähigkeit betrachtet wird, ist in der Patientengruppe signifikant geringer (p= .00). Während es hinsichtlich der erreichten Testphase keine Unterschiede gibt, benötigten die Patienten signifikant mehr Durchgänge (p=.01), um die gezeigten Muster mit der richtigen Position zu assoziieren und machten signifikant mehr Fehler (p=.03) als die Probanden (Abb. 4.1).

Abbildung 4.1. Vergleich zwischen Probanden- und Patientenstichprobe hinsichtlich der Leistung beim Paired Associates Learning (PAL) (t-Test für unabhängige Stichproben; **: p<0.01; *: p<0.05 (zweiseitig)).

Wie Abb. 4.2 zeigt, können sowohl die Merkfähigkeit (Memory Score) als auch die Lernfähigkeit (Anzahl der Durchgänge, die benötigt wurden, um alle Muster in den Testphasen korrekt zu lokalisieren) als klinisch beeinträchtigt betrachtet werden.
Der relative Anteil kognitiv beeinträchtigter Patienten unterschied sich abgesehen von der Anzahl der Fehler in allen Testparametern signifikant vom erwarteten Anteil. Es erzielten überzufällig viele Patienten eine Leistung unterhalb von einer Standardabweichung bezogen auf die Kontrollstichprobe (Memory Score: 58 % beeinträchtigte Patienten; $\chi^2 (1) = 46.34; p = .00$; erreichte Testphase: 16%; $\chi^2 (1) = 8.65; p = .03$; Durchgänge: 42%; $\chi^2 (1) = 20.67; p = .00$). Die Anzahl der Fehler unterschied sich nicht vom entsprechend der Kontrollstichprobe erwarteten Anteil (37% beeinträchtigte Patienten; $\chi^2 (1) = 0.16; p = .69$).

PRM: Die Gruppen unterschieden sich signifikant in den Enkodierungs- und Wiedererkennungsleistungen für visuelle Muster. Probanden gaben mehr richtige Antworten ($p = .00$) und benötigten weniger Zeit ($p = .03$) für eine richtige Antwort als die Patienten (Abb. 4.3).
Ergebnisse

Abbildung 4.3. Vergleich zwischen Probanden- und Patientenstichprobe hinsichtlich der Entscheidungszeiten für eine richtige Antwort und der Anzahl der richtigen Antworten beim Pattern Recognition Memory (PRM) (t-Test für unabhängige Stichproben; **: p< 0.01; *: p< 0.05 (zweiseitig)).

Wie Abb. 4.4 zeigt, ist hinsichtlich der Enkodierungs- und Wiedererkennungsleistungen von einer klinisch relevanten Beeinträchtigung auszugehen.

Der relative Anteil kognitiv beeinträchtigter Patienten unterschied sich signifikant vom erwarteten Anteil. Sowohl hinsichtlich der Enkodierungs- und Wiedererkennungsleistungen als auch der Entscheidungszeit erzielten überzufällig viele Patienten eine Leistung unterhalb von einer Standardabweichung bezogen auf die Kontrollstichprobe (Anzahl Richtige: 47% beeinträchtigte Patienten; $\chi^2 (1) = 8.24$; p = .00; Latenz: 42%; $\chi^2 (1) = 20.67$; p = .01).
SWM: Sowohl hinsichtlich des Strategie-Scores, der Gesamtzahl der Fehler als auch hinsichtlich der Gesamtzahl der 2 möglichen Fehlerarten („between-search errors“, „within-search errors“) ergaben sich keine signifikanten Unterschiede zwischen Probanden und Patienten (Abb. 4.5).

SPIEAL WORKING MEMORY

Abbildung 4.5. Vergleich zwischen Probanden- und Patientenstichprobe hinsichtlich der Parameter des Spatial Working Memory (SWM).

Da die Aufgabe mehrere Schwierigkeitsstufen (4, 6 und 8 Boxen) hat, wurde eine ANOVA mit Messwiederholung für die Anzahl der „between-search errors“ und „within-search errors“ in den einzelnen Schwierigkeitsstufen durchgeführt. Die Schwierigkeitsstufe wurde als Messwiederholungsfaktor, die Gruppe als Zwischensubjektfaktor definiert. Für die „within-search errors“ ergaben sich weder signifikante Effekte der Gruppe, der Schwierigkeitsstufe noch ein signifikanter Interaktionseffekt zwischen Gruppe und Schwierigkeitsstufe. Für die „between-search errors“ zeigte sich ein signifikanter Effekt der Schwierigkeitsstufe (F= 73.38, df= 2, p= .00) sowie ein signifikanter Interaktionseffekt zwischen der Gruppe und der Schwierigkeitsstufe (F= 6.14, df= 2, p= .00). Der signifikante Interaktionseffekt weist darauf hin, dass die Gruppenunterschiede mit zunehmender Aufgaben- schwierigkeit zunehmen. Anschließende Analysen zeigten, dass die Patienten in der höchsten Schwierigkeitsstufe (8 Boxen) signifikant mehr Fehler machten als
die Probanden (p= .01), während sich die Fehlerzahl in den anderen Schwierigkeitsstufen nicht signifikant unterscheidet. Wie Abb. 4.6 zeigt, ist hinsichtlich keines der Arbeitsgedächtnisparameter von einer klinisch relevanten Beeinträchtigung auszugehen. Auch die Anzahl der „between-search errors“ in der höchsten Schwierigkeitsstufe (8 Boxen) zeigte sich nicht klinisch relevant beeinträchtigt (z= -0.8).

Der relative Anteil kognitiv beeinträchtigter Patienten unterschied sich hinsichtlich der Fehler (Between: 42% beeinträchtigte Patienten; \(\chi^2 \) (1) = 12.81; p = .00) signifikant vom erwarteten Anteil. In den anderen Testparametern gab es keine Unterschiede zum entsprechend der Kontrollstichprobe erwarteten Anteil (Fehler (Within): 0 % beeinträchtigte Patienten; Fehler (Gesamt): 32 % beeinträchtigte Patienten \(\chi^2 \) (1) = 2.73; p = .12; Strategy Score: 16 % beeinträchtigte Patienten \(\chi^2 \) (1)= 0.60; p = .44).

4.2.3 Aufmerksamkeitsleistung

RVIP: Es ergaben sich signifikante Unterschiede hinsichtlich der durchschnittlichen Reaktionszeit in ms (p= .04), der Gesamtzahl der richtigen Reaktionen (p= .02), der Gesamtzahl der Stimuli, auf die korrektierweise nicht reagiert wurde (p= .02) sowie der Auslassungen (p= .02). Die Werte für den Parameter RVIP A‘ als Indikator für die Fehlersensitivität unterschieden sich ebenfalls signifikant zwi-
schen den Gruppen (p=.02), während es hinsichtlich der Anzahl der falschen Reaktionen keine signifikanten Unterschiede gab (Abb. 4.7 und 4.8).

Abbildung 4.7. Vergleich zwischen Probanden- und Patientenstichprobe hinsichtlich der Reaktionszeit (ms), der Anzahl der Stimuli, auf die korrektierweise nicht reagiert wurde und der Fehlersensitivität (RVIP A'); (Rapid Visual Information Processing (RVIP); t-Test für unabhängige Stichproben; *: p<0.05 (zweiseitig)).

Abbildung 4.8 Vergleich zwischen Probanden- und Patientenstichprobe hinsichtlich der Leistung im Rapid Visual Information Processing (RVIP); (t-Test für unabhängige Stichproben; *: p<0.05 (zweiseitig)).

Wie Abb. 4.9 zeigt, ist lediglich hinsichtlich der Gesamtzahl der Stimuli, auf die korrektierweise nicht reagiert wurde, von einer klinisch relevanten Beeinträchtigung auszugehen.
Ergebnisse

Der relative Anteil kognitiv beeinträchtigter Patienten unterschied sich abgesehen von der Anzahl der Fehler hinsichtlich aller Testparameter signifikant vom erwarteten Anteil (RVIP A': 42 % beeinträchtigte Patienten; $\chi^2 (1) = 12.81; p = .00$; Latenz: 42 % beeinträchtigte Patienten; $\chi^2 (1) = 12.81; p = .00$; keine Reaktion/ korrekt: 42 % beeinträchtigte Patienten; $\chi^2 (1) = 12.81; p = .00$; Richtige: 37 % beeinträchtigte Patienten; $\chi^2 (1) = 5.11; p = .03$; Auslassungen: 37 % beeinträchtigte Patienten; $\chi^2 (1) = 5.11; p = .03$). Die Anzahl der Fehler unterschied sich nicht vom entsprechend der Kontrollstichprobe erwarteten Anteil (11 % beeinträchtigte Patienten; $\chi^2 (1) = 2.85; p = .14$).

4.2.4 Exekutive Funktionen

IED: Die Gruppen unterscheiden sich signifikant hinsichtlich der erreichten Testphase ($p = .02$), der Gesamtzahl der Durchgänge ($p = .04$) und der Gesamtzahl der Fehler ($p = .03$) (s. Tab. 4.3).

Da die Aufgabe mehrere Schwierigkeitsstufen (9 Testphasen) hat, wurde eine ANOVA mit Messwiederholung für die Anzahl der Durchgänge, die bis zum Erreichen einer Testphase benötigt wurden und die Fehleranzahl pro Testphase durchgeführt (Tabelle 4.4). Die Schwierigkeitsstufe wurde als Messwiederholungsfaktor, die Gruppe als Zwischensubjektfaktor definiert. Die ANOVA mit Messwiederholung
Ergebnisse

für die Anzahl der Durchgänge pro Testphase wurde nicht-kumulativ durchgeführt, d.h. es gingen nur die tatsächlich von dem jeweiligen Probanden/ Patienten in Angriff genommenen Testphasen in die Analyse ein. Es zeigte sich ein signifikanter Effekt der Schwierigkeitsstufe (Testphase) (F= 5.05, df= 8, p= .00), jedoch kein Gruppeneffekt und kein signifikanter Interaktionseffekt. In den Testphasen, die nicht bewältigt werden konnten, wurde die Fehleranzahl auf den Maximalwert von 25 korrigiert. Für die Fehleranzahl pro Testphase zeigte sich ein signifikanter Effekt der Gruppe (F= 7.72, df= 1, p= .01), ein signifikanter Effekt der Schwierigkeitsstufe (F= 19.57, df= 2, p= .00) sowie ein signifikanter Interaktionseffekt zwischen der Gruppe und der Schwierigkeitsstufe (F= 3.27, df= 2, p= .00). Der signifikante Interaktionseffekt weist darauf hin, dass die Gruppenunterschiede mit zunehmender Aufgabenschwierigkeit zunehmen. Anschließende Analysen zeigten, dass die Patienten in der letzten Testphase (EDR) signifikant mehr Fehler machten als die Probanden (p= .02), während sich die Fehleranzahl in den anderen Schwierigkeitsstufen nicht signifikant unterscheidet.

Die Leistung in der ID/ ED Shift- Aufgabe wurde hinsichtlich des Anteils der Gruppe (%), der die jeweilige Testphase bewältigte, mittels exakter \(\chi^2 \)- Tests für 2*2-Kreuztabellen untersucht. Signifikante Unterschiede zwischen den Gruppen fanden sich in den letzten zwei Testphasen. Wie Tab. 4.4 zeigt, bewältigten signifikant mehr Probanden als Patienten die EDS- (p= .04) und die EDR- Phase (p= .02).

Tabelle 4.4 Leistung in den Testphasen der ID/ ED Shift- Aufgabe in der Patienten- und Probandenstichprobe

<table>
<thead>
<tr>
<th>IED- Testphase</th>
<th>Probanden (MW, SD)</th>
<th>Patienten (MW, SD)</th>
<th>t/ (\chi^2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfache Diskrimination (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>7.79 (1.93)</td>
<td>7.74 (2.54)</td>
<td>0.08</td>
<td>0.93</td>
</tr>
<tr>
<td>SD- Fehler</td>
<td>1.24 (1.15)</td>
<td>1.21 (1.51)</td>
<td>0.08</td>
<td>0.94</td>
</tr>
<tr>
<td>%, die Stage bewältigt haben</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einfache Umkehr (SR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>8.86 (4.18)</td>
<td>9.89 (5.17)</td>
<td>-0.76</td>
<td>0.45</td>
</tr>
<tr>
<td>SR- Fehler</td>
<td>2.10 (2.82)</td>
<td>2.63 (2.77)</td>
<td>-0.63</td>
<td>0.53</td>
</tr>
<tr>
<td>%, die Stage bewältigt haben</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diskrimination zusammengesetzter Muster (C-D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.75 (4.64)</td>
<td>10.42 (9.70)</td>
<td>-0.31</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Ergebnisse

<table>
<thead>
<tr>
<th>Anzahl Durchgänge</th>
<th>C-D- Fehler</th>
<th>%, die Stage bewältigt haben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskrimination zusammen-gesetzter, überlagerner Muster (CD)</td>
<td>1.89 (2.54)</td>
<td>100</td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>2.11 (3.80)</td>
<td>100</td>
</tr>
<tr>
<td>CD- Fehler</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>%, die Stage bewältigt haben</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl Durchgänge</th>
<th>Diskrimination zusammen-gesetzter, überlagerner Muster (CD)</th>
<th>%, die Stage bewältigt haben</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR- Fehler</td>
<td>8.62 (2.62)</td>
<td>100</td>
</tr>
<tr>
<td>%, die Stage bewältigt haben</td>
<td>10.32 (10.01)</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intra-dimensionale Verschiebung (IDS)</th>
<th>%, die Stage bewältigt haben</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS- Fehler</td>
<td>7.44 (8.77)</td>
</tr>
<tr>
<td>%, die Stage bewältigt haben</td>
<td>12.68 (11.93)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl Durchgänge</th>
<th>Extra-dimensionale Verschiebung (EDS)</th>
<th>%, die Stage bewältigt haben</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDR- Fehler</td>
<td>9.42 (8.78)</td>
<td>86</td>
</tr>
<tr>
<td>%, die Stage bewältigt haben</td>
<td>12.00 (12.74)</td>
<td>53</td>
</tr>
</tbody>
</table>

Anmerkungen. MW = Mittelwert; SD = Standardabweichung; t- Test für unabhängige Stichproben; Chi- Quadrat- Test (Fisher’s exact); *: p<0.05 (zweiseitig).

In Abb. 4.10 sind die klinisch relevant beeinträchtigten Parameter der ID/ ED Shift-Aufgabe dargestellt (Durchgänge (gesamt, IDS, IDR, EDR), Fehler (gesamt, IDS, IDR, EDR), erreichte Testphase).
Ergebnisse

Abbildung 4.10 Vergleich zwischen Probanden- und Patientenstichprobe hinsichtlich der Leistung im ID/ ED Shift (IED). Dargestellt sind z- Werte für die Patienten. Die Probandenstichprobe repräsentiert die Nulllinie.

Der relative Anteil kognitiv beeinträchtigter Patienten unterschied sich hinsichtlich der folgenden Testparameter signifikant vom erwarteten Anteil (Fehler (IDS): 26 % beeinträchtigte Patienten; $\chi^2 (1) = 11.14; p = .01$; Durchgänge (IDR): 26 %; $\chi^2 (1) = 5.23; p = .04$; Fehler (IDR): 26 %; $\chi^2 (1) = 29.82; p = .00$; Durchgänge (EDS): 42 %; $\chi^2 (1) = 8.23; p = .01$; Fehler (EDS): 42 %; $\chi^2 (1) = 5.31; p = .03$; Durchgänge (EDR): 47 %; $\chi^2 (1) = 18.01; p = .00$; Fehler (EDR): 47 %; $\chi^2 (1) = 18.01; p = .00$; erreichte Testphase: 47 %; $\chi^2 (1) = 18.01; p = .00$; Durchgänge (gesamt): 47 %; $\chi^2 (1) = 8.21; p = .01$; Fehler (gesamt): 47 %; $\chi^2 (1) = 12.08; p = .00$).

IGT: Die Patienten benötigten signifikant länger für eine Entscheidung als die Probanden ($p = .01$) und trafen signifikant mehr nachteilige Entscheidungen für Karten vom Stapel A ($p = .03$). Der Gesamtwert aus der Differenz der Anzahl “nachteiliger” (A und B) und “vorteilhafter” (C und D) Karten, der als Indikator für die Strategie angesehen wird, sowie die Anzahl der Karten der anderen Stapel unterschieden sich nicht signifikant zwischen Probanden und Patienten (Abb. 4.11 und 4.12).
Abbildung 4.11. Vergleich zwischen Probanden- und Patientenstichprobe hinsichtlich der Leistungen in der Iowa Gambling Task (IGT) (t-Test für unabhängige Stichproben; *: p<0.05 (zweiseitig)).

Abbildung 4.12. Vergleich zwischen Probanden- und Patientenstichprobe hinsichtlich der Entscheidungszahlen (ms) in der Iowa Gambling Task (IGT) (t-Test für unabhängige Stichproben; **: p<0.01 (zweiseitig)).

Die Gesamtzahl der 100 Karten wurde in 4 Blöcke mit je 25 Karten aufgeteilt. Während die Probanden im ersten Block signifikant mehr Karten der nachteiligen als der vorteilhafte Stapel wählten (p = 0.02), zeigte sich im letzten Block ein den
Lerneffekt abbildendes, entgegengesetztes Entscheidungsverhalten mit signifikant mehr Karten von den vorteilhaften als den nachteiligen Stapeln (p= .01). In der Patientenstichprobe zeigten sich keine signifikanten Unterschiede zwischen der Anzahl vorteilhafter und nachteiliger Karten im ersten und letzten Block (Tabellen 4.5 und 4.6; Abb. 4.13).

Tabelle 4.5 Leistung im ersten und vierten Block der Iowa Gambling Task (IGT) in der Patienten- und Probandenstichprobe

<table>
<thead>
<tr>
<th>IGT- Block</th>
<th>Probanden [N = 29, MW (SD)]</th>
<th>Patienten [N = 19, MW (SD)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>14.03 (4.32)</td>
<td>12.68 (2.82)</td>
</tr>
<tr>
<td>AB4</td>
<td>9.55 (5.93)</td>
<td>11.00 (5.48)</td>
</tr>
<tr>
<td>CD1</td>
<td>11.31 (4.63)</td>
<td>12.31 (2.82)</td>
</tr>
<tr>
<td>CD4</td>
<td>15.44 (5.93)</td>
<td>13.78 (5.72)</td>
</tr>
</tbody>
</table>

Anmerkungen. MW= Mittelwert; SD = Standardabweichung.

Tabelle 4.6 Vergleich der Leistung im ersten und vierten Block der Iowa Gambling Task (IGT) innerhalb der Patienten- und Probandenstichprobe

<table>
<thead>
<tr>
<th>IGT- Block</th>
<th>Probanden (N = 29) t (p)</th>
<th>Patienten (N = 19) t (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1 / CD1</td>
<td>1.67 (0.02*)</td>
<td>0.28 (0.78)</td>
</tr>
<tr>
<td>AB1 / AB4</td>
<td>3.80 (0.00**)</td>
<td>1.27 (0.22)</td>
</tr>
<tr>
<td>AB4 / CD4</td>
<td>-2.67 (0.01*)</td>
<td>-1.08 (0.29)</td>
</tr>
<tr>
<td>CD1 / CD4</td>
<td>-3.30 (0.00**)</td>
<td>-1.10 (0.28)</td>
</tr>
</tbody>
</table>

Anmerkungen. t- Test für gepaarte Stichproben; **: p<0.01; *: p<0.05 (zweiseitig).
Ergebnisse

Abbildung 4.13. Vergleich der Leistung im ersten und vierten Block der Iowa Gambling Task (IGT) innerhalb der Probanden- und Patientenstichprobe (t-Test für gepaarte Stichproben; *: p<0.05 (zweiseitig)).

In Abb. 4.14 ist dargestellt, das lediglich die Entscheidungszeiten als klinisch relevant beeinträchtigt anzusehen sind.

Der relative Anteil kognitiv beeinträchtigter Patienten unterschied sich lediglich hinsichtlich der Entscheidungszeit (58 % beeinträchtigte Patienten; \(\chi^2 (1) = 11.82; p = \))
Ergebnisse

.00) und der Anzahl der Karten vom Stapel A (53 % beeinträchtigte Patienten; \(\chi^2\) (1) = 11.81; p = .00) signifikant vom erwarteten Anteil. Der Gesamtwert (11 % beeinträchtigte Patienten; \(\chi^2\) (1) = 0.17; p = .76), die Anzahl der Karten vom Stapel B (0 % beeinträchtigte Patienten), Stapel C (5 % beeinträchtigte Patienten; \(\chi^2\) (1) = 0.18; p = .66), Stapel D (21 % beeinträchtigte Patienten; \(\chi^2\) (1) = 0.84; p = .50), den Stapeln AB (16 % beeinträchtigte Patienten; \(\chi^2\) (1) = 0.06; p = .80) sowie den Stapeln CD (16% beeinträchtigte Patienten; \(\chi^2\) (1) = 0.06; p = .80) unterschied sich nicht vom entsprechend der Kontrollstichprobe erwarteten Anteil.

Insgesamt lässt sich festhalten, dass sich die Leistungen der Patienten- und Probandenstichprobe in allen untersuchten kognitiven Funktionsbereichen- mit Ausnahme des visuell-räumlichen Arbeitsgedächtnisses- signifikant unterscheiden.

Klinisch relevante Beeinträchtigungen der Patientengruppe mit Ergebnissen von mehr als einer Standardabweichung (z < -1.0) unter dem Mittelwert der Kontrollstichprobe fanden sich im Bereich der visuell-räumlichen Lern- und Merkfähigkeit (PAL, PRM). Im Bereich der längerfristigen Aufmerksamkeit (RVIP) erscheint nur ein einzelner Parameter (Gesamtzahl der Stimuli, auf die korrekterweise nicht reagiert wurde) klinisch relevant beeinträchtigt. In den exekutiven Funktionen (IED) fanden sich deutliche Defizite, wobei sowohl die Fähigkeit, die Aufmerksamkeit zwischen Wahrnehmungsdimensionen/ Stimuluskategorien zu verlagern als auch die Reaktionsumkehr beeinträchtigt erscheint. Defizite fanden sich auch hinsichtlich der Anzahl der Durchgänge, die für 6 aufeinanderfolgende richtige Antworten notwendig waren, der Anzahl der Fehler sowie der erreichten Testphase. Defizite im Bereich des Entscheidungsverhaltens (IGT) beziehen sich lediglich auf die Reaktionslatenz.

Um mögliche Moderatorvariablen des Zusammenhangs zwischen kognitiven Defiziten und depressiven Störungen zu eruieren, wurde der Zusammenhang soziodemographischer und klinischer Variablen mit den kognitiven Testleistungen geprüft (Tabellen 4.7 und 4.8).
Tabelle 4.7 Korrelation zwischen neuropsychologischen und soziodemographischen Variablen in der Probandenstichprobe (N = 29)

<table>
<thead>
<tr>
<th>Test</th>
<th>Alter</th>
<th>Geschlecht</th>
<th>Bildung</th>
<th>BDI</th>
<th>HDRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWT- B</td>
<td>0.22</td>
<td>0.31</td>
<td>-0.24</td>
<td>0.25</td>
<td>-0.09</td>
</tr>
<tr>
<td>IED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erreichte Testphase</td>
<td>-0.23</td>
<td>0.42*</td>
<td>0.03</td>
<td>-0.24</td>
<td>0.17</td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>0.22</td>
<td>-0.30</td>
<td>-0.07</td>
<td>0.26</td>
<td>-0.13</td>
</tr>
<tr>
<td>Fehler</td>
<td>0.24</td>
<td>-0.29</td>
<td>-0.05</td>
<td>0.26</td>
<td>-0.09</td>
</tr>
<tr>
<td>PAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory Score</td>
<td>-0.20</td>
<td>-0.25</td>
<td>0.30</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td>erreichte Testphase</td>
<td>-0.10</td>
<td>-0.12</td>
<td>0.27</td>
<td>-0.13</td>
<td>0.25</td>
</tr>
<tr>
<td>Fehler</td>
<td>0.04</td>
<td>0.29</td>
<td>-0.24</td>
<td>-0.02</td>
<td>-0.18</td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>0.07</td>
<td>0.42*</td>
<td>-0.25</td>
<td>-0.09</td>
<td>-0.36</td>
</tr>
<tr>
<td>RVIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latenz (ms)</td>
<td>0.23</td>
<td>0.51**</td>
<td>-0.04</td>
<td>0.17</td>
<td>-0.36</td>
</tr>
<tr>
<td>total correct rejections</td>
<td>-0.33</td>
<td>-0.30</td>
<td>0.20</td>
<td>0.04</td>
<td>0.27</td>
</tr>
<tr>
<td>Fehler</td>
<td>0.07</td>
<td>-0.05</td>
<td>-0.24</td>
<td>0.05</td>
<td>-0.29</td>
</tr>
<tr>
<td>Richtige</td>
<td>-0.38*</td>
<td>-0.31</td>
<td>0.17</td>
<td>0.11</td>
<td>0.25</td>
</tr>
<tr>
<td>Auslassungen</td>
<td>0.37*</td>
<td>0.33</td>
<td>0.16</td>
<td>-0.13</td>
<td>-0.24</td>
</tr>
<tr>
<td>RVIP A'</td>
<td>-0.35</td>
<td>-0.30</td>
<td>0.21</td>
<td>0.09</td>
<td>0.31</td>
</tr>
<tr>
<td>PRM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latenz (ms)</td>
<td>0.12</td>
<td>0.24</td>
<td>-0.10</td>
<td>-0.14</td>
<td>-0.29</td>
</tr>
<tr>
<td>Richtige</td>
<td>-0.29</td>
<td>-0.14</td>
<td>0.33</td>
<td>-0.09</td>
<td>0.31</td>
</tr>
<tr>
<td>SWM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategie</td>
<td>0.14</td>
<td>0.07</td>
<td>0.17</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>Fehler</td>
<td>0.59**</td>
<td>0.15</td>
<td>-0.07</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Fehler (Between)</td>
<td>0.58**</td>
<td>0.14</td>
<td>-0.05</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Fehler (Within)</td>
<td>0.46*</td>
<td>0.23</td>
<td>-0.11</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>IGT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>0.06</td>
<td>-0.11</td>
<td>-0.18</td>
<td>-0.20</td>
<td>0.11</td>
</tr>
<tr>
<td>Latenz (ms)</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
<td>-0.08</td>
<td>-0.26</td>
</tr>
<tr>
<td>AB</td>
<td>-0.04</td>
<td>0.18</td>
<td>0.15</td>
<td>0.21</td>
<td>-0.11</td>
</tr>
<tr>
<td>CD</td>
<td>0.04</td>
<td>-0.18</td>
<td>-0.15</td>
<td>-0.21</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Anmerkungen: MWT- B = Mehrfachwahl- Wortschatztest (Form B); CANTAB = Cambridge Neuropsychological Testing Automated Battery; IED = ID/ ED Shift; PAL = Paired Associates Learning; RVIP = Rapid Visual Information Processing; PRM = Pattern Recognition Memory; SWM = Spatial Working Memory; IGT = Iowa Gambling Task; **: p<0.01; *: p<0.05 (zweiseitig).

Das Geschlecht war mit verschiedenen Testleistungen korreliert. Frauen zeigten eine signifikant bessere Leistung im Bereich der exekutiven Funktionen (IED: hö-
hier Testphase erreicht, p = .02), eine geringere *visuelle Lern- und Merkfähigkeit* (PAL: Zunahme der Anzahl der Durchgänge, p = .02) sowie eine reduzierte Informationsverarbeitungsgeschwindigkeit in der Aufgabe zur *längerfristigen Aufmerksamkeit* (RVIP: Latenz, p = .00). Es fanden sich keine signifikanten Korrelationen zwischen den neuropsychologischen Variablen und dem *BDI/ HDRS- Score* sowie der *Bildung* in der Probandenstichprobe.

Tabelle 4.8 Korrelation zwischen neuropsychologischen und soziodemographischen Variablen in der Patientenstichprobe (N = 19)

<table>
<thead>
<tr>
<th>Test</th>
<th>Alter</th>
<th>Geschlecht</th>
<th>Bildung</th>
<th>Alter bei Depressionseintritt</th>
<th>Dauer Depression (Jahre)</th>
<th>Anzahl der Episoden</th>
<th>Dauer der aktuellen Episode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWT- B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IED erreichte Testphase</td>
<td>-0.37</td>
<td>0.27</td>
<td>0.55*</td>
<td>-0.34</td>
<td>0.05</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>0.34</td>
<td>-0.29</td>
<td>-0.52*</td>
<td>0.29</td>
<td>-0.01</td>
<td>-0.19</td>
<td>-0.13</td>
</tr>
<tr>
<td>Fehler</td>
<td>0.33</td>
<td>-0.33</td>
<td>-0.47*</td>
<td>0.26</td>
<td>0.01</td>
<td>-0.18</td>
<td>-0.12</td>
</tr>
<tr>
<td>PAL erreichte Testphase</td>
<td>-0.50*</td>
<td>-0.05</td>
<td>0.53*</td>
<td>-0.33</td>
<td>-0.09</td>
<td>0.06</td>
<td>0.44</td>
</tr>
<tr>
<td>Fehler</td>
<td>0.53*</td>
<td>0.19</td>
<td>-0.45</td>
<td>0.25</td>
<td>0.27</td>
<td>-0.02</td>
<td>-0.33</td>
</tr>
<tr>
<td>Anzahl Durchgänge</td>
<td>0.56*</td>
<td>0.14</td>
<td>-0.71**</td>
<td>0.54*</td>
<td>-0.09</td>
<td>-0.24</td>
<td>-0.42</td>
</tr>
<tr>
<td>RVIP Latenz (ms)</td>
<td>0.40</td>
<td>0.19</td>
<td>-0.12</td>
<td>0.19</td>
<td>0.15</td>
<td>-0.13</td>
<td>-0.25</td>
</tr>
<tr>
<td>Total correct rejections</td>
<td>-0.04</td>
<td>-0.26</td>
<td>0.29</td>
<td>-0.03</td>
<td>0.14</td>
<td>0.22</td>
<td>0.31</td>
</tr>
<tr>
<td>Fehler</td>
<td>-0.10</td>
<td>0.10</td>
<td>-0.18</td>
<td>0.06</td>
<td>-0.30</td>
<td>-0.25</td>
<td>-0.07</td>
</tr>
<tr>
<td>Richtige</td>
<td>-0.43</td>
<td>-0.25</td>
<td>0.46</td>
<td>-0.25</td>
<td>-0.07</td>
<td>0.20</td>
<td>0.37</td>
</tr>
<tr>
<td>Auslassung</td>
<td>0.43</td>
<td>0.25</td>
<td>-0.46</td>
<td>0.25</td>
<td>0.07</td>
<td>-0.20</td>
<td>-0.37</td>
</tr>
<tr>
<td>RVIP A’</td>
<td>-0.35</td>
<td>-0.23</td>
<td>0.46</td>
<td>-0.22</td>
<td>0.02</td>
<td>0.25</td>
<td>0.37</td>
</tr>
<tr>
<td>PRM Latenz (ms)</td>
<td>0.02</td>
<td>-0.04</td>
<td>-0.45</td>
<td>0.21</td>
<td>-0.20</td>
<td>-0.12</td>
<td>-0.02</td>
</tr>
<tr>
<td>Richtige</td>
<td>-0.40</td>
<td>0.25</td>
<td>0.47*</td>
<td>-0.44</td>
<td>0.18</td>
<td>0.14</td>
<td>-0.06</td>
</tr>
<tr>
<td>SWM Strategie</td>
<td>0.52*</td>
<td>-0.13</td>
<td>-0.37</td>
<td>0.44</td>
<td>-0.09</td>
<td>-0.39</td>
<td>-0.64**</td>
</tr>
<tr>
<td>Fehler</td>
<td>0.60**</td>
<td>-0.26</td>
<td>-0.76**</td>
<td>0.63**</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.52*</td>
</tr>
<tr>
<td>Fehler (Between)</td>
<td>0.57*</td>
<td>-0.27</td>
<td>-0.77**</td>
<td>0.63**</td>
<td>-0.23</td>
<td>-0.34</td>
<td>-0.55*</td>
</tr>
<tr>
<td>Fehler (Within)</td>
<td>0.68**</td>
<td>0.16</td>
<td>0.11</td>
<td>0.24</td>
<td>0.52*</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td>IGT Gesamt</td>
<td>-0.24</td>
<td>0.14</td>
<td>0.20</td>
<td>-0.19</td>
<td>0.05</td>
<td>0.35</td>
<td>0.60**</td>
</tr>
<tr>
<td>Latenz (ms)</td>
<td>0.23</td>
<td>-0.02</td>
<td>-0.28</td>
<td>0.34</td>
<td>-0.12</td>
<td>-0.26</td>
<td>-0.36</td>
</tr>
<tr>
<td>AB</td>
<td>0.23</td>
<td>-0.14</td>
<td>-0.22</td>
<td>0.22</td>
<td>-0.09</td>
<td>-0.38</td>
<td>-0.62**</td>
</tr>
<tr>
<td>CD</td>
<td>-0.24</td>
<td>0.14</td>
<td>0.20</td>
<td>-0.19</td>
<td>0.04</td>
<td>0.35</td>
<td>0.60**</td>
</tr>
</tbody>
</table>
Ergebnisse

Anmerkungen. MWT- B = Mehrfachwahl- Wortschatztest (Form B); CANTAB = Cambridge Neuropsychological Testing Automated Battery; IED = ID/ ED Shift; PAL = Paired Associates Learning; RVIP = Rapid Visual Information Processing; PRM = Pattern Recognition Memory; SWM = Spatial Working Memory; IGT = Iowa Gambling Task; **: p<0.01; *: p<0.05 (zweiseitig).

Wie Tabelle 4.8 zu entnehmen ist, stand das Alter der Patienten in einem signifikanten Zusammenhang zur Zunahme der bildungsabhängigen verbalen Intelligenz (MWT- B, p= .04), zu einer Abnahme der visuellen Lern- und Merkfähigkeit (PAL: weniger Muster nach der ersten Präsentation eines Durchgangs richtig erinnert (Memory Score, p= .03), Zunahme der Fehlerzahl, p= .02, Zunahme der Anzahl der Durchgänge, p= .01), zu einer Abnahme der exekutiven Leistungen (SWM: Strategy Score, p= .02) sowie zu einer Verschlechterung der Leistungen im visuell-räumlichen Arbeitsgedächtnis (SWM: Zunahme der Fehlerzahl, p= .00).

Das Geschlecht scheint den Zusammenhang zwischen affektiven und kognitiven Veränderungen nicht zu beeinflussen. Es fanden sich keine signifikanten Korrelationen zu den neuropsychologischen Variablen.

Die Bildung war hingegen deutlich mit verschiedenen Testleistungen korreliert. Die Anzahl an Ausbildungsjahren korrelierte signifikant mit verbesserten Leistungen in den exekutiven Funktionen (IED: höhere Testphase erreicht, p= .02; Abnahme der Fehlerzahl, p= .04; Abnahme der Anzahl der Durchgänge, p= .02), der Zunahme der visuellen Lern- und Merkfähigkeit (PAL: mehr Muster nach der ersten Präsentation eines Durchgangs richtig erinnert (Memory Score, p= .02), Abnahme der Anzahl der Durchgänge, p= .00; PRM: Zunahme der Anzahl der Richtigen, p= .04)) sowie einer Verbesserung der Leistungen im visuell-räumlichen Arbeitsgedächtnis (SWM: Abnahme der Fehlerzahl, p= .00).

Das Alter bei Depressionsbeginn stand in einem signifikanten Zusammenhang zu einer verschlechterten visuellen Lern- und Merkfähigkeit (PAL: Zunahme der Anzahl der Durchgänge, p= .02) sowie zu einer verschlechterten Leistung im visuell-räumlichen Arbeitsgedächtnis (SWM: Zunahme der Fehlerzahl, p= .00).

Die Dauer der Depression korrelierte signifikant mit einer verschlechterten Leistung im visuell-räumlichen Arbeitsgedächtnis (SWM: Zunahme der „Within-search errors“, p= .02).
Ergebnisse

Es fanden sich keine signifikanten Korrelationen zwischen der Anzahl der Episoden und den neuropsychologischen Variablen.

Die Dauer der aktuellen Episode zeigte signifikante Korrelationen mit einigen neuropsychologischen Tests. Die Dauer der Episode in Wochen korrelierte mit einer Zunahme der exekutiven Leistungen (SWM: Strategy Score, \(p = .00 \)), einem verbesserten Entscheidungsverhalten (IGT: Zunahme der Anzahl vorteilhafter Entscheidungen, \(p = .00 \)) sowie einer Verbesserung der Leistungen im visuell-räumlichen Arbeitsgedächtnis (SWM: Abnahme der Fehlerzahl, \(p = .02 \)).

Der HDRS- Score korrelierte signifikant mit der bildungsabhängigen verbalen Intelligenz (MWT: Zunahme des Punktwertes, \(p = .04 \)).

Es fanden sich keine signifikanten Korrelationen zwischen den neuropsychologischen Variablen, dem BDI- Score, der Medikation sowie der Dauer der wash-out-Phase in der Patientenstichprobe.

Zusammenfassend lässt sich festhalten, dass unter den soziodemographischen Variablen in der Kontrollstichprobe das Alter sowie das Geschlecht mit einigen neuropsychologischen Parametern korrelierten, während sich weder für die Bildung noch für psychopathologische Variablen Zusammenhänge zeigten.

In der Patientenstichprobe fanden sich signifikante Korrelationen für das Alter, die Bildung, das Alter bei Depressionsbeginn sowie die Dauer der Depression. Es fand sich kein signifikanter Zusammenhang zwischen den neuropsychologischen Variablen und dem Geschlecht, der selbstbeurteilten Schwere der Depression, der Medikation, der Dauer der wash-out-Phase sowie der Anzahl der Episoden.

4.3 Auswertung der fMRI- Untersuchung

4.3.1 fMRI- Verhaltensdaten (Reaktionszeiten und Performanz)

Um den Einfluss der Valenz, der verschiedenen Versuchsbedingungen sowie der Erwartungsperiode auf die Reaktionszeit und die Beurteilungen zu eruieren, wurde eine Mehr- Weg- Varianzanalyse mit den Faktoren Gruppe (Patienten/Probanden), Valenz (positive/negative Bilder), Bedingung (Emotionale Beurteilung/Emotionale Wahrnehmung) und Erwartungsperiode (ohne/mit Erwartungsperiode)
durchgeführt. Es zeigte sich ein signifikanter Effekt der Gruppe (F(1) = 145.37, p = .00) und der Bedingung (F(1) = 6.68, p = .00), aber nicht der Valenz (F(1) = 0.93, p = .33) und der Erwartungsperiode (F(1) = 2.44, p = .11) auf die Reaktionszeit. Bezüglich der Antworten zeigte sich ein signifikanter Effekt der Gruppe (F(1) = 74.66, p = .00) und der Valenz (F(1) = 3634.48, p = .00), aber nicht der Erwartungsperiode (F(1) = 0.59, p = .44) auf die Beurteilungen. Eine weitere Auswertung der Verhaltensdaten wurde für separat für die beiden Versuchsbedingungen durchgeführt.

4.3.1.1 Bedingung: Emotionale Beurteilung

Die Beurteilung der Valenz der IAPS- Bilder unterschied sich zwischen den Gruppen signifikant. Die Patientengruppe beurteilte die positiven Bilder signifikant weniger positiv als die Probandengruppe (p= .01), während die negativen Bilder signifikant positiver (p= .00) als in der Probandengruppe beurteilt wurden. Die Reaktionszeiten (vom Erscheinen des Bildes bis zum Tastendruck) unterschieden sich sowohl für die Gesamtheit der Bilder (p= .00), als auch für positive (p= .00) und negative Bilder (p= .00) signifikant zwischen den Gruppen. Die Performanz bei der Beurteilung der IAPS- Bilder wurde hinsichtlich des Anteils (%) richtiger Beurteilungen (positive Bilder, die positiv beurteilt wurden; negative Bilder, die negativ beurteilt wurden) mittels exakter χ^2- Tests für 2*2- Kreuztabellen untersucht. Signifikante Unterschiede zwischen den Gruppen fanden sich sowohl für die Gesamtheit (p= .00), als auch für positive (p= .00) und negative Bilder (p= .00) Bilder. Die Verhaltensmaße in Form von Reaktionszeiten (in sec) und Performanz (positive/ negative Beurteilung; % der richtig beurteilten Bilder) für die Bedingung Emotionale Beurteilung sind für die beiden Gruppen in Tab. 4.9 für die Gesamtheit der Bilder, die positiven und negativen Bilder dargestellt.
Tabelle 4.9 Mittelwerte und Standardabweichungen der IAPS- Verhaltensmasse der Probanden und Patienten für die Bedingung *Emotionale Beurteilung*

<table>
<thead>
<tr>
<th></th>
<th>Probanden</th>
<th>Patienten</th>
<th>(t/\chi^2)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>1.63 (0.63)</td>
<td>1.89 (0.81)</td>
<td>-8.75</td>
<td>0.00**</td>
</tr>
<tr>
<td>Antwort</td>
<td>4.28 (3.49)</td>
<td>4.52 (3.47)</td>
<td>-1.77</td>
<td>0.08</td>
</tr>
<tr>
<td>% richtige Antworten</td>
<td>90</td>
<td>81</td>
<td>48.9</td>
<td>0.00**</td>
</tr>
<tr>
<td>positive Bilder (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>1.58 (0.64)</td>
<td>1.96 (0.81)</td>
<td>-8.63</td>
<td>0.00**</td>
</tr>
<tr>
<td>Antwort</td>
<td>7.24 (2.17)</td>
<td>6.90 (2.54)</td>
<td>-2.45</td>
<td>0.01*</td>
</tr>
<tr>
<td>% richtige Antworten</td>
<td>90</td>
<td>85</td>
<td>8.6</td>
<td>0.00**</td>
</tr>
<tr>
<td>negative Bilder (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>1.67 (0.62)</td>
<td>1.89 (0.81)</td>
<td>-6.7</td>
<td>0.00**</td>
</tr>
<tr>
<td>Antwort</td>
<td>1.70 (2.10)</td>
<td>4.52 (3.47)</td>
<td>-22.11</td>
<td>0.00**</td>
</tr>
<tr>
<td>% richtige Antworten</td>
<td>91</td>
<td>78</td>
<td>44.44</td>
<td>0.00**</td>
</tr>
</tbody>
</table>

Anmerkungen. \(t\)- Test für unabhängige Stichproben; \(\chi^2\)- Test (Fisher’s exact); **: \(p<0.01\); *: \(p<0.05\) (zweiseitig).

4.3.1.2 Bedingung: Emotionale Wahrnehmung

In dieser Bedingung sollten die IAPS- Bilder passiv betrachtet und nicht hinsichtlich ihrer Valenz beurteilt werden. Der jeweils abgegebene willkürliche Tastendruck diente der Kontrolle von Bewegungseffekten. Die Reaktionszeiten (vom Erscheinen des Bildes bis zum Tastendruck) unterschieden sich sowohl für die Gesamtheit der Bilder (\(p= .00\)), als auch für positive (\(p= .00\)) und negative Bilder (\(p= .00\)) signifikant zwischen den Gruppen. Die Reaktionszeiten (in sec) sind für die beiden Gruppen in Tab. 4.10 für die Gesamtheit, die positiven und negativen Bilder dargestellt.

Tabelle 4.10 Mittelwerte und Standardabweichungen der IAPS- Reaktionszeiten der Probanden und Patienten für die Bedingung *Emotionale Wahrnehmung*

<table>
<thead>
<tr>
<th></th>
<th>Probanden</th>
<th>Patienten</th>
<th>(t/\chi^2)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>1.58 (0.60)</td>
<td>1.80 (0.78)</td>
<td>-7.94</td>
<td>0.00**</td>
</tr>
<tr>
<td>positive Bilder (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>57</td>
<td>55</td>
<td>0.75</td>
<td>0.38</td>
</tr>
<tr>
<td>negative Bilder (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>1.58 (0.62)</td>
<td>1.84 (0.80)</td>
<td>-7.06</td>
<td>0.00**</td>
</tr>
<tr>
<td>negative Bilder (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>1.60 (0.60)</td>
<td>1.80 (0.78)</td>
<td>-6.14</td>
<td>0.00**</td>
</tr>
</tbody>
</table>
Ergebnisse

Anmerkungen. t-Test für unabhängige Stichproben; Chi-Quadrat-Test; **: p<0.01 (zweiseitig).

Zusammenfassend sind die Reaktionszeiten in der Patientengruppe signifikant länger als in der Probandengruppe. Während die Valenz des eingesetzten Stimulusmaterials sowie die Erwartungsperiode keinen Einfluss auf die Reaktionszeit hatten, zeigte sich ein signifikanter Effekt der Versuchsbedingungen. Die Patientengruppe beurteilte die positiven Bilder weniger positiv als die Probandengruppe, während die negativen Bilder positiver als in der Probandengruppe beurteilt wurden. Für die Erwartungsperiode fand sich kein signifikanter Effekt auf die Beurteilungen.

4.3.2 fMRI- Ergebnisse

4.3.2.1 Kontrollgruppe

Kontrastiert mit der *Baseline*- Bedingung führte die *Emotionale Wahrnehmung* zu stärkeren Signaländerungen im bilateralen Gyrus occipitalis inferior, Gyrus temporalis superior, Gyrus frontalis superior und medius sowie superioren parietalen Cortex. Aktivierungen fanden sich zudem im linken und rechten DLPFC sowie im linken VLPFC. In der Bedingung *Emotionale Beurteilung* wurden die gleichen Regionen aktiviert. Die Ergebnisse sind in Tabelle 4.11 zusammengefasst.

Tabelle 4.11 Dargestellt sind Regionen, die bei *Emotionaler Wahrnehmung* und *Emotionaler Beurteilung* im Vergleich zur *Baseline* signifikant aktiviert waren.

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus occipitalis inferior, BA 17</td>
<td>L</td>
<td>-22 -96 -8</td>
<td>7.70</td>
</tr>
<tr>
<td>Gyrus occipitalis inferior, BA 17</td>
<td>R</td>
<td>26 -92 -10</td>
<td>7.02</td>
</tr>
<tr>
<td>Gyrus temporalis superior, BA 38</td>
<td>R</td>
<td>46 18 -12</td>
<td>6.09</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 9 (DLPFC)</td>
<td>R</td>
<td>50 16 24</td>
<td>5.91</td>
</tr>
<tr>
<td>Gyrus frontalis superior, BA 6</td>
<td>R</td>
<td>2 6 50</td>
<td>5.52</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 47 (VLPFC)</td>
<td>L</td>
<td>-40 14 -6</td>
<td>5.90</td>
</tr>
<tr>
<td>Gyrus temporalis superior, BA 22</td>
<td>L</td>
<td>-58 12 0</td>
<td>4.41</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 9 (DLPFC)</td>
<td>L</td>
<td>-40 6 28</td>
<td>4.80</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 6</td>
<td>L</td>
<td>-52 4 38</td>
<td>4.12</td>
</tr>
<tr>
<td>Superiorer parietaler Cortex, BA 7</td>
<td>R</td>
<td>30 -56 52</td>
<td>4.33</td>
</tr>
</tbody>
</table>
Ergebnisse

Anmerkungen. Die Schwelle lag bei \(p < 0.001 \) (FDR- korrigiert). Nur Cluster mit > 10 Voxeln sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex, VLPFC= ventrolateraler präfrontaler Cortex.

Der Befund überlappenden Regionen bei Emotionaler Wahrnehmung und Emotionaler Beurteilung wurde durch eine Conjunction-Analyse zwischen (Emotionale Wahrnehmung > Baseline) und (Emotionale Beurteilung > Baseline) bestätigt. Bei den Kontrasten gemeinsame Aktivierungen fanden sich in den o.g. Regionen (\(p < 0.001 \), FDR- korrigiert, min. Clustergröße 10 Voxel; Abb. 4.15).

Abb. 4.15. Im Vergleich zur Baseline aktivierte Regionen während Emotionaler Wahrnehmung und Emotionaler Beurteilung (\(p < 0.001 \), FDR- korrigiert, min. Clustergröße 10 Voxel).

Um sicherzustellen, dass die Aktivierungen tatsächlich durch Emotionale Wahrnehmung bzw. Emotionale Beurteilung und nicht durch die vorangehende Erwartungsperiode zustande kommen, wurden die Kontraste mit dem Erwartungskontrast maskiert (\(p < 0.001 \)). Eine Maskierung des Kontrastes (Emotionale Wahrnehmung > Baseline) mit dem Kontrast (Erwartungsperiode „Emotionale Wahrnehmung“ > Baseline) zeigte nur eine einzige, beiden Kontrasten gemeinsame Aktivierung im Hirnstamm. Eine Maskierung des Kontrastes (Emotionale Beurteilung > Baseline) mit dem Kontrast (Erwartungsperiode „Emotionale Beurteilung“ > Baseline) zeigte im rechten prämotorischen Cortex sowie im Hirnstamm beiden Kontrasten gemeinsame Aktivierungen (\(p < 0.001 \), FDR- korrigiert, min. Clustergröße 10 Voxel).

Der BOLD-Kontrast Emotionale Wahrnehmung > Emotionale Beurteilung zeigte signifikante Signalveränderungen im VMPFC, DMPFC, Precuneus, anterioren...
und posterioren Gyrus cinguli, rechten Gyrus frontalis medius, rechten temporalen Cortex, linken Gyrus occipitalis inferior, rechten fusiformen Cortex, linken Gyrus parahippocampalis und rechter Amygdala. (Tabelle 4.12, Abbildung 4.16)

Abb. 4.16. Signifikante Aktivierungen während Emotionale Wahrnehmung > Emotionale Beurteilung (p < 0.001, FDR- korrigiert, min. Clustergröße 10 Voxel).

Emotionale Beurteilung > Emotionale Wahrnehmung führten zu stärkeren Aktivierungen im linken DLPFC, Precuneus, bilateralen occipitalen Cortex, Gyrus frontalis medius, Hirnstamm, Cerebellum und Thalamus (Tabelle 4.12, Abbildung 4.17).

Abb. 4.17. Signifikante Aktivierungen während Emotionale Beurteilung > Emotionale Wahrnehmung (p < 0.001, FDR- korrigiert, min. Clustergröße 10 Voxel).

Tabelle 4.12 Dargestellt sind Regionen, die bei den Kontrasten (A) Emotionale Wahrnehmung > Emotionale Beurteilung und (B) Emotionale Beurteilung > Emotionale Wahrnehmung signifikant aktiviert waren.
Ergebnisse

(A) *Emotionale Wahrnehmung > Emotionale Beurteilung*

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusiformer Cortex, BA 37</td>
<td>R</td>
<td>58 -68 4</td>
<td>6.67</td>
</tr>
<tr>
<td>Gyrus temporalis superior, BA 39</td>
<td>R</td>
<td>56 -58 26</td>
<td>6.20</td>
</tr>
<tr>
<td>Precuneus, BA 7</td>
<td>R</td>
<td>2 -56 36</td>
<td>6.03</td>
</tr>
<tr>
<td>Posteriorer Gyrus cinguli, BA 29</td>
<td>R</td>
<td>4 -42 20</td>
<td>4.20</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 6</td>
<td>R</td>
<td>46 14 48</td>
<td>5.05</td>
</tr>
<tr>
<td>Gyrus occipitalis inferior, BA 18</td>
<td>L</td>
<td>-44 -86 -12</td>
<td>4.40</td>
</tr>
<tr>
<td>Gyrus parahippocampalis, BA 28</td>
<td>L</td>
<td>-20 -10 -20</td>
<td>4.46</td>
</tr>
<tr>
<td>Gyrus frontalis superior, BA 10 (DMPFC)</td>
<td>R</td>
<td>12 46 48</td>
<td>3.95</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 10 (VMPFC)</td>
<td>R</td>
<td>12 60 0</td>
<td>3.57</td>
</tr>
<tr>
<td>Anteriorer Gyrus cinguli, BA 24</td>
<td>R</td>
<td>6 22 22</td>
<td>3.85</td>
</tr>
<tr>
<td>Amygdala</td>
<td>R</td>
<td>18 2 -20</td>
<td>3.83</td>
</tr>
</tbody>
</table>

(B) *Emotionale Beurteilung > Emotionale Wahrnehmung*

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellum</td>
<td>R</td>
<td>26 -48 -18</td>
<td>7.09</td>
</tr>
<tr>
<td>Gyrus occipitalis lingualis, BA 18</td>
<td>R</td>
<td>12 -54 4</td>
<td>6.89</td>
</tr>
<tr>
<td>Precuneus, BA 19</td>
<td>L</td>
<td>-24 -74 34</td>
<td>6.78</td>
</tr>
<tr>
<td>Gyrus occipitalis medius, BA 19</td>
<td>L</td>
<td>-34 -88 10</td>
<td>6.19</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 9 (DLPFC)</td>
<td>L</td>
<td>-44 10 30</td>
<td>5.13</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 6</td>
<td>R</td>
<td>6 4 54</td>
<td>4.60</td>
</tr>
<tr>
<td>Hirnstamm</td>
<td>R</td>
<td>6 -26 10</td>
<td>4.43</td>
</tr>
<tr>
<td>Thalamus</td>
<td>L</td>
<td>-12 -18 8</td>
<td>4.22</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei p < 0.001 (FDR- korrigiert). Nur Cluster mit > 10 Voxeln sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex, DMPFC= dorsomedialer präfrontaler Cortex, VMPFC= ventromedialer präfrontaler Cortex.

In Abb. 4.18 sind die geschätzten hämodynamischen Zeitverläufe, die mit *Emotionaler Beurteilung* und *Emotionaler Wahrnehmung* verbunden waren, für die ROIs im linken DLPFC und VMPFC dargestellt. Während der linke DLPFC mit einer signifikant stärkeren positiven HRF bei emotionaler Beurteilung als bei emotionaler Wahrnehmung (t= -7.28, p= 0.000) reagiert, zeigt der VMPFC bei beiden Bedingungen eine negative HRF mit einer stärkeren Deaktivierung bei emotionaler Beurteilung (t= 2.39, p= 0.029). In den ROIs des rechten DLPFC und des anterioren Gyrus cinguli fanden sich keine signifikanten Unterschiede der HRF der beiden Bedingungen, jedoch ein analoges Muster der Signaländerung mit einer positiven HRF lateral (rechter DLPFC) und einer negativen HRF medial (anteriorer Gyrus cinguli).
Ergebnisse

Abb. 4.18. (A) Signifikante Signaländerungen des linken DLPFC während Emotionaler Beurteilung und des VMPFC während Emotionaler Wahrnehmung. (B) Dargestellt sind die geschätzten hämodynamischen Signalverläufe während Emotionaler Beurteilung und Emotionaler Wahrnehmung für die ROI innerhalb des linken DLPFC (-44, 10, 30) und des VMPFC (12, 52, -2). (C) Die Balken stellen den Mittelwert und die Standardabweichung der Signaländerungen der beiden Bedingungen dar. * indiziert signifikante Unterschiede der HRF der beiden Bedingungen (**: p<0.01; *: p<0.05). DLPFC= dorsolateraler präfrontaler Cortex, VMPFC= ventromedialer präfrontaler Cortex.

4.3.2.2 Patientengruppe

Kontrastiert mit der Baseline- Bedingung aktivierte die Emotionale Wahrnehmung den rechten VLPFC und DLPFC, den rechten Gyrus occipitalis inferior, den rechten Gyrus frontalis medius, den Cuneus sowie das Cerebellum. In der Bedingung
Ergebnisse

Emotionale Beurteilung wurde zusätzlich zu den bereits genannten Regionen der Hirnstamm aktiviert (Tabelle 4.13).

Tabelle 4.13 Dargestellt sind Regionen, die bei *Emotionaler Wahrnehmung* und *Emotionaler Beurteilung* im Vergleich zur *Baseline* signifikant aktiviert waren.

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z- Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellum</td>
<td>L</td>
<td>-34 -86 -20</td>
<td>5.53</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 6</td>
<td>R</td>
<td>2 4 58</td>
<td>5.42</td>
</tr>
<tr>
<td>Gyrus occipitalis inferior, BA 18</td>
<td>R</td>
<td>38 -82 -14</td>
<td>5.40</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 47 (VLPFC)</td>
<td>R</td>
<td>36 26 -6</td>
<td>4.95</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 9 (DLPFC)</td>
<td>R</td>
<td>48 12 28</td>
<td>4.95</td>
</tr>
<tr>
<td>Cuneus, BA 18</td>
<td>L</td>
<td>-16 -104 4</td>
<td>4.64</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei $p < 0.001$ (FDR- korrigiert). Nur Cluster mit > 10 Voxel sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex, VLPFC= ventrolateraler präfrontaler Cortex.

Der Befund weitgehend überlappend der Regionen bei *Emotionaler Wahrnehmung* und *Emotionaler Beurteilung* wurde wiederum durch eine Conjunction- Analyse zwischen (*Emotionaler Wahrnehmung > Baseline*) und (*Emotionale Beurteilung > Baseline*) bestätigt. Beiden Kontrasten gemeinsame Aktivierungen fanden sich in den o.g. Regionen ($p < 0.001$, FDR- korrigiert, min. Clustergrösse 10 Voxel; Abb. 4.19).

Abb. 4.19 Im Vergleich zur Baseline aktivierte Regionen während *Emotionaler Wahrnehmung* und *Emotionaler Beurteilung* ($p < 0.001$, FDR- korrigiert, min. Clustergrösse 10 Voxel).

Um sicherzustellen, dass die Aktivierungen tatsächlich durch *Emotionale Wahrnehmung* bzw. *Emotionale Beurteilung* und nicht durch die vorangehende Erwartungsperiode zustande kommen, wurden die Kontraste mit dem Erwartungskon-
Ergebnisse
tраст maskiert (p < 0.001). Weder eine Maskierung des Kontrastes (Emotionale Wahrnehmung > Baseline) mit dem Kontrast (Erwartungsperiode „Emotionale Wahrnehmung“ > Baseline) noch eine Maskierung des Kontrastes (Emotionale Beurteilung > Baseline) mit dem Kontrast (Erwartungsperiode „Emotionale Beurteilung“ > Baseline) zeigte beiden Kontrasten gemeinsame Aktivierungen (p < 0.001, FDR- korrigiert, min. Clustergrösse 10 Voxel).

Emotionale Wahrnehmung > Emotionale Beurteilung führte bei der verwendeten Schwelle (FDR- korrigiert, p < 0.001, min. Clustergrösse 10 Voxel) zu keiner Aktivierung. Bei einer Verringerung der Schwelle (FDR- korrigiert, p < 0.05, min. Clustergrösse 5 Voxel) zeigten sich Aktivierungen bilateral parietal sowie im Cuneus. Der BOLD- Kontrast Emotionale Beurteilung > Emotionale Wahrnehmung hingegen zeigte signifikante Aktivierungen im Gyrus occipitalis medius, Cerebellum und Gyrus fusiformis (Tabelle 4.14, Abb. 4.20).

Abb. 4.20. Signifikante Aktivierungen während Emotionale Beurteilung > Emotionale Wahrnehmung (p < 0.001, FDR- korrigiert, min. Clustergrösse 10 Voxel).

Tabelle 4.14 Dargestellt sind Regionen, die bei dem Kontrast Emotionale Beurteilung > Emotionale Wahrnehmung signifikant aktiviert waren.

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z- Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellum</td>
<td>L</td>
<td>-28 -52 -18</td>
<td>5.64</td>
</tr>
<tr>
<td>Gyrus fusiformis, BA 20</td>
<td>R</td>
<td>28 -38 -18</td>
<td>5.45</td>
</tr>
<tr>
<td>Gyrus occipitalis medius, BA 18</td>
<td>L</td>
<td>-32 -90 12</td>
<td>5.09</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei p < 0.001 (FDR- korrigiert). Nur Cluster mit > 10 Voxeln sind angegeben.
Analog zum Vorgehen bei der Kontrollgruppe sind in Abb. 4.21 die geschätzten hämodynamischen Zeitverläufe, die mit *Emotionaler Beurteilung* und *Emotionaler Wahrnehmung* verbunden waren, für die ROIs im linken DLPFC und VMPFC dargestellt. Auch hier reagiert der linke DLPFC mit einer positiven HRF und der VMPFC mit einer negativen HRF auf die beiden Bedingungen. Im Gegensatz zur Kontrollgruppe fanden sich jedoch keine signifikanten Unterschiede der HRF der beiden Bedingungen im linken DLPFC (t= 0.69, p= 0.496) und VMPFC (t= -0.36, p= 0.718). Auch in den ROIs des rechten DLPFC und des anterioren Gyrus cinguli fanden sich keine signifikanten Unterschiede der HRF der beiden Bedingungen jedoch wiederum eine positive HRF lateral (rechter DLPFC) und eine negative HRF medial (anteriorer Gyrus cinguli).
Abb. 4.21. (A) Dargestellt sind die geschätzten hämodynamischen Signalverläufe während Emotionaler Beurteilung und Emotionaler Wahrnehmung für die ROI innerhalb des linken DLPFC (-44, 10, 30) und des VMPFC (12, 52, -2). (C) Die Balken stellen den Mittelwert und die Standardabweichung der Signaländerungen der beiden Bedingungen dar. DLPFC= dorsolateraler präfrontaler Cortex, VMPFC= ventromedialer präfrontaler Cortex.

4.3.2.3 Gruppenvergleich

Kontrastiert mit der Baseline- Bedingung aktivierte die Emotionale Wahrnehmung in der Kontrollgruppe signifikant stärker den bilateralen occipitalen Cortex, den linken Gyrus parahippocampalis und Gyrus fusiformis sowie das Cerebellum. In der Patientengruppe zeigte sich eine verstärkte Signaländerung im DMPFC, dem anterioren und posterioren Gyrus cinguli, rechten Gyrus frontalis medius und linken Gyrus temporalis medius (Tabelle 4.15; Abb. 4.22 und 4.23).

Tabelle 4.15 Dargestellt sind Regionen, die im Gruppenvergleich bei dem Kontrast Emotionale Wahrnehmung > Baseline signifikant aktiviert waren: In (A) für Probandengruppe > Patientengruppe in (B) für Patientengruppe > Probandengruppe.

(A) Probandengruppe > Patientengruppe

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z- Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellum</td>
<td>R</td>
<td>30 -68 -12</td>
<td>4.89</td>
</tr>
<tr>
<td>Gyrus occipitalis lingualis, BA 18</td>
<td>R</td>
<td>24 -98 -4</td>
<td>3.84</td>
</tr>
<tr>
<td>Gyrus occipitalis inferior, BA 18</td>
<td>L</td>
<td>-22 -90 -8</td>
<td>4.37</td>
</tr>
<tr>
<td>Gyrus parahippocampalis, BA 27</td>
<td>L</td>
<td>-20 -32 -4</td>
<td>4.08</td>
</tr>
<tr>
<td>Gyrus fusiformis, BA 37</td>
<td>L</td>
<td>-36 -58 -16</td>
<td>3.83</td>
</tr>
</tbody>
</table>

Abb. 4.22. Probandengruppe > Patientengruppe: Signifikante Aktivierungen während Emotionale Wahrnehmung > Baseline (p < 0.001, unkorrigiert, min. Clustergröße 5 Voxel).
Ergebnisse

(B) Patientengruppe > Probandengruppe

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z- Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posteriorer Gyrus cinguli, BA 30</td>
<td>R</td>
<td>8</td>
<td>-10</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 6</td>
<td>R</td>
<td>0</td>
<td>-12</td>
</tr>
<tr>
<td>Gyrus temporalis medius, BA 21</td>
<td>L</td>
<td>-62</td>
<td>-28</td>
</tr>
<tr>
<td>Gyrus frontalis superior, BA 10 (DMPFC)</td>
<td>L</td>
<td>-6</td>
<td>64</td>
</tr>
<tr>
<td>Anteriorer Gyrus cinguli, BA 32</td>
<td>R</td>
<td>10</td>
<td>46</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei $p < 0.001$ (unkorrigiert). Nur Cluster mit > 5 Voxel sind angegeben. DMPFC= dorsomedialer präfrontaler Cortex.

Abb. 4.23 Patientengruppe > Probandengruppe: Signifikante Aktivierungen während *Emotionale Wahrnehmung > Baseline* ($p < 0.001$, unkorrigiert, min. Clustergrösse 5 Voxel).

Tabelle 4.16 Dargestellt sind Regionen, die im Gruppenvergleich bei dem Kontrast *Emotionale Beurteilung > Baseline* signifikant aktiviert waren: In (A) für Probandengruppe > Patientengruppe in (B) für Patientengruppe > Probandengruppe.
Ergebnisse

(A) *Probandengruppe > Patientengruppe*

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z- Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus occipitalis lingualis, BA 18</td>
<td>R</td>
<td>30 -70 -10</td>
<td>4.80</td>
</tr>
<tr>
<td>Occipitaler Cortex, BA 18</td>
<td>L</td>
<td>-22 -90 -10</td>
<td>4.11</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 9 (DLPFC)</td>
<td>L</td>
<td>-42 10 30</td>
<td>3.76</td>
</tr>
<tr>
<td>Gyrus fusiformis, BA 37</td>
<td>L</td>
<td>-36 -56 -16</td>
<td>3.67</td>
</tr>
<tr>
<td>Thalamus</td>
<td>R</td>
<td>16 -32 0</td>
<td>3.62</td>
</tr>
</tbody>
</table>

Abb. 4.24. Probandengruppe > Patientengruppe: Signifikante Aktivierungen während *Emotionale Beurteilung > Baseline* (p < 0.001, unkorrigiert, min. Clustergrösse 5 Voxel).

(B) *Patientengruppe > Probandengruppe*

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z- Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus frontalis medius, BA 8</td>
<td>R</td>
<td>38 18 46</td>
<td>3.77</td>
</tr>
<tr>
<td>Anteriorer Gyrus cinguli, BA 32</td>
<td>R</td>
<td>10 38 12</td>
<td>3.75</td>
</tr>
<tr>
<td>Gyrus temporalis medius, BA 21</td>
<td>L</td>
<td>-62 -28 -2</td>
<td>3.64</td>
</tr>
<tr>
<td>Gyrus frontalis superior, BA 10 (VMPFC)</td>
<td>R</td>
<td>12 52 -2</td>
<td>3.52</td>
</tr>
<tr>
<td>Gyrus temporalis medius (BA 21)</td>
<td>R</td>
<td>50 -6 -12</td>
<td>3.49</td>
</tr>
<tr>
<td>Parietaler Cortex, BA 39</td>
<td>R</td>
<td>52 -60 34</td>
<td>3.41</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei p < 0.001 (unkorrigiert). Nur Cluster mit > 5 Voxel sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex, VMPFC= ventromedialer präfrontaler Cortex.
Der Gruppenvergleich des BOLD-Kontrastes *Emotionale Beurteilung* > *Emotionale Wahrnehmung* zeigte in der Kontrollgruppe signifikant stärkere Aktivierungen im linken DLPFC, linken parietalen Cortex, rechten occipitalen Cortex, Cuneus, Thalamus, rechter Insula sowie dem rechten Gyrus parahippocampalis. In der Patientengruppe fand sich eine verstärkte Aktivierung im rechten DLPFC/VLPFC, rechten parietalen Cortex, rechten Gyrus frontalis medius und Precuneus (Tabelle 4.17; Abb. 4.26 und 4.27).

Tabelle 4.17 Dargestellt sind Regionen, die im Gruppenvergleich bei dem Kontrast *Emotionale Beurteilung* > *Emotionale Wahrnehmung* signifikant aktiviert waren: In (A) für Probandengruppe > Patientengruppe in (B) für Patientengruppe > Probandengruppe.

(A) **Probandengruppe > Patientengruppe**

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus frontalis medius, BA 9 (DLPFC)</td>
<td>L</td>
<td>-42 10 30</td>
<td>4.56</td>
</tr>
<tr>
<td>Parietaler Cortex, BA 3</td>
<td>L</td>
<td>-38 -30 50</td>
<td>3.88</td>
</tr>
<tr>
<td>Occipitaler Cortex, BA 18</td>
<td>R</td>
<td>18 -78 24</td>
<td>3.45</td>
</tr>
<tr>
<td>Cuneus, BA 19</td>
<td>L</td>
<td>-26 -78 30</td>
<td>3.74</td>
</tr>
<tr>
<td>Thalamus</td>
<td>L</td>
<td>-10 -16 8</td>
<td>3.46</td>
</tr>
<tr>
<td>Insula, BA 13</td>
<td>R</td>
<td>40 12 10</td>
<td>3.28</td>
</tr>
<tr>
<td>Gyrus parahippocampalis, BA 19</td>
<td>R</td>
<td>26 -54 -4</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Abb. 4.26. Probandengruppe > Patientengruppe: Signifikante Aktivierungen während *Emotionale Beurteilung* > *Emotionale Wahrnehmung* (p < 0.001, unkorrigiert, min. Clustergrösse 5 Voxel).
(B) Patientengruppe > Probandengruppe

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parietaler Cortex, BA 40</td>
<td>R</td>
<td>56 -56 30</td>
<td>4.49</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 46</td>
<td>R</td>
<td>48 28 0</td>
<td>3.77</td>
</tr>
<tr>
<td>(DLPFC/ VLPFC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 8</td>
<td>R</td>
<td>40 24 42</td>
<td>3.30</td>
</tr>
<tr>
<td>Precuneus, BA 7</td>
<td>R</td>
<td>0 -72 38</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei p < 0.001 (unkorrigiert). Nur Cluster mit > 5 Voxeln sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex, VLPFC= ventrolateraler präfrontaler Cortex.

In Abb. 4.28 sind die geschätzten hämodynamischen Zeitverläufe, die mit Emotionaler Beurteilung und Emotionaler Wahrnehmung verbunden waren, für die Patienten- und Probandengruppe für die ROIs im linken DLPFC, VMPFC, anterioren Gyrus cinguli und rechten DLPFC/ VLPFC dargestellt. Während der linke und rechte DLPFC auf beide Bedingungen mit einer positiven HRF reagiert, stellt sich der Signalverlauf in medialen Regionen (VMPFC, anteriorer Gyrus cinguli) als negativ dar. Die Gruppenunterschiede in der Signalintensität mit stärkerer Aktivierung im linken DLPFC (t= 3.69, p= 0.001) und stärkerer Deaktivierung im VMPFC/ anterioren Gyrus cinguli (t= -3.39, p= 0.001) in der Kontrollgruppe sowie stärkerer Aktivierung im rechten DLPFC/ VLPFC (t= -2.03, p= 0.048) in der Patientengruppe erscheinen bei emotionaler Beurteilung ausgeprägter als bei emotionaler Wahrnehmung (anteriorer Gyrus cinguli: t= -2.31, p= 0.025).
Ergebnisse

VMPFC

** Emotionale Wahrnehmung**

Probanden	Patienten

** Emotionale Beurteilung**

Probanden	Patienten

anteriorer Gyrus cinguli

** Emotionale Wahrnehmung**

Probanden	Patienten

** Emotionale Beurteilung**

Probanden	Patienten

linker DLPFC

** Emotionale Wahrnehmung**

Probanden	Patienten

** Emotionale Beurteilung**

Probanden	Patienten
Ergebnisse

Abb. 4.28. Signaländerungen in den ROIs (linker DLPFC, VMPFC, anteriores Gyrus cinguli, rechter DLPFC) während *Emotionale Beurteilung* und *Emotionale Wahrnehmung* für die Probanden- und Patientengruppe. (A) Dargestellt sind die geschätzten hämodynamischen Signalverläufe während *Emotionale Wahrnehmung* für die jeweilige ROI. (B) Die Balken stellen den Mittelwert und die Standardabweichung der Signaländerungen der beiden Bedingungen jeweils für die Probanden- und Patientengruppe dar. (C) Dargestellt sind die geschätzten hämodynamischen Signalverläufe während *Emotionale Beurteilung* für die jeweilige ROI. * indiziert signifikante Unterschiede der HRF der beiden Bedingungen (**: p<0.01; *: p<0.05). DLPFC= dorsolateraler präfrontaler Cortex, VMPFC= ventromedialer präfrontaler Cortex, Prb = Probanden, Pat = Patienten.

Obwohl nicht im Fokus der vorliegenden Arbeit, erfolgte aus Gründen der Vollständigkeit ein analoger Gruppenvergleich der Bedingungen für positive und negative Bilder sowie für männliche und weibliche Versuchspersonen. Es fanden sich keine valenz- bzw. geschlechtsspezifischen Befunde in den o.g. Kontrasten.

4.3.2.4 Korrelation mit psychopathologischen Parametern

Tabelle 4.18 Dargestellt sind Regionen, die bei dem Kontrast *Emotionale Beurteilung* > *Emotionale Wahrnehmung* (A) signifikant positiv bzw. (B) negativ mit dem HDRS- Gesamtwert korrelierten.

(A) positive Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus cinguli, BA 31</td>
<td>L</td>
<td>-4 -44 34</td>
<td>3.83</td>
</tr>
<tr>
<td>Gyrus fusiformis, BA 37</td>
<td>R</td>
<td>56 -48 -18</td>
<td>3.46</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 8</td>
<td>L</td>
<td>-8 32 38</td>
<td>3.41</td>
</tr>
<tr>
<td>Gyrus frontalis superior, BA 6</td>
<td>L</td>
<td>-10 14 54</td>
<td>3.28</td>
</tr>
<tr>
<td>Gyrus temporalis medius, BA 21</td>
<td>L</td>
<td>-64 -30 -10</td>
<td>3.18</td>
</tr>
<tr>
<td>Anteriorer Gyrus cinguli, BA 32</td>
<td>R</td>
<td>8 40 10</td>
<td>2.92</td>
</tr>
<tr>
<td>Gyrus temporalis inferior, BA 20</td>
<td>L</td>
<td>-52 -6 -28</td>
<td>2.87</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 9 (DLPFC)</td>
<td>R</td>
<td>40 22 30</td>
<td>2.86</td>
</tr>
</tbody>
</table>

(B) negative Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus postcentralis, BA 43</td>
<td>L</td>
<td>-56 -6 16</td>
<td>3.78</td>
</tr>
<tr>
<td>Insula, BA 40</td>
<td>R</td>
<td>50 -24 16</td>
<td>3.32</td>
</tr>
<tr>
<td>Cuneus, BA 17</td>
<td>L</td>
<td>-8 -100 2</td>
<td>3.27</td>
</tr>
<tr>
<td>Precuneus, BA 7</td>
<td>R</td>
<td>12 -58 64</td>
<td>3.21</td>
</tr>
<tr>
<td>Hirnstamm</td>
<td>R</td>
<td>6 -34 2</td>
<td>3.21</td>
</tr>
<tr>
<td>Thalamus</td>
<td>L</td>
<td>-8 -32 4</td>
<td>2.96</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>L</td>
<td>-18 -58 20</td>
<td>2.99</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei p < 0.005 (unkorrigiert). Nur Cluster mit > 10 VoxelN sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex.

Der Zusammenhang zwischen dem HDRS- Gesamtwert und den Signalveränderungen im anterioren Gyrus cinguli und rechten DLPFC ist in Abb. 4.29 dargestellt: Je höher der fremdbeurteilte Schweregrad der Depression, desto stärker war die Aktivierung in diesen Regionen im BOLD-Kontrast *Emotionale Beurteilung* > *Emotionales Erleben.*
Abb. 4.29 Korrelation der Signaländerungen während Emotionale Beurteilung > Emotionale Wahrnehmung mit dem HDRS- Gesamtwert (p < 0.005, unkorrigiert; min. Clustergröße 10 Voxel). Dargestellt sind der rechte DLPFC (40, 22, 30) und anteriore Gyrus cinguli (8, 40, 10). ** indiziert signifikante Korrelationen (Produkt-Momentkorrelation nach Pearson; p<0.01). DLPFC= dorsolateraler präfrontaler Cortex, HDRS = Hamilton Depression Rating Scale (Hamilton Depressionsskala).

Der BDI- Gesamtwert korrelierte signifikant positiv mit den Signalveränderungen des BOLD- Kontrastes Emotionale Beurteilung > Emotionale Wahrnehmung im rechten DLPFC. Der Zusammenhang zwischen dem BDI- Gesamtwert und den Signalveränderungen im rechten DLPFC ist in Abb. 4.30 dargestellt: Je höher der selbstbeurteilte Schweregrad der Depression, desto stärkere Aktivierungen in dieser Region während des o.g. BOLD- Kontrastes. Signifikante negative Korrelationen mit dem BDI- Gesamtscore zeigten sich im Gyrus frontalis superior und medius, Putamen und Gyrus temporalis medius (Tabelle 4.19).

Tabelle 4.19 Dargestellt sind Regionen, die bei dem Kontrast Emotionale Beurteilung > Emotionale Wahrnehmung (A) signifikant positiv bzw. (B) negativ mit dem BDI- Gesamtwert korrelierten.
Ergebnisse

(A) positive Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus postcentralis, BA 2</td>
<td>L</td>
<td>-38 -26 38</td>
<td>3.80</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>L</td>
<td>-22 -78 -18</td>
<td>3.05</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 9 (DLPFC)</td>
<td>R</td>
<td>50 6 12</td>
<td>3.02</td>
</tr>
<tr>
<td>Gyrus lingualis, BA 18</td>
<td>R</td>
<td>6 -70 -4</td>
<td>3.02</td>
</tr>
<tr>
<td>Gyrus cinguli, BA 31</td>
<td>L</td>
<td>-10 -26 40</td>
<td>3.02</td>
</tr>
<tr>
<td>Insula, BA 13</td>
<td>R</td>
<td>46 -16 10</td>
<td>2.95</td>
</tr>
</tbody>
</table>

(B) negative Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putamen</td>
<td>R</td>
<td>28 -12 10</td>
<td>3.61</td>
</tr>
<tr>
<td>Gyrus frontalis superior, BA 8</td>
<td>R</td>
<td>12 46 36</td>
<td>3.38</td>
</tr>
<tr>
<td>Gyrus temporalis medius, BA 20</td>
<td>R</td>
<td>58 -38 -12</td>
<td>3.32</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 8</td>
<td>L</td>
<td>-34 22 40</td>
<td>3.15</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei $p < 0.005$ (unkorrigiert). Nur Cluster mit > 10 Voxeln sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex.

Abb. 4.30. Korrelation der Signaländerungen während Emotionale Beurteilung > Emotionale Wahrnehmmung mit dem BDI- Gesamtwert ($p < 0.005$, unkorrigiert; min. Clustergrösse 10 Voxel). Dargestellt ist der rechte DLPFC (50, 6, 12). ** indiziert eine signifikante Korrelation (Produkt-Momentkorrelation nach Pearson; $p<0.01$). DLPFC= dorsolateraler präfrontaler Cortex, BDI = Beck Depression Inventory (Beck-Depressions-Inventar).
4.3.2.5 Korrelation mit neuropsychologischen Parametern

Die Fehleranzahl während der Reaktionsumkehr (IDR) und Verlagerung der Aufmerksamkeit zwischen Stimuluskategorien (EDS) wurde mit den Signalveränderungen des BOLD-Kontrastes Emotionale Beurteilung > Emotionale Wahrnehmung korreliert.

4.3.2.5.1 Probandengruppe

4.3.2.5.1.1 IDR

Es zeigten sich signifikante positive Korrelationen mit der Fehleranzahl während der IDR-Testphase im linken DLPFC und negative Korrelationen im VMPFC, DMPFC sowie dem anterioren Cingulum. Die Ergebnisse für weitere Regionen sind in Tabelle 4.20 zusammengefasst.

Tabelle 4.20 Dargestellt sind Regionen, die bei dem Kontrast Emotionale Beurteilung > Emotionale Wahrnehmung (A) signifikant positiv bzw. (B) negativ mit der IDR-Fehlerzahl korrelierten.

(A) positive Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus fusiformis, BA 37</td>
<td>L</td>
<td>-48 -58 -18</td>
<td>4.10</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 6</td>
<td>R</td>
<td>36 -6 62</td>
<td>3.85</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>L</td>
<td>-28 -84 -28</td>
<td>3.56</td>
</tr>
<tr>
<td>Amygdala</td>
<td>R</td>
<td>26 0 -22</td>
<td>3.54</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 9 (DLPFC)</td>
<td>L</td>
<td>-48 14 28</td>
<td>3.40</td>
</tr>
<tr>
<td>Precuneus, BA 7</td>
<td>L</td>
<td>-26 -74 50</td>
<td>3.36</td>
</tr>
<tr>
<td>Gyrus temporalis superior, BA 38</td>
<td>L</td>
<td>-54 8 -12</td>
<td>3.04</td>
</tr>
</tbody>
</table>

(B) negative Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus temporalis medius, BA 21</td>
<td>L</td>
<td>-64 -34 2</td>
<td>4.41</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 10 (VMPFC)</td>
<td>L</td>
<td>-6 52 0</td>
<td>3.49</td>
</tr>
<tr>
<td>Anteriorer Gyrus cinguli, BA 32</td>
<td>L</td>
<td>-4 42 -4</td>
<td>3.07</td>
</tr>
<tr>
<td>Gyrus frontalis superior, BA 8</td>
<td>R</td>
<td>28 26 50</td>
<td>3.47</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 9 (DMPFC)</td>
<td>L</td>
<td>-4 46 26</td>
<td>3.23</td>
</tr>
<tr>
<td>Posteriorer Gyrus cinguli, BA 30</td>
<td>L</td>
<td>-20 -56 10</td>
<td>3.18</td>
</tr>
<tr>
<td>Precuneus, BA 7</td>
<td>R</td>
<td>16 -46 48</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Ergebnisse

Anmerkungen. Die Schwelle lag bei p < 0.005 (unkorrigiert). Nur Cluster mit > 10 Voxel sind angegeben. DLPFC = dorsolateraler präfrontaler Cortex, VMPFC = ventromedialer präfrontaler Cortex, DMPFC = dorsomedialer präfrontaler Cortex.

Der Zusammenhang zwischen der IDR- Fehleranzahl und den Signalveränderungen im linken DLPFC, anterioren Gyrus cinguli/ VMPFC und DMPFC ist in Abb. 4.31 dargestellt: Je höher die Fehleranzahl in der IDR- Testphase, desto stärker die Aktivierung im linken DLPFC und desto geringer die Aktivierung in medialen Strukturen während des o.g. BOLD- Kontrastes. Wie der Abbildung zu entnehmen ist, zeigte ein Proband eine besonders hohe Signaländerung im anterioren Gyrus cinguli/ VMPFC. Die Korrelationsanalyse wurde deshalb nochmals ohne diesen Ausreisser durchgeführt und zeigte weiterhin ein signifikant negatives Ergebnis (r= -0.60, p= 0.001).
Abb. 4.31. Korrelation der Signaländerungen während Emotionale Beurteilung > Emotionale Wahrnehmung mit der IDR- Fehlerzahl (p < 0.005, unkorrigiert; min. Clustergröße 10 Voxel). Dargestellt sind der linke DLPFC (-48, 14, 28), der anteriore Gyrus cinguli/ VMPFC (-6, 52, 0) und der DMPFC (-48, 14, 28;). * indiziert eine signifikante Korrelation (Produkt- Momentkorrelation nach Pearson; **p<0.01, *p<0.05). DLPFC= dorsolateraler präfrontaler Cortex, VMPFC= ventromedialer präfrontaler Cortex, DMPFC= dorsomedialer präfrontaler Cortex, IDR = Intradimensional Reversal (intradimensionale Umkehr).

4.3.2.5.1.2 EDS

Tabelle 4.21 Dargestellt sind Regionen, die bei dem Kontrast Emotionale Beurteilung > Emotionale Wahrnehmung (A) signifikant positiv bzw. (B) negativ mit der EDS- Fehlerzahl korrelierten.

(A) positive Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z- Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>Precuneus, BA 7</td>
<td>L</td>
<td>-10</td>
<td>-54</td>
</tr>
<tr>
<td>Superiorer parietaler Cortex, BA 7</td>
<td>R</td>
<td>36</td>
<td>-48</td>
</tr>
<tr>
<td>Gyrus frontalis inferior, BA 47 (VLPFC)</td>
<td>R</td>
<td>50</td>
<td>32</td>
</tr>
<tr>
<td>Gyrus fusiformis, BA 20</td>
<td>R</td>
<td>44</td>
<td>-10</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 6</td>
<td>R</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>Gyrus frontalis superior, BA 10 (OFC)</td>
<td>R</td>
<td>28</td>
<td>56</td>
</tr>
</tbody>
</table>

(B) negative Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach- Koordinaten</th>
<th>Z- Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>Amygdala</td>
<td>L</td>
<td>-24</td>
<td>0</td>
</tr>
<tr>
<td>Globus Pallidus</td>
<td>L</td>
<td>-18</td>
<td>-2</td>
</tr>
<tr>
<td>Gyrus präcentralis, BA 6</td>
<td>L</td>
<td>-54</td>
<td>-4</td>
</tr>
<tr>
<td>Nc. caudatus</td>
<td>L</td>
<td>-12</td>
<td>14</td>
</tr>
<tr>
<td>Gyrus temporalis superior, BA 41</td>
<td>L</td>
<td>-56</td>
<td>-20</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>L</td>
<td>-34</td>
<td>-16</td>
</tr>
<tr>
<td>Gyrus parahippocampalis, BA 30</td>
<td>L</td>
<td>-14</td>
<td>-30</td>
</tr>
<tr>
<td>Gyrus temporalis medius, BA 21</td>
<td>R</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Insula, BA 13</td>
<td>R</td>
<td>48</td>
<td>6</td>
</tr>
</tbody>
</table>
Ergebnisse

Anmerkungen. Die Schwelle lag bei $p < 0.005$ (unkorrigiert). Nur Cluster mit > 10 Voxeln sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex, OFC = orbitofrontaler Cortex.

Der Zusammenhang zwischen der EDS-Fehleranzahl und den Signalveränderungen im rechten VLPFC und OFC ist in Abb. 4.32 dargestellt: Je höher die Fehlerzahl in dieser Testphase, desto höher war die Aktivierung in frontalen Arealen. Eine Durchführung der Korrelationsanalysen ohne die abgebildeten Ausreisser zeigte weiterhin signifikant positive Korrelationen sowohl im rechten VLPFC ($r=0.45$, $p=0.019$) als auch im rechten OFC ($r=0.46$, $p=0.016$).

Abb. 4.32. Korrelation der Signaländerungen während *Emotionale Beurteilung* > *Emotionale Wahrnehmung* mit der EDS-Fehlerzahl ($p < 0.005$, unkorrigiert; min. Clustergrösse 10 Voxel). Dargestellt sind der rechte VLPFC (50, 32, -2) und der rechte OFC (28, 56, 6). * indiziert eine signifikante Korrelation (Produkt-Momentkorrelation nach Pearson; $*p<0.05$). VLPFC= ventrolateraler präfrontaler Cortex, OFC= orbitofrontaler Cortex, EDS = Extradimensional Shift (extradimensionale Verschiebung).
4.3.2.5.2 Patientengruppe

4.3.2.5.2.1 IDR

Die IDR-Fehlerzahl korrelierte signifikant positiv mit den Signalveränderungen des BOLD-Kontrastes Emotionale Beurteilung > Emotionale Wahrnehmung im anterioren Gyrus cinguli und bilateralen OFC. Eine signifikante negative Korrelation fand sich mit den Signalveränderungen im rechten DLPFC. Die Ergebnisse sind in Tabelle 4.22 zusammengefasst.

Tabelle 4.22 Dargestellt sind Regionen, die bei dem Kontrast Emotionale Beurteilung > Emotionale Wahrnehmung (A) signifikant positiv bzw. (B) negativ mit der IDR-Fehlerzahl korrelierten.

(A) positive Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyrus frontalis superior, BA 10 (OFC)</td>
<td>R</td>
<td>30 60 -2</td>
<td>3.21</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 10 (OFC)</td>
<td>L</td>
<td>-24 54 -10</td>
<td>3.12</td>
</tr>
<tr>
<td>Anteriorer Gyrus Cinguli, BA 24</td>
<td>R</td>
<td>0 32 -4</td>
<td>3.11</td>
</tr>
<tr>
<td>Gyrus occipitalis medius, BA 37</td>
<td>L</td>
<td>-54 -64 -8</td>
<td>3.10</td>
</tr>
</tbody>
</table>

(B) negative Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precuneus, BA 7</td>
<td>L</td>
<td>-20 -54 54</td>
<td>4.30</td>
</tr>
<tr>
<td>Gyrus präcentralis, BA 6</td>
<td>R</td>
<td>42 -8 34</td>
<td>3.97</td>
</tr>
<tr>
<td>Thalamus</td>
<td>R</td>
<td>8 -26 14</td>
<td>3.92</td>
</tr>
<tr>
<td>Gyrus cinguli,BA 23</td>
<td>L</td>
<td>-4 -12 28</td>
<td>3.52</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 6</td>
<td>R</td>
<td>8 -8 52</td>
<td>3.51</td>
</tr>
<tr>
<td>Parietaler Cortex, BA 40</td>
<td>L</td>
<td>-66 -32 24</td>
<td>3.14</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 46 (DLPFC)</td>
<td>R</td>
<td>42 44 24</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei p < 0.005 (unkorrigiert). Nur Cluster mit > 10 Voxel sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex.

Der Zusammenhang zwischen der IDR-Fehleranzahl und den Signalveränderungen in den o.g. Regionen ist in Abb. 4.33 dargestellt: Je höher die Fehlerzahl in
dieser Testphase, desto höher war die Aktivierung im anterioren Gyrus cinguli sowie dem bilateralen OFC und desto geringer die Aktivierung im rechten DLPFC. Die Durchführung der Korrelationsanalyse ohne die drei Patienten mit besonders hoher IDR- Fehlerzahl bestätigte die Ergebnisse einer signifikant positiven Korrelation im anterioren Gyrus cinguli (r= 0.57, p= 0.015), linken OFC (r= 0.61, p= 0.008), rechten OFC (r= 0.74, p= 0.001) und einer signifikant negativen Korrelation im rechten DLPFC (r= -0.52, p= 0.031).
Abb. 4.33. Korrelation der Signaländerungen während Emotionale Beurteilung > Emotionale Wahrnehmung mit der IDR- Fehlerzahl (p < 0.005, unkorrigiert; min. Clustergröße 10 Voxel). Dargestellt sind der anteriore Gyrus cinguli (0, 32, -4), der linke OFC (-24, 54, -10), der rechte OFC (30, 60, -2) und der rechte DLPFC (42, 44, 24). * indiziert eine signifikante Korrelation (Produkt- Momentkorrelation nach Pearson; **p<0.01, *p<0.05). OFC = orbitofrontaler Cortex, DLPFC= dorsolateraler präfrontaler Cortex, IDR = Intradimensional Reversal (intradimensionale Umkehr).

4.3.2.5.2.2 EDS

Die EDS- Fehlerzahl korrelierte signifikant positiv mit den Signalveränderungen des BOLD- Kontrastes Emotionale Beurteilung > Emotionale Wahrnehmung im rechten DLPFC und negativ im DMPFC. Die Ergebnisse sind in Tabelle 4.23 zusammengefasst.

Tabelle 23 Dargestellt sind Regionen, die bei dem Kontrast Emotionale Beurteilung > Emotionale Wahrnehmung (A) signifikant positiv bzw. (B) negativ mit der EDS- Fehlerzahl korrelierten.

(A) positive Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>Putamen</td>
<td>L</td>
<td>-28</td>
<td>-14</td>
</tr>
<tr>
<td>Thalamus</td>
<td>L</td>
<td>-20</td>
<td>-14</td>
</tr>
<tr>
<td>Gyrus präcentralis, BA 44</td>
<td>R</td>
<td>62</td>
<td>8</td>
</tr>
<tr>
<td>Gyrus postcentralis, BA 40</td>
<td>L</td>
<td>-54</td>
<td>-34</td>
</tr>
<tr>
<td>Insula, BA 13</td>
<td>L</td>
<td>-44</td>
<td>2</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 9 (DLPFC)</td>
<td>R</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>Gyrus fusiformis, BA 36</td>
<td>R</td>
<td>46</td>
<td>-38</td>
</tr>
</tbody>
</table>

(B) negative Korrelation

<table>
<thead>
<tr>
<th>Areal</th>
<th>Links/ Rechts</th>
<th>Talairach-Koordinaten</th>
<th>Z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>Gyrus frontalis medius, BA 9 (DMPFC)</td>
<td>L</td>
<td>-2</td>
<td>44</td>
</tr>
<tr>
<td>Gyrus temporalis superior, BA 38</td>
<td>R</td>
<td>48</td>
<td>22</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>L</td>
<td>-28</td>
<td>-36</td>
</tr>
<tr>
<td>Gyrus temporalis superior, BA 13</td>
<td>R</td>
<td>38</td>
<td>-26</td>
</tr>
</tbody>
</table>

Anmerkungen. Die Schwelle lag bei p < 0.005 (unkorrigiert). Nur Cluster mit > 10 Voxel sind angegeben. DLPFC= dorsolateraler präfrontaler Cortex, DMPFC= dorsomedialer präfrontaler Cortex.
Der Zusammenhang zwischen der EDS- Fehleranzahl und den Signalveränderungen in den o.g. Regionen ist in Abb. 4.34 dargestellt: Je höher die Fehlerzahl in dieser Testphase, desto höher war die Aktivierung im rechten DLPFC und desto geringer die Aktivierung im DMPFC. Die erneute Durchführung der Korrelationsanalyse unter Ausschluss eines Ausreißers mit einer besonders hohen Signaländerung im rechten DLPFC zeigte weiterhin eine signifikante negative Korrelation (r= 0.47, p= 0.05).

Abb. 4.34. Korrelation der Signaländerungen während Emotionale Beurteilung > Emotionale Wahrnehmung mit der EDS- Fehlerzahl (p < 0.005, unkorrigiert; min. Clustergrösse 10 Voxel). Dargestellt sind der rechte DLPFC (34, 36, 34) und der DMPFC (-2, 44, 20). * indiziert eine signifikante Korrelation (Produkt-Momentkorrelation nach Pearson; **p<0.01, *p<0.05). DLPFC= dorsolateraler präfrontaler Cortex, DMPFC= dorsomedialer präfrontaler Cortex, EDS = Extradimensional Shift (extradimensionale Verschiebung).

Es wurde eine explorative Korrelationsanalyse der weiteren neuropsychologischen Parameter mit den Signalveränderungen des BOLD-Kontrastes Emotionale Beurteilung > Emotionale Wahrnehmung in den ROIs durchgeführt, die signifikante Korrelationen mit den dargestellten IED- Parametern aufwiesen. In der Probandengruppe fanden sich signifikante Korrelationen für die Leistung in der Iowa Gambling Task (IGT) mit den Signaländerungen im linken DLPFC: je höher die Si-
signaländerung während des o.g. Kontrastes in dieser Region, desto schlechter die Leistung in der IGT (IGT- Gesamtwert: $r= -0.41$, $p= 0.031$; IGT- AB: $r= 0.40$, $p= 0.033$). Die Signaländerungen im DMPFC korrelierten mit der Leistung im Pattern Recognition Memory (PRM): Je mehr Muster in dieser Aufgabe erinnert wurden, desto höher die Signaländerung im DMPFC ($r= 0.43$, $p= 0.024$). Weder für den anterioren Gyrus cinguli/ VMPFC, noch für den VLPFC oder rechten OFC fanden sich signifikante Korrelationen mit neuropsychologischen Parametern.

In der Patientengruppe fand sich eine signifikante negative Korrelation der Signaländerungen im linken OFC mit der Leistung im Rapid Visual Information Processing (RVIP): Je geringer die Anzahl richtiger Reaktionen in dieser Aufgabe zur langerfristigen Aufmerksamkeit, desto höher die Signaländerungen ($r= -0.51$, $p= 0.023$). Die Signaländerungen im DMPFC korrelierten signifikant mit den Gedächtnisleistungen: je höher die Signaländerung desto besser die Leistung im Paired Associates Learning (PAL; Memory Score: $r= 0.50$, $p= 0.032$; Fehler: $r= -0.51$, $p= 0.027$), im Pattern Recognition Memory (PRM; Richtige: $r= 0.67$, $p= 0.002$) sowie im Spatial Working Memory (SWM; Strategie: $r= -0.52$, $p= 0.025$; Fehler: $r= 0.49$, $p= 0.038$). Eine positive Korrelation der DMPFC- Signaländerungen zeigte sich auch mit der längerfristigen Aufmerksamkeitsleistung (RVIP; Richtige: $r= 0.57$, $p= 0.013$). Für die Signaländerungen im anterioren Gyrus cinguli, rechten OFC und rechten DLPFC fanden sich keine Korrelationen mit neuropsychologischen Parametern.

Zusammenfassung der Ergebnisse

In beiden Gruppen führten emotionale Wahrnehmung und emotionale Beurteilung zu einer positiven HRF in lateralen (rechter und linker DLPFC) und einer negativen HRF in medialen (VMPFC, anteriorer Gyrus cinguli) präfrontalen Arealen. In der Probandengruppe reagierte bei emotionalen Beurteilungen der linke DLPFC mit einer signifikant stärkeren positiven HRF und der VMPFC mit einer signifikant stärkeren negativen HRF als bei emotionaler Wahrnehmung, während sich die Signaländerungen im rechten DLPFC und anterioren Gyrus cinguli bei den beiden Bedingungen nicht signifikant unterschieden. In der Patientengruppe unterschieden sich die Signaländerungen der beiden Bedingungen weder in medialen noch in lä-

In der Probandengruppe ging eine höhere Fehleranzahl in der IDR- Testphase mit einer stärkeren Aktivierung im linken DLPFC und einer geringeren Aktivierung in medialen (VMPFC, DMPFC, anteriorer Gyrus cinguli) Strukturen einher. In der Patientengruppe fand sich ein Zusammenhang zwischen einer Zunahme der Fehlerzahl in dieser Testphase und einer höheren Aktivierung im anterioren Gyrus cinguli und bilateralen OFC sowie einer geringeren Aktivierung im rechten DLPFC. Die EDS- Fehlerzahl korrelierte in der Probandengruppe mit einer höheren Aktivierung in VLPFC und OFC. In der Patientengruppe fand sich eine positive Korrelation mit erhöhter Aktivierung im rechten DLPFC und geringer Aktivierung im DMPFC.
5 Diskussion

In der vorliegenden Arbeit wurde eine Stichprobe unmedizierter Patienten mit einer schwergradig ausgeprägten Episode einer Major Depression mit alters- und bildungsgleichen gesunden Kontrollpersonen hinsichtlich einer Vielzahl neuropsychologischer Variablen sowie der neuronalen Aktivierungsmuster bei emotionaler Verarbeitung verglichen. Darüber hinaus wurde der Zusammenhang zwischen neuronalen Aktivierungsmustern im präfrontalen Cortex, dem Schweregrad der Depression sowie der Fähigkeit zur Verlagerung des Aufmerksamkeitsfokus als einer exekutiven Teilfunktion untersucht.

5.1 Neuropsychologische Ergebnisse

5.1.1 Gedächtnis

Die Befundlage hinsichtlich des Kurzzeit- und Arbeitsgedächtnisses bei Depressiven ist eher heterogen. Herabgesetzte Leistungen im nonverbalen Lernen, die auch unter Wiedererkennensbedingungen nachweisbar sind, werden jedoch häufiger berichtet als Defizite in der verbalen Lern- und Merkfähigkeit (Abas et al.,
Diskussion

1990; Beats et al., 1996; Elliott et al., 1996; Porter et al., 2003). Unsere Ergebnisse hinsichtlich der visuell-räumlichen Gedächtnisleistungen sprechen sowohl für eine beeinträchtigte Lern- als auch Merkfähigkeit (42% bzw. 58% der untersuchten Patienten lagen im defizitären Bereich bezogen auf die Kontrollstichprobe). Auch hinsichtlich des vergleichsweise einfachen Wiedererkennens visuellen Materials konnte ein hoher Anteil beeinträchtigter Patienten (47%) nachgewiesen werden. Die Arbeitsgedächtnisleistungen erscheinen (relativ) unbeeinträchtigt (32%).

Da in einer Vielzahl von Studien (Elliott et al., 1996; Beats et al., 1996; Harvey et al., 2004) teilweise deutliche Beeinträchtigungen des Arbeitsgedächtnisses gefunden wurden, postulieren Purcell et al. (1997), dass Defizite in diesem Bereich eher bei älteren Patienten mit schwerer Symptomatik auftreten. Bei der hier untersuchten Stichprobe ist zwar von einer schweren Ausprägung einer depressiven Episode auszugehen, jedoch waren die Patienten vergleichsweise jung (40.0 Jahre). Eine andere mögliche Erklärung für die unbeeinträchtigten Arbeitsgedächtnisleistungen liegt in der verwendeten Aufgabe. In vielen Studien zum Arbeitsgedächtnis werden sogenannte n-back- Aufgaben verwendet, in denen die Versuchspersonen entscheiden müssen, ob der gerade präsentierte Reiz mit einem
Diskussion

n- Durchgänge zuvor präsentierten Reiz identisch ist. Die für die Bewältigung dieser Aufgabe notwendige „Updating“ Fähigkeit, d.h. die Beachtung der vorhandenen Informationen und die Bewertung ihrer Relevanz für die Aufgabe sowie die ständige Anpassung der im Arbeitsgedächtnis gespeicherten Inhalte an neue Informationen (Update), ist vielleicht eher als exekutive Teilfunktion anzusehen (Harvey et al., 2004) und wird mit der von uns verwandten Arbeitsgedächtnisaufgabe nicht erfasst.

Morphometrische und funktionelle Studien an depressiven Patienten berichten von Veränderungen im Hippocampus (Campbell et al., 2006; Videbech et al., 2002; Mayberg et al., 2000; Kennedy et al., 2001), die mit beeinträchtigten Gedächtnisfunktionen in Zusammenhang gebracht werden. Zudem wurde gezeigt, dass die Durchführung von Gedächtnisaufgaben bei Depressiven zu einer signifikant geringeren Aktivierung des anterioren Cingulums führt (Bremner et al., 2004). Mit der Repräsentation von Aufgaben im Arbeitsgedächtnis wird insbesondere der DLPFC in Verbindung gebracht. (Goldmann-Rakic, 1987). Eine Vielzahl von Studien beschreiben eine in der Depression verminderte dorsolaterale Aktivierung (Brody et al., 2001; Canli et al., 2004; Lawrence et al., 2004; Surguladze et al., 2005), die sich mit der Remission normalisiert (Kennedy et al. 2001) und mit Arbeitsgedächtnisdefiziten in Zusammenhang stehen könnte (Fossati et al., 2002).

Aus methodischer Sicht muss auch die Vermutung berücksichtigt werden, dass eventuell aufgrund der hohen Standardabweichungen der Arbeitsgedächtnisparameter in der Kontrollstichprobe keine signifikanten Unterschiede zwischen den Gruppen festgestellt werden konnten. In der Patientengruppe könnte die Transformation der neuropsychologischen Testvariablen in z-Werte (anhand der Mittelwerte und Standardabweichungen der Kontrollstichprobe) somit zu falsch negativen Werten bei den Arbeitsgedächtnisparametern geführt haben.

5.1.2 Aufmerksamkeit

Im Bereich der längerfristigen Aufmerksamkeit zeigen unsere Ergebnisse insbesondere hinsichtlich der Informationsverarbeitungsgeschwindigkeit einen hohen Anteil beeinträchtigter Patienten (42%). Leistungsdefizite fanden sich auch bezüglich der Anzahl der richtigen Reaktionen und Auslassungen (37% beeinträchtigte
Patienten), während sich die Anzahl der falschen Reaktionen nicht signifikant zwischen den Gruppen unterschied und nur bei 11 % der Patienten beeinträchtigt erschien. Dies hängt jedoch vermutlich auch damit zusammen, dass die Patienten insgesamt deutlich seltener reagierten als die Probanden (signifikant mehr Auslassungen) und somit auch weniger Fehler machen konnten.

Beeinträchtigungen der Daueraufmerksamkeit, die insbesondere die Anzahl von Auslassungen betreffen (Weinberg et al., 1993; Erickson et al., 2005), werden als Vulnerabilitätsmarker für eine Major Depression diskutiert, da sie auch bei remittierten Patienten nachweisbar sind (Weiland- Fiedler et al., 2004). Das Ergebnis eines reduzierten psychomotorischen Tempos bestätigt Befunde aus verschiedenen anderen Studien sowie Metaanalysen (Christensen et al., 1997; Tsourtos et al., 2002; Den Hartog et al., 2003; Hammar, 2003), die von einer generellen kognitiven Verlangsamung bei Depressiven ausgehen. Purcell et al. (1997), die bei der Untersuchung jüngerer Depressiver keine Beeinträchtigung der Informationsverarbeitungsgeschwindigkeit nachweisen konnten, stellten die Hypothese auf, dass die kognitive Verlangsamung ein alterskorreliertes Phänomen ist. Dies konnte in unserer Untersuchung jedoch nicht bestätigt werden, obwohl die hier untersuchten Patienten nur unwesentlich älter als in der von Purcell et al. (37.5 Jahre) beschriebenen Stichprobe waren. Wie bei den meisten Aufmerksamkeitsaufgaben waren auch in der vorliegenden Untersuchung kognitive und motorische Aufgabenanteile konfundiert. Deijen et al. (1993) konnten jedoch zeigen, dass bei getrennter Auswertung für die kognitive Entscheidungszeit und die motorische Bewegungszeit depressive Patienten zwar längere Entscheidungszeiten zeigten, die Reaktion aber nicht verlangsamt auslieferten.

Diskussion

Cingulums (Almeida et al., 2003; Drevets et al., 1997; Botteron et al., 2002; Rajkowska et al., 2002, 2003; Kennedy et al., 2001; Mayberg et al., 2000) können zur Erklärung von Defiziten bei der Aufrechterhaltung der Aufmerksamkeit herangezogen werden.

5.1.3 Exekutive Funktionen

Hinsichtlich der Fähigkeit zum Wechsel des Aufmerksamkeitsfokus (IED), die als Teilbereich der exekutiven Funktionen anzusehen ist, zeigte sich die Patienten- gruppe zunächst in der Gesamtleistung beeinträchtigt (47%). Wie auch schon in anderen Studien (Beats et al., 1996; Murphy et al., 1999) kam dieses Ergebnis sowohl durch Defizite bei der Verlagerung der Aufmerksamkeit innerhalb (Reaktionsumkehr, IDR) als auch zwischen Wahrnehmungsdimensionen/ Stimuluskategorien (EDS) zustande. Die deutlichsten Beeinträchtigungen fanden sich für die extradimensionale Komponente der Aufgabe (47% beeinträchtigte Patienten). Übereinstimmend mit einer Untersuchung von Purcell et al. (1997) fanden wir, dass ein relativ grosser Anteil der Patienten nicht in der Lage war, eine extradimensionale Verschiebung (EDS) durchzuführen.

Dies könnte in Zusammenhang mit der von verschiedenen Autoren beschriebenen Einschränkung der kognitiven Flexibilität als dem spezifischen Defizit im Rahmen depressiver Erkrankungen interpretiert werden (Beblo, 1999; Beblo, 2004; Austin et al., 2001; Veiel, 1997; Stordal et al., 2005). Allerdings muss berücksichtigt werden, dass in diesem Zusammenhang meist die „Fluency“, also die Wortflüssigkeit bzw. die figurale Flüssigkeit (Beats et al., 1996; Elliott et al., 1996, 1997; de Groot et al., 1996), gemeint ist. Der IED, ebenso wie der WCST, untersucht im Gegensatz zu dieser spontanen kognitiven Flexibilität eher die reaktive kognitive Flexibilität. Eine Reihe von Untersuchungen an unterschiedlichen Stichproben depressiver Patienten konnte Defizite im WCST zeigen (Austin et al., 1999; Channon et al., 1996; Mofoot et al., 1994; Degl’Innocenti et al., 1998). Die Beeinträchtigungen werden auf Schwierigkeiten bei der Konzeptbildung (konzeptuelle Rigidität) und/ oder Probleme bei der Nutzung von Rückmeldungen durch den Versuchsleiter zurückgeführt. Eine Einschränkung der kognitiven Flexibilität und der exekutiven
Diskussion

Auch die neuroanatomischen Korrelate der Depression mit Störungen der präfrontalen Strukturen, würden eine Einschränkung im Bereich der exekutiven Funktionen erwarten lassen. Das Frontalhirn wird in erster Linie mit exekutiven Funktionen, aber auch mit Aufmerksamkeitsprozessen, wie dem Identifizieren von neuen Zielreizen und der Aufrechterhaltung der Aufmerksamkeit in Verbindung gebracht. Von besonderer Bedeutung für ungestörte exekutive Funktionen scheint auch das anteriore Cingulum zu sein. Dabei kommt dieser Region die Aufgabe zu, interne und externe Fehler in der Informationsverarbeitung zu erkennen und die Reaktion darauf einzuleiten. Das Aktivitätsverhalten dieser Region scheint entscheidend mit dem Schweregrad der Erkrankung und dem Ausmaß begleitender neuropsychologischer Defizite zusammenzuhängen (Dunn et al., 2002; Kimbrell et al., 2002; Brody et al., 2001). Depressive Patienten zeigen während der Durchführung von Aufgaben, die primär Exekutivfunktionen voraussetzen, eine präfrontale Minderperfu-
Diskussion

sion sowie teilweise keine messbare Aktivierung im anterioren Cingulum (Elliot et al., 1997; Goethals et al., 2005; Okada et al., 2003). Zudem wird von einem empirischen Zusammenhang zwischen der verminderten Aktivierung und dem Ausprägungsgrad der depressiven Negativsymptomatik (Galynker et al., 1998), dem allgemeinen Schweregrad der Erkrankung sowie den kognitiven Einbußen der Patienten berichtet (Videbech et al., 2002; Navarro et al., 2002). Die konzeptuelle Rigidität und defizitäre Hypothesengenerierung bei Patienten mit Major Depression werden mit Minderaktivierungen im dorsolateralen präfrontalen Cortex in Zusammenhang gebracht (Fossati et al., 2002).

5.1.4 Zusammenhänge zwischen neuropsychologischen, soziodemographischen und psychopathologischen Variablen

Diskussion

nach, die mit einer schlechteren Leistung in Gedächtnisaufgaben, exekutiven Funktionen und Sprachaufgaben einhergingen. Erstaunlicherweise fand sich jedoch in der von uns untersuchten Stichprobe kein Zusammenhang zwischen dem Alter und einer reduzierten psychomotorischen Geschwindigkeit, so dass zumindest in diesem Bereich der Annahme eines alterskorrelierten Phänomens (Purcell et al., 1997) widersprochen werden muss.

Das Geschlecht scheint den Zusammenhang zwischen affektiven und kognitiven Veränderungen nicht zu beeinflussen. Es fanden sich keine signifikanten Korrelationen zu den neuropsychologischen Variablen, was einen Befund von Sweeney et al. (2000) hinsichtlich fehlender geschlechtsspezifischer Unterschiede im kognitiven Defizitprofil Depressiver bestätigt.

Im Gegensatz zu früheren Studien (Tham et al., 1997; Beats et al., 1996; Stordal et al., 2005) fanden sich keine signifikanten Korrelationen zwischen der Anzahl der Episoden und den neuropsychologischen Variablen, was mit der vergleichsweise geringen Episodenanzahl (1.8 Episoden) in der von uns untersuchten Stichprobe zusammenhängen könnte.

Je länger die Dauer der aktuellen Episode, desto bessere Leistungen zeigten die Patienten im Bereich des Entscheidungsverhaltens und des Arbeitsgedächtnisses. Diese überraschende Verbesserung verschiedener kognitiver Testleistungen mit zunehmender Dauer der depressiven Episode muss vor dem Hintergrund möglicher Kompensationsprozesse diskutiert werden. Mit zunehmender Depressions-
dauer könnte sich so beispielsweise die bei den Patienten ohnehin bestehende Tendenz zu einem eher konservativen, risikovermeidenden Entscheidungsverhalten (Elliott, 1998; Beats, 1996; Murphy, 2003) noch verstärken.

Hinsichtlich der psychopathologischen Variablen fand sich lediglich für den HDRS-Score ein Zusammenhang mit der bildungsabhängigen verbalen Intelligenz. Es wird vermutet, dass Patienten mit höherem Bildungsstand zu einer ausführlicheren und differenzierteren Symptombeschreibung in der Lage sind und deshalb als schwerer depressiv beurteilt werden.

Es fanden sich keine signifikanten Korrelationen zwischen den neuropsychologischen Variablen, dem BDI-Score, der Medikation sowie der Dauer der wash-out-Phase in der Patientenstichprobe. Hinsichtlich der Frage, inwieweit die Schwere der Depression die kognitive Leistungsfähigkeit beeinflusst bzw. die festgestellten kognitiven Einschränkungen moderiert, kamen Austin et al. (2001) in einer Metaanalyse zu dem Schluss, dass die Anzahl der Studien, die einen Zusammenhang zwischen der Schwere der Depression und der Beeinträchtigung von kognitiven Funktionen nachweisen können, etwa der Anzahl der Studien entspreche, die einen solchen Zusammenhang nicht zeigen konnten. Signifikante Korrelationen fanden sich in früheren Studien am ehesten zwischen der fremdbeurteilten Depressionsstärke (HDRS) und Defiziten in den exekutiven Funktionen (Fossati et al., 2002; Thompson et al., 2003; Ravnkilde et al., 2003). Die Tatsache, dass in unserer Untersuchung alle Patienten eine schwere depressive Symptomatik aufwiesen (BDI= 29.94; HDRS= 33.12) und die Gruppe insofern recht homogen war, könnte erklären, warum sich entgegen der Hypothese kein signifikanter Zusammenhang zwischen dem Ausmass der kognitiven Defizite und dem Schweregrad der Depression fand.

Obwohl nicht explizit untersucht, müssen auch eine reduzierte Motivation (Seligman, 1974) sowie der Effekt negativen Feedbacks (Elliott et al., 1998; Beats et al., 1996; Murphy et al., 2003) als mögliche Erklärungen für neuropsychologische Defizite diskutiert werden. Eine verringerte Motivation der Patienten erscheint aber sowohl aufgrund der Verhaltensbeobachtung während der Untersuchungen als auch aufgrund der teilweise unbeeinträchtigten kognitiven Leistungen (Arbeitsgedächtnis, Entscheidungsverhalten) unwahrscheinlich. Insbesondere die Arbeitsge-
dächtnisleistungen, die als „effortful processes“ (Hasher & Zacks, 1979) mit hohen Anforderungen an die Aufmerksamkeitskapazität und die kognitive Verarbeitung einhergehen, sollten bei einer herabgesetzten Motivation Defizite zeigen. In der IED fanden sich die deutlichsten Beeinträchtigungen für die extradimensionale Komponente der Aufgabe. Nur 53% der Patienten waren in der Lage, die letzte Testphase zu bewältigen, so dass es denkbar erscheint, dass die zunehmende Fehlerzahl und das negative Feedback in den vorangegangenen Testphasen aufgrund eines depressionsspezifischen Defizits im Umgang mit negativem Feedback (Elliott et al., 1998) zu einer Verschlechterung der Leistung führen. Andererseits benötigten die Patienten in der visuell-räumlichen Gedächtnisaufgabe (PAL) zwar signifikant mehr Durchgänge und machten mehr Fehler als die gesunden Probanden, zeigten aber keinen Unterschied hinsichtlich der erreichten Testphase, d.h. das negative Feedback während der Testdurchführung scheint ihre Leistung nicht beeinflusst zu haben.

5.2 Ergebnisse der fMRI- Untersuchung

Mittels funktioneller Magnetresonanztomographie (fMRI) wurden Komponenten emotionaler Verarbeitung mit unterschiedlich starker kognitiver Gewichtung untersucht. Während der fMRI- Untersuchung wurden den Versuchspersonen Bilder aus dem International Affective Picture System (IAPS, Lang et al., 1999) präsentiert, die hinsichtlich ihrer Valenz beurteilt (Emotionale Beurteilung) oder passiv betrachtet (Emotionale Wahrnehmung) werden sollten. Der Fokus der Studie lag auf den mit emotionalen Beurteilungen und emotionaler Wahrnehmung assoziierten Aktivierungsmustern in medialen und lateralen präfrontalen Regionen.

5.2.1 fMRI- Verhaltensdaten (Reaktionszeiten und Performanz)

Die Beurteilung der Valenz der IAPS- Bilder unterschied sich zwischen den Gruppen signifikant. Die Patientengruppe beurteilte die positiven Bilder signifikant weni
ger positiv und die negativen Bilder signifikant positiver als die Probandengruppe. Demzufolge fanden sich auch hinsichtlich des Anteils der richtigen Beurteilungen (d.h. Bilder wurden ihrer Valenz entsprechend beurteilt) signifikante Unterschiede
zwischen den Gruppen. Sowohl bei den positiven (85% richtige Antworten) als auch bei den negativen Bildern (78% richtige Antworten) erschien die Performance in der Patientengruppe beeinträchtigt. Die Befunde bezüglich der positiven Bilder unterstützen die Annahme von stimmungskongruenten Verzerrungen bei Depressiven (Watkins, 1996; Murphy et al., 1999). Überraschend war der Befund hinsichtlich der negativen Bilder, da aufgrund früherer Studien (Dunn et al., 2004; Erickson et al., 2005) ein Bias für negative Informationen und somit eine deutlich bessere Performance erwartet worden war. Wichtig erscheint es, dass die Beurteilung der Bilder nicht durch ein immer gleiches Antwortverhalten der Patienten (verringerte Motivation) zustande kommen konnte, da die Bilder nur als positiv oder negativ bewertet werden konnten und es kein mittleres Rating gab. Zudem zeigten die Patienten nicht mehr Auslassungen als die Probanden, machten aber mehr Fehler, d.h. sie versuchten, die Aufgabe zu bearbeiten. Wenn ein Motivationsdefizit der kausale Faktor für die schlechtere Leistung wäre, müsste die Leistung der Patienten bei ca. 50% richtigen Antworten (Zufallswahrscheinlichkeit) liegen, da sie einfach einen Knopf drücken würden, ohne zu versuchen, das Bild adäquat zu beurteilen. Obwohl sie jedoch signifikant weniger richtige Antworten gaben als die Probanden, lag der Prozentsatz der richtigen Antworten deutlich über der Zufallswahrscheinlichkeit. Die Patienten scheinen bei dieser Aufgabe also nicht weniger motiviert oder anstrengungsbereit gewesen zu sein, sondern haben insofern einen negativen Bias, als das positive Inhalte nicht als positiv erlebt werden können, aber negative Darstellungen vielleicht in Bezug auf das eigene Erleben und den gegenwärtigen Zustand beurteilt und deshalb als nicht so negativ wie die eigene Lage angesehen werden. Es wird also von einer Verschiebung des internen Bewertungssystems nicht nur für positive, sondern auch für negative Inhalte ausgegangen.

Die Reaktionszeiten (vom Erscheinen des Bildes bis zum Tastendruck) waren in beiden Gruppen in der Bedingung Emotionale Beurteilung länger als in der Bedingung Emotionale Wahrnehmung, wobei hier der Tastendruck ohnehin eher der Aufrechterhaltung der Aufmerksamkeit und der Kontrolle von Bewegungseffekten diente. In beiden Bedingungen waren die Reaktionszeiten sowohl für die Gesamtheit der Bilder als auch für positive und negative Bilder in der Patientengruppe si-
signifikant höher. Aufgrund früherer Studien und der postulierten stimmungskongruenten Verzerrungen in der Informationsverarbeitung (Dunn et al., 2004; Erickson et al., 2005; Leppanen, 2006) waren jedoch in der Patientengruppe längere Reaktionszeiten bei positiven Stimuli und unbeeinträchtigte oder sogar verkürzte Reaktionszeiten bei negativen Stimuli erwartet worden. Da die Valenz des eingesetzten Stimulusmaterials keinen Einfluss auf die Reaktionszeit hatte, sprechen die Befunde eher für eine generelle kognitive Verlangsamung bei Depressiven (Christensen et al., 1997; Tsourtos et al., 2002; Den Hartog et al., 2003; Hammar, 2003).

5.2.2 fMRI-Ergebnisse

Der Fokus der Analysen lag auf Aktivierungsmustern des präfrontalen Cortex.

Im Vergleich zur experimentellen Baseline führten Emotionale Wahrnehmung und Emotionale Beurteilung in der Kontrollgruppe insbesondere zu Aktivierungen im bilateralen DLPFC und linken VLPFC. In der Patientengruppe gingen die beiden Bedingungen mit einer Aktivierung des rechten VLPFC und DLPFC einher. Eine Kontrastierung der Bedingungen Emotionale Wahrnehmung und Emotionale Beurteilung in der Kontrollgruppe zeigte bei Emotionaler Wahrnehmung stärkere Signalveränderungen im VMPFC, DMPFC und ACC. Bei Emotionaler Beurteilung fanden sich stärkere Aktivierungen im linken DLPFC. ROI- Analysen zeigten, dass der linke DLPFC mit einer signifikant stärkeren positiven HRF bei emotionaler Beurteilung als bei emotionaler Wahrnehmung reagierte, während der VMPFC bei beiden Bedingungen eine negative HRF mit stärkerer Deaktivierung bei emotionaler Beurteilung zeigte. In den ROIs des rechten DLPFC und des ACC fanden sich zwar keine signifikanten Unterschiede der HRF der beiden Bedingungen, jedoch ein analoges Muster der Signaländerungen mit einer positiven HRF lateral (rechter DLPFC) und einer negativen HRF medial (ACC). Die Ergebnisse stehen in Einklang mit früheren bildgebenden Untersuchungen bei Gesunden, die eine reziproke Modulation mit Beteiligung medialer und lateraler Areale während verschiedener Aspekte emotionaler Verarbeitung zeigten. Emotionale Wahrnehmung ging hier mit einer Signalzunahme in medialen präfrontalen Strukturen (VMPFC, DMPFC, ACC) und einer Signalabnahme in lateralen präfrontalen Regionen (DL-
PFC, VLPFC) einher. Analog Veränderungen in die entgegengesetzte Richtung mit Signalabnahme in medialen und -zunahme in lateralen Regionen zeigten sich während emotionaler Beurteilung (Northoff et al., 2004; Grimm et al., 2006, Goel et al., 2003). Die Resultate der vorliegenden Untersuchung zeigen, dass in medialen Regionen beide Komponenten emotionaler Verarbeitung zu einer negativen HRF (Deaktivierung) und in lateralen Regionen zu einer positiven HRF (Aktivierung) führen. Emotionale Wahrnehmung ist jedoch mit einer signifikant geringeren negativen HRF in medialen Regionen verbunden, so dass es sich bei der in früheren Studien berichteten Signalzunahme tatsächlich um eine geringere Signalveränderung in negative Richtung (d.h. eine geringere Deaktivierung und somit relative Aktivierung) zu handeln scheint.

In der Patientengruppe fanden sich bei Emotionaler Wahrnehmung stärkere Signalveränderungen lediglich bei einer vergleichsweise liberalen Schwelle (FDR-korrigeit, p < 0.05, min. Clustergrösse 5 Voxel) im parietalen Cortex und Cuneus. Bei Emotionaler Beurteilung zeigten sich stärkere Aktivierungen im occipitalen Cortex, temporalen Cortex und Cerebellum. Die ROI- Analysen zeigten, dass wie in der Kontrollgruppe der linke DLPFC mit einer positiven HRF und der VMPFC mit einer negativen HRF auf die beiden Bedingungen reagierte. Im Gegensatz zur Kontrollgruppe fanden sich jedoch keine signifikanten Unterschiede der HRF der beiden Bedingungen in diesen beiden Regionen. Auch im rechten DLPFC und ACC fanden sich keine signifikanten Unterschiede der HRF der beiden Bedingungen jedoch wiederum eine positive HRF lateral (rechter DLPFC) und eine negative HRF medial (ACC). Ruheaktivitätsstudien bei Depressiven zeigten eine Hyperaktivierung in VMPFC/ACC und Hypoaktivierung im linken DLPFC (Canli et al., 2004; Lawrence et al., 2004; Surguladze et al., 2005). Die hier berichtete Hyperaktivierung in medialen Arealen stellte sich in unseren Analysen jedoch als eine verminderte Deaktivierung dar. Die reziproke Modulation zwischen medialen (VMPFC, ACC) und lateralen (DLPFC, VLPFC) präfrontalen Regionen erscheint entsprechend der Hypothese abnorm verändert, da sich die in diesen Regionen auftretenden Signalveränderungen nicht signifikant zwischen emotionaler Wahrnehmung und emotionaler Beurteilung unterscheiden.
Im Gruppenvergleich aktivierte die *emotionale Wahrnehmung* kontrastiert mit der *Baseline*- Bedingung in der Kontrollgruppe stärker den occipitalen Cortex, den fusi-
iformen Cortex, sowie das Cerebellum. In der Patientengruppe zeigte sich eine
verstärkte Signaländerung im DMPFC sowie dem anterioren und posterioren Gy-
rus cinguli. Der Gruppenvergleich des BOLD- Kontrastes zwischen *Emotionaler
Beurteilung* und *Baseline* zeigte in der Kontrollgruppe stärkere Aktivierungen im
linken DLPFC. In der Patientengruppe fanden sich stärkere Signaländerungen im
VMPFC und dem ACC. Der Gruppenvergleich des BOLD-Kontrastes zwischen
Emotionaler Beurteilung und *Emotionaler Wahrnehmung* zeigte in der Kontroll-
gruppe stärkere Aktivierungen im linken DLPFC, während sich in der Patienten-
gruppe eine verstärkte Aktivierung im rechten DLPFC/ VLPFC fand. ROI- Analy-
isen zeigten wiederum, dass der linke und rechte DLPFC in beiden Gruppen auf
beide Bedingungen mit einer positiven HRF reagieren, während sich der Signal-
verlauf in medialen Regionen (VMPFC, ACC) als negativ darstellt. Die Gruppen-
unterschiede in der Signalintensität mit stärkerer Aktivierung im linken DLPFC und
stärkerer Deaktivierung im VMPFC/ ACC in der Kontrollgruppe sowie stärkerer
Aktivierung im rechten DLPFC/ VLPFC in der Patientengruppe erscheinen bei
emotionaler Beurteilung ausgeprägter als bei emotionaler Wahrnehmung. Wie be-
reits geschildert, stellt sich die in anderen Studien bei Depressiven (Keedwell et
al. 2005; Davidson et al. 2003; Liotti et al. 2002) berichtete Hyperaktivierung in
medialen Arealen in unseren Analysen als eine verminderte Deaktivierung dar. Die
relativ gesteigerte Aktivierung im VMPFC könnte den Versuch reflektieren, aver-
sive Gedanken und Emotionen zu unterdrücken (Phillips et al., 2003; Drevets et al.,
2001). Aufgrund von Läsionsstudien (Bechara et al., 2004, 2005) wird der ventro-
mediale Cortex mit der Fähigkeit in Verbindung gebracht, einen emotionalen Zu-
stand aufrechtzuerhalten und das Verhalten adaptiv in eine bestimmte Richtung zu
lenken. Läsionen im VMPFC beeinträchtigen nicht die Reaktivität für die verschie-
denen Anreize, sondern die Fähigkeit, die Reaktivität auch dann aufrechtzuerhal-
ten und Reaktionen zu antizipieren, wenn Anreize nicht tatsächlich vorhanden
sind. Insofern wird der VMPFC mit der Repräsentation grundlegender positiver
und negativer emotionaler Zustände in Abwesenheit unmittelbar vorhandener An-
reize in Verbindung gebracht (Teasdale et al., 1999), während der DLPFC relevant
Diskussion

für die Repräsentation der Zielzustände ist, auf die diese grundlegenden emotionalen Zustände gerichtet sind. Das ebenfalls aus Ruheaktivitätsstudien bekannte Phänomen der bei depressiven Patienten verminderten Aktivierung im linken DLPFC und gesteigerten Aktivierung im rechten DLPFC (Phillips et al., 2003; Mayberg, 2003), konnte spezifiziert werden, indem gezeigt wurde, dass diese Aktivierungsmuster mit der kognitiven Komponente der emotionalen Verarbeitung (Emotionale Beurteilung) assoziiert sind, während sich die Signalintensität bei emotionaler Wahrnehmung nicht zwischen den Gruppen unterscheidet. Insgesamt stützen die Ergebnisse die Hypothese der präfrontalen Asymmetrie (Sackeim et al., 1982; Maeda et al., 2000; Davidson et al., 2003), in der davon ausgegangen wird, dass der rechte präfrontale Cortex eher mit negativen Emotionen und der linke präfrontale Cortex eher mit positiven Emotionen assoziiert werden kann (Davidson et al., 1999; Murphy et al., 2003; Wager et al., 2003).

Die Signalveränderungen des BOLD-Kontrastes Emotionale Beurteilung > Emotionale Wahrnehmung wurden mit der Schwere der Depression (HDRS, BDI) korreliert, um mögliche Zusammenhänge zwischen psychopathologischen Variablen und Aktivierungsmustern im präfrontalen Cortex aufzuzeigen. Die Korrelationen zeigen einen Zusammenhang zwischen dem Schweregrad der Depression (HDRS- und BDI- Gesamtwert) und stärkeren Aktivierungen im ACC und rechten DLPFC. Der Zusammenhang mit der Aktivierung im rechten DLPFC kann wiederum vor dem Hintergrund von Theorien beurteilt werden, die den rechten präfrontalen Cortex vorrangig mit negativen Emotionen in Verbindung bringen (Liotti et al., 2001; Murphy et al., 2003). Neuropsychologischen Untersuchungen konnten zeigen, dass sowohl traurige Stimmung bei gesunden Probanden (Ladavas et al., 1984) als auch eine akute Depression (Liotti et al., 1991) zu einer gestörten rechtshemishpäriellen Verarbeitung führen. Die Unterschiede im Aktivierungsverhalten von rechtem und linken DLPFC werden auch in den therapeutischen Effekten transkranialer Magnetstimulation (rTMS) reflektiert. Eine Reduktion der depressiven Symptomatik tritt bei hochfrequenter, d.h. die neuronale Aktivität erhöhender, rTMS über dem linken DLPFC und niedrigfrequenter, d.h. die neuronale Aktivität vermindernnder, rTMS über dem rechten DLPFC ein (Burt et al. 2002; Gershon et al., 2003; Fitzgerald et al., 2003; Bermpohl et al., 2006). Die gestörte
Balance zwischen linkem und rechten DLPFC lässt vermuten, dass die vermin-
derte Aktivität im linken DLPFC transhemisphärische Inhibitionsmechanismen beein-
flusst und somit sekundär eine gesteigerte Aktivität im rechten DLPFC induziert.
Das Aktivitätsverhalten im rechten DLPFC könnte also kompensatorische Mecha-
nismen reflektieren, die letztlich zu einer Dominanz negativer Emotionen und
mit zur depressiven Symptomatik führen. Das anteriore Cingulum (ACC), wird als
Schnittstelle zwischen Emotion, Kognition und Verhalten angesehen (Ho et al.,
1996). So konnten Teasdale et al. (1999) in einer fMRI- Studie bei gesunden Pro-
banden zeigen, dass das anteriore Cingulum an der Induktion negativer und positi-
ver Affekte beteiligt ist. Bei depressiven Patienten scheint das Aktivitätsverhalten
der Region nicht nur mit dem Ausmaß begleitender neuropsychologischer Defi-
zite (Dunn et al., 2002; Kimbrell et al., 2002; Brody et al., 2001), sondern auch, wie
in der vorliegenden Untersuchung gezeigt, mit dem Schweregrad der Erkrankung
zusammenzuhängen. Es fanden sich keine signifikanten Korrelationen zwischen
der Signalintensität im VMPFC und der Ausprägung der depressiven Symptoma-
tik. Zwar zeigten Zald et al. (2002) in einer PET- Studie an gesunden Probanden,
dass die Ruheaktivität im VMPFC mit dem Ausmass negativer Affektivität korreliert
ist, jedoch zeigte sich entgegen der Hypothese in der vorliegenden Untersuchung
kein entsprechender Zusammenhang bei depressiven Patienten. Eine mögliche
Ursache könnte sein, dass die Symptomschwere mit der Signalintensität während
der stärker kognitiv gewichteten Emotionalen Beurteilung korreliert wurde, diese
Region aber weniger stark in kognitive Prozesse involviert ist als das ACC, das als
Schnittstelle sowohl für cognitive als auch für emotionale Aufgaben relevant ist
(Braus et al., 2005).

Insgesamt unterstützen die Befunde das Netzwerkmodell der Depression von
Mayberg et al. (1997, 2003), in dem davon ausgegangen wird, dass die affektive
Modulation mit der geordneten Interaktion ventral/ medial- paralimbischer und dor-
sal/ lateral- neokortikaler Regionen des Gehirns korreliert, die bei depressiven Stö-
run gen in Dysbalance gelangen. Das ventrale/ mediale System wird sowohl mit
normalen als auch mit pathologischen affektiven Zuständen in Verbindung ge-
bracht, während das dorsale/ laterale System mit kognitiven Aufgaben und der Re-
gulation affektiver Zustände assoziiert wird. Die postulierte, und auch in der vorlie-
genden Untersuchung nachgewiesene, (links)dorsolaterale präfrontale Funktionsstörung depressiver Patienten steht in gutem Einklang mit den volumetrisch belegten Substanzverlusten (Cotter et al., 2002; Ongur et al., 1998; Rajkowska et al., 2002, 2003), der veränderten Ruheaktivität (Elliott et al. 1998, 2002; Phillips et al. 2003) und den kognitiven Defiziten. Eine reduzierte DLPFC- Aktivität bei der Bewältigung kognitiver Aufgaben verdeutlicht ebenfalls die gestörte funktionelle Beziehung zwischen ventralen/medialen paralimbischen und dorsalen/lateralen neokortikalen Regionen (Siegle et al., 2006). Das intensivierte Aktivierungsverhalten im rechten DLPFC / VLPFC reflektiert den pathologischen affektiven Zustand mit vorherrschend negativen Emotionen (Phillips et al. 2003; Mayberg et al., 2003). Die aufgrund einer Volumenreduktion möglicherweise gestörten synaptischen Verbindungen zwischen diesen Regionen und paralimbischen und subkortikalen Arealen (Amygdala, Hippocampus, Striatum, Hypothalamus) könnten zu einer gestörten Inhibitionsfähigkeit für pathologische emotionale, kognitive und behaviorale Reaktionen führen (Beauregard et al., 2006). Ein solches Defizit könnte zur Erklärung der emotionalen und kognitiven Reaktionen auf Stressoren bei Depressiven beitragen (Drevets et al., 2001). Die verminderte Deaktivierung in ventralen/medialen Teil des Netzwerkes (VMPFC, ACC) verdeutlicht ebenfalls die Entstehung pathologischer emotionaler Zustände und erweitert die Ergebnisse von PET- Ruheaktivitätsstudien (Mayberg, 2002, 2003; Phillipps et al., 2003; Dunn et al., 2004) und fMRI Studien (Davidson et al., 2003; Elliott et al., 2002; Mayberg et al., 2000; Canli et al., 2004, 2005; Fu et al., 2004; Keedwell et al., 2005; Wagner et al., 2004), die eine gesteigerte Signalintensität in diesen Regionen zeigten.

Es war jedoch bisher nicht klar, ob diese eine gesteigerte Aktivierung oder eine verminderte Deaktivierung reflektierte. Die in der vorliegenden Untersuchung gezeigte, bei emotionaler Verarbeitung reduzierte negative HRF könnte durch eine erhöhte Ruheaktivität in diesen Regionen begründet sein oder unabhängig von einer möglicherweise veränderten Ruheaktivität auftreten. Eine kombinierte fMRI/PET- Studie könnte zeigen, ob die verminderte Deaktivierung eine abnorm gesteigerte Ruheaktivität oder eine reduzierte negative HRF bei der emotionalen Verarbeitung widerspiegelt.
Eine verminderte Deaktivierung in ventralen/medialen Regionen war bisher nur bei kognitiver Verarbeitung gezeigt worden (McKiernan et al., 2003, 2006; Raichle et al., 2001; Simpson et al., 2001; Shulman et al., 2002). Die vorliegende Untersuchung zeigt, dass eine verminderte Deaktivierung (negative HRF) in diesen Regionen nicht als spezifisch für die kognitive Verarbeitung angesehen werden kann, sondern auch durch die verschiedenen Komponenten emotionaler Verarbeitung (emotionale Wahrnehmung, emotionale Beurteilung) induziert wird. Da die stärker kognitiv gewichtete emotionale Beurteilung auch mit einer stärkeren Deaktivierung einhergeht, scheint die kognitive Gewichtung der entscheidende Faktor für die Ausprägung der negativen HRF zu sein. Dem ACC, in dem die vorliegende Studie ebenfalls ein verändertes Aktivierungsmuster mit vermindriger Deaktivierung zeigen konnte, wird im Netzwerkmodell eine Schnittstellenfunktion zwischen der ventralen/medialen und der dorsalen/lateralen Komponente zugesprochen. Frühere Befunde zeigen in dieser Region ein dysfunktionales Aktivierungsverhalten bei der Verarbeitung emotionaler Reize, eine allgemeine Blutflussminderung und Reduktion der grauen Substanz sowie eine reduzierte glutamaterge Neurotransmission (Braus et al., 2005). Es gibt Hinweise auf eine reziproke Inhibition zwischen affektiven und kognitiven Komponenten des ACC, die mit der verminderten medialen Deaktivierung und lateralen Aktivierung in Zusammenhang stehen könnten. Aufgrund seiner Schnittstellenfunktion könnte das veränderte Aktivierungsmuster im ACC aufzeigen, wie pathologische emotionale Zustände mit kognitiven Prozessen interferieren (Wagner et al., 2006). Die Tatsache, dass eine gesteigerte Aktivierung bzw. verminderte Deaktivierung in dieser Region z.T. mit einem positiven Behandlungsresponse in Verbindung gebracht wird (Kennedy et al., 2001), könnte reflektieren, dass eine gesteigerte Aktivierung in dieser Region dazu dient, die „depressive Dysbalance“ zwischen lateralen und medialen Regionen rückgängig zu machen.

Die Signalveränderungen des BOLD- Kontrastes Emotionale Beurteilung > Emotionale Wahrnehmung wurden mit der Fehleranzahl bei der IDR- und EDS-Komponente der IED korreliert, um Zusammenhänge zwischen exekutiven Funktionen und Aktivierungsmustern im präfrontalen Cortex aufzuzeigen. Die IED untersucht die Fähigkeit zum Wechsel des Aufmerksamkeitsfokus, die als Teilbereich der

153
Diskussion

exekutiven Funktionen anzusehen ist. In dieser Aufgabe zeigte die Patientengruppe deutliche Defizite sowohl bei der Reaktionsumkehr (IDR) als auch bei der Verlagerung der Aufmerksamkeit zwischen Wahrnehmungsdimensionen/ Stimuluskategorien (EDS). Reaktionsumkehr, die auch als Reversal Learning bezeichnet wird, erfordert die Fähigkeit, das Verhalten bei Veränderung der Verstärkerkontingenzen zu modifizieren. Die Reaktion auf einen ursprünglich belohnten Stimulus muss inhibiert werden, während auf einen ursprünglich irrelevanten Stimulus reagiert werden muss. Die Fähigkeit zur Reaktionsumkehr (IDR) wird mit Funktionen des ventralen/orbitofrontalen Cortex (VPFC, OFC), die extradimensionale Verschiebung (EDS) mit Funktionen des dorsolateralen präfrontalen Cortex (DLPFC) in Verbindung gebracht. In Läsionsstudien an Tieren zeigte sich eine doppelte Dissoziation dahingehend, dass DLPFC-Läsionen nur EDS, aber nicht IDR beeinträchtigen, während sich OFC/VPFC-Läsionen nur auf IDR, aber nicht auf EDS auswirken (Dias et al., 1996, 1997).

Hinsichtlich der extradimensionalen Komponente (EDS) fand sich in der Probandengruppe eine mit zunehmender Fehlerzahl gesteigerte Aktivierung in frontalen (rechter VLPFC und rechter OFC) und verminderte Aktivierung in subkortikalen...
Diskussion

Hinsichtlich der Assoziation der verschiedenen Regionen des präfrontalen Cortex mit den Komponenten der IED werden von Shafritz et al. (2005) ein dorsales Netzwerk, bestehend aus DLPFC, ACC und intraparietalem Sulcus sowie ein ventrales Netzwerk, das den VLPFC, ACC und das Striatum umfasst, diskutiert. Das dorsale Netzwerk wird bei der Reaktionsumkehr, das ventrale Netzwerk bei der Aufmerksamkeitsverschiebung aktiviert. Der DLPFC kontrolliert das Verhalten, indem er das gegenwärtige Stimulus-Reaktions-Muster repräsentiert (Cohen et al., 1997; Smith et al., 1999). Stimulus-Reaktions-Kontingenzen oder Antwortstrategien modifiziert (Huettel et al., 2004) und Reaktionen inhibiert. Das ACC stellt die Schnittstelle zwischen den beiden Netzwerken dar, indem es durch Konflikt- und Fehlerdetektion insbesondere dem DLPFC signalisiert, wann eine zusätzliche kognitive Kontrolle notwendig ist (Botvinick et al., 2001). Im ventralen Netzwerk kommt dem VLPFC die Aufgabe zu, das bisherige Stimulus-Reaktions-Muster zu inhibieren, so dass eine Verschiebung der Aufmerksamkeit möglich wird (Konishi et al., 1999; Smith et al., 2004). Die sowohl inhibitorische als auch exzitatorische Rolle des Striatums bei der Initiation angemessener behavioraler Reaktionen (Alexander et al., 1986) ermöglicht die simultane Inhibition der nicht länger aufgabenrelevanten Reaktionen und die Ausführung der den Aufgaben angemessenen Verhaltensweisen. Die Annahme eines dorsalen und ventralen Netzwerkes wird durch Ergebnisse bei Parkinson-Patienten gestützt. Hier fand sich ein positiver L-Dopa-Effekt auf die EDS-Komponente, der vermutlich eine Normalisierung der Dopamin-Konzentration im dorsalen fronto-striatalen Netzwerk reflektiert. Im ventralen fronto-striatalen Netzwerk, das bei leichtem M. Parkinson noch nicht betroffen ist, führt die L-Dopa-Gabe zu einer übermässigen Erhöhung der Dopamin-Konzentration, was wiederum den negativen Effekt auf die IDR-Komponente er-
Diskussion

klären könnte (Cools et al., 2006). In anderen Modellen (Nagahama et al., 2001) wird ebenfalls eine hierarchische Organisation des Aufmerksamkeitswechsels mit einer spezifischen DLPFC- Aktivierung bei EDS beschrieben. Der VLPFC soll sowohl durch einen Aufmerksamkeitswechsel geringerer Komplexität, der lediglich eine Reorganisation der Stimulus-Reaktions-Assoziation erfordert (IDR), als auch durch EDS aktiviert werden. Aufgrund dieser unspezifischen Aktivierung wird vermutet, dass die Zunahme der Signalintensität eher Arbeitsgedächtnisleistungen reflektiert, die beiden Aufmerksamkeitskomponenten zugrunde liegen. Es wird auch diskutiert, dass sowohl VLPFC als auch DLPFC gleichermaßen zur Reaktionsumkehr und zur Aufmerksamkeitsverschiebung beitragen und es somit innerhalb des präfrontalen Cortex keine funktionell distinkten Regionen gibt (Duncan et al., 2000; Cools et al., 2004).

Zusammenfassung und Ausblick

Die untersuchten unmedizierten Patienten zeigten entgegen der Hypothese nicht in allen untersuchten kognitiven Funktionsbereichen Defizite. Während die visuell-räumliche Lern- und Merkfähigkeit, die längerfristige Aufmerksamkeit, die exekutiven Funktionen sowie die Informationsverarbeitungsgeschwindigkeit klinisch relevant beeinträchtigt erscheinen, zeigten sich hinsichtlich der Arbeitsgedächtnisleistungen und des Entscheidungsverhaltens keine Defizite. Es fanden sich ebenfalls keine Zusammenhänge zwischen dem Ausmass der kognitiven Defizite und dem Schweregrad der Depression. Das Alter war entsprechend der Hypothese mit verminderten Testleistungen in einigen Leistungsbereichen korreliert, jedoch muss hinsichtlich der psychomotorischen Geschwindigkeit der Annahme eines alterskorrelierten Phänomens (Purcell et al., 1997) widersprochen werden. Die angenommenen stimmungskongruenten Verzerrungen in der Informationsverarbeitung mit einem Bias für negative Informationen (Watkins, 1996; Murphy et al., 1999; Dunn et al., 2004; Erickson et al., 2005) und längeren Reaktionszeiten bei positiven Stimuli sowie unbeeinträchtigten oder sogar verkürzten Reaktionszeiten bei negativen Stimuli konnten nicht bestätigt werden. Zwar beurteilte die Patientengruppe die positiven Bilder signifikant weniger positiv, jedoch wurden die negativen Bilder signifikant positiver als in der Probandengruppe beurteilt. Es wird vermutet, dass negative Darstellungen in Bezug auf den eigenen gegenwärtigen Zustand beurteilt werden und sich somit das Bewertungssystem für negative Inhalte verschoben hat. Die valenzunspezifisch erhöhte Reaktionszeit bei den Patienten spricht ebenfalls gegen eine stimmungskongruent verzerrte Informationsverarbeitung und weist eher auf eine generelle kognitive Verlangsamung bei Depressiven hin (Christensen et al., 1997; Tsourtos et al., 2002; Den Hartog et al., 2003; Hammar, 2003). Die postulierte abnorme reziproke Modulation zwischen medialen (VMPFC, ACC) und lateralen (DLPFC, VLPFC) präfrontalen Regionen während verschiedener Aspekte emotionaler Verarbeitung konnte bestätigt werden. Die Signalveränderungen, die in medialen und lateralen präfrontalen Regionen auftreten, unterscheiden sich nicht signifikant zwischen emotionaler Wahrnehmung und emotionalen Beurteilungen. Die in früheren Studien bei Depressiven gezeigte Hyperaktivierung in VMPFC/ACC (Canli et al., 2004; Lawrence et al., 2004; Surguladze et al.,
2005) stellte sich in unseren Analysen als eine verminderte Deaktivierung dar. Das bekannte Phänomen der bei depressiven Patienten verminderten Aktivierung im linken DLPFC und gesteigerten Aktivierung im rechten DLPFC (Phillips et al., 2003; Mayberg, 2003), konnte spezifiziert werden, indem gezeigt wurde, dass diese Aktivierungsmuster mit der kognitiven Komponente der emotionalen Verarbeitung (Emotionale Beurteilung) assoziiert sind, während sich die Signalintensität bei emotionaler Wahrnehmung nicht zwischen den Gruppen unterscheidet. Die veränderten Aktivierungsmuster im ACC und rechten DLPFC korrelieren wie vermutet mit dem Schweregrad der Depression, was Theorien bestätigt, die den rechten präfrontalen Cortex mit negativen Emotionen (Davidson et al., 1999; Murphy et al., 2003; Wager et al., 2003) und das anteriore Cingulum mit der Induktion negativer und positiver Affekte (Teasdale et al., 1999) assoziieren. Insgesamt unterstützen die Befunde das Netzwerkmodell der Depression von Mayberg et al. (1997, 2003). Die hier postulierte, und auch in der vorliegenden Untersuchung nachgewiesene, (links)dorsolaterale präfrontale Funktionsstörung depressiver Patienten steht in gutem Einklang mit den kognitiven Defiziten insbesondere im Bereich der visuell-räumlichen Gedächtnisleistungen, der Fähigkeit zur Fokussierung der Aufmerksamkeit sowie der exekutiven Funktionen. Das veränderte Aktivierungsmuster im ventralen/medialen Teil des Netzwerkes (VMPFC, ACC) verdeutlicht ebenfalls die Entstehung pathologischer emotionaler Zustände und erweitert die Ergebnisse von PET- Ruheaktivitätsstudien (Mayberg, 2002, 2003; Phillipps et al., 2003; Dunn et al., 2004) und fMRI Studien (Davidson et al., 2003; Elliott et al., 2002; Mayberg et al., 2000; Canli et al., 2004, 2005; Fu et al., 2004; Keedwell et al., 2005; Wagner et al., 2004), indem die bisher berichtete gesteigerte Signalintensität in diesen Regionen als eine verminderte Deaktivierung identifiziert wurde. Während eine verminderte Deaktivierung in ventralen/medialen Regionen bisher nur bei kognitiver Verarbeitung gezeigt worden war (McKiernan et al., 2003, 2006; Raichle et al., 2001; Simpson et al., 2001; Shulman et al., 2002) verdeutlicht die vorliegende Untersuchung, dass diese nicht als spezifisch für die kognitive Verarbeitung angesehen werden kann, sondern auch durch die verschiedenen Komponenten emotionaler Verarbeitung (emotionale Wahrnehmung, emotionale Beurteilung) induziert wird. Um zu untersuchen, ob die in dieser Studie gezeigte verminderte mediale
Deaktivierung eine erhöhte Ruheaktivität oder eine reduzierte negative HRF bei emotionaler Verarbeitung widerspiegelt, sollte eine kombinierte fMRI/PET-Studie durchgeführt werden. Hinsichtlich des postulierten Zusammenhangs von präfrontalen Aktivierungsmustern und exekutiven Funktionen (Reaktionsumkehr, Fähigkeit zur Verlagerung der Aufmerksamkeit) zeigte sich zwischen medialen und lateralen Regionen eine Dissoziation dahingehend, dass verstärkte Aktivierung in medialen Arealen (ACC, DMPFC) bei den Probanden mit einer verbesserten Reaktionsumkehr einhergeht, während die Patienten eine Verschlechterung der Leistungen zeigen bzw. diese Regionen erst für die Aufmerksamkeitsverschiebung relevant werden. Aktivität in lateralen Regionen (DLPFC, VLPFC) korrelierte bei den Probanden mit einer beeinträchtigten Reaktionsumkehr und Aufmerksamkeitsverschiebung, verbesserte bei den Patienten jedoch die Reaktionsumkehr. Um die Rolle der von Gesunden und Depressiven unterschiedlich aktivierten medialen und lateralen Netzwerke zu untersuchen, sollten depressive Patienten während der Durchführung der IED mittels fMRI untersucht werden.

5.4 Methodische Aspekte

Erkrankungsformen, auf ältere Patienten sowie auf Patienten mit depressiver Erkran-
derung generalisiert werden. (4) Die Altersunterschiede zwischen Patienten-
und Kontrollgruppe waren zwar nicht signifikant, trotzdem besteht ein Trend zu ei-
nem höheren Alter in der Patientengruppe und ein Einfluss des Alters auf die Er-
gebnisse kann nicht ausgeschlossen werden. (5) Eine wash-out-Phase von einer
Woche ist vermutlich nicht lang genug, um alle Medikamentenwirkungen aussch-
liessen zu können. Weiterführende Studien sollten längere wash-out-Phasen be-
rücksichtigen bzw. Antidepressiva-naive Patienten untersuchen. (6) Das fMRI-
Paradigma enthielt keine nicht-emotionale Kontrollbedingung (neutrale IAPS-
 Bilder), da der Fokus der Arbeit auf der Untersuchung von emotionaler Beurteilung
und emotionaler Wahrnehmung lag und nicht auf dem Vergleich von Aktivierungs-
mustern, die mit emotionalen bzw. neutralen Stimuli assoziiert sind. Neutrale Bil-
der weisen eine geringere Intensität auf als emotionale Bilder, so dass dieser In-
tensitätsunterschied vermutlich den Vergleich zwischen emotionaler Beurteilung
und emotionaler Wahrnehmung beeinflusst hätte. (7) Die Valenz des eingesetzten
Bildmaterials wurde lediglich in einer explorativen Analyse berücksichtigt, da der
Fokus der Studie auf der Untersuchung der verschiedenen Komponenten emo-
tionaler Verarbeitung lag. Da sich weder hier noch bei der Auswertung der behavi-
oralen Daten valenzspezifische Effekte zeigten, wurde auf weitergehende Analysen
verzichtet. (8) Bei der Bedingung „Emotionale Wahrnehmung“ kann nicht voll-
ständig ausgeschlossen werden, dass die Bilder ebenfalls (unbewusst) beurteilt
werden. Obwohl wahrscheinlich aufgrund der Aufgabenstellung und -instruktion
eine explizite Beurteilung der Bilder verhindert wurde, ist es wohl nicht möglich,
implizite, unbewusste kognitive Tätigkeit im Sinne einer Beurteilung komplett zu
unterbinden. (9) Die Baseline-Bedingung bestand aus der Darbietung eines Fixa-
tionskreuzes, das visuelle und kognitive Prozesse induzieren könnte. Insofern
muss unsere Baseline-Bedingung klar von einer tatsächlichen Ruheaktivität unter-
schieden werden. (10) Bei der emotionalen Verarbeitung, die als multidimensiona-
les Konstrukt angenommen wird, werden durch die Darbietung emotionaler Stimuli
vermutlich auch Gedächtnisprozesse induziert. Der Abruf autobiographischer Ge-
dächtnisinhalte wurde mit dem posterioren Cingulum und angrenzenden Arealen
wie dem Retrosplenium und dem Precuneus in Verbindung gebracht (Maddock et
6 Literaturverzeichnis

American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders.

Colla, M., Kronenberg, G., Deuschle, M., Meichel, K., Hagen, T., Bohrer, M. &

Degl'Innocenti, A., Agren, H. & Backman, L. (1998). Executive deficits in major de-

Deijen, J.B., Orlebeke, J.F. & Rijsdijk, F.V. (1993). Effect of depression on psycho-
motor skills, eye movements and recognition-memory. Journal of Affective
Disorders 33-40.

Cognitive functioning in young and middle-aged unmedicated out-patients
with major depression: testing the effort and cognitive speed hypotheses.
Psychol Med 33, 1443-1451.

Deuschle, M. & Lederbogen, F. (2002). Depression und koronare
Herzerkrankung: pathogenetische Faktoren vor dem Hintergrund des

Dias, R., Robbins, T.W. & Roberts, A.C. (1996). Dissociation in prefrontal cortex of

control within prefrontal cortex with an analog of the Wisconsin Card Sort
Test: restriction to novel situations and independence from "on-line" pro-

portant for treatment mechanisms. Psychopharmacol Bull. 28, 261-274.

Drevets, W.C., Price, J.L., Simpson, J.R., Todd, R.D., Reich, T., Vannier, M. &
Raichle, M.E. (1997). Subgenual prefrontal cortex abnormalities in mood

atry 48, 813-829.

Drevets, W.C. (2001). Neuroimaging and neuropathological studies of depression:
implications for the cognitive-emotional features of mood disorders. Current
Opinion in Neurobiology 11, 240-249.

Duncan, J. & Owen, A.M. (2000). Common regions of the human frontal lobe re-
cruited by diverse cognitive demands. Trends in Neurosciences 23, 475-

Multisubject fMRI studies and conjunction analyses. NeuroImage 10, 385-396.

Goldapple, K., Segal, Z., Garson, C., Lau, M., Bieling, P., Kennedy, S. & Mayberg,

schen Psychologie, H. Reinecker, ed. (Göttingen: Hogrefe-Verlag), 207-
248.

Brain glucose metabolism during non-rapid eye movement sleep in major
depression. A positron emission tomography study. Arch Gen Psychiatry
53, 645-652.

Holsboer, F. (2001). Stress, hypercortisolism and corticosteroid receptors in de-

Huettel, S.A. & Misiurek, J. (2004). Modulation of prefrontal cortex activity by in-
formation toward a decision rule. Neuroreport 15, 1883-1886.

Ichimiya, T., Suhara, T., Sudo, Y., Okubo, Y., Nakayama, K., Nankai, M., Inoue,
transporter binding in patients with mood disorders: a PET study with

Iosifescu, D.V., Renshaw, P.F., Lyoo, I.K., Lee, H.K., Perli, R.H., Papakostas, G.I.,
Nierenberg, A.A. & Fava, M. (2006). Brain white-matter hyperintensities and
treatment outcome in major depressive disorder. Br J Psychiatry 188, 180-
185.

nen. In Klinische Neuropsychologie, Hartje W. & Poeck K. (Stuttgart: Thie-
me).

(2005). The Neural Correlates of Anhedonia in Major Depressive Disorder.
Biological Psychiatry 58, 843-853.

(2005). A Double Dissociation of Ventromedial Prefrontal Cortical Re-
sponses to Sad and Happy Stimuli in Depressed and Healthy Individuals.
Biological Psychiatry 58, 495-503.

neuroimaging in mood disorders: positron emission tomography and de-

Lang, P.J., Bradley, M.M. & Cuthbert, B.N. (1999). International Affective Picture System (IAPS). The Center for Research in Psychophysiology, University of
Florida.
Lawrence, N.S., Williams, A.M., Surguladze, S., Giampietro, V., Brammer, M.J.,
ventral prefrontal cortical neural responses to facial expressions distinguish
patients with bipolar disorder and major depression. Biological Psychiatry
55, 578-587.
& Krishnan, K.R.R. (2003). Subcortical lesion severity and orbitofrontal cor-
tex volume in geriatric depression. Biological Psychiatry 54, 529-533.
spitta).
Lenze, E., Cross, D., McKeel, D., Neuman, R.J. & Sheline, Y.I. (1999). White Mat-
ter Hyperintensities and Gray Matter Lesions in Physically Healthy De-
Leppanen, J.M. (2006). Emotional information processing in mood disorders: a re-
view of behavioral and neuroimaging findings. Curr Opin Psychiatry 19, 34-
39.
of depression, Friedman R.J., and Katz M.M., eds. (Washington DC: Win-
ston: Wiley.).
Press).
asymmetries in depression and anxiety: a reaction-time study. Biol Psychi-
atriy. 29, 887-899.
masking Disease-Specific Cerebral Blood Flow Abnormalities: Mood Chal-
lenge in Patients With Remitted Unipolar Depression. Am J Psychiatry 159,
1830-1840.
Lou, H.C., Luber, B., Crupain, M., Keenan, J.P., Nowak, M., Kjaer, T.W., Sackeim,

Affected by Major Depression and under Fluvoxamine Treatment. Neuropsychobiology 37, 124-129.

Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Oyanagi, C.,

frontal cortex in mood disorders. PNAS 95, 13290-13295.

Sanacora, G., Mason, G.F., Rothman, D.L., Hyder, F., Ciarcia, J.J., Ostroff, R.B.,

Tsourtos, G., Thompson, J.C. & Stough, C. (2002). Evidence of an early informa-
tion processing speed deficit in unipolar major depression. Psychol Med 32, 259-265.

7 Curriculum Vitae

Zur Person

Name: Simone Grimm
Geburtsdatum: 5. Dezember 1973
Geburtsort: Hagenow
Familienstand: ledig
Wohnort: Witellikerstr. 22/ 204
 CH- 8008 Zürich

Schulbildung

1980-1990 POS Hagenow
1990-1991 Gymnasium Boizenburg
1991-1992 Sierra High School, Tollhouse, CA, USA
1992- 1993 Gymnasium Hagenow

Studium

1993- 1994 Archäologiestudium an der Universität Rostock
1994- 1999 Psychologiestudium an der Humboldt-Universität Berlin

Berufspraxis

1999- 2002 Psychologin in der Abteilung für Neurologie der BBK Bernau
2002- heute Wissenschaftliche Mitarbeiterin an der Psychiatrischen Universitäts-
 klinik Zürich
Publikationen

Grimm S., Beck J., Schuepbach D., Hell D., Boesiger P., Niehaus L., Boeker H., Northoff G. (submitted) *Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgement. An fMRI study in severe major depressive disorder.*

Präsentationen

Grimm S. (2005) Abnormal emotional expectancy and prefrontal dysfunction in depression - an fMRI study. Association of European Psychiatry (AEP), München