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A  B  S  T  R  A  C  T 

 
 
Astrocytes, once considered as merely supporting cells in the brain by only assisting 

neuronal functions are now implicated to play crucial roles in neuronal migration, 

establishment and maturation of synaptic contacts during early development. 

Relatively, only few reports have shown the impact of the neonatal environment on 

glial plasticity in higher associative brain regions as the medial prefrontal cortex 

(mPFC) that process, integrate and evaluate memories of learning and experiences. 

The present work tests the hypothesis if glial plasticity is affected by neonatal 

separation that altered the neuronal spine density of the mPFC in our previous 

findings. Neonatal separation was applied during the first three postnatal weeks, a 

critical period for synaptic plasticity in rodents. The expressions of two astrocytic 

markers, S100ß and GFAP (glial fibrillary acidic protein) were used to determine the 

impact of acute and repeated separation on five experimental groups of Octodon 

degus: 1) control, n=5 (CON): undisturbed in the home cage with parents and 

siblings from postnatal day (PND) 1-21; 2) acute separation+short reunion, n=6 

(Group 2): 6 hr separation from parents and siblings on PND 21, returned to the 

home cage for 1 hr; 3)  acute separation+extended reunion, n=4 (Group 3): 6 hr 

separation from parents and siblings on PND 19, returned to the home cage until 

PND 21; 4) repeated separation+short reunion, n=6 (Group 4): 1 hr/day separation 

from parents and siblings on from PND 1-21, returned to the home cage for 1 hr 

after the last separation; 5) repeated separation+extended reunion, n=4 (Group 5): 1 

hr/day separation from parents and siblings on PND 1-14, returned to the home 

cage from PND 14-21. The density of S100ß-IR and GFAP-IR astrocytes was 

quantified in the subregions of mPFC including anterior cingulate (ACd), precentral 

medial (PrCm), prelimbic (PL) and infralimbic (IL) cortices. The somatosensory 

cortex (SSC) was used as a nonlimbic control region.  

 

Both acute and repeated neonatal separation altered the density of S100ß-IR and 

GFAP-IR astrocytes in the mPFC showing increases in density of S100ß-IR 
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astrocytes in a region and layer-specific manner but decreases in density of GFAP-

IR counterparts. Acute separation stress affected both the density and morphology 

of S100ß-IR and GFAP-IR astrocytes in the mPFC but repeated separation stress 

affected only the density but not the morphology of astrocytes. Extended reunion 

restored the branching complexity of GFAP-IR astrocytes similar to controls after 

acute separation stress but reduced the branching complexity after repeated 

separation stress. In the SSC, acute separation stress did not affect the S100ß-IR 

astrocytes but increased the GFAP-IR counterparts. Repeated separation+extended 

reunion increased the density of S100ß-IR astrocytes tremendously as well as the 

GFAP-IR counterparts.  

 

Taking these findings together, the stress-induced alterations may have 

consequences in neuron-glia interaction thereby affecting the participation of 

astrocytes in modulating the synaptic plasticity particularly during the early period of 

postnatal development. These findings also provide evidence of uniqueness in 

spatial and temporal specificity of glial response towards a particular environmental 

stimulation.  
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Hippocampus 
atrophy 

Prefrontal 
cortex 
atrophy 

Amygdala 
hypertrophy 
then atrophy 

Fig. 1.2 Limbic regions that are involved 
in perception and response to stress.  
(McEwen, 2006) 

1.1 The dual nature of stress. In any given day, an individual is faced with 

overcoming various challenges that inevitably brings about a number of 

physiological changes. These changes have been generally identified as the stress 

response which was first described by Hans Selye in the 1930s. Selye pointed out 

that the body manifests an integrated set of responses in an effort to adapt and cope 

with stressors. The stress response, or simply stress, facilitates the motor execution 

of a behavioral response appropriate to the situation such as the fight or flight 

response in times of danger. Information from the external environment and the 

internal state or drive of an organism is finally integrated in the central nervous 

system (CNS), specifically in the brain. This defines the brain as the key organ of 

stress since it interprets what is threatening and stressful and therefore it also 

determines the physiological and behavioral responses (see review by McEwen, 

2006). Adrenocorticotropic hormone (ACTH), the major stress hormone from the 

pituitary gland stimulates production of glucocorticoids from the adrenal cortex that 

triggers release of pro- and anti-inflammatory cytokines to cope with stress but at 

the same time the chronic increase of these mediators may have long-term adverse 

effects.  

Exposure to stress is not always detrimental but 

in fact can enhance performance. The overall 

effects of stress on the individual may be 

determined by the amount of exposure to the 

stressors. Short term exposure produces adaptive 

changes such as inhibition of inflammation, 

resistance to infection and even memory 

enhancement. Long term exposure however, can 

bring about maladaptive changes such as 

enlargement of adrenal glands (Pinel, 2007).  

1.2 Impact of stress on limbic regions. It has been postulated that the brain 

regions including the prefrontal cortex (PFC), amygdala and hippocampus respond 

to stress by structural remodeling to protect against permanent damage (McEwen, 

2006). For example, chronic stress induces atrophy in the rat PFC (Radley et al., 
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2006; 2005; Cook and Wellman, 2004) but on the other hand produces dendritic 

proliferation in neurons of the basolateral amygdala as well as in the orbitofrontal 

cortex (Vyas et al., 2002). In the hippocampus, acute stress increases spine synapses 

in the CA1 region (Shors et al., 2001) whereas chronic stress induces dendritic 

shortening (Pawlak et al., 2005) that occurs as well in the PFC due to neuronal death 

(Radley et al., 2006; Cook and Wellman, 2004) (Fig. 1.2). In the basolateral 

amygdala, both acute and chronic stress increase synapse formation (Mitra et al., 

2005). The behavioral correlates of these observations were proposed to increase 

unlearned fear and conditioning and impairment of attention stability (Vyas et al., 

2002).  

1.3 The medial prefrontal cortex (mPFC) as a limbic region. It is widely 

accepted that PFC is a brain region involved in higher-order cognition including 

executive functions, memory, and socio-emotional processes which is important in 

processing, evaluating, and filtering (inhibiting) social and emotional information 

(Heilman and Gilmore, 1998). This region is most elaborated and the largest in 

primates and is proposed to inflexible which does not automatically orient to a 

novel stimuli (Miller and Cohen, 2001). The major subdivisions of PFC include: a) 

orbitofrontal which is proposed to the enhance motivations by smell, taste touch 

(Rolls, 2004); b) dorsolateral that processes sense of navigation or spatial 

information, evaluation and verification of experiences (Rugg et al., 1998); and c) 

medial prefrontal which is involved in judgement and selection (review by Petrides, 

2000) as well as emotional learning processes. While the dorsolateral PFC has 

connections with the structures in the motor areas in the frontal lobe (Lu et al., 

1994), the orbital and the medial PFC and associated with the limbic structures 

including hippocampus and amygdala and hypothalamus that process emotions and 

motivation (Barbas and Pandya, 1989).  

Limbic, from a Latin word limbus for border was first used by Willis in 1667 to 

describe the area around the brainstem, Broca  in 1878 added more areas including 

cingulate gyrus, parahippocampal and hippocampal formation. One of the major 

pathways in the limbic system that is involved in the cortical control of emotion is 

the papez circuit. Papez proposed that emotions develop in hippocampus, 
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Fig. 1.3B. Schematic drawing of 
a coronal section of the rat PFC,  
AP +2.7mm from bregma. SSC 
= somatosensory cortex,  
PrCm = precentral Medial, 
ACd= anterior cingulate dorsal,  
PrL = prelimbic, IL = 
infralimbic. 

transmitted to the mammiliary bodies, anterior nuclei of the thalamus and the 

cingulate cortex, is the reception area for emotional impulses (Fig. 1.3A). MacLean  

in 1970 emphasized that limbic system in 

mammals are more complex than lower 

animals, thus more structures were added 

in the model including amygdala, 

thalamic nuclei and mammillo-thalamic 

tract to mention few of them. Nauta and 

Domenick in 1980’s added more 

structures to the circuit called the 

mesolimbic system composing of the 

posterior orbitofrontal cortex, nucleus 

accumbens, ventral tegmental area, raphe 

nuclei, and the locus coeruleus as some 

of them (Heilman and Gilmore, 1998).  

The most prominent cytoarchitecture of rat prefrontal cortex is the absence of layer 

IV thereby is composed exclusively of agranular cortical areas. Most of the fibers in 

the rat PFC come from the cortex including somatosensory and limbic cortical areas 

similar to monkeys (Barbas, 1992). The medial prefrontal cortex is divided into 

anterior cingulate (ACd), medial precentral (PrCm), 

prelimbic (PL) and infralimbic (IL) (Krettek and Price, 

1977). (Fig. 1.3B). The IL projects strongly to the shell of 

the nucleus accumbens, while the prelimbic area projects 

to the core of nucleus accumbens (Ongür and Price, 

2000). In rodents, the anterior cingulate cortex is involved 

in communication and interaction between the pups and 

the dam. The mPFC along with the OFC networks 

project extensively to the limbic structures, e.g. the mPFC 

to the ventromedial caudate and putamen. Studies in 

monkeys and humans showed connections between 

mPFC and amygdala suggesting that these areas are 

Fig. 1.3A. Schematic illustration of a midsagittal view 
of a human brain. The limbic system includes, but 
not limited to  the fornix, septal nuclei, mammillary 
body, amygdala, hipocampus and the cingulate gyrus. 
Neural substrates may vary depending on the source 
being referenced. 
http://web.lemoyne.edu/~hevern/psy340/graphics/
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closely connected in anxiety-like responses (Ghashghaei et al., 2002). In fMRI study, 

patients with chronic PTSD after being presented by fearful and happy faces facial 

expression showed inversely proportional cerebral blood flow between mPFC and 

amygdala (Shin et al., 2005). As the cerebral blood in the mPFC decreased, it 

increased in amydala. Furthermore, PTSD patients also showed reduced volume of 

the anterior cingulate. Anterior cingulate receives input from hippocampus, 

infralimbic cortex and also basolateral amygdala (Carr and Sesack, 1996, Hurley et 

al., 1991; Bacon et al., 1996). On the other hand, the prelimbic (PL) projects 

extensively to the striatum, while the infralimbic (IL) part projects to the restricted 

portions of the shell and core of nucleus accumbens (Acb) (Nakano et al., 1999). It 

has also been suggested that PL and IL of the mPFC are the autonomic motor areas 

due to their connections with most central autonomic nuclei including the spinal 

cord (Azuma and Chiba, 1995). Histological and imaging studies on human brains 

showed that clinical depressive disorders are associated with specific functional and 

cellular changes in the mPFC including activity and volume changes and in the 

number of glial cells (Ongür and Price, 2000). 

1.4 Impact of early emotional experience on development. Early postnatal 

experience has a dramatic and lasting impact on the shaping of the individual’s 

behavior at adolescence and adulthood. While genes rule before birth, starting at 

birth onwards, the environment takes over and shapes the sensory, motor systems 

and emotions of an individual and carves his adult life (Sullivan et al., 2000; 

Morriceau and Sullivan, 2006). The earliest external environment that manipulates 

the infant’s physiological responses is the parent, particularly the mother. This very 

first emotional learning event called filial printing or formation of bond to a mother 

or caregiver which when disturbed will later result in adult deficiencies including 

deficits in speech behavior, intellectual and social incapacities (Skeels, 1966). It has 

been shown that childhood emotional trauma is predominantly associated with 

higher prevalence of both mood and anxiety disorders, particularly depression and 

post traumatic stress disorder (PTSD) (Maughan and McCarthy 1997; Post et al. 

2001). One of the earliest studies on infant monkeys that underwent one or two 6-

day separations from the mother at 30 or 32 weeks of age had less explorative 
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capacity and less likely to approach strange objects years later (Hinde and Mcginnis 

1977). In humans, Gilmer and McKinney (2003) showed correlation between 

separation from or the loss of one or both parents and the chance of developing 

affective disorders and the separation from parents due to divorce has more impact 

than parental death. Maternal loss at or before 11 of age is a vulnerability factor and 

increased the risk of later depression (Harris et al., 1986; Brown, 1988). In a variety 

of animal models it has also been shown that neonatal emotional experience 

interferes with the establishment and maintenance of neuronal networks by leaving 

a footprint that carves the limbic synaptic wiring patterns throughout life (Sullivan 

et al., 2006). In rodents, the first two weeks of life are a critical period for neuronal 

development particularly in rats. The lasting impact of neonatal experiences may be 

due to neuroanatomical and neurochemical changes of limbic circuits in response to 

the emotional environment (Hall, 1998). In particular, social isolation of the 

developing neonate can have long-term consequences for adulthood, including 

alterations of learning and memory, eating, anxiety behaviors, and immune system 

(Boccia and Pedersenn, 2001; Francis et al., 1999). For example, 3 hr or longer 

duration of maternal separation increases stressor reactivity adulthood, including 

increased anxiety-like behavior (Neumann et al., 2005). Stressed neonatal rats 

showed poor avoidance learning in adulthood indicating that coping response is 

compromised (Tsoory and Richter-Levin, 2006). The acoustic communication with 

the mother`s voice is a strong emotional stimulus against separation induced-

upregulation of N-methyl-D-aspartate (NMDA) receptors (Ziabreva et al., 2003). It 

was also observed that postnatal handling as short as 15 min is not stressful and 

dampens HPA responsivity as well as lessens anxiety-like behavior. Social isolation 

between during the first three weeks of life altered spatial learning in juvenile and 

adult rats (Frisone et al., 2002). Maternal separation enhanced synaptic connections 

in the PFC and hippocampus of preweaning rodents (Helmeke et al., 2001; 

Ovtscharoff and Braun, 2001; Bock et al., 2005). Cell damage was observed in the 

CA3 of the hippocampus at four days post-stress of restraint stress, CA3 pyramidal 

neurons decreased in apical dendrite and total dendritic length (Conrad et al., 1999). 

Degus raised without a father have reduced spine densities than biparentally-raised 

counterparts (Ovtscharoff et al., 2006). On the neurochemical level, neonatal 
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Fig. 1.5A. The astrocyte

separation induces changes in catecholaminergic fibers in rat limbic system (Holson 

et al., 1991), activates HPA axis in degus (Gruss et al., 2006) and modulates 

monoaminergic systems both in neonates and adult tree shrews (Fuchs and Flugge, 

2002). Socially-isolated rats show decrease in dopamine metabolites (Miura et al., 

2002). These observations show that early emotional experience shapes the synaptic 

plasticity within the limbic system.  

1.5 Astrocytes, the indispensable partner in tripartite synapse. Besides the 

neuron, the other type of cell in the nervous system is the glia which makes up 90% 

of the mammalian central nervous system. The name glia, a latin word for nerve 

glue, was coined by its discoverer, Rudolf Virchow (1856) but was first described 

and studied in length by Ramon y Cajal (1913), 

subsequently followed by del Rio Hortega (1928) and 

Penfield (1932) (Kettenman and Ransom, 1995). 

There are four types of glial cells (Fields & Stevens-

Graham, 2002): oligodendrocytes, Schwann cells, 

microglia and astrocytes. Oligodendrocytes are rich in 

myelin that forms the sheaths that wraps around the 

axons, thereby increasing the speed and efficiency of 

axonal conduction. Schwann cells perform a similar 

function but in the peripheral nervous system (PNS). 

However, unlike the oligodendrocytes, Schwann cells are able to guide axonal 

regeneration after injury, allowing effective cell recovery which so far, is exclusive to 

the PNS. Microglia cells are the vaccuum cleaners in the sense that they engulf 

cellular debris in response to injury and disease. Finally, astrocytes, as the name 

suggests, are star shaped cells whose armlike extensions end in bulbous swellings 

that cover the outer surfaces of blood vessels (Nishiyama et al., 2005). They have 

thick primary processes and smaller branching second processes, giving them a 

bushy appearance (Bushong et al., 2002) (Fig. 1.5A). They make contact with 

neurons, thus synapses are referred to as TRIPARTITE synapses (Halassa et al., 

2007, Araque et al., 1999), indicating that synaptic function is a homeostatic 

relationship between neurons and glial cells (Fig. 1.5B).  
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Astrocytes, popularly known as intimate partners of neurons in the so called 

tripartite synapse are considered as important as neurons in the maintenance of 

cerebral cortical architecture and physiology during the entire development. During 

the early development, astrocytes control the 

neuronal development by releasing gliotrophic and 

neurotrophic factors for neurite growth and 

extension of serotonergic neurons (review by 

Azmitia, 2002), for sculpting, or pruning the 

neurons and establishing synaptic networks in 

mammalian retinal ganglion cells (review by 

Freeman, 2006) and guiding migrating neurons in 

the cerebral cortex (Levitt and Rakic, 1980; 

Nadarajah, 2003). Astrocyte-derived synaptogenic 

factor, thrombospondin (Christopherson et al., 

2005) is increased during the early postnatal development when synapses form in 

large numbers but is significantly lower in adult brain. In the mature brain, 

astrocytes are active partners in synaptic functions. They release gliotransmitters that 

modulate or control synaptic transmission by acting on themselves or neuron 

partners (Reviews by Fellin et al., 2006; Volterra and Meldolesi, 2005; Allen and 

Barres 2005; Haydon, 2001; Vernadakis 1996). Astrocytes-derived glutamate binds 

to neuronal NMDA receptors (Pasti et al., 1997) or evokes Ca2+ waves within 

neighboring astrocytes and thereby further release of glial glutamate (Newman, 

2001) and depolarize groups of neurons resulting in synaptic activity. In the limbic 

system, ATP released by astrocytes stimulates hippocampal interneurons through 

P2Y1 receptors that enhanced synaptic activity in CA3 and CA1 (Bowser and 

Khakh, 2004), but when degraded to adenosine by extracellular ectonucleotidase, it 

triggers heterosynaptic depression thereby balances the synaptic network between 

excitation and depression (Fellin et al., 2006). Finally, to maintain the integrity of the 

brain, astrocytes are part of the blood-brain barrier that controls blood-CNS 

interface (review by Takahashi and Macdonald, 2004). In an injured brain, astrocytes 

respond to protect by forming a jacket around the damaged space which is called 

astrocytic scar (Hamill et al., 2005). 

Fig. I.5B. The tripartite synapse (Halassa et 
al., 2007) refers to the formation of 
synapse between the presynaptic neuron, 
the postsynaptic neuron and the astrocyte.
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1.6 Glial factors control of synaptic plasticity. For many years, astrocytes were 

treated as nursing or kitchen cells suggesting less functional significance for brain 

function (Haydon, 2001). But due to their consistent appearance particularly during 

development and development of neuropathological disorders, they tremendously 

caught the attention of neuroscientists in recent years. It has been demonstrated that 

the appearance of astrocytes coincides the time-window for neuronal plasticity 

indicating that neurons start to be functional only after the appearance of astrocytes 

(Pfrieger and Barres, 1997). In recent years, aside from neuropathological 

implications of astrocytes, the most interesting advances include their active 

participation in synaptogenesis during neuronal development via different soluble 

factors they produce (reviews by Turrigiano, 2006, Ullian et al., 2001; 2004). 

Astrocytes appear to control synaptic transmission which is favored by their 

strategic position, i.e. the processes of a single astrocyte may contact tens of 

thousands of synapses (review by Haydon and Carmignoto, 2006). For instance, 

thrombospondins are discovered as glial-derived factors that promote the formation of 

functional and stable synapses in retinal ganglion cells 7-fold indicating that 

astrocytes increase synapse number and synapse stability and maintenance 

(Christopherson et al., 2005). Glial cells also influences synaptic structure and 

sculpting by secreting cholesterol and imported by neurons to form synapses (Ullian et 

al., 2001). Ephrin A3, a protein expressed in astrocytes processes complemented 

with ephrin receptor ephA4 in neurons regulates spine shape by inhibiting spine 

extension (Murai et al., 2003). The removal of EphA4 enhances spine extension 

indicating that this receptor is required to maintain spine morphology. Interestingly, 

astrocytes have the same fundamental mechanisms as neurons. They express the 

same molecules as glutamate, ion channels and neurotransmitter receptors specific 

for glial-derived molecules and they also respond similar to neurons. However, glial 

Ca2+ signals propagate as calcium wave at rates of micrometers per second, while 

neuronal action potentials at metres per second (Haydon, 2001). 

1.7 S100ß, a multi-faceted glial factor. S100ß is one among the 20 members of 

S100 Ca2+-binding family of proteins which is exclusively found in vertebrates and 

most characterized than other members due to wide scope of biological function 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16816144&query_hl=4&itool=pubmed_docsum
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including cell motility, proliferation, inhibition of 

phosphorylation, transcription to mention a few. 

The name S100ß was given when by Moore 

(1965) when the protein was discovered to 

dissolve in 100% ammonium sulphate. They are 

small (Mr = 10kD) molecules that usually exist in 

dimers, each of which is flanked by alpha-helices 

for a total of four helices (Isobe et al., 1978), 

both the N and C terminal domains binds 

Ca2+ (review by Heizmann et al., 2002) (Fig. 

1.7A). S100ß is coined as a glial marker because 

it is localized in intermediate filaments (IFs), cytoplasmic microtubules (MTs), 

axonemal MTs and intracellular membranes in glial cells and several cell lines 

(review by Donato, 1999). However, it is expressed by few subpopulation of 

neurons and other cells in the peripheral nervous system including adipocytes, 

melanocytes, chondrocytes, oligodendrocytes and Schwann cells of the spinal cord 

(Garbuglia, et al., 1999). The S100ß gene is found on chromosome 21 and gene 

imbalance is a major contributor to the abnormalities of brain like Alzheimer’s 

Disease (AD) and Down Syndrome (DS) (Reeves et al., 1994). Placed on a strategic 

position along IFs and MTs, S100ß is designed to crossbridge and or take part in the 

regulation of the dynamics of cytoskeleton constituent by inhibiting GFAP (glial 

fibrillary protein) and desmin subunits, vimentin (Ziegler et al., 1998), GAP-43 (Lin 

et al., 1994) and microtubule-associated protein tau (Baudier and Cole, 1988). The 

binding of S100ß with the N-terminal (head) domain of GFAP blocks the head-to-

tail process of intermediate filament elongation and sequestration of IFs subunits 

(Fig. 1.7B) influencing the integrity of the cytoskeleton (Garbuglia et al., 1999), 

thereby defining the shape and morphology of the astrocyte. Double-

immunostaining showed that S100 immunoreactivity is mainly colocalized with 

GFAP in astrocytes and oligodendrocytes (Richter-Landsberg and Heirich, 1995).  

Cytoskeletal preparation from rat hippocampal astrocytes showed S100ß inhibits the 

in vitro phosphorylation of GFAP and of vimentin (Frizzo et al., 2004). It is 

suggested that S100ß plays a role in remodelling the cytoskeleton by avoiding excess 

Fig. 1.7A.  Schematic illustration of  S100B 
protein. 
(www.biochem.uwo.ca/fac/shaw/structures.html)  

http://www.biochem.uwo.ca/fac/shaw/structures.html
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Fig.1.7B. The schematic 
representation of S100B-GFAP 
interaction (Garbuglia et al., 
1999) 

IF assembly (Garbuglia et al., 1999). S100ß also binds to Zn2+ and zinc-binding 

increases S100ß affinity for Ca2+ and trigger a myriad of biological effects including 

cell motility, proliferation, transcription, regulation of nuclear kinase and neurite 

extension (review by Heizman, 2002; Fritz and Heizmann, 2004).  

 S100ß have actions that produce conflicting effects, that is, 

being both neurotrophic and neurotoxic. It is noted to be 

one of the most important trophic factors in the neuroplastic 

mechanisms of serotonergic neurons (Rothermundt et al., 

2003, review by Azmitia, 2007), and shown to act via an 

extracellular domain of the receptor for advanced glycation 

end products (RAGE) in neurons (Huttunen et al., 2000) and 

astrocytes (Ponath et al., 2007) and microglia (Bianchi et al. 

2007). On the other hand, it induces neuronal cell death 

when expressed in the extracellular space in high nanomolar 

or low micromolar levels by acting in cytokine-like manner 

that activates the astrocytes leading to the induction of 

inflammatory responses which is potentially detrimental (Hu and Van Eldik, 1996). 

For instance, glial activation leads to induction of pro-inflammatory cytokines 

including inteleukin-1ß (IL-1ß) and tumor necrosis factor alpha (TNF-∝) and stress-

related enzymes including nitric oxide synthase (iNOS) followed by production of 

nitric oxide (Hu et al., 1997).  

S100ß is a marker of both, immature and mature astrocytes (Tiu et al., 2000). It 

seems to imply that while S100ß serves as a neuronal growth factor during early 

development, it is a “gliotransmitter” that modulates synaptic plasticity in the 

mature brain. In vitro studies have shown that in high picolmolar levels, S100ß is a 

neurite extension factor during development by enhancing neuronal survival 

(Kligman and Marshak, 1985; Winningham-Major et al., 1989). In humans, S100ß 

appears during late gestation period and tends to increase during the postnatal 

period and remains stable for a lifetime. In rodents, the expression of astrocytic 

S100ß peaked at postnatal day 7 in the ventral posterior nucleus of the thalamus and 

in layer IV of the parietal cortex from postnatal 7-21 (Muneoka et al., 2003). In 

C C 

C C 

N N 
N N 

GFAP 

S100B 
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hippocampus, cerebral cortex and cerebellum, astrocytic S100ß content was found 

similar between the second and fourth postnatal weeks (Tramontina et al., 2002) and 

astrocytic S100ß from neonatal hippocampus and cerebral cortex were expressed at 

a slower rate than cerebellar ones (Pinto et al., 2000).  

S100ß plays an essential role for the maintenance of the synaptic network in the 

adult brain. It has been suggested that S100ß has an important role in modulating 

neuronal synaptic plasticity rather than in brain development (Reeves et al., 1994). 

For example, studies on transgenic mice which overexpressed the 100ß gene have 

enhanced generation of astrocytes or astrocytosis and axonal sprouting in the 

hippocampus indicating that increased expression in the brain has a positive effect 

on astrocytes and neurite proliferation. (Friend et al., 1992; Reeves et al., 1994). In 

adult cortex, lesion of serotonergic terminals decreased S100ß levels but treatment 

with 5-HT1A agonist reverted this loss and promoted recovery of the lesioned 

serotonin terminal (Yan et al., 1997; Haring et al., 1994). Thus, the decrease of 

serotonin levels in the adult rat may involve S100ß since it stabilizes microtubule 

proteins that are found in the dendrites (Meichsner et al., 1993). Treatment of 

unlesioned adult animals with a 5-HT1A agonist does not increase S100ß release or 

promote overgrowth of serotonin terminals, suggesting that this sequence of events 

is most robustly operative when the brain has been damaged (Haring et al., 1994). In 

vivo, mice with inactivated S100ß gene exhibited no avert abnormalities except for a 

higher sensitivity of cerebellar astrocytes to treatment with KCl or caffeine 

(Nishiyama et al., 2002) whereas in vitro the lack of S100ß resulted in decreased Ca2+-

handling capacity in astrocytes (Xiong et al., 2002). Recently, it was reported that 

increased glutamate in the synaptic cleft decrease the secretion of S100ß indicating 

excitotoxic damage (Tramontina et al., 2006).  

1.8 GFAP consists the fibrils of astrocytes. GFAP (glial fibrillary acidic protein) is 

a major intermediate filament (IF) protein in astrocyte that maintains shape and 

organization of cytoplasm (Herrmann and Aebi, 2004). In particular, it is important 

in the motility and shape of astrocyte and in providing structural stability to 

astrocytic processes. The IFs together with actin filaments and microtubules are the 

constituent of the cytoskeleton which provides the astrocytes their bushy 
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appearance. GFAP is a type III 8-9 nm intermediate filaments (IF) first discovered 

by Eng and colleagues in 1969 (Eng et al., 2000) in mature astrocytes. In humans, 65 

different IF proteins are presently identified (Herrmann and Aebi, 2004).  

The GFAP subunit consists of an N-terminal head, central rod and C-terminal tail 

domains (Fig. 1.8). The rod domain is composed of two helical regions separated by 

short, non-helical stretches. The N-terminal head is critical for filament elongation, 

whereas the C- terminal tail appears less critical (review by Inagaki et al., 1994). The 

central rod appears important for the lateral association of the subunits into dimers/ 

tetramers/octamers (Chou et al., 2007). Phosphorylation of the preformed GFAPs 

will result to their disassembly and phosphorylation of unassembled subunits make 

them incompetent to assemble. GFAP is the most common used marker along with 

vimentin for glial cells (Tiu et al. 2000). GFAP is recognized as a marker for mature 

astrocytes (Levitt and Rakic, 1980; Sarnat, 1992), while vimentin is present earlier in 

development in epithelial cells and radial glia indicating that it is expressed in the 

immature astrocytes (Sasaki et al., 1988). In the human brain, GFAP expression 

starts during late embryonic stages, increases to early postnatal period and declines 

in adulthood (Fox et al., 2004). GFAP progressively increase in the occipital and 

temporal cortices between 14-17 embryonic weeks, then decreased until 32 weeks 

before increasing again towards term (Tiu et al., 2000). In the rat cochlear nucleus, 

there is a progressive increase of GFAP-IR astrocytes, the expression becomes 

stable at one month (Burette et al., 1998). In monkey visual cortex, GFAP-IR 

astrocytes decrease postnatally until three months (Missler et al., 1994), while in cat 

Fig. I.8. Schematic illustration of the six subclasses of intermediate filament proteins, type I-VI. GFAP belongs to 
type III to which vimentin, desmin and alpha-internexin also belong. (Inagaki et al., 1994) 
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visual cortex, GFAP expression progresses from white matter on the first postnatal 

month and to the visual cortex area 17 and 18 at adulthood (Rochefort et al., 2005). 

Increased GFAP expression during the gestation period has also been documented 

in monkey (Levitt and Rakic, 1980) and fetal frontal lobe (Aquino et al., 1996, 

Honig et al., 1996) reflecting a pattern that GFAP increases as the astrocytes mature. 

Astrocytes in postnatal monkey frontal and temporal cortices were described to 

develop from displaying scarce and short processes at one month to abundant and 

extended processes at three years of age (Colombo and Bentham, 2006). GFAP is 

colocalized with two other glial cell markers, S100ß and glutamate transporter 1 

(GLT-1) both in the cell bodies and processes but not with other neurotransmitter 

markers including dopamine receptor 1 (DP1) or synaptophysin (Tiu et al., 2000).  

The expression of GFAP varies among astrocytes. For example, GFAP is expressed 

more abundantly in fibrous astrocytes within the white matter than in protoplasmic 

astrocytes located within the grey matter (review by Walz, 2000). Moreover, within a 

single astrocyte GFAP expression can also vary within different processes, i.e. 

astrocytic end-feet interacting with blood vessels or the pial surface have strong 

immunoreaction for GFAP, whereas the fine processes that enwrap the synapses or 

nodes of Ranvier are immunonegative for GFAP. The expression can be altered by 

environmental factors (see chapter 1.8). For instance, protoplasmic astrocytes 

located in the grey matter when they become reactive in response to neuronal 

damage (Vos et al., 2006; Swanson et al. 2004), they increase the expression of 

GFAP in the processes. Trauma, ischemia, infectious and neurological diseases and 

most recently, neurotoxicants including cadmium, trimehtyltin, ketamin, kainic acid, 

methylmercury transform microglia and astrocytes into activated phenotypes, a 

progressing event which is referred to as gliosis (O’Callaghan and Sriram, 2005). 

1.9 Impact of early experience on astrocytes. Little is known about the 

involvement of astrocytes in learning and experience-induced plasticity in the adult 

or developing prefrontal cortex. To our knowledge only one study described the 

influence of early emotional experience on glial development in a limbic region. 

Bredy et al. (2003) found increased GFAP expression in the hippocampus of rats 

reared by mothers which provided lower maternal care than ones with high maternal 
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care. Previous studies investigating learning/experience-induced aspects of glial 

development were restricted to sensory regions. Astrocytes in the rat visual cortex 

and cerebellum dramatically respond to challenging experiences and learning 

opportunities by displaying increased cell number (hyperplasia) and volume fraction 

(hypertrophy), increased surface density and proliferation of astrocytic processes 

(Szeligo and Leblond, 1977; Sirevaag and Greenough, 1987, 1991). In the rat visual 

cortex, monocular deprivation decreased the density of GFAP-IR astrocytes in la 

layer-specific manner (Hawrylak & Greenough, 1995), and dark rearing decreases 

the levels of GFAP (Stewart et al., 1986), whereas in the mouse visual cortex, 

hippocampus and motor cortex, GFAP-IR astrocytes were not affected by 

monocular deprivation (Corvetti et al., 2003; 2006). These observations are 

paralleled by experiments, which induced moderate and more natural environmental 

alterations. For instance, increased densities of GFAP-IR processes and increased 

astrocyte-synapse contacts were detected in the visual cortex of weanling rats few 

days after rearing in an enriched environment (Jones et al., 1996; Jones & 

Greenough, 1996). Furthermore, it has been shown that early learning induces 

elongation of glial cell processes in the rat olfactory bulb, although the number of 

GFAP-positive cells between control and trained pups did not change (Matsutani & 

Leon, 1993). These observations reveal that astrocytes are factors which significantly 

influence neuronal and synaptic development in sensory and motor regions as well 

as in limbic cortical and subcortical areas. 

1.10 Aims of the study. Pronounced synaptic plasticity including increase in 

dendritic spines in the PFC particularly in the ACd of Octodon degus and White-

Wistar rats was described in response to repeated separation stress (Helmeke et al., 

2001; Ovtscharoff and Braun, 2001; Poeggel et al., 2003; Bock et al., 2005). The 

present work is the extension of the previous work to determine whether single and 

repeated early separations on preweaning stage also affects the astrocytes, the 

partner of neurons in synaptic plasticity. This Dissertation presents the impact of 

acute and repeated neonatal separations on astrocytes and the probable implications 

of stress-induced changes in the developing mPFC.  
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The impact of preweaning 6 hr acute isolation stress and 1 hr repeated separation 

stress on O. degus was investigated to find out if: 

1) S100ß and GFAP expressions of the juvenile mPFC are altered by 

stress; 

2) stress-induced changes of the astrocytic markers are paralleled by 

changes in the morphology of astrocytes; 

3) the stress-induced astrocytic changes are transient or lasting; 

4) the prefrontal cortex is specifically and more sensitive to neonatal 

stress than the somatosensory cortex. 
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Fig. 2.1. Octodon degus pups have functional sensory systems at birth 
that resemble the human newborns.  

2.1 Animal Model. Octodon degus is a semi-precocial rodent (or according to other 

literature lagomorph). This animal was chosen as a model system opposed to the 

usual altricial laboratory rat or mouse because among many features, its sensory and 

motor systems are relatively mature at birth which resemble the situation in human 

newborns. The functional 

maturity of the sensory systems 

allows the neonate degu pups 

to recognize, learn and interpret 

acoustic signals and enable 

them to discriminate the 

difference between familiar and 

novel environment immediately 

after birth (Braun and Poeggel, 

2001, Poeggel and Braun, 

1996).  

The animal colony is bred and kept at the Leibniz Institute for Neurobiology, 

Magdeburg. Family groups consisting of an adult couple and their offspring were 

housed in wire cages (length x height x depth: 53 cm x 70 cm x 43 cm) equipped 

with little burrows and climbing scaffolds. The animals were exposed to a light/dark 

cycle with 12 hrs light (6:00 a.m./6 p.m.). Fresh drinking water and rat diet pellets 

were available ad libitum, vegetables were also fed. The rooms were air-conditioned 

with an average temperature of 22°C. A total of 25 male pups were analyzed on 

postnatal day (PND) 21. To prevent litter effects, a maximum of two male pups 

from each litter was tested.  

2.2 Separation Procedure. In this study, separation was used to as stress paradigm. 

To induce stress, the pups were removed from their parents in the home cage and 

individually isolated in small and shallow plastic cages (37cm x 11cm x 8.5cm) with 

fresh wood shavings as bedding material. During separation, the pups could hear 

and smell their siblings but no visual and body contact with the siblings and no 

sensory contact with the parents were allowed. The following animal groups were 

compared (Fig. 2.2):  
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1) Group 1/ Controls (n=5): pups were reared undisturbed with family 

members from birth until postnatal day (PND) 21. 

2) Group 2/ Acute separation stress + short reunion (n=6): pups were 

exposed to 6 hr separation on PND 21. After the separation, the pups 

were returned to the home cage and reunited with the family members 

for 1 hr (short reunion) before perfusion. 

3) Group 3/ Acute reunion stress + extended reunion (n=4): pups were 

exposed to 6 hr separation stress on PND 19 and returned to the home 

cage and reunited with the family  for 48 hr  (extended reunion) until 

PND 21. 

 

4) Group 4/ Repeated separation stress + short reunion (n=6): pups 

were exposed to 1 hr daily separation stress from PND 1-21. After the 

last separation, the pups were returned to the home cage and reunited 

with the family for 1 hr before perfusion. 

5) Group 5/ Repeated separation stress + extended reunion (n=4): pups 

were exposed to 1 hr daily separation stress from PND 1-14. Afterwards, 

the pups were returned to the home cage and reunited with the family 

and left undisturbed until PND 21. 

Repeated stress 

Fig. 2.2. Schematic diagram of acute and repeated neonatal separation paradigms. 
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2.3 Perfusion and Fixation Procedures. Brain fixation and preparation were done as 

previously described (Braun et al., 2000). The pups were weighed and deeply 

anesthesized by an intramuscular injection 1:4 Ketanest/Rompun (0.5 ml/100g 

body weight) (Ketanest: Parke-Davis, Berlin, Germany; Rompun: Bayer, 

Leverkusen, Germany). Transcardial perfusion was conducted with 50 ml Tyrode's 

buffer (pH=6.8) containing 1% Liquemin, an anticoagulant (Roche, Grenzach-

Wyhlen, Germany) followed by 150 ml of fresh 4% paraformaldehyde in 0.1 M 

sodium acetate buffer (pH=6.5), followed by 300-400 ml of fresh 4% 

paraformaldehyde in 0.1 M sodium tetraborate buffer (pH=9.3). Brains were 

removed, weighed and postfixed in the last fixative for 1 hr at 4oC. Four alternating 

series of frontal brain sections at 50 µm-thick were cut with a vibratome (VT1000E, 

Leica, Wetzlar, Company) and collected in 24-well plates filled with 0.1 M PBS 

(phosphate buffered saline) (pH=7.4). The first and second alternating series of 

sections were used for S100β and GFAP immunoreactivity, the third was Nissl 

stained for layer identification and the fourth was used for double-labeling of GFAP 

and S100β to confirm the colocalization of both proteins. (Supplementary materials 

in Appendix 4). 

2.4 Immunohistochemistry. This study involved colorimetric immunohistochemistry 

to: 1) quantify the density of S100ß and GFAP-IR astrocytes in four subregions of 

the mPFC and SSC (See Fig. 1.3B); 2) quantify structural integrity of GFAP-IR 

astrocytes; and 3) observe the morphological changes in S100ß-IR astrocytes. 

Antibodies against the glial markers, S100β (an astroglial-derived neurotrophic 

factor) and GFAP (the main cytoskeletal astroglial protein) were applied for cellular 

identification of astrocytes. The sections were rinsed with phosphate buffered saline 

(PBS) and pretreated with 1% H2O2 in PBS containing 10% methanol for 45 

minutes to block intrinsic peroxidase activity. Sections were rinsed 3-4 times in PBS 

and pre-incubated with 2% normal goat serum (NGS) to block non-specific binding 

(DAKO, Hamburg, Germany) and 0.1% Triton X-100 (Merck, Darmstadt, 

Germany) in PBS for 1 hr for membrane permeabilization. The pre-incubation 

solution was removed and sections were incubated with anti-S100β (1:2000; Sigma-

Aldrich, Germany) or anti-GFAP (1:400; Sigma Aldrich, Germany) mouse 
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antibodies in PBS containing 1% NGS and 0.1% Triton X-100 for 48 hrs at 4oC. 

Primary antibodies were omitted from sections that served as controls to determine 

the specificity of the reaction. After 48 hrs, sections were rinsed thoroughly in PBS 

and incubated for 1.5 h with biotinylated goat-anti-mouse-IgG secondary antibody 

(Amersham, U.K.) diluted at 1:200 in PBS containing 1% NGS. Sections were 

rinsed in PB (Phosphate buffer) and incubated in Extravidin peroxidase complex 

(Sigma-Aldrich, Germany) diluted at 1:200 with PB for 2 hrs. The reaction was 

visualized by incubating the brain sections with 0.05% 3,3′-diaminobenzidine–HCl 

(DAB; Sigma-Aldrich, Germany), 0.2% ß-D-glucose, 0.003% glucose oxidase and 

0.04% NH4Cl in 50 mM Tris–HCl buffer for 15-20 min until optimal color reaction 

was achieved. Sections were mounted on gelatin-coated slides, dehydrated in 

ascending grades of ethanol and xylene and cover slipped with Histomount (Life 

Sciences International, Germany).  

 2.4.1. Astrocyte Density Quantification. The density of S100ß and GFAP-IR 

astrocytes were counted in both hemispheres of mPFC subregions: anterior 

cingulate cortex, the precentral medial cortex prelimbic cortex and infralimbic 

cortex, also in the somatosensory cortex for nonlimbic control. Four replicates per 

hemisphere for each animal was examined in images captured at 20x objective of an 

Olympus BH-2 fluorescence microscope, equipped with a video camera and a 

computer system. Using NIH-Image software, sequential counting frames were 

taken throughout each subregion covering the cortical layers I-VI (Fig. 2.4.1) and 

the density distribution of cells in each region was plotted. Layer extensions and 

margins were compared with adjacent Nissl stained sections and marked to calculate 

areas for layer-specific analysis of cell number distribution. Only S100ß and GFAP-

IR cell bodies were counted and their density was calculated for each cortical layer.  

 2.4.2. Astrocyte Morphology Quantification. A total of 200 GFAP-IR astrocytes in 

the ACd were traced to determine differences in soma size, in the number and 

length of processes and in the number of branching points (nodes) between groups. 

Only astrocytes displaying their entirety, having intact cell body and elaborate 

branching were considered. Astrocytes were traced and reconstructed at 1000x using 
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Olympus BH-2 microscope equipped with image analysis system and Neurolucida 

morphometry software (MicroBrightfield, Colchester, VT).  

 

 2.4.3. Fluorescent immunohistochemistry. Double-immunofluorescent labeling 

followed the same protocol as described above, but pretreatment of the sections 

with H2O2 and methanol were omitted. The sections were incubated with primary 

antibodies of rabbit-anti-GFAP (1:500; Sigma-Aldrich) combined with mouse-anti-

S100ß (1:2000; Sigma-Aldrich) in a solution containing 1% NGS, 0.05% Triton-X-

100 at 4oC for two days. After incubation with the primary antibodies, the sections 

were rinsed with PBS and incubated with the first secondary antibody anti-mouse 

Alexa 488 (1:250; Mobitec, Germany) for 30 minutes in the dark and followed by 

subsequent washes. Sections were then incubated with the second secondary 

Fig. 2.4.1. Schematic illustration of section captured by sequential counting frames at 200x magnification covering the 
cortical layers I-VI of each mPFC subregion and SSC.
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antibody anti-rabbit Alexa 546 (Mobitec, Germany) for 30 minutes and were rinsed 

thoroughly in PBS. The sections were mounted on chrome alum-coated slides, 

allowed to dry and cover slipped with Histomount. Images of astrocytes in the 

mPFC were taken using a confocal laser scanning microscope (Zeiss LSM 510 

Meta).  

2.5. Statistical analyses. Control and two separation groups (Acute: Group 2 and 

Group 3) or repeated groups (Repeated: Group 4 and Group 5) were compared 

using SigmaStat software (version 3.5; Jandel Scientific, Erkrath, Germany) (Fig. 

2.2). In this study, acute versus repeated separation groups were not compared due 

to different reunion procedures that were employed. The values are represented as 

the mean±SEM with a significance level set at P=0.05. Significant differences 

(between different rearing and hemisphere) were determined with 2-way ANOVA 

(analysis of variance) and Tukey test as post hoc test (if data was parametric) and 

Holm-Sidak method (if data was non-parametric). 



3. RESULTS                      Glia going emotional 

 22

The results of this study showed that acute separation stress affects expression of 

astrocytic marker proteins both in density and/ or in the structure of astrocytes. 

Repeated separation stress affects the expression of astrocytic marker proteins in 

density but not the structure of astrocytes in the mPFC. The major findings of this 

study are the following:  

1) the density of S100B-IR astrocytes in the mPFC are increased after 

acute or repeated separation stress; 

2) the density of GFAP-IR astrocytes in the mPFC are decreased after 

acute or repeated separation stress; 

3) The structural integrity of astrocytes in the mPFC is decreased by acute 

separation but not affected by repeated separation; 

4) S100ß-IR astrocytes in the SSC are not affected by acute separation 

stress while GFAP-IR astrocytes in the same region are increased by it; 

5) The structural integrity of astrocytes is enhanced by extended reunion 

after acute separation stress but diminished by extended reunion after 

repeated separation stress. 

 

3.1. General observations of S100ß and GFAP expressions in the mPFC 

 

3.1.1 Distribution of S100ß-IR and GFAP-IR astrocytes (Fig. 1). The initial 

observation in this study was the distribution of S100β and GFAP-IR astrocytes in 

the cerebral cortex. S100ß-IR astrocytes were homogenously distributed (Fig. 1A) 

while the GFAP-IR counterparts were mainly localized in layer I-II (Fig. 1B) and 

layer V/VI (except PL and IL) of the mPFC (Fig. 1C,D) and SSC (Fig. 1C). Long 

astrocytic processes in layer VI of PL and IL extending towards layer I were 

observed in Group IV but not in other groups (Fig. 1E). Astrocytic processes 

surrounding the blood vessels were also observed (Fig. 1F). 
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Fig. 1. Expressions of S100ß and GFAP in the cerebral cortex. S100ß-IR astrocytes (A) were 
homogenously distributed in all cortical layers while GFAP-IR astrocytes (B) were localized at the borders. 
PL and IL layer V-VI were completely devoid of GFAP-IR astrocytes (C,D) but long astrocytic processes 
were abundant in these subregions after repeated separation followed by short reunion (E). Blood vessels 
were usually surrounded by astrocytic processes (F). Scale bars: in A, B and D is 100 µm; in C is 200µm; in 
E and F is 10 µm. 
 

3.1.2 S100ß-GFAP Colocalization (Fig. 2). The immunofluorescence double-

labeling showed that S100ß and GFAP are colocalized particularly in layer I-II of 

the cortex (Fig. 2A-C). GFAP-IR astrocytes were also present in layer V-VI but with 

undetectable S100ß but astrocytes in the middle layers were exclusively S100ß-IR. 

Within astrocytes, S100ß was seen in the soma and nucleus (Fig. 2D,F) while GFAP 

was more intense in the processes (Fig. 2E,F).  
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3.1.3 Morphology of S100ß-IR and GFAP-IR astrocytes after acute separation stress 

(Fig. 3). In the control (Group I), intact and evenly-stained cell bodies and profused 

branches were observed in S100ß-IR astrocytes (Fig. 3A), even distribution of 

GFAP in the soma and processes (Fig. 3B). In Group II, S100ß-IR astrocytes were 

ruptured, cell bodies were broken (Fig. 3C) and GFAP-IR astrocytic processes were 

thickened (Fig. 3D). After extended reunion, S100ß-IR astrocytes in Group 3 were 

similar to Group 2 (Fig.3E) but in contrast, the GFAP-IR counterparts in the same 

group showed increased in astrocytic processes (Fig.3F).  

 

3.1.4. Morphology of S100ß-IR and GFAP-IR astrocytes after repeated separation 

stress (Fig. 4). In controls (Group 1), intact and evenly-stained cell bodies and 

profused branches were observed in S100ß-IR astrocytes (Fig. 4A) and even 

distribution of GFAP in the soma and processes (Fig.4B). In Group 4, S100ß-IR 

astrocytes (Fig. 4C) and GFAP-IR counterparts (Fig. 4D) were similar to controls. 

After extended reunion, S100ß-IR (Fig. 4E) and GFAP-IR (Fig. 4F) astrocytes in 

Group 5 both showed reduced branching  complexity.  

Fig. 2. Double immunostaining of S100ß and GFAP-IR astrocytes in the mPFC. S100ß-IR (green) and 
GFAP-IR (red) astrocytes are colocalized in layer I (A,B,C) of the cortex but not in other layers. In 
individual astrocytes, S100ß defines the cell body while GFAP is prominent in the processes (C,D,E). 
Scale bars: in A,B,C is 20 µm; in C,D,E is 10µm. 
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3.2. Changes in S100ß and GFAP expressions in response to acute separation stress: comparison 

between short (Group 2) and extended (Group 3) reunion. 

 

Region and layer-specific increases in density of S100ß-IR astrocytes but decreases 

of GFAP-IR counterparts were observed in the mPFC after acute separation. The 

numbers are represented by mean and SEM of left and right hemispheres per 

Fig. 3. Morphology of S100B-IR and GFAP-IR astrocytes in the mPFC after acute separation stress. Intact 
cell bodies in control S100ß-IR astrocytes (A) but “broken” cells and damaged processes were observed 
after acute separation stress whether it is followed by short (C) or extended reunion (E). Well-defined soma 
and profused branching in control GFAP-IR astrocytes (B) but shortened and shrivelled processes were 
observed after acute separation followed by short reunion (D) and restored by extended reunion (F). Scale 
bars: 50µm; 10 for inset. 
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group in an area of 0.159 mm2, 4-5 counting fields of 60 sections (four replicates/ 

hemisphere/ region/ animal) at × 200 magnification.  (Supplementary data in 

Appendix 1 and 2) 

 
 

 

 

Fig. 4. Morphology of S100B-IR and GFAP-IR astrocytes in the mPFC after repeated 
separation stress. The cell body of S100ß-IR astrocytes in control (A) and in stressed 
counterparts remained intact whether followed by short (C) or extended reunion (E) 
although S100ß expression was more intense in stressed astrocytes. GFAP-IR astrocytes in 
control (B) and repeated separation followed by short reunion (D) showed similar 
profused branches which diminished after extended reunion (F). Scale bar is 10 µm. 
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Fig. 5. Cell density of S100B-IR astrocytes in the mPFC and SSC of O. degus following acute separation. 
Cell density of all cortical layers I-VI (A); layer I (B); layer II-III (C) and layer V/VI (D). CON=control; 
Group 2= acute separation+short reunion; Group 3=acute separation+extended reunion. 

3.2.1 The cell density of S100ß-IR astrocytes in the mPFC increases after acute 

separation stress (Fig. 5). Taking the values for layers I-VI (Fig. 5A), significant 

increases of S100ß-IR astrocytes were observed in the PrCM of Group 2.  

with a strong trend of increase in Group 3 (P=0.07) compared to controls. In 

Group 2, S100ß-IR astrocytes were increased in the PrCM up to 153% with trend of 

increase in other subregions including ACd, PL, and IL. In Group 3, the density of 

S100ß-IR astrocytes showed a non-significant trend towards increase. No significant 

difference in the SSC was observed between the groups. 

 
In layer-specific analyses, Layer I did not show a significant difference in density of 

S100ß-IR astrocytes in all the mPFC subregions between the groups although the 

cell density was highest in this layer (Fig. 5B). In layer II-III (Fig. 5C), a significant 

increase in density of S100ß-IR astrocytes were observed in the mPFC of both 

Groups 2 and 3 compared to controls. In Group 2, increased density of S100ß-IR 
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astrocytes was observed in PrCM (up to 174%) and IL (up to 182%) compared to 

controls with similar yet non-significant trend in PL. After reunion, Group 3 

showed increase in ACd (up to 186%) compared to control with strong but non-

significant trend in PrCM (P=0.09) and IL (P=0.06). No significant difference in PL 

between the groups was observed. In layer V/VI of the mPFC (Fig.5D), Group 2 

showed significant increase in density of S100ß-IR astrocytes only in the PrCM (up 

to 148%) but not in PL and IL. After reunion, Group 3 showed increase in ACd (up 

to 150%) and PrCM (up to 143%) but not in other subregions. In SSC, no 

significant changes in density of S100B-IR astrocytes between the groups were 

observed.  
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Fig. 6. Cell density of GFAP-IR astrocytes in the mPFC and SSC of O. degus following acute 
separation stress (A). Structural integrity of GFAP-IR astrocytes in the ACd including soma 
size (B), number of nodes (C), number of process (D), and length of process (E). 
Morphology of astrocytes in the ACd: F is CON, G is Group 2 and H is Group 3. 
CON=control; Group 2= acute separation+short reunion; Group 3=acute 
separation+extended reunion. 
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3.2.2. The cell density of GFAP-IR astrocytes in the mPFC is decreased after acute 

separation stress, but partly restored by extended reunion (Fig. 6). Stress-related 

analysis in GFAP-IR astrocytes was not analyzed in a layer-specific manner because 

they almost exclusively occupied the layer I-II. Few GFAP-IR astrocytes were 

present in layer V-VI of the ACd and PrCM but the same layer of PL and IL were 

completely devoid of them (Fig.1C, D). The density of GFAP-IR astrocytes in ths 

study can be presumed to be consisted mostly of those occupying the layer I-II. 

 

Unlike the S100ß-IR astrocytes, a significant decrease in density of GFAP-IR 

astrocytes was observed in all mPFC subregions of Groups 2 and to a lesser extent 

in ACd and PL of Group 3 compared to controls (Fig. 6A): (ACd down to 51 %, 

PrCm down to 65 %, PL down to 40 %, IL down to 35 %). However, this decrease 

was restored similar to controls by extended reunion in Group 3 particularly in 

PrCm (up to 102%) and IL (back to 85%) but not in ACd (down to 65%) and PL 

(down to 76%) which remained significantly decreased when compared to control. 

In the SSC, a significant increase in density of GFAP-IR astrocytes were observed 

both in Group 2 (up to 204%) and Group 3 (212%) when compared to controls 

with no significant difference between them.  

 

3.2.3. Morphological changes in GFAP-IR astrocytes after acute separation stress 

(Fig. 6). Changes of structural integrity of GFAP-IR astrocytes in the ACd were 

transient, reduced by acute separation stress but restored after 48 hr extended 

reunion (Fig. 6F,G,H). The morphology of GFAP-IR astrocytes in layer I-II 

including soma size and branching complexity were measured to assess whether the 

stress-induced decrease in density is paralleled with changes in structural integrity. 

The analysis of these morphological features was done in ACd because this 

subregion is involved in communication and emotional attachment between the pup 

and the dam. 

 

No significant difference in soma size was observed between the groups (Fig 6B). A 

significant decrease in the number of astrocytic nodes was observed in Group 2 
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(down to 57%) when compared to control but this decrease was restored at 100% 

similar to controls after extended reunion in Group 3 (Fig. 6C). Similarly, the total 

length of processes was also reduced in Group 2 (down to 61%) than controls but 

was also restored up to 115% similar to controls after extended reunion in Group 3 

(Fig. 6E). Furthermore, the number of processes per cell increased after extended 

reunion in Group 3 (up to 132%) when compared to Group 2 but not when 

compared to controls (Fig. 6D). 

 

3.3. Changes in S100ß and GFAP expressions after repeated separation stress: comparison 

between short (Group 4) and extended (Group 5) reunion.  

 

3.3.1. The cell density of S100ß-IR astrocytes in the mPFC also increases after 

repeated separation stress (Fig 7). Region and layer-specific increases in density of 

S100ß-IR astrocytes but decreases in GFAP-IR counterparts were observed in the 

mPFC after repeated separation stress. Taking the layers I-VI together (Fig. 7A), 

Group 4 showed significant increases in cell density of S100ß-IR astrocytes in PL 

(up to 136%) with strong trend of increase in ACd (P=0.07) compared to controls. 

After 7-day extended reunion, Group 5 showed a sharp increase in density of the 

S100ß-IR astrocytes in all mPFC subregions compared to controls (ACd up to 

237%, PrCM up to 260%, PL up to 242%, IL 202%) and Group 4. Similarly, SSC 

showed a sharp increase in density of S100ß-IR astrocytes in Group 5 when 

compared to controls (up to 222%) and Group 4 (up to 224%).  

 

In layer specific analyses of mPFC subregions, layer I (Fig. 7B) did not show a 

significant difference in density of S100ß-IR astrocytes in all mPFC subregions of 

Group 4 compared to controls. After the 7-day extended reunion, Group 5 showed 

increases in the ACd (up to 137%) and PL (up to 130%) when compared to control 

and increases in ACd (127%) and PrCM (143%) with a strong trend in PL (P=0.05) 

when compared to Group 4. The IL of both stressed groups was similar to control. 

Similarly, the SSC showed similar increase in Group 5 when compared to control 

(162%) and Group 4 (189%). 
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In layer II-III (Fig. 7C), a significant increase in density of S100ß-IR astrocytes was 

observed in three mPFC subregions of Group 4 (PrCM up to 156%, PL up to 

168%, IL up to 169%) with a strong trend of increase in the ACd (P=0.06). Further 

increases in density of S100ß-IR astrocytes were observed after extended reunion in 

Group 5 when compared to controls (ACd up to 278%, PrCM up to 346%, PL up 

to 295%, IL up to 275%) and Group 4 (ACd up to 197%, PrCM up to 221%, PL up 

to 161%, IL up to 162%). In SSC, increase in density of S100ß-IR astrocytes was 

observed in Group 5 when compared to controls (259%) and Group 4 (222%).  

 

In layer V/VI of the mPFC subregions (Fig. 7D), Group 4 showed  a non-

significant increase in density of S100ß-IR astrocytes compared to controls but with 

strong trend towards increase in ACd (P=0.07). After the extended reunion, Group 

5 showed significant increase in density of S100ß-IR astrocytes in all mPFC 

subregions (ACd up to 208%, PrCM up to 263%, PL up to 213%, IL up to 213%)  
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Fig. 7. Cell density of S100ß-IR astrocytes in the mPFC and SSC of O. degus following repeated separation. 
Cell density of layers I-VI (A); layer I (B); layer II-III (C); and layer V-VI (D). CON is control; Group 4= 
repeated separation+short reunion; Group 5=repeated separation+extended reunion. 
 



3. RESULTS                      Glia going emotional 

 32

compared to controls, also when compared to Group 4 (ACd up to 166%, PrCM up 

to 299%, PL up to 182%, IL up to 162%). In SSC, significant changes in density of 

S100B-IR astrocytes were observed in Group 5 when compared to control (207%) 

and Group 4 (215%).  

 

3.3.2. The cell density of GFAP-IR astrocytes decreases after repeated separation 

stress and not restored after extended reunion (Fig. 8). Significant decreases of 

GFAP-IR astrocytes were observed in all mPFC subregions of Group 5 when 

compared to controls (Fig. 8A). In Group 4, decreases in density of GFAP-IR 

astrocytes were observed in three mPFC subregions (ACd down to 69%, PL down 

to 61%, IL down to 68%) but not in PrCM compared to controls. In Group 5, 

extended reunion induced a further decrease in density of GFAP-IR astrocytes in all 

the  mPFC subregions (ACd down to 51%, PrCM down to 72%, PL down to 58%, 

IL down to 63%) compared to controls with no significant difference compared to 

Group 4 except in ACd (P=0.027). In SSC, the density of GFAP-IR astrocytes 

increased in Group 5 when compared to controls (up to 187%) and Group 4 (up to 

187%).  

 

3.3.3 Morphological changes of GFAP-IR astrocytes after repeated separation stress 

(Fig. 8). Structural integrity of GFAP-IR astrocytes in the ACd were not affected by 

repeated separation but altered by extended reunion (Fig. 8F,G,H). Similarly, the 

morphology of GFAP-IR astrocytes in layer I-II including soma size and branching 

complexity were measured to assess the prevailing chronic effects of short but 

repeated separation stress. 

 

The soma soma size was similar between groups with a strong but non-significant 

trend towards decrease in Group 5 when compared to controls and Group 4 (Fig 

8B). Furthermore, significant decrease in the number of astrocytic nodes was 

observed in Group 5 compared to controls (down to 61%) and Group 4 (down to 

59%) (Fig 8C). Although no significant difference was observed in the number of 

processes (P=0.16) and length of processes (P=0.06) between the groups (Fig. 8D), 
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Fig. 8. Cell density of GFAP-IR astrocytes in the mPFC and SSC of O. degus after repeated
separation stress (A). Structural integrity of GFAP-IR astrocytes in the ACd including soma size 
(B), number of nodes (C), number of processes (D), and length of processes (E) after repeated 
separation stress. Morphology of astrocytes in the ACd: F is CON, G is Group 4 and H is Group 
5. CON=control; Group 4= repeated separation+short reunion; Group 5=repeated 
separation+extended reunion. 

there was a strong trend towards decrease in total length of processes in Group 5 

compared to other two groups (Fig.8E).  

 

 

 

3.4 The impact of stress is similar on both cortical hemispheres. Although neonatal 

separation stress had an impact on the density of S100ß and GFAP–IR astrocytes in 

the mPFC, the mean density for left and right hemispheres were similar.  
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3.5 The brain and body weights are not altered by neonatal separations. No significant 

differences in the body weights (P=0.51) and brain weights (P=0.27) were observed 

between the groups after acute separation stress (Table 3.5A). 

 

weight CON 

 

Group 2 

 

Group 3 

 

P 

ANOVA

body  56.36 g ±2.22 52.12 g ±3.96 57.59 g ±3.74 NS 

brain 1.28 g ±0.09 1.29 g ±0.009 1.45 g ±0.08 NS 

Table 3.5A. The brain and body weights after acute separation stress. 

 

No significant differences in the body weights (P=0.06) and brain weights (P=0.49) 

were observed between the groups after repeated separation stress (Table 3.5B). 

 

weight CON 

 

Group 4 

 

Group 5 

 

P 

ANOVA

body  56.36 g ±2.22 49.84 g ±1.05 46.9 g ±4.4 NS 

brain 1.28 g ±0.09 1.14 g ±1.05 1.25 g ±4.4 NS 

Table 3.5B. The brain and body weights after repeated separation stress. 
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4.1 Astrocytic response towards a stimulation. It was postulated that gliosis or 

astrocytic response towards stimulation occurs in two stages: first by somatic 

hypertrophy matched with process elongation, followed either by hyperplasia / cell 

proliferation or somatic cell death (Sirevaag and Greenough, 1991). The reaction 

time could either be slow or fast that predicts whether the astrocytes will survive or 

die after stimulation, respectively. It has been observed that astrocytic response 

occurs 30 min after traumatic brain injury (Miller et al., 1986), but it takes at least 30 

days when astrocytes are exposed to enriched environment (Sirevaag and 

Greenough, 1991). This observation prompted the authors to suggest that an 

elevated level of stimulation that disrupts the membrane such as in brain injury 

induces the rapid astrocytic response while the constant, sub-disruptive stimulation 

such as exposure to enriched environment induces a very slow glial response 

(Sirevaag and Greenough, 1991).  

Early life experiences, particularly those provided by the mother have been shown 

to play a critical role in physiological and behavioural development in non-human 

species (Kuhn et al., 1978, Sucheki et al., 1993, Hofer, 1994) and the first three 

postnatal weeks are critical period for neural development in rodents. The acute 

response of astrocytes may either reduce or enhance the damage to neurons 

depending on the timepoint of exposure (Swanson et al., 2004). The present study 

demonstrates that the durations of separation employed on early postnatal stage 

results in density increases of the S100ß-IR astrocytes in the mPFC, but decreases 

the density of GFAP-IR astrocytes in the mPFC. When the separation is acute, then 

changes in the structural integrity of GFAP-IR astrocytes in the ACd occur. 

Extended reunion with the family, after acute or repeated exposure to neonatal 

separation induces changes in the structural integrity of GFAP-IR astrocytes which 

remains to be determined whether these changes are positive or negative.  

4.2 Cortical distribution and morphology of S100ß-IR and GFAP-IR 

astrocytes in the mPFC. Reports on immunohistochemical distribution of S100ß 

in the cerebral cortex are very few and are focused mostly on humans. These 

investigations include the spatio-temporal expression of S100ß between the human 

fetal and adult occipital cortex in which the number of S100ß-positive cells in aged 
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specimens remained similar to the late embryonic stage fetus (Tiu et al., 2000) 

indicating that S100ß is vital throughout the entire lifetime. In adult human cerebral 

cortex, S100ß immunohistochemistry was used to evaluate its relationship to serum 

levels as a cause of death in fatal head injuries and other fatalities (Li et al., 2006). It 

was also used to evaluate neural or glial cell specific types in prefrontal and temporal 

cortices (Steiner et al., 2007) where S100ß was found to be a less specific marker for 

astrocytes compared to GFAP. In other words, S100ß but not GFAP is also found 

in other glial cells including oligodendrocytes and other neuronal populations. 

Postnatal expression of S100ß-IR astrocytes were observed in young and adult rat 

visual cortex (Argandona et al., 2003), thalamus, parietal cortex (Muneoka et al., 

2003), hippocampus (Reeves, 1994) having a homogenous distribution. On one 

hand, GFAP expression during early development is primarily investigated in the 

sensory regions. So far, this study is the first to show the distribution of S100ß and 

GFAP-IR astrocytes in the mPFC during the early postnatal development. 

In the present study, the mPFC at P21 showed a striking contrast in the spatial 

pattern between S100ß and GFAP-IR astrocytes. While S100ß-IR astrocytes were 

homogenously distributed in all cortical layers, the GFAP-IR astrocytes were 

localized in layers I to II and also few were observed in layer VI similar to 

descriptions of mouse visual cortex at PND 24 (Corvetti et al., 2003). It can be 

presumed that GFAP is expressed by reactive astrocytes in the periphery of the 

cortex that actively participate in cortical expansion. It was suggested that the 

GFAP-IR astrocytes in layer I represent the pial-glial astrocytes that form the 

boundary at the surface of the brain, having the ability to attempt repopulation or 

increase in number due to their reactive nature (Steindler and Laywell, 2003). Thus, 

it was postulated that GFAP-IR astrocytes in layer I marks the immature part of the 

cortex and the middle layers consist the mature cortex due to the absence of GFAP-

IR astrocytes (Hafidi and Galifianakis, 2003). Although astrocytes that inhabit the 

gray matter are protoplasmic astrocytes characterized mainly by their polygonal 

feathery-like processes (Bignami et al., 1972), GFAP-IR astrocytes in layer I had 

halo transparent cell bodies and dense processes while in contrast, the S100ß 

counterparts in the central layers had prominent cell bodies and profused branches 
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suggesting the presence of two-subtypes of astrocytes (Bignami et al., 1972). It was 

reported that the transformation of GFAP-expressing astrocytes to S100ß-IR 

characterizes the onset of astrocytic maturation (Raponi et al., 2007) and the GFAP 

negative astrocytes in the central layers may be considered as parenchymal astrocytes 

in the vascular neurogenic environment that perform the bulk of the astrocytic 

functions (Palmer et al., 2000). In this study, although GFAP-IR astrocytes were 

observed in layers V to VI of the mPFC, layer V-VI of PL and IL were devoid of 

them indicating that GFAP-IR astrocytes in the output layers of these subregions 

may be less responsive than other.  

Aside from astrocytes occupying specific domains in the cerebral cortex, astrocytic 

proteins also occupy distinct sites within astrocytes suggesting that their position 

may be designed according to their function. In this study, the double-

immunolabeling showed S100ß prominently in cell body and nucleus while GFAP 

defines the processes which may indicate that both proteins play equally important 

roles in regulating the cell shape and motility for maturation of cortical wiring. 

S100ß immunoreactivity has been observed both in the cytoplasm and nucleus of 

mature glial cells suggesting that S100ß participates in Ca2+ and Zn2+ cell regulation 

processes in both sites (Deloulme et al., 2004). In oligodendroglial progenitor cells 

(OPC), it has been observed that nuclear S100ß accumulation marks the immature, 

fast, multipotent OPC although it also persists in the adult OPCs but in reduced 

level (Deloulme et al. 2004). Other roles of the close interaction of S100ß-GFAP 

also include cell-cycle regulation, cell growth and cell differentiation. 

4.3 Stress-induced changes of S100ß and GFAP expressions in the mPFC. 

One aim of this study was to answer the question whether S100ß and GFAP 

expressions in astrocytes of the juvenile mPFC are altered by stress. One highlight 

of this study showed the increase of S100ß-IR astrocytes in the mPFC but not in the 

SSC following neotanal stress implying that emotional stimulation dramatically 

affects in particular the limbic region while nonlimbic area does not appear to be 

sensitive to it. Although S100ß expression naturally increases particularly during the 

early postnatal development, the present findings suggest that neonatal stress 

intensifies the increase perhaps via autocrine and paracrine effects. Astrocytes have 



4.DISCUSSION                                                                      Glia going emotional 

 38

been proposed to monitor changes in the CNS so that when activated, they 

participate in the various cellular activities to cope in favor of the new environment 

(Sirevaag and Greenough, 1991). It was postulated that during activation, the 

intermediate filament network is altered particularly in the main processes which is 

presumed to be accompanied by dysregulation of many protein exressions (Bushong 

et al., 2002; 2004). In the context of stress-induced changes in neonatal astrocytes, 

retraction or shortening of processes may induce vulnerability to dysregulation of 

the developing brain circuitry. 

In this study, both acute and repeated separations affect the number of astrocytes. 

Notably, the density of S100ß-IR astrocytes was increased after both acute and 

repeated separations, suggesting that astrocytes are highly responsive to a novel 

situation. Furthermore, the stress-induced increase in the density of S100ß-IR 

astrocytes remained high even after 48 hr extended reunion indicating that S100ß 

might participate not only during stress but as well as in the course of recovery 

periods. In other words, the overproduction of S100ß during stress may induce 

damage particularly in astrocytes if unable to cope but the S100ß secreted during the 

reunion period may enhance repair as previously suggested when the presence of 

S100ß was detected after acute brain injury (Kleindienst and Ross Bullock, 2006). In 

this study, the increase in density of S100B-IR astrocytes showed a layer-specific 

pattern, suggesting that the observed astrocytic changes might be induced by the 

synaptic (input) activity and also may be involved in experience-induced synaptic 

reorganization as consequence of stress exposure. It was previously reported in degu 

pups that repeated separation stress increases spine density in layer II-III of the 

ACd (Poeggel et al., 2003; Helmeke et al., 2001). This coincidence might indicate 

that the upregulation of neurotrophic factors such as S100ß might be involved in 

the observed spine increase. So far, no reports are available on layer-specific changes 

of S100B-IR astrocytes, but it was reported that S100ß upregulation may mean 

increased expression of this neurotrophic factor, which might stimulate both, glial 

or spine proliferation (Marshak , 1990; Whitaker-Azmitia and Azmitia, 1994; Wilson 

et al., 1988; Zimmer et al., 1995). This interpretation is further supported by the 

finding that the experimental removal of S100ß resulted in a 30-50% loss of cortical 
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synaptic density (Cheng et al., 1994). However, this speculation in our stress 

paradigm calls for further investigation.  

Another highlight in this study is the downregulation of GFAP-IR astrocytes in the 

mPFC following neonatal separation stress. In contrast to the observation for the 

S100ß IR astrocytes, the decrease in the density of GFAP-IR astrocytes induced by 

acute stress was restored by extended reunion indicating that it reflects a more 

transient response and perhaps also is indicative of repair mechanisms in astrocytic 

cytoskeleton. On the other hand, the density of GFAP-IR astrocytes after repeated 

separation stress was further decreased by extended reunion indicating that cell 

death may result from the chronic effect of repeated stress. 

The difference in the density of S100ß and GFAP-IR astrocytes may be due to the 

intracellular interaction of these two astrocytic markers. GFAP regulates cell motility 

(Lepekhin et al., 2001) and maintains structural stability (Trimmer et al., 1982) and is 

regulated by S100B inside the astrocytes (Sorci et al., 1998; Zimmer 2003). As 

mentioned before, S100ß inhibits GFAP expression to regulate the astrocytic 

cytoskeleton (Ziegler et al., 1998). And even though we cannot provide direct 

evidence for this interaction, it could be speculated that the increase in the density 

of S100ß-IR in the mPFC might be causally related to the decrease in the density of 

GFAP-IR. It was reported that intracellular overexpression of S100ß in transgenic 

mice show neural cytoskeletal change and decreased levels in cell cultures showed 

microfilament reorganization and altered cell morphology (Shapiro and Whitaker-

Azmitia 2004). In contrast, in the SSC where the density of S100ß-IR astrocytes 

remained unaffected, an increase in the density of GFAP-IR astrocytes was 

observed.   

4.4 Stress-induced morphological changes in GFAP-IR and S100ß-IR 

astrocytes. In this study, acute but not repeated exposure to separation stress was 

shown to affect the structure of astrocytes. It was observed that acute separation 

stress decreased the branching complexity of GFAP-IR astrocyte, indicating the 

impact of a single but long (6 hr) stress exposure. On one hand, repeated stress (1 

hr, daily) did not affect the structural integrity of GFAP-IR astrocytes, indicative of 
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the favorable impact of short but repeated stress exposure. It also may indicate that 

the short but repeated stress may affect the cell proliferation but not the survival of 

individual astrocytes. The degenerated features of GFAP-IR astrocytes after acute 

separation stress in Group 2 were paralleled with retarded features of S100ß-IR 

astrocytes, including broken cell bodies, damaged and stunted branches. Although 

the study did not investigate apoptosis, the decrease in the number of GFAP-IR 

astrocytes might be due to cell death induced by S100ß overexpression. It was 

reported that social isolation induces astrocytic cell death (Takuma et al., 2004) by 

inducing cytosolic Ca2+ elevation, oxidative stress, nitric oxide secretion, 

mitochondrial dysfunction due to increased secretion of neurotrophic or 

neuroprotective substances as S100ß which could be detrimental to a juvenile brain.  

4.5 Dual impact of reunion on stress-induced GFAP-IR astrocytes. Another 

highlight of this study is the reversal of both, in the number of GFAP-IR astrocytes 

as well as the morphology of astrocytic processes, after extended reunion of 48 hr 

following acute separation stress, suggesting a biphasic response of astrocytes 

(Margis et al., 2004, Nishio et al., 2003). This observation implies the ability of fast 

and efficient repair mechanisms mediated by the astrocytic machinery to reconstruct 

its cytoskeleton and proliferate. However, it was observed that after extended 

reunion following acute stress in Group 2, the density of GFAP-IR astrocytes in 

some mPFC subregions was significantly lower than controls indicating that for 

some brain regions more time may be required for the complete restoration of the 

astrocytic population. Morphologically, the extended post-stress reunion did not 

restore the degenerated morphological features of S100ß-IR astrocytes in the 

mPFC, indicating the lasting effects of acute neonatal stress on the fine structure of 

this astrocytic subtype.  

One major observation on repeated separation stress was the trend of decreased 

branches in GFAP-IR after extended reunion, indicating atrophy of astrocytes in the 

mPFC following repeated stress. While the effects of acute stress may be transient, 

it was reported that repeated stress causes neuronal hypertrophy followed by 

atrophy of neurons in the PFC (McEwen and Chattarji 2004). This structural 
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remodeling of astrocytes in the mPFC may be presumed to have crucial effects in 

the maturation process of a neonatal brain when the brain circuitry is delicate.  

 4.6 Functional implications of changes in glial proteins. The observed stress-

induced changes of glial proteins could be interpreted by different underlying 

mechanisms. The elevated expression of intracellular S100ß after stress induction 

could be due to increased protein synthesis, downregulation of protein degradation, 

decreased release of the protein into the extracellular space. Stress might activate 

these intracellular regulatory mechanisms, which should raise protein concentrations 

in astrocytes without disrupting the cell membrane in the case of repeated 

separation stress, where astrocytes remained intact after stress exposure. 

Alternatively, the increased density of S100ß-IR astrocytes might be the result of 

astrocytic proliferation due to increased secretion of S100ß protein, which has been 

shown to stimulate glial proliferation (see below). Along the same line, the decreased 

expression of GFAP in the stressed animals could reflect a downregulation of 

protein synthesis, degradation of this protein or cell death of astrocytes due to 

stress.  

S100ß may be gliotrophic and neurotrophic or cytotoxic in function depending on 

its concentration. For years, S100ß has been known to be a potent glia-derived 

neurotrophic factor promoting neurite outgrowth and cell survival in nanomolar 

levels (Fig. 4.6). It promotes proliferation of astrocytes as well as survival and 

extension of neurites in neuronal cultures (Winningham-Major et al., 1989; 

Whitaker-Azmitia and Azmitia, 1994) and the absence of it decreased the number of 

synapses (Wilson et al., 1988). It increases neurite branching by promoting tubulin 

polymerization (Deinum et al., 1983). However, even in low micromolar levels, 

S100ß stimulates the expression of pro-inflammatory cytokines and induce 

apoptosis (Donato, 2001; 2003). S100ß activates NFkB and induces nitric oxide 

production resulting in cell death in rat glial cells (Takuma et al., 2004). Increased 

S100ß levels are found in cerebrospinal fluid (CSF) and/or serum of several acute 

and chronic injuries, including traumatic brain injury, stroke, Down syndrome, 

schizophrenia (Rothermundt et al., 2003; Zimmer et al., 2003) and other psychiatric 

disorders including PTSD (Diehl et al., 2007). Extra copies of S100ß genes showed 
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evidence of accelerated maturation and premature degeneration throughout the 

brain, indicating an early onset of Alzheimer’s disease (Whitaker-Azmitia, 1997). 

S100ß is upregulated in tumors and malignant diseases (Davey et al., 2001; Lin et al., 

2004).  

 

 

What are the probable mechanisms of S100ß expressions? Increased S100ß 

expression has been described using different stress paradigms in adult animals. In 

vitro, S100ß serum levels were elevated 120 mins after immobilization stress, but 

pharmacological stimulation by corticosterone failed to affect S100ß serum 

concentration. This suggests that the mechanism of S100ß increase is independent 

from corticosterone (Scaccianoce et al., 2004) although S100ß secretion appears to 

be modulated by several factors including ACTH, a mediator of stress (Suzuki et al., 

1987). Release of S100ß occurs after 6 hr metabolic stress, implying an active, stress-

triggered mechanism of S100ß (Gerlach et al., 2006). Serum deprivation in cell 

cultures induced an increase in S100ß secretion (Tramontina et al., 2006) and 

secretion of S100ß is influenced by a number of molecules like 5HT, DCG-IV (2',3'-

dicarboxycyclopropyl glycine), glutamate and serum. Although the mechanism is not 

fully understood, it has been proposed that S100ß is influenced by c-AMP, so that 

DCG-IV that decreased c-AMP also decreases S100ß (Gillet 2004). 

neurite 
 extension 

cell 
growth 

astrocyte 

neuron 
formation and 
maturation of 
synapses 

S100ß

Fig. 4.6 Schematic illustration of S100ß as a gliotrophic and neurotrophic factor that enhances glial growth and 
differentiation as well as neurite extension. Modified from Zimmer et al., 1995 
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S100ß is secreted via a non-conventional export mechanism, the conventional way 

being via endoplasmic reticulum (ER)- Golgi trafficking,  the pathway which some 

cytokines, such as interleukin (IL) 1 alpha and 1 beta, as well as fibroblast growth 

factor-2 (FGF-2) pursue (Davey et al., 2001). Although intermediary cellular and 

molecular events that link changes to function is still hardly understood, the 

secretion of S100ß is dependent on 5-HT1A receptor agonists, glutamate, adenosine 

and lysophosphatidic acid (Nishi et al., 1996; Donato, 2003, Tramontina et al., 

2006). It has been suggested that S100ß is one of the most important neurotrophic 

factors in neuroplastic mechanisms of serotonergic neurons (Lin et al., 2004) and 

exerts multiple neurotrophic functions in the serotonergic system (Azmitia et al., 

2007). S100ß increase is also through interaction with the extracellular domain of 

receptor for advanced glycation end products (RAGE) and activating a series of 

intracellular transduction pathways including NFkB pathway (Huttunen, 2000; 

Bucciarelli, 2006). In rat glial cells transcriptional activity,  S100ß activates NFkB in 

the cytoplasm by translocating the p65 NFkB subunit into the nucleus, followed by 

stimulation of the NFkB specific DNA-binding activity and stimulation of NFkB 

dependent transcriptional activity but also inducing iNOS promoter activation and 

nitric oxide production (Lam 2001). S100ß also interacts with the transcription 

factor p53 and controls transcription (review by Ikura et al., 2002). 

Another alternative explanation by which glial cells get activated may be through 

impulse activity in which neurotransmitter receptors on glial cells allow them to 

detect spillover of neurotransmitter from synaptic cleft similar how neurons do it 

(Fields and Stevens, 2000). These investigators proposed that during action 

potential, ATP is released via an unknown mechanism and glial cells are able to 

detect and respond to this neuronal activity via their membrane receptors for ATP 

or derivatives, i.e. adenosine. However, accumulation of neurotransmitters or 

gliotransmitters in the synaptic cleft that induces overstimulation of receptors may 

stimulate expression of proinflammatory cytokines and induce apoptosis.  

GFAP decrease caused by early separation stress may reflect an indirect, glia-derived 

mechanism mediating stress-induced dendritic atrophy and spine loss as described 

in adult rat prefrontal and hippocampal neurons (McEwen, 2001; Radley et al., 
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2005) which is causally linked to endocrine activation. It has been shown that stress 

exposure during the first three postnatal weeks induces a significant elevation of 

plasma cortisol levels in Octodon degus (Gruss et al., 2006). Isolation on the third week 

of life PND 15-21, i.e. consisting of 6-hour chronic isolation everyday for five days 

showed increased corticosterone in rat hippocampus and it is more detrimental than 

on the first week (Frisone et al., 2002). A variety of studies using different stress 

paradigms also point to a glucocorticoid-mediated regulation of GFAP expression. 

In vivo, it has been shown in adult rats that chronic stress, which comprised 6 days 

wheel activity and restricted access (1 hour/day) to food, induces increased numbers 

of GFAP-IR cells in the hippocampal CA-3 region but structure of GFAP-IR cells 

were not affected (Lambert et al.,  2000). In vitro, GFAP mRNA and GFAP 

expression is downregulated in adult rat hippocampus and cortex in response to 

glucocorticoid application and stress (O'Callaghan et al., 1991; Nichols and Finch, 

1994). Astrocytes when cocultured with neurons for a long period, i.e. three 

months, downregulates GFAP mRNA coupled with increased corticosterone levels 

(Rozovsky et al., 1995). The investigators hypothesize that the switch in the 

direction of GFAP in response to corticosterone is mediated by increased levels of 

glucocorticoid receptors which are localized both in astrocytes and neurons. Based 

on these findings, GFAP reduction in astrocytes may also be linked to the 

participation of HPA axis during this period of development.  

There is an ongoing debate whether GFAP downregulation during development 

does not necessarily have adverse effects. Decreased GFAP during development 

and in maturity was characterized as quiescent astrocytes that enhanced neurite 

outgrowth (Holley et al., 2005) and absence or reduction of GFAP had no 

detrimental effect during development. For examples, GFAP null-mice have normal 

life span, reproduction (Pekny et al., 1995) and motor behavior (Messing and 

Brenner, 2003). They have normal responses to scrapie infection (Tatzelt et al., 

1996) or kainic acid injection (Gomi et. al., 1995). However, severe GFAP decrease 

may induce dramatic changes in the brain circuitry since GFAP-expressing 

astrocytes play a role in regulating synaptic efficacy (McCall et al., 1996). Astrocytes 

devoid of IFs exhibits changes in morphology and motility severely compromised 
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which may impair formation of glial scars after brain or spinal cord injury (Lepekhin 

et al., 2001). GFAP-null mice suffer from blunt head trauma involving a whiplash-

type injury (Nawashiro et al., 2000) ischemia (Nawashiro et al., 2000), hypotonic 

stress (Anderova et al., 2001) and severe traumatic injury (Pekny et al., 1999). It was 

shown that GFAP upregulation during development and regeneration protect 

neuronal dysfunctions, e.g. after injury, by increasing the expression of neurotrophic 

factors, cytokines, early response genes and transporter molecules (Eddleston & 

Mucke, 1993). GFAP increase is correlated with neuronal growth and reduction may 

decrease the ability of astrocytes to induce or maintain blood-brain barrier in the 

endothelium (Liedtke et al., 1996; Pekny et al., 1998; Reuss et al., 2003). Severe 

GFAP increase has been implicated in neuropathological disorders including autism, 

epilepsy, Alzheimer’s Disease (AD), Down Syndrome (DS), traumatic brain injury 

(TBI). The aged brain is characterized by hypertrophy of astrocytes with a regular 

decrease in the number of neurons throughout the hippocampus, caudate nucleus 

and a number of major myelinated fibre tracts (Björklund et al., 1985; Soffie et al., 

1999). Whether GFAP decrease in the PFC is detrimental or not during the 

neonatal stage and or carried on through adult life requires further investigation. 

4.7 Functional implications of cortical astrocytes. Astrocytes that predominate 

the gray matter are of protoplasmic type (Bignami et al., 1972) and are noteworthy 

for their intimate associations with synapses particularly of the excitatory, spiny 

variety (Murai et al., 2003). Interestingly, neighboring protoplasmic astrocytes limit 

overlap or crossings between them to maintain individual domains/ areas creating 

exclusive territories within the neuropil (Bushong et al., 2002). In other words, 

astrocytes have their own specific territories as to where and which particular 

synapse to cover. Ultrastructure investigations suggest that astrocytes maintain a 

position near neuronal somata, dendrites and synapses to participate in synaptic 

function and plasticity providing neurotransmitters and energy substrates to 

neurons (Bushong et al. 2004). Therefore, the stressed-induced GFAP-IR 

astrocytes showing diminished in their branching complexity may reduce the 

efficacy of synapse due to the alterations of these mechanisms.  
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Astrocytes through secreting glial factors like S100ß, stimulate neurite outgrowth 

and their plasticity is linked to synaptogenesis. The increase of S100ß expression in 

the present study may imply the same idea which could have been the reason of 

spine increase in the mPFC. S100β was upregulated during lesion-induced sprouting 

and reactive synaptogenesis in dentate gyrus of rats (McAdory et al., 1998). It has 

been shown that developing neurons in culture do not achieve fully functional 

synapses until astrocytes are introduced (Pfrieger and Barres, 1997) indicating that 

the presence of astrocytes is important for synaptic function. (Jones and 

Greenough, 1996) reported that contact of astrocytes and interaction or 

envelopment between synaptic processes explains the mechanism by which 

astrocytes can optimally regulate the synaptic microenvironment (Anerson et al., 

1994; Jones and Greenough, 1996). Glial factors including glutamate and ATP cause 

neuronal excitation and inhibition respectively which appoints the astrocytes for its 

heterosynaptic control (Fellin et al., 2006). For instance, glutamate from astrocytes 

triggers Ca2+ waves that in turn release Ca2+-dependent release of glutamate in the 

extrasynaptic area and excites neuronal NMDA receptors (see review by Fellin et al., 

2006). On one hand, ATP regulates extracellular signaling including calcium wave 

propagation and in delayed conversion to adenosine, it causes neuronal suppression 

(see review Fellin et al., 2006). Furthermore, astrocytes also secrete D-serine that 

modulates action of glutamatergic neurotransmission, neuronal migration, and long-

term potentiation (Scolari and Acosta, 2007). From these observations, it is 

convincing that morphological changes in astrocytes can lead to serious changes in 

neuronal plasticity and overall synaptic functions in the brain of stressed animals.  

Factors that are neurotrophic in the immature brain are essential for the 

maintenance of the adult brain, and S100ß may also be one of these factors. This 

could be the role of the astroglia 5-TH1A receptors to regulate the release of S100ß 

and thus maintain cortical integrity. In the adult, lesion of serotonergic terminals in 

the cortex decreased the S100ß levels. Withdrawal of S100ß or serotonin not only 

blocks growth but also retracts neurite extension (Azmitia et al., 1990). Treatment 

with 5-HT1A agonist can reverse this loss of S100ß and promote recovery of the 

lesioned serotonin terminal (Yan et al., 1997). Decrease of serotonin levels in the 
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adult rat, may possibly involved S100ß since it stabilizes microtubule proteins that 

are found in the dendrites (Meichsner, et al., 1993). Interestingly, treatment of 

unlesioned adult animals with a 5-HT1A agonist does not increase S100ß release or 

promote overgrowth of serotonin terminals, suggesting that this sequence of events 

is most robustly operative when the brain has been damaged. This may indicate that 

changes in astrocytes must take place in order for an increases release of S100ß to 

take place.In mature adult rat brain, removal of serotonin terminals by a 5,7-

dihydroxytryptamine lesion, causes an increase in GFAP expression  (Frankfurt et 

al., 1991).  

Going back to the questions, the present findings show that: 1) S100ß and GFAP 

expressions in the juvenile mPFC are altered by stress; 2) stress-induced changes in 

S100ß and GFAP expressions are paralelled by changes in morphology of 

astrocytes; 3) stress-induced morphological changes are transient but their effects 

could be lasting and; 4) both the mPFC and SSC respond to stress but towards the 

opposite directions.  

In conclusion, a single but long separation stress during preweaning period showed 

dramatic effects in density and structure of astrocytes and repeated but short 

exposures affect the number but not the astrocytic structure. The acute stress may 

exert a severe impact on the number and structural integrity of glial population in 

the limbic mPFC but reverted by extended reunion following stress. In contrast, 

repeated but short neonatal stress enhanced glial plasticity but astrocytic response 

fades once the emotional stimulation stops. Neonatal separation increases the 

expression of S100B-IR astrocytes that in turn suppressed the expression of the 

GFAP-IR astrocytes due to its intracellular inhibitory effects towards GFAP. Based 

from our observations, this study suggests that neonatal stress, acute or repeated 

showed adverse effects on astrocytes in the mPFC and therefore can be assumed to 

interfere in glial, neuronal and glial-neural synaptic plasticity during the prefrontal 

cortical development.  Having known the impact of neonatal stress in the PFC on 

postnatal development, it is tempting to speculate that alterations incurred by stress 

during this period will be carried over in adult life. The memory of a stressful event 
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on juvenile stage may increase the anxiety-like behavior or lessen the exploratory 

activity or affect the solving-problem capacity of the organism in adulthood. 

4.8 Future directions. We focused this present work on estimating the glial density 

and branching complexity of neonatal astrocytes. However, future investigations will 

track down molecular mechanisms of glial activation in relation to experience-

induced neuronal plasticity and find out behavioural correlates of the stressed pups 

both on early development as well as in adulthood. It would be interesting to find 

out the behavioural equivalent of extension and retraction in astrocytes in the 

mPFC. Another consideration would be to modify the repeated separation from 

routinary into unpredictable paradigm and see if the glial response will be similar to 

the present findings. Given that the animals were only subjected to a one-time 6-hr 

separation treatment versus the repeated separation treatment of 1-hour separation 

for 21 days, it was most likely to have a greater impact than that of repeated 

separation. One can speculate that the animals eventually could not perceive the 

repeated separation as a stressor unlike the single episode since it occurred 

consistently on the same hour, with the same duration everyday. This provided a 

sense of predictability that the acute separation group was not afforded. It would be 

interesting to investigate if this repeated separation paradigm would prove adaptive 

behaviourally or not; if the pups grow to have better social skills or better learning 

capacity, for example. Furthermore, it will be interesting to find out the effects on 

S100ß-IR and GFAP-IR astrocytes in the mPFC when pups are subjected to the 

same repeated separation having the same total number of hours of exposure at 

various times of the day with different duration of exposure.  

Lastly, with regards to the regional specificity of S100ß-IR and GFAP-IR astrocytes 

response in the mPFC, the morphology and structure of astrocytes could be 

quantified in other mPFC subregions to see if the response of astrocytes in those 

regions coincides with the present findings on the ACd. The changed in astrocytic 

morphology maybe assessed whether it is follows the pathway of apoptosis or 

necrosis. It would also be interesting to find out the correlation between neuronal 

plasticity and increase in the astrocytes in the present study. 
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APPENDIX 1  
 

Supplementary Data on Acute Separation Stress 
 
 
Cell density of S100ß-IR astrocytes in the mPFC after acute separation stress 
(Group 2 and Group 3). The values are mean±standard error of S100ß-IR astrocytes 
in the mPFC subregions: [anterior cingulate (ACd), precentral medial (PrCM), 
prelimbic (PL), infralimbic (IL)]  and somatosensory cortex (SSC). Significant 
differences (between different rearing and hemisphere) were determined with 2-way 
ANOVA and Tukey test as post hoc test. P= p values ANOVA; P1= p values Group 
2 vs. control; P2 = p value Group 3 vs. control; P3= p values Group 2 vs. Group 3. 
*The group is significantly different at P=0.05. 
 
 
 
   Region     Control Group 2 Group 3 P    P1    P2     P3 

ACd 234±34.16 345±34.16 317±38.19 0.08 - - -

PrCM 212±13.72 326±24.74 302±33.90 0.01 0.009* 0.07 0.80

PL 227±34.67 315±31.65 348±38.77 0.64 - - -

IL 277±39.75 391±36.29 394±44.44 0.08 - - -

SSC 236±27.19 281±24.82 305±31.40 0.24 - - -

Table 1.1. All layers: Cell density of S100ß-IR astrocytes in the mPFC after acute separation 
stress. 
 
 
 

Region Control Group 2 Group 3 P P1 P2 P3 

ACd 394±74.26 421±71.10 533±74.26  0.38 - - - 

PrCM 406±62.53 393±62.53 520±69.91 0.36 - - - 

PL 426±63.14 455±63.14 503±70.59 0.72 - - - 

IL 511±63.38 487±63.38 590±70.87 0.54 - - - 

SSC 322±67.61 398±61.72 510±75.60 0.19 - - - 

Table 1.2. Layer I: Cell density of S100ß-IR astrocytes in the mPFC after acute separation 
stress. 
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Region Control Group 2 Group 3 P P1 P2 P3 

ACd 166±27.62 233±27.06 310±31.24 0.009 0.22  0.006* 0.17 

PrCM 160±28.58 279±28.58 255±31.95 0.019 0.02* 0.09 0.84 

PL 165±30.55 250±30.55 264±34.16 0.076 - - - 

IL 180±28.97 328±28.97 284±32.38 0.005 0.004* 0.06 0.56 

SSC 202±30.5

2 

216±27.86 274±34.12 0.27 - - - 

Table 1.3. Layer II-III: Cell density of S100ß-IR astrocytes in the mPFC after acute 
separation stress. 
 
 

 

Region  Control Group 2 Group 3 P P1 P2 P3 

ACd 274±29.49 363±26.92 412±32.97 0.01 0.08 0.013* 0.50

PrCM 241±27.22 358±24.85 346±30.44 0.01 0.01* 0.04* 0.95

PL 259±28.58 316±26.09 341±31.96 0.158 - - - 

IL 260±44.08 390±40.24 364±49.29 0.098 - - - 

SSC 253±26.37 285±24.07 286±29.48 0.62 - - - 

Table 1.4. Layer V-VI: Cell density of S100ß-IR astrocytes in the mPFC after acute 
separation stress. 
 
 
 
Cell density of GFAP-IR astrocytes in the mPFC after acute separation stress 
(Group 2 and Group 3). The values are mean±standard error of GFAP-IR 
astrocytes covering layer I-VI of the mPFC subregions: [anterior cingulate (ACd), 
precentral medial (PrCM), prelimbic (PL), infralimbic (IL)]  and somatosensory cortex 
(SSC). Significant differences (between different rearing and hemisphere) were 
determined with 2-way ANOVA (two-way analysis of variance) and Tukey test as 
post hoc test except PL and IL that employed Holm-Sidak as posthoc test due non-
parametric data. P= p values ANOVA; P1= p values Group 2 vs. control; P2 = p 
value Group 3 vs. control; P3= p values Group 2 vs. Group 3. *The group is 
significantly different at P=0.05. 
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Region  Control Group 2 Group 3 P P1 P2 P3 

ACd 174±10.44 88 ±10.59 114±11.44 <0.001 <0.001* 0.002*    0.24 

PrCM 104±9.53 68±8.82 107±9.53 0.01 0.03* 0.96 0.017* 

PL 98±6.20 39± 6.20 75±6.79 <0.001 <0.001* 0.02* <0.001*

IL 94±6.8 33± 6.87 80±7.53 <0.001 <0.001* 0.16 <0.001*

SSC 41±5.93 84 ±5.42 87± 6.64 <0.001 <0.001* <0.001* 0.95 

Table 1.5. Cell density of GFAP-IR astrocytes in the mPFC after  acute separation stress. 
 
 
Morphological measurements of GFAP-IR astrocytes in the ACd after acute 
separation stress. The values are mean±standard error of measurements in a total of 
110 GFAP-IR astrocytes. Significant differences (between different rearing and 
hemisphere) were determined with 2-way ANOVA (two-way analysis of variance) and 
Tukey test. P= p values ANOVA; P1= p values Group 2 vs. control; P2 = p value 
Group 3 vs. control; P3= p values Group 2 vs. Group 3. *The group is significantly 
different at P=0.05. 
 
 

GFAP-IR 

astrocytes 

 

Control 

      

Group 2 

 

Group 3 

 

P 

 

P1 

 

P2 

 

P3 

Soma size (µm2) 73.66 ± 

3.92 µm2 

66.89± 

4.38 µm2 

73.34± 

3.58 µm2 

0.45 - - - 

No. of nodes 16.60± 

1.27 

9.59± 

1.42* 

17.08± 

1.16* 

<0.001 0.003* 0.95 0.001* 

No. of 

processes 

8.2± 

0.56 

7.1± 

0.63 

9.4± 

0.51* 

0.018 0.23 0.34 0.01* 

Length of 

processes (µm) 

343.75± 

20.24 µm 

211.04± 

22.63 µm * 

397.01± 

18.47 µm* 

<0.001 <0.001* 0.15 <0.001* 

Table 1.6. Morphological measurements of GFAP-IR astrocytes in the ACd after acute 
separation stress. 
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APPENDIX 2  
 

Supplementary Data on Repeated Separation Stress 
 
 
2. Cell density of S100ß-IR astrocytes in the mPFC after repeated separation 
stress (Group 4 and Group 5). The values are mean±standard error of S100ß-IR 
astrocytes in the mPFC subregions: [anterior cingulate (ACd), precentral medial 
(PrCM), prelimbic (PL), infralimbic (IL)]  and somatosensory cortex (SSC). 
Significant differences (between different rearing and hemisphere) were determined 
with 2-way ANOVA and Tukey test as post hoc test. P= p values ANOVA; P1= p 
values Group 4 vs. control; P2 = p value Group 5 vs. control; P3= p values Group 4 
vs. Group 5. *The group is significantly different at P=0.05. 
 
 
 

Region Control Group 4 Group 5 P P1 P2 P3 

ACd 234±22.65 304±20.67 556±25.32 <0.001 0.07 <0.001* <0.001*

PrCM 212±22.39 270±20.43 553±25.03 <0.001 0.15 <0.001* <0.001*

PL 227±23.68 308±21.62 551±26.48 <0.001 0.046* <0.001* <0.001*

IL 277±33.25 353±30.35 562±37.17 <0.001 0.23 <0.001* <0.001*

SSC 236±20.45 233±20.45 524±22.86 <0.001 0.99 <0.001* <0.001*

Table 2.1. All Layers: Cell density of S100ß-IR astrocytes in the mPFC after repeated 
separation stress. 
 

 

Region Control Group 4 Group 5 P P1 P2 P3 

ACd 394±29.49 425±26.92 543±32.97 0.007 0.72 0.007* 0.028* 

PrCM 410±37.78 366±33.79 525±41.38 0.021 0.66 0.12 0.017* 

PL 426±30.36 446±27.71 555±33.94 0.021 0.87 0.02* 0.05 

IL 511±29.28 497±26.73 572±32.73 0.19 - - - 

SSC 322±35.48 276±35.48 524±39.66 <0.001*   0.64 0.003 <0.001*

Table 2.2 Layer I: Cell density of S100ß-IR astrocytes in the mPFC after repeated separation 
stress. 
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Region Control Group 4 Group 5 P P1 P2 P3 

ACd 166±21.50 235±19.63 463±24.04 <0.001 0.06 <0.001** <0.001**

PrCM 160±34.77 250±31.74 554±38.87 <0.001 0.002* <0.001** <0.001**

PL 165±26.73 277±24.40 488±29.89 <0.001 0.013* <0.001* <0.001* 

IL 180±34.26 304±31.27 495±38.30 <0.001 0.034* 0.002* <0.001* 

SSC 202±26.36 236±26.91 524±29.48 <0.001 0.63 <0.001* <0.001* 

Table 2.3. Layer II-III: Cell density of S100ß-IR astrocytes in the mPFC after repeated 
separation stress. 
 

Region Control Group 4 Group 5 P P1 P2 P3 

ACd 274±22.45 344±20.49 571±25.10 <0.001 0.07* <0.001** <0.001**

PrCM 241±38.59 276±35.23 634±43.15 <0.001 0.78 <0.001** <0.001**

PL 259±25.55 302±23.32 552±28.57 <0.001 0.44 <0.001** <0.001**

IL 260±37.59 343±34.31 556±42.03 <0.001 0.24 <0.001** <0.001**

SSC 253±21.21 243±24.12 524±24.49 <0.001 0.94 <0.001** <0.001**

Table 2.4. Layer V-VI: Cell density of S100ß-IR astrocytes in the mPFC after repeated 
separation stress. 
 

Cell density of GFAP-IR astrocytes in the mPFC after repeated separation 
stress (Group 4 and Group 5). The values are mean±standard error of GFAP-IR 
astrocytes covering the layers I-VI of the mPFC subregions: [anterior cingulate 
(ACd), precentral medial (PrCM), prelimbic (PL), infralimbic (IL)]  and 
somatosensory cortex (SSC). Significant differences (between different rearing and 
hemisphere) were determined with 2-way ANOVA (two-way analysis of variance) and 
Tukey test as post hoc test except PrCM and SSC that employed Holm-Sidak method 
as posthoc test for non-parametric data. P= p values ANOVA; P1= p values Group 4 
vs. control; P2 = p value Group 5 vs. control; P3= p values Group 5 vs. Group 4. 
*The group is significantly different at P=0.05. 
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Region Control Group 4 Group 5 P P1 P2 P3 

ACd 174±7.19 120± 7.19 89± 8.81 <0.001 <0.001* <0.001* 0.027* 

PrCM 103±6.69 92± 5.98 75± 7.33* 0.03 0.21 0.009* 0.09 

PL 96±5.19 59± 5.12* 57± 6.27* <0.001 <0.001* <0.001* 0.95 

IL 95±5.03 65± 4.95* 60± 6.07* <0.001 <0.001* <0.001* 0.79 

SSC 41±3.20 41±3.8 77±12.16** 0.003 0.99 0.009* 0.006*

Table 2.5 Cell density of GFAP-IR astrocytes in the mPFC after repeated separation stress. 
 
 
Morphological measurements of GFAP-IR astrocytes in the ACd after repeated 
separation stress. The values are mean±standard error of measurements in a total of 
110 GFAP-IR astrocytes. Significant differences (between different rearing and 
hemisphere) were determined with 2-way ANOVA (two-way analysis of variance) and 
Tukey test. P= p values ANOVA; P1= p values Group 4 vs. control; P2 = p value  
Group 5 vs. control; P3= p values Group 5 vs. Group 4. *The group is significantly 
different at P=0.05. 
 

GFAP-IR 

astrocytes 

 

Control 

 

Group 4 

 

Group 5 

 

P 

 

P1 

 

P2 

 

P3 

Soma size (µm2) 73.66 ±4.40 µm2 73.10±4.4 µm2  57.87±4.92 µm2 0.064 0.99 0.064 0.07 

No. of nodes 16.60±1.5 17.00±1.51  10.06±1.69** 0.01 0.98 0.016* 0.023*

No. of process 8.26±0.49 8.3±0.4 7.0±0.55 0.16 - - - 

Length process (µm) 343.75±43.92 µm  410.99±43.9 µm ** 246.56±49.10 µm  0.06 - - - 

Table 2.6. Morphological measurements of GFAP-IR astrocytes in the ACd after repeated 
separation stress. 
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APPENDIX 3 

COMPARISON OF HEMISPHERES 

 

3. Left vs. right hemispheres: cell density of S100ß-IR astrocytes in the mPFC 
after acute separation stress (Group 2 and Group 3). The values are 
mean±standard error of S100ß-IR astrocytes in the mPFC subregions showing non-
significant differences between the groups: [anterior cingulate (ACd), precentral 
medial (PrCM), prelimbic (PL), infralimbic (IL)]  and somatosensory cortex (SSC). 
Significant differences (between different rearing and hemisphere) were determined 
with 2-way ANOVA and Tukey test as post hoc test. P= p values ANOVA; P1= p 
values Group 2 vs. control; P2 = p value Group 3 vs. control; P3= p values Group 2 
vs. Group 3. *The group is significantly different at P=0.05. 
 

All Layer s Layer I 

 Left Right P  Left Right P 

ACd 295±29.03 302±29.03 0.81 ACd 400±68.63 499±68.63 0.25 

PrCM 277±21.38 283±21.38 0.82 PrCM 437±53.14 443±53.14 0.94 

PL 293±28.70 300±28.70 0.94 PL 449±53.66 473±53.66 0.75 

IL 356±32.90 352±32.90 0.94 IL 519±53.87 540±53.87 0.95 

SSC 256±21.58 291±23.98 0.28 SSC 424±55.97 396±55.97 0.83 

Table 3.1. ALL LAYERS and LAYER I: Cell density of S100ß-IR astrocytes in the left and 
right hemispheres of mPFC subregions and SSC after acute separation stress:  
 
 
 

Layer  II-III Layer  V-VI 

 Left Right P  Left Right P 

ACd 218±21.81 255±25.24 0.28 ACd 334±24.41 365±24.41 0.38 

PrCM 229±24.28 234±24.28 0.90 PrCM 308±22.53 321±22.53 0.69 

PL 226±25.97 226±25.97 0.98 PL 287±23.66 323±23.66 0.29 

IL 263±24.61 265±24.61 0.95 IL 315±36.49 361±36.49 0.38 

SSC 223±25.26 238±25.26 0.68 SSC 267±21.83 282±21.83 0.63 

Table 3.2. LAYER II-III and LAYER V-VI. Cell density of S100ß-IR astrocytes in the left and 
right hemispheres of mPFC subregions and SSC after acute separation stress:  
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GFAP Morphology of GFAP-IR astrocytes  

 Left Right P  Left Right P 

ACd 120±9.08 130±8.61 0.42 Soma size (µm) 74.02±3.24 68.56 0.24 

PrCM 92.01±7.78 94.38±7.40 0.82 No. of nodes 14.82±1.05 14.03 0.60 

PL 72.81±5.23 69.01±5.23 0.61 No. of process 8.9±0.47 7.5    0.06 

IL 63.08±5.79 75.18±5.79 0.95 Length process (µm) 316.29±16.75 318.23    0.93 

SSC 72.39±4.91 69.61±4.91 0.68     

Table 3.3. LAYER V-VI: Cell density of S100ß-IR astrocytes in the left and right hemispheres of 
mPFC subregions and SSC after acute separation stress; and morphological changes of GFAP-
IR astrocytes in the ACd. 
 
 
Comparison of left hemispheres. There was no significant difference between the left 
hemispheres after acute separation stress. 
 
All layers Control Group2 Group 3 P 

ACd 222±48.31 329±48.31 335±54.01  0.78 

PrCM 204±36.53 317±33.34 309±40.84 0.89 

PL 230±49.04 306±44.76  344±54.28 0.96 

IL 288±56.22 388±51.32 390±62.86 0.96 

SSC 232±39.05 261±35.65  290±43.66 0.90 

Table 3.4. All layers: Cell density of S100ß-IR astrocytes in the left hemisphere of mPFC 
subregions and SSC after acute separation stress. 
 
 

Layer I Control Group 2 Group 3 P 

ACd 421±15.12 459±29.08 320±54.52  0.43 

PrCM 363±13.72 539±24.74 409±33.90 0.74 

PL 432±14.81 463±36.66  452±40.70* 0.79 

IL 518±15.41 467±40.80 572±49.92* 0.94 

SSC 413±16.42 400±16.42  457±37.31 0.75 

Table 3.5. Layer I. Cell density of S100ß-IR astrocytes in the left hemisphere of mPFC 
subregions and SSC after acute separation stress. 
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Table 3.6. Layer II-III: Cell density of S100ß-IR astrocytes in the left hemisphere of mPFC 
subregions and SSC after acute separation stress. 
 
 

Table 3.7. Layer V-VI: Cell density of S100ß-IR astrocytes in the left hemisphere of mPFC 
subregions and SSC after acute separation stress:  
 
 
Comparison of right hemispheres. There was no significant difference between the right 
hemispheres of Group 2 and Group 3 when compared to controls. 
 
 

Layer I Control Group2 Group 3 P 

ACd 367±15.12 608±29.08 522±54.52  0.43 

PrCM 450±13.72 502±24.74 378±33.90 0.74 

PL 420±14.81 447±89.66  553±40.70 0.79 

IL 505±15.41 5071±40.80 609±49.92 0.94 

SSC 290±16.42 426±16.42  491±37.31 0.75 

Table 3.8. Layer I: Cell density of S100ß-IR astrocytes in the right hemisphere of mPFC 
subregions and SSC after acute separation stress.  
 
 

Layer II-III Control Group 2 Group 3 P 

ACd 154±40.48 238±40.48 278±45.26  0.85 

PrCM 149±40.42 301±40.42 238±45.19 0.63 

PL 176±43.21 232±43.21 272±48.31  0.77 

IL 178±40.96 339±40.96 272±45.80 0.87 

SSC 213±43.16 200±39.40  257±48.26 0.75 

Layer V-VI Control Group2 Group 3 P 

ACd 247±41.71 337±38.07 418±46.63  0.69 

PrCM 242±38.50 335±35.15 349±43.05 0.74 

PL 222±40.42 294±36.90  347±45.19 0.63 

IL 222±62.35 377±56.91 347±69.71 0.91 

SSC 249±37.00 272±33.78  271±37.00 0.93 
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Layer II-III Control Group2 Group 3 P 

ACd 177±40.48 228±40.48 315±45.26  0.85 

PrCM 171±40.42 257±40.42 272±45.19 0.63 

PL 154±43.21 268±43.21  256±48.31 0.77 

IL 181±40.96 318±40.96 296±45.80 0.87 

SSC 190±43.16 226±39.42  291±48.26 0.75 

Table 3.9. Layer II-III: Cell density of S100ß-IR astrocytes in the right hemisphere of 
mPFC subregions and SSC after acute separation stress. 
 
 
 

Layer V-VI Control Group 2 Group 3 P 

ACd 301±41.71 389±38.07 405±46.63  0.69 

PrCM 240±38.50 380±35.15 343±43.05 0.74 

PL 297±40.42 337±36.90  336±45.19 0.63 

IL 297±62.35 403±56.91 381±69.72 0.91 

SSC 258±37.00 298±33.78  310±47.77 0.93 

Table 3.10. Layer V-VI: Cell density of S100ß-IR astrocytes in the right hemisphere of 
mPFC subregions and SSC after acute separation stress:  
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3. Left vs. right hemispheres: Cell density of S100ß-IR and GFAP-IR astrocytes in 
the mPFC after repeated separation stress (Group 4 and Group 5). The values 
are mean±standard error of S100ß-IR astrocytes in the mPFC subregions: [anterior 
cingulate (ACd), precentral medial (PrCM), prelimbic (PL), infralimbic (IL)]  and 
somatosensory cortex (SSC). Significant differences (between different rearing and 
hemisphere) were determined with 2-way ANOVA and Tukey test as post hoc test. 
P= p values ANOVA; P1= p values Group 4 vs. control; P2 = p value Group 5 vs. 
control; P3= p values Group 4 vs. Group 5. *The group is significantly different at 
P=0.05. 

 
All Layers Layer I 

  

Left 

 

Right 

 

P 

  

Left 

 

Right 

 

P 

ACd 371±18.74 358±18.74 0.62 ACd 472±24.41 436±24.41 0.30 

PrCM 348±18.53 342±18.53 0.81 PrCM 442±29.80 426±31.86 0.30 

PL 375±19.60 350±19.60 0.37 PL 491±25.13 460±25.13 0.71 

IL 414±27.52 381±27.52 0.40 IL 541±24.23 512±24.23 0.39 

SSC 325±17.38 337±17.38 0.62 SSC 379±32.05 369±32.05 0.97 

Table 3.11. All layers and Layer I: Cell density of S100ß-IR astrocytes in the mPFC 
subregions and SSC after repeated separation stress:  
 
 

Layer  II-III Layer V-VI 

  

Left 

 

Right 

 

P 

  

Left 

 

Right 

 

P 

ACd 286±17.80 290±17.80 0.86 ACd 399±18.58 394±18.58 0.84 

PrCM 333±28.78 310±28.78 0.58 PrCM 400±31.95 368±31.95 0.48 

PL 325±22.13 295±22.13 0.32 PL 369±21.15 373±21.15 0.88 

IL 343±28.36 309±28.36 0.41 IL 387±31.11 385±31.11 0.96 

SSC 337±23.25 304±23.25 0.31 SSC 335±19.14 345±19.14 0.64  

Table 3.12. Layer II-III and Layer V-VI: Cell density of S100ß-IR astrocytes in the mPFC 
subregions and SSC after repeated separation stress. 
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GFAP Morphology of GFAP-IR astrocytes in the ACd 

 Left Right P  Left Right P 

ACd 119.53±6.34 136.34±6.34 0.07 Soma size 

(µm2) 
67.71±23.32 68.71±23.32 0.85

PrCM 92.98±5.64 87.01±5.64 0.44 No. of 

nodes 
14.39±1.2 14.71±1.2 0.86

PL 70.27±4.64 72.36±4.64 0.74 No. of 

process 
7.73±0.42 7.99±0.42  0.67

IL 70.61±4.49 76.47±4.49 0.35 Length of 

process 

(µm) 

346.44±37.32 321.08±37.32  0.63

SSC 48±5.94 57±6.30 0.29     

Table 3.13. Cell density of GFAP-IR astrocytes in the mPFC subregions and morphological 
changes of GFAP-IR astrocytes after repeated separation stress. 
 

 
Comparison of left hemispheres. There was no significant difference between the left 
hemispheres of Control, Group 4 and Group 5.      
    
 

All layers Control Group 4 Group 5     P 

ACd 222±32.03 308±29.24 583±35.81  0.52 

PrCM 204±31.66 279±28.90 561±35.40 0.83 

PL 230±33.49 296±30.57  573±37.45 0.87 

IL 288±47.02 370±42.92 583±52.57 0.97 

SSC 232±28.92 227.80±28.92 516.00±32.34       0.62 

Table 3.14. All Layers: Cell density of S100ß-IR astrocytes in the left hemisphere of mPFC 
subregions and SSC after repeated separation stress. 
 

Layer I Control Group 4 Group 5     P 

ACd        421.80± 41.71 435.66± 38.07 561.25±46.63 0.30 

PrCM 391.50±47.79 396.50±47.79 538.75±58.53 0.71 

PL 432.40±41.41 469.66±39.19 573.25±48.00 0.38 

IL 518.00± 41.41 511.83±37.80 595.25±46.30 0.39 

SSC 362.00±50.17 282.00±50.17 516.00±56.09 0.97 

Table 3.15. All Layers: Cell density of S100ß-IR astrocytes in the left hemisphere of mPFC 
subregions and SSC after repeated separation stress.  
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Layer II-III Control Group 4 Group 5 P 

ACd 154±30.41 239±27.76 464±34.00  0.86 

PrCM 149±49.17 251±44.88 599±54.97 0.54 

PL 176±37.80 292±34.51  508±34.51 0.97 

IL 288±47.02 370±42.92 583±52.57 0.97 

SSC 213.60±37.29 282.83±34.04 516.00±41.69 0.31 

Table 3.16. Layer II-III: Cell density of S100ß-IR astrocytes in the left hemispheres of mPFC 
subregions and SSC after repeated separation stress.  
 
 

Layer V-VI Control Group 4 Group 5 P 

ACd 247±31.75 341±28.98 609±35.50  0.18 

PrCM 242±54.58 289±49.83 669±61.03 0.85 

PL 230±36.13 308±32.99  577±40.40 0.88 

IL 288±47.02 366±48.53 574±59.44 0.45 

SSC 249.40±30.00 229.00±30.00 528.33±38.72 0.69 

Table 3.17. Layer V-VI: Cell density of S100ß-IR astrocytes in the left hemispheres of mPFC 
subregions and SSC after repeated separation stress. 
 
 
3. Comparison of right hemispheres. There was no significant difference between the 
hemispheres of Control, Group 4 and Group 5. 
 
 

All layers Control Group 4 Group 5        P 

ACd 245±32.02 301±29.24 528±35.81  0.51 

PrCM 220±31.66 262±28.90 544±35.40 0.83 

PL 224±33.49 296±30.57  529±37.45 0.87 

IL 266±47.02 370±42.92 541±52.57 0.97 

SSC 240.20±28.92 239.80±28.92 532.00±32.34      0.31 

Table 3.18. All layers. Cell density of S100ß-IR astrocytes in the right hemispheres of mPFC 
subregions and SSC after repeated separation stress. 
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Layer I Control Group 4 Group 5 P 

ACd        367.20±41.71 416.00±38.07 526.50± 46.63 0.30

PrCM 429.75±58.53 336.00±47.79 512.50± 58.53 0.71

PL 420.20±42.93 423.00±39.19 538.00± 48.00 0.38

IL 505.20±41.41 482.16±37.80 549.50± 46.30 0.39

SSC 282.00±50.17 306.20±50.17 532.00± 56.09 0.97

Table 3.19. Layer I: Cell density of S100ß-IR astrocytes in the right hemispheres of mPFC 
subregions and SSC after repeated separation stress.  
 
 
 

Layer II-III Control Group 4 Group 5 P 

ACd 177±30.41 231±27.76 426±34.00  0.86 

PrCM 171±49.17 250±44.88 510±54.97 0.54 

PL 154±37.80 263±34.51  468±42.71 0.97 

IL 171±49.17 250±44.88 510±54.97 0.87 

SSC 191.40±37.29 191.00±41.69 532.00±41.61 0.31 

Table 3.20. Layer II-III: Cell density of S100ß-IR astrocytes in the right hemispheres of 
mPFC subregions and SSC after repeated separation stress.  
 
 

Layer V-VI Control Group 4 Group 5 P 

ACd 301±31.75 347±28.98 534±35.50  0.18 

PrCM 240±54.58 262±49.83 600±61.03 0.85 

PL 297±36.13 296±32.99  528±40.40 0.24 

IL 297±53.16 321±48.53 538±59.44 0.45 

SSC 258.00±30.00 258.20±30.00 521.40±30.00 0.69 

Table 3.21. All Layers and Layer I: Cell density of S100ß-IR astrocytes in the right hemispheres 
of mPFC subregions and SSC after repeated separation stress.  
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APPENDIX 4 

Supplementary Materials 

 

PB-Phosphate buffer 
stock solution 1 –  (13.8 g/L) 0.1 M Na2HPO4. H2O 
stock solution 2 – (14.2 g/L) 0.1 M Na2HPO4 
 
stock solution 1 = 200 ml 
stock solution 2 = 800 ml (1 L)  
mix stock solution 1and 2 and set pH = 7.4 
 
PBS-Phosphate buffer 
stock solution 1 = 200 ml 
stock solution 2 = 800 ml  
+ 8.5 g NaCl (1 L), set pH = 7.4 with NaOH/ or HCl 
 
Tris-HCl buffer 
Tris-HCl 50 mM = 6.01 g dissolve in 2/3 distilled water 
set pH = 7.6 with conc. HCl, adjust final volume to 1L 
 
0.1M Tyrodebuffer (1L) 
NaCl = 8g 
KCl = 200 mg (M = 74. 56) 
CaCl2. 2H20 = 1g (M = 84.0) 
NaHCO3 = 1g (M = 84.0) 
NaH2PO4 x 2H2O = 40 mg (M = 156.01) 

- dissolve in distilled water, set the pH = 7.6 with NaCl or HCl, cool. 
 
4% paraformaldehyde (PFA) in 0.1 M Sodium acetate buffer (pH = 6.5) (1L) 

- weigh 8.2 g of sodium acetate and dissolve it in 800 ml distilled water  
- mix and set pH = 6.5 with con. HCl. Adjust final volume to 1L. 
- weigh 40 g PFA and dissolve it in 1L of Sodium acetate buffer 
- mix, filter and keep it cool. 

 
4% paraformaldehyde (PFA) in 0.1 M Sodium borate buffer (pH = 9.3) (1L) 

- weigh 20.1 g of Sodium borate and dissolve in 800 ml distilled water  
- mix and set the pH = 9.3 with NaOH. Adjust the volume to 1L. 
- weigh 40 g PFA and dissolve it in 1L of Sodium acetate buffer 
- mix, filter and keep it cool. 
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APPENDIX 5 

Zusammenfassung 

 

Der Einfluss von akuter und wiederholter neonataler Separation auf die S100ß- und 
GFAP-Immunoreaktivität im medialen Präfrontalcortex 

Astrozyten wurde lange Zeit lediglich eine unterstützende Funktion für die 

Nervenzellen im Gehirn zugesprochen. Heute ist bekannt, dass Astrozyten wichtige 

Aufgaben bei der neuronalen Migration sowie bei der Bildung und Reifung 

synaptischer Kontakte während der frühen Hirnentwicklung erfüllen. Es gibt jedoch 

nur wenige Studien, welche die Bedeutung der neonatalen Umgebung auf die 

Plastizität und Reifung von Astrozyten in assoziativen Hirnregionen wie dem 

medialen Präfrontalcortex (mPFC) untersucht haben. Die vorliegende Arbeit 

überprüft die Hypothese, ob die Plastizität von Gliazellen im mPFC durch die frühe 

Separation von der Familie beeinflusst wird. Die Expression der astrozytischen 

Markerproteine S100ß und GFAP wurde untersucht, um den Einfluss von akuter und 

wiederholter Separation während der ersten drei Lebenswochen, einer kritischen 

Phase in der Entwicklung, zu überprüfen. Fünf experimentelle Gruppen der 

Strauchratte Octodon degus wurden verglichen: 1) Kontrolltiere (CON), welche 

ungestört bis Postnataltag 21 (PND 21) mit den Eltern und Geschwistern im 

Heimkäfig aufwuchsen; 2) Akute Separation (Group 2), diese Jungtiere wurden am 

PND 21 für 6 h von den Eltern und Geschwistern getrennt und danach 1h in den 

Heimkäfig zurückgesetzt; 3) Akute Separation + Reunion (Group 3) diese Tiere 

wurden am PND 19 für 6 h von den Eltern und Geschwistern getrennt und 

verblieben anschließend bis PND 21 im Heimkäfig; ; 4) Wiederholte Separation 

(Group 4), diese Jungtiere wurden von PND 1-21 täglich 1 h von den Eltern und 

Geschwistern getrennt und nach der letzten Separation für 1 h in den Heimkäfig 

zurückgesetzt; 5) Wiederholte Separation + Reunion (Group 5), diese Jungtiere 

wurden von PND 1-14 täglich 1 h von den Eltern und Geschwistern getrennt und 

verblieben danach bis PND 21 ungestört im Heimkäfig.  
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Die Dichte S100ß- und GFAP-positiver Astrozyten wurde in vier Subregionen des 

mPFC quantifiziert: anteriorer cingulärer Cortex (ACd), präcentraler medialer Cortex 

(PrCM), prälimbischer (PL) und infralimbischer (IL) Cortex. Als nichtlimbische 

Kontrollregion wurde außerdem der somatosensorische Cortex (SSC) untersucht.  

Es zeigte sich, dass akute und wiederholte Separation die Dichte S100ß- und GFAP-

positiver Astrozyten im mPFC ändert. Dabei erhöht sich die Dichte von S100ß 

schicht- und regionenspezifisch, während die Dichte von GFAP sinkt. Akute 

Separation führte außerdem zu einer veränderten Morphologie der Gliazellen, 

wiederholte Separation beeinflusste die Morphologie hingegen nicht. Reunion, also 

längeres Zurücksetzen in den Familienverband nach der Separation beseitigte die 

Veränderungen in der Morphologie nach akuter Separation und minimierte sie nach 

wiederholter Separation. Im SSC führte die akute und wiederholte Separation von der 

Familie nicht zu Veränderungen der S100ß-positiven Astrozyten, erhöhte jedoch die 

Dichte GFAP-positiver Astrozyten.  

Diese Veränderungen in der frühen Entwicklung könnten Konsequenzen für die 

Interaktion von Neuronen und Gliazellen bei der Modulation der synaptischen 

Plastizität nach sich ziehen. Die Ergebnisse verstärken die anfänglich gestellte 

Hypothese, dass Gliazellen in assoziativen Hirnregionen durch neonatale 

Umweltveränderungen, wie die Separation von der Familie, beeinflusst werden.  
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