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Kurzzusammenfassung 
Ziel dieser Arbeit ist daher die methodische Analyse der folgenden Prozesse zu 

untersuchen: Analyse der Verdampfung der flüssigen Kohlenanteile, Effekt von 

Strahlung und Konvektion während der Verbrennung, Wärmeübergang im inneren der 

Partikel, Reaktionsgrad während des Kontaktes von reaktionsfähigen Gasen mit 

Kohlenpartikeln. 

Das Modellbaukonzept des Kohlenverdampfungsprozesses ist dem der Verdampfung 

eines Flüssigkeitstropfens ähnlich. Unterschiedlich ist aber, dass während der 

Verdampfung der flüchtige Tel einen konstanten Durchmesser aufweist, während 

dessen der Tropfendurchmesser bei der Verbrennung abnimmt. Ein analytisches Modell, 

das auf der Annahme de kombinierten stationären und instationären Prozesse basiert, 

wird erläutert, um die zeitabhängige, sphärische Verbrennung eines einzigen Tropfens 

unter dem Effekt der Schwerkraft auf Mikrolevel darzustellen. Das Modell konzentriert 

sich auf Voraussagen bezüglich der folgenden Parameter: Variation des Tropfen- und 

Flammendurchmessers während der Verbrennung, Einfluss der Verdampfungsenthalpie 

auf das Verbrennungsverhalten, die durchschnittliche Verbrennungsgleichung und der 

Effekt des Konzentrationswechsel des umgebenden Sauerstoffs auf die 

Flammenstruktur.  

Das Modell der Tropfenverbrennung wurde erfolgreich angewendet für die Beschreibung 

der Verdampfung der Kohlenpartikel, wo die weiteren prozessbeschränkenden 

Annahmen gemacht worden sind. Das Modell beschreibt den Mechanismus der Wärme- 

und Stoffübertragung in der Partikel-, Flammen- und Umgebung. Der diffuse Transport 

des Dampfes wurde mit zeitunabhängigem Zustandsverhalten erklärt dem 

zeitabhängigen diffusen Transport des Oxydationsmittels gegenüber. Weiterhin hat die 

Dateninkompatibilität, die durch die Bestimmung des kinetischen Koeffizients beim 

Vergasen der Kohle mit CO2 entstand, Experimentaluntersuchungen benötigt. Diese 

Arbeit beinhaltet Versuchsziele für die Neubestimmung des kinetischen 

Gleichungskoeffizients der Boudouard Reaktion, der vom Kohlentyp abhängt. Weiterhin 

sind theoretische Analyse durchgeführt worden, um die Bedeutung der Boudouard 

Reaktion während der unterstöchiometrischen Verbrennungsprozesse darzustellen. Die 

Versuchs- und die Modellierungsergebnisse in dieser Arbeit beweisen, dass die 

Boudouard-Reaktion einen großen Einfluss auf den Prozess(λ ≤ 1) hat und von der im 

Prozess verwendeten Kohlentyp abhängt. Die Simulationen über die Verbrennung der 

einzelnen Partikel wurden mit Hilfe eines instationären Modells durchgeführt, das eine 
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ausführliche Beschreibung des Transportphänomens und der chemischen Reaktion 

enthält. Das Ergebnis der Simulation ist mit den in der Literatur vorhandenen 

Versuchsergebnissen verglichen worden. 
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Abstract 
The objective of this work has been to systematically analyze coal devolatilization, the 

radiation and convection effect over combustion, internal conduction within coal 

particle, and the reaction rates in circumstances where highly reactive gases come in 

contact with coal particle.  

The modeling concept of coal devolatilization is similar to that of the liquid droplet 

combustion except that volatiles emitted from the coal particle which has a constant 

diameter during devolatilization unlike droplet burning. An analytical model based on an 

assumption of combined quasi-steady and transient behavior of the process is 

presented to exemplify the unsteady, sphero-symmetric single droplet combustion 

under microgravity. The modeling approach especially focuses on predicting; the 

variations of droplet and flame diameters with burning time, the effect of vaporization 

enthalpy on burning behavior, the average burning rates and the effect of change in 

ambient oxygen concentration on flame structure. The droplet combustion model has 

been successfully implemented for description of devolatilization of a coal particle where 

more restrictive assumptions were made. The model describes the heat and mass 

transfer mechanisms among the particle, the flame, and the external environment. The 

volatile diffusive transport has been explained with quasi-steady state behavior unlike 

unsteady diffusive transport of oxidant. Moreover, the data incongruity existing in 

estimation of kinetic coefficients for gasification of coke by CO2 has shown a need to 

perform experimental investigation. This work includes experimental targets for re-

estimation of kinetic rate coefficient of Boudouard reaction, which depends on the type 

of coke. A new set of activation energies and pre exponential factors differs mostly from 

the values available in the literature. Moreover, theoretical analyses are reported to 

describe the importance of Boudouard reaction during those combustion processes 

where the value of excess air number is approximately 1. Both the experimental and 

computational results reported in the present study suggest that Boudouard reaction 

has a great influence on process (air excess number ≤ 1) and shows dependence on a 

type of coal used in the process. Simulations of single particle combustion have been 

conducted using a steady state model that includes a detailed description of transport 

phenomenon coupled with chemical reactions. The results of simulations are compared 

with experimental data available in the literature.  
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Chapter 1 

Introduction 

 
1.1 Coal: Utilization 
The combustion of solid fuels has a history stretching over many millennia. Coal is a 

naturally occurring hydrocarbon that consists of the fossilized remains of buried plant 

debris that have undergone progressive physical and chemical altercation, called 

coalification, in the course of geologic time. Coal utilization covers a wide area of 

applications, but in terms of classes it involves domestic and commercial heating, 

industrial applications, and power station or utility applications. A number of energy 

prediction scenarios have suggested that bioenergy might account for 10%–33% of the 

primary energy supply by 2050 [IEA World Energy Outlook, Shell International], but 

modern biomass utilization techniques based on commercial fuels will provide much less 

than this. Coal utilization will, however, remain the dominant commercial solid fuel 

source until at least 2020, and the International Energy Agency estimates [IEA World 

Energy Outlook] indicate that coal, together with combustible renewables, will form 

28% of the traded fuels by 2020, compared with 24% in 1998. Gasification, which is a 

mean to convert fossil fuels, biomass and wastes into either a combustible gas or a 

synthesis gas for subsequent utilization, offers the potential both for clean power and 

chemicals production. Some 20% of the gasification plants throughout the world that 

use coal as the feedstock produce electric power [USDoE and Gasification Technology 

Council]. Coal gasification can produce a gas used for synthesis, or as a source of 

hydrogen for the manufacture of ammonia or hydrogenation applications in refineries, 
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and many of the technologies have been developed by petroleum companies with these 

applications in mind.  

 

1.2 Coal: Past, Present and Future 
The early technologies involved methods for the combustion of fuels such as wood logs 

or lump coal, generally in fixed beds with an uncontrolled inflow of undergrate and 

secondary air supplies. The industrial revolution was largely based on this technology 

but had the inevitable inefficient combustion and high pollution levels [Lowry]. Over the 

years, combustion efficiency increased by the introduction of controlled airflows and 

better boiler design, but combustion intensity, being fundamentally a quantity 

dependant on combustion temperature and coal particle surface area, remained 

attracted extensive research activity and has developed technologically as a result. 

Fluidized-bed combustion, particularly pressurized circulating-bed combustion, offered 

even higher efficiencies [Grace et al.], but so far, this has not been greatly favored by 

industry. The amount of CO2 in the atmosphere has risen by over 30% since 1750, and 

if no action is taken, it will double its pre-industrial value during the second half of the 

twenty-first century. This is associated with adverse climatic effects. Most of it is due to 

the use of fossil fuels, especially coal. 

The general processes that take place in coal combustion are shown in Fig. 1.1. The 

main processes of coal combustion, namely, coal devolatilization and char burn-out, are 

usually simplified to the following reactions: 

 Step 1: Coal → Char+ Volatiles  

 Step 2: Volatiles (hydrocarbons) + O2 → CO, CO2, H2, H2O  

 Step 3: 
CO + 

2
1

O2 → CO2 
 

 Step 4: C (char) + O2 → CO, CO2  

 
Nitrogen is released from the coal, as shown in Fig. 1.1, and forms nitrogen oxides. The 

inorganic materials decompose to form ash and then slag. Sulfur is released, forming 

sulfur oxides together with some toxic metals; these aspects of combustion are not 

dealt with here, nor is slag formation.  
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Figure 1.1: Diagram showing the combustion process of a single coal particle. 
The left-hand side shows the heterogeneous steps, and the 
homogeneous reactions are shown on the right-hand side. 

  

Coal is generally classified by rank which is a broad measure based on the average 

carbon content of the particular coal. Within each coal particle there are variations in 

composition within its constituent macerals, and the mineral matter may vary in type 

and extent. However, the macerals units are geometrically small, typically 2-5 μm in 

diameter, so that individual pulverized coal particles are effectively pseudo-

homogeneous. Larger coal particles may have a banded structure so that the properties 

are clearly anisotropic, for instance, they are susceptible to fracture and fragmentation 

along these bands. Many coal combustion models are linked to an average coal 
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property, and this is particularly the case with most devolatilization and char combustion 

models. However, the advent of combustion models based on molecular modeling has 

opened a vast amount of information for the combustion researchers.  

Coal combustion research has often concentrated on understanding combustion 

behavior in two distinctively different processes, namely, devolatilization and char 

combustion. Most devolatilization studies have dealt with thermal decomposition in an 

inert atmosphere, while char studies have used nonvolatile char or carbon particles. 

This kind of ideal situation may not be encountered in practical applications such as in a 

furnace. In an oxidizing environment coal particle heat-up and devolatilization can 

progress simultaneously or sequentially. The complexities involved in the phenomena 

seem to hinder more direct approaches. 

The mathematical equation used to represent the heating-up of particles in pulverized 

coal models may be truncated and therefore can differ from model to model, with some 

stressing the influence of radiant flux and others convective heat transfer. In most 

cases, this will not make a significant difference in theoretical predictions in pulverized 

coal flames. However, it becomes an important factor with larger particle sizes in fixed 

or fluidized-bed combustion. 

In pulverized coal combustion, numerous studies suggest that devolatilization can result 

in particle rotation. Theoretical calculations show [Unsworth et al., Sorensen et al.] that 

for an ideal sphere, convective heating-uptimes (99% final T) are 5 ms for 25 μm 

particles, 35 ms for 80 μm particles, and 75 ms for 120 μm particles; and for all these 

particles, the Biot number is such that the internal temperature profile is essentially 

uniform. However, important factors are the characteristic times for radiation and 

convection, internal conduction, and the reaction rate in circumstances where gases are 

starting to emit from the surface. In this case, convective heat transfer is lower than the 

ideal theoretical case, so that in fact, radiative heating is of paramount importance. 

Thus, low NOx burners with lower flame temperatures and a lower radiative flux result 

in particles being heated at a much lower rate than in “conventional” burners. Likewise, 

larger particles are heated at rates approximately proportional to the diameter, and the 

resultant slower and more uneven heating leads to fragmentation. Computational fluid 

dynamics (CFD) computational methods applied to combustion have made considerable 

advances over the last few years. 

Coal gasification has a wide range of applications that are set out in Fig. 1.2. However, 

one of the main current interests is in the application of gasified product in electricity 

generation. The conversion of coal to electricity, via such an intermediate gaseous 
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product stage, can be achieved by employing the integrated gasification combined cycle 

(IGCC) technology. 

The feedstocks include coal, natural gas (for reforming applications) [Geertsema, 

Morita] refinery residues [Graaf, Pena FG] and biomass/wastes in combination with coal 

[Hirato et al.], etc. Although the large majority of gasification projects to date are based 

upon the use of fuels other than coal, much R & D attention has been focused on using 

coal as the primary feedstock. All coal types can be gasified. However, on economic 

grounds, low ash content coals are preferred.  

 

  Figure 1.2: Application of gasification and possible future role. 

 

On a worldwide basis, there are some 160 modern, gasification plants in operation and 

a further 35 at the planning stage. The majority of these plants are located either in 

Europe or in the USA, of which those plants that either currently are in operation or are 

planning to produce electricity are shown in Tables 1.1. 

In the EU, many companies have actively been developing IGCC technology. The 

following ‘commercial’ power projects are either in operation or under development. 

• Buggenum, Netherlands, firing coal only (plus some part biomass trials). This is 

a 283 MW electric power plant that uses Shell gasification technology. It has 

been in operation since 1994 [Sendin et al., Ploeg]. 

• Puertollano, Spain, a 335 MW e IGCC demonstration plant firing a 50:50 blend of 

petroleum coke and coal. The project received a subsidy from European 

Commission’s Thermie program with a grant of 50 million ECUs (~$60 m). The 
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project uses a PRENFLO entrained-flow system with dry feeding, supplied by 

Krupp Uhde [Schellberg, Schellberg, Green, Mendez et al., Mendes, Elcogas]. 

 

  Table 1.1: Major electricity producing gasification plants by country. Source: 
Derived from the World Gasification Database, US DoE and 
Gasification Technology Council [USDoE and Gasification Technology 
Council]. 

 

• Shell Pernis Refinery, Netherlands. This project uses Shell gasification 

technology to convert vacuum cracked residue and asphalt to electricity. It has a 

total capacity of 1650 T/d residue and produces 130 MW of electricity [Graaf].  

• Sarlux, Italy. This project gasifies 3424 T/d (3771 short-t/d) of visbreaker 

residue to produce steam, 550 MW of power, and hydrogen in a Texaco gasifier 

at the Saras refinery in Sarroch, Cagliari [Collodi]. 

• ISAB, Italy, uses a Texaco quench gasifier to convert 130 T/h of de-asphalter 

bottoms from the ISAB refinery in Priolo Gargallo, Siracusa, Sicily, to produce a 

nominal 510 MWof power [Collodi]. 

• API, Italy. This project uses a Texaco gasifier to gasify 1335 t/d (1470 short-t/d) 

of visbreaker residue from the API refinery in Falconara to produce steam and 

280 MW of power [Spence]. 
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• Schwarze Pumpe, Germany, converts a mix of 450, 000 T/annum of solid waste, 

and 50,000 T/annum of liquid wastes into electricity, steam, and methanol 

feedstock using four solid-bed gasifiers made by a variety of manufacturers, and 

firing visbreaker residue [Buttker et al.]. 

• Sulcis, Italy, in development for a 450 MW e coal-based power plant using the 

Shell gasification technology. The plant will be in operation in 2005 [Cavalli et 

al.]. 

• Agip, Italy, in development for use of high-viscous bottom tar from a visbreaking 

unit and produce clean syngas for a power generation unit, where it will be co-

fired with natural gas. The plant will use Shell gasification technology and is 

planned to be in operation in 2004. 

• Piemsa, Spain, commissioning for 2004/2005 is planned for this IGCC complex 

that will use refinery heavy stocks to produce 784 MW of net power, hydrogen, 

sulphur and metals concentrate using Texaco gasification technology [Ubis et 

al., Bressan et al.]. 

In Europe, for example, the projections suggest that in the EU alone over the period to 

2030, some 550 GW of new generation plant will have to be installed, to meet new 

demand, and to replace ageing power stations. The prevailing view is that the future 

energy needs of the enlarged EU will be so significant that the full range of available 

fuels (including renewables, nuclear, natural gas and coal) will have to be utilized to 

meet the demand. This presents two problems: 

1. The new plant that is to be built will itself have a lifetime of about 40 years and 

so will be operating during the onset of the transition away from oil and gas, 

and with the associated price increases that will inevitably occur;  

2. The scale of operations, costs, and the need for reliability in the new plant, will 

make it difficult to accommodate the large-scale introduction of new, unproven 

and essentially small-scale energy technologies such as biomass, wave or tidal 

power.  

Consequently, a very large proportion of this new and replacement plant will have to be 

coal fired. However, such plant will need to achieve a much higher environmental 

performance than existing units in order to meet future EU environmental standards. At 

the same time, if the need to achieve near zero emissions is factored into the 

deliberations then by, say, 2020 it will be necessary to have available coal fired 

technologies with integrated CO2 removal processes. This suggests that the prime need 

is to ensure that combustion technology can achieve high efficiency with proven 
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reliability at acceptable capital cost. This thesis is largely concerned with the 

fundamentals of the processes involved in the combustion and devolatilization of coal 

and how they can be beneficial in modeling industrial combustors.  

 

1.3 Motivation and Scope of this Work 
In few last decades, extensive research has been carried out in development of 

comprehensive computer models for better performance of coal in many industrial 

applications. However, the processes occurring during coal combustion and their 

interaction, especially in devolatilization, are scarcely understood. Although, as 

mentioned in section 1.1, the ideal situations of either nonvolatile char combustion or 

devolatilization in an inert atmosphere are inconsistent with practical situation, there 

has been only few research works in this field. The objective of this work has been to 

systematically analyze coal devolatilization, the radiation and convection effect over 

combustion, internal conduction within coal particle, and the reaction rates in 

circumstances where highly reactive gases are starting to come in contact with coal 

particle. Special emphasis has been placed on modeling and understanding the physical 

and chemical processes and their interaction which dominate the burning phenomenon. 

The modeling concept is similar to that of liquid droplet combustion except that volatiles 

emitted from the coal particle which has a constant diameter during devolatilization 

unlike droplet burning. Moreover, the data incongruity existing in estimation of kinetic 

coefficients for gasification of coke by CO2 has shown a need to perform experimental 

investigation. 

The thesis is structured into four main parts: 

[1] An analytical study of droplet combustion under microgravity (chapter 2) 

[2] Modeling coal particle behavior under devolatilization (chapter 3) 

[3] Coke gasification in an environment of CO2 (chapter 4) 

[4] Modeling coal combustion (chapter 5)    

In chapter 2, an analytical model based on an assumption of combined quasi-steady 

and transient behavior of the process is presented to exemplify the unsteady, sphero-

symmetric single droplet combustion under microgravity. The model based on an 

alternative approach of describing the droplet combustion as a process where the 

diffusion of fuel vapor residing inside the region between the droplet surface and the 

flame interface experiences quasi-steadiness while the diffusion of oxidizer inside the 

region between the flame interface and the ambient surrounding experiences 
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unsteadiness. The modeling approach especially focuses on predicting; the variations of 

droplet and flame diameters with burning time, the effect of vaporization enthalpy on 

burning behavior, the average burning rates and the effect of change in ambient 

oxygen concentration on flame structure. The modeling results are compared with a 

wide range of experimental data available in the literature.  

The model described in chapter 2 has also been successfully implemented for 

devolatilization of a coal particle, where more restrictive assumptions were made. A 

quasi-steady-transient model has been developed to describe a coal particle undergoing 

devolatilization. Chapter 3 presents an in-depth analysis of the principle phenomena 

occurring in during devolatilization. The modeling concept is similar to that of liquid 

droplet combustion except that volatiles emitted from the constant diameter coal 

particle. The model describes the heat and mass transfer mechanisms among the 

particle, the flame, and the external environment. The volatile diffusive transport has 

been explained with quasi-steady state behavior unlike unsteady diffusive transport of 

oxidant.  

Various reaction kinetic descriptions have been formulated and have been discriminated 

for gasification of coke with CO2 on experimental as well as modeling spectra. The 

occurrence of data incongruity among kinetics parameters is shown as an indicator for 

experimental investigation, which is described in chapter 4. Extensive experimental 

work has been carried out to calculate intrinsic and apparent reaction coefficients with a 

new set of activation energy.  

Chapter 5 presents the modeling of single coal particle combustion in atmosphere of 

O2. Model is able to qualitatively and quantitatively describe the steady-state behavior 

of the coal combustion. It includes homogeneous and heterogeneous chemical 

processes in the gas phase and in the solid phase respectively. Moreover, a 

mathematical analysis is also described to model a special case of combustion where 

oxygen concentration (air excess number ≤ 1) is restricted. 
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Chapter 2 

An Analytical Study of Droplet 

Combustion under Microgravity 

 
2.1 Introduction 
One of the main objectives in combustion research is the development of 

comprehensive computer models to give a better understanding of spray combustion in 

many practical applications e.g. gas-turbine engine, diesel engine, oil fired boilers, 

process heater, etc. An isolated droplet combustion study under microgravity conditions 

serves as an ideal platform in providing a basis for enhancing the existing 

understanding of burning process, and gives proper explication of the process which is 

important for economical use of fuels and for reducing the production of pollutants. 

Microgravity condition is necessary not only for the sphero-symmetric droplet 

combustion in quiescent atmosphere, but also for the resulting one dimensional solution 

approach of combustion.  

A great number of modeling studies for better understanding of vaporization and 

combustion of a fuel droplet under microgravity conditions have been reported for 

nearly five decades. Godsave and Spalding derived the classical d2-law, which yields 

relatively good estimates of the gasification rate. Kumagai et al. successfully performed 

the first droplet combustion experiments in microgravity conditions to validate d2-law. 

They showed that droplet gasification rate was constant over time which is one of the 

most important features of d2-law. Most of the existing models are based on the 

assumption of process dynamics: models taking into account the quasi-steady nature of 
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the process, and models which are based on transient assumption. The quasi-steady 

character of sphero-symmetric combustion of a droplet has been extensively studied, 

analytically as well as numerically [Godsmith et al., Kassoy et al., Williams et al., Puri et 

al., Filho]. Most of these models were reported taking into account the temperature 

dependence of transport properties, kinetics effects and the transport mechanisms. Puri 

and Libby proposed a numerical model for steady state droplet combustion with a 

proper description of gas-phase transport mechanism. Model predictions for gasification 

rate and flame location showed a good agreement with experimental data. Filho 

presented an analytical, steady state, droplet combustion model with considerations of 

temperature dependence of transport coefficients and non-unity Lewis number. 

Although the model considers temperature dependence of transport coefficients, the 

results do not have good agreement with the experimental results.  

Based on several experimental studies [Kumagai et al., Okajima et al., Hara et al., Choi 

et al.,  Yang et al.], it was found that the predictions of d2-law for flame stand-off ratio 

are not in accordance with the experimental observations. Experiments have shown that 

the flame stand-off ratio continues to increase while the gasification rate follows a 

steady state behavior shortly after the ignition period. However, a better explanation of 

pure liquid droplet combustion can be given by considering unsteady effects as well. 

Theoretical studies regarding the unsteadiness of the droplet combustion has been 

described in detail elsewhere [Law, Cho et al., Marchese et al., Cho et al.]. Law and 

Faeth presented their review papers for detail discussion of fuel droplet combustion. 

Recently, King briefly reviewed the previous transient droplet combustion literature. The 

complete modeling of droplet combustion is quite complicated because of the 

involvement of low temperature auto ignition, radiative heat transfer, complex reaction 

kinetics, and of non-linear transport/thermophysical properties. As a result, droplet 

combustion modeling deals with either quasi-steady approach or the transient approach 

which is more complex and requires a lot of numerical computations.  

In this chapter, a mathematical model is presented for single fuel droplet combustion 

under microgravity conditions. The present mathematical analysis is based on an 

alternative approach, according to which the simplicity in describing the droplet 

combustion is based on the fact that this process is controlled by both the quasi-steady 

behavior for the region between the droplet surface and the flame interface, and the 

transient behavior for the region between the flame interface and the ambient 

surrounding. The main purpose of this work is to demonstrate that even simplified 

quasi-steady transient approach towards droplet combustion yields behavior similar to 
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the classical droplet combustion. The modeling results of variations of flame diameter 

and droplet diameter-squared are compared against a variety of experimental data 

available in the literature for isolated droplet combustion.  

  

2.2 Model Formulation  
The mathematical model used to depict the combustion phenomenon of isolated pure 

fuel droplet under microgravity condition is briefly described here. Consider an isolated 

spherical droplet of pure fuel, initially at temperature T0, immersed in a quiescent 

environment at temperature T∞ (Fig. 2.1). The liquid droplet is surrounded by fuel 

vapor that diffuses outward from the droplet surface to the flame interface (region-I) 

while oxidizer diffuses radially inward from the ambience towards the flame interface 

(region-II). Modeling was performed using an alternative approach that the diffusive 

transport of oxygen towards the flame interface is unsteady. In general, it is found that 

a typical value of air demand for complete combustion of droplet is 14 (kg of air/kg of 

oil). On this basis, we calculate the diameter of spherical volume of air associated to the 

fuel droplet with the density of air estimated at an average temperature of ~1200 K 

which is more often in the vicinity of the flame interface (region-II). This comes about 

30 times of the droplet diameter, which is less than the distance needed for steady-

state profile for the oxygen diffusion. As a consequence, the stored amount of oxygen 

in this range can not be neglected against the diffusive mass transport. With such a 

huge amount of oxidizer associated with fuel droplet, the assumption of quasi-

steadiness for disappearance of oxygen can not be taken into consideration for the 

droplet combustion. Thus, a better description of oxygen diffusion in region-II can be 

accomplished only with an assumption of unsteadiness. The unsteady-state diffusion of 

oxygen in region-II is similar to the case of diffusion inside semi-infinite bodies, as 

shown in Fig. 2.1. Moreover, the total amount of liquid residing within region-I is much 

more than the amount of fuel vapor accumulated in the same region. Therefore, the 

condition of quasi steadiness for diffusive transport of fuel vapor from the droplet 

surface to the flame interface exists for region-I.  
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Figure 2.1: Schematic diagram of a droplet combustion process. 

 

This model deals with many assumptions including a few from the classical quasi-steady 

droplet combustion model, which is described in detail elsewhere [Spalding, Godsave]. 

The main assumptions are as follows:  

(1) Lewis number in the gas phase is equal to unity; 

(2) all thermophysical properties including the heat of vaporization remain constant 

with temperature and their average values are taken for computation; 

(3) the combustion products do not affect the process; 

(4) the reaction zone at flame interface is restricted only to a narrow region i.e. 

infinite-rate kinetics; 

(5) heat loss due to radiation is negligible; 

(6) initially, the droplet is assumed to be at room temperature.  

 

The droplet is considered to be in a quiescent atmosphere, so that all processes in the 

gas phase will have spherical symmetry. Note that on the basis of different studies 

[Abramzon et al.], it has been found that the Lewis number is not constant and changes 

during the process of vaporization. Furthermore, because of the existence of high 

temperature difference between the droplet and the flame interface, the use of average 

values of the thermophysical properties may cause small errors. Despite the violation of 

the assumptions of the classical model in many cases, it is widely used in 

comprehensive modeling of evaporation and combustion process of sprays [Sirignano, 

Faeth]. 
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2.2.1 Droplet Combustion Time 

The mechanism of heat transfer in region-I is quite complicated as it involves the 

preheating of the droplet, the fuel evaporation and the heating of the fuel vapor 

diffusing from the droplet surface to the flame interface. The analytical models 

described earlier did not take into account the heat absorbed by the diffusing fuel 

vapor. Since the preheating of the droplet depends on time, the combustion process of 

a droplet initially involves more preheating rather than vaporization. On the basis that 

the amount of heat absorbed by the fuel vapor is much more than both the heat 

required for evaporation and the heat necessary for preheating of the droplet, the effect 

of change of T0 is neglected. For analytical solution of the problem, the amount of heat 

required for preheating of the droplet is taken to be constant. Based on the assumption 

that heat loss due to radiation is zero, the total amount of heat transferred from the 

flame interface to the droplet surface is used only for these three different kinds of heat 

consumption.    

The total amount of heat transferred due to gas phase conduction between the flame 

interface and the droplet surface can be calculated analytically by, 

 ( )fs

sf
g rr

TT
q

11
4

−

−
= πλ                              (1a) 

where q is the amount of heat transferred from the flame interface to the droplet, Tf  

and Ts are the temperatures at the flame interface and the droplet surface respectively, 

and rs and rf are the values of radius of the droplet and the flame respectively. The 

value of gas phase thermal conductivity λg is averaged between the flame interface and 

the droplet surface. The heat gained by the vaporizing droplet can be calculated by the 

following equation, 

( ) ( )( )sfgvslv TTcpHTTcpMq −+Δ+−= 0             (1b) 

where Mv is the mass flow rate of the vapor, ΔHv the heat of vaporization, T0 the initial 

droplet temperature, and cpl and cpg the specific heats of the liquid phase and the gas 

phase respectively. Equation (1b) takes into account the amount of heat required for 

droplet preheating, vaporization, and heating up the fuel vapor. 

The time variant radius of the fuel droplet undergoing combustion can be found from 

the equation, 

dt
drr
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dmM s

sl
d

v
24πρ==                 (2) 



 15

here md is the mass of the droplet and ρl  is the density of the liquid fuel. Total time 

taken for complete combustion of the droplet can easily be calculated by integrating Eq. 

(2). The value of vapor mass flow rate can be obtained by considering Eqs. (1a) and 

(1b). While calculating combustion time using Eq. (2), the value of the ratio of rs/rf is 

excluded from the expression because its value being very less as compared to unity. 

Further, the integration of Eq. (2) yields, 

Ktdd ot −= 22                                        (3) 

where t is the time, d0 the initial droplet diameter, dt the time dependent droplet 

diameter, and K the gasification rate. Equation (3) corresponds to behavior similar to 

the classical d2 law with a value of gasification rate given by, 
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2.2.2 Flame Dynamics 

The flame dynamics of sphero-symmetric droplet combustion involves a set of 

conservation equations of species and energy in region-I & II. At liquid-gas interface, 

the vapor and liquid are assumed to be in equilibrium. The continuous droplet 

evaporation rate can be calculated by applying Fick’s law of diffusion through a hollow 

sphere (region-I),  
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( )ssv TBAP −= exp,                                            (6) 

where Pv,s denotes the vapor pressure of pure liquid, P the total pressure, R the 

universal gas constant, Tdf the average temperature between the droplet surface and 

the flame interface, Df,g the diffusion coefficient of the fuel vapor, and Nv the molar flow 

rate of the fuel vapor. The values of constants A and B used to calculate vapor pressure 

of pure liquid depend on the kind of fuel. 

The unsteady mass transfer of oxygen in region-II can be determined by the following 

equations taken from Carslaw and Jaegar, 
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where t is the time, C∞ the concentration of oxygen at infinite distance, DO2 the diffusion 

coefficient of oxygen, and NO2 the molar flow rate of oxygen.  

In the region-II, oxygen is diffusing radially inward towards the flame interface while 

the fuel vapor (region-I) is transported radially outward from the droplet surface to the 

flame interface. It is considered that for each unit of fuel consumed, υ  units of oxygen 

are used up. At the flame interface, the stoichiometric relationship between oxygen and 

fuel can be explained as follows [Turns], 

vO NN .
2

υ−=                            (10) 

where υ  is the stoichiometric ratio. The molar flow rates of the fuel vapor (Mv/m*) and 

oxygen at the flame interface can be calculated using Eqs. (1a), (1b) and (7); where m* 

is the molecular weight of the fuel. But the solution of these equations involves the 

values of the droplet surface temperature and the flame interface temperature, which 

are required to calculate the values of physical parameters e.g. diffusivity, vapor 

pressure, etc. These values of temperature can be calculated by comparing Eqs. (1a), 

(1b) and (5). Taking into account our assumption of Lewis number equal to unity, we 

can get the following equation, 

( ) ( )( vslsv HTTcpPP Δ+−− 0,1ln  

                     ( )) ( )sfgsfg TTcpTTcp −=−+ .         (11) 

It can be seen from the above equation that the value of Ts remains constant during the 

burning. The unknown value of flame radius can be calculated by using Eq. (10). Thus, 

this analytical model is also capable of estimating the variations of both the droplet 

radius and the flame radius with time via Eqs. (3) and (10) respectively.  

2.3 Simulation Results  
The model described in the previous sections was applied to study the spherically 

symmetric combustion process of a single pure fuel droplet in quiescent environment. 

Simulation were carried out to generate a set of data consisting of; the variations of 

droplet diameter and flame diameter with time, the gasification rate, the effect of 

vaporization enthalpy on burning behavior, the variations of flame stand-off ratio with 

time and the effect of the ambient oxygen concentration on flame structure. A time 
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interval of 0.05 sec was used to solve the system of nonlinear algebraic equations of the 

model on discrete basis. The physical properties of the liquid and gas are taken from 

Reid et al. and Perry and Green. Simulation predictions for two fuels i.e. n-heptane and 

ethanol, are compared with experimental data available in several literature sources.  

2.3.1 Droplet and Flame Structure Characteristics  

Figure 2.2 compares the model predictions with the experimental data of Kumagai et 

al. for n-heptane droplets of different diameters. The model predicts a value of 356 K 

for n-heptane droplet surface temperature. The model predictions are in good 

agreement with experimental measurements for both droplet and flame diameters as 

functions of burning time, even though the model slightly overestimates the values of 

flame diameter during the early period of burning, and the flame diameter decreases 

substantially over droplet burning time henceforth. It is readily seen from these plots 

that as the droplet diameter increases, the flame diameter also increases since the 

flame diameter depends primarily on the evaporated mass of fuel droplet, and 

secondarily on the diffusion process. Results shown in Fig. 2.2 neglect the influence of 

radiation because the small droplet sizes with respect to volume of gases result in small 

view factor so the influence of radiative heat loss can be neglected. Although the model 

predictions yield the total time of complete droplet burning that is less than the 

experimental measurements for droplets with diameters of 0.836 mm and 0.92 mm, it 

predicts well for higher diameter droplet of 0.98 mm. This behavior is believed to be 

caused by the constant higher values of gasification rate, which is independent of initial 

droplet diameters. Nonetheless, the model appears to give a good description of the 

data in terms of the general trend of d2-t curve.  
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Figure 2.2: Comparison between experimental [Kumagai et al.] (points) and 
predicted (lines) data of the droplet diameter and the flame diameter 
variations with time. Initial conditions: n-heptane; drop diameters, (a) 
0.836 mm, (b) 0.92 mm, (c) 0.98 mm; ambient temperature, 298 K; 
atmosphere, air at 1 atm pressure. 

 

Figure 2.3 compares the simulation results with the experimental data of Kumagai et 

al. for ethanol droplet at atmospheric pressure. The agreement between the simulation 

results and experimental results is excellent. However, the model slightly overestimates 

the values of flame diameter during the early period of burning, and the flame diameter 

decreases substantially over droplet burning time henceforth. The classical trends of 

flame dynamics and droplet combustion can easily be seen for the case of ethanol as 

well.  
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(a) (b) 

 

Figure 2.3: Comparison between experimental [Kumagai et al.] (points) and 
predicted (lines) data of the droplet diameter and the flame diameter 
variations with time. Initial conditions: ethanol; (a) droplet diameter, 
0.93 mm; ambient temperature, 298 K; atmosphere, air at 1 atm 
pressure; (b) droplet diameter, 0.93 mm, 2.79 mm, 3.41 mm, 5.83 
mm; ambient temperature, 298 K; atmosphere, air at 1 atm pressure; 

 

2.3.2 Estimation of Gasification Rate 
Figure 2.4 shows comparison of model predictions with the experimental results 

obtained by Kumagai et al. [Okajima, et al., Hara et al.] for the evolution of gasification 

rate for n-heptane and ethanol droplets of different sizes. A constant value 0.84 mm2.s-1 

for gasification rate of the n-heptane droplets was found. As shown in Fig. 2.4, the 

possible reason for the discrepancy of the model predictions from the experimental 

measurements is that the model predicts the gasification rates with an assumption that 

the flame interface temperature equals the adiabatic flame temperature. However, 

under real experimental conditions an amount of heat transferred from flame interface 

to the ambient surroundings might cause the flame temperature to attain a value lesser 

than the adiabatic flame temperature. Results of model predictions of the gasification 

rate for the ethanol droplets are in good agreement with experimental data. Model 

predicts a constant value 0.58 mm2.s-1 for the gasification rate for the ethanol droplets 

of different sizes. Figure 2.4 also shows the predictions of the models of Puri and Libby 

and Filho for the ethanol droplets. Model predictions match with those predicted by Puri 

and Libby. 
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Figure 2.4: Comparison of calculated gasification rate (solid lines) with the 

experimental results (points) of Kumagai et al. and the model 
predictions (dotted lines) of Puri and Filho. Points: solid points for n-
heptane; empty points for ethanol. 

 

2.3.3 Influence of Vaporization Enthalpy on Burning 

Behavior 
Figure 2.5 presents the variation of droplet diameter-squared with time for the n-

heptane and ethanol droplets burned in air at pressure of 1 atm. The heat of 

evaporation of ethanol is more than the vaporation enthalpy of n-heptane. For the 0.93 

mm initial diameter ethanol droplet the model predictions are in good agreement with 

the experiments while in the case of n-heptane with an initial diameter of 0.92 mm the 

model predicts a complete burnout of the droplet earlier than experimental observation, 

as discussed previously. On the basis of comparison between the model predictions for 

these two liquids, it should be noted that the results show the effect of change of 

vaporization enthalpy over burning behavior. 
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Figure 2.5: Calculated and measured droplet diameter-squared of Kumagai et al. 
for n-heptane and ethanol droplets in an air at 1 atm. Initial droplet 
diameter: n-heptane- 0.92 mm; ethanol- 0.93 mm. 

 

2.3.4. Flame Stand-off Ratio 
Figure 2.6 compares the model predictions for flame stand-off ratio with experimental 

data of Kumagai et al. for the n-heptane droplets with initial diameters of 0.836 mm 

and 0.92 mm.  

 

Figure 2.6: Variation in flame stand-off ratio for the n-heptane droplets with time. 
Comparison between experimental [11] (points) and predicted (lines) 
data for n-heptane droplets burning in atmospheric pressure air. 

Although the flame extinction occurs earlier than the experimental observations, the 

model predictions show qualitatively similar behavior to the experiments. However, the 
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flame stand-off ratio increases continuously for both diameters until burn-out and there 

is no evidence of its constant values for any finite time interval during burning. Thus, 

the model predictions support the unsteadiness of the droplet burning. 

 

2.3.5 Influence of Ambient Oxygen Concentration on 

Flame Structure 
Figure 2.7 describes the variations of flame diameter with burning time for different 

ambient oxygen concentrations for the n-heptane droplets having initial droplet 

diameter of 0.836 mm. Maximum flame diameter in 21% oxygen concentration is 5.15 

mm while it reduces to 4.33 mm at 30% oxygen concentration. Model Eq. 7 accounts 

for this reason with involvement of ambient oxygen concentration C∞. The classical d2-

law also demonstrates the influence of ambient oxygen concentration on the flame 

diameter. For low concentration of ambient oxygen, the large quantity of fuel vapor 

accumulated near the droplet surface will create a flame front at a distance far away 

from the droplet surface. However, an increase in oxygen concentration reduces the 

flame front location significantly.  

 

Figure 2.7: Calculated variations in flame diameter with time for various oxygen 
concentrations for 0.836 mm n-heptane droplets. 

 

2.4 Concluding Remark 
An analytical, sphero-symmetric model of an isolated droplet in microgravity, taking into 

account both the quasi-steady and the transient behavior of droplet combustion, has 
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been described here. In this study, the consideration of unsteady behavior of oxidizer 

diffusion in addition to quasi steadiness for fuel vapor diffusion yields good estimations 

for various droplet combustion characteristics such as droplet diameter-squared, flame 

diameter, flame stand-off ratio, gasification rate and influence of ambient oxygen 

concentration on flame structure. The analytical formulae are derived for heat and mass 

fluxes in the vicinity of evaporating droplet. The comparisons of modeling results with 

experimental data available in literature demonstrate the validity of the model. Although 

the model predicts the little bit higher values of flame diameter for n-heptane, the 

classical trend of flame diameter to increase and decrease from its maximum value with 

burning time is observed. Furthermore, the behavior of d2-t curve is similar with 

experimental observations for both n-heptane and ethanol. Although the model 

calculates ~7% higher value of gasification rate for n-heptane, it is shown that the 

predicted burning rates for both fuels are consistent with the reported measurements 

for small droplet sizes with no radiation effect. Finally, the effect of ambient oxygen 

concentration on flame structure is well described by the model. The presented 

analytical quasi-steady transient model is sufficient enough to describe the fundamental 

characteristics of single droplet combustion. However, the assumption of quasi-steady 

behavior for fuel vapor diffusion and transient behavior for oxygen diffusion serves as a 

basis for subsequent development of analytical models to accommodate the effects of 

radiation, non-unity Lewis number and possibility of different chemical reactions during 

the combustion process. In the following chapter, the successful implementation of 

droplet combustion model under micro-gravity to the process of devolatilization of coal 

is elaborated in detail. 
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Chapter 3 

Modeling Coal Particle Behavior 

under Devolatilization 

 
3.1 Introduction 
For the proper understanding of fixed and fluidized-bed coal combustors and gasifiers, it 

is necessary to have the detailed knowledge of the devolatilization and combustion 

characteristics of coal particles. Both of these properties are involved functions of the 

nature of coal, particle size, temperature, pressure, heating rates, environmental 

conditions (inert, oxidizing or reducing) etc. The decomposition products of coal 

obtained on heating depend upon the rank of coal [Idris].  Coal contains certain 

occluded gases such as carbon dioxide, hydrocarbons and water. On heating the 

occluded carbon dioxide and hydrocarbons are first driven off, and their removal is 

almost complete at higher temperature. Chukhanov et al. proposes that coal 

devolatilization takes place in three stages. Carbon oxides and water evolve first, 

hydrocarbon gases and tar are formed next, and lastly the residue degasifies. Suuberg 

et al. from their work on lignite have suggested that coal devolatilization involves five 

principal phases. The first phase is associated with moisture evolution. The second 

phase begins with a large initial evolution of carbon dioxide and a small amount of tar. 

The third phase involves evolution of chemically formed water and carbon dioxide as 

the other significant product. The fourth phase involves a final rapid evolution of 

carbon-containing species such as carbon oxides, tar, hydrogen, and hydrocarbon 

gases. The fifth phase is the high temperature formation of carbon oxides.  
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It is well known that increasing the heating rate and final temperature of a particle 

increases the yield of volatiles from a coal particle [Solomon et al., Kobayashi et al.]. 

From a practical point of view, shorter residence times facilitate the construction of 

smaller combustors, if only the coal particle can release more volatile matter for 

homogeneous combustion in the gas phase. Knowledge of the combustion of single 

particles over a wide range of temperatures and oxygen concentrations is useful in 

optimizing combustion. Devolatilization is assumed to occur in a thin reaction zone 

located initially at the surface of the particle and then moving inward toward the center, 

leaving behind a porous matrix containing fixed carbon and a component of the volatile 

matter which is relatively slow to evolve [Howard et al.]. It is generally assumed that 

devolatilization and char combustion are successive processes. In an actual system 

devolatilization and combustion phenomena may interact with each other and thereby 

may further complicate the capability with which predictions for such systems can be 

made. Char oxidation may occur simultaneously, if oxygen reaches the particle’s surface 

during devolatilization [Howard et al., Midkiff et al., Saito et al., Gururajan et al., 

Saastamoinen et al.]. In the thin-flame sheet model [Howard et al., Gururajan et al., 

Saastamoinen et al., Jost et al., Beck et al., Lau et al.] oxidizer from the surroundings is 

not present between the flame sheet and the solid, when the rate of devolatilization is 

high enough to move the reaction zone away from the particle. In furnace calculations it 

is commonly assumed that char combustion can only start after devolatilization has 

ended. The char combustion rates are also usually calculated from a quasi-steady 

model. Then the temperature of the char particle is calculated from an equilibrium heat 

balance.  

Various qualitative features of devolatilization of different types of coals are described in 

the literature [Saxena] as well as various mechanisms, phenomenological and chemical 

models. Single and multi reaction models are also being a topic of discussion in relation 

to the kinetic expressions for the pyrolysis reactions. Depending on the availability of 

the oxygen supply, the combustible volatiles react and subsequently release combustion 

energy. This energy may in turn contribute to the heat up of the particle and enhance 

volatile release rate, which is known as a strong function of particle temperature. A 

better explication of coal devolatilization theorizes that much amount of heat released 

during combustion at flame front is used to heat up the volatile vapor existing in 

between the region particle surface and flame interface. The conventional method to 

determine the location of flame front involves a vast computation to solve a number of 

transient differential equations of mass and energy balances [Sangmin et al., Weibiao et 
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al., Annamalai et al., Veras et al.]. Till date there is no existing analytical model to 

determine the value of flame radius around the particle. 

In this chapter, a mathematical model is presented for devolatilization of a single coal 

particle. Dynamics of devolatilization of a coal particle is almost similar to droplet 

combustion under microgravity conditions. However, a change in diameter for 

devolatilization of coal is restricted to exist.   

 

3.2 Single Coal Particle Devolatilization Modeling 
 

 
Figure 3.1: Schematic diagram of a single coal particle devolatilization process. 

 

Consider a spherical coal particle, initially at temperature T0 (Fig. 3.1). When it gets 

heat, the volatile matter present inside the particle starts to come out. The volatile 

matters diffuses outward from the particle’s surface to the flame interface (region-I) 

while oxidizer diffuses radially inward from the ambience towards the flame interface 

(region-II). To model the devolatilization of a single coal particle, we need to rearrange 

a few of terms in previously defined model for the single droplet combustion. Modeling 

was performed using similar approach that the diffusive transport of oxygen towards 

the flame interface is unsteady while diffusion of volatile matters outward is quasi-

steady state process. In the case of coal devolatilization the particle doesn’t shrink like 

droplet does due to evaporation of liquid fuel. The rate of devolatilization i.e. mass flow 

rate of volatiles can be calculated using the equation that is similar to Arrhenius 
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equation where kinetic parameters depend on the type of the coal. Many devolatilization 

models for coal have been reported till date. However, they cannot be universally 

applied, since the kinetics parameters used for devolatilization of coal depend on coal 

type.  The simplest description of the kinetics of the devolatilization is to use a first 

order reaction for total weight loss of the volatiles;  
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Here v  is the total of volatiles evolved up to time t, ∞v  represents the ultimate yield of 

volatiles at t =∞ and it is also equal to the total volatile content of coal, Tsp is the 

particle’s surface temperature, vv EK ,0  are pre-exponential factor and activation energy 

respectively and R is the universal gas constant. A few of numeric values of vv EK ,0  are 

given below; 

Model Type: Single Overall Reaction, 

Reaction Science: Coal → volatile + char, 

Rate Expression: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∞

sp

v
v RT

EKvv
dt
dv exp.).( 0 , 

Kinetic Parameters: 5
0 105.5 ×=vK , 1.7.78 −= molkJEv ,[Goldberg and Essenhigh] 

5
0 1034.1 ×=vK 1.74 −= molkJEv .[Badzioch and Hawksley] 

 

The values of vv EK ,0 , and ∞v  are determined experimentally. Details of the different 

experimental methods are discussed by Anthony and Howard. It is important to point 

out that in order to obtain accurate kinetic parameters, the experiments must be 

designed so that the transport limitations are negligible. 

Similar to the droplet model, the region between the coal particle surface and the 

ambience is divided in two sections i.e. the region between the particle surface and 

flame interface; the region between the flame interface and ambience. The main 

assumptions are more or less same of the case of droplet combustion those are as 

following:  

(1) all thermophysical properties including the heat of vaporization remain constant 

with temperature and their average values are taken for computation; 

(2) the combustion products do not affect the process; 

(3) the reaction zone at flame interface is restricted only to a narrow region i.e. 

infinite-rate kinetics; 
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(4) heat loss due to radiation is negligible; 

(5) initially, the coal particle is assumed to be at room temperature.  

From the energy balance between the flame interface and particle surface can be 

formulated in the following which is heat balance over hollow sphere; 
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where qf-p is the amount of heat transferred from the flame interface to the particle 

surface, λg is the thermal conductivity, Tf and Tsp are the temperatures of flame 

interface and particle surface respectively, rsp and rf are the radius of particle and flame 

respectively.   

The amount of heat taken by the particle is used for; vaporization of volatiles matters, 

preheating of the volatile vapor in the region between the particle and flame interface 

and heating of the solid particle. The term responsible for heating of solid particle is 

new compared to our previous model. Heat consumption can be described 

mathematically by the following; 

( )( )
dt

dT
cmTTcpH

dt
dvq sp
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where  vρ is the density of volatile vapor, 
dt
dv

 is the rate of devolatilization, vHΔ  is the 

devolatilization enthalpy, cpg is the specific heat capacity of the gas, mp is the mass of 

the particle, cp is the specific heat capacity of the coal particle and t is the time. In the 

equation 3, the heat loss due to radiation is excluded from the analysis. The reason is 

that in order to calculate the radiative heat loss, we need a value of ambient 

temperature which can not be generalized for all combustion processes. For example; in 

case of boiler vessels, a value of ambient temperature can be ~300 K while in the case 

of rotary kilns, this value increases to ~ 1200 K. Consequently, the introduction of 

radiation term in Eq. 3 makes the mathematical analysis more complicated. Hence, the 

radiative loss is excluded from this study.   

In devolatilization, coal particles are heated to convert most of the organic coal mass, 

hydrogen, oxygen, nitrogen, and sulfur into gases. Volatiles consist of permanent gases 

with high heating value, light oils suitable as fuels, and high-boiling tars for subsequent 

refining. Tar is a mixture of aromatic compounds of molecular weights from 100 to 

more than 1000 whose chemical structure closely resembles that of the parent coal. A 

model, similar to Equilibrium Flash Distillation, for the rapid devolatilization of individual 

coal particles is developed by analogy with a single-stage equilibrium flash distillation 
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[Stephen]. There exists equilibrium between the liquid phase and the gas phase. A 

crude correlation for the vapor pressure of high molecular weight condensed-ring 

aromatics with aliphatic side chains has been suggested by Unger [Unger et al.].  The 

equilibrium existing in between the liquid phase and the gas phase can be described by 

a correlation given by Unger; 
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where M is the molecular weight of the species, P is total pressure and T is the 

temperature (K). The molar rate of devolatilization vN  can be described by the Eq. 1. 

Volatile matters coming from the particle diffuse from its surface toward the flame 

interface, the rate of diffusion can be expressed mathematically using Fick’s law of 

diffusion; 
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where fvD is the diffusivity of volatile matter, Tsf is the average temperature between 

the particle and flame interface and Psv is the saturation pressure at the surface 

temperature of the particle. 

The un-steady state diffusion of oxygen from the ambience toward the flame interface 

is analogous to the case of the droplet and can be expressed as; 
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3.3 Simulation Results  
Model consists of a number of coupled algebraic as well as differential equations. A 

solution strategy is proposed as follows. The unknown value of particle surface 

temperature can be obtained using Eqs. (1) and (5) where a value of the flame 
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temperature can be taken equal to adiabatic temperature of the flame. While calculating 

the value of surface temperature, the value of 
fr

1
is taken approximately 0 because this 

value is less compared to 
spr
1

and can be neglected. With calculated value of the surface 

temperature of the particle, the total time taken to evaporate 10% of the volatile 

content present in the particle can be obtained using Eq. (1). Flame radius around the 

particle can be obtained using Eqs. (5), (6) and (9). A comparison of Eq. (2) with Eq. 

(3) can be used to determine a new value of the surface temperature of the particle. 

Furthermore, a set of new values of particle surface temperature, flame radius and 

amount of volatile content can be generated till the pre-assumed amount of the volatile 

content inside the particle doesn’t evaporate. Simulation results are generated for the 

particles with different radius. The results mainly consist of discussion over surface 

temperature variation and flame dynamics with time.  

 

3.3.1 Particle’s Surface Temperature  
Figure 3.2 describes the variation of the surface temperature of the particle with time 

for a particle radius of 10mm with changing volatile concentration inside the particle 

from 10 to 50%. It is shown by simulation results that the temperature of the particle 

goes on increasing with time which was expected because of loss of volatile matters 

and utilization of heat coming from the exothermic reaction at the flame interface to 

heat the particle. It cam be seen from the Fig. 3.2, an increase in the amount of volatile 

matter inside the particle increases the maximum value of temperature attain by the 

particle. For lower values of volatile matter concentration inside the particle, the particle 

attains a lesser value than the required value needed for the combustion of the particle. 

Simulation results fit qualitatively to the expected behavior of the particle. Model can 

describe qualitatively why it is difficult to ignite anthracite coal in cold wall furnace? The 

reason is the less amount of volatile matter inside the particle. Consequently, the 

particle is not able to reach a surface temperature value required for the combustion. 

Anthracite coal can only be ignited in the furnace which has its wall at higher 

temperature so that the particle can get enough heat from the walls and get ignited. 



 31

 

Figure 3.2: Calculated variations in surface temperature of the particle with time: 
particle diameter: 10mm; volatile matter content: 10, 30 and 50%. 

 

3.3.2. Flame Dynamics  
Figure 3.3 illustrates variations of the ratio of the diameter of flame to particle with 

time for particle radius of 1, 5 and 10 mm. For all particle radiuses, it has been found 

that flame radius decreases with time. This trend of flame radius variation to decrease 

from its maximum value in the beginning to its minimum is due to expected decrease of 

volatile content in the particle. Due to non-availability of experimental results for the 

flame radius for a coal particle, the simulation results can not be compared with any 

experimental result in the literature. However, from the practical experience it’s found 

the value of flame radius decreases with the radius of the particle and especially for 

smaller particle diameter e.g. pulverized coal; it is restricted to the particle surface only. 

From the Fig. 3.3, it can easily be seen that for a particle radius 1 mm, the maximum 

value of diameter ratio is approximately 2 which goes to ~1 at the end. It has also been 

shown by Gurgel et al. that the diameter ratio value can have a value in the range of 2 

to 8.  
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Figure 3.3: Profile of flame to particle diameter ratio for an amount of volatile 
matter of 50%: particle diameter: (a) 10 mm, (b) 5mm and (c) 
10mm.  

3.4 Concluding Remark 
Analogical approach, based on the modeling of the liquid droplet combustion, to model 

the coal devolatilization is found to give a better reproduction of the dynamics of the 

process. The analytical model to describe the devolatilization of a coal particle consists 

of a few more restrictive assumptions compared to the droplet combustion. The 

inheritance between the solid coal particle devolatilization and sphero-symmetric droplet 

combustion in microgravity has been shown to be successfully implemented. Though 
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model predictions are not compared with the experimental data due to non-availability 

in the literature, the qualitative analysis gives a good explanation of the process 

dynamics. The temperature of the particle keeps on increasing till the entire volatile 

matter lasts before the combustion starts. Model predictions show that during the 

devolatilization the particle temperature increase to a value which is required for the 

combustion to take place. It has also shown by model predictions that with an increase 

in amount of volatile matter inside the particle, it is possible to ignite the coal particle 

easily. Model can successfully give the reason why it is difficult to ignite anthracite coal 

inside the furnace with no external heating. The reason is the less amount of volatile 

matter in anthracite coal which is incapable to take the particle to a temperature value 

which is needed for the ignition. The flame radius increases with an increase in particle 

radius. The values of flame radius calculated using the presented model are in the 

range of the values described by Gurgel et al. for the modeling of devolatilization of 

small coal particles. The process parameters e.g. amount of volatile matter, kinetic 

parameters for devolatilization, etc. used in modeling can not be generalize as these 

values are dependent on the type of the coal used for simulation purpose. 
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Chapter 4 

Coke Gasification in an 

Environment of CO2  

 
4.1 Introduction  
Gasification has emerged as a clean and effective way for the production of gas which 

can be used for power or heat generation or as a synthesis precursor. A good 

understanding of the char reactivity makes it possible to improve gasifier design and 

efficiency. A distinction of the factors affecting the gasification process can be made on 

according to whether they are only related to the intrinsic chemical characteristics of the 

specimen, or if they can be related to the physical structure of the specimen or to the 

environment in which it goes through the chemical reactions. Reactivity of coke 

gasification with CO2 has extensively been studied in this section. The reaction between 

C and CO2 known as Boudouard reaction (C+CO2 → 2CO) has always been a subject of 

study because of its scientific as well as technological importance. Being highly 

endothermic and consuming carbon directly from the coke in many metallurgical and 

industrial processes, this reaction has gained much importance. For example, the blast 

furnace process to reduce iron ore [Grabke et al., Cheng et al.], the cupola furnace 

process for melting iron scrap, the shaft kiln process to produce lime and dolomite 

(CaCO3 → CaO + CO2), the production process of manganese and chromium alloy 

[Kaczorowski et al.], the production of micro-porous materials of valuable properties 

from carbonaceous surfaces [Montoya et al.], etc. Modeling of a process involving the 

influence of Boudouard reaction can not be described mathematically without 
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knowledge of reaction kinetic parameters and their dependence on type of coke. For 

example; in metallurgy industry, the equilibrium relationship [curve (1)] of Boudouard 

reaction to reduce iron ore can be better expressed by Fig. 4.1.  

When the concentration of CO is below this curve (1), the reaction proceeds in the 

direction for forming CO, this being called the carbon solution reaction or solution-loss 

reaction. In the neighborhood of 1200 K, CO2 that has been formed by the reduction of 

iron oxide is changed into CO by Boudouard reaction. Consequently, the gas 

concentration of CO in this region goes above curve (1) and a carbon deposition 

reaction occurs according to equilibrium theory; that is, CO is dissociated into CO2 and 

carbon, and carbon is deposited. However, due to its extremely slow speed, this 

reaction does not practically proceed at lower temperatures and low CO concentrations. 

Carbon deposition actually occurs in the region where metallic iron coexists to provide 

strong catalytic action, and in the region of higher temperature and high CO 

concentration. 

 

 

Figure 4.1: Equilibrium relationship of Boudouard reaction during reduction of 
iron ore. 

 

Examination of the foregoing equilibrium theory makes it possible to decide whether a 

desirable reaction is possible and which conditions need to be met to obtain such a 

reaction. For practical control of a reaction, however, the mechanism that controls the 

reaction rate should be clarified and the heat and mass transfer should be analyzed on 

the basis of reaction rate theory and transport phenomena. 

The intrinsic as well as apparent char reactivity have been recognized as the important 
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factors. A great number of modeling as well as experimental studies for better 

understanding of reaction mechanism and determination of reaction coefficient have 

been reported for a span of a few last decades. Consequently, it has been found that 

the values of kinetic parameters are dependent on the types of coke used for the 

process and influenced by the porous nature of the specimen.  Moreover, the effects of 

temperature, pressure and gaseous environment on the reaction rate have also been 

comprehensively investigated by various investigators. The reaction rates of the most 

previous studies were measured by changes of mass or evolved gas analysis, and hence 

were the total rates over all active sites. However, a considerable discrepancy has been 

reported among the values of activation energy of this reaction, ranging from 200 to 

400 kJ.mol-1. Table 4.1 summarizes the previous studies done on the carbon-carbon 

dioxide system by different investigators. It also includes the values of activation energy 

reported by these studies.  

  

 

Table 4.1. Summary of activation energies of carbon-carbon dioxide reaction. 

 

Great differences in the char reactivity imply that it is necessary to understand the char 

reactivity more precisely. Moreover, on the other hand, the pore structure of porous 

char is the critical physical property that affects char combustion. The total accessible 

surface area of pores and pore volume dominate the char combustion rate. In the 

diffusion controlled regime, the reaction rate is controlled by the gas diffusion though 

the rough pore surface, whereas, in the kinetic controlled regime, it is limited by the 

total internal surface area. It has been reported that the specific surface area would 

increase to a maximum and then decreases as the fractional char conversion increases 

from 0 to 1.  

 
Reference 

Activation 
Energy 

(kJ.mol-1)

 
Reference 

Activation 
Energy 

(kJ.mol-1)
Baldea, Niac  100-150 Walker, Foresti, Wright  201 
Agrawal, Sears 223 Austin, Walker  226.8 
Beyer, Pückoff, Ulrich  227 Fuchs, Yovorsky  228 
Overholser, Blakely  230 Ergun  247 
Dutta, Wen, Belt   248 Blackwood  252-273 
Moormann  255 Ballal, Zygourakis 257 
Yoshida, Kunni  259 Visser   260 
Turkdogan, Vinters  306.6 Rao, Jalan   333 
Strange, Walker  414   
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In addition, most of the models published in the literature do not explicitly account the 

importance of Boudouard reaction for certain reasons i.e. Boudouard reaction has lower 

reaction rate even for temperature value of 900oC and the rate of C-O2 reaction is 

several order of magnitude faster than the rate of C-CO2 reaction. But for the cases, 

where oxygen concentration (air excess number ~1) is restricted e.g. the combustion 

chamber to control NO emissions and coal fired burners; the effect of Boudouard 

reaction on process can not be excluded from modeling. During these processes, O2 

concentration keeps on decreasing because of combustion and it is counterbalanced by 

the production of CO2. At higher conversion, the particle is exposed to the high 

concentration of CO2 and it might be the only possible reason that there is always 100% 

conversion of particle even for non-existential concentration of O2 at the end of the 

process. 

The main purpose of the chapter is to investigate experimentally the gasification 

reactivity of pure carbon and determine the apparent kinetic parameters for various 

char. Moreover, the effects of process parameters are also illustrated. The prescript to 

above tasks includes the definition of rate coefficients and the kinetic analysis.  

 

4.2 Langmuir-Hinshelwood Semi Global Kinetics 
The following Langmuir-Hinshelwood rate equation has been found to give better 

interpretation of the experimental data for carbon-carbon dioxide reaction, 

( ) TRPKPK
PK

n
COCOCOCO

COB
rc ....1

.

22

2

++
=             (1) 

where rcn  is net rate of the reaction, BK  is the surface related reaction coefficient of 

Boudouard reaction,
2COP  is the partial pressure of CO2, 2COK is the sorption coefficient 

of CO2, COK is the sorption coefficient of CO, COP  is the partial pressure of CO, R is 

universal gas constant and T is the temperature. No attempt is made to define the 

precise stoichiometry of the steps or complexes, and the simplest forms of the rate laws 

are used, in which the reactions are assumed to be all first order (rather than second 

order). The detailed reaction mechanism is described in this section which is absolutely 

necessary to interpret precisely the experimental results. Furthermore, the different 

definitions of the reaction coefficients are also discussed in this section.  

The typical reaction mechanism follows a traditional manner for carbon dioxide to get 

absorbed at the reactive surface before it reacts with carbon to produce carbon mono-
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oxide and later the carbon mono-oxide desorbed from the surface. This process of 

adsorption-desorption according to Langmuir-Hinshelwood deals with a few of 

assumptions described next; 

- the surface has a uniform activity and can be evenly occupied, 

- a monolayer forms, 

- there is no interaction between the adsorbed active sites, 

- the adsorption and desorption are in equilibrium with each other. 

The rate of CO2 adsorption which is proportional to the molecular partial density of CO2 

and the total number of free sites available for the reaction at the surface can be 

calculated as, 

( )211 1..
11

θθρ −−=
−

adad Kn ,                (2) 

the rate of CO2 desorption is proportional to the surface covered by the gas and given 

by, 

1.
11
θdede Kn =

−

,               (3) 

similarly, the rate of adsorption of CO is given by the following equation, 

( )212 1..
22

θθρ −−=
−

adad Kn ,             (4) 

and the rate of desorption follows, 

2.
22
θdede Kn =

−

,               (5) 

where 
−

jadn is the rate of adsorption of jth species, 
−

jden  is the rate of desorption of jth 

species, 
jadK  is the adsorption coefficient of jth species, 

jdeK  is the desorption 

coefficient of jth species, jρ  is the partial molar density of jth species, jθ  is the fraction 

of the surface covered by jth species, j is 1 for CO2 & 2 for CO. 

According to one of the assumptions made in the beginning, the rate of adsorption can 

be compared with rate of desorption for both of the species, 
−

1adn =
−

1den                (6) 

and 
−

2adn =
−

2den .               (7) 

The fractions of area covered by each of gases can be calculated using the equations 

(2) to (7). Here, we introduce the definitions of some coefficients as follows, 
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Consequently, the fractions of area covered by each of gases can be given by the 

following equations, 
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The rate of forward reaction i.e. C+CO2→2CO can be described in term of surface area 

covered by CO2 as follows, 

1.θ
→→

= Kn ,             (12) 

while on the other hand the rate of backward reaction i.e. 2CO→C+CO2 can be given by 

the following equation, 

( )211. θθ −−=
←←

Kn ,             (13) 

where 
→

K  is the reaction coefficient of the forward reaction,
←

K  is the reaction coefficient 

of the backward reaction, 
→

n  is the rate of forward reaction, 
←

n  is the rate of backward 

reaction. 

For the condition of equilibrium, the both rates i.e. forward and backward reaction rates 

should be equal to each other, 

←→

= nn               (14) 

Using Eqs. 10, 11 and 14, we can find a relationship among the different coefficients as 

follows, 

iKKK 11 .. ρ
−→←

=  ,            (15) 

where i1ρ  is the equilibrium molar density of CO2 in the gas. Net rate of the reaction is 

given by, 
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and we get, 
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Equation 17 is the Langmuir Hinselwood formulation. The partial molar densities of both 

gases can be expressed in terms of partial pressures and Eq. 17 can be rewritten using 

the new definitions of the coefficients, 
−→

= 1.KKK B ,             (19) 
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Thus Eq. 17 can be illustrated as follows, 
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Some of the authors [Grabke] proposed other reaction mechanisms, however, which 

were not able to give proper explication of reaction behavior. At higher values of 

temperature the equilibrium pressure iCOP
2

 has a very lower value that can be 

neglected compared to CO2 partial pressure. Note that for the temperature values less 

than ~900 0C, it is no longer possible to neglect the value of CO2 equilibrium pressure. 

Moreover for higher values of CO partial pressures, it is possible for CO2 equilibrium 

pressure to be higher than the CO2 partial pressure. In such cases, the Boudouard 

reaction can no longer proceed in forward direction i.e. carbon deposition reaction. For 

high temperature processes with no CO enrichment, Eq. 22 can be simplified as follows; 

( ) TRPKPK
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=           (23) 

Based on number of studies [Agrawal et al., Adchiri et al., Molina et al.] it has been 

found that internal surface area changes with conversion of the particle. Consequently, 

to evaluate the value of reaction coefficient on the basis of mass loss vs. time plot is not 

a better option because the change in number of active sites due to reduced mass 

during the reaction may yield inappropriate results. Figure 4.2 illustrates a comparison 
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of mass-related reaction coefficient found by different investigators.  

 

 

Figure 4.2: Comparison of various mass-related reaction coefficients of 
Boudouard reaction 

 

From Fig. 4.2 it can be seen that the values of reaction coefficient differ from one 

another by a factor more than 100. Most of previous investigations were based on 

powdered sample because of its suitability to determine the activation energy and the 

effect of gas composition over the conversion and, therefore, also the governing 

reaction mechanism. Furthermore, the reactivity of different types of coke can also be 

compared. In addition, it is also possible to investigate the catalytic effect of different 

foreign substances or impurities. Nevertheless, the difficulty of determining the reactive 

surface that depends on the particle size distribution is one of the disadvantages. 

Moreover, the process could also be influenced by the diffusive transport of reactant. 

The inhomogeneous character of the sample used can be considered to be a substantial 

reason for data incongruity of the values of reaction coefficients.  

Nevertheless, the converted mass of the carbon can be related to the surface of the 

specimen used and the values obtained are the surface-related reaction coefficients. 

Moreover, the relationship between the mass and surface-related coefficients can be 

obtained on the basis of the following analysis. 

Molecular flow density, described previously by Eq. 23, can be related to mass flow rate 

of the carbon by the following equation, 
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in Eq. 23 the rate coefficient that defines the reaction rate of the carbon gasification has 

a unit m.s-1, however, the rate of carbon gasification can also be related to the mass as 

follows, 
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where the reaction coefficient KBm is the mass related reaction coefficient, Cn  is the 

molar flow rate of the carbon, 
•

iM  is the mass flow rate of ith species, iM  is the 

molecular mass of ith species, iM  is the total mass of thi species and A  is the surface. 

Using Eqs. 23 to 25, the correlation between the mass and surface related coefficient 

can be derived as follows, 
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and Eq. 25 gives, 
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With a definition of specific internal surface area, 

C
in M

AA =              (28) 

the Eqs. 26 & 27 yield to a relationship between these two coefficients as follows,  

in
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K .2=             (29) 

On the basis of above relationship, the calculated values of surface related reaction 

coefficient using the mass related coefficient values with known internal surface area 

show more data incongruity among the different results shown in Fig. 4.2. It leads to 

the conclusion that internal surface area changes with conversion of the particle. 

Wherefore, Eq. 29 can not be used to convert the mass-related values to the surface-

related values.  
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4.3 Experiments 
The experimental investigation for re-estimation of kinetic rate constants of Boudouard 

reaction, which also depends on the type of coke, has been carried out under a wide 

condition range (900-1200 oC). While making the experiments, precautions must be 

taken in removing the traces of oxygen and the inert carrier gas. The ratio of the overall 

rates, as measured by TGA or evolved gas analysis for the oxygen/carbon dioxide 

reactions, is approximately 105 under the conditions usually reported in the literature 

[Walker et al.]. Thus, the gasification rate by 1ppm of O2 is approximately same as the 

rate by 0.1 atm of CO2; most of the commercial grades of the inert gases e.g. N2, Ar 

and CO2 contain more than 1ppm of O2. In this experimental investigation is carried out 

in the flowing stream of pure CO2 with a minimum purity of 99.99% at atmospheric 

pressure. This investigation will also help us to find the relationship, if any, between the 

reactivity and the physical characteristic of the sample. 

  

4.3.1 Experimental Setup and Materials used 
The experiments were performed in the apparatus, illustrated in Fig. 4.3. Experiments 

were conducted inside a tube furnace having a diameter of 0.089 m and a height of 1.2 

m, using an environment of CO2-CO-N2 gaseous mixture at 1 bar under a wide 

temperature range of 900 to1200 oC.  The reaction rate can be either kinetic controlled 

or diffusion controlled. As one of the main aims of performing the experiments, the 

reaction rate should only be kinetics-controlled. The experimental targets also include 

investigations of mass transfer to assure that the process is mainly influenced by the 

chemical reaction only.   

A variety of cokes (Graphite, Poland coke, Czech coke, Anthracite coal) with different 

properties were taken for the experiments. The specimens used here have fixed 

geometry of a cylinder; with a diameter of 20 mm and a height of 50 mm, and of a 

plate; with a length of 90 mm, a width of 50mm and a thickness of 10 mm. Figure 4.4 

describes the geometries of the sample used during the experiments. Figure 4.4 also 

includes geometry of aluminum plate which was used to perform the experiments 

related to mass transfer calculations. The majority of authors carried out their 

investigations using powdered sample. 
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Figure 4.3: Schematic diagram of the experimental setup. 

 

However, the difficulty of measurement of the reactive surface area along the progress 

of reaction as well as the effect of diffusive transport point out towards the use of fixed 

geometry. Furthermore, to compare the reaction behavior of different coke samples, the 

fixed geometry of specimens is required for the experiments. During experiments, the 

samples were placed on a balance which continuously measured the converted mass of 

specimen with time. Meanwhile the temperature of the sample was measured using 

thermocouple situated at the center. The experiments also covered the measurements 

of mass transfer coefficient. 

The influence of mass transfer was reduced by adjusting the gas flow-rate and 

specimen dimensions. Consequently, it gives the true values of reaction coefficients for 

a kinetic controlled process. The higher gas flow rates require the gas to be circulated in 

a closed circuit as shown in the Fig. 4.3. However, a part of the circulating gas is being 

taken off continuously to avoid high concentration of CO so that the carbon deposition 

reaction should not take place at higher temperatures. An IR-analyzer was used to 

control continually the CO content in the gas. The purged gas was replaced by make-up 

gas which was being produced according to the required compositions of CO2-CO-N2. 

The supply of make-up gas through the balance assembly keeps it to be cooled 

constantly and also confines its exposure to the hot gas coming from the conduit just 

below it. Moreover, an increase in gas velocity was limited to 1 m.s-1 so that the mass 

loss from specimen surface, which is caused by removal of small particles due to high 



 45

gas flow rate, could be prevented. We have run a few of experiments to see how a 

sample is influenced by higher values of the flow rate and found that there was a 

severe effect especially at the lower part of the sample where it is directly being hit by 

hot reactant gas coming from the lower part of the furnace. 

 

 

 

Figure 4.4: Specimens used in the experiments. Geometry (from left to right): 
cylindrical specimen of coke, plate of graphite, plate of aluminum 

 

Figure 4.5 shows a comparison of two samples before and after the experiment and it 

can easily be seen that sample thickness varies from its bottom to upper section and 

there is a big loss of sample mass due to higher gas velocity. Consequently, our 

assumption of constant surface area seems to be inconsistent. Hence an optimized gas 

velocity of 1 m.s-1 is used for experimental runs. In the lower section of the furnace, the 

gas flows through a fixed bed of inert ceramic spheres to attain a homogeneous flow 

over the cross section as well as temperature equal to that of the furnace wall 

temperature.  

With graphite slabs having a porosity of 1.2%, the diffusive transport of the reactant 

into the pores of a sample can be considered negligible. Thus, the outer surface of the 

graphite specimen can be assumed as the reaction surface and the value of reaction 

coefficient obtained can be taken as the true value. After a short reaction time, 

however, the initially smooth surface of the specimen becomes rough. Although due to 

the roughness of the specimen surface the actual reaction surface might become larger 

than the geometric surface, the effect of difference between these two surfaces over 

the reaction is not included in this study as it was difficult to measure during the 

progress of the reaction. 
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Figure 4.5: Comparison of sample thickness before and after the experiment: 
influence of higher flow rate of CO2 

 

Figure 4.6 shows the samples before and after the completion of the experiment. It 

can easily be seen that the surface of the sample is become rough with small contours 

over the surface. Furthermore, we have also performed a number of experiments using 

cokes to describe the influence of porous nature on the reaction rate. These 

experimental investigations give the values of apparent reaction parameters which 

involves the influence of the change in internal surface area, particle porosity and 

density.  

 

 

Figure 4.6: Comparison of sample surface before and after the experiment at a 
temperature 1000 oC: influence of chemical reaction 
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4.3.2 Mass Transfer Calculations  
The effect of the bulk diffusion of the reactant gas is probed here. In general, the 

reaction rate expression includes the reaction kinetics and diffusional resistance on to 

the external surface of the particle. During this study, however, the sample geometry 

and the flow rate of the reactant gas are optimized in such a manner that the process is 

mainly influenced by the chemical reaction only. Therefore, Eq. 23 is capable to 

describe the reaction rate with no influence of diffusive transport. Calculation of the 

values of mass transfer coefficient is based on the analogy between the heat and mass 

transfer. Specimen of aluminum plate was chosen to confirm that there is no influence 

of reaction as it would be in the case of graphite slab. Aluminum plate with a length of 

90 mm, a width of 50 mm and a thickness of 10mm was used to measure the 

convective heat transfer rate from the hot plate surface to the CO2 gas flowing at a 

lower temperature.  

Based on the assumption of lumped parameter model i.e. the temperature of the whole 

body is same as the core temperature, the core temperature of the body was measured 

continually. 

According to lumped parameter model; 

( )gPPp TTAh
dt
dTcm −= .... .           (30) 

Integration of Eq. 30 yields the following equation; 

( ) ct
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AhTT
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.ln            (31) 

where m is the mass of the aluminum plate, Pc  is the specific heat capacity, h  is the 

heat transfer coefficient, t is the time, PT is the temperature at center of the plate, gT is 

the gas temperature and PA is the surface area of the plate. 

Experiments have been carried out to calculate the variation of the plate core 

temperature with time. A plot of ( )gP TT −ln vs. t  for the various flow-rates of CO2 can 

be constructed based on Eq. 31. The experimental analysis gives the value of heat 

transfer coefficient for each experimental run with a particular value of the CO2 flow-

rate. According to analogy between the heat and mass transfer, the values of the mass 

transfer coefficient can be calculated as follows; 

λ
β 2

. CODh
= ,             (32) 
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where β  is the mass transfer coefficient, 
2COD is the diffusivity of CO2 andλ  is the 

thermal conductivity.  

4.4  Experimental Results 

4.4.1 Measurement of Mass Transfer Coefficient 
Analogy between the heat and mass transfer based on the experimental findings using 

aluminum specimen is used to calculate the values of mass transfer coefficient. Figure 

4.7 shows the measured temperature-time plots of the core of aluminum plate for CO2 

flow rates of 3 and 4 m3.hr-1. The specimens were kept at various initial temperatures in 

the range from 192 to 313 oC. It can be seen from Fig 4.7 that there is continuous 

decrease in specimen temperature due to convective heat loss from the hot metal 

surface to the cold gas flowing at higher flow rate. The results plotted in the Fig. 4.7 are 

further used to generate the plots between ( )gP TT −ln  and t which is necessary for 

calculation of the values of the heat transfer coefficient at various flow rates of CO2.  

 

Figure 4.7: Temperature-time plot of aluminum plate at different volumetric flow 
rates of CO2. 

 

These ln(TP-Tg) and t plots are illustrated in Fig. 4.8. The linearity of all plots in Fig. 4.8 

confirms the fidelity of the experiments, and later the values of heat transfer coefficient 

are calculated using equation 31. 
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Figure 4.8: Experimental ( )gP TT −ln  vs. t plot at different volumetric flow rates of 

CO2. 
 

Using Eq. 32, the values of mass transfer coefficients were calculated based on the 

measured values of heat transfer coefficients (Fig. 4.8).  

 
Figure 4.9: Plot of variation of mass transfer coefficient with temperature. 

 

Figure 4.9 describes the variation of mass transfer coefficient with temperature. 

Experimentally found values of mass transfer coefficient confirm that there is no 

significant influence of mass transfer on the process as the resistance to mass transfer 

has very less value compared to the resistance caused by the reaction. Hence, the 

process is mainly influenced by reaction only. Moreover, it is further investigated by 
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changing the value of flow rate at a particular temperature and it has been found that 

the influence of mass transfer on the process is not significant. 

 

4.4.2 Intrinsic Kinetic Parameters for Coke 

Gasification in CO2 Environment 
Graphite slab with dimensions described previously (section 4.3.1) has been used to 

calculate the true value of the reaction coefficient. Since graphite has porosity of 1.2 %, 

it is assumed that there is no significant contribution of pore diffusion over the process. 

On this basis, we can assume that the loss in specimen weight is only because of 

reaction taking place at the outer surface. Note that it has already been confirmed, on 

the basis of the experiments described in the previous section 4.4.1, that mass 

diffusion resistance is negligible compared to the reaction.  The pure CO2 was used for 

these experimental runs at different temperatures in the range of 900 to 1200 oC. The 

sample weight is plotted against reaction time at different temperatures in Fig. 4.10.  

Figure 4.10 describes the summary of only three experiments carried out at 

temperatures 900, 1000 and 1100 oC.  

 

Figure 4.10: Plot of sample weight vs. time: graphite specimen at atmospheric 
pressure and temperatures 900, 1000, 1100 and 1200 oC. 

 

In the beginning of the process, specimen loses its weight slowly with time since during 

this time interval all the moisture present inside the specimen goes off and particle 

attains a temperature equal to the desired reaction temperature which is approximately 

equal to the furnace temperature. Afterward, it has been found that a linear variation of 
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weight loss with time exists (Fig. 4.10). 

Before we discuss the results in context to the reaction coefficient, the experimental 

evidence about the endothermic nature of the Boudouard reaction is shown in Fig. 

4.11. Figure 4.11 describes a number of experimental runs for three temperatures i.e. 

furnace temperature, gas temperature and specimen temperature. Although at lower 

values of the furnace temperature the specimen reaches to a temperature which is 

approximately same as the furnace temperature, the influence of endothermic reaction 

is clearly visible for the higher values of furnace temperature. Moreover, the gas 

reaches to a temperature which is approximately same as the furnace temperature.  

 

Figure 4.11: Experimental history of specimen temperature to describe the 
influence of endothermic Boudouard reaction. 

 

To calculate the value of reaction rate at a particular temperature, we have chosen the 

linear part of the curve (Fig. 4.10) when specimen is at the reaction temperature and 

experiences the weight loss due to highly endothermic Boudouard reaction. We have 

run a number of experiments at various temperatures lies in between temperatures 900 

and 1200 oC. Figure 4.12 illustrates a summary of the experiments. 
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Figure 4.12: Conversion rate of graphite as a function of the temperature in an 
environment of CO2. 

The values of reaction coefficient at different temperatures can be easily calculated 

from the slope of linear weight loss vs. time plot. As thin slabs of graphite were taken 

as specimens, whereby the area that accounts for the sides is less in comparison to the 

total area, the outer surface decreases only slightly during the experiments. The 

experimental points were fitted to Arrhenius relation. In this study, the values of pre-

exponential factor and activation energy of reaction were found to be 5.42x106 and 222 

kJ.mol-1 respectively. The values of activation energy given in the literature cover a 

range from 113 to 414 kJ.mol-1 and most of them have a value between 201 and 260 

kJ.mol-1 (Table 4.1). The experimental value of activation energy found in this study 

falls in lower third of the values given in the literature. 
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Figure 4.13: Comparison of experimentally found reaction coefficient with the 
values available in the literature: Arrhenius plot. 

 

Arrhenius equation can be rewritten as follows, 

⎟
⎠
⎞

⎜
⎝
⎛−×=

TR
molkJK B .

/222exp.1042.5 6 , m.s-1.         (33) 

Only a few values of the surface related reaction coefficient are available in published 

work, which are compared with present value of reaction coefficient in Fig. 4.13. It can 

be seen that the deviation among the surface related values is much smaller compared 

to the mass related values (Fig. 4.2). 

 

4.4.3 Determination of Sorption Coefficient of CO2  
Equation 23 can be rewritten while assuming the value of PCO equal to zero, 
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The influence of CO2 partial pressure on the rate of Boudouard reaction is shown in Fig. 

4.14. During the experiments, the specimens were brought into contact with a mixture 

of CO2 and N2. Furthermore, the temperature was varied while maintaining the gas 

composition constant. Illustration of Eq. 34 in Fig. 4.14 is used to calculate the value of 

CO2-sorption coefficient using the gradient of each of plots. Moreover, the dependency 
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of the sorption coefficient on the temperature is shown in Fig. 4.15. The value of 

sorption coefficient was found to be ~2.4 bar-1. In the range of investigated 

temperature, however, no significant dependency of the coefficient on temperature was 

established.  
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Figure 4.14: Illustrations of the experimental runs with partial pressures of CO2 at 
different temperatures. 

  

Figure 4.15: Temperature dependency of CO2-sorption coefficient on temperature. 

 

Figure 4.16 shows a comparison of our experimental results with the values available 

in the literature. It can be seen in Fig. 4.16 that the values differ sometimes 
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considerably. The main reason is the value of the reaction coefficient of Boudouard 

reaction in Eq. 34.  

 

 

Figure 4.16: Comparison of CO2 sorption coefficient with the values available in the 
literature. 

As numerically the reciprocal value of KB is significantly higher than
2COK , a slight 

change in the value of KB influences 
2COK considerably. Assuming an average value of 

CO2 sorption coefficient equal to 2 for all values of CO2 partial pressure < 0.2 bar, 

however, the product of 
2COK x

2COP becomes small compared to 1. This might be a 

possible reason why the investigators who investigated Boudouard reaction for lower 

values of CO2 partial pressure, were failed to confirm the Langmuir-Hinshelwood 

formulation. 

 

4.4.4 Determination of Sorption Coefficient of CO 
The experiments were carried out under the two conditions: the gas composition of the 

mixture of CO2-CO-N2 remained constant while the temperature was varied; the gas 

composition was varied at constant temperature. Figure 4.17 illustrates the influence 

of CO-partial pressure on the conversion rate. However, these measurements were 

taken using CO-CO2 mixture only. 
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Figure 4.17: Influence of CO-partial pressure over the conversion rate. 

 

The sorption coefficient of CO can be determined by transforming the Eq. 23 as follows, 
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         (35) 

This relation is depicted in Fig. 4.18 for three temperatures. Although the measured 

values increase with a decrease in temperature for all values of CO-partial pressure, the 

resulting temperature dependency of sorption coefficient is weak.  
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Figure 4.18: Illustrations of the experimental runs with partial pressures of CO at 
different temperatures. 

 

If the Langmuir-Hinshelwood formulation is valid, the individual points would have lied 

on the straight line. However a regression line can be drawn on the figure to calculate 

the value of the CO-sorption coefficient. This value was found to be 7.0 bar-1.  The 

temperature dependency can be neglected compared to the deviation of individual 

points from the linear curve. It is possible, however, to use a parabolic expression for 

better approximation of the experimental points as shown in the Fig. 4.18. On the basis 

of experimental findings, the sorption coefficient can be related to the temperature as 

follows, 
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Consequently, the rate expression of carbon-carbon dioxide reaction can be better 

expressed by using the following formulation, 
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where the partial pressure of CO appears with an exponent ½ in place of unity. 

 

 

Figure 4.19: Comparison of sorption coefficient with the values available in the 
literature. 
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The values given in the literature for the sorption coefficient of CO are compared with 

present results in Fig. 4.19. It includes both the investigations stating the exponent of 

CO partial pressure in kinetic rate expression equal to 1 and other stating the exponent 

equal to ½. Note that the parabolic influence of CO partial pressure could only be 

noticeable if the higher values of partial pressure are investigated. As shown in Fig. 

4.18, however, for lower values of partial pressure it is possible to approximate the 

influence of the CO by considering its exponent equal to 1. 

 

4.4.5 Apparent Kinetic Parameters for Coke 

Gasification in CO2 Environment 
In the previous section the intrinsic reactivity, depending on the external surface area of 

the specimen with no influence of porous characteristics, is determined for a given pure 

carbon specimen. Furthermore, this section attempts to review the experimental 

investigations made to determine the effect of porous nature of different coke samples 

over the reactivity. Nevertheless, the determination kinetic parameters is the primary 

task so that the reaction rates can be computed taking into account several factors, 

such as: temperature, pressure, composition of the atmospheric surrounding of coke, 

etc.  

A number of gas-solid reaction models in the category of volume reaction model have 

been proposed. According to these models, the reaction takes place uniformly 

throughout the interior of the solid phase. Theoretically, the reactivity of the carbon 

defined in terms of conversion rate can be calculated by the following expression,  

dt
dx

x
RA .

1
1
−

= ,             (38) 

where x  is the conversion of the sample and can be defined as,  

o

o

W
WWx −

= .             (39)  

The reactivity depends on the temperature and CO2 partial pressure. At fixed total 

pressure, the reactivity can be determined as follows, 
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where n is the order of reaction, KA0 and EA are the apparent pre-exponential factor and 

apparent activation energy respectively. The apparent values take into account the 
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transport of reactant inside the particle, the change in internal surface and particle 

density etc. The reaction order for the reaction between the carbon and CO2 is taken as 

unity. The apparent reaction coefficient can be described by the following equation, 

effcminA DOKK ... ρ= .           (40) 

Taking logarithms and differentiating with respect to temperature and noting that both 

the intrinsic reaction coefficient and to a lesser extent the diffusional process are 

temperature dependent gives, 
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note that the dependencies of internal surface area and carbon density are neglected 

compared to the other parameters. With Arrhenius temperature dependencies for both 

reaction and diffusion we have, 
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Using Eqs. (41-44), we can simply calculate that the apparent activation energy is the 

combined effect of both chemical reaction and diffusion of the reactant inside the 

porous structure of the specimen. Solution of Eq. 41 yields, 

2
Din

A
EEE +

=  .             (45) 

Several experimental runs were carried out in a wide range of temperature from 900 to 

1100 oC. During the experiments, three different types of porous specimens have been 

used with different properties e.g. Poland coke, Czech coke and Anthracite coal.  

The samples were heated in CO2 environment to the final desired reaction temperature 

and weighed continuously during burn-off. The experiments were aimed to calculate the 

variations of the sample temperature and weight with gasification time. Figure 4.20 

describes the summary of one experiment for Poland coke sample at 1100 oC to show 

how the weight and temperature of the specimen vary with burning time. As shown in 

Fig. 4.20, there exists a preheating zone during which all moisture and inorganic 

matters present inside the particle come out of the particle. Henceforth, the sample 
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attains the maximum required temperature for reaction to take place. Experimental 

result illustrates that the particle temperature remain constant inside the particle, 

though it has a temperature value less than the furnace temperature due to 

endothermic nature of Boudouard reaction. During the experimental run, specimen 

weight continuously decreases and follows a linear variation with time at reaction 

temperature. 

 

 

Figure 4.20: Particle temperature and weight variations with time at 1100 oC. 
Specimen used: Poland coke. 

However, in the beginning of the experiment the particle weight goes down slowly 

because the loss in sample weight is mainly due to vaporization of moisture content 

inside and is very less compared to the total mass of the sample. Therefore, this section 

is excluded from investigation. A section of the plot where the sample weight follows a 

linear decrease until the end of the experiment is considered for the investigation. 

Figure 4.21 describes an experimental run using Czech coke specimen where the 

temperature of the furnace increase continuously from initial room temperature to the 

maximum temperature i.e. 1100 oC. It is shown in Fig. 4.21 the plot of weight loss vs. 

time changes its slope to show the effect of the reaction with an increase in 

temperature. 

As it has already been described in previous discussion so far that the internal surface 

area of the given coke sample changes with degree of conversion i.e. it reaches to its 

maximum and decreases with total conversion of the particle henceforth.  Adanez et al. 

did not find any variation in surface area as reaction advances. 
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Figure 4.21: Temperature and weight loss histories of Czech coke at atmospheric 
pressure. Curve (A) is the profile of furnace temperature, curve (B) is 
the profile of sample’s temperature and curve (C) is the profile of 
sample weight loss with time.  

 

On the other hand, Adshiri et al. considered that the gasification rate is proportional to 

the surface area during gasification. However, the most common result is that surface 

area presents a maximum value, as does the reaction rate, for conversions between 20 

and 60%. Figure 4.22 describes the variation of the surface area with reaction 

progress.  

 

 

Figure 4.22: Surface area variation during the gasification with CO2. Empty circle 
points: Adschiri et al., Solid rectangular points: Agarwal et al. 
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Figure 4.23 describes a qualitative comparison of the experimental results of Poland 

coke and Czech coke with the results found in the literature. The main purpose here is 

to show that during the experiment, the particle exhibits a variation of the conversion 

rate along the progress of the reaction and also shows a few of maximum values for a 

range of conversion. As shown in the Figure 4.23, Poland coke exhibits its maximum 

value at 20 % while the results from the literature show the maximum value at ~55% 

conversion.  

 

Figure 4.23: Plot of conversion rate vs. conversion. Experimental results: solid 
rectangles, Poland coke (left ordinate), Czech coke (left ordinate), 
Solid triangles (right ordinate): Molina et al. 

 

While in a case of Czech coke, the conversion rate doesn’t show much influence of the 

reaction progress. In all cases, however, the increase of the conversion rate with 

reaction progress to reach a maximum value and henceforth, to decrease to its 

minimum is qualitatively varied. Finally, some studies [Kovacik et al., Matsui et al., 

Adanez et al., Schmal et al.] regarding coal reactivity during gasification do not consider 

gasification rate variation with conversion and only report the gasification rate at a 

specific value of conversion. Although the relationship between reaction rate and 

surface area has been widely studied, [Agrawal et al., Dutta et al., Yang et al., Alvarez 

et al., Kasaoka et al., Kuo et al., Hashimoto et al.] there is no general agreement. Chin 

et al. and Adshiri et al. state that reaction rate is proportional to surface area. However, 

most of the studies [Agrawal et al., Dutta et al., Yang et al., Alvarez et al., Kasaoka et 
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al., Kuo et al., Hashimoto et al.] found that surface area and reaction rate are not 

proportional. 

According to new theories of gasification reaction, proportionality is rather found 

between reaction rate and other parameters such as active surface area [Molina et al., 

Alvarez et al.] or the total micropore volume [Alvarez et al., Kasaoka et al.]. However, it 

was not possible to measure the active surface area as well the micropore volume 

during the scope of this study.   

Figure 4.24 illustrates a summary of the experiments carried out in the range of 

temperature from 900 to 1100 oC. As shown in the Fig. 4.24, there is no great influence 

of coke type over the reaction rate for the temperature about 900 oC. 

 

Figure 4.24: Plot of conversion rate variation with temperature. Poland and Czech 
coke at atmospheric pressure in an environment of CO2. Empty and 
filled points correspond to two sets of experiments. 

 

The possible reason is very slow reaction for such value of the temperature. However, 

with an increase in temperature also leads to an increase in reaction rate. Moreover, the 

difference between the values for two cokes is significant for temperature range from 

950 to 1050 oC. The possible reason is the behavior of coke to react against 

temperature that includes that change in porous structure, total number of active sites, 

etc. Nevertheless for the higher values of the temperature ≥ 1100 oC the rate of 

gasification is too high and reaction takes place only at the surface of the particle. It 

can also be verified from the experimental results shown in Fig. 4.24, at temperature 

1100 0C the values of reaction rate are almost same for both cokes and there is no 
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evidence of coke type i.e. porous structure over the reaction rate. For the temperature 

regime over 1100 oC, the gasification process is mass-diffusion controlled. 

Figure 4.25 shows a summary of pictures of the samples taken after completion of the 

experiments. It can easily be visualized from surface of each sample that each of cokes 

and anthracite coal have their own way to behave against CO2. At temperature 900 oC, 

reaction rate is too slow and can easily be visualized from smooth external surface of 

samples. However, with an increase in temperature, the roughness over the surface of 

the sample also increases. 

 

 

Figure 4.25: Specimen after completion of experiments. ‘A’ row: 900 oC, ‘B’ row: 
1000 oC and ‘C’ row: 1100 oC. 

 

Table 4.2 illustrates a summary of apparent as well as true values of activation 

energies. It describes the dependence of Boudouard reaction on different types of coke. 

During the gasification process, the internal surface area changes and it is very difficult 

to measure the value of internal surface area along the progress of the reaction. As one 

of the experimental results, however, it has been found that the apparent values are 

much lower than the true value of activation energy and exhibit a lower temperature 
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dependency. Equation 45 is also the theoretical proof of the above statement.  

 

 

Table 4.2: Apparent (Poland and Czech coke) and true activation energy 
(Graphite) of Boudouard reaction. 

 

4.5 Concluding Remark 
The kinetic analysis based on experiments provides the values of activation energy, the 

pre-exponential factor of the reaction and the sorption coefficients of CO2 and CO. The 

new set of activation energies, pre exponential factor and particle conversion are 

compared against a variety of data available in the literature. Gasification was carried 

out in a tubular furnace over a temperature range from 900 to 1200 oC show that 

except at low CO partial pressures, a nonlinear influence of CO partial pressure over the 

reaction rate can be recommended. Moreover, the influence of CO2 partial pressure over 

the process is better described by linear approximation. Although no significant 

influence of temperature on the sorption coefficients of CO2 could be observed, a weak 

dependency of CO sorption coefficient on the temperature was found. Furthermore, the 

good compatibility of results for surface related reaction coefficients has been observed 

for a broad range of parameter values. And finally, an approximate formula with a 

modification in Langmuir-Hinshelwood formulation is proposed. The new value of 

reaction coefficient for the Boudouard reaction will be used in the modeling of the 

combustion of a single coal particle which is described in the following chapters. 

  

 

 

C+CO2→2CO 

Coal Type Activation Energy (kJ.mol-1) 

Graphite 226 

Poland coke 166 

Czech coke 141 
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Chapter 5 

Modeling Coal Combustion 

 
5.1 Introduction 
 
One of the major objectives of coal combustion research is the development of 

comprehensive computer models to help design combustors and gasifiers for the clean 

utilization of coal usually in complex burners and combustion chambers. Coal 

combustion is the process of combination of different processes which proceed at 

different rates and mutually interdependent of one-another (Fig. 5.1).  

 

 

Figure 5.1: Schematic presentation of a typical combustion process of a single 
coal particle. 
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A few qualitative remarks about the combustion of coal particles are made in the 

previous chapters. This aspect will now be dealt with in a more general fashion 

following the mathematical analysis and several other significant works. In order to 

adequately describe the combustion of coal in a fixed or fluidized-bed or in other 

industrial applications, it is essential that the mechanism which governs the combustion 

of a single coal particle is well understood. Only limited effort has been made to resolve 

this problem and such mechanistic models will be detailed in this section. 

First, a brief discussion will be presented of the general features and main issues which 

have made it difficult or even impossible to unambiguously describe the coal particle 

combustion phenomenon. Bywater has presented an order of magnitude time scale for 

the different physical and chemical operations that occur in a fluidized-bed combustor. 

On the other hand gas may take a relatively much shorter time around 1 sec to pass 

through the bed. As explained in the earlier sections, the volatiles may take typically 1-

10sec to be released from the coal but may burn much faster in less than 1 sec. Borghi 

et al. found that the burn out time of char is two orders of magnitude longer than the 

time for the combustion of volatiles. Consequently the former controls the burning of 

coal in a fluidized-bed combustor. The burning of the devolatilized coal particles 

involves the conversion of the fixed carbon of coal into CO and CO2. A quantitative 

description of this process involves complete resolution of many involved issues and 

these are elaborated elsewhere [Basu].  

The burning rate of a char particle is controlled by the diffusion of gas from the 

surroundings to the char surface and is referred to as external transport. The process is 

characterized by the value of an effective diffusion coefficient. The actual value of 

effective diffusion coefficient amongst other factors will depend upon porosity and 

tortuosity of the voids inside the particle. The diffusion of gas through the pores inside 

the char and the chemical reaction on the pore walls is referred to as intrinsic reactivity. 

For low intrinsic reactivity the oxygen is able to travel into the interior of the char 

particle. For such a case, the particle size stays constant during combustion but its 

density decreases. On the other hand if the reaction rate is very fast, all the oxygen is 

consumed as it reaches the particle surface. For such a case, the density of the particle 

stays constant while the particle size changes.  

Several workers have attempted to identify the nature of products formed at the 

particle surface on the basis of what is now known as the two-film model [Hougen et 

al.] or continuous film model a part of the present work. It is assumed that the oxygen 
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from air diffuses to the surface of the particle and reacts with the carbon of the coal to 

form CO and CO2. The chemical reactions are represented in the Figure 5.2. 

COOC →+ 22
1 ,                (1)  

1.396 −−=Δ molekJH   

22 COOC →+ ,                 (2) 

1.113 −=Δ molekJH . 

One can conclude that the extent to which the second reaction occurs at the particle 

surface is negligible and predominantly the first reaction takes place.  

 

 

Two Film Model: 

COCOC 22 →+  

222
1 COOCO →+  

 

 

Continuous Film Model: 

COCOC 22 →+  

222
1 COOCO →+  

22 COOC →+  

COOC →+ 22
1  

 

Figure 5.2: Combustion model for the burning of a coal particle: concentration 
profiles of different species. 
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CO thus formed at the interface diffuses outwards into the air stream where it reacts 

with the incoming oxygen to form carbon dioxide in the homogeneous gas-phase 

reactions,    

222
1 COOCO →+ ,                 (3) 

1.281 −−=Δ molekJH . 

The burning of CO is catalyzed by the presence of traces of water vapor and, thus, its 

chances to escape in the gas stream are rather scarce. The burning of CO in a diffusion 

flame and the existence of the reaction zone has been experimentally demonstrated. 

Carbon di-oxide thus formed diffuses back to the particle surface to undergo the 

heterogeneous reduction reaction at the particle surface,  

COCOC 22 →+ ,                 (4) 

1.5.172 −=Δ moleKJH . 

CO thus generated diffuses outwards and combines with the incoming oxygen to form 

CO2. The rest of the cycle repeats again and goes on and on to sustain continuous 

combustion. The above mentioned qualitative mechanisms of the burning of a coal 

particle are shown in Figure 5.2.  

According to the two-film model, it is claimed that the controlling mechanism for carbon 

combustion will have the reactions of carbon with carbon dioxide and of carbon 

monoxide with oxygen which is fast enough. Under this condition, hardly any oxygen 

will reach to the surface of the coal particle so that the mechanism for the carbon 

combustion based on the stipulation of the direct oxidation of carbon will not be 

possible. Avedesian and Davidson developed a quantitative mathematical model for char 

combustion in a fluidized bed based on the above qualitative description of char particle 

combustion. Many researchers have argued that when the oxygen of air comes in 

contact with the carbon of the particle, both CO and CO2 are produced. However, if the 

temperature is greater than about 923 K (the ignition temperature of CO), the CO burns 

in a reaction zone surrounding the particle (direct oxidation model [Basu et al.]. If the 

particle temperature is above 1373 K, CO2 is reduced to CO on the particle's surface. 

Basu et al. mention that the direct oxidation model is relatively more valid for char 

combustion than the two-film model under conditions which are characterized by low 

particle Reynolds number and high temperatures in the range 1173-1573 K. 

In order to establish the combustion mechanism for a given combustion system, it is 

necessary to ascertain two important facts. First, what are the combustion products on 

the char particle's surface? Secondly, which of the two gases, oxygen or carbon dioxide, 
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can preferentially diffuse to the surface? Many workers such as Meyer, Strickland- 

Constable, Shah, Sihvonen and Arthur have attempted to answer the first question. 

Arthur on the basis of his experiments on carbon burning from artificial graphite and a 

coal char concluded that depending upon the states of carbon and oxygen molecules 

both CO and CO2 are produced. The effort of Basu et al. was motivated by the aim to 

investigate whether the conclusions drawn by Arthur and others, in connection with 

relative proportions of CO and CO2 generated on the carbon particle surface under the 

gas flowing condition, are also valid when such particles are burned in a fluidized bed or 

not. Basu et al. examined the combustion of 1-3 mm diameter anthracite coal particles 

in a fluidized bed (129mm diameter) at 1123 K and for air fluidizing velocity in the 

range 0.2-0.3 m/sec. The experiments indicated that the primary combustion products 

were both CO and CO2, and oxygen did diffuse to the carbon surface.  

At about 1100 K, the diffusion coefficient of oxygen is slightly larger than that of carbon 

dioxide. Basu et al. comment: "If the oxidation rate of CO is much higher than the 

diffusion rate of O2, all CO will be quickly consumed leaving the remaining oxygen to 

diffuse to the surface." They concluded that further experimentation is required to 

establish the conditions in terms of the size and temperature for transition from the two 

film mechanism to continuous film mechanism. Avedesian and Davidson and Campbell 

and Davidson computed the concentration profiles for the two-film model as shown in 

Fig. 5.2. They assumed that the oxidation reaction of CO (Eq. (3)) consumed all the 

oxygen which diffused to the carbon surface. There is contradiction to this hypothesis 

on two grounds. First, the reaction of Eq. (3) is not infinitely fast; and second, the 

endothermic reaction of Eq. (4) cannot receive sufficient heat from the reaction zone. It 

is, therefore, concluded that oxygen diffuses to the particle surface and the entire CO 

produced on it burns in a reaction zone away from the surface.  

In this chapter, a mathematical model to describe the combustion of a single coal 

particle is presented. Combustion modeling is divided into two section i.e. gas phase 

modeling and solid phase modeling. An assumption of continuous film oxidation for CO 

is taken into consideration. In order to model solid phase which consists of a number of 

pores, the effective values of many physical parameter are taken into consideration. 

Furthermore, a mathematical model using the new values of the reaction coefficient 

(chapter 4) to model a special case of combustion where oxygen is not available in 

excess is illustrated.  
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5.2 Reaction Mechanism  
The mechanism involved in the combustion process contains some exothermic and 

endothermic reactions with complicated reaction mechanisms. There are mainly three 

reaction involved in the combustion. 

First reaction is an exothermic reaction of carbon oxidation.  

COOC →+ 22
1 ,                (5) 

First step of reaction mechanism is adsorption of oxygen on active site within the 

particle. There is possibility of single site as well dual site mechanism. 

adgas OO 22 ⇔ ,                 (6) 

adadad OOO +⇔2 ,                (7) 

Second step is surface reaction between adsorbed reactant and carbon to produce 

adsorbed carbon mono-oxide. 

adad COOC ⇔+ ,                (8) 

Last step is desorption of adsorbed product to ambient condition. 

gasad COCO ⇔ ,                (9) 

Second reaction is the endothermic reaction between carbon dioxide and carbon to 

produce carbon mono-oxide.  

COCOC 22 →+  ,              (10) 

The reaction mechanism involves adsorption process followed by surface reaction and 

desorption respectively. This reaction takes place at particle surface due which particle 

surface temperature is always less than the gas temperature near the surface. The 

reaction mechanism as follows, 

adgas COCO 22 ⇔ … Adsorption            (11) 

adadad OCOCO +⇔2 … Adsorption             (12) 

adad COOC ⇔+ … Surface reaction            (13) 

gasad COCO ⇔ … Desorption             (14) 

Finally, there is a homogeneous exothermic reaction of CO oxidation to produce high 

value of temperature.  

222
1 COOCO →+               (15) 

Certain features of the kinetics of CO oxidation are reasonably well understood, but 

qualitatively knowledge is less than adequate for the prediction of the time required for 
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complete combustion. The uncertainty is particularly serious at relatively low 

temperatures, such as those often encountered in two stage combustion system and in 

automobile exhaust reactors. The effect of temperature and concentration and 

approach to equilibrium are in approximate agreement with a mechanism based on rate 

control by the forward reaction and reserve steps of reaction, 

HCOOHCO +→+ 2              (16) 

equilibrium of the reactions follows, 

OHOOH +→+ 2               (17) 

OHHOH +→+2               (18) 

HOHOHH +→+ 22 .             (19) 

 

5.3 Gas Phase Modeling 
Several mathematical models have been developed based on mechanistic details for the 

combustion of a coal char particle. The present mathematical model considers 

simultaneously the species diffusion and the reaction. According to the model, CO 

oxidation takes place over the whole gas boundary with non-zero concentrations of 

species e.g. CO, CO2, O2 at the surface of the particle. Model consists of mass and 

energy balances for these three species.  

From mass balance, we can get;   
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where 
2OC ,

2COC , COC , OHC
2

 are the concentrations of oxygen, carbon di-oxide, carbon 

monoxide and water, r is the radial distance from the surface of the particle towards 

ambience, Kv is the reaction coefficient of homogeneous reaction between CO and O2, 

and Dg is the diffusivity of the gas (this mathematical analysis presumes that diffusivity 

of each gas is equal to another).   

Energy balance over the system yields; 
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where T is the temperature, vhΔ  is the reaction enthalpy of exothermic oxidation of CO, 

vρ  is the density of the gas and pgc is the specific heat of the gaseous mixture. This 

mathematical model consists of a number of coupled differential equations as the 

reaction coefficient Kv is the strong function of temperature, 

⎟
⎠
⎞

⎜
⎝
⎛−×=

TR
Kv .

600,125exp.103.1 11 , m3.kmol-1.s-1.       

Solution of the above described model requires a number of boundary conditions in the 

region between the particle’s surface and ambience. Boundary conditions used are 

described as follows, 

at particle’s surface; 

dr
dC

DaH
C O
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2
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=               (24) 
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where,  

g

H

D
KDaH = ,               (28) 

HK  is the reaction coefficient of the reaction between C and O2 and given by, 

⎟
⎠
⎞

⎜
⎝
⎛−×=

TR
KH .

000,160exp.100.7 5  , m.s-1           (29) 

g

B

D
KDaB = ,                 (30) 

BK is the reaction coefficient of Boudouard reaction between C and CO2 and given by, 

⎟
⎠
⎞

⎜
⎝
⎛−×=

TR
KB .

000,220exp.105.3 5 , m.s-1           (31) 

gpggeL DcLC ...ρ=  with Le the Lewis number and BhΔ the enthalpy of Boudouard 

reaction. 
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At ambience, 

∞=
22 COCO CC ,               (32) 

∞=
22 OO CC ,               (33) 

0=COC ,               (34) 

T=298 K.               (35) 

 

5.4 Simulation Results 
The above described model requires lots of numerical calculations as it consists of a 

number of coupled differential equations those are difficult to be solved analytically. In 

order to solve this set of differential equations Matlab toolbox for differential equation of 

Boundary Value Problem is used and the solution is generated over a grid where the 

boundary meets the requirements.  

5.4.1 Species Concentration and Gas Phase 

Temperature Profile 
Figure 5.3 describes the profiles of species concentration and gas phase temperature 

along the radial distance from the particle’s surface towards the ambience.  

     (a)       (b) 

Figure 5.3: (a) Species concentration profiles along the radial distance from the 
particle’s surface towards the ambience. (b) Gas phase temperature 
profile along the radial distance from the particle’s surface towards 
the ambience. 

 

Carbon mono-oxide has its maximum concentration at the particle surface which is 

because of the highly exothermic reaction of carbon with oxygen. The produced carbon 

mono-oxide diffuses towards the ambience and gets oxidized by oxygen to carbon 

dioxide. In the Fig. 5.3.a, concentration profile of CO2 has its maximum near to the 
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surface. CO2 concentration, passing through its maximum, decreases towards the 

particle’s surface as well as to the ambience. When CO2 reaches to the particle’s 

surface, it reacts with carbon and produces CO which is also a major share to a 

maximum value of CO at the particle’s surface. The concentration profile of oxygen 

experiences a continuous decrease towards the particle’s surface. On the way towards 

particle’s surface, oxygen experiences diffusive transport coupled with chemical 

reaction. Figure 5.3.b describes how the temperature of gas phase changes with radial 

distance from the particle’s surface to the ambience. In the Fig. 5.3.b, the temperature 

profile has its maximum near to the particle’s surface and later follows a decrease in 

both directions i.e. to the particle and to the ambience. In this region, there are 

basically two important reactions i.e. Boudouard which is highly endothermic reaction 

and CO oxidation which is an exothermic reaction. The maximum of the temperature 

near to the particle’s surface is because of heat produced from CO oxidation. When CO2 

reacts with carbon i.e. Boudouard reaction, it needs heat which comes form the heat 

produced during CO oxidation. Simulation results are the theoretical proof of these 

reactions to be existed in this region where temperature has its maximum near to the 

particle surface and later it is decreased at the particle’s surface because of the 

Boudouard reaction.  

 

5.5 Solid Phase Modeling 

5.5.1 Model Formulation 
Combustion of solid phase is the combination of a number of processes which proceed 

at different rates and mutually interdependent of one-another. A single coal particle can 

be considered as a porous structure with pores of different size and shapes. These 

pores are responsible for internal diffusion resistance to the reactant when it diffuses 

inside the boundary of the particle. There are mainly two resistances for the reactant- 

resistance due to mass diffusion inside the gas layer over particle surface and internal 

diffusion resistance due to presence of pores. During combustion, particle surface 

continuously shrinks because of many heterogeneous reactions among carbon, oxygen, 

carbon-dioxide etc. and the process temperature changes (Fig. 5.4).  
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   (a)      (b) 

Figure 5.4: Schematic diagram of (a) the particle shrinkage with time. (b) 
structural change inside the particle geometry. 

 

This results in structural change of porous structure inside the particle. As the reactant 

first diffuses to macro-pores at particle surface then to micro-pores connected to these 

macro pores, these structural changes affect the reactivity of process. Figure 5.5 

shows how the internal surface changes with the degree of conversion. 

The following mathematical model accounts for the development of concentration and 

temperature profiles inside the particle, total time taken for complete combustion and 

particle conversion with time. 

  

Figure 5.5: Plot: Ratio of Surface area to Initial Surface area vs. Degree of 
conversion.   

 

The main equations involved are as follows; 
1

22
1 .396, −−=Δ→+ moleKJHCOOC        (36) 

1
2 .5.172,2 −=Δ→+ moleKJHCOCOC .      (37) 
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Coal particle with spherical geometry is chosen for applying the mass and energy 

balances over an infinitesimal thickness inside the particle. Mass balance over 

infinitesimal thickness yields, 

( )
dt

dCr
dr
dCrD

dr
d

r
i

A
i

eff =−−⎟
⎠
⎞

⎜
⎝
⎛ ...1 2

2 ,            (38) 

iCmiA COKr ... ρ=− ,              (39) 

⎟
⎠
⎞

⎜
⎝
⎛

+=

τ
ε.

111
GPeff DDD

 ,             (40) 

where r is the radial distance inside the particle, ith species CO2 and O2, effD is the 

effective diffusivity, Ci is the concentration of ith species, Ar  and Ki are the reaction rate 

and reaction coefficient of a reaction between carbon and ith species, mO  is the internal 

surface area, Cρ  is the density of coal, ε  is the porosity of the coal particle, τ is the 

tortuosity, DP is the knudsen diffusivity and DG is the gas phase diffusivity. For steady 

state solution of the model, equation 38 can be rewritten as following, 

0...2
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dr
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.            (41) 

Energy balance over this infinitesimal thickness yields, 
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for steady state solution, 0=
dt
dT

. T is the temperature of the solid, Keff is the effective 

thermal conductivity, iHΔ  is the enthalpy of the reaction between carbon and ith 

species and cP is the specific heat capacity of the coal. 

The solution of above described model is bounded with a number of boundary 

conditions which can be described as follows, 

at particle’s surface, 

( )ii
eff
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−= 0

β
,             (43) 
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at particle’s center, 
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0=
dr
dCi ,               (45) 

0=
dr
dT

,               (46) 

where β  is the mass transfer coefficient, h is the heat transfer coefficient, e is the 

emissivity and σ  is the Stefan’s constant.  

The value of effective thermal conductivity is calculated on basis of both the thermal 

conductivity of the solid as well as the gas. The mathematical equation used to calculate 

the value of thermal conductivity is given by, 

0=ε ,  

seff KK =                (47) 
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1=ε  

Geff KK = .               (50) 

Particle shrinkage due to mass loss in heterogeneous reaction between carbon, oxygen 

and carbon di-oxide can easily be formulated as follows, 
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particle conversion is given by, 
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where rt is the instantaneous radius of coal particle, rP is the particle radius and X is the 

particle conversion. The process variables used to solve the above model are given in 

the Table. 5.1. 
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Parameter Equation Unit 

Reaction coefficient 
(carbon oxidation) ⎟

⎠
⎞

⎜
⎝
⎛−×=

TR
K

.
000,160exp.107 5  

m.s-1 

Reaction coefficient 
(Boudouard reaction) ⎟

⎠
⎞

⎜
⎝
⎛−×=

TR
K

.
000,220exp.104.5 6 m.s-1 

Knudsen diffusivity 
⎟
⎠
⎞

⎜
⎝
⎛−×

TR.
000,140exp20  

m2.s-1 

Nusselt number 33.050.0 PrRe1.12 ××+=Nu  [-] 
Sherwood number 33.050.0Re66.02 ScSh ××+=  [-] 

Mass transfer coefficient 

P

G

r
Dsh
.2
.

 
m.s-1 

Heat transfer coefficient  

P

G

r
KNu

.2
.

 
J.m-2.K-1.s-1 

Overall reaction coefficient 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

mCi OK ..
111
ρβ

 
m.s-1 

Table 5.1: Process variables used in simulation. 

5.6 Simulation Results 

5.6.1 Total Conversion Time 
Figure 5.6 describes fractional conversion of a coal particle with a diameter of 2 cm at 

temperature values of 900, 1000 and 1100 oC. From the Fig. 5.6, we can easily see that 

as the temperature increases, the total time take for complete conversion of the coal 

particle decreases.   

 
Figure 5.6: Fractional conversion of a coal particle with time. Particle diameter, 2 

cm; process temperature, 900, 1000 1100 oC.  
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The intensity of carbon oxidation increases with temperature as the reaction coefficients 

are the strong function of temperature. 

5.7 Mathematical Modeling for a Special Case of 

Combustion with Air Excess Number ≤1 
In this section, a mathematical model for single coke particle combustion is presented 

especially for the cases, where oxygen concentration (air excess number ~1) is 

restricted. The model considers simultaneously the effect of both Boudouard reaction 

and carbon oxidation. The progressive conversion mechanism was considered for 

modeling, in which the particle does not contain solid components forming an ash layer.  

 

5.7.1 Model Formulation 
The single particle model describes the combustion of coke. It can be elucidated on the 

basis of modeling approach and conditions. It solves for the diffusive heat and mass 

transport coupled with chemical reaction of reactants and products in a shrinking coke 

sphere. Effective values of process parameters i.e. diffusivity, thermal conductivity, are 

used to consider the effect of internal diffusion. The reactant CO2 and O2 diffusing 

inside the particle react with carbon at active sites on the way to their transport. The 

reaction chemistry of the combustion process can be described by the following 

heterogeneous reactions:  

COOC ⇒+ 22
1

              (53)       

COCOC 22 ⇒+               (54) 

and one homogeneous reaction 

222
1 COOCO ⇒+               (55) 

The model does not, however, take into account the homogeneous gas reaction (eq. 

55) inside the particle. In this model, it has been considered that the particle is 

preheated sufficiently so that the moisture content present inside the particle becomes 

negligible. According to well known mechanism of CO oxidation [Howard et al.], it has 

been found that it is nearly impossible to oxidize CO in the absence of moisture. With a 

preheated particle it can be considered that CO does not get enough OH radicals to 

oxidize inside the porous body.  

 



 81

 

The model is based on following assumptions: 

i. the coke particle is spherically symmetric, 

ii. ash goes off from the particle surface during oxidation, 

iii. pseudo steady state particle combustion. 

The governing species mass conservation equations of the particle combustion model 

are given by the following equation: 

0)...(2.,2
1

=−⎟
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iCcmOik
dr

idCrieffD
dr
d

r
ρ            (56) 

where i stands for both O2 and CO2. In this model we have added an energy balance to 

take into account particle temperature variation with a possibility of an exothermic and 

an endothermic reaction. These temperature variations could significantly affect the 

conversion rates. The heat conservation equations are,  

0)....(2.2
1

=Δ−⎟
⎠
⎞

⎜
⎝
⎛

RiHiCcmOik
dr
dTreffdr

d

r
ρλ .          (57) 

It has been found from experimental work done by many researchers that initially, the 

internal surface area increases with conversion, because of new pore openings and 

increase in pore diameter, to reach a maximum value and decreases henceforth. As 

combustion proceeds, the particle density decreases either due to a new pore opening 

or a change in pore diameter which leads to an increase in the gas content inside of 

particle despite of approximately no change in particle diameter. Furthermore, it has 

been reported [Wang et al.] that the porosity of particle has an effect on effective 

diffusivity i.e. a more porous particle possesses a higher diffusivity of O2. The overall 

diffusivity of O2 follows a decrease with conversion. As a first approximation to solve 

these coupled differential equations (eq. 56 & 57), the value of the ratio of product of 

internal surface and density to effective diffusivity is considered to be a constant. 

Solution of the model is bounded with simultaneous diffusive process of CO2 and O2. 

The boundary conditions derived from the above consideration are, 
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center
r 0=  

0=
dr

dCi  & 0=
dr
dT .             (60) 

Overall reaction coefficient can be calculated by the following equation, which includes 

both the mass transfer effect and the reaction, 

effDcmOikiioverallk ...
11
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ρβ

+= .          (61) 

Particle conversion can be calculated by the following equation, 
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Table 5.2 consists of some parameter values used in simulation. 

 

Parameter Equation 

Nusselt number 33.0Pr50.0Re1.12 ××+=Nu  
Sherwood number 33.050.0Re1.12 ScSh ××+=  
Effective thermal conductivity 7.1)273.(610.44.223.0 −+= Teffλ  

Mass transfer coefficient 
R
DSh

.2
.

=β  

Heat transfer coefficient 
R

Nuh
.2
.λ

=  

 
Effective diffusivity ⎟

⎠

⎞
⎜
⎝

⎛
+=

τ
εGpeff DDD

111  

Reaction coefficient  
(Boudouard reaction) ⎟

⎠
⎞

⎜
⎝
⎛−×=

TR
K

.
000,220exp.104.5 6 , m.s-1 

Reaction coefficient  
(carbon oxidation reaction) ⎟

⎠
⎞

⎜
⎝
⎛−×=

TR
K

.
000,160exp.107 5 , m.s-1 

 

Table 5.2: Process parameters used in the simulation. 

 

5.8 Simulation Results 
The steady state solution of the model is discussed here. The equations (56) & (57) are 

complex coupled differential equations, where the process parameters i.e. diffusivity, 

reaction coefficients, effective thermal conductivity; are strongly influenced by the 

temperature. Solution of the system containing a number of algebraic equations with 

three coupled differential equations under described boundary conditions has been 
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achieved using boundary value solver (bvp4c) of Matlab-7 R13. The results given by the 

model are: the fractional conversion, the particle shrinkage, the variation of O2 

concentration along the radial distance inside the particle and the variation of 

temperature at the center of the particle with conversion.  

5.8.1 Time History of Fractional Conversion and 

Particle Shrinkage 
Figure 5.7 shows comparison of model predictions to the data available in the 

literature for fractional conversion of a single particle in infinite volume of O2 and CO2 

[Kilpinen et al.]. The model simulation results seem to have the good agreement with 

experiment. One of the major problems associated with single particle combustion is the 

experimental measurement of particle shrinkage (rt/r0) with time. Figure 5.8 is also used 

to describe particle shrinkage with time. In Fig. 5.8 we see that the simulation results 

indicate very similar behavior concerning to the experimental trend. Furthermore, the 

model has been used to describe process simulation of combustion process where the 

volume of O2 available for combustion is not infinite (air excess number~1). Thus, the 

question is: does the particle reaches to 100% conversion in this condition? 

 

Figure 5.7: History of fractional conversion and particle shrinkage with time at 
ambient temperature 1123 K with 12 vol% O2 and 10 vol% CO2. 

 

5.8.2 Total Combustion Time 
Figure 5.8 shows some simulation results to describe the effect of Boudouard reaction 

when concentration of O2 decreases with particle conversion.  
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Figure 5.8: Simulation results of fractional conversion as a function of time for a 
particle at ambient temperature 1123 K in two different conditions: a) 
with Boudouard reaction, b) without Boudouard reaction. 

 

Comparison of two different simulation results with and without the consideration of 

Boudouard reaction indicated that the time taken by the particle to achieve 100% 

conversion without considering Boudouard reaction is infinitely longer than the time it 

takes while considering the Boudouard reaction. It has also been experienced practically 

that during such operations that the particle achieves 100% conversion in a short time.  

 

 

Figure 5.9: Temperature variation at particle center with fractional conversion at 
ambient temperature 1123 K. 
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5.8.3 Particle Temperature Variation 
Despite the fact that the particle temperature remains approximately constant along the 

radial distance, it has been found that the temperature at the center of the particle 

changes with conversion (Fig. 5.9). Figure 5.9 shows how the temperature at the 

center of the particle changes with conversion. A temperature peak was found in the 

very beginning of the process due to exothermic reaction when particle comes into 

contact with O2. With an increase in particle conversion, O2 concentration decreases 

while CO2 concentration increases. At particle conversion ~70%, it was found that the 

temperature at the particle center reached a value equal to the ambient temperature. 

Further, this value was decreased below the ambient temperature due to endothermic 

Boudouard reaction and increases again to the ambient value at ~100% conversion. It 

is one of the most interesting results of this simulation.  

 

5.8.4 Oxygen Concentration Profile inside the Particle 
Figure 5.10 shows O2 concentration profiles along the radial distance inside the 

particle with time intervals of 40 seconds between two ensuing curves. It shows how 

reaction front moves inside the particle along with particle shrinkage. Simulation results 

explicate well the incomplete conversion of the particle when the concentration of O2 

becomes negligible and illustrate the importance of Boudouard reaction in process 

modeling.  

 

Figure 5.10: Oxygen concentration variation along the radial distance inside the 
particle of a diameter of 5mm at ambient temperature 1123 K. 

 



 86

5.9 Concluding Remark 
The presented continuous film model gives a proper explication of gas phase 

combustion around the particle. It is verified using simulation results that CO oxidation 

can take place anywhere inside the boundary layer and non-zero concentrations of O2, 

CO and CO2 exist at particle surface. A possibility of Boudouard reaction to be taken 

place at the particle’s surface is shown and explained with the help of concentration and 

temperature profiles along the radial distance. The effective values used to solve the 

mathematical model give a good approximation to the real process dynamics. From the 

results, it is shown that the concentration of reactant species at the center of the 

particle is almost zero. The model takes into consideration the possibility of 

heterogeneous reaction to take place inside the pores within the particle’s geometry. 

For the special case of combustion where air excess number is approximately one, the 

developed single particle model predictions by taking into account the Boudouard 

reaction give a good agreement with the available experimental data found in the 

literature. Different simulations are possible by changing the particle diameter, the 

ambient temperature and the flow velocity of combustion gas. However, in order to 

develop a more comprehensive model to predict coke combustion in all conditions, the 

effect of conversion on internal surface and particle porosity should be considered in 

future formulation.  
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Chapter 6 

Conclusions and Outlook 

 
This work presented investigations on the behavior of a single coal particle undergoing 

the devolatilization and combustion. Focus was the experimental and model-based 

analysis of the coupled heat and mass transfer processes with a possibility of 

endothermic as well as exothermic heterogeneous and homogeneous chemical 

reactions. Models developed are shown to be suitable for describing the typical coal 

behavior in many industrial applications e.g. pulverized coal fired boiler, the combustion 

chamber to control NO emissions, etc.  

Application of the quasi-steady and the transient approach for the isolated droplet 

combustion in the microgravity has been illustrated in details. The analytical sphero-

symmetric model with consideration of unsteady behavior of oxidizer diffusion in 

addition to quasi steadiness for fuel vapor diffusion yields good estimations for various 

droplet combustion characteristics such as droplet diameter-squared, flame diameter, 

flame stand-off ratio, gasification rate and influence of ambient oxygen concentration 

on flame structure. Model validation is achieved by making simulation runs for two 

experimental fluids i.e. n-heptane and ethanol. The agreement between the modeling 

results and the experimental data available in literature is good enough to demonstrate 

the validity of the model. Furthermore, the behavior of d2-t curve is similar with 

experimental observations (classical d2-law) for both testing fluids. The model is helpful 

to enhance the existing knowledge for efficient utilization of fuel and reduction to 

environmental impact. Consistency of simulation results with the experimental data 

illustrates that the developed analytical quasi-steady transient model is sufficient 

enough to describe the fundamental characteristics of single droplet combustion, 
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though it consists of many simplified assumptions. Finally, the assumption of quasi-

steady-transient droplet combustion serves as a basis for subsequent development of 

the model to accommodate the effects of radiation, non-unity Lewis number, single 

droplet combustion for a mixture of hydrocarbons and possibility of different chemical 

reactions during the combustion process. 

Analogical approach, based on the modeling of the liquid droplet combustion, to model 

the coal devolatilization is found to give a better reproduction of the dynamics of the 

process. The analytical model to describe the devolatilization of a coal particle consists 

of a few more restrictive assumptions compared to the droplet combustion. The 

inheritance between the solid coal particle devolatilization and sphero-symmetric droplet 

combustion in microgravity has been shown to be successfully implemented. Though 

model predictions are not compared with the experimental data due to non-availability 

in the literature, the qualitative analysis gives a good explanation of the process 

dynamics. The temperature of the particle keeps on increasing till the entire volatile 

matter lasts before the combustion starts. Model predictions show that during the 

devolatilization the particle temperature increase to a value which is required for the 

combustion to take place. It has also shown by model predictions that with an increase 

in amount of volatile matter inside the particle, it is possible to ignite the coal particle 

easily. Model can successfully give the reason why it is difficult to ignite anthracite coal 

inside the furnace with no external heating. The reason is the less amount of volatile 

matter in anthracite coal which is incapable to take the particle to a temperature value 

which is needed for the ignition. The process parameters e.g. amount of volatile matter, 

kinetic parameters for devolatilization, etc. used in modeling can not be generalize as 

these values are dependent on the type of the coal used for simulation purpose. 

Potential strategies based on quasi-steady-transient approach to model devolatilization 

and droplet combustion are sophisticated and fast enough to give information about the 

dynamics of the processes. For modeling the droplet combustion and coal 

devolatilization, the model is solved on spatially discrete basis, but fast, hence these 

analytical models are successfully applied compared to complex transient models with 

lots of numeric computations. However, an approach of enlarging the presented model 

with regard to non-zero flame radius for the solution of the surface temperature of the 

both the droplet and coal particle may prove successful in future formulation. 

Due to the crucial role of the kinetic coefficients on a model's dynamic behavior, an 

experimental analysis of the kinetic coefficients and the effects of the process 

parameters over the behavior of the coefficients have been carried out subsequently. 
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The new set of values of reaction and sorption coefficients for a system consists of 

carbon undergoing gasification in an environment of CO-CO2-N2 is obtained on the basis 

of experimental study. The kinetic analysis provides the values of activation energies 

and pre exponential factors which are compared to a variety of data available in the 

literature. Based on experimental investigation, it is concluded that except at low CO 

partial pressures, a nonlinear influence of CO partial pressure over the reaction rate can 

be recommended. Moreover, the influence of CO2 partial pressure over the process can 

be better described by linear approximation. Experimental investigations implicate that 

Langmuir-Hinshelwood formulation should be rewritten with modification of exponent 

partials pressure of both CO and CO2. Temperature dependencies of the sorption 

coefficients of CO2 and CO are investigated experimentally and the mathematical 

expression to correlate these coefficients with temperature are formulated. 

Furthermore, the good compatibility of results for surface related reaction coefficients 

has been observed for a broad range of parameter values. The new value of reaction 

coefficient for the Boudouard reaction was used in the further modeling of the 

combustion of a single coal particle. 

Focus on coal particle combustion is highlighted with the help of gas phase and solid 

phase modeling. An assumption of the continuous oxidation of CO over the entire gas 

boundary layer gives a proper explication of gas phase combustion around the coal 

particle. A possibility of Boudouard reaction to be taken place at the particle’s surface is 

also shown with the help of concentration and temperature profiles along the radial 

distance from the particle’s surface. Model takes into account a fact that the reaction 

takes place inside the entire geometry of the particle. The effective values of diffusivity 

and thermal conductivity are used for simulation purpose and it has been shown that 

the reaction inside the particle geometry is so high that it’s simply impossible for a 

reactant to penetrate the particle up to its center. For the special case of combustion 

where air excess number is approximately one, the developed single particle model 

predictions by taking into account the Boudouard reaction give a good agreement with 

the available experimental data found in the literature. Different simulations are possible 

by changing the particle diameter, the ambient temperature and the flow velocity of 

combustion gas. The predictions of total conversion with the model seem to be in 

agreement with available experimental data. However, there still remains considerable 

uncertainty in the use of combustion models including the one used here, and are not 

sufficiently accurate to predict combustion process in different conditions. Although the 

dependency of internal surface area and porosity on temperature is not adequately 
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described, it is demonstrated that reasonable values of these parameters provide 

approximate agreement with results of experimental measurements. 

The models presented in this thesis are reduced models valid for the cases of 

combustion where an assumption of non-existence of ash over the particle’s surface 

exists. They exhibited short simulation times and hence pose a potential base for 

further development for the complex model consisting of the diffusion resistance caused 

by the presence of ash over the surface. However, in order to develop a more 

comprehensive model to predict coke combustion in all conditions, the effect of 

conversion on internal surface and particle porosity should be considered in future 

formulation. Nonetheless, this thesis also showed that the possibility of Boudouard 

reaction in many industrial applications can not easily be eliminated or even used for 

improving the performance. 
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Nomenclature 
 

O2 Oxygen   
CO Carbon mono-oxide   
CO2 Carbon di-oxide   
T0 Initial temperature of droplet   
T Temperature   
q Amount of heat transferred from the flame interface to the droplet   
r Radius    
λ Thermal conductivity   
M Mass flow rate of the vapor   
ΔH Heat of vaporization   
cp Specific heat of liquid   
md Mass of the droplet   
ρ Density of the liquid fuel   
t Time   
d0 Initial droplet diameter   
dt Time dependent droplet diameter   
K Gasification rate   
Pv,s Vapor pressure of pure liquid   
P Total pressure   
Tdf average temperature between the droplet surface and the flame interface   
Df,g Diffusion coefficient of the fuel vapor   
N Molar flow rate of the fuel vapor   

0vK  Pre-exponential factor   

vE  Activation energy   
−

n  
Rate of adsorption/desorption of jth species   

jK  Coefficient of adsorption/desorption of jth species   

θ  Fraction of the surface covered by jth species   
→

K  
Reaction coefficient of the forward reaction   

←

K  
Reaction coefficient of the backward reaction   

→

n  
Rate of forward reaction   

←

n  
Rate of backward reaction   

Cn  Molar flow rate of the carbon   

iM  Molecular mass of ith species   

PA  Surface area of the plate   

β  Mass transfer coefficient   
υ  Stoichiometric coefficient   
KB Reaction coefficient of Boudouard reaction   

2COK  Sorption coefficient of CO2   

COK  Sorption coefficient of CO   

x Conversion   
W Weight   

mO  Internal surface area   
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effD  Effective diffusivity   

cρ  Density of carbon   

C Concentration   
 
 

Subscript 
 

∞  Ambient value  
f Flame interface  
s Droplet surface  
l Liquid  
g Gas  
v Vapor  
f-p flame interface to the particle surface  
ad Adsorption   
de Desorption  
   
   
 
 
 
 
 



 93

Bibliography 
 

 

[1] Abramzon B. and Sirignano W.A., Droplet vaporization model for spray 

combustion calculations, Int. J. Heat Mass Transfer 32 (1989), pp. 1605. 

[2] Adanez T., Fuertes A.B., Pis J.J. and Ehrburger P., Reactivity of lignite chars 

with CO2, influence of the mineral matter, Int. Chem. Eng. 33 (1993), pp. 

656.  

[3] Adchiri T., Shiraha T., Kojima T. and Furuzawa P., Prediction of CO2 gasification 

rate of char in fluidized bed gasifier, Fuel,  65 (1986), pp. 1688. 

[4] Agrawal A.K. and Sear J.T., The Coal Char Reactions with CO2-CO Gas Mixtures, 

Ind. Eng. Chem. Process. Des. Dev. 19 (1980), pp. 364. 

[5] Alvarez T., Fuertes A.B., Pis J.J. and Ehrburger P., Influence of coal oxidation 

upon char gasification reactivity, Fuel 74 (1995), pp. 729. 

[6] Annamalai K. and Ramalingam S.C., Group combustion of char/carbon particles, 

Combustion and Flame 70 (1987), pp. 307.  

[7] Anthony D.B. and Howard J., Rapid Devolatilization and Hydrogasification of 

Bituminous Coal, AIChE J. 22 (1976), pp. 625. 

[8] Arthur J. R., Reaction between carbon and oxygen, Trans. Faraday Soc. 47 

(1951), pp. 164. 

[9] Austin L.G. and Walker P.L., Effect of Carbon Mono-oxide in Causing Non 

Uniform Gasification of Graphite by Carbon Dioxide, AIChE J. 9 (1963), pp. 303. 

[10] Avedsian M. M. and Davidson J. F., Combustion of carbon particles in a fluidized 

bed, Trans. Inst. Chem. Engg. 51 (1973), pp. 121. 

[11] Badzioch S. and Hawksley P.G.W., Kinetics of thermal decomposition of 

pulverized coal particles, Ind. Eng. Chem. Process Des. Dev. 9 (1970), pp. 521. 

[12] Baldea A. and Niac G., Kinetics of Lignite Char Gasification with Carbon Dioxide 

and Steam, Revue Roumaine de Chemie 29 (1984), pp. 175. 

[13] Ballal G. and Zygourakis K., Gasification of Coal Chars with Carbon dioxide and 

Oxygen, Chem. Eng. Commun. 49 (1986), pp. 181. 

[14] Basu P., A review of combustion of single coal particles in fluidized beds, Trans. 

CSME 9 (1985), pp. 142. 

[15] Basu P., Broughton J. and Elliot D. E., Combustion of single coal particles in 

fluidized beds, Fluidized Combustion, Inst. Fuel Symp., 1 (1975), AD-1 to AD-10. 



 94

[16] Basu P., Combustion of coal in shallow fluidized beds, Ph.D. Thesis, University of 

Aston. Birmingham, 1976.  

[17] Beck N.C. and Hayhurst A.N., A mathematical model for the combustion in air 

of a single entrained spherical coal, Combust. Flame 79 (1990), pp. 47.  

[18] Beyer H.D., Pückoff U. and Ulrich K.H., Investigation of Gasification of Coke by a 

mixture of CO-CO2 (in german), Archiv für das Eisenhüttenwesen  43 (1972), pp. 

597. 

[19] Blackwood J.D. and Ingeme A.J., The Reaction of Carbon with Carbon Dioxide at 

High Pressure, Aust. J. Chem. 13 (1960), pp. 194. 

[20] Borghi G., Saroeim A. F. and Beer J. M., A model of coal devolatilization and 

combustion in fluidized bed, Paper. No. 34c, presented at the A.I.Ch.E. 70th 

Annual Meeting, New York, 1976. 

[21] Bressan L. and Okeefe L., Piemsa IGCC Project Environmental and Economical 

Benefits, Gasification Technologies Conference, San Francisco, CA, USA, 2001, 

pp. 7. 

[22] Buttker B, Seifert W., Syngas and fuel gas from gasification of coal and wastes 

at Schwarze Pumpe (SVZ) - Germany. In: 21st world gas conference, Nice, 

France, 6-9 Jun 2000. Vevey, Switzerland, International Gas Union, 2000, pp. 7. 

[23] Bywater R. J., The effects of devolatilization kinetics on the injection region of 

fluidized beds, Proc. 6th Int. Conj. Fluidized Bed Combust., 3 (1980), pp. 1092. 

[24] Campbell E. K. and Davidson J. F., The combustion of coal in fluidized beds, 

Fluidized Combustion, Proc. Inst. Fuel Symp., Fluidized Combustion Conference, 

London, September 1975, AZ-I. 

[25] Carslaw H.S. and Jaeger J.C., Conduction of Heat in Solids, Oxford University 

Press, New York, Second Edition, 1959. 

[26] Cavalli L., Laezza G., Biliato G. and Amico F., The Sulcis IGCC project. In: 

Gasification 4: the future, proceedings, Noordwijk, The Netherlands, Rugby, UK, 

Institution of Chemical Engineers, 2000, pp. 8. 

[27] Cheng H., Reiser B.D. and Dean S., On the Mechanism and Energies of 

Boudouard Reaction at FeO (1 0 0) Surface: 2CO→C+CO2, Catalysis Today 50 

(1999), pp. 579. 

[28] Chin G., Kimura S., Tone S., and Otake T., Gasification of coal char with steam. 

Part 1. Analysis of reaction rate, Int. Chem. Eng. 23 (1983), pp. 105. 

[29] Cho S.Y. and Dryer F.L., A numerical study of the unsteady burning behaviour of 

n-heptane droplets, Combust. Theory Model. 3 (1999), pp. 267. 



 95

[30] Cho S.Y., Yetter R.A. and Dryer F.L., A computer model for one-dimensional 

mass and energy transport in and around chemically reacting particles, including 

complex gas-phase chemistry, multicomponent molecular diffusion, surface 

evaporation, and heterogeneous reaction, J. Comput. Phys. 102 (1992), pp. 160. 

[31] Choi M.Y., Dryer F.L. and Haggard J.B., Extinction of a Free Methanol Droplet in 

Microgravity, Proc. Combust. Inst. 23 (1990), pp. 1597.  

[32] Chukhanov Z.F. and Izvest Z.F., Chem. Abst. 49 (1955), pp. 5808. 

[33] Collodi G., Commercial Operation of ISAB Energy and Sarlux IGCC, Gasification 

Technologies Conference, San Francisco, CA, USA, 2001, pp. 7. 

[34] Dutta S., Wen C.Y. and Belt R.J., Reactivity of Coal and Char. 1. In Carbon 

Dioxide Atmosphere, Ind. Eng. Chem. Process. Des. Dev. 16 (1977), pp. 20. 

[35] Elcogas. IGCC Puertollano Power Plant. Puertollano, Spain, Elcogas, 2001, pp. 

29.  

[36] Ergun S., Kinetics of the Reaction of Carbon Dioxide with Carbon. J. Phys. Chem. 

60 (1956), pp. 480. 

[37] Faeth G.M., Evaporation and Combustion of Sprays, Prog. Energy Combust. Sci. 

9(1983), pp. 1. 

[38] Faeth G.M., Mixing, Transport and combustion in. sprays, Prog. Energy 

Combustion. Sci. 13(1987), pp. 293.  

[39] Filho F.F., An Analytical Solution for the Quasi-Steady Droplet Combustion, 

Combust. Flame 116 (1999), pp. 302.  

[40] Fuchs W. and Yavorsky P. M., Symposium on Structure and Reactivity of Coal 

and Char, 170th National Meeting of the American Chemical Society, Chicago, 

August 1987. 

[41] Geertsema, Gas to Synfuels and Chemicals, Sasol Technology (pty) Limited, P. 

O. Box 1, Sasolburg 9570, South Africa. 

[42] Godsave G.A.E., Studies of the combustion of drops in a fuel spray, Proc. 

Combust. Inst. 4 (1953), pp. 818.  

[43] Godsmith M. and Penner S.S., On the Burning of Single. Drops of Fuel in an 

Oxidizing Atmosphere, Jet Propulsion 24 (1954), pp. 245. 

[44] Goldberg, P.M. and Essenhigh, R.H., Proc. Combust. Inst. 17 (1979), pp. 145. 

[45] Graaf J.D., The Shell Gasification Process at the AGIP Sannazzaro Refinery, 

Gasification Technologies Conference, San Francisco, CA, USA 2001, pp. 7. 

[46] Grabke H.J., Oxygen Transfer and Carbon Gasification in the Reaction of 

Different Carbons with CO2, Carbon 10 (1972), pp. 587. 



 96

[47] Grabke, H.J.; Krajak, R.; Nava Paz, J.C. On the Mechanism of Catastrophic 

Carburization: ‘Metal Dusting’. Corrosion Sci. 1993, 35, 1141. 

[48] Grace, J.R., Avidan A.A., and Knowlton, T.M. (eds.), Circulating Fluidized Beds, 

Blackie Academic & Professional, London, 1997. 

[49] Green S., Puertollano Prepares for Syngas Operation. Mod Power System 1997, 

pp. 49. 

[50] Gurgel Veras A., SaasTamoinen J., Carvalho J.A. JR. and Aho M., Combustion 

and Flame 116 (1999), pp. 567. 

[51] Gururajan V.S., Wall T.F. and Truelove J.S., Combust. Flame 72 (1988), pp. 1.  

[52] Hara H. and Kumagai S., The Effect of Initial Diameter on Free. Droplet 

Combustion with Spherical Flame, Proc. Combust. Inst. 23 (1990), pp. 1605.  

[53] Hashimoto K., Miura K. and Ueda T., Factors Affecting the Reactivity of Coal, 

Fuel 65 (1986), pp. 1516. 

[54] Hirato M., Utilization System of Biofuel and Coal Gasification Power Generation. 

vol. 38. Tokyo, Japan: Chemical Daily Co., 1991. No.14. 

[55] Hougen O.A. and Watson K.M., Chemical process principles, Part III, Kinetics 

and Catalysis., John Wiley, New York, 1947. 

[56] Howard J.B. and Essenhigh R.H., Pyrolysis of Coal Particles in Pulverized Fuel 

Flames, Ind. Eng. Chem. Process Des. Dev. 6 (1967), pp. 74. 

[57] Howard J.B. and Essenhigh R.H., Combustion Mechanism in Pulverized Coal 

Flames, Proc. Combust. Inst. 11 (1966), pp. 399.  

[58] Howard J.B., Williams G.C. and Fine D.H., Physical Mechanisms in Carbon 

Formation in Flames, Proc. Combust. Inst. 14 (1973), pp. 975. 

[59] IEA World Energy Outlook, International Energy Agency, Paris, 1998. 

[60] Jost M.E., Leslie I. and Kruger C., Proc. Combust. Inst. 20 (1984), pp. 1531.  

[61] Kaczorowski J., “The Boudouard Reaction in Mn-alloy Production Processes”, 

International seminar in materials processing, November-2003. 

[62] Kasaoka S., Sakata Y. and Shimada M., Importance of Carbon Active Sites in the 

Gasification of Coal Chars, Fuel 66 (1987), pp. 697. 

[63] Kassoy D.R. and Williams F.A., Variable Property Effects in Liquid Droplet 

Combustion, AIAA Journal 6 (1968), pp. 1961. 

[64] Kilpinen P., Kallio S., Konttinen J. and Barisic. V., Char-nitrogen oxidation under 

fluidised bed combustion conditions: single particle studies, Fuel 81 (2002), pp. 

2349. 



 97

[65] King M.K., An unsteady-state analysis of porous sphere and droplet fuel 

combustion under microgravity combustion, Proc. Combust. Inst. 26 (1996), pp. 

1961. 

[66] Kobayashi H., Howard J.B. and Sarofim A.F., Coal Devolatilization at High 

Temperatures, Proc. Combust. Inst. 16 (1976), pp. 411. 

[67] Kovacik G., Chambers A., Catalytic gasification kinetics of low activity anthracites 

with carbon dioxide--Isothermal thermo-gravimetric analysis, The Canadian 

Journal of Chem. Eng. 69 (1991), pp. 311. 

[68] Kumagai S. and Isoda H., Combustion of fuel droplets in a falling chamber, Proc. 

Combust. Inst. 6 (1957), pp. 726. 

[69] Kumagai S., Sakai T. and Okajima S., Combustion of free fuel droplets in a freely 

falling chamber, Proc. Combust. Inst. 13 (1971), pp. 779.  

[70] Kuo K. and Marsh H., Fundamental Issues in Control of Carbon Gasification 

Reactivity, ACS, Div. Fuel Chem. Preprints 34 (1989), pp. 153. 

[71] Lau C.W. and Niksa, S., The combustion of individual particles of various coal 

types,Combust. Flame 90 (1992), pp. 45. 

[72] Law C.K., Recent Advances in Droplet Vaporization and Combustion, Prog. 

Energy Combust. Sci. 8 (1982), pp. 171. 

[73] Law C.K., Unsteady droplet combustion with droplet heating, Combust. Flame 26 

(1976), pp. 17. 

[74] Löwe, A. Zum reaktionsmechanismus der vergasung von kohlenstoff mit 

kohlendioxid-I: Elementarschritte und aktivierungsenergien bei gültigkeit einer 

langmuir-hinshelwood-kinetik. Carbon 12 (1974), pp.  335. 

[75] Lowry H.H. (ed.), Chemistry of Coal Utilization, John Wiley, New York, 1945. 

[76] Marchese A.J., Dryer F.L., and Nayagam V., Numerical Modeling of Isolated N-

Alkane Droplet Flames: Initial Comparisons with Ground and Space-Based 

Microgravity Experiments, Combust. Flame 116 (1999), pp. 432. 

[77] Matsui I., Kunii D. and Furuzawa T., Study of char gasification by carbon 

dioxide. 1. Kinetic study by thermogravimetric analysis, Ind. Eng. Chem. 26 

(1987), pp. 91. 

[78] Mayer R., Der Mechanism der Primarreakteion Zwischen Sauerstoff und Graphit, 

Z. Phvsikal. Chem. 17 (1932), pp. 385. 

[79] Mendes-Vigo I., Operational experience of the Puertollano IGCC plant. 

International conference on clean coal technologies for our future, Cagliari 

(Sardinia), Italy, London, UK, IEA Clean Coal Centre, CD-ROM, 2002, pp. 25. 



 98

[80] Mendez-Vigo I., Pena F.G., Karg J., Haupt G. and Zimmermann G., Puertollano 

IGCC plant: operating Experience and Potential for Further Technology 

Development Power-Gen Europe, Brussels, Belgium, 2001, pp. 13. 

[81] Molina A. and Mondragon F., Reactivity of Coal Gasification with Steam and CO2, 

Fuel 77 (1998), pp. 1831. 

[82] Montoya A., Mondragon F. and Truong N. T., CO2 Adsorption on Carbonaceous 

Surfaces: A Combined Experimental and Theoretical Study, Carbon 41 (2003), 

pp. 29. 

[83] Morita Y. Marketability of GTL from Natural Gas, IEEJ, 2001, Sinor Consultants, 

edj.net/sinor/sfrl. 

[84] Okajima S. and Kumagai S., Combustion of free fuel droplets in a freely falling 

chamber, Proc. Combust. Inst. 15 (1975), pp. 401.  

[85] Overholser L. G. and Blakely J. P., Oxidation of Graphite by Low Concentrations 

of Water Vapor and Carbon Dioxide in Helium, Carbon 2 (1965), pp. 385. 

[86] P. L. Walker, R. J. Forsti and C.C. Wright, Effect of Gas Diffusion in Graphitized 

Carbon Rods on their Gasification Rate with Carbon Dioxide, Ind. and Eng. 

Chem. 45 (1953), pp. 1703. 

[87] Pena F.G., Coal and Petroleum Coke IGCC Puertollano, The Use of Coal in 

Mixture with Wastes and Residues, II EU seminar, Cottbus, Germany, 2000, pp. 

159. 

[88] Perry R.H. and Green D.W., Perry’s Chemical Engineers’ Handbook, seventh ed.,  

McGraw-Hill, New York, 1997.   

[89] Ploeg J.E.G., Gasification performance of the Demkolec IGCC. In: Gasification 4: 

the future, proceedings, Noordwijk, The Netherlands, Rugby, UK, Institution of 

Chemical Engineers, 2000, pp. 11. 

[90] Puri I.K. and Libby P.A., The Influence of Transport-Properties on Droplet 

Burning, Combust. Sci. Technol. 76 (1991), pp. 67.  

[91] Rao Y.K. and Jalan B.P., A Study of the Rates of Carbon-Carbon Dioxide 

Reaction in the Temperature Range 839 to 1050 0C, Metallurgical Transactions 3 

(1972), pp. 2465. 

[92] Reid R.C., Prausnitz J.M. and Poling B.E., The Properties of Gases and Liquids, 

fourth ed., McGraw-Hill, New York, 1995. 

[93] Saastamoinen J. J., Aho M. J. and Linna V. L., Ash formation in circulating 

fluidised bed combustion of coal and solid biomass, Fuel 72 (1993), pp. 599. 



 99

[94] Saito M., Sadakata M. and Sakai T., Swelling behaviour of individual coal 

particles in the single particle reactor, Combust. Sci. Technol. 51 (1987), pp.109.  

[95] Saxena S. C., Devolatilization and combustion characteristics of coal particles, 

Prog. Energy Combust. Sci. 16 (1990), pp. 55. 

[96] Schellberg W., Project Status of the Puertollano IGCC Plant/Spain, Gasification 4-

IChemE conference, Noordwijk, Netherlands, 2000, pp. 11. 

[97] Schellberg W., The Combined Cycle Power Plant in Puertollano/Spain, 14th 

Annual International Pittsburgh Coal Conference, Taiyuan, China, 1997, pp. 11. 

[98] Schmal M., Monteiro J.L.F. and Toscani H., Kinetics of coal gasification, Ind. Eng. 

Chem. Proc. Des. Dev. 22 (1983), pp. 563. 

[99] Sendin U., Gasc M., Schellberg W. and Karg J., Design Construction and Start-Up 

of the Puertollano 335 MW IGCC Power Plant”, EPRI Gasification Conference, 

San Francisco, CA, USA, 1996, pp. 19. 

[100] Shah M. S., The combustion of charcoal in oxygen, nitric oxide and nitrous 

oxide, II: The effect of temperature, J. Chem. Soc. 132 (1929), pp. 2676. 

[101] Shell International Petroleum, The Evolution of the World’s Energy System, Shell 

International Petroleum Company, London, 1996, pp. 1860.  

[102] Sibvonen V., Uber Primarvogange Bei der Graphitoxydation, Zetsche 

Electrochemics 76 (1934), pp. 456. 

[103] Sirignano W.A., Formulation of spray combustion models: resolution compared 

to droplet spacing, J. Heat Transfer 108(3) (1986), pp. 633. 

[104] Solomon P.R., Fletcher T.H. and Pugmire R.J., Progress in coal pyrolysis, Fuel 72 

(1993), pp. 587.  

[105] Sorensen L.H., Biedeg O. and Peck R.E., A Model of the Coal Reburning Process 

,Proc. Combust. Inst. 25 (1994), pp. 475. 

[106] Spalding D. B., The combustion of liquid fuels, Proc. Combust. Inst. 4 (1952), 

pp. 847. 

[107] Spence J., API Energia IGCC Plant Status, Gasification Technologies Conference, 

San Francisco, CA, USA, October, 2000, pp. 9. 

[108] Stephen N., Diffusion in packed beds of porous particles, AIChE 34 (1988), pp. 

790. 

[109] Stmckland R. F., Part played by surface oxides in the oxidation of carbon, Trans. 

Faraday Soc. , 1938, pp. 1074. 

[110] Strange J. F. and Walker P. L., Carbon-Carbon Dioxide Reaction: Langmuir-

Hinshelwood Kinetics at Intermediate Pressures, Carbon 14 (1976), pp. 345. 



 100

[111] Struis R. P. W. J., Scala C., Stucki S. and Prins R., Gasification Reactivity of 

Charcoal with CO2. Part I: Conversion and Structural Phenomena, Chemical 

Engineering Science 57 (2002), pp. 3581. 

[112] Suuberg E.M., Peters W.A. and Howard J.B., Product Composition and Kinetics of 

Lignite Pyrolysis, Proc. Combust. Inst. 17 (1978), pp. 117. 

[113] Szepvölgyi, M.; Kotsis, L.; Marosvölgyi, B. Reaction Kinetics of Miscanthus 

Pyrolysis Char Gasification with Carbon-dioxide. Hungarian Agricultural 

Engineering 2002, 15, 53.  

[114] Turkdogan E. T. and Vinters J. V., Kinetics of Oxidation of Graphite and Charcoal 

in Carbon Dioxide, Carbon 7 (1969), pp. 101. 

[115] Turns S.R., An Introduction to Combustion: Concepts and Applications, McGraw-

Hill Series, USA, 1996, pp. 319.  

[116] Ubis T., Bressan L., The 800 MW Piemsa IGCC Project, Gasification Technologies 

Conference, San Francisco, CA, USA, October, 2000, pp.  9. 

[117] Unger P.E. and Suuberg E.M., Internal and external mass transfer limitations in 

coal pyrolysis, Am. Chem. Sot. Div. Fuel Chem. Prepr. 28 (1983), pp. 278.  

[118] Unsworth, J. F., Barratt, D. J., and Roberts, P. T., Coal Quality and Combustion 

Performance: An International Perspective, Elsevier, Amsterdam, 1991. 

[119] USDoE and Gasification Technology Council, World Gasification Database 2001. 

[120] Visser W., Verbrennung einer umströmten Graphitoberfläche. Dissertation RWTH 

Aachen 1984. 

[121] Wang H., Dlugogorski B.Z., and Kennedy E.M., Theoretical analysis of reaction 

regimes in low-temperature oxidation of coal, Fuel 78 (1999), pp. 1073. 

[122] Weibiao F., Zhang Y., Han H. and Duan Y., Study on devolatilization of large coal 

particles, Combustion and Flame. 70 (1987), pp. 253. 

[123] Wen, C. Y.; Wu, N. T. An Analysis of Slow Reactions in a Porous Particle. AIChE 

J. 1976, 22, 1012. 

[124] Williams F.A., Combustion Theory, 2nd ed., Addison Wesley, Menlo Park, CA, 

1985, p. 5269.  

[125] Yang J.C. and Avedisian C.T., The combustion of unsupported 

Heptane/Hexadecane mixture droplets at low gravity, Proc. Combust. Inst. 22 

(1988), pp. 2037.  

[126] Yang Y. and Watkinson A. P., Gasification reactivity of some western Canadian 

coals, Fuel 73 (1994), pp. 1786. 



 101

[127] Yoshida K. and Kunii D., Gasification of Porous Carbon by Carbon Dioxide. J. of 

Chem. Eng. of Japan 2 (1969), pp. 170. 

[128] Ziegler A., Van H.K., Klein J. and Wanzl W., proceedings ICCS 97 (1997), Essen, 

Germany, pp. 1257. 



 102

Figure Index   Page

Fig. 1.1 Diagram showing the combustion process of a single coal particle. 
The left-hand side shows the heterogeneous steps, and the 
homogeneous reactions are shown on the right-hand side. 

3

Fig. 1.2 Application of gasification and possible future role. 5

Fig. 2.1 Schematic diagram of a droplet combustion process. 13

Fig. 2.2 Comparison between experimental [Kumagai et al.] (points) and 
predicted (lines) data of the droplet diameter and the flame 
diameter variations with time. Initial conditions: n-heptane; drop 
diameters, (a) 0.836 mm, (b) 0.92 mm, (c) 0.98 mm; ambient 
temperature, 298 K; atmosphere, air at 1 atm pressure. 

18

Fig. 2.3 Comparison between experimental [Kumagai et al.] (points) and 
predicted (lines) data of the droplet diameter and the flame 
diameter variations with time. Initial conditions: ethanol; (a) droplet 
diameter, 0.93 mm; ambient temperature, 298 K; atmosphere, air at 
1 atm pressure; (b) droplet diameter, 0.93 mm, 2.79 mm, 3.41 mm, 
5.83 mm; ambient temperature, 298 K; atmosphere, air at 1 atm 
pressure. 

19

Fig. 2.4 Comparison of calculated gasification rate (solid lines) with the 
experimental results (points) of Kumagai et al. and the model 
predictions (dotted lines) of Puri and Filho. Points: solid points for n-
heptane; empty points for ethanol. 

20

Fig. 2.5 Calculated and measured droplet diameter-squared of Kumagai et al. 
for n-heptane and ethanol droplets in an air at 1 atm. Initial droplet 
diameter: n-heptane- 0.92 mm; ethanol- 0.93 mm. 

21

Fig. 2.6 Variation in flame stand-off ratio for the n-heptane droplets with 
time. Comparison between experimental [11] (points) and predicted 
(lines) data for n-heptane droplets burning in atmospheric pressure 
air. 

21

Fig. 2.7 Calculated variations in flame diameter with time for various oxygen 
concentrations for 0.836 mm n-heptane droplets. 

22

Fig. 3.1 Schematic diagram of a single coal particle devolatilization process. 26

Fig. 3.2 Calculated variations in surface temperature of the particle with 
time: particle diameter: 10mm; volatile matter content: 10, 30 and 
50%. 

31

Fig. 3.3 Profile of flame to particle diameter ratio for an amount of volatile 
matter of 50%: particle diameter: (a) 10 mm, (b) 5mm and (c) 
10mm. 

32

Fig. 4.1 Equilibrium relationship of Boudouard reaction during reduction of 
iron ore. 

35

Fig. 4.2 Comparison of various mass-related reaction coefficients of 
Boudouard reaction. 

41

Fig. 4.3 Schematic diagram of the experimental setup. 44



 103

Fig. 4.4 Specimens used in the experiments. Geometry (from left to right): 
cylindrical specimen of coke, plate of graphite, plate of aluminum. 

45

Fig. 4.5 Comparison of sample thickness before and after the experiment: 
influence of higher flow rate of CO2. 

46

Fig. 4.6 Comparison of sample surface before and after the experiment at a 
temperature 1000 oC: influence of chemical reaction. 

46

Fig. 4.7 Temperature-time plot of aluminum plate at different volumetric flow 
rates of CO2. 

48

Fig. 4.8 Experimental ( )gP TT −ln  vs. t plot at different volumetric flow rates 

of CO2. 

49

Fig. 4.9 Plot of variation of mass transfer coefficient with temperature. 49

Fig. 4.10 Plot of sample weight vs. time: graphite specimen at atmospheric 
pressure and temperatures 900, 1000, 1100 and 1200 oC. 

50

Fig. 4.11 Experimental history of specimen temperature to describe the 
influence of endothermic Boudouard reaction. 

51

Fig. 4.12 Conversion rate of graphite as a function of the temperature in an 
environment of CO2. 

52

Fig. 4.13 Comparison of experimentally found reaction coefficient with the 
values available in the literature: Arrhenius plot. 

53

Fig. 4.14 Illustrations of the experimental runs with partial pressures of CO2 at 
different temperatures. 

54

Fig. 4.15 Temperature dependency of CO2-sorption coefficient on 
temperature. 

54

Fig. 4.16 Comparison of CO2 sorption coefficient with the values available in 
the literature. 

55

Fig. 4.17 Influence of CO-partial pressure over the conversion rate. 56

Fig. 4.18 Illustrations of the experimental runs with partial pressures of CO at 
different temperatures. 

56

Fig. 4.19 Comparison of sorption coefficient with the values available in the 
literature. 

57

Fig. 4.20 Particle temperature and weight variations with time at 1100 oC. 
Specimen used: Poland coke. 

60

Fig. 4.21 Temperature and weight loss histories of Czech coke at atmospheric 
pressure. Curve (A) is the profile of furnace temperature, curve (B) 
is the profile of sample’s temperature and curve (C) is the profile of 
sample weight loss with time. 

61

Fig. 4.22 Surface area variation during the gasification with CO2. Empty circle 
points: Adschiri et al., Solid rectangular points: Agarwal et al. 

61

Fig. 4.23 Plot of conversion rate vs. conversion. Experimental results: solid 
rectangles, Poland coke (left ordinate), Czech coke (left ordinate), 
Solid triangles (right ordinate): Molina et al. 

62

Fig. 4.24 Plot of conversion rate variation with temperature. Poland and Czech 63



 104

coke at atmospheric pressure in an environment of CO2. Empty and 
filled points correspond to two sets of experiments. 

Fig. 4.25 Specimen after completion of experiments. ‘A’ row: 900 oC, ‘B’ row: 
1000 oC and ‘C’ row: 1100 oC. 

64

Fig. 5.1 Schematic presentation of a typical combustion process of a single 
coal particle. 

66

Fig. 5.2 Combustion model for the burning of a coal particle: concentration 
profiles of different species. 

68

Fig. 5.3 (a) Species concentration profiles along the radial distance from the 
particle’s surface towards the ambience. (b) Gas phase temperature 
profile along the radial distance from the particle’s surface towards 
the ambience. 

74

Fig. 5.4 Schematic diagram of (a) the particle shrinkage with time. (b) 
Structural change inside the particle geometry. 

76

Fig. 5.5 Plot: Ratio of Surface area to Initial Surface area vs. Degree of 
conversion. 

76

Fig. 5.6 Fractional conversion of a coal particle with time. Particle diameter, 
2 cm; process temperature, 900, 1000 and 1100 oC. 

79

Fig. 5.7 History of fractional conversion and particle shrinkage with time at 
ambient temperature 1123 K with 12 vol% O2 and 10 vol% CO2. 

83

Fig. 5.8 Simulation results of fractional conversion as a function of time for a 
particle at ambient temperature 1123 K in two different conditions: 
a) with Boudouard reaction, b) without Boudouard reaction. 

84

Fig. 5.9 Temperature variation at particle center with fractional conversion at 
ambient temperature 1123 K. 

84

Fig. 5.10 Oxygen concentration variation along the radial distance inside the 
particle of a diameter of 5mm at ambient temperature 1123 K. 

85

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 105

Table Index   Page

Table. 1.1 Major electricity producing gasification plants by country. Source: 
Derived from the World Gasification Database, US DoE and 
Gasification Technology Council [USDoE and Gasification 
Technology Council]. 

6

Table. 4.1 Summary of activation energies of carbon-carbon dioxide reaction. 36

Table. 4.2 Apparent (Poland and Czech coke) and true activation energy 
(Graphite) of Boudouard reaction. 

65

Table. 5.1 Process variables used in simulation. 79

Table. 5.2 Process parameters used in the simulation. 82

 



 106

 

Appendix 
The BVP Solver 
The function bvp4c solves two-point boundary value problems for ordinary differential 

equations (ODEs). It integrates a system of first-order ordinary differential equations, 

, 

on the interval , subject to general two-point boundary conditions, 

. 

It can also accommodate other types of boundary value problems, such as those that 

have any of the following: 

• Unknown parameters 

• Singularities in the solutions 

• Multipoint conditions. 

In this case, the number of boundary conditions must be sufficient to determine the 

solution and the unknown parameters. 

bvp4c produces a solution that is continuous on  and has a continuous first 

derivative there. bvp4c is a finite difference code that implements the 3-stage Lobatto 

IIIa formula. This is a collocation formula and the collocation polynomial provides a C1-

continuous solution that is fourth-order accurate uniformly in the interval of integration. 

Mesh selection and error control are based on the residual of the continuous solution.  

The collocation technique uses a mesh of points to divide the interval of integration into 

subintervals. The solver determines a numerical solution by solving a global system of 

algebraic equations resulting from the boundary conditions, and the collocation 

conditions imposed on all the subintervals. The solver then estimates the error of the 

numerical solution on each subinterval. If the solution does not satisfy the tolerance 

criteria, the solver adapts the mesh and repeats the process. The user must provide the 

points of the initial mesh as well as an initial approximation of the solution at the mesh 

points. 



Curriculum Vitae

Personal Data

Name: Shabi Ulzama 
Date of birth: 01.07.1978 
Place of birth: Moradabad, India
Nationality:  Indian 
Marital status: Single

Education

May 2003- April 2007 Doctorate in Engineering (Dr.-Ing.) in Chemical and Process 
Engineering.  
Otto-von-Guericke Universität Magdeburg, Germany 

May 2000-Dec. 2001 Master of Technology (M.Tech) in Process Engineering and 
Design.
Indian Institute of Technology New Delhi, India      

May 1996-May 2000 Bachelor of Technology (B.Tech) in Chemical Engineering. 
Z.H. College of Engineering and Technology, India 

Working Experience

2006– 2007 Wiss. Mitarbeiter, Otto-von-Guericke-Universität Magdeburg,
Institute for Fluid dynamics and Thermodynamics 

Publications 

Ulzama S. and Specht E., “An Analytical Study of Droplet Combustion under 
Microgravity: Quasi-steady-transient Approach”, Proceedings of 31st 
International Symposium on Combustion-2006. 
Ulzama S. and Specht E., “Kinetic Analysis of Boudouard Reaction and its 
Dependence on Porous Structure”, Conference Proceedings of AIchE Spring 
National Meeting-2006.
Ulzama S. and Specht E., “Modeling the Reaction Mechanism of Lumped 
Porous Coke Particles during Industrial Processes”, Conference Proceedings of 
IIChE  Chemcon-2005. 


	PhD Thesis
	Title Page
	Preface
	Contents
	Kurzzusammenfassung
	Abstract
	Chapter 1
	Introduction
	1.1 Coal: Utilization
	1.2 Coal: Past, Present and Future
	1.3 Motivation and Scope of this Work


	Chapter 2
	An Analytical Study of DropletCombustion under Microgravity
	2.1 Introduction
	2.2 Model Formulation
	2.2.1 Droplet Combustion Time
	2.2.2 Flame Dynamics

	2.3 Simulation Results
	2.3.1 Droplet and Flame Structure Characteristics
	2.3.2 Estimation of Gasification Rate
	2.3.3 Influence of Vaporization Enthalpy on BurningBehavior
	2.3.4. Flame Stand-off Ratio
	2.3.5 Influence of Ambient Oxygen Concentration onFlame Structure



	Chapter 3
	Modeling Coal Particle Behaviorunder Devolatilization
	3.1 Introduction
	3.2 Single Coal Particle Devolatilization Modeling
	3.3 Simulation Results
	3.3.1 Particle’s Surface Temperature
	3.3.2. Flame Dynamics

	3.4 Concluding Remark


	Chapter 4
	Coke Gasification in anEnvironment of CO2
	4.1 Introduction
	4.2 Langmuir-Hinshelwood Semi Global Kinetics
	4.3 Experiments
	4.3.1 Experimental Setup and Materials used
	4.3.2 Mass Transfer Calculations

	4.4 Experimental Results
	4.4.1 Measurement of Mass Transfer Coefficient
	4.4.2 Intrinsic Kinetic Parameters for CokeGasification in CO2 Environment
	4.4.3 Determination of Sorption Coefficient of CO2
	4.4.4 Determination of Sorption Coefficient of CO
	4.4.5 Apparent Kinetic Parameters for CokeGasification in CO2 Environment

	4.5 Concluding Remark


	Chapter 5
	Modeling Coal Combustion
	5.1 Introduction
	5.2 Reaction Mechanism
	5.3 Gas Phase Modeling
	5.4 Simulation Results
	5.4.1 Species Concentration and Gas PhaseTemperature Profile

	5.5 Solid Phase Modeling
	5.5.1 Model Formulation

	5.6 Simulation Results
	5.6.1 Total Conversion Time

	5.7 Mathematical Modeling for a Special Case ofCombustion with Air Excess Number ≤1
	5.7.1 Model Formulation

	5.8 Simulation Results
	5.8.1 Time History of Fractional Conversion andParticle Shrinkage
	5.8.2 Total Combustion Time
	5.8.3 Particle Temperature Variation

	5.9 Concluding Remark


	Chapter 6
	Conclusions and Outlook

	Nomenclature
	Subscript

	Bibliography
	Figure Index
	Table Index
	Appendix
	The BVP Solver





