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Zusammenfassung 
 
Die Dissertation „Flow and transport in electrochromatography“ beschäftigt sich mit den in 

flüssigchromatographischen Trennverfahren auftretenden elektrostatischen und elektrokinetischen 

Stofftransporteigenschaften. Der erste Teil der Dissertation befasst sich nach einer generellen 

Einführung in die Flussfelddynamik mit der Elektrohydrodynamik in gepackten Betten, insbesondere 

im Hinblick auf die axiale hydrodynamische Dispersion in der Kapillarelektrochromatographie (KEC). 

Im zweiten Teil werden die für analytische Anwendungen wichtigen Elektromigrationscharakteristika 

und die daraus resultierende Retentionsdynamik geladener Analyten untersucht. 
 

Kapitel 1 beschäftigt sich mit einer phänomenologischen Betrachtung der Elektrohydrodynamik in der 

KEC mit gepackten Betten als stationärer Phase. Im Besonderen wird die Morphologie der gepackten 

Betten hinsichtlich einer Ungleichverteilung des lokalen und makroskopischen elektroosmotischen 

Flusses (EOF) als auch die erreichbare Trennleistung diskutiert. Es wird herausgestellt, dass die 

Porenraummorphologie gepackter Betten, aber auch monolithischer Strukturen eine 

Strömungsungleichverteilung des lokalen und makroskopischen EOF verursachen. Diese 

Ungleichverteilung steht in Kontrast zum pfropfenförmigen Flussprofil in einer offenen homogenen 

Kapillare. Sie wird durch eine Variation der lokalen elektrischen Feldstärke in der Packung bedingt, 

welche aus der sich ständig verengenden und erweiternden interpartikulären bzw. interskelettären 

Porenraummorphologie resultiert. Weiterhin werden Wandeffekte elektrokinetischer und 

geometrischer Natur diskutiert, die sich insbesondere bei kleinen Verhältnissen von Säulen- zu- 

Partikel-Durchmessern bemerkbar machen. Ausgehend von diesen theoretischen und auch 

experimentellen Betrachtungen werden die sich durch den hierarchisch strukturierten Porenraum des 

Festbettes ergebenden Stofftransporteigenschaften experimentell charakterisiert und diskutiert. 

 

Das Hauptaugenmerk dieser Arbeit liegt auf der Untersuchung und Aufklärung von 

Stofftransportphänomenen im intrapartikulären bzw. intraskelettären Porenraum stationärer 

Trennphasen. Obwohl der Durchmesser der Mesoporen (Mesoporen sind Poren in der Größe von 2-

50 nm) in Partikeln oder im Skelett von Monolithen in derselben Größenordnung wie die elektrische 

Doppelschicht (räumliche Dimensionen von 1-100 nm) der geladenen Porenoberflächen liegt, kann in 

Abhängigkeit vom Ausmaß dieser Doppelschichtüberlappung ein intrapartikulärer EOF induziert 

werden. Die Auswirkungen dieses EOF auf die axiale Dispersion in der KEC hängen sehr stark von 

der Größe der mesoporösen Domänen des Festbettes als auch von der Doppelschichtüberlappung 

auf Porenniveau ab. Das Phänomen der elektroosmotischen Perfusion führt zu einem erhöhten 

Stofftransport im Mesoporenraum (weit über die generelle Diffusionslimitierung bei hydraulichem Fluss 

durch das Festbett hinaus) und reduziert damit drastisch die axiale Dispersion. Gleichzeitig kann 

dieser intrapartikuläre Porenraum aus der Sicht geladener Spezies eine beträchtliche elektrische 

Potentialbarriere aufweisen, die sich in einem erheblichen Überschuss an mobilen Gegenionen 

manifestiert. Klassisch wird diese Anreicherung im elektrochemischen Gleichgewicht durch das 

sogenannte Donnan-Potential beschrieben. Dieses Potential hat seinen Ursprung in der Tendenz der 
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ionischen Spezies existierende Konzentrationsunterschiede zwischen Porenräumen unterschiedlicher 

Dimensionen (und damit auch Ladungsselektivität) auszugleichen. Der Überschuss der Gegenionen 

wird durch dieses Potential im intraskelettären/intrapartikulären Porenraum (ladungsselektiv) gehalten 

und Koionen daran gehindert diesen Porenraum zu permeieren. Der Verteilungskoeffizient ionischer 

Spezies zwischen den quasi nicht ladungsselektiven (Makroporen) und ladungsselektiven 

(Mesoporen) Kompartmenten wird durch die Ionenpermselektivität bestimmt. Diese 

Ionenpermselektivität hängt von der Ionenstärke der mobilen Phase (Dimensionen der elektrischen 

Doppelschicht), der Oberflächenladungsdichte in den ionenpermselektiven Poren (die das 

Potentialniveau bestimmt) und auch den Wertigkeiten der ko- und gegenionischen Komponenten im 

System ab. Durch Anlegen eines (externen) elektrischen Feldes über ein solches poröses Material mit 

lokalen permselektiven Transporteigenschaften (bevorzugter Transport einer Spezies) kommt es zum 

Phänomen der Konzentrationspolarisation in der angrenzenden Elektrolytlösung. Sie ist verbunden mit 

der Ausbildung von Konzentrationsgradienten in der angrenzenden Elektrolytlösung, verursacht durch 

elektrischen Strom normal zu diesen ionenpermselektiven Grenzflächen und hat ihre Ursache in der 

Transportdiskriminierung ko- und gegenionischer Spezies. Die Konzentrationspolarisation wird 

eingehend in Kapitel 2 diskutiert. 

 

Nach einem Überblick und einer Zusammenfassung relevanter Studien zur Konzentrationspolarisation 

(zum größten Teil bekannt aus den Membranwissenschaften, z.B. der Elektrodialyse) wird in Kapitel 3 

die grundsätzliche Abhängigkeit des EOF und hydrodynamischer Dispersion in der KEC untersucht 

und dargelegt. Diese Untersuchungen schließen gepackte Betten mesoporöser Partikel mit 

unterschiedlicher Größe der Mesoporen, nichtporöse Partikel, als auch kontinuierliche monolithische 

Strukturen mit einem mesoporösen Skelett ein. Die nichtporösen Partikel wurden als Referenzmaterial 

verwendet, um die durch den hierarchisch strukturierten Aufbau des gepackten Bettes mit porösen 

Partikeln beobachteten Phänomene zu verifizieren. Bereits durch einfache chromatographische 

Experimente konnte in Betten bestehend aus porösen Partikeln ein Koionenausschluss vom 

intrapartikulären Porenraum durch verminderte effektive Verweilzeiten koionischer, nichtretardierter 

(keine Wechselwirkung im klassisch chromatograpischen Sinne) Komponenten indiziert werden. Die 

Verweilzeit konnte durch die Ionenstärke der mobilen Phase und damit durch die Einstellung der 

Doppelschichtüberlappung auf intrapartikulärem Porenniveau gezielt gesteuert werden, d.h. vom 

Ausmass der elektrischen Doppelschichtüberlappung werden intraskelettäre/intrapartikuläre effektive 

Porositäten (Permeationsvolumen), die von geladenen koionischen Molekülen wahrgenommen 

werden, moduliert. Dieser einstellbare, lokal ladungsselektive Transport in der 

Flüssigchromatographie bildet in der KEC die Grundlage für Konzentrationspolarisationsphänomene. 

Die im weiteren untersuchten Konzentrationspolarisationsphänomene werden durch Ausbildung 

konvektiver Diffusionsgrenzschichten mit reduzierter und angereicherter Elektrolytkonzentration an 

den anodischen und kathodischen (kationenselektiven) Grenzflächen zwischen Makro- und 

Mesoporenraum charakterisiert. Konzentrationspolarisation hat ihre Ursache im durch das elektrische 

Feld induzierten gekoppelten Masse-Ladungstransport normal zu den ladungsselektiven Grenzflächen 

und hat deutliche Konsequenzen für die elektroosmotische Flussfelddynamik. Insbesondere die Zone 

stark reduzierter Ionenkonzentration an der anodischen Grenzfläche eines kationenselektiven 
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Partikels ist von großer Bedeutung, da Stofftransport hier diffusionslimitiert ist. Dieser Diffusionsstrom 

durch die abgereicherte Zone hat einen Maximalwert (Diffusionsgrenzstrom). Gleichzeitig hängt aber 

der Transport der Gegenionen im Partikel (oder mesoporösen ionenpermselektiven Skelett von 

Monolithen) durch gleichgerichtete Elektroosmose und Elektrophorese annähernd linear vom Feld ab. 

Diese unterschiedlichen Abhängigkeiten des lokalen Transportes sind die Ursache für die Ausbildung 

einer sekundären elektrischen Doppelschicht mit mobiler gegenionischer Raumladung in der 

abgereicherten Konzentrationspolarisationszone. Diese wird ab einer kritischen elektrischen 

Feldstärke induziert, bei der der intrapartikuläre ladungsselektive Transport mobiler Gegenionen den 

Transport der Gegenionen durch die Diffusionsgrenzschicht übersteigt. Die dort lokal induzierte 

gegenionische Raumladung (in Form einer so genannten sekundären elektrischen Doppelschicht) 

führt durch Wechselwirkung mit der lokalen tangentialen Feldkomponente zu einem nichtlinearen EOF 

im interpartikulären oder interskelettären Porenraum. Dieser nichtlineare EOF wird durch nichtlineare 

mittlere Geschwindigkeiten im gepackten Bett bzw. in Monolithen und damit einhergehend starker 

lokaler und tangential zur gekrümmten Oberfläche auftretender Geschwindigkeitskomponenten 

charakterisiert. Diese erhöhen die laterale Dispersion auf Porenniveau und reduzieren damit die axiale 

Zonenverbreiterung. Der Unterschied in der Porenraummorphologie gepackter Betten und 

monolithischer Strukturen beeinflusst die Intensität der Konzentrationspolarisation und des 

nichtlinearen EOF, was in der vorliegenden Arbeit mittels chromatographischer Feldstudien unter 

Verwendung neutraler Analyten einhergehend mit Dispersionsstudien gezeigt und diskutiert wird. Die 

Konzentrationspolarisation wird als ein Schlüsselphänomen in der KEC identifiziert, sie beeinflusst 

deutlich das nichtlineare EOF Verhalten und kann phänomenologisch mit der elektroosmotischen 

Perfusion, die in Kapitel 1 diskutiert und auch in Kapitel 3 experimentell und phänomenologisch 

berücksichtigt wird, in Einklang gebracht werden. 

 

Die Ergebnisse in Kapitel 3 werden in Kapitel 4 durch (quantitative) konfokale Fluoreszenzmikroskopie 

untermauert, indem die Abhängigkeit des intrapartikulären/intraskelettären Koionenausschlusses 

(Donnanausschluss) und der Gegenionenanreicherung (Donnananreicherung) und der damit 

verbundenen Konzentrationspolarisation bei Überlagerung externer elektrischer Felder systematisch 

von der Ionenstärke der mobilen Phase und der elektrischen Feldstärke visualisiert und quantitativ 

analysiert wird. Durch diese Untersuchungen werden weitreichende Konsequenzen des Phänomens 

der Konzentrationspolarisation für chromatographische Anwendungen verdeutlicht. Systematische 

Studien von Einzelpartikeln (wie in Kapitel 2 angesprochen, erläutert und charakterisiert) bis hin zu 

multipartikulären Systemen zeigen (wie sie in Kapitel 3 chromatographisch hinsichtlich nichtlinearer 

EOF-Dynamik charakterisiert wurden), dass es sich um ein eher generelles als spezielles Phänomen 

an ionenpermselektiven Grenzflächen handelt, wie sie in der Ionenaustauschchromatographie, als 

auch teilweise in der Umkehrphasenchromatographie mit gepackten Betten und monolithischen 

Strukturen beobachtet werden können. Während die meisten experimentellen Untersuchungen von 

Konzentrationspolarisationsphänomenen mit Membranen durchgeführt wurden, wie sie zum Beispiel 

in der Elektrodialyse Anwendung finden, war es immer schwierig, den Stofftransport innerhalb der 

Membran zu visualisieren. Im Wesentlichen indizieren die in dieser Arbeit gezeigten Studien eine 

Erhöhung des intrapartikulären Transportes von gegenionischen (Fluoreszenz-) Molekülen bei 
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Erhöhung des elektrischen Feldes. Diese Erhöhung des intrapartikulären Transportes beruht auf einer 

erhöhten Stromdichte durch das Partikel mit erhöhtem elektrischen Feld. Der Transport der zunächst 

intrapartikulär/intraskelettär dominiert ist, da genügend Gegenionen durch die Diffusionsgrenzschicht 

nachtransportiert werden können um diesem Strom zu genügen, schwenkt bei weiterer Erhöhung des 

elektrischen Feldes zum durch die Diffusionsgrenzschicht dominierten Transport um. Die elektrischen 

Feldstärken, bei denen limitierende Stoffstromdichten (Diffusionsgrenzstrom) lokal im gepackten Bett 

auftreten wurden bestimmt. In enger Korrelation mit der beobachteten Elektrohydrodynamik 

charakterisieren sie die Ausbildung einer sekundären elektrischen Doppelschicht in der 

abgereicherten Konzentrationspolarisationszone (sowohl in monolithischen Strukturen als auch 

gepackten Betten). Es kommt dabei zu einer An- und Abreicherung ionischer Spezies lokal an den 

anodischen und kathodischen Grenzflächen mesoporöser Partikel im gepackten Bett oder lokal an 

den permselektiven Grenzflächen in Monolithen, bei der der Transport gegenionischer Moleküle im 

System durch den intrapartikulären/intraskelettären Transport mobiler Gegenionen bestimmt wird. Die 

zunächst lineare Ab- und Zunahme der Elektrolytkonzentration in den 

Konzentrationspolarisationszonen in Abhängikeit von der elektrischen Feldstärke, gefolgt von einem 

asymptotischen Verlauf auf einen maximalen bzw. minimalen Wert mit zunehmender elektrischer 

Felstärke erinnert an die typischen (makroskopisch bestimmten) Strom-Spannungskurven von 

Ionenaustauschermembranen. Deutliche Konsequenzen des lokalen limitierenden 

Stofftransportverhaltens ergeben sich hier für die Entwicklung einer nichtlinearen Elektrohydrodynamik 

(verbunden mit der Ausbildung einer sekundären elektrischen Doppelschicht), und damit einer 

Abhängigkeit des EOF vom Durchmesser der Partikel des gepackten Bettes, einer Abhängigkeit die 

dem klassischen linearen Modell von Helmholtz-Smoluchowski (lineare Elektroosmose verbunden mit 

der Raumladung in der primären elektrischen Doppelschicht) völlig fremd ist. Diese Abhängigkeit 

bildet den direkten Anknüpfungspunkt an Kapitel 3, mit dem Unterschied, das hier auftretende 

Wechselwirkungsmechanismen der ausgebildeten Konzentrationspolarisationszonen benachbarter 

Partikel („Multiparticle effects“) in partikulären Betten, aufgrund räumlicher Nähe, untersucht werden. 

Sie führen lokal zu einer Auslöschung an- und abgereicherter Konzentrationspolarisationszonen, da 

ihre räumliche Ausdehnung deutlich größer als die Ausdehnung der primären elektrischen 

Doppelschicht ist. Die resultierende komplexe Wechselwirkung benachbarter 

Konzentrationspolarisationszonen wird durch die Morphologie des gepackten Bettes bestimmt, was zu 

einer abgeschwächten, lokal effektiven Konzentrationspolarisation führt und damit erst bei deutlich 

höheren Feldstärken limitierend wirkt, als für ein einzelnes Partikel. Weiterhin wird gezeigt, das 

elektroosmotische Mobilitäten in gepackten Betten und elektrophoretische Mobilitäten betreffender 

Partikel in verdünnten Suspensionen trotz Berücksichtigung der Tortuosität nicht quantitativ verglichen 

werden können, obwohl Elektrophorese eigentlich ein integrales Charakteristikum der Elektroosmose 

ist. Im Gegensatz zu den diskreten partikulären Systemen durchziehen die 

Konzentrationspolarisationszonen axial ausgedehnte monolithische Strukturen wie ein Spinnennetz 

und sind weniger diskret. Sowohl für partikuläre als auch monolithische Strukturen konnten die 

Visualisierungsergebnisse quantitativ mit der makroskopisch beobachteten Elektrohydrodynamik 

korreliert werden, das heißt in beiden Fällen, das lineare Elektroosmose mit Erreichen eines lokalen 

limitierenden Stofftransportverhaltens (Diffusionsgrenzstrom) sukzessive in ein nichtlineares Verhalten 
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übergeht und bei weiterer Erhöhung des Feldes eine deutliche Nichtlinearität (die von den 

charakteristischen axialen Längendimensionen als auch der Morphologie des Makroporenraumes 

abhängt) zeigt. Anwendungen der nichtlinearen Flussfelddynamik bei gleichzeitig reduzierter axialer 

Dispersion ergeben sich insbesondere für die Mikrofluidik (z.B. Mikropumpen), die Ausnutzung für 

Anreicherungseffekte (Konzentrationspolarisation als „Extraktor“ positiv oder negativ geladener 

Moleküle) und gerade auch für hocheffiziente elektrokinetische Trennungen in miniaturisierten 

Chipstrukturen (Kapitel 3). 

 

In Kapitel 5 wird das Migrationsverhalten und das resultierende Retentionsverhalten geladener 

Analyten in der KEC untersucht. In dieser Arbeit kann erstmalig durch direkte Korrelation 

makroskopischer Retentionsdaten mit mikroskopischen Studien auf Partikelebene in identischen 

chromatographischen Systemen ein deutlicher mechanistischer Unterschied für die 

Retentionsdynamik geladener gegenüber ungeladener Analyten in Abhängigkeit vom elektrischen 

Feld gezeigt werden. Für diese Experimente wurden zunächst einfach geladene, kleine und 

pharmazeutisch relevante Substanzen herangezogen. Die Konzentrationspolarisationszonen, die sich 

an der Grenzfläche zwischen interpartikulärem und intrapartikulärem Porenraum in Abhängigkeit vom 

angelegten elektrischen Feld und der Ionenstärke der mobilen Phase ausbilden, reflektieren dabei 

direkte Änderungen in der Analytretention. Dabei beeinflussen sie geladene nicht aber neutrale 

Analyten während des Transportes zum, im und vom Partikel. Die Intensität dieser Zonen (welche 

konvektive Diffusionsgrenzschichten darstellen) hängt direkt ab vom angelegten elektrischen Feld als 

auch von der Ladungsselektivität zur entsprechenden intrapartikulären bzw. intraskelettären 

Phasengrenze was eingehend in Kapitel 4 untersucht wurde. Durch entsprechende 

Komplementärexperimente in gepackten Betten bestehend aus hinreichend großporigen Partikeln 

(zeigen bedingt Konzentrationspolarisationsphänomene, siehe Kapitel 3) als auch nichtporösen 

Partikeln (zeigen keine Konzentrationspolarisationsphänomene, siehe Kapitel 3) konnte die generelle 

Abhängigkeit des Retentionsfaktors geladener Analyten von der Feldstärke unter typischen 

elektrochromatographischen Bedingungen bestätigt werden. In hinreichend großen Poren ist die 

elektrische Doppelschichtüberlappung marginal und die Ionenverteilungen im interpartikulären und 

intrapartikulären Porenraum sind vergleichbar, Konzentrationspolarisationsphänomene sind damit 

abwesend. Bei nichtporösen Partikeln fehlt dieser intrapartikuläre Porenraum und damit auch die 

entsprechenden Konzentrationspolarisationsphänomene, folglich zeigen die geladenen Analyten keine 

feldstärkeabhängige Retention. Generell führt der gekoppelte Masse Ladungstransport bei erhöhtem 

elektrischem Feld zu einer Verschiebung des Retentionsfensters kleiner einfach geladener Analyten 

zu höheren Retentionszeiten, was mit einer Erhöhung ihrer Transportintensität durch den 

intrapartikulären Porenraum (und damit auch der abgereicherten Konzentrationspolarisationszone) zu 

erklären ist und auch visualisiert werden konnte.  

 

Ferner wird in Kapitel 5 mit der elektrochromatographischen Trennung von Peptidgemischen gezeigt, 

dass der Retentionsfaktor geladener Analyten in der KEC nicht vom Masse zu Ladungsverhältnis (und 

damit ihrer elektrophoretischen Mobilität) abhängt, sondern im Wesentlichen von deren Ladungszahl. 

Die in der Bioanalytik häufig auftretenden komplexen Moleküle zeigen ein breites Spektrum von 
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Masse-zu- Ladungs- Verhältnissen, was die Kapillarelektrophorese zu einer geeigneten 

Trennmethode macht. Elektrophoretische Mobilitäten, das heißt Migration im makroskopischen 

Feldgradienten können hinreichend genau durch entsprechende Masse- zu- Ladungs- Verhältnisse 

korreliert werden. Der Vorteil des Einsatzes von partikulären Betten führt aufgrund zusätzlich 

auftretender adsorptiver Wechselwirkungen neben höherer Kapazitäten (aufgrund der vergrößerten 

Oberfläche) im Wesentlichen zu höheren Selektivitäten, was aus der Ionenaustauschchromatographie 

bekannt ist. Im Zuge des gekoppelten Masse-Ladungs-Transportes des Hintergrundelektrolyten 

werden die Verteilungsgleichgewichte der Peptide lokal auf Partikelebene im gepackten Bett und 

damit auch die makroskopisch beobachtete Retention in Abhängigkeit vom elektrischen Feld 

signifikant moduliert. Wichtig ist bei ihrem Transport ihre Transportzahl (weitaus gebräuchlicher in der 

Membranwissenschaft als in der Chromatographie) gegenionischer Komponenten in diesen lokal 

ionenpermselektiven Systemen. Die effektive Transportzahl gegenionischer Komponenten 

(Hintergrundelektrolyt) als auch analytisch relevanter Spezies (Peptide mit variabler Ladungszahl) 

hängt in einem komplexen Zusammenhang von der Stromdichte durch das Partikel ab. Wie zuvor in 

Kapitel 4 gezeigt, schwenkt das System generell von membran- bzw. intrapartikulär bestimmten 

Transport zum durch die Grenzschicht dominierten Transport um. Damit ändern sich die effektiven 

Transportzahlen der Analyten mit sich ändernder Stromdichte durch das Partikel. Diese 

Transportzahlen hängen von den Diffusionskoeffizienten, der Ladungszahl, als auch ihren 

Konzentrationen ab. Im intrapartikulär bestimmten Transportregime (d.h. die Transporteigenschaften 

werden nicht durch die abgereicherte Konzentrationspolarisationzone bestimmt) sind sie durchaus 

verschieden als im durch die Grenzschicht dominierten Regime, d.h. hier wird intrapartikulärer 

Transport durch die Transporteigenschaften der abgereicherten Konzentrationspolarisationzone 

bestimmt. Augrund der unterschiedlichen Molekulargewichte (Diffusionskonstanten), als auch 

Konzentrationen (intrapartikulär als auch in der abgereicherten Zone) bilden sie den Schlüssel für das 

gesamte Retentionsverhalten in der KEC. Das ist gleichzusetzen mit der Einstellung von 

Verteilungsgleichgewichten auf Partikelebene im gepackten Bett. Damit wird in Abhängigkeit von der 

Ladungszahl der Peptide, die generell im Wettkampf um ihren Stromtransport mit dem 

Hintergrundelektrolyten stehen, ihr Anteil an diesem Strom mit Erhöhung des elektrischen Feldes 

sukzessive kleiner oder größer und damit werden sie bei erhöhter Stromdichte zunehmend weniger 

oder mehr durch die Diffusionsgrenzschicht und damit folglich auch intrapartikulären Kompartmente 

transportiert. Ihre Retentionsfenster verschieben sich mit dem elektrischen Feld zu kleineren oder 

grösseren Zeiten. Die Abhängigkeit dieser Modulation von der Ladungszahl der Peptide wurde mit der 

Untersuchung bei unterschiedlichen pH-Werten (Verringerung ihrer Ladung) konsistent gezeigt. Diese 

Experimente haben gezeigt, dass bei höher geladenen Peptiden ihre Retention mit dem elektrischen 

Feld sukzessive abnimmt and bei Verringerung ihrer Ladung ihre Retention sukzessive zunimmt. Das 

kann nur mit ihrer effektiven Transportzahl erklärt werden, allerdings immer im Bezug auf die 

gegenionische Komponente des Hintergrundelektrolyten. Damit weiterhin wichtig ist die durch diese 

Arbeit gewonnene Erkenntnis, dass Selektivität, wie oft angenommen, nicht nur von entsprechenden 

elektrophoretischen Mobilitäten der Analyten in freier Lösung (wie in der Elektrophorese) und von 

chromatographischer Retention an der Phasengrenze (wie in der Flüssigchromatographie), sondern 

auch von der Transportintensität (und damit auch dem elektrischen Feld) in den 
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Konzentrationspolarisationszonen und mesoporösen Kompartmenten abhängig ist. Der fundamentale 

Unterschied ist, dass die übliche Masse- zu- Ladungs- Korrelation wie in der reinen Elektrophorese 

hier nicht ausreicht, um den elektrokinetischen Anteil an der Trennung zu erklären. Es wird gezeigt, 

dass für unterschiedliche Analyten mit vergleichbarer Ladungszahl, ihre Retentionsabhängigkeit auch 

von ihrem Molekulargewicht abhängt. Damit wird in Abhängigkeit vom Feld die Selektivität der 

Trennung sich grundsätzlich ähnlich verhaltender Peptide signifikant verändert. 

 

Es wird gezeigt, dass die Retentionsfenster geladener Analyten in Abhängigkeit vom Feld signifikant 

verschoben werden, was in erster Linie auf ihre Ladungszahl zurückgeführt wurde. Neutrale Analyten 

partizipieren in keinerlei Ladungsbilanzen, sie werden nur durch die elektroosmotische 

Flussfelddynamik und chromatographische unspezifische Verteilungsgleichgewichte beeinflusst und 

zeigen damit eine vergleichbare Retention wie in der konventionellen Flüssigchromatographie. Durch 

Einstellung der Nettoladung der untersuchten Peptide konnte auch gezeigt werden, dass das der Fall 

ist wenn sie gegen den Wert Null strebt und damit auch ihre Retention zunehmend 

feldstärkeunabhängig wird. 

 

Im Allgemeinen lässt sich sagen, dass die in dieser Arbeit gesammelten Ergebnisse die Anatomie der 

KEC darstellen und wesentliche Fortschritte bezüglich des mechanistischen Verständnisses der 

Flussfelddynamik (insbesondere Konzentrationspolarisation und elektroosmotischer Perfusion) als 

auch der Retentionsdynamik geladener Analyten beinhalten und konzentriert sich dabei auf die 

wesentlichsten physikalisch-chemischen Eigenschaften analytisch relevanter Spezies und der 

verwendeten Trennsysteme. Nach den Resultaten dieser Arbeit ist die elektroosmotische Perfusion 

eher als ein Spezialfall in der KEC zu begreifen. Sie erhöht zwar den intrapartikulären Stofftransport 

und verringert damit die axiale Bandenverbreiterung (hauptsächlich für neutrale Analyten), spielt aber 

für das Retentionsverhalten und die Dispersion geladener Analyten eine untergeordnetere Rolle. 
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Introduction 
 
The devised transport of a mobile phase and complex sample mixtures through high and low surface 

area materials induced by an externally applied electrical field plays a central role in analytical, 

technological, and environmental processes, including the dewatering of waste sludge and soil 

remediation, capillary electrophoresis, or electrochromatographic separations in particulate and 

monolithic fixed beds, as well as micro-chip devices [1-7]. Transport is primarily achieved via 

electromigration of ions (background electrolyte), electrophoresis (charged analyte molecules or 

particles), and electroosmosis (bulk liquid) driven by the shear stress concentrated in the electrical 

double layer (EDL) at charged solid-liquid interfaces [1]. The local and macroscopic behaviour and 

long-time average magnitude, stability, and uniformity of electroosmotic flow (EOF) in porous media 

are related to the physicochemical nature of the surface, the pore space morphology, and properties 

of the liquid electrolyte [8-22]. A detailed analysis of these parameters has a fundamental importance 

as it guides performance and design strategies of an electrokinetic process with respect to diffusive-

convective transport schemes. 

 

This immediately addresses fundamental aspects of capillary electrochromatography (CEC) as a 

rapidly emerging technique, which was proposed to add a new dimension to separation science [3]. 

Bulk hydrodynamic flow is achieved by electroosmosis, employing stationary phases usually 

developed for liquid chromatography (LC). In a very simple way CEC is often described as a hybrid 

technique between capillary zone electrophoresis (CZE) and LC. From an analytical point of view CEC 

has not yet overcome its typical “infancy problems”, even though one can recognize an increasing 

number of applications. The reasons are found in relatively early anticipations, regarding EOF velocity 

profile through more complex porous media (usually borrowed from an open tube as in CZE) and 

theoretical assumptions for achieving differential migration (by simply synthesizing retention by 

chromatographic and electrophoretic formalism) [3].  

 

However, for neutral and ion-suppressed analytes a possible benefit may arise from increased 

efficiencies often obtained with EOF instead of pressure-driven flow through porous media [1, 2, 23]. 

In addition method transfer from LC to CEC may be straightforward for neutral analytes and no 

descrepancies between retention in both modes have been observed [24]. Nevertheless an increase 

in the complexity of the method clearly means that an increase of robustness and applications (e.g. in 

pharmaceutical industry) can only be realized by understanding the fundamental basis for not only 

generating flow but also achieving differential migration for charged analytes. Most of the target 

molecules in bio-analytical and pharmaceutical applications are charged in nature. Until now retention 

modeling of charged target molecules has not been capable of showing agreement with experiment 

and the models in CEC are not predictive at all [25, 26]. 

 

Unless the physical basis for such a disagreement is known it surely leads to reduction of robustness 

and reliability, one of the worst drawbacks for any analytical technique. Starting with this critical 
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appraisal the present thesis covers electrohydrodynamical (flow) aspects in CEC, as well as transport 

aspects for charged analytes. Even though they may be seen as separate issues, it is subsequently 

shown that they rely on the same basic phenomena. 

 

This thesis is structured as follows. Chapter 1 starts with a state-of-the-art review on “Fluid dynamics 

in capillary and chip electrochromatography” and is concerned with the phenomenological fluid 

dynamics in high-surface-area random porous media as stationary phase in CEC. Specifically, the 

pore space morphology of packed beds is analyzed with respect to the nonuniformity of local and 

macroscopic EOF, as well as the achievable separation efficiency. Due to the hierarchical structure of 

the pore space in packed beds which are characterized by discrete intraparticle mesoporous and 

interparticle macroporous spatial domains a finite and often significant perfusive EOF is realized in 

these materials. The electroosmotic perfusion through packed beds of porous particles proceeds with 

a significantly higher intraparticle (electroosmotic) permeability and, thus, it contributes to a substantial 

reduction of velocity inequalities between the inter- and intraparticle flow patterns. Concerning the 

electroosmotic permeability of packed capillaries the perfusive EOF has shown to offer a superior 

dispersion characteristics (compared to PDF employed in LC) [27]. At the same time it has long 

remained unrecognized that the intraparticle pore space in packed beds or the porous skeleton of 

meso- and/or microporous monoliths comprise ion-permselective (that is, charge-selective) regions 

due to local EDL overlap which actually prevails over a wide range of experimental conditions in CEC 

and also LC [21, 22]. This directly leads to the flow and transport issues investigated in the present 

thesis. 

 

It starts in Chapter 2 with a phenomenological interrelation between electrical field driven ion-transport 

in electrolyte systems containing ion-permselective porous membranes, separating completely 

adjacent electrolyte solutions, and electrolyte systems containing discrete ion-permselective porous 

particles. The comprehensive view on “Concentration polarization effects in porous media” addresses 

key properties of porous media in CEC with a co-existence of bulk, quasi-electroneutral macroporous 

regions and the mesoporous compartments which are ion-permselective (due to EDL overlap). They 

cause different transport numbers for co-ionic and counter-ionic species, e.g., background electrolyte 

components, or the analytes in electrochromatographic separations. This chapter is crucial for the 

subsequent elucidation of the “Electrohydrodynamics in hierarchically structured monolithic and 

particulate fixed beds” from the more chromatographic point of view in Chapter 3. Subsequently in this 

thesis the dynamics of ion-permselective transport properties in fixed beds of porous adsorbent 

particles and monoliths is approached by employing quantitative confocal laser scanning microscopy 

to elucidate charge transport relations from a more physicochemical point of view in Chapter 4. The 

“Confocal laser scanning microscopy study of electrical-field-induced concentration polarization at 

curved ion-permselective interfaces” is a crucial basis for the second main part of the present thesis 

reflected in Chapter 5, which focuses on “Retention dynamics of charged analytes in 

electrochromatography”. It resolves the quest of controlling and understanding the whole separation 

technique. 
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1 Fluid dynamics in capillary and chip electrochromatography 
 
1.1 Introduction 

Capillary and chip electrochromatography (EC) is a relatively novel microseparation technique which has 

recently attracted massive interest on the academic research level. Many applications have been 

demonstrated both in capillary and chip EC, revealing the separation potential of this technique for a 

broad range of analytes including peptides and proteins, enantiomers, pollutants, and pharmaceuticals [1-

13]. Several reviews have focused on practical implications and stationary phase designs using packed 

beds and monoliths [14-17], as well as on the coupling to mass spectrometry [18]. Besides applications 

and technological efforts, a central issue for efficiency in EC of, e.g., bioanalytical or pharmaceutical 

target molecules is the analysis and optimization of the underlying velocity field and an understanding of 

associated hydrodynamic dispersion. 

 

The flow pattern of a fluid undergoing slow, laminar flow in a packed bed of particles or a monolith 

depends on the morphology (topology and geometry) of the pore space [19, 20]. The existence of a point-

to-point difference in velocity is a fundamental property of the flow field under most general conditions 

[21]. Besides the inherent structural heterogeneity of the porous medium, also the actual physical 

origin(s) of the flow influence correlation times and lengths which characterize velocity fluctuations in the 

mobile phase. In contrast to nano-LC employing PDF, capillary and chip EC utilizes EOF for transporting 

bulk liquid and analytes through the interconnected pore space of capillary columns or non-cylindrical 

channels in lab-on-a-chip devices. These are either packed with small adsorbent particles or may contain 

monolithic structures. 

 

Ideal EOF in a single homogeneous capillary is characterized by a flat, i.e., plug-like velocity profile at 

distances from the surface that are on the order of the EDL thickness which is usually estimated by the 

Debye screening length (λD) [20]: 
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where ε0 and εr are the permittivity of vacuum and relative permittivity of the bulk solution, respectively. R 

is the gas constant, T the absolute temperature, and F Faraday’s constant, zi is the valency of ionic 

species i and ci,∞ its concentration in bulk electroneutral solution. EOF is generated by interaction of the 

local tangential component of the applied electrical field with net volume charge in the fluid side part of 

the EDL. In the thin-EDL-limit, meaning in this context (unpacked capillary) that the EDL thickness is 

much smaller than the capillary radius, both the cross-sectional velocity profile and magnitude of the EOF 

become independent of the capillary diameter [22]. Due to high separation efficiencies that have been 

obtained with electrokinetically driven fluid flows through open (unpacked) capillaries [23], as well as 
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packed beds [24-26], any factor which influences zone dispersion under these electrokinetic and 

(electro)hydrodynamic conditions should be characterized and become controllable, in principle. The local 

and macroscopic velocity profile of the EOF and its stability have a large impact on improving the 

performance, but also the reproducibility and robustness of EC systems. 

 

Because of its utmost importance and relatively little attention it has received in the past compared to 

applications of EC, this chapter is concerned with the EOF velocity field in packed beds and monoliths. It 

is structured as follows. We first discuss pore-scale EOF in the relatively large (compared to the EDL 

thickness) interparticle pores of packed beds of nonporous, that is impermeable and nonconducting 

particles considered as "packed-bed-analogon" to EOF through a single homogeneous capillary and 

address a general microscopic nonuniformity of the local EOF velocity profile in porous media with 

inherently nonuniform shape of the flow channels. Then, we analyze macroscopic EOF heterogeneities in 

packed beds caused by the presence of confining walls, in particular, the dependence on a mismatch of 

ζ-potentials at the wall of the confining channel or capillary and the particles external surface 

(electrokinetic wall effect), but also on radial porosity fluctuations with a focus on low column-to-particle 

diameter ratios (geometrical wall effect) below 25, being typical for EC systems. Subsequently, we 

consider EOF through packed beds of porous (permeable, conducting) particles. 
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1.2 Pore-scale electroosmotic flow in packed beds of nonporous particles 

Starting from a macroscopic point of view the EOF velocity averaged over the column cross-section may 

be characterized by the electrical conductivity ratio which becomes accessible experimentally via 

conductivities of a packed column and an identical, but open tube saturated with the same electrolyte 

solution. It is assumed that the EDL makes a negligible contribution to the total conductivity of the packed 

bed [27, 28]. The macroscopic model of Overbeek and Wijga [27] has been successfully employed by 

Zeng et al. [29] for a capillary packed with nonporous (impermeable, nonconducting) particles and was 

extended to EOF in EC with porous (permeable, conducting) particles [30]. Essentially, these approaches 

do not contain any valuable information on the local dynamics of EOF in porous media. 

 

A number of theoretical and experimental studies have been reported and used for the investigation of 

EOF in open channel systems [31-41], as well as packed beds [30, 42-44]. In agreement with 

experimental results for EOF through a single homogeneous capillary, demonstrating plug-flow behaviour 

under ideal conditions [45, 46], it was shown by Griffiths and Nilson [31] that longitudinal dispersion 

coefficients can be orders of magnitude smaller than for PDF. Most of the theoretical approaches used to 

study EOF in disordered porous media like packed beds are based on a representation of the material as 

an assembly of individual channels which only allows to find the average velocity. Further, and more 

important for the dispersion characteristics, it neglects the actual morphology of a material, e.g., the 

continuously varying pore cross-sections. The nonuniform cross-section of interparticle pores in a packed 

bed influences the distribution of the local electrical field strength and resulting EOF velocities, which both 

are uniform in a single homogeneous capillary in the thin-EDL-limit. 

 

In addition, also numerical studies of the EOF problem were mostly performed in open channel systems 

[47-55]. Until now, direct numerical simulation of EOF in random porous media is a challenging task 

because of the necessity to resolve, in general, the coupled hydrodynamic, electrostatic, and mass 

transport problems subjected to the complex geometrical boundary conditions represented by the solid-

liquid interface. At the same time, the very different length scales ranging from λD of typically 1-100 nm to 

the characteristic dimension of the whole system (for instance, the capillary diameter) need to be 

covered. Coelho et al. [56] have developed a numerical solution to the problem of EOF through porous 

media, in particular, a random array of particles. They used a relatively coarse spatial discretization step 

to arrive at reasonable computation times. Their model was restricted to the case of a thick EDL and low 

ζ-potentials (Debye-Hückel approximation). Recent three-dimensional numerical studies carried out by 

Hlushkou et al. [57, 58] have resolved EOF in regular and random, confined and bulk packings of solid, 

dielectric (impermeable, nonconducting) spheres under more general conditions, including arbitrary value 

and distribution of electrokinetic potential at the solid-liquid interface, electrolyte composition, and pore 

space morphology. 

 

Figure 1.1 demonstrates a fundamental microscopic (interparticle pore-level) nonuniformity of the axial 

EOF velocity component in a confined sphere packing with a column-to-particle diameter ratio of 10 [57]. 

The EDL thickness is negligibly thin, in this context, compared to the sphere radius rp (i.e., rp/λD >> 1; thin-

EDL-limit). Further, the ζ-potentials of the column wall (ζw) and the spheres (ζp) are identical. Still, a 
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nonuniform distribution of the axial EOF velocity exists in the interparticle pore space throughout the 

packing; velocity profiles are systematically curved over the complete cross-section of an individual pore. 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.1  Distribution of the axial EOF velocity in a confined packing of monosized solid, dielectric spheres with a column-to-

particle diameter ratio of 10. The mobile phase is an aqueous strong electrolyte solution at T = 298 K. ζ-potentials of the column wall 

(ζw) and the particles (ζp) are identical, ζw = ζp = –50 mV. The applied field strength is Eext = 50 kV/m. The profiles of the local axial 

EOF velocity component vx (top) and the local electrical field strength E (bottom), here shown for two selected regions of the 

packing, are nearly identical. The EDL thickness is negligibly thin compared to the sphere radius (thin-EDL-limit). Reproduced with 

permission from [57]. Copyright 2005 American Chemical Society. 

 

This is illustrated in Figure 1.1 for two regions selected from the packing (regions A and B, respectively). 

The nonuniform distribution of EOF velocities in a packed bed of solid, dielectric spheres originates in a 

nonuniformity of the local electrical field strength and should be interpreted in the context of an expected 
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similitude for the electrical field and EOF velocity field in the thin-EDL-limit [32, 33]. This similarity is seen 

in Figure 1.1, demonstrating that the distributions of local electrical field strength and EOF velocity are 

nearly identical. 

 

In other words, the inherent variations in channel cross-sectional area or shape result in a nonuniform 

distribution of the local axial component of the applied electrical field, particularly at the solid-liquid 

interface, which leads to local variations in the EOF slip velocity used to formulate the velocity boundary 

condition at the solid-liquid interface in the thin-EDL-limit [57]. Based on these results of numerical 

simulations it can be concluded that a "reference" plug-like velocity distribution in a single homogeneous 

channel does not imply the existence of a flat pore-level velocity profile in the interparticle pore space of a 

packed bed. Even the imposition of the slip-velocity boundary condition at the solid-liquid interface does 

not result in a locally flat profile. The deviation from the ideal plug-like EOF profile suggests that also 

hydrodynamic dispersion associated with EOF through a packed bed differs significantly from that in a 

single homogeneous "reference" capillary or channel. 

 

To summarize, the results of numerical simulations (Figure 1.1) demonstrate that a locally flat velocity 

profile for electrokinetic flow through the interparticle pore space of packed beds which are employed for 

EC separations in capillary and chip format does not exist, even in the thin-EDL-limit and with uniform 

surface properties throughout the packing. These results contradict relatively early anticipation [59-61], in 

which the plug-like velocity distribution in a single-straight, open, homogeneous channel, has been 

translated to more complex porous media with a varying pore space morphology between the particles. 

Still this anticipation finds widespread acceptance [62-69]. 

 
 
 
 
 

   



   Chapter 1: Fluid dynamics in capillary and chip electrochromatography 
 

10 

1.3 Wall effects on packing microstructure and macroscopic flow heterogeneity 

Due to the nonuniform radial distribution of voidage, permeability, and interstitial velocity in a critical 

region close to the confining wall, a small column diameter (dc) to particle diameter (dp) ratio influences 

the transport properties in fixed-bed reactors and chromatographic columns, which is an old and well 

investigated issue in engineering science [70, 71]. It has been shown in early studies and for packings of 

uniform spheres with a smooth surface that the interparticle porosity (εinter) starts with a maximum value of 

unity at the column wall, then displays damped oscillations with a period close to dp over a distance of 4-5 

dp into the bulk of the bed, until the void fraction reaches values typical for random-close packings of 

particles (εinter = 0.38-0.4) [72]. This geometrical wall effect is explained by a decrease of packing order as 

the distance from the wall increases. It can have a strong impact on the macroscopic flow heterogeneity, 

axial dispersion, and particle-to-fluid heat and mass transfer, especially at column-to-particle diameter 

ratios below 25 when this critical wall region (wall annulus) begins to occupy a substantial volumetric 

fraction of the bed. This immediately addresses packed beds employed in capillary and chip EC systems 

where about 10-20 particle diameters over the channel cross-section are quite common. 

 

Figure 1.2 shows radial porosity distributions in simulated confined packings of monosized spheres 

(lines), together with independently obtained experimental data (symbols) [57, 72, 73]. The porosity 

distributions share common features, in particular, a similar location and magnitude of the maxima and

minima, as well as a similar decay of the oscillations at increasing distance from the wall. It means that

these packings have similar macroscopic 

geometrical properties and radial 

variations in porosity related to the more 

ordered (layered) structure near the 

confining wall. It has been assumed that 

wall effects which are important for the 

dispersion with hydraulic flow become 

less pronounced in EC when the ζ-

potential of the container wall is the same 

as that of the packing, implying that the 

macroscopic velocity profile is flat [30]. 

Indeed, a systematic appearance of radial 

porosity fluctuations close to the column 

wall has been neglected in describing 

EOF velocity profiles in packed beds at 

lower aspect ratios which are also 

relevant to capillary and chip EC systems 

[30, 44, 74]. Instead, only a mean bed 

porosity is usually considered. 

 

Figure 1.2  Radial distribution of interparticle porosity εinter(r) from the inner

surface of a cylindrical column into its center for three simulated packings

of monosized solid, dielectric spheres with a column-to-particle diameter

ratio of 10 [57]. All simulated packings have the same average porosity of

0.37, but originate from different initial seeds. Symbols correspond to

experimental data of Benenati and Brosilow [72] (circles) and Giese [73]

(squares). Reprinted with permission from [57]. Copyright 2005 American

Chemical Society. 

 

 
Figure 1.3a shows the distribution of simulated interstitial velocities in packing 1 of Figure 1.2 [57]. 

Clearly, these data allow to conclude that radial variations of the axial EOF velocity in confined sphere 
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packings strongly correlate with the radial porosity distribution. Even for a uniform ζ-potential distribution 

(ζw = ζp) the EOF displays a significant heterogeneity caused by the geometrical wall effect. In other 

words, Figure 1.3a resolves a systematic pore-to-pore variation of EOF velocities close to the wall. This 

nonuniformity bears a close relation with the radial porosity distribution, similar to PDF [75]. 

 
The radial distribution of EOF velocities 

(Figure 1.3a) caused by fluctuations in 

packing porosity (Figure 1.2) can be 

analyzed through the local conductivity 

[57]. It should be recalled that the 

conductivity of a packed bed of 

nonconducting spheres saturated with 

electrolyte solution relative to that of the 

bulk solution results from [76] i) the 

reduction of void space and total cross-

sectional area, ii) the decrease of local 

electrical field strength and an increase in 

migration distance for ions due to the 

tortuous nature of the interparticle 

channels, as well as (iii) dilatation and 

constriction of the channels. This may, in 

addition, become a function of the radial 

position inside the packed bed. In 

practice, the Tobias equation [77] is often 

used as an empirical relationship between 

conductivity ratio and porosity of a packed 

bed. Thus, the conductivity of the packing 

can be regarded as being a function of 

radial position in the wall annulus (higher 

conductivity than in the bulk packing). As 

a consequence, radial variations of the 

EOF velocity in confined packings (higher 

velocities in the wall annulus) strongly 

correlate with the actual radial porosity 

distribution [57]. 

Figure 1.3  a) Radial distribution of the interparticle EOF velocity vinter(r) in

packing 1 of Figure 2. Fluid phase properties as in Figure 1, ζw = ζp = –50

mV, and Eext = 50 kV/m. b) Radial distribution of the interparticle EOF

velocity in packing 1 of Figure 2 for different values of the ζ-potential at the

inner surface of the confining cylindrical column (ζw as indicated; ζp = –50

mV). Fluid phase properties as in Figure 1 and Eext = 50 kV/m. Reprinted

with permission from [57]. Copyright 2005 American Chemical Society. 

 

In addition to this geometrical wall effect and its influence on velocity heterogeneity with PDF and EOF 

through confined packings, it is the general mismatch of ζ-potentials at the surfaces of the confining wall 

and the support particles which comprises an electrokinetic wall effect. It can influence the EOF 

heterogeneity, particularly at low column-to-particle diameter ratios [30, 44, 57]. For example, 

electrokinetic potentials at the inner surface of quartz capillaries up to –100 mV and above are not 
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unusual. For the buffers and ionic strengths used in EC this value may be regarded as an upper limit and 

ζw typically ranges between –50 mV and –100 mV [26, 78-80]. By contrast, ζp of most commercial, e.g., 

cation-exchange particles employed in capillary EC is significantly lower than ζw of the commonly used 

fused-silica capillaries [81]. Then, although these surfaces with sulfonic acid (cation exchange particles) 

and silanol groups (fused-silica capillary) both carry negative charge, differences between ζp and ζw can 

still become important. For chip EC, on the other hand, ζw of the employed microfluidic substrates (which 

confine the packed beds) may be significantly lower than ζw of the fused-silica capillaries [82], even lower 

than ζp of the stationary phase particles. 

 

The differences in ζp and ζw influence both volumetric EOF and hydrodynamic dispersion which becomes 

important at low column-to-particle diameter ratios. For EOF through packed beds at low aspect ratio, it 

has been shown theoretically by Rathore and Horváth [30] and Liapis and Grimes [44] that the excess ζ-

potential, resulting in a difference between the velocities associated with the capillary surface and the 

particles surface, can have a deleterious effect on the column cross-sectional flow profile and average 

velocity. These authors have extended the model of Overbeek and Wijga [27] for EOF through capillary 

columns in EC (which are usually packed with spherical particles) to account for the effect of differences 

in ζ-potential at the capillary inner wall and the particles external surface. They derived an expression for 

the EOF velocity in dependence of radial position. According to that model, if the ζ-potential of the 

capillary wall is identical to that of the support material, the EOF velocity becomes constant over the 

whole column cross-section, while differences in ζ-potential result in a decrease or increase of the local 

axial EOF velocities in a near-wall region of the bed (electrokinetic wall effect).  

 

It should be pointed out that this theoretical model does not consider the documented fluctuations in the 

interstitial porosity and tortuosity of packed beds caused by the more ordered (layered) geometrical 

structure in the vicinity of the confining wall (cf. Figures 1.2 and 1.3a). Consequently, an underestimation 

of the interparticle porosity in the near-wall region or annulus by use of a mean porosity in the model of 

Rathore and Horváth [30] and also that adapted by Liapis and Grimes [44] results in artificially reduced 

values of the EOF velocity component close to the confining wall. This becomes more important for lower 

column-to-particle diameter ratios which characterize most packed beds realized in capillary EC, where 

aspect ratios below 25 are rather common. 

 

Figure 1.3b allows to estimate more quantitatively the consequence of differences in ζ-potential at the 

particle and wall surfaces on the EOF nonuniformity. This figure shows the radial distribution of 

interparticle axial velocities in packing 1 of Figure 1.2 for different values of ζw (–25 mV, –50 mV, and –

100 mV) at a constant ζp = –50 mV. Distributions coincide nearly perfectly as the distance from the wall 

becomes larger than only half a particle diameter, indicating that the value of ζw affects the axial EOF 

velocity just in direct vicinity to the wall. Thus, the electrokinetic wall effect operates over a smaller 

distance from the wall than the geometrical wall effect. Further, even with a match of ζ-potentials (ζw = ζp) 

an EOF velocity heterogeneity remains close to the wall due to the locally dominating porosity effect 

(leading to an increased conductivity) which may be reduced by carefully adjusting ζw < ζp (Figure 1.3b). 
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In general, dispersion with EOF in confined sphere packings depends on differences in ζ-potential at the 

particle and wall surfaces. Still more important is the actual column-to-particle diameter ratio in view of the 

resulting radial porosity distribution function which reflects a volumetrically significant (geometrical) wall 

effect that is simply caused by packing hard spheres against a hard wall. A nonuniform size distribution 

can reduce the heterogeneity of interparticle axial EOF velocities in confined packings; smaller spheres 

better fill voids between the larger ones, especially between larger ones and the hard wall, thereby 

reducing the amplitude of local porosity fluctuations [57]. As a consequence, the EOF velocity field 

becomes more uniform. 

 

Experimental investigations using pulsed field gradient nuclear magnetic resonance have demonstrated 

that significantly higher EOF velocities close to the wall than in the center of the column strongly affect 

hydrodynamic dispersion, leading to a long-time disequilibrium in the fluid molecules displacements [83, 

84]. Figure 1.4 illustrates the electrical field-dependence of averaged propagator (displacement

Figure 1.4  Electrokinetic wall effect. a) Axial displacement probability

(averaged propagator) distributions of the fluid molecules as a function of

applied field strength, electrical currents as indicated. b) Averaged

propagator distribution for Eext = 49.2 kV/m. Reproduced with permission

from [87]. Copyright 2002 American Chemical Society. 

probability) distributions of the fluid 

(water) molecules in a packed capillary 

with low column-to-particle diameter ratio, 

thereby revealing the associated 

consequences for axial dispersion. Both 

the capillary wall and the particles surface 

carry negative charge, but in this case ζw 

>> ζp. As the electrical field strength is 

increased (Figure 1.4a) the significantly 

faster wall component becomes visible 

through a decent shoulder towards higher 

molecular displacements at Eext = 21.1 

kV/m from an initially almost Gaussian 

distribution (Eext = 8.7 kV/m). With a 

further increase of the applied field 

strength, the propagator distribution 

becomes very broad (Figure 1.4b) and the 

displacements of the fastest fluid 

molecules in the wall annulus (propagator 

front) are more than three times higher at 

Eext = 49.2 kV/m than those moving in the 

central core of the packed bed. This 

macroscopic flow heterogeneity requires a 

trans-column equilibration of the fluid 

molecules, i.e., an exchange via lateral 

dispersion (mostly by diffusion) over the 

complete capillary radius to approach a 

Gaussian.



   Chapter 1: Fluid dynamics in capillary and chip electrochromatography 
 

14 

To summarize, besides the electrokinetic wall effect, a geometrical wall effect reflected by fluctuations of 

the interparticle porosity in packed beds plays a more important role in capillary and chip EC than usually 

admitted, because aspect ratios typically remain below 25. 
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1.4 Electroosmotic perfusive flow in packed beds of porous particles 

The term perfusion chromatography for packed beds of porous (permeable, conducting) particles refers to 

separation processes with non-zero intraparticle velocity. In classical solid-liquid chromatography it can 

be utilized for reducing the mobile phase mass transfer resistance originating in the intraparticle stagnant 

zone of packed beds [85-89]. Consequences of this phenomenon were recognized already very early, 

e.g., in size-exclusion chromatography [90] and catalyst design [91, 92], or for nutrient transport in 

biological pellets [93]. A driving force for intraparticle hydraulic flow [85, 94] resulting in a non-zero 

velocity component can assist or even dominate – depending on its magnitude relative to the time scales 

of analyte diffusion and adsorption-desorption – conventional, diffusion-limited intraparticle transport. It 

reduces holdup dispersion due to stagnant zones which dominates the longitudinal dispersion in packed 

beds of porous particles at reduced velocities (or Peclet numbers) above 25 [95]. 

 

However, mobile phase perfusion in packed beds of permeable particles is realized with hydraulic flow 

only when relatively high column pressure drops and particles with large pores are used. This, in turn, 

limits the intraparticle surface-to-volume ratio regarding the mechanical strength or adsorption capacity of 

a material. In general, perfusion with hydraulic flow becomes important only for the transport of slowly 

diffusing (large) molecules [87]. 

 

By contrast, electroosmotic perfusion through packed beds of porous particles proceeds with significantly 

higher intraparticle (electroosmotic) permeability [96-98] and contributes to a substantial reduction of 

velocity inequalities between inter- and intraparticle flow patterns. Concerning the electroosmotic 

permeability of packed capillaries the perfusive EOF has shown to offer a superior dispersion 

characteristics (compared to PDF) which accompanies a reduction of velocity extremes in the mobile 

phase flow pattern [42, 99-101]. In particular, plate heights and dispersion coefficients reduced by up to 

one order of magnitude with respect to those found with PDF have been reported [20, 42, 98, 99]. 

 

 
Figure 1.5  Two-dimensional distributions of electroneutral tracer representing the uptake by (and release from) a spherical 

mesoporous glass bead in a packed bed. The applied electrical field (Eext = 13.4 kV/m) creates electroosmotic mobility from left to 

right which results in a substantial value of the intraparticle Peclet number (Peintra = uintradp/Dm, where uintra denotes the average 

intraparticle EOF velocity, dp the particle diameter, and Dm the diffusion coefficient of the tracer in the mobile phase), indicating 

convection-dominated intraparticle transport by the EOF. Reproduced with permission from [107]. Copyright 2003 Wiley-VCH. 
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Figure 1.5 demonstrates that significant intraparticle EOF exists even under conditions of EDL overlap in 

the intraparticle pores. This has been shown by confocal laser scanning microscopy using a capillary 

packed with spherical mesoporous glass beads. By employing refractive index matching throughout the 

packing both transient and stationary intraparticle profiles of an electroneutral, nonadsorbing fluorescent 

tracer could be analyzed quantitatively, allowing the determination of intraparticle EOF velocities based 

on a simple mathematical model [102, 103]. As seen in Figure 1.5, diffusion-limited transport in the 

absence of an applied field produces distribution profiles with spherical symmetry during the tracer uptake 

by (and release from) a glass bead. This is well-known behaviour [104-108]. By contrast, an examination 

of the tracer distributions observed in the presence of an electrical field (Eext = 13.4 kV/m) reveals 

deviations from this spherical symmetry. The intraparticle velocity field responds to the unidirectional 

electrokinetic driving force, as is evidenced by the tracer distributions which have become unsymmetrical 

in the macroscopic field direction. At the same time, they retain axial symmetry. Thus, the symmetry of 

the analyte profiles is reduced from spherical to axisymmetric. The applied field results in an intraparticle 

electroosmotic mobility from left to right in Figure 1.5. In other words, the intraparticle EOF during tracer 

uptake (release) moves the concentration minimum (maximum) downstream as compared to pure 

molecular diffusion, resulting in higher (lower) concentrations in the upstream half of the sphere than the 

downstream. This is caused by the fact that convection operates in the same (opposite) direction as 

diffusion in the upstream half of a bead, but opposite (parallel) to diffusion downstream. 

 

An important parameter for analyzing intraparticle forced convection with EOF in packed beds of porous 

particles is the intraparticle EDL overlap represented by rintra/λD [20, 42, 109-111], where rintra denotes the 

mean pore radius. The results of detailed experimental studies of the electroosmotic mobility (μeo) in 

packed beds of particles with different intraparticle porosities and pore sizes are shown in Figure 1.6 

[109]. Nonporous particles have been included in this study for comparison. These data confirm a 

different electrokinetic behaviour of porous (Figure 1.6b) vs. nonporous (Figure 1.6a) spherical particles 

consisting of the same base material. In particular, a continuous decrease of μeo with increasing ionic 

strength is found for nonporous particles (Figure 1.6a). It characterizes "normal" or "conventional" EDL 

behaviour insofar as, while the ionic strength increases, the EDL is compressed which results in a 

reduced shear-plane potential at the solid-liquid interface [28]. By contrast, μeo for the porous particles 

displays pronounced maxima at a location that depends on ionic strength in a particular case because of 

the different intraparticle pore sizes (Figure 1.6b) [109]. 

 

Thus, in contrast to the familiar behaviour of the hard (solid, dielectric) spheres the trend in μeo for the 

porous particles (Figure 1.6b) reveals differences which depend on intraparticle porosity and the actual 

EDL overlap, as reflected by the ratio rintra/λD (the assumption of a thin EDL cannot be made inside the 

particles). With increasing concentration of Tris buffer from 10-4 M μeo first increases, then moves through 

a maximum at some particle-specific concentration between 10-3 and 10-2 M, followed by a decrease 

towards relatively similar curves above ca. 10-2 M Tris. Porous particles are permeable for EOF and 

conducting, depending on the intraparticle porosity and pore sizes. At lower buffer concentrations μeo for 

the solid spheres (Figure 1.6a) significantly exceeds that of any porous spheres used in that study (Figure 

1.6b). It means that, as an originally solid, dielectric sphere is made permeable and conducting, the ratio 
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of specific conductivities within the now porous particle and bulk liquid will increase from zero, bending 

electrical field lines toward the particles interior which reduces the tangential field component at

the particles external surface. 

Consequently, this contribution from the 

porosity effect reduces EOF velocities 

associated with the shear stresses 

concentrated in the relatively thin EDL at 

the particles external solid-liquid interface, 

and it can explain the decreased values of 

μeo with respect to solid, dielectric spheres 

at lower ionic strengths (Figure 1.6b, 

between 10-4 and about 2 x 10-3 M Tris) 

where strong intraparticle EDL overlap 

prevails. However, this contribution to μeo 

of the porous particles is more than 

compensated at increasing buffer 

concentration by the perfusion effect due 

to the intraparticle-forced EOF, resulting 

also in a higher average velocity through 

the packing. The maximum in μeo then is a 

consequence of competitive contributions 

from this intraparticle EOF (increasing 

perfusion) and the normal EDL behaviour 

at the particles external surface. The latter 

effect which ultimately dominates (leading 

to the decrease of μeo above 2 x 10-3 M 

Tris, although intraparticle EDL overlap 

continues to be further reduced) has 

already been recognized as the origin of a 

continuous mobility decrease at 

increasing ionic strength for the 

nonporous spheres (Figure 1.6a). 

Figure 1.6 Electroosmotic mobility (μeo) in fixed beds (packed

capillary columns) of spherical particles depending on the effective

mobile phase Tris concentration in 80:20 acetonitrile/water (v/v). a)

Nonporous particles ( ). b) Porous particles with intraparticle mean 

pore radius (rintra) of 20.5 nm ( ), 52.5 nm ( ), and 116 nm ( ), 

respectively. Reprinted with permission from [109]. Copyright 2003 

American Chemical Society. 

 

 

To summarize, the dependence of μeo in packed beds is a consequence of basically three contributions 

[109, 110]: i) normal or conventional EDL behaviour at the particles external surface, leading to a 

decrease of mobility with increasing ionic strength, ii) generation of intraparticle volumetric EOF 

(increasing with increasing ionic strength), and iii) the porosity of a particle. The last contribution results 

from the fact that conducting electrolyte in the particle introduces a normal component to the electrical 

field at its outer surface. This reduces a fields tangential component, but because the latter determines 

velocity at the particles external surface, it is expected to decrease compared to a solid particle, the more 

as porosity increases. This is demonstrated by Figure 1.7 [109, 112]. 
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 Figure 1.7  µeo vs. rintra/λD for packed beds of

spherical porous particles with different intraparticle

mean pore radius (rintra) and porosity (εintra). Same

conditions as in Figure 6. Reproduced with

permission from [114]. Copyright 2003 American

Chemical Society. 

 

 

 

 

 

 

Due to the relatively small particle diameters (dp = 3-5 µm) and limitations in maximum electrical field 

strength and currents resulting from Joule heating, the plate height data in capillary and chip EC are 

usually acquired only over a limited range of EOF velocities, typically not exceeding 2-3 mm/s (translating 

to a limited range of Peclet numbers, Pe). Thus, it is difficult to adequately differentiate between 

dispersion processes originating in the flowing and the remaining stagnant zones of packed beds, 

especially in view of a plate height analysis [95, 98, 110, 113-116]. With PDF the stochastic velocity 

fluctuations in the interparticle pore space cause mechanical dispersion which grows linearly with Pe = 

uavdp/Dm (where uav is the average velocity through the bed and Dm the analyte or tracer diffusivity in the 

mobile phase). Further, regions of zero velocity inside the particles and close to their external surface 

give rise to nonmechanical contributions growing as Pe2 (holdup dispersion) and Pe·ln(Pe) (boundary-

layer dispersion), respectively [115]. 

 

Figure 1.8 compares axial dispersion 

coefficients (Dax) normalized by Dm for 

EOF and PDF through packings of 

unusually large particles (dp = 40 µm) in 

order to realize values of Pe with EOF up 

to 20 [98]. The EOF demonstrates an 

overwhelming performance. Compared to 

PDF the range over which molecular 

diffusion still controls the dispersion 

(Dax/Dm < 1) extends to much higher 

values of Pe. Moreover, dispersion 

coefficients are reduced by up to one 

order of magnitude. The dependence of 

electroosmotic perfusion on rintra/λD is 

Figure 1.8  Axial dispersion (Dax/Dm) in packed beds of porous particles vs.

the Peclet number (Pe = uavdp/Dm, where uav denotes the average velocity

through a bed, dp the mean particle diameter, and Dm the diffusion

coefficient in the mobile phase) for pressure-driven flow (PDF) ( , ) and

electroosmotic flow (EOF) ( , ). Reprinted with permission from [98].

Copyright 2001 Wiley-VCH. 

further illustrated by the two different intraparticle pore sizes in Figure 1.8. EDL overlap is effectively 

suppressed with the larger pores (rintra/λD ≈ 25), while it remains significant with the smaller pores (rintra/λD 

≈ 1). Yet, the hydrodynamic dispersion for EOF through the bed of particles with smaller intraparticle 
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pores (rintra = 5 nm) is still improved compared to PDF, although it is difficult to relate this improvement 

quantitatively to any physical mechanism like the electroosmotic perfusion and/or a reduced mechanical 

dispersion, because even these data with large particles are acquired over only a too limited range of Pe.  

 

As shown in Figure 1.9 the highest Pe realized in EC with capillary columns and typical particle sizes (dp 

≈ 3 µm) [109] is necessarily much smaller than in Figure 1.8, by about one order of magnitude. With such 

a small particle size the electroosmotic perfusion mechanism has a little impact on axial dispersion. In 

other words, for all ionic strengths (Figure 1.9) the data remain within the diffusion-limited regime of axial 

dispersion (Dax < Dm), although a slight improvement in Dax/Dm (scaling with rintra/λD) remains discernible. 

 

 

 Figure 1.9  Influence of mobile phase Tris 

concentration in 80:20 acetonitrile/water (v/v) on Dax/Dm

of methylbenzoate vs. the Peclet number (Pe =

uavdp/Dm, where uav denotes the average EOF or PDF 

bed velocity, dp the mean particle diameter, and Dm the 

diffusion coefficient in the mobile phase). The packing is 

made of porous C18-silica-particles with dp = 2.45 µm 

and rintra = 52.5 nm. Data for capillary LC with the same 

packing are included for comparison. Reproduced with 

permission from [115]. Copyright 2004, Wiley-VCH. 

 

  

 

 

 

 

 

 

 

 

Two conclusions about intraparticle pore size and particle size can be made. Because of the different 

operational domain of the perfusion mechanism with EOF compared to PDF, very large pores are not 

needed in EC systems for realizing significant electroosmotic perfusion. The pore space morphology 

rather should be optimized in view of the surface-to-volume ratio, because packed beds of high-surface-

area particles (with smaller pores) are required for difficult separations regarding resolution [117]. In 

general, any flow inside particles is advantageous for zone spreading because it reduces, in a global 

sense, the velocity inequality of the flow pattern [118]. However, it becomes less important compared to 

intraparticle diffusion as the particle diameter is reduced towards submicrometer dimensions. In other 

words, diffusive intraparticle mass transfer then is increasingly effective with respect to convective 

transport. For example, plate height data for columns packed with nanoparticles cannot be recorded for 

sufficiently high velocities that would allow to leave the regime where axial diffusion dominates the overall 

dispersion (Figure 1.9) which presents the ultimate limitation to performance [60, 119]. 

 

Finally, the diffusivities of relevant analytes span a range from 10-9 to 10-12 m2/s and, thus, they also 

determine the relative importance of the electroosmotic perfusion mechanism via the achievable 

intraparticle Peclet number (Figure 1.5). 
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1.5 Conclusions 

Employing advanced numerical simulations, it is now possible to obtain complete three-dimensional 

information on EOF velocity fields and resulting dispersion in packed beds. This insight is difficult to gain 

by experimental techniques. One major conclusion of these simulations is that the local (pore-level) 

velocity profile in the interparticle pore space of a bed of solid, dielectric spheres is nonuniform from a 

fundamental point of view (Figure 1.1). Deviation from the flat, plug-like EOF velocity profile observed in a 

single homogeneous capillary or channel (in the thin-EDL-limit) is caused by a nonuniform distribution of 

local electrical field strength in the packing which, in turn, can be directly related to local variations in 

cross-sectional area of the interparticle pore space. This dynamics of local EOF in a packed bed as 

compared to the much simpler, more readily anticipated "single-channel porous medium" (a single 

homogeneous capillary or channel) thus has a purely morphological origin. 

 

The more ordered packing structure in confined sphere packings close to the column wall forms the basis 

for further EOF heterogeneity. The higher wall than bulk porosity over a distance on the order of 4-5 

particle diameters from the wall (Figure 1.2) results in higher local axial velocities (Figure 1.3a). In 

addition, the local EOF velocity also depends on differences in ζ-potential at the column wall and particle 

surface. This effect prevails over a distance of less than one particle diameter from the wall (Figure 1.3b). 

While both effects (electrokinetic and geometrical wall effect) become relatively unimportant at increasing 

column-to-particle diameter ratio, they remain important for the performance of capillary and chip EC 

systems in the general line of miniaturization of the channel dimensions (Figure 1.4), which is usually not 

accompanied by a corresponding reduction of particle size. As a consequence, column-to-particle 

diameter (or channel-to-particle size) ratios on the order of 10-20 are quite common. Porosity fluctuations 

inherent to confined packings of spherical particles (geometrical wall effect) may be principally avoided 

using monoliths. 

 

Experimental studies have been reviewed which illustrate the scaling of hydrodynamic dispersion with the 

average EOF velocity through packed beds, especially in comparison to hydraulic flow. In contrast to 

solid, dielectric spheres porous particles support the generation of intraparticle EOF (Figures 1.5-1.7). It 

can strongly reduce intraparticle mass transfer resistance (Figure 1.5), and the electroosmotic perfusion 

provides a mechanism by which significantly improved separation efficiencies with respect to hydraulic 

flow can be achieved using packed beds of porous, i.e., permeable and conducting particles (Figures 1.8 

and 1.9). 
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2 Concentration polarization effects in porous media 
 
2.1 Perspective 

In membranes, random-close sphere packings, or monoliths which contain charged solid-liquid 

interfaces several electrical fields may be superimposed. This includes the local fields near the wall of 

charged pores or around spacer groups and grafted polymer chains extending from the solid surface, 

Donnan potentials between different compartments, the quasi-equilibrium or primary EDL (λd) at 

phase boundaries, as well as externally applied electrical fields. Electrokinetic transport of bulk liquid 

and charged analytes through porous media induced by an external d.c. electrical field plays an 

important role in many analytical, technological, and environmental processes [1-9]. It relies on the 

electromigration of ions (background electrolyte), electrophoresis (charged analytes), as well as 

electroosmosis (bulk liquid) driven by the shear stresses which are concentrated in the EDL along a 

solid-liquid interface [10]. 

 
CEC combines the chromatographic separation based on a partitioning between stationary and mobile 

phases with the electrokinetic mobile phase transport and electrophoretic selectivity based on the 

different mobilities of charged analytes in the applied electrical field [5]. It has been demonstrated that 

EOF in CEC can achieve a significant increase in separation efficiency and allows to pack columns 

with smaller particles compared to LC [11-13]. The typical thickness of the classical (or primary) EDL 

(nanometer scale) is usually much smaller than any of the macropore dimensions (rmacro/λd >> 1) in the 

sphere packings and monoliths (micrometer scale) employed in CEC. In the following the thickness of 

the primary EDL is, as typically done, approximated by the Debye screening length λD (Chapter 1, eq. 

1.1) [10]. Thus, the macropore space in this so-called thin-EDL-limit contains quasi-electroneutral 

liquid, and volumetric EOF remains relatively independent of interparticle (or interskeleton) macropore 

dimensions (Chapter 1) [14]. 

 

While the electroosmotic perfusion mechanism has attracted attention in CEC in view of speed and 

especially separation efficiency as outlined in Chapter 1.4, it should be recognized that the 

intraparticle pore space in sphere packings simultaneously is an ion-permselective, i.e., charge-

selective region due to the EDL overlap which persists over a wide range of experimental conditions in 

CEC (rintra/λd << 100). With decreasing intraparticle EDL overlap the ion-permselectivity decreases 

and, concomitantly, volumetric EOF increases (Chapter 1.4). This charge-selectivity and its unique 

consequences for coupled charge and mass transport in CEC should not be underestimated. Ion-

permselectivity is an often tailored characteristic of porous media which they may demonstrate as a 

whole (e.g., flat membranes which separate completely the adjacent solutions) or by means of 

discrete (e.g., meso- and/or microporous) ion-permselective domains in materials which are 

macroscopically charge-nonselective. Thus, the ion-permselectivity is also an inherent property of the 

intraparticle or intraskeleton mesopores of particulate and monolithic columns used in CEC [15-19]. In 

this respect, associated mesopore-scale EDL interaction leads to exclusion of co-ions and counter-ion 
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enrichment. At electrochemical equilibrium, without an applied field, the Donnan-potential balances the 

tendency of ions to level out the existing concentration differences [20]. It pulls cations back into the 

(negatively charged) intraskeleton pore space and anions back into the (positively charged) 

interskeleton compartment [20]. For ideal solutions we have: 

 

macroi,

mesoi,

i
macromesoDon c

c
ln 

Fz
RT

−=Φ−Φ≡Φ ,     (2.1) 

 

with index i representing the co- and counter-ionic buffer components. The distribution coefficient 

ci,meso/ci,macro which represents the ion-permselectivity of the system depends on ionic strength of the 

mobile phase, surface charge density in the mesopores, as well as on valencies of co- and counter-

ionic species. Actually, these parameters similarly influence EDL overlap and resulting ion-exclusion in 

a double-layer model [10]. For porous media containing ideally ion-permselective regions the charge 

transport in these domains is exclusively achieved by the counter-ions [20]. 
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2.2 Background and related work 

The favoured permeation of counter-ions is the main transport characteristics of ion-exchange 

membranes, and ion-permselective transport is a basis for various electrochemical and electrokinetic 

processes including electrode reactions and electrodialysis [4, 21]. Thus, a better understanding of the 

coupled mass and charge transport in CEC may be achieved using models that have been developed 

for transport through ion-exchange membranes [21-29]. An important implication of coupled mass and 

charge transport is that under the influence of chemical or electrical potential gradients concentration 

polarization (CP) develops [30-39]. When strong electrical fields are superimposed in CEC on internal 

potential gradients they will induce CP, a complex of effects related to the formation of concentration 

gradients of ionic species in the electrolyte solution adjacent to a charge-selective interface upon the 

passage of electrical current normal to that interface [10]. 

 

This is illustrated in Figure 2.1a for parallel, locally flat interfaces separating quasi-electroneutral 

macropore space from a charge-selective domain, e.g., interskeleton or interparticle macropore space 

from the mesoporous segment in a monolith or mesoporous particle in a fixed bed.  

Figure 2.1  Different stages of locally induced CP at the interface between quasi-electroneutral and charge-selective domains, 

e.g., for a membrane, a porous particle in a fixed bed, or the skeleton of a monolith. a) Schematic distribution of ion 

concentrations in equilibrium CP with local electroneutrality in the depleted and enriched CP zones (stage 1), and under 

conditions of nonequilibrium CP with a secondary, electrical field-induced EDL (stage 2). The space charge region (SCR) in the 

depleted CP zone constitutes the mobile part of the secondary EDL. b) Characteristic regions of a voltage-current curve. 

Limiting current density and plateau length are key parameters of CP in membrane science. 

On that side where counter-ions enter the charge-selective domain in the direction of the applied field 

the local interplay of convection by EOF, diffusion, and electromigration forms a convective diffusion 

boundary layer (CDL) with reduced ion concentrations relative to bulk solution. It comprises a depleted 

CP zone (Figure 2.1a; stage 1). At the opposite interface where counter-ions leave the charge-

selective region the electrolyte concentration increases leading to an enriched CP zone. Thus, zones 

of increased and decreased ion concentration occur in the bulk fluid at the cathodic and anodic 

interfaces of a cation-selective domain, respectively, or at anodic and cathodic interfaces of an anion-

selective domain. In the classical picture of CP local electroneutrality is preserved in the enriched and 

depleted CP zones (stage 1 in Figure 2.1a) [10]. While the classical theory of CP assumes ideal ion-
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permselectivity, i.e., transport numbers of co-ions are zero, while this sum is unity for counter-ions 

because mobile co-ions are simply not present in the ion-permselective region, the experimental 

conditions in CEC are nonideal in this respect, but can be tuned by the actual EDL overlap (or 

Donnan-exclusion of co-ions) via the ionic strength. 

 

The fraction of the current, which is carried by a certain ionic species, can be expressed by the ion 

transport or transference number which are given by [40]: 

Ion-permselective interfaces in 

hierarchical porous media 
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where Ti and ti are the transport and 

transference number of species i, Ji is 

its flux due to diffusive flux, electrical 

transference and convective transfer 

and zi its valence. According to this 

definition, the transport number Ti is 

the product of the transference number 

ti and the electrochemical valence zi of 

the species. ti is defined as the number 

of moles transferred by 1 faraday of 

electricity through a stationary cross 

section [20]. We consider the matrix 

(the  pore  space  of  the membrane or 

Figure 2.2 Development of CP at the anodic interface (depleted CP

zone) between a bulk, macroporous and mesoporous, ion-permselective

domain. The concentration (c+) and transport number (z+t+) of a counter-ion

in the latter exceed substantially those of the co-ion; t+ denotes the

transference number [20]. For simplicity we assume a symmetrical, strong

background electrolyte; the external field (Eext) is applied from left to right. 

the intraparticle/intraskeleton pore space) as stationary frame of reference. By definition, the transport 

numbers are positive for all ions and zero for (the electrically neutral) solvent. Thus the sum over all 

transport numbers or transference numbers is unity: 

 

1tz i
i

i =∑ . (2.4) 

 

It means that if we consider a homogeneous electrolyte, transference numbers in the quasi 

electroneutral macropore space are determined by the ratio of their mobilities [20]. In the ion-

permselective pore space the concentration of counter-ions exceeds by far that of the co-ions. Then 

the electrical current is mainly accomplished by the former. This is illustrated in Figure 2.2. The sum of 
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the transport numbers of the counter-ions in the ion-permselective pore space is always higher than 

that of the co-ions and their concentration in the ion-permselective pore space is always close to the 

fixed charges of the membrane. If more than one counter-ionic species is present in the system, which 

is assumed here for simplicity, the transport number of different counter-ions can be quite different, 

depending on charge numbers, diffusion coefficients and concentrations [41]. 

 

In contrast to the macroscopically charge-nonselective monoliths and particulate beds (Figure 2.2) 

which contain discrete ion-permselective domains (porous particles or skeleton) the adjacent CP 

zones have no direct contact for a membrane, although they depend on each other due to the 

transferred current (Figure 2.1a).  

 

CP plays an important role in many electrokinetic processes because it affects both local ion 

concentrations and mass transport to preserve continuity of mass and charge fluxes. The depleted CP 

zone is a CDL which presents external fluid-side mass transfer resistance to counter-ion flux from bulk 

solution towards an ion-exchange materials external surface and, therefore, into the ion-permselective 

domain. At sufficiently low field strength, the voltage-current behaviour is expected to follow Ohms law 

(Figure 2.1b; region 1). At increasing field strength the concentration of ions in the depleted CP zone 

is reduced towards zero and diffusion-limited transport through the CDL approaches a maximum value 

which, in the classical description of CP, particularly in the context of electrodialysis, is also known as 

limiting current density (see region 2 in Figure 2.1b) [30, 31, 42-46]. The potential of overcoming 

limiting current densities has stimulated research on CP and its effects in electrodialysis. One 

possibility is to reduce the thickness of the depleted CP zone by vigorous stirring [35]. On the other 

hand, overlimiting current densities through ion-exchange membranes were also realized with 

macroscopically quiescent electrolyte solutions by increasing field strengths just further beyond values 

characterizing the plateau region. Detailed studies of this nonlinear regime have revealed periodically 

varying trans-membrane currents which begin oscillating at high frequencies for higher field strengths 

[47, 48]. A visualisation of the hydrodynamics has detected strong fluctuations in the adjoining liquid 

indicating convection close to the surface [49]. Nonequilibrium electroosmotic slip was proposed as 

mechanism for convection at a charge-selective interface [50]; for higher field strengths a secondary, 

nonequilibrium EDL (compared to the primary, quasi-equilibrium EDL) is electrokinetically induced at 

the interface of the depleted CP zone and the membrane pore fluid, where the concentration of 

counter-ions then exceeds that of co-ions by far (stage 2; Figure 2.1a) [50-54].  

 

The nonequilibrium space charges are induced locally by the normal component of the applied field 

and disturb electroneutrality over a much larger length scale than the primary EDL [54]. Via volume 

force interaction of the mobile space charge region (see SCR; Figure 2.1a) with the tangential field 

component a nonequilibrium electroosmotic slip results between membrane surface and CDL. Then, 

the originally quiescent CP zone is convectively disturbed and a convective instability tends to destroy 

the CDL locally. Thus, the diffusion-limitation to mass transfer is removed in this region and 

overlimiting current densities through a membrane can be realized (Figure 2.1b; region 3) [55-58]. 
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Compared with the idealized flat membrane geometry, systems of a single ion-permselective particle 

as well as fixed multiparticle systems show a similar local transport complexity (Figure 2.3). Thus, 

under typical conditions in CEC ion-permselectivity leads to a formation of depleted and enriched CP 

zones around the spherical-shaped particles. This is illustrated for a single particle in Figure 2.3 

employing co-ionic (Figure 2.3a) and counter-ionic fluorescent tracer (Figure 2.3b) by quantitative 

confocal laser scanning microscopy (CLSM). The microscopic analysis of CP is realized employing 

refractive index matching of the liquid electrolyte with respect to the mesoporous silica-based particles 

[59]. It employs a microfluidic setup developed in our group, where single spheres can be fixed and it 

allows to realize application of controlled hydrodynamic flow [60]. For the co-ionic tracer, we can see 

an intraparticle exclusion at electrochemical equilibrium, i.e. its concentration is significantly lower than 

that in the external solution, which can be explained by a simple Donnan-exclusion mechanism. Vice 

versa, for the counter-ionic tracer, we can see an intraparticle enrichment at electrochemical 

equilibrium, i.e. its concentration exceeds significantly that of the external solution. With a macroscopic 

external electrical field CP is induced, which comprises a depleted CP zone at the anodic hemisphere 

(see Figure 2.2 for comparison) and an enriched CP zone at the cathodic hemisphere. These zones 

each occupy one half of a spheres surface and are seen to have  rotational symmetry  with  respect  to 
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Figure 2.3  CP visualized by quantitative confocal laser scanning microscopy (CLSM) with a single porous (cation-selective) 

particle, fixed in an open channel. Mobile phase: 90:10 DMSO/water (v/v) with 10 mM sodium-acetate containing a)10-5 M twice 

negatively charged Bodipy-disulfonate and b) 10-5  M positively charged Rhodmine 6G. The particles were 40 µm in size and 

had an intraparticle pore radius (rintra) of 4.5 nm, resulting in an EDL overlap (rintra/λd ~ 2). Applied PDF results in an average 

velocity though the channel of 1.1 mm/s. Axial centerline profiles were normalized with respect to their maximum values at 

electrochemical equilibrium (without superimposed external electrical field). The images were acquired using constant laser and 

detector settings optimized for each tracer. 
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the field direction [61]. In contrast to membranes anodic and cathodic compartments are connected 

via bulk solution in systems with discrete charge-selective spatial domains. Nevertheless, as transport 

of counterionic tracer increases with increasing electrical field strength because of increasing current 

density through the particle together with backward diffusive flux of counter-ionic tracer from the 

enriched CP zone, intraparticle concentration of (fluorescent) counter-ions is increasing significantly 

with the applied field strength. 

 

The basic element of nonequilibrium 

electroosmotic slip, or in the literature 

referred to as electroosmosis of the 

second kind for curved interfaces is 

the secondary EDL which consists of a 

mobile (fluid-side) counter-ionic SCR 

and an immobile (particle-side) co-

ionic SCR (Figure 2.4a). By the 

interplay of the limiting diffusive flux 

through the CDL and the strong 

electrokinetic flux of counter-ions 

within a spherical, ion-permselective 

particle nonequilibrium space charges 

can be induced locally at the solid-

liquid interface (in the depleted CP 

zone of the anodic hemisphere) by the 

normal component of the applied field 

at an advanced stage of CP. However, 

the local normal component of the 

applied field varies systematically 

along this interface from the anodic 

pole of a bead, being maximum there, 

to the equator where it is zero. For the 

tangential field component it is just the 

opposite way; it is maximum at the 

equator, but zero at the pole. 

Consequently, both the intensity of the 

SCRs and velocity of electroosmosis 

of the second kind also vary 

systematically along the interface of 

the anodic hemisphere. Thus, from a 

hydrodynamic viewpoint, the thickness 

of the CDL changes considerably 

along    the    bead    surface.     In    a 

Figure 2.4 a) Induction of a nonequilibrium, secondary EDL in the

depleted CP zone at the anodic interface between bulk, macroporous and

ion-permselective domains by the normal field component (En). The

electrokinetic transport of counter-ions in the charge-selective

compartment represented by the electroosmosis and electrophoresis

velocities (ueo and uep) exceeds the diffusive transport of counter-ions

through the CDL. The tangential field component (Et) interacts locally with

a charge density of the mobile counter-ions (ρSCR) leading to

electroosmosis of the second kind within the macropore space. b) Potential

drop (pole-to-pole) over a spherical particle including anodic CDL and

mobile SCR, as well as the cathodic CP zone. The dashed line compares

the potential drop in bulk electrolyte solution. Induced-charge

electroosmosis at a particles external surface then is characterized by

nonlinear local slip velocities ueo ∝ Δφ(En)Et; the overpotential Δφ here

replaces the classical ζ-potential. 
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two-dimensional picture the depleted CP zone which represents intensity of the mobile SCR and 

thickness of the CDL close to a single, isolated spherical particle may be illustrated by the sickle-

shaped region in Figure 2.4b.  

 

Generally the resulting nonequilibrium electrokinetics have a number of implications which have been 

investigated for systems containing the particles either as fixed single spheres or as dilute 

suspensions. For freely-dispersed spheres (which are ionic or electrical conductors) a nonlinear 

dependence of electrophoretic velocities on applied field strength has been measured (electrophoresis 

of the second kind) [62]. Vice versa, in devices with fixed single spheres a nonlinear dependence of 

EOF slip velocities at the curved surface of a sphere on the field strength was revealed 

(electroosmosis of the second kind) [61]. To stress it again, the novelty of this electrokinetics is that 

the primary EDL is complemented by a secondary EDL which depends on the applied field strength 

concerning both its local dimension and charge density (Figure 2.4). 
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2.3 Implications for electrochromatography 

In order to realize an increased surface-to-volume ratio almost exclusively porous particles are used in 

the engineering and life sciences, especially in view of separations and purification issues and desired 

capacity, throughput, and sample complexity, which require a large specific surface area [20, 63, 64]. 

Figure 2.5 illustrates that ion-permselectivity can be expected to develop in the intraparticle or 

intraskeleton mesopores of particulate and monolithic columns typically used in the aforementioned 

applications, including CEC [5, 65-68]. 

 

Because electrical fields (or currents), 

ion concentrations and velocity 

distributions are mutually dependent, 

much higher complexity arises in 

electrochromatographic systems when 

an external electrical field is 

superimposed on internal potential 

gradients, which has yet been nor 

realized or characterized in these 

systems. However, it is virtually 

obvious that the ideal single-particle 

picture (Figure 2.3), with respect to 

developing CP, must be strongly 

affected in multi-particle systems by 

the       influence      of       approaching 
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Figure 2.5 Illustration of bimodal pore size distribution in packed beds of

porous particles and monolithic structures, consisting of interparticle

(interskeleton) macropores and intraparticle (intraskeleton) mesopores;

typical EDL dimensions (λD) indicate the ion-permselectivity on the

mesopore scale.  

neighbours via the local hydrodynamics and interaction of their CP zones. In this respect, an important 

difference between CEC practice and electrokinetic studies with disperse systems or single particles 

needs attention. While in CEC particulate systems composed of random-close sphere packings are 

used, dilute systems or single particles were encountered in these earlier investigations of the 

electrokinetic phenomena of the second kind [61, 69-71]. 

 

Further electrohydrodynamical implications of the aforementioned non-equilibrium electrokinetics are 

to be probed, since in scaling towards typical parameters in CEC it should be realized that 

electroosmosis of the second kind in first approximation depends linearly on a particle diameter, but 

squared on the applied field strength (Figure 2.4b) [71]. In view of CEC yet the question arises of how 

much of these phenomena can still be expected to develop and how much interaction of CP zones 

can be observed in the dense multiparticle systems and monolithic structures? A beneficial effect 

accompanying the nonlinear dynamics may be the development of pore pressure based on continuity 

arguments. Although the details of a microscopic operation in porous media and potential use of this 

effect for enhanced lateral fluid mixing (angular dependence of nonequilibrium electroosmotic slip) 

need resolving studies, the present thesis shows that it can be tuned to largely overcome a bottleneck 

in liquid-phase separations, namely analyte equilibration over the whole column cross-section. 
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Summarizing, this chapter demonstrates, that as a consequence of ion-permselectivity, CP forms a 

basic element of charge transfer between different regions in electrochromatographic media and, via 

local ionic strengths, also influences the density of electrical field lines and distribution of ζ-potential in 

the primary EDL along curved interfaces in particulate and monolithic beds. In this respect, an 

important consequence of CP is an adoption of the electrokinetic effects based on a nonequilibrium (or 

secondary) EDL that may be induced in the depleted CP zone by electrical field strengths realized in 

CEC, and which are explored in Chapters 3 and 4. Although mostly unexplored, CP also gains a 

fundamental, rather than special significance for CEC applications in active areas like proteomics and 

pharmaceutical analysis, which is to be shown in Chapter 5. Thus, the remainder of this work will 

focus on the illustration of nonequilibrium effects due to induced space charges as related to the 

potential for speed and efficiency in CEC, but more important the migration and retention dynamics of 

charged analytes relevant for (bio-) pharmaceutical applications. 
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3 Electrohydrodynamics in hierarchically structured monolithic and 

particulate fixed beds 
 
3.1 Introduction 

This chapter investigates the basic dependence of EOF velocity and hydrodynamic dispersion in CEC 

on the variation of applied field and mobile phase ionic strengths employing silica-based particulate 

and monolithic fixed beds. The employed porous media have a hierarchical structure characterized by 

discrete intraparticle (intraskeleton) mesoporous and interparticle (interskeleton) macroporous spatial 

domains, as required for probing of the nonlinear or nonequilibrium dynamics described in Chapter 2. 

It is shown, that while the macroporous domains contain quasi-electroneutral electrolyte solution, the 

ion-permselectivity (charge-selectivity) of the mesoporous domains determines co-ion exclusion and 

counter-ion enrichment at electrochemical equilibrium (without superimposed electrical field) which 

depends on mesopore-scale EDL overlap and surface charge density. After investigating this profound 

adjustable, locally charge-selective transport realized under most general and typical conditions in LC, 

the general rather than exceptional importance of nonequilibrium CP and CP-based induced-charge 

electroosmosis in CEC is investigated. We first demonstrate CP and the nonlinear EOF dynamics in 

silica-based monoliths and sphere packings, then relate these phenomena to the morphology of the 

hierarchically structured materials, applied field strength, and local charge-selectivity, analyse this 

dynamics complementary by quantitative CLSM, and finally correlate induced-charge electroosmosis 

with improved separation efficiencies of electroneutral analytes under typical experimental conditions 

in CEC. 
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3.2 Experimental 

Chemicals and materials. Tris(hydroxymethyl)aminomethane (Tris), acetonitrile, hydrochloric acid, 

and dimethylsulfoxide (DMSO) were purchased from Fluka (Sigma-Aldrich Chemie, Taufkirchen, 

Germany). Alkylbenzoates, naphthalene, anthracene, pyrene, and benzene sulfonic acid came from 

Merck (Darmstadt, Germany). Fluorescent dyes for CLSM studies, the electroneutral Bodipy 493/503 

and twice negatively charged Bodipy-disulfonate, were obtained from Molecular Probes (Leiden, The 

Netherlands). The negatively charged fluorescent nanoparticles with a nominal size of 50 nm were 

purchased from Duke Scientific (Palo Alto, CA). Bare silica and C18-silica monoliths fixed in 100 or 50 

µm i.d. and typically 50 cm long cylindrical fused-silica capillaries, as well as porous C18-silica 

particles with different intraparticle pore sizes, but comparable diameter (Table 3.1) were received as 

research samples from Merck (Darmstadt, Germany), together with mercury intrusion and nitrogen 

adsorption data needed for the determination of the intraparticle pore volumes and surface areas. As 

mean pore diameters increase the surface-to-volume ratio decreases significantly and is expectedly 

smallest for nonporous C18-silica particles (Micra 3 µm) obtained from Bischoff Chromatography 

(Leonberg, Germany). The structure of the monoliths is characterized by macropores with a mean 

diameter of about 2 µm and 13 nm mesopores [1], as is indicated in Figure 3.1. 

 
Table 3.1 
Physical data for the (non)porous C18-silica particles. 

Particles dp [µm] a) Vpore [ml/g] dpore [nm] b) εintra
 c) As [m2/g] d)

2.45 0.85 19 0.66 177.8 

2.45 0.97 25 0.68 109.3 

2.45 0.88 41 0.66 64.7 

2.46 0.65 105 0.59 21.1 

Porous spheres 

2.42 0.34 232 0.43 7.5 

Nonporous 2.45 – ca. 1 e)

 
a) Refers to the external surface-averaged particle diameter. 
b) Mean intraparticle pore diameter based on the mercury porosimetry data. 
c) Intraparticle porosity calculated according to εintra = (1 + (1/ρSiOVpore))-1, with ρSiO (density of the silica skeleton) taken as 2.24 

g/ml. 
d) Specific surface area based on the nitrogen adsorption data. 
e) Finite, albeit small, because of the solid particles external surface area. 

 

Thus, the morphology of the monoliths and fixed beds of porous particles reveals bimodal pore size 

distributions due to the intraskeleton (intraparticle) mesopores and interskeleton (interparticle) 

macropores (Figure 2.5). Particle size distributions were measured with a CILAS 1180 laser particle 

size analyzer (CILAS, Marcoussis, France) employing dilute suspensions in isopropanol. 
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Figure 3.1  Scanning electron microscopy picture of a section of the silica-based monolithic capillary column (for a) and b) with 

different magnification) employed in this work indicating a bimodal pore size distribution with large flow-through pores 

(macropores) of about 2 µm, skeleton domains (mesoporous) of about 1 µm with high internal skeleton porosity (13 nm 

mesopores) [6]. 

Mesoporous 
domain 

Macroporous 
domain 

 

Tris buffer solutions in 80:20 acetonitrile/water (v/v) were used as electrolyte. Mobile phases were 

filtered over 0.45 µm nylon membrane filters and degassed by ultrasonication. An aqueous stock 

solution of 0.1 M Tris (base form) was prepared using water purified with a Milli-Q-Gradient (Millipore 

GmbH, Eschborn, Germany). The pH was adjusted to 8.3 by titration with concentrated hydrochloric 

acid. Appropriate volumes of this stock solution, MilliQ water, and acetonitrile were then mixed to yield 

Tris buffer solutions of the desired ionic strengths in 80:20 acetonitrile/water (v/v), e.g., 1 x 10-3 M Tris 

in the final mobile phase corresponded to 5 x 10-3 M Tris in the aqueous part. The concentration of 

protonated Tris (acidic form) needed to estimate the thickness of the primary quasi-equilibrium EDL 

was determined using the Henderson-Hasselbalch equation (with pH ≈ pKa). Fresh samples were 

prepared daily by dissolving test compounds directly in running mobile phase (usually 100 µg/ml). 

 
Capillary electrochromatography. The particles were slurry-packed in 100 µm i.d., 360 µm o.d. 

fused-silica capillaries (Polymicro Technologies, Phonenix, AZ) with a modified procedure described 

previously [2], resulting in duplex columns. A WellChrom K-1900 pneumatic pump (KNAUER GmbH, 

Berlin, Germany) was used. As the slurry reservoir 500 µm i.d. glass-lined metal tubing has been 

utilized. MicroTight inline filters, which provided a temporary outlet frit during packing were obtained 

from Upchurch Scientific (Oak Harbor, WA, USA). An SSI two-way valve and SSI (dual-stem) three-

way valve (ERC, Riemerling, Germany) between pneumatic pump and slurry reservoir were used for 

pressure release and slurry injection, respectively. Slurries were prepared by suspending an 

appropriate amount (usually 5 mg) of the dry particles in 100 µl acetone under ultrasonication for 1 

min. The slurry reservoir was filled with a syringe. Subsequently, using water as a pushing fluid, 

particles were forced into the fused-silica capillary at set pressure. During the packing process the 

capillary (and optionally also the slurry reservoir) was placed in an ultrasonic bath to compact and 

stabilize the beds which reached a length of at least 300 mm within 30 min. The bed was inspected for 

uniformity with a microscope during packing. At a little higher pressure than used for the packing, 

permanent inlet and outlet frits of a bed were made by sintering the silica particles for 350 ms with an 

arc fusion splicer FSM-05S (Fujikura Tokyo, Japan) in its prefusion mode. Pressure was released to 

200 bar, the MicroTight inline filter disconnected from the column, and the remainder of particles on 
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both sides were flushed out with water. Protocols for column packing and frit sintering were optimized 

with respect to the pore-sizes of a material and their mechanical stability. A packing pressure of only 

250 bar was selected for the particles with 220 nm mean pore size, respectively. The detection 

window was prepared directly behind the outlet frit and on-column detection was performed at 230 nm. 

Packed columns were preconditioned with the mobile phase under pressure (usually 100 bar) and 

then conditioned electrokinetically, with subsequent buffer replenishment, until stable conditions have 

been obtained in view of baseline drift, current and reproducible, stable EOF. Effective field strengths 

over the packed segment were evaluated according to available theory and procedures [3, 4]. 

Monoliths  were  cut  to  desired  length 

and assembled directly, i.e., without 

open tubular segments in a HP3DCE 

instrument (Agilent Technologies, 

Waldbronn, Germany), and detection 

at 230 nm was made in-column. 

Measurements were run at controlled 

temperature of 298 K. Both vials were 

pressurized in order to minimize 

bubble formation. For obtaining 

reproducible results buffer 

replenishment and subsequent 

capillary equilibration was crucial [5]. 

This was ensured by subsequent 

injection of sample and running the 

same analysis method up to 20 times 

without buffer replenishment, where no 

drift in EOF velocity and efficiency has 

been observed. Such drifts may occur 

due to buffer electrolysis in the mobile 

phase vials and related pH changes, if 

the buffer capacity is exceeded [5]. 
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Figure 3.2 Representative electrochromatograms with a 316 mm

(233 mm effective) × 100 µm i.d. C18-silica monolith. (1) Thiourea, (2)

ethylbenzoate, (3) naphthalene, (4) butylbenzoate, (5) phenanthrene,

and (6) pyrene. The eluent is 80:20 acetonitrile/water (v/v). a) 0.1 mM

effective Tris concentration (thiourea: 3.85 × 105 N/m, ethylbenzoate:

3.69 × 105 N/m, pyrene: 3.29 × 105 N/m). b) 5 mM effective Tris

concentration (thiourea: 1.95 × 105 N/m, ethylbenzoate: 2.02 × 105 N/m,

pyrene: 1.90 × 105 N/m). Similar EOF velocities of about 1.7 mm/s have

been selected for comparison. 

 

Ethylbenzoate, butylbenzoate, 

naphthalene, phenanthrene, and 

pyrene were used as weakly retained, 

neutral analytes and thiourea as the 

flow field (average velocity) marker. 

Before each run capillaries were 

conditioned for 30 min at a voltage of 

15 kV. Afterwards, new vials were 

used and the system was again 

equilibrated at 15 kV for another 7 min. 
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Finally, the analysis was run at the desired voltage. In advance of each sequence the velocities for 15 

kV and 30 kV were checked by individual injections and usually found to coincide with velocities 

measured during the complete sequence. Figure 3.2 shows typical electrochromatograms using 0.1 

mM and 5 mM effective Tris concentration. The retention time (tR) and number of theoretical plates (N) 

for a chromatographic peak were extracted by statistical moments analysis employing an algorithm 

written in Matlab (The MathWorks, Natick, MA). The efficiencies were generally comparable to 

Gaussian fitting, i.e., differences were marginal because the peaks always showed a high symmetry in 

both CEC and capillary LC modes. 

 

Liquid chromatography. Capillary LC measurements with particulate beds were made on a   

configuration containing a degasser and SpectraFlow 501 UV/Vis detector (SunChrom, Friedrichsdorf, 

Germany) operated at 215 nm for on-

column detection, and a MicroPro 

syringe pumping system (Eldex 

Laboratories, Napa, CA). For injection 

(3 bar for 3 s) a Model 7520 injector 

valve with a 0.5 µL sample loop 

(Rheodyne, Cotati, CA) was used. 

With the silica-based monoliths 

capillary HPLC was realized inside the 

HP3DCE instrument using the available 

helium gas pressure in combination 

with short-end injection. Then, the 

same monolith as in CEC was cut to a 

length of 11 cm and connected to a 

150 µm i.d. open capillary. The 

effective separation length was 8.4 cm. 

Inlet pressures from 2 to 11 bar were 

applied resulting in average velocities 

of   approximately   0.5   to   2.5  mm/s,  
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Figure 3.3 Representative chromatogram with a 110 mm (84 mm

effective) × 100 µm i.d. C18-silica monolith obtained by short-end

injection in the HP3DCE. (1) Thiourea, (2) ethylbenzoate, (3)

butylbenzoate, and (4) pyrene. The eluent is 80:20 acetonitrile/water

(v/v) containing 5 mM effective Tris concentration (thiourea: 1.67 × 105

N/m, ethylbenzoate: 1.66 × 105 N/m, pyrene: 1.40 × 105 N/m). The

velocity is 2.34 mm/s (inlet pressure: 10 bar). 

respectively, according to the permeability of this type of monolith [6]. The use of the HP3DCE for the 

capillary LC experiments has the advantage of realizing a similar system environment as in CEC with 

reproducible injection and without extra-column band broadening. This facilitates a comparison of 

separation efficiencies in capillary LC and CEC. Figure 3.3 shows a typical chromatogram obtained in 

the HP3DCE system with hydraulic flow. As seen in Table 3.2 the reproducibility of average velocities 

was satisfactory. 
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Table 3.2 
Reproducibility of hydraulic flow velocities in the HP3DCE instrument in the Short-end injection mode. 

Monolith length: 11 cm (8.4 cm effective). Mobile phase: acetonitrile/H2O (pH 8.3) 80:20 (v/v) with 5 

mM effective Tris concentration.  

 

Inlet pressure  

[bar] 

Average velocity  

[10-3 m/s] 

RSD  

(%) 

4 

6 

7 

8 

9 

10 

11 

0.98 

1.47 

1.70 

1.93 

2.11 

2.34 

2.54 

0.33 

0.60 

0.92 

0.92 

0.53 

0.53 

0.41 

 

Confocal laser scanning microscopy. CLSM experiments were made on an Axiovert 100 confocal 

laser scanning microscope (Carl Zeiss, Jena, Germany) equipped with two continuous noble gas 

lasers (Argon ion laser: 488 nm, 25 mW maximum output power; Helium-Neon ion laser: 543 nm, 1 

mW) and 40x oil immersion objective (1.3 NA). Images were acquired in section-scanning mode, i.e., 

in the xy-plane which is perpendicular to the optical axis, but parallel to the EOF direction. The 

geometry of the microfluidic device containing capillaries with particulate beds and monoliths allowed it 

to be inserted like a conventional microscopy slide into the respective frame. The principal 

experimental setup is illustrated in Figure 3.4. 

Electrolyte reservoirs (1.5 ml volume) were made of PEEK and equipped with a standard 1/16” thread 

to insert and fix the capillaries. Fitting materials were purchased from Upchurch Scientific (Oak 

Harbor, WA). High voltage supply was realized using a 30 kV d.c. power generator (F.u.G. Elektronik, 

Rosenheim, Germany). Platinum wire electrodes were directly inserted into the electrolyte solutions of 

each vial. In advance of the measurements the confocal microscope was grounded.  

The performance of the system was verified also for the measurement of EOF velocities 

complementary to the HP3DCE system by changing from the pure buffer solution in the inlet vial to 

dyed one containing nonadsorbing tracer (Bodipy 493/503) and following its elution with appropriate 

time-series. This CLSM setup allows much higher field strengths (up to 200 kV/m) than the HP3DCE 

instrument. The refractive index (RI) mismatch between the porous silica-based materials (RI ≈ 1.47) 

and saturating mobile phase containing acetonitrile (RI ≈ 1.33) causes significant loss of fluorescence 

light intensity at increasing optical penetration depth due to aberration and, therefore, hampers 

quantitative data evaluation [7]. RI mismatch was minimized by using a mobile phase consisting of 
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90:10 (v/v) DMSO and the aqueous Tris buffer. The mobile phase contained fluorescent dye at a 

concentration of 10-5 M. 
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Figure 3.4  Schematic of the experimental setup used for the CLSM study of CP and EOF in fixed beds of the desired particles

 
or optionally monolith. PEEK vials served as inlet and outlet reservoirs, into which stainless steel electrodes were inserted to

y the electrical fields. Polyimide-coating was removed at the center of the capillary. The setup allowed three-dimensional

cent tracers and their dynamics in the fixed beds optically matched to the fluid phase. 
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3.3 Results and discussion 

We present the results of our investigations on coupled mass and charge transport in porous media in 

view of closely related phenomena, with an increase in complexity, to provide systematic and 

complementary insight. We start in Section 3.3.1 by recalling the existence of charge-selective 

transport and Donnan potentials (at electrochemical equilibrium, without externally applied electrical 

field) in the chromatographic media under very typical conditions. In Section 3.3.2 we document the 

more general rather than exceptional observed nonlinear EOF dynamics due to CP-based induced-

charge electroosmosis in random-close sphere packings and monoliths used in CEC. We provide 

direct insight into operational domains of these phenomena in Section 3.3.3 employing quantitative 

CLSM, and in Section 3.3.4 analyze dependencies of CP and CP-based induced-charge 

electroosmosis on the hydrodynamic flow regime, mobile phase ionic strength, general charge-

selectivity, applied field strength, and the morphology of the material. Finally, in Section 3.3.5 we 

demonstrate the consequences of these unique electrokinetic and electrohydrodynamic phenomena 

with respect to zone spreading in CEC. 

 

3.3.1 Internal electrical fields in chromatographic media 

 

In this work, we used the benzene sulfonic acid anion as a negatively charged tracer behaving co-

ionic with respect to the surface charge of the encountered silica-based materials. The influence of the 

mobile phase ionic strength (corresponding to half of the Tris concentration) on the effective residence 

times of this co-ionic analyte employing  hydraulic flow is shown in Figure 3.5 for the particulate 

materials characterized by different intraparticle mean pore sizes (see Table 3.1).  While  the  benzene 

sulfonic acid anion practically 

experiences only the interparticle 

porosity (εinter) at low ionic strength, it 

co-elutes with thiourea at high ionic 

strength when it experiences the total 

bed porosity given by εtotal = εinter + (1 – 

εinter)εintra. Thus, the residence time of a 

co-ion depends sensitively on Donnan-

exclusion from the intraparticle pore 

spaces [8] or, in other words (those of 

the EDL model), on the actual pore-

scale EDL overlap [9]. The thickness 

of the primary EDL is approximated by 

the Debye screening length λD 

according to eq. 1.1 [9]. Depending on 

EDL overlap inside the particles 

represented by rintra/λD (Figure 3.5) we 

observe a similar normalized behavior 

for the  different  pore diameters  (dintra) 
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Figure 3.5 Effect of intraparticle EDL overlap on the effective

residence time of a co-ionic analyte in HPLC. Capillary columns (150

mm × 100 µm i.d.) were packed with C18-silica particles (Table 1).

Mobile phase is 80:20 acetonitrile/water (v/v) with varying Tris

concentrations. Thiourea is employed as dead time (t0) marker and the

benzene sulfonic acid anion as a co-ionic analyte. Effective residence

times t' = (t-t0)/t0 of the analyte were monitored with respect to rintra/λD in

order to facilitate a comparison between the different ionic strengths and

intraparticle pore sizes. 
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and ionic strengths, with complete permeation (εtotal) and exclusion (εinter only) of the co-ionic tracer as 

extreme scenarios. 

 

This fundamental and general, but 

relatively often unrecognized behavior 

is further analyzed by Figure 3.6a 

showing the radial distribution of 

normalized electrical potential over a 

pore cross-section at different aspect 

ratios rpore/λD [9]. For rpore/λD ≈ 1 the 

EDL extends over the whole pore fluid. 

Thus, the pore becomes ion-

permselective and effectively excludes 

the co-ions (cf. Figure 3.5). Their 

transport numbers decrease at 

increasing EDL overlap, while those of 

the counter-ionic species increase. For 

rpore/λD >> 1 the EDL is confined to just 

a thin layer at the pore walls, meaning 

that the whole pore fluid is quasi-

electroneutral and charge-selectivity 

has disappeared (cf. Figure 3.5). 

Transport numbers of the co-ions and 

counter-ions become balanced. 

Basically, these extremes (rpore/λD < 1 

and rpore/λD >> 1) as well as the broad 

intermediate regime can be tuned in 

chromatographic practice by mobile 

phase ionic strength (λD) and the 

intraparticle or intraskeleton pore 

dimensions (dintra). This adjustable 

electrostatic  on-off  behaviour  [10-15] 
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Figure 3.6 a) Pore-scale distribution of electrical potential normalized

by the surface potential ψs for different values of rpore/λD (adapted from

[9]). b) Dependence of rintra/λD on the effective mobile phase Tris

concentration for intraparticle and intraskeleton pores of the materials

employed in this work. 

for intraparticle permeation in conventional chromatographic media (Figure 3.5) is relevant also for the 

design of preparative separations and purification processes [16-18] as the actual electrolyte 

concentration determines the availability of chromatographic sites and effective porosity for co-ionic 

analytes, as well as pore-level concentrations of charged analytes (co-ion exclusion, counter-ion 

enrichment) in general. 

 

Figure 3.6b demonstrates the dependence of rintra/λD on mobile phase ionic strength for porous 

particles and monoliths employed in this work. It is important to realize a quite persistent EDL overlap 

(rintra/λD < 10) in the intraparticle and intraskeleton meso- and macropores leading to co-ion exclusion 

   dintra = 13 nm

Porous particles:
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and counter-ion enrichment in the pores under typical chromatographic conditions. In agreement with 

the trend in Figure 3.6a the dynamics seen in Figure 3.5 suggests the strongest changes in 

electrostatic exclusion between 1 < rintra/λD < 10, thereby demonstrating a unique dependence on pore 

size (rintra) and ionic strength (λD). With respect to Figure 3.6b this range of rintra/λD translates to ionic 

strengths between 1 and 100 mM which includes conditions very common to (electro)chromatography 

employing fixed beds of mesoporous particles or monoliths with a mesoporous skeleton. 

 

To summarize, the electrical potential gradients which develop at the boundaries between the quasi-

electroneutral interparticle (interskeleton) macropore space and the intraparticle (intraskeleton) 

charge-selective domain are important in LC where they influence distributions of charged analytes in 

the hierarchically structured porous media. In CEC they form the basis for CP induced locally by the 

electrical field superimposed externally on the internal potential gradients, which makes coupled mass 

and charge transport far more complex than in LC [19]. 
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3.3.2 Concentration polarization, nonlinear electroosmosis, and perfusive flow 
Regarding Chapter 2, the local presence of charge-selective interfaces together with the electrical field 

strengths in CEC of up to 100 kV/m can induce nonequilibrium CP which leads to a fundamental 

structural change of the EDL as the system moves away from quasi-equilibrium [20-26]. The mobile 

SCR (Figure 2.4) induced by the normal field component is the fluid-side part of the secondary, 

nonequilibrium EDL and interacts locally with the tangential component of the applied field to generate 

nonlinear (induced-charge) electroosmotic slip along curved interfaces in particulate or monolithic 

fixed beds employed in CEC [1]. Because the conductivity of this SCR (region of lowest electrolyte 

concentration and highest resistance) is much lower than that of the bulk solution, potential drop in the 

depleted CP zone occurs mainly in the 

secondary EDL. In other words, 

potential drop in the electrical field-

induced, mobile SCR behaves like an 

electrokinetic potential, similar to the ζ-

potential in classical, linear 

electroosmosis [27, 28]. However, in 

contrast to the latter, the potential due 

to nonequilibrium CP is independent of 

surface charge, but depends on both 

the size of the charge-selective 

domain and applied field strength 

(Figure 2.4) [28]. At decreasing field 

strength and/or charge-selectivity this 

potential is expected to turn smoothly 

into the classical ζ-potential [1, 19]. To 

demonstrate this behaviour we have 

recorded EOF velocities in silica-based 

monoliths in dependence of Tris buffer 

concentration (which modulates the 

charge-selectivity of the intraskeleton 

mesopores) and applied electrical field 

strength (which determines the local 

intensity of electromigration, thus, also 

the intensity of the induced CP zones).  
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Figure 3.7 a) Average EOF velocities with thiourea as dead time

marker in a 100 µm i.d. C18-silica monolith depending on the applied

field and mobile phase ionic strengths. Mobile phase is 80:20

acetonitrile/water (v/v) containing varying Tris concentrations. b)

Contribution of nonlinear with respect to linear behaviour in plots of EOF

velocities against field strength over the range of employed Tris

concentrations (squares). The developing nonlinearity clearly correlates

with a decrease of rintra/λD (solid line) towards 0.1. Data were obtained

with the HP3DCE instrument. 

 

Figure 3.7a shows part of these data. 

As the Tris concentration is decreased 

from 10 mM to 0.1 mM we witness the 

systematic development of a nonlinear 

contribution to the average EOF 

velocity as the electrical  field  strength 
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(acting over the monolith) is increased to almost 100 kV/m. This nonlinear contribution, particularly 

with 0.1 and 0.2 mM Tris, is evidenced by the second-order polynomial fits to the EOF data, while we 

observe linear behaviour with 5 and 10 mM Tris (Figure 3.7a). Due to nonlinear flow, velocities 

significantly higher than expected from linear dependence are realized. The dissipation of Joule heat 

cannot explain this nonlinearity because electrical current through the monolith depends linearly on 

applied field strength [1], as expected for a macroscopically charge-nonselective material. It also 

indicates that the contribution from EOF to the overall electrical current is negligible with respect to the 

bulk conductivity of the electrolyte solutions [29], i.e., the macropore space mostly carries quasi-

electroneutral liquid. To estimate quantitatively relative contributions of linear (classical) and nonlinear 

(here, induced-charge) electroosmosis in the interskeleton macropores we analyzed both contributions 

in the EOF velocity curves via the L2 (Euclidean) norm 

 

( )( )1/2 
2

1
2

212 dxfdxff L ∫∫ −= ,       (3.1) 

 

with f1 = ax and f2 = ax + bx2. The results of this analysis in Figure 3.7b clearly show that the 

contribution of the nonlinear electroosmosis correlates well with an increased charge-selectivity of the 

intraskeleton mesopores expressed by rintra/λD. With a higher charge-selectivity of the intraskeleton 

mesopore space more intense space charges (comprising the secondary EDL) can be induced at a 

given field strength which, in turn, stimulates electroosmosis of the second kind in the interskeleton 

macropore space of a monolith [1, 19]. It is the basic relation between mobile phase Tris concentration 

(ionic strength) and the observed nonlinear EOF velocities (Figure 3.7). 

 

Compared to the C18-silica monolith (Figure 3.7) we show in Figure 3.8a EOF velocities obtained with 

a bare silica monolith from the same original batch. However, these measurements were not run in the 

HP3DCE instrument, but were made by CLSM  in  a  home-built  device  (Figure 3.4)  where  the  same 
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Figure 3.8  a) Average EOF velocities in a 100 µm i.d. bare silica monolith in dependence of applied field strength and mobile

phase Tris concentration. b) Comparison of the EOF velocities in 100 µm and 50 µm i.d. bare silica monoliths. Second-order

polynomial fits to the data with the 100 µm i.d. monolith are a guide to the eye. Data were obtained with the CLSM device.

Mobile phase: 80:20 acetonitrile/water (v/v) with different Tris concentrations, as indicated. The electroneutral, nonadsorbing

fluorescent dye (Bodipy 493/503) was used as the velocity marker. 
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monolith is fixed under the microscope, allowing applied field strengths of up to 200 kV/m. We used 

the electroneutral fluorescent dye (Bodipy 493/503) as EOF marker [19] and employed the same 

mobile phase as for the C18-silica monolith (Figure 3.7). The nonlinearity again is very pronounced, 

especially for the lower ionic strengths (Figure 3.8a). Velocities approaching 1 cm/s were measured 

very reproducibly. Data were first acquired at increasing voltage, then again at selected lower 

voltages. Figure 3.8a demonstrates that the system shows no hysteresis. To investigate the 

significance of wall effects due to porosity fluctuations (or even a wall gap) and effect of a related 

aspect ratio, i.e., column-to-macropore diameter ratio, on the average EOF velocities we compared 50 

and 100 µm i.d. bare silica monoliths prepared following a similar protocol which should result in 

comparable morphologies. Figure 3.8b shows that absolute velocities agree  within  a  few  percent  

meaning  that   differences  in  monolith 

morphology related to different 

capillary diameters are insignificant 

concerning the analyzed (nonlinear) 

flow behavior. 

 

Figure 3.9a compares the velocities in 

100 µm i.d. bare silica and C18-silica 

monoliths from the same batch. While 

we generally observe a nonlinear flow 

dynamics, we notice a decent 

attenuation of this dynamics in the 

C18-silica monolith. This is 

consistently caused by a lower surface 

charge density and related, i.e., 

weaker charge-selectivity of the 

mesopores, as well as a smaller 

classical ζ-potential compared with the 

bare-silica material. Nonlinear EOF 

behaviour with the bare silica monolith 

remains substantial even with 5 mM 

Tris. It is further illustrated in Figure 

3.9b which compares the flow 

dynamics for C18-silica and bare silica 

monoliths with different capillary 

diameters (using 5 mM Tris 

throughout). While we observe a 

practically linear dynamics with the 

C18-silica materials (squares), only 

becoming slightly nonlinear with the 

unthermostated  CLSM  device  due  to 
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Figure 3.9 a) Comparison of EOF velocities in 100 µm i.d. bare silica

and C18-silica monoliths. The data were obtained using the CLSM

device. Mobile phase: 80:20 acetonitrile/water (v/v) with different Tris

concentrations, as indicated. b) Comparison of EOF velocities with 5

mM Tris concentration in the mobile phase for different monoliths: ( )

100 µm i.d. bare silica, CLSM; ( ) 50 µm i.d. bare silica, CLSM; ( )

100 µm i.d. C18-silica, CLSM; ( ) 100 µm i.d. C18-silica, HP3DCE.

Inset: EOF velocity vs. electrical current for the 100 µm i.d. bare silica

monolith. 
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Joule heating, the bare silica materials (circles) demonstrate a stronger nonlinearity. As revealed by 

the inset in Figure 3.9b this cannot only be explained by dissipation of Joule heat because of a 

significantly nonlinear velocity-current relation. To conclude, the key importance of the surface charge 

density (bare silica vs. C18-silica) results from its influence on the pore-level distribution of 

electrostatic potential (shown in Figure 3.6a in a dimensionless form) which directly influences the 

charge-selectivity and local intensity of CP, and thus the contribution of nonlinear electroosmosis at a 

given field strength. 

 

The nonlinearity in the acquired EOF 

velocity data can be highlighted by a 

systematic variation of electroosmotic 

mobility (µeo) in dependence of the 

mobile phase Tris concentration. This 

is shown in Figure 3.10 (covering the 

range from 10-5 to 10-2 M Tris) for 

selected applied field strengths using 

the data in Figures 3.7a and 3.9a. 

First, we can retrieve a relatively 

common trend insofar as the mobility 

increases with the decreasing ionic 

strength of the solution to approach a 

maximum which has the character of a 

plateau.  The most  intriguing feature in 
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Figure 3.10 Electroosmotic mobility for the 100 µm i.d. C18-silica

monolith against Tris concentration at selected field strengths, as

indicated. 

Figure 3.10 is that the electroosmotic mobility depends on applied field strength with constant mobile 

phase composition under isothermal (or nearly so) conditions. This dependence becomes aggravated 

as the ionic strength is reduced, particularly between 5 and 0.1 mM Tris (as seen in the different 

slopes of the curves in Figure 3.10). By contrast, for classical, linear EOF the mobility is independent 

of the applied field strength. 

 

It appears rather simple to modulate the EOF behaviour (relative contributions of classical and 

induced-charge electroosmosis) in the silica-based monoliths, which are characterized by bimodal 

pore size distributions [30], via the applied field and mobile phase ionic strengths (Figures 3.7 to 

3.10.). Thus, it seems important to analyze in more detail also related behaviour in fixed beds of 

porous particles, as the main prerequisite for CP effects is the presence of charge-selective pore 

space which, in this case, is presented by the permeable and conducting particles. The employed 

particles had a mean diameter of about 2.5 µm, but different intraparticle pore sizes (cf. Table 3.1). As 

seen in Figure 3.11a average EOF velocities (at constant ionic strength) increase substantially with 

the large-pore materials (105 and 232 nm) which effectively reduce the EDL overlap to produce 

stronger EOF inside these particles, thereby increasing also average EOF velocities (Chapter 1.4) [31-

38]. For the measurements in Figure 3.11a the ionic strength (λD) remained constant and a variation of 

rintra/λD was realized using the different mean pore sizes. The strongest ion-permselectivity and CP 
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effects are expected for particles with the smaller pores (19 and 25 nm). Indeed, we can resolve a 

clear nonlinearity in their velocity data as shown separately in Figure 3.11b. Even though it seems to 

be a small effect, it is systematic. Further, the nonlinearity has even not disappeared for the 40 nm-

pore particles,  only  the  dynamics  for 

the large-pore particles is practically 

linear (Figure 3.11a). As with the 

monoliths this behaviour for porous 

particles depends sensitively on rintra/λD 

which is not surprising when it is the 

fundamental, CP-related effect of 

induced-charge electroosmosis. It is 

usually overlooked in CEC practice 

because particles are small (dp < 10 

µm) and densely packed which causes 

significant multiparticle effects 

compared to the electrohydrodynamics 

evolving from a single (free) particle-

picture [19]. Still, it does not mean that 

all CP-related effects become 

insignificant in CEC; only one possible 

consequence, nonlinear 

electroosmosis, seems to be relatively 

weak in common practice employing 

dense beds of small porous particles. 
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Figure 3.11 EOF velocity curves for the particulate beds in

dependence of the intraparticle pore size (see Table 3.1 for further

details). Mobile phase: 80:20 acetonitrile/water (v/v) with 0.1 mM Tris

concentration. Data were obtained with the HP3DCE instrument. 

 

Compared to the sphere packings 

nonlinear electroosmosis is more 

intense in the monoliths which can be 

explained by the different ways of 

realizing  the  hierarchically   structured 

pore space. For random-close sphere packings the interparticle pore dimensions are inherently 

associated with particle diameters, while for monoliths interparticle macropore dimensions can be 

adjusted independently from the size of the skeleton. Thus, the macropore domain in monoliths can 

offer more space relative to the size of the charge-selective domain when compared to the random-

close packings of charge-selective particles. Figure 3.12 compares the intensities of nonlinear 

electroosmosis for the silica-based monoliths and porous particles. The EOF dynamics in a capillary 

packed with nonporous (i.e., impermeable and nonconducting) particles serves as the reference. In 

fact, we find linear behaviour with the nonporous particles over the complete range of Tris 

concentrations, while we notice an increasing nonlinearity for porous spheres as the intraparticle pore 

size is decreased (at 0.1 mM Tris). However, the nonlinearity developing in the monolith (with a 

comparable mesopore size) is still much stronger. Thus, Figure 3.12 also demonstrates that the 
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morphology of the charge-selective regions (e.g., size, interconnectivity, domain discreteness, spatial 

distribution,  and  shape factors) in  hierarchically  structured  porous  media  critically  determines  the 

electrohydrodynamics in the 

macropore space. A clear evidence for 

induced-charge electroosmosis based 

on CP as operating phenomenon in 

the monoliths and sphere packings 

comes from the indifferent behaviour 

that is observed for the capillary 

packed with nonporous particles which 

simply does not contain charge-

selective regions, but only the quasi-

electroneutral interparticle macropore 

fluid.  
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 Figure 3.12 Analysis of nonlinear contributions in the EOF data (via

the L2 norm; see eq. 3.1) acquired for particulate and monolithic fixed

beds depending on mobile phase Tris concentration. Lines are drawn as

a guide to the eye. Nonporous spheres are included for comparison

demonstrating indirectly the existence of CP phenomena in beds of

porous particles and the monolith. 

Although selected data in the literature 

indicate nonlinear EOF behaviour in 

CEC with packed capillaries under 

conditions  of  substantial   intraparticle 

EDL overlap (see, e.g., Figure 7 in [39], Figure 10 in [40], Figure 2 in [41], Figure 8 in [42], and Figure 

4 in [43]) a more important consequence of CP is related to separation efficiency and especially the 

retention behaviour of charged analytes because the induced CP zones present an elegant route to a 

field-dependent, i.e., easily externally and sensitively tunable retention factor [44]. 
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3.3.3 Confocal laser scanning microscopy for exploring the microscopic origin of  
 nonlinear electroosmosis 
To gain microscopic insight into the CP phenomenon operating in the monolithic structures we 

employed CLSM. The RI match between monolith skeleton and saturating liquid allowed a quantitative 

evaluation of the stationary distributions of fluorescent dyes used as indicator for the CP phenomenon 

in dependence of applied field and mobile phase ionic strengths. Although the data are not shown, we 

first used the RI matched mobile phase (90:10 DMSO/H2O) and measured EOF velocities as a 

function of the applied field strength for selected Tris concentrations. In agreement with our previous 

data we found a nonlinear EOF dynamics, but velocities were expectedly smaller, roughly according to 

the ratio of εr/η accounting for a different relative permittivity (εr) and viscosity (η) of the liquid [45]. This 

prerequisite ensured that the same phenomena as in CEC will be operating during the CLSM studies. 

 

Figure 3.13 demonstrates (for a bare silica monolith) the formation of CP zones under conditions 

favouring significant EDL overlap in the intraskeleton mesopores. As illustrated by the series of CLSM 

images and selected stationary profiles of fluorescent tracer distributions the applied field and mobile 

phase ionic strengths sensitively influence the intensity of CP in the complete material. While we 

cannot resolve differences in image contrast for the electroneutral tracer (Figure 3.13a) at any field 

strength, the image contrast in Figure 3.13b without applied field (left image) originates in the 

electrostatic Donnan-exclusion of the small co-ionic tracer (Bodipy-disulfonate) from the intraskeleton 

mesopores. Upon application of an electrical field the equilibrium distribution of this co-ionic tracer in 

the macropore space is drastically changed (right image in Figure 3.13b and related profile). Electrical-

field-induced enriched and depleted CP zones can be readily detected with respect to the situation 

without applied field. This phenomenon becomes strongly attenuated at increased ionic strength which 

is shown in Figure 3.13c. Increased ionic strength reduces the EDL interaction within the mesopores 

and, thus, their charge-selectivity which, in turn, results in less intense CP zones (and induced-charge 

electroosmosis) at the same field strength as in Figure 3.13b. This finding agrees with EOF behaviour 

documented in Figures 3.7–3.9 where increasing ionic strength leads to a reduced contribution of 

nonlinear (CP-based induced-charge) electroosmosis to the overall EOF. 

 

Further, we used charged (co-ionic) fluorescent, polystyrene-based nanoparticles with a nominal 

diameter of 50 nm that are size-excluded from the mesoporous monolith skeleton. Thus, contrast 

without electrical field (left image, Figure 3.13d) originates in the circumstance that the tracer only 

occupies the macropore space. Upon application of an electrical field we observe the development of 

enriched and depleted CP zones (right image in Figure 3.13d and related profile). They are sharper 

than for the small co-ionic tracer (right image, Figure 3.13b) because the nanoparticles are completely 

size-excluded from the mesoporous skeleton, while a nonideal ion-permselectivity allows the small 

tracer to penetrate the mesopore space. In contrast to size-exclusion of large tracer the electrostatic 

exclusion of small tracer is not complete. Therefore the right image in Figure 3.13b is more blurred. In 

addition, the co-ionic nanoparticles are not only electrostatically held (or trapped) in the enriched CP 

zones, but also due to their electrophoretic motion against cathodic interfaces in the whole material 

which are impenetrable for large analytes, but permeable for electrolyte. This effect has been revealed 
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during retention studies in preparative electrochromatography with large proteins [46]. The counterpart 

of enriched CP zones at cathodic interfaces in the bare silica monolith are depleted CP zones at the 

anodic interfaces [19]. Molecular diffusion limits coupled mass and charge transport in these boundary 

layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13  Visualisation of CP in a 100 µm i.d. bare silica monolith using quantitative CLSM. Mobile phase: 90:10
  

D MSO/water (v/v) with different Tris concentrations and 10-5 M fluorescent tracer. a) Electroneutral Bodipy and 0.1 mM Tris. b)

B odipy-disulfonate (twice negatively charged, here co-ionic tracer) and 0.1 mM Tris. c) Bodipy-disulfonate and 5 mM Tris. d)

egatively charged nanoparticles, size-excluded from the mesoporous skeleton. Images to the left and the black profiles

correspond to stationary distributions without externally applied electrical field, images to the right and the gray profiles

correspond to stationary distributions with an applied field strength of 50 kV/m. The profiles were normalized with respect to

eir mean values. All images were acquired with constant laser and detector settings optimized for each fluorescent tracer. 
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We next investigated by CLSM random-close sphere packings in view of CP. Figure 3.14 shows 

images and related centerline profiles of stationary distributions of co-ionic tracer (Bodipy-disulfonate; 

twice negatively charged) using capillaries packed with small-pore particles (dintra = 19 nm), large-pore 

particles (dintra = 232 nm), and nonporous particles. In comparison to Figure 3.13, we now changed the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.14  Visualisation of CP by quantitative CLSM in

random-close sphere packings fixed in 100 µm i.d. columns.

Mobile phase: 90:10 DMSO/water (v/v) with 0.1 mM Tris

concentration and 10-5 M co-ionic fluorescent tracer, twice

negatively charged Bodipy-disulfonate. The particles have a

mean diameter of about 2.5 µm (see Table 3.1). Porous

particles: a) dintra = 19 nm, and b) dintra = 232 nm. c) Nonporous

particles. Images to the left and the black profiles correspond to

stationary distributions without applied electrical field, images to

the right and the gray profiles correspond to stationary

distributions with an applied field strength of 50 kV/m. Axial

centerline profiles were normalized with respect to their mean

values. The images were acquired using constant laser and

detector settings optimized for each stationary phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

intraparticle pore size at constant mobile phase composition in order to modulate rintra/λD and, thus, the 

local intensity of CP. While CP becomes clearly visible for particles with small pores (Figure 3.14a), it 

is attenuated, but still discernible for large-pore particles (Figure 3.14b), and practically absent in the 
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fixed bed of nonporous particles (Figure 3.14c). This direct CLSM observation complements nicely our 

earlier results on the EOF behaviour reported in Figures 3.11 and 3.12. To summarize, an increasing 

aspect ratio (rintra/λD), realized by increased ionic strength (Figure 3.13b and 3.13c) or increased pore 

size (Figure 3.14a and 3.14b), reduces the charge-selectivity of the intraparticle (or intraskeleton) pore 

space, the intensity of electrical-field-induced CP, and consequently also the maximum amount of 

possible induced-charge electroosmosis in the overall EOF dynamics. 

 

To conclude, as revealed by the chromatographic data in Figures 3.7 and 3.11, with an increasing 

rintra/λD the nonlinear EOF dynamics turns smoothly into classical, linear behaviour. This fundamental 

dependence is corroborated by the CLSM data (Figures 3.13 and 3.14) which illustrate the 

accompanying (decreasing) local intensity of CP in these monoliths and sphere packings. In addition 

to a critical ratio rintra/λD also the macropore space morphology is important, i.e., how much space do 

CP zones have to develop (or to breathe freely), how do they interact with each other in complex 

porous media, and how much induced-charge electroosmosis can still be stimulated based on the 

result of these interactions? At least, it is obvious that  the  ideal  single-particle  picture  for  which  the 

Figure 3.15  Comparison of EOF velocities for C18-silica monoliths

having different mean macropore dimensions (dmacro), as indicated. a)

Visualisation of monolith morphology by quantitative CLSM employing

90:10 DMSO/H2O (pH ≈ 7) as RI-matching mobile phase and 10-5 M

positively charged Rhodamine 6G as counter-ionic, fluorescent tracer.

No electrical field is applied. Rhodamine 6G strongly adsorbs at the

monoliths surfaces and is enriched by the mesoporous skeleton at

electrochemical equilibrium. b) EOF velocities obtained with 80:20

acetonitrile/water (v/v) as mobile phase containing 0.1 mM Tris. 

theory of electroosmosis of the second 

kind has been developed [28] must be 

strongly affected in dense multiparticle 

systems by the influence of 

approaching neighbours via the local 

hydrodynamics and interaction of the 

neighboured or directly adjacent CP 

zones, especially in view of a spherical 

symmetry and the particle 

arrangement in dense systems [19]. 

However, we still resolve substantial 

CP in fixed beds of particles with a 

diameter as small as 2.5 µm 

representing CEC practice, simply 

caused by the presence of the charge-

selective regions. In this respect, we 

have already noted that the monoliths 

show a different morphology. First, due 

to their continuous skeleton, relatively 

extended CP zones (less confined 

than in a bed of discrete particles) 

penetrate the material like a spider 

web. Second, compared to the size of 

charge-selective domains, macropores 

in a monolith offer larger dimensions 

than  in  a   random-close   packing   of 
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porous particles, corresponding to an arrangement in which particles are artificially diluted, i.e., 

removed from each other by a distance of the order of the particle radius. 

 

However, Figure 3.15 demonstrates that also for monoliths a further reduction of macropore 

dimensions can result in a significant reduction of the nonlinear, CP-based induced-charge EOF which 

is caused by a stronger interaction of depleted and enriched CP zones leading to attenuation of CP. In 

addition, overlap of the primary EDL may become noticeable in the macropore space of the monolith 

reducing also the amount of classical, linear EOF (Figure 3.15b). Concerning classical EOF a 

beginning EDL overlap can be counteracted by an increased ionic strength, but concerning nonlinear 

EOF, this change will reduce charge-selectivity of the mesopore space and, thus, attenuate further the 

whole CP phenomenon (Figure 3.13). This is a good example for demonstrating the principally 

different origins of quasi-equilibrium (classical) and induced-charge electroosmosis in a hierarchically 

structured material and it shows that both phenomena coexist in CEC under common conditions. 
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3.3.4 Theoretical background 
In order to analyze most critical coupled mass and charge transport phenomena relevant to an 

understanding of CP-based induced-charge electroosmosis in CEC we consider a locally flat interface 

between a bulk, macroporous compartment and an ion-permselective region (with a negative internal 

and external surface charge density) to represent local interfaces in monoliths with bimodal pore size 

distributions and fixed beds of permeable particles (Figures 2.1, 2.2 and 2.4). Next, we have to 

analyze the governing transport phenomena and limitations arising to the left and right of the charge-

selective interface as we increase the applied field strength (cf. Figures 3.7–3.11). 

 

Flux density of a positively charged counter-ion in the charge-selective domain ( ) consists of 

diffusive flux ( ), electrical transference ( ), and convective transfer ( ) by EOF associated 

with the primary, i.e., quasi-equilibrium EDL at the internal surface [8] 
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where  is the intraskeleton (or intraparticle) effective diffusion coefficient of a counter-ion, e.g., the 

protonated Tris molecule in the context of the present work,  is the intraskeleton (or intraparticle) 

concentration, and φ denotes the local electrical potential. Most important to our analysis, this equation 

illustrates a strong dependence on the applied field strength of the molar flux density of a counter-ionic 

species in the charge-selective domain via the electrophoretic and EOF velocities (  and ) 

which, in addition, are co-directional for counter-ionic species [8, 21]. 
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In the macroporous compartment where counter-ions enter the charge-selective domain from the bulk 

solution (in the direction of the applied field) the electrolyte concentration decreases. Co-ions migrate 

in the opposite direction, away from the interface, and because this local withdrawal cannot be 

compensated by supply from the intraskeleton or intraparticle pore space (which excludes co-ions) the 

co-ion concentration decreases. Therefore, the unique interplay of charge-selectivity, electromigration, 

convection, and diffusion results in the formation of a CDL. To guarantee local electroneutrality in this 

depleted CP zone the counter-ion concentration decreases accordingly. As the field strength is further 

increased the molar flux density of the counter-ion through this boundary layer ( ) for an ideal, ion-

permselective interface approaches an upper limiting regime with 
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where  and  denote the molecular diffusivity and concentration of the counter-ion in the bulk 

interskeleton (or interparticle) liquid, and δ

+
interD +

interc

CDL is the thickness of the diffusion boundary layer. 

 

While the exact dependencies of  and  (to the right and left of the charge-selective 

interface) on local hydrodynamics and electrokinetics are not relevant in the present context, it is most 

important to anticipate on the basis of eqs. 3.2 and 3.3 a different dependence of both contributions on 

the applied field strength.  depends weaker on the field strength by the thickness of the CDL 

being an inverse function of velocity [21, 28]. Thus, as the field strength is increased in CEC we 

approach a critical value ( ) at which these contributions become equal. Through the eyes of a 

counter-ionic species it is expressed as 
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Caused by the significant charge-selectivity we have  <<  and if we further neglect the 

diffusive contribution in  which is small relative to strong electrical transference ( ) we arrive at 
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which, upon rearrangement, results in a simple expression illustrating qualitatively relevant parameters 

that influence the value of the critical field strength 
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The first factor in eq. 3.6 (1/δCDL) is a complex function of velocity or, more precisely, of the local 

distribution of velocities caused by the complex morphology of the porous medium. In sphere packings 

it is influenced by particle size and shape, their distribution functions, and packing density. In general, 

with higher velocities δCDL is becoming smaller in average and the critical field strength is expected to 

increase. However, the thickness of the hydrodynamic boundary layer varies significantly in complex 

porous media like sphere packings with cusp regions between particles or in monoliths. In this respect, 

it should be recognized that the pore-level profile of EOF in fixed beds of spherical particles, even in 

the thin-EDL-limit, is not uniform and also shows a strong correlation with porosity fluctuations caused 

by varying packing densities (Figures 1.1 and 1.3a) [47]. The second factor in eq. 3.6 ( ) 

represents changes in effective diffusion behaviour of the counter-ionic species in the charge-selective 

domain with respect to the bulk solution. This includes the tortuosity factor which lumps together 

geometrical and topological aspects as well as adsorption to the oppositely charged surface. As, due 

++
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to these parameters,  is reduced below  the critical field strength shows a corresponding 

increase. Finally, the last factor in eq. 3.6 ( ) accounts for the counter-ion selectivity within 

the charge-selective domain. The higher the charge-selectivity the smaller  and the critical 

field strength. We have already shown that the charge-selectivity depends on surface electrical 

potential and EDL overlap represented by the aspect ratio r

+
intraD +

interD

++
intrainter cc /

++
intrainter cc /

intra/λD (cf. Figures 3.7-3.12). If there is 

more than one counter-ionic species present in the system (which we assumed here for simplicity) 

relative contributions in competitive charge transport are governed by charge numbers, diffusion 

coefficients, and concentrations as reflected in the transport numbers [48, 49]. 

 

To conclude from this qualitative analysis using eq. 3.6, there exist different routes for tuning CP in a 

hierarchically structured material, which address externally controllable variables like the electrical 

field strength, electroosmotic and hydraulic flow rates, mobile phase ionic strength and pH, as well as 

material characteristics like particle or skeleton size, macro- and mesopore porosities, mean pore size, 

pore interconnectivity, and surface charge. The relevance of the critical field strength for CEC is that it 

separates the classical (near-equilibrium) and induced-charge (nonequilibrium) regimes of CP. At field 

strengths above the critical one the discrimination of the charge transport in the CDL with respect to 

the charge-selective domain becomes climactic meaning that electrokinetic flux of counter-ions in the 

latter begins to exceed the supply of counter-ions through the CDL. This transition to a nonequilibrium 

CP is accompanied by an induction of regions in both compartments which carry nonequilibrium space 

charge of opposite sign, i.e., a counter-ionic (mobile) SCR in the macroporous compartment and a co-

ionic (immobile) SCR of unscreened, fixed surface charge in the mesoporous domain [19]. The mobile 

SCR (Figure 2.4) induced by the normal field component can be regarded as the fluid-side part of this 

secondary, nonequilibrium EDL interacting locally with the tangential component of the applied field to 

generate nonequilibrium electroosmotic slip along curved interfaces in particulate and monolithic beds 

employed in CEC. It leads to a strong enhancement of the lateral velocity components which, in turn, 

influences hydrodynamic dispersion. In this context, a convectively accelerated lateral equilibration of 

analyte molecules is expected to reduce the axial zone spreading because, under typical conditions in 

(electro)chromatography, radial dispersion remains diffusion-limited [47, 50]. Thus, as a next step we 

analyze separation efficiencies depending on the intensity of nonequilibrium CP, complementary to the 

already documented EOF dynamics in particulate and monolithic fixed beds (Figures 3.7–3.12). 

 



  
 

 
63

3.3.5 Separation efficiencies for electroneutral analytes 
Particulate fixed beds in CEC. As alternative to an adjustment of mean pore size the mobile phase 

ionic strength (at constant pore size) can be varied to systematically tune intraparticle EDL overlap 

represented by rintra/λD.  Due to dominating suppression of  intraparticle EDL overlap at increasing  Tris 

concentration the intraparticle EOF is 

increased (Figure 3.11a). 

Concomitantly, in the interparticle pore 

space classical EDL behaviour 

dominates, i.e., the increasing ionic 

strength compresses the EDL resulting 

in a reduced shear plane potential [51]. 

As a consequence, the intraparticle-to-

interparticle flow ratio increases which 

improves flow homogeneity over the 

column cross-section and decreases 

mass transfer resistance in the mobile 

phase enabling higher flow velocities 

and separation efficiencies [2, 31-38]. 

This electroosmotic perfusion effect 

dominates the trend in separation 

efficiencies at increasing ionic 

strength, even with small porous 

particles (dp ≈ 2.5 µm) as shown in 

Figure 3.16. As expected, the 

improvement in separation efficiencies 

becomes most relevant for the small-

pore material (dintra = 19 nm; Figure 

3.16a), while for the large-pore 

material the increase in rintra/λD (due to 

the increase in Tris concentration from 

0.1 to 5 mM) results in a smaller 

improvement (dintra = 232 nm; Figure 

3.16b). 
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Figure 3.16 Plate height curves for ethylbenzoate obtained with

particulate beds fixed in 100 µm i.d. capillaries. Mobile phase: 80:20

acetonitrile/water (v/v) with different Tris concentrations. a) Small-pore

particles (dintra = 19 nm), and b) large-pore particles (dintra = 232 nm).

Data were acquired on the HP3DCE instrument. 

 

Monolithic fixed beds. While the electroosmotic perfusion mechanism and documented behaviour 

with the particulate beds are quite familiar [2, 31-38], the dependence of separation efficiency on 

mobile phase ionic strength in CEC is different for the monoliths. In the silica-based monoliths we 

encounter a thin porous skeleton of about 1 µm thickness (providing the high surface-to-volume ratio) 

and relatively large macropores of the order of 2 µm [52]. These sizes can be adjusted independently 

from each other [52]. With such a thin mesoporous skeleton the electroosmotic perfusion has only 

limited relevance and mass transfer resistance in the mobile phase is more pronounced in view of the 
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interskeleton macropore-level Taylor dispersion [47]. Then, increasing mesopore-level EOF hardly 

compensates for velocity extremes in the macropore space and higher ionic strengths promote 

thermal effects rather than noticeably improving separation efficiency which is consistent with our 

experimental results. 

 

In the monolithic structures the CP-based induced-charge electroosmosis not only significantly 

influences the overall EOF dynamics in dependence of ionic strength,  but also separation efficiencies. 

An advantage of the monolith 

morphology in this respect is that by 

means of its thin, axially extending 

skeleton it provides charge-selectivity 

and CP without creating a large region 

of (at low ionic strength) quasi-

stagnant fluid. This is more 

unfavourable for a bed of porous 

particles with the spheres inherent 

surface-to-volume ratio. As a 

consequence, the perfusion 

mechanism is more important for 

particulate beds. For monoliths, by 

contrast, we witness a significant 

decrease in the plateau plate heights 

(Figure 3.17) as ionic strength is 

decreased. This improvement parallels 

the increasing contribution of nonlinear 

electroosmosis in the EOF dynamics 

(Figure 3.7). Now, both phenomena, 

the nonlinear EOF dynamics and 

increasing separation efficiency at 

decreasing ionic strength (between 10 

and 0.1 mM Tris) can be consistently 

explained by intensified operation of 

the (CP-based) induced-charge 

electroosmosis.  This   nonlinear   EOF 
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Figure 3.17 Plate height data in CEC obtained with a 316 mm (233

mm effective) × 100 µm i.d. C18-silica monolith in the HP3DCE. Mobile

phase: 80:20 acetonitrile/water (v/v) with different Tris concentrations. a)

Plate height curves for ethylbenzoate. b) Extracted plateau plate heights

over the whole Tris concentration range. 

depends on both the normal and tangential components of the applied field via creation of a space 

charge (induction step) and volume force exerted on the mobile part of this secondary EDL (interaction 

step), respectively. The improvement in separation efficiency can be connected directly to induced-

charge electroosmosis because the enhanced nonlinear EOF (which can be tuned via rintra/λD) 

translates to higher local lateral velocities in the whole monolith. These components increase a lateral 

pore-scale dispersion which, in turn, reduces axial dispersion. In particular, we find an improvement in 

plateau plate heights by a factor of two while moving from 5 mM to 0.1 mM Tris (Figure 3.17),  which is 
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in good agreement with our earlier experimental results [1]. 

 

We finally compared the remarkable separation efficiencies obtained with the monolith in CEC (H ≈ 2 

µm for 0.1 mM Tris, see Figure 3.17) to those in capillary LC. We used the short-end injection 

technique in the HP3DCE instrument to remove the bias usually introduced in such a comparison due 

to different injection histories. As demonstrated in Figure 3.18 minimum plate heights of about 6 µm 

are reached, comparable to the performance in CEC with 5 mM Tris (H ≈ 4.5 µm). Thus, full 

performance advantage of CEC over  capillary  LC  is  reached  only  with  ionic  strengths  stimulating 

Figure 3.18 Plate height curves for ethylbenzoate in capillary HPLC

employing short-end injection in the HP3DCE using a 110 mm (84 mm

effective) × 100 µm i.d. C18-silica monolith. Mobile phase: 80:20

acetonitrile/water (v/v) with different Tris concentrations. 

strong CP and induced-charge 

electroosmosis (Figures 3.17 and 3.18). 

By contrast, the minimum plate heights 

in capillary LC remain independent of 

the ionic strength (Figure 3.18). This 

confirms that the dependence on Tris 

concentration of the plateau plate 

heights in CEC for the silica-based 

monoliths is caused by a unique 

combination of nonlinear electrokinetics 

and electrohydrodynamics, as 

explained, and not by an effect specific 

for the Tris system used in this work, 

e.g., due to a concentration-dependent 

adsorption  of  Tris  on  the  silica-based 
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surface and related consequences [53]. This is in agreement with our earlier work demonstrating a 

general dependence of nonlinear electroosmosis in monoliths on mobile phase ionic strength 

employing different buffer and electrolyte systems [19]. 
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3.4 Conclusions and perspectives 

Investigations on coupled mass and charge transport (background electrolyte) in hierarchically 

structured porous materials employed in CEC (beds of permeable, conducting particles and monoliths) 

have revealed that CP and (CP-based) induced-charge electroosmosis (Figure 2.4) are phenomena 

with a general rather than special significance under very common experimental conditions. These 

unique electrokinetic phenomena as well as the hydrodynamic consequences sensitively depend on 

material characteristics (pore space morphology in general, including the realization of hierarchical 

design and interconnectivity between different sets of pores; surface charge density), fluid phase 

properties (ionic strength as most important property influencing local charge selectivity), and the 

applied field strength. Systematically acquired data have revealed the influence of these parameters, 

thereby addressing the relevance of internal electrical potential gradients and a dependence on local 

EDL interaction (Figures 3.5 and 3.6), the differences in morphology of silica-based capillary monoliths 

and random-close packings of porous particles, as well as chemical surface modification, in view of 

the actual intensity of nonlinear (induced-charge) electroosmosis (Figures 3.7–3.12), and 

consequences of increased lateral velocities due to the nonlinear slip for reducing axial hydrodynamic 

dispersion, again pointing towards the differences in pore space morphology of monoliths and sphere 

packings (Figures 3.16 and 3.17). 

 

All these data suggest that the existence of CP and the relative intensity of CP (and CP-based 

phenomena) with respect to perfusive flow are the key to understanding salient features in CEC which 

includes the electrohydrodynamics, associated hydrodynamic dispersion, as well as the migration and 

retention of charged analytes. Our data demonstrate that CP is practically always present unless ionic 

strengths of about 100 mM are employed for removing the charge-selectivity of the mesopore space 

or, in other words, to make the mesopore space charge-nonselective like the macropore space. Our 

data further demonstrate that extremely high nonlinear EOF velocities (with one to two orders of 

magnitude above the classical, linear velocities) observed for single, large particles (dp > 100 µm) are 

not realized in dense systems of small particles, even for high field strengths (Eext > 100 kV/m), due to 

the adverse effects caused by a small particle diameter, the local hydrodynamics, and interaction of 

CP zones from neighboured particles. These aspects are investigated in the next chapter in 

comparison to the single (undisturbed) particle dynamics (Figures 2.3 and 2.4). The realization of 

nonlinear electroosmosis in view of high-speed separations is still more favourable for tailored 

monolithic structures compared to the relative unflexibility of adjusting pore dimensions in random-

close sphere packings. Thus, the monoliths are promising for chip devices where higher field strengths 

than typical in CEC can be easily realized, thereby increasing the intensity of induced-charge 

electroosmosis (cf. Figure 3.8). 

 

Complementary to the macroscopic data (Figures 3.7-3.12) our quantitative CLSM measurements 

(Figures 3.13 and 3.14) reveal directly the CP phenomenon in the sphere packings and monoliths, as 

well as its sensitive dependence on the local charge-selectivity (Figure 3.6), including surface charge 

density and pore-scale EDL overlap expressed by rpore/λD. Thus, CEC presents a good example 

illustrating the importance of both classical (linear) and induced-charge (nonlinear) electroosmosis in 
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the overall EOF dynamics. Then, adequate theory of EOF in CEC must include linear behaviour in 

quasi-electroneutral macropore space (Helmholtz-Smoluchowski model; thin quasi-equilibrium EDL), 

as well as a nonlinear framework by nonequilibrium electroosmosis (Mishchuk-Dukhin model; 

extended nonequilibrium EDL) which originates in the charge-selectivity of meso- and/or microporous 

domains in hierarchically structured materials employed in CEC and was discussed in Chapter 2 

(Figure 2.4). The reported behaviour covers all kinds of monoliths and packed particulate beds (except 

those obtained with nonporous particles, Figure 3.12). Limiting linear behaviour will be observed as 

the thickness of the primary EDL becomes much smaller than any pore dimensions (thin-EDL-limit) 

and, on the other hand, as the potential drop in the electrical field-induced mobile SCR becomes much 

larger than the classical ζ-potential (nonlinear behaviour). However, neither case is realized in current 

CEC practice which operates in an intermediate, slightly nonlinear regime. 

 

Thus, typical velocities in current CEC display an only moderately, nevertheless systematically 

nonlinear dynamics in dependence of the applied field and mobile phase ionic strengths. However, the 

increased slip velocities tangential to the curved interfaces provide a unique mechanism by which the 

pore-scale lateral, traditionally diffusion-limited equilibration of analytes is enhanced convectively. This 

can reduce axial zone spreading for both electroneutral and charged analytes in materials promoting a 

significant development of the induced-charge electroosmosis, as demonstrated for the monoliths (see 

Figures 3.12 and 3.17). In addition, for charged analytes an important consequence of CP is related to 

the effective migration and retention behaviour because the local intensity of CP, thus, also residence 

time of charged with respect to electroneutral analytes in the CP zones, sensitively depends on 

applied field and mobile phase ionic strengths, which is analyzed in more detail in the next chapter by 

using quantitative CLSM and packed beds of strong cation-exchange-particles. In turn, the retention 

factor of charged analytes in CEC becomes a complicated function of the parameters that determine 

the local intensity of CP which is shown in Chapter 5. Further CP-related studies are shown to resolve 

basic issues of the retention dynamics of charged analytes in CEC which are still puzzling 

chromatographers. 
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4 Confocal laser scanning microscopy study of the electrical field induced 

concentration polarization at curved ion-permselective interfaces  
 
4.1 Introduction 

Related to the previous chapter (with a focus on separation science), this work is motivated by 

correlating more quantitatively the locally observed CP dynamics with the macroscopically resulting 

(net) EOF in fixed beds of strong cation-exchange (SCX) particles. The microscopic analysis of CP is 

realized using CLSM employing refractive index matching of the liquid electrolyte with respect to the 

mesoporous SCX silica-based particles. For this quantitative investigation particulate beds of 10 µm 

and 5 µm diameter particles, yet typical for chromatographic applications, have been employed. With 

respect to this particle diameter and the spatial resolution capability of CLSM this approach facilitates 

a microscale flow diagnostics in optically opaque media, as has been shown in Chapter 3. It provides 

access over well defined temporal and spatial domains to transient and stationary distributions of a 

variety of fluorescent tracers used as indicator for CP under a given set of conditions, being defined by 

the material characteristics (e.g., packing density, bead shape and diameter, intraparticle pore size 

and porosity, surface charge density), mobile phase composition (ionic strength, pH, type of electrolyte 

or buffer), and the applied field strength. Results obtained with the dense multiparticle systems (fixed 

beds of cation-selective particles) are compared with the CP-based nonlinear electrokinetics reported 

earlier in the literature within the single-free particle picture and are set in context with the results 

obtained in Chapter 3. After getting profound fundamental insight into the dynamics of packed beds, 

electrical-field-induced CP in hierarchically structured silica-based monoliths, again with a close 

interrelation to the evolving electrohydrodynamics, is investigated. Here specifically the influence of 

mobile phase properties are addressed, especially also in view of modulating surface electrical 

potential due to buffer pH effects. Therefore, related CP phenomena are studied with different mobile 

phases and an influence on the macroscopic electrohydrodynamics is investigated. 
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4.2 Experimental 

Reagents and materials. Sodium acetate trihydrate (p.a., ≥ 99.5%), acetic acid (≥ 99.5%), and 

DMSO (spectrophotometric grade) were purchased from Sigma-Aldrich Chemie GmbH (Taufkirchen, 

Germany). Fluorescent tracer molecules were the same as in Chapter 3, besides Rhodamine 6G 

(Fluka BioChemika) as counter-ionic tracer, which was purchased from Sigma-Aldrich Chemie GmbH 

(Taufkirchen, Germany). The spherical propylsulphonic acid-modified silica particles (Spherisorb SCX) 

with a mean diameter (dp) of 5 or 10 µm, an intraparticle mean mesopore size (dintra) of 10 nm, and a 

surface area of about 220 m2/g were a gift from Waters Co. (Milford, MA, USA). Bare silica monoliths 

in 100 µm i.d. and typically 50 cm long cylindrical fused-silica capillaries were received as research 

samples from Merck (Darmstadt, Germany). They are characterized by macropores with a mean 

diameter of about 2 µm and 13 nm mesopores (Figure 3.1). A fluid phase consisting of a 90:10 (v/v) 

mixture of DMSO and aqueous sodium acetate buffer (pH 5.0) was used in all experiments for 

refractive index matching to the silica-based materials (porous particles and capillary column). An 

aqueous stock solution of 0.5 M sodium acetate was prepared using doubly-distilled water from a Milli-

Q-Gradient water purification system (Millipore GmbH, Eschborn, Germany). The pH was adjusted to 

pH 5.0 by titration with concentrated acetic acid. Appropriate volumes of this stock solution, MilliQ 

water, and DMSO were then mixed to yield acetate buffer solutions of the desired ionic strengths in 

90:10 DMSO/water (v/v). The fluid phase contained 10 µM of either of the aforementioned fluorescent 

tracer molecules. Further studies, using a mobile phase of 80:20 AcN/H2O and aqueous buffer, were 

prepared as described in Chapter 3.2. 

 
Microfluidic device and sphere packing. Fused-silica capillaries (75 µm i.d. × 360 µm o.d., 

Polymicro Technologies, Phoenix, AZ, USA) were packed by a modified slurry technique using a 

WellChrom pneumatic pump K-1900 (Wissenschaftliche Gerätebau KNAUER GmbH, Berlin, 

Germany) as described earlier (Chapter 3.2). This time the slurry was prepared in 1 M sodium acetate, 

which also has been subsequently used as a pushing solvent for column packing to bring the strong 

SCX-particles in its sodium form and avoid electrostatic repulsion between the particles of same 

charge. Before permanent inlet and outlet frits of a bed were made by sintering the silica particles the 

columns were conditioned by flushing them with 10 mM NaCl for at least one hour. Column 

conditioning for the CLSM studies was realized over night with the respective fluid phase (containing 

the fluorescent tracer) at a flow rate of ca. 100 nL/min using a syringe pump (Harvard Apparatus, 

Holliston, MA, USA). The principal experimental setup is illustrated in Figure 3.4. If not stated 

otherwise, images were acquired as xy-sections of 28.79 µm × 28.79 µm with a resolution of 256 × 

256 data points in a slice of thickness 1 µm. Generally, two consecutive scans were averaged for a 

better signal-to-noise ratio. 
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4.3. Results and discussion 

4.3.1 Dense particulate systems 
Dynamics on the single-particle scale. Figures 4.1 and 4.2 show CLSM images of a segment of a 

fused-silica capillary packed with the spherical SCX particles (dp = 10 µm, dintra = 10 nm) acquired 

using co-ionic tracer (BODIPYTM 492/515 disulfonate, Figure 4.1) or the counter-ionic tracer 

(Rhodamine 6G, Figure 4.2). Under fluid phase conditions favouring a significant  EDL  overlap  inside 

these mesoporous  particles, i.e., 

when the EDL thickness is comparable 

with dintra (Figure 2.5) [1], the formation 

around a particle of anodic depleted 

and cathodic enriched CP zones in the 

presence of an applied electrical field 

(Eext) is readily anticipated. Image 

contrast without field (Eext = 0 kV/m) 

observed for the co-ionic tracer (Figure 

4.1) results from its electrostatic 

exclusion from the intraparticle pore 

space and is a well known 

phenomenon [2]. The application of an 

electrical field influences the co-ion 

concentration systematically 

throughout the whole fixed bed; it 

displays peculiar features of increase 

and depletion around the strongly 

cation-selective particles. From a 

macroscopic point of view it leads to 

the induction of "mountains" and 

"valleys" in electrolyte concentration, 

reflecting alternating CP zones with 

increased and reduced ionic strength 

around the discrete particles in the 

fixed bed. The axial and lateral profiles 

(axial profiles are coaxial, lateral 

profiles are perpendicular to the 

direction of the applied field and EOF) 

extracted from the CLSM images in 

Figure 4.1 reveal that, while a single 

particle ideally has rotational symmetry 

with respect to Eext, the CP zones of 

the selected particle become 

significantly distorted by the proximity 
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Figure 4.1  Local CP dynamics in and around a single particle in a 

fixed bed of the strongly cation-selective particles (dp = 10 µm, dintra = 

10 nm) in dependence of the applied electrical field strength (Eext as 

indicated), as seen by the co-ionic tracer (BODIPYTM 492/515 

disulfonate). Fluid phase ionic strength: 10 mM. The CLSM images 

demonstrate the induction of enriched and depleted CP zones through

the whole packing. Profiles were normalized with respect to their

maximum intensity at Eext = 0 kV/m. Axial and lateral profiles (with 

respect to the direction of Eext and the resulting macroscopic EOF) 

refer to the dashed lines in the images. 
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with neighbouring particles in a dense 

multiparticle system like the fixed bed 

(see Figure 2.3 for comparison). 

Eext = 0 kV/m Eext = 13.3 kV/m Eext = 66.7 kV/m 
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Figure 4.2 Local CP dynamics in and around a single particle in a

 

In Figure 4.2 we observe for the 

counter-ionic tracer an image contrast 

that stems from its intraparticle 

enrichment (at Eext = 0 kV/m) and 

which intensifies with Eext. However, 

neither distinctive CP zones around 

the particles nor the slope within a 

particle characterizing the backward 

diffusion from the enriched CP zone 

can be detected in the profiles in 

Figure 4.2. The small dimension of the 

particles (dp = 10 µm) does not allow 

the clear visualization of the CP zones 

against the backdrop of a strong 

intraparticle enrichment increasing with 

the current density through a particle 

(at increasing Eext), and backward 

diffusive flux acts on such a time and 

length    scale    that    the   profiles   in 

fixed bed of the strongly cation-selective particles (dp = 10 µm, dintra =

10 nm) in dependence of the applied electrical field strength (Eext as

indicated), as seen by the counterionic tracer (Rhodamine 6G). Fluid

phase ionic strength: 10 mM. Axial profiles were taken along the

dashed lines in the images and normalized with respect to their

maximum intensity at Eext = 0 kV/m. 

average display only a pronounced enrichment. The profiles for both, co-ionic and counter-ionic tracer, 

show a similar dependence on Eext. An upper limit for the maximum co-ion concentration in the 

enriched CP zone corresponding to a minimum co-ion concentration in the depleted CP zone is 

approached at Eext = 60-70 kV/m (Figure 4.1). The maximum intraparticle concentration of the counter-

ionic tracer is realized in a comparable range for Eext (Figure 4.2). 

 

The relative intensity of the evolving CP is analyzed in more detail in Figure 4.3 based on the profiles 

shown in Figure 4.1 (co-ionic tracer). In view of a classical analysis of CP [3-5] Figure 4.3 clearly 

reflects mutual ion concentration differences at the anodic and cathodic phase boundaries of a particle 

with respect to the bulk solution. They increase with Eext and can be translated to an increasing current 

density through the cation-selective intraparticle pore space of a particle. The transport of ionic 

species towards a particle (in the direction of Eext) is diffusion-controlled by the depleted CP zone 

(anodic CDL). At increasing Eext the steepness of the respective concentration gradients increases 

until a limiting behaviour is approached. This should be interpreted as reaching the limiting current 

density locally through the anodic interface of a particle. The local co-ion concentration in the anodic 

CDL is reduced towards zero at Eext = 60-70 kV/m, and this field strength also reflects the maximum 

ion concentration in the enriched CP zone (Figure 4.3). In the plateau regime electrokinetic transport 
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through a particle exceeds diffusion-limited transport through the depleted CP zone; thus, in this 

plateau regime (Eext > 60-70 kV/m) charge transport through a particle is determined  by  the  transport 
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Figure 4.3 Dependence of tracer intensity in the stationary, enriched

characteristics in the adjoining anodic 

CDL (depleted CP zone). In other 

words, with the increasing field 

strength, i.e., while the electrical 

current through a particle increases 

and ionic concentration in the depleted 

CP zone is decreased towards zero 

(Figure 2.1), a transition occurs from 

intraparticle to (extraparticle) boundary 

layer-dominated transport behavior on 

the single-particle scale in the fixed 

bed. 

 
Multiparticle effects in fixed beds. In 

a random-close packing of particles 

the symmetrical shape with  respect  to 

and depleted CP zones around a single particle in the fixed bed (dp =

10 µm, dintra = 10 nm) on the applied electrical field strength. Data were

extracted from the axial profiles in Figure 4.1. 

Eext of the anodic depleted and cathodic enriched CP zones observed around a single-free particle 

(Chapter 2, Figures 2.3 and 2.4) [6] becomes significantly influenced by neighbouring particles as was 

already indicated in Figure 4.1. The enriched CP zone of a particle in a fixed bed feeds electrolyte 

concentration to the depleted CP zones of neighboured downstream particles. This is most 

pronounced when the particles are located directly behind each other as is shown in more detail in 

Figure 4.4 for a cusp region between two particles in the packing (this region is indicated by the white 

arrow in the image for Eext = 40 kV/m). The feeding of electrolyte concentration from the enriched CP 

zone of the upstream particle into the depleted CP zone of the downstream particle can render 

impossible the local observation of the depleted CP zone at the downstream particle (see profiles in 

Figure 4.4b and the schematic). By contrast, in the upper profiles (Figure 4.4a) and the lower profiles 

(Figure 4.4c) the formation of a depleted CP zone of the downstream particle becomes detectable 

upon the application of Eext. At these positions (and illustrated by the schematic) the enriched CP zone 

of the upstream particle does not extend far enough to interact sufficiently strong with the depleted CP 

zone of the downstream particle; along the middle profile (Figure 4.4b) the two beads actually come 

closest. The analysis in Figure 4.4 resolves the mutual interplay between enriched and depleted CP 

zones in the interparticle pore space of fixed beds and thereby demonstrates the importance of such 

multiparticle effects for the locally surviving CP. 
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Figure 4.4  Visualization and analysis of multiparticle effects on CP in fixed beds at a fluid phase ionic strength of 10 mM. The 

enriched CP zone of the upstream particle is directly feeding electrolyte concentration to the nearest particle downstream. The 

three graphs compare the intensity profiles obtained with and without applied field along the three dashed lines (labelled 

accordingly) in the images. The intensity of local multiparticle effects depends on the distance between the ion-permselective 

interfaces of the individual particles and their relative orientation. The schematic helps to illustrate the local situation in the fixed 

bed. 

 

Influence of fluid phase ionic strength. The dependence of CP on ionic strength of the bulk 

electrolyte was investigated using the co-ionic tracer. The ionic strength dependence of CP is 

illustrated in Figure 4.5 for a selected particle in the fixed bed. At the beginning of this experiment the 

laser and detector settings of the microscope were optimized to include the brightest region of the 

images, i.e., the enriched CP zone at the lowest investigated ionic strength (10 mM acetate buffer) 
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with Eext = 52.6 kV/m. This field strength and ionic strengths in this experiment were chosen to avoid 

Joule heating. For subsequent experiments the microscope settings were kept constant and the 

system was dynamically equilibrated with a higher ionic strength fluid phase until a steady state was 

achieved. Care was taken to work in the linear range of the detector. Both, with and without electrical 

field, we observe a decrease in image contrast with increasing ionic strength. For Eext = 0 kV/m it 

results from an increase of the intraparticle co-ion concentration due to the increased screening of 

surface charge and a corresponding decrease of the particles cation-selectivity. With Eext = 52.6 kV/m 

the decrease in image contrast at increasing ionic strength corresponds to the attenuation of CP which 

is also a consequence of the decreasing cation-selectivity of a particle, though even at an effective 

ionic strength of 40 mM the CP phenomenon is still clearly discernible (Figure 4.5). 
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Figure 4.5  Ionic strength dependence of the co-ion distribution on a single particle scale, as reflected by the co-ionic tracer.
 The fluid phase was 90:10 (v/v) DMSO/aqueous sodium acetate buffer (pH 5.0) at varying effective ionic strengths (from left to

 
right: 10 mM, 20 mM, 30 mM, 40 mM). Laser and detector settings were optimized for an effective ionic strength of 10 mM and

Eext = 52.6 kV/m. Subsequently the column was equilibrated with fluid phase of higher ionic strength until a steady state was

achieved. All images were aquired under identical laser and detector settings. Tracer concentrations were normalized with

respect to extraparticle intensity at Eext = 0 kV/m (as indicated). 
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The ionic strength dependence of the 

local co-ion concentration (with and 

without Eext) is summarized in Figure 

4.6. Data points were extracted from 

the profiles shown in Figure 4.5 along 

the dashed vertical lines. With 

increasing ionic strength (and Eext = 0 

kV/m), i.e., decreasing EDL overlap 

inside a particle, the co-ion exclusion 

is reduced as is indicated by an 

increasing concentration inside the 

particle at constant extraparticle 

concentration; the intraparticle 

concentration (Figure 4.6, open 

circles) approaches a limiting value 

which is reduced compared to the 

extraparticle concentration according 

to the porosity of a particle [7].  This  is 

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Enriched CP zone (Eext = 52.6 kV/m)
Depleted CP zone (Eext = 52.6 kV/m)
Intraparticle intensity (Eext = 0 kV/m)

Extraparticle reference

Acetate concentration   [10-3 M]

N
or

m
al

iz
ed

 in
te

ns
ity

   
[-]

 

 

Figure 4.6 Ionic strength dependence of the SCX particles ion-

permselectivity and of the electrical field-induced CP, as reflected by

the co-ionic tracer. Data were extracted from the axial profiles in Figure

4.5. The ion-permselectivity of the system decreases with increasing

ionic strength of the fluid phase resulting in an increased intraparticle

co-ion concentration and attenuated CP. 

in accordance with the behaviour found in LC practice employing charged co-ionic tracer, where a 

beds total (effective) porosity could be modulated with EDL overlap inside the particles (Figure 3.5) 

and approaches the total bed porosity at very high ionic strength. Coming back to Figure 4.6, with 

increasing ionic strength (and Eext = 52.6 kV/m) the reduced cation-selectivity of a particle clearly 

results in a decrease of the relative enrichment and depletion of the electrolyte concentration in the CP 

zones, i.e., in an attenuation of the CP phenomenon in the fixed bed at constant Eext (Figure 4.6, 

closed symbols), which can be alternatively also achieved by increasing intraparticle pore dimensions 

at constant mobile phase ionic strength (Figures 3.14a and 3.14b). 

 

Macroscopic electrohydrodynamics. Results from the CLSM data presented so far in view of a local 

CP dynamics in fixed beds of strongly cation-selective particles in dependence of the applied field 

strength (Figures 4.1-4.3) and fluid phase ionic strength (Figures 4.5 and 4.6) are further supported 

and complemented by the observation of the macroscopic fluid dynamics. In these experiments the 

uncharged, nonadsorbing fluorescent molecule BODIPYTM 493/593 was employed as tracer of the 

EOF velocity field inside the random-close packing. In general, the electroosmotic mobility μeo which is 

the ratio of the average EOF velocity ueo and Eext is determined by measuring ueo as a function of Eext. 

In Chapter 1.4 μeo in fixed beds of porous particles was discussed to be basically composed of 

different contributions, including i) normal or conventional EDL behaviour at the particles external 

surface, ii) intraparticle volumetric EOF, and iii) porosity of a particle [8]. An additional factor in view of 

the earlier discussed contributions is that the intraparticle EDL overlap influences the ion-

permselectivity of a particle (cf. Figure 4.6) which, in turn, determines the intensity of CP and a CP-

based nonequilibrium EOF at higher field strengths [1], which has been clearly shown in Chapter 3 

under typical electrochromatographic conditions. 
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In Figure 4.7a the average flow velocity (expressed via µeo) of the investigated material (dp = 10 µm, 

dintra = 10 nm) is shown for various effective ionic strengths and applied field strengths up to 120 kV/m. 

For the case realized in our work, the unique trend of µeo corroborates the operation of a fundamental 

effect. For example, µeo measured at an effective  ionic strength  of  10 mM  (Figure 4.7a, solid circles) 

shows an interesting dependence on 

Eext with a pronounced slope beginning 

at approximately 40 kV/m. This 

indicates the onset of a significantly 

nonlinear dynamics which can be 

readily explained by an increasing 

contribution of the nonequilibrium 

electroosmotic slip to the overall EOF 

in the fixed bed. 

 

As Eext is increased ionic 

concentrations in the depleted CP 

zone (anodic CDL) of a particle in the 

bed are decreased towards zero and 

electrical current through a particle is 

expected to approach a limiting value. 

For electrokinetic flow along the 

conductive, cation-selective surface of 

a particle this regime (below the 

limiting current density) corresponds to 

quasi-equilibrium, linear EOF for which 

the diffusive part of the primary EDL 

essentially preserves its common 

structure [3]. At higher field strength 

charge transport in the anodic CDL 

becomes climactic with respect to 

intraparticle electrokinetic transport, 

meaning that electrokinetic flux of 

counter-ions in the particle begins to 

exceed their supply through the CDL. 

The onset of  a  significantly  nonlinear 
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dynamics in Figure 4.7a with an effective ionic strength of 10 mM at Eext ≈ 40 kV/m reflects the range 

where we observed the steepest concentration gradients in the solution adjacent to a cation-selective 

particle in the fixed bed (Figure 4.3) which showed a hardly discernible further dependence on Eext 

(Figure 4.3). The maximum local intensity of CP is then approached, translating to the limiting current 

density through a particle. This limiting current density and applied Eext thus mark the transition to the 

nonlinear EOF behaviour dominated by a contribution of the nonequilibrium electroosmotic slip based 
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Figure 4.7 Electroosmotic mobilities µeo = ueo/Eext in a capillary (75

µm i.d.) packed with the SCX particles (dp = 10 µm, dintra = 10 nm). The

fluid phase was a 90:10 (v/v) DMSO/aqueous sodium acetate buffer

(pH 5.0). a) Dependence of µeo on applied electrical field strength at

different effective ionic strengths. b) Dependence of µeo on ionic

strength at selected values of Eext. 
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on the secondary EDL (Figure 2.4b). In agreement with our CLSM studies the observed intensity and 

onset of nonlinearity depend on the fluid phase ionic strength and are significantly attenuated and 

shifted to higher Eext at higher ionic strength (Figure 4.7a). An increased ionic strength reduces the 

cation-selectivity of a particle and, in turn, attenuates the intensity of the CP phenomenon, as 

analyzed in Figures 4.5 and 4.6. It explains the relatively small nonlinear µeo dynamics for the highest 

ionic strength in Figure 4.7a, although CP and its microscopic consequences are still discernible 

(Figures 4.5 and 4.6). In contrast, µeo increased by a factor of approximately 2-3 with respect to the 

expected classical, linear EOF behavior is observed for 10 mM effective ionic strength at the highest 

Eext of 120 kV/m. 

 

Figure 4.7b shows the variation of µeo with the fluid phase ionic strength. We see a relatively common 

trend insofar as µeo increases with decreasing ionic strength to approach a plateau or spurious 

maximum at about 10 mM acetate buffer. While a decrease in µeo with increasing ionic strength above 

the 10 mM represents normal behaviour when EDL overlap is negligible (i.e., the EDL continues to be 

compressed resulting in a reduced shear plane potential) [3], the increase in µeo from below that 

concentration towards a spurious maximum can have several reasons [8, 9]. The most intriguing 

conclusion emanating from the data in Figure 4.7b is that µeo depends significantly on Eext at constant 

mobile phase composition, under conditions that can be assumed as isothermal. Further, the increase 

in µeo with Eext becomes much stronger as the acetate buffer concentration is reduced towards 10 mM 

as is clearly seen in the different slopes of these curves. This ionic strength dependence (see also 

Figure 4.6) demonstrates an increasing contribution of the nonequilibrium electroosmotic slip to ueo 

being more pronounced at higher field strength, which clearly resolves an additional factor in form of a 

field strength dependence of µeo, which was not observed in Figure 1.6b, acquired for particle 

diameters of only 2.5 µm and much lower ion-permselectivity. Any slight nonlinear contribution thus 

not obscures the principal trend for (equilibrium) linear electroosmosis for relatively small porous 

particles as shown in Figure 1.6b. 

 

Finally, it is instructive to compare µeo and its electrical field-dependence in the fixed beds of the 

strongly cation-selective particles with data on this nonequilibrium electrokinetics (or electrokinetics of 

the second kind) available from the literature. In the focus of such a comparison should be the actual 

nonlinearity in the dense multiparticle systems (fixed beds) with respect to the expectations based on 

the single-free particle picture which prevails, e.g., in an electrophoresis experiment. Electrophoresis 

of the second kind has been studied intensively [6, 10-13]. Figure 4.8 shows electrokinetic mobilities of 

strongly cation-selective particles as a function of the applied field strength. Electrophoretic mobilities 

(µep) measured for single spherical particles with diameters from 500 to 1 µm are taken from Barany 

[12] and compared to µeo determined in our work for capillaries packed with 10 and 5 µm-sized 

particles. Our data have been re-scaled to the physical properties of a purely aqueous fluid phase 

used in that study of electrophoresis of the second kind [12]. Monitoring µeo at an ionic strength of 10 

mM clearly shows that generally higher Eext are necessary for the smaller particles (dp = 5 µm) to 

induce a significantly nonlinear EOF behavior (Figure 4.8, solid circles). This is expected because 

nonequilibrium electroosmotic slip in first approximation depends linearly on particle size and squared 
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on applied field strength [6, 14]. In other words, the ratio of nonlinear (second kind) to linear (classical 

or first kind) EOF velocities depends linearly on dp and Eext (Figure 2.4b). 

 

The data for µep in Figure 4.8 

demonstrate that the small particles (dp 

= 1-10 µm) move with almost the same 

mobility when Eext is below 2 kV/m. In 

this regime of Eext and dp 

electrophoresis follows the classical 

pattern (linear behaviour). As Eext 

increases, the larger particles begin to 

move faster. For smaller particles, a 

higher Eext is required to induce 

electrophoresis of the second kind 

[12]. For dp = 10-500 µm and Eext = 

2.5-20 kV/m the electrical field-

dependence of µep is close to linear 

(with almost the same slope), 

demonstrating the second-order 

dependence       of        electrophoretic 
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Figure 4.8 Electrokinetic mobility for SCX particles as a function of

the applied electrical field strength. Values for µeo from this work are

compared with µep reported by Barany [12]. µeo data have been re-

scaled to the physical properties of a purely aqueous fluid phase used

in the study of µep. Numbers in the graph indicate the mean particle

size. 

velocities on Eext. For larger fields (20-100 kV/m) the curves taper off to approach saturation. This can 

be related to the increasing importance of a tangential drift of the mobile SCR, because of high local 

convection due to this nonlinear slip, which can be locally orders of magnitude higher than linear EOF 

(remember also the angular dependence of EOF velocities in this nonlinear framework illustrated in 

Figure 2.4b) and also simply the fact that the particles move at higher Reynolds numbers, which thins 

the CDL significantly and prevents the SCR with its inherently increasing potential to grow further. 

Both factors cause a decrease in electrophoretic velocity [12, 13]. 

 

Compared to µep measured in dilute particle suspensions, the µeo data obtained with fixed beds (dense 

multiparticle systems) demonstrate the onset of a noticeably nonlinear behavior only at much higher 

field strengths (Figure 4.8). In principle, electrophoresis is an integral characteristic of electroosmosis. 

However, even when accounting for the tortuosity of fixed beds with respect to the single-free particle 

picture [8], a purely geometrical effect which reduces the macroscopically measured μeo in dense 

multiparticle systems relative to μep for a dilute suspension of an electrophoresis experiment, µeo is still 

significantly smaller than µep for a given field strength and particle size. This can be, in part, due to 

differences in the cation-selectivity of the different SCX particles (those used in this work and by 

Barany [12]), but also originates in the multiparticle effects demonstrated here by CLSM. The proximity 

of particles in a dense multiparticle system (fixed bed) simply means that due to the actual pore space 

morphology complex extinguishing interactions occur between close or overlapping CP zones (Figure 

4.4). This results in a reduced, locally effective CP and consequently in higher field strengths needed 

to induce nonequilibrium EOF in a fixed bed of particles with respect to the single-free particle picture. 
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In general this chapter demonstrates in a close relation to Chapter 2 and Chapter 3, that with 

increasing field strength a limiting current density (locally) through a particle in a packed bed is 

approached, meaning that charge transport locally through a particle becomes controlled by the 

dynamics in the adjoining extraparticle convective-diffusion boundary layer (depleted CP zone). It also 

indicates that transport on a single particle scale with enriched and depleted CDL is controlled by 

intraparticle transport behavior at lower field strength and moves to extraparticle convective-diffusion 

boundary layer dominated transport behavior, directly characterizing the transition from linear to 

nonlinear electrokinetics (Figure 2.4b). 
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4.3.2 Monolithic structures 
The enforced recent development of rigid monolithic support structures has contributed to many 

technological processes, especially in the chromatographic sciences [15-18]. These support structures 

can be polymer-based or silica-based in nature. Because of their ease of preparation especially 

organic polymer-based monoliths gain increasing popularity [18-20]. Monolithic stationary phases as 

chromatographic beds can be prepared in capillary columns and microfluidic devices, which makes 

them very promising as an alternative to packed beds, because particles are increasingly difficult to 

handle and retain in such small dimensions [21]. Further convenience includes that monoliths are 

chemically anchored to the confining container or the column wall, which makes the need of retaining 

frits unnecessary. The structure of silica based monoliths displays micrometer-sized sponge-like 

interconnected mesoporous silica skeletons and macropores transecting the whole skeleton (also 

called through pores). A cross sectional segment of such silica monolith has already been shown in 

Figure 3.1 and the preparation of such type of monolith has been reviewed in [22, 23]. Compared to 

conventional particulate fixed beds employed in LC, monolithic materials combine relatively high 

capacity (selectivity), mobile phase velocity (high permeability) and mass transfer efficiency (short 

diffusion path length in the relatively thin skeleton) in a unique manner [17, 18]. In contrast to the 

discontinuous solid phase encountered in sphere packings due to discrete particles, monolithic 

structures have a continuous skeleton. These are particularly useful in CEC because of their possible 

implementation as flexible meterware. However, qualitatively similar to the sphere packings the pore 

space in a monolith often consists of a macroporous interskeleton region (containing bulk fluid phase) 

and meso- and/or microporous intraskeleton compartments. The latter exhibit properties comparable 

to the intraparticle pore space in sphere packings, e.g., an intraskeleton ion-permselectivity and 

perfusive EOF. Consequently, another similarity or common feature between the hierarchically-

structured pore space in sphere packings and monoliths in view of the present analysis is the 

formation of CP zones (cf. Figure 4.1) under conditions favouring a significant EDL overlap in the 

intraskeleton compartments of a monolith (Figures 2.5 and 3.6). 

 

This is demonstrated by Figure 4.9 for a bare silica capillary monolith which contains interskeleton 

macropores and intraskeleton mesopores. The neutral tracer serves as a reference (Figure 4.9a). As 

illustrated by the series of CLSM images and selected intensity profiles for the co-ionic fluorescent 

tracer, Eext sensitively influences a development of CP in this material. While the image contrast in 

Figure 4.9b (left image) originates from a Donnan-exclusion of the tracer from the intraskeleton 

mesopore space due to EDL overlap caused by the relatively low ionic strength, CP develops if Eext is 

superimposed (Figure 4.9b, right image). This process is clearly evidenced by the “mountains” and 

“valleys” in fluorescence intensity reflecting enriched and depleted CP zones with increased and 

decreased background electrolyte concentration, respectively, which demonstrate the systematic 

change in the equilibrium distribution of ionic species in the interconnected pore space. Using charged 

(co-ionic) fluorescent, polystyrene-based nanoparticles with a nominal diameter of 50 nm the contrast 

without Eext (left image, Figure 4.9c) originates in the circumstance that the tracer is size-excluded 

from the mesopore space. Upon application of Eext we observe the development of enriched and 

depleted CP zones (right image in Figure 4.9c and related profile). They are sharper than for the
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small co-ionic tracer (right image, Figure 4.9b) because the nanoparticles are completely size-

excluded from the mesoporous skeleton, while a nonideal ion-permselectivity allows the small (co-

ionic) tracer to penetrate the mesopore space. Further and most important for counter-ionic analytes is 

Figure 4.9  CP dynamics in a silica capillary monolith (100 µm i.d.) with cation-selective skeleton in dependence of the applied

electrical field strength (Eext as indicated), as seen by a) Bodipy 493/593 as a neutral tracer, b) co-ionic tracer (BODIPYTM 492/515

disulfonate), c) Polystyrene nanoparticles (50 nM) as co-ionic size excluded tracer, and d) Rhodamine 6G as counterionic tracer in a

fluid phase of 90:10 (v/v) DMSO/aqueous sodium acetate buffer (pH 5.0) with an effective ionic strength of 0.1 mM. Profiles were

normalized with respect to their mean intensity at Eext = 0 kV/m. Images were acquired as xy-sections of 115.16 µm × 115.16 µm

with a resolution of 512 × 512 data points in a slice of thickness 1 µm. 
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the fact that they show strong adsorption to the oppositely charged surface and in average are 

increasingly enriched (in addition to their enrichment at electrochemical equilibrium) by the 

mesoporous skeleton with increasing Eext (Figure 4.9d.).  

 

Figure 4.10 shows that for the co-ionic tracer a development of electrical-field-induced CP 

systematically develops in the whole material. It leads to the development of “mountains” and “valleys” 

in electrolyte concentration with the spatial position fixed but with varying intensity (development) at 

each position. Scanning the confocal plane up and down revealed increasing and decreasing intensity 

of the spots at one Eext. In this respect, it should be recognized that the pore-level profile of EOF in 

fixed beds of spherical particles and also monoliths, even in the thin-EDL-limit, is not uniform and is a 

complex function of velocity or, more precisely, of the local distribution of velocities caused by the 

complex morphology of the porous medium (Chapter 1) which also influences the (local) thickness of 

the hydrodynamic boundary layer and thus also transport properties in the locally depleted CP zone 

(Chapter 3.3.4), which is basically inaccessible by our experimental approach and such small spatial 

dimensions. In the monolithic material the shape with respect to Eext of the anodic depleted and 

cathodic enriched CP zones observed in comparison to spherical symmetry thus is also expected to 

become influenced by the branching of the sponge-like structure as may be schematically illustrated in 

Figure 4.10. The enriched CP zone of a vertical (with respect to flow direction) branch feeds 

electrolyte concentration to the depleted CP zones of another branch directly diverting the skeleton 

further downstream. This is most pronounced when the branching is directly located behind an 

enriched CP zone. The feeding of electrolyte concentration from the enriched CP zone of the 

upstream branch into the depleted CP zone of the downstream branch can render impossible the local 

observation of the depleted CP zone at the downstream branch when the branches actually come 

closer. 

 

In Figure 4.11 we see that for the counterionic tracer image contrast stems from its intraskeleton 

enrichment (at Eext = 0 kV/m) which also intensifies with Eext. However, neither distinctive CP zones 

around the mesoporous skeleton nor any slope characterizing the backward diffusion from the 

enriched CP zone can be detected in the profiles in Figure 4.11, which clearly stems from the small 

spatial length dimensions and was also not resolvable for the relatively small particles in Figure 4.2. 

This enrichment can be explained by an increasing current density through the mesoporous pore 

space (in analogy to the particle dynamics in Figure 4.2), which together with the diffusive backflux 

induces the effective intraskeleton (pore level) concentration to increase with increasing Eext. Still the 

profiles in average display a systematic pronounced enrichment (Figure 4.11) clearly increasing with 

Eext, meaning that the intraskeleton pore level concentrations of this single charged counter-ionic 

tracer are increased. As for the particulate beds, evolving CP becomes significantly tuned by Eext (at 

constant mobile phase ionic strength). For example, as seen for the co-ionic tracer, its concentration is 

monotonically increasing and decreasing locally with increasing Eext (Figure 4.12), reflecting enriched 

and depleted CP zones throughout the whole material. The electrolyte concentrations in the CP zones 

tend to approach an asymptotic value which is influenced by the actual ion-permselectivity of the 

mesopore space and actual (electro-)hydrodynamic convection through the  material,  determining  the 
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Figure 4.10  Macroscopic CP dynamics in and around a cation-selective monolithic skeleton in dependence of the applied

electrical field strength (Eext as indicated), as seen by the co-ionic tracer (BODIPYTM 492/515 disulfonate) in a fluid phase of

90:10 (v/v) DMSO/ aqueous sodium acetate buffer (pH 5.0) with an effective ionic strength of 0.1 mM. Profiles were normalized

with respect to their mean intensity at Eext = 0 kV/m. Axial profiles (with respect to the direction of Eext and the resulting

macroscopic EOF) refer to the enriched and depleted CP zones along the profile. Images were acquired as xy-sections of

115.16 µm × 115.16 µm with a resolution of 512 × 512 data points in a slice of thickness 1 µm. 
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Figure 4.11  CP dynamics in and around the cation-

selective skeleton of the monolith in dependence of the 

applied electrical field strength (Eext as indicated), as 

seen by the counterionic tracer (Rhodamine 6G) in a

fluid phase of 90:10 (v/v) DMSO/aqueous sodium 

acetate buffer (pH 5.0) with an effective ionic strength of 

0.1 mM. Axial profiles were taken along the dashed 

lines in the images and normalized with respect to their 

mean value at Eext = 0 kV/m. Images were acquired as 

xy-sections of 115.16 µm × 115.16 µm with a resolution 

of 256 × 256 data points in a slice of thickness 1 µm. 
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local thickness of the CDL, as has 

been discussed in Chapter 3.3.4 and 

shown in Chapter 4.3.1. In the plateau 

regime (for the selected position) 

electrokinetic transport locally through 

the monolith skeleton exceeds 

diffusion-limited transport through the 

depleted CP zone; thus, in this plateau 

regime (E
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ext > 80-90 kV/m) charge 

transport locally through the skeleton 

is determined by the transport 

characteristics in the adjoining anodic 

CDL (depleted CP zone). In other 

words, with the increasing field 

strength, i.e., while the electrical 

current  through  the  mesopore  space 

Figure 4.12  Dependence of co-ionic tracer intensity in the stationary,

enriched and depleted CP zones at the region of interest (see dashed

box and arrow in figure 4.10. as indication) on the applied electrical

field strength. 

increases and ionic concentration in the depleted CP zone is decreased towards zero (Figure 4.12), a 

transition occurs from intraskeleton to interskeleton boundary layer-dominated transport behavior on 

the local skeleton scale in the monolith. However, at the same time as the ionic strength is increased 

and EDL overlap in the mesopore space reduced (Figure 4.13), the CP phenomenon is expectedly 

attenuated because the transport numbers for co-ionic species inside the monolith skeleton increase, 

while those for counter-ions correspondingly decrease. Thus, the mesopore space becomes less ion-

permselective and the CP zones are less intense. In comparison to the packed particulate beds, for 

the monoliths CP was also systematically developing throughout the whole hierarchically structured 

pore space (Figure 4.13). Important to note is that the ionic strength range (0.1mM to 10 mM) in 

Figure 4.13 represents the manifestation of CP phenomena, which develop in the whole material. This 

ionic strength region may be partly reflected in the (internal) surface charge density of the material 

(see Figure 3.6a). It should be remembered that the intraskeleton pore size (rintra ≈ 13 nm) of the 

monolith is in the same order of magnitude as the intraparticle pore size of the cation-exchange 

particles (Figure 4.5). A decreasing surface charge density, in comparison e.g. to the ion-exchange 

surfaces, results in a decreasing ion-permselectivity of the mesopores in the monolith and thus 

stimulates electrical field induced CP over a lower ionic strength region (see Figure 4.6 in comparison 

with Figure 4.13). We have seen in Figure 3.6a that decreasing surface electrical potential requires 

lower ionic strength to tune required ion-permselectivty and thus electrical field-induced CP. In other 

words lower ionic strengths are needed to induce significant ion-permselectivity and related CP 

phenomena for the monolith (Figure 4.13).  

 

Finally electrohydrodynamic features in this ionic strength region (0.1 to 10 mM) necessarily lead, at 

elevated electrical field strengths, to nonequilibrium electroosmositic slip with varying intensity locally 

along curved interfaces where the transport discrimination of counter-ionic species between the 

macroporous and mesoporous pore space becomes climactic.  It  results in  macroscopically nonlinear  
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ueo behaviour. Thus, depending on the 

intensity of nonequilibrium CP, i.e., the 

actual potential drop in the SCR 

(Figure 2.4), nonlinear contributions to 

the overall EOF can significantly 

modify the conventional picture of 

linear electroosmotic slip velocities. It 

is illustrated in Figure 4.14a using a 

bare silica monolith with bimodal pore 

size distribution and mobile phase 

conditions leading to strong EDL 

overlap on the intraskeleton mesopore 

scale (see Figure 4.13). Figure 4.14a 

confirms a clearly nonlinear u
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Eexteo 

behaviour (expressed by µ  = u /Eeo eo ext) 

for various mobile phase ionic 

strengths. This unique trend 

corroborates the operation of a rather 

fundamental effect. It means that the 

initially linear behaviour (at relatively 

low E
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ext) becomes increasingly 

dominated by nonequilibrium 

electroosmosis, even before we 

approach an asymptotic value of 

developing CP (see Figure 4.12). This 

macroscopic nonlinearity must have its 

origin in electrical-field-induced CP 

and a locally variable limiting current 

density, reflecting the transition to 

nonequilibrium electroosmotic slip in 

agreement with the dynamics in the 

packed beds.  

Figure 4.13  Ionic strength dependence of the co-ion distribution in a

hierarchical monolithic structure. The fluid phase was 90:10 (v/v)

DMSO/aqueous sodium acetate buffer (pH 5.0) at varying effective

ionic strengths. Laser and detector settings were optimized for an

effective ionic strength of 0.1 mM and Eext = 53 kV/m. Subsequently the

column was equilibrated with fluid phase of higher ionic strength until a

steady state was achieved. All images were aquired under identical

laser and detector settings. Tracer concentrations were normalized

with respect to the average intensity at Eext = 0 kV/m. Images were

acquired as xy-sections of 115.16 µm × 115.16 µm with a resolution of

512 × 512 data points in a slice of thickness 1 µm. 

 

After having interrelated the 

dependence of electrical-field-induced 

CP  in  these  optically  opaque  media 

(Figures 4.10, 4.11 and 4.13) with the macroscopically observable electrohydrodynamics (4.14a), it is 

the influence of mobile phase composition which then has been investigated in these structures. It is 

the 90:10 DMSO/H2O system, which has been used for our CLSM studies in this chapter throughout, 

but the 80:20 AcN/H2O system has been employed for our electrochromatographic separations 

(Chapter 3). Thus the remainder of this chapter is focusing on the physicochemical parameters  of  the 
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f). The effect of ε = ε0ε      5 mM Trisr 

(where ε0 denotes the absolute 

permittivity) and ηf on µeo for linear 

(equilibrium) EOF and nonlinear 

(nonequilibrium) EOF for a given 

system is described by µeo∝ ε/ηf. Thus 

neglecting other physicochemical 

effects, two solvent systems may be 

compared [24]. 

 Figure 4.14 Double logarithmic plot of µeo = ueo/Eext in the bare silica

monolith as a function of Eext in a mobile phase which consisted of a)

90:10 DMSO/H2O (v/v) (pH = 5.0) containing acetate buffer (ionic

strength as indicated), and b) in a mobile phase which consisted of 80:20

(v/v) Acetonitrile/H2O (pH 8.3) containing Tris-HCl buffer (concentration

as indicated). 

Using a mobile phase of 80:20 

AcN/H2O, with a viscosity of ηf = 1.01 

mPas and relative permittivity of εr = 

42.8  (εr/ηf = 42.4),  shows that mobility 

generally is reflecting higher values (Figure 4.14b) than for a mobile phase of 90:10 DMSO/H2O with a 

viscosity of ηf = 2.6 mPas and εr = 49.6 (ε/ηf = 19) [24]. However other factors are still discernable, 

which may contribute to the relatively higher µ  for the 80:20 AcN/Heo 2O system. Using the AcN/H2O 

system at a mobile phase pH-value of pH = 8.3, a slightly higher µeo (based on equilibrium linear 

electroosmosis at low field strength) is observed by comparing Figure 4.14b with Figure 4.14a. These 

higher velocities ground in the increasing surface electrical potential [3], because of a higher degree of 

dissociation of silanol groups and subsequently resulting net EOF velocities, as frequently reported in 

the literature [25, 26]. Their increasing dissociation also in the intraskeleton pore space, subsequently 

increases the ion-permselectivity (Figure 3.6a) and thus decreases the field strength at which 

nonequilibrium electroosmosis starts to influence the overall electrohydrodynamics, as is also in 

agreement with Chapter 3. This is shown in Figure 4.14b. It can be seen that for the 0.1 mM Tris in 

Figure 4.14b already a nonlinear velocity relation is revealed (increasing µ  with Eeo ext) at a voltage of 
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20 kV, in contrast to Figure 4.14a, where µeo still displays the classical (field independent) behaviour. 

Further it may be implied that due to the higher fluid velocities, by a factor 4 to 5, δCDL is becoming 

smaller in average and thus nonlinear velocities earlier start tapering off (see Figure 4.14b in 

comparison to Figure 4.14a). This is also observed for the packed beds (Figure 4.7a). 
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4.4 Conclusions 

This chapter has analyzed the local CP dynamics in fixed beds of strongly cation-selective spherical 

particles with respect to the macroscopic EOF dynamics, particularly in view of a contribution of CP-

based nonequilibrium electroosmotic slip. CP was visualized by CLSM employing refractive index 

matching of the fluid phase with respect to the solid skeleton of the mesoporous particles (Figures 4.1-

4.5). The electrical field-dependence of the CP pattern (Figure 4.1) demonstrates that a limiting 

current density is approached locally through a particle at increasing Eext (Figure 4.3). Electrical 

current through a particle in the fixed bed is controlled by the intraparticle transport characteristics at 

low field strengths, while it becomes controlled by the behavior in the depleted CP zone (anodic CDL) 

towards the limiting current regime at higher field strengths. 

 

The CP pattern in a fixed bed of particles is modulated by the arising multiparticle effects, i.e., the 

interaction of neighboring CP zones (Figure 4.4). We were able to directly correlate the induction and 

development of CP to the evolving nonlinear dynamics accessible through the macroscopically 

measurable EOF velocities (Figure 4.7). While the local intensities in the depleted and enriched CP 

zones approach asymptotic behavior (Figure 4.3), e.g., ionic concentration in the depleted CP zone is 

reduced towards zero at increasing field strength, we observe the onset of a significantly nonlinear 

contribution to the overall EOF dynamics (Figure 4.7). In the framework of nonequilibrium CP this 

suggests that a secondary EDL is electrokinetically induced by the applied field, consisting of a mobile 

SCR in the depleted CP zone and an immobile SCR in the adjacent pore space of a particle. 

 

It has been shown that nonequilibrium electroosmosis based on this secondary EDL survives in dense 

multiparticle systems and is a result of the mutual interplay of a variety of parameters, including pore 

space morphology and applied field strength, but also factors modulating the counterion-selectivity of 

a particle, e.g., the intraparticle pore size and surface charge density, or the fluid phase ionic strength 

(Figure 4.6). In contrast to dimensions of the primary EDL the CP zones around a particle have a 

considerable larger size (Figure 4.1) which results in extinguishing interactions in dense multiparticle 

systems such as the fixed beds (random-close packings). Consequently, electrokinetic mobilities 

based on µeo in a fixed bed and µep for a dilute suspension of the same (or similar) particles from an 

electrophoresis experiment cannot be quantitatively compared with each other (Figure 4.8). 

 

The hierarchically-structured pore space of fixed beds of particles encountered in this work (charge-

nonselective interparticle macropore space; counterion-selective intraparticle mesopore space) is a 

good example illustrating the importance of both classical (linear) and nonequilibrium (nonlinear) 

electroosmosis in the macroscopic EOF dynamics in more complex porous media. Borderline cases 

are observed as the thickness of the primary EDL becomes much smaller than any pore size (linear 

EOF behavior) and, on the other hand, as potential drop in the mobile SCR of the secondary EDL 

becomes much larger than the classical zeta-potential (nonlinear EOF behaviour) (Figure 4.8). 

 

In contrast to the random-close sphere packings where the interparticle (void space) dimensions are 

directly related to the particle diameters the silica-based monoliths used in this work are a promising 
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alternative. They are manufactured by a two-step process, resulting in bimodal pore size distributions 

and morphologies different from the packed beds. The resulting bimodal pore size distributions 

translate to particulate systems in which ion-permselective spheres would be relatively loosely placed 

in space [1], as we have already noted that decreasing the macropore space results in an attenuated 

nonlinearity also in the monolithic structure (Figure 3.15). Thus, nonequilibrium electroosmotic slip, 

which grounds in the ion-permselectivity of the thin, but axially extending monolith skeleton 

(depending on macropore dimensions) and the induced CP is expected to develop better in the 

interskeleton macropores than in close packings of ion-permselective particles. In this respect, we 

have already noted that the monoliths show a different morphology. Further, due to their continuous 

skeleton, relatively extended CP zones (less confined than in a bed of discrete particles) penetrate the 

material like a spider web (Figure 4.9). 

 

Employing packed beds and monolihts for separations in CEC, it is important to note that the induction 

of CP and its dependence on applied field (Figures 4.1-4.3 as well as Figures 4.10-4.12) and mobile 

phase ionic strength (Figures 4.5, 4.6 and 4.13) may have a strong impact on the retention of charged 

analytes as electroneutral analytes are generally insensitive for tracing CP (Figure 4.9a). These 

investigations have to include the migration and retention behaviour of electroneutral analytes with 

respect to charged analytes because the CP zones are the basic element of charge transfer between 

the quasi electroneutral macropore space and the ion-permselective intraparticle/intraskeleton pore 

space. 
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5 Retention dynamics of charged analytes in electrochromatography 
 
5.1 Key to analyte migration and retention in electrochromatography 
 
5.1.1 Introduction 

Besides having fundamental relevance for coupled mass and charge transport in CEC the CP 

phenomenon presents a unique mechanism by which the retention behaviour of charged analytes may 

be modulated directly by the applied field strength (in contrast to widely accepted theory), as well as 

the mobile phase ionic strength which influences EDL overlap and, thus, the charge-selectivity of the 

particles (Chapter 3 and Chapter 4) [1, 2]. Although the existence of CP has been shown with the 

electrochromatography of proteins in relatively early papers [3-5], this phenomenon is usually 

overlooked in CEC. At the same time, the retention of charged analytes has strongly puzzled 

chromatographers and still remains largely unresolved. Many groups have investigated this topic in 

the past [6-26]. It is often assumed that retention in CEC is composed of independent contributions 

from the chromatographic behavior in LC and electromigration in CZE which implies that the retention 

factor in electrochromatography does not depend on the field strength. While in a few cases an 

influence of applied voltage (other than due to the development of Joule heat) on the retention of 

charged analytes and discrepancies with the aforementioned picture of the retention factor have been 

reported, the physical mechanism responsible for this behaviour has been unknown. Instead, most 

investigations in CEC have focused on the influence of mobile phase composition (pH, ionic strength, 

percentage of organic modifier), but did not consider systematically analyte retention as a function of 

the applied field strength. This is surprising because electrical field strength is a major external control 

variable in any electrochromatographic or field-assisted operation. 

 

In this chapter we demonstrate that CP is the key to understanding a fundamental and general, rather 

than exceptional electrical field-induced retention of counterionic analytes in CEC. For this purpose we 

employ fixed beds of porous cation-exchange particles and study the retention of small, single 

positively charged analytes depending on applied field and mobile phase ionic strengths. These 

investigations are complemented and their implications confirmed with CLSM studies, which can 

resolve CP and its operational domain on a particle scale in a packed bed. This is realized with a 

setup similar to our earlier investigations of “multiparticle effects” in Chapter 4 (Figure 3.4) [1]. Further, 

we use fixed beds of nonporous (impermeable, nonconducting) particles, which have already been 

demonstrated to show no sign of CP in Chapter 3 (Figures 3.12 and 3.14c) [2], and additionally fixed 

beds of bare-silica particles with different intraparticle pore sizes, but the same base chemistry. As 

analytes we used small neutral, as well as small single positively charged analytes of pharmaceutical 

relevance. They are behaving counterionic to the stationary phase and experience electromigration in 

the EOF direction. This choice of analytes appears useful to address a difference in the retention 

mechanism between charged and neutral analytes in CEC, because charged analytes are expected to 

participate in electrical field-induced CP. 
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5.1.2 Experimental Section 

Chemicals and Materials. Sodium acetate, acetic acid, and HPLC grade acetonitrile came from 

Sigma-Aldrich Chemie (Taufkirchen, Germany). Ambroxol hydrochloride, lidocaine hydrochloride, 

papaverine hydrochloride, imipramine hydrochloride, nortriptyline hydrochloride, and caffeine were 

also purchased from Sigma-Aldrich Chemie, while toluene used as the EOF velocity marker and 

paracetamol came from Merck (Darmstadt, Germany). 

 

Spherisorb SCX particles were the same as in Chapter 4 (nominal size: 5 µm, pore size: 10 nm) and 

were a gift from Waters (Milford, MA). Micra NPS particles (nominal size: 3 µm) were a gift from 

Bischoff (Leonberg, Germany). Nucleosil 100-5 and Nucleosil 4000-5 particles (nominal size: 5 µm, 

pore size: 10 nm and 400 nm, respectively) were purchased from Macherey-Nagel (Düren, Germany). 

Particles were packed in 50 µm i.d., 360 µm o.d. fused-silica capillaries from Polymicro Technologies 

(Phoenix, AZ) by an optimized slurry packing method described in Chapter 4.2, except for the bare 

silica particles, were packed bed fabrication was realized as in Chapter 3.2 and in analogy to [27]. In 

both cases duplex columns were created. A detection window was prepared directly behind the outlet 

frit. Columns had a similar length of the packed bed segment (240 mm) and total length (323 mm). 

They were assembled in a HP3DCE capillary electrophoresis instrument (Agilent Technologies, 

Waldbronn, Germany). Detection was made at 210 nm and measurements were run at controlled 

temperature of 298 K. Both vials were pressurized at 10 bar for minimizing bubble formation. 

 

Acetate buffer solutions in 80:20 acetonitrile/water (v/v) were used as electrolyte. The mobile phase 

was filtered over 0.45 µm nylon membrane filters and degassed by ultrasonication. An aqueous stock 

solution of 200 mM acetate was prepared with water purified on a Milli-Q-Gradient (Millipore, 

Eschborn, Germany). The pH was adjusted to 5.0 by titration with concentrated acetic acid. Next, 

appropriate volumes of this stock solution, Milli-Q water, and acetonitrile were mixed to yield acetate 

buffer solution of the desired ionic strength. Fresh samples were prepared on a daily basis by 

dissolving analytes directly in running mobile phase (60 µg/ml). For the CLSM studies background 

electrolyte contained 10-5 M of either of the following fluorescent dyes: BODIPYTM 493/503 

(electroneutral tracer) and BODIPYTM disulfonate (twice negatively charged) from Molecular Probes 

(Leiden, The Netherlands), or positively charged Rhodamine 6G (Fluka, Taufkirchen, Germany). The 

setup for the CLSM studies is similar to the one described in Chapter 3 (Figure 3.4). 
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Figure 5.1.2 Dependence of residence times (tr) in the packed capillary

on applied voltage. Stationary phase: Spherisorb SCX particles. Mobile

phase ionic strength: 4 mM. 

 

5.1.3 Results and Discussion 

The primary goal of this work is to demonstrate and explain electrical field-dependent retention of 

counterionic analytes in CEC by means of the electrical field-induced CP (Chapter 4) [1]. For this 

purpose, Figure 5.1.1 shows representative electrochromatograms of the test mixture (three 

electroneutral and five positively charged analytes) obtained on the strong cation-exchange stationary 

phase. It is seen that the retention window for the positively charged, i.e., counterionic analytes is 

shifted (indicated by the red arrow) to longer times relative to that for the electroneutral analytes, while 

the applied voltage is increased from 2 kV (Figure 5.1.1a) to 26 kV (Figure 5.1.1b). At first glance this 

is a surprising result and difficult to explain because the counterionic analytes experience 

electromigration in the EOF direction. This observation forms the origin for our deeper investigations 

on the influence of applied field strength on the counterionic analytes migration and retention in CEC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dependence of residence times in the packed capillary on applied voltage (from 2 kV up to 30 kV) 

is reported in more detail by Figure 5.1.2. Considering different slopes in this plot for the two groups of 

counterionic and electroneutral 

analytes it is evident that the behaviour 

implied by Figure 5.1.1 develops 

systematically, i.e., at increasing field 

strength the residence time of the 

group of counterionic analytes is 

delayed with respect to the 

electroneutral analytes. In other words, 

the residence times of electroneutral 

analytes decrease faster than those of 

the counterionic analytes. It means 

that the retention factor in its classical 

definition k' = (tr – t0)/t0 for counterionic 

analytes  becomes  a  function  of  the 
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Figure 5.1.1  Representative electrochromatograms of the test mixture (containing three electroneutral and five counterionic

analytes) for different applied voltages, a) 4 kV and b) 26 kV. Stationary phase: Spherisorb SCX particles (dp = 5 µm, dintra = 10

nm). Mobile phase ionic strength: 40 mM. 
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Figure 5.1.3 Dependence of the retention factor k' = (tr – t0)/t0 on 

applied voltage. Stationary phase: Spherisorb SCX particles. a) Mobile

phase ionic strength: 10 mM. b) Electrical field-dependence of k' for 

lidocaine at different ionic strengths. Toluene is used as t0 marker. 

applied field strength (where tr is the residence time of a counterionic analyte and t0 that of the flow 

field marker). This is demonstrated in Figure 5.1.3a.  As the  applied voltage  is increased from 2 kV to 

30 kV k' of the counterionic analytes 

increases by a factor of 3.5 to 4, while 

k' of the electroneutral analytes is 

constant within 1 %. This electrical 

field-independent behaviour of neutral 

analytes is in agreement with 

expectations under isothermal 

conditions [28]. By contrast, the 

electrical field-dependence of k' is 

substantial and similar for all 

counterionic analytes, which are single 

positively charged. They display a 

range of molecular weights from 

299.84 for nortryptiline to 416.56 for 

ambroxol. Yet it appears difficult to 

extract differences in their electrical-

field dependent retention behaviour. 

Figure 5.1.3b shows that k' of the 

counterionic analytes (represented by 

lidocaine) decreases at increasing 

ionic strength, but retains its basic 

dependence on applied voltage. 

 

Thus, Figure 5.1.3 reveals a clear 

electrical field-dependence of the 

retention     factor     for     counterionic 

analytes. To explain the strong increase of k' at increasing field strength by electrical field-induced CP 

[1], we have to analyze closer the origin of this phenomenon in a capillary packed with strong cation-

exchange particles. Their internal surface charge, together with the pore size of 10 nm and a typical 

Debye screening length (characterizing the EDL thickness) of the same order causes substantial EDL 

interaction on the intraparticle mesopore level (Chapters 2, 3 and 4) [2]. It leads to co-ion exclusion 

and counterion enrichment by a particle at electrochemical equilibrium (Figure 2.3) [29]. Further, this 

charge-selectivity depends on the mobile phase ionic strength as shown in Figure 4.5. For example, 

with an ionic strength sufficiently high that the EDL thickness is much smaller than the intraparticle 

pore size the pore fluid becomes quasi-electroneutral. Then, the intraparticle pore space is charge-

nonselective and intraparticle ion concentration distributions resemble those in bulk solution [2]. 

 

Under most typical conditions, however, the intraparticle (meso)pore space is charge-selective [2] and 

significant CP  is induced  when  an  electrical field  is  superimposed  (cf. Figure 4.1).  In  the  present 
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Figure 5.1.4 Visualisation of electrical field-induced CP in a packed 75 µm i.d. fused-silica capillary by CLSM (0.06 µm x 0.06

µm pixels in a slice of thickness 1 µm). Stationary phase: Spherisorb SCX particles (dp = 5 µm, dintra = 10 nm). Same mobile

phase as employed in the CEC measurements; ionic strength: 4 mM. a) BODIPYTM (electroneutral tracer), b) BODIPYTM

disulfonate (twice negatively charged), c) positively charged Rhodamine 6G. The stationary profiles were normalized with

respect to electrochemical equilibrium. 
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example, sodium ions of the acetate buffer migrate from the interparticle macropore space into a 

cation-exchange (cation-selective) particle via its anodic hemisphere. Co-ions (acetate ions) migrate in 

opposite direction, away from a particles external anodic surface. This withdrawal cannot be 

compensated by the relatively few co-ions in the intraparticle mesopore space (which excludes co-ions 

due to the EDL overlap). Thus, the co-ion concentration decreases as a consequence of coupled 

mass and charge transfer normal to the charge-selective surface of a particle. To preserve local 

electroneutrality in the macropore space also the counterion concentration decreases (Figures 2.1, 

2.2, and 2.3). The interplay of a particles charge-selectivity, the local electromigration, diffusion, as 

well as convection forms a depleted CP zone (convective-diffusion boundary layer) at the cation-

exchange particles external anodic surface (anodic hemisphere). At its cathodic surface (cathodic 

hemisphere) the counterions leave a particle in the direction of the applied field. They are neutralized 

by co-ions which results in an enriched CP zone. These gradients in bulk electrolyte concentration 

around a charge-selective particle depend on the applied voltage, i.e., their steepness increases with 

the field strength (Figure 4.3). As a consequence, counterionic analytes which inherently participate in 

coupled mass and charge transport spend more time in the packed column relative to electroneutral 

analytes via these field-induced CP zones as their intensity is increased. Thus, k' increases with the 

applied field strength as shown in Figure 5.1.3. This explains how the external electrical field from a 

general point of view is able to tune the retention of counterionic analytes. 

 

To provide a direct proof for the operation of electrical field-induced CP and its concrete influence on 

retention of counterionic analytes we have employed CLSM with the same packed capillary and 

mobile phase as in CEC (Figures 5.1.1–5.1.3). Electroneutral, co-ionic, and counterionic fluorescent 

tracers were used to address the fundamental differences in the transport behaviour of charged and 

electroneutral species. Stationary profiles of a respective tracer inside an ion-exchange particle of the 

packing and the adjoining interparticle fluid are shown in Figure 5.1.4 at different applied field strength 

(and at electrochemical equilibrium, Eext = 0 kV/m). Figure 5.1.4a does not reveal changes in the 

distribution of electroneutral tracer upon the application of an electrical field. Its concentration is 

reduced inside the particle (with respect to the interparticle fluid) because of a particles porosity and 

abberation caused by refractive index mismatch between the particles solid and fluid saturating its 

pores. While a refractive index matching mobile phase can be used to minimize this optical artefact [1, 

30] (Chapter 4), in the present context it appeared more illustrative to realize the same conditions in 

these microscopic CLSM as in the macroscopic CEC measurements. 

 

The field-independent distribution of the electroneutral tracer seen in Figure 5.1.4a is not difficult to 

understand, this tracer is simply not involved in charge transport. By contrast, for the co-ionic tracer 

(Figure 5.1.4b) we reveal the induction by an applied field of regions with reduced and increased 

concentrations relative to electrochemical equilibrium. They represent the presence of the depleted 

and enriched CP zones, as well as a dependence of their intensity on applied field strength. For 

counterionic tracer (Figure 5.1.4c) we witness a significant increase of its intraparticle concentration at 

increasing field strength which reflects the increasing k' for counterionic analytes, demonstrated in 

Figure 5.1.3 from a macroscopic point of view. The main difference between co-ionic and counterionic 
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tracer is that the former is electrostatically excluded from a particle and the latter enriched at 

electrochemical equilibrium. The applied field then induces depleted and enriched CP zones around a 

particle (Figure 2.3). It stimulates an increased diffusive flux into a particle by the enriched zone. This 

results in locally increased intraparticle concentrations of both types of charged tracers with respect to 

electrochemical equilibrium [31], as evidenced by Figure 5.1.4. Thus, as a consequence of CP, the 

residence time of a charged analyte can be directly tuned with the applied electrical field and k' be 

manipulated accordingly (Figure 5.1.3). Electroneutral analytes cannot experience the field-dependent 

ion concentration gradients as they do not participate in any charge balance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While Figure 5.1.4 reveals the electrical field-dependence of CP in a packed bed of charge-selective 

adsorbent particles by CLSM, Figure 5.1.5 demonstrates the dependence on mobile phase ionic 

strength (at constant applied field strength). Increasing ionic strength reduces the charge-selectivity of 

Figure 5.1.5 Visualisation of electrical field-induced CP in a packed 75 µm i.d. fused-silica capillary by CLSM (0.06 µm x 0.06

µm pixels in a slice of thickness 1 µm). Stationary phase: Spherisorb SCX particles (dp = 5 µm, dintra = 10 nm). Same mobile

phase as employed in the CEC measurements, but with counterionic fluorescent tracer (Rhodamine 6G); ionic strength as

indicated. a) Tracer distribution at electrochemical equilibrium (Eext = 0 kV/m). b) Stationary distribution at Eext = 40 kV/m. c)

Profiles through a particle and the adjoining interparticle fluid (positions in the packing are indicated by the dashed lines),

demonstrating for each ionic strength the intensity difference observed at Eext = 40 kV/m with respect to electrochemical

equilibrium. 
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the particles by a better screening of their internal surface charge. In other words, the decreasing 

intraparticle EDL overlap (the EDL thickness decreases as the ionic strength increases) results in a 

reduction of counterion enrichment at electrochemical equilibrium which is illustrated in Figure 5.1.5a. 

As the electrical field is superimposed the decreased cation-selectivity of the particles results in a 

reduced intensity of the field-induced CP phenomenon, i.e., in weaker concentration gradients in the 

depleted and enriched CP zones (cf. Figure 4.5). This, in turn, stimulates a smaller diffusive backflux 

into a particle from the enriched CP zone with respect to electrochemical equilibrium which is seen in 

the fluorescence profiles (Figure 5.1.5c). Thus, as the mobile phase ionic strength is increased, the 

reduced charge-selectivity of the particles at constant field strength leads to an attenuation of the CP 

zones which, therefore, become less intense hold-up ("trapping") regions for the counterionic with 

respect to electroneutral analytes. Consequently, in addition to classical ion-exchange behaviour, also 

this ionic strength dependence of CP contributes to the trend in Figure 5.1.3b. In general, the 

functional dependence of retention on ionic strength observed in ion-exchange liquid chromatography 

will become modulated for its electrochromatographic variant by the field-induced CP. 

 

To summarize, the macroscopic CEC data in Figure 5.1.3 have been illuminated microscopically by 

CLSM and shown to reflect CP and its dependence on the applied field strength (Figure 5.1.4) and 

ionic strength of the bulk fluid (Figure 5.1.5). These comprehensive data and their conclusions can be 

complemented by the following two simple series of CEC measurements. The first one employs 

porous particles with i) small and ii) large intraparticle pores with respect to the actual EDL thickness. 

Thus, while intraparticle EDL overlap, charge-selectivity, and the electrical field-induced CP effects on 

analyte retention should be significant with the small pores, they are assumed to become unimportant 

with large enough pores (see Figures 3.14a and 3.14b). The second measurement series employs 

nonporous (impermeable, nonconducting) particles which should not demonstrate electrical field-

induced analyte retention in CEC, because hard spheres simply have no charge-selective intraparticle 

pore space and, thus, no capability of imparting charge-selective transport behaviour, the prerequisite 

for observing CP in an applied electrical field (Figure 3.14c).  

 

Figure 5.1.6 demonstrates a favourable agreement between the electrical field-(in)dependent retention 

data (here collected for lidocaine and nortriptyline) and expectations based on a scaling of CP in the 

employed fixed beds. In particular, we observe a linear dependence of k' on the applied field strength 

(Figure 5.1.6a) with the bare-silica particles having small intraparticle pores (dintra = 10 nm), while this 

clear electrical field-dependence of k' indeed disappears with the large-pore particles (dintra = 400 nm). 

Also with the nonporous bare-silica particles (Figure 5.1.6b) we cannot reveal a significant electrical 

field-dependence of analyte retention, for example, k' of nortriptyline increases marginally from –0.35 

at 2 kV applied voltage to –0.32 at 30 kV. Thus, the data in Figure 5.1.6 for the porous (dintra = 10 nm 

and 400 nm) and nonporous bare-silica particles complement retention behaviour observed with the 

strong cation-exchange particles (dintra = 10 nm) in Figure 5.1.3, as well as implications of the CLSM 

studies (Figures 5.1.4 and 5.1.5). As porous particles are charge-selective due to intraparticle EDL 

overlap (dintra = 10 nm) significant CP is electrokinetically induced in the interparticle macropore space. 

The intensity of the (depleted and enriched) CP zones depends on the applied field and mobile phase 
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ionic strengths. This introduces a fundamental electrical field-dependence of k' for the charged 

analytes. On the other hand, as the porous particles become charge non-selective due to the 

vanishing intraparticle EDL overlap (dintra = 400 nm), or because they are simply nonporous 

(impermeable for fluid and electrically nonconducting), this kind of CP cannot be induced by the 

applied field. Than, k' for the charged analytes (under isothermal conditions) is independent of the 

electrical field strength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the comprehensive chromatographic (Figures 5.1.3 and 5.1.6) and microscopic (Figures 5.1.4 

and 5.1.5) data on the existence and operational domain of CP at hand it is illustrative to review some 

related work in the literature. The purpose of this analysis is to show that many results can be better 

understood in a context of the electrical field-induced CP. It is neither a complete, nor a quantitative 

analysis of data. With the selected examples we intend to bring more attention to this phenomenon 

which features a general importance in electrochromatography. For example, the significant increase 

of k' with applied field strength similar to this work (see Figure 5.1.3a), but for acidic compounds in 

strong anion-exchange CEC [12] can be easily explained by CP, it can also contribute to the field-

induced variation of the capacity factor observed by Kitagawa et al. [10] and provides a general 

physical basis for redistribution of charged analyte on the scale of a single ion-exchange particle of the 

packing (including adjacent CP zones) in dependence of the applied field strength. Thus, when 

experiencing CP it is not surprising that retention in CEC cannot be adequately reconstructed by 

simply using chromatographic retention from LC and electromigration from CZE experiments [25] or 

that, at least, some (field-dependent) inconsistencies remain. Finally, in their pioneering work with a 

size-exclusion electrochromatography system Rudge et al. [3] have shown that the migration rates of 

large co-ionic proteins decreased (i.e., they were retained stronger) at increasing electrical field 

strength. For example, even though the convective (mostly due to hydraulic flow) and electrophoretic 

velocities acted in the same direction, bovine hemoglobin demonstrated an electrochromatographic 

velocity that was lower than the convective velocity, and decreased with increasing field strength [4]. 

In the context of the present work such co-ionic analytes which are size-excluded from the charge-
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Figure 5.1.6 Dependence of the retention factor on applied voltage. Mobile phase ionic strength: 1 mM. Stationary phases: a)

Nucleosil bare-silica particles (dp = 5 µm, dintra = 10 nm or 400 nm), and b) Micra NPS particles (dp = 3 µm). 
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selective particles present a special case. Like any co-ionic analyte involved in coupled mass and 

charge transport in porous media, irrespective of its size, these analytes get electrostatically trapped in 

the enriched CP zones which depend on the applied field strength [1, 31]. In addition, because large 

proteins are size-excluded from the particles they will be held there (against backdiffusion) by the 

electrical field which itself penetrates the intraparticle pore space. Size-exclusion of charged analytes 

is no prerequisite for experiencing CP and the electrical field-modulated retention, but as a co-ionic 

analyte becomes size-excluded from the charge-selective particles the influence of electrical fields on 

its retention is aggravated due to this steric effect [3-5, 32]. 
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5.1.4 Conclusions 

This work has revealed an inherent electrical field-dependence of the retention factor for small 

counterionic analytes under rather typical electrochromatographic conditions (Figure 5.1.3). All 

analytes throughout are single charged in nature and they display a mass to charge ratio from 299.84 

for nortryptiline to 414.56 for ambroxol. It has been demonstrated by microscopic CLSM 

measurements (Figures 5.1.4 and 5.1.5) and macroscopic CEC studies (Figure 5.1.6) that such a 

dependence is caused by the electrical field-induced CP. This phenomenon develops due to coupled 

mass and charge transport normal to charge-selective interfaces which are unique to 

electrochromatographic applications employing fixed beds of porous particles. Strong EDL overlap 

prevailing over a wide range of experimental conditions in relatively small, but typical intraparticle 

pores (dintra ≈ 10 nm) makes the particles charge-selective. It causes co-ion exclusion and counterion 

enrichment at electrochemical equilibrium. For example, it was shown in Chapter 3 that with 

mesoporous particles mobile phase ionic strengths on the order of 100 mM (see Chapter 3, Figure 

3.6b) or higher are necessary for removing their charge-selectivity [2]. Due to a significant charge-

selectivity under common conditions a superimposed electrical field induces depleted and enriched 

CP zones in the background electrolyte around the particles (Chapter 4.3.1). The intensity of these CP 

zones depends on the field strength and charge-selectivity of the particles, i.e., on surface charge 

density, pore sizes, and the mobile phase ionic strength. For example, as the field strength is 

increased the electrolyte concentration gradients in the CP zones become more intense (Figure 4.1). 

This explains the electrical field-dependence of the retention factor for charged analytes which 

participate in coupled mass and charge transport through the material (and the CP zones). Thus, at 

increasing field strength charged relative to electroneutral analytes reside longer on a particle scale 

via the CP zones and k' increases. By contrast, k' becomes field-independent (under isothermal 

conditions) in a packed bed of porous particles as their charge-selectivity disappears and CP cannot 

be induced by the applied field. It has been clearly demonstrated in this work (Figure 5.1.6) that this is 

the case with sufficiently large intraparticle pores and/or high mobile phase ionic strength, as well as 

for a bed of nonporous particles. 

 

Under most general conditions in electrochromatography the retention factor of charged analytes must 

be considered as a field-dependent parameter. This can explain why retention data measured in 

similar systems, but at different field strength can differ significantly (Figure 5.1.3) and may have 

contributed artificially to an apparent unreproducibility in CEC practice. It also implies that the 

approach adopted in the literature by which retention in CEC is synthesized from chromatographic 

retention in LC and electromigration in CZE must be questioned as it assumes that the retention factor 

in CEC does not depend on the applied field strength. In other words, relevant transport through the 

field-dependent CP zones in a packed column is incorrectly removed by an open-tubular CZE 

experiment which itself provides a field-independent mobility. Finally, because the CP zones stand for 

conductivity gradients which develop on a particle-scale (cf. Figure 4.1), throughout the whole packed 

bed, the dynamics in these zones is expected to contribute also to an intrinsic zone sharpening in 

CEC. 
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It is concluded that CP, which represents field-induced dynamic changes in the local distribution of 

ionic species in hierarchically-structured materials, has severe consequences for coupled mass and 

charge transport behaviour observed on a macroscopic scale. This includes not only analyte retention, 

but also zone spreading. With relevance to these phenomena CP becomes the key to understanding 

CEC. 

 

With respect to these findings, in Chapter 5.2 we investigate the retention dynamics of peptides with 

beds of strong SCX-particles, both in LC and CEC. These peptides display more pronounced 

differences in molecular mass and also charge than the analytes employed in this study. Further, we 

vary the pH of the mobile phase influencing the charged state of the peptides. In contrast to LC, 

electrolyte ionic strength in CEC not only reduces electrostatic interactions with the charged stationary 

phase, but also changes the intensity of electrical field induced CP developing in the whole material 

(Figures 4.6 and 5.1.5) by modulating the particles charge selectivity. This behaviour is systematically 

investigated in the following chapter and resolves the retention dynamics in LC with respect to the 

retention dynamics in CEC under consideration of the physicochemical parameters of the different 

peptides and with respect to developing CP. 
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5.2 Tuning retention and selectivity of peptides in electrochromatography 
 
5.2.1 Introduction 

In recent decades CEC has been proposed to gain increasing importance as a micro high performance liquid 

separation technique for the separation of peptides and proteins, mostly by investigating practical aspects 

[33]. It is often considered as being a hybrid of CZE and LC [34, 35]. It offers separation efficiencies that are 

sometimes better than in LC. Generally it may enable modulation of selectivity and sample capacity like in 

LC [35]. The use of silica-based stationary phases with reversed phase properties is a well established 

technique at medium and basic mobile phase pH [36], but suffers from suppressed EOF at lower pH values. 

Thus for low mobile phase pH applications ion-exchangers on silica-based materials have been successfully 

developed and employed for the separation of basic solutes at sufficient EOF velocity [36]. Substantial EOF 

velocity is crucial for any standalone electrochromatographic system.  

 

CEC retention is often assumed to be composed of independent contributions from the chromatographic 

behaviour in LC and electromigration in CZE and relatively simple models using chromatographic and 

electrophoretic formalisms have been developed [11, 14, 22]. These models throughout imply that the 

retention factor in electrochromatography is independent of the applied voltage. Such dependencies may of 

course have been overlooked if the retention of peptides is studied at a specific (constant) field strength by, i) 

variation of the organic modifier content modulating hydrophobic/hydrophilic interactions with the stationary 

phase, and ii) by background electrolyte ionic strength to investigate the (pure) ion exchange mechanism. 

Nevertheless studies on peptide retention are still very rare in the literature and it appears that CEC is hard 

to handle for the analysis of more complex molecules. The most systematic studies on peptide retention in 

CEC have been reviewed recently in a minireview by Walhagen et al. [37] and have been highlighted by a 

set of quite complicated equations describing the retention factor in CEC including, impact of the sorbent 

surface chemistry and selectivity options for the separation of peptides (pH, ion-pairing, sorbent surface). It 

was specifically concluded in this review that separations of peptides in CEC depend on an interplay 

between i) electrostatic interactions (modulated by the ionic strength of background buffer electrolyte), ii) 

hydrophobic interactions (content of organic modifier, e.g. acetonitrile), and iii) electrophoretic mobility [37]. 

The reviewed pioneering works have been often adapted also for the discussion of peptide separation in ion-

exchange CEC. Separation of small peptides has been recently realized by Ye et al. [12], especially also in 

comparison to CZE to stress the selectivity and retention order aspect, including also the ionic strength 

dependence of peptide retention at one selected voltage. Fu et al. [20] recently studied hydrophilic 

interaction CEC employing very high ionic strength sacrificing reasonable elution time for the employed 

strong cation-exchange type of stationary phase and also investigated the ionic strength dependence of 

peptide retention. In another example, Zhang et al. [14] have studied peptide retention in weak cation-

exchange CEC and extracted the LC retention factor under the assumption that electrophoretic mobility is 

(only) affected by the porous nature of the sorbents, i.e. it is influenced by the tortuous flow path and the 

restricted diffusivity in the stationary phase. Consequently the peptide mobility estimated by a CZE 

experiment (which by itself shows field independent mobilities) has been translated to a mobility in the 
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column by a correction factor, which lumps together effect of column structure and mobile phase modulator 

such as commonly used salt and organic solvent [14]. We have seen in Chapter 5.1 that such assumptions 

may lead to severe misinterpretations, since this approach does not explain any field strength dependence of 

analyte retention. Further the authors did not confirm the validity of extracted LC retention from CEC 

retention through experiment. To stress again throughout these studies no electrical-field dependence of the 

retention dynamics have been addressed nor systematically investigated. 

 

Just in a few cases an influence of applied voltage (other than due to the development of Joule heat) on the 

retention of charged analytes (including peptides) and discrepancies with the aforementioned simple picture 

of the retention factor have been reported [23, 25, 38], especially when employing ion-exchange types of 

stationary phases. In particular, in a very recent publication on the separation of oostatic peptides with a 

strong SCX stationary phase an increase in retention of peptides with increasing electrical field strength has 

been observed [39]. The peptides throughout were all weakly charged. In Chapter 5.1 retention of small 

single positively charged analytes has been systematically studied and revealed an increase in their 

retention factor with increasing applied voltage. 

 

Concluding from the previous chapters, it is important to note that in comparison to LC-based ion-exchange 

chromatography the coupled mass and charge transport in CEC becomes even more complex due to 

electrical-field induced CP [1, 2, 40, 41]. It was shown that in a dense packing (in comparison to a single 

particle dynamics, e.g. Figure 2.3) the CP zones from neighbouring particles interfere with each other, 

leading to a more complex pattern concerning the morphology of the material with respect to developing CP 

("interconnected mountains and valleys") by a complex interplay of the (local) electrokinetics and 

hydrodynamics [1] (Figures 4.1 and 4.4). Nevertheless electrical-field-induced concentration polarisation has 

been clearly proved to share common features in these hierarchically structured porous media (packed beds, 

monoliths) by showing, i) a clear dependence on applied voltage (Figures 4.1-4.3), and ii) electrolyte ionic 

strength (Figures 4.5 and 4.6), which were reflected in the increasing retention behaviour of the single 

charged counterionic species traversing these field dependent concentration gradients, which are not 

recognized by neutral analytes (Figures 5.1.3 and 5.1.4). 

 

Usually a peptide molecule contains both acidic and basic residues and thus its net charge is pH dependent. 

At some intermediate pH the net charge may be zero, then the peptide is at its isoelectric point (pI). 

Generally, the pI is dependent on the type of amino acids and molecular structure of the peptide molecule. 

As a peptide can carry net positive, zero or negative charge (characterized by a pH titration curve), the so 

called “net charge concept” has been used for predicting retention behaviour in ion-exchange media. 

Nevertheless this concept may fail short. Even though net charge of a peptide may be zero it does not mean 

that the respective peptide is devoid of charge [42]. Data in the literature show that distribution of the charge 

may be important regarding the interaction with the charged stationary phase and thus retention on ion-

exchange columns even at the pI. It also implies that the number of charges interacting with the charged 

stationary phase at any pH can either be greater or less than the estimated net charge [42]. In contrast, for 

CZE the net charge concept may be more useful for prediction of migration behaviour. Electrophoretic 

mobility at the respective pI usually tends to be zero [43]. 
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With respect to our previous studies (Chapter 5.1) this chapter investigates the migration and retention 

behaviour of peptides in strong cation-exchange CEC at two selected pH values i) by investigation of LC 

retention in dependence of ionic strength of the background electrolyte, ii) by determination of electrophoretic 

mobilities of the peptides as indicator for their electromigration behaviour (CZE), and iii) by investigating CEC 

retention in dependence of both electrolyte ionic strength and applied field strength. These investigations 

appear necessary because electrical-field-induced CP may be obscuring the before mentioned contributions 

(ion-exchange mechanism and electrophoretic mobility) to the retention behaviour of peptides as any CP 

may also be responsible for adjustment of pore-level concentrations (e.g. Figure 4.2) of charged counterionic 

analytes and thus their retention behaviour in CEC.  

 

It is then important to understand the physicochemical origins of peptide and protein retention in CEC but 

also related electrical-field-assisted processes, as any influence on CP potentially modifies charged analyte 

retention (Chapter 5.1), which yet is to be investigated for different peptides having different charge numbers 

and molecular mass (diffusion coefficient). It is shown that these parameters are important for relative 

contributions in competitive charge transport between the background electrolyte counter-ion and the 

peptides of variable charge both in the intraparticle pore space and adjoining depleted CP zone. It may 

describe the dependence of peptide retention in CEC on the applied electrical field strength in a regime 

where a transition occurs from intraparticle to (extraparticle) boundary layer-dominated transport behavior on 

the single-particle scale in the fixed bed (Figures 2.1 and 4.3), with each regime being different in nature 

regarding the transport dynamics of charged species. The reported behavior in this chapter demonstrates 

that peptide charge determines its complex migration behaviour from a principal point of view, and within this 

behaviour it becomes modulated by the molecular mass (diffusion coefficient). 
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5.2.2 Experimental Section 

Chemicals and Materials. Sodium phosphate dibasic (Na2HPO4), sodium phosphate monobasic (NaH2PO4) 

and HPLC grade acetonitrile came from Sigma-Aldrich Chemie (Taufkirchen, Germany). [Met5]Enkephaline, 

Oxytocine, Luteinizing hormone releasing hormone (LHRH) and [Arg8]Vasopressine (all as acetate salts) 

were also purchased from Sigma-Aldrich Chemie, while toluene used as the EOF velocity marker came from 

Merck (Darmstadt, Germany). 

 

Spherisorb SCX particles (nominal size, dp = 3 µm, intraparticle pore size, dintra = 10 nm) were a research gift 

from Waters (Milford, MA) and had similar physical properties as the SCX particles used in Chapter 4. 

Because of their strong ion-exchange capacity peptides are strongly retarded and thus higher ionic strength 

of the background electrolyte is necessary to adjust for a reasonable elution time. In order to keep thermal 

effects as small as possible, particles were packed in only 30 µm i.d., 360 µm o.d. fused-silica capillaries 

from Polymicro Technologies (Phoenix, AZ) by the optimized slurry packing method described in Chapter 4, 

which creates duplex columns. A detection window was prepared directly behind the outlet frit. Columns had 

a packed bed segment length of 83 mm and total length of 323 mm. Electrophoretic mobilities of the 

peptides were determined with PVA-coated capillaries purchased from Agilent Technologies (Waldbronn, 

Germany) employing the same buffer solutions as in the electrochromatographic studies. 

 

Phosphate buffer solutions in 60:40 acetonitrile/water (v/v) were used as electrolyte. The mobile phase was 

filtered over 0.45 µm nylon membrane filters and degassed by ultrasonication. Aqueous stock solutions of 

500 mM phosphate, with pH = 2.7 and 7.0 (to modulate respective peptide charge) were prepared with water 

purified on a Milli-Q-Gradient (Millipore, Eschborn, Germany). The pH was adjusted to the desired value by 

mixing appropriate quantities of Na2HPO4 and NaH2PO4. Next, appropriate volumes of this stock solution, 

Milli-Q water, and acetonitrile were mixed to yield phosphate buffer solutions of the desired ionic strength. 

Fresh samples were prepared on a daily basis by mixing appropriate buffer solutions with the analytes such 

that the composition was identical to that of the running mobile phase (with an effective analyte 

concentration of 0.75 mM). 

 

Capillary columns were assembled in a HP3DCE capillary electrophoresis instrument (Agilent Technologies, 

Waldbronn, Germany). Detection was made at 210 nm and measurements were run at controlled 

temperature of 298 K. Both vials were pressurized at 10 bar for minimizing bubble formation. LC was also 

performed with the HP3DCE instrument using the available helium gas pressure. For that case the same 

column as in CEC was used with an inlet pressure of 10 bar. The use of the HP3DCE for the LC experiments 

has the advantage of realizing an identical system environment as in CEC with reproducible injection and 

without extra-column band broadening. This also facilitates a comparison of separation performance in LC 

and CEC, but also the determination of the respective capacity factors under the influence of the different 

driving forces [2].  
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5.2.3 Results and Discussion 

EOF velocity. To demonstrate the EOF behaviour we have recorded EOF velocities inside the packed 

capillaries in dependence of phosphate buffer concentration ranging from 10 mM up to 60 mM and an 

applied voltage ranging from 0 to 30 kV over the duplex column. As shown in Figure 5.2.1a, we can retrieve 

a relatively common trend insofar as the EOF velocity (ueo) increases with decreasing ionic strength of the 

solution to approach a maximum value at 10 mM ionic strength. A continuous decrease of ueo with increasing 

ionic strength is explainable by the "normal" or "conventional" EDL behaviour [44] (Chapter 1, Figure 1.6). As 

ionic strength increases the EDL is compressed resulting in a reduced shear-plane potential at the solid-

liquid interface. Important to note is that thermal effects seem to be almost entirely negligible (see Figure 

5.2.1b) for the studied system and may explain the slight nonlinearity with the higher ionic strength (Figure 

5.2.1a), i.e. a plot of EOF velocity against current revealed a linear behaviour (data not shown). For lower 

ionic strength a distinct even stronger nonlinearity than for the higher ionic strength is discernable that 

cannot be explained by a nonlinear electrical current, i.e. a significantly nonlinear velocity-current relation 

was obtained (similar to Figure 3.9b) [2]. This has to be attributed to electrical field-induced CP and related 

nonequilibrium electroosmosis, which has been extensively studied and described in the present thesis 

(Chapters 3 and 4) [1, 2, 44, 45]. 
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Figure 5.2.1  a) Average EOF velocities (ueo) in the packed bed

in dependence of applied voltage and effective mobile phase

ionic strength (pH = 2.7), b) electrical current (pH = 2.7) and c)

comparision of ueo and electrical currents at different pH values of

the background electrolyte at 30 mM ionic strength. Toluene was

used as t0 marker. 
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Increasing the pH of the background electrolyte results in increasing dissociation of residual silanol groups of 

the stationary phase, resulting in slightly higher ueo, even though the electrical current at the same ionic 

strength is almost identical (Figure 5.2.1c) [36]. 

 

Peptide properties. With respect to the previous chapter the main goal of this work is to demonstrate the 

electrical field strength dependence of the retention dynamics of peptides due to electrical field-induced CP. 

Table 5.2.1 shows the properties of the four model peptides studied at the different pH values of the mobile 

phase. Important to note is that all peptides have a positive net charge at pH = 2.7. The net charge of all 

peptides is significantly reduced at pH = 7.0. The dependence of mobility on pH showed the expected 

change with respect to data in the literature using pure aqueous mobile phase [46]. 

 

Table 5.2.1 
Properties of the used model peptides 

Peptide Mass No. of 
residues 

Net charge/No. of charge 
interactions1 [-] 

  pH = 2.7               pH = 7 

µep [10-9 m2/Vs] 
(Var %) 

    pH = 2.7             pH = 7 
[Met5]Enkephaline 573.66 5 +0.56/+0.72 ≈0/n.d. 0.84 (0.50) n.d. 

Oxytocine 1007.19 9 +1   /+0.84 +0.24/n.d. 0.85 (0.43) 0.02 (0.15) 
LHRH              1183.27 10 +2/+1.82 +1.48/n.d. 1.22 (0.44) 0.71 (0.44) 

[Arg8]Vasopressine 1084.23 9 +2/+1.80 +1.24/n.d. 1.33 (0.82) 0.75 (0.09) 
 

1Number of charge interactions of the peptides with the surface of the strong cation-exchange column where determined in LC 

according to the approach of Kopaciewicz et al. [42]. Note that the number of charges interacting with the surface may be greater or less 

than the net charge, but appears to be a useful estimate to evaluate or approach the net charge at pH = 2.7. 

 

Most important for our study is that Oxytocine and [Arg8]Vasopressine differ only in one amino acid residue 

that increases the net charge of [Arg8]Vasopressine. Further they are structurally related by sharing the 

same disulfide bridge, constraining the conformation of the molecule. Thus they have a similar 

hydrophobicity and similar size at pH = 2.7 [47]. The elution order of the peptides in CZE extracted from the 

mobility data shown in Table 5.2.1 is that observed in CZE using aqueous phosphate buffer with a pH of 

approximately pH = 2.5 (cf. technical bulletin for P2693 from Sigma, http://www.sigmaaldrich.com/sigma/ 

datasheet/p2693dat.pdf). At pH = 7.0 the relevant amino group is deprotonated resulting in a decrease of the 

net charge for all peptides. Interestingly, [Arg8]Vasopressine shows a similar electrophoretic mobility at pH = 

7.0 as Oxytocine at pH = 2.7. (Table 5.2.1). Its electrophoretic mobility is slightly reduced, because of its 

sligthly higher mass and slightly different charge. 

 

Retention dynamics.  The primary focus of this work is to demonstrate and elucidate electrical-field-

dependent retention of peptides in CEC by means of the electrical-field-induced CP [1, 2, 38]. For this 

purpose, four model peptides have been employed all bearing positive net charges at pH = 2.7. Figure 5.2.2 

shows a typical separation with 60 mM phosphate and an applied voltage of either 4 kV or 30 kV. While at a 

relatively low applied voltage [Met5]Enkephaline (by accident) nearly coelutes with the EOF, it experiences 

significant retention at an applied voltage of 30 kV. Generally both, [Met5]Enkephaline and Oxytocine appear 

to experience an increased retention at higher voltages, while LHRH and [Arg8]Vasopressine appear to 

experience a lower retention at the higher voltage. A systematic study of the retention factor in its classical 
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definition with k' = (tr – t0)/t0 (where tr is the residence time of the peptide and t0 that of the flow field marker) 

revealed that the increase in retention for [Met5]Enkephaline and Oxytocine, but also the decrease in 

retention of LHRH and [Arg8]Vasopressine systematically depends on applied voltage. All four peptides 

(bearing a net positive charge) showed a systematic dependence on the applied voltage (Figure 5.2.3). The 

retention window for [Met5]Enkephaline and Oxytocine is shifted to longer times relative to that for the EOF 

velocity marker (reflecting an increasing k’ value), while the retention window of the twice positively charged 

peptides is shifted to shorter times relative to that of the EOF velocity marker (reflected by decreasing k’) with 
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Figure 5.2.2  Representative electrochromatograms of the test mixture, containing four model peptides (see Table 5.2.1 for details) at 

different applied voltages, a) 4 kV and b) 30 kV. Mobile phase ionic strength: 60 mM (pH = 2.7). 
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Figure 5.2.3  Dependence of the retention factor k' = (tr – t0)/t0 on applied voltage at a mobile phase ionic strength of 30 mM (pH = 2.7). 

 
increasing applied voltage. At first glance this is a surprising result. The only difference appears to be the 

charge number of the respective peptides, because Oxytocine has a similar molecular weight and size as 

[Arg8]Vasopressine, but in contrast to the latter is increasingly retarded with increasing voltage (see Table 

5.2.1 and Figure 5.2.3). The shift of [Met5]Enkephaline and Oxytocine to higher retention times has been 

similarly observed in a study of counterionic, single positively charged pharmaceutical compounds and thus 

reflects the studies presented in Chapter 5.1 [38]. The electrical-field-dependence of k' is substantial for 

[Met5]Enkephaline and Oxytocine, which also at the same time differ significantly in mass and charge (Table  
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5.2.1 and Figure 5.2.3a for a mobile phase of 

pH = 2.7). These differences may be 

reflected in the different slopes of k’ at very 

low voltages, for example, Oxytocine with a 

higher molecular mass shows a stronger 

dependence on applied voltage. For LHRH 

and [Arg8]Vasopressine the decrease in 

retention appears to be similar, the curves in 

Figure 5.2.3b seem to be only shifted by a 

factor over the whole range of applied 

voltages. Their similar behaviour may be due 

to their similar mass and charge under these 

conditions (Table 5.2.1 for pH = 2.7, Figure 

5.2.3b). In all four cases retention 

approaches an asymptotic value at the 

utmost applied voltages. If retention were 

studied only in this high voltage region, at 

applied voltages above 15 kV, it would not 

appear to be strongly affected by the applied 

voltage. Nevertheless it is significantly 

different from the retention factor at very low 

voltages. 

 

Figure 5.2.4 shows that k' of 

[Met5]Enkephaline decreases at increasing 

ionic strength, but retains its basic 

dependence on applied voltage with slightly 

decreasing initial slopes at the higher ionic 

strength. The most striking result of this study 

is that even though all peptides should 

experience significant electromigration in 

EOF direction (Table 5.2.1), 

[Met5]Enkephaline and Oxytocine show 

higher than LC-retention in CEC at lower 

ionic strength (below 40 mM), which in 

addition is modulated by the applied voltage 

(Figure 5.2.5). Generally, an increased ionic 

strength decreases electrostatic interaction of 

the analyte with the charged stationary phase 

and thus reduces LC retention (see open 

circles in Figure 5.2.5),    which    is    a    well 

Figure 5.2.4  Dependence of the retention factor k' = (tr – t0)/t0 of

[Met5]Enkephaline on applied voltage at different mobile phase ionic

strength (pH = 2.7): ( ) 10 mM ( ) 15mM, ( ) 20 mM, ( ) 30 mM,

( ) 40 mM, ( ) 50 mM, ( ) 60 mM. 
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Figure 5.2.5  Dependence of the retention factor k' = (tr – t0)/t0 on ionic 

strength in LC and CEC (at different applied voltages). Mobile phase 

pH = 2.7. 
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investigated phenomenon [29, 42, 48]. At the same time increasing ionic strength decreases the charge 

selectivity of the mesopore space and thus decreases related electrical-field-induced CP (Chapter 4, Chapter 

5.1) [1, 2, 38]. This also amounts to a decrease of CP-contributed retention for the charged peptides in CEC 

in comparison to LC-contributed retention at increasing ionic strength (see Figure 5.2.5). It is further reflected 

by the different slopes in the k’-voltage-curve at the different ionic strength in Figure 5.2.4 and thus the 

respective intensity of developing electrical-field-induced CP. It means that at similar applied voltages CP 

with increasing ionic strength is attenuated (Figure 4.6). It implies that with increased ionic strength higher 

field strength are necessary to induce a comparable intensity of electrical-field induced CP. Further, the field 

strength at which a transition occurs from intraparticle to (extraparticle) boundary layer-dominated transport 

behaviour observed for fixed beds of the SCX-particles (Figures 4.3) clearly scales with the ionic strength of 

the background electrolyte (Figure 4.6) and thus necessarily also reflects the approaching plateau value in 

the retention dynamics. It cannot be modulated further, when boundary layer-dominated transport, that is, 

the (over)limiting current regime, prevails. If lower electrical field strength could be realized (in our case 

hampered by the endurably long analysis time) this retention in CEC could be realized for the whole range 

from LC retention (or even lower) to the utmost tunable retention in Figure 5.2.5 even at the very low ionic 

strength. It is yet difficult to achieve, because of the relatively strong CP even at very low voltages, which 

induces retention to increase drastically. In contrast, at sufficiently high ionic strength, retention in CEC can 

be smaller than the observed LC retention due to the reduced electrostatic interactions. Then electrophoretic 

forces may become strong enough to result in a lower retention than observed for LC at ionic strength higher 

than 30 mM for [Met5]Enkephaline and 40 mM for Oxytocine in Figure 5.2.5. Anyway CEC retention still 

retains its electrical-field dependence, because CP is still discernable (Chapter 4, Figure 4.5) but the slope of 

the k’-voltage curve is significantly lower and stretched to higher electrical field strength (Figure 5.2.4). It 

accounts for the higher field strength needed to induce significant CP (Figures 4.5 and 4.6) at the higher 

ionic strength. In other words the increasingly CP-composed retention in CEC generally makes a quantitative 

description of retention behaviour via simple parameters, considering pure electrostatic aspects (accessible 

via retention in LC) and electrophoretic forces (mobility in CZE), almost impossible [11, 14, 22, 23, 25]. From 

a principal point of view retention in CEC should at least reflect the same value as LC retention. It should be 

remembered that all peptides are experiencing electromigration in the EOF direction which points towards 

the inconsistency of existing theoretical concepts. Further, it is shown that similar retention for LC in 

comparison to CEC is approached at different ionic strength for each peptide simply reflecting the different 

ionic strength dependencies of k’ of the peptides with different applied voltages (Figure 5.2.5), which was 

already indicated in Figure 5.2.3a, where the k’-voltage-curve has higher slopes at the low voltages and 

reaches earlier the respective plateau regime if its slope is stronger and thus retention is stronger CP-

composed. 

 

A systematic screening of the CEC retention factor for LHRH and [Arg8]Vasopressine also revealed a 

general dependence on applied voltage, but with a different trend (Figure 5.2.6). Generally at increasing 

ionic strength retention in CEC significantly decreases for these higher charged peptides, as shown for 

LHRH (Figure 5.2.6), but at the same time also retains its electrical-field dependence even at 60 mM ionic 

strength. Most peculiar, the LC retention is always higher than the CEC retention. Also for these analytes, 

CEC retention then can be systematically tuned by an applied voltage (Figure 5.2.7).  At  lower ionic strength 
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To conclude, the present studies on peptide 

retention in CEC reflect a modulation of 

retention (decreasing or increasing) on the 

applied voltage and analyte charge, which is 

the essentially varying property under 

otherwise comparable conditions. As the data 

for the single-charged peptides almost 

perfectly fit to the data of the single charged 

counterionic analytes investigated in Chapter 

5.1,   we   tried   to   complement   the  so  far 

Figure 5.2.6 Dependence of the retention factor k' = (tr – t0)/t0 of LHRH

on applied voltage at different ionic strengths (pH = 2.7): ( ) 15 mM, ( )

20 mM, ( ) 30 mM, ( ) 40 mM, ( ) 50 mM, ( ) 60 mM.  
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Figure 5.2.7 Dependence of the retention factor k' = (tr – t0)/t0 in LC and CEC on ionic strength of the background electrolyte (pH = 

2.7) at different applied voltages in CEC. 

 

presented data by the following simple CEC experiment. It employs the same column but a different buffer 

solution pH. We have shown earlier (Figure 5.2.1c) that at pH = 7.0, ueo under otherwise identical conditions 

is increased, due to the dissociation of residual silanol groups of the stationary phase. At the same time CP 

is still operative in the packed bed. Thus, with a significant intraparticle EDL overlap, charge-selectivity and 

the electrical field-induced CP, effects on retention are expected to be modulated via the respective peptide 

net charges. LC retention and peptide electrophoretic mobility also have been monitored and are shown in 

Table 5.2.2. 

 

As expected LC retention of Oxytocine decreases significantly at pH = 7.0. Further it shows a vanishing 

electrophoretic mobility indicating that its net charge is close to zero (Table 5.2.2). LC retention for LHRH 

and [Arg8]Vasopressine also significantly decreases due to the increasing deprotonation of the relevant 

amino group. Their electrophoretic mobility at the same time decreases to the expected value (regarding 
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their decreased net charge at pH = 7.0) and is in the same order of magnitude as that of Oxytocine at pH = 

2.7. 
 
Table 5.2.2 
LC retention and electrophoretic mobility of peptides at different pH values of the background electrolyte 

30 mM Phosphate pH = 2.7 (VAR %) pH = 7(VAR %) 
Oxytocine                   k’Lc
                                  µep

1.77 (0.99) 
0.85 (0.43) 

0.21 (0.24) 
0.0183 (0.15) 

LHRH                         k’Lc 
                                  µep

15.97(1.10) 
1.22 (0.44) 

1.76   (0.44) 
0.705 (0.44) 

[Arg8]Vasopressine    k’Lc 
                                  µep

25.53 (1.33) 
1.33 (0.82) 

2.71 (0.43) 
0.75 (0.09) 

 

Figure 5.2.8a demonstrates an almost field-independent retention of Oxytocine at pH = 7.0 in comparison to 

the field dependent retention at pH = 2.7. Further, retention for the almost neutral (in view of net charge) 

molecule reflects a value similar to LC retention (see Table 5.2.2 and Figure 5.2.8a), as is in agreement with 

the earlier demonstrated results (Figures 3.2 and 3.3 as well as Figure 5.1.3a), which have shown that 

neutral analytes retention dynamics are not influenced by applied voltages (see also Figure 5.1.4a) [38], 

because they are simply not participating in coupled mass and charge transport. 
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Figure 5.2.8 Dependence of the retention factor k' = (tr – t0)/t0 on applied voltage at a mobile phase ionic strength of 30 mM with 

different pH values (pH = 2.7 and 7.0, respectively) of the background electrolyte. 

 

The electrical-field-dependent retention data collected for LHRH and [Arg8]Vasopressine reveal an 

increasing retention with increasing applied voltage at pH = 7.0, being in contrast to the behaviour at pH = 

2.7, which has demonstrated that retention decreases with increasing voltage (Figure 5.2.8b). It validates 

experimentally that the effective net charge of the peptide is a fundamental property determining the 

respective scaling of k’ with the applied voltage. Their increase in retention falls in the same order of 

magnitude as that of Oxytocine at pH = 2.7, which is further illustrated in Figure 5.2.9. Interestingly the 

retention of both LHRH and [Arg8]Vasopressine is also higher than for LC at pH = 7.0 (Figure 5.2.9, Table 

5.2.2), in contrast to their behaviour at pH = 2.7 (see Figure 5.2.7), where their retention is lower than for LC. 

They also show similar slopes and saturation of the k’-voltage-curves, according to their similar mass and 

charge also at pH = 7.0. 
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In order to explain this behaviour we have to analyze relevant transport parameters in these systems of ion-

permselective particles and related consequences for charged analytes in a similar fashion as in the 

previous chapter. This explanation has a strong hypothetical character. Generally, the increasing voltage 

increases the steepness of the concentration gradients of the background electrolyte around the ion-

permselective interfaces (see Figure 2.1a) which, in analogy, is also revealed around the spherical particles 

in a packed bed (Chapter 4) [1, 38]. Assuming a locally flat three-layered system for simplicity (e.g. Figure 

2.1), which consists of the two CDLs (enriched and depleted) facing the ion-permselective domain this 

situation becomes even more complex when considering the transport of the analyte species in the CP 

zones and ion-permselective pore space. If more than one counterionic species is present in the ion-

permselective system (in addition to the Na+-ions of the background electrolyte) relative contributions to the 

overall mass and charge flux in competitive charge transport are governed by charge numbers, diffusion 

coefficients, and concentrations of the counterionic species as reflected in their respective transport numbers 

[49, 50]. It was shown recently for the membrane geometry, that transport of two ions of the same sign, 

which may differ in their charge number, depends on current density through the system, mainly also 

because the transport properties inside the membrane and the depleted CP zone (through which the 

charged analytes have to enter the ion-permselective pore space are quite different. This may be explained 

by the fact that different species are naturally competing in current transport. Considering transport in the 

ion-permselective pore space it is generally assumed that counterions are mainly transported by 

electromigration. The flux density of a species i through the ion-permselective pore space then may be 

approximated by [50]: 
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Figure 5.2.9  Dependence of the retention factor k' = (tr – t0)/t0
on applied voltage at a mobile phase ionic strength of 30 mM

with different pH values (pH = 2.7 and 7.0, respectively) of the

background electrolyte. 
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counterions, and  is the intraparticle concentration of species i. Overbars denote the membrane (or 

particle) phase.  is obtained by the Donnan-model. j denotes all ionic species present in the ion-

permselective pore space (background electrolyte counterion, i.e. Na

i
_
c

i
_
c

+-ion, peptide of variable charge, and 

buffer co-ion). It is considered that transport number of co-ions can be neglected [49], when the intraparticle 

pore space is strongly ion-permselective [49]. Counterions are enriched by the ion-permselective pore 

space. The distribution coefficient of counterions in comparison to external solution depends on the charge 

number, the ion-permselective pore space prefers counterions of higher charge (eq. 2.1) [29]). The 

selectivity of the ion-exchangers, i.e. the selection of one counter-ion in preference to the other may also 

have other causes, e.g. equivalent solvated volume [29]. 

 

Starting with a relatively simple example of the Na+-ion (z1 = +1) of the background electrolyte and a small 

counterionic tracer (z2 = + 1) with much lower concentration and smaller diffusion coefficient, we have to 

consider the fact that the transport numbers through the membrane summed over both species have to 

satisfy the condition +  ≈ 1 (eq. 2.4 [51]). Thus the two charge carriers are sharing the transport of the 

current density. Na

1
_
t 2

_
t

+ -ions of the background electrolyte are (relatively) more intensively transferred than the 

tracer, via their higher intraparticle concentrations and smaller diffusion coefficient, thus that tNa+ is much 

higher than tPept+, but still need to be supplied through the gradients in the diluted solution bulk (depleted CP 

zone), which becomes increasingly a bottleneck for their transport at increasing field strength. As we have 

seen by the strong intraparticle enrichment of the fluorescent counterionic tracer in Figure 4.2 (which 

resembles a small single charged counterionic analyte) increasing with Eext, this indicates that its transport 

number is increasing with the current density through a particle, which is yet not limited by diffusive transport 

through the depleted CP zone. The increasing transport number of the tracer thus reflects or better implies 

that the transport number of the Na+-ion of the background electrolyte necessarily has decreased in the 

system at increasing current densities. This generally may explain from a principal point of view the 

increasing k’ of the single charged peptides, i.e. while electrical current density is increased they are more 

intensively transported through the depleted CP zone (and, thus, the intraparticle pore space) until boundary 

layer dominated transport prevails. In other words the transport number of the single charged analyte with 

higher mass is higher than at low current densities and the transport number of the Na+-ion is lower than that 

at low current densities. 

 

If a twice positively charged peptide (z = +2) is competing in current transport with the Na+-ion of the 

background electrolyte now two charge carriers of different charge are sharing the transport of the current 

density. Peptide-ions are relatively stronger enriched than the single charged peptides (see Donnan-potential 

[29]) and are via their higher  (eq. 2.1) in comparison with the single charged peptides and  (eq. 5.1) 

much stronger transported. They also have to be supplied through the gradients in the diluted solution bulk 

which inherently becomes increasingly a bottleneck for their transport. Thus its transport number is 

decreasing with current density through a particle, which is yet realized by an increasing transport number of 

the Na

i
_
c 2

iz

+-ions of the background electrolyte. This generally may explain from a principal point of view the 
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decreasing k’ of the twice charged peptides, i.e. while electrical current density is increased they are 

increasingly less transported through the depleted CP zone and intraparticle pore space until boundary layer 

dominated transport prevails. In other words the transport number of the twice charged analyte is higher at 

low current densities and the transport number of the Na+ -ion is lower at low current densities. With 

increasing current density the transport number of the twice charged peptide decreases and transport of Na+-

ions increases. Competition of charge transport prevails whenever there are different species present in the 

system. Assuming a similar charge as the background electrolyte counterion for e.g. a peptide the ratio of 

their transport numbers in the membrane is solely described by the ratio of their concentration and diffusion 

coefficients. Important here is that the transport number of the Na+ -ion in the low voltage region is higher 

than that at high voltages, which results in an increasing transport number of the single charged peptides at 

the higher voltages in comparison to low voltages. Further the increase in transport number of peptides is 

inherently also related to their diffusion coefficient, modulating the electrical field dependence of k’ (Figure 

5.2.3a). 

 

It is suggested that from a more chromatographic point of view, that the transport of single-charged peptides 

[Met5]Enkephaline and Oxytocine, increases through the three-layered system and thus via adjusting their 

increasing pore-level concentrations retention increases with increasing electrical field strength (similar to 

Figure 4.2). Then the peptides are more intensively transported, which becomes modulated by their diffusion 

coefficient. It was shown that retention is stronger increased the higher the analytes mass (see different 

slopes observed for [Met5]Enkephaline and Oxytocine in Figure 5.2.3a). LHRH and [Arg8]Vasopressine 

(both twice charged) show similar decreasing retention behaviour at pH = 2.7 (Figure 5.2.3b), which is in 

accordance with their similar charge and mass (diffusion coefficient). Lowering the net charge of LHRH and 

[Arg8]Vasopressine suddenly induces their effective transport numbers through the system to increase with 

increasing voltage, resulting in an increase of their pore level concentrations and subsequently their retention 

factor increases with increasing voltage (Figure 5.2.8b), accompanied by a decrease of the transport number 

of the Na+-ion. This scaling mainly has to be attributed to the net charge number of the peptides (Figure 

5.2.8) and thus their transport number. Generally, the transition from intraparticle to extraparticle (boundary-

layer) dominated transport behaviour is also reflected in the k’-voltage curve with its slope from very low 

voltages achieving plateau values at high voltages. Further important is that this behaviour generally may be 

observed with strong ion-permselectivity on a mesoporous particle scale, but its relative importance will be 

modulated with decreasing this charge selectivity where the transport of the background electrolyte co-ion 

also gains increasing importance. Thus, also the functional dependence of retention on ionic strength 

observed in ion-exchange liquid chromatography will become modulated for its electrochromatographic 

variant by the electrical-field-induced CP, including the relative importance of competitive charge transport, 

modulated by the permselectivity of the mesopore space (Figures 5.2.5 and 5.2.7 and also Figure 4.5). At 

increasing ionic strength it moves away from ideal ion-permselectivity and, when there is no permselectivity 

and pore level concentrations of charged species (including the analytes) resemble those in bulk solution 

(which is principally impossible to achieve, see Chapter 3), transport number differences are governed by 

their difference in mobility only, which makes the contribution to the separation process purely describable by 

their respective mobility and at the same time independent of applied voltage (Figures 5.1.6 and 5.2.8a). 
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Selectivity tuning. The strongest change of retention occurs at relatively low applied voltages, which is 

reflected in the initial slopes at the k’-voltage-curve (see Figure 5.2.3a). The selectivity for the two groups of 

peptides, which show increasing and decreasing retention behaviour, respectively, was investigated as a 

function of the applied voltage. Selectivity in LC separations is defined as the ratio of the capacity factors of 

the compounds of interest to be separated [52]. Figure 5.2.10 shows the selectivity for the two groups of 

peptides depending on buffer ionic strength at different applied voltages. Most important is that for LC the 

selectivity is similar for all ionic strengths at pH = 2.7 (see grey points in Figure 5.2.10). Slight changes in 

selectivity (Figure 5.2.10a) are explainable via different dependencies of peptide retention with respect to 

ionic strength, depending on the amount of charges in the peptide interacting with the charged stationary 

phase and their molecular mass (Table 5.2.1) [42]. CEC selectivity at high applied voltages is not improved 

in comparison to LC, which at first does not show any advantage of using CEC in comparison to LC, even 

though one may obey decreased  dispersion  and  thus  higher  peak  capacities. However,  at  relatively  low 
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Figure 5.2.10 Selectivity for the separation of peptides in LC and CEC (at different applied voltages) in dependence of the mobile 

phase ionic strength. a) [Met5]Enkephaline and Oxytocine at pH = 2.7, and b) LHRH and [Arg8]Vasopressine at pH = 2.7 and 7.0. 

 

applied electrical field and reduced electrostatic interactions, selectivity is significantly modulated by the 

applied voltage (e.g. for the 30 mM and higher ionic strength in Figure 5.2.10a). This implies that in view of 

selectivity, which is of utmost importance for bio-analytical applications, the applied voltage has a significant 

influence (without shortcomings in dispersion) via the different dependencies of LC retention and CP-

composed retention. While this is very pronounced for peptides with different mass and similar charge 

(Figure 5.2.10a), the peptides LHRH and [Arg8]Vasopressine do not show this selectivity behaviour, most 

probably because they have similar mass and charge (5.2.10.b) and similar dependencies of the k’-voltage-

curve. Increasing the pH to pH = 7.0 does not significantly alter the selectivity (here monitored for the 30 mM 

ionic strength) because both peptides have a similar pH-dependence of their net charge and thus their k’-

voltage curves are shifted by a factor over the whole range of applied voltages. Generally it can be implied 

that operating CEC at the highest available voltages does not always result in optimum selectivity, but 

suffers of course at lower voltages from the respective total analysis time. One of the most promising routes 

to tune selectivity would be to use LC systems with electrical-field assistance (low applied voltages are 

sufficient) and then tune selectivity by simply changing the applied voltage or applying voltage gradients. 
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Then the electrical field-induced CP zones and residence times of the charged analytes are modulated. This 

greatly can affect selectivity and may increase also resolution in difficult bio-analytical separations. 

 

From a general perspective LHRH and [Arg8]Vasopressine have a similar mass and charge and similar pH 

titration curves and separation may always be difficult to accomplish in CZE (Table 5.2.1), despite the fact of 

massively reduced dispersion by utilizing stacking phenomena in CZE. Regarding this issue it will be also 

difficult to tune their selectivity by modulation of electrical field-induced CP (Figure 5.2.10b). Oxytocine and 

[Met5]Enkephaline with their different mass and charge may also be difficult to separate under our conditions 

in CZE because of their similar charge-to-mass (size) ratio determining electrophoretic migration velocity 

(see Table 5.2.1). As due to their different mass and charge their differential migration and selectivity is 

achieved by an ion-exchange mechanism, which can optionally be modulated and the desired selectivity be 

adjusted beyond the pure ion-exchange mechanism with utilisation of an applied voltage in CEC or electrical-

field assisted processes. 
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5.2.4 Conclusions 

This work has revealed an electrical field-dependence of the retention factor for peptides under typical 

electrochromatographic conditions (Figure 5.2.2). It has been demonstrated that peptides retention 

fundamentally depends on electrical-field-induced CP, influenced by the respective electrical field strength 

(Figure 5.2.3). As peptides have to traverse the field-dependent CP zones it is their charge which is mainly 

responsible for their retention behaviour (Figure 5.2.8). Such dependence is caused by the electrical field-

induced CP and competitive charge transport of peptides with the counterionic buffer electrolyte component. 

Due to a significant charge-selectivity under almost all conditions in CEC employing porous particles, a 

superimposed electrical field induces depleted and enriched CP zones in the background electrolyte around 

the particles (Figure 4.1). The intensity of these CP zones (background electrolyte) depends on the field 

strength and charge-selectivity of the particles. Most importantly the phenomenon of electrical-field-induced 

CP and related ion-permselective transport also induces a change in residence times of peptides depending 

on their net charge and diffusion coefficient (molecular mass). It may be explained by an increase of the 

effective transport number for the single charged peptides with increasing field strength (similar to Figures 

4.2 and 5.1.4c, observed for a small single charged counterionic analyte) accomplished by a decrease in the 

transport number of the background buffer electrolyte component. A decrease of effective transport number 

for the twice charged counterionic peptides with increasing field strength, which clearly resembles analyte 

charge aspects, is accomplished by a corresponding increase for the background electrolyte buffer 

component. It has been indicated that effective transport numbers are dependent on coupled transport in the 

intraparticle and adjoining depleted CDL, with each regime reflecting different transport behaviour. 

 

It is concluded that CP, which represents field-induced dynamic changes in the local distribution of ionic 

species (intraparticle pore level concentrations) in hierarchically-structured materials is a key for 

understanding retention of charged analytes including peptides and proteins. This can explain systematic 

behaviour [23, 39], where the retention dynamics of peptides has been shown to depend on applied voltage 

in CEC systems with ion-exchange materials and comprising ion-permselectivity on the intraparticle 

mesopore scale. Studies on retention in CEC may always be difficult to compare between different 

investigators, as specific setups and field strength aspects (e.g. duplex columns, home-built devices) 

together with sensitive electrical-field induced CP may obscure principal trends, which might lead to severe 

misinterpretations regarding the physicochemical meaning of a retention factor in CEC. It can also be 

concluded from the experimental data (Figure 5.2.3a) that retention in CEC in dependence of applied voltage 

not only depends on the peptides charge, but also on their molecular mass, as reflected in their diffusion 

coefficient. The higher their mass at a specific charge, the slower transference in the depleted CP zone and 

intraparticle pore space, and this is inducing their retention to increase (even) stronger with electrical field 

strength in comparison to a peptide with similar charge, but lower molecular mass. Thus generally retention 

in CEC hardly contains thermodynamic information as in LC, simply because of the importance of the 

electrical-field-induced CP, changing the pore-level concentrations of charged analytes which are shown to 

be significantly different than expected from the pure electrostatic enrichment depletion effects (Donnan-

potential or EDL-model). It thus describes more importantly the migration and retention behaviour of any 

charged analytes in columns typically employed for CEC. 
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Further, the physicochemical basis for the respective decrease and increase in retention can just be made 

accessible by appropriate transport models, which have to be developed to support the hypothesis for the 

experimentally observed behaviour. These models have to include a well identified set of parameters and 

clarify the respective transport in- or decrease of ionic species of different valence (e.g. reflecting peptides of 

different charge number) with respect to the relative transport behaviour of the background electrolyte buffer 

components (e.g. the Na+ in the present system) in competitive charge transport. It critically has to access 

the intraparticle ion-permselective transport behaviour at very low voltages, where the Donnan-model applies 

and the transport behaviour in the diluted solution bulk, where at limiting current densities most of the 

potential drop and transport in the whole system is accomplished and where transport properties differ from 

those at low voltages (intraparticle-dominated transport behaviour). 
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6 Global Summary 
 
In this thesis the most fundamental aspects of CEC are addressed. It is shown that CEC is far more 

complex than may be anticipated from the two components involved in this method. The first one is 

CZE, which (as an electrokinetic separation method) appears to be almost under control, because of 

its increasing number of applications in the pharmaceutical industry. The second one is LC, which is 

the strongest working horse for almost all analytical separation problems at hand and has no 

competitor in view of reliability and robustness. In this line it will keep its strong role among analytical 

separation techniques. The most important implementations for CEC are an increase of the complexity 

of phenomena involved in the mobile phase transport through a hierarchical porous medium (“Flow 

aspects”) and also “Transport aspects” of charged analytes. These phenomena have been 

systematically addressed in the present thesis. The unique combination of quantitative optical imaging 

techniques (Chapter 4) and chromatographic field studies (Chapter 3) revealed a quantitative 

orthogonal view on the investigated flow aspects in electrochromatographic separation systems. The 

investigated phenomena are highlighted in Chapter 5 and are successfully employed for separations 

in the pharmaceutical and bio-analytical field, being more important for resolving the relevant transport 

aspects of analytical target molecules in hierarchically structured porous media. In the following the 

most important results from the different chapters are briefly outlined. 

 

Internal electrical fields in chromatographic media − Transport in LC 
Electrical potential gradients which develop at the boundaries between the quasi-electroneutral 

interparticle (interskeleton) macropore space and the intraparticle (intraskeleton) charge-selective 

domain in chromatographic beds are important in LC, where they influence distributions of charged 

analytes in the hierarchically structured porous media. They are determined by equilibrium 

electrostatics in LC-practice. Thus, the porous particle or porous monolith skeleton becomes ion-

permselective; it enriches counter-ions and excludes co-ions. At electrochemical equilibrium, an 

electrical phase-boundary potential, the so-called Donnan potential (eq. 2.1), balances the tendency of 

the ionic species to level out the chemical potential gradients. Most important, a broad intermediate 

regime between the extremes of global thin-EDL-limit (any of the pore dimensions are significantly 

larger than the EDL) and discrete local ion-permselectivity (intraparticle/intraskeleton pore dimensions 

are of the same order of magnitude as the EDL) must be regarded as common practice in LC (Figure 

3.5 and 3.6) and, thus, ion-permselective transport has a general rather than special significance for 

coupled mass and charge transport through packed beds and monoliths (Figure 6.1, “Fundamental 
aspects”). 
 

The adjustable electrostatic on-off behaviour for intraparticle permeation in conventional 

chromatographic media is relevant for the design of preparative separations and purification 

processes as the actual electrolyte concentration determines the availability of chromatographic sites 

and effective porosity for co-ionic analytes (Figures 3.5 and 4.5), as well as pore-level concentrations 
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of charged analytes (co-ion exclusion, counter-ion enrichment) in general (Figure 6.1, “Practical 
Aspects”). 

 

External electrical fields − Electrohydrodynamical flow aspects in porous media 
Experimental studies have been reviewed (Figures 1.8 and 1.9) and performed (Figure 3.16 and 3.17) 

which illustrate the scaling of hydrodynamic dispersion with the average EOF velocity through packed 

beds and monoliths, especially in comparison to hydraulic flow (Figure 3.18). In contrast to solid, 

dielectric spheres porous particles support the generation of intraparticle EOF (Figure 1.5), but – due 

to EDL overlap in sufficiently small intraparticle pores at typical ionic strengths – demonstrate ion-

permselective behaviour as well (Figure 2.3). Intraparticle EOF can strongly reduce intraparticle mass 

transfer resistance, and the electroosmotic perfusion provides a mechanism by which significantly 

improved separation efficiencies (Figures 1.5, 1.8 and 1.9) with respect to hydraulic flow can be 

achieved using packed beds of porous, i.e., permeable and conducting particles. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 6.1  Relation of the phenomena in CEC as discussed and investigated in this thesis. 
 

Most important coupled mass and charge transport in hierarchically structured porous materials used 

in CEC implies the development of electrical-field-induced concentration polarisation (CP) and a CP-

based nonlinear electrokinetics with a general rather than limited significance under very common 

experimental conditions (Figures 3.12 and 4.7). These unique, inherently observed electrokinetic 

phenomena (CP and nonlinear EOF) as well as the hydrodynamic consequences sensitively depend 

on material characteristics (pore space morphology, including the realization of a hierarchical design 

and the interconnectivity between different sets of pores; surface charge density), fluid phase 

properties (ionic strength as most important property influencing local charge selectivity), and the 
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applied field strength. All these parameters have been investigated in the present thesis (Figure 6.1, 

“Electrohydrodynamics”). 

 

Systematically acquired data have demonstrated the key role of internal electrical potential gradients 

and the dependence on local EDL interaction, as well as differences in the morphology of silica-based 

monoliths and packed beds in view of the achievable intensity of CP-based nonlinear electroosmosis 

(Figures 3.12). It includes consequences of increased lateral velocities due to this nonlinear slip in 

reducing axial hydrodynamic dispersion, again pointing towards the differences in pore space 

morphology of monoliths and packed beds (Figures 3.16, 3.17, reflected in Figure 6.1 as “Dispersion 
1”). 

 

The collected data show that the existence of CP and the relative intensity of CP (and CP-based 

phenomena) with respect to perfusive flow are the key to understanding salient features in CEC which 

includes the electrohydrodynamics, associated hydrodynamic dispersion, as well as the migration and 

retention of charged analytes, investigated in the second main part of this thesis. 

 
Migration, retention and selectivity aspects for charged analytes − Transport aspects 
For charged analytes an important consequence of CP is related to the effective migration and 

retention behaviour because the local intensity of CP, thus, also the residence time of charged with 

respect to electroneutral analytes in the CP zones and intraparticle pore space, sensitively depends 

on applied field and mobile phase ionic strengths (Figures 2.1, 4.1, 4.3, 4.5, 4.6, 5.1.4, 5.1.5). The CP 

phenomenon, with its intensity depending on applied field strength and electrolyte ionic strength, 

reflects electrical field induced electrolyte concentration gradients. These CP zones are recognized by 

any charged species migrating through the porous medium but not the neutral analytes. In turn, the 

retention factor of charged analytes in CEC becomes a complicated function of parameters that 

determine the local intensity of CP which have been analyzed in this work (Figure 6.1, “Differential 
migration”). As demonstrated in Figure 5.1.3a k’ of single positively charged counterionic analytes is 

increased by more than a factor of 3. Thus their residence time shows a slower decrease than that of 

the electroneutral analytes at increasing field strength (Figure 5.1.2) and consequently it leads to an 

increase in k’. 

 

Further CP-related studies resolved basic issues of the retention dynamics of charged analytes in 

CEC which had been puzzling chromatographers before (Figures 5.1.1, 5.1.3, 5.1.6 as well as Figure 

5.2.8). From a more practical point of view it shows that the usual mass to charge correlation as in 

CZE (used to describe a specific mobility) is not sufficient to explain the electrokinetic contribution to 

the separation process in CEC. In contrast, retention in LC does not contain any valuable information 

regarding the retention factor in CEC, where it is usually influenced by electrical-field-induced CP 

(Figures 5.2.5 and 5.2.7.). Generally this behaviour is identified to be caused by mass transport 

phenomena in the CP zones and ion-permselective intraparticle/intraskeletton pore space and a 

generally competitive charge transport of the analyte molecules with each other and with the 

background buffer components. It can be used to increase performance of complex separations by 
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superimposing electrical fields in LC. It is shown that in contrast to only single-charged analytes with 

similar molecular weight (Figure 5.1.3a), the retention factor of counterionic analytes, related to their 

physicochemical properties, e.g. by varying charge and molecular weight, becomes even more 

complex but always displays a transition from a regime where charge transport is governed by 

intraparticle behaviour to a regime at increasing field strength where it only depends on the transport 

characteristics in the depleted CDL. Thus, the retention of any counterionic analyte reflects this 

transition from intraparticle to boundary-layer dominated transport (Figure 5.2.3) and depending on 

charge numbers this transition is displayed by a decrease or an increase in analyte retention. Within 

this increase or decrease it becomes modulated by their molecular mass (Figure 5.2.3a), causing 

selectivity differences in dependence of the applied electrical field strength (Figure 5.2.10a). 

 

Thus also under very typical conditions the significantly induced CP not only potentially modifies 

analyte retention (via effective transport intensity in competitive charge transport), but also reflects the 

development of significant conductivity gradients which develop on a particle-scale in packed beds or 

locally in monolithic structures (cf. Figures 4.1 and 4.9), systematically throughout the whole 

chromatographic bed. These dynamics are indicated to contribute also to an intrinsic zone sharpening 

in CEC (Figures 5.1.1 and 5.2.2, reflected in Figure 6.1 as “Dispersion 2”) and influence the peak 

shape of the analytes through possible stacking or (destacking) phenomena. This is indicated by the 

massively increased efficiencies of any charged conterionic analytes. They are a factor of two up to 

three higher than for the electroneutral analytes, even though in Figure 5.1.1 their retention factor 

increases by a factor of three to four, which contradicts rules of classical linear chromatography. 

Further it is seen that their peak shape resemble tailing behaviour, which indicates an intrinsic 

stacking process. A similar behaviour is indicated for the peptides shown in Figure 5.2.2, which yet 

becomes even more complicated regarding their increase or decrease in retention factor. 
 
Summarizing it can be concluded that the collected original research results and reviewed literature 

reflect the basic ingredients of CEC. In particular it opens routes for increasing robustness and 

applicability of CEC for the separation of both neutral and charged analytes. For neutral and ion-

suppressed analytes possible benefits surely arise from increased efficiencies with an optimized 

perfusive flow field (Figures 1.8 and 3.16) or morphology-related optimization of a nonlinear EOF 

(Figure 3.17). In addition method transfer from LC to CEC is straightforward for neutral analytes and 

no discrepancies between retention in both modes have been observed in this work (Figures 5.1.3a 

and 5.2.8a). In contrast for charged analytes we generally have to consider a development of 

electrical-field induced CP in the hierarchically structured porous medium and related transport 

phenomena of charged analytes and the background electrolyte buffer components, having different 

concentrations, diffusion coefficients, and charge numbers. Yet all participate in charge transport, 

which makes the retention factor far more complex in CEC than is described by superimposed, simple 

chromatographic and electrophoretic formalisms alone (Figures 5.2.5 and 5.2.7). Tuning electrical 

field-induced CP provides an interesting route for selectivity tuning in CEC and related electrical-field-

assisted processes (Figure 5.2.10). 
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Appendix 1:  List of symbols and abbreviations 
 
Vector symbols: 

i [A]  electrical current 

J [mol·m-2·s-1] molar flux density 

 

Latin symbols: 

ci,∞ [mol l-1]  equilibrium concentration of type i ions beyond the EDL 

ci [mol l-1]  concentration of type i ions  

c+ [mol l-1]  concentration of counter-ionic species 

c- [mol l-1]  concentration of co-ionic species  

dc [m]  column inner diameter 

dintra [m]  mean intraparticle pore diameter 

dp [m]  mean particle diameter 

D [m2s-1]  diffusion coefficient 

Dax [m2s-1]  axial dispersion coefficient 

Dm [m2s-1]  free molecular diffusion coefficient of analyte in mobile phase 

Eext [V m-1]  electrical field strength 

H [m]  height equivalent to a theoretical plate 

I [mol l-1]  mobile phase ionic strength 

k’ [-]  retention factor, 

   k' = (tr – t0)/t0
L2 [-]  L2 (Euclidean) norm 

N [m-1]  plate number 

Peav [-]  average Peclet number 

Peintra [-]  intraparticle Peclet number 

rpore [m]  pore radius 

rintra [m]  intraparticle pore radius 

T [-]  transport number 

t [-]  transference number 

t0 [s]  elution time of tracer 

tr [s]  elution time of tracer 

uav [m s-1]  average velocity through the porous medium 

ueo [m s-1]  average EOF velocity through the porous medium 

uep [m s-1]  electrophoretic velocity 

uinter [m s-1]  interparticle velocity 

uintra [m s-1]  intraparticle velocity 

z [-]  charge number/electrochemical valence 



132 
 

 

Greek symbols: 

δCDL [m]  thickness of the convective diffusion layer 

εinter [-]  interparticle porosity 

εintra [-]  intraparticle porosity 

εr [-]  relative permittivity of the electrolyte solution 

εtotal [-]  total porosity of packed column 

ηf [Pas]  dynamic viscosity of the mobile phase 

φ [V]  local electrical potential 

λD [m]  Debye screening length 

ζ [V]  zeta-potential  

ζp [V]  zeta-potential at the particle surface 

ζw [V]  zeta-potential at the column or capillary wall 

µeo [m2 V-1 s-1] electroosmotic mobility 

µep [m2 V-1 s-1] electrophoretic mobility 

 

Subscripts: 

CDL   convective diffusion layer 

crit   critical 

eo   electroosmotic 

i   ionic species 

intra   intraparticle or intraskeleton pore space 

meso   mesopore space 

macro   macropore space 

w   wall 

p   particle 

 

Superscripts: 

+   counterionic species 

-   coionic species 

 

Physical constants: 

F  Faraday constant  9.648·104 C mol-1

R  universal gas constant  8.31451 J mol-1K-1

ε0  absolute permittivity  8.854·10-12 As V-1m-1
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Abbreviations 

 

CLSM  Confocal laser scanning microscopy 

CDL  Convective diffusion layer 

CEC  Capillary electrochromatography 

CP  Concentration polarization 

CZE  Capillary zone electrophoresis 

EC  Electrochromatography 

EDL  Electrical double layer 

EOF  Electroosmotic flow 

HPLC  High performance liquid chromatography 

LC  Liquid chromatography 

SCR  Space charge region 

SCX  Strong cation-exchange 
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