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Zusammenfassung

Im letzten Jahrzehnt hat ein neues Lernparadigma, die sog. Strukturelle Risikomi-
nimierung (SRM), viel Beachtung im Bereich des Maschinellen Lernens gefunden.
Auf SRM basierende Lernmaschinen, wie z. B. Support Vector Machines (SVMs)
oder Kernel Fisher Discriminants (KFDs) wurden überaus erfolgreich zur Lösung
von Mustererkennungs- und Funktionsregressionsproblemen angewendet. Die Mög-
lichkeit der SRM, gleichzeitig das Fehlerrisiko auf Trainingsdaten und die Komple-
xität der Lernmaschine zu minimieren, führt zu besserer Generalisierungsfähigkeit
als konventionelle Empirische Risikominimierung (ERM), insbesondere bei kleinen
Lernstichproben.
Die vorliegende Arbeit beschäftigt sich mit der Anwendung der SRM auf die

Schätzung von Wahrscheinlichkeitsdichtefunktionen (WDFs). WDFs werden u. a.
als Emissionswahrscheinlichkeiten bei der Modellierung von kontinuierlich-wertigen
Mustersequenzen mit Hilfe von Hidden Markov Models (HMMs), z. B. in der auto-
matischen Spracherkennung (ASE), benutzt.
Diese Dissertation untersucht und entwickelt Methoden zur e�zienten Schätzung

von dünn besetzten Kernel WDFs durch Regression der empirischen kumulativen
Verteilungsfunktion (EKVF). Wir stellen ein neues Verfahren zur Bestimmung ei-
ner dünn besetzen Näherung der orthogonalen kleinste-Quadrate-Regressionslösung
durch Vorwärtsauswahl relevanter Trainingspunkte vor. Das Verfahren beruht auf
einer neuartigen speichere�zienten dünn besetzten Aktualisierung der orthogona-
len Zerlegung der Problemmatrix. Die Methode wird auf Standardproblemen bis zu
fünf Dimensionen untersucht, wobei sie deutlich verbesserte Leistungen im Vergleich
mit traditionellen parametrischen Modellen wie Normal-Mischverteilungen (NMV)
und ähnliche Leistung wie die theoretisch optimalen, vollbesetzten Parzen Windows
WDF-Modelle zeigt.
Die Arbeit zeigt weiterhin, dass die Methode der EKVF-Regression wegen der

Komplexität der EKVF bei hochdimensionalen Problemen, wie sie z. B. in der
ASE erscheinen, allerdings nicht angewendet werden kann. Eine weitere Methode
bestimmt daher WDFs durch Anwendung der Bayes'schen Regel auf Posterioriwahr-
scheinlichkeiten, die aus den Ausgaben von paarweisen Trennfunktionen wie SVMs
oder KFDs kalibriert wurden. Dieser Ansatz wird in einem Monophon-HMM ASE-
System auf der �Resource Management� Sprachdatenbank getestet, wobei traditio-
nelle HMM-NMV-Modelle deutlich überboten werden, insbesondere auf beschränk-
ten Stichproben. Die Experimente zeigen also eine signi�kante Verbesserung der
Generalisierungsfähigkeit durch die neuartigen WDF-Modelle.
Eine neuartige Programmbibliothek zur Durchführung der teilweise umfangrei-

chen Experimente wird vorgestellt. Primäres Ziel wird auf schnelle Berechnungen,



Einfachheit in Bezug auf Ausdruck von Algorithmen und Funktionserweiterung so-
wie auf Flexibilität zur bestmöglichen Ausnutzung vorteilhafter Eigenschaften von
Algorithmen gelegt. Die Bibliothek folgt einem objektorientierten Design und wur-
de in C++ implementiert. Zur Erhöhung der Produktivität ist die Bibliothek mit
feinkörniger Ablaufüberwachung, einem objektorientierten Persistenzmodell, trans-
parenter Fehlerbehandlung sowie Parallelisierung auf Computersystemen mit ver-
teiltem Speicher (sog. Cluster) ausgestattet.
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Abstract

During the last decade, a new learning paradigm called Structural Risk Minimization
(SRM) derived from Statistical Learning Theory, has become widely studied in ma-
chine learning. Machines implementing SRM, e. g., Support Vector Machines (SVMs)
and Kernel Fisher Discriminants (KFDs), have been very successfully used for solving
pattern recognition and function regression problems. SRM's ability to simultane-
ously minimize the risk of error on training data and the complexity of a learn-
ing machine results in better generalization capability than plain Empirical Risk
Minimization (ERM), especially if the amount of training data is limited.
The present work is devoted to applying SRM to the problem of probability density

function (PDF) estimation. When modeling sequences of continuous-valued events
using Hidden Markov Models (HMMs), e. g., automatic speech recognition (ASR),
PDFs are used to model the emission probabilities of the HMMs' states.
This thesis investigates and develops methods to e�ciently train sparse kernel

PDF models by regression of the empirical cumulative distribution function (ECDF).
A new method for obtaining a sparse approximation of the orthogonal least-squares
regression solution by forward-selection of relevant samples is presented, where a
novel memory-e�cient thin update of the orthogonal decomposition is used. This
method is evaluated on standard benchmark problems of up to �ve dimensions,
showing superior performance to traditional parametric Gaussian Mixture Models
(GMMs) and similar performance to the theoretically optimal, non-sparse Parzen
windows PDF models.
However, it is found that this new method cannot be applied to the problem of

estimating PDFs for ASR due to the complexity of the ECDF in high dimensions.
Instead, posterior class probabilities calibrated from the outputs of binary discrimi-
nants such as SVMs or KFDs are turned into class-conditional PDFs using Bayes' rule.
This approach is tested within a monophone HMM ASR system on the Resource Man-
agement task, outperforming traditional HMM-GMM systems signi�cantly, especially
on random limited samples which demonstrates the new models' improved general-
ization ability on small-sample problems.
In order to realize these large-scale experiments, a novel machine learning software

library is presented. Primary focus is put on fast computations, simplicity both
in terms of expressing algorithms and extending functionality, and �exibility in
order to properly appreciate algorithms' properties and advantages. The software
library follows an object-oriented design and has been implemented in C++. For
productivity, the library is equipped with �ne-grained tracing, an object-oriented
persistence model, transparent error handling and parallelization on distributed-
memory computer clusters.
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1 Introduction

Machine Learning has made great progress in the last two decades especially with
the development of Structural Risk Minimization (SRM). SRM is an inductive (learn-
ing) principle which, loosely speaking, at training time aims at simultaneously min-
imizing prediction errors and complexity, or in other words, the capacity of the
learning machine. The controlled capacity of the machine is then expected to reduce
prediction errors on unseen data compared to learning algorithms only minimizing
the prediction error, i. e., the learning machine can generalize well to unobserved
data. In chapter 2 we will discuss what we understand as learning, which conditions
for learning to take place must be met, what generalization means more technically,
and how generalizing machines can be obtained using the SRM inductive principle.
The method of SRM has mostly been studied in the pattern recognition or, in other

words, pattern discrimination scenario, and in the function regression scenario. Pop-
ular discriminant methods implementing SRM are Support Vector Machines (SVMs)
and Kernel Fisher Discriminants (KFDs), which will be revisited in chapter 3.
Automatic speech recognition (ASR) is, in general, quite a complex undertaking.

The task is to deduce text from an observed segment of speech sound. This can
be regarded as a kind of pattern recognition problem where using some observed
pattern (the acoustic utterance) the corresponding class (the text) from an alphabet
(all allowed texts) is to be chosen. In a naive approach, this problem could be solved
using standard pattern recognition techniques which would assign the utterance to
its text based on some statistical dependence the learning machine has deduced
from training material.
However, the task of automatic speech recognition (ASR) to date is too complex

to be solved by purely discriminating learning machines. Particular di�culties to
be tackled are large vocabularies, and acoustic as well as temporal variabilities of
utterances. Instead, one has to apply some prior knowledge about the problem of
speech production in order to design a suitable learning machine. A well-established
solution to these challenges is to follow an �analysis by synthesis� approach, namely
dividing the task into language models, which capture structures of texts at the level
of words, pronunciation models, which split words into phonetic units, and acoustic
models, which ultimately model the acoustic realization of these sub-word phonetic
units. The acoustic models commonly consist of Hidden Markov Models (HMMs)
with continuous emission probability densities, typically weighted sums of multi-
variate normal densities (so-called Gaussian Mixture Models (GMMs)). Chapter 4
will revisit the topic in more depth.

1



1 Introduction

Training of the parameters of the HMM-GMM acoustic models is usually based on
Empirical Risk Minimization (ERM) which does not, in contrast to SRM, consider
the complexity of the resulting learning machine. Modeling probability density
functions (PDFs) from samples using the SRM inductive principle has not been stud-
ied much. This thesis will, therefore, consider methods for constructing emission
PDF for HMM-based speech recognition systems using the promising SRM inductive
principle.
In chapter 5 we will discuss an approach to directly derive sparse PDF models

from data samples. Starting with the de�nition that a probability density function
is a function whose integral is a distribution function, we will revisit how a reference
distribution function, i. e., the empirical cumulative distribution function (ECDF),
can be approximated by the integral of the desired PDF using SRM-based function re-
gression. Existing approaches to this general idea su�er from a number of problems,
most notably large training memory requirements. We will introduce a method
which overcomes this limitation, especially for large training sample sets and rela-
tively sparse approximations. However, we will also see the limits of PDF-training
based on regression of the ECDF applied to PDF construction in the ASR scenario.
Chapter 6 will be concerned with the construction of PDFs for HMMs from stan-

dard binary discriminant machines such as SVM and KFD. This chapter discusses
methods to extract probability measures from these binary machines and how to
combine them into multi-class probability measures. Experiments on the Resource
Management (RM1) speech recognition task support the idea and show improved
generalization performance compared to conventional GMM-based emission PDFs.
Chapter 7 focuses on the software implementation of the various ideas necessary

to build PDFs using SRM-based machines. The large memory and computation
time requirements as well as the diversity of the investigated problem classes failed
straightforward software solutions and consequently demanded a substantial soft-
ware design in a way that equally appreciates common and divergent properties of
di�erent parts of the learning machines. We will present an object-oriented library
of reusable software components with well-de�ned interfaces employing advanced
techniques such as templatization, object persistence via serialization to XML �les,
e�cient parallelization, and event logging, while still putting primary focus on speed
and e�ciency.
The main results of this thesis along with possible future research directions will

be summarized in chapter 8.
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2 Learning from Samples

Learning can be considered as the problem of �nding a dependence using a (usually
limited number of) observations (or samples). In this chapter we will �rst con-
sider the general setting of a learning problem. We will de�ne risk and induction
principles. By studying (asymptotic) properties of the important empirical risk min-
imization inductive principle and de�ning concepts such as capacity measures for
learning machines we will arrive at a better inductive principle, the structural risk
minimization inductive principle. This chapter draws heavily from the fundamental
ideas summarized in [Vapnik, 1998] and [Vapnik, 2000].

2.1 Function estimation

The general model of learning from examples can be described by three components:

• A generator G of random vectors x ∈ RD drawn independently from a �xed,
but unknown probability distribution F (x),

• a supervisor S which assigns an output value y ∈ Y to each input vector
x according to an also �xed, but unknown conditional distribution function
F (y|x),

• a learning machine implementing a set of functions f(x,α), α ∈ A, where A
is a set of parameters (not necessarily vectors, but any abstract parameter).

Learning, then, is the problem of �nding the function that best approximates the
supervisor's output according to some criterion from the the given set of functions
f(x,α), α ∈ A.
The joint probability distribution

F (x, y) = F (y|x)F (x) (2.1)

is unknown in but the most trivial cases. Instead, only a limited number of N
observations drawn according to this joint distribution function are known, making
up a set of training samples:

Z : {(x1, y1), . . . , (xN , yN)} (2.2)
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2 Learning from Samples

2.2 Risk minimization

For the purpose of choosing the best approximation of the supervisor's output one
measures the loss (or, in other words, the cost of error), L(y, f(x,α)). Following
the well-known de�nition of risk which states that the risk of an event is the product
of the cost of this event and the probability of occurrence of this event, the total
risk of an approximation associated with a parameter vector α can be expressed by
integrating the loss (or cost) function over the entire probability space, resulting in
the risk functional

R(α) =

∫
L(y, f(x,α)) dF (y,x) (2.3)

The objective is to determine the function f(x,α0) which minimizes R(α) over the
set of functions f(x,α), α ∈ A. Only in trivial cases can this be done directly.

2.2.1 Induction principle

For convenience, the following shorthand notations are used: Z = RD × Y and
Q(z,α) = L(y, f(x,α)). The risk (2.3) can then be rewritten as

R(α) =

∫
Q(z,α) dF (z) (2.4)

If the risk functional (2.4) is to be minimized with an unknown distribution func-
tion F (z), an inductive principle can be applied. The Empirical Risk Minimization
(ERM) inductive principle (ERM principle) is quite well-known and works by replac-
ing the true risk R(α) with the so-called empirical risk functional

Remp(α) =
1

N

N∑
n=1

Q(zn,α) (2.5)

which is constructed based on the training set (2.2). Notice how the integration
in (2.4) has been replaced by summation over discrete events which are assumed
(lacking further information) to be uniformly distributed.

The function Q(z, α̂) minimizing the actual risk is then approximated by the
function Q(z,αN) which minimizes the empirical risk (2.5).

An inductive principle (not limited to the ERM principle) de�nes a learning pro-
cess if the learning machine employs this inductive principle when choosing the
approximation given a set of observations.

A number of properties must be investigated for a learning process, i. e., conditions
for consistency, rate of convergence, how to control the rate of convergence, and how
to construct algorithms that can control the rate of convergence.
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2.3 Consistency of a learning process

2.3 Consistency of a learning process

While we are ultimately interested in the performance of a learning process with
limited data, it is, nevertheless, important to investigate consistency, i. e., the asymp-
totic performance of the learning process in the limit w. r. t. the size of the training
sample because consistency guarantees that the the constructed theory is general
and cannot theoretically be improved.

De�nition 1. The ERM principle is consistent for the set of functions Q(z,α),
α ∈ A, and for the probability distribution F (z) if the following two conditions
hold:

R(αN)
P−→

l→∞
inf
α∈A

R(α) (2.6)

Remp(αN)
P−→

l→∞
inf
α∈A

R(α) (2.7)

It is, unfortunately, impossible to obtain conditions for consistency of the ERM

inductive principle in terms of general characteristics of the set of functions and the
probability measure based on the given classical de�nition (de�nition 1) because
the de�nition includes cases of trivial consistency.

2.3.1 Trivial consistency

Trivial cases of consistency exist if the set of functions Q(z,α), α ∈ A, contains a
minorizing function. This means that a theory of consistency based on de�nition 1
must determine whether a case of trivial consistency is possible, i. e., the speci�c
functions of the given set must be considered individually. Therefore, a de�nition
of consistency which excludes cases of trivial consistency must be used.

De�nition 2. An inductive principle is non-trivially consistent for the set Q(z,α),
α ∈ A, and for the probability distribution F (z) if for any non-empty subset A(c),
c ∈ (−∞,∞), of this set of functions, following

A(c) =

{
α :

∫
Q(z,α) dF (z) > c, α ∈ A

}
(2.8)

the convergence

inf
α∈A(c)

Remp(α)
P−→

N→∞
inf

α∈A(c)
R(α) (2.9)

is valid.
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2 Learning from Samples

2.3.2 Uniform one-sided convergence

We now need to �nd conditions for non-trivial consistency, which leads to the key
theorem of learning theory:

Theorem 1 (Vapnik-Chervonenkis). Let Q(z,α), α ∈ A, be a set of functions
satisfying

A ≤
∫
Q(z,α) dF (z) ≤ B, A ≤ R(α) ≤ B. (2.10)

It is then necessary and su�cient for an inductive principle to be consistent that
the empirical risk Remp(α) converges uniformly to the actual risk R(α) over the set
Q(z,α), α ∈ A, such that

lim
l→∞

P

{
sup
α∈A

(R(α)−Remp(α)) > ε

}
= 0, ∀ε > 0. (2.11)

This type of uniform convergence is called one-sided convergence. Conceptually,
this theorem asserts that consistency is necessarily and su�ciently determined by
the �worst� function in the set Q(z,α), α ∈ A.

2.3.3 Uniform two-sided convergence

With theorem 1 the problem of consistency of the ERM principle (de�nition 1)
was replaced by the problem of uniform one-sided convergence (2.11). If one is
interested in necessary and su�cient conditions for uniform one-sided convergence,
two stochastic processes, which are called empirical processes, must be considered.
The sequence of random variables

ξN = sup
α∈A
|R(αN)−Remp(αN)|

= sup
α∈A

∣∣∣∣∣
∫
Q(z,α) dF (z)− 1

N

N∑
n=1

Q(zn,α)

∣∣∣∣∣ , N = 1, 2, . . .
(2.12)

is a two-sided empirical process because it depends both on the probability F (z)
and the set of functions Q(z,α), α ∈ A. For this empirical process to converge to
zero in probability, the following must hold true:

lim
l→∞

P

{
sup
α∈A

∣∣∣∣∣
∫
Q(z,α) dF (z)− 1

N

N∑
n=1

Q(zn,α)

∣∣∣∣∣ > ε

}
= 0, ∀ε > 0 (2.13)

Together with the empirical process ξN we consider the one-sided empirical pro-
cess given by the sequence of random variables

ξN
+ = sup

α∈A

(∫
Q(z,α) dF (z)− 1

N

N∑
n=1

Q(zn,α)

)
+

, N = 1, 2, . . . (2.14)
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2.3 Consistency of a learning process

with

(u)+ =

{
u if u > 0,

0 otherwise

For ξN
+ to converge to zero in probability, the following condition must hold true:

lim
l→∞

P

{
sup
α∈A

(∫
Q(z,α) dF (z)− 1

N

N∑
n=1

Q(zn,α)

)
+

> ε

}
= 0, ∀ε > 0.

(2.15)
This condition is, according to theorem 1, necessary and su�cient for the ERM

method to be consistent.

Using the law of large numbers in the functional space, uniform two-sided conver-
gence will be used to construct conditions of uniform one-sided convergence. Neces-
sary and su�cient conditions both for uniform one-sided convergence and uniform
two-sided convergence are obtained using the entropy of a set of functions Q(z,α),
α ∈ A, on a sample of size N . In the derivation, we will limit ourselves to the set of
indicator functions (functions taking only one of two values); a complete derivation
for sets of real bounded functions can be found in [Vapnik, 2000].

2.3.4 Entropy of the set of indicator functions

Let Q(z,α), α ∈ A, be a set of indicator functions. Consider a sample z1, . . . ,zN .
The diversity of the set of functions Q(z,α), α ∈ A, is characterized by the quantity
NA(z1, . . . ,zN) which evaluates the number of di�erent possible separations of the
given sample using the set of indicator functions. Then,

HA(z1, . . . ,zN) = lnNA(z1, . . . ,zN) (2.16)

is called the random entropy. The random entropy is a random variable because
it was constructed using i. i. d. data. The expectation over the joint distribution
function F (z1, . . . ,zN)

HA(N) = EHA(z1, . . . ,zN) (2.17)

is then called the Vapnik-Chervonenkis (VC) entropy of the set of indicator functions
Q(z,α), α ∈ A, on the sample size N .

2.3.5 Conditions for uniform one-sided convergence

Using the VC entropy, we can �nd the following condition for uniform two-sided
convergence [Vapnik, 2000]:
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2 Learning from Samples

Theorem 2. Under some conditions of measurability on the set of indicator func-
tions Q(z,α), α ∈ A, a necessary and su�cient condition for uniform two-sided
convergence (2.13) is

lim
N→∞

HA(N)

N
= 0. (2.18)

Uniform two-sided convergence of the ERM inductive principle can be described
as

lim
l→∞

P

{[
sup
α∈A

(R(α)−Remp(α)) > ε

]
or

[
sup
α∈A

(Remp(α)−R(α)) > ε

]}
= 0 ∀ε > 0

(2.19)

Condition (2.19) includes the case of uniform one-sided convergence (2.15). There-
fore, it is a su�cient condition for consistency of the ERM method. Since we can
neglect consistency with respect to maximizing the empirical risk when solving learn-
ing problems, the second condition on the left-hand side of (2.19) may be violated.
Therefore, we can �nally describe conditions under which uniform one-sided con-

vergence, i. e., for minimizing the empirical risk, takes place. Consider the set of real
bounded functions Q(z,α), α ∈ A, and another set of functions Q∗(z,α), α ∈ A∗,
such that

Q(z,α)−Q∗(z,α) ≥ 0 ∀z (2.20)∫
(Q(z,α)−Q∗(z,α)) dF (z) ≤ δ. (2.21)

Theorem 3. In order for one-sided convergence of the ERM method to hold, it is
necessary and su�cient that for any positive δ and η there exists a set of functions
Q∗(z,α), α ∈ A∗, obeying (2.20) and (2.21) such that the following holds:

lim
N→∞

HA∗(N)

N
< η (2.22)

Note that this condition is weaker than the (only su�cient) condition (2.18).

2.4 The rate of convergence

After having established conditions on the consistency of the ERM method, we will
now be concerned with the rate of convergence.
According to theorem 2 we have a su�cient condition for uniform one-sided con-

vergence, and theorem 3 extends this to necessary and su�cient conditions for
uniform one-sided convergence. However, both of them do not evaluate how fast
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2.4 The rate of convergence

the achieved risks R(αN) converges to the minimal risk R(α0). If the asymptotic
rate of convergence follows

P {(R(αN)−R(α0)) > ε} < e−cε2N , ε > 0 (2.23)

for any N > N0 and some constant c, the rate is said to be high.
Using NA(z1, . . . ,zN), two new concepts useful for characterizing the rate of

convergence can be constructed:

1. The annealed VC entropy

HA
ann(N) = ln ENA(z1, . . . ,zN) (2.24)

2. The growth function

GA(N) = ln sup
z1,...,zN

NA(z1, . . . ,zN) (2.25)

These concepts obey
HA(N) ≤ HA

ann(N) ≤ GA(N) (2.26)

for any N .
It can be shown [Vapnik, 1998] that

lim
N→∞

HA
ann(N)

N
= 0 (2.27)

is a su�cient condition for a high rate of convergence. The problem with theorem
3 and equation (2.27) is that both describe conditions for the convergence and its
rate for the ERM method if the probability measure F (z) is known. It turns out
that

lim
N→∞

GA(N)

N
= 0 (2.28)

is a necessary and su�cient condition for consistency of the ERM method and also a
su�cient condition for a fast rate of convergence [Vapnik, 1998] for any probability
measure F (z).

2.4.1 Bounds on the rate of convergence

So far, we have established conditions for consistency of the ERMmethod via uniform
one-sided convergence of the empirical risk to the true risk. Also, concepts for the
rate of convergence of the ERM method have been introduced. Next, we will focus
on bounds on the rate of convergence which may actually be computed.
Using the two capacity concepts (2.24) and (2.25) two bounds on the rate of

convergence will be discussed, i. e., distribution-dependent bounds based on the
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2 Learning from Samples

annealed entropy function (2.24) and distribution-independent bounds based on
the growth function (2.25). Since these two bounds are non-constructive, a di�erent
measure for the capacity of a set of functions (the VC dimension), which is scalar
computable for any set of functions, will be used to obtain constructive distribution-
independent bounds [Vapnik, 1998]. Unless necessary otherwise, the derivations will
be limited to Q(z,α), α ∈ A, from the set of indicator functions.
The following two bounds on the rate of uniform convergence are the basic in-

equalities in the theory of bounds [Vapnik, 1998].

Theorem 4. The following inequality holds true:

P

{
sup
α∈A

∣∣∣∣∣
∫
Q(z,α) dF (z)− 1

N

N∑
n=1

Q(zn,α)

∣∣∣∣∣ > ε

}
≤ 4e

„
HAann(2N)

N
−ε2

«
N

(2.29)

Theorem 5. The following inequality holds true:

P

sup
α∈A

∫
Q(z,α) dF (z)− 1

N

∑N
n=1Q(zn,α)√∫

Q(z,α) dF (z)
> ε

 ≤ 4e

„
HAann(2N)

N
− ε2

4

«
N

(2.30)

These two bounds are distribution-dependent since the given distribution func-
tion F (z) was used for constructing the annealed VC entropy HA

ann(N). Recalling
inequality (2.26), the following two bounds on the rate of convergence for any dis-
tribution function F (z) can very simply be derived:

P

{
sup
α∈A

∣∣∣∣∣
∫
Q(z,α) dF (z)− 1

N

N∑
n=1

Q(zn,α)

∣∣∣∣∣ > ε

}
≤ 4e

„
GA(2N)

N
−ε2

«
N

(2.31)

P

sup
α∈A

∫
Q(z,α) dF (z)− 1

N

∑N
n=1Q(zn,α)√∫

Q(z,α) dF (z)
> ε

 ≤ 4e

„
GA(2N)

N
− ε2

4

«
N

(2.32)

2.4.2 Bounds on the generalization ability of a learning

machine

We can now derive bounds on the generalization performance of a learning machine
by rearranging the bounds on the rate of convergence. Using the notation

ε = 4
GA(2N)− ln(η/4)

N
(2.33)

we can �nd from (2.32) that the inequality

R(α) ≤ Remp(α) +
ε

2

(
1 +

√
1 +

4Remp(α)

ε

)
(2.34)
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holds with probability at least 1 − η for all functions Q(z,α), α ∈ A, (including
the one that minimizes Remp). It was also found that the inequality

R(αN)− inf
α∈A

R(α) ≤
√
− ln η

2N
+
ε

2

(
1 +

√
1 +

4

ε

)
(2.35)

holds with probability at least 1 − 2η for the function Q(z,αN) minimizing the
empirical risk.
However, the bounds (2.34) and (2.35) should be regarded as conceptual. It would

be necessary to �nd a way to evaluate the growth function GA(2N) for the given
set of functions Q(z,α), α ∈ A. Constructive bounds using the VC dimension of a
set of functions Q(z,α), α ∈ A, were developed instead [Vapnik, 2000].

2.4.3 The VC dimension of a set of functions

In order to de�ne the VC dimension, we will �rst examine properties of the growth
function used in obtaining generalization bounds for learning machines.

Theorem 6. Any growth function either satis�es

GA(N) = N ln 2 (2.36)

or is bounded by

GA(N) ≤ h

(
ln
N

h
+ 1

)
(2.37)

where h is an integer such that for N = h

GA(h) = h ln 2 (2.38)

GA(h) < (h+ 1) ln 2 (2.39)

To speak illustratively, the growth function is either linear (2.36) or bounded by
a logarithmic function (2.37).
Using theorem 6, we can de�ne the VC dimension.

De�nition 3. The VC dimension of a set of functions Q(z,α), α ∈ A, is in�nite
if the growth function for this set of functions is linear.
The VC dimension of a set of functions Q(z,α), α ∈ A, is �nite and equal to

h if the corresponding growth function is bounded by a logarithmic function with
coe�cient h.

Using this de�nition, inequality (2.26) can be extended to

HA(N) ≤ HA
ann(N) ≤ GA(N) ≤

h
(
ln N

h
+ 1
)

N
(l > h) (2.40)
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A �nite VC dimension is, therefore, a su�cient condition for consistency of the ERM
method applied to a learning machine implementing a set of indicator functions,
independently of the probability measure F (z). Moreover, a �nite VC dimension
also guarantees a fast rate of convergence.
Geometrically speaking one can say that the VC dimension of a set of indicator

functions Q(z,α), α ∈ A, is the maximum number h of vectors that can be sepa-
rated into two classes in all 2h possible ways using functions from the set. The VC

dimension is in�nite if for any n there exists a set of n vectors that can be shattered
by functions from the set.

Example 1. Consider a set of linear indicator functions

Q(z,α) = Θ
{
α>z + α0

}
in an Ddimensional coordinate space. Then the VC dimension of this set of functions
is h = D+1, i. e., one can separate at most D+1 vectors using this set of functions.

Example 2. Consider the set of functions

f(x, α) = θ(sinαx), α ∈ R.

The VC dimension of this set of functions is in�nite since by choosing an appropriate
parameter α one can approximate values of any function bounded by [−1, 1] using
sinαx.

From the examples we conclude that the VC dimension of a set of functions is not
necessarily related to the number of parameters, though it is in the case of linear
indicator functions.

2.4.4 Constructive distribution-independent bounds

If one considers functions with �nite VC dimension h, with (2.37) from theorem 6
we can use the expression

ε = 4
h
(
ln 2N

h
+ 1
)
− ln η

4

N
(2.41)

for equations (2.34) and (2.35) if N > h. In the special case where the set of
functions Q(z,α), α ∈ A, contains a �nite number of A elements, the following
expression can be used instead [Vapnik, 1998]:

ε = 2
lnA− ln η

N
(2.42)
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2.5 Controlling the generalization ability of a

learning machine

So far, we have only been concerned with the ERM inductive principle. This induc-
tive principle is especially well suited to the case of a large sample size N . This
becomes clear when evaluating (2.34) and (2.35) with expressions (2.41) or (2.42).
When N/h is large, ε tends to zero, which makes the second summand on the right-
hand side of inequality (2.34), the term associated with the capacity of the learning
machine, (respectively the second summand on the right-hand side of (2.35)) dimin-
ish. The actual risk is then close to the empirical risk; in turn, a small empirical
risk guarantees a small value of the (expected) risk.
But if N/h is small (usually one considers N/h < 20), a small Remp(αN) does not

guarantee a small actual risk. This means that in order to minimize the actual risk
R(α) the right-hand side of inequality (2.34) (or, respectively, (2.35)) must be min-
imized over both the empirical risk and the machine capacity term simultaneously.
Consequently, the VC dimension of the set of functions Q(z,α), α ∈ A, must be
made a controlling variable. This is achieved by SRM.
Let us consider the set S of functions Q(z,α), α ∈ A, with a structure of nested

subsets Sk = {Q(z,α), α ∈ Ak} such that

S1 ⊂ S2 ⊂ · · · ⊂ Sn · · · (2.43)

where the VC dimension hk of each set Sk is �nite, i. e.,

h1 ≤ h2 ≤ · · · ≤ hn . . . (2.44)

Given a set of observations z1, . . . ,zN , the SRM inductive principle selects the
function Q(z,αk

N) which minimizes the empirical risk in the subset Sk for which the
guaranteed risk, as given by the right-hand side of (2.34), is minimal, i. e., the SRM
principle weighs quality of approximation against complexity of the approximating
function.

2.5.1 Examples

In general, the SRM principle can be applied in many di�erent ways. Conventional
feed-forward neural networks are excellent examples of this. For instance, a neural
network where the number of units in the hidden layer are increased monotonically
de�nes a structure on the sets of implementable functions. Another example can be
found by considering neural networks where the weight-decay procedure is applied
at training time. By continuously decreasing the maximum magnitude of the weight
vectors a structure is de�ned by the sets of implementable functions. In chapter 4,
further examples are given, as appropriate.
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2.5.2 Regularization as a means of controlling the capacity of

a learning machine

Various other approaches at improving the performance of methods in mathematics
and statistics have led to essentially the same idea as the SRM principle. One very
famous example is the method of regularization [Tikhonov, 1963]. Consider the
problem of �nding a quasi-solution of the linear operator equation

Af = F, f ∈M, (2.45)

when solving ill-posed problems. The linear operator A maps elements from the
metric spaceM⊂ E1 with metric ρE1 to elements of the metric space N ⊂ E2 with
metric ρE2 . Thikonov introduced a nonnegative semi-continuous functional Ω(f)
with the following properties:

1. The domain of Ω(f) isM,

2. the region for which

Mj = {f : Ω(f) ≤ dj} , dj > 0, (2.46)

holds is a compactum in the metric space E1,

3. The solution of (2.45) belongs to someM∗
i such that

Ω(f) ≤ d∗ <∞. (2.47)

Thikonov proved that the functions fγ minimizing the functionals

Φγ(f) = ρ2
E2(Af, F ) + γΩ(f) (2.48)

converge to the desired function as γ converges to zero. The proofs did not explicitly
target capacity control. However, since any subset as in (2.46) is compact, it has
bounded capacity. Therefore, a structure on the subsetsMj is described as in section
2.5.
Similar procedures and proofs were found by Ivanov [Ivanov, 1962] and Phillips

[Phillips, 1962].

2.6 Summary

In this chapter, important points of Statistical Learning Theory have been revisited.
Conditions for asymptotic convergence (consistency) as well as bounds on the rate
have been established. Using these bounds, the structural risk minimization learning
paradigm, which is especially useful in the case of small sample sizes, has been
motivated, followed by examples of how to implement the SRM procedure. These
important foundations will be used in the following chapters to analyze and improve
procedures for learning probability density function models.
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implementing Structural Risk

Minimization

In this chapter I will revisit two learning machines especially suited for pattern
recognition where samples may belong to one of two possible labels. The extension
to more than two labels (multi-label classi�cation) will be discussed in section 6.2.
From section 2.5 it is known that in order to achieve a good learning result one

has to minimize both the empirical risk and the con�dence interval. One approach
is to keep the VC dimension (and, therefore, the con�dence interval) of a learning
machine �xed and to then minimize the empirical risk achieved by this machine. A
typical example of this approach are conventional Multi-Layer Perceptrons (MLPs)
or ASR training procedures which require a-priori knowledge of the problem and the
complexity of the learning machine.
A di�erent approach is to keep the empirical risk �xed at a (small) value and to

then minimize the con�dence interval, i. e., the complexity of the machine. In this
chapter, two such learning machines will be revisited, i. e., the SVM and the KFD.

3.1 Support Vector Machines

3.1.1 The optimal separating hyperplane

Consider a set of (training) samples Z = {(x1, y1), . . . , (xN , yN)}, x ∈ RD, y ∈
{−1, 1}, which we will write in a more convenient matrix-vector notation as X =
[x(1), . . . ,x(N)] and y = [y(1), . . . , y(N)]

>. Suppose the data can be separated by a
hyperplane

w>x− b = 0 (3.1)

The optimal separating hyperplane (ŵ, b̂) separates the data without error while
keeping the distance between the hyperplane and the closest vector maximal. In
other words, the optimal separating hyperplane satis�es

w>x(n) − b ≥ 1, if y(n) = 1, (3.2)

w>x(n) − b ≤ −1, if y(n) = −1, (3.3)

15



3 Pattern Recognition Machines implementing Structural Risk Minimization

or, more compactly,

y(n)(w
>x(n) − b) ≥ 1, n = 1, . . . , N, (3.4)

while solving the primal optimization problem

min
w

1

2
‖w‖2, (3.5)

which leads to a quadratic optimization problem.
The solution to this optimization problem is given by the saddle point of the

Lagrangian

L(w, b,α) =
1

2
w>w −

N∑
n=1

α(n)

[
(w>x(n) − b)y(n) − 1

]
(3.6)

with α the Lagrangian multipliers. The Lagrangian of the optimization problem
must be minimized with respect to w and b and maximized with respect to α ≥ 0.
This leads to the following Karush-Kuhn-Tucker (KKT) conditions of optimality:

∂L(ŵ, b̂, α̂)

∂w
= ŵ −

N∑
n=1

y(n)α̂(n)x(n) = 0 (3.7)

∂L(ŵ, b̂, α̂)

∂b
= ŵ>y = 0 (3.8)

α ≥ 0 (3.9)

α̂(n)[(ŵ
>x(n) − b̂)y(n) − 1] = 0 n = 1, . . . , N. (3.10)

By inspecting (3.7) we conclude that the optimal separating hyperplane has an
expansion in (or, in other words, is a linear combination of) the vectors of the
training set. Furthermore, according to (3.9), only some coe�cient α̂(n) are nonzero;
the corresponding vectors x(n) are called support vectors. The sparse solution is a
result of the SRM inductive principle employed for SVM training, i. e., the empirical
risk is minimized (zero in this case), while the complexity (the VC dimension of the
SVM) is also minimized by including only the strictly necessary samples, i. e., the
samples supporting the optimal separating hyperplane, in the solution. However,
we cannot expect the SVM to be a sparse model; depending on the problem, the
SVM solution may have as little as 10% sparsity [Mika et al., 1999].
Substituting (3.7) and (3.10) into the Lagrangian (3.6) leads to the dual optimiza-

tion problem

max
α

1>α− 1

2

N∑
n=1

N∑
m=1

α(n)α(m)y(n)y(m)x
>
(n)x(m) (3.11)

which needs to be solved subject to constraints (3.8) and (3.9).
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3.1.2 The non-separable case

If the data are not linearly separable, an optimal hyperplane (which is the hyper-
plane committing as little as possible error) may be constructed by introducing
non-negative slack variables ξ. The generalized optimal hyperplane [Cortes and
Vapnik, 1995] is constructed by solving the optimization problem

min
w,ξ

1

2
w>w + C1>ξ (3.12)

subject to

y(n)(w
>x(n) − b) ≥ 1− ξ(n) n = 1, . . . , N (3.13)

ξ ≥ 0 (3.14)

where C > 0 is a given parameter determining the trade-o� between the capacity
(�rst term in (3.12)) and the accuracy (second term in (3.12)) of the model.
As before, the Lagrangian of (3.12) is constructed by adding constraints (3.13)

and (3.14) with corresponding coe�cients α, ν

L(w, ξ, b,α,ν) =
1

2
w>w+C1>ξ−

N∑
n=1

α(n)[(w
>x(n)−b)y(n)−1+ξ(n)]−ν>ξ (3.15)

whose optimizing saddle-point is obtained by minimizing with respect to w, ξ and
b and simultaneously maximizing with respect to α and ν. Before continuing the
discussion, let us rewrite (3.15) using the short-hand notation s : s(n) = α(n)y(n):

L(w, ξ, b,α,ν) =
1

2
w>w + C1>ξ − s>X>w + b1>s + 1>α− ξ>α− ν>ξ (3.16)

Thus, the corresponding KKT conditions are

∂L(ŵ, ξ̂, b̂, α̂, ν̂)

∂w
= ŵ −X>ŝ = 0 (3.17)

∂L(ŵ, ξ̂, b̂, α̂, ν̂)

∂ξ
= C1− α̂− ν̂ = 0 (3.18)

∂L(ŵ, ξ̂, b̂, α̂, ν̂)

∂b
= ŵ>y = 0 (3.19)

α̂(n)[(ŵ
>x(n) − b̂)y(n) − 1 + ξ(n)] = 0 n = 1, . . . , N (3.20)

α ≥ 0 (3.21)

ν ≥ 0 (3.22)

From (3.18), (3.21) and (3.22) we can conclude that

0 ≤ α ≤ C1 (3.23)
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3 Pattern Recognition Machines implementing Structural Risk Minimization

By substituting (3.17), (3.18) and (3.20) into the Lagrangian (3.15) we arrive at the
same dual optimization problem as in the separable case (cf. section 3.1.1)

max
α

1>α− 1

2
s>X>Xs (3.24)

only with di�erent constraint (3.23).

3.2 Adding Kernels

The learning machine introduced in section 3.1.2 is also called the linear support-
vector machine because it applies the linear inner product of the samples x in the
matrix X>X in (3.24). As a way of solving the non-separability of the data in its
input space RD it may be possible to use a non-linear mapping φ : RD → F where
F is the so-called feature space with large, and possibly in�nite, dimensionality F .
Now the separation problem (3.12) is to be solved in the feature space F . The

resulting generalized optimal hyperplane is then given by (ŵ[F ], b):

min
w,ξ

1

2
w>w + C1>ξ (3.25)

subject to

y>(Φ>(X)w − b1) ≥ 1− ξ (3.26)

ξ ≥ 0 (3.27)

with Φ(X) = [φ(x(1)), . . . ,φ(x(N))]. Now, similar in fashion to section 3.1.2 the
Lagrangian of the optimization problem is constructed:

L(w, ξ, b,α,ν) =
1

2
w>w +C1>ξ− s>Φ>(X)w + b1>s + 1>α− ξ>α− ν>ξ (3.28)

The KKT conditions of optimality are:

∂L(ŵ, ξ̂, b̂, α̂, ν̂)

∂w
= ŵ −Φ(X)ŝ = 0 (3.29)

∂L(ŵ, ξ̂, b̂, α̂, ν̂)

∂ξ
= C1− α̂− ν̂ = 0 (3.30)

∂L(ŵ, ξ̂, b̂, α̂, ν̂)

∂b
= ŵ>y = 0 (3.31)

α̂(n)

[
(ŵ>φ(x(n))− b̂)y(n) − 1 + ξ(n)

]
= 0 n = 1, . . . , N (3.32)

α ≥ 0 (3.33)

ν ≥ 0 (3.34)
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Note that (3.29) is also known as the Representer Theorem [Aronszajn, 1950]. Sub-
stituting (3.29) and (3.30) into the Lagrangian (3.28) leads to the dual optimization
problem

max
α

1>α− 1

2
s>Φ>(X)Φ(X)s (3.35)

subject to
0 ≤ α ≤ C1 (3.36)

The decision rule is now also constructed in the feature space; by adapting (3.1)
with (3.29) we �nd that the SVM predicts the label y of a sample x as

y = sgn(f(x)) = sgn(w>φ(x)− b) = sgn(ŝ>Φ>(X)φ(x)− b) (3.37)

3.2.1 The Kernel trick

In the previous section we basically substituted the scalar product of the samples
in the original input space with scalar product of the samples' projections in the
feature space. Except for the hope that a linear decision rule may be more easily
constructed in the richer feature space, not much was won because the mapping φ
needs to computed which may be very computationally intractable.
If the feature space F is a reproducing kernel Hilbert space (RKHS) [Aronszajn,

1950], there exists for certain mappings φ(x) a function k(x,y) such that

k(x,y) = φ>(x)φ(y) (3.38)

This means that the scalar products of the samples' projections in feature space
can be computed directly without having to compute the mapping φ(x) directly;
in fact, the mapping does not even need to be known.
The function from (3.38) is called a kernel function which must satisfy the follow-

ing conditions [Mercer, 1909, Schölkopf et al., 1999]:

Theorem 7 (Mercer). If k is a continuous symmetric kernel of a positive integral
operator T , i. e.,

(Tf)(y) =

∫
C
k(x,y)f(x) d x (3.39)

with ∫∫
C×C

k(x,y)f(x)f(y) d x d y ≥ 0 (3.40)

for all f ∈ L2(C) with C a compact subset of RD, it can be expanded in uniformly and
absolutely convergent series in terms of T 's eigenfunctions ψj and positive eigenval-
ues λj:

k(x,y) =
∞∑

j=1

λjψj(x)ψj(y) (3.41)
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3 Pattern Recognition Machines implementing Structural Risk Minimization

Mercer kernels give rise to a positive symmetric matrix K[N×N ] with K(i,j) =
k(x(i),x(j)), which we will from now on call the kernel matrix. The kernel matrix
is a Gram matrix, i. e., the following holds:

a>Ka =

∥∥∥∥∥
N∑

n=1

a(n)φ(x(n))

∥∥∥∥∥
2

≥ 0 ∀a ∈ RN (3.42)

Popular examples of Mercer kernels are

• the polynomial kernel

kpoly(x,y) = (ax>y + b)c (3.43)

with parameters a, b ∈ R and c ∈ N,

• the Gaussian kernel

kgauss(x,y) = e
−‖x−y‖2

2σ2 , σ ∈ R+ (3.44)

• the sigmoid kernel
ksigm(x,y) = tanh(ax>y + b) (3.45)

for suitable parameters a, b ∈ R.

With this in mind we can rewrite the dual optimization problem (3.35) in a
computationally more tractable form as

max
α

1>α− 1

2
s>Ks (3.46)

subject to (3.36). Also, with k[N ], k(n) = k(x,x(n)), we can rewrite the prediction
rule (3.37) as

y = sgn(f(x)) = sgn(ŝ>k − b) (3.47)

3.3 Solving the Quadratic Programming problem

The SVM training formulation is quite appealing because it implements the SRM

inductive principle. Also, since the design matrix K is positive semi-de�nite and
the constraints are linear, the resulting Quadratic Programming (QP) problem is
convex which in turn means that any solution found by the optimization procedure is
also a global minimum. (Compare this with, e. g., the traditional back-propagation
training of feed-forward neural networks which leads to local minima only.) The QP
problem can be solved using the Bunch-Kaufman-algorithm [Bunch and Kaufman,
1977] or interior point methods such as LOQO [Vanderbei, 1999]; general properties
of QP problems and related algorithms are discussed in [Boyd and Vandenberghe,
2004] or [Fletcher, 1987].
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3.4 Reducing the memory requirements of SVM

training

The SVM training formulation has advantages and disadvantages. Among the advan-
tages we �nd the structural risk minimization inductive principle and the fact that
the resulting optimization problem is convex due to the fact that the design matrix
K is positive semi-de�nite. However, exactly this matrix is the disadvantage of the
optimization problem as the size of the matrix is N ×N which may for real-world
problems lead to matrices that do not �t into a computer's memory. Therefore,
considerable research e�ort has been put into making SVM training on real-world
problems possible, which resulted in exact and heuristic-approximate solutions of
which a few will be reviewed in the next sections.

3.4.1 Chunking

One of the �rst exact SVM training procedures involving reduced optimization prob-
lems was published in [Boser et al., 1992] and became known under the name �chunk-
ing� whose main idea is summarized in algorithm 1.

Algorithm 1 Chunking SVM training procedure
choose a random subset Zs, initialize α = 0
repeat
solve the optimization problem on Zs

check for samples from Zv ⊆ Z \ Zs violating the optimality
augment the reduced training set with the violating samples: Zs = Zs ∪ Zv

until Zv = ∅

Thus, the name �chunking� results from the subsets Zs on which training is carried
out. In [Osuna et al., 1997b] it was formally proven that the algorithm converges to
the same solution as the original non-chunking approach. The �nal training subset
will contain all the support vectors and typically a number of non-support vectors,
i. e., the chunking approach reduces the memory requirements at the expense of addi-
tional computation for repeatedly solving QP problems. Variations of the algorithm,
e. g., those deleting non-support vectors from Zs, are also known. However, since
the QP problems scale at least with the number of support vectors, even chunking
may not be applicable to all data problems.

3.4.2 Decomposition

Instead of solving QP problems of the size of the number of support vectors, a
strategy suggested in [Osuna et al., 1997a] decomposes the problem into a smaller
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3 Pattern Recognition Machines implementing Structural Risk Minimization

sub-problems where only some components from the solution α and corresponding
constraints are considered. The algorithm in its nature is similar to the active set
strategy proposed by [Gill et al., 1993]. The basic procedure of the decomposition
method is summarized in algorithm 2.

Algorithm 2 Decomposition SVM training procedure
while optimality conditions are violated do
split the training set Z into sets ZB corresponding to b free variables and ZN

corresponding to l = N − b �xed variables
decompose the QP problem (3.35) and solve it on ZB

end while

Assuming properly arranged matrices and vectors

α =

(
αB

αN

)
y =

(
yB

yN

)
K =

(
KBB KBN

KNB KNN

)
(3.48)

and observing that KBN = K>
NB due to symmetricity of K, we can write the

optimization problem as

max
α

= −1

2
α>BKBBαB −α>BKBNαN −

1

2
α>NKNNαN + 1>αB + 1>αN (3.49)

subject to

α>ByB + α>NyN = 0 (3.50)

0 ≤ α ≤ C1 (3.51)

The terms 1
2
α>NKNNαN and 1>αN are constant and can, therefore, be omitted

without changing the solution of (3.49). The new, smaller optimization problem can
now be solved using standard methods, e. g., those mentioned in section 3.3. Fast
progress on the complete optimization problem depends on the selection of a good
working set. Also, a number of additional measures must be taken to arrive at an
e�cient implementation, e. g., caching of parts of K. The decomposition method
is implemented, e. g., in SVMLight [Joachims, 1998].

3.4.3 Sequential Minimal Optimization

In [Platt, 1998] the decomposition method from section 3.4.2 is taken to the extreme
by restricting the working set ZB to its minimal size of only two variables which
is due to the sum constraint (3.50). Therefore, this algorithm was given the name
Sequential Minimal Optimization (SMO). The same issues as in section 3.4.2 apply,
i. e., strategy of working-set selection, caching of entries K(i,j), caching of gradients,
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and so on. However, the great advantage of this algorithm is that the resulting
small optimization problem on ZB can be solved analytically which results in a
great speedup. The SMO procedure is implemented, e. g., in the Torch software
library [Collobert and Bengio, 2001].

3.5 Kernel Fisher Discriminant

In section 3.1.2 and onwards, we considered the case of non-separable data, i. e.,
where the learning machine was allowed to commit (some) errors denoted by the
slack variables ξ, using the L1-norm of the error vector in the primal optimization
problem (3.12). Consider the following modi�cations: replace the inequality con-
straint in (3.26) with an equality constraint and use the L2-norm of the error vector
in the primal optimization problem:

min
α,b

1

2
α>Kα + Cξ>ξ (3.52)

subject to

Kα + b1 = y + ξ (3.53)

α ≥ 0 (3.54)

This procedure may be regarded as a least-squares regression of the samples X
onto their corresponding labels y. The method became known as the Least Squares
Support Vector Machine (LS-SVM) [Suykens et al., 2002].

So far, the introduction of slack variables to the SVM training procedure in sec-
tion 3.1.2 and the substitution of constraints and error norm in this section had
been motivated from a rather technical point of view. More formally, the choice
of loss function (SVM: one-sided error with L1-norm, KFD: two-sided error with
L2-norm) depends on the distribution of the classi�cation error. If the exact error
model was known a-priori, a suitable loss function could be chosen (including, but
not limited to, the SVM or KFD loss functions) [Smola and Schölkopf, 2003]. In most
cases, the error model is unknown, so a suitable loss function must be determined
experimentally.

A method similar to the LS-SVM was derived by modifying the traditional Fisher
discriminant [Fisher, 1936]. By substituting the linear scalar products with scalar
products in a Hilbert feature space F using Mercer kernels (cf. section 3.2.1), the
KFD was introduced [Mika, 2002]. The KFD's primal optimization problem is the
following:

min
α,b

1

2
ξ>ξ + CR(α) (3.55)
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subject to

Kα + b1 = y + ξ (3.56)

1>±K±α + b = ±1 (3.57)

α ≥ 0 (3.58)

where K± are two matrices containing only the rows of K corresponding to positive
and negative classes' samples, and 1± vectors of appropriate length containing only
ones. R(α) is a properly chosen regularization functional. Typically, R(α) =
α>Kα is used (as with LS-SVM or Vapnik's SVMs), but in [Mika, 2002] it was
shown that one can also use the simpler form R(α) = α>α. The major di�erence
between LS-SVMs and KFDs are the two additional constraints (3.57) which force
the average of the projections of individual classes' samples to equal its label.

In contrast to Vapnik's SVM, the LS-SVM does not produce a sparse model by itself,
i. e., in general one cannot expect any component α(n) to vanish. This increases the
learning model's complexity and the required resources to predict the label y of a
sample x via

y = sgn(k(x, x(n))
>α + b) (3.59)

It is, therefore, desirable to produce a sparse approximation of the complete KFD

solution in order to achieve a lower complexity (VC dimension) and better general-
ization capability. The non-sparsity of the KFD solution should not, however, be
interpreted as a disadvantage w. r. t. to the SVM solution as we mentioned that the
SVM solution does not guarantee sparsity for all problems.

3.5.1 KFD Training Procedures

Greedy-Sparse Kernel Fisher Discriminant

As mentioned in section 3.5 the solutions α of KFDs are not sparse, but a sparse
approximation α̃ would be desirable to make the model more robust (by limiting
its capacity) and to speed up prediction of test samples' labels. Technically, this
means �nding an optimal α̃ with at most M non-zero elements by using an L0-

regularizer or a non-linear constraint. This is impossible because there exist

(
N
M

)
such solutions.

In [Mika et al., 2001] an algorithm was presented which e�ciently computes a
nearly optimal sparse approximation α̃. The procedure will be brie�y revisited
below.
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First, we introduce the following shorthand notations:

a =

(
b
α

)
(3.60)

c =

(
N+ −N−

K>y

)
(3.61)

A± =

(
N±

K>1±

)
(3.62)

H =

(
N 1>K

K>1 K>K + CI

)
(3.63)

where N± denotes the number of samples in each label ±1, respectively. The opti-
mization problem can then be written as

min
a

1

2
a>Ha− c>a (3.64)

subject to

A>
+a−N+ = 0 (3.65)

A>
−a−N− = 0 (3.66)

As usual, the constraints are added to the optimization problem with Lagrangian
multipliers λ±:

L(a, λ+, λ−) =
1

2
a>Ha− c>a + λ+(d>+a−N+) + λ−(d>−a−N−) (3.67)

The KKT conditions of optimality are obtained by taking the partial derivatives of
the Lagrangian (3.67) with respect to the primal variables a:

∂L(â, λ̂+, λ̂−)

∂a
= Hâ− c + λ̂+d+ + λ̂−d− = 0 (3.68)

which may be solved for â:

â = H−1(c− (λ̂+d+ + λ̂−d−)) (3.69)

Substituting (3.69) into the Lagrangian (3.67) yields the dual optimization problem

max
λ±
−1

2
λ±

(
d>+H−1d+ d>+H−1d−
d>−H−1d+ d>−H−1d−

)
λ± +

(
−N+ + c>H−1d+

N− + c>H−1d−

)>
λ± −

1

2
c>H−1c

(3.70)
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Since this is an unconstrained optimization problem it may be solved analytically
by simply setting the derivative of (3.70) with respect to λ± to zero:

−
(

d>+H−1d+ d>+H−1d−
d>−H−1d+ d>−H−1d−

)
λ̂± +

(
−N+ + c>H−1d+

N− + c>H−1d−

)
= 0 (3.71)

which is easily solved for λ̂±.
Recall that one is actually interested in a sparse approximation α̃ ≈ α̂ where

most α̃(n) are zero. If the α̃ is constructed in a forward-selection manner, i. e., the
number of non-zero entries in α̃ is increased one at a time, the inverse matrix H−1

may be e�ciently computed by making use of the Sherman-Morrison-Woodbury
rank-one update formula [Horn and Johnson, 1985, Golub and van Loan, 1996] due
to block-matrix structure of H . The forward-selection procedure is stopped if the
dual objective from (3.70) does not decrease signi�cantly for a number of iterations.
To approximately and quickly solve the combinatorial problem mentioned above,

[Mika et al., 2001] employs a probabilistic speed-up originally suggested in [Smola
and Schölkopf, 2000] which, in essence, says that in order to �nd an approximation
which with probability 0.95 is within the best 0.05 of all estimates, a random sample
of κ = 59 is su�cient.
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revisited

In this chapter I will revisit properties of the speech recognition problem and its so-
lution depending on various parameters (size of vocabulary, isolated vs. continuous
speech, speaker-dependent vs. speaker-independent).

4.1 Human speech production

Humans use speech naturally to communicate a text carrying a certain meaning to
another human (or a machine, which is our �eld of interest). The text is usually
a concatenation of words governed by some structure (syntax) while the meaning
of the text (semantics) is not only controlled by its constituting words but also
by other factors such as prosody, emotion, and contextual information. With a
certain intention in mind, the human brain instructs its speech production engine
consisting of glottis, vocal tract, and lips to code this intention into acoustic waves.
The communication partner has to capture these acoustic waves with his or her ears
and to decode text and meaning from them.

The process of coding a text into acoustic waves is not �xed but rather subject
to great variability. This variability is caused by varying fundamental frequencies,
varying speed of the utterance, dialects, and ��llers� such as hesitations, coughs and
so on.

Besides the acoustic variability of speech, the structure of the underlying text is
also not �xed. In practice, the number of possible grammatically correct sentences
is in�nite, but unlike written text, spoken sentences often do not follow the correct
grammatical syntax. However, humans use prior knowledge to anticipate certain
words or phrases from the preceding context. This is something automatic speech
recognition makes use of.

Thus, speech production can be regarded as a stochastic process. However, the
process is relatively stationary within a few 10 ms because muscles limit the rate of
change in the body parts involved in acoustic speech production [Fant, 1960].
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4.2 Automatic speech recognition in general

In automatic speech recognition the task is to deduce the most likely spoken text
(sequence of words) ~̂w from a given acoustic utterance u. This can be regarded
as a pattern recognition problem where a pattern (the acoustic utterance) is to be
assigned to a certain class label, i. e., the text. Unless the domain of the task is very
limited, e. g., single-word command recognition, the task cannot be accomplished
by simple comparison of the utterance in question with prototype utterances. This
becomes clear if we only consider an also very limited task of recognizing ten-digit
numbers, such as US phone numbers, which would already result in 1010 possible
hypotheses.
Instead, we use a divide-and-conquer approach to tackle the complexity of the

problem. First, by making use of the short-term stationarity of acoustic speech,
using methods of digital signal processing we extract short-term features from the
properly digitizes speech. These features should capture properties of the speech
which are relevant (useful) for speech recognition while discarding irrelevant, es-
pecially speaker-dependent, properties such as fundamental frequency. Common
feature extraction procedure are Mel-frequence cepstral coe�cients (MFCCs) or Per-
ceptual Linear Prediction, often augmented by temporal context (�rst and second
order temporal di�erences). Feature extraction is a �eld of research in its own;
for further details, see, e. g., [Wendemuth, 2004], [Rabiner and Juang, 1993], and
[Junqua and Haton, 1996]. The result of the feature extraction process is a stream
~x = 〈x1; x2; . . . ; xT 〉 describing the original utterance u. We will use this sequence
of feature vectors to make the recognition decision.
Instead of directly classifying the utterance u, we derive the most likely text ~̂w

using the Maximum-A-Posteriori method with Bayes' rule:

~̂w = argmax
~w

P (~w|~x) = argmax
~w

P (~x|~w)P (~w)

P (~x)
= argmax

~w

P (~x|~w)P (~w) (4.1)

In short, P (~x|~w) is called the acoustic model which describes the coding of the
intended text into acoustic speech, and P (~w) is called the language model describing
the plausibility of a hypotheses text. Figure 4.1 gives a schematic overview of the
architecture of an automatic speech recognition system.
In the following sections (4.1) will be re�ned for the case of large-vocabulary

continuous speech recognition.

4.3 The language model

In (4.1), P (~w) models the probability of the word sequence ~w. Since it is impossible
to compute and store the probabilities for each complete text, approximations whose
parameters may be estimated from sample data are used. Most commonly, m-gram
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Figure 4.1: Schematic design of an automatic speech recognition system

models are used and estimated from large corpora of sample text. They ignore word
contexts larger than m − 1. Thus, the probability of a word sequence ~w of length
N would be

P (~w) =
N∏

n=1

P (wn|〈wn−1; . . . ;wn−m+1〉) (4.2)

From a grammatical point of view this is not really true because there is context of
larger length in real sentences. However, this would require grammatical analysis
and construction of texts which, as already mentioned, is not always very help-
ful with speech recognition. Instead, m-gram models focus on a purely statistical
analysis of possible texts.
Usually, the following m-gram models are considered:

• zerograms: context length m = 0 (no context), all words have equal probabil-
ity,

• unigrams: context lengthm = 1, words' individual probabilities are estimated,

• bigrams: context length m = 2, the co-occurrence of two words is estimated,

• trigrams: context length m = 3, the co-occurrence of three words is estimated.

For special linguistic constructs speci�c higher-order m-gram models may be used.

4.4 From words to acoustics

If we consider (4.1) again, we called P (~x|~w) the acoustic model, i. e., it describes
the probability of the human generating a certain acoustic realization ~x of a word
sequence ~w. If we consider that each of the words wn can be assigned a segment
~xwn = 〈xtstartn

; . . . ; xtendn
〉 with di�erent possible starting indices tstartn and �nishing
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4 Automatic Speech Recognition revisited

indices tendn such that tstartn+1 = tendn +1 and tstart1 = 1 and tendN = N , the acoustic model
can be expanded to

P (~x|~w) =
∑

∀ seg(~x, ~w)

N∏
n=1

P (~xwn|wn) (4.3)

where the sum runs over all possible segmentations seg(~x, ~w[N ]) = 〈~xw1 ; . . . ; ~xwN
〉 of

the utterance ~x into words ~w. It should be noted that (4.3) discards co-articulation
between words by assuming the word-level acoustic models to be statistically inde-
pendent. This shortcoming will be remedied in a later section.

4.5 Sub-word phonetic modeling � the

pronunciation dictionary

In the previous section we split the acoustic model for a complete sequence of words
into distinct acoustic models for each individual word. In practice, however, having
acoustic models at the word level has several disadvantages:

• Statistical unreliability: For the estimation of word-level acoustic models large
amounts of training data would be necessary.

• Memory and computational complexity are too large.

• Low �exibility: Recognition of words outside the pre-de�ned vocabulary or
addition of user-de�ned words to the dictionary (especially in speaker-inde-
pendent systems) is impossible.

• Low modularity: Word-level acoustic models do not handle co-articulation
between adjacent words well.

So, instead of acoustically modeling entire words, we borrow from linguists, i. e.,
we employ some prior knowledge.
The acoustic realization of a word results in a series of sounds with practically

unlimited variability, depending on, e. g., the intonation, gender of the speaker, or
age. However, it is common understanding that the acoustic realization of certain
vowels and consonants results in reproducibly similar sounds. On the other hand it is
known that the human ear can only distinguish a limited number of di�erent sound
classes, called phones. In the same way written words are composed of a limited
number of letters, spoken words can be identi�ed to consist of an also limited number
of phonemes, i. e., classes of phones with the same function or meaning. Phonemes
are purely theoretical constructs, a set of 40�50 phonemes is considered su�cient
to describe Western languages.
This is very convenient for ASR systems because instead of di�erent acoustic

samples for each word only a number of acoustic samples for each phoneme is
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4.6 Hidden Markov phoneme models

coasts k ow s 0.2

coasts k ow s s 0.3

coasts k ow s t s 0.5

humphrey hh ah m f r iy 0.7

humphrey hh ah m p f r iy 0.3

Figure 4.2: Excerpt from a dictionary listing di�erent phonetic transcription of a
word with associated probabilities.

required. Therefore, for each word in the vocabulary one or more entries in a
pronunciation dictionary are de�ned, mapping a word w to a sequence of phonemes
~h = 〈h1; . . . ;hM〉 from the set of phonemes H while possibly also assigning di�erent

probabilities P (~h|w) to each pronunciation, see �gure 4.2. Thus, the word-level
acoustic model from (4.3) can be expanded to

P (~x,~h|w) =
∑

∀ seg(~x,~h)

P (~h[M ]|w)
M∏

m=1

P (~xhm|hm) (4.4)

where similar to (4.3) the sum runs over all possible temporal segmentation of the
utterance segment ~x into phonemes h. This model also assumes statistical indepen-
dence between di�erent phonemes, thus also ignoring dependence of a phoneme's
acoustical realization on the current word as expressed in (4.4) by assuming that
P (~xhm|hm, w) = P (~xhm|hm), which is not true in real speech. This issue will be
taken care of in section 4.7.1.

4.6 Hidden Markov phoneme models

By modeling entire speech utterances through concatenation of its building blocks,
i. e., phonemes, we are now able to handle the complex speech recognition problem
with relative ease. From (4.4) we know that we now only need to determine reference
acoustic models of the phonemes. Of course, the general problem of great variability
in speech still applies when modeling phonemes. Some of the variability, especially
spectral variability, should have been eliminated by the feature extraction process
mentioned in section 4.2. However, some spectral and all of the temporal variability
are still left to be solved.
Phonemes are usually described using Hidden Markov Models (HMMs). An HMM

is a �nite state automaton whose state transitions and outputs are determined
stochastically. More formally, it can be described by

• a �nite set of states
S = {s1, . . . , sQ} (4.5)
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4 Automatic Speech Recognition revisited

• transition probabilities
a(i,j) = P (sj|si) (4.6)

which can be conveniently written in a matrix A[Q×Q],

• a set X of possible emission symbols x (discrete or continuous),

• emission (production) probabilities

b(j,l) = P (xl|sj) (4.7)

This means that the HMM produces an observable sequence of random symbols ~x
with xt ∈ X while traversing an unobservable random sequence of states ~s with st ∈
S. This property can be used in automatic speech recognition where an observable
sequence of random symbols (the feature vectors x) are produced by an unobserved
sequence of states, i. e., word, phoneme, or even sub-phoneme states. This matching
of the speech production model with the structure of the HMM can, similar to the
motivation of the pronunciation dictionary, be regarded as prior knowledge.
Using HMMs for modeling phonemes has the clear advantage that the same HMM

can be used to match di�erent possible segmentations of a word-level utterance
segment into phoneme-level utterance segments by simply letting it traverse the
desired length of a state sequence.
For automatic speech recognition, only �rst-order HMMs are used:

P (st|〈st−1; . . . ; s0〉) = P (st|st−1) (4.8)

P (xt|〈st; . . . ; s0〉) = P (xt|st) (4.9)

which has already been assumed in (4.6) and (4.7), respectively. Figure 4.3 illus-
trates a simple example of a left-to-right 3-state HMM.
Thus, we can once more do an expansion which results in a re�nement of the

phoneme-level acoustic model:

P (~xh, ~s|h) =
∑
∀~s∈ST

P (~xh|~s, h)P (~s|h) =
∑
∀~s∈ST

T∏
t=1

P (xt|st, h)P (st|st−1, h) (4.10)

4.6.1 Gaussian Mixture Models for emission probabilities

Typically, the emission probabilities are either discrete (feature vectors x have been
pre-binned and the emission probability is computed for the relevant bin only �
also known as vector quantization) or continuous in which case probability den-
sity functions must be used instead. These continuous density functions are com-
monly modeled using weighted sums of normal densities, so-called Gaussian Mixture
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/.-,()*+ // GFED@ABCs1

a(1,1)

�� a(1,2)
//

b(1,x)

��

GFED@ABCs2

a(2,2)

�� a(2,3)
//

b(2,x)

��

GFED@ABCs3

a(3,3)

�� a(3,exit)
//

b(3,x)

��

/.-,()*+

Figure 4.3: Schematic illustration of a �rst-order Hidden Markov Model

Models (GMMs).

p(x|s) =
Ks∑
k=1

wkN (x|Σs,k,µs,k),
Ks∑
k=1

wk = 1 (4.11)

The use of density values in place of discrete probability values must be justi�ed.
If we considered continuous-valued feature vectors x, then P (x = x�xed| . . . ) = 0.
If the probability density function exists, the probability P (x = x�xed| . . . ) may be
computed:

P (x = x�xed| . . . ) = lim
δx→0

∫ x�xed+δx

x�xed−δx

p(x| . . . ) d x = 0 (4.12)

which we knew before. If, however, we plug this formula into Bayes' rule (4.1) for
both the acoustic model and the feature vectors' prior probabilities, we may apply
L'Hospital's rule:

P (x = x�xed| . . . )
P (x = x�xed)

= lim
δx→0

∫ x�xed+δx

x�xed−δx
p(t| . . . ) d t∫ x�xed+δx

x�xed−δx
p(t) d t

=
p(x�xed| . . . )
p(x�xed)

(4.13)

where the term p(x�xed) may be omitted in the case of MAP-rule classi�cation.
Consequently, discrete probability and continuous probability density values may
be used as appropriate and available.

4.6.2 Alternative models for emission probabilities

The predominant model for HMMs' emission probabilities in speech recognition are
the aforementioned GMMs. Naturally, GMMs are not the only existing models for
estimating probabilities. In speech recognition, Arti�cial Neural Networks (specif-
ically, Multi-Layer Perceptrons with sigmoid output functions) were successfully
used for estimating HMMs emission probabilities, outperforming conventional GMM

models [Bourlard and Morgan, 1998, Trentin and Gori, 2001]. In chapters 5 and
6, other models, employing Structural Risk Minimization during training, will be
introduced and investigated.
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I // love // you // Word-network level

ww // ONMLHIJK/l/ // WVUTPQRS/av/ // ONMLHIJK/v/ //

hh

Phoneme-network level

vv ///av/1

��
//

��

/av/2

��
//

��

/av/3

��
//

��

hh

HMM-state-network level

x x x Observed feature vectors

Figure 4.4: Schematic illustration of the hierarchical decomposition of the speech
recognition problem

4.7 Combining language model, pronunciation

dictionary, and phoneme models

By recursively substituting (4.10), (4.4), (4.3), and (4.2) into (4.1) we can grasp
how the ASR problem is tackled by a divide-and-conquer strategy. The probability
of a hypothesis sentence ~w being the source of the observed utterance u coded as
the sequence ~x of feature vectors x can, thus, be computed. The hypothesis ~w is
generated from a grammar which describes all possible sentences of the domain. For
limited-domain tasks, e. g., voice dialing of ten-digit phone numbers, this grammar
can be quite simple, but it can be almost arbitrarily complex for large-vocabulary
systems, i. e., a loop of all words from the vocabulary is used. This hypothesis sen-
tence ~w is assigned a prior probability through the language model. To compute the
acoustic probability of the hypothesis ~w it is hierarchically expanded into possible
sequences ~h of phonemes where each is assigned a conditional probability through
the dictionary, cf. (4.4). Each of these possible phoneme sequences ~h is in turn ex-
panded into sequences of HMM-states ~s, each with a certain individual probability
computed from the transition probabilities. Each of the observed feature vectors xt

is �nally matched against each hypothesis state st by computing the state's emission
probability P (xt|st). So, for the full probability P (~w|~x) the sum over all possible
expansions of the hypothesis ~w must be computed, which is illustrated in �gure 4.4.

To summarize, the main building blocks of contemporary ASR systems are the
language model, the phonetic dictionary, and the sub-word acoustic hidden Markov
model (HMM) typically using mixtures of normal densities (GMMs) as emission prob-
abilities.
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4.7 Combining language model, pronunciation dictionary, and phoneme models

4.7.1 Context-dependent sub-word models

The full expansion of a hypothesis sentence ~w into sub-word phonemes now makes it
possible to remedy the assumption of statistical independence of the pronunciation
of words which neglected inter-word co-articulation, cf. section 4.4, and, in turn,
the assumption of statistical independence of the acoustic realization of di�erent
phonemes which neglected intra-word co-articulation, cf. section 4.5. Instead of mod-
eling individual phonemes, (additional) arti�cial models for phonemes in the tempo-
ral context of other phonemes can be generated and trained. Most commonly, only
the phonemes immediately preceding and following a phoneme are considered; the
resulting constructs are consequently called triphones, whereas individual phoneme
models are called monophones to distinguish them from the context-dependent vari-
ants. If we consider 50 monophones, this would result in 503 = 125000 triphones.
Fortunately, only about 1500 of these possible combinations really occur in actual
speech, which drastically reduces the complexity. Additionally, approaches such as
generalized triphones [Lee and Reddy, 1988] and others have been used to further
decrease the complexity of the problem. In the context of learning theory intro-
duced in chapter 2, this reduction of the number of context-dependent models can
be regarded as a kind of capacity control which is guided by prior knowledge about
the speech recognition problem.

4.7.2 Minimizing number of parameters and improving

robustness

If we consider an acoustic model consisting of 1500 triphone HMMs, each having 3
emitting states, with each state using a GMM with, e. g., 8 mixture components, we
would have to determine the parameters of 36000 normal densities. Usually, this is
not possible because the amount of training data is too limited. If viewed in the
perspective of learning theory, the capacity of the acoustic model is too large. A
number of approaches are used to empirically limit this capacity, including, but not
limited too,

• considering only diagonal covariance matrices in the GMMs' constituting nor-
mal densities,

• tying the parameters of (parts of) phonetically similar HMMs, especially in the
context of triphone HMMs,

• introducing lower bounds on the values of the weights and entries of the co-
variance matrices in each GMM,

• obeying upper bounds on the number of components in each GMM,
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4 Automatic Speech Recognition revisited

• constructing �arti�cial� phonetic units called senones [Hwang and Huang,
1992].

Of course, the decision on the tying and bounding of parameters must be guided by
prior knowledge and experimental validation.

4.8 Viterbi decoding

The word-net resulting from the grammar can be depicted as a lattice where each
feature vector xt can be assigned to any word. The lattice can be expanded to the
monophone or HMM-state level where, again, each xt can be assigned to any mono-
phone or HMM-state. Technically, to compute the full acoustic likelihood P (~w, ~x) of
a word sequence ~w, the individual acoustic likelihoods of all possible paths through
the lattice, which resemble the word sequence ~w, must be computed and accumu-
lated. Of course, this accumulation must be carried out for each allowed hypothesis
word sequence ~w. If done naïvely, this is computationally very intractable. However,
the method of Dynamic Programming [Bellmann, 1957] can be used to reduce the
computational complexity, resulting in the well-known Viterbi algorithm [Viterbi,
1967]. Also, a method call beam searching is commonly employed to further speed
up computations [Greer et al., 1982]. Instead of considering all possible hypotheses
until the end of the utterance, at time t those hypotheses whose acoustic likelihoods
fall below a user-de�ned threshold from the so far observed maximum likelihood are
no longer considered, i. e., pruned. Experiments have shown that this results in a
very fair trade-o� between recognition accuracy and runtime requirements.

4.8.1 Forced alignment

Instead of matching an utterance with a free-form grammar, Viterbi decoding may
also be used on the word-level transcription of a pre-recorded utterance. This
process is known as forced alignment. Due to the limited single-path word net, al-
ternatives are limited to di�erent time-warpings, i. e., assignments of feature vectors
to words, phonemes, HMMs, or HMM states. The path with the highest likelihood is
then used to construct temporal boundaries on a word, phoneme, or even HMM-state
level.

Time alignment are especially useful for supervised learning of other components
of an ASR system, e. g., feature preprocessors based on Linear Discriminant Analysis
[Haeb-Umbach and Ney, 1992, Scha�öner et al., 2003] or acoustic models incorpo-
rating binary discriminants which will be introduced in chapter 6.
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4.9 Training

4.9 Training

The parameters of the HMM-GMM-system are conventionally determined by maxi-
mizing the log-likelihood of the observed utterance

L = logP (~x|α) = log
∑
∀~s∈ST

P (~x, ~s|α) (4.14)

for the training sequence ~x = 〈x1, . . . ,xT 〉 and all admissible expansions of the
reference word sequence into HMM-states ~s = 〈s1, . . . , sT 〉. The parameter set of the
HMM-GMM-system, consisting of the state-transition and symbol-emission probabil-
ities, is denoted by α.
The likelihood is iteratively maximized approximately by updating the HMM-

GMM-system's parameters using the Baum-Welch procedure [Rabiner and Juang,
1993, Wendemuth, 2004]. The GMMs are usually initialized with only one normal
density component, and the parameters are trained with a few iterations of the
Baum-Welch-procedure. The single normal densities are then split into a mixture
of two normal densities along the direction of largest variance. Again, the two-
component GMMs are trained with some iterations of the Baum-Welch-procedure.
Then, the number of GMM components is increased by splitting the normal density
component corresponding to the largest weight wc from (4.11). The alternative
splitting/updating procedure is carried out obeying the restrictions mentioned in
section 4.7.2. Looking at this training procedure from the learning theory perspec-
tive, the act of limiting the number of Baum-Welch-iterations for each number of
GMM-components can also be viewed as limiting the capacity of the HMM-GMM-
system in order to avoid over-�tting to the training data.
It is known, however, that the ML-estimation may converge into a local optimum

which may not necessarily be a global optimum. Also, ML estimation does not
consider the risk of misclassi�cation. This may lead to recognition accuracies well
below the possible optimum. Therefore, alternative training procedures have been
suggested. These training methods commonly run under the name discriminative
training methods, amongst which Maximum Mutual Information [Normandin, 1991].
For further reading, e. g., [Schlüter and Macherey, 1998, Schlüter, 2000, Macherey
et al., 2005], [Woodland and Povey, 2002], or [Kaiser et al., 2002] may be of interest.
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5 Sparse Kernel Probability

Density Modeling using

Structural Risk Minimization

As mentioned in section 4.6.2, probability density functions are used within HMMs
when modeling sequences of continuous-valued events. Traditionally, PDFs trained
using an ERM inductive principle have been used, e. g., GMMs or MLPs with suitable
transfer functions. In this chapter we will investigate how kernel PDF models can be
trained using the SRM inductive principle. We will revisit a procedure introduced
in [Vapnik and Mukherjee, 2000] and show how this procedure is limited from an
algorithmic and an experimental point of view. Learning from the limitations of
this method, we will introduce a novel SRM-based training procedure for sparse
kernel-PDF models which is more robust and more e�cient.

5.1 Kernel probability density estimation by

regression

A probability density p(x) is de�ned as the solution of∫ x

−∞
p(t) d t = F (x) (5.1)

subject to the constraints ∫ ∞

−∞
p(t) d t = 1 (5.2)

p(x) ≥ 0 (5.3)

where F (x) is the probability distribution function. Since F (x) is unknown, (5.1)
must be solved using an approximation Fe(x), the empirical cumulative distribution
function (ECDF) (cf. section 5.2).
Given an i. i. d. sample data set X = {x(1), . . . ,x(N)} with x ∈ RD drawn from

the unknown distribution F (x), we wish to estimate the unknown density p(x) such
that

p(x) =
N∑

n=1

α(n)k(x,x(n)) (5.4)
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subject to the constraints

α ≥ 0 (5.5)

1>α = 1 (5.6)

using a kernel k(x,y) with the properties

k(x,y) ≥ 0 (5.7)∫ x

−∞
k(t,y) d t ≥ 0 (5.8)∫ ∞

−∞
k(t,y) d t = 1 (5.9)

to satisfy the constraints from (5.2) and (5.3). Examples of kernels satisfying these
constraints are

• the normalized Gaussian kernel

kngauss(x,y) =
1

(2πσ2)D/2
exp

(
−||x− y||2

2σ2

)
(5.10)

• the Epanechnikov kernel

kepa(x,y) =
3

4
(1− ||x− y||2/σ2)+ (5.11)

• the triangle kernel
ktri(x,y) = (1− ||x− y||/σ)+ (5.12)

with σ > 0.
A possible solution of (5.4) is provided by the well known method of Parzen

windows [Parzen, 1962] with α(n) = 1/N, n = 1 . . . N , and any kernel (window
function) satisfying constraints (5.7)�(5.9). This method is known to perform very
well, however, it relies on all the problem's samples to characterize the solution.
Therefore, we strive to obtain a solution with some or most α(n) = 0, i. e., a sparse
approximation of the Parzen windows solution.
If the parameters of the kernel k are considered �xed, the density model is com-

pletely characterized by the weight vector α. With (5.1), kernel density estimation
can then be posed as the regression modeling problem

Fe(x) =
N∑

n=1

α(n)q(x,x(n)) + ε(x) (5.13)

with

q(x,x(n)) =

∫ x

−∞
k(t,x(n)) d t (5.14)

and ε(x) the modeling error at x and Fe the problem's empirical cumulative distri-
bution function, subject to constraints (5.5) and (5.6).
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5.2 The empirical cumulative distribution function

Figure 5.1: Construction of a two-dimensional example ECDF. Circles denote origi-
nal problem samples, diamonds denote additional ECDF jumps, colored
areas denote value of the ECDF.

5.2 The empirical cumulative distribution function

Given that the true distribution function F (x) is unknown in (5.1), we resort to an
estimation. We use the empirical cumulative distribution function (ECDF) Fe(x) as
it is the lowest variance unbiased estimator of the true distribution function [Scott,
1992]. The ECDF is determined solely by the samples x(n), n = 1 . . . N , such that

Fe(x) =

∑N
n=1 Θ(x,x(n))

N
(5.15)

where Θ(x,y) denotes point dominance

Θ(x,y) = {x � y} =

{
1, if x(d) ≥ y(d) ∀d = 1 . . . D

0, else.
(5.16)

This means that Fe(x) is a function which is given non-parametrically [Scott, 1992].
The ECDF has a staircase shape with N jumps in the one-dimensional case. In
�gure 5.1 an admittedly degenerate two-dimensional problem with N = 3 problem
sample points is shown where the corresponding ECDF has a much more complex
shape with 6 > (N = 3) jumps.
From (5.15) it is not clear at which points the regression �t in (5.13) is to be

evaluated. In the one-dimensional case, one usually samples Fe at the problem's
sample points x(n) for convenience, since that's where the jumps of the function
are located. In the multi-dimensional case, sampling Fe at the problem's sample
points does not capture the complexity of the ECDF. Even worse, in high dimensions
a situation can occur where none of the samples dominates any other sample (as
in �gure 5.1), i. e., sampling Fe at the problem sample points yields only the one
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function value 1/N instead of the entire range [0, 1]. Therefore, the ECDF has to be
sampled at additional locations.
One possibility is to explicitly compute all the points at which jumps in the ECDF

occur, as these points are located on a grid de�ned by the problem's sample points.
This computation can be quite involving, but in [Fonseca, 2002] an algorithm is
proposed which solves the problem in O(Dk) time where k is the sample-dependent
number of jumps of the ECDF. Since in high dimensions the number k of output
points may also be very large, one may resort to only using a feasible number of
randomly picked points from this algorithm. This approach then will not capture
the full complexity of the ECDF but at least use meaningful points which generate
the entire range [0, 1] of the ECDF.

5.3 Support-vector regression of the ECDF using

the ε-insensitive loss funtion

Consider that suitable locations c(s), s = 1 . . . S, for checking the regression model
(5.13) have been identi�ed as in section 5.2, we rewrite (5.13) in a more convenient
fashion:

Fe = Qα + ε (5.17)

with Fe(s) = Fe(c(s)) and q(s,k) = q(c(s),x(k)), ε(s) = ε(c(s)). If we accept only
some �xed constant error at each c(s), we can �nd a solution using a support-vector
regression approach [Vapnik and Mukherjee, 2000]:

α̂ = argmin
α

α>Kα (5.18)

subject to

‖Qα− Fe‖ ≤ εN1 (5.19)

α ≥ 0 (5.20)

1>α = 1 (5.21)

The optimization problem (5.18) states that the norm of the weight vector in a
RKHS is to be minimized subject to constraints (5.19) and (5.20). The approach
is very similar to �nding the optimal separating hyperplane for pattern recognition
considered in section 3.1.1. Since an ε-insensitive loss function is used, this method
will be called ε-support vector densities (ε-SVD).
The maximum allowed error εN can, in the univariate case, be obtained from the

Kolmogorov-Smirnov distribution [Stephens, 1974]

P

(
sup

x
|F (x)− Fe(x)| < ε/

√
N

)
= 1− 2

∞∑
k=1

(−1)k−1e−2ε2k2

(5.22)
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However, in multivariate cases it is still unclear how such a distribution-independent
goodness-of-�t statistic can be constructed [Paramasamy, 1992, Cabaña and Cabaña,
1997, Justel et al., 1997, Loudin and Miettinen, 2003]. Vapnik and Mukherjee sug-
gest to evaluate appropriate values of εN by simulations, but they neither describe
the exact procedure nor whether these values can be applied independently of the
distribution [Vapnik and Mukherjee, 2000], which leaves the general usefulness of
this method for higher-dimensional problems questionable.

The above algorithm has the important advantage that if the maximum allowed
error εN is known, there is no parameter to be manually set as the kernel parameter,
e. g., the standard deviation of the normalized Gaussian kernel, is simply set to the
largest value ful�lling constraint (5.19). However, our experiments, which will be
discussed in section 5.5, showed that this rule may result in under-estimating the
kernel width leading to over-�tting of the resulting model.

5.3.1 Adding slack variables

It may, therefore, be desirable to increase the kernel width beyond the limits set
by constraint (5.19). This may be acceptable as we can imagine that the sample
set X used for construction of the ECDF may contain noisy or outlier samples. To
handle this case, the optimization problem must be augmented with slack variables,
leading to

min
α,ξ+,ξ−

α>Kα + C1>(ξ+ + ξ−) (5.23)

subject to

Fe −Qα ≤ εN1 + ξ+ (5.24)

Qα− Fe ≤ εN1 + ξ− (5.25)

α, ξ+, ξ− ≥ 0 (5.26)

1>α = 1 (5.27)

where C de�nes the trade-o� between smoothness of the solution and committed
error, as usual.

However, this problem cannot be solved e�ciently. A decomposition similar to
the ones mentioned in section 3.4 is impossible due to the coupling of the primal
variables α by constraints (5.24) and (5.25). On the other hand, general-purpose QP
solvers like the ones introduced in section 3.3 must, due to the slack variables being
primal variables, consider (5.23) a 3N × 3N optimization problem which cannot be
solved e�ciently for but the smallest real-world problems.
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5 Sparse Kernel Probability Density Modeling using Structural Risk Minimization

5.4 Least-squares regression of the ECDF

Let us re-consider the formulation (5.17). If an orthogonal decomposition of Q =
WA with w>

(i)w(j) = 0, i 6= j, is assumed, (5.17) can be written as

Fe = Wg + ε (5.28)

with
g = Aα (5.29)

the weights in the orthogonal space W . Similar to the motivation of the LS-SVM,
we can replace the inequality constraint (5.19) with an equality constraint and use
a square loss function. The optimal weight vector ĝ can be obtained as the solution
of the least squares problem with local regularization

ĝ = argmin
g

ε>ε +
N∑

n=1

λ(n)g
2
(n) (5.30)

where λ is the regularization parameter vector. This vector is optimized based
on the Bayesian evidence procedure [MacKay, 1992]. Brie�y, the update of the
regularization parameter λ(m) works as follows:

λnew(m) =
γ(m)ε

>ε

(N − 1>γ)g2
(m)

(5.31)

where

γ(m) =
w>

(m)w(m)

λold(m) + w>
(m)w(m)

(5.32)

Details of the derivation of the formulas can be found in [Chen et al., 2004].
Inserting (5.28) into (5.30) yields

ĝ = argmin
g

g>W>Wg +
N∑

n=1

λ(n)g
2
(n) − 2F>

e Wg (5.33)

which reveals the merit of the orthogonal decomposition that the components of g
can be optimized independently of each other which lends itself to forward selection
if a sparse approximation of (5.33) is intended.

5.4.1 Memory-e�cient orthogonal decomposition for

forward-selection

In [Chen et al., 2004] the modi�ed Gram-Schmidt (MGS) procedure is proposed for
the orthogonalization of Q. However, since we are interested in a sparse approx-
imation of (5.33) via forward selection, in the mth selection iteration we need to
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5.4 Least-squares regression of the ECDF

orthogonalize N −m columns of Q onto the previously selected m columns in W .
This implies that the complete matrix Q must be known and kept in memory. The
memory complexity of the MGS algorithm is thus roughly O(SN + mN) for the
complete Q matrix (including the orthogonalized parts here referred to as W ) and
the m complete rows of A.
Therefore, we propose a more e�cient algorithm which computes both W and

A column-by-column without the need to keep unused columns of these matrices
in memory. This algorithm, which is based on a rank-update of the pseudo-inverse,
has already successfully been employed for computing discriminants [Andelic et al.,
2007] and is extended here to the case of sparse kernel PDF estimation.
In the mth forward selection step we consider the following partitioning of the

reduced Q matrix and corresponding α

Qm =
[
Qm−1q(m)

]
(5.34)

αm =
[
αm−1α(m)

]>
(5.35)

such that the square loss from (5.30) becomes

L(αm−1, α(m)) = ‖Qm−1αm−1 − (Fe − q(m)α(m))‖2 (5.36)

The minimum of (5.36) is given by

α̂m−1 = Q†
m−1(Fe − q(m)α(m)) (5.37)

with Q†
m−1 the pseudo-inverse of Q. This yields after insertion into (5.36)

L(α(m)) = ‖(I −Qm−1Q
†
m−1)q(m)α(m) − (I −Qm−1Q

†
m−1)Fe‖2 (5.38)

with I the identity matrix of appropriate size.
The minimum of (5.38) is reached at

α(m) = w†
(m)(I −Qm−1Q

†
m−1)Fe (5.39)

Considering that the pseudo-inverse of w is given by

w†
(m) =

w>
(m)

‖w(m)‖2
(5.40)

(5.39) may be written as

α(m) =
w>

(m)(I −Qm−1Q
†
m−1)Fe

‖ w(m)‖2

=
q>(m)(I −Qm−1Q

†
m−1)

>(I −Qm−1Q
†
m−1)Fe

‖w(m)‖2

(5.41)
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5 Sparse Kernel Probability Density Modeling using Structural Risk Minimization

The matrix
Pm = I −Qm−1Q

†
m−1 (5.42)

is an orthogonal projection matrix which implies it being symmetric and idempotent.
Thus, (5.41) can be simpli�ed as

α(m) = w†
(m)Fe (5.43)

Combining (5.43) with (5.37), the weight vector α̂m may be updated as

α̂m =

[
α̂m−1

α̂(m)

]
=

[
Q†

m−1 −Q†
m−1q(m)w

†
(m)

w†
(m)

]
Fe (5.44)

yielding the update

Q†
m =

[
Q†

m−1 −Q†
m−1q(m)w

†
(m)

w†
(m)

]
(5.45)

of the current pseudo-inverse.
Because every projection w(m) = Pmq(m) lies in a subspace orthogonal to Qm−1,

it follows directly that w>
(i)w(j) = 0, i 6= j. Therefore, the orthogonal decomposition

of Qm can be updated as

Wm = [Wm−1w(m)] (5.46)

Am =

[
Am−1

0>m−1

(W>
mWm)−1W>

mq(m)

]
(5.47)

for which we call our algorithm order-recursive orthogonal least squares (OROLS).
The inversion of (W>

mWm) is trivial since it is diagonal. It is important to monitor
the condition number of Wm for it increases as the number m of admitted columns
grows, so to ensure numerical stability a termination threshold on the condition
number must be de�ned.
So the complete algorithm is as follows:

1. De�ne the set ofM = {1, . . . , N} of all possible sample indices, the set S = ∅
of already admitted sample indices, the current solution index m = 1

2. For each n ∈M\S, do the following

a) Compute the corresponding updates of Wm and Am via (5.46) and (5.47)

b) If the condition number w>
(m)w(m) violates a threshold, continue with the

next n

c) Solve the LS-problem from (5.33) while optimizing the regularization
parameter λ(m)
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d) Reconstruct the original weights αm = A−1
m gm. If they contain any neg-

ative elements (which would violate the constraint from (5.5)), continue
with the next n

e) Determine the �tness fn of the current sample by computing its leave-
one-out (LOO) test error [Chen et al., 2004]

3. Admit the optimal sample n̂ = argminn fn into S, re-compute the correspond-
ing updates of Wm and Am and continue with the next m if fn̂ decreases the
previous m-iteration's LOO score, otherwise terminate

4. Normalize the original weights to meet (5.6)

The memory requirement for this algorithm is O(3Sm+m2/2) for the candidate
Wm, Am and Q†

mmatrices needed in step 2 and the old Q†
m−1 matrix which needs

to be saved until the optimal candidate has been chosen in step 3. Since our algo-
rithm construct the solution in a forward-selection manner, it requires less runtime
memory if m < N/3 (which we usually strive for). Also, since we can restrict the
maximum size of the solution and consequently the memory requirements, we may
now approximately solve PDF-estimation problems which may be too large for the
MGS algorithm introduced in [Chen et al., 2004] whose memory requirements are
O(SN +mN), or for the support-vector method presented in [Vapnik and Mukher-
jee, 2000] whose memory requirements are O(SN + N2) in the strict ε-insensitive
case.

5.5 Experiments

To assess the performance of our proposed algorithm, experiments on three prob-
lems were performed. We compared the proposed method with classical density es-
timation procedures, i. e., Gaussian Mixture Models (GMMs) and Parzen windows,
and the ε-SVD method without slack variables. Throughout all experiments, the
normalized Gaussian kernel (5.10) with integral

q(x,y) =

∫ x

−∞
kngauss(t,y) d t

=
D∏

d=1

(
1 + erf

(
‖x(d) − y(d)‖√

2σ

)) (5.48)

was used. This kernel was chosen because it additionally satis�es Mercer's con-
ditions [Mercer, 1909] which enables comparison of our method with the ε-SVD

procedure. It was assumed that all kernels in a model share the same covariance
σ2.
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5 Sparse Kernel Probability Density Modeling using Structural Risk Minimization

GMMs with diagonal covariance matrices were trained using the Expectation-
Maximization (EM) algorithm. Initialization of the EM algorithm was performed
using k-means clustering, which in turn had been randomly seeded. ε-SVD models
and the proposed OROLS density models were trained using naive ECDF sampling
(ECDF only sampled at the problem's sample points) and enhanced ECDF sampling
(ECDF sampled at additional jump points, cf. section 5.2) schemes. For the ε-SVD

method no model selection was required as all the parameters including the kernel
width are set automatically. Model selection procedures for the other methods are
discussed individually for each data set.

Arti�cial 2D-Problem

The �rst one is an arti�cial problem already considered in [Vapnik and Mukherjee,
2000] were 100 training sets of 60 samples each and a test set of 10000 samples are
generated from the following density

p(x) =
1

4π
exp

(
−

(x(1) − 2)2 + (x(2) − 2)2

2

)
+

0.35

8
exp(−0.7|x(1) + 2| − 0.5|x(2) + 2|)

(5.49)

As a baseline, GMMs with 2 and 4 centers were trained as described above. Parzen
windows setup was straightforward. Next, ε-SVD models were trained using both
naive ECDF sampling and enhanced ECDF sampling. Finally, the proposed algorithm
was used to estimate another set of density models, again using both incarnations
of ECDF sampling. For all the 7 sets of 100 density models the L1-norm of the
test errors e were computed on the 10000 sample test set. Selection of the suitable
kernel width for Parzen windows and the OROLS models was performed by selecting
the kernel width which produces the lowest average L1(e) over all 100 training sets.
Figure 5.2 compares the achievements of the di�erent algorithms showing clearly

that the proposed algorithm performs superior to all other algorithms if used with
enhanced ECDF sampling and at least comparable with the GMMs if used with naive
ECDF sampling. It can also be seen clearly that the proposed algorithm provides
better results than the ε-SVD method, regardless of the ECDF sampling used. Table
5.1 summarizes some details of the trained models. It also supports the superiority
of our proposed algorithm: While it can be observed that, in general, using enhanced
ECDF sampling results in a larger number m of samples in the solution, this number
does not increase as much for the OROLS algorithm as for the ε-SVD algorithm, yet
much more accurate models are achieved using the OROLS algorithm. Furthermore,
it can be seen that as, on average, the OROLS algorithm selects about 22% of the
problem samples using the naive ECDF, and about 29% of the problem samples
using the enhanced ECDF, the computation of the solution using OROLS is less
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Figure 5.2: Comparison of the L1-norm of the errors committed by di�erent den-
sity estimation algorithms on the arti�cial 2D-problem. The boxplot is
showing median, 0.25/0.75 and 0.05/0.95 quantiles as well as outliers.

Model ECDF Kernel Width # centers

Parzen � 0.6 100

ε-SVD
Naive 1.34(±0.27) 13.1(±3.7)
Enhanced 0.82(±0.26) 26.1(±9.1)

OROLS
Naive 1.0 13.4(±2.3)
Enhanced 1.0 17.6(±3.3)

Table 5.1: Details of the models for the arti�cial 2D-problem.

memory-consuming than ε-SVD and MGS-OLS based density estimation procedures,
cf. section 5.4.1.

Ripley data set

This second experiment is based on a data set considered in [Ripley, 1996]. It
consists of two labels in two dimensions with 125 training samples and 500 testing
samples each. We trained GMMs with 2 and 4 components, Parzen windows, and
ε-SVD and OROLS models, each of the latter two with naive and enhanced ECDF

sampling. We then assessed the classi�cation error on the test set. As in the
previous experiment, no parameter needed to be manually tuned for the ε-SVD

algorithm, while the kernel width for Parzen windows and OROLS models were set
according to test error. Assignment of a test sample x to a label y ∈ {−1,+1} was
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Model ECDF σ # centers err.

GMM2 � � 2 / 2 9.1%
GMM4 � � 4 / 4 9.2%
Parzen � 0.28 125 / 125 8.1%

ε-SVD
Naive 0.157 17 / 12 10.0%
Enhanced 0.075 77 / 51 9.8%

OROLS
Naive 0.17 13 / 6 8.9%
Enhanced 0.25 7 / 7 8.5%

Table 5.2: Details and classi�cation error rates of the density models on the Ripley
data set. The number of solution centers is reported individually for each
label.

performed using maximum a-posteriori classi�cation with Bayes' rule:

ŷ = argmax
y

P (y|x) = argmax
y

p(x|y)P (y)

p(x)

= argmax
y

p(x|y)P (y)
(5.50)

where, in this case, P (y = +1) = P (y = −1) = 0.5.
The results of the experiment are displayed in table 5.2. It can easily be seen

that our proposed OROLS algorithm has a lower test error than the ε-SVD algorithm
while needing considerably fewer samples in the solution. On the other hand, it
can be observed that using enhanced ECDF sampling for the training of the models
improves the test error regardless of the training algorithm. In [Tipping, 2001]
it is reported that the theoretical Bayes error rate of this problem is about 8%,
while the paper reports error rates of 10.6% for standard discriminatory SVM with
Gaussian kernel and 38 solution vectors, and an error rate of 9.3% for the Relevance
Vector Machine with Gaussian kernel and four solution vectors. Compared to the
previous arti�cial 2D-problem, the advantage of the OROLS algorithm with respect
to memory requirements is even more striking: In the worst case, 13 samples are
selected, which is about 1/10 of the samples � much less than the rough 1/3 of the
samples which would make competing ε-SVD and MGS-OLS algorithms break even
with the OROLS algorithm.

Thyroid data set

The thyroid disease data set is part of the UCI repository of machine learning
problems [Asuncion and Newman, 2007]. It was thoroughly studied, e. g., in [Mika
et al., 1999]. It is a two-label problem with 5-dimensional feature vectors. For
our experiments, the problem setting from [Mika et al., 1999] was used, where 100
realizations of training sets with 140 samples each and test sets of 75 samples each
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had been generated. The 140 training samples of each training set consisted of
roughly 40 positively labeled and 100 negatively labeled samples.
In contrast to the previous experiments, model selection, i. e., selection of the

number of components of the GMMs and the kernel width for Parzen windows and
OROLS models, was performed using thorough cross-validation similar to the proce-
dure described in [Mika et al., 1999]. Models with varying parameters were trained
on each of the �rst 5 training sets. The models' performance was assessed on the
5 cross-validation test sets which were concatenations of the 4 respective unused
training sets. The parameters for the complete evaluation of the 100 realizations
were then determined by averaging the parameters leading to the best results on
the cross-validation sets.
The use of the enhanced ECDF sampling scheme was modi�ed for this experiment.

As stated in section 5.2, the number of jumps of the ECDF is problem-dependent,
but usually much larger than the number of problem samples. For the problem
at hand, the about 100 negatively labeled training samples would have generated
an ECDF with roughly 1.5 million jumps. Instead of using all of these points, we
conducted experiments where a maximum of 5, 50, and 500 random points was
chosen from each level of the ECDF; we denote these experiments with Enh-5, Enh-
50, and Enh-500, respectively.
Classi�cation of the test samples was also performed using (5.50) with the labels'

priors estimated from the relative frequency of the labels in the training set. Fig-
ure 5.3 compares GMMs with 4 components and Parzen windows with ε-SVD and
OROLS models trained using di�erent ECDF sampling schemes, as described above.
It can be seen that the accuracy of the OROLS models improves as the number of
ECDF samples increases, which supports the concept that naive sampling as well as
under-sampling the enhanced ECDF signi�cantly degrades the performance of the
so-estimated density models. If we consider a maximum of 500 samples per ECDF
level su�cient then it shows that the sparse OROLS kernel density models greatly
outperform the best GMM models; however, the accuracy of the Parzen windows
model, obtained at the cost of using all samples, is not met. Furthermore, OROLS
models again outperform ε-SVD models in all cases while producing sparser models.
Through the obtained sparsity the OROLS algorithm takes advantage of its lower
memory requirements compared to ε-SVD as less than one third of the samples is
used for the solutions.
It might be surprising at �rst to see the performance of the ε-SVD decrease (after

an initial improvement over naive ECDF sampling) with increasing number of ECDF
samples, especially in the Enh-500 setting. This can be attributed to the automatic
tuning of the kernel width. The kernel width selected is the largest feasible, however,
it still results in over�tted ε-SVD models.
Our algorithm also compares favorably to other methods, even if performance is

not en par with discriminative models such as SVM (classi�cation error 4.8±2.2%) or
kernel �sher discriminant (classi�cation error 4.2±2.1%) [Mika et al., 1999]. On the
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Figure 5.3: Classi�cation errors on the Thyroid data set performed by di�erent prob-
ability density models using di�erent samplings from the ECDF for train-
ing.52



5.6 Discussion

Model ECDF Kernel Width # centers

GMM4 � � 4 / 4
Parzen � 0.27 ≈ 100 / ≈ 40

ε-SVD

Naive 2.85± 1.51 43.5 / 9.2
Enh-5 0.067± 0.015 35.2 / 34.6
Enh-50 0.052± 0.014 52.3 / 38.0
Enh-500 0.031± 0.01 81.6 / 40.0

OROLS

Naive 0.17 12.9 / 10.6
Enh-5 0.07 16.1 / 12.9
Enh-50 0.07 17.7 / 13.4
Enh-500 0.07 18.1 / 14.6

Table 5.3: Details of the kernel density models on the Thyroid data set. The number
of centers is reported individually for each label.

other hand, the well-known C4.5 algorithm performs much worse for classi�cation
with an error of about 10.2% [Webb, 1996].

5.6 Discussion

We have presented an algorithm which constructs sparse probability density mod-
els from training sample in a memory-e�cient and accurate way. It outperforms
standard, conventional models like EM-trained Gaussian mixture models while still
producing sparse models. We have also shown the importance of sensible applica-
tion of the ECDF in the training process in that a sampling at points additional to
the original problem samples impressively improves the accuracy of the so-trained
models.
However, the methodology of estimating kernel PDF models by regression onto

the ECDF seems to be limited to rather low-dimensional problems like the ones con-
sidered in the experiments section. For high-dimensional PDF-estimation problems
like in automatic speech recognition, the method does not seem to be suitable due
to the complexity of the resulting ECDFs. Methods which either choose sensitive
points or regions for the regression of the ECDF or which entirely avoid sampling
the ECDF by �implicitly� regressing the ECDF would be needed.
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6 Probability Density Function

Models for Automatic Speech

Recognition using Binary

Discriminant Functions

In the previous chapter we have investigated and developed methods for training
sparse kernel PDF models using the SRM inductive principle for regression of the
ECDF. The methods showed promising results on problems of low dimensionality
but are di�cult, or even impossible, to apply to problems of greater dimensionality,
like ASR.

Loosely speaking, PDFs are used to estimate where a label-conditional sample
generator is located in the sample space RD. In this chapter we will investigate how
nonlinear binary discriminant functions based on the SRM inductive principle, e. g.,
SVMs or KFDs revisited in chapter 3, can be used to characterize the location of a
label in the sample space. By extracting estimates of posterior label probabilities
from the discriminant functions we will by applying Bayes' rule arrive at another
family of PDF models. These novel PDF estimates will then be compared against
conventional GMMs on a common ASR problem.

6.1 Turning discriminants into probabilities

Assuming a binary problem setting which is solved using a discriminant function
such as SVM or KFD, this section discusses procedures and algorithms to relate
the output of the discriminant to label-conditional (emission) probabilities or to
a-posteriori label probabilities.

6.1.1 Modeling the projections' probability density functions

Discriminants, such as Support Vector Machines (SVMs) or Kernel Fisher Discrimi-
nants (KFDs), may be viewed as the projection of the D-dimensional samples x into
a 1-dimensional subspace where separation of the two labels' samples is optimal with
respect to the discriminants' criteria. Probability density functions can, in general,

55



6 PDF models for ASR using binary discriminant functions

−6 −5 −4 −3 −2 −1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Figure 6.1: Sample histogram for p(f(x)|y = ±1) of a linear SVM [Platt, 2000].
The solid line is p(f(x)|y = −1), while the dashed line is p(f(x)|y =
1). Notice the approximately exponential densities in the region of the
overlap around −1.

be more easily and more robustly solved if the dimensionality of the problem space
is decreased.

In the case of projections created using KFDs, the assumption is that the projec-
tions f(x) of each label's samples follow a normal distribution P (f(x)|y = ±1) =
N(f(x)|µ±, σ±) with means µ± and standard-deviations σ± [Mika et al., 2001]. In
the special case that due to constraints (3.57) the means of the distributions are
known as µ± = ±1, all that remains is to estimate the normal projection densities'
standard-deviations from data, e. g., the same data on which the KFD was trained,
or a separate sample set.

6.1.2 Modeling posterior label probabilities

If the projections are obtained using SVMs it is not easy to model the projections'
density functions as they do not seem to exhibit such appealing properties as KFDs'
projections [Platt, 2000]. Instead of modeling the individual projections' PDFs it
is also possible to model the posterior label probability P (y = ±1|x) = P (y =
±1|f(x)) of a sample x belonging to either of the two labels ±1. This can be
accomplished by replacing the sgn function in (3.37) (or, equivalently, in (3.47),
(3.59)), which had been used to extract the sign of the projection as a label, with
a suitable real-valued transfer function with value range [0, 1].

In [Platt, 2000] it was (visually) observed that the projections of the two labels'
samples exhibit exponential densities in the region of the overlap (cf. �gure 6.1). If
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we consider

p(f(x)|y = ±1) = e−a±f(x), a± ∈ R+ (6.1)

the posterior label probability P (y = 1|x) can be computed using Bayes' rule and
marginalization:

P (y = 1|x) =
P (f(x)|y = 1)P (y = 1)

P (f(x))

=
p(f(x)|y = 1)P (y = 1)

p(f(x)|y = 1)P (y = 1) + p(f(x)|y = −1)P (y = −1)

(6.2)

recalling from (4.13) that the quotient P (a)/P (b) may be substituted with p(a)/p(b)
in the case of continuous PDFs. Inserting (6.1) into (6.2) leads to

P (y = 1|x) =
e−a+f(x)P (y = 1)

e−a+f(x)P (y=1)+−a−f(x)P (y=−1)

=
e−a+f(x)+ln P (y=1)

e−a+f(x)+ln P (y=1) + e−a−f(x)+ln P (y=−1)

=
1

1 + e(a−−a+)f(x)+ln P (y=+1)−ln P (y=−1)

=
1

1 + eA+f(x)+B+

(6.3)

with A+ = a− − a+ and B+ = lnP (y = +1) − lnP (y = −1). For P (y = −1|x) it
follows

P (y = −1|x) = 1− P (y = 1|x) =
1

1 + eA−f(x)+B−
=

1

1 + e−A+f(x)−B+
(6.4)

In essence, what remains is to determine suitable parameters A and B. A proce-
dure for this training based on maximizing a cross-entropy function is also proposed
in [Platt, 2000]. An improved version of the algorithm with better numerical stabil-
ity is presented in [Lin et al., 2003].

6.2 Pairwise coupling of binary classi�ers

While section 6.1 discussed how to turn the projections of binary discriminants into
probability measures (either label-conditional production probabilities or posterior
label probabilities) it still needs to be clari�ed how the binary regimes are to be
constructed and how they can be used together with the methods discussed in
section 6.1 to estimate probability measures in a multi-label regime.
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6.2.1 Simple strategy: one-versus-rest

A straight-forward approach is to discriminate each label against the union of the
remaining labels which is called �one-versus-rest� (OVR). Using the OVR approach,
there are C discriminants to be trained. The results obtained by applying probabil-
ity moderation techniques as in sections 6.1.1 or 6.1.2 are easy to interpret as the
original multi-label problem was not partitioned at all. However, a drawback of the
OVR scheme is that every discriminant is trained on the complete training sample
set, which may be large in automatic speech recognition, and that the training set
may be badly im-balanced if there is a large number of labels involved. Nevertheless,
the OVR scheme enjoys some popularity in practice [Rifkin and Klautau, 2004].

6.2.2 Smaller subproblems: one-versus-one

Another popular approach is to construct binary problems for each pair of two
elementary labels. This method is called �one-versus-one� (OVO). Applying tech-
niques for probability moderation as mentioned in section 6.1, estimates rij of the
pairwise posterior label probabilities Pij = P (y = yi|y ∈ {yi, yj}, f(x))) can be
obtained. These pairwise estimates must be combined into a multi-class posterior
label probability.

Voting

A very simple strategy to estimate the multi-label posterior probability of a label
yi from estimates of the pairwise posterior probabilities rij is to use the heuristic
voting rule from [Knerr et al., 1990]:

P (yi|x) =
2

C(C − 1)

C∑
j=1,j 6=i

Θ(rij − rji) (6.5)

While this rule may seem very appealing due to its simplicity, the estimates of the
multi-label probability obtained actually exhibit large errors [Wu et al., 2004]. We
only consider the voting rule for completeness.

An exact formula

Taking the estimating rij as proxies for the true Pij, Price et al. derived an exact
formula for combining binary posterior probabilities resulting from the OVO binary
regime into the posterior class probabilities of the generating multi-label problem
[Price et al., 1995]. They assumed that each pattern belongs to only one class:

P

(
C⋃

i=1

yi

∣∣∣∣∣ f(x)

)
= 1 (6.6)
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6.2 Pairwise coupling of binary classi�ers

Denoting the union of the events yi and yj as yij = (y = yi ∪ y = yj) it follows that
for any j

P

(
C⋃

i=1

yi

∣∣∣∣∣ f(x)

)
= P

(
C⋃

i=1,i6=j

yij

∣∣∣∣∣ f(x)

)
= 1 (6.7)

Then, with the closed-form expression for the union of C events yi

P

(
C⋃

i=1

yi

)
=

C∑
i=1

P (yi) + . . .+ (−1)k−1

C∑
i1<...<ik

P (yi1 ∧ . . . ∧ yik)

+ . . .+ (−1)C−1P (y1 ∧ . . . ∧ yC)

(6.8)

it follows from (6.7) that

C∑
i=1,i6=j

P (yij|f(x))− (C − 2)P (yj|f(x)) = 1 (6.9)

Using

Pij = P (yi|yij, f(x)) =
P (yi, yij, f(x))

P (yij, f(x))
=

P (yi|f(x))

P (yij|f(x))
(6.10)

one �nally obtains the unifying formula

P (yi|f(x)) =
1∑C

j=1,j 6=i
1

Pij
− (C − 2)

(6.11)

Minimization of Kullback-Leibler divergence

Hastie and Tibshirani observed that for a set of estimates rij there does not actually
exist a set of probabilities P (yi|f(x)) that is compatible with the estimates rij

[Hastie and Tibshirani, 1998]. Consider the setting in the Bradley-Terry model for
paired comparisons [Bradley and Terry, 1952, Bradley, 1954, 1955]:

P (yi|yi ∨ yj) =
P (yi)

P (yi) + P (yj)
(6.12)

C∑
i=1

P (yi) = 1 (6.13)

This model requires that C− 1 free parameters satisfy C(C− 1)/2 constraints from
(6.12) which will not yield a solution in general (see [Hastie and Tibshirani, 1998]
for an example). Hastie and Tibshirani solve the problem by minimizing a Kullback-
Leibler distance criterion to �nd approximations r̂ij = P̂ (yi)/(P̂ (yi) + P̂ (yj)).
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6 PDF models for ASR using binary discriminant functions

Assume that for each i 6= j there are Nij training observations with correspond-
ingly estimated conditional probabilities rij. Rewriting (6.12) yields

log rij = log(P (yi))− log(P (yi) + P (yj)) (6.14)

The closeness criterion is the average weighted Kullback-Leibler distance between
r̂ij and rij:

l(P ) =
∑
i<j

Nij

[
rij log

rij

r̂ij

+ (1− rij) log
1− rij

1− r̂ij

]
(6.15)

which needs to be minimized with respect to P . Therefore, the gradient equations
are: ∑

j 6=i

Nij r̂ij =
∑
j 6=i

Nijrij i = 1, . . . , C (6.16)

which are used to iteratively compute the P̂ .
A simple approximation of the solution can be obtained by

P̃i =
2
∑

j 6=i rij

C(C − 1)
(6.17)

which can also be used to initialize the iterative procedure. Algorithm 3 summa-
rizes the pairwise probability coupling procedure.

Algorithm 3 Pairwise coupling of probabilities according to [Hastie and Tibshirani,
1998]

Initialize P̂i (e. g., according to (6.17))
repeat
compute r̂ij

∀i = 1, . . . , C: P̂i ← p̂i

P
j 6=i NijrijP
j 6=i Nij r̂ij

normalize: P̂i ← P̂i/
∑C

i=1 P̂i

until convergence

6.3 Setup of the hybrid system

After having discussed how to construct nonlinear binary discriminants in chapter 3,
how to obtain pairwise posterior label probabilities in section 6.1, and how to turn
these estimates into posterior class probabilities of a multi-label setting in section 6.2,
we will see in this section how this stack of concepts can be used to construct a novel
method of modeling HMMs' state-conditional emission probabilities. The method is
applied to an ASR environment and evaluated on the Resource Management (RM1)
corpus [Price et al., 1988].
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6.4 Training of emission PDFs based on kernel binary machines

6.3.1 De�nition of labels

Since for the kernel binary classi�ers such as SVMs or KFDs strict labels are required,
we considered each state of each phoneme's HMM as one label. For the RM1 task, a
set of 48 monophone HMMs with 3 states each and one short-pause HMM with only
one state was used, resulting in a total of 145 state labels.
The generally more sophisticated method of using triphones was not considered

in our experiments. Some considerations will be made in section 6.8.1.

6.3.2 De�nition of samples

For our investigations we used the high-dimensional feature vectors produced by
the feature extraction methods described in section 4.1 as the problem samples.
Speci�cally, 12 Mel-frequence cepstral coe�cients (MFCCs) and the energy compo-
nent were augmented with �rst- and second-order temporal di�erences to form a
39-dimensional input space. The speech feature vectors were extracted from the
speech signal Fourier transform using a Hamming window of 25ms duration and a
shift of 10ms, resulting in 100 acoustic samples per second of speech.
The conversion of the acoustic data using these parameters results in a total

of 987649 feature vectors for the 72 speaker independent training set (henceforth
referred to as 72_indtr).

6.3.3 Software

We used the Hidden Markov Toolkit (HTK) [Young et al., 2002] for feature extrac-
tion, training of conventional HMM-GMM models, and decoding for testing purposes.
SVMs were trained using SVMTorch [Collobert and Bengio, 2001]. For KFD training,
the greedy-sparse training procedure described in section 3.5.1 was used; the algo-
rithm was implemented using a newly developed high-performance machine learning
software library which will be described in chapter 7. Finally, the functionality of
both SVM- and KFD-based emission PDF systems was provided to HTK using an
external plug-in library to be described in section 7.6.

6.4 Training of emission PDFs based on kernel

binary machines

Algorithm 4 summarizes the steps involved in training the new emission PDF models
based on SVMs or KFDs, which we will now collectively call kernel binary machines
Kernel Binary Machines (KBMs). Each training step needs a number of parameters
which will in�uence the performance of the resulting KBM-based PDFs. The choice
of systems or parameters in each step will be considered independently, i. e., we use
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6 PDF models for ASR using binary discriminant functions

a forward-optimization procedure where in each training step systems or parameters
will be selected based on a certain criterion. The systems and parameters are then
kept �xed for the subsequent training steps.

Therefore, we will discuss the procedure and in�uence of each training step sep-
arately. The evaluation of some system or parameter choices was carried out by
measuring the performance of the KBM-PDF model in the full ASR system. The
testing procedure will be discussed later in section 6.5; however, we will consider it
given for the time being.

Algorithm 4 How to train an ASR system employing binary discriminants as build-
ing blocks of the acoustic model
• Train conventional GMM-HMM-based ASR-system
• Perform forced HMM-state-level time alignment of the training data using above
GMM-HMM system
• (Optionally) Pre-process data, save pre-processing parameters
• Train binary discriminants (SVM or KFD) in OVR or OVO fashion
• Estimate labels' prior probabilities, possibly on separate data set
• Train probabilistic outputs of binary discriminants (either class-conditional
projection densities or pairwise posterior class-probabilities), possibly on separate
data set

6.4.1 Initial ASR-system and time-alignment of training data

In order to train these KBMs we need to have labeled data on the frame level, i. e.,
each frame from the training set must be assigned one of the labels constructed in
section 6.3.1. This is achieved by �rst training an initial ASR system using GMMs for
HMM-state emission probabilities. This initial ASR system is then used to compute
a time-alignment of the HMM-states (section 4.8.1). Using the time-stamps of a
label contained in the resulting label �les, corresponding speech samples can be
extracted from the parameter �les. The parameterized speech samples together
with their corresponding labels are then merged into a �le suitable for use with
SVM or KFD training tools.

In [Scha�öner et al., 2003] it was shown that the time-alignment is not strongly
in�uenced by the quality of the initial ASR system, i. e., �wrong� decisions with
respect to the time-borders of HMM-states are very unlikely due to the recognition
network being restricted to the known text of the sample sentences. Therefore, it is
not necessary to use the best available ASR-system to construct the time-alignment
as long as the ASR-system is not extremely under- or over-�tted.
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6.4 Training of emission PDFs based on kernel binary machines

6.4.2 Optional pre-processing of the training data

When examining the examples of commonly used kernels from (3.43), (3.44), (3.45)
it can be seen that a conventional dot-product in the input space is used to �reduce�
the vectors to a scalar. This exposes the computation of the kernel functions to
a scaling problem, i. e., if, on average, the magnitudes of the components of the
vectors di�er greatly, the vectors' components with the largest average magnitude
will largely determine the value of the kernel function while the in�uence of the
components with a smaller expected magnitudes will be suppressed. Therefore,
data need to pre-processed in order to evenly distribute the in�uence of each feature-
vector component. The utility of preprocessing the data has also been described in
[Burges, 1998].
There exists a number of possible methods for preprocessing the data to circum-

vent the scaling problem:

• Shifting to zero mean and subsequent scaling to unit variance of each compo-
nent. Mean and variance can be reliably estimated given the large number
of samples in speech recognition problems. However, some (mild) assumption
about the distribution of the components' values are made in this case.

• Similar in fashion to the previous procedure: Shifting to zero mean, conduct-
ing a Principal Components Analysis (PCA) and transforming data with the
PCA's orthonormal matrix. Here also, some (mild) assumption about the
distribution of the data is made.

• Determine smallest and largest value of each component, shift value by mean
of both, and scale to [−1, 1]. This method does not make any assumptions
about the distribution of the components' values. This method can be made
more statistically robust by estimating the minimum and maximum of each
component at the 0.05 and 0.95 quantiles of the distributions, respectively.

Here, we only investigate the �rst method mentioned above. To limit the e�ort of
experiments, only the results using SVMs in the OVO binary regime are considered
here. Without pre-scaling the feature vectors, the best recognition rate obtained
was 91.3% accuracy, whereas pre-scaling the feature vectors to component-wise zero-
mean and unit-variance boosted the recognition rate to 94.6% accuracy, a relative
error reduction of 38%. Since the pre-scaling step is so cheap and has such great
in�uence on the recognition accuracy, this step was mandatory in all further exper-
iments assessing the framework.

6.4.3 Choice of binary regimes

Using the (preprocessed) feature vectors KBMs are trained in either an OVO or OVR
fashion. Table 6.1 compares these two binary regimes using prior knowledge. From
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Property OVR OVO

# KBMs C C(C − 1)/2
avg. training set sizes N 2N/C
avg. training set balance N/C vs. N −N/C N/C vs. N/C
expected cost of recall small (1 KBM/label) large (C − 1 KBMs/label)

Table 6.1: A-priori comparison of the OVR and OVO binary regimes. More appealing
properties are typeset in boldface.

the table it is not clear which method should be preferred a-priori. The OVR regime
has the advantage that multi-label posterior probabilities are directly available with-
out the need for further processing as described in section 6.2.2. However, OVR has
the disadvantage of requiring the samples of all labels for training, and that the train-
ing procedure is further complicated by a great imbalance of the training samples �
on average, N/C samples of the one (positive) class in question are discriminated
against N −N/C samples of the (negative) pool of the remaining labels [Shin and
Cho, 2003]. Additionally, the resulting binary problems may become prohibitively
large and, therefore, impractical to be trained e�ciently.

The competing OVO regime relaxes some of the problems of the OVR regime. The
training sets are more balanced with, on average, N/C samples for each of the two
labels involved in one discriminant. Also, the overall size of the binary problems
is reduced to an average of 2N/C which seems more manageable in practice. The
drawback of the OVO regime is that the number of discriminants grows to C(C −
1)/2, and that an additional processing step for combining pairwise posterior label
probabilities into the multi-label posterior probability is needed.

In [Krüger et al., 2005b] we compared the in�uence of the choice of binary regime
on the recognition rate. As with the preprocessing step, the experiments were only
carried out using SVMs as binary discriminants. A number of limitations were put
onto the training procedure. First, when applying the OVR binary regime, it was not
possible to handle the entire training set, as expected. Instead, a random subset of
1/5 and 1/10 was used for comparing the binary regimes. Secondly, there is, strictly
speaking, one set of �optimal� hyper-parameters (kernel parameters, regularization
tradeo� parameter) for each kernel machine; however, the parameters were tied for
all machines to keep training and parameter selection e�orts in a manageable range,
see section 6.4.4.

Table 6.2 summarizes the data of the comparison. As can be seen, the binary
regime does not dramatically in�uence the achievable accuracy, though the OVO

regime performs slightly better in both cases where comparison with OVR was possi-
ble. Furthermore, the OVO regime extends the limit of manageable training sample
sizes. Therefore, for further experiments only the OVO binary regime was consid-
ered.
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6.4 Training of emission PDFs based on kernel binary machines

OVR OVO

using 1/10 of training set 89.34% 89.73%
using 1/5 of the training set 92.07% 92.19%
using full training set � 94.10%

Table 6.2: Comparison of the in�uence of the binary regime on the recognition rates
[Krüger et al., 2005b].

6.4.4 Choice of hyper-parameters of kernel binary

discriminants

For both SVM and KFD training, there are a number of hyper-parameters which
must be set prior to training. These are

• for SVM and KFD:

� the type of kernel,

� the kernel parameters (i. e., , the variance in the case of the Gaussian
kernel, the integer exponent in the case of the polynomial kernel),

� the regularization (capacity control) parameter,

• for KFD only:

� the maximum number of terms in the sparse approximation.

Throughout all experiments, the Gaussian kernel (3.44) was used as it was ob-
served that the choice of kernel type is not the most in�uencing part when building
a KBM [Burges, 1998]. There exist a number of methods to set the kernel parameters
and the regularization parameter (semi-)automatically [Tsang et al., 2005, Schölkopf
and Smola, 2001, Centeno and Lawrence, 2006], and there are also measures to eval-
uate the optimal number of terms in the sparse approximation of the KFD, e. g.,
the leave-one-out score [Chen et al., 2003] or the minimum description length score
[Hansen and Yu, 2001].
In the KFD case, the relative improvements of the objective values of the 5 most

recent selection steps were checked against a threshold value. Forward selection was
stopped if all of these relative improvements had fallen below this threshold.
In order to get a feeling for the in�uence of these parameters on the performance

of the speech recognition system as a whole, a conventional cross-validation pro-
cedure using the development test set was followed. The fully estimated emission
PDF model (including the probabilistic outputs and prior label probabilities to be
described in section 6.4.5) was plugged into the HMM, and the recognition perfor-
mance of this entire system was measured on the development dataset. Still, tuning
two or three parameters on this much data in a grid-search fashion would have been
prohibitively costly, so procedures as described in algorithms 5 and 6 were adopted.
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Algorithm 5 Tuning procedure for SVMs' hyper-parameters

initialize C = 200 {default value of SVMTorch software}
initialize range of kernel parameters and regularization coe�cients
repeat
for all kernel parameters in the given range with appropriate discretization
do
train SVMs with common kernel parameter and constant prior regularization
parameter
measure recognition performance on a development dataset

end for
set kernel parameter �xed at optimal value
for all regularization coe�cients in the given range with appropriate discretiza-
tion do
train SVMs with common regularization coe�cients and constant prior kernel
parameter
measure recognition performance on a development dataset

end for
narrow parameter ranges

until convergence

6.4.5 Estimation of probabilistic outputs of binary kernel

discriminants and prior label probabilities

After the kernel binary discriminants have been trained, it is necessary to estimate
the parameters of the probabilistic output procedures (either normal probability
densities or the sigmoid label-posterior function). Since this step is independent of
the discriminant training procedures, one may use a separate data set in order to
decrease over-�tting onto the training data. This, however, was not pursued for the
experiments conducted here; instead, the training set was re-used.

For the projection normal probability densities used with KFDs, the means and
variances were estimated using the standard averaging estimators

µ± =
1

N

N∑
n=1

f(x|y = ±1) (6.18)

σ2
± =

1

N − 1

N∑
n=1

(f(x|y = ±1)− µ±)2. (6.19)

The two parameters of the sigmoid function used with SVMs were estimated using
the numerically more stable algorithm from [Lin et al., 2003] instead of the original
one found in [Platt, 2000].
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6.4 Training of emission PDFs based on kernel binary machines

Algorithm 6 Tuning procedure for KFDs' hyper-parameters
initialize maximum size m of solutions to a relatively small value
initialize range of kernel parameters and regularization coe�cients
repeat
for all kernel parameters in the given range with appropriate discretization
do
train KFDs with common settings
measure recognition performance on a development dataset

end for
set kernel parameter �xed at optimal value
for all regularization coe�cients in the given range with appropriate discretiza-
tion do
train KFDs with common settings
measure recognition performance on a development dataset

end for
narrow parameter ranges

until convergence
keep kernel parameter �xed
repeat
scale maximum size m by a factor g and starting regularization coe�cient by
1/g
choose range of regularization coe�cients
for all regularization coe�cients in the given range with appropriate discretiza-
tion do
train KFDs with common settings
measure recognition performance on a development dataset

end for
until convergence
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Prior probabilities for the multi-label and respective binary settings were esti-
mated by counting the number of occurrences of a label relative to the number of
samples. Prior probabilities were computed and stored even if they were not strictly
needed for the speech recognition problem (cf. algorithm 7).

6.5 Testing the hybrid speech recognition system

Algorithm 7 schematically describes the course of computations when obtaining
label-conditional PDF values (or proxies thereof) in the case of automatic speech
recognition. Fortunately, there are no parameters within the new acoustic models
to be tuned for recognition. However, there are a few heuristic parameters inside
the speech decoder to be adjusted, most notably the word-insertion probability and
the language model scale. In order to not complicate things further, to decrease
experimental e�ort and to keep conditions as similar as possible for comparison
with conventional GMM-based emission PDF models, the same values as determined
optimal for GMM-based PDF models, i. e., a word insertion log probability of 10.5
and a language model scale factor of 5 [Schulze, 2005], were used for the proposed
KBM-based PDF models.

6.6 Comparing the generalization performance of

GMM- and KBM-based PDF models

As mentioned before, applying the SRM inductive principle (through the use of,
e. g., SVMs or KFDs) instead of the ERM inductive principle employed for train-
ing GMMs with the Maximum-Likelihood cost function is expected to increase the
generalization performance especially in the case of small training set sizes. Prelim-
inary results indicating the validity of the above assumption were �rst published in
[Andelic et al., 2004, 2005, Krüger et al., 2005a,b] with some partially incomplete
experiments.

A thorough investigation was performed in [Scha�öner et al., 2006]. The experi-
ments were carried out on the Resource Management (RM1) speech recognition task
[Price et al., 1988]. The RM1 task consists of about 2.8 hours of transcribed con-
tinuous speech training material, and an evaluation recognition problem containing
about 1000 words. The speech corpus is accompanied by a development test set for
tuning parameters of the decoding process.

To assess the performance of di�erent acoustic models depending on the training
sample sizes, random samples of 90, 180, 360, 720, and 1440 sentences were taken
from the original complete training set, corresponding to 1/32, 1/16, 1/8, 1/4 and
1/2 of the complete 2880 sentences. The random sampling was repeated 10 times
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models

Algorithm 7How to test an ASR system employing binary discriminants as building
blocks of the acoustic model
For each sample x and hypothesis label y presented by the recognizer:
(Optionally) Pre-process sample with previously saved parameters
if OVR then
if projection densities then
directly compute the value of projection density of the y-label as the emission
probability

else {binary posterior label probabilities}
compute posterior probability of label y
compute emission probability using Bayes' rule and the label's prior proba-
bility

end if
else {OVO}
if projection densities then
compute the value of the projection densities of using all the binary discrim-
inants involved with label y
compute pairwise/binary posterior probability using Bayes' rule and the la-
bels' prior probabilities in the binary setting

else {binary posterior class-probabilities}
directly compute the pairwise/binary posterior label probability

end if
merge all the binary posterior label probabilities into the multi-label posterior
probability using (6.11)
compute emission probability using Bayes' rule and the label's prior probability

end if
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for each sample size in order to gain some statistical signi�cance for the experiments
to be conducted, resulting in a total of 51 training scenarios.
The reference baseline system using GMM-based acoustic model was trained with

di�erent numbers of GMM component using the 51 training sets. For more thorough
comparison, monophone and triphone GMM acoustic models were considered. Then
the recognition accuracy was measured on the OCT89 development dataset using
the resulting acoustic models, and the GMMs determined optimal on the develop-
ment test set were then used to measure the recognition accuracy on the separate
FEB89 evaluation dataset. Table 6.3 lists the number of GMM-components together
with the achieved evaluation recognition rates.

HMM Subset Recognition Accuracy avg. # mixt.
min avg max

Mono

Full 93.8 16
1/2 91.45 92.36 92.78 15.1
1/4 89.26 90.46 91.25 14.1
1/8 84.26 86.15 87.62 7.6
1/16 78.45 80.34 82.66 4.5
1/32 70.40 71.91 74.00 2.9

XwrdTri

Full 96.8 8
1/2 94.61 95.19 95.70 6.7
1/4 91.92 92.94 93.71 6.3
1/8 85.86 88.23 89.57 6.3
1/16 78.64 81.78 83.83 4.2
1/32 68.22 70.77 72.51 2.7

Table 6.3: Baseline results on the FEB89 evaluation dataset using the complete and
randomly-sampled training set for monophone and crossword-triphone
HMMs with GMMs as emission PDFs.

The competing KBM-based PDF models were only trained for monophone HMMs,
as described in section 6.3.1. To keep experimental e�ort in a reasonable range, the
SVM- and KFD-based acoustic models were only trained on the 1/32, 1/8 and the
full training data sets. Additionally, the optimal hyper-parameters were determined
on only one of the 1/32 and 1/8 training data sets, and then re-used for the other
training data sets of the respective size. TheOCT89 -optimal GMMmodels were used
to compute a state-time-alignment of the training data, and data were preprocessed
with parameters estimated separately from each training selection. The transition
probability matrices were kept �xed for all PDF models within each training dataset.
For comparing the achievable recognition rates, this procedure may have even put
the KBM-based acoustic models into a slightly disadvantageous position as the GMM-
based acoustic models' number of GMM-components had been tuned individually for
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models

KBM Selection Kernel Stddev. Regul. Max. solution size

SVM

Full 9.2 200 �
1/8 10.5 20 �
1/32 11.2 5 �

KFD

Full 6.2 0.8 100
1/8 6.5 2 400
1/32 7.0 5 600

Table 6.4: Parameters of SVMs and KFDs in the emission PDF models.

each training data set. The parameters of the SVMs and KFDs are listed in table 6.4.

Figure 6.2 gives a �rst impression of the performance of KBM-based vs. GMM-
based PDF models. The �rst conclusion to be drawn is that in the monophone
setting KBM-based PDF models outperform GMM-based PDF models regardless of
the size of training data sets. Secondly, for small sample sizes, as in the 1/32 and
1/8 settings, the simple monophone HMMs using KBM-based emission probabilities
even outperform the triphone HMM-GMM models which are otherwise almost always
superior to monophone HMMs. Only in the full training set scenario can the triphone
HMM-GMM models beat HMM-KBM models. Comparing the in�uence of the training
set sizes it can be clearly seen that the convergence behavior of KBM-based emission
probabilities is much better than that of GMM-based emission probabilities. The
tendency of the KFD-based emission probabilities to perform worse than the SVM-
based emission probabilities will be investigated in section 6.7. Tables 6.5 and 6.6
give more details about the recognition performance using KFD- and SVM-based
emission probabilities.

Model Subset Recognition Accuracy
min avg max

MonoKFD
Full 94.21
1/8 88.79 89.41 90.33
1/32 76.65 78.56 80.48

MonoSVM
Full 94.58
1/8 89.38 89.94 90.98
1/32 78.72 81.13 82.74

Table 6.5: Recognition results for monophone HMMs using KBM-based emission
PDFs
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Figure 6.2: Di�erent PDF models vs. di�erent training set sizes

Subset size MonoKFD MonoSVM

1/1 6.5% 12.9%
1/8 23.5% 27.4%
1/32 23.7% 32.8%

Table 6.6: Average relative gains in Word Error Rate using KBM-based PDFs com-
pared to GMMs

6.7 Properties of the KBM-based acoustic models

In order to better understand the di�erences in performance of the KBM-based PDF

models depending on the choice of SVM or KFD, we investigated some second-order
characteristics of the systems, i. e., sparsity of the models and quality of projections
of the KFD.

6.7.1 Achieved sparsity

While the most important results are the superior recognition accuracy rates dis-
cussed in section 6.6, the sparsity of the underlying SVMs or KFDs can be used to
characterize how di�cult (or, in other words, demanding in terms of necessary sam-
ples) it was for the systems to produce accurate PDF values. For comparison we will
discuss one experiment from the 1/8 series of trainings. We counted the number of
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Figure 6.3: Boxplot comparison of the fraction of samples used in KFDs and SVMs

solution vectors in each of the 10440 KBMs and related it to the original number of
training samples. Figure 6.3 shows the results. First of all, we can see that SVMs
generate quite sparse models, with the median at 5.9%, a mean of 8.1%, and three
quarters of the SVMs below 10% of support vectors.

It is not surprising that KFDs are less sparse than SVMs since KFDs are not sparse
by nature. We had, however, been employing the greedy-sparse KFD approximation
algorithm. The problem here is that the maximum number of samples to select was
equal for all KFDs to be trained even though the size of the training sets di�ered
greatly among all KFDs. In order to enforce at least some sparsity, an upper bound
on the fraction of selectable samples had been set to 0.8. Still, even though we
needed fairly non-sparse KFDs to reach acceptable recognition accuracy rates, KFDs
were almost always performing worse than their SVM counterparts. Other sources
do not support the idea that sparse KFD approximations generally need to be more
dense than corresponding SVMs in order to achieve similar or even better results
in the case of pattern recognition [Mika et al., 1999, 2001, Mika, 2002], so another
possible cause for the performance loss of KFDs with respect to SVMs will be inves-
tigated in the next section. At any rate, better selection termination criteria than
the ones mentioned in section 3.5.1 should be investigated in this scenario.

6.7.2 Projections generated by KFDs

As mentioned in section 6.1.1 we assumed that the projections generated by KFDs are
normally distributed for each of the two labels. In [Mika et al., 2001] this assumption
was supported by visual inspection of the projections' histogram plots. Using the
KFD systems constructed in section 6.6, a more reliable validation was conducted
using goodness-of-�t tests. A goodness-of-�t test computes a test statistic which
indicates how well a sample matches a hypothesis distribution. The test rejects
the hypothesis with a certain con�dence if the computed test statistic becomes
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signi�cant, i. e., it exceeds a threshold corresponding to the signi�cance level.
A very important goodness-of-�t test has already been mentioned in section 5.3,

i. e., the Kolmogorov-Smirnov (KS) test. The KS test compares a hypothesis distri-
bution FH with the ECDF of the data. Assuming a sorted sample x of N samples,
the KS test statistic is de�ned as

D = max
1≤n≤N

(
FH(x(n))−

n− 1

N
,
n

N
− FH(x(n))

)
(6.20)

The KS test has some limitations. First of all, it tends to be more sensitive near
the center of the distribution. Secondly, and more importantly, the hypothesis
distribution must be fully speci�ed, i. e., if parameters are estimated from the data,
the critical region and threshold statistic values are not valid. As we are aiming
to determine if the data (the KFD label-projections) follow a normal distribution
whose parameters had been estimated from the same data, the KS test cannot be
used here.
Therefore, we use the Anderson-Darling (AD) goodness-of-�t test [Stephens, 1974]

instead of the KS test. It gives more weight to the tails of the distribution than does
the KS test. Also, the AD test may be applied to testing hypothesis distributions
whose parameters had been estimated from the data. Given a (sorted) sample x of
N samples, the AD test statistic is de�ned as

A2 = −N − S (6.21)

with

S =
N∑

n=1

2n− 1

N

[
lnFH(x(n)) + ln(1− FH(x(N+1−n)))

]
(6.22)

The test statistics A2 must be adjusted by a sample-size dependent factor, resulting
in the �adjusted A2 statistic�

A2∗ = A2

(
1 +

0.75

N
+

2.25

N2

)
(6.23)

The null hypothesis FH is rejected with 5% signi�cance if, in the case of the null
hypothesis being a normal distribution, the A2∗ exceeds 0.752.
We picked the set of KFDs from one of the experiments conducted on the 1/8

training for experimental investigations. As the set consists of 10,440 binary KFDs,
we had 20,880 projection distributions to compute and test for normality. Figure 6.4
shows the distribution of the AD test scores obtained on each of the projections by
testing the �t of the distribution of the data with the hypothesis normal distribu-
tions, whose parameters had before been computed using the data. We can see
clearly that with a signi�cance of 5%, close to 80% of the projections are not nor-
mally distributed. The median of the sample, an estimate of the expected value

74



6.8 Discussion and open issues

Figure 6.4: Distribution of Anderson-Darling test for normality statistic on a set of
OVO-KFD-based data projections

of the true distribution, is about 2.6, which is much larger than the AD test's crit-
ical value. Figure 6.5 shows two examples of data projections, one whose normal-
distribution hypothesis was accepted and one whose normal-distribution hypothesis
was rejected.
We may, therefore, conclude that the assumption of normal projection densities is

almost always violated. This may be one of the reasons why in section 6.6 the KFD-
based PDFmodels were performing worse than SVM-based PDFmodels. Additionally,
the violation of the normality assumption may have been the reason for the KFD-
based PDF models requiring quite dense sample selections for acceptable recognition
rates.

6.8 Discussion and open issues

In this chapter we have discussed how conditional PDF models in a multi-label sce-
nario can be accurately estimated from binary discriminant functions. We have
demonstrated the viability of the method using a prototypical application in ASR

where great success in exceeding the performance of GMM-PDF models in other-
wise same environments was achieved. We have also seen that greedy-sparse KFDs
may be less suited for this endeavor as issues like setting the sparsity threshold
of each sparse KFD, the assumption of normally distributed label-conditional pro-
jections, and possibly also the probabilistic greedy forward-selection scheme make
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(a) Hypothesis accepted with A2∗ = 0.64 (b) Hypothesis rejected with A2∗ = 16

Figure 6.5: Two examples of label-conditional data projections computed by KFDs

KFDs models di�cult to handle in the environment of ASR.

However, there remain a number of unanswered questions and unsolved problems.
In the following, we will discuss some of them and present possible directions towards
solutions.

6.8.1 Extension to triphone HMMs

One of the most striking limitations of the proposed system is the current limitation
to monophone ASR systems. This limitation has practical rather than theoretical
reasons. If we consider a tied-state cross-word triphone system, we would have,
applying the label de�nition from section 6.3.1, around 4500 labels to discriminate.
The OVR binary regime is still ruled out because the size of the individual problems
is still N , but training set imbalance is even more severe. The OVO binary regime
would result in extremely small binary problems, which might not be possible to
sparsify, but the number of binary problems would be prohibitively large.

To overcome this problem, methods with a better, and possibly user-de�nable,
tradeo� between number and size of binary problems should be applied instead of
the extreme cases OVR and OVO. To this end, systems based on error-correcting
output codes [Dietterich and Bakiri, 1995, Allwein et al., 2000] or on generalized
Bradley-Terry models [Zadrozny, 2002, Huang et al., 2006], which allow arbitrary
code matrices rather than �xed ones de�ned by OVR or OVO, should be investigated.
Both approaches are a blend of OVR and OVO in that they allow arbitrary grouping
of problem labels into discrimination labels, so that each problem label may, if
considered at all, belong to one of the two discrimination labels. In [Zadrozny,
2002] it is reported that a number of pairwise comparisons as low as 15 log2C may
be su�cient to accurately model a multi-label problem. These approaches may not
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only enable tackling PDF-modeling in the triphone-HMM scenario, but it may also
be used to relax the system requirement in the monophone-HMM case.

6.8.2 Speaker adaptation

In section 6.6 we demonstrated the improved small-sample generalization perfor-
mance of an HMM-ASR-system using KBM-based PDF models. However, conven-
tional HMM-GMM ASR-systems use a technique called speaker adaptation where
the parameters of the GMMs are adapted from the speaker-independent model to
a speaker-dependent model. Methods for speaker-adaptation include Maximum-A-
Posteriori (MAP) [Gauvain and Lee, 1994] and Maximum Likelihood Linear Re-
gression (MLLR) [Leggetter and Woodland, 1995], which are applied either in a
separate adaptation session or online during live recognition.
The proposed KBM-based PDF models are, so far, missing a speaker-adaptation

feature. The tunable parts of the KBM-based PDF models would be the parameters
of the probabilistic interpreters or the weight vector of the KBMs. Since adapting
the weight vector may also mean promoting a sample weight of zero (a non-support
vector) to a non-zero value (a support vector) or including new samples from the
adaptation data, techniques like incremental support vector learning [Cauwenberghs
and Poggio, 2001, Laskov et al., 2006] should be investigated.
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In the previous two chapters the main focus of attention was put on algorithms
and procedures for modeling class-conditional probability density functions. Ex-
perimental results were presented showing the validity of the proposed probability
density function models, yet the e�ort of applying the new models to real-world
data problems was neglected so far. Therefore, we will collect some �gures show-
ing how computationally challenging the proposed models are on large real-world
problems such as automatic speech recognition. With these �gures in mind we will
construct a few examples showing that commonly used general-purpose software
such as MATLAB cannot e�ciently be used for conducting large-scale machine
learning experiments, arguing why and how a novel machine learning library with
a better tradeo� between versatility and performance was constructed.

7.1 Problem setting

In chapter 5 we constructed PDF models by regression of the models' distribution
function onto the empirical cumulative distribution function using structural risk
minimization. We observed in section 5.2 that this procedure may result in a large
number of ECDF jumps if the dimensionality of the problem is large. As the loss
between the problem's ECDF and the model's distribution function is measured
at these jumps, the resulting design matrix becomes very large as the number of
rows is determined by the number of (selected) ECDF jumps. In section 5.4.1 we
presented an algorithm which can be used to obtain a sparse approximation by
forward-selection and a thin update of the orthogonal decomposition of the design
matrix. However, we were not concerned with the issues arising in implementing
this algorithm in software.
The greedy-sparse KFD training procedure, which was introduced in section 3.5.1,

was used in chapter 6 to construct sparse binary discriminant models. It has a few
points in common with the sparse kernel PDF trainer mentioned before in that a
sparse approximation of a regularized least squares regression solution is constructed
using forward-selection of relevant samples, though a di�erent selection criterion is
used.
In the case of OVR discrimination, the QP problems were even larger than those

considered for sparse kernel PDF estimation (roughly 1, 000, 000×1, 000, 000), which
was too large even for the machine learning software library to be developed. How-
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Figure 7.1: Von-Neumann computer architecture.

ever, in the case of OVO discrimination, the size of the QP problems was in a
range that had a chance of being handled: On average, the QP problems were
N/C ×N/C ≈ 7, 000× 7, 000. While in the KFD-case the greedy forward-selection
procedure drastically reduced the runtime-complexity on the algorithmic level, there
were still, due to the large number of classes, 10, 440 individual discriminants to be
computed for each parameter set.
But regardless of the methodology and procedure used, there were vast amounts

of kernel evaluations to be performed. Let us, as before, consider the OVO training
in the ASR environment, resulting in 10, 440 KBMs. Assuming 1000 selected samples
per KFD, an average problem size of 7, 000 × 7, 000, a greedy selection procedure
testing κ = 59 candidate samples in each iteration, we arrive at roughly 4.3 · 1012

kernel evaluations as an upper bound if kernel evaluations are not cached, and
about 500 · 109 kernel evaluations as a lower bound if kernel matrices can be cached
completely.
It becomes clear that conducting the experiments in the environments just de-

scribed was a challenging task in itself. Modern computers provide great computa-
tional power to the user, thus enabling large-scale experiments as described above.
However, in order to make optimal use of the available computational power, some
attention must be paid to the architecture of the computer system.

7.2 Architecture and limitations of modern

computer systems

7.2.1 The von-Neumann computer architecture

Modern computers regularly follow the von-Neumann-design [von Neumann, 1945],
�gure 7.1. It consists of �ve main components:

• the arithmetic-logic unit (ALU) performing computational and boolean opera-
tions,
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• the control unit interpreting commands of the program and controling the
�ow of operations,

• the memory storing programs and data,

• the I/O-unit controling the input and output of data, e. g., with the user
through keyboard and terminal, with network interface cards or with external
storage systems,

• the bus-system connecting the previous four components with each other.

The ALU and the control unit are commonly aggregated in the central processing
unit (CPU).
The separation of CPU and memory has led to the so-called von-Neumann-bottle-

neck, i. e., if the CPU is to perform little processing on large amounts of data it is
continuously forced to wait for data to be transferred to or from memory. This
e�ect has been worsened by the fact that CPU speed and memory size have grown
much faster than the transfer speed of the bus.

7.2.2 Modern CPUs

The performance penalty caused by the von-Neumann-bottleneck is reduced by a
cache, i. e., a small area of high-speed memory, between CPU and main memory.
Often, there will be a hierarchy of caches, e. g., a relatively small, but very fast
level-one (L1) cache, a moderately sized and moderately fast level-two (L2) cache,
and recently also a large but not so fast level-three (L3) cache. Additionally, branch-
prediction algorithms implemented in the CPU's control unit aid in keeping the
caches �lled with data the CPU is likely to need in the near future.
Contemporary CPUs provide speci�c command sets for specialized tasks, among

the most well-known being Intel's MultiMedia eXtensions (MMX), the Streaming
SIMD Extensions (SSE) and its enhancements SSE2 and SSE3, or AMD's 3DNow!
extensions. These extensions enable parallel and streaming execution especially of
�oating point commands. E�cient use of these extensions depends even more on
best use of caches, possibly by pre-fetching chunks from main memory.
In section 7.7 we will see how software libraries tailored towards speci�c CPUs

can be used to boost the performance of users' programs.

7.2.3 Symmetric Multi-Processor machines

During the last decade the use of two or more CPUs has become more and more
popular even in mainstream PCs, with the latest development being two or four
CPUs integrated on single chip (multi-core processors). Computers following the
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von-Neumann design containing more than one CPU are called symmetric multi-
processor (SMP) machines. They are, therefore, often also referred to as shared
memory systems. While these computers o�er a relatively cheap way of provid-
ing more nominal computing power, they su�er even more from the von-Neumann
bottleneck due to all processors having to share the same bus for access to main
memory. Additionally, programs must be prevented from being shifted between
processors by the operating system to avoid causing cache coherency issues.

A technology called non-uniform memory access (NUMA), implemented, e. g., in
AMD's Opteron family of CPUs, allows each CPU to have a separate direct bus to an
assigned part of main memory, e�ectively doubling the possible memory throughput.
A separate high-speed bus between CPUs allows a process running on one CPU

to access the memory managed by any other CPU at the expense of additional
latency. However, if NUMA is combined with good planning and management of
memory access patterns, programs making extensive use of main memory will bene�t
signi�cantly from the NUMA architecture.

7.2.4 Distributed-Memory architectures

Another way to increase nominal computational power is to aggregate individual
computer systems, e. g., in a Beowulf cluster [Sterling et al., 1999]. Figure 7.2 shows
a typical setup of such a computer cluster. By combining relatively cheap standard
computers, e. g., conventional PCs, this has become a widely accepted alternative
to large-scale SMP systems. Due to the nature of separate computers being used
in the aggregation, these systems are commonly referred to as distributed-memory
systems. Of course, SMP systems can be used as the nodes of the cluster.

While the nominal computational power of a cluster may be large, additional mea-
sures must be taken to make this capacity available to users' programs. Especially
if integrated computations are to be carried out involving multiple nodes of the
cluster, instead of the von-Neumann-bottleneck within each node, the interconnect
of the nodes may become the limiting factor in the performance of the entire sys-
tem. To reduce this problem, high-speed low-latency interconnects like Myrinet or
In�niband have been developed as alternatives to the rather high-latency Ethernet.

Regardless of the hardware used for node interconnects, software libraries and
standards must be available in order to enable user programs to be split into separate,
cooperating processes located on di�erent machines. A commonly used approach
is the message passing paradigm which is used in standards like Parallel Virtual
Machine (PVM) [Geist et al., 1994] or the Message Passing Interface (MPI) [Snir
et al., 1998, Gropp et al., 1999, Pacheco, 1997].
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Figure 7.2: Schematic design of a PC cluster

7.3 Requirements on the software library

After considering the constraints summarized in sections 7.1 and 7.2, a number of
formal requirements on the software library used in the experiments were developed.
In the following, we will check the most important ones and directly argue for the
selected solution.

7.3.1 Expressiveness, structure, and re-usability

In chapters 5 and 6 algorithms expressed in matrices and vectors were applied
predominantly. Therefore, the software library was required to extend from elemen-
tary data types, e. g., individual �oating point numbers, to aggregations such as
matrices and vectors. These higher-order data types were required to manage meta-
information as well, e. g., the number of rows or columns of a matrix. Furthermore,
a seamless combination of similar data types, such as integer scalars with �oating
point matrices, was necessary.

Using the matrix and vectors aggregations, one should be able to make use of the
structural advantages of algorithms such as the greedy-sparse KFD or the OROLS-
based kernel PDF training procedures. Both of these algorithms frequently apply
the idea of a rank update of a matrix, both symmetric or general. The library
should honor and exploit computational advantages of, e. g., a symmetric over a
general rank-one update.

Additionally, the software should be able to group similar ideas as formal concepts
and apply a structure to the examples of these concepts. If we consider, for example,
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the idea of the Mercer kernel introduced in section 3.2, we see that there exist a
number of di�erent kernel functions all expressing a dot-product in some RKHS.
Furthermore, we can see that the standard linear kernel is e�ectively embedded in
more complicated kernels such as the polynomial (3.43) or the tanh-kernel (3.45),
making it possible to express these higher-order kernel functions as extensions or
users of simpler kernel functions.

By grouping similar ideas into concepts, we have already aided in solving another
requirement: Re-usability. When planning and implementing large-scale experi-
ments such as those in chapter 6, small conceptual modi�cations should only cause
evenly small modi�cations to the experimental setup, i. e., the software library.

7.3.2 Runtime e�ciency

In the previous section we were concerned with what can be called programming
e�ciency. In section 7.1 it became clear, however, that the software library should
focus on providing solutions as fast as possible. In section 7.2 we saw that the
computing environment may vary greatly, so the software library should take best
advantage of, e. g., di�erent CPU types and generations as they are and become
available. The software library should also provide ways to extend prototype serial
software to production parallel software suitable for shared-memory or distributed-
memory environments.

This strong call for runtime e�ciency should not contradict the previous call
for programming simplicity. The software library should rather hide and encapsu-
late the details of CPU and architecture used, which goes hand in hand with the
requirement to separate dislike concepts and tasks.

7.3.3 Object serialization

The library was required to provide storage and retrieval of the parameters associ-
ated with the building blocks of the software. This concept is known as serialization.
The serialization module should re�ect the conceptual structure of the core math
functionality to maintain re-usability of the components. If possible, the format
should contain su�cient meta-information to enable a human expert to interpret
the structure and parameters of the described system.

7.3.4 Tracing, logging, and error handling

Additionally, the library was required to include runtime tracing and logging func-
tionality to catch errors or to peek at the computation being carried out. While it
is clear that computation and logging steps must be intertwined to provide detailed
and meaningful information, the details of the functionality should be separated
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from the core math functionality. This approach aids in maintaining, extending,
and possible replacing the logging functionality as users' needs are evolving.
Logging and tracing functionality was required to be �exible in con�guration at

runtime. Details to be con�gured included

• selection of sources (abstract or concrete concepts) to be traced,

• setting of the verbosity level of logging,

• choice of logging target (sinks), e. g., disk �les, network daemons, databases,
. . .

• choice of transmission and storage formats.

The logging components were also required to gather information from parallel or
distributed processes in a coordinated fashion and to incur very low performance
penalty if tracing was disabled. An ancillary requirement was the availability of a
software tool for easy and intuitive examination of the possibly large amounts of
gathered information.
Furthermore, the software library was required to collect and record detailed

information in the event of failures, e. g., memory allocation errors or numerical
instability.

7.3.5 Integration with HTK

Finally, it was necessary to construct a software module to be integrated with HTK,
the speech recognition engine used in chapter 6. As the explored concepts were new,
no infrastructure dealing with kernels, binary discriminants, probability calibration
and so on was provided with HTK. Consequently, we wished to use the same software
library used in building the training tools for conducting evaluation experiments.

7.4 Design and Implementation

As the analysis of the requirements in the previous section suggests, an object-
oriented design was taken for the software library. Objected-oriented analysis and
design lend themselves to techniques such as grouping of similar concepts into a
hierarchy of concrete classes implementing a concept described in an abstract base
class, encapsulating and hiding implementation details such as dependencies on a
certain CPU type, and separating orthogonal concepts such as computation and
serialization into distinct class hierarchies.
The implementation was carried out using the C++ programming language, a

language widely used in the �eld of engineering. Since the ASR engine HTK is
implemented in C, the implementation of the software library in C++ enabled the
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use of its components in HTK. By making use of a C++ language feature called
templates it was possible to write the library ignorant of the precision of the �oating
point data types used, i. e., for the HTK module built for recognition purposes it
was su�cient to use single precision �oating point numbers (resulting in a great
speedup), while the same code could be used for writing KFD or kernel-PDF training
software which needed double precision �oating point numbers to limit the e�ect of
accumulating round-o� errors.
The implementation does not aim at implementing the requirements literally, but

a rather strong focus was put on making use of external libraries for particular
purposes. Using the language features of C++ such as templatization and function
overloading, lots of functionality was obtained by simply wrapping legacy software
libraries into more convenient interfaces.

7.4.1 Algebra and numerics libraries for computations

In sections 7.3.1 and 7.3.2 we de�ned expressiveness, runtime e�ciency and re-
usability as central targets of the software library. Most of the data were expected
to be presented as vectors or matrices. Therefore, the proven Basic Linear Algebra
Subprograms (BLAS) [Lawson et al., 1979, Dongarra et al., 2001] were elected for
computations involving the use and manipulation of vectors and matrices. While a
reference implementation of BLAS is available at http://www.netlib.org, it should
rather be regarded as a standard de�ning interfaces. Originally written in and for
the Fortran programming language (which does not limit its usability within other
programming languages), an adaptation for the C/C++ programming languages is
available under the name CBLAS. Since the BLAS is a de-facto standard in linear
algebra, versions speci�cally tuned for speci�c CPUs are available, leveraging the
similarities and di�erences mentioned in section 7.2.2. The libraries speci�cally
target the von-Neumann-bottleneck by aiming at re-arranging computations and
pre-fetching data from main memory into CPU caches in order to minimize idle CPU
cycles. Examples of specialized implementations are theAutomatically Tuned Linear
Algebra Subprograms (ATLAS) [Whaley et al., 2001] and GOTO BLAS [Goto and
van de Geijn, 2002], and most CPU manufacturers provide speci�c versions tuned to
their family of CPUs, e. g., the Intel math kernel library (MKL) [Intel Corp., 2005]
or the AMD core math library (ACML) [AMD, Inc., 2005]. BLAS provides functions
for just about any type of vector or matrix manipulation, ranging from simple
dot products of two vectors across rank-update functions exploiting symmetric or
triangular shape to products of general matrices.
Another de-facto standard library used was the Linear Algebra Package (LAPACK)

[Anderson et al., 1999], building upon BLAS. LAPACK can be used, e. g., for eigen-
value or singular value decompositions, triangularization and inversion of matrices,
or for solving linear equation systems. A reference implementation is also available
from http://www.netlib.org, but most specialized BLAS packages are accompanied
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by a speci�c implementation of LAPACK.
Finally, the MKL and ACML both provided additional functions for quickly eval-

uating certain transcendental functions such as exp, log and various trigonometric
functions on vector arguments, exploiting streaming technologies such as SSE men-
tioned in section 7.2.2. For Intel CPUs, another library called the Intel Performance
Primitives (IPP) o�ering similar vectorized transcendental functions was available.
Consequently, these libraries were used to obtain high-performance implementations
of the Gaussian kernel (3.44).
As all of the above mentioned libraries target legacy programming languages such

as C and Fortran, functions with the same functionality on di�erent numeric pre-
cision are disambiguated by di�erent names. Therefore, wrapper functions with
common name were overloaded to hide the details of the numeric precision from
our library. The wrapper functions were also used to turn the error codes returned
by most LAPACK functions into C++ exception. This results in very clean user
code if errors are not generally expected; however, due to a generic exception han-
dling routine required in section 7.3.4, unexpected errors can still be trapped and
recorded.

7.4.2 Memory management

A very close focus was taken at making the handling of memory as simple and
fool-proof as possible. As already mentioned, most of the memory to be consumed
was forecasted to be vectors and matrices. To wrap these concepts, the optArray
template class was created. A UML diagram of the optArray class can be found
in �gure 7.3. The template can be instantiated with any data type to be stored
in a matrix or vector. The template uses reference counting to automatically free
allocated memory when it is no longer referenced by any object. If a chunk of
memory is used by more than one optArray object, reference counting enables a
copy-on-write procedure that postpones copying of data until an actual attempt at
modifying the chunk of memory is made, which makes copying of optArray objects
very cheap.
In contrast to common usage of C++, the optArray class provides a column-

major view of a math matrix. This can be easily handled in C++, but it enables
interfacing with numerical software libraries such as BLAS or LAPACK mentioned in
the previous section. Also similar to Fortran, the entire memory consumed by a
matrix object is allocated as one contiguous block of memory instead of a double-
indexed C array. Contiguous memory is then divided into individual columns using
a column stride.
The optArray template also provides convenience functions for setting or retriev-

ing meta-properties such as column stride, or row and column count, for initializ-
ing memory with �xed values and for common computations such as coordinate-
wise products or sums of columns which are not directly available in C++ or
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Figure 7.3: UML class diagram of the optArray software class

BLAS/LAPACK.

7.4.3 Core Components

In this section we will examine some major building blocks of the software library
used throughout this work. We will use a bottom-up approach which follows the
process of creating functional programs from the set of building blocks.

Kernels

Kernel function play a central role throughout this work. Therefore, they have
been dedicated a separate class hierarchy. Figure 7.4 shows how the Mercer kernels
(3.43), (3.44), (3.45), and (5.10) are implemented as classes specializing the abstract
Kernel base class. While IntNormGaussKernel implementing (5.48) is not a Mercer
kernel, its usage and interface is similar to those, therefore it is part of the Kernel
class hierarchy. The Kernel interface provides member functions for computing the
dot-product of single samples, a single sample with a vector of samples (resulting
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Figure 7.4: Schematic description of the kernel class hierarchy.

in a kernel vector), and for two vectors of samples (resulting in a kernel matrix).
This approach avoids explicite loops in user code and enables the use of specialized
library functions for computing the exp or tanh functions on vectorized arguments,
as mentioned in section 7.4.1.

Machines

A machine is a very basic model of a problem to be solved, i. e., it may be a GMM, an
HMM, a layer of an MLP, an entire MLP, or, as in our case, a kernel machine such as
an SVM or a KFD. Here, we only needed an implementation of a kernel machine, as
HMMs and GMMs were already gracefully handled within HTK, and MLPs were not
of signi�cant interest in this work. Figure 7.5 shows the interface of the Machine
class hierarchy.

Probability moderators

In section 6.1 we had discussed two principle ways for computing probabilities from
the output of a discriminant, either by modeling the densities of the resulting pro-
jections as normal densities with properly estimated parameters, or by calibrating
the output into posterior label probabilities using a sigmoid function, also with
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Figure 7.5: UML diagram of the machine class hierarchy

properly estimated parameters. Consequently, both methods are re�ected in the
ProbModerator class hierarchy shown in �gure 7.6. In addition, we provide two
proxy moderators which can be used to simply pass the output of a machine as
already being a calibrated probability density or posterior label probability. While
these dummy moderators do not perform any computation, they are used to unify
di�erent approaches (projection followed by probability calibration vs. direct prob-
ability estimation) in higher-order aggregations of machines.

Probability uni�ers

The combination of probability estimates in the OVO binary regime had been dis-
cussed in section 6.2.2. Although we only tested the exact-formula method, the
voting method and Kullback-Leibler-distance minimization have been implemented
for completeness, see �gure 7.7. Additionally, an averaging uni�er was implemented
to be used if parallel models of the same problem are available.

Classi�ers

Finally, we need models integrating the aforementioned ideas of kernel machines,
probability moderators, and probability set uni�ers. These new models were intu-
itively called classi�ers as they actually model the global problem of multi-label
MAP classi�cation, posterior label probability or label-conditional PDF computa-
tion.
Now that we have all the core components available, we can de�ne a structure

as used for modeling the PDFs in an OVO fashion in chapter 6. Figure 7.8 shows
a typical example of this structure. Let us inspect this �gure: We start with a
classi�er concept in the upper left corner, especially a single data stream classi�er.
This concept is specialized by a unifying classi�er, which uni�es probabilities drawn
from an ensemble of other single data stream classi�ers, machine classi�ers in this
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Figure 7.6: UML diagram of the ProbModerator class hierarchy

Figure 7.7: UML diagram of the ProbSetUni�er class hierarchy
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Figure 7.8: UML collaboration diagram showing the typical structure of an OVO

model as used in chapter 6
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case, using the method discussed in section 6.2.2. Each machine classi�ers makes
use of an abstract machine, a kernel machine in this case, and a set of probability
moderator for each problem class it knows about, in this case, a sigmoid class-
posterior probability moderator as discussed in section 6.1.2 is used. In turn, each
kernel machine contains its matrix of support vectors and a corresponding weight
vector, an abstract pointer to a Kernel object, a Gaussian kernel as in (3.44), and a
linear kernel for multiplying the weight vector with the vector of kernel evaluations
as in (3.47).
While the structure may look complicated at �rst, it can be concluded that by �rst

aggregating abstract concepts which are later appropriated, the setup of experiments
can be easily changed and re�ected in the software library. After having solved
the runtime e�ciency problem in sections 7.4.1 and 7.4.2, we have now solved the
problem of expressiveness and re-usability.

7.4.4 Utilities

Technically, everything that is really needed for performing experiments involving
kernelized models is now available. However, there are a number of secondary
functionalities to be implemented, i. e., those required by sections 7.3.3, 7.3.4, and
7.3.5.

Serialization

In section 7.3.3 we called for re-usable, component-based, human-readable storage
of the structure and the parameters of a model, e. g., one like in �gure 7.8. It
was decided a-priori that the structure and parameters should be serialized as an
eXtendible Markup Language (XML) document. XML has a number of advantages,
including, but not limited to, the following:

• It is a markup language designed for storing hierarchically structured data in
text form.

• It is designed to be relatively legible to humans.

• XML is an open standard, developed by the World Wide Web Consortium.

• Due to XML being standardized, software tools and libraries aiding in the
design and implementation of software using XML are available.

• XML documents can be easily checked for correct syntax using a number of
freely available software tools.

• Using an XML schema language such as Document Type De�nition (DTD) or
XML Schema De�nition (XSD), which describe constraints on the structure
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and the content of an XML document, the semantic correctness of an XML
document can be tested, for which free software tools are available, too.

In XML, data are enclosed within tags which describe the type of the data. The
contents of the data type is usually found between the opening and closing tags,
where the contents itself may of course be structured data as well. Re�nements
of the data type are usually given as attributes within the opening tag's braces.
Figure 7.9 is a very simple example of how a structure similar to the one described
in section 7.4.3 is represented in an XML document. The root element of the XML
�le describes a SingleStreamClassi�er, but since SingleStreamClassi�er is only an
abstract base class, the type attribute speci�es that the concrete implementation to
be used is a UnifyingSingleStreamClassi�er. The only other attribute �acc� instructs
us that the template class was instantiated using double-precision �oating point
numbers. Consequently, if aggregations of objects are expressed only as pointers to
objects of an abstract base class (a concept), the actual structure of the software
can be speci�ed in a text document rather than through source code manipulation
by using the C++ polymorphism language feature.
Serialization was implemented using the Simple XML Persistence (SXP) software

library. Figure 7.10 exempli�es the procedure for the Mercer kernels class hierar-
chy. An abstract base class SXPBase de�nes the interface of classes implementing
persistence through SXP. Additional abstract classes, i. e., PolymorphicIPersistObj
and PolymorphicIPersistTemplate, standardize interfaces to be followed by classes
�lling an abstract concept through runtime polymorphism and interfaces for serial-
izable classes with templatized numeric precision. By deriving new software classes
each inheriting from a core math class and the serialization interfaces, specialized
software classes simultaneously handling core math functionality and persistence of
parameters can be accomplished.

Tracing, logging, error handling

Tracing and logging was implemented using the LOG4CXX software library. LOG4-
CXX is a port of Log4J, an extensive logging library implemented in and for the
Java programming language, to the C++ programming language. While only the
core part of the port is complete, missing functionality can be complimented using
tools from the Log4J original.
The machine learning software library was extended with logging functionality

by instrumenting each software class with its own named instance of a logger. The
loggers' names also re�ect the concept group of the instrumented class so that entire
class hierarchies may be targeted directly without having to name each implemen-
tation separately. As an example, the logger for the GaussKernel class is named
�CogSys.Kernels.GaussKernel� showing that the GaussKernel software class belongs
to the concept hierarchy of Kernels in the CogSys software library. Therefore, the
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<?xml version="1.0" encoding="UTF-8"?>

<SingleStreamClassifier acc="double" type="unifying">

<Prior id="testclass">1.0</Prior>

<SingleStreamClassifier acc="double" type="machine" id="0">

<Prior id="testclass">1</Prior>

<Machine acc="double" type="Kernel">

<Bias>-1.99526</Bias>

<OptArray acc="double" columnStride="3" id="supports"

numColumns="4" numRows="3" size="12">

<column id="0">1 2 3</column>

<column id="2">3 6 9</column>

<column id="3">

4 8 -12

</column> <column id="1">2 4 6</column>

</OptArray>

<OptArray acc="double" columnStride="4" id="weights"

numColumns="1" numRows="4" size="4">

<column id="0">1 2 3 4 </column>

</OptArray>

<Kernel acc="double" type="gauss">

<stddeviation>1.375</stddeviation>

</Kernel>

</Machine>

<ProbModerator acc="double" id="testclass" type="gauss">

<mean>0</mean>

<stddeviation>1</stddeviation>

</ProbModerator>

</SingleStreamClassifier>

<ProbSetUnifier acc="double" type="exact"/>

</SingleStreamClassifier>

Figure 7.9: Example of an XML �le used to store the structure and parameters of
a classi�er.
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Figure 7.10: UML diagram of core math kernel classes and their persistence-enabled
derivative classes
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virtual logger name �CogSys.Kernels� will refer to all Kernel class implementations
simultaneously.
Information to be saved are written to the logger, together with a tag denoting

level of detail or severity. Using new convenience functions, tracing of computations
by logging matrices and vectors is possible with close to no e�ort. If tracing of cer-
tain components is limited or disabled, virtually no performance hit is encountered
even though the component in question may be fully instrumented with logging
calls because message preparation and format conversion steps will only take place
after having compared the log level of the message with the desired log level to be
saved. LOG4CXX automatically adds ancillary information such as time, process
and thread identi�ers, or hostname to each message. Messages are kept in internal
data structures before being send to a sink. There exist a number of possible message
sinks including, but not limited to, disk �les in various formats, e. g., plain text or
XML, intermediate network daemons like syslog or Log4J's XML-collector, or SQL
databases. The latter two are especially useful if tasks involving multiple processes
possibly running on separate computers, e. g., on a distributed-memory computer
cluster mentioned in section 7.2.4, are to be traced in a coordinated fashion. Subse-
quently, tracing logs may be examined through Log4J's interactive Chainsaw GUI
program which allows for �ltering the logs according to any desired criterion, e. g.,
messages' time-stamps, log level, or source components.

7.5 Driver applications

Using the components introduced in the previous section, driver applications for
training the parameters of various parts of the PDF model system were developed,
including, but not limited to, programs implementing QP training algorithms for
ε-SVD, OROLS-SVD, and greedy-sparse KFD, and programs for training the pa-
rameters of probability calibration techniques discussed in section 6.1. The library
was also used in cooperation with colleagues to implement algorithms and experi-
mental setups published in [Andelic et al., 2004, 2005, Katz et al., 2006a,b, Andelic
et al., 2006b,a, Katz et al., 2007a, Andelic et al., 2007].

7.5.1 Parallelization

For computational jobs involving many similar tasks, e. g., training KFDs in an OVO

binary regime, a simple-to-use framework for parallelizing these jobs to distributed-
memory computer clusters was created. The idea was to assign each processor one
of the many optimization tasks rather than using multiple processors for a single
optimization task. Using a simple scheduling component which ranks the tasks
by expected runtime, tasks are dynamically assigned to a processor in the cluster
starting with the ones with largest expected runtime in order to heuristically sustain
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a dense packing of the processors allocated to each job.
The MPI standard mentioned in section 7.2.4 was used for communications. The

use of MPI in environments using highly structured data, e. g., the C++ software
library described here, is generally quite cumbersome because the memory layout
of each data structure, i. e., software class, must be described in terms of MPI com-
mands in order to enable MPI to send the data structures in a coordinated fashion.
This becomes even more di�cult when dynamically sized memory, e. g., for matrices
and vectors, or pointers to polymorphic objects are involved.
Fortunately, the proposed software library o�ers a simple solution to this problem.

In section 7.4.4 a method of serializing data objects primarily into persistent �les was
developed. The same methodology can be used by serializing objects into memory
bu�ers which, being simple character string objects, can easily be transfered between
processes of a job using MPI. In essence, a sending process will pack the data into a
memory bu�er using the library's XML layout and send it to the expecting process.
The receiving process is accepting the XML character string into another bu�er
from where the original data can be restored using, again, the library's serialization
engine.
It is clear that this procedure incurs larger runtime latencies compared to using

intrinsic MPI technology. However, the library user is relieved from the burden of
dealing with the MPI standard by simply using the library's familiar serialization
engine. Additionally, as the envisaged usage of this approach is coarse-grained
parallelization, the performance penalty is expected to be negligible.

7.6 Integration in HTK

As stated in section 7.3.5, HTK was to be adapted to accept PDF models other
than GMMs. HTK itself is unable to handle PDF models like the ones discussed in
chapters 5 and 6 directly. Consequently, there were two possible options: Adding
the functionality directly, making it a part of HTK, or de�ning and implementing
interfaces in HTK in order to facilitate the use of arbitrary PDF models.
The latter approach was pursued because it is the more general one. HTK was

adapted to accept two additional directives in the global section of an HMM �le,
i. e., the keyword EXTPROBLIB de�ning the name or path of an external pro-
gram library to be used, and the keyword EXTPROBCONF accepting a free-from
character string to be passed to the external program library as an argument at
initialization time.
The external program library, called a Dynamically Linkable Library (DLL) on

Microsoft Windows or a Dynamically Shared Object (DSO) on most Unix systems,
is required to provide three functions with pre-de�ned signature, i. e., one function
for initializing the program library using the aforementioned initialization string,
one function for coordination shutdown, and the central function computing a PDF
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value given a problem class and a feature vector. Any program library having these
basic properties can be used as a plug-in PDF source in HTK, which provides great
�exibility in the choice of the PDF models. Here, the external program library was
constructed using components introduced in section 7.4.

7.7 Benchmarks and comparison

The development of this software library had been pushed by preliminary experi-
ments implemented and run in MATLAB, a general-purpose mathematical program-
ming environment. Even after careful pro�ling and tuning, the initial MATLAB
implementation of the greedy-sparse KFD fell way behind our expectations in terms
of runtime performance, which had me develop the proposed alternative in C++.
Two distinct causes of the bad runtime performance of the initial MATLAB im-

plementation had been isolated: Slow computation of kernel function values and
the fact that it was impossible to properly make use of algorithmic advantages like
e�cient rank-updates of matrices, in MATLAB.
While the C++ software library was being developed, exemplary experiments

were conducted to verify that the assumption of being able to accelerate computa-
tions using C++ and high-performance libraries, i. e., those mentioned in section
7.4.1, was actually valid. The experiments are meant to be conceptual rather than
complete, but the presented material will give striking evidence that our assump-
tions were correct.
First, the Mercer kernel hierarchy of software classes was developed and imple-

mented, as it was fairly easy and a prerequisite to implementing training methods
like greedy-sparse KFD. Table 7.1 compares the performance of a pro�led and tuned
MATLAB implementation of the Gaussian kernel with implementations in the pro-
posed C++ library, which is also compared in terms of the external performance
library employed. In the experiment, two sets of 10, 000 random 40-dimensional
vector were kernelized with each other, resulting in a total of 100, 000, 000 kernel
values to be computed. Each set of sample vectors was stored in 40× 10, 000 matri-
ces; all necessary memory was pre-allocated. The runtime for allocating and freeing
memory as well as for loading the vectors from �les was not included, resulting in
the runtimes for bare-kernel computations. The C++ software library was compiled
using full compiler optimization, which should, however, only in�uence the results
obtained without external computational libraries. MATLAB was using the MKL

implementation of the BLAS. All experiments were carried out on a PC containing
a 2.5 GHz Pentium-4 CPU.
There are several conclusion to be drawn. The most striking one is that MAT-

LAB may be well-suited for small-scale or prototypical applications but not for
serious large-scale computations, at least if they involve Gaussian kernels. MAT-
LAB non-performance computing Gaussian kernels may be negligible if additional
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Language Ext. Libs Single Precision Double Precision
Abs. Time Rel. Penalty Abs. Time Rel. Penalty

MATLAB MKL 550s 2955% 579s 2085%

C++
none 32.9s 83% 47.9s 81%
MKL 27.2s 51% 40.0s 51%
IPP 18.0s � 26.5s �

Table 7.1: Runtime comparison for di�erent implementations of the Gaussian kernel,
computing 100,000,000 kernel evaluations

computations of an algorithm dominate the evaluation of Gaussian kernels, but
only if these additional computations may be carried out e�ciently. However, if a
so-trained model is to be applied during testing, the evaluation of kernel functions
vastly dominates computation requirements, clearly prohibiting the use of MAT-
LAB.
Another important point is that the runtime of the C++ software library bene�ts

from limiting computations to single precision, if numerically possible. Regardless
of the use of external libraries, the C++ software library shows about 30% reduction
of runtime if using single precision only. MATLAB, however, cannot make use of
single precision computations � the reduction in runtime is a mere 5%.
Lastly, if we limit our consideration to the C++ software library, we can exper-

imentally validate our claim from section 7.4.1 that the use of external numerical
libraries would greatly reduce runtime requirements. From the table it can be seen
that compared to a plain-C++ implementation, the use of a tuned BLAS implemen-
tation results in a performance boost of roughly 15%, while the use of an even more
sophisticated library (IPP) yields an acceleration of approximately 46%.
As a second example benchmark, the MATLAB implementation of the greedy-

sparse KFD was compared against a C++ implementation using the proposed soft-
ware library and the MKL-incarnation of the BLAS. Both implementations followed
the procedure discussed in section 3.5.1. It turns out that the C++ implementa-
tion expressing the algorithm directly using appropriate functions from the BLAS

runs about 3.5 times faster than the competing MATLAB implementation. As we
already knew about the slowness of MATLAB computing Gaussian kernels, these
times were not taken into account. Tracing the use of BLAS routines by MATLAB,
it turned out that MATLAB had not taken advantage of the structural advantages
of the greedy-sparse KFD training algorithm. Especially a rank-one update of a
symmetric matrix, could not be expressed as such in MATLAB which had, instead,
deduced a higher-order rank update of a general matrix, resulting in a rather large
performance loss.
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In this thesis we have investigated how nonparametric probability density functions
can be constructed using learning machines based on the structural risk minimiza-
tion approach. When estimating the parameters of a learning machine, structural
risk minimization achieves better generalization ability than conventional empiri-
cal risk minimization by minimizing a bound on the expected risk on unobserved
samples, especially if the training sample size if relatively small. To this end, a
regularization functional is added to the learning machine's cost function in order
to weigh empirical risk (error on training data) against capacity of the learning
machine.
Our focus was the automatic speech recognition learning problem, where us-

ing prior knowledge the learning problem is split into language modeling, pho-
netic modeling, and acoustic modeling. Sub-word phonetic units are conventionally
represented by Hidden-Markov-Models, i. e., �nite state automata with unobserv-
able states emitting observable symbols. Usually, parametric Gaussian Mixture
Models (GMMs) trained using empirical risk minimization are used to model the
Hidden Markov Model (HMM)-states' emission probability density functions (PDFs).
Our ultimate aim was replacing GMMs with PDF models trained using Structural
Risk Minimization (SRM) in order to obtain better performance of automatic speech
recognition (ASR) systems if training data is limited.
After a thorough introduction of SRM in chapter 2, of pattern discrimination

machines employing SRM in chapter 3, and the ASR learning problem in chapter 4,
we investigated methods constructing sparse kernel PDFs using SRM-based regression
of the empirical cumulative distribution function (ECDF) in chapter 5. We showed
that previous approaches su�ered from large memory requirements at training time,
rendering the methods impossible to apply to real-world problems. To overcome
this problem, we developed an algorithm where memory requirements scale with the
size of the (sparse) solution rather than with the size of the training problem. This
reduction of memory requirements was achieved by applying a novel thin update
of the orthogonal decomposition of the training formulation in a forward sample-
selection procedure. Initial experiments on relatively low-dimensional problems
indicated that the new training algorithm can construct sparse kernel PDFs with
similar accuracy as non-sparse optimal Parzen windows PDFs. However, it was found
that the ECDF regression approach e�ectively cannot be applied to high-dimensional
problems such as acoustic modeling in ASR as the complexity of the ECDF in high
dimensions becomes prohibitively large.
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In chapter 6 we followed our idea that PDFs can be constructed from binarily
discriminating functions and Bayes' rule. We collected methods for turning the
outputs of the discriminants into probability measures and for combining these
pairwise probabilities measures into multi-class probability measures in the one-vs-
one binary regime. After a suitable setting of samples and problem classes had been
de�ned, we applied probabilistically interpreted Support Vector Machines (SVMs)
and Kernel Fisher Discriminants (KFDs) to the Resource Management (RM1) speech
recognition task, where the limitation of training data was simulated by ten-fold
sub-sampling of the complete training data. Our prototypical system indicated that
a monophone HMM system bene�ts greatly from applying the proposed discriminant-
based PDF models by outperforming conventional GMM-based emission PDFs in all
cases. We found that SVM-based PDFs continuously perform better than KFD-based
PDFs and concluded that the greedy-sparse KFD training procedure requires further
investigation and improvements in complex scenarios like ASR on large databases.
While our exemplary experiments showed very good results, there remain a num-

ber of open questions. For the proposed PDFsetup to be a truly viable alternative to
GMMs our method must be extended to handle context-dependent phonetic units,
e. g., triphones. As the presently used one-vs.-one (OVO) or one-vs.-rest (OVR)
binary regimes are inadequate for this, method like error-correcting output codes
and arbitrary code matrices have been identi�ed from the literature and proposed
for investigation. Additionally, adaptation of speaker-independent acoustic mod-
els to speci�c speakers or acoustic conditions is commonly used to improve speech
recognition accuracy. For our proposed discriminant-based PDF models, adapta-
tion techniques such as incremental learning and un-learning should, therefore, be
studied.
Finally, we have explored techniques to implement the proposed systems in soft-

ware in chapter 7. We have identi�ed theoretical performance bottlenecks associ-
ated with hardware or software limitations. We proposed a novel object-oriented
software component library which gathers similar tasks as specializations of abstract
concepts and represents them as a hierarchy of derived software classes. A primary
focus of attention was put on best runtime e�ciency. To this end, we identi�ed stan-
dardized BLAS and LAPACK software packages as solutions, because specialized
implementations appreciating speci�c properties of certain CPUs are available. Ex-
periments showed that BLAS/LAPACK based implementations signi�cantly beat
traditionally coded implementations both in programming and in runtime e�ciency.
The library is augmented with a set of utility functionality like component-based
object serialization, transparent exception handling, and e�cient event tracing and
logging, which aids the user in exploring a learning task rather than a software
engineering task.
Summarizing what has been said in this chapter, we can conclude that a fair

amount of progress has been made with respect to applying SRM-based PDF models
to a large-scale problem like automatic speech recognition. However, it was disap-
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pointing to �nd a promising method like SRM-based sparse kernel PDF construction
(chapter 5) inapplicable to high-dimensional problems like ASR. On the other hand,
it was surprising to �nd a conceptually simple model like the discriminant-based
PDFs provide such good results in chapter 6, even though the system looks complex
in practice.
We conjecture that the philosophers' stone with respect to SRM-based PDF esti-

mation has not yet been found. . .
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