
Sparse Nonlinear Discriminants

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr. -Ing.)

von Dipl. -Ing. Edin Andelić

geb. am 29. Januar 1977 in Hagen

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik

der Otto-von-Guericke-Universität-Magdeburg

Gutachter: Prof. Dr. Andreas Wendemuth (Universität Magdeburg)

Prof. Dr. Heiko Neumann (Universität Ulm)

Prof. Dr. Abbas Omar (Universität Magdeburg)

Promotionskolloquium am 30. November 2007

Dedicated to
Yvonne

Zusammenfassung

Diese Dissertation beschäftigt sich mit Trainingsalgorithmen für das maschinelle

Lernen und deren Anwendungen für die Klassifikation, die Regression und

die automatische Spracherkennung. Es wird im Speziellen das überwachte

Lernen betrachtet, das auch als Lernen aus Beispielen bezeichnet wird.

Anhand einer kurzen Einführung in die statistische Lerntheorie wird gezeigt,

dass sich das überwachte Lernen als ein Funktionsschätzungsproblem for-

mulieren lässt, bei dem sich die Klasse der linearen Funktionen als beson-

ders geeignet für die Generalisierungsfähigkeit der Lösung erweist. Die Leis-

tungsfähigkeit der linearen Funktionen wird zusätzlich durch die Anwen-

dung sogenannter Kernfunktionen gesteigert, die es in effektiver Weise er-

lauben bestimmte Algorithmen in nichtlineare Räume zu transformieren.

Ein wichtiger Vorteil von Kernfunktionen ist, dass die vom gegebenen Algo-

rithmus geschätzten Funktionen in diesem neuen nichtlinearen Raum weit-

erhin linear sind, so dass die theoretischen Vorteile linearer Funktionen in

Bezug auf die Generalisierungsfähigkeit erhalten bleiben. Ein solcher Al-

gorithmus, der sich mit Kernfunktionen nichtlinear transformieren lässt, ist

die Diskriminante. Es werden eine Reihe ordnungsrekursiver Algorithmen

hergeleitet, die es erlauben, mit vertretbarem Aufwand die durch Kernfunk-

tionen induzierte nichtlineare Version der Diskriminante zu berechnen. Die

Algorithmen basieren einerseits auf der Tatsache, dass sich das Diskriminan-

iii

iv

tenproblem als äquivalent zu einer kleinsten-Quadrate-Regression erweist.

Andererseits zeigt sich, dass sich die Lösung stark ausdünnen lässt, in dem

Sinne dass nur ein kleiner Teil der Trainingsdaten für die Lösung ausgewählt

wird. Dies reduziert sowohl den Aufwand beim Training als auch beim Testen

erheblich.

Darüberhinaus wird die Tatsache genutzt, dass sich die Ausgaben der

Diskriminanten probabilistisch interpretieren lassen. Die so gewonnenen

Wahrscheinlichkeiten werden als Emissionswahrscheinlichkeiten für Hidden-

Markov-Modelle verwendet und innerhalb eines automatischen Spracherken-

ners getestet. Schließlich werden die vorgestellten Algorithmen für Klassifikations-

und Regressionsaufgaben in einer großen Sammlung von Experimenten auf

wohlbekannten Datenbasen ausgewertet und mit anderen bewährten Lernal-

gorithmen verglichen.

Abstract

This thesis considers training algorithms for machine learning and their appli-

cations for classification, regression and automatic speech recognition. Par-

ticularly, supervised learning, which is also called learning from samples, is

considered.

Starting with a short introduction into statistical learning theory it is

shown, that supervised learning can be formulated as a function estimation

problem where the class of linear functions turns out to be an appropriate

choice for obtaining solutions with high generalization ability. The perfor-

mance of linear functions may then be enhanced further by the use of the

so-called kernel functions, which allow effectively to transform certain algo-

rithms into nonlinear spaces. An important advantage of kernel functions

is that the estimated functions are still linear in the new nonlinear space

such that the theoretical benefits of linear functions regarding the general-

ization ability are preserved. The discriminant approach turns out to be

appropriate for being transformed into nonlinear spaces using kernel func-

tions. We propose some order-recursive algorithms which allow to estimate a

nonlinear kernel-induced version of the discriminant with a reasonable cost.

These algorithms are based on two facts. First, the discriminant approach

is equivalent to a certain least-squares regression. Second, the solution can

be sparsified in the sense that only a small fraction of the training points is

v

vi

used for the solution such that the cost for training and testing is remarkably

reduced.

Furthermore, we use the fact that the outputs of the discriminants may

be interpreted probabilistically. The resulting probabilities are used as emis-

sion probabilities for Hidden-Markov-Models and tested within an automatic

speech recognizer. Finally, the proposed algorithms are evaluated for classi-

fication and regression tasks using a large collection of well-known databases

and the results are compared with other state-of-the-art learning algorithms.

Danksagung

Ich möchte meinen tief empfundenen Dank all meinen ehemaligen Arbeitskol-

legen am Lehrstuhl Kognitive Systeme in Magdeburg zum Ausdruck bringen.

Es war eine wunderbare Zeit, die ich nie vergessen werde. Ich hoffe, ihr

empfindet das zumindest ähnlich. Meinem Promotionsbetreuer Prof. Wen-

demuth danke ich allen voran. Andreas, danke für Dein Vertrauen und Deine

Unterstützung!

Desweiteren bin ich dem Land Sachsen-Anhalt zu großem Dank verpflichtet.

Diese Arbeit wurde durch ein Promotionsstipendium des Landes Sachsen-

Anhalt unterstützt.

Last but not least, möchte ich meiner Familie und meiner geliebten Fre-

undin Yvonne danken. Ohne ihre Unterstützung, vor allem in schwierigen

Situationen, wäre diese Arbeit nicht möglich gewesen.

vii

Contents

Zusammenfassung iii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Supervised Learning . 1

1.2 Problem Formulation and Outline of the Thesis 2

1.3 Motivation . 4

2 Mathematical Background 6

2.1 An Induction Principle . 6

2.2 Consistency . 8

2.3 Capacity Measures and Structural Risk Minimization 11

2.4 Support Vector Machines . 13

2.4.1 The Linearly Separable Case 13

2.4.2 The Linearly Inseparable Case 18

2.5 Kernel Functions . 20

2.5.1 The Kernel Trick . 21

2.5.2 Kernel-Induced Feature Spaces 24

viii

Contents ix

2.6 Summary . 28

3 Discriminants 29

3.1 Linear Discriminants . 29

3.2 Equivalence to Least-Squares 34

3.3 Kernel-Based Discriminants 36

3.3.1 Regularization . 39

3.4 Sparse Approximations . 40

3.4.1 Nonlinear Pseudodiscriminants 43

3.4.2 Orthogonal Least Squares 52

3.4.3 Recursive Least Squares 56

3.5 Summary . 62

4 Application of Nonlinear Discriminants for Automatic Speech

Recognition 64

4.1 Components of ASR . 65

4.1.1 Sub-word modeling with HMMs 68

4.2 Using Nonlinear Discriminants for ASR 72

4.2.1 Probabilistic Outputs 72

4.3 Implementation . 74

4.4 Experiments . 74

4.4.1 Experimental Setup . 74

4.4.2 Results . 75

4.5 Summary . 76

5 Experiments for Classification and Regression 78

5.1 Classification . 78

5.1.1 Optical Character Recognition 79

5.1.2 Other Benchmarks . 81

Contents x

5.2 Regression . 82

5.3 Summary . 86

6 Conclusion and Future Work 88

Declaration 92

Persönlicher Werdegang 93

List of Figures

2.1 Example of overfitting: The dashed function perfectly de-

scribes the given data points but is very likely to overfit whereas

the linear function is more likely to generalize to unseen samples. 9

2.2 Illustration of consistency: By minimizing the training error

we decrease the empirical risk. At the same time the up-

per bound on the confidence of our function class gets worse.

Thus, the goal is to find an optimal trade-off between the com-

plexity and the empirical risk, i. e. to minimize expected risk. 14

2.3 Margins and hyperplanes: A linear classifier is defined by the

hyperplane’s (solid line) normal vector w and the bias b. Each

side of the hyperplane correspond to one class. The margin is

the minimal distance between any training instance and the

hyperplane, i. e. the distance between the solid and the dotted

lines. 16

2.4 The simple XOR-problem: A correct classification of all out-

comes of the binary XOR-function can not be achieved by

linear functions. 21

xi

List of Figures xii

2.5 The data are mapped by a nonlinear mapping into the feature

space and the problem may become linearly separable when

we choose an appropriate nonlinear map. The linear directions

in the new feature space correspond to nonlinear ones in the

original input space. 22

3.1 Geometrical interpretation of the LD approach. The two classes

(black and white circles) are projected (dashed lines) onto the

discriminating direction w such that the variances σ± within

the classes are minimized and the means µ± of the two pro-

jected classes are maximally separated. 31

3.2 Comparison of the decision boundaries obtained by the full

KFD and our proposed approximation (NPD) on Ripley’s dataset.

The training samples are also shown and the ten selected basis

centers used by the NPD are encircled. 50

4.1 Principle components of an ASR system 65

4.2 Feature extraction from a speech signal. Every ‘hop-size’ (or

shift-size) seconds a vector of features is computed from the

speech samples in a window of length ‘window-size’. 66

4.3 Monophone, biphone, and triphone HMMs for the English

word “bat” [b ae t]. ‘sil’ stands for silence at the beginning

and end of the utterance, which is modeled as a ‘phone’, too. . 71

5.1 Decision boundaries on the two spirals classification problem

using the NPD with different number of basis centers. 80

List of Figures xiii

5.2 Example fit to a noisy sinc function for OROLS using 50 ran-

domly generated points for training and testing. The standard

deviation of the Gaussian noise is 0.1. The Root Mean Square

Error (RMSE) is 0.0269 in this case. 9 points are selected as

basis centers. 84

5.3 RMSE of fits to a noisy sinc function w. r. t. different training

set sizes using OROLS. 1000 randomly generated points are

used for testing. The standard deviation of the Gaussian noise

is 0.1 in all runs. The results are averaged over 100 runs for

each size. 85

5.4 RMSE of fits to a noisy sinc function w. r. t. different noise

levels using OROLS. 100 / 1000 randomly generated points

are used for training / testing. The results are averaged over

100 runs for each noise level. 85

List of Tables

4.1 Extract from a dictionary . 68

4.2 Results on the RM1 Feb’89 test set. 76

5.1 Datasets used for the classification experiments. 81

5.2 Test errors in % on 5 benchmark datasets. The one-vs-rest

approach is used. Average fraction of selected basis centers in

% within parentheses. 82

5.3 Estimation of generalization errors on 13 benchmark data sets

in % with standard deviations and sparsity levels in % within

brackets (best result in bold face, second emphasized). 83

5.4 Average RMSE for the sinc experiment using the SVM and

OROLS. 50 / 1000 randomly generated points are used for

training / testing. The standard deviation of the Gaussian

noise is 0.1 in all runs. The results are averaged over 100 runs. 84

5.5 Mean Square Error (MSE) with standard deviations for the

Boston and Abalone dataset using different methods. 86

xiv

Chapter 1

Introduction

This chapter describes the contributions of this thesis and sketches its organi-

zation. Furthermore, for readers who are not familiar with machine learning

this chapter provides a very brief and rough overview of the most important

motivations and central questions referring to this field. Especially, super-

vised learning is discussed.

1.1 Supervised Learning

The topic of this thesis is the development and application of training al-

gorithms for supervised learning which is often referred to as learning from

examples. In supervised learning the training set is always labeled with

known targets. There are two settings for a supervised learning scenario,

namely classification and regression. In case of classification the labels have

discrete values indicating the class the corresponding training input belongs

to. Consider for instance Optical Character Recognition (OCR). In OCR

the problem setting is as follows. The training set contains pictures of digits

or characters hand-written by various writers. These pictures may be rep-

1

1.2. Problem Formulation and Outline of the Thesis 2

resented by vectors of fixed length where each entry contains e. g. the grey

scale of the corresponding pixel. The labeling of the inputs is usually done

by hand and indicates which class each input belongs to, i. e. in case of OCR

which digit or character is represented by each picture. Note the difference

between the inputs which could be raw data (e. g. pixels representing a digit)

and the desired class (e. g. ”2”) which is symbolic. Other symbolic classes

may be defined on the same raw data, such as ”even” or ”below 5”. In most

cases it is assumed that the labels reflect the true input-output relation. The

machine learning algorithm is trained using this set of labeled inputs. The

goal is that the trained model generalizes well. This means in the OCR case

that a digit or character which is not included in the training set or is even

written by a different writer should be classified correctly by the model.

For regression the labels are continuously valued. A basic example for

this setting is fitting a real-valued function to some observed data points

which are usually corrupted by noise. In this example the problem of gen-

eralization becomes very apparent. Obviously, it is always possible to find a

very complicated function that perfectly describes the data. However, it is

very unlikely that such a function will perform well on unseen data. Hence,

for good generalization it is crucial how complicated the class is from which

one chooses the function. In the following chapter it will be shown how a

function class can be characterized.

1.2 Problem Formulation and Outline of the

Thesis

The remainder of this thesis is organized as follows. Chapter 2 describes

the mathematical framework for machine learning and rewiews the basic

1.2. Problem Formulation and Outline of the Thesis 3

mathematical definitions and theorems from learning theory regarding the

following questions:

• What do we mean when we say learning?

• When is learning possible?

• What does generalization mean?

• How can we achieve a good generalization ability?

Furthermore, a famous state-of-the-art machine learning algorithm - the Sup-

port Vector Machine (SVM) is presented. SVMs are directly derived from

the insights of statistical learning theory. Finally, a special class of learn-

ing machines, namely kernel-machines are considered. They are based on

so-called kernel-functions which allow easily to turn linear algorithms like

the SVM into nonlinear ones. The most important properties and advan-

tages of kernel-functions are discussed. A particularly important advantage

of kernel-based algorithms is that the non-linearities are induced implicitly

by the kernel functions. Thus, this reduces the problem of finding a pos-

sibly very complicated and high-dimensional nonlinear function to tuning a

single parameter of one function. This is very much in contrast to e. g. neu-

ral networks where the nonlinear directions have to be designed explicitly.

However, the drawback of kernel-based algorithms is that in most cases a

quadratic matrix of the same dimension like the number of training samples

is involved during the training. This is clearly not reasonable especially for

large datasets and there is a need for efficient kernel-based training algo-

rithms. There has been a large body of work related to efficient training

of SVMs since it became apparent that SVMs perform surprisingly well in

combination with kernel functions. Another promising approach is the so-

called discriminant. Discriminants may be easily kernelized like SVMs and

1.3. Motivation 4

perform very competitively on various tasks. The development of training

algorithms for discriminants with a reasonable cost is the central topic of

this thesis. In Chapter 3 linear and nonlinear discriminants are considered.

Discriminants are originally used for classification where the linear discrim-

inant finds a direction which in some sense optimally separates inputs of

one class from the other. It is reviewed how linear discriminants may be

turned into nonlinear ones using kernel-functions in order to obtain more

flexible classification and regression models. Furthermore, it is shown that

this discriminative approach is closely related to a least-squares regression

onto the labels and using this insight a variety of order-recursive algorithms

for nonlinear discriminants is presented. Chapter 4 summarizes Automatic

Speech Recognition (ASR) and shows how the probabilistically interpreted

outputs of nonlinear discriminants may be applied for ASR. In Chapter 5 a

large collection of experimental results for classification and regression using

the developed algorithms is presented. Finally, concluding remarks and an

outlook for future work is given in chapter 6.

1.3 Motivation

During the last decades, very successful research and development in infor-

mation and computer technology lead to the ability to store and process

huge amounts of data. This progress was and is still very fruitful for many

research fields. To mention just a few examples, astrophysics, meteorology

and human genome research benefit greatly from state-of-the-art computer

technology. Furthermore, the internet is probably the most famous example

of a vast repository of all kinds of information which changes constantly and

grows at an exponential rate. However, the question is how to extract useful

1.3. Motivation 5

information from such a huge amount of data and how to derive rules that

explain the characteristics of these data in order to gain a deeper insight into

the underlying processes.

One option could be to develop a model that e. g. physically describes

how the data are generated. This approach works well in restricted cases

where a-priori knowledge is available. However, the problem is that a lot of

phenomena not only in research but also in one’s everyday life are very hard

and sometimes impossible to be modeled reasonably. Consider for instance

human genome research. It is not fully understood yet how the interplay be-

tween the human genes looks like and how the genes code useful information.

Very complex models exist which only partially describe the situation.

At this point, machine learning which is a subdiscipline of artificial in-

telligence comes into play. Machines that learn are algorithmic systems that

are trained instead of engineered. The machine is faced with a set of ob-

servations - the training set - which can be e. g. measurements carried out

in some experiments. The task of every machine learning algorithm is on

the one hand to explain the relations between the observations themselves or

between the observations and some known or desired targets. On the other

hand such a model should not only explain the observed data used for the

training but also predict certain relations for unseen inputs that lie in the

same domain. Speaking more mathematically, the task is to find a function

that lies in a certain space and predicts the relations related to unseen inputs

as correctly as possible. This property is called generalization and plays the

central role in machine learning research. The machine learning approach

is inductive because it relies exclusively on the observed data and does not

assume any physically or elsewise motivated model. Thus, one may say that

machine learning is about letting the data speak.

Chapter 2

Mathematical Background

This chapter summarizes the most important insights from statistical learn-

ing theory which is the mathematical basis for machine learning. It is dis-

cussed by means of statistical learning theory what machine learning aims

at and what are the necessary and sufficient condition for learning. Further-

more, kernel functions are discussed. The use of kernel functions is an elegant

way to formulate linear learning algorithms in nonlinear spaces and hence to

overcome the limited performance of linear functions.

2.1 An Induction Principle

As mentioned in the previous chapter the topic of this thesis is supervised

learning. In a supervised learning scenario one is faced with empirical obser-

vations

{(x1, y1), . . . , (xM , yM)} ∈ X × Y . (2.1)

In most cases the domain X ∈ R
d is considered as a vector space where

d denotes the dimension of the inputs. Note, however, that X needs not

necessarily be a vector space. X is only required to be a set. Y denotes the

6

2.1. An Induction Principle 7

domain from which the labels are sampled. Throughout this thesis a set of

given inputs is ordered in matrix form and denoted as X = {x1, . . . ,xM}
where M is the number of given training instances. A label set is given in

vector form and denoted as y = {y1, . . . , yM}T which is contained in R for

regression and in {1,−1}M for classification.

In statistical learning theory it is always assumed that the training data

are sampled independently and identically from an unknown but fixed dis-

tribution P on the set Z = X × Y . This kind of data is often called in-

dependently and identically distributed (iid). Assuming for a while that we

could compute the quantities P (y|x) the learning problem could be stated

as finding a function f that belongs to a certain function class F such that

the risk

R(f) =

∫

X×Y

l(x, y, f(x)) dP (x, y) (2.2)

is minimized. f is a function the learning machine can implement, i. e. the

function by which the predictions for each data sample are made, and l is a

non-negative loss function which is a measure for the error of the predictions.

Since we assumed the knowledge of P (y|x) the learning problem could easily

be solved simply by finding a function f ∗ for which the a posteriori probability

reaches a maximum, i. e. ,

f ∗(x) = argmax
y∈Y

P (y|x) (2.3)

where P (y|x) may be computed by Bayes’ law

P (y|x) =
P (x|y)P (y)

P (x)
=
P (x, y)

P (x)
. (2.4)

Unfortunately, only in constructed or trivial cases we have access to P . In

general we do not know anything about P . What we do know is the training

data. Thus, we may resort to what is called an induction principle. In-

stead of minimizing the true risk (2.2) we may perform an Empirical Risk

2.2. Consistency 8

Minimization (ERM):

Remp(f) =
M
∑

i=1

l(xi, yi, f(xi)). (2.5)

The law of large numbers tells us that the empirical risk converges to the true

risk as the number of instances M goes to infinity. Moreover, the convergence

in probability has an exponential rate which can be seen in the following

theorem [Hoeffding, 1963].

Theorem 1 Let ζi, i ∈ {1, . . . ,M} be M independent samples of a bounded

random variable ζ, with values in the interval [a, b]. Then for any ε > 0,

P

{∣

∣

∣

∣

∣

1

M

M
∑

i=1

ζi −E(ζ)

∣

∣

∣

∣

∣

}

≤ exp

(

− 2Mε2

(b− a)2

)

. (2.6)

2.2 Consistency

However, theorem 1 does not imply that the minimum of the empirical risk

converges to the minimum of the true risk in probability for all functions in

F . This is the question of consistency which plays a central role in statistical

learning theory. If we denote the function that minimizes the empirical risk

on the basis of a given training set X by fM 1 then the ERM is said to be

consistent if

|Remp(f
M)−R(fM)| →

M→∞
0 (2.7)

for all functions in F .

In order to see that ERM alone is not consistent in general and thus does

not lead to successful learning, consider the illustrative regression example in

Fig. 2.1. The noisy training data may be perfectly described by a polynomial

1Note that fM needs not to be unique.

2.2. Consistency 9

of high degree for instance. The empirical risk is zero but the polynomial may

take arbitrary values in regions that do not belong to the training set. This

phenomenon is often referred to as overfitting. In contrast the linear function

exhibits residual errors but it is on the other hand more predictive with

respect to unseen samples. For classification one can find a similar example.

If we do not restrict the function class F and allow arbitrary functions to be

implemented by the learning machine a possible choice would be a function

that simply memorizes the data, i. e. , a function that takes values yi for

x = xi and 1 otherwise. Again the empirical risk on the training data is

zero but the learning machine will almost never predict an unseen sample

correctly. Thus, if we do not restrict the function class we always can find

infinitely many functions which minimize the empirical risk. It turns out that

Figure 2.1: Example of overfitting: The dashed function perfectly describes

the given data points but is very likely to overfit whereas the linear function

is more likely to generalize to unseen samples.

2.2. Consistency 10

successful learning crucially depends on a trade-off between the complexity

of F and the minimization of the empirical risk. Thus, what we need is

a generalized version for the law of large numbers, i. e , a condition that

guarantees that the empirical risk consistently converges to the actual risk

for all functions f ∈ F . Without going too much into detail we state a key

theorem [Vapnik and Chervonenkis, 1991] from statistical learning theory

specifying the condition for consistency of ERM.

Theorem 2 One-sided uniform convergence in probability,

lim
M→∞

P

{

sup
f∈F

(R(f)−Remp(f) > ε)

}

= 0, (2.8)

for all ε > 0 is a necessary and sufficient condition for nontrivial consistency

of ERM for a given function class F . 2

Theorem 2 tells us that the convergence of the worst case over all functions

f ∈ F is necessary and sufficient for nontrivial consistency. Consistency is

said to be trivial if we restrict the function class too much. This can be seen

as the converse of overfitting and is often referred to as underfitting. For

instance, if we allow only one function to be implemented by the learning

machine then ERM would be trivially consistent since R(f) = Remp(f) =

const.

Theorem 2 whilst being theoretically very appealing does not provide us

with a measure for the complexity of the function class leading to computable

bounds for generalization. In the following we will outline possibilities for

doing so.

2.3. Capacity Measures and Structural Risk Minimization 11

2.3 Capacity Measures and Structural Risk

Minimization

So far, we have seen that doing ERM alone is no guarantee for successful

learning and that consistency is a crucial property of a learning machine.

We will now concentrate on the question if there are any principles that

allow us to choose only such function classes for learning that fulfill Theo-

rem 2? It turns out that the complexity of the functions in the class F is

crucial for consistency and hence for fulfilling Theorem 2. But what does

complexity mean and how can we control the complexity of a function class?

Roughly speaking, the complexity of a function class is determined by the

number of different possible outcomes when choosing functions from this

class. There are a number of different complexity measures for functions

classes. Among others, popular measures are covering numbers, annealed

entropy, Vapnik Chervonenkis entropy (VC entropy) and the VC dimen-

sion, or the Rademacher complexity [Vapnik, 1998]. In the following we will

present the notion of the VC dimension in detail and quantify its implications

for the so called Structural Risk Minimization (SRM) which motivated the

introduction of a very famous learning machine, namely the Support Vector

Machine (SVM) [Cortes and Vapnik, 1995] [Schölkopf and Smola, 2002].

The VC dimension for a function class F is defined as the maximum

number of training points that can be shattered (i. e. separated) by F . If the

VC dimension is h, then there exists at least one set of h points that can be

shattered by the corresponding function class. But note that in general it will

not be true that every set of h points can be shattered. The VC dimension

can be used to bound the left-hand side in Theorem 2, i. e.

P

{

sup
f∈F

(R(f)− Remp(f) > ε)

}

≤ H(F ,M, ε), (2.9)

2.3. Capacity Measures and Structural Risk Minimization 12

where H is a function that depends on the complexity of the function class

F , the size of the training set M and the chosen precision ε. For a random

draw of the training sample Z = X × Y we can easily turn this kind of

bounds into the following form. With probability 1− δ, the actual risk can

be bounded as

R(f) ≤ Remp(f,Z) + H̃(F ,M, δ). (2.10)

The function H̃ is a penalty term which measures the degree of uncertainty.

Independently of our chosen capacity measure, this penalty term usually

increases monotonically with a higher precision 1−δ and a higher complexity

of F and decreases monotonically with a higher number of training samples

M .

It can be seen from the bound above that successful learning can be

achieved by finding a function that produces a small empirical error and at

the same time keeps the penalty term H̃ small. However, it should be noted

that the bound (2.10) only holds for learning machines with finite function

classes. For instance, learning machines like k-nearest neighbors which can

implement function classes with infinite VC dimension work well in practice.

Thus, the bound (2.10) is only a sufficient and not a necessary condition for

nontrivial consistency.

When we use the 0/1-loss

l(f(x), y) =

0 if f(x) = y

1 otherwise

, (2.11)

for the empirical risk Remp, then for the case of two-class classification prob-

lems the VC theory provides us with the following bound [Vapnik and Cher-

vonenkis, 1974].

2.4. Support Vector Machines 13

Theorem 3 Let h denote the finite VC dimension of the function class F .

For all δ > 0 and f ∈ F the inequality bounding the risk

R(f) ≤ Remp(f,Z) +

√

h(ln(2M
h

) + 1)− ln(δ
4
)

M
(2.12)

holds with probability of at least 1 − δ for M > h over the random draw of

the sample Z. 2

Structural Risk Minimization (SRM) [Cortes and Vapnik, 1995] is based

on these insights. The penalty term in (2.10) depends on the capacity of

the chosen class of functions, whereas the empirical risk and the actual risk

depend on one particular realization of this function class. The goal of SRM

is to choose a subset of the function class, such that the risk bound for that

subset is minimized. To this end, we must introduce some structure into the

entire class of functions the learning machine can implement by dividing this

class into nested subsets F1 ⊆ . . . ⊆ Fn with non-decreasing VC dimensions

h1 ≤ . . . hn. Now we can proceed as follows. For each subset, the empirical

risk is minimized by choosing the optimal realization fi of the corresponding

subset Fi. At the end we choose that trained machine whose sum of empirical

risk and VC confidence is minimal. This procedure is illustrated in Fig. 2.2.

In the following we shall present a famous practical implementation of this

principle.

2.4 Support Vector Machines

2.4.1 The Linearly Separable Case

We consider the two-class classification problem with some labeled training

data {xi, yi}, i = 1, . . . ,M, yi ∈ {1,−1}, xi ∈ X = R
d. Furthermore,

2.4. Support Vector Machines 14

risk

expected risk

confidence empirical risk

complexity of function space

Figure 2.2: Illustration of consistency: By minimizing the training error

we decrease the empirical risk. At the same time the upper bound on the

confidence of our function class gets worse. Thus, the goal is to find an

optimal trade-off between the complexity and the empirical risk, i. e. to

minimize expected risk.

we assume that the data are linearly separable, i. e. there is a linear function

f(x) = wTx + b (2.13)

of the training points x ∈ X such that f(x) < 0 whenever y = −1 and

f(x) ≥ 0 otherwise. We define that the function class F is described by all

possible linear hyperplanes of the form (2.13), i. e.

F = {f : X → R|f(x) = wTx + b}. (2.14)

Thus, each hyperplane is completely described by its normal vector w and the

offset b. We can use for instance the VC dimension to measure the complexity

of this function class. It is straightforward to show that a hyperplane of the

given form can separate maximally d + 1 points in a d-dimensional vector

space like X = R
d for all possible labelings. Thus, the VC dimension of our

2.4. Support Vector Machines 15

assumed function class is h = d + 1 < ∞ and the application of the bound

given in (2.10) makes sense. However, we can not apply SRM yet since we

do not have a nested structure of function classes. We may construct the

desired nested structure by limiting the function classes in the form

FΛ = {f : X → R|f(x) = wTx + b, ‖w‖ < Λ}. (2.15)

It is clear that FΛi
⊆ FΛj

for Λi ≤ Λj. However, if the data are separable

by sign(wTx + b) then they are separable using any positive multiple of

(w, b) and hence all function classes would have the same VC dimension

since they contain the same hyperplane in different representations. What

we aim at is that h(FΛi
) ≤ h(FΛj

) for Λi ≤ Λj . To this end, we need a unique

representation for each hyperplane. One way to achieve this is to define a

canonical representation for each hyperplane by scaling the normal vector w

and adjusting the offset b such that none of the training points produces an

output smaller than one, i. e.

min
i=1,...,M

|f(xi)| = 1. (2.16)

Using this canonical representation we are able to measure how good the

separation of the data by the separating hyperplane is. This is the concept

of the so-called margin. The margin is defined as the minimal euclidean

distance between any training point and the separating hyperplane. This

is illustrated in Fig. 2.3. The margin can be measured by the length of the

normal vector w since we assumed that the hyperplanes are in canonical form.

This can be seen by the following example. Consider two training points x1

and x2 belonging to two different classes. Each of the training points is

located on the edge of the margin with wTx1 + b = 1 and wTx2 + b = −1.

Then the margin is given by the minimal distance between them measured

2.4. Support Vector Machines 16

w

Figure 2.3: Margins and hyperplanes: A linear classifier is defined by the

hyperplane’s (solid line) normal vector w and the bias b. Each side of the

hyperplane correspond to one class. The margin is the minimal distance

between any training instance and the hyperplane, i. e. the distance between

the solid and the dotted lines.

perpendicularly to the hyperplane, i. e.

w

‖w‖(x1 − x2) =
2

‖w‖ . (2.17)

Thus, the smaller the norm of the normal vector, the higher the margin.

Moreover, it was shown in [Cortes and Vapnik, 1995] that the VC dimension

of a function class FΛ which is restricted to canonical hyperplanes is bounded

by

h ≤ min(Λ2R2 + 1, d+ 1) for ‖w‖ < Λ (2.18)

where R is the radius of the smallest sphere containing the data. The advan-

tage of using canonical hyperplanes becomes apparent now. By bounding the

margin we can effectively reduce the influence of a growing dimensionality d.

2.4. Support Vector Machines 17

Clearly, the radius R grows with the dimensionality d. On the other hand,

it is easier to construct a large margin for high dimensional data. Thus, the

VC dimension can be directly controlled by bounding the margin and this

fact enables us to apply the SRM principle.

The SVM is an algorithm which is motivated by the described SRM prin-

ciple and the link between the VC dimension and the margin. As argued

above it is desirable to achieve a large margin restricted to canonical hyper-

planes. This can be expressed as a quadratic optimization problem in the

form

min
w,b

1

2
‖w‖2 (2.19)

subject to yi(w
Tx + b) ≥ 1 ∀i = 1, . . . ,M. (2.20)

The constraint ensures that none of the training points produces an output

greater than one. Thus, every hyperplane that is a solution of (2.19) is a

canonical hyperplane as well. The optimization problem above is in its primal

version and can be solved directly by a quadratic optimizer. An important

property of this optimization problem is that due to its convexity all solutions

are global solutions. This is very much in contrast to e. g. neural networks.

Another possibility to solve this optimization problem is to form its dual

version. Due to the convexity of the quadratic problem the primal and the

dual are closely connected, i. e. if the primal is infeasible then the dual is

unbounded and vice versa. Furthermore, if both are feasible primal and dual

reach the same objective function value at the optimal solution. We shall

see in the next section that the dual version exhibits the important property

that it allows to formulate SVMs in nonlinear spaces using kernel functions.

In order to form the dual we introduce Langrangian multipliers αi ≥
0, i = 1, . . . ,M for each constraint in (2.19). The Lagrangian may then be

2.4. Support Vector Machines 18

written as

L(w, b,α) =
1

2
‖w‖2 −

M
∑

i=1

αi(yi(w
Txi + b)− 1) (2.21)

where α contains all Lagrangian multipliers. The goal is to minimize the

Lagrangian with respect to w and b and to maximize it with respect to αi.

At the optimal solution the following saddle point equations hold.

∂L

∂b
=

M
∑

i=1

αiyi = 0 (2.22)

∂L

∂w
= w −

M
∑

i=1

αiyixi. (2.23)

Substituting (2.22) and (2.23) into the Lagrangian (2.21) yields the dual

optimization problem

max
α

(

M
∑

i=1

αi −
1

2

M
∑

i,j=1

αiαjyiyj(x
T
i xj)

)

(2.24)

subject to αi ≥ 0, i = 1, . . . ,M (2.25)
M
∑

i=1

αiyi = 0. (2.26)

When we solve this optimization problem we obtain the Lagrangian coeffi-

cients αi and the desired decision function is given by

f(x) = sign (wTx + b) (2.27)

= sign

(

M
∑

i=1

αiyi(x
T xi) + b

)

. (2.28)

2.4.2 The Linearly Inseparable Case

So far we have only considered the linearly separable case where the empirical

risk is zero. Unfortunately, in most practical cases this assumption does not

hold and the optimization problem (2.24) has no feasible solutions at all. In

2.4. Support Vector Machines 19

order to overcome this problem we may relax the hard-margin constraints

(2.20) by introducing the so-called slack variables, i. e. we allow for some

errors in the form

yi(w
Tx + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,M. (2.29)

These constraints are often called the soft-margin constraints. Now we allow

that some training points lie inside the margin area. But note that as long

as all slacks are smaller than one, this is still a linearly separable problem.

The goal is to bound the VC dimension of our function class by maximizing

the margin and at the same time to minimize the empirical risk that is given

by
∑

i ξi. This can be expressed as a modified primal optimization problem

in the form

min
w,b

1

2
‖w‖2 + C

M
∑

i=1

ξi (2.30)

where C > 0 is a free regularization parameter which determines the trade-

off between the capacity of the function class and the empirical risk. Now

the dual optimization problem reads

max
α

(

M
∑

i=1

αi −
1

2

M
∑

i,j=1

αiαjyiyj(x
T
i xj)

)

(2.31)

subject to αi ≥ 0 ≥ C, i = 1, . . . ,M (2.32)
M
∑

i=1

αiyi = 0. (2.33)

The difference of this modified optimization problem to the formulation with-

out slack variables is that the Lagrange parameters αi are limited by the so

called box constraints αi ≥ 0 ≥ C, i = 1, . . . ,M .

A very important property of the SVM is the sparsity of the solution.

By sparsity we mean the fact that only a fraction of the training instances

are used to construct the decision function. To see that the SVM solution

2.5. Kernel Functions 20

is sparse consider the Karush-Kuhn-Tucker conditions (KKT-conditions).

These conditions are second order optimality conditions and are necessary

and in many cases sufficient for most optimization problems. Fortunately,

the KKT-conditions are of particular simplicity for the SVM case.

αi = 0 → yif(xi) ≥ 1 and ξi = 0 (2.34)

0 < αi < C → yif(xi) = 1 and ξi = 0 (2.35)

αi = C → yif(xi) ≤ 1 and ξi ≥ 0. (2.36)

Thus, only the Lagrangian parameters α which correspond to training in-

stances xi on the edge of or inside the margin area have non-zero entries.

These training points are called the support vectors and gave the SVM its

name.

Intuitively speaking, the SVM has shown that sparsity is an indication for

a good generalization ability. In the SVM case, sparsity followed directly from

the proposed optimization problem that arose from the desired application

of the SRM-principle. We will exploit the importance of sparsity for a good

generalization in the next chapter.

2.5 Kernel Functions

The SVM case has shown that the restriction to linear functions is reason-

able in order to control the complexity of the function class effectively and

hence to achieve a good generalization ability. However, so far we have not

discussed the ability of linear functions to minimize the empirical risk which

is of the same importance for successful learning. It turns out, that linear

functions perform poorly for most practical cases when it comes to minimize

the empirical risk. For instance, consider the easy two-dimensional XOR-

problem in Fig. 2.4.

2.5. Kernel Functions 21

Figure 2.4: The simple XOR-problem: A correct classification of all outcomes

of the binary XOR-function can not be achieved by linear functions.

We can see that there is no linear direction that is capable of classifying

the binary outputs of the XOR-function correctly. Thus, the question is how

we can enhance the empirical performance of linear functions and at the

same time benefit from their theoretical properties.

2.5.1 The Kernel Trick

Clearly, we could first preprocess the data by a nonlinear mapping Φ in the

form

Φ : R
d → E (2.37)

x → Φ(x) (2.38)

in order to obtain sufficiently rich directions in the nonlinear feature space E .
Instead of working in the original input space X we may now apply a linear

algorithm in the feature space E using the non-linearly mapped inputs

{(Φ(x1), y1), . . . , (Φ(xM), yM)} ⊆ (E × Y)M (2.39)

The hope is that in the nonlinear feature space the problem becomes linearly

separable like illustrated in Fig. 2.5. However, there are two problems with

2.5. Kernel Functions 22

Figure 2.5: The data are mapped by a nonlinear mapping into the feature

space and the problem may become linearly separable when we choose an

appropriate nonlinear map. The linear directions in the new feature space

correspond to nonlinear ones in the original input space.

this approach. First, prior knowledge is required about the problem at hand

in order to construct an appropriate nonlinear mapping. Second, due to

memory requirements we are restricted to nonlinear mappings which are not

too high dimensional. To see this consider the following example. The n-

th order monomials which are often used in image processing can easily be

constructed for n = 2.

Φ : R
2 → R

3 (2.40)

x = (x1, x2)
T → (z1, z2, z3)

T := (x2
1,
√

2x1x2, x
2
2)

T (2.41)

Clearly, in this case we may easily carry out the mapping Φ directly on the

data. However, the problem becomes intractable for higher order monomials.

For instance, if the input space consists of high dimensional vectors (e. g. 16×
16 pixels images resulting in 265-dimensional vectors) then evaluating all 5th

2.5. Kernel Functions 23

order monomials would amount to working in a feature space with

265 + 5− 1

5

 ≈ 1010 (2.42)

dimensions. This is clearly infeasible. Now the kernel functions come into

play. It turns out that we can compute scalar products between non-linearly

mapped inputs using a kernel function k. It is easy to show this fact for the

second order monomials from above.

ΦT (x)Φ(x
′

) = (x2
1,
√

2x1x2, x
2
2)(x

′2
1 ,
√

2x
′

1x
′

2, x
′2
2)T (2.43)

= ((x1, x2)(x
′

1, x
′

2)
T)2 (2.44)

= (xTx
′

)2 (2.45)

= k(x,x
′

) (2.46)

This generalizes to all n-th order monomials, i. e. the kernel function

k(x,x
′

) = (xTx
′

)n (2.47)

computes a scalar product in the space of all n-th order monomials [Schölkopf

and Smola, 2002]. This is an example of the so-called kernel trick. Speaking

more generally, the kernel trick is to formulate an algorithm exclusively in

terms of scalar products and to replace the scalar products by kernel func-

tions. Thereby we are able to perform the algorithm in the feature space E
without even knowing the underlying map Φ since Φ is implicitly induced

by the kernel function. Now it is apparent why we formulated the SVM op-

timization problem in its dual version (2.24). The dual version contains the

input data exclusively in term of scalar products xT
i xj which can be replaced

by k(xi,xj) and the SVM may be solved linearly in E yielding nonlinear

directions in the original input space X .

2.5. Kernel Functions 24

2.5.2 Kernel-Induced Feature Spaces

Now the question arises under which conditions a kernel function corresponds

to scalar products of non-linearly mapped inputs, i. e. when is a kernel a valid

kernel? It will turn out that the answer is simple. Every symmetric, positive

definite function is a valid kernel. In order to justify this theoretically we have

to show that the underlying nonlinear mapping associated with such a kernel

always exist. In the following we will outline two theoretical reasonings that

are often used to identify these kernel-induced feature spaces. For further

details see e. g. [Schölkopf and Smola, 2002] and the references therein.

Let us first introduce some notations and definitions.

Definition 1 A function k : X ×X → R of two variables is called a positive

definite kernel iff it is symmetric, that is, k(x
′

,x) = k(x,x
′

) for any two

objects x,x
′ ∈ X and positive definite, that is,

M
∑

i,j=1

αiαjk(xi,xj) ≥ 0 (2.48)

for any M > 0, any choice of objects x1, . . . ,xM ∈ X and any choice of real

numbers α1, . . . , αM ∈ R. 2

If the last inequality is always strictly positive k is called a strictly positive

definite kernel. In particular, positive definite kernels are exactly those giving

rise to a positive definite Gram matrix or kernel matrix K with the elements

Ki,j = k(xi,xj). Note, that for a matrix to be positive definite, it is necessary

to be symmetric and non-negative on the diagonal.

2.5. Kernel Functions 25

Reproducing Kernels

Given a real-valued, positive definite kernel function k we are able to define

a functional space H as a set of functions f : X → R of the form

f(x) =

M
∑

i=1

αik(xi,x), (2.49)

for M > 0, αi ∈ R and xi ∈ X together with their limits under the norm

‖f‖2H =
M
∑

i=1

M
∑

j=1

αiαjk(xi,xj). (2.50)

It can be shown that this norm is independent of the representation (2.49)

of f(x). Furthermore, H is a Hilbert space with a dot product defined for

two elements f(x) =
∑N

i αik(xi,x) and g(x) =
∑M

j α
′

jk(x
′

j ,x) by

〈f, g〉 =
N
∑

i

M
∑

j

αiα
′

jk(xi,x
′

j). (2.51)

An important property of this construction is that the value f(x) of a function

f ∈ H at a point x ∈ X can be expressed as a dot product in H,

f(x) = 〈f, k(·,x)〉 (2.52)

where we denote by k(·,x) the kernel where the first argument is free and

the second is fixed to x.

In particular, taking f(·) = k(·,x′

) we find the following reproducing

property
〈

k(·,x′

), k(·,x)
〉

= k(x
′

,x). (2.53)

The last equality shows one possible way to identify a feature space associated

with the kernel k. When we define the feature map Φ as

Φ : X → H with Φ(x) = k(·,x) (2.54)

2.5. Kernel Functions 26

we see by equation (2.53) that the kernel k acts as a dot product of Φ(x)

and Φ(x
′

). Thus, we can take the Hilbert space H as one realization of the

feature space E associated with the kernel k. A Hilbert space H constructed

in this way is called a Reproducing Kernel Hilbert Space (RKHS). In the

following we give a formal definition of a RKHS [Aronszajn, 1950].

Definition 2 (Reproducing Kernel Hilbert Space (RKHS)) Let X be

a nonempty set and H a Hilbert space of functions f : X → R. Then H is

called a Reproducing Kernel Hilbert Space (RKHS) endowed with the dot

product 〈·, ·〉 if there exists a function k with the properties that

1. k has the reproducing property f(x) = 〈f, k(·,x)〉 for all f ∈ H, in

particular,
〈

k(·,x′

), k(·,x)
〉

2. k spans H, i. e. , H = span{k(·,x)|x ∈ X} . 2

It can be shown that the kernel k for such a RKHS is uniquely determined

[Aronszajn, 1950].

Mercer Kernels

A second way to identify a feature space associated with a kernel is based on

Mercer’s Theorem [Mercer, 1909].

Theorem 4 (Mercer’s Theorem) Let X be a compact subset of R
d and

L2(X) be the space of square integrable functions f over X . Furthermore,

let k(·, ·) be a continuous symmetric function such that the integral operator

Tk : L2(X)→ L2(X),

Tkf(x) =

∫

X

k(x,x
′

)f(x
′

)dx
′

(2.55)

is positive, that is
∫ ∫

X×X

k(x,x
′

)g(x
′

)g(x)dx
′

dx ≥ 0 (2.56)

2.5. Kernel Functions 27

for all g ∈ L2(X), then we can expand k(x,x
′

) in a uniform convergent series

on X ×X as

k(x,x
′

) =

dH
∑

i=1

λiψi(x)ψi(x
′

) (2.57)

where {ψi}dHi=1 ∈ L2(X) is an orthogonal set of eigenfunctions of the integral

operator Tk normalized in such way that ‖ψi‖L2
= 1. The {λi}dHi=1 are the

corresponding positive associated eigenvalues of the integral operator Tk where

dH, the dimension of this Hilbert space, is either dH ∈ N or dH = ∞. The

function k is called a Mercer kernel. 2

Now if we take H = LdH
2 and the mapping Φ as

X → LdH
2 , Φ(x) = (

√

λiψi(x))i=1,...,dH (2.58)

we see from the expansion (2.57) that the Mercer kernel k acts as a dot

product in LdH
2 .

It can be shown that a kernel is a Mercer kernel if and only if it is a positive

definite kernel. Furthermore, there is a close connection between Mercer

kernels and RKHSs. It turns out that for every Mercer kernel k defined over

X ⊂ R
d there exists a RKHS H of functions defined over X for which k is the

reproducing kernel. Remarkably, the converse also holds [Christianini and

Shawe-Taylor, 2000]. For any RKHS the corresponding reproducing kernel

is a Mercer kernel.

Some most widely used kernel functions are given below.

Gaussian kernel (RBF-kernel): k(x,x
′

) = exp

(

−‖x− x
′‖2

2σ2

)

(2.59)

Polynomial kernel: k(x,x
′

) = (xTx
′

+ θ)d (2.60)

Sigmoidal kernel: k(x,x
′

) = tanh(κxTx
′

+ θ) (2.61)

Note that the dimension of the feature space associated with the Gaussian

kernel is infinite dimensional.

2.6. Summary 28

2.6 Summary

We have demonstrated by means of statistical learning theory that the re-

striction of the function class our learning machine can implement is crucial

for successful learning. This fact served as a theoretical justification for

choosing linear functions for learning since the capacity of linear functions

can easily be controlled. We presented the SVM as an example for how these

insights can be exploited algorithmically. In the SVM-case the capacity of

the function class is controlled by defining canonical hyperplanes and then

maximizing the margin. The underlying principle is the so-called structural

risk minimization. However, the problem with linear functions is that their

ability to minimize the empirical risk is very poor. In order to overcome

this problem one can use kernel functions. Kernel functions allow an elegant

transformation of any linear algorithm into a nonlinear one as long as one can

express the algorithm exclusively in terms of dot products. The advantage of

such a construction is that the transformed algorithm is still linear in some

nonlinear space. Thereby we are able to have both a good generalization and

good ability to minimize the empirical risk.

Chapter 3

Discriminants

The discriminative approach has a long historical tradition. Starting with

Linear Discriminants (LDs) which were first introduced in [Fisher, 1936] we

will show that LDs have very motivating and appealing statistical properties

in case of classification along with a clear geometrical interpretation. The

equivalence of the discriminative approach to a least-squares regression and

the possibility of constructing nonlinear discriminants using Mercer kernel

functions lay the foundations for the derivation of some incremental learning

algorithms for nonlinear discriminants. For convenience we will concentrate

on discriminants for two-class (binary) problems but as we shall see later the

multiclass problem may easily be reduced to binary classification problems.

3.1 Linear Discriminants

Consider a training set X = {X+,X−} belonging to an input space X and

consisting of M samples which are split into two classes. Let the classes be

labeled with −1 and 1 defining a corresponding label vector y = {−1, 1}M .

The number of samples labeled with 1 and −1 is |X+| = M+ and |X−| = M−,

29

3.1. Linear Discriminants 30

respectively. The corresponding class means are

m± =
1

M±

∑

x∈X±

x. (3.1)

Fisher’s idea was to classify the training samples by finding a direction w

which separates the class means and at the same time minimizes the vari-

ances within the classes after projection onto w. Thus, we need a measure

that quantifies how far the class means are separated and how compact the

projected training instances that belong to the same class are. Such a mea-

sure is the so-called Rayleigh quotient. In particular, we intend to obtain a

one-dimensional discriminative function

f : X → R; f(x) = wTx (3.2)

such that the so-called Rayleigh quotient

R(w) =
(µ+ − µ−)2

σ+ + σ−
(3.3)

is maximized with

µ± = wTm± and σ± =
∑

x∈X±

(wTw − µ±)2 (3.4)

denoting the means and unnormalized variances of the corresponding training

samples after projection onto w. Inserting (3.4) into (3.3) yields

R(w) =
wTSBw

wTSWw
(3.5)

with

SB = (m+ −m−)(m+ −m−)T (3.6)

and

SW =
∑

i,yi=−1

(xi −m−)(xi −m−)T +
∑

i,yi=1

(xi −m+)(xi −m+)T (3.7)

3.1. Linear Discriminants 31

w

2σ
+

µ +

2σ
−

µ −
Figure 3.1: Geometrical interpretation of the LD approach. The two classes

(black and white circles) are projected (dashed lines) onto the discriminating

direction w such that the variances σ± within the classes are minimized and

the means µ± of the two projected classes are maximally separated.

denoting the unnormalized between-class and within-class covariance ma-

trices (often referred to as scatter matrices), respectively. The geometrical

interpretation of the LD approach is illustrated in figure 3.1.

Differentiating (3.5) with respect to w leads to the generalized eigenvalue

problem

SBw = λSWw (3.8)

with

λ =
wTSBw

wTSWw
= R(w). (3.9)

3.1. Linear Discriminants 32

Thus, w must be a generalized eigenvector of (3.8). To see that the leading

eigenvector (the eigenvector that corresponds to the largest eigenvalue λmax)

of (3.8) is the optimal (optimal in the sense that (3.8) is maximized) solution

wopt of (3.8), we assume the converse, i. e. , we assume that there exists

another eigenvalue λ̂ < λmax with a corresponding eigenvector ŵ such that

R(wopt) < λ̂. Then by definition

λ̂ =
ŵTSBŵ

ŵTSW ŵ
= R(ŵ) > R(wopt). (3.10)

The last inequality is a contradiction to our assumption that wopt is the

optimal solution of (3.8) and hence the leading eigenvector of (3.8) is the

optimal solution. However, note that wopt is not unique. We see that by

definition of the Rayleigh coefficient R(w) only the direction of w matters

and not its length. Thus, every scaled version of wopt is also a solution of

(3.8). However, all these solutions are equivalent to each other since the

scaling factor has no impact on the resulting discriminative function. For

instance,

w = S−1
W (m+ −m−) (3.11)

is a solution of (3.8) since by definition of SB the vector SBw lies in the

direction of m+ −m−.

The existence of a global solution makes the LD a very motivating ap-

proach. Furthermore, the examination of the Bayes optimality of the LD

shows that this approach yields an optimal solution for normally distributed

classes assuming equally structured covariance matrices [Duda and Hart,

1973] [Bishop, 1995]. This can be shown as follows.

If our assumption holds that the classes are normally distributed with the

same covariance matrix Σ we can write the class-conditional densities in the

3.1. Linear Discriminants 33

form

p(x|y = 1) =
1

(2π)d/2|Σ|1/2
exp

(

−1

2
(x−m+)TΣ−1(x−m+)

)

, (3.12)

p(x|y = −1) =
1

(2π)d/2|Σ|1/2
exp

(

−1

2
(x−m−)TΣ−1(x−m−)

)

. (3.13)

Without loss of generality the posterior probability for the case y = 1 can

then be computed using Bayes’ law yielding

P (y = 1|x) =
p(x|y = 1)P (y = 1)

p(x|y = 1)P (y = 1) + p(x|y = −1)P (y = −1)
(3.14)

which can be expressed as a standard logistic function in the following form

P (y = 1|x) =
1

1 + exp(−t) (3.15)

with

t = log

(

p(x|y = 1)P (y = 1)

p(x|y = −1)P (y = −1)

)

. (3.16)

Inserting (3.12) and (3.13) into (3.15) we obtain

t = wTx + b (3.17)

with the linear direction

w = Σ−1(m+ −m−) (3.18)

and the bias

b =
1

2
mT

−Σ−1m− −
1

2
mT

+Σ−1m+ + log

(

P (y = 1)

P (y = −1)

)

. (3.19)

Since the covariance matrix Σ is a scaled version of the scatter matrix which

we defined in (3.7) the solution (3.18) is up to a scaling factor identical with

the solution (3.11). As argued above, a scaling factor is not relevant for

the resulting discriminative function and hence the LD approach is Bayes

optimal for this case.

3.2. Equivalence to Least-Squares 34

3.2 Equivalence to Least-Squares

Another interesting and for the following derivations crucial fact about LDs is

their equivalence to a standard least-squares regression onto the labels [Duda

and Hart, 1973]. Least-squares regression aims to find the weight vector

w̃ ∈ R
M+1 which minimizes the squared residual

ẽ = ‖X̃w̃ − y‖2 = (X̃w̃ − y)T (X̃w̃− y) (3.20)

where the matrix X̃ = [X, 1] is constructed from the original data matrix

X by adding an additional column 1 consisting of ones and the new weight

vector w̃ = (w; b) contains a bias b. Differentiating (3.20) with respect to w̃

gives rise to the so called normal equation

X̃T X̃w̃ − X̃Ty = 0 (3.21)

which is the necessary and sufficient condition for the minimum. It follows

directly from (3.21) that w̃ is given by

w̃ = (X̃T X̃)−1X̃Ty = X†y (3.22)

provided that the matrix X̃T X̃ is not singular, i. e. , provided that the

columns of X̃ are linearly independent. The matrix X† is called the Moore-

Penrose-Inverse or pseudoinverse of X and yields an unbiased estimation of

w̃ with the smallest Euclidean norm. In order to see that this least-squares

solution is equivalent to LDs given by (3.11) let us rewrite (3.20) in the

following form

ẽ =

∥

∥

∥

∥

∥

∥

XT
+ 1+

XT
− 1−

w

b

−

−1+

1−

∥

∥

∥

∥

∥

∥

2

. (3.23)

Here we assume that the target vector y contains the binary class labels

{1,−1} and hence the vector 1± = 1, . . . , 1 has the length M±.

3.2. Equivalence to Least-Squares 35

Then the normal equation reads

X+ X−

1T
+ 1T

−

XT
+ 1+

XT
− 1−

w

b

 =

X+ X−

1T
+ 1T

−

−1+

1−

 . (3.24)

When we use the definition of the within-class scatter matrix and the sample

means the normal equation can be written as

SW + m+mT
− M+m+ +M−m−

(M+m+ +M−m−)T M+ +M−

w

b

 =

M−m− −M+m+

M− −M+

 .

(3.25)

Solving the second equation for b yields

b =
M− −M+ − (M+m+ +M−m−)Tw

M+ +M−
(3.26)

and inserting this into the first equation we obtain

SWw = −
(

M+M−

M+ +M−
SBw +

M2
+ +M2

−

M+ +M−
(m− −m+)

)

(3.27)

and since by definition of SB the vector SBw must lie in the direction of

m− −m+ the least-squares solution

w = ηS−1
W (m− −m+) (3.28)

is once again up to an unimportant scaling factor η identical with the LD

solution (3.11). The equivalence of the LDs to least-squares regression is

another explanation of their Bayes optimality because there is a close con-

nection between the loss function we choose and the assumed noise model for

our predictions. It is well known that the squared loss function corresponds

to a Gaussian noise model - the same noise model we assumed when proving

the Bayes optimality of LDs. Hence, the least-squares model can be regarded

as the maximum a posteriori estimator corresponding to a probability model

with gaussian noise and gaussian weight prior.

3.3. Kernel-Based Discriminants 36

3.3 Kernel-Based Discriminants

In the previous chapter we stated that controlling the complexity of the func-

tion class the learning machine can implement is mandatory for successful

learning. Due to this theoretical insight linear functions with a controllable

complexity are an appropriate choice for both constructing SVMs and dis-

criminants. However, the restriction to linear directions in the input space

is a drawback at the same time. In the previous chapter we saw that lin-

ear functions are not able to solve even the simple XOR-problem for all

possible labelings. Thus, the question arises if we are able to obtain suffi-

ciently rich discrimination directions without setting the theoretical benefits

of linear functions aside. The answer is yes if we use kernel functions which

we introduced in the previous chapter. Not surprisingly a kernel-based re-

formulation of the LD approach was proposed at the same time by several

researchers [Mika, 2002] [Baudat and Anouar, 2000] [Roth and Steinhage,

1999].

Instead of working in the original input space X a nonlinear mapping

Φ : X → E is applied to the data X. Now the LD can be linearly performed

with the mapped samples {Φ(x1),Φ(x2), . . . ,Φ(xM)} ∈ E in the feature

space E yielding nonlinear directions in the input space X . Note that our goal

is not to explicitly define the mapping Φ since in the following derivations we

are rather interested in applying the kernel trick to LDs, i. e. , in replacing the

dot-products ΦT (x)Φ(x) by kernel functions. The only thing we have to be

sure of concerning Φ is that it exists and as we have seen in the last chapter,

the use of Mercer kernels guarantees the existence of such a mapping.

Within this framework we are able to formulate a generalized version of

3.3. Kernel-Based Discriminants 37

the Rayleigh coefficient in the feature space E in the form

RΦ(w) =
wTSΦ

Bw

wTSΦ

Ww
(3.29)

where

SΦ

B = (mΦ

+ −mΦ

−)(mΦ

+ −mΦ

−)T (3.30)

with

mΦ

± =
1

M±

∑

x∈X±

Φ(x) (3.31)

and

SΦ

W =
∑

i,yi=−1

(Φ(xi)−mΦ

−)(Φ(xi)−mΦ

−)T +
∑

i,yi=1

(Φ(xi)−mΦ

+)(Φ(xi)−mΦ

+)T

(3.32)

However, there is a problem with this approach. Since the feature space E
has usually a very high or even infinite dimension we are not able to compute

the discriminating direction w directly since w is of the same dimension. But

as we will see w lies in the span of Φ(xi), i = 1, . . . ,M and hence takes

the form

w =

M
∑

i=1

αiΦ(xi) (3.33)

for some α ∈ R
M . We will show this in the following.

Given the training data X, any f ∈ E can be decomposed into a linear

subspace f‖ which is spanned by all mapped training instances Φ(xi) and

its orthogonal complement f⊥, which satisfies 〈f⊥,Φ(xi)〉 = 0, ∀xi ∈ X.

Then the application of f for an arbitrary training instance xj yields

f(xj) =
〈

f‖ + f⊥,Φ(xj)
〉

=

〈(

M
∑

i=1

αiΦ(xi) + f⊥

)

,Φ(xj)

〉

=
M
∑

i=1

αi 〈Φ(xi),Φ(xj)〉

=

M
∑

i=1

αik(xi,xj). (3.34)

3.3. Kernel-Based Discriminants 38

The last equation follows from the fact that we use reproducing kernels. We

see that it suffices to consider only the part of w which lies in the span of

Φ(xi). Furthermore, using the theory of reproducing kernels [Mercer, 1909]

which shows that E is induced by positive definite kernel functions defining

the inner product

k(x,x
′

) =
〈

Φ(x),Φ(x
′

)
〉

(3.35)

we are able to avoid to perform the mapping Φ explicitly. This is often

referred to as the kernel trick. At this point it is possible to re-formulate the

generalized Rayleigh coefficient exclusively in terms of dot products without

even knowing Φ. Following [Mika, 2002] we can write the between-class and

within-class scatter matrices SΦ

B and SΦ

W exclusively in terms of dot products
〈

Φ(x),Φ(x
′

)
〉

. Thus, after some algebraic manipulations we are able to

formulate these matrices in the feature space E using kernel functions in the

form

Sk
B = (mk

+ −mk
−)(mk

+ −mk
−)T (3.36)

with

(mk
±)j =

1

M±

∑

x∈X±

k(x,xj) (3.37)

and

Sk
W = K+(I+ −M+)KT

+ + K−(I− −M−)KT
−. (3.38)

The matrices K± have the size M ×M± with elements

(K±)ij = k(xi,xj), xi,xj ∈ X±. (3.39)

I± are identity matrices with the size M±×M± and M± are the matrices with

all elements set to 1
M±

with the size M± ×M±. Then, using these kernelized

matrices the generalized Rayleigh coefficient takes the form

Rk(α) =
α

TSk
Bα

α
TSk

W α

(3.40)

3.3. Kernel-Based Discriminants 39

and again we arrived at a generalized eigenvalue problem which can be solved

by finding the leading eigenvector of the matrix (Sk
W)−1Sk

B. Alternatively, as

we have argued for the case of LDs that only the direction and not the length

of the discriminating direction is important we can obtain an equivalent

solution by

α = (Sk
W)−1(mk

+ −mk
−) (3.41)

and the projection of a new sample x onto w is given by

ΦT (x)w =
M
∑

i=1

αik(x,xi). (3.42)

Kernel-based Discriminants are often called Kernel Fisher Discriminants (KFD)

in the literature [Mika, 2002] [Baudat and Anouar, 2000] [Roth and Stein-

hage, 1999].

3.3.1 Regularization

However, there is a problem with this approach. From the last equation we

see that the complexity of the discriminant function scales with the num-

ber of training instances. Thus, all training instances are used in the testing

phase which is highly undesirable. Moreover, in order to avoid overfitting and

numerical instabilities (note that the matrix Sk
W is at most of rank (M − 2))

we have to employ some form of regularization. The proof that the KFD

is equivalent to a least-squares regression onto the labels is completely anal-

ogous to the presented proof concerning the equivalence between LDs and

least-squares. We can use this equivalence to obtain a regularized version of

the KFD using regularized least-squares which is also called Ridge regres-

sion. The idea is to incorporate regularization controlled by a continuous

parameter λ into the model yielding a regularized squared loss in the form

L(α) = ‖Kα− y‖2 + λ‖α‖2. (3.43)

3.4. Sparse Approximations 40

Ridge regression [Rifkin et al., 2003] penalizes the norm of the solution yield-

ing flat directions in the RKHS, which are robust against outliers caused by

e. g. noise. Another possibility to introduce regularization is to use the so-

called Least-Squares SVMs (LS-SVMs), which were proposed in [Suykens and

Vandewalle, 1999]. The close relation between the LS-SVM and the Kernel

Fisher Discriminant (KFD) was shown in [Van Gestel et al., 2002]. While the

SVM has a large margin interpretation the LS-SVM formulation is related

to the Ridge regression approach for classification with binary targets and

to the KFD. The optimization problem associated with LS-SVMs contains

equality constraints. This leads to a linear set of equations in the dual space

which can be solved using e. g. the conjugate gradient method for large data

sets or a direct method for a small number of data. The solution may then

be pruned [De Kruif and De Vries, 2003] [Hoegaerts et al., 2004] in a second

stage to obtain a sparse solution.

As a conclusion we can state that all the approaches we discussed so

far are closely related to each other and can be regarded as instances of

Least-Squares Models (LSMs). However, in contrast to SVMs, due to the

use of the squared loss LSMs are not sparse in general and the methods of

direct regularization mentioned above are not able to regain sparsity. In the

following we will outline some approaches that aim at introducing sparsity

for LSMs.

3.4 Sparse Approximations

One way to obtain a sparse solution is to impose a sparsity constraint into the

problem itself. The cleanest way would be to replace the regularization term

in (3.43) by a L0-norm regularizer in the form λ‖α‖0. The constraint would

3.4. Sparse Approximations 41

then be the number of nonzero elements in the weight vector. However, this

approach is algorithmically intractable since it yields a NP-hard combinato-

rial search problem [Natarajan, 1995]. One way to overcome this problem

is to look for a solution where the most points are separated linearly. This

is a NP-hard problem of the same structure. However, approximate solu-

tions exist without changing the L0-norm [Wendemuth, 1995]. Another way

to proceed is to approximate the L0-norm by L1-norm regularization like in

basis pursuit [Chen et al., 1998]. This approach favors solutions with a small

L1-norm. The resulting problem is a convex programming problem with a

unique and sparse solution.

These direct approaches are not pursued here. In the following we restrict

ourselves to greedy methods which impose sparsity on the solution using sub-

set selection like in [Billings and Lee, 2002] [Nair et al., 2002]. The difference

between subset selection and a direct convex programming approach is that

the sparsity is directly controlled and does not depend on a regularization

parameter like λ in (3.43).

In our framework subset selection may be stated as the following problem.

Find m columns of the M ×M Gram matrix K such that

min
αm

‖Kmαm − y‖ ≤ ǫ, for m≪ M (3.44)

where Km denotes the reduced M ×m Gram matrix consisting of the chosen

columns, αm ∈ R
m is the corresponding truncated weight vector and ǫ de-

notes the interpolation error. Such a sparse approximate interpolator can be

interpreted as a discrete regularization in the sense that now regularization

is controlled by discrete decisions whether to consider a particular column of

the Gram matrix or not. In [Natarajan, 1999] a theoretical justification for

regularization via sparse approximate interpolation is given. It was shown

that the interpolation error ǫ and the noise intensity in the target vector y

3.4. Sparse Approximations 42

will tend to cancel out if ǫ is chosen a priori to be the noise intensity.

However, the question is how to choose the most relevant samples. In

order to find the best subset of fixed size we would have to perform an ex-

haustive search in a discrete space consisting of

M

m

 possible choices which

is clearly a NP-hard combinatorial search problem . Hence, one is restricted

to suboptimal search strategies. The greedy algorithms in the literature

which employ subset selection can be classified into forward selection [Mal-

lat and Zhang, 1993] [Natarajan, 1995] [Grote and Huckle, 1997] [Smola and

Bartlett, 2001] and backward selection [Couvreur and Bresler, 2000]. The ad-

vantage of backward selection is that provable convergence bounds exist. It

was shown in [Couvreur and Bresler, 2000] that under certain circumstances

backward selection is able to find an optimum in the sense that the resulting

solution is equivalent to a direct approach using the L0-norm regularization.

This is a theoretically appealing result but the proof is not constructive. This

means that there is no algorithmic way to evaluate whether the assumption

holds on which the proof relies [Couvreur and Bresler, 2000]. Moreover, back-

ward selection is computationally very expensive since in the first iteration

all columns of the Gram matrix are considered as possible choices for the final

model. The consequence is that the full Gram matrix has to be computed,

stored and factorized prior to sequentially annihilating columns which are

found to be least relevant with respect to the current residual error. This

is rather prohibitive for large datasets. In contrast, the computational cost

and the memory requirements associated with forward selection are much

lower than those of backward selection and tends to be much cheaper than

the direct convex programming approaches [Nair et al., 2002] at least for the

case m≪ M . Forward selection starts with an empty training set and adds

sequentially one sample that is most relevant according to a certain criterion

3.4. Sparse Approximations 43

(e. g. decreasing the residual error). Thus, especially in case of large data sets

forward selection is a practical method. The drawback of forward selection

is that in contrast to backward selection no provable bounds exist concern-

ing the convergence to the direct approach using the L0-norm regularization.

Nevertheless, as we shall see later, in most applications forward selection is

very competitive to other state-of-the-art methods and we will restrict our

further discussion to forward selection.

There are several slightly different contributions to this approach. In [Nair

et al., 2002] an external algorithm which is based on elementary Givens ro-

tations is used to update the QR-decomposition of the reduced Gram matrix

in order to construct sparse models. The modified Gram Schmidt orthog-

onalization is used in [Billings and Lee, 2002] and [Chen et al., 1991] for

the orthogonal decomposition of the Gram matrix. They also apply forward

selection in a second step to obtain sparse models. This method is known as

Orthogonal Least Squares (OLS). However, the OLS algorithm requires the

computation and the storage of the full Gram matrix which is prohibitive

for large datasets. We will now discuss some simple and efficient alterna-

tives [Andelić et al., 2006b] [Andelić et al., 2007] to the methods discussed

above.

3.4.1 Nonlinear Pseudodiscriminants

Motivated by the equivalence of the discriminant approach to a least-squares

regression onto the labels we present in the following a computationally very

efficient way for constructing LSMs in a RKHS within a forward selection rule

with low memory requirements [Andelić et al., 2006b]. The proposed method

exploits the positive definiteness of the Gram matrix for an order-recursive

thin update of the pseudoinverse which represents the optimal solution in

3.4. Sparse Approximations 44

the least-squares sense.

In a supervised learning problem one is faced with a training data set

D = {xi, yi}, i = 1 . . .M . Here, xi denotes an input vector of fixed size and

yi is the corresponding target value which is contained in R for regression or

in {1,−1} for binary classification. It is assumed that xi 6= xj , for i 6= j.

We focus on sparse approximations of models of the form

ŷ = Kα + e. (3.45)

where e denotes the residual error. The use of Mercer kernels k(·,x) [Mercer,

1909] gives rise to a symmetric positive definite Gram Matrix K with elements

Kij = k(xi,xj) defining the subspace of the RKHS in which learning takes

place. The weight vector α = {b, α1, . . . , αM} contains a bias term b with a

corresponding column 1 = {1, . . . , 1} in the Gram matrix.

Consider the overdetermined least-squares-problem

α̂m = argmin
αm

‖Kmαm − y‖2 (3.46)

in the m-th forward selection iteration with the reduced Gram matrix Km =

[1 k1 . . .km] ∈ R
M×(m+1) where ki = (k(·,x1), . . . , k(·,xM))T , i ∈ {1, . . . , m}

denotes one previously unselected column of the full Gram matrix. We denote

the reduced weight vector as αm = {b, α1, . . . , αm} ∈ R
m+1 and the target

vector as y = (y1, . . . , yM)T . Among all generalized inverses of Km the

pseudoinverse

K†
m = (KT

mKm)−1KT
m (3.47)

is the one that has the lowest Frobenius norm [Ben-Israel and Greville, 1977].

Thus, the corresponding solution

α̂m = K†
my (3.48)

has the lowest Euclidean norm.

3.4. Sparse Approximations 45

In order to see how the knowledge of K†
m−1 can be used to obtain the

current pseudoinverse K†
m we have to partition Km and αm in the form

Km = [Km−1km] (3.49)

αm = (αm−1αm)T (3.50)

and to set αm = αm0 = const. Then the square loss becomes

L(αm−1, αm0) = ‖Km−1αm−1 − (y − kmαm0)‖2. (3.51)

The minimum of (3.51) in the least-squares-sense is given by

α̂m−1 = K†
m−1(y − kmαm0). (3.52)

Inserting (3.52) into (3.51) yields

L(αm0) = ‖(I−Km−1K
†
m−1)kmαm0 − (I−Km−1K

†
m−1)y‖2 (3.53)

with I denoting the identity matrix of appropriate size.

Note that the vector

qm = (I−Km−1K
†
m−1)km = km −Km−1(K

†
m−1km) (3.54)

is the residual corresponding to the least-squares regression of Km−1 onto

km. Hence, qm is a nullvector if and only if km is a nullvector unless K is not

strictly positive definite. However, due to the use of positive definite Mercer

kernels km can not be a nullvector since at least k(x,x) > 0. A problem

can arise if the Gram matrix is not strictly positive definite or ill-conditioned

which can be the case even if we use Mercer kernels. Thus, to ensure strictly

positive definiteness of K, it is mandatory to add a small positive constant ε

to the main diagonal of the full Gram matrix in the form K→ K+ εI. This

form of regularization smoothes the solution similarly to the Ridge regression

which we discussed above.

3.4. Sparse Approximations 46

Forward selection may then be performed using this strictly positive def-

inite Gram matrix. In the following km 6= 0 is assumed.

The minimum of (3.53) is met at

α̂m0 = q†
m(I−Km−1K

†
m−1)y (3.55)

Noting that the pseudoinverse of a vector is given by

q†
m =

qT
m

‖qm‖2
(3.56)

equation (3.55) may be written as

α̂m0 =
qT

m(I−Km−1K
†
m−1)y

‖qm‖2
(3.57)

=
kT

m(I−Km−1K
†
m−1)

T (I−Km−1K
†
m−1)y

‖qm‖2
.

The matrix

Pm = I−Km−1K
†
m−1 (3.58)

is an orthogonal projection matrix which implies it being symmetric and

idempotent, i. e.

PmPT
m = PT

mPm = Pm. (3.59)

Noting the last equality and the definition of qm in (3.54) equation (3.57)

simplifies to

α̂m0 = q†
my. (3.60)

Combining (3.60) with (3.52) the current weight vector α̂m may be updated

as

α̂m =

α̂m−1

α̂m0

 =

K†
m−1 −K†

m−1kmq†
m

q†
m

y (3.61)

revealing the update

K†
m =

K†
m−1 −K†

m−1kmq†
m

q†
m

 (3.62)

3.4. Sparse Approximations 47

for the current pseudoinverse.

In the m-th iteration O(Mm) operations are required for these updates.

The memory requirement for the proposed method is of the same order.

Note that the computation of the pseudoinverse from scratch would require

O(Mm3) operations in each iteration. In the following we refer to the de-

scribed method as Nonlinear Pseudodiscriminants (NPDs).

Forward Selection

The question which criteria are possible for choosing a new basis center with

the corresponding column of the Gram matrix in each iteration is still open.

Obviously, a reasonable goal of every forward selection scheme could be to

select the columns of the Gram matrix that provide the greatest reduction

of the residual. Methods like basis matching pursuit [Mallat and Zhang,

1993], order-recursive matching pursuit [Natarajan, 1995] or probabilistic ap-

proaches [Smola and Schölkopf, 2000] are several contributions to this issue.

In [Nair et al., 2002], forward selection is performed in a computationally very

efficient way by simply choosing the column of the Gram matrix that corre-

sponds to the entry with the highest absolute value in the current residual.

The reasoning is that the residual provides the direction of the maximum

decrease in the cost function 0.5αTKα−α
Ty, since the Gram matrix is

strictly positive definite. The latter method is used in the following but note

that the NPDs may be applied within any of the above forward selection

rules.

Furthermore, one advantage of the NPDs is that the corresponding resid-

ual may be updated with a negligible computational cost.

Consider the residual

êm = y − ŷm = y− [Km−1km] α̂m (3.63)

3.4. Sparse Approximations 48

in the m-th iteration. Inserting (3.61) into (3.79) yields

êm = y − [Km−1km]

K†
m−1 −K†

m−1kmq†
m

q†
m

y

= y − ŷm−1 + Km−1K
†
m−1kmq†

my − kmq†
my

= êm−1 − (q†
my)(km −Km−1K

†
m−1km)

= êm−1 − (q†
my)qm. (3.64)

The current residual may be updated without even knowing the weight vector

α̂m. The residual update requires O(M) operations in each iteration. This is

a considerable saving compared to a re-computation of the current residual

in each iteration in the form

êm = y −KmK†
my (3.65)

which requires O(Mm) operations. We are able to compute the least-squares

solution α̂m in one shot

α̂m = K†
my (3.66)

after the forward selection is stopped. It is possible to determine the num-

ber of basis functions using crossvalidation or one may use for instance the

Bayesian Information Criterion or the Minimum Description Length as al-

ternative stopping criteria.

The NPD is summarized in pseudocode in Algorithm 1. In order to il-

lustrate that the NPD is a reasonable approximation of the standard KFD

which uses all training instances as basis centers we use the well known syn-

thetic Ripley data set. This is a linearly non-separable two-class classification

problem. The Ripley dataset consists of 250 training and 1000 testing exam-

ples. The Bayes error rate for this dataset is 8%. We use the Gaussian kernel

for both methods with the same kernel width and the same regularization

3.4. Sparse Approximations 49

Algorithm 1 Nonlinear Pseudo-Discriminants

Require: Training data X, labels y, kernel, ε

Initializations: m← 1, K1 = 1, K†
1 = 1

M
1T

while The maximum number of basis centers is not selected or another

stopping criterion is not reached do

Update êm

find the index iopt of the entry of êm with the highest absolute value

Iopt ← {Iopt, iopt}
I ← I \ {iopt}
Compute kiopt

Km ← [Km−1kiopt
]

Update K†
m using kiopt

m← m+ 1

end while

return α̂m, Iopt

3.4. Sparse Approximations 50

constant. In figure 3.4.1 we see that in the region where the data are not

separable the decision boundaries of the two methods are almost identical.

The test error of the NPD on this dataset is 9.2% which is quite favorable

compared to the test error of the full KFD (9.6%). This is a promising first

result for the following empirical studies.

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

NPD
Full KFD

Figure 3.2: Comparison of the decision boundaries obtained by the full KFD

and our proposed approximation (NPD) on Ripley’s dataset. The training

samples are also shown and the ten selected basis centers used by the NPD

are encircled.

We have seen that some sort of regularization is mandatory for numerical

stability and a good generalization ability especially in case of kernel-methods

where possibly infinite dimensional spaces are involved. Sparse approxima-

tions like the NPD are one way to deal with this problem since a sparse

interpolator can be seen as a discrete regularization. However, the sparsity

3.4. Sparse Approximations 51

principle alone is not entirely able to prevent overfitting. For instance, in

some cases where the data are highly affected by noise even a sparse model

may fit into noise and cause overfitting. Now the question arises if there is a

way to combine sparse approximations with a direct regularization method,

i. e. , can we find a sparse solution for minimizing the regularized loss

LR(α) = ‖Kα− y‖2 + λ‖α‖2. (3.67)

within a forward selection scheme?

When we use the reduced Gram matrix Km then the modified problem

is

argmin
αm

LR(αm)

= argmin
αm

(y −Kmαm)T (y−Kmαm) + λαT
mαm

= argmin
αm

(yTy − 2yTKmαm + α
T
mKT

mKmαm) + λαT
mαm. (3.68)

Setting the derivative of LR with respect to αm equal to zero yields

∂LR

∂αm
= (KT

mKmαm −KT
my) + λImαm = 0

=⇒ (KT
mKm + λIm)αm = KT

my. (3.69)

Thus, minimizing the regularized loss LR yields

α̃m = (KT
mKm + λIm)−1Kmy = K̃†

my. (3.70)

It can be seen that for λ → 0 we obtain the pseudoinverse which is the so-

lution of the ordinary least-squares problem. Thus, for λ > 0 the matrix

K̃†
m can be seen as a regularized version of the pseudoinverse. The problem

however is that with the methods outlined before the regularized pseudoin-

verse can not be updated order-recursively in contrast to the NPD since

I −Km−1K̃
†
m−1 is not an orthogonal projection for λ 6= 0. In the following

we will outline a possible way to overcome this problem.

3.4. Sparse Approximations 52

3.4.2 Orthogonal Least Squares

In order to apply a direct regularization method within forward selection we

have to find a way to reveal the individual impact of each regressor on the

final model. A classical way [Chen et al., 1991] of doing so is to consider an

orthogonal decomposition of the Gram matrix in the form

K = QU (3.71)

where

U =

1 u1,2 · · · u1,M

0 1
. . .

...
...

. . .
. . . uM,M

0 · · · 0 1

(3.72)

and

Q = [q1 . . .qM] (3.73)

with orthogonal columns that satisfy qT
i qj = 0, for i 6= j. If we replace the

Gram matrix of the regression model (3.45) by this orthogonal decomposition

an equivalent model can be written as

y = Qα̃ + e (3.74)

where the orthogonal weights satisfy the triangular system

Uα = α̃. (3.75)

Thus, knowing U and α̃, the original weights can easily be recovered. Due

to the fact that U is a upper triangular matrix the linear system of equations

above can easily be solved through backsubstitution.

The classical Orthogonal Least Squares (OLS) algorithm [Chen et al.,

1991] uses the modified Gram-Schmidt procedure to perform an orthogo-

nalization of the full Gram matrix K. Starting from n = 1, the columns

3.4. Sparse Approximations 53

ki, n + 1 < i < M of K are made orthogonal to the nth column at the nth

stage. This operation is repeated for 1 < n < M − 1. Thus, all columns

of K have to be computed and stored. The memory requirement of this

method is O(M2). This is rather prohibitive especially for large datasets.

In the following we will present a thin update scheme [Andelić et al., 2007]

for the reduced Gram matrix Km which reduces the memory requirement to

O(Mm).

Order-Recursive Orthogonal Least Squares

Recall that the matrix Pm which we defined in (3.58) is a projection matrix.

Thus, every projection qm = Pmkm lies in a subspace which is orthogonal

to Km−1 and it follows immediately that qT
i qj = 0, for i 6= j. Hence, an

orthogonal decomposition

Km = QmUm (3.76)

of the reduced Gram matrix is given by the orthogonal matrix

Qm =
[

Qm−1qm

]

(3.77)

and the upper triangular matrix

Um =

Um−1

0T
m−1

 (QT
mQm)−1QT

mkm

 . (3.78)

In the m-th iteration O(Mm) operations are required for all these updates.

Note that the inversion of the matrix QT
mQm is trivial since this matrix

is diagonal. However, the condition number of the matrix Qm increases

as the number of selected columns m grows. Thus, to ensure numerical

stability it is important to monitor the condition number of this matrix and

to terminate the iteration if the condition number exceeds a predefined value

3.4. Sparse Approximations 54

unless another stopping criterion is reached earlier. We refer to the proposed

method as Order-Recursive Orthogonal Least Squares (OROLS).

Regularization and Selection of Basis Centers

Consider the residual

ẽm = y − ŷm = y −Qmα̃m (3.79)

in the m-th iteration. The vector α̃m contains the orthogonal weights.

The regularized square residual is given by

Ẽm = ẽT
mẽm + λα̃T

mα̃m (3.80)

= yT P̃my

where λ denotes a regularization parameter. The minimum of (3.80) is given

by

P̃m = I−Qm(QT
mQm + λIm)−1QT

m (3.81)

= P̃m−1 −
qmqT

m

λ+ qT
mqm

.

Thus, the current residual corresponding to the regularized least squares

problem may be updated as

ẽm = (P̃m−1 −
qmqT

m

λ+ qT
mqm

)y

= ẽm−1 − qm
yTqm

λ+ qT
mqm

. (3.82)

The orthogonal weights

(α̃m)i =
yTqi

λ+ qT
i qi

, 1 ≤ i ≤ m. (3.83)

can be computed when the forward selection is stopped. The original weights

can then be recovered by

α̂m = U−1
m α̃m (3.84)

3.4. Sparse Approximations 55

which is an easy inversion since Um is upper triangular.

Now we can choose in each iteration a previously unselected column qi

which corresponds to the highest absolute value in the current residual and

add it to Qm−1. It remains to decide when to stop the iterations. In case of

the NPD we outlined that one way to determine the number of basis functions

is to use crossvalidation or to use for instance the Bayesian Information

Criterion or the Minimum Description Length as alternative stopping criteria.

It turns out that for OROLS there is another possibility to derive a stopping

criterion which is given by the following reasoning.

It was shown in [Wahba, 1979] that the problem of minimizing the ex-

pected mean of squared residuals which are given in (3.80) w. r. t. the regu-

larization parameter λ is equivalent to minimizing the so-called Generalized

Cross Validation (GCV) w. r. t. λ. Therefore the GCV is a reasonable cri-

terion for choosing a λ that ensures a good generalization ability.

The idea presented in [Gu and Wahba, 1991] and [Orr, 1995] is to re-

estimate the λ in each iteration using the GCV . The convergence of λ can

then be used as a stopping criterion. We will now summarize the results.

For details see [Orr, 1995].

The GCVm in the m-th iteration is given by

GCVm =
1

M

‖P̃my‖2
(

(1/M) trace(P̃m)
)2 . (3.85)

Minimizing the GCVm with respect to λ gives rise to a re-estimation formula

for λ. An alternative way to obtain a re-estimation of λ is to maximize the

Bayesian evidence [MacKay, 1992].

Differentiating (3.85) with respect to λ and setting the result to zero gives

a minimum when

yT P̃m
∂P̃my

∂λ
trace(P̃m) = yT P̃2

my
∂trace(P̃m)

∂λ
. (3.86)

3.4. Sparse Approximations 56

Noting that

yT P̃m
∂P̃my

∂λ
= λα̃T

m(QT
mQm + λIm)−1

α̃m (3.87)

equation (3.86) can be rearranged to obtain the re-estimation formula

λ :=
[∂trace(P̃m)/∂λ]yT P̃2

my

trace(P̃m)α̃T
m(QT

mQm + λIm)−1
α̃m

(3.88)

where
∂trace(P̃m)

∂λ
=

m
∑

i=1

qT
i qi

(λ+ qT
i qi)2

. (3.89)

The forward selection is stopped when λ stops changing significantly.

The computational cost for this update is O(m). The OROLS algorithm

is summarized in pseudocode in Algorithm 2.

3.4.3 Recursive Least Squares

In some applications where the datasets are very large even the reduced mem-

ory requirements of NPDs and OROLS are too high. We will now outline

one possibility to reduce the memory requirement from O(Mm) to O(m2).

The proposed method uses the idea presented in [Engel et al., 2003] which is

to approximate the full M ×M Gram matrix by an m×m matrix. The Re-

cursive Least-Squares algorithm (RLS-algorithm) computes the least squares

solution recursively by sequentially processing the training data X. In each

step n;n = 1, . . . ,M the matrix inversion lemma is applied to obtain the

n × n matrix (KT
nKn)−1. The RLS-algorithm is widely used in the field of

online adaptive filtering since it features fast convergence and a favorably

low misadjustment to the optimal least square solution even in presence of

noise [Haykin, 2002]. To exploit these advantageous properties of the RLS

for machine learning purposes one has to prevent overfitting, i. e. one has to

3.4. Sparse Approximations 57

Algorithm 2 Order-Recursive Orthogonal Least Squares

Require: Training data X, labels y, kernel

Initializations: λ ← 0, m ← 1, K1 = 1, K†
1 = 1

M
1T , Q1 = 1, U1 = [1],

I = {1, . . . ,M}, Iopt = {}
while λ changes significantly and Qm is not ill-conditioned do

find the index iopt of the entry of the residual ẽm with the highest

absolute value

Iopt ← {Iopt, iopt}
I ← I \ {iopt}
Compute kiopt

Compute qiopt

Km ← [Km−1kopt]

Qm ← [Qm−1qopt]

Update K†
m and Um using kopt and qopt

Update λ

m← m+ 1

end while

return α̂m, Iopt

3.4. Sparse Approximations 58

introduce sparsity to the recursive least square solution.

min
w,b

E(w) =
M
∑

i=1

‖ΦT (xi)w + b− yi‖2 (3.90)

with b denoting a bias term. By defining Φ → (ΦT , 1)T and w → (wT , b)T

and by exploiting the fact that w can be expressed as an expansion of the

Φ(xi) in the form

w =
M
∑

i

αiΦ(xi) (3.91)

equation (3.90) can be written as

min
α

E(α) = ‖Kα− y‖2 (3.92)

with

[K]i,j = k(xi,xj) (3.93)

denoting the symmetric M ×M kernel matrix and α = (α1, . . . , αM)T .

Unsupervised Sparsification

The idea proposed in [Engel et al., 2003] is to regard a training sample xn

for the expansion of the direction wn only if xn is approximately linearly in-

dependent of the mn−1 previously chosen samples x̃j ; j = 1, . . . , mn−1. Thus,

introducing the set of reduced coefficients rn = (r1, . . . , rmn−1
)T every xn that

fulfills the condition

δn := min
rn

∥

∥

∥

∥

∥

mn−1
∑

j=1

rjΦ(x̃j)− Φ(xn)

∥

∥

∥

∥

∥

2

> ν (3.94)

is added to a dictionary Dn with ν being a small regularization parameter

by which the level of sparsity is controlled. This sparsification method is

unsupervised since one controls only ν blindly to the labels. The greater ν

the more sparsity is achieved.

3.4. Sparse Approximations 59

Equation (3.94) can be solved straightforwardly yielding

δn = knn − k̃T
n−1(xn)r̃n > ν (3.95)

with r̃n = K̃−1
n−1k̃

T
n−1(xn) (3.96)

where

[

K̃n−1

]

i,j
= k(x̃i, x̃j) (3.97)

(k̃n−1(xn))i = k(x̃i,xn) (3.98)

knn = k(xn,xn) (3.99)

for i, j = 1, . . . , mn−1.

Note that the redefinition of Φ in (3.92) effects that k(x,x
′

) has to be

redefined also as k(x,x
′

) + 1 and ν may be chosen in the range

0 < ν ≤ 1. (3.100)

By applying the previously described sparsification in each step n one

may collect all reduced coefficients r̃n defining the n×mn reduction matrix

Rn. Then the corresponding direction wn is approximated in the form

wn ≈ Φ̃nα̃n (3.101)

with

α̃n := RT
nαn (3.102)

and

Φ̃n = [Φ(x̃1), . . . ,Φ(x̃mn
)]. (3.103)

Inserting (3.101) in (3.90) and having in mind the redefinition of w and Φ in

(3.92) yield

min
α̃n

E(α̃n) = ‖RnK̃nα̃n − yn‖2 (3.104)

3.4. Sparse Approximations 60

with yn = (y1, . . . , yn)
T . The least square solution of (3.104) is

α̃n = K̃−1
n (RT

nRn)−1RT
nyn. (3.105)

Defining Pn = (RT
nRn)−1 the following recursions may be computed applying

the matrix inversion lemma. For details see [Engel et al., 2003,Haykin, 2002].

In case of δn ≤ ν the dictionary Dn and K̃n are unchanged. The update

for Pn is

Pn = Pn−1 −
Pn−1r̃nr̃

T
nPn−1

1 + r̃T
nPn−1r̃n

. (3.106)

For δn > ν the sample xn is added to the dictionary and the matrices K̃−1
n

and Pn are updated:

Pn =

Pn−1 0

0T 1

 (3.107)

K̃−1
n =

1

δn

δnK̃
−1
n−1 + r̃nr̃

T
n −r̃n

−r̃T
n 1

 (3.108)

The described unsupervised sparsification is summarized in Algorithm 3.

RLS-Filtering

After performing these recursions for the whole training set X one obtains the

unsupervisedly reducedm×mmatrices Pm and K̃−1
m . With the initializations

Pm,0 = Pm and α̃m,0 = (0, . . . , 0)T the standard RLS-algorithm is applied to

compute (3.105) recursively. The matrix Pm,n is updated with (3.106). The

RLS-update for α̃m,n is

α̃m,n = (3.109)

α̃m,n−1 + K̃−1
m qm,n(yn − k̃T

n−1(xn)α̃m,n−1)

with

qm,n =
Pm,n−1r̃n

1 + r̃T
nPm,n−1r̃n

. (3.110)

3.4. Sparse Approximations 61

Algorithm 3 Unsupervised Sparsification

Require: ν, k

Initializations K̃−1
1 = [1

k11

], P1 = [1], D1 = {x1}, m = 1

for n = 2, . . . ,M do

get new sample xn

compute r̃n

compute δn

if δn > ν then

Dn = Dn−1 ∪ {xn}
update K̃−1

n

update Pn

m← m+ 1

else

Dn = Dn−1

update Pn

end if

end for

return Pn,Dn

3.5. Summary 62

The RLS-filtering of the data yields the reduced set of coefficients α̃m. For

the sake of a simple notation the index m will be omitted in the following.

The pseudocode of the RLS-filtering procedure is given in Algorithm 4. In the

Algorithm 4 RLS-Filtering

Initialization: α̃0 = (0, . . . , 0)T

for n = 1, . . . ,M do

get new sample xn

compute r̃n

compute δn

update qn

update Pn

update α̃n

end for

return Dn, α̃

following we will refer to the unsupervised sparsification with the subsequent

RLS-filtering as Kernel Recursive Least Squares (KRLS).

3.5 Summary

Starting with an introduction of the discriminant approach we have seen that

discriminants have very favorable properties as for their Bayes-optimality in

certain classification settings. However, discriminants are not sparse in gen-

eral. This is rather prohibitive for large datasets and can lead to poor gener-

alization properties when no form of regularization is employed. We noticed

that we have to overcome this problem especially when solving kernel-based

discriminants. We have outlined how kernel-functions can be used to turn

linear discriminants into nonlinear ones in order to enhance their empiri-

3.5. Summary 63

cal performance. Finally, we exploited the equivalence of discriminants to a

least-squares regression onto the targets for the derivation of some forward

selection algorithms which lead to sparse solutions and exhibit low costs in

terms of memory and computational time.

Chapter 4

Application of Nonlinear

Discriminants for Automatic

Speech Recognition

We will now describe how the outputs of nonlinear discriminants can be

probabilistically interpreted and where these probabilities can be used in

an Automatic Speech Recognition (ASR) system. Speech recognition is a

complicated task and state-of-the-art recognition systems are very complex.

There are many different approaches for the implementation of the compo-

nents. For further information the reader is referred to [Rabiner and Juang,

1993] [Gold and Morgan, 1999] [Huang et al., 2001]. Here we only want

to provide an overview over ASR, some of its main difficulties, the basic

components, their functionality and interaction.

64

4.1. Components of ASR 65

4.1 Components of ASR

The general task of Automatic Speech Recognition (ASR) is to deduce an

unknown sequence of words (text) from its observed acoustical realization,

an utterance. We must thus “reverse” the process of speech production. Fig-

ure 4.1 shows the main components of an ASR system. In ASR systems

Acoustic
Models

Pronunciation
Dictionary Model

Language
speech signal

FEATURE

EXTRACTION

CLASSIFICATION

"This is a..."

word string

Figure 4.1: Principle components of an ASR system

acoustic information is sampled as a signal suitable for processing by com-

puters and fed into a recognition process. The output of the system is a

hypothesis for a transcription of the utterance. The first step is to convert

the acoustic waveform into an electric signal for further processing. From

this signal, certain properties (typically 15-30) are extracted over successive

intervals because speech is short-time stationary, usually at around 10ms.

These properties build up the feature-vectors (frames) which should both be

good in separating different classes of speech sounds as well as in suppress-

ing irrelevant sources of variation. That means features are extracted that

are robust to acoustic variation but sensitive to linguistic content. Put in

other words, features that are discriminant and allow to distinguish between

different linguistic units (e. g. , phones) are required. On the other hand

the features should also be robust against noise and factors that are irrel-

evant for the recognition process (e. g. , the fundamental frequency of the

4.1. Components of ASR 66

speech
signal

window size (e.g., 32ms)hop size (e.g., 10ms)

Feature
vectors

PARAMETRIZATION

Figure 4.2: Feature extraction from a speech signal. Every ‘hop-size’ (or

shift-size) seconds a vector of features is computed from the speech samples

in a window of length ‘window-size’.

speech signal). The number of features extracted from the waveform signal

is commonly much lower than the number of signal samples, thus reducing

the amount of data. The choice of suitable features varies depending on the

classification technique.

Figure 4.2 indicates how features (or feature vectors) are derived from

the speech signal. Typically, a frequency-domain based parametrization is

performed to extract the features. Spectral analysis is performed, e. g. ,

every 10 ms on the speech samples in a window of, e. g. , 32 ms length. The

4.1. Components of ASR 67

speech signal is regarded stationary in this time-scale. Although this is not

strictly true, it is a reasonable approximation. For each frame a vector of

parameters, the feature vector, is determined and handed to the next stage,

the classification.

In the classification module the feature vectors are matched with refer-

ence patterns, which are called acoustic models. The reference patterns are

usually Hidden Markov Models (HMMs). The HMM-states are assigned to

smallest linguistic units of our choice (e. g. words, phones, subphone units).

We train emission probabilities for the states, and transition probabilities

between the states. One HMM is assigned for a whole utterance which is the

full acoustic observation or, if hierarchically organized, smaller units thereof

(words, phones, subphones). HMMs cope with temporal variation, which is

important since the duration of individual phones may differ between the

reference speech signal and the speech signal to be recognized. A linear nor-

malization of the time axis is not sufficient here, since not all phones are

expanded or compressed over time in the same way. For instance, stop con-

sonants (“d”, “t”, “g”, “k”, “b”, and “p”) do not change their length much,

whereas the length of vowels strongly depends on the overall speaking rate.

The pronunciation dictionary defines which combination of phones give

valid words for the recognition. It can contain information about different

pronunciation variants of the same word. Table 4.1 shows an extract of a

dictionary. The words (graphemes) in the left column are related to their

pronunciation (phones) in the right column (phone symbols like in the table

are commonly used for the English language). The language model contains

rudimentary syntactic information. Its aim is to predict the likelihood of

specific words occurring one after another in a certain language. In a more

formal description, the probability of the k-th word following the (k − 1)

4.1. Components of ASR 68

Table 4.1: Extract from a dictionary

word pronunciation

INCREASE ih n k r iy s

INCREASED ih n k r iy s t

INCREASES ih n k r iy s ah z

INCREASING ih n k r iy s ih ng

INCREASINGLY ih n k r iy s ih ng l iy

INCREDIBLE ih n k r eh d ah b ah l

previous words is defined as P (wk|wk−1, wk−2, ..., w1). In practice the context

(number of previous words considered in the model) is restricted to (n −
1) words P (wk|wk−1, wk−2, ..., w1) ≈ P (wk|wk−1, wk−2, ..., wk−n+1), and the

resulting language model is called n-gram model.

4.1.1 Sub-word modeling with HMMs

In large vocabulary ASR systems, HMMs are used to represent sub units of

words (such as phones). For English it is typical to have around 40 models

(phones). The exact phone set depends on the dictionary that is used. Word

models can be constructed as a combination of the sub word models.

Hidden Markov Models (HMMs) are used in ASR. A HMM is a stochastic

finite state automaton (SFSA) built from a finite set of possible states Q =

{q1, . . . , qK}. Each of these states is associated with a specific probability

distribution. A specific HMM Mi is, then, represented by a SFSA comprised

of Li states Si = {s1, . . . , sl, . . . , sLi
} with each sl ∈ Q, arranged according

to a certain, most often predefined, topology.

Thus, HMMs can be used to model a sequence of feature-vectors X =

{x1, . . . , xN} as a piecewise stationary process where each stationary seg-

4.1. Components of ASR 69

ment is associated with a specific hidden (not directly observable) linguistic

HMM state. This approach defines two concurrent stochastic processes: the

sequence of HMM-states (modeling the temporal structure of speech), and a

set of state output processes modeling the locally stationary property of the

speech signal.

Since it is clearly infeasible to have a HMM for every possible utter-

ance except in extremely constrained tasks, a hierarchical scheme is generally

adopted to reduce the number of HMMs. First, entire sentences are mod-

eled as sequences of words (constrained by a grammar). Furthermore, words

are often concatenated from subword units (constrained by a lexicon), most

commonly phones or triphones. One HMM with one or more states is then

used to model these sub-word units.

Theory and methodology of HMMs are described in a number of sources,

e. g. [Rabiner and Juang, 1993]. The fundamental equation describing this

process is Bayes’ rule, applied to speech recognition:

P (M |X,Θ) =
p(X|M,Θ)P (M |Θ)

p(X|Θ)
(4.1)

in which Θ is the parameter set and P (M |X,Θ) is the posterior probability

of the hypothesized HMM M given a sequence X of feature-vectors. Since

this probability cannot be computed directly, it is usually split according to

(4.1) into the acoustic model p(X|M,Θ) and a prior P (M |Θ) representing

the language model.

The (full) acoustic likelihood is computed by expanding it into all possible

state paths in M that can generate X:

p(X|M,Θ) =
∑

∀Sj

p(X,Sj|M,Θ) (4.2)

where Sj are all possible paths of length N in M . For recognition, it is

4.1. Components of ASR 70

usually approximated as

p∗(X|M,Θ) = max
∀Sj

p(X,Sj |M,Θ) (4.3)

which is also known as the “Viterbi”-approximation.

When decoding an observation X, we have to find the model Mj which

maximizes P (M |X,Θ):

j = argmax
∀i

P (Mi|X,Θ)

= argmax
∀i

p(X|Mi,Θ)P (Mi|Θ) (4.4)

since P (X|Θ) from (4.1) is a constant during recognition. The acoustic model

p(X|Mi,Θ) is usually realized using Gaussian Mixture Models (GMMs). The

parameters of the GMMs are estimated using the Expectation-Maximization-

Algorithm (EM-Algorithm). However, the problem with the EM-Algorithm

is that it only guarantees convergence to local optima. In contrast, discrimi-

nants exhibit global solutions as we have seen in the last chapter. Moreover,

the outputs of discriminants can directly be interpreted as probabilities. Be-

low we will describe how we can substitute GMMs by these probabilities [An-

delić et al., 2006a] [Andelić et al., 2005] [Andelić et al., 2004].

In practice, the realization of one and the same phone differs a lot de-

pending on its neighboring phones (the phone ‘context’). Therefore context

dependent phone models are most widely used. Biphone models consider

either the left (preceding) or right (succeeding) phone, in triphone models

both neighboring phones are taken into account, and for each phone differ-

ent models are used for a different context. In Figure 4.3, the English word

“bat” [b ae t] is shown in a monophone, biphone and triphone representa-

tion. The underlying sub-models for the phones or their combinations (in the

bi- and triphone case) are in most cases HMMs. A phonetic alphabet of 40

4.1. Components of ASR 71

phones results in a number of 403 = 64000 possible triphones. However, only

3% of these theoretical possibilities occur in the language. Therefore we can

train all existing triphone models The information coming from the language

b taesil sil

b

b

−ae

sil− −ae

ae

ae

−t

b− −t

t

t

−sil

ae− −sil

sil

sil

−b

*− −b

sil

sil

−*

t− −*

.........

........

........

.......

.......

MONOPHONE MODEL

BIPHONE MODEL

TRIPHONE MODEL

Figure 4.3: Monophone, biphone, and triphone HMMs for the English word

“bat” [b ae t]. ‘sil’ stands for silence at the beginning and end of the utter-

ance, which is modeled as a ‘phone’, too.

model and acoustic models as well as the information from the pronunciation

dictionary has to be balanced during speech recognition. The performance of

speech recognition systems is typically described in terms of word accuracy,

A in %, defined as

A = 100− S + I +D

N
100 (4.5)

where N is the total number of words in the test set, and S, I, and D are

the total number of substituted, inserted, and deleted words, respectively.

4.2. Using Nonlinear Discriminants for ASR 72

4.2 Using Nonlinear Discriminants for ASR

One of the advantages of Nonlinear Discriminants (NDs) is that their outputs

may be interpreted as class-conditional probabilities due to the fact that they

are normally distributed [Mika, 2002]. This is rather favorable compared to

SVMs where the outputs have to be calibrated by a sigmoidal function in

order to be interpretable as probabilities [Platt, 1998]. We will now describe

how with the methods outlined in the last chapter the probabilistic outputs

of NDs can be used to train the emission probabilities of HMM-states in

ASR.

4.2.1 Probabilistic Outputs

Since the ND that is used here is a binary classifier the question arises

how to deal with the probabilistic outputs in a multiclass scenario which

we are actually faced with in ASR. Basically, there are two approaches for

a multiclass discrimination problem. In the one-versus-rest (one-vs-rest)

scheme [Schölkopf and Smola, 2002] each class is discriminated from all

other classes. We will use this method together with KRLS. However, due

to limitations in memory the one-vs-rest method is not accurately applica-

ble when we use Nonlinear Pseudodiscriminants (NPDs) or Order-Recursive

Least-Squares (OROLS). We use the one-versus-one (one-vs-one) classifica-

tion method [Kressel, 1999] instead for the NPD and OROLS, i. e. we dis-

criminate one class (one HMM-state in our case) from one other class.

Let us denote one arbitrary feature vector by x and the selected basis

centers by xn, n = 1, . . . , m. Furthermore, let k be a positive definite Mercer

kernel. As we have seen in the last chapter, the discriminating direction

w associated with a ND, can be expressed by an expansion in terms of

4.2. Using Nonlinear Discriminants for ASR 73

the nonlinearly mapped feature vectors. The methods derived in this thesis

(NPD, OROLS, KRLS) can be used to compute the corresponding expansion

coefficients αn, n = 1, . . . , m. Note that the weight vector α = (α1, . . . , αm)T

has to be normalized to length one in order to scale the projections that

belong to different classification problems to the same range and thereby to

obtain consistent probability estimates.

After training a ND associated with a classification problem which is to

separate class i from class j, one single output, i. e. the projection of x

qij(x) = (wx) + b =

m
∑

n=1

αnk(x,xn) + b (4.6)

onto the discriminating direction w may be used to compute the production

probability of one single feature vector, i. e.

Pij(x|i) = Pij(qij(x)|i)

=
1

√

2πσ2
i

exp

(−(qij(x)− µi)
2

2σ2
i

)

. (4.7)

The mean µi and the variance σi of the projected feature vectors x belonging

to class i may be estimated consistently. Then the corresponding posterior

probabilities νij ≡ Pij(i|x) may be obtained from each Pij applying Bayes’

rule. All pairwise probabilities νij are transformed into one posterior proba-

bility using the pairwise coupling formula [Price et al., 1995]

P (i|x) =

[

T
∑

j=1,j 6=i

1

νij
− (T − 2)

]−1

(4.8)

where T is the number of all classification problems. Every posterior proba-

bility P (i|x) can then be transformed into a production probability applying

again Bayes’ rule P (x|i) ∝ P (i|x)
P (i)

where the probability P (i) for the occur-

rence of class i is estimated by the relative frequency of the class in the

training data. We use each of these production probabilities as an emission

probability of the corresponding HMM-state.

4.3. Implementation 74

4.3 Implementation

Our implementation of a hybrid HMM-system using acoustic models other

than GMMs is based on the speech recognizer HTK [Young, 1996]. The

framework uses a plugin-architecture which allows easy and flexible integra-

tion of arbitrary classifiers in HTK. An external classifier is contained in a

Dynamically Loadable Library (DLL) with a few well-defined entry points.

Measures are taken to make the classifier thread-safe. The DLL and the file

from which to initialize the classifier must be specified to the recognizer in

two additional fields in the HMM definition.

At startup, the classifier initializes its internal state from the file men-

tioned in the HMM definition. During recognition, the external classifier

computes log-probabilities of speech frames x for given hypotheses h. In

HTK, hypothesis are generated hierarchically, i.e. on sentence, word, and

sub-word level. Due to this, a speech frame may be tested against the same

hypothesis several times. Caching of results is performed to reduce compu-

tational overhead.

4.4 Experiments

4.4.1 Experimental Setup

We use the Resource Management 1 (RM1) corpus [Price et al., 1988]. The

RM1 database is a collection of recordings of spoken sentences referred to

naval resource management tasks. It was recorded with the support from

the Defense Advanced Research Projects Agency (DARPA) Information Sci-

ence and Technology Office. Different speakers of both genders with various

US-American dialects read the sentences from written prompts in a low back-

4.4. Experiments 75

ground noise environment.

We preprocess the speech data using a short-time FFT with a frame

width of 25ms and a frame shift of 10ms followed by a cepstral analysis.

The resulting feature-vectors contain 39 components (12 cepstral coefficients,

the frame energy and the first and second order time differences). First, we

compute a time alignment using a standard Gaussian mixture HMM decoder

to get the state (label) for each feature-vector. The feature vectors have to

be rescaled feature-wise to zero mean and standard deviation one in order to

compensate the variability of the speech data due to different speakers. The

test data are scaled using the means and standard deviations of the training

features. The full 72-speaker training set (2880 sentences) is used for training.

Our system is evaluated using the speaker independent Feb’89 test set. We

use the standard RM word-pair grammar. Throughout all experiments the

Gaussian kernel k(x,x
′

) = exp
(

−‖x−x
′
‖2

2σ2

)

is used. The kernel parameter

σ = 8 is optimized on the Oct’89 set. The forward selection for the NPD

and KRLS during the training is terminated when the highest absolute value

in the current residual is less than a predefined value. For OROLS we stop

the forward selection when the regularization parameter λ has converged.

We use 48 monophone models including a silence model to model the silence

before and after the utterance and an optional short pause model with a

single state to model the pauses between the words.

4.4.2 Results

Our baseline is a 3-state monophone HMM system trained on the full train-

ing set with GMMs consisting of 8 mixtures per state [Krüger et al., 2005b].

The results are shown in table 4.2. The NPD and OROLS outperform

the HMM/GMM-system and are very competitive compared with a hybrid

4.5. Summary 76

classifier (3-state HMM) Word accuracy

GMM with 8 mixtures 91.96%

SVM one-vs-one 94.10%

NPD one-vs-one 94.41%

OROLS one-vs-one 94.25%

KRLS one-vs-rest 90.1%

Table 4.2: Results on the RM1 Feb’89 test set.

HMM-based decoder using SVMs for the acoustic modeling [Krüger et al.,

2005b]. The results are very promising. Only the KRLS exhibits a poorer

performance on this task. We believe that the reason for this phenomenon

is that we are very limited in the number of selected basis centers when

we use the one-vs-rest approach since in each classification problem all fea-

ture vectors are involved. Furthermore, it has to be noted that a standard

HMM/GMM-system using triphones instead of monophones achieves about

97% word accuracy on the RM1 task. But note that we incorporate much

more prior knowledge into the model when we use triphones since triphones

are context-dependent and their acquisition requires a large amount of data.

Thus, the use of monophones has its own justification. In situations where

we are not able to acquire a large amount of speech data due to restrictions

in terms of model complexity, our approach (including KRLS) could be a

very good choice [Schafföner et al., 2006].

4.5 Summary

We have shown that the probabilistic outputs of nonlinear discriminants may

be integrated into a hybrid HMM-based decoder for continuous speech recog-

4.5. Summary 77

nition. However, using kernel methods in the described way for a triphone

system would be computationally intractable since there are too many classes

for a one-vs-one classification. Thus, a possible step for future work could

be to find a solution for this problem. For instance, Directed Acyclic Graphs

(DAGs) [Platt et al., 2000] could be used instead of the one-vs-one scheme.

DAGs could reduce the training and decoding times significantly and could

make this approach applicable for larger datasets. Furthermore, finding bet-

ter feature selection schemes and designing more appropriate kernels that

lead to more accurate acoustic models could be focused.

Chapter 5

Experiments for Classification

and Regression

To show the competitiveness of the proposed methods with other state-of-

the art learning machines, we present and discuss in this chapter extensive

empirical evaluations for classification and regression tasks. All benchmark

datasets can be found in the UCI machine learning repository [Merz and

Murphy,].

5.1 Classification

The first experiment for classification is the two spirals problem [Lang and

Witbrock, 1988]. We do not perform this experiment in order to compare our

results with other methods. We rather want to illustrate that kernel-methods

are able to find an accurate decision boundary even if this boundary exhibits

severe nonlinearities like in this case.

The two spirals problem is a synthetic problem. Nevertheless, it is known

as a very hard task. For instance, neural networks are very hard to train on

78

5.1. Classification 79

this dataset. It can be seen from figure 5.1 that the NPD is able to construct

a good decision boundary which is able to separate all training instances

correctly even with 90 basis centers. Using 120 basis centers the decision

boundary takes a smooth form with balanced distances in both directions

towards the training data. This result indicates that the NPD can find

solution which exhibit a large margin. This is very surprising insofar as

discriminants are not constructed using the large margin principle. This

suggests a good generalization ability of NPDs. Moreover, a SVM uses all

training samples as support vectors [Billings and Lee, 2002] which indicates

that SVMs are not necessarily maximally sparse.

As a conclusion we state that two important things are illustrated by

this example. First, the use of Mercer kernel functions allows to incorporate

powerful nonlinear directions into the model. And second, the NPD is a

reasonable algorithmic approach to obtain a solution for these models.

5.1.1 Optical Character Recognition

For optical character recognition, 5 well-known benchmark datasets were

chosen.

In all experiments the Gaussian kernel

k(x,x
′

) = exp

(

−‖x− x
′‖2

2σ2

)

(5.1)

is used. The kernel parameter σ is optimized using a 5-fold crossvalidation in

all experiments. For the classification experiments the one-vs-rest approach

is used to obtain a multiclass classification hypothesis.

The USPS dataset contains 256 pixel values of handwritten digits as train-

ing and testing instances. The letter dataset contains 20000 labeled samples.

The character images were based on 20 different fonts and each letter within

5.1. Classification 80

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

NPD with 60 basis centers

x
1

x 2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

NPD with 90 basis centers

x
1

x 2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

NPD with 120 basis centers

x
1

x 2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

NPD with 150 basis centers

x
1

x 2

Figure 5.1: Decision boundaries on the two spirals classification problem

using the NPD with different number of basis centers.

these fonts was randomly distorted to produce a dataset of unique stimuli.

For this dataset no predefined split for training and testing exist. We used

the first 16000 instances for training and the remaining 4000 instances for

testing. Optdigits is a database of digits handwritten by Turkish writers. It

contains digits written by 44 writers. The training set is generated from the

first 30 writers and digits written by the remaining independent writers serve

as testing instances. The database was generated by scanning and processing

forms to obtain 32×32 matrices which were then reduced to 8×8. Pendigits

contains pen-based handwritten digits. The digits were written down on a

touch-sensitive tablet and were then resampled and normalized to a tempo-

ral sequence of eight pairs of (x, y) coordinates. The predefined test set is

formed entirely from written digits produced by independent writers. The

5.1. Classification 81

satimage dataset was generated from Landsat Multi-Spectral Scanner image

data. Each pattern contains 36 pixel values and a number indicating one of

the six classes of the central pixel. The characteristics of the datasets are

summarized in table 5.1. The recognition results can be seen in table 5.2.

Especially for the optdigits and pendigits datasets NPD and OROLS appear

to be significantly superior compared with SVMs. The performance on the

remaining 3 datasets is comparable with SVMs. However, the NPD tends to

select slightly more basis centers. We believe that at least for these datasets

OROLS yields a better regularization due to the GCV criterion which adapts

the regularization automatically.

Data set # classes # training # testing

USPS 10 7291 2007

Letter 26 16000 4000

Optdigits 10 3823 1797

Pendigits 10 7494 3498

Satimage 6 4435 2000

Table 5.1: Datasets used for the classification experiments.

5.1.2 Other Benchmarks

13 artificial and real world benchmark datasets1 for classification were cho-

sen. For each of the 13 datasets randomly generated partitions for training

and testing exist (20 partitions for Image and Splice and 100 partitions for

all other). In all experiments the Gaussian kernel is used. The width of

1These datasets can be downloaded from http://ida.first.fhg.de/projects/bench/benchmarks.htm.

5.2. Regression 82

Data set SV M OROLS NPD

USPS 4.3(3.9) 4.4(9.7) 4.4(10)

Letter 2.75(7) 2.61(4.3) 2.65(6.3)

Optdigits 2.73(12.1) 1.11(10.2) 1.2(10.4)

Pendigits 2.5(3.2) 1.66(1.9) 1.95(2.5)

Satimage 7.8(5.5) 8.2(7.5) 8.1(10.3)

Table 5.2: Test errors in % on 5 benchmark datasets. The one-vs-rest ap-

proach is used. Average fraction of selected basis centers in % within paren-

theses.

the kernel function, the regularization constant ε and the number of the se-

lected input vectors (number of basis functions) are optimized on the first

five training partitions of each datasets using a 5-fold crossvalidation for the

NPD. For OROLS only the kernel width is optimized during a 5-fold cross-

validation procedure.

The NPD and OROLS are compared with Support Vector Machines

(SVMs), Kernel Fisher Discriminant (KFD)(not sparse) and the Orthogo-

nal Least Squares Algorithm (OLS). The results for these methods are taken

from [Billings and Lee, 2002] [Rätsch et al., 2001]. It can be seen from table

5.3 that both NPD and OROLS are comparable or better than the other

state-of-the-art classifiers.

5.2 Regression

For regression, we first want to illustrate how OROLS perform on noisy

datasets since we expect OROLS to be robust against noise due to the au-

tomatically adapted regularization. To this end we use a synthetic dataset

5.2. Regression 83

Table 5.3: Estimation of generalization errors on 13 benchmark data sets in

% with standard deviations and sparsity levels in % within brackets (best

result in bold face, second emphasized).

Data set SV M KFD OLS OROLS NPD

Banana 11.5±0.7(78) 10.8±0.5 10.7±0.5(93) 10.6±0.4(90) 10.5±0.4(87)

B.Cancer 26.0±4.7(42) 24.8±4.6 25.8±4.7(96) 26.8±4.8(95) 26.8±4.8(95)

Diabetis 23.5±1.7(57) 23.2±1.6 23.1±1.8(98) 23.1±1.7(93) 23.0±1.8(91)

F.Solar 32.4±1.8(9) 33.2±1.7 33.6±1.6(99) 33.6±1.7(95) 33.5±1.8(94)

German 23.6±2.0(58) 23.7±2.2 24.0±2.3(99) 23.8±2.1(91) 23.9±2.2(89)

Heart 16.0±3.2(51) 16.1±3.4 15.8±3.4(98) 16.1±3.4(91) 16.2±3.4(91)

Image 3.0±0.6(87) 4.8±0.6 2.8±0.6(78) 2.9±0.6(77) 2.8±0.6(74)

Ringnorm 1.7±0.1(62) 1.5±0.1 1.6±0.1(98) 1.8±0.1(95) 1.8±0.1(94)

Splice 10.9±0.7(31) 10.5±0.6 11.7±0.6(67) 11.7±0.7(55) 11.7±0.8(50)

Thyroid 4.8±2.2(79) 4.2±2.0 4.6±2.4(84) 4.2±2.0(83) 4.1±1.9(82)

Titanic 22.4±1.0(10) 23.3±2.0 22.4±1.0(93) 22.4±1.0(90) 22.3±1.0(73)

Twonorm 3.0±0.2(82) 2.6±0.2 2.7±0.2(97) 2.7±0.2(85) 2.6±0.2(75)

Waveform 9.9±0.4(60) 9.9±0.4 10.0±0.4(96) 10.0±0.4(60) 10.0±0.5(51)

based on the function sinc(x) = sin(x)/x, x ∈ (−10, 10) which is corrupted

by Gaussian noise. The sinc function is a good choice to test noise robust-

ness since it is a nonlinear function with a vanishing amplitude which is very

hard to identify especially for small function values. All training and test-

ing instances are chosen randomly using a uniform distribution on the same

interval. The results are illustrated in figures 5.2-5.4 and table 5.4. We see

from Fig.5.2 that OROLS is able to identify the true function even in presence

of noise with a high standard deviation. Moreover, Fig.5.3 shows that the

Root Mean Square Error (RMSE) decreases rapidly with increasing number

of training instance and converges to a highly confident value. In Fig.5.4 we

5.2. Regression 84

see that the RMSE increases only in a ratio of about 0.3 with respect to the

noise standard deviation. OROLS is very competitive on this task compared

to SVMs. We can conclude that the regularization incorporated in OROLS

is responsible for this good generalization.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
training points
basis centers
true function
estimated function

Figure 5.2: Example fit to a noisy sinc function for OROLS using 50 randomly

generated points for training and testing. The standard deviation of the

Gaussian noise is 0.1. The Root Mean Square Error (RMSE) is 0.0269 in

this case. 9 points are selected as basis centers.

Method RMSE

SVM 0.0519

OROLS 0.0431

Table 5.4: Average RMSE for the sinc experiment using the SVM and

OROLS. 50 / 1000 randomly generated points are used for training / testing.

The standard deviation of the Gaussian noise is 0.1 in all runs. The results

are averaged over 100 runs.

Additionally, the two real world datasets Boston and Abalone, which are

5.2. Regression 85

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of training data

R
M

S
E

Figure 5.3: RMSE of fits to a noisy sinc function w. r. t. different training

set sizes using OROLS. 1000 randomly generated points are used for testing.

The standard deviation of the Gaussian noise is 0.1 in all runs. The results

are averaged over 100 runs for each size.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

noise standard deviation

R
M

S
E

Figure 5.4: RMSE of fits to a noisy sinc function w. r. t. different noise levels

using OROLS. 100 / 1000 randomly generated points are used for training /

testing. The results are averaged over 100 runs for each noise level.

5.3. Summary 86

available from the UCI machine learning repository, are chosen. The hy-

perparameters are optimized in a 5-fold crossvalidation procedure. For both

datasets, random partitions of the mother data for training and testing are

generated (100 (10) partitions with 481 (3000) instances for training and 25

(1177) for testing for the Boston and Abalone dataset, respectively). All con-

tinuous features are rescaled to zero mean and unit variance for both Abalone

and Boston. The gender encoding (male / female /infant) for the Abalone

dataset is mapped into {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The Mean Squared Error

(MSE) of OROLS and NPD is compared with a forward selection algorithm

based on a QR-decomposition of the Gram matrix [Nair et al., 2002]. The

results in table 5.5 show that the MSE is improved significantly by OROLS

and NPD. It should be noted that the best performance of OROLS and NPD

for the Boston dataset is quite favorable compared with the best performance

of SVMs (MSE 8.7± 6.8) [Schölkopf and Smola, 2002].

Dataset QR OROLS NPD

Boston 8.35±5.67 7.92±3.46 7.66±3.66

Abalone 4.53±0.29 4.32±0.15 4.34±0.16

Table 5.5: Mean Square Error (MSE) with standard deviations for the Boston

and Abalone dataset using different methods.

5.3 Summary

It was shown that the computationally efficient training algorithms derived

in the last chapter are very competitive with other state-of-the-art methods.

Both NPD and OROLS are forward selection methods and are very easy

5.3. Summary 87

to implement with low memory requirements and reasonable scaling prop-

erties . The advantage of the OROLS algorithm is that due to the novel

orthogonal decomposition scheme the GCV can easily be incorporated as

an effective stopping criterion. Furthermore, the GCV criterion allows to

adapt the regularization parameter in each iteration automatically. Exten-

sive empirical studies using synthetic and real-world benchmark datasets for

classification and regression suggest that the proposed methods are able to

construct models with a very competitive generalization ability. The advan-

tage of the proposed methods compared with e. g. SVMs is their simplicity.

Sparsity is achieved in a computationally efficient way by construction and

can hence better be controlled than in the SVM case where a optimization

problem is to be solved. Furthermore, in contrast to SVMs both OROLS and

NPD allow an easy incorporation of multiple kernels, i e. the kernel param-

eters may be varied for different training instances in order to obtain more

flexible learning machines. This possibility is not examined here and may be

an interesting direction for future work. A further step for future work could

be the development of the proposed algorithm for tasks like dimensionality

reduction or online-learning.

Chapter 6

Conclusion and Future Work

In this thesis algorithms for supervised learning and their applications for

classification, regression and speech recognition were considered.

After reviewing some basic facts from statistical learning theory we gained

two very important insights. First, consistency is crucial for successful learn-

ing. And second, not the dimensionality of the data but the complexity of the

function class we choose our functions from is important in order to obtain

consistent learning rules. These facts served as a solid theoretical explanation

for choosing learning machines that implement exclusively linear functions.

Linear functions exhibit a small and easily controllable complexity but on

the other hand their performance in real-world problems is very limited. To

overcome this problem we introduced the so-called kernel functions which

allow to turn every algorithm into a nonlinear one as long as the algorithm

may be formulated exclusively in terms of dot-products. Using kernel func-

tions we are able to implement a variety of nonlinear mappings implicitly. At

the same time, we are able to keep the algorithm linear in the new nonlinear

feature-space and to benefit thereby from the theoretical advantages of linear

functions.

88

Chapter 6. Conclusion and Future Work 89

The SVM served as an important example to show how these theoretical

insights together with the possibility to incorporate kernel functions can be

used algorithmically. Furthermore, the SVM indicated that regularization is

deeply connected with the notion of sparsity. Regularization is the process of

restricting the function class and is hence an important technique for achiev-

ing consistent solutions. Regularization can appear in different forms. In the

SVM case regularization is performed indirectly by maximizing the margin.

The consequence is that we obtain a sparse solution. In contrast, the draw-

back of discriminants is that they are not sparse in general. This fact is also

revealed by the equivalence between the discriminant approach and least-

squares models. However, at the same time this equivalence indicates an

important advantage of the discriminant approach since least-squares mod-

els are very favorable as for their Bayes-optimality in certain classification

settings. Therefore we pursued a combination of these two concepts by in-

corporating sparsity into least-squares models. Thus, compared to the SVM

we went the other way around and performed regularization in a discrete

manner by controlling the sparsity directly.

After reviewing the theoretical justification for this procedure we devel-

oped greedy algorithms for solving sparse kernel-based discriminants. Thereby

we exploited the fact that the use of Mercer kernels leads to a positive definite

Gram matrix and hence we were able to examine only the current residual

as a subset selection criterion or to approximate the full Gram matrix. Fur-

thermore, starting with a simple update scheme for the pseudoinverse we

derived an order-recursive algorithm for an orthogonal decomposition of the

reduced Gram matrix without increasing the cost in terms of memory and

computational time significantly. Thus we were able to regularize the solu-

tion even further by analytically penalizing the length of the solution. The

Chapter 6. Conclusion and Future Work 90

prize we had to pay for this improved regularization was the introduction of

an additional parameter. On the other hand, this regularization parameter

can make the solution more robust against noisy data and can be used as an

effective stopping criterion.

In a large collection of experiments we demonstrated that the general-

ization abilities of the methods proposed in this thesis are very competitive

with other state-of-the-art techniques. Since different datasets have widely

varying characteristics it would be not legitimate to claim that one algorithm

is generally superior over the others. But we believe that in cases where very

sparse solutions can be achieved which is very often the case our methods

are a very good choice due to their simplicity and reasonable cost. However,

this dependance on the sparsity is also a drawback of our methods since

they loose their advantageous properties when a sparse solution can not be

achieved without sacrificing a good generalization. But other methods like

the SVM can not guarantee a very sparse solution neither. A further draw-

back at least of the NPD and OROLS is that they can not be applied on

very large datasets. Therefore we were not able to use the NPD and the

OROLS-algorithm for speech recognition in a one-vs-rest setting. A possi-

ble solution to this problem could be the design of special kernel functions

which yield a sparse Gram matrix. For instance, we might set the kernel

evaluations of two very distant points to zero. Such a method could be able

to decrease the runtime and memory requirements of the proposed update

schemes considerably. We leave this as a suggestion for future work.

A second direction of future work could be the examination of the inter-

play between sparsity and the accuracy of the class-conditional probabilities.

An additional advantage of our methods is that their outputs can be inter-

preted probabilistically in a natural way. We have demonstrated this fact

Chapter 6. Conclusion and Future Work 91

in the speech recognition experiments. However, answering the question if

there is a relation between sparsity and the class-conditional probabilities

and if one can derive bounds for this relation could be of great theoretical

and practical significance especially for speech recognition.

Declaration

No part of this thesis has been submitted elsewhere for any other degree or

qualification and it all my own work unless referenced to the contrary in the

text.

Copyright c© 2007 by Edin Andelić .

92

Persönlicher Werdegang

29.01.1977: Geboren in Hagen, Westfalen

09/1983–06/1987: Grundschule Funckeparkschule in Hagen

09/1987–06/1996: Allgemeine Hochschulreife am Albrecht-Dürer-Gymnasium in Hagen

(Abschlussnote: 1,7)

10/1997–12/2002: Studium der Elektrotechnik an der Ruhr-Universität Bochum (Ab-

schlussnote: sehr gut (1,5))

Vertiefungsrichtungen: Signaltheorie, Digitale Signalverarbeitung,

Elektromagnetische Felder

Titel der Diplomarbeit: Aspekte einer einheitlichen Systemtheorie

für reelle, komplexe und hyperkomplexe Multiratensysteme

Betreuer: Prof. Dr. -Ing. Heinz G. Göckler

05/2003–12/2006: Doktorand am Lehrstuhl “Kognitive Systeme”, Otto-von-Guericke-Universität

Magdeburg

Betreuer: Prof. Dr. rer. nat. Andreas Wendemuth

seit 03/2007: Entwicklungsingenieur bei der Endress+Hauser Conducta GmbH + Co.

KG in Gerlingen

Arbeitsgebiete: Digitale Signalverarbeitung, Methoden des maschinellen

Lernens für die automatische Sensorwartung

93

Bibliography

[Andelić et al., 2004] Andelić, E., Schafföner, M., Katz, M., Krüger, S. E.,

and Wendemuth, A. (2004). Iterative implementation of the kernel fisher

discriminant for speech recognition. In 9th Conference on Speech and Com-

puter (SPECOM 2004), St. Petersburg, Russia.

[Andelić et al., 2005] Andelić, E., Schafföner, M., Katz, M., Krüger, S. E.,

and Wendemuth, A. (2005). Acoustic modelling using kernel-based dis-

criminants. In 10th International Conference on Speech and Computer

(SPECOM 2005), October 17-19, 2005, University of Patras, Patras,

Greece.

[Andelić et al., 2006a] Andelić, E., Schafföner, M., Katz, M., Krüger, S. E.,

and Wendemuth, A. (2006a). A hybrid hmm-based speech recognizer using

kernel-based discriminants as acoustic models. In 18th International Con-

ference on Pattern Recognition (ICPR 2006), 20-24 August 2006, Hong

Kong, China, pages 1158–1161. IEEE Computer Society.

[Andelić et al., 2006b] Andelić, E., Schafföner, M., Katz, M., Krüger, S. E.,

and Wendemuth, A. (2006b). Kernel least-squares models using updates

of the pseudoinverse. Neural Computation, 18(12):2928–2935.

94

Bibliography 95

[Andelić et al., 2007] Andelić, E., Schafföner, M., Katz, M., Krüger, S. E.,

and Wendemuth, A. (2007). Updates for nonlinear discriminants. In 20th

International Joint Conference on Artificial Intelligence (IJCAI 2007),

06-12 January 2007, Hyderabad, India. AAAI Press.

[Aronszajn, 1950] Aronszajn, N. (1950). Theory of reproducing kernels.

Transactions of the American Mathematical Society.

[Baudat and Anouar, 2000] Baudat, G. and Anouar, F. (2000). General-

ized discriminant analysis using a kernel approach. Neural Computation,

12(10):2385–2404.

[Ben-Israel and Greville, 1977] Ben-Israel, A. and Greville, T. N. E. (1977).

Generalized Inverses: Theory and Applications. Wiley.

[Billings and Lee, 2002] Billings, S. A. and Lee, K. L. (2002). Nonlinear

fisher discriminant analysis using a minimum squared error cost function

and the orthogonal least squares algorithm. Neural Networks, 15:263–270.

[Bishop, 1995] Bishop, C. M. (1995). Neural Networks for Pattern Recogni-

tion. Oxford University Press.

[Chen et al., 1991] Chen, S., Cowan, C. F. N., and Grant, P. M. (1991).

Orthogonal least squares learning for radial basis function networks. IEEE

Transactions on Neural Networks, 2(2):302–309.

[Chen et al., 1998] Chen, S., Donoho, D. L., and Saunders, M. A. (1998).

Atomic decomposition by basis pursuit. SIAM Journal on Scientific Com-

puting, 20:33–61.

Bibliography 96

[Christianini and Shawe-Taylor, 2000] Christianini, N. and Shawe-Taylor, J.

(2000). An Introduction to Support Vector Machines and Other Kernel-

Based Learning Methods. Cambridge University Press.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. N. (1995). Support

vector networks. Machine Learning, 20:273–297.

[Couvreur and Bresler, 2000] Couvreur, C. and Bresler, Y. (2000). On the

optimality of the backward greedy algorithm for the subset selection prob-

lem. SIAM Journal on Matrix Analysis and Applications, 21(3):797–808.

[De Kruif and De Vries, 2003] De Kruif, B. J. and De Vries, T. J. A. (2003).

Pruning error minimization in least squares support vector machines.

IEEE Transactions on Neural Networks, 14(3):696–702.

[Duda and Hart, 1973] Duda, R. O. and Hart, P. E. (1973). Pattern classi-

fication and scene analysis. John Wiley and Sons.

[Engel et al., 2003] Engel, Y., Mannor, S., and Meir, R. (2003). The ker-

nel recursive least squares algorithm. Technical report, Interdisciplinary

Center for Neural Computation, Jerusalem, Israel.

[Fisher, 1936] Fisher, R. A. (1936). The use of multiple measurements in

taxonomic problems. Annals of Eugenics, 7:179–188.

[Gold and Morgan, 1999] Gold, B. and Morgan, N. (1999). Speech and audio

signal processing: processing and perception of speech, and music. John

Wiley and Sons Inc.

[Grote and Huckle, 1997] Grote, M. J. and Huckle, T. (1997). Parallel pre-

conditioning with sparse approximate inverses. SIAM Journal on Scientific

Computing, 18:838–853.

Bibliography 97

[Gu and Wahba, 1991] Gu, C. and Wahba, G. (1991). Minimizing gcv/gml

scores with multiple smoothing parameters via the newton method. SIAM

Journal on Scientific and Statistical Computing, 12(2):383–398.

[Haykin, 2002] Haykin, S. (2002). Adaptive Filter Theory. Prentice Hall,

New Jersey.

[Hoeffding, 1963] Hoeffding, W. (1963). Probability inequalities for sums of

bounded random variables. Journal of the American Statistical Associa-

tion, 58(301).

[Hoegaerts et al., 2004] Hoegaerts, L., Suykens, J. A. K., Vanderwalle, J.,

and De Moor, B. (2004). A comparison of pruning algorithms for sparse

least squares support vector machines. In Proceedings of the 11th Inter-

national Conference on Neural Information Processing (ICONIP 2004),

Calcutta, India.

[Huang et al., 2001] Huang, X., Acero, A., and Hon, H. (2001). Spoken Lan-

guage processing: A Guide to Theory, Algorithm and System Development.

Prentice Hall.

[Katz et al., 2007] Katz, M., Andelić, E., Schafföner, M., Krüger, S. E., and

Wendemuth, A. (2007). Discriminative kernel classifiers in speaker recog-

nition. In 33rd German Annual Conference on Acoustics (DAGA 2007).

[Katz et al., 2004] Katz, M., Krüger, S. E., Schafföner, M., Andelić, E., and

Wendemuth, A. (2004). Kernel methods for discriminant analysis in speech

recognition. In Proceedings of 9th International Conference on Speech and

Computer (SPECOM 2004).

[Katz et al., 2006a] Katz, M., Krüger, S. E., Schafföner, M., Andelić, E., and

Wendemuth, A. (2006a). Speaker identification and verification using sup-

Bibliography 98

port vector machines and sparse kernel logistic regression. In The Interna-

tional Workshop on Intelligent Computing in Pattern Analysis/Synthesis

(IWICPAS 2006).

[Katz et al., 2005] Katz, M., Schafföner, M., Andelić, E., Krüger, S. E., and

Wendemuth, A. (2005). Sparse kernel logistic regression for phoneme clas-

sification. In Proceedings of 10th International Conference on Speech and

Computer (SPECOM 2005).

[Katz et al., 2006b] Katz, M., Schafföner, M., Andelić, E., Krüger, S. E., and

Wendemuth, A. (2006b). Sparse kernel logistic regression using incremen-

tal feature selection for text-independent speaker identification. In IEEE

Odyssey 2006: The Speaker and Language Recognition Workshop.

[Kressel, 1999] Kressel, U. (1999). Advances in Kernel Methods: Support

Vector Learning, chapter Pairwise Classification and Support Vector Ma-

chines, pages 255–268. MIT Press.

[Krüger et al., 2004] Krüger, S. E., Barth, S., Katz, M., Schafföner, M., An-

delić, E., and Wendemuth, A. (2004). Free energy classification at various

temperatures for speech recognition. In Proceedings of 9th International

Conference on Speech and Computer (SPECOM 2004).

[Krüger et al., 2007] Krüger, S. E., Katz, M., Schafföner, M., Andelić, E.,

and Wendemuth, A. (2007). Support vector machines as acoustic models

in speech recognition. In 33rd German Annual Conference on Acoustics

(DAGA 2007).

[Krüger et al., 2005a] Krüger, S. E., Schafföner, M., Katz, M., Andelić, E.,

and Wendemuth, A. (2005a). Using support vector machines in a hmm

Bibliography 99

based speech recognition system. In Proceedings of 10th International

Conference on Speech and Computer (SPECOM 2005).

[Krüger et al., 2006] Krüger, S. E., Schafföner, M., Katz, M., Andelić, E.,

and Wendemuth, A. (2006). Mixture of support vector machines for hmm

based speech recognition. In 18th International Conference on Pattern

Recognition (ICPR 2006).

[Krüger et al., 2005b] Krüger, S. E., Schaföner, M., Katz, M., Andelić, E.,

and Wendemuth, A. (2005b). Speech recognition with support vector ma-

chines in a hybrid system. In 9th European Conference on Speech Com-

munication and Technology, pages 993–996.

[Lang and Witbrock, 1988] Lang, K. J. and Witbrock, M. J. (1988). Learn-

ing to tell two spirals apart. In Proceedings of the 1988 Connectionist

Models Summer School.

[MacKay, 1992] MacKay, D. J. C. (1992). Bayesian interpolation. Neural

Computation, 4(3):415–447.

[Mallat and Zhang, 1993] Mallat, S. and Zhang, Z. (1993). Matching pursuit

in a time-frequency dictionary. IEEE Transactions on Signal Processing,

41:3397–3415.

[Mercer, 1909] Mercer, J. (1909). Functions of positive and negative type and

their connections to the theory of integral equations. In Philos. Trans. Roy.

Soc., pages A 209:415–446, London.

[Merz and Murphy,] Merz, C. J. and Murphy, P. M. The uci machine learn-

ing repository. http://mlearn.ics.uci.edu/MLRepository.html.

Bibliography 100

[Mika, 2002] Mika, S. (2002). Kernel Fisher Discriminants. PhD thesis,

Technical University Berlin.

[Nair et al., 2002] Nair, P., Choudhury, A., and Keane, A. J. (2002). Some

greedy learning algorithms for sparse regression and classification with

mercer kernels. Journal of Machine Learning Research, 3:781–801.

[Natarajan, 1995] Natarajan, B. K. (1995). Sparse approximate solutions to

linear systems. SIAM Journal of Computing, 25:227–234.

[Natarajan, 1999] Natarajan, B. K. (1999). On learning functions from noise-

free and noisy examples via occam’s razor. SIAM Journal of Computing,

29:712–727.

[Orr, 1995] Orr, M. (1995). Regularisation in the selection of radial basis

function centres. Neural Computation, 7:606–623.

[Platt et al., 2000] Platt, J., Cristianini, N., and Shawe-Taylor, J. (2000).

Large margin dags for multiclass classification. In Advances in Neural

Information Processing Systems 12, pages 547–553.

[Platt, 1998] Platt, J. C. (1998). Probabilistic outputs for support vector

machines and comparisons to regularized likelihood methods. In Advances

in Large Margin Classifiers, pages 61–74. MIT Press.

[Price et al., 1995] Price, D., Knerr, S., Personnaz, L., and Dreyfus, G.

(1995). Pairwise neural network classifiers with probabilistic outputs. In

Advances in Neural Information Processing Systems, volume 7. The MIT

Press.

[Price et al., 1988] Price, P., Fisher, W., Bernstein, J., and Pallett, D.

(1988). The darpa 1000-word resource management database for contin-

Bibliography 101

uous speech recognition. In IEEE International Conference on Acoustics,

Speech, and Signal Processing.

[Rabiner and Juang, 1993] Rabiner, L. and Juang, B. (1993). Fundamentals

of Speech Recognition. Englewood Cliffs NJ.

[Rätsch et al., 2001] Rätsch, G., Onoda, T., and Müller, K.-R. (2001). Soft

margins for AdaBoost. Machine Learning, 42(3):287–320. also NeuroCOLT

Technical Report NC-TR-1998-021.

[Rifkin et al., 2003] Rifkin, R., Yeo, G., and Poggio, T. (2003). Regularized

least squares classification. In Suykens, J. A. K., Horvath, G., Basu, S.,

Micchelli, C., and Vandewalle, J., editors, Advances in Learning Theory:

Methods, Models and Applications, volume 190 of NATO Science Series

III: Computer and Systems Sciences, chapter 7, pages 131–154. IOS Press,

Amsterdam.

[Roth and Steinhage, 1999] Roth, V. and Steinhage, V. (1999). Nonlinear

discriminant analysis using kernel functions. In Advances in Neural Infor-

mation Processing Systems NIPS 12, pages 568–574. MIT Press.

[Schafföner et al., 2005] Schafföner, M., Andelić, E., Katz, M., Krüger, S. E.,

and Wendemuth, A. (2005). Kernel fisher discriminants as acoustic models

in hmm-based speech recognition. In Proceedings of 10th International

Conference on Speech and Computer (SPECOM 2005).

[Schafföner et al., 2007] Schafföner, M., Andelić, E., Katz, M., Krüger, S. E.,

and Wendemuth, A. (2007). Memory-efficient orthogonal least squares

kernel density estimation using enhanced empirical cumulative distribution

functions. In 11th International Conference on Artificial Intelligence and

Statistics (AISTATS 2007).

Bibliography 102

[Schafföner et al., 2006] Schafföner, M., Krüger, S. E., Andelić, E., Katz,

M., and Wendemuth, A. (2006). Limited training data robust speech

recognition using kernel-based acoustic models. In IEEE International

Conference on Acoustics, Speech, and Signal Processing.

[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. J. (2002). Learning

with Kernels. MIT Press.

[Smola and Bartlett, 2001] Smola, A. J. and Bartlett, P. L. (2001). Sparse

greedy gaussian process regression. In Advances in Neural Information

Processing Systems NIPS 14. MIT Press.

[Smola and Schölkopf, 2000] Smola, A. J. and Schölkopf, B. (2000). Sparse

greedy matrix approximation for machine learning. In Proceedings of the

17th International Conference on Machine Learning, pages 911–918. Mor-

gan Kaufmann.

[Suykens and Vandewalle, 1999] Suykens, J. A. K. and Vandewalle, J.

(1999). Least squares support vector machine classifiers. Neural Processing

Letters, 9:293–300.

[Van Gestel et al., 2002] Van Gestel, T., Suykens, J. A. K., Lanckriet, G.,

Lambrechts, A., De Moor, B., and Vandewalle, J. (2002). A bayesian

framework for least squares support vector machine classifiers, gaussian

processes and kernel fisher discriminant analysis. Neural Computation,

14(5):1115–1147.

[Vapnik, 1998] Vapnik, V. N. (1998). Statistical Learning Theory. Wiley and

Sons.

[Vapnik and Chervonenkis, 1974] Vapnik, V. N. and Chervonenkis, A. Y.

(1974). Theory of Pattern Recognition. Nauka. in Russian.

Bibliography 103

[Vapnik and Chervonenkis, 1991] Vapnik, V. N. and Chervonenkis, A. Y.

(1991). The necessary and sufficient conditions for consistency in the em-

pirical risk minimization method. Pattern Recognition and Image Analysis,

3(1):283–305.

[Wahba, 1979] Wahba, W. (1979). How to smooth curves and surfaces with

splines and cross validation. In Proceedings of the 24th Conference on the

Design of Experiments. US Army Research Office.

[Wendemuth, 1995] Wendemuth, A. (1995). Learning the unlearnable. Jour-

nal of Physics A, 28:5423–5436.

[Young, 1996] Young, S. (1996). The HTK-Book. Cambridge University

Press.

	Zusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Supervised Learning
	Problem Formulation and Outline of the Thesis
	Motivation

	Mathematical Background
	An Induction Principle
	Consistency
	Capacity Measures and Structural Risk Minimization
	Support Vector Machines
	The Linearly Separable Case
	The Linearly Inseparable Case

	Kernel Functions
	The Kernel Trick
	Kernel-Induced Feature Spaces

	Summary

	Discriminants
	Linear Discriminants
	Equivalence to Least-Squares
	Kernel-Based Discriminants
	Regularization

	Sparse Approximations
	Nonlinear Pseudodiscriminants
	Orthogonal Least Squares
	Recursive Least Squares

	Summary

	Application of Nonlinear Discriminants for Automatic Speech Recognition
	Components of ASR
	Sub-word modeling with HMMs

	Using Nonlinear Discriminants for ASR
	Probabilistic Outputs

	Implementation
	Experiments
	Experimental Setup
	Results

	Summary

	Experiments for Classification and Regression
	Classification
	Optical Character Recognition
	Other Benchmarks

	Regression
	Summary

	Conclusion and Future Work
	Declaration
	Persönlicher Werdegang

