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                                            ABSTRACT    
 

The process of weaning programmes the physiological and neurobehavioural development of 

various animal species and is thus a critical formative period for adult behaviour. The neural 

substrates which may underlie these behavioural changes are largely unknown. This study for 

the first time show that the timing as well as the amount of social contact with family members 

significantly interferes with the refinement of prefrontal cortical and hippocampal synaptic 

networks. 

 

Studies have quite intensively investigated the critical importance of emotional experience (for 

instance, time of weaning) at behavioural level. In addition, studies have provided compelling 

evidence that during development environmental factors (such as social or isolated 

environment) dynamically modify animal’s behaviour and brain development. Nevertheless, 

the impact of these two different developmental time windows of emotional experience have 

never been systematically studied and the neural mechanism remains unknown. In this study, I 

tested our working hypothesis that during late childhood the neuronal networks in various 

limbic areas such as the prefrontal cortex and hippocampus are reorganized in response to the 

timing and the extent of social interaction with the mother and the siblings. This was done by 

investigating the impact of time point of weaning (21 vs. 30), of social environments (social vs. 

isolation) and in addition, by investigating the interactions between these two factors on the 

neuronal morphology in the prefrontal cortex and hippocampus. The prefrontal cortex and the 

hippocampus are part of the limbic system which are involved in emotional self-regulation and 

the expression of emotional behaviours. Since, the time of weaning appears to be a major 

emotional challenge during late childhood it can be assumed that this transition to 

independence should involve major structural changes in limbic areas such as the prefrontal 

cortex and hippocampus, which are involved in emotional behaviours. 

 

The findings of this study demonstrate that emotional experience (i.e. the extent of social 

experience with mother and the siblings) induces dendritic and synaptic reorganization, which 

occurs in a highly temporal, regional and dendrite-specific manner. The development of spine 

density was particularly sensitive to the amount of preweaning social experience, as the animals 

that spent less time with their mother i.e. early weaned demonstrated elevated spine densities in 

their dendrites of anterior cingulate cortex (ACd) and hippocampus. The dendritic length and 

complexity of apical dendrites in the prefrontal area, anterior cingulate cortex (ACd) and 
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orbitofrontal cortex (OFC) and in the CA3 area of hippocampus displayed only the interactions 

between the factors time of weaning x postweaning social environment and not the effect of 

time of weaning and social conditions alone. In the anterior cingulate cortex and in CA3 area, 

the most socially deprived group (early weaning and isolated postweaning i.e. EWI) displayed 

longer and more complex apical dendrites compared to other animals. In contrary, in 

orbitofrontal cortex these animals displayed reduction in apical dendritic length and 

complexity. In all these regions, the length and the complexity of basal dendrites remained 

unaffected by either treatment. In dentate gyrus, the dendritic length and complexity of granular 

neurons, mainly in the infra pyramidal layer of dentate gyrus displayed not only interactions 

between time of weaning x postweaning social environment but also the influence of time of 

weaning per se, and of social conditions alone. Similar to that in ACd and CA3, in dentate 

gyrus the animals with fewest social experience or EWI demonstrated longer and more 

complex infra and supra granular dendrites compared to other animals. Taken together, the 

findings demonstrate that the timing as well as the amount of social contact with family 

members significantly affects the refinement of prefrontal cortical and hippocampal synaptic 

networks which as an integral part of the limbic system are essential for emotional and 

cognitive behaviour.  

 

In summary, the findings of this study may provide the neurobiological substrate for the 

behavioural changes induced by different emotional experiences.  
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1.0 Introduction  
 
        Genes can predispose an organism to exhibit certain characters or traits but the 

quality of its development is determined by environmental factors. Neuroscientific 

studies have provided compelling evidences that during development environmental 

factors continuously and dynamically modify animal’s behaviour and brain 

development (Hubel and Wiesel, 1970; Juraska, 1984; Kolb and Whishaw, 1998). The 

central nervous system (CNS) of mammals is not mature at birth and, although in most 

brain regions neurogenesis is complete, the fine detail of neuron shape and connections 

are established in early postnatal period. The initial development of the central nervous 

system involves the production and differentiation of neurons, the formation of axonal 

pathways, and the elaboration of vast numbers of synapses. The circuits that emerge 

from these processes mediate an increasingly complex array of behaviours in humans as 

well as in non-human species. Subsequent experience during postnatal life continues to 

shape neural circuits, the related behavioural repertoires, and ultimately cognitive 

abilities. These changes are most pronounced during developmental windows in early 

life called “critical periods”. Classical studies on the visual system have shown that 

there is a critical stage for the building of synaptic contacts. If the input from one eye to 

the visual cortex is transitorily eliminated by covering the eye during the first week of 

life, the afferents from that eye are enabled to establish the correct number of synapses 

when the eye is opened again (Hubel and Wiesel, 1970; Blakemore et al., 1978). Not 

only dramatic changes such as total removal of visual input but also milder deprivation, 

obtained by reducing the degree of complexity of the environment during the early 

stages of life, affects the development of the visual system. For instance, rats reared in 

an isolated environment have reduced dendritic material in their visual cortical neurons 

compared to rats reared in enriched environments (Greenough and Volkmar, 1973; 

Juraska, 1984). Comparable to visual cortices, a critical period for the development of 

the neocortex is the early postnatal life, when the majority of synapses are formed and 

when much of synaptic remodeling takes place (Huttenlocher, 1984, 1990, 1994; 

Greenough et al., 1987). A variety of studies indicate that initial synaptic connections 
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are overabundant and lack precision and that this preliminary wiring pattern is refined 

by experience-evoked activity through selective elimination and stabilization of 

synapses and dendritic arborizations (Blue and Parnavelas, 1983; Huttenlocher, 1984; 

Rakic et al., 1986; Warton and McCart, 1989; Huttenlocher and Dabholkar, 1997). 

        Over the past 40 years an extensive literature has accumulated demonstrating that 

the structure of cortical neuron is influenced by various types of sensory, motor and 

learning experience (Greenough et al., 1987; Greenough and Chang, 1989; Kolb and 

Whishaw, 1998). Similar to the experience-dependent maturation of sensory cortices, 

evidence is accumulating that the prefrontal cortical regions and hippocampus, which 

are tightly connected to the limbic system, are even more dramatically shaped by early 

experience. The major trigger of synaptic refinement in these limbic areas appears to be 

social and emotional experience, upon which the synaptic wiring patterns of the 

associative cortical regions are continuously modified (Helmeke et al., 2001a, 2001b; 

Ovtscharoff and Braun, 2001, Poeggel et al., 2003a, 2003b; Bock et al., 2005; 

Ovtscharoff et al., 2006). 

  

1.1 Weaning: the process of separation and individuation of the 

young mammal  
        

        The term weaning is derived from the Anglo-Saxon word “wenian” which means 

“to become accustomed to something different”. One of the most important emotional 

challenges in mammals during late childhood is the time of weaning (Bateson and 

Young, 1981, Bateson et al., 1990; Cook, 1999). Since weanling pups become 

nutritionally and bio-behaviourally independent from their mothers and show quite 

striking behavioural transformations (Cramer et al., 1990; Thiels et al., 1990), it is not 

surprising that the process of weaning programmes the development of a number of 

physiological and neurobehavioural mechanism (Bateson et al., 1990; Smith, 1991; 

Nakamura et al., 2003; Kanari et al., 2005). It has been argued that weaning is not 

merely a transition from suckling to independent ingestion, but a unique, critical, 

irreversible behavioural metamorphosis determining adult affective and social behaviour 

(Cook, 1999; Kanari et al., 2005). A weanling rat pup actively involves itself into self- 
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grooming, play-fighting and feeding behaviours and shows gradual decline in suckling 

behaviours (Thiels et al., 1990). In a study on the behavioural development in dogs, 

Scott and Fuller, 1965 found that this period, during which puppies stop suckling but 

continue to live with their parents is crucial for their social and behavioural 

development. Not only in dogs, but also in cats and rodents, this crucial period has been 

shown to affect social behaviours (Bateson and Young, 1981; Thiels et al., 1990). 

Weaning-induced physiological changes involve subsequent increase in plasma, urinary 

cortisol levels as well as temporary reductions in weight and growth of the weanlings 

(Ichimura et al., 1987; Hay et al., 2001). 

        Generally, both farm and laboratory practices result in a more abrupt weaning than 

would be experienced in the absence of human management, making it of interest to 

elucidate what effects such practices have on subsequent adult behaviour and 

physiology. Abrupt weaning is implicated in premature interruption of the mother and 

the infant bond which is considered to be crucially formative for adjustment and social 

competence of infant in adulthood and is extensively studied in animal models (Janus, 

1987a, 1987b; Fahlke et al., 1997; Cook, 1999). Studies have provided compelling 

evidence that environmental stimuli, provided by the mother, play a critical role in 

subsequent neural, endocrine, and behavioural development in nonhuman species such 

as rats (Hofer, 1994) and perhaps also in humans (Kuhn and Schanberg, 1998) and that 

maternal separation induces a number of behavioural abnormalities in rats such as 

anxiety, depression, altered cognition, increased activity and fearfulness in response to 

novelty (Hofer et al., 1989; Matthews et al., 1996; Kehoe et al., 1998; Caldji et al., 

2000; Lehmann et al., 2000; Huot et al., 2001; Kalinichev et al., 2002). In humans, 

maternal separation or early deprivation is regarded as an animal model of child 

neglect/trauma that is associated with subsequent depression and anxiety in children 

(Brown et al., 1987; Heim and Nemeroff, 2001). In addition to modifying pup’s 

behaviour, maternal separation interferes with physiological, structural and functional 

maturations of pups resulting in changes in their homeostatic and hormonal secretion 

(Kuhn et al., 1978; Hofer, 1984; Kuhn et al., 1990; Ladd et al., 1996, 2000, 2005; 

Plotsky et al., 2005); alterations in their neuronal structures such as the dendritic length, 

spine and synaptic densities (Helmeke et al., 2001a, 2001b; Ovtscharoff and Braun, 

2001); alterations in their cortical neurotransmitter systems such as the dopaminergic, 
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serotonergic and GABA-ergic innervations (Crespi et al., 1992; Braun et al., 2000; 

Caldji et al., 2000) and reductions in resistance of pups to lethal disorders such as cancer 

(LaBarba and White, 1971).  

        The mother-infant interactions even at weaning appear important to the 

development of a wide variety of physiological features (Cramer et al., 1990; Thiels et 

al., 1990; Hofer, 1994; Van Oers et al., 1998). Learning in infant around the time of 

natural weaning appears important (Alberts, 1994) and studies in rodents have shown 

that the process of weaning interacts with emotional experiences encountered during 

later life which continuously shape adolescent and adult emotional behaviours (Laughlin 

and Zanella, 2002; Kikusui et al., 2004; Souza and Zanella, 2004; Poletto et al., 2006a, 

2006b). In addition, a number of behavioural studies in rats, mice and other animals 

have shown that early weaning induces a wide range of behavioural changes. For 

instance, early weaned mammals show increased emotionality in response to novel 

environment, increased fearfulness, enhanced separation-induced vocalization and 

escape behaviours (Janus, 1987a, 1987b; Gardner et al., 2001; Orgeur et al., 2001; 

Tuchscherer et al., 2004). Furthermore, early weaning was shown to hamper social 

interaction in juvenile animals (Terranova and Laviola, 2001) and induce long-lasting 

anxiety and aggression in rat and mouse pups (Nakamura et al., 2003; Kikusui et al., 

2004; Kanari et al., 2005).  

        Although on the behavioural level, the critical importance of emotional experience 

during specific sensitive time windows (for instance, time of weaning) has been 

investigated quite intensively, the underlying neuronal and synaptic adaptations of 

limbic cortical regions such as the prefrontal cortex and hippocampus in response to 

different neonatal emotional experiences still require more detailed investigation. 

Pharmacological studies have revealed an involvement of the neurohormones oxytocin 

and vasopressin in the process of weaning-induced behavioural transition (Kavushansky 

and Leshem, 2004). Biochemical studies in brain homogenates have shown that 

weaning interferes with the development of opioid receptors (Kelly et al., 1998; 

Terranova and Laviola, 2001). Nevertheless, the impact of the social interaction 

between the young rats and their mothers on neuronal development in limbic cortical 

regions such as the prefrontal cortex and hippocampus which are involved in the 

regulation of emotional behaviours is yet to be determined. Therefore, in this study I 
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have investigated the impact of social interaction between young rats and their mother 

on the neuronal development in pups. 
 

1.2 Social environments: factors that dynamically shape adult 

behaviour and physiology  

 

        In social species such as mammals, interactions with conspecifics are essential to 

ensure normal neurological and physiological maturations and these interactions are 

provided by environments to which the animals are exposed during their development. 

An extensive literature has accumulated demonstrating that the prenatal and the 

postnatal environment of an animal play a critical role in shaping the behaviour and the 

physiology of an animal in its subsequent life (Einon and Morgan, 1977; Weinstock, 

2001). Exposure to different social environments is reported to have differential effects 

on animal’s behaviour and brain. For example, laboratory animals ranging from rats to 

cats and monkeys are placed in complex environments versus living in standard 

laboratory cages; there are large changes in length of dendrites and number of synapses 

throughout the primary visual and somatosensory cortex (Greenough and Volkmar, 

1973; Beaulieu and Colonnier, 1987). Moreover, these animals have a greater number of 

astrocytes and a greater volume of capillaries per nerve cell (that provides greater 

supply of blood to the brain) compared to the caged animals, regardless of whether the 

caged animal lived alone or with companions (Black et al., 1987). On the other hand, 

laboratory animals reared in a deprived environment display decreased brain size, 

cortical thickness, dendritic tree complexity and neuron numbers in sensory and motor 

areas (Rosenzweig and Bennett, 1978, 1996; Herrmann and Bischof, 1986; Rollenhagen 

and Bischof, 1991).  
        Rearing rats in social isolation from weaning is a non-pharmacologic and nonlesion 

manipulation that is characterized by isolation of a rat from its counterparts at a 

socialization period that is critical for the development of its future social and adult 

behaviours (Einon and Morgan, 1977; Hol et al., 1999). There is compelling evidence 

demonstrating that social isolation in rats is implicated in the genesis of a number of 

psychological disorders; for instance, hyperactivity, anxiety, aggression, learning and 
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cognitive deficits, spatial working memory errors, enhanced response to novelty, greater 

tendencies towards preservation and an altered locomotor response to psycostimulants 

(Sahakian et al., 1975; Gentsch et al., 1988; Jones et al., 1991, 1992; Domeney and 

Feldon, 1998; Del Arco et al., 2004). 

        Epidemiological studies have revealed social isolation to induce acceleration of the 

development and growth of either transplanted or chemically induced tumors, 

enhancement of small intestinal sensitivity to chemotherapy and exacerbation of the 

autoimmune diseases in rats (Weinberg and Emerman, 1989; Liu and Wang, 2005; 

Chida et al., 2006). Moreover, isolation rearing has been proposed as a developmental 

animal model for certain neuropsychiatric disorders: mainly, schizophrenia, as both 

socially isolated animals and schizophrenic patients exhibit sensorimotor gating deficits, 

evidenced by a disrupted prepulse inhibition or the inability to filter responses to 

incoming sensory information (Geyer et al., 1993; Wilkinson et al., 1994; Bakshi and 

Geyer, 1999). 

        In addition, socially isolated rodents display an increased or decreased response of 

hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (Sanchez et 

al., 1998; Weiss at al., 2004). Furthermore, social isolation alters the dopaminergic and 

serotonergic system of the brain which is comparable to that seen in Attention Deficit 

Hyperactivity Disorder (ADHD) and schizophrenia (Jones et al., 1992; Bickerdike et al., 

1993; Fulford and Marsden, 1998; Hall et al., 1998; Braun et al., 2000; Poeggel et al., 

2003a). At neural level, social isolation reduces the amount of N-acetyl aspartate (a 

marker for neuronal loss and cellular dysfunction), impairs the firing rates of pyramidal 

cells in the prefrontal areas (Harte et al., 2004; Peters and O’Donnell, 2005), reduces the 

synaptic content, neurogenesis, synaptic plasticity in hippocampus (Varty et al., 1999; 

Lu et al., 2003), and induces morphological alterations in pyramidal and granular 

neurons of  prefrontal cortex and hippocampus (Poeggel et al., 2003; Silva-Gomez et al., 

2003). A few recent studies have provided evidence that social isolation interacts with 

emotional experience such as weaning; when social isolation (even for a very brief 

period) is carried out in early weaned animals they show impairment in emotional 

behaviour as well as in tasks that are regulated by the prefrontal cortex and 

hippocampus such as learning, memory and cognition (Laughlin and Zanella, 2002; 

Souza and Zanella, 2004).  
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        Studies have extensively investigated the impact of social environments such as, 

social isolation and have demonstrated that it had enduring effects on animal’s 

behaviour, physiology as well as neuronal architecture. In addition, some studies have 

investigated the impact of social isolation in combination with other environmental 

conditions such as the time of weaning at behavioural level. Nevertheless, the synaptic 

adaptations of limbic cortical regions such as the prefrontal cortex and hippocampus are 

yet to be determined. This study investigates the effects of social environments in 

combination with time of weaning on the neuronal development in rats. 

  

 

1.3 The Limbic system: the emotional centre of the brain 
 

       In the 1850s, Paul Broca had originally used the term “limbic lobe” to refer to the 

parts of cerebral cortex that formed a rim (Limbus = rim, in Latin) around the corpus 

callosum on the medial face of the hemisphere. For most of the century, the scientific 

community believed the “limbic lobe” to be primarily cortical until it became evident 

from studies that many other major nuclei were also limbic. Functional studies by 

Heinrich Klüver and Paul Bucy in 1937, 1938 and 1939 began to elucidate complex 

emotional and motivational process associated with limbic lobe that became the 

forefront in limbic biology.  

        By inducing bilateral temporal lobectomy in monkeys Klüver and Bucy reported 

marked changes in their emotional behaviour; for instance, psychic blindness, 

diminished anger, fear, oral tendencies and altered sexual behaviour. After their 

pioneering studies it became evident that the medial temporal lobe (MT) was a crucial 

component of the limbic system. It was, however, James Papez in 1937, who provided 

an anatomical presumption of the limbic system and proposed that specific brain regions 

of the medial temporal lobe are devoted to emotional experience and expression. Papez 

argued that hypothalamus influences the expression of emotion and it is known that the 

emotions reach consciousness and that emotion can be effected by higher cognitive 

functions. He showed that the cingulate cortex and the hypothalamus are interconnected 
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via projection from the mammillary body to the anterior nucleus of dorsal thalamus, 

which projects in turn to cingulate gyrus. The cingulate gyrus projects to the 

hippocampus and the hippocampus projects to the hypothalamus via a large fibre bundle 

called fornix. Papez suggested that these pathways provided the connections necessary 

for cortical control of emotional expression, and they became known as the “Papez 

circuit” (Figure-1B).           

        Over time, the circuitry initially described by James Papez has been revised by 

Paul D. MacLean and others and is shown to include parts such as the orbital and medial 

prefrontal cortex, ventral parts of basal ganglia, the mediodorsal nucleus of thalamus, 

and a large nuclear mass in the temporal lobe anterior to hippocampus called the 

“amygdala”. This set of structures, together with the hippocampus, hypothalamus and 

cingulate gyrus, is generally referred to as the “limbic system” (Figure-1A, 1B). All 

these structures interconnect intensively and none of them is solely responsible for any 

specific emotional state. However, some contribute more than others to this or that kind 

of emotion.  

 

 
 

 15



Figure 1. A) The major structures of the limbic system. The structures described both by 

James Papez and Paul D. MacLean is shown in the figure. Figure adapted from an educational 

website, (www.humanityinunity.org/HIU/teaching).  

                    

 
 

 

Figure 1.B) A neural circuit for emotion proposed by James Papez and extended by Paul 

D. MacLean. The circuit originally proposed by Papez is indicated by blue arrows; more 

recently described connections are indicated by red arrows. Reciprocal connections are 

indicated by double-headed arrows. Single-headed arrows indicate non-reciprocal connections 

(Adapted from Eric R. Kandel, 1982).  

 

 

1.3.1 Limbic system part I: The prefrontal cortex (PFC) 
        For a long time after Brodmann’s studies, the prefrontal cortex was considered 

unique to the primate species and called the “frontal granular cortex” (Brodmann, 1909). 
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Subsequently, years later, a series of studies revealed that not only primates but also rats 

possessed a prefrontal cortex that very much resembled the prefrontal cortex of primates 

on the basis of functional analogy and a projection from the mediodorsal nucleus of 

thalamus that characterizes the prefrontal cortex in nonprimate species (Rose and 

Woolsey, 1948; Akert, 1964; Krettek and Price, 1977; Uylings and Van Eden, 1990; 

Fuster, 1997; Groenewegen and Uylings, 2000; Uylings et al., 2003).  

 

 

 
 

 

 

 

Figure 2. (A-B) Schematic diagram of a coronal section through the rat prefrontal cortex 

(modified from Paxinos and Watson, 1998). (A) Bregma 1.70 mm (B) Bregma 3.70 mm. 

Prefrontal areas that I have analysed in my study include the ACd = dorsal anterior cingulate 

cortex and OFC = orbitofrontal cortex.  cc = Corpus Callosum, NAcc = Nucleus accumbens, 

PL = prelimbic cortex, Pir = Piriform cortex and SSC = Somatosensory cortex.  
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1.3.2 Anatomy and connections of the prefrontal cortex  
 

        The prefrontal cortex is the association cortex of the frontal lobe. It comprises areas 

8-13, 24, 32, 46, and 47 according to the cytoarchitectonic map of Brodmann (1909). In 

rats, it is generally divided into three topologically different regions. First, a medially 

located cortical region, the medial prefrontal cortex (mPFC), which constitutes the 

major portion of the medial wall of the hemisphere anterior and dorsal to the genu of 

corpus callosum. In rodents, medial PFC is further subdivided into four distinct areas, 

the medial precentral area (PrCm), dorsal anterior cingulate area (ACd), prelimbic area 

(PrL) and the infralimbic area (IL) (Figure- 2A, B and 7A). Second, a ventrally located 

cortical region that is termed the orbital prefrontal cortex (OFC) and that lies in part 

dorsal to the caudal end of the olfactory bulb in the dorsal bank of the rhinal sulcus 

(Figure – 2B and 7A). Third, a laterally located cortical region, the lateral or sulcal 

prefrontal cortex that in rats is located in the anterior part of rhinal sulcus (Krettek and 

Price, 1977a; Sarter and Markowitsch, 1983, 1984; Groenewegen, 1988; Heidbreder and 

Groenewegen, 2003). All prefrontal areas (the medial, the lateral, as well as the orbital) 

have a prominent architectonic feature in common, viz. they lack the small granular cell 

layer IV. It is this layer (layer IV) that receives the main thalamic projection in the 

visual and primary sensory cortices (Herkenham, 1980). In the rat prefrontal cortex, the 

fibres from the mediodorsal nucleus terminate mainly in layer III. 

Neural information from various sensory areas and cerebral cortex reaches the 

prefrontal cortex through the thalamic mediodorsal nucleus in layer 3 of cerebral cortex. 

Neural information processed by the prefrontal cortex is relayed by populations of 

projection pyramidal neurons situated in deep layer 5 and 6 of the cortex.  

Connections of medial prefrontal cortex (mPFC): The medial prefrontal cortex 

consisting of anterior cingulate cortex (ACd) receives input via the mediodorsal nucleus 

of thalamus (Krettek and Price, 1977a; Ray and Price, 1993). The ACd is connected to 

various limbic structures such as the basolateral nucleus of amygdala, the lateral 

hypothalamus, hippocampus and enthorhinal cortex (Krettek and Price, 1977b; 

McDonald, 1991; Carmichael and Price, 1995a). It also sends projections to basal 

ganglial structures such as striatum, nucleus accumbens and ventral tegmental area 

 18



(McDonald, 1991; Carr and Sesack, 2000). It receives projections from brain stem 

structures-the periaqueductal grey matter, parabrachial nucleus, nucleus of solitary tract, 

motor nucleus of vagus, parts of reticular formation, and spinal cord (Floyd et al., 2000). 

The medial prefrontal cortex also receives auditory, visual, olfactory, gustatory, 

somatosensory and motor input from corresponding sensory and motor cortices 

(Amaral, 1987; Cavada and Goldman-Rakic, 1989b).  

Connections of the orbitofrontal cortex (OFC):  The OFC receives direct connection 

from the primary taste cortex, primary olfactory cortex and pyriform cortex (Barbas, 

1993; Baylis et al., 1995). Visual informations reach the OFC from the inferior temporal 

cortex, the cortex in the superior temporal sulcus and the temporal pole (Barbas, 1988, 

1993). The OFC receives auditory inputs and somatosensory inputs from somatosensory 

cortical areas 1, 2 and SII in the frontal and pericentral operculum, and from insula 

(Barbas, 1988; Carmichael and Price, 1995b). The OFC receives strong input from 

amygdala (Carmichael and Price, 1995a; Schoenbaum et al., 1998). It also receives 

inputs via the mediodorsal nucleus of thalamus (Krettek and Price, 1977a). It sends 

projections to inferior temporal cortex, enthorhinal cortex, cingulate cortex, preoptic 

regions, lateral hypothalamus, ventral tegmental area and to caudate nucleus (Petrides 

and Pandya, 1984; Pandya and Yeterian, 1996; Ongur and Price, 2000; Rolls, 2004). 

Each of the major prefrontal regions – the medial, orbital and lateral- are extensively 

connected with each other suggesting that they participate in concert in central executive 

functions (Jacobson and Trojanowski, 1977a, 1977b; Pandya and Yeterian, 1990). Some 

of the corticocortical connectivity of the PFC are interhemispheric, and almost all of it is 

reciprocal and topologically organized (Figure-2C) (Cavada and Goldman-Rakic, 

1989a, 1989b; Pandya and Yeterian, 1990).  

        With respect to the transmitter system, the PFC receives cholinergic innervations 

from the magnocellular nucleus of the basal forebrain and from laterodorsal tegmental 

nucleus (Gaykema et al., 1991; Ghashghaei and Barbas, 2001). The noradrenergic fibres 

from the locus coeruleus and the serotonergic fibres from the dorsal and median raphe 

nuclei also projects to the prefrontal cortex (Jodo and Aston-Jones, 1997; Hajos et al., 

1998; Jankowski and Sesack, 2004). The ventral tegmental area (VTA) is the origin of 

major dopaminergic input to the prefrontal cortex (Kalsbeek et al., 1989). The 

 19



histaminergic neurons in the tuberomammillary hypothalamic region also have 

connections with prefrontal cortex (Wouterlood et al., 1987). 

 

 

 
 

 

 

Figure 2.C) Some of the extrinsic and intrinsic connections of the prefrontal cortex (PFC). 

ACd = dorsal anterior cingulate cortex. Limbic structures such as, hippocampus, amygdala and 

hypothalamus are located in the medial temporal lobe. Reciprocal connections are indicated by 

double-headed red arrows; simple black arrows indicate non-reciprocal connections (Adapted 

from Miller and Cohen, 2001. Annu Rev Neurosci. 24:167-202). 
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1.3.3 Neuropsychology and plasticity of the prefrontal cortex (PFC)  
 

        First, I will very briefly describe the most general functions of primate and rodent 

prefrontal cortex and then describe in detail those functions that are regulated by the 

anterior cingulate and the orbital prefrontal areas. It is generally accepted that the 

prefrontal cortex is involved in different aspects of executive control that guides 

behaviour, thought, and affect using working memory such as regulation of attention, 

planning, impulse control, mental flexibility, and the initiation and monitoring of action, 

including self-monitoring. Lesion to the PFC produced symptoms such as forgetfulness, 

distractibility, impulsivity, preservation, locomotor hyperactivity and disorganization 

(Goldman-Rakic, 1995; Barbas, 1995, 2000; Godefroy and Rousseaux, 1996; Fuster, 

1997; Miller, 2000, Wallis et al., 2001; Aron et al., 2004). However, there seems to be 

division of labor among distinct prefrontal cortices in processing information underlying 

cognition, emotion and memory.  

1.3.3(A) Functions of medial prefrontal/anterior cingulate cortex (mPFC/ACd)  

The medial prefrontal cortex as a whole is implicated in attentional processes, working 

memory and behavioural flexibility (Fuster, 1997) The dorsal anterior cingulate of 

medial prefrontal area has been hypothesized to have specific roles in emotional and 

cognitive processing (Carter et al., 1995; Bush et al., 1998, 1999; Luu et al., 2000; 

Kerns et al., 2004). Studies have demonstrated that the anterior cingulate area has a 

specific role in different aspects of emotions such as processing emotions or emotion-

related stimuli (Morris et al., 1999; Hadland et al., 2003; Rolls et al., 2003; Ueda et al., 

2003), emotional decision making, emotional experience (Bush et al., 2000; Damasio et 

al., 2000), expression of emotions (Neafsey, 1990), emotional self regulation (Posner 

and Rothbart, 1998; Davidson, 2000; Levesque et al., 2004) and emotional behaviour 

(Morgan et al., 1993; Hornak et al., 2003; Sinha et al., 2004). 

        In humans, lesion of anterior cingulate cortex for the treatment of the affective 

disorders produces striking personality changes, including lack of emotional liability 

(Phan et al., 2002). Imaging studies have shown that the anterior cingulate area has been 

activated during studies of emotional processing in normal healthy volunteers as well as 

in symptom provocation studies in a number of psychiatric disorders such as anxiety, 
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simple phobia and obsessive-compulsive disorders (Phan et al., 2002). It has also been 

activated repeatedly by induced sadness/happiness in normal subjects and in individuals 

with major depression (Phan et al., 2002; Pelletier et al., 2003; Killgore and Yurgelun-

Todd, 2004). In rodents and monkeys, selective lesions of the ACd can increase 

conditioned fear response, impair their performance in various tasks requiring attention 

such as shuttle avoidance task and single-trial random-foraging task (Uylings et al., 

2003). Recent anatomical studies in rodents have indicated that the neuronal structures 

such as the dendritic spines and dendrites in medial prefrontal cortex in general and of 

anterior cingulate cortex in particular are dramatically shaped by various emotional 

experience such as brief and chronic maternal separation, social isolation and prenatal 

stress (Helmeke et al., 2001a, 2001b, Silva-Gomez et al., 2003; Bock et al., 2005; 

Murmu et al., 2006). Moreover, other types of negative or neutral experiences such as 

stress or injection of corticosterone also induces major alterations in neuronal structures 

of medial prefrontal cortex (Wellman, 2001; Seib and Wellman, 2003; Cook and 

Wellman, 2004; Radley et al., 2004; Brown et al., 2005). Experience-induced changes in 

the neurochemistry and the synapses of medial PFC are also described (Braun et al., 

2000; Ovtscharoff and Braun, 2001; Poeggel et al., 2003).     

1.3.3(B) Functions of orbitofrontal cortex (OFC)  

Ever since Harlow (1848) described the famous case of Phineas Gage, it has been 

known that lesions of orbital prefrontal cortex often induce dramatic changes of 

personality (Damasio et al., 1994; Fuster, 1997). The orbital prefrontal cortex through 

its connection with amygdala (Davis, 1992; Le Doux, 1993) plays an important role in 

emotional reactions to faces and objects. Patients with OFC damage show impairment in 

the identification of facial emotional expression and display inappropriate social 

behaviour (Hornak et al., 1996). In addition, studies have indicated that the orbitofrontal 

cortex is implicated in the regulation of emotional behaviour (Quirk et al., 2000).                                  

         Both in animals and humans, orbitofrontal cortex lesion interrupts emotional 

responses necessary for communicating with their conspecifics and consequently 

disrupts their social interactions. For instance, studies have demonstrated that damage to 

orbitofrontal cortex in primates produces emotional changes (e.g decreased aggression 

to human or to stimuli that are associated with fear such as a snake) (Butter and Snyder, 

1972, De Bruin et al., 1983; Bechara et al., 1994, Hornak et al., 1996, 2003). 
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Furthermore, a very important function of orbitofrontal cortex is the evaluation of 

emotion-related reinforcement contingencies (in other words, representing rewards and 

punishers) and in learning stimulus-reinforcement associations (Thorpe et al., 1983; 

Gaffan et al., 1993; Critchley and Rolls, 1996; Rolls et al., 1996, 2003; Baxter et al., 

2000; O’Doherty et al., 2001). Animals with orbitofrontal lesion are impaired at tasks 

(e.g. Go/NoGo task, NoGo trials) which involve learning about which stimuli are 

rewarding and which are not and especially in altering behaviour when reinforcement 

contingencies change (Butter, 1969; Iversen and Mishkin, 1970; Jones and Mishkin, 

1972). In addition, damage to orbitofrontal cortex also leads to severe disorders of 

attention, hyperkinesis and deficits in processing of olfactory and gustatory information 

(Rolls, 2004). In humans, OFC damage can lead to euphoria, irresponsibility and lack of 

affect (Kolb and Whishaw, 1998). A recent study by Murmu et al., (2006) has 

demonstrated that emotional experiences such as prenatal stress can significantly alter 

the dendritic spines and the length and complexity of pyramidal neurons in orbitofrontal 

cortex of the offspring. 

 

 

1.4 Limbic system – part II: The hippocampus/hippocampal 

formation 
 

        Hippocampus derives its name due to its visual resemblance to a seahorse 

(hippocampus = sea horse in Greek) (Figure- 3A). Located in the medial temporal lobe 

(MT) the hippocampus plays a key role in learning, memory and navigation (Krebs et 

al., 1989; Jarrard, 1993; Clark and Squire, 1998; Eichenbaum et al., 1999; Maguire et 

al., 2000). Lesion to hippocampus in humans produces anterograde amnesia (Milner, 

1966). Hippocampus, as an integral part of the limbic system, also plays an important 

role in some aspects of emotion (Sinha et al., 2004). In addition, in rats the hippocampus 

is involved in the regulation of neuroendocrine response to stress. As a target for adrenal 

steroids it constitutes the major negative feedback regulation of the stress via the 

hypothalamic-pituitary-adrenal (HPA) axis thereby, providing a model for studying 
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neurobiological consequences of stress (Sapolsky et al., 1991; McEwen and Sapolsky, 

1995). 

 

 
 

 

Figure 3.A) Schematic diagram of a coronal section through the rat hippocampus 

(modified from Paxinos and Watson, 1998). Bregma –3.14 mm. S2 = secondary somatosensory 

cortex, VPL = Ventral posterolateral thalamic nucleus and VPM = Ventral posteromedial 

thalamic nucleus.  

 

 

1.4.1 Anatomy and connections of the hippocampal formation 

 
       The hippocampal formation comprises four relatively simple cortical regions. 

These include the dentate gyrus, the hippocampus proper (which can be divided into 

three sub-fields, namely CA1, CA2 and CA3), the subicular complex (which can also be 

divided into three subdivisions: the subiculum, presubiculum and parasubiculum) and 

the enthorhinal cortex which, in rodents, is generally divided into medial and lateral 
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subdivisions. The hippocampal formation receives input via thalamus (Dolleman-Van 

Der Weel and Witter, 1996) and direct hippocampal projections terminate in distinct 

limbic structures such as the orbital, cingulate, and dorsolateral prefrontal cortex, 

amygdala, hypothalamus, nucleus accumbens and ventral tegmental area (Swanson, 

1981; Kohler et al., 1985; Mello et al., 1992; Gasbarri et al., 1994; Verwer et al., 1997). 

The hippocampal formation is also extensively connected to non-limbic structures such 

as the septum, olfactory, occipital and parietal cortex (Haberly and Price, 1978; Linke et 

al., 1995; Insausti et al., 1997). 

        Information is acquired in the hippocampus through processing in one or more of 

the polymodal association cortices such as frontal-parieto-occipital-temporal cortices 

that synthesize visual, auditory and somatic information. From there the information is 

conveyed in series of parahippocampal and perihinal cortices and then to the enthorhinal 

cortex (Caballero-Bleda and Witter, 1994) (Figure-3B). The axons of the enthorhinal 

cortex, known as the perforant path, make connections with granular cells of the dentate 

gyrus (Hjorth-Simonsen and Jeune, 1972; Zimmer and Hjorth-Simonsen, 1975). The 

axons of granular cells of dentate gyrus through the mossy fibre pathway project in turn 

to CA3 area of hippocampus proper (Frotscher, 1985). From there the axons of CA3 

divide into two branches; one branch forms the commissural fibres that projects to the 

contralateral hippocampus via the corpus callosum. The other branch forms the Schaffer 

collateral pathways that make connections with the neurons in area CA1 (Amaral and 

Witter, 1989). Lastly, the axon of CA1 projects to the neuron of the subiculum and 

finally back to the enthorhinal cortex (Figure-3B). Thus, in processing information to 

the hippocampus, the enthorhinal cortex has dual functions. First, it is the main input to 

the hippocampus via the perforant pathway; second, the enthorhinal cortex is also the 

major output of the hippocampus. 
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Figure 3.B) The input and output pathways of hippocampal formation (Adapted from Eric 

R. Kandel, 1982, Fundamentals of Neuroscience). Double-headed arrows in the figure indicate 

reciprocal connections. Single-headed arrows indicate non-reciprocal connections. 

 

 

1.4.2 Plasticity of the hippocampus  

 
        The hippocampus is highly plastic and undergoes considerable change following 

different kinds of experiences. In fact, most of the hippocampal synapse has plastic 

properties, which may play a role in learning processes (Bliss and Lomo, 1973; Moser et 

al., 1994; Andersen et al., 1996). Experiences of all kinds, positive or negative, can 

cause structural changes in the hippocampus.  For instance, species of birds that store 

large number of food items and use an accurate, long-lasting spatial memory to retrieve 

their stores, have comparatively large hippocampal volume than species that are 

nonstorers (Krebs et al., 1989; Clayton and Krebs, 1995). Similarly, humans with high 

dependence on hippocampal-related navigational tasks (e.g. London taxi drivers) have 

relatively large hippocampal volume compared to those that do not (Maguire et al., 
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2000). In addition, neutral or positive experiences such as voluntary physical activity, 

exercise and running enhance neurogenesis, learning and long-term potentiation (LTP) 

in hippocampi of laboratory animals (Van Praag et al., 1999). Environmental conditions 

also modulate hippocampal plasticity. For instance, rodents and primates reared in 

enriched environments display enhanced neurogenesis in the dentate gyrus of 

hippocampus (Kozorovitskiy et al., 2005; Leggio et al., 2005). Similarly, animals reared 

in deprived or social isolation show alterations in the morphology and the 

neurochemistry of hippocampus (Varty et al., 1999; Bartesaghi and Serrai, 2001; Del-

Bel et al., 2002; Poeggel et al., 2003). 

        The human hippocampus undergoes atrophy in the aftermath of traumatic stress, 

recurrent depressive illness, schizophrenia, Cushing’s syndrome as well as in some 

aging individuals (Starkman et al., 1992, 1999; Golomb et al., 1994; Bremner et al., 

1995, Lupien et al., 1998; Kalisch et al., 2006). The hippocampal formation is also 

vulnerable to damage from seizures, ischemia and head trauma (McEwen, 2001). 

Recently, a growing body of evidence indicates that the rodent hippocampus is highly 

vulnerable to stress and that any kind of stress, chronic or acute can cause abnormalities 

in hippocampal structures and hippocampal-dependent behaviours. For instance, stress 

is implicated in impaired performance on hippocampal-related tasks, significant atrophy 

and loss of the hippocampal neurons and hippocampal cell death (Watanabe et al., 1992; 

Magarinos and McEwen, 1995; Magarinos et al., 1996; Lambert et al., 1998; McKittrick 

et al., 2000; Sousa et al., 2000; Westenbroek et al., 2004). 

 

 

1.5 Dendritic spines – structure and plasticity 

 

        The human brain contains at least 100 billion neurons; hence, highly sophisticated 

and efficient mechanisms are needed to enable communication among this astronomical 

number of elements. This is made possible by the huge number of contacts known as 

“synapse” that one neuron makes with the other. Some synapses, particularly the 

excitatory ones, often form at small appendages known as “dendritic spines” that are 

present in large numbers on the dendrites. 
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        Dendritic spines were discovered by Santiago Ramon y Cajal in 1888, who, 

applying the relatively novel Golgi method, noticed that Purkinje cell dendrites were 

covered with espinas or small thorns (Spanish: “espinas” = thorns) (Cajal, 1888). In 

1891, he put spines in the spotlight of the nervous system by proposing that spines not 

only served to connect the axons and dendrites, but also were the site of long-term, 

stable memory in CNS neurons. Sixty years later, the recently developed technique of 

electron microscopy (EM) enabled investigators to explore the structure of dendritic 

spines in detail. Studies by Gray, in 1959, proved Cajal’s hypothesis correct by showing 

that spines were indeed the site of synaptic contact. Now, it is known that more than 

95% of the excitatory synapse onto the principal neuron (Pyramidal and stellate) in the 

cerebral cortex occur at dendritic spines (Gray, 1959). 

        Dendritic spines generally consist of a head (up to a micron in length) attached to a 

dendrite via a stalk or a neck and can take a variety of shapes. Traditionally, based on 

the ultrastructural analysis of cerebral cortex (Peters and Kaiserman-Abramof, 1970), 

spines have been classified into four types: filopodia-like spines, thin spines, stubby 

spines and mushroom-like spines. Dendritic spines are regarded as biochemical 

compartment because of the unique calcium compartments that they contain (Wickens, 

1988; Koch and Zador, 1993; Yuste et al., 2000). Besides, the spines possess voltage- 

gated calcium channels, glutamate-activated channels, primarily of NMDA type and 

calcium stores (Segal, 1995; Yuste and Denk, 1995; Korkotian and Segal, 1999; 

Kovalchuk et al., 2000). Dendritic spines are characterized by the absence of 

intracellular organelles such as mitochondria, microtubules or ribosomes and by the 

presence of a specialized form of smooth endoplasmic reticulum termed the “spine 

apparatus” (Fifkova et al., 1983, Fifkova, 1985). Although spines lack neurofilaments 

they contain dense network of actin filament (Jones and Powell, 1969; Blomberg et al., 

1977; Crick, 1982; Fifkova and Delay, 1982; Matus et al., 1982).  

        The dendritic spines were traditionally assumed to be relatively stable structures; 

however, this idea was challenged in 1982 by Crick who proposed that spines are motile 

structures that move in response to synaptic stimulation (Crick, 1982; Fischer et al., 

1998; Dunaevsky et al., 1999; Lendvai et al., 2000). The mechanism responsible for this 

 28



motility is actin-dependent and is developmentally regulated (Blomberg et al., 1977; 

Fifkova and Delay, 1982; Fischer et al., 1998; Dunaevsky et al., 1999). 

        A number of experimental and behavioural conditions have been associated with 

changes in spine morphology, number and density. Studies have demonstrated that 

spines are highly plastic structures and changes in spine number and morphology are 

associated with changes in neuronal activity and experience. For example, light 

deprivation in mice causes reversible reductions in the number of spines (Globus and 

Scheibel, 1967; Valverde, 1967, 1971). Similarly, increase in spine density occurs after 

visual stimulation (Parnavelas et al., 1973). A recent in vivo study indicates that 

dendritic spines appear and disappear in neocortex following novel sensory experience 

such as whisker trimming (Holtmaat et al., 2006). In addition, sensory deprivation 

caused significant alteration in the motility of spines in the barrel and the visual cortex 

in vivo (Lendvai et al., 2000; Majewska and Sur, 2003; Konur and Yuste, 2004). Other 

environmental manipulations such as rearing animals in complex environments enhance 

spine density in cortical neurons (Globus et al., 1973; Kozorovitskiy et al., 2005). 

Similarly, rearing animals in a deprived environment consisting of parental separation 

and social isolation significantly alters spine density (Connor and Diamond, 1982; 

Rollenhagen and Bischof, 1991; Silva-Gomez et al., 2003).  

        Events such as space flight also cause alteration of the spine morphology 

(Belichenko and Krasnov, 1991). A reduction in the size of the spine has also been 

reported after the first orientation flight in honeybees (Brandon and Coss, 1982). In 

birds, spine morphological plasticity is observed during postnatal development (Rausch 

and Scheich, 1982) and imprinting (Bradley and Horn, 1979; Bock and Braun, 1999b). 

Various learning and training tasks are implicated in changes in spine morphology and 

number (Moser et al., 1997; O’Malley et al., 1998, 2000; Knafo et al., 2001; Leuner and 

Shors, 2004). A single learning event in the life of a young chick has been shown to 

produce rapid and marked changes in spine density in selective regions of its brain 

(Lowndes and Stewart, 1994). Some mammals, such as squirrels, have been 

documented to lose 40% of their spines during hibernation and to recover them in a few 

hours after arousal from hibernation (Popov et al., 1992; Popov and Bocharova, 1992). 

        Activity related changes in dendritic spines have been extensively reported by 

studies involving stimulation protocols associated with long-term potentiation (LTP), 
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which is regarded as a cellular mechanism for learning and memory. LTP induced by 

tetanic stimulation produces a spectrum of effects on dendritic spines, ranging from 

changes in spine dimensions, synaptic contact area and shape, spine head bifurcation, to 

the formation of novel spines or disappearance of existing ones (Lee et al., 1980; 

Trommald et al., 1996; Engert and Bonhoeffer, 1999;  Maletic-Savatic et al., 1999; Toni 

et al., 1999). 

        Considerable changes in spine morphology and number occur after 

psychostimulant sensitisation (Robinson and Kolb, 1997, 1999; Li et al., 2003). 

Changes in spine form and number have also been observed in vitro. In dissociated 

cultures as well as in brain slices, pyramidal neurons have increased spine densities 

compared to those found in vivo (Papa et al., 1995; Boyer et al., 1998; Kirov et al., 

1999). Pharmacological manipulations also influence spine morphology and number. 

For example, stimulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid 

(AMPA) receptor is needed for the maintenance of spines, whereas blocking AMPA 

receptors reduces the number of spines (McKinney et al., 1999). Alternatively, synaptic 

blockade with Mg++ and low CA++ increases both spine number and size (Kirov and 

Harris, 1999). This is also found in cultured neurons disinhibited with bicuculline (Papa 

and Segal, 1996) and after stimulation of internal calcium release (Korkotian and Segal, 

1999).   

        Moreover, changes in dendritic spine morphology also occur with development and 

aging (Purpura, 1974). Studies have indicated that spines are overproduced and later 

reduced in number during development and aging (Cajal, 1904). Indeed in the process 

of aging, cortical neurons lose up to 50% of their dendritic spines (Feldman and Dowd, 

1975; Scheibel et al., 1975). Even during the estrous cycle of some mammals, large 

number of spines are produced in the hippocampus and later eliminated in substantial 

numbers (Woolley et al., 1990; Woolley and McEwen, 1993). Spine densities are 

reported to be altered following stressful experience (Sunanda et al., 1995). Many 

diseases, such as mental retardation, dementia, Down’s syndrome, irradiation, 

malnutrition, fragile X syndrome and epilepsy can produce abnormalities in spine 

morphology (Marin-Padilla, 1972; Purpura, 1974; Mehraein et al., 1975; Brizzee et al., 

1980; Salas, 1980; Wisniewski et al., 1991; Multani et al., 1994). Moreover, alterations 
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in dendritic spine densities have also been reported in certain neuropsychiatric diseases 

such as schizophrenia (Garey et al., 1998; Glantz and Lewis, 2000). 

 

 

1.6 Aim of the dissertation 
 

         In the mammals, the mother-infant relationship is terminated at weaning. However, 

age of weaning can vary considerably in relation to physical development and varies by 

species, strain, or particular circumstance, thereby determining the extent and duration 

of the mother-infant relationships (Janus, 1987a, 1987b; Fahlke et al., 1997; Cook, 

1999; Zimmerberg and Weston, 2002). Few studies have investigated the impact of 

emotional experience such as the time of weaning at behavioural level. After weaning, 

social rearing conditions have clearer effects on affects. Post-weaning social isolation is 

widely reported to influence adult behaviour and the physiology (introduction. 1.2). 

Hence, both age of weaning and rearing conditions are important determinants of adult 

behaviour. Yet they have rarely been systematically studied. Some studies have 

examined the interactive effects of weaning and social rearing conditions at behavioural 

level; nevertheless, the underlying neuronal and synaptic adaptations (or morphological 

adaptations) in the limbic cortical regions such as the prefrontal anterior cingulate cortex 

(ACd), orbitofrontal cortex (OFC), hippocampal CA3, infra (IDG) and supra pyramidal 

layers of dentate gyrus (SDG) remains to be investigated. The limbic structures such as 

the prefrontal cortex and the hippocampus are involved exclusively in modulating 

emotional behaviours in animals (described in detail in introduction). Since, the time of 

weaning appears to be a major emotional challenge during late childhood it can be 

assumed that this transition to independency should involve major structural changes in 

limbic areas such as the prefrontal cortex and hippocampus, which are involved in 

emotional behaviours. Therefore, it would be interesting to speculate what effects such 

emotional experience may have on the neuronal development in above mentioned 

limbic areas. Therefore, the aim of my study was two-fold: 
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1) To determine in young rats the impact of the time spent with their mother on the 

development of neurons in their limbic PFC and hippocampus. This was achieved 

by comparing the time of weaning in experimental animals.  

2) To examine the impact of duration and extent of interaction between young rats 

with the mother and the siblings on the development of neurons in prefrontal 

cortex and hippocampus, which was tested by determining the effects of 

postweaning social environments in addition to examining the effect of time of 

weaning.   
 

 

2.0 Materials and methods 
      

The experiments were approved by the University of Haifa Committee on Animal 

Experimentation. Male Wistar rats (Figure- 4A) were born in the laboratory of Prof. 

Micah Leshem (Department of Psychology, University of Haifa, Israel). They were 

raised with their dams in large polycarbonate cages (56 x 35 x 19 cm high) with wood-

flake bedding. Litters were culled to 10 pups within 24h of birth and then left 

undisturbed until weaning which was by removal of the dam from the home cage. 

Subsequently, the rats were raised in groups; 5-6 juveniles per cage. Light in the animal 

rooms were on 07-19h, and the temperature maintained at 22+2°C. 

 

 
Figure 4.A) Photograph of the experimental animal-Wistar rat.   
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 2.1 Experimental animals and groups 

 

Four litters were weaned at 21 days of age and four at 30 days of age. After weaning, 

rats from half of each litter were allocated to individual cages in the rat colony. The 

other half of the litter was raised in groups, 4-5 juveniles in each cage; so, that weaning 

age was compared between litters whilst rearing condition was a within litter 

comparison. Wild and domesticated rat pups reared in semi-natural environments in a 

laboratory make their first departure from the natal nest between postnatal days 16 and 

19 (Alberts, 2005). In the Norway rat, weaning occurs naturally across postnatal days 14 

to 34 and is a transient process. It is common laboratory practice to wean a litter (i.e. to 

separate offspring from the dam) at postnatal day 21. Thus, the two groups termed 

“early weaning” in this study represent the time point for common laboratory weaning. 

 

In this study, there were four experimental groups: 

a) Early weaned/social group (EWS): are group of rats that were weaned at 

postnatal day 21 and raised until adulthood (14 weeks) in groups of 4-5 

siblings (Figure 4B) 

b) Late weaned/social group (LWS): refers to group to rats that were weaned 

at postnatal day 30 and raised until adulthood in groups of 4-5 juveniles 

(Figure 4B). 

c) Early weaned/isolated group (EWI): represents group of rats that were 

weaned at postnatal day 21 and thereafter subjected to chronic social 

isolation until adulthood (Figure 4B). 

d) Late weaned/isolated group (LWI): are group of rats that were weaned at 

postnatal day 30 and thereafter subjected to chronic social isolation until 

adulthood (Figure 4B). 

 

At adulthood (14 weeks) the rats were decapitated and their brains were rapidly 

removed and immersed in 50 ml of Golgi-Cox solution for 14 days.  
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4.B 

 
Figure 4 B. Schematic representations of the experimental groups.  

 

 

2.2 The Golgi-Cox method 

        

       The Golgi method was discovered as a coincident by Golgi in 1873. During the 

silver impregnation of the innermost membrane of pia mater with silver nitrate (AgNO3) 

and potassium dichromate (K2Cr2O7); Golgi detected occasional nerve cells that had 

stained dark brown due to the precipitation of silver chromate (Ag2CrO4). Potassium 

dichromate or Muller’s fluid was widely used at that time as a fixative to harden the 

nervous tissue. Golgi then proceeded with silvering the previously chromated material 

and found that mercury could be used efficiently to intensify the staining (Golgi, 1879). 

In this way, the original Golgi method was discovered which consisted of treatment of 

the nervous tissues with potassium dichromate (K2Cr2O7) for several months; then in 
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solution of mercuric chloride (HgCl2) that lead to the deposition of silver chromate 

(Ag2CrO4) in the cells. The silver is selective tending to impregnate a few cells 

completely which then became blackened when silver is reduced. 

        A significant improvement of the Golgi method was made by Cox in 1890, 1891 

who introduced the use of mixture of potassium dichromate (K2Cr2O7) and mercuric 

chloride (HgCl2) with potassium chromate (K2CrO4) added to moderate the acid 

reaction of the solution. This method was known as the Golgi-Cox method. The Golgi-

Cox method generated such an excellent impregnation of the neuronal cells that pioneer 

like Santiago Ramon y Cajal (1909) used this method in his studies of the hippocampus 

and obtained better neuronal impregnation with this method than with the original Golgi 

technique. 

 

 

2.3 Principles of the Golgi-Cox method 

          

        The original technique created by Golgi can be categorized into two groups: a) 

those leading to deposition of silver chromate are referred to as “Golgi methods” (Golgi, 

1873). b) Those producing deposit of metallic mercury and complex oxides of mercury 

is called “Golgi-Cox” method (Golgi, 1879, 1891; Cox, 1890, 1891). The Golgi-Cox 

method is one of the simplest of the complex and time consuming Golgi methods for 

demonstrating the relationships of dendrites and axons to the nerve cell bodies. For this 

reason, it is regarded as an outstanding method for the morphological analysis of the 

nervous system. There are few special characteristics that make the Golgi-Cox method 

different from other methods of metallic staining:  

 

• Only a few nerve cells are stained out of a large number of neurons present in the 

brain; thus, allowing for complete studies of individual cells and their processes 

• In a few cells that take the stain, the  metallic deposit is massive and includes the  

soma as well as the ramifying processes 

•  Cell bodies and dendritic processes are stained dark brown against a light 

yellowish or transparent background 
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• The unstained structures remain undetectable as they form a transparent 

background against which the stained cells stand out clearly 

• There are no staining gradations. The structures that are visible are either 

completely opaque to light or perfectly transparent 

 

Although the Golgi-Cox method of staining does not reveal details of the internal 

structures of the nerve cells, it does provide, very importantly, a unique view of the 

entire nerve cell and its processes. Example of Golgi-Cox impregnated neurons is 

demonstrated in figure 5A.  

 

 

2.4 Impregnation of neurons by the Golgi-Cox method 

 

        After decapitating the animals at adulthood (14 weeks) the brains were rapidly 

removed and immersed in 50 ml of Golgi-Cox solution for 14 days. Thereafter, the 

brains were dehydrated and embedded in 8% celloidin. Serial transverse sections, 150 

µm were collected, mounted on glass slides and processed using a Golgi-Cox protocol 

modified by Glaser and Van der Loos, 1981 (the Golgi-Cox protocol is attached in 

appendices).                                                                                                                                    
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Figure 5.A) Low power micrograph demonstrating Golgi-Cox impregnated neurons from 

the hippocampus of a Wistar rat. A clear and unique view of an entire nerve cell and its 

processes are evident by the Golgi-Cox technique. 

 

 

2.5 Morphological analysis of the Golgi-stained neurons 

         

        The neurons were reconstructed at a final magnification of 1000 X, using a 

computer based neuron tracing system or the image analysis system 

(NEUROLUCIDA®; MicroBrightField, Williston, VT); equipped with an Olympus 

BX51 microscope (Figure-6A). Neurolucida is an advanced scientific software for 

performing a number of morphometric analysis; for instance, 3-D reconstruction of the 

neurons. The neurons are traced in a computer controlled motorized X-Y-Z axis. The 

tracing of neurons in Neurolucida allows for a 3-D measurement of bifurcating and 
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trifurcating branching processes (Figure-6A). The length and the diameter of the 

structures (e.g. neurons) are measured automatically while they are being traced. 

Similarly, structures such as the dendritic spines can be marked and the density 

measurements are generated automatically by Neurolucida’s Neuroexplorer software 

(Figure 6C). In principle, Neurolucida features sophisticated tools for complete 

morphometric analysis of the neurons allowing for a 3-D reconstruction of the neurons 

from serial or single sections. Moreover, high quality graphics of the reconstructed 

neurons can also be obtained from Neurolucida (Figure-6 B).             

  

 
        

 

 

Figure 6.A) Images of (NEUROLUCIDA®; MicroBrightField, Williston, VT); equipped 

with an Olympus BX51 microscope B) Example of a 3-dimensionally reconstructed pyramidal 

neuron in Neurolucida. 
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Figure 6.C) Neuroexplorer of (NEUROLUCIDA®; MicroBrightField, Williston, VT); 

which, quantifies automatically the diameter and length of 3-D reconstructed structures such as 

the neurons.  

 

 

2.6 Brain areas analysed 
 

The Golgi-impregnated neurons from following brain areas were included in my 

analysis:  

• Two prefrontal cortical brain areas such as layer II/III dorsal anterior cingulate 

cortex (ACd) (Figure-7A, B) and layer II/III orbitofrontal cortex (OFC) (Figure-

7A, D) were chosen for my study. The reason for choosing layer II/III of ACd 

and OFC is that it is this layer viz. the layer II/III in prefrontal cortex of rats that 

receives the main thalamic input. The rat prefrontal cortex lacks the granular cell 
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layer IV which typically receives the thalamic input in visual and primary 

sensory cortices (Herkenham, 1980). The ACd was defined according to the 

commonly used nomenclature of Krettek and Price, (1977). This area 

corresponds to the Cg1 of Paxinos and Watson, (1998) or Zilles and Wree, 

(1995). The Cg1 area of medial prefrontal cortex is readily identified by its 

position on the medial wall of rostral cortex and its location dorsal to infralimbic 

cortex (Figure 7A); which is markedly thinner than Cg1 area and has fewer, less 

well-defined layers (Zilles and Wree, 1995). Within Cg1 layer II/III is readily 

identifiable in Golgi-stained materials based on its cytoarchitecture. Its position 

is immediately ventral to the relatively cell-poor layer I and immediately dorsal 

to layer V. In addition, layer II/III of ACd can be readily differentiated in Golgi-

stained materials by its greater cell packing density and smaller somata of the 

pyramidal cells compared to layer V (Cajal, 1995; Zilles and Wree, 1995). The 

orbitofrontal cortex of PFC is a ventrally located cortical region that was 

identified readily by its position dorsal to the caudal end of the olfactory bulb 

(Paxinos and Watson, 1998). The prefrontal area termed OFC included the 

ventral orbital cortex (VO) and lateral orbital cortex (LO) (Paxinos and Watson, 

1998) (Figure-7A); but, since this staining did not allow to distinguish the 

boundaries between these two sub-regions; neurons from both sub-regions were 

taken for the analysis.  

 

• Three regions of the hippocampal formations such as the infra pyramidal layer of 

dentate gyrus (IDG), the supra pyramidal layer of dentate gyrus (SDG) and the 

field CA3 of hippocampus proper (Figure-7F, 7G) were included in my study. 

The hippocampus was readily identifiable by its characteristic “horn of Ammon” 

shape; within which, each of the sub-areas of hippocampal formation, the CA3, 

the infra and the supra pyramidal layer of dentate gyrus occupied a distinct 

position (Figure- 7F, 7G). 
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2.7 Neuron types used for 3-D reconstruction 
 

There were two types of neurons that I used for the morphological analysis: 

• Pyramidal neurons - the pyramidal neurons were readily identified by their 

characteristic triangular soma shape, presence of numerous dendritic spines and a 

distinct primary apical dendrite originating from the apex of the cell body or 

soma as the main dendrite and extending towards the pial surface; 2-4 secondary 

and tertiary basal dendrites originating from the base of the cell body and 

extending towards the deeper layers. In my analysis for the prefrontal cortex, I 

had chosen a particular, morphologically characterized pyramidal neuron type; 

which has its soma located near the layer II/III border. Representative examples 

of the analysed pyramidal neuron of layer II/III dorsal anterior cingulate cortex 

(ACd) and orbitofrontal cortex (OFC) are illustrated in Figure- 7C and 7E. The 

apical dendrites of these neurons typically start to branch in layer II. Neurons 

with longer primary apical dendrites possessing oblique dendrites, which 

typically are found deeper in layer III, were not included in this study. The 

pyramidal neurons in CA3 area of hippocampus were readily identified by their 

triangular cell body; apical dendrite originating from the apex of the cell body as 

the main dendrite and 2-4 secondary and tertiary basal dendrites originating from 

the base of the cell body. Representative examples of pyramidal neurons from 

CA3 are illustrated in Figure- 7G, 7I and 7K. 

 

• Granular neurons – the granular neurons obtain their name from their small size 

(granule = small). The granular neurons that I used in my study were 

characterized by their triangular or multipolar shaped somata; two to four 

primary dendrites that arise from the soma and bifurcate once or more to produce 

an extensive dendritic arborization and by the presence of numerous thorny 

excrescences or spines on their dendrites. (Figure-7H and 7J). 
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Figure 7 A. Schematic diagram of a 
coronal section through the rat 
Prefrontal cortex (modified from 
Paxinos and Watson, 1998). Bregma 
3.20 mm (B) Golgi-Cox impregnated 
forebrain hemisphere of a Wistar rat. 
The margins outline the pregenual 
ACd, in which the neurons were 
analysed (C) Representative Golgi-Cox 
impregnated pyramidal neurons located 
in layer II/III of the dorsal anterior 
cingulate cortex (ACd). The inset 
shows a dendritic segment of an apical 
branch AI = agranular insular cortex, IL 
= infralimbic cortex, LO = lateral 
orbital cortex, PrCm = precentral 
medial, PrL = prelimbic cortex, VO = 
ventral orbital cortex. 
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Figure 7.D) Golgi-Cox impregnated forebrain hemisphere of a Wistar rat. The margins 

outline the prefrontal area, orbitofrontal cortex (OFC) in which the neurons were analysed (E) 

Representative Golgi-Cox impregnated pyramidal neuron from layer II/III orbitofrontal cortex. 

The inset shows a dendritic segment of an apical branch. 
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Figure 7.F) Schematic diagram of a coronal section through the rat hippocampus 

(modified from Paxinos and Watson, 1998). Bregma –3.14 mm (G) Golgi-Cox impregnated 

midbrain hemisphere of a Wistar rat in which different hippocampal areas are labelled. CA1 = 
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field CA1 of hippocampus, CA2 = field CA2 of hippocampus, CA3 = field CA3 of 

hippocampus, DG = dentate gyrus, IDG = infra pyramidal layer of dentate gyrus, SDG = supra 

pyramidal layer of dentate gyrus.  

 

 

 

 
 

 

 

 

 

Figure 7.H) Photomicrograph of Golgi-Cox impregnated granular neurons from the 

supra pyramidal layer of dentate gyrus of a Wistar rat. SDG = Supra pyramidal layer of 

dentate gyrus. The granular neurons of the dentate gyrus contain 2-4 primary dendrites 

originating from the cell body or somata. Magnifications 20 X. 
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Figure 7.I) Photomicrograph of Golgi-Cox impregnated pyramidal neurons from CA3 

area (hippocampus) of a Wistar rat. The pyramidal neurons of area CA3 contain distinct 

apical dendrite originating from the apex and 2-3 basilar dendrites originating from the base of 

the cell body or somata. Magnification 20 X. J) Representative Golgi-Cox impregnated 

granular neuron from infra pyramidal layer of dentate gyrus (IDG). The inset shows a segment 

of a dendritic branch. K) Representative Golgi-Cox impregnated pyramidal neuron from CA3 

area of hippocampus. The inset shows a dendritic segment of an apical branch. 

                                                                                                                                    

 

2.8 Selection of the neurons for 3-D reconstruction 

 

The following criteria’s were taken for the selection of neurons for 3-D reconstruction: 

 

• Intact neurons whose cell bodies or somas were located in the center of the 150 µm 

sections were selected to minimize the number of truncated branches (because 

relatively thick sections, 150 µm were taken through prefrontal cortex and 

hippocampus, the apical and basilar dendrites of almost all neurons were completely 

contained within a single section (Figure 7C, E, H, I, J and K). In all animal groups, 

complete impregnation of numerous neurons were apparent  

• In prefrontal cortex, the soma of the neurons had to be located within layer II/III and 

within the boundaries of anterior cingulate cortex (ACd) and orbitofrontal cortex 

(OFC) 

• Neurons that exhibited complete staining of their dendritic trees within the 150 µm 

section evidenced by well-defined endings 

• Neurons that displayed intact primary, secondary and tertiary branches 

• Neurons that did not show overlap with other branches that would obscure 

visualization of the dendritic spines 

• Neurons that were relatively isolated from neighbouring impregnated cells 
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Representative examples of the analysed neurons are illustrated in Figure 7C, E, H, I, J 

and K. 

 

2.9 Measurements 

For each reconstructed neuron the following morphometric parameters were quantified 

using Neuroexplorer software (NEUROLUCIDA®; MicroBrightField, Williston, VT) 

(Figure-6C). 

 

• Spine frequencies/densities – Spine frequencies or densities represent number 

of visible spines per µm which was obtained for each neuron by dividing the total 

number of spines counted through the total dendritic length. The results were 

expressed as mean spine frequencies per total neuron. All types of dendritic 

protrusions including mushroom, thin, and stubby were considered as spines if 

they were in direct continuity with the dendritic shaft (Figure- 7C, E, J and K). 

An attempt to correct for hidden spines (Feldman and Peters, 1979) was not made 

since the use of visible spines counts for comparison between different 

experimental conditions has been validated previously (Horner and Arbuthnott, 

1991) 

• Spine densities per branch order – represents the average number of spines per 

branch order of a dendrite. The branches of the dendritic trees were numbered in 

a centrifugal nomenclature system (Uylings et al., 1986) starting from their 

originating point in the cell body to the point where the branching ends and 

spines were counted on every branching order. Therefore, dendritic branching 

arising from the soma are the first branch or branch order 1 until they bifurcate 

into second branch or branch order 2 which branches into third branch or branch 

order 3 and so on (Figure-8A) 

• Total dendritic length – refers to summed length of the dendrites for a given 

neuron. The length of the dendritic tree is estimated by Neurolucida while tracing 

the entire neuron 
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• Dendritic branching patterns and complexity – refers to number of crossings 

at a given neuron. In addition to calculating the summed dendritic length, the 

dendritic length and complexity was quantified by a three-dimensional version of 

Sholl analysis (Sholl, 1953) 

 

2.10 3-D version of Sholl analysis  
 

        Sholl in 1953, 1956 and 1959 in an attempt to assess the principles of neuronal 

interconnections performed several studies on the dendritic branching pattern and 

established functional relationships between the number of intersections per unit area 

and the distance from the center of the soma. The Sholl’s method of analysis estimates 

the amount and distribution of dendritic material by counting the number of 

intersections of dendrites with an overlay of concentric rings centered on the soma. 

Hence, this method is known as the Sholl’s method of segmental analysis or 3-D version 

of Sholl analysis that assess the differences in the amount and location of dendritic 

material in a three-dimensional way providing information about the complexity of a 

neuron.                                                                                                                                                       

       In order to find out the complexity of a neuron and track down the changes in 

dendritic length and branching in greater detail, I performed Sholl’s method of 

segmental analysis with the help of Neuroexplorer software (NEUROLUCIDA®; 

MicroBrightField, Williston, VT) (Figure-6C). Using the center of the soma as a 

reference point, I measured dendritic length and intersections at different radial 

distances relative to the soma (Figure-8B, C, and D). The neurons from different brain 

areas varied considerably in their respective lengths. For example, the pyramidal 

neurons from CA3 area of hippocampus are much longer than the prefrontal pyramidal 

neurons (compare Figure-7I and 7K with 7C and 7E) and the granular neurons are 

generally smaller than the prefrontal and hippocampal pyramidal neurons (compare 

figure 7H and 7J with 7C, 7E and 7K). Keeping this in mind, I measured dendritic 

length and intersections at different radial distances depending on the neuronal size:  
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• For the apical and basilar dendrite of pyramidal neuron of prefrontal anterior 

cingulate (ACd) and orbitofrontal cortex (OFC) the dendritic length and 

intersections were measured at distances 20 µm relative to the soma. For 

example, for an apical dendrite measuring 280 µm, dendritic length and 

intersections were measured at radial distances 20 µm, 40 µm, 60 µm, 80 µm, 

100 µm, 120µm, 140 µm, 160 µm, 180 µm, 200 µm, 220 µm, 240 µm, 260 µm 

and 280 µm of the dendrite (Figure 8B) 

 

• For the granular neurons of the infra (IDG) and supra pyramidal layer of dentate 

gyrus (SDG) the dendritic length and intersections were measured at radial 

distances 40 µm relative to soma (Figure 8C)    

 

• For the CA3 sub-region of the hippocampus, dendritic length and intersections of 

apical dendrite were measured at 50 µm and basal dendrite at 30 µm relative to 

soma. (Figure 8D) 
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Figure 8. Three-dimensionally reconstructed neurons (A) reconstructed neuron representing 

hypothetical model for branch order analysis. The branches or dendrites of a given neuron are 

numbered consequently in a centrifugal manner ranging from 1-7 (Uylings et al., 1986). (B) 

Three-dimensionally reconstructed pyramidal neuron from the prefrontal cortex demonstrating 

hypothetical model for Sholl analysis that measures dendritic length and complexities at 

concentric rings overlying the soma. For the pyramidal neurons of ACd, dendritic length and 

complexities were measured at radial distances 20 µm relative to soma. (C) 3-D reconstructed 

granular neuron from dentate gyrus in which the dendritic length and complexities were 

measured at 40 µm relative to soma. (D) 3-D reconstructed pyramidal neuron from CA3 area of 

hippocampus in which the apical dendritic length and complexities were measured at 50 µm 

relative to soma. 

  

 

2.11 Statistical analysis 
 

        Statistical analysis was carried out using SIGMA-STAT 2.0 software (Jandel 

Scientific, Erkrath, Germany). Data’s such as the mean spine frequencies, mean spine 

frequencies per branch order, total dendritic length, complexity and branching of the 

dendrite were calculated for each experimental animal. For statistical analysis data of 

the individual neurons were averaged for each animal, which was used as the unit of 

analysis. 4-5 animals per groups were used in this study. 6 neurons per animal, 

including 3 neurons per hemisphere were analysed. The neurons from left and right 

hemisphere were analysed separately; since no hemispheric difference was observed the 

values from both hemispheres were pooled for statistical analysis. Difference between 

the histological parameters were tested by applying the Two-Way Analysis of Variance 

(Two-Way ANOVA) using weaning (early x late) as the first factor and treatment 

(social x isolation) (treatment = rearing conditions) as the second factor. If an 

interaction between the two factors was detected a post-hoc test was performed using 

the Student-Newman-Keuls test for pairwise comparison between groups. The data for 

radial distances or Sholl analysis were compared by mixed-design ANOVA using radial 

distances from soma as within subject factor and weaning and treatment (or rearing) as 
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between subject factors using SPSS, 13.0 for windows. Group data were further 

analysed by post-hoc (Bonferroni) and t-tests. 

Values were represented as mean + S.E.M. A probability level of P < 0.05 was 

considered to be statistically significant. All measurements were performed blind by me 

without knowing the experimental conditions of the animal. All experimental subjects 

were coded and the code was only broken at the time of statistical analysis.  

 

 

3.0 Results 
  
3.1 Effects of time point of weaning and social environments on the 

morphology of pyramidal neurons in prefrontal cortex (PFC) 

 

3.2 Dorsal anterior cingulate cortex (ACd): 

 

A. Spine frequencies: 

 

Apical dendrite - For the apical dendritic spine density the main effect was found to be 

the time point of weaning (F (1, 12) = 12.01; P = 0.005; early versus late), whereas no 

effect of postnatal rearing environments (F (1, 12) = 0.10; P = 0.753) or interactions 

between the two factors were found (F (1, 12) = 1.64; P = 0.225). Two-way ANOVA 

revealed that the animals weaned early (EWS + EWI) displayed higher density of spines 

(+13%) on their apical dendrite compared to late weaned animals (LWS + LWI); (P 

<0.05; Figure- 9A, 9B, 9C; table- 23A, 24A and B). Branch order analysis revealed that 

the elevated spine density was particularly evident on the 5th order dendritic branches (P 

<0.05; Figure- 9D).  

 

Basal dendrite - Similar to the findings for the apical dendrite, the spine density on 

basal dendrite was affected only by weaning time (F (1, 12) = 7.51; P = 0.018) and neither 

by postweaning environment (F (1, 12) = 2.72; P = 0.125) nor by an interaction between 
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the two factors (F (1, 12) = 2.81; P = 0.120). The animals weaned early (EWS + EWI) 

displayed higher density of spines (+17%) on their basal dendrite compared to late 

weaned animals (LWS + LWI), (P <0.05; Figure- 9E, 9F, 9G; table 23A, 24A and B). 

Branch order analysis did not reveal any difference in spine distribution across the basal 

dendrite (Figure –9H). 

 

 
 

 

Figure 9. Analysis of spine frequencies of pyramidal neurons located in layer II/III 

anterior cingulate cortex (ACd). (A) Apical dendritic tree. (D) Branch order analysis of apical 

dendritic tree. At branch order 5th, Early weaned > late weaned (P <0.05). (E) Basal dendritic 

tree. (H) Branch order analysis of basal dendritic tree. Values are given as mean + S.E.M. 

Statistical comparisons by Two-Way Analysis of Variance (A, D, E, and H). (B, C, F, and G) 

Representative images of Golgi-Cox impregnated segments. (B, C) Segments from apical 
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dendrites of early weaned (B) and late weaned (C) animals. (F, G) Segments from basal 

dendrites of early weaned (F) and late weaned (G) animals. 

 

B. Dendritic length and complexity: 

A) Total dendritic length and complexity: 

Apical dendrite – The apical dendritic length of ACd pyramidal neuron was not 

affected by weaning time (F (1, 12) = 3.14; P = 0.102) and by postweaning environments 

(F (1, 12) = 4.12; P = 0.065). Similarly, the apical dendritic complexity was not affected 

by weaning time (F (1, 12) = 2.76; P = 0.123) and by postweaning environments (F (1, 12) = 

1.95; P = 0.188). However, an interaction between the factors weaning time x 

postweaning environments reorganized the apical dendritic length (F (1, 12) = 11.09; P = 

0.006) and complexity (F (1, 12) = 6.04; P = 0.030). Post-hoc Student-Newman-Keuls test 

revealed that the animals with fewest social experiences (i.e. early weaned from their 

dam and isolated postweaning or EWI) displayed elongated and complex apical 

dendrites. Compared to early weaned socials (EWS), EWI animals displayed longer 

(+32%; P <0.05) and more complex (+27%; P <0.05) apical dendrites, and compared to 

late weaned isolated (LWI) animals, EWI displayed longer (+31%; P <0.05) and more 

complex (+29%; P <0.05) apical dendrites (Figure- 10A, C, 11A-D; table 23B, C, 24E 

and F).    

 

B) Apical dendritic length and complexity per radial distance from soma: 

        Sholl analysis for apical dendritic length revealed only the main effect of radial 

distances from soma (F(14,168) = 32.81; P = 0.000) and not the effect of weaning (F (1,12) 

= 3.03; P = 0.107) or rearing (F (1,12) = 0.12; P = 0.737) and no interactions between 

weaning x rearing x radial distances from soma (F (14,168) = 0.37; P = 0.983) and 

between weaning x rearing (F (1,12) = 0.37; P = 0.554) were found. t-test revealed that 

the elongated apical dendrites were confined to radial distances of 80-160 µm relative to 

the soma (P <0.05; Figure-10B).  

         Sholl analysis for apical dendritic complexity revealed only the main effect of 

radial distances from soma (F(13,156) = 22.55; P = 0.000) and not the effect of weaning 

(F (1,12) = 2.97; P = 0.111) or rearing (F (1,12) = 0.56; P = 0.467) and no interactions 
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between weaning x rearing x radial distances from soma (F (13,156) = 1.39; P = 0.170) 

and between weaning x rearing (F (1,12) = 0.65; P = 0.437) were found. t-test revealed 

that the complex apical dendrites were confined to radial distances of 80-140 µm 

relative to the soma (P <0.05; Figure-10D). 

 

Basal dendrite - Contrary to apical dendrite, the basal dendritic length of ACd 

pyramidal neuron was not significantly affected by the time point of weaning (F (1, 12) = 

1.42; P = 0.256) or postweaning rearing conditions (F (1, 12) = 0.16; P = 0.700) and no 

interactions between the two factors were detected (F (1, 12) = 1.74; P = 0.211). Similarly 

the basal dendritic complexity was not significantly affected by the time point of 

weaning (F (1, 12) = 1.42; P = 0.257) or postweaning rearing conditions (F (1, 12) = 0.55; P 

= 0.471) and no interactions between the two factors were detected (F (1, 12) = 0.43; P = 

0.522; table 23B, C, 24E and F). Since, no effect of any experimental factor was 

observed on the total dendritic length and complexity of ACd basal dendrite, the Sholl 

analysis for basal dendritic length and complexity per radial distances from soma was 

not performed. 
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Figure 10. Analysis of apical dendritic length (A, B) and complexity (C, D) of pyramidal 

neurons located in layer II/III anterior cingulate cortex (ACd). (A-C) Statistical 

comparisons by Two-Way Analysis of Variance followed by post-hoc Student-Newman-Keuls 

(A) Mean of total dendritic length. (B-D) Statistical comparisons by mixed-design ANOVA 

and t-test. (B) Sholl analysis for dendritic length per 20 µm relative to soma. (*) indicates 

elongated dendrites at radial distances 80-160 µm relative to soma (P < 0.05). (C) Mean 

intersection numbers (total dendritic complexity). (D) Sholl analysis for dendritic intersections 

per 20 µm relative to soma. (*) indicates higher complexity of dendrites at radial distances 

80-140 µm relative to soma (P < 0.05). Values are given as mean + S.E.M.  
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Figure 11.  Representative reconstructions of apical dendrite from layer II/III anterior 

cingulate cortex (ACd). (A) Apical dendrite of Early weaned social animal (EWS). (B) Apical 

dendrite of Late weaned social animal (LWS). (C) Apical dendrite of Early weaned isolated 

animal (EWI) demonstrating longer and more complex apical dendrites compared to other 

groups. (D) Apical dendrite of late weaned isolated animals (LWI).  
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3.3 Orbitofrontal cortex (OFC): 

 

A. Spine frequencies: 

 

Apical dendrite - In contrary to the findings for ACd, the apical dendritic spine density 

of orbitofrontal cortical pyramidal neurons did not modify in response to weaning time 

(F (1, 16) = 0.50; P = 0.488) or postweaning rearing environments (F (1, 16) = 0.09; P = 

0.770) and no interactions between the two factors were found (F (1, 16) = 1.34; P = 

0.264; datas shown in table 23A, 24A and B).  

 

Basal dendrite – Similar to the findings for the apical dendrite, the basal dendritic spine 

density of pyramidal neurons in orbitofrontal cortex did not modify in response to 

weaning time (F (1, 16) = 0.003; P = 0.955), or postweaning rearing environments (F (1, 16) 

= 0.44; P = 0.518) and no interactions between the two factors were found (F (1, 16) = 

1.65; P = 0.217; datas shown in table 23A, 24A and B). 

 

 

B. Dendritic length and complexity: 

A) Total dendritic length and complexity: 

Apical dendrite – Similar to the findings for the ACd, the apical dendritic lengths of 

OFC pyramidal neurons were not affected by weaning time (F (1, 16) = 2.44; P = 0.139) 

and by postweaning environments (F (1, 16) = 1.72; P = 0.209). Similarly, the apical 

dendritic complexities of OFC pyramidal neurons were not affected by weaning time (F 

(1, 16) = 0.54; P = 0.473) and by postweaning environments (F (1, 16) = 1.62; P = 0.221).  

However, an interaction between the factors weaning time x postweaning environments 

reorganized the apical dendritic length (F (1, 16) = 9.58; P = 0.007) and complexity (F (1, 

16) = 15.53; P = 0.001) of orbitofrontal cortical apical dendrite in a way dissimilar to that 

observed in the apical dendrite of anterior cingulate cortex. Post-hoc test revealed that 

the apical dendritic length and complexity was increased in animals with short 

preweaning but longer postweaning social experience i.e. early weaned social animals 

(EWS). Compared to late weaned social (LWS), EWS animals displayed longer (+33%; 
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P <0.05) and more complex (+31%; P <0.05) apical dendrites and compared to early 

weaned isolated (EWI) animals, EWS animals displayed longer (+32%; P <0.05) and 

more complex (+35%; P <0.05) apical dendrites (Figure-12A, 12C, 13A-D; table 23B, 

C, 24E and F).  

 

B) Apical dendritic length and complexity per radial distance from soma: 

         Sholl analysis for apical dendritic length revealed the main effect of radial 

distances from soma (F (14,224) = 154.65; P = 0.000) and rearing (F (1, 16) = 5.31; P = 

0.035) but not the effect of weaning (F (1, 16) = 0.16; P = 0.693). In addition, for apical 

dendritic length interactions between the factors weaning x rearing (F (1, 16) = 15.44; P = 

0.001) and between weaning x rearing x radial distances from soma (F (14,224) = 2.20; P 

= 0.008) were found. Post-hoc comparisons revealed that the early weaned social 

animals had longer dendrites at radial distances of 100-300 µm from soma compared to 

early weaned isolated and elongated dendrites at radial distances of 180-300 µm 

compared to late weaned social animals (P < 0.05; Figures- 12B).  

        Sholl analysis for apical dendritic complexity revealed only the main effect of 

radial distances from soma (F (13,208) = 106.66; P = 0.000) and not the effect of weaning 

(F (1, 16) = 0.76; P = 0.396) or rearing (F (1, 16) = 1.24; P = 0.281). In addition, for apical 

dendritic complexity there was no interactions between weaning x rearing x radial 

distances from soma (F (13,208) = 1.35; P = 0.187) but an interaction between the factors 

weaning x rearing (F (1, 16) = 6.16; P = 0.025) was observed. Post-hoc comparisons 

revealed that early weaned social animals had enhanced apical dendritic complexity at 

radial distances of 120, 140, 160, 200, 220, 240 and 260 µm from the soma (P < 0.05; 

12D).  

 

Basal dendrite – Contrary to the apical dendrite, the basal dendritic length of OFC 

pyramidal neurons was not significantly affected by the experimental factors; time point 

of weaning (F (1, 16) = 1.36; P = 0.261), postweaning rearing conditions (F (1, 16) = 0.65; 

P = 0.431) and no interactions between the two factors were detected (F (1, 16) = 2.35; P 

= 0.145). Similarly, the basal dendritic complexity was not significantly affected by the 

time point of weaning (F (1, 16) = 1.22; P = 0.286), postweaning rearing conditions (F (1, 

16) = 0.05; P = 0.826), and by interactions between the two factors (F (1, 16) = 2.57; P = 
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0.129); (table 23B, C, 24E and F). Since, no effect of any experimental factor was 

observed on the total dendritic length and complexity of OFC basal dendrite, the Sholl 

analysis for basal dendritic length and complexity per radial distances from soma was 

not performed. 

 

 

 
 

 

Figure 12. Analysis of apical dendritic length (A, B) and complexity (C, D) of pyramidal 

neurons located in layer II/III orbitofrontal cortex (OFC). (A-C) Statistical comparisons by 

Two-Way Analysis of Variance followed by post-hoc Student-Newman-Keuls test. (A) Mean 

of total dendritic length. (B-D) Statistical comparisons by mixed-design ANOVA, post-hoc 

comparisons and t-test. (B) Sholl analysis for dendritic length per 20 µm relative to soma. (C) 

Mean intersection numbers (total dendritic complexity). (D) Sholl analysis for dendritic 

intersections per 20 µm relative to soma. (*) indicates difference between Early weaned 
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social (EWS) and Late weaned social animals (LWS). (#) indicates difference between Early 

weaned social (EWS) and Early weaned isolated animals (EWI). Values are given as mean + 

S.E.M.                                                                                                                                              
 

 

 
 

 

Figure 13. Representative reconstructions of apical dendrite from layer II/III 

orbitofrontal cortex (OFC). (A) Apical dendrite of Early weaned social animal (EWS) 

demonstrating longer and complex dendrites. (B) Apical dendrite of Late weaned social animal 

(LWS). (C) Apical dendrite of Early weaned isolated animal (EWI). (D) Apical dendrite of late 

weaned isolated animals (LWI).  
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3.4 Effects of time point of weaning and social environments on the 

morphology of pyramidal and granular neurons in hippocampus 

 

3.5 Infra pyramidal layer of dentate gyrus (IDG): 

 

A. Spine frequencies: For the spine density of infra granular neurons, the main effect 

was found to be the time point of weaning (F (1, 16) = 19.73; P = <0.001; early versus 

late), whereas no effect of the postnatal rearing environment (F (1, 16) = 4.32; P = 0.054) 

and no interactions between the two factors were found (F (1, 16) = 1.57; P = 0.228). The 

animals weaned early (EWS + EWI) displayed higher densities of spines (+25%) on 

their infra granular neurons compared to late weaned animals (LWS + LWI) (P <0.05; 

Figure- 14A, B, C; table 23A, 24C and D). Branch order analysis revealed that the 

elevated spine densities were particularly evident on mid-distal dendritic branch orders 

4th and 5th  (P <0.05; Figure- 14D).  

 

 
 

 

Figure 14. Analysis of spine frequencies of granular neurons located in the infra 

pyramidal layer of dentate gyrus (A) Infra granular dendritic tree. (D) Branch order analysis 

of infra granular dendrite. At branch order 4th and 5th, Early weaned > late weaned (P < 0.05). 

Values are given as mean + S.E.M. Statistical comparisons by Two-Way Analysis of Variance 
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(A, D). (B, C) Representative images of Golgi-Cox impregnated segments. Segments from infra 

granular dendrites of early weaned (B) and late weaned (C) animals.  

 

B. Dendritic length and complexity: 

A) Total dendritic length and complexity: 

The dendritic length of granular neurons located in the infra pyramidal layer of dentate 

gyrus, was affected by the weaning time (F (2, 14) = 5.64; P = 0.016), by postweaning 

environments (F (1, 14) = 8.36; P = 0.012) and in addition by an interaction between the 

factors weaning time x postweaning environments (F (2, 14) = 5.05; P = 0.022). The 

dendritic complexity was affected only by weaning time (F (1, 16) = 12.72; P = 0.003) 

and by interactions (F (1, 16) = 8.06; P = 0.012) but not by postweaning environments (F 

(1, 16) = 4.32; P = 0.054). The animals weaned early (EWS + EWI) demonstrated longer 

dendritic length (+19%) and higher dendritic complexity (+24%) compared to animals 

weaned later (LWS + LWI) (P <0.05; Figure – 15A, D). Moreover, the animals that 

were reared in isolation (EWI + LWI) postweaning also demonstrated longer (+19%) 

dendrites compared to animals that were reared socially postweaning (EWS + LWS) (P 

<0.05; Figure – 15A). The post-hoc analysis demonstrated that the animals with fewest 

social experiences i.e. early weaned from their dam and isolated postweaning (EWI) 

displayed elongated and complex infra granular dendrites compared to all other groups. 

For instance, compared to early weaned social (EWS) animals, these animals displayed 

longer (+34%; P <0.05) and more complex dendrites, (+33%; P <0.05); compared to 

late weaned isolated (LWI) animals, EWI animals displayed  longer (+34%; P <0.05) 

and more complex dendrites (+36%; P <0.05) and compared to late weaned social 

(LWS) animals, EWI animals displayed longer (+32%; P <0.05) and more complex 

dendrites (+37%; P <0.05); (Figure- 15B, E, 16A-D; table 23B, C, 24G and H).  

 

 

B) Dendritic length and complexity per radial distance from soma: 

        Sholl analysis for infra dendritic length revealed only the main effect of radial 

distances from soma (F(7,112) = 72.95; P = 0.000) and rearing (F (1,16) = 5.97; P = 0.026) 

but not the effect of weaning (F (1,16) = 3.62; P = 0.075) and no interactions between 
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weaning x rearing (F (1,16) = 4.41; P = 0.052) and between weaning x rearing x radial 

distances from soma (F (7,112) = 2.86; P = 0.110) were found. However, an interaction 

between radial distances from soma x rearing (F (7,112) = 4.84; P = 0.004) was found for 

infra granular dendritic length. Post-hoc test revealed that the elongated dendrites were 

confined to mid-distal dendritic segments at radial distances of 160-320 µm related to 

the soma, in the early weaned and socially isolated animals (EWI) compared to other 

groups (P <0.05; Figure- 15C) 

        Sholl analysis for dendritic complexity revealed the main effect of radial distances 

from soma (F(6,96) = 43.47; P = 0.000), weaning (F (1,16) = 6.42; P = 0.022) and rearing 

(F (1,16) = 7.82; P = 0.013), but no interactions between weaning x rearing x radial 

distances from soma (F (6,96) = 1.39; P = 0.227) and between weaning x rearing (F (1,16) 

= 1.43; P = 0.249) were detected. However, an interaction between radial distances 

from soma x rearing (F (6, 96) = 3.75; P = 0.012) was found for infra granular dendritic 

complexity. Post-hoc test revealed that the enhanced dendritic complexity was found at 

radial distances of 120-280 µm from the soma in the early weaned and socially isolated 

animals (EWI) compared to other groups (P <0.05; Figure- 15 F). 
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Figure 15. Analysis of dendritic length (A, B, C) of granular neurons located in the infra 

pyramidal layer of dentate gyrus. (A) Mean of total dendritic length statistically compared by 

Two-Way ANOVA. (B) Mean of total dendritic length statistically compared by post-hoc 

Student-Newman-Keuls test. (C) Sholl analysis for dendritic length per 40 µm relative to soma; 

statistically compared by mixed-design ANOVA, post-hoc comparisons and t-test.  (#) 

indicates difference between Early weaned isolated (EWI) and Early weaned social animals 

(EWS). ($) indicates difference between Early weaned isolated (EWI) and Late weaned 

isolated animals (LWI). (+) indicates difference between Early weaned isolated (EWI) and 

Late weaned social animals (LWS). Values are given as mean + S.E.M. 

 

                                                                                                                                               

 66



 
 

 

 

 

Figure 15. Analysis of dendritic complexity (D, E, F) of granular neurons located in the 

infra pyramidal layer of dentate gyrus. (D) Mean intersection numbers (total dendritic 

complexity) statistically compared by Two-Way Analysis of Variance (E) Mean intersection 

numbers (total dendritic complexity) statistically compared by post-hoc Student-Newman-

Keuls test (F) Sholl analysis for dendritic intersections per 40 µm relative to soma; statistically 

compared by mixed-design ANOVA, post-hoc comparisons and t-test.  (#) indicates 

difference between Early weaned isolated (EWI) and Early weaned social animals (EWS). ($) 
indicates difference between Early weaned isolated (EWI) and Late weaned isolated animals 

(LWI). (+) indicates difference between Early weaned isolated (EWI) and Late weaned social 

animals (LWS). Values are given as mean + S.E.M.     
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 68



Figure 16.  Representative reconstructions of granular neurons from the infra pyramidal 

layer of dentate gyrus. (A) Granular neuron of Early weaned social animal (EWS). (B) 

Granular neuron of Late weaned social animal (LWS). (C) Granular neuron of Early weaned 

isolated animal (EWI) demonstrating longer and complex dendrite compared to other group. 

(D) Granular neuron of Late weaned isolated animal (LWI). 

 

 

3.6 Supra pyramidal layer of dentate gyrus (SDG): 

 

A. Spine frequencies: Similar to the effects in the infra pyramidal layer of dentate 

gyrus, the spine density on supra granular neurons demonstrated main effect of weaning 

time (F (1, 16) = 6.99; P = 0.018; early versus late), and no effect of postnatal rearing 

environments (F (1, 16) = 4.21; P = 0.057) and no interactions between the two factors (F 

(1, 16) = 0.27; P = 0.608). The animals weaned early (EWS + EWI) displayed higher 

densities of spines (+14%) on their supra granular neurons compared to late weaned 

animals (LWS + LWI); (P <0.05; Figure- 17A, B and C; table 23A, 24C and D). Branch 

order analysis revealed that the elevated spine density was particularly evident on mid-

distal dendritic branch orders 4th and 5th (P <0.05; Figure- 17D).  

 

 

 
 

Figure 17. Analysis of spine frequencies of granular neurons located in the supra 

pyramidal layer of dentate gyrus. (A) Supra granular dendritic tree. (D) Branch order 

analysis of supra granular dendrite. Values are given as mean + S.E.M. Statistical comparisons 
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by Two-Way Analysis of Variance (A, D). (B, C) Representative images of Golgi-Cox 

impregnated segments. Segments from supra granular dendrites of early weaned (B) and late 

weaned (C) animals. 

 

 

B. Dendritic length and complexity:  

A) Total dendritic length and complexity: 

        The dendritic length of supra granular neurons was affected only by weaning time 

(F (1, 16) = 20.91; P = <0.001) and by interactions between the factors weaning time x 

postweaning environments (F (1, 16) = 5.20; P = 0.037). No effect of postweaning rearing 

environments was observed (F (1,16) = 0.85; P = 0.370). Similarly, the dendritic 

complexity was affected only by weaning time (F (1,16) = 4.75; P = 0.045) and by 

interactions between the factors weaning time x postweaning environments (F (1,16) = 

7.06; P = 0.017) and no effect of postweaning rearing environments was observed (F 

(1,16) = 1.67; P = 0.215). Two-Way Anova revealed that animals weaned early (EWS + 

EWI) demonstrated longer (+29%) and complex (+18%) dendrites compared to animals 

weaned later (LWS + LWI) (P <0.05; Figure -18A, D). Similar to that in the infra 

dentate gyrus, a post-hoc analysis revealed that the animals with fewest social 

experience i.e. early weaned from their dam and isolated postweaning (EWI) displayed 

elongated and complex supra granular dendrites compared to all other experimental 

groups. For e.g. compared to early weaned socials (EWS), EWI rats displayed longer 

(+18%; P <0.05) and more complex dendrites (+28%; P <0.05); compared to late 

weaned isolated (LWI) animals, EWI animals displayed elongated (+39%; P <0.05) and 

more complex dendrites (+34%; P <0.05) and compared to late weaned social (LWS) 

animals, EWI animals displayed longer (+31%; P <0.05) and more complex supra 

granular dendrites (+24%; P <0.05); (Figure- 18B, E, 19A-D; table 23B, C, 24G and H).  

 

B) Dendritic length and complexity per radial distance from soma: 

        Sholl analysis for supra granular dendritic length revealed only the main effect of 

radial distances from soma (F(8,128) = 89.30; P = 0.000) and not the effect of weaning (F 

(1,16) = 2.05; P = 0.172) or rearing (F (1,16) = 0.38; P = 0.546) and no interactions 

between weaning x rearing x radial distances from soma (F (8,128) = 0.46; P = 0.885) and 
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between weaning x rearing (F (1,16) = 0.94; P = 0.347) were found. t-test revealed that 

the elongated dendrites were confined to radial distances of 80-200 µm relative to the 

soma (P < 0.05; Figure-18C).  

        Sholl analysis for dendritic complexity revealed only the main effect of radial 

distances from soma (F(7,112) = 70.94; P = 0.000) and not the effect of weaning (F (1,16) = 

3.25; P = 0.090) or rearing (F (1,16) = 0.74; P = 0.403) and no interactions between 

weaning x rearing x radial distances from soma (F (7,112) = 0.82; P = 0.572) and between 

weaning x rearing (F (1,16) = 4.31; P = 0.054) were found. t-test revealed that the 

complex dendrites were confined to radial distances of 80-160 µm relative to the soma 

(P < 0.05; Figure-18F). 

 

 
 

 

 

Figure 18. Analysis of dendritic length (A, B, C) of granular neurons located in the supra 

pyramidal layer of dentate gyrus. (A) Mean of total dendritic length statistically compared by 

 71



Two-Way ANOVA. (B) Mean of total dendritic length statistically compared by post-hoc 

Student-Newman-Keuls test. (C) Sholl analysis for dendritic length per 40 µm relative to soma; 

statistically compared by mixed-design ANOVA and t-test. (*) indicates elongated dendrites 

at radial distances 80-200 µm relative to the soma (P < 0.05). Values are given as mean + 

S.E.M.    

 

 

 
 

 

  

Figure 18. Analysis of dendritic complexity (D, E, F) of granular neurons located in the 

supra pyramidal layer of dentate gyrus. (D) Mean intersection numbers (total dendritic 

complexity) statistically compared by Two-Way Analysis of Variance (E) Mean intersection 

numbers (total dendritic complexity) statistically compared by post-hoc Student-Newman-

Keuls test. (F) Sholl analysis for dendritic intersections per 40 µm relative to soma; statistically 
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compared by mixed-design ANOVA and t-test. (*) indicates higher complexity of dendrites at 

radial distances (80-160µm) from the soma (P < 0.05). Values are given as mean + S.E.M. 
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Figure 19.  Representative reconstructions of granular neurons from the supra pyramidal 

layer of dentate gyrus (A) Granular neuron of Early weaned social animal (EWS). (B) 

Granular neuron of Late weaned social animal (LWS). (C) Granular neuron of Early weaned 

isolated animal (EWI) demonstrating longer and complex dendrite compared to other group. 

(D) Granular neuron of Late weaned isolated animal (LWI). 

 

 

3.7 Hippocampal CA3 area: 

 

A. Spine frequencies: 

 

Apical dendrite – For the spine density of CA3 apical dendrite the main effect was 

found to be only the time point of weaning (F (1,16) = 8.83; P = 0.009; early versus late), 

and not the postweaning rearing conditions (F (1,16) = 0.37; P = 0.551) or the interaction 

between the factors (F (1,16) = 1.85; P = 0.193). Two-Way Anova revealed that the 

animals weaned early (EWS + EWI) displayed higher densities of spines (+17%) on 

their CA3 apical dendrite compared to late weaned animals (LWS + LWI) (P <0.05; 

Figure- 20A, B, C; table 23A, 24C and D). Branch order analysis revealed that the 

elevated spine density was particularly evident on middle dendritic branch orders 5th and 

6th (P <0.05; Figure- 20D).  

 

Basal dendrite – Similar to apical dendrite, the spine density on CA3 basal dendrite 

displayed main effect of time point of weaning (F (1,16) = 5.71; P = 0.030; early versus 

late), no effect of postweaning rearing conditions (F (1,16) = 0.48; P = 0.498) and no 

interaction between the factors (F (1,16) = 3.53; P = 0.078). Two-Way Anova revealed 

that the animals weaned early (EWS + EWI) displayed higher densities of spines 

(+23%) on their CA3 basal dendrite compared to late weaned animals (LWS + LWI) (P 

<0.05; Figure- 20E, F, G; table 23A, 24C and D). Branch order analysis revealed that 

the elevated spine density was particularly evident on middle dendritic branch order 5th 

(P <0.05; Figure- 20H).  
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Figure 20. Analysis of spine frequencies of pyramidal neurons located in CA3 area of 

hippocampus (A) Apical dendrite. (D) Branch order analysis of apical dendrite. At branch 

order 5th and 6th, Early weaned > late weaned (P <0.05). (E) Basal dendrite. (H) Branch order 

analysis of basal dendritic tree. At branch order 5th, Early weaned > late weaned (P < 0.05). 

Values are given as mean + S.E.M. Statistical comparisons by Two-Way Analysis of Variance 

(A, D, E, and H). (B, C, F, and G) Representative images of Golgi-Cox impregnated segments 

(B, C) Segments from apical dendrites of early weaned (B) and late weaned (C) animals. (F, G) 

Segments from basal dendrites of early weaned (F) and late weaned (G) animals. 
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B. Dendritic length and complexity: 

A) Total dendritic length and complexity: 

Apical dendrite - Just like the apical dendrite of prefrontal cortex, the apical dendritic 

length of CA3 pyramidal neurons was not affected by weaning time (F (1,16) = 1.67; P = 

0.215) and by postweaning rearing environments (F (1,16) = 2.24; P = 0.154). Similarly, 

the apical dendritic complexity of CA3 pyramidal neurons was not affected by weaning 

time (F (1,16) = 1.32; P = 0.267) and by postweaning rearing environments (F (1,16) = 

0.14; P = 0.716). However, an interaction between the factors weaning time x 

postweaning environments reorganized the apical dendritic length (F (1,16) = 18.42; P = 

<0.001) and complexity (F (1,16) = 21.76; P = <0.001)  of CA3 pyramidal neuron. Post-

hoc analysis revealed that the animals with fewest social experiences i.e. early weaned 

from their dam and isolated postweaning (EWI) displayed elongated and complex apical 

dendrites compared to other groups. Compared to early weaned socials (EWS) animals, 

EWI animals displayed longer (+21%; P <0.05) and more complex (+34%; P <0.05) 

apical dendrites; compared to late weaned isolated (LWI) animals, EWI animals 

displayed longer (+25%; P <0.05) and more complex (+27%; P <0.05) apical dendrites, 

(Figure- 21A, C, 22A-D). In addition, the late weaned social (LWS) animals displayed 

longer (+36%; P <0.05) and more complex (+41%; P <0.05) apical dendrites compared 

to early weaned social animals (EWS) and longer (+39%; P <0.05) and more complex 

(+35%; P <0.05) apical dendrites compared to late weaned isolated animals (LWI); 

(Figure 21A,C, 22A-D; table 23 B, C, 24G and H).  

 

B) Apical dendritic length and complexity per radial distance from soma: 

        Sholl analysis for apical dendritic length revealed only the main effect of radial 

distances from soma (F (10,160) = 98.57; P = 0.000) and not the effect of weaning (F (1,16) 

= 0.15; P = 0.705) or rearing (F (1,16) = 4.03; P = 0.062). However, an interaction 

between weaning x rearing x radial distances from soma (F (10,160) = 5.38; P = 0.002) 

and between weaning x rearing (F (1,16) = 10.46; P = 0.005) was detected for apical 

dendritic length. Post-hoc test revealed that elongated apical dendrites were confined to 

proximal-middle dendritic segments at radial distances of 150-350 µm relative to soma 

(P <0.05; Figure- 21B).  
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        Sholl analysis for apical dendritic complexity revealed only the main effect of 

radial distances from soma (F (9,144) = 69.47; P = 0.000) and not the effect of weaning (F 

(1,16) = 0.05; P = 0.822) or rearing (F (1,16) = 2.88; P = 0.109). However, an interaction 

between weaning x rearing x radial distances from soma (F (9,144) = 4.72; P = 0.003) and 

between weaning x rearing (F (1,16) = 7.48; P = 0.015) were found. Post-hoc test 

revealed that enhanced apical dendritic complexity was found at radial distances of 150-

200 µm from the soma (P <0.05; Figure- 21D). 

 

Basal dendrite - Contrary to apical dendrite, the basal dendritic length of CA3 

pyramidal neuron was not significantly affected by the time point of weaning (F (1,16) = 

1.29; P = 0.273) or postweaning rearing conditions (F (1,16) = 1.46; P = 0.245), and no 

interactions between the two factors were detected (F (1,16) = 0.37; P = 0.553). Similarly, 

the basal dendritic complexity was not significantly affected by the time point of 

weaning (F (1,16) = 2.16; P = 0.161) or postweaning rearing conditions (F (1,16) =  0.31; P 

= 0.584), and no interactions between the two factors were detected (F (1,16) = 0.007; P 

= 0.932; table 23B, C, 24G and H). Since, no effect of any experimental factor was 

observed on the total dendritic length and complexity of CA3 basal dendrite, the Sholl 

analysis for basal dendritic length and complexity per radial distances from soma was 

not performed. 
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Figure 21. Analysis of apical dendritic length (A, B) and complexity (C, D) of pyramidal 

neurons located in field CA3 of hippocampus. (A-C) Statistical comparisons by Two-Way 

Analysis of Variance and by post-hoc Student-Newman-Keuls test. (A) Mean of total dendritic 

length. (B-D) Statistical comparisons by mixed-design ANOVA, post-hoc comparisons and t-

test. (B) Sholl analysis for dendritic length per 50 µm relative to soma. (C) Mean intersection 

numbers (total dendritic complexity). (D) Sholl analysis for dendritic intersections per 50 µm 

relative to soma. (#) indicates difference between Early weaned social (EWS) and Early 

weaned isolated animals (EWI). ($) indicates difference between Early weaned isolated (EWI) 

and Late weaned isolated animals (LWI). (*) indicates difference between Early weaned 

social (EWS) and Late weaned social animals (LWS). (°) indicates difference between Late 

weaned isolated (LWI) and Late weaned social animals (LWS). Values are given as mean + 

S.E.M. 
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Figure 22.  Representative reconstructions of apical dendrite from field CA3 of 

hippocampus (A) Apical dendrite of Early weaned social animal (EWS). (B) Apical dendrite 

of Late weaned social animal (LWS) demonstrating longest and most complex dendrite. (C) 

Apical dendrite of Early weaned isolated animal (EWI) demonstrating longer and complex 

dendrite compared to EWS and LWI. (D) Apical dendrite of Late weaned isolated animal 

(LWI). 
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3.8 Tables representing summary of results  
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Figure 23. Tables summarizing the results, viz. the effects of time of weaning, postweaning 

environments (social vs isolation) and interactions between the factors on prefrontal and 

hippocampal neurons. ↑ indicate subsequent increase in spine density, dendritic length and 

complexity. (A) Spine density changes in prefrontal cortex and hippocampus (B) Changes in 

dendritic length in prefrontal cortex and hippocampus. (C) Changes in dendritic complexity in 

prefrontal cortex and hippocampus. ACd = anterior cingulate cortex, CA3 = field CA3 of 

hippocampus, IDG = infra pyramidal layer of dentate gyrus, OFC = orbitofrontal cortex, PFC = 

prefrontal cortex and SDG = supra pyramidal layer of dentate gyrus. 

 

 

4.0 Discussion 
 

        The results of my study support the hypothesis that the extent of social experience 

during pre- and postweaning periods is an essential factor for the reorganization of 

neuronal networks in limbic areas such as the prefrontal cortex and hippocampus. 

Dendritic spines are postsynaptic structures that are the site of more than 90% of the 

excitatory synapses with every spine head receiving at least one excitatory terminal 
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(Spacek and Hartmann, 1983; Harris and Stevens, 1989; Peters et al., 1991). Moreover, 

spines do not only serve to connect the axons and dendrites, but also are the site of long-

term, stable memory in CNS neurons (Cajal, 1888). A number of experimental and 

behavioural conditions have demonstrated that dendritic spines are highly plastic 

structures that undergo marked alterations in their number and morphology following 

exposure to various stimuli such as sensory stimulation, kindling, pharmacological 

treatments, chronic stress, learning, emotional experience and psychological disorders 

and in most cases such changes have been reported to most likely accompany and 

modify behavioural development (Gould et al., 1990; Moser et al., 1994; Garey et al., 

1998; Robinson et al., 2002; Poeggel et al., 2003; Radley et al., 2006).  

 

        A major emotional challenge during late childhood is the time of weaning; 

therefore, it can be assumed that this transition to independence should involve major 

structural changes in prefrontal cortex and hippocampus, which are involved in 

emotional self- regulation and the expression of emotional behaviours. In wild or in 

natural environments, weaning occurs transiently and gradually with the rats weaning 

between postnatal days 14 to 34. In contrary to this, it is a common laboratory practice 

to wean a litter at postnatal day 21 which may be implicated in behavioural as well as 

structural alterations in the pup. The quantitative neuromorphological analysis in 

relation to early social experience revealed that in certain areas of the limbic system 

such as the prefrontal anterior cingulate cortex (ACd), the field CA3 of hippocampus, 

the infra pyramidal layer (IDG) and the supra pyramidal layer of dentate gyrus (SDG), 

the development of spine density is particularly sensitive to the amount of preweaning 

social experience, whereas spine density in the prefrontal area orbitofrontal cortex 

(OFC) is not. Irrespective of the postweaning social environment, the density of spines 

was elevated (+13-25%) in the dendrites of ACd, CA3, infra and supra pyramidal layers 

of early weaned rats who experienced shorter social contact with their mothers.  

 

        One of the fundamental phenomena of brain development is the overproduction 

and subsequent reduction in the amount of synapses that occur between childhood and 

puberty and cause remodeling of synaptic connectivity. In recent years, many studies 

have investigated the temporal course of changes in synaptic density in primates, 
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humans and other mammals, revealing that at the early stages of fetal development, 

synaptic density rises at a constant rate, until a peak is attained (at 2-3 years of age in 

humans). Then, after a relatively short period of stable synaptic density (until the age of 

5 years in humans), an elimination process begins; synapses are being constantly 

removed, yielding a marked decrease in synaptic density. This process proceeds until 

puberty, when synaptic density stabilizes at adult levels which are maintained until old 

age. The phenomenon of synaptic over-growth and pruning was found in humans 

(Huttenlocher, 1979; 1990; Huttenlocher et al., 1982) as well as in other mammals such 

as monkeys (Zecevic and Rakic, 1991; Bourgeois and Rakic, 1993; Bourgeois et al., 

1994), rats (Takacs and Hamori, 1994) and cats (Innocenti, 1995). It is observed 

throughout widespread brain regions including cortical areas e.g. visual (Huttenlocher et 

al., 1982; Bourgeois and Rakic, 1993), motor and associative areas (Huttenlocher, 

1979), cerebellum (Takacs and Hamori, 1994), projection fibres between hemisphere 

(Innocenti, 1995) and the dentate gyrus (Eckenhoff and Rakic, 1991).  

 

        The process of synaptic proliferation and elimination or pruning correlates with 

experience-dependent activity (Stryker and Harris, 1986; Roe et al., 1990). Synaptic 

proliferation is demonstrated in various animal species as a result of visual experience, 

enriched environment, training, physical exercise and learning (Globus et al., 1973; 

Greenough et al., 1985; Moser et al., 1997; Van Praag et al., 1999; Kozorovitskiy et al., 

2005; Mehta and Sernagor, 2006). Likewise, synaptic pruning represents anatomical 

substrate underlying synaptic reorganization in events such as juvenile emotional 

learning viz. filial imprinting (Bock and Braun, 1998, 1999a 1999b). Assuming that 

experience-driven synaptic reorganization involves both, proliferation as well as pruning 

of synapses (Rakic et al., 1986; Huttenlocher and Dabholkar, 1997), and given the fact 

that developmental pruning is not a passive but active, experience-dependent event 

(Wallhausser and Scheich, 1987; Bock and Braun, 1998, 1999, Andersen and Teicher, 

2004; Segal, 2005), the elevated spine density observed in the dendrites of anterior 

cingulate cortex (ACd), field CA3 of hippocampus, the infra and the supra pyramidal 

layers of dentate gyrus of animals impoverished of their dams at a relatively early age, 

could be the result of suppressed pruning due to the lack of appropriate social 

stimulations. Though this interpretation requires further analysis the results might 
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indicate that unlike in the sensory and motor cortical regions, where increased input 

activity provided by enriched sensory or motor environments appears to interfere with 

the proliferative synaptic events (Greenough et al., 1990; Purves, 1994, Kolb et al., 

1998), in the higher associative prefrontal and hippocampal regions the input activity 

provided by social stimulations might induce the selective pruning of synaptic 

connections. In this context, it can be assumed that disruption of the developmental 

pruning of synapses through inappropriate social stimulations (such as emotional stress, 

neglectful conditions or maternal deprivation) might lead to increased density of spines 

as in the case of early weaned rats. However, this assumption requires further analysis. 

In order to determine if the increased spine density observed in the prefrontal cortex and 

hippocampus of early weaned rats are caused by suppressed pruning provided by 

inappropriate social stimulation i.e. early separation from the dams, it would be helpful 

to compare the data with a “natural weaning group” (a group representing the ones in 

the wild or in a laboratory something like a “self-weaning” group).  

 

        Dendrites are the major recipient structures of synaptic connectivity. Adult cortical 

neurons receive approximately 15,000 synaptic inputs (Huttenlocher, 1994), and the 

extent and pattern of dendritic branching determines the range and scope of synaptic 

inputs a neuron can process and integrate. In general, the growth and refinement of 

dendrites and axons is modulated by sensory and motor/physical experience, and - as I 

have discovered in the present study – also by social experience. Furthermore, postnatal 

reorganization of dendritic trees is achieved by two principal events, the shortening of 

dendritic segments and retraction of dendritic arbours and the elongation of dendritic 

segments and growth of new ramifications. With this respect it is interesting that in the 

two prefrontal regions (ACd and OFC), the experience-evoked dendritic reorganization 

was affected in the opposite direction, and that in both prefrontal regions only the apical, 

not the basal, dendrites were altered.  

 

        Concerning the ACd, the animals with the most impoverished pre- and 

postweaning social experience (i.e. early weaned and socially isolated rats (EWI), 

displayed elongated (+31-32%) and more complex (+27-29%) apical dendrite compared 

to early weaned socials (EWS) and late weaned socially isolated animals (LWI), 
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suggesting that in this prefrontal area an enriched social environment might drive these 

neurons to develop or reorganize their dendritic trees towards a smaller and more 

compact dendritic extension. Enriched rearing involves rearing animals in a socially and 

physically stimuli-rich environment that is reported to enhance behavioural performance 

such as learning, and modify brain development; for instance, it causes enlargement of 

cortical volume and increases dendritic branching in sensory and motor brain areas 

(Diamond et al., 1972; Volkmar and Greenough, 1972; Greenough and Volkmar, 1973; 

Kolb et al., 2003; Leggio et al., 2005). Enrichment rearing which enhances dendritic 

branching in many brain areas failed to increase the dendritic length and branching of 

medial prefrontal neurons (which includes the ACd, Kolb et al., 2003). Based on this 

finding, it can be assumed that in the ACd of prefrontal cortex an enriched social 

environment might cause these neurons to develop their dendritic trees towards smaller 

and more compact dendritic extension and isolation rearing the opposite because 

isolation rearing is reported to have the opposite effects on animal’s behaviour and brain 

as contrasted with enriched rearing (Diamond et al., 1972; Volkmar and Greenough, 

1972; Gardner et al., 1975; Van Waas and Soffie, 1996; Varty et al., 2000). In relation 

to spine plasticity, the sensitive period for dendritic reorganization in the ACd appears 

to occur slightly later in development. However, as opposed to the changes in spine 

density, which were primarily affected by the early preweaning social environment, 

dendritic refinement appears to be primarily modulated by the interaction of preweaning 

and postweaning social experience. In contrast to the ACd, neurons in the OFC of 

animals with the most impoverished social experience i.e. early weaned and socially 

isolated rats (EWI) displayed a -32% reduction of the apical dendritic length and -35% 

reduced apical dendritic complexity compared to the early weaned social rats (EWS). 

Thus, unlike the pyramidal neurons of the ACd, the OFC neurons developed simpler 

dendrites in response to the pre- and postweaning impoverished social environment, as 

animals reared in impoverished environments display atrophy of dendrites and dendritic 

branching (Diamond et al., 1972; Silva-Gomez et al., 2003). However, in the OFC the 

extent of the preweaning social experience also appears to play a critical role in 

dendritic development, as revealed by the EWS animals, which displayed the longest 

(+32-33%) and most complex (+31-35%) apical dendrites compared to groups, EWI and 

LWS.  
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        The effects of time of weaning and social environments on dendritic morphology 

across different hippocampal areas were quite similar. The granular dendritic length and 

complexity of mainly the infra and partly the supra pyramidal layer of dentate gyrus was 

affected by preweaning and postweaning environments as well as by interactions 

between the factors. The animals that had spent less time with their dams (early weaned 

= EWS + EWI) demonstrated longer (+19-29%) and more complex (+18-24%) infra and 

supra granular dendrites compared to animals that had stayed with their mother for a 

longer period (late weaned, such as LWS + LWI). Similarly, the isolated animals (EWI 

+ LWI) displayed longer (+19%) granular dendrites compared to socials (EWS + LWS) 

but only in the infra pyramidal layer of dentate gyrus. Moreover, a post-hoc test 

comparing individual groups revealed just the same as for the prefrontal anterior 

cingulate cortex (ACd); in all three hippocampal areas the animals with the fewest 

social experience, early weaned and socially isolated rats (EWI), displayed elongated 

and complex dendrites compared to other experimental groups; for instance, in the infra 

and supra pyramidal layer of dentate gyrus these animals displayed elongated (+32-

34%)  and more complex (+33-37%) infra granular dendrite and elongated (+18-39%) 

as well as more complex (+24-34%) supra granular dendrite compared to other 

experimental animals. Similarly, in the field CA3 of hippocampus, these animals (EWI) 

displayed (+21-25%) longer and (+27-34%) complex apical dendrite, suggesting that in 

all these hippocampal areas an enriched social environment might drive these neurons to 

develop or reorganize their dendritic trees towards a smaller and more compact dendritic 

extension. However, in CA3 quite similar to that observed in OFC, the extent of the 

preweaning social experience also appears to play a critical role in dendritic 

development, as revealed by the late weaned social animals (LWS), which displayed the 

longest (+36-39%) and most complex apical dendrites (+35-41%). In summary, it can 

be assumed that the effect of early and late social experience on dendritic reorganization 

in prefrontal cortex and hippocampus is highly variable which might suggest that the 

extent of experience-driven network refinement depends on the developmental time 

window of the respective cortical region.        
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        In CA3 area of hippocampus, just like in the prefrontal ACd, in relation to spine 

plasticity the sensitive period for dendritic reorganization appears to occur slightly later 

in development. Nevertheless, as opposed to the changes in spine density, which were 

primarily affected by the early preweaning social environment, dendritic refinement in 

CA3 area of hippocampus (similar to the prefrontal cortex) appears to be primarily 

modulated by the interactions of preweaning and postweaning social experience. In 

contrast, dendritic refinements in infra and supra pyramidal layers of dentate gyrus are 

modulated both by preweaning and postweaning experiences as well as by interactions 

between these factors. The dentate gyrus is highly vulnerable to early and late social and 

emotional experiences. A number of studies have demonstrated that the morphology and 

the number of dentate granular neurons are remarkably affected by the complexity of 

environmental conditions during the early stages of life (Fiala et al., 1978; Juraska et al., 

1985; Kempermann et al., 1997; Bartesaghi and Serrai, 2001; Poeggel et al., 2003).  

 

        Similar to that observed in the pyramidal neurons of ACd and OFC, the dendritic 

length and complexity of basilar dendrite of CA3 pyramidal neurons remained 

unchanged. This dendrite specificity suggests a specific impact of as yet unidentified 

experience-induced input activity on the apical dendrite or on a given apical dendritic 

segment. Moreover, the restricted effects observed on specific parts of the dendrite (e.g. 

by Sholl analysis and by branch order analysis) may be explained by the fact that the 

inputs on a given neuron might be segregated. It is evident from the literature that some 

neurons, mostly pyramidal, segregate their input. For instance, in piriform cortex, the 

distal part of the apical dendrite of layer III pyramidal neurons receive extrinsic input, 

while more proximal portions of the apical dendrite, as well as the basilar dendrites, 

receive intrinsic inputs (Price, 1973). While the segregation of inputs to pyramidal 

neurons in the neocortex is not that straightforward,  pyramidal neurons in the medial 

PFC, to which the ACd belongs, nonetheless tends to segregate inputs, with 

extracortical afferents (for instance from the mediodorsal nucleus of the thalamus and 

hippocampal CA3) tending to cluster on distal dendrites (Swanson and Cowan, 1977; 

Groenewegen, 1988) and synapse of local cortical circuits tending to cluster on 

proximal portions of the apical and basilar dendrite (Scheibel and Scheibel, 1970). 

Difference in the innervation patterns might contribute to the differential spatial effects 
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along the dendritic arbors. In addition, there are studies demonstrating that the 

distribution of receptor system varies across regions, strata and cellular compartments 

(Kohler et al., 1991; Zilles et al., 1991, 1993; Kraemer et al., 1995). This segregation 

might contribute to the specific plasticity exhibited by the neurons in different limbic 

areas. Furthermore, there are substantial regional and laminar differences in the 

distribution of nerve growth factor (Mufson et al., 1994) which suggests that the 

variation in plasticity between different neurons and regions might be due to difference 

in the local support of trophic factors.    

 

        On the synaptic level, spine density of layer II/III pyramidal neurons of the 

orbitofrontal cortex appear to be less sensitive towards socio-emotional environmental 

conditions than those in the prefrontal ACd and the hippocampus. With respect to 

dendritic reorganization neurons in the two prefrontal regions modify their dendrites in 

different or even opposite directions in response to socio-emotional stimulation. This 

region specificity is probably determined by various factors, such as the specific 

developmental profiles (i.e. different rates of maturation) as well as the functional role 

of a given cortical region in processing social and emotional stimuli. The ACd and OFC 

are both parts of the prefrontal cortex, but they are functionally dissociable (Kolb, 1984, 

1990). Lesions to the medial and orbital regions in rats produce different behavioural 

syndromes (Kolb, 1984, 1990); lesions to the medial PFC produce deficits in attentional 

as well as working memory task, whereas lesions to the OFC produce deficits in 

olfactory and taste discrimination tasks, as well as deficits in discrimination of stimuli 

when the value of that stimulus has changed. Comparing the developmental profiles of 

the two prefrontal areas, these studies have also indicated a different time course of 

functional maturation for the medial PFC and the OFC (Kolb and Nonneman, 1976; 

Kolb, 1984), with the orbital PFC maturing slightly earlier than the medial PFC. The 

cytoarchitecture in the anterior cingulate cortex is developing up to postnatal day 18 (i.e. 

3 days prior to my early weaning group), with the cortical layers attaining their adult 

proportional width around postnatal day 24 (i.e. 3 days after my early weaning and 6 

days prior to my late weaning group). Furthermore, cortical volume in the medial 

prefrontal cortex (which includes the ACd) increases between postnatal day 6-24 (i.e. 

includes the early weaning phase in our experiment), after which a reduction in volume 
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occurs until postnatal day 30 (i.e. includes the late weaning phase in our experiment), 

when adulthood levels are reached (Van Eden and Uylings, 1985a, 1985b). Since the 

volume of the cortex is predominantly determined by the extension of the dendritic 

trees, the rapid volumetric decrease between postnatal days 21 and 30 indicates a 

developmental time window of dendritic retraction, which might be sensitive to 

environmental factors, including social and emotional experience. Assuming that, 

similar to the pruning of dendritic spines, the pruning or retraction of dendritic branches 

is also experience- and activity-dependent, experience-induced dendritic retraction 

might have been suppressed due to the paucity of appropriate (social, emotional) input 

activity during the preweaning and also the postweaning period in the early weaned and 

socially isolated animals (EWI), as they displayed increased dendritic length and 

complexity compared to other animals at a developmental phase that involves regression 

in the cytoarchitecture and the volume of that cortical region, in this case the anterior 

cingulate cortex (ACd) of the medial prefrontal cortex. 

 

        Compared to the developmental profiles in the ACd, the cortical layers in the 

orbital PFC reach their adult proportional width already around postnatal day 14 (Van 

Eden and Uylings, 1985a, 1985b); however, compared to the ACd, the increase in 

volume in the orbital PFC is less rapid and persists until the maximum volume is 

attained around day 30, when it is 80% larger than the adult volume (Van Eden and 

Uylings, 1985a, 1985b). Thus, cortical “shrinkage” which starts around the time of late 

weaning phase represents a time window of pronounced dendritic and synaptic 

refinement, which appears to be sensitive towards the complexity of the social 

environment, as revealed by the comparisons of postweaning impoverished or social 

environments. In addition, the cytoarchitectural and volumetric developmental profiles 

appear to correspond with the differential rates of the development of thalamocortical 

connections, which in the OFC precedes that in the medial PFC (Corwin et al., 1983).  

 

         Comparing the developmental profiles in hippocampus, the rapid neuronal growth 

occurs in different subareas early in development around p10. In late postnatal periods 

the maturations takes place with the neurons attaining an adult-like appearance mostly 

by postnatal day 15 (in CA3) and 20 (in dentate gyrus). After that period, the neuronal 
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growth ceases and it gradually begins to decline, indicating that the synaptic and 

dendritic structures in these areas undergo developmental pruning (Minkwitz, 1976a, 

and 1976b). Thus, in hippocampus the period after postnatal day 15 (in CA3) and 

postnatal day 20 (in dentate gyrus) might represent a developmental time window of 

dendritic retraction, which might be sensitive to environmental factors, including social 

and emotional stimulations. Assuming that the pruning or retraction of dendritic 

branches is also experience- and activity-dependent, experience-induced dendritic 

retraction in hippocampus might have been suppressed due to the lack of appropriate 

(social, emotional) input activity during the preweaning and also the postweaning period 

in the EWI animals, as they displayed increased granular and apical dendritic length and 

complexity compared to other animals. However, in CA3 in contrast to dentate gyrus, 

the late weaned social animals (LWS) also demonstrated longest and most complex 

apical dendritic length and complexity suggesting that in CA3 the extent of social 

experience preweaning is modulatory to the development of dendritic structures in this 

hippocampal subregion. In contrast with the dentate gyrus, the neuronal growth and 

maturations in CA3 occurs earlier where the adult cytoarchitectonial and neuronal 

pattern is seen already by postnatal day 15 (Wenzel et al., 1981; Perez-Delgado et al., 

1994). Therefore, in CA3 the extent of social experience in early periods (i.e. 

preweaning periods) may appear modulatory in shaping the synaptic and dendritic 

structures of neurons located in this area. In contrary, the development of granular cells 

appears to lag behind pyramidal neurons of hippocampus that continues to postnatal day 

20 and even further (Ribak et al., 1985). Therefore, the dendritic structures of granular 

neurons might be modulated by social stimulations provided early as well in late 

postnatal life. Hence, the dendritic length and complexity of granular neurons are 

modified by preweaning and postweaning environments as well as by interactions 

between the factors.  

 

        The neurons in the limbic prefrontal cortex and hippocampus demonstrate high 

degree of plasticity. They show changes in their morphology and structures following 

various experimental manipulations such as: exposure to drugs (Robinson et al., 2002); 

manipulation of gonadal hormones (Woolley et al., 1990; Woolley and McEwen, 1993; 

Forgie and Kolb, 2003); in response to environmental complexity and deprivation 
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(Juraska et al., 1985; Bartesaghi and Serrai, 2001; Silva-Gomez et al., 2003); in 

emotional and learning experience (Moser et al., 1994; Helmeke et al., 2001; 

Ovtscharoff and Braun, 2001; Poeggel et al., 2003; Bock et al., 2005) and in response to 

nerve growth factor (Kolb and Whishaw, 1998). The experience-induced dendritic and 

synaptic refinement which I observed in the prefrontal cortex and hippocampus are not 

in all aspects similar to what has been observed in sensory and motor cortical regions in 

response to environmental stimulations, such as enrichment or impoverishment. For 

instance, increased synaptic densities were also found after exposure to enriched 

environmental conditions, e.g. in the occipital cortex (Volkmar and Greenough, 1972; 

Turner and Greenough, 1985), medial preoptic area (Sanchez-Toscano et al., 1991) and 

in the striatum (Comery et al., 1995, 1996) of rats. Similarly, animals raised in an 

enriched environment displayed enhanced dendritic branching in the parietal cortex, 

hippocampus as well as in the prefrontal cortex (Juraska et al., 1985; Kozorovitskiy et 

al., 2005; Leggio et al., 2005). In contrast, environmental impoverishment or 

deprivation generally resulted in smaller dendrites and fewer spine densities in various 

limbic areas such as, hippocampus and medial prefrontal cortex (Silva-Gomez et al., 

2003). The findings of these studies contradict my results. This discrepancy might be 

due to several methodological differences such as different rat strains, different brain 

areas in which the neurons were analysed and perhaps different cell types that are used 

in these studies. Nevertheless, other studies have demonstrated that impoverished 

environment after weaning led to an increase of asymmetric synapses (spine and shaft) 

in the motor cortex of cats (Beaulieu and Colonnier, 1989) and an increase in 

symmetrical synapses per neuron in the cat visual cortex (Beaulieu and Colonnier, 

1987). In addition, an increase in mean synaptic density after postweaning impoverished 

environment is also reported in rats (Diamond et al., 1975), which may be similar to my 

findings of increased spine density in the dendrites of prefrontal ACd, hippocampal 

CA3 area and the infra and supra pyramidal layers of dentate gyrus.  

         

        Morphological studies provide further evidence that the neurons in prefrontal 

cortex and hippocampus demonstrate plasticity in response to other kinds of 

stimulations; for example, stress that was reported to cause atrophy of dendritic arbours 

and reduction in spine density in prefrontal cortex and hippocampus (Magarinos et al., 

 91



1996; Cook and Wellman, 2004; Brown et al., 2005; Radley et al., 2006). In addition, 

enhanced spine density and dendritic arborization in prefrontal pyramidal neurons 

following psychostimulant administration and reduced dendritic arborization in 

hippocampus following malnutrition are reported (Andrade et al., 1996; Robinson and 

Kolb, 1999; Robinson et al., 2002). Reductions in dendritic arbours and spines are also 

reported in various disorders such as in schizophrenic and epileptic brains (Isokawa and 

Levesque, 1991; Garey et al., 1998; Broadbelt et al., 2002). These seemingly 

inconsistent results indicate that the mechanisms underlying experience-driven postnatal 

refinement of neuronal networks in the cortex are more complex than previously 

appreciated. My experiments addressed this question more specifically by not only 

testing the impact of two different developmental time windows of experience-related 

neuronal plasticity, but, in addition, also revealed interactions between neonatal and 

postweaning social experience. This study confirmed that neuronal development in 

certain limbic areas such as the prefrontal cortex and hippocampus are particularly 

sensitive towards emotional stimulation. The prefrontal ACd, OFC and hippocampus are 

integrated in synaptic circuits of the limbic system (Figure 1A, B) and thereby involved 

in processing, regulating, and experiencing emotions and emotionally-related 

behaviours (Bush et al., 2000; Hornak et al., 2003; Sinha et al., 2004). In contrast to the 

sensory systems, where synaptic changes have only been reported after relatively severe 

and chronic long-term deprivation of visual (Valverde, 1967), acoustic (Perier et al., 

1986) and somatosensory (Bryan and Riesen, 1989; Kossut, 1998) stimulation, synaptic 

development of the limbic cortex appears to be sensitive towards comparably mild (brief 

and subtle) environmental changes. Even unspecific emotional experiences such as, 

daily handling and daily saline injections or drug administration were found to induce 

significantly elevated spine density in prefrontal cortical neurons (Dawirs et al., 1991; 

Helmeke et al., 2001a; Seib and Wellman, 2003). Moreover, in many organisms for 

instance; humans, the brainstem is almost fully functional at birth whereas the limbic 

system is more plastic, “experience-expectant” and slower to mature and develop. 

Hence, unlike some parts of the brain (e.g. brainstem) which is more "hard wired" and 

initially under direct genetic and reflexive sensory control, the limbic system requires 

considerable social, emotional, perceptual, and cognitive stimulation during the juvenile 

period in order to develop normally. If the limbic system is denied sufficient social, 
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maternal, and emotional “experience-expectant” stimulation early in development (for 

example, if the animals are exposed to abnormal, neglectful, or abusive environment) 

the limbic structures undergo alteration in synaptic connectivity, may establish aberrant 

interconnections, and cease to function normally (Henriksen et al., 1978; Helmeke et 

al., 2001a, 2001b; Ovtscharoff and Braun, 2001; Poeggel et al., 2003; Bock et al., 2005; 

Murmu et al., 2006).  

  

        Alterations in neuronal network patterns are likely to have consequences in the 

functioning of areas and the pathways in which they are embedded. The results of my 

study demonstrate that the extent of neonatal social experience, determined by the time 

of weaning, together with the social experience encountered after weaning, are critical 

determinants which significantly affect the development of neurons thereby affecting 

the functional neural networks in limbic prefrontal and hippocampal regions. At system 

network level, it might be interesting to elucidate which circuits of the prefrontal cortex 

and hippocampus are altered by these experiences and how this might affect the 

functioning of the limbic system. Dendritic spines of prefrontal cortical pyramidal 

neurons are the target of thalamic (Krettek and Price, 1977a), callosal, associational 

fibres (Pandya and Yeterian, 1996), and the fibres arising from basolateral amygdala, 

the hippocampus and the infralimbic cortex (McDonald, 1991; Carmichael and Price, 

1995a; Carr and Sesack, 2000). Alterations in synaptic structures and dendritic 

arborization in prefrontal cortex might change the output characteristics of the prefrontal 

pyramidal neurons into their limbic projections areas including the nucleus accumbens 

(Brog et al., 1993), mediodorsal thalamic nucleus (Kuroda et al., 1998), via the 

enthorhinal cortex to ventral striatum and the hippocampus (Joyce, 1993) and to the 

amygdala (Aggleton et al., 1980). In hippocampus, dendritic spines of granular neuron 

in dentate gyrus and CA3 pyramidal neurons receive input from various polymodal 

associational areas that synthesize sensory information through processing in 

enthorhinal cortex (Hjorth-Simonsen and Jeune, 1972; Caballero-Bleda and Witter, 

1994). These neurons also receive inputs from various limbic structures such as the 

thalamus (Dolleman-Van Der Weel and Witter, 1996), prefrontal cortex (Swanson, 

1981; Verwer et al., 1997), amygdala, hypothalamus (Kohler et al., 1985; Mello et al., 

1992), ventral tegmental area (VTA) and nucleus accumbens (Gasbarri et al., 1994). 
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Alterations in spine density and dendritic arborization in hippocampal areas might effect 

the output characteristics of granular and pyramidal neurons located in dentate gyrus 

and CA3 into their limbic projection areas such as orbital, medial and dorsolateral 

prefrontal cortex, amygdala, hypothalamus, nucleus accumbens and VTA as well as into 

their non-limbic projection areas including septum, olfactory, parietal and occipital 

cortex (Swanson and Cowan, 1977; Gasbarri et al., 1994; Insausti et al., 1997). 

Furthermore, the prefrontal-hippocampal connections are implicated in learning, 

memory and cognition (Marquis et al., 2006; Wang and Cai, 2006). If hippocampal-

prefrontal connections are affected, the outcome may be change in behaviours that are 

regulated by these areas and pathways. 

 

        Behavioural studies in rodents and other mammals indicate that early weaning is 

able to induce alterations in adult emotional behaviour (Janus, 1987a, 1987b; Gardner et 

al., 2001; Orgeur et al., 2001; Terranova and Laviola, 2001;  Nakamura et al., 2003; 

Kikusui et al., 2004; Tuchscherer et al., 2004; Weiss et al., 2004; Kanari et al., 2005). 

Likewise, an extensive literature has accumulated demonstrating that socially isolated 

rats exhibit many behavioural disorders such as anxiety, hyperactivity and cognitive 

deficits that involve the limbic prefrontal areas (Jones et al., 1991, 1992; Domeney and 

Feldon, 1998; Del Arco et al., 2004; Weiss at al., 2004) which in turn is mediated by 

altered mesocortical dopaminergic pathways (pathways connecting the prefrontal areas 

to the reward center i.e. the ventral tegmental area), as well as serotonergic and 

noradrenergic systems in prefrontal cortex (Crespi et al., 1992; Jones et al., 1992; 

Bickerdike et al., 1993 ; Fulford and Marsden, 1998; Hall et al., 1998; Braun et al.,2000; 

Del-Bel et al., 2002; Preece at al., 2004). A few very recent studies have provided 

evidence that early weaned animals when socially isolated (even for a very brief period), 

show impaired learning, memory as well as cognitive deficits, functions that are 

modulated by the prefrontal cortex and hippocampus (Laughlin and Zanella, 2002; 

Souza and Zanella, 2004). Early weaning, together with social isolation, leads to 

increased alcohol consumption in juvenile rats (Rockman et al., 1987; Fahlke et al., 

1997). Modifications at cellular level in early weaned and socially isolated animals are 

also reported. For instance, reduced expression of glucocorticoid and mineralocorticoid 

receptors in the frontal cortex and hippocampus are described in young mammals 
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subjected to early weaning and social isolation (Poletto et al., 2006a). These receptors 

provide the negative feedback mechanism for corticosterone and are abundantly present 

in prefrontal cortex and hippocampus (Gerlach and McEwen, 1972; Meaney and Aitken, 

1985; Reul and de Kloet, 1985).  Another study by Poletto et al., (2006b) has reported in 

the early weaned and socially isolated animals, reduction in the expression of plasticity-

related genes (e.g. diazepham binding inhibitor, DBI); those that are associated with 

neuronal function, structure and protection. The behaviour test conducted on my 

experimental animals suggests that the early weaned animals were most active in the 

open field test (Ferdman et al., 2007), and the late weaned and group housed were the 

most explorative. The animals that were weaned early and isolated (EWI) were found to 

be hyperactive and anxious compared to other experimental animals (Ferdman et al., 

2007). Activity in the open field is used as a measure of anxiety. Rats and mice tend to 

avoid brightly illuminated, novel, open spaces, so the open field environment acts as an 

anxiogenic stimulus and allows for measurement of anxiety-induced locomotor activity 

and exploratory behaviours.

 

        The cellular and molecular mechanisms underlying the neuronal changes in my 

experimental animals are yet to be determined and could be the matter of future 

investigations. It is likely that a variety of neurochemical changes that occur during 

different developmental phases may interfere with the proliferation and pruning of 

synaptic contacts (Bourgeois and Rakic, 1993; Granger et al., 1995). Although it is well 

known that the shape and growth of a neuron is modulated through both nervous and 

hormonal mechanism, much less is known about the mechanism by which environment 

might affect neuronal morphology. However, the release of hormones, 

neurotransmitters, growth factors, and the inductions of immediate early genes or 

transcriptional factors could be part of the molecular machinery that underlies these 

synaptic changes (Cirulli et al., 1998, 2000; Bock et al., 2005). Some studies have 

demonstrated an age-dependent sensitivity of the brain pathways to stress hormones 

such as cortisol or corticosterone (in rats) (Kanitz et al., 1998; Kaufman et al., 2000; 

Plotsky et al., 2001). During weaning, the responsiveness of hypothalamic-pituitary-

adrenal system is heightened and the early weaned rats are reported to show altered 

level of corticosterone in their sensory cortex (Cook, 1999). Most of the studies 
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analyzing stress (or other environmental effects on neurons) have demonstrated that 

stress and chronic corticosterone administration induces significant alteration in the 

dendritic spine density and dendritic morphology of prefrontal and hippocampal neurons 

(Woolley et al., 1990; Magarinos and McEwen, 1995; Wellman, 2001; Radley et al., 

2004), and the administration of corticosterone antagonist e.g. tianeptine prevented the 

subsequent corticosterone or stress-induced alterations in the dendritic morphology 

(Watanabe et al., 1992; Magarinos et al., 1999). Thus, it can be assumed that the stress 

hormone corticosterone, (in addition to other factors), is involved in the regulation of 

synaptic composition and dendritic morphology in the limbic system. Other mechanisms 

which are widely reported to cause alterations in some neurons (mostly hippocampal) 

are the afferent/efferent constituting excitatory neurotransmitters such as the glutamate 

and serotonin (5-HT). The excitatory amino acid glutamate constitutes more than 90% 

of excitatory neurotransmission in the brain and is implicated in stress-induced dendritic 

alterations in the hippocampus (Magarinos and McEwen, 1995; Magarinos et al., 1999). 

Moreover, studies have reported that the blockade of NMDA (a receptor for glutamate) 

by its antagonist (phenytoin and CGP 43487), prevented stress-induced atrophy of the 

CA3 apical dendrites (Watanabe et al., 1992; Magarinos and McEwen, 1995). In 

addition, the learning-induced pruning of dendritic spine density was prevented by 

blocking the activity and expression of NMDA receptor suggesting that this receptor of 

glutamate might be involved in experience-dependent pruning of dendritic spine density 

and synapses (Yen et al., 1993, 1995; Bock et al., 1996; Bock and Braun, 1999a). 

Additionally, the 5-HT (serotonin) system is reported to be clearly involved in 

mediating stress effects in hippocampus (Fujino et al., 2002). Thus, the alterations in the 

dendritic morphology observed in my study might be due to alterations at hormonal 

level, particularly the corticosterone system (which is also altered by early weaning and 

social isolation), as well as due to alterations at other afferent/efferent systems that are 

also reported to have altered by social isolation or other environmental manipulations 

(described in previous paragraphs). Moreover, alterations in one system might affect the 

functioning of the other system or systems related to it (Lowy et al., 1993; Rahman and 

Neuman, 1993).  
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        In order to determine if the synaptic and dendritic refinements observed in my 

study are beneficial or detrimental to animal’s ability to cope with their environment in 

later life, firstly it would be helpful to provide an equivalent to the “natural weaning 

group” (like the ones in the wild), and compare the data between these animals and 

finally the morphological changes need to be correlated to behavioural and cognitive 

capacities. In the wild, a gradual and lengthening separation at the time of weaning 

seems likely (Barnett, 1975) and, as such, a normal weaning group may be closest to the 

animal’s weaning in wild. However, in the laboratory or in an enclosed cage situation it 

is clearly difficult for a mother to separate herself for any length of time from her pups, 

particularly when they are older than 21 days of age. As such, there must be something 

like a “self-weaning” group which may show little similarity to the “natural weaning” 

group or groups in the wild. Continuation of this study would include determining the 

behavioural and morphological consequences in the “self-weaning” group.  

 

         In this study, it was noteworthy that the 9-day difference between early and late 

weaned rats still caused the synaptic and dendritic refinement in the animal which 

persisted even in adulthood i.e. ~90 days later. Some studies have demonstrated that 

with repeated social interactions or stress, dependent upon weaning age, rearing 

conditions and timing, the different behavioural and neural changes may dissipate (Vale 

and Montgomery, 1997); may be reversed (Einon and Morgan, 1977; Niesink and van 

Ree, 1982; Radley et al., 2005); or may persist and even influence morbidity (Arakawa, 

2003; Kikusui et al., 2004). My findings are based on manipulations which are similar 

to routine laboratory weaning ages (21 and 30 days) and housing practices (individual or 

group cages); yet their impact upon synaptic and dendritic parameters were remarkable. 

Hence, management practices at weaning may also impact research results obtained 

from adult animals, given the influence of time of weaning on a number of 

morphological and behavioural parameters. This suggests the importance of such 

management practices for broad areas of animal-related research. 
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5.0 Conclusions 
 
        My study provided a vivid answer to our hypothesis that was designed to determine 

if the synaptic and dendritic refinements in the prefrontal cortex and hippocampus in our 

experimental animals are dependent on the time and the extent of social contact with 

their family members. The results indicate that the refinement of neuronal networks in 

rodent higher associative limbic areas such as the prefrontal cortex and hippocampus 

occur in a highly temporal, regional and dendrite-specific manner. The preweaning 

social experience or the times spent with their dams appeared important in modulating 

the postsynaptic structures such as the dendritic spines (the density of which was 

dramatically increased in animals separated from their dams at a relatively early age 

compared to those that stayed with their dams for longer period). 

 

        In contrast with synaptic refinement, the dendritic refinement of granular neurons 

was modulated both by the pre- and postweaning social environments as well as by 

interactions and the dendritic refinement of pyramidal neurons (mainly, of apical 

dendrite) was modulated only by interactions between the two factors. This study 

demonstrated that the animals with fewest social experience i.e. the ones that were 

separated early from their dams and in addition were subjected to social isolation 

postweaning displayed elongated and more complex apical dendrites in the prefrontal 

area, ACd and field CA3 of hippocampus (with few exceptions as in case of OFC). In 

addition, these rats also displayed elongated and more complex granular dendrites in 

infra and supra pyramidal layers of dentate gyrus. In consequence, various or all aspects 

of limbic system based functions or behaviours such as the social, emotional and 

cognitive functioning may undergo alterations.  

 

        The experience-dependent synaptic and dendritic refinements in the limbic areas 

might correlate to developmental time windows for the given cortical region and in 

addition might also represent the underlying neuronal mechanism for behavioural 

modifications caused by different experimental manipulations. For instance, the 

enhanced spine density observed in the early weaned animals might correlate to 

increased activity observed in these animals in the open field test (Ferdman et al., 2007). 
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Similarly, the changes in dendritic arborization such as the longer and complex 

dendrites in early weaned isolated animals (EWI) might correlate to the hyperactive and 

anxious behaviour demonstrated by these animals in the behaviour test (Ferdman et al., 

2007). There is an extensive literature demonstrating that the shape, growth, 

proliferation and pruning of synapse and dendrites are modulated by activity and 

experience.  
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7.0 Appendices 
 
 
7.1 Protocol for Golgi – Cox Staining  

 

Step I: Preparation of the Golgi-Cox solution  

 

Three different aqueous solutions are prepared in distilled water: 
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 Solution A: 5% solution of Potassiumdichromate (K2Cr2O7)  

 Solution B: 5% solution of Mercuric chloride (HgCl2)  

 Solution C: 5% solution of Potassiumchromate (K2CrO4)  

 

From the above solutions two new solutions are prepared: 

 Solution D: solution A + solution B mixed in a ratio of (1:1)  

 Solution E: solution C + distilled water mixed in a ratio of 

(1:2:5)  

From these solutions the actual Golgi-Cox solution is prepared. In a beaker 1000 

ml of solution D is mixed with 1400 ml of solution E while stirring continously. 

This solution is stored in a glass stoppered bottle for 5 days in dark until 

precipitates form. The unfixed brains are kept in this Golgi solution for 14 days at 

dark room temperature. Determining the optimal impregnation time the sample 

cuts can be made.  

 

Step II. Embedding  

The brains are dehydrated and embedded in celloidin following these steps: 

 Washed in distilled water, 3 x 2 minutes. 

 Slowly dehydrated in the refrigrator (4-6°C) as follows:  

 50% alcohol – 4 hours; 70% alcohol-overnight; 80% alcohol-    

     overnight; 96% alcohol-overnight; 96% alcohol-overnight. 

 Brains are then embedded at the dark room temperature in: 

   100% alcohol–Diethylether (1:1) - 2 hours  

2% Celloidin-3 days  

4% Celloidin-3 days 

8 % Celloidin- 3 days  

 

The brains are inserted in 9% celloidinmass and placed in the evaporating glass. 

This is kept overnight in the exitator with open faucet. Subsequently, a second 

glass with closed faucet containing phosporous pentaoxide is placed until the 

celloidin is reduced to half. This usually lasts for 24 hours. During this process, it 

is important that the celloidin remains free of bubbles. Phosporous pentaoxide is 
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removed and choloroform is placed in the bowl so that the celloidin polymerizes 

in 1-2 days. Then the celloidin block is cut into a desired form and is placed in 

70% alcohol at 4°C for 2 days, which hardens the celloidin. This block can be kept 

in the refrigator for long time. For cutting, the celloidin block containing the brain 

is fixed into a wodden block with the help of adhesives. While cutting, the knief 

should be continously moistened with 70% alcohol to prevent the slices from 

getting dried.  

 

III. Staining 

 

 150µm coronal sections were cut at the level of prefrontal cortex and 

hippocampus using a sliding microtome. 

 Tissue sections were collected serially and immersed in 70 % alcohol 

until all the necessary sections were obtained. 

  Washing in distilled water, 3 x 1 minutes.  

  Alkalinised with ammonia (NH3:H20, 1:1) - 1 x 60 minutes.  

 0,5 % phenyldiamine solution (Merck, Germany) - 0.5 gm phenyldiamine 

in 100 ml distilled water – 1 x 1 minutes. 

 0,5 % phenyldiamine solution (Merck, Germany) – 1 x 4 minutes. This 

treatment intensifies the colour of the staining.  

 Washing in distilled water, 2 x 2 minutes. 

 1 % dektol (Kodak, Germany) - 0.5 gm dektol in 50 ml distilled water - 1 

x 2 minutes. This treatment stablizes the tissue impregnation.  

 Washing in distilled water, 2 x 1 minutes.  

 5 % tetenal (Kodak, Germany) - 2.5 gm tetenal in 50 ml distilled water – 

1 x 10-15 minutes. This is important for fixing the tissue impregnation. 

  Washing in distilled water 3 x 5 minutes.  

 Dehydrated in the ascending grades of alcohol as follows - 70% alcohol - 

3 minutes or overnight; 80% alcohol - 10 min; 96 % alcohol - 10 min; 99 

% alcohol - 10 min.  

  Cleared in Isopropanol (Optal, Roth, Germany) – 1 x 10 minutes.  
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  Cleared in Xylene – 2 x 5 minutes.  

 Mounted with merckoglas (Merck, Darmstadt, Germany) and 

coverslipped for further microscopic observation. The slides were coded 

with numericals which was only broken after the analysis was completed.  

 

 

 

7.2 Tables with mean values and S.E.M 
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Figure 24. Tables representing the mean values + S.E.M of experimental animals and 

groups (A) Spine density/µm in prefrontal cortex by Two-Way ANOVA. (B) Spine density/µm 

of prefrontal neurons representing mean values from individual groups; EWS = early weaned 

social, LWS = late weaned social, EWI = early weaned isolated and LWI = late weaned 

isolated. (C) Spine density/µm of hippocampal neurons by Two-Way ANOVA (D) Spine 

density/µm of hippocampal neurons representing mean values from individual groups (E) 

Dendritic length and complexity/µm of prefrontal neurons by Two-Way ANOVA.  (F)  

Dendritic length and complexity/µm of prefrontal neurons representing mean values from 

individual groups. (G) Dendritic length and complexity/µm of hippocampal neurons by Two-

Way ANOVA. (H) Dendritic length and complexity/µm of hippocampal neurons representing 

mean values from individual groups. ACd = anterior cingulate cortex, CA3 = field CA3 of 

hippocampus, IDG = infra pyramidal layer of dentate gyrus, OFC = orbitofrontal cortex, PFC = 

prefrontal cortex, SDG = supra pyramidal layer of dentate gyrus.  

 
 
                                               
                                                 7.3 Abbreviations 
 
 
 
ACd                                             Dorsal anterior cingulate cortex 
AI                                                     Agranular insular cortex. 
CA1                                             Field CA1 of hippocampus 
CA2                                             Field CA2 of hippocampus 
CA3                                             Field CA3 of hippocampus 
cc                                                 Corpus Callosum  
IDG                                             Infra pyramidal layer of dentate gyrus 
IL                                                Infralimbic cortex 
LO                                                   Lateral orbital cortex 
mPFC                                         Medial prefrontal cortex 
MT                                              Medial temporal lobe  
NAcc                                           Nucleus accumbens 
OFC                                            Orbitofrontal cortex 
PFC                                             Prefrontal cortex 
PrL                                              Prelimbic cortex 
PrCm                                          Precentral medial  
S2                                                Secondary somatosensory cortex 
SDG                                            Supra pyramidal layer of dentate gyrus 
SSC                                             Somatosensory cortex 
VPL                                            Ventral posterolateral thalamic nucleus 
VPM                                           Ventral posteromedial thalamic nucleus 
VO                                              Ventral orbital cortex 
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                                        7.4 Zusammenfassung 
 

Der Prozess der Entwöhnung von der Muttermilch beeinflusst die physiologische und 

neurologische Entwicklung zahlreicher Spezies und ist somit eine kritische Periode der Prägung 

für das spätere Verhalten im Erwachsenenalter. Die diesen Verhaltensänderungen zugrunde 

liegenden neuronalen Mechanismen sind weitgehend unbekannt. 

 

Zahlreiche Studien belegen einen bedeutenden Einfluss emotionaler Erfahrungen (wie etwa in 

der Zeit der Entwöhnung) auf spätere Verhaltensweisen. Darüber hinaus ist bekannt, dass sich 

Umwelteinflüsse entwicklungsabhängig sowohl auf das Verhalten als auch auf die 

Gehirnentwicklung maßgeblich auswirken können. Die Bedeutung des 

Entwöhnungszeitpunktes und des darauf folgenden sozialen Kontaktes für die emotionale 

Entwicklung ist bis jetzt jedoch ebenso wenig bekannt, wie die zugrunde liegenden neuronalen 

Mechanismen. 

 

In dieser Arbeit wurde die These untersucht, ob es während der späten Kindheit, in 

Abhängigkeit vom Zeitpunkt der Entwöhnung und dem Ausmaß des nachfolgenden sozialen 

Kontaktes, zu Umstrukturierungen in den neuronalen Netzwerken verschiedener limbischer 

Areale, wie dem Präfrontalen Kortex und dem Hippokampus kommt. Hierzu wurde der 

Einfluss sowohl von später (30 Tage nach der Geburt) als auch früher (21) Entwöhnung auf die 

Morphologie von Neuronen des Präfrontalen Kortex und Hippokampus, sowie eine 

Beeinflussung durch anschließende soziale Isolation oder weiteren Kontakt zu Mutter und 

Wurfgeschwistern, untersucht. Darüber hinaus wurde eine Kombination der Parameter Zeit der 

Entwöhnung und anschließender sozialer Interaktion untersucht.  

 

Präfrontaler Kortex und Hippokampus sind Teil des limbischen Systems, welches von 

entscheidender Bedeutung für emotionales Verhalten ist. Da es sich bei der Entwöhnung um 

eine wichtige Phase der emotionalen Prägung für das Erwachsenenalter handelt, wird 

angenommen, dass der Übergang zu einer größeren Selbständigkeit von strukturellen 

Veränderungen an den Nervenzellen dieser Hirnregionen begleitet wird. 

 

Die Ergebnisse dieser Arbeit zeigen, dass emotionale Erfahrungen (wie etwa mit Mutter und 

Wurfgeschwistern) eine in hohem Maße zeitlich und regionsspezifisch determinierte 

dendritische und synaptische Reorganisation zur Folge haben. Die Entwicklung der Spine-
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Dichte war insbesondere durch das Ausmaß an sozialem Kontakt nach der Entwöhnung 

beeinflusst. Tiere mit dem kürzesten Kontakt zur Mutter, zeigten dabei erhöhte Spine-Zahlen 

im anterioren cingulären Kortex (ACd) und Hippokampus. Dendritische Länge und 

Komplexität von apikalen Dendriten im Präfrontalen Kortex, anteriorer cingulärer Kortex 

(ACd) und orbitofrontaler Kortex (OFC) und in der CA3 Region des Hippokampus zeigten ein 

Zusammenspiel der Faktoren Zeit der Entwöhnung und anschließendem sozialen Kontakt, 

jedoch keine Beeinflussung durch einen dieser Faktoren allein. Die am stärksten sozial isolierte 

Gruppe (frühe Entwöhnung und anschließende soziale Isolation), zeigte im Vergleich zu 

anderen Tieren eine Erhöhung der dendritischen Länge und Komplexität im ACd und in der 

CA3 Region. Im Gegensatz hierzu, zeigte sich im orbitofrontaler Kortex (OFC) eine 

Verminderung der dendritischen Länge und Komplexität der apikalen Dendriten. Eine 

Beeinflussung der basalen Dendriten war in keinem der Fälle festzustellen.  

 

Im Gyrus dentatus waren Länge und Komplexität der Dendriten der Körnerzellen, insbesondere 

in der infra-pyramidalen Schicht, sowohl durch eine Kombination der Parameter Zeit der 

Entwöhnung und anschließendem sozialen Kontakt, als auch durch jeden dieser Parameter 

allein beeinflusst. Ähnlich wie im ACd und in der CA3 Region wiesen auch im Gyrus dentatus 

die Tiere mit der geringsten sozialen Interaktion, im Vergleich zu anderen Tieren, längere und 

komplexere Dendriten auf. 

 

Zusammengenommen zeigen diese Ergebnisse erstmals, dass sowohl die zeitliche Koordination 

als auch die Quantität sozialer Interaktion mit Familienmitgliedern signifikante Auswirkungen 

auf die Feinabstimmung neuronaler Netzwerke im Präfrontalen Kortex und Hippokampus hat, 

die beide als Teil des limbischen Systems, wesentlichen Anteil an emotionalem und kognitivem 

Verhalten haben. 

 

Im Rahmen dieser Arbeit war es möglich, Veränderungen auf der zellulären Ebene von 

Neuronen mit unterschiedlichen emotionalen Erfahrungen zu korrelieren.  
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