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To my mother my father my sisters and my brothers

I shall return again. | shall return

To laugh and love and watch with wonder-eyes

At golden noon the forest fires burn

Wafting their blue-black smoke to sapphire skies.

I shall return to loiter by streams

That bathe the brown blades of the bending grasses,
And realise once more my thousand dreams

Of waters rushing down the mountain passes.

Life is nothing but a big struggle, but just keep the faith and focus on your goals.

Don't let life beat you or you will be walking around like zombies.

Keep on pushing, keep on trying, life can be whatever you make it to be.
But life can also be a bowl of cherries with whip cream and apple pie.

| say this again; life is what you make of it.

You can achieve or conquer anything it throws at you,

you can't quit or give up, you have got to keep on working,

look higher some way, some how you are going to make it.

by Claude McKay

By David Cook
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Zusammenfassung

Wie erreichen Menchen die beeindruckende Leistung wdihrend der Bewe-
gung?

Diese Dissertation Betrachtet das biologische System der Bewegung, sie wird in

zwei Teilen dargestellt. Im ersten Teil steht die Erkennung der gemessenen elek-
tromyographischen Signale der Unterarmmuskeln im Fokus, die den Handbewegun-
gen entsprechen. Der zweite Teil beinhaltet die Betrachtung des Muskulosketal-
Systems, welches den dynamischen Kniebeugewinkel unter isotonischen Kontraktio-
nen darstellt. Der dabei gemessene Winkel zwischen dem Schenkel und dem Bein
zeigt das Ansprechverhalten der elektrischen Stimulation (FES). Dieses Verfahren ist
unter Systemidentifikation bekannt.
Das Verstehen der Funktionen der menschlichen Bewegung bildeten in der letzten
Dekade einen Schwerpunkt auf dem Gebiet der Neuromuskuldren und Skelettiren
Systeme innerhalb der Biomechanik. Korperbewegungen stellen eine Interaktion zwis-
chen dem neuro-muskulidrem Steuersignal und dem muskuloskeletal Dynamiksystem
dar. Viele Elemente des neuromuskuloskeletal Systems wirken so aufeinander ein,
dass eine reibungslose und koordinierte Bewegung ermdoglicht wird. Das skelettartige
System, besteht aus Knochen und deren Verbindungen zu den Muskeln (Sehnen), die
das muskuloskeletal System unterstiitzen - sie iibertragen die notwendigen Kontrak-
tionen auf das Skelett und realisieren damit die gewiinschten Bewegungen. In dieser
Dissertation konzentrieren wir uns zum Einen auf die menschlichen neuromusculiren
Steuersignale sowie deren Klassifizierung und zum Anderen auf die Identifizierung der
muskuloskeletal Dynamik. Diese komplexen Systeme erfordern intelligente Modelle,
Neuronal Netz und Fuzzy logic, die durch kiinstliche Intelligenz sich adaptieren.

Informationen, in Form von Nervenimpulsen, figure 1, wandern nach und von unserem
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Zentralnervensystem (Gehirn) entlang unseres Riickenmarks und erlauben uns, un-
sere freiwilligen Bewegungen des Korpers zu koordinieren. Elektrische Impulse des
Gehirns, die iiber die Nervenzellen den Muskeln iibermittelt werden, verursachen die
Bewegungen (Kontraktionen) dieser Muskeln. Diese Muskeln reagieren, wenn sie die
elektrischen Signale des Gehirns empfangen. Diese elektrischen Signale sind iiber die
Muskeln gemessen und sie sie sind als Electromyographische Signale (EMG) erkannt.
Die menschliche Bewegung ist ein komplizierter Prozess und kann in die neuronale
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Figure 1: Die Illustration des menschlichen neuromuskulédren Signals und des Muskeln
Systems als zwei Komponenten fiir Durchfiihrung der Bewegung

Steuerung, die neuromuskuldren Signale und schlieflich die Muskelkraft eingeteilt
werden. Im Rahmen der vorliegenden Dissertation stehen die zwei letzten Kompo-
nente der Bewegung im Fokus:

1) Erkennung der EMG Signale (Klassifizierung) und

2) Die Identifizierung der Muskuloskeletal- dynamischen Belastung.

Das verursachende Verhéltnis, zwischen neuromuscular EMG und musculoskeletal
Dynamik, wird, in dieser Dissertation, nicht betrachtet. Jedes Teil gilt als allein.
Das erste Ziel ist die Erkennung des EMG, welches die neuromuskuldren Signale
erkennt und klassifiziert. Dieses neuromuskuldr Signal besteht aus einzelnen Muske-
laktionspotentialen (MUAPs) von Nerven. Die Summe der Muskelfaser Aktionspo-
tentiale aller Muskelfasern kann mit Hilfe der Elektroden gemessen werden, die auf
dem entsprechenden Muskel als Electro-myographsignal (EMG) gesetzt werden. Ein
entsprechendes (Online-) Programm zur Erkennung des EMG- Signals ist bereits en-
twickelt worden.



Das zweite Ziel dieser Dissertation ist, die muskuloskeletal Strukturdynamik zu iden-
tifizieren, die fiir die Bewegung des Korpers verantwortlich ist (Beine und Arme).
Solche Bewegungen kénnen mit Functional Electrical Stimulation(FES) produziert
werden, sofern die Dynamik zwischen der FES und der sich daraus ableitenden Bewe-
gung bekannt ist. Dieses Studium kann auch fiir den Ellbogen angewendet werden.
Ein besseres Verstdndnis dieser zwei Komponenten der Humanbewegungen (move-
ment realisation dynamics), Musculoskeletal Last und Neuromuskuldr Rekrutierung,
kann korperbehinderten Personen helfen, durch Wiedergewinnung der verlorenen Be-
wegungsfunktionen eine Verbesserung ihrer Lebensqualitit zu erreichen. Sie unter-
stiitzt auch den Fortschritt der Rehabilitation und ermdglicht zudem eine bessere
Einschétzung und therapeutische Behandlung fiir korperbehinderte Personen. Diese
zwei Komponenten sind in dieser Dissertation separat behandelt worden. Die En-
twicklung von technischen Verfahren fiir die Erforschung des Verhéltnisses zwischen
beiden Komponenten wird in der vorliegenden Arbeit von grofsem Interesse sein. Mit
Hilfe der ermittelten schwachen freiwilligen Muskelaktivitdten bei Schlaganfallpatien-
ten durch elektromyographische Signale, welche die elektrischen Stimulationen (FES)
steuern, kann dieses Verhiltnis (der beiden Komponenten) dargestellt werden. Die
Steuerung der FES-Signale wird den Patienten helfen, eine korrekte Bewegung der
Arme und/oder der Beine durchzufiihren. Diese Verfahren helfen das Verhéltnis zwis-
chen den mechanischen Bewegungen und den EMG- Eigenschaften zu ergriinden.
Die aktuelle Technik erlaubt die technische Ann&herung an die Biosignalverarbeitung
sowie die Identifizierung solcher komplizierter und dynamischen Systeme wie Muskeln,
die als Generator aller Bewegungen des menschlichen Korpers zu betrachten sind.
Fuzzy Logic Systeme und neuronale Netze sind intelligente Methoden, die in dieser
Dissertation fiir die Losung der Identifizierung und Klassifizierung genutzt worden
sind. Sie werden als computerunterstiitztes Problem dargestellt, um sie im tagtédglichen
komplexen System der Biomedizin anzuwenden.

Diese Signale, die von den Muskeln mittels Oberflichenelektroden gemessen wer-
den, erfordern weitere Berechnungsmethoden fiir die Erfassung (aquisition), Analyse,
Zerlegung (decomposition), und Klassifikation. Der Zweck des ersten Teils ist die
[lustrierung der verschiedenen Methodologien und Algorithmen fiir alle notwendigen
Schritte, die fiir die Finger- und Handbewegungen entsprechend ihren EMG-Signalen
zu erkennen sind. Ein Algorithmus fiir die Klassifikation dieser EMG-Signale konnte
bereits in fritheren Publikationen vorgestellt werden. Die Klassifikationsergebnisse
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dieses vorgeschlagenen Algorithmus werden mit anderen bekanten Berechnungsmeth-
oden verglichen (Fuzzy logic und Neuronale Netz). Diese erste Komponente enthélt
die Entwicklung aller Verfahren von EMG-Signalen von der Erfassung bis zur Erken-
nung ihrer entsprechenden Hand- oder Fingerbewegungen mittels Extraktion der rel-
evanten Merkmale und ihrer Klassifikation. Weiterhin soll Patienten mit amputierten
Gliedmafen geholfen werden. Das bedeutet, dass die neuromuskuldren Aktivitdten,
beispielsweise seiner Unterarmmuskeln, fiir die Steuerung der Myo-Prothese benutzt
werden. Zudem wird die Aktivitdt seiner Gehirnneurone entsprechend der Neuronen
der Unterarmsmuskeln dauerhaft angeregt.

Die zweite Komponente der Realisierung der Humanbewegungen, das Muskuloskele-
talsystem, ist von weiterem Interesse. Die Dynamik dieses Systems ist komplex. Da-
her sollten wir nach einer effektiven Methode suchen, mit der diese komplizierte Dy-
namik (Motorsystem) modelliert werden kann. Mathematische Modellierungsmetho-
den (morphologische Modelle) kénnen eine solche Dynamik nicht mit Genauigkeit (fi-
delity) beschreiben. Als weiterer Beitrag wird ein Hybridalgorythmus vorgeschlagen,
um effektiver und schneller eine Losung (Muskuloskeletalsystem) herbeizufiithren. Die
Oberschenkelmuskeln werden aufgrund ihrer Grosse betrachtet. Das erleichtert die
gewiinschten Muskeln zu stimulieren. Des Weiteren ermoglicht die Muskelauswahl die
Eindeutigkeit der Stimulation. Anhand eingangs erzeugter elektrischer Impulse und
den daraus resultierenden Winkel zwischen dem Knie und dem Oberschenkel kénnen
die Modellparameter des "hybrid fuzzy identifier-model" ermittelt werden. Die eis-
tungsfihigkeit des "hybrid fuzzy identifier-model", das eine nicht lineare Input/Output-
Dynamik darstellt, hingt von der "fuzzy partition" seines Eingang-Raumes ab. (the
initialisation of premise fuzzy sets is an important issue in fuzzy modeling). "Rapid
Prototyping" Methode wird durch diesen vorgeschlagenen Algorithmus eingefiihrt,
um die Leistung der Initialisierung der "Fuzzy Sets" durchzufiihren. Dieses vorgeschla-
genen Hybridalgorithmus besteht aus drei Komponenten: "Rapid Prototyping" Algo-
rithmus, "Gradient Descent" Method, und "Least Squares Estimator". Alle diese drei
Teilen sind kombiniert, um diese Modellierungsaufgabe durchzufiihren. Des Weiteren
ermoglicht die Steuerung der "human knee-joint movements".



Abstract

How do humans achieve the remarkably impressive performance when they
move?

The specific aim of this thesis, which considers the biological system "human
movement", is presented in two parts. The first part considers the recognition (clas-
sification) of measured Electro-myography (EMG) signals of forearm muscles corre-
sponding to hand movements. The second part treats the musculoskeletal system,
which is considered by Knee-joint dynamics under non-isometric conditions, in terms
of its measured angle between thigh and shank as response for Functional Electrical
Stimulation (FES) impulses. This procedure is known as system-identification.
Understanding human movement functions is of a great importance in the domain of
neuromusculoskeletal systems and biomechanics. Whole-body movement is achieved
with help of the interaction between the neuromuscular control signal and muscu-
loskeletal dynamics system. Many elements of the neuromusculoskeletal system in-
teract to enable smooth and coordinated movements. The skeletal system, composed
of bones and joint connections with muscles, which complete the musculoskeletal sys-
tem, apply the necessary driving forces for movement realisation. In this thesis we
will focus on human Neuromuscular control signals classification and Musculoskeletal
dynamics identification. These complex systems require much knowledge by learning.
Hence an improvement of the learning ability, using artificial intelligent methods, is
also covered.

The information, in the form of nerve impulses, figure 2, travels to and from our
central nervous system (brain) along our spinal cord, allows us to coordinate our vol-
untary movements of our body. Brain electrical impulses, which are transmitted via
nerve cells to the muscles, cause the movement of these muscles. These muscles re-
spond by contracting when the brain’s electrical signals reach them. These electrical

Vil
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signals can be measured over muscles and they are called electromyography (EMG)

signals. Generation of human movement is a complex process, involving the following
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Figure 2: Illustration of human neuromuscular signal and musculoskeletal system as
two components of movement realisation
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ways: neural command, neuromuscular signals and finally muscle force. This thesis
considers the two last components of movement realisation, which are:

1) EMG Neuromuscular recruitment signals recognition (classification), and

2) Musculoskeletal loading dynamics identification.

In this thesis the causal relationships between neuromuscular EMG signals and mus-
culoskeletal dynamics will not be considered. Each part is considered alone.

The first goal, is to recognise and classify the EMG neuromuscular signal. This neu-
romuscular signal represents the Motor Unit Action Potentials (MUAPs) of nerves.
The summation of the muscle fiber action potentials from all muscle fibers can be
measured with help of electrodes placed on the corresponding muscle as electromyog-
raphy (EMG) signal. An on-line Algorithm for this part of EMG signals recognition
is also developed.

The second goal of this thesis is to identify musculoskeletal structure dynamics, which
act as actuators producing the joint torques to drive the body (legs and arms). Such
movements can be produced using Functional Electrical Stimulations (FES), if the
dynamics between FES and joint torques are known. Although this part of study
focuses on walking, using quadriceps muscles, the findings can be generalised to other
motor control systems such as elbow joint through biceps and triceps muscles.

A better understanding of these two components of movement realisation dynamics
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(musculoskeletal load and neuromuscular recruitment) can help disabled persons in
regaining lost function and/or improving their activity of daily living life and for as-
sessing rehabilitation progress. These two components have been studied in this thesis
separately. Developing techniques for investigating the relationship between them,
in further work, will be of great importance. Such relationship can be illustrated
by using the recognition of detected weak voluntary muscle activity, by post-stroke
subjects, through electromyography signals (EMG) to control Functional Electrical
Stimulation (FES) impulses, which will support the patients to accomplish correct
leg or arm movements. These techniques help the investigating of the relationship
between the mechanics of movement and the characteristics of the EMG signals
The domain of engineers provides efficient technical approaches and tools for bio-
signals processing and complex dynamic systems identification as muscle, which is
the generator of all human body movements. Soft computing includes both neural
networks (NN) and fuzzy logic (FL) systems represent intelligent approaches, which
are used in this thesis for solving the identification and classification problem of such
realistic complex systems in biomedical area.

These EMG signals acquired from muscles, through surface electrodes, require ad-
vanced computational methods as acquisition, analysis, decomposition, and classi-
fication. The purpose of this part is to illustrate the various methodologies and
algorithms for all necessary steps used to discriminate the different movements of
finger and hand grasps according to their corresponding EMG signals. For the recog-
nition and classification of these EMG signals, a fuzzy-classifier-model algorithm is
proposed in this thesis. This classifier-model algorithm, Fuzzy Trimmed Mean Classi-
fier (FTMC') uses the trimmed mean method as tool for input space-set initialisation.
The results of this algorithm are compared with other known intelligent computa-
tional methods. This first part contains the development of all procedures, starting
from EMG signals acquisition till the recognition of their corresponding hand/finger
movements, using extraction of relevant features and their classification. The main
goal of this first part is to help the patient with the amputated hand to keep the
neuromuscular activity of forearm muscles, which will be used to manipulate a myo-
prosthesis, and to keep the virtual neural activity of the brain related also to this
activity of forearm’s motor unit potentials .

The second component of movement realisation dynamics, which is musculoskeletal
dynamics has a great importance. These dynamics are very complex, hence we should



look for an effective method that can model this complex motor system. Mathemati-
cal modelling methods-based morphological models cannot describe with fidelity such
complex dynamics. For this problem an effective and fast hybrid fuzzy Algorithm for
modelling is developed and proposed in this thesis. The quadriceps muscles are used
because their dimension, which help to choose the desired muscle to be stimulated.
The choice of desired muscle to be stimulated is not possible in case of many small
muscles that are located together. The parameters of this hybrid fuzzy identifier-
model are obtained using generated Functional Electrical Stimulation (FES) impulses
as an input set, and the measured knee-joint angle as an output set. The efficiency
of this fuzzy identifier-model representing non-linear input-output dynamics depends
on the fuzzy partition of its input-space (the initialisation of premise fuzzy sets is an
important issue in fuzzy modeling). Hence Rapid Prototyping method is introduced
in this proposed algorithm to perform this initialisation of premise fuzzy sets. In
this proposed algorithm three techniques: Rapid Prototyping algorithm, Gradient
Descent method and Least Squares Estimator are combined as a hybrid algorithm
to achieve this modelling task. The main issues of this study, concern the knee-joint
dynamics identification, are developed for further control-application of the human
knee-joint movements by Functional Electrical Stimulation (FES).



Table of Contents

[Acknowledgements | i
[Zusammenfassung| iii
vii
Table of Contents xi
|1 Introduction| 1

[2 State of the art of myoelectrical hand prostheses and exoskeleton|

devices 7
[2.1 Introduction|. . . ... . ... ... ... .. ... ... 7
[2.2  Commercially available hand prostheses|. . . . . . .. ... ... ... 9
2.2.1 The hand WIME (Japan) . . .. ... ... ... ....... 9
2.2.2  The sensor-hand with SUVA Technology, Germany . . . . . . 9
2.2.3 RSL Steeper Prostheses UK . . . .. ... ... ... ..... 11
224 Conclusion . . . . . . .. 12
[2.3 Intellicent hand prostheses in the laboratories| . . . . . . . .. .. .. 12
2.3.1 The hand MARCUS . . . .. .. .. ... ... .. ...... 13
2.3.2 The hand of KFZ, Germany . . . .. . ... ... ....... 13
2.3.3 RTR-2, Rehabilitation Technology Research, Italian . . . . . . 14
2.3.4 Hand-prosthesis of Hokkaido university (Japan) . . ... ... 15
2.3.5  Die Hand von Southampton, (UK) . . .. .. ... ... ... 16
2.3.6 Conclusion. . . . . . ... ... .. 18
P.4  EMG controlled Hand-Exoskeleton devices . . . . . . . ... ... .. 18
2.4.1  Carnegie Mellon Exoskeleton (Pittsburgh USA) . . . . . . .. 19
2.4.2 Politecnico di Milano Exoskeleton . . . . . . . . ... ... .. 19
243 Conclusion . . . . . . . .. 20

xi



xii CONTENTS

[2.5

Hand Prostheses Types|. . . . . . . . . . . . . ..

2.5.1 EMG signals don’t correspond to movement’s muscles . . . . .
2.5.2  EMG signals correspond to movement’s muscles . . . . . . ..

[3 EMG signal acquisition|

Introduction . . . . . . ...,

Surface EM@G signal characteristics| . . . . . . . . .. ... ... ...

Factors affectine EMG siegnal measurement| . . . . . . . . . . . . ...

3.3.1 Electrodes . . . . . . . ... ..
3.3.2  Amplifier technology . . . . . .. .. ...
3.3.3 Movement artifacts . . . . .. . ... ...
3.3.4 Disturbances . . . . . .. ...
335 Crosstalk . . . . . .

Experimental recording equipment (Digitimer Neurolog System)| . . .

Functional anatomy of hand and forearm/|. . . . . . . . . ... . ...

3.1
[3.2
333
[3.4
[3.5
[3.6

Conclusion|. . . . . . . . ..

[4 Signal processing and feature extraction|

4.1

Introduction . . . . . . . ...

(4.2

Detection of activation period| . . . . . . . . . . . . . ...

4.2.1 Conclusion . . . . . . . .,

(4.3

Filter designl . . . . . . . . . .

4.3.1 Optimised filter design . . . . . . ... .. ... ... ... ..
4.3.2  FIR-80" and IIR-6'" order filter responses for different window

TYpes . . . o . e
4.3.3 Order effect of IIR-elliptic filter . . . . . . .. ... ... ...
4.3.4 Effect of different filter window types . . . . . . . .. ... ..
4.3.5 Pass-band effect of IIR-elliptic filter . . . . . . . . .. ... ..
436 Conclusion. . . . . .. ... ... ..

(4.4

Signal analysis and feature extraction|. . . . . . . . ... .. ... ..

4.4.1 Introduction . . . . . . . . ..,
4.4.2 Time domain feature extraction . . . . . . . . . . . . . . ...
4.4.3 Frequency domain feature extraction . . ... ... ... ...

b) sinusoidal harmonic waves . . . . . .. .. ... ... ...
c¢) Frequency domain feature extraction . . . . . . . . ... ..
4.4.4 Time-frequency domain feature extraction . . . .. ... ...
a) Time-frequency domain analysis . . . . ... ... ... ..
b) sinusoidal harmonic waves . . . . .. ... ... ... ...

23
23
26
27
27
28
29
30
31
31
34
37



CONTENTS xiii

c) Feature extraction . . . . . .. .. ... .. ..., 76

445 Conclusion. . . . . . . ... 79

|5 Feature input space reduction| 81
5.1 Introduction . . . . . . . . .. . 81
[5.2 Projection method| . . . . . .. . .. .. ... ... 82
(5.3 PCA illustration] . . . . . . . . . . . .. . 83
5.3.1 Algorithm’s steps illustration . . . . .. ... ... ... ... 84

5.3.2 Graphical determination of eigenvectors . . .. .. .. .. .. 90

[5.4 Efficiency of projection method| . . . . . . . . . . .. ... ... ... 93
5.4.1 Problem illustration . . . . ... ... . ... ......... 94

5.4.2 Features considered separately . . . . . .. ... ... 95

1) Learning Vector Quantization classifier model . . . . . . . . 95

2) Multi-Layer Perceptron networks . . . . .. .. .. ... .. 102

3) Radial Basis Function networks . . . . . ... ... ... .. 104

4) Comparison of LVQ, MLP and RBF methods . . ... .. 105

5.4.3 Features considered together in 6D input space . . .. .. .. 106

5.4.4 Feature space reduced in 2D space . . . . ... ... ... .. 106

[5.5 Results discussion|. . . . . . . . . .. ... 107
[6.6 Conclusion|. . . . . . . . . ... 110
|6 Performances of proposed FTMC algorithm 113
6.1 Introduction . . . . . . . ... 113
[6.2 Neural Network Systems| . . . . . ... .. ... .. ... ... .... 114
6.2.1 Architecture . . . . . ... 115

6.2.2 Example of illustration . . . . . . .. ... ... ... ..... 115

1) Learning procedure to find optimised w; and wy . . . . . . 116

2) Derivative-based optimisation method . . . . . ... .. .. 117

6.2.3 Gradient-based optimisation methods . . . . . . . .. ... .. 120

1) Mathematical description . . . . . . .. .. ... ... ... 121

[6.3 Neuro-fuzzy systems| . . . .. ... ... ... ... .. ... 123
6.3.1 Neuro-fuzzy systems architecture . . . . .. ... ... .... 126

6.3.2 Neuro-fuzzy systems optimisation . . . . . ... .. ... ... 129

[6.4 Notion of interpretability] . . . . . . ... ... ... ... ... ... 130
6.4.1 Input fuzzy sets initialisation . . . . ... ... ... ... .. 131

6.4.2 Mathematical description . . . . . ... ... .. ... ... 135

6.4.3 Parameters identification . . . . ... ... L. 137

a) Linear parameters identification . . . . ... ... ... .. 138

b) Nonlinear parameters identification . . . . . ... ... .. 141



xiv CONTENTS

6.4.4 Complexity and interpretability consideration in both FSC and

FTMC models . . . . .. .. ... . . ... ... . ...... 145

a) FTMC fuzzy classifier-model . . . . .. .. ... .. .... 147

b) Fuzzy subtractive clustering (FSC) . . ... ... ... .. 152

6.4.50 Conclusion . . . . ... ... L oo 153

[6.5 Comparison btween MLP, RBF, LV(Q) and FTMC|. . . . . . .. ... 154
6.5.1 Proposed FTMC classifier-model . . . .. ... ... ..... 155

a) Initial fuzzy (FTMC) classifier-model . . . . . . . ... .. 155

b) Optimised FTMC classifier-model . . . .. .. .. ... .. 158

6.5.2 Multi layer perceptron classifier-model . . . . .. .. ... .. 160

6.5.3 Radial Basis Networks classifier-model . . . . . . .. ... .. 163

6.5.4 Learning Vector Quantization classifier-model . . . . . . . .. 165

6.5.5 Classification accuracy comparison . . . . . .. .. ... ... 168

6.5.6 Conclusion . . . . ... ... L oo 168

| 7 Influence evaluation of important parameters 171
7.1 Introduction . . . . . . .. L 171
[7.2 Frequency Bandpass effect| . . . . .. .. ... ... ... ... ... 174
7.2.1 Classification performance with RBF-based approach . . . . . 175

7.2.2  Classification performance with FSC-based approach . . . . . 176

7.2.3 Classification performance with FTMC algorithm . . . . . .. 177

724 Conclusion. . . . . .. .. o 178

[7.3 Threshold level effect| . . . . . . . . . .. . . ... ... ... .. ... 178
7.3.1 Classification performance with RBF-based approach . . . . . 179

7.3.2 Classification performance with FSC-based approach . . . . . 180

7.3.3 Classification performance with FTMC algorithm . . . . . .. 181

734 Conclusion. . . . ... .. L 181

[7.4 Both signal length and sampling frequency effects] . . . . . . ... .. 182
7.4.1 Classification performance with RBF-based approach . . . . . 183

a) Case of feature-group M0, M1 and M2 . . . . .. .. ... 183

b) Case of Eng feature . . . . . . .. ... ... ... 184

7.4.2 Classification performance with FSC-based approach . . . . . 185

a) Case of feature-group M0, M1 and M2 . . . . . ... ... 185

b) Case of Eng feature . . . . . .. ... ... ... ... 186

7.4.3 Classification performance with FTMC algorithm . . . . . .. 187

a) Case of feature-group M0, M1 and M2 . . .. .. ... .. 187

b) Case of Eng feature . . . . . . ... ... ... ... ... . 187

7.4.4 Conclusion . . . . . . . . o 189



CONTENTS XV

[7.5 Conclusion| . . . . .. . . ... ... 190

| 8 Musculoskeletal dynamics identiﬁcation| 191
81 Introduction . . . . . . . . . .. 191
[8.2 Foundations and Methods| . . . . . . . . . . . .. ... ... ... .. 193
[8.3  Experimental setup and procedure| . . . . .. .. .. ... 195
[8.4  Morphological models] . . . . .. .. .. .. ... ... ... ..... 199
[8.5 Proposed hybrid fuzzy modelling algorithm|. . . . . . .. .. ... .. 201
[8.6 Rules consequent parameters initialisation using RPA| . . . . . . . .. 203
[8.7 Hybrid algorithm steps| . . . . . . .. .. ... .. ... ... ... .. 204
[8.8 Methodology| . . . . . . . ... 205
[8.9  Optimisation of selected modell . . . . . .. .. ... ... ... ... 207
[8.10 Hybrid model validation| . . . . . . . . . . . . .. ... ... ... 208
8.10.1 Signal Test-SC1 . . . . . . . . . .. 209

8.10.2 Signal Test-A . . . . . . . .. . 210

8.10.3 Signal Test-PRBS . . . . . . . . . .. ... ... 211

[8.11 Conclusion]. . . . . . . . . . . 211

|9 Conclusions and future works | 213
9.1 Recapitulation . . . . . . . .. ... 213
[9.2  What are the applications of this Thesis| . . . . . . ... .. ... .. 217
[9.3 The goal of this research and future works| . . . . . . . . . ... ... 219

[Bibliography | 221




Chapter 1

Introduction

The use of neuromuscular signals and identified Musculoskeletal systems in upper
extremity and lower-extremity offer a new generation of assistive technology for both
healthy and disabled people. First, they aid disabled persons in regaining lost func-
tion or improving their activity of daily living life and for assessing rehabilitation
progress. Second, they can be introduced in setting the human machine interface
using neuromuscular signals as command signals for the exoskeleton devices.

In chapter 2 it is described first the state of the art concerning myoelectric prostheses,
which are used to restore the functionality of an amputated hand. Second, the state
of the art of myoelectric-exoskeletons, which are used as human-machine interfaces.
These devices can be able to recognise the desired movements of the operator and as-
sist both healthy and disabled people. They are considered also as human movement
amplifier. The study of the first part of movement realisation, using electromyograph
(EMG) signals to recognise and classify different hand movements, needs first to pro-
ceed with signal acquisition. This task is of a great importance. The study of EMG
signal acquisition is described in chapter 3. In this chapter, the forearm muscles activ-

ity can be read as electro-myographic (EMG@) signals via surface-electrodes attached
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to the forearm muscles: These EMG signals can be then analysed for further classi-
fication tasks. Developing Electro-myograph-hand prosthesis has a problem with the
realisation of performed grasping capability, which is still a study subject. This prob-
lem of performed grasping manipulation with independent finger movements has been
investigated in this first part. The popularity of designing and building hand prosthe-
sis is achieved by a number of universities and research centres that have prosthesis
hands named after them. In the past, the hand-prostheses were limited on motion in
one degree of freedom and were basically only motorised hooks. Now many research
laboratories try to perform voluntary closing and opening hand-prostheses based on
EMG neuromuscular signals of forearm muscles. The control of hand-prostheses exist
in two categories, the first is conventional body-powered prostheses, which are pow-
ered and controlled by gross body movements as mechanical commands, usually of the
shoulder. The second, Myoelectrical prostheses, present the best considered way to
restore the functionality of an amputated hand. These hand-prostheses, which belong
to this second category are divided into two types. The first type exploit EMG signals
that are not issued from muscles responsible for corresponding movement, but from
any muscles usually biceps. Such type of prosthesis use EMG signals only as switch
impulses. The second type of Myoelectrical hand-prostheses are able to recognise the
desired movement from EMG neuromuscular signals issued from group of muscles
responsible for corresponding movements. The first part of this thesis considers this
second type of myoelectric hand-prostheses control. If a machine can understand hu-
man movement, it can be used in rehabilitation as a personal trainer that interprets

a patient’s EMG signals and help to provide a right movement. The most effective



rehabilitation methods employ EMG-machine assisted exercises, to improve the func-
tional capacity and strengthen the affected muscles. In the same way it can also be
used to control leg exoskeleton devices, that can be able to support the leg muscles
during common movements like getting up from a chair, walking and climbing stairs.
It’s important to mention that the leg’s neuromuscular EMG signals are more easily
recognised than those of the forearm’s neuromuscular EMG signals.

Extracted features in time-, frequency- and time-frequency-domain will be described
and compared, see chapter 4, to find the relevant ones, which are able to discriminate
these movement classes in clear separated clusters. Finding the best feature distri-
bution, which has the best discrimination between classes is a crucial step before
selecting the classification technique for the specific task of control.

This study goes forward and investigates the recognition capability, which is depend-
ing on the number of channels used for collecting EMG signals. This recognition
capability increases with the number of measurement channels. In this thesis, it is
shown that with only two channels it is possible to recognise and classify hand and
also finger flexion movements, which are thumb-, pointer- and middle-finger. Gen-
erally, in other published studies, the number of measurement channels are at least
four channels. Therefore, it is necessary to take a part of the study for the effect
evaluation of the feature space-dimension. If this feature space-dimension increases,
its influence on discrimination-accuracy will be positive, but this increasing of space-
dimension has a drawback regarding time consuming. For this question we have two
solutions: either to take a large feature space-dimension and then to apply space-
reduction methods like Principle Component Analysis (PCA), or to consider a small

space-dimension, see our publication [74]. This study will be detailed in chapter 5 to
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compare between them and to give very important results.

The presentation of these EMG signals in different discriminated clusters correspond-
ing to their movement classes is possible with help of extracted information from their
various signal characteristics, particularly in time-frequency domain. This represen-
tation will be useful to map out and control hand prostheses or exoskeleton devices,
which requires advanced computational methods for acquisition, analysis, decompo-
sition, and classification. Intelligent computational algorithms, described and com-
pared in chapter 6, are those based on neural networks like Multi-Layer Perceptron
(MLP), Radial Basis Networks (RBF) and Learning Vector Quantization network
(LVQ). The others are based on Fuzzy logic like Fuzzy Subtractive Clustering (FSC)
and proposed Fuzzy Trimmed Mean Classification (FTMC) algorithm, see our pub-
lications |73] [75|. This proposed intelligent classifier approach, based on trimmed
mean clustering and fuzzy logic, will be also compared with above cited intelligent
computational methods to be evaluated.

In chapter 7 a general study of some important parameters, which have a great in-
fluence on classification performances is considered. These parameters should be op-
timised to perform the classification accuracy results. Some of these parameters are:
pass-band frequency, filter-type, beginning part length of EMG signal, noise base-line
reference, and frequency sampling. This study allows us to get a global view about
how to choose the values of these parameters in order to get the best classification

accuracy.

Models evaluation of musculoskeletal structures is considered in the second part of



this thesis. The FES procedure should stimulate the muscles (quadriceps as appli-
cation) at the correct time during walking . To perform this task of synchronisation
and to assess the stability of walking, a right musculo-skeletal-model is needed for
rapid and dynamic adjustments to correct and control the motion of limb segments
and consequently the body. A proposed performed musculo-skeletal identifier-model
for quadricep muscles properties based on proposed fuzzy-modeling Algorithm see
our publications [72] and [16], is described in chapter 8. This model uses Func-
tional Electrical Stimulation (FES) as input set and knee-joint angle as output set.
The muscles of legs and arms are enough big, which allows the use of this method
for stimulating exactly the desired muscle. Functional electrical stimulation (FES)
impulses have been used to activate muscles disabled by spinal cord injuries. Stimu-
lators worn on the leg, which stimulate muscles through electrodes can help to restore
or perform muscle activation for walking.

The last chapter, will concern the recapitulation of all this thesis and moreover gives

the real applications of this study and the attempted future work.
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Chapter 2

State of the art of myoelectrical hand
prostheses and exoskeleton devices

2.1 Introduction

The research in "myo-prostheses" is part of a larger trend in human-machine inter-
action that aims to integrate body, muscle and machine. First goal of this research
is focused on the classification (recognition) of myoelectric signals for further control
of hand-prostheses. It is expected to advance in this chapter the state of the art
about today’s most common commercially available myoelectrical-prostheses. Since
1970 a big progression is done in this field. In the beginning they were limited on
motion in one degree of freedom and are basically motorized hooks. Now by use of a
suitable combination of electronic hardware and software, it is possible to recognise
the myoelectric features of at least two different grips in real time, with an accuracy
of almost 95 percent. Further researches might eventually include comfortable hand-
prostheses that could act, in a nearly lifelike manner and in real time of as many as
six different grips. On other side The designs of majority of commercially available

electrical hand-prostheses do not provide independent control of fingers and thumbs

7
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but most of them are capable of only simple one degree of freedom grips. Experts in
prostheses generally agree that the electrical hand prostheses should respond to the

following criteria which are vital to a person’s daily activities:

e relatively comparable to the weight of human hand (low weight).

e relatively comparable also to the size of human hand (low size)

e appearance satisfaction for the patient (cosmetic)

e don’t be a source of noisy sounds (noiselessness)

e have sufficient autonomy in energy

e have a time of reaction as short as possible, ideally real time.

e reliable

The second application of EMG signals recognition is rehabilitation issue, see section
2.4. There is a growing need for physical rehabilitation and assistance to improve the
quality of life for physically disabled peoples. Several exoskeleton devices [51] [65]
[18] in robotic systems for rehabilitation have been constructed to perform rehabilita-
tion support systems and many works in this topic are done during the two last years.
Some of them [18] exploit EMG signals that are not issued from muscles responsible
on corresponding movement, but from biceps. These authors focused their attention
on a basic pinching motion between the index finger and the thumb. The amplified,
filtered and normalised EMG signal measured from biceps can be used to control

the exoskeleton devices. Other works [48] [7]| consider the recognition of desired
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movement using EMG signals issued from some arm-muscles responsible on corre-
sponding movements. In these cases EMG signals, are simply rectified and filtered

then compared to a defined threshold to control the actuators of the exoskeleton.

2.2 Commercially available hand prostheses

2.2.1 The hand WIME (Japan)

As an application for the study of artificial hands and the study of upper-limb pros-
theses; the WH (Waseda Hand) series was started in 1964. The development of the
mechanism of hands and their control methods using electromyogram was the main
point. Their achievements resulted in the WIME hand (Waseda Imasen Myo Elec-
tric hand), which has been commercially available since 1978, figure 2.1. The WIME
HAND is a practical EMG-controlled forearm prosthesis and manufactured by the
Imasen Engineering Corp. Sufficient field tests were carried out during the devel-
opmental period with the cooperation of 30 amputees over a period of three years.
The mechanical flip-flop allowed gripping by the fingers and pinching by three fin-
gers using only one motor, which was voluntarily controlled by EMG signals obtained
from the arm of the amputee. The pressure sensor attached to the fingers sensed the
reaction force of objects, which was then fed back to amputees by electrocutaneous

stimulation. The WIME HAND has been commercially available since 1978, [6]

2.2.2 The sensor-hand with SUVA Technology, Germany

Years ago Winkler and Bierwirth in the Swiss Bellikon at SUVA had the idea of

feeding measured Timpressions of sensesT back into the hand-prostheses. For the
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Figure 2.1: Assemly of the WIME HAND

first time this hand-prosthesis was equipped with an automatic grip control system,
figure 2.2. The SUVA sensor is steadily metering the direction and the size of the
force, which exist between the thumb and the gripped object. It sends no signal if, in
the case of small objects, the tip of the thumb is not touched. In order to recognize
a grip nevertheless a second sensor, the finger lever sensor was built into the sensor
hand. With this one also these grips are recognizable and governable. The measuring
data of the SUVA sensor will be read and the amount as well the angle of force
is calculated from the measured force components. As long as this measured angle
remains under a critical value the object does not slip from the hand, [56]. These

devices allow to carry out two types of control:

e 1) Automatic mode of control:
In this mode the hand is closed with a maximum speed and seizes an object
with the weakest grip force (10 N). If the sensor detects a change of position,
it automatically makes increase the grip force to its maximum (100 N) to avoid

the fall of objects.

e 2) Variable mode of control:

The speed of opening is determined by the power and the speed of the muscular
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signal. The speed of closing is a function of the reduction of the muscular

activation, |[3].

Figure 2.2: Assemly of the SUVA Hand

2.2.3 RSL Steeper Prostheses UK

RSL Steeper is the principal service of rehabilitation of the United Kingdom. This
company in particular designed the prostheses of 13-year-old Ali Abbas, figure 2.3,
who lost both arms in the Iraq war. Doctors plan to fit the teenager with two artificial
arms, which will be strapped together and worn somewhat like a rucksack. On his
right-hand side, Ali will be fitted with a "myoelectric" control system, a state-of-the-
art technology which uses electrodes to pick up nerve signals from existing muscles
in the stump. Because Ali’s left arm was amputated higher up, at the shoulder, its
replacement may not offer the same functionality since there is less muscle to work
with. So, a tensing of the upper arm muscle would cause a motorised hand to grip,
while relaxing it would release the pincer movement. The greater the tension, the
quicker the motor works. His right hand could be wired to his bicep and his motorised
wrist to his triceps. For the elbow, a better option might be to use a simple pulley

system which Ali would operate simply by shrugging. The electrics depend on a
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lithium ion battery, which would be worn in a pouch on the upper body and replaced
daily. Mr Cooper, who works for the prosthetics makers RSL Steeper says: Cutting
with a knife will be difficult but he’ll be able to use a fork or spoon almost naturally,
comb his hair, type with two fingers, [4].

ALT'S NEW ARMS

(Motor drives thumb in pincer
imovement with index and
imiddle fingers

Straps hold
limb to stump

Figure 2.3: RSL Steeper Prostheses UK

2.2.4 Conclusion

The development and the improvement of three examples of commercially available
electrical hand prostheses in three different countries, like Germany, UK and Japan
are described. The study of these commercially artificial hands began with passive
prostheses, but it was possible to develop the active prostheses . The studies had
at first aimed only to develop machines to perform motion in one degree of freedom
and were basically motorised hooks. Recently the aim has been to develop prostheses

that can perform, using EMG signals, more complicated tasks.

2.3 Intelligent hand prostheses in the laboratories
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2.3.1 The hand MARCUS

Hand MARCUS was initially designed like an evolution of Otto-Bock hand-prothesis.
It consists of three fingers: thumb, index and major, figure 2.4. It has two degrees
of freedom and is driven by two separated motors, the first one is responsible for the
movements of the inch and second one acting in the movements of the index and the
major, which are dependent. The hand moreover is equipped with Hall-effect-sensors
to obtain information on the position of the fingers and a tactile sensor on the thumb

giving information on the force of grasping, [28] [71] [41].

Figure 2.4: Marcus Hand

2.3.2 The hand of KFZ, Germany

The hand of Karlsruhe is a very light hand, each finger weighs only (20g) which
approximates very well the aptitudes of handling of the human hand, by making it
possible to move independently all the fingers. It uses for that an original approach;
in the place of motors with D.C. current, this hand has 18 fluidic, flexible and minia-
turised actuators which order 5 fingers. Each finger contains the actuators responsible
for its inflection, and tactile sensors. The metacarpus provides enough space to place

there a micro-controller, micro-valves, the source of energy and a micro-pump. An
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optional actuators as designed to fold the wrist, figure 2.5.

The flexible fingers are able to grasp objects of various sizes and forms, by distribut-
ing the force of contact on a larger surface. Thus, thanks to this self-adaptation, a
large variety of objects can be seized without using sensory information. Moreover,
the surface of the fingers is soft and the coefficient of friction is increased using a
rubbery glove which covers the artificial hand. Because of flexibility of the hand,
this one appears more natural than a rigid robot-like hand and the risk of the direct

interactions with other people is minimised, [57].

Figure 2.5: The hand of KFZ, Germany

2.3.3 RTR-2, Rehabilitation Technology Research, Italian

Hand RTRZ2 is consisted of thumb and two identical fingers, the major and the index.
It has nine degrees of freedom, figure 2.6. RTR2 contains only two motors, for the
movements of inflection and extension of the fingers and the thumb, and for the
adduction and the abduction of the thumb. The movements are based on a system
of transmission per tendon. To improve the grasping operation, the information

provided by an artificial sensory system is considered, which react automatically in
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Figure 2.6: RTR2 Hand

case of objects slipping from the hand without any reaction from the user. The
hand RTR2 is equipped with position sensors and a tensiometer on the cable which
control the pointer and force sensor on the end of the thumb. All sensors and the
two motors are inside the structure of the hand, but its weight remains very light
since it is lower than 320g. From other side the grip strength remains insufficient: it
is of 16 N whereas that of the commercial prostheses reaches 100 N. The controlling
of the prosthesis takes place via a Top level Controlling module (TCM) and a Low
level Controlling module (LCM). The TCM uses the myoelectric signals (EMG) to
produce a control for the LCM, which regulates the motors after collection of the
sensory signals. This hand is a scheme for future Myoelectric hand prosthetic RTR/
and Cyber-hand Prothetic, [14] [12].

2.3.4 Hand-prosthesis of Hokkaido university (Japan)

This hand is developed by the Autonomous Systems Engineering Lab of the Hokkaido
University (Japan), figure 2.7, within the framework of a project to design a prosthesis
of hand having the behavior of a natural hand and ordered by EMG signals. It uses an
adjustable transmission system in which the course of the cable depends on the size

of the load. The fingers move quickly under a light load and slowly with a high couple
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of torque under a heavy load. A method of order using tendons was selected to locate
the actuators outside the driven elements. The hand has 7 degrees of freedom, for
each finger plus the abduction/adduction of the thumb and the pronation/supination
of the wrist. It’s built of aluminium and each finger weighs 25 G. All the actuators are
external of the hand, the total size of the hand is big, which makes its use impossible

as a prosthesis, [22].

Figure 2.7: pictures of the prosthetic hand developed at the Autonomous Systems
Engineering Lab of the Hokkaido University.

2.3.5 Die Hand von Southampton, (UK)

The Southampton philosophy concentrates on devolving the responsibility of grip ad-
justment from the user to the hand itself. The intelligent hand uses sensors, electron-
ics and microprocessor technology to allow this adaptive device to maintain optimum
grip (thereby ensuring that objects do not slip from the hand) under the jurisdiction
of a state driven control system (which allows easy control of the prosthesis). The
artificial hand of Southampton, is in development since several decades. It has been
elaborated with the idea to be controlled in a hierarchical way using EMG signals.
To grasp objects with a natural hand, the brain must have a multitude of informa-

tion so as to adjust the grasping operation and to prevent the slipping of the object.
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However, with many myo-electric artificial hands, to control the force to be exerted
by the hand, the user is asked to use only the visual signal as feedback signal while
acting on EMG signals of forearm. In order to cure this insufficiency, the hand of
Southampton has an intelligent device: the responsibility for the adjustment of the
grasping is confided to the hand itself and not to the user. This device uses sensors,
electronics and microprocessors to maintain an optimal force of grasping, while the
user gives overall orders to open or close using simple signals.

The hand of Southampton provides two types of grasp: grasp with precision and
grasp with force. The type of grasping adopted is determined by the point of the first
contact. If an object touches the palm in first, the grasp with force is applied; if they
are the ends of the fingers which enter the first in contact, a grasp with precision is
used. The hand is closed until the object is taken in the softest possible way figure 2.8
and 2.9. If a slip occurs, it is detected by acoustic sensors on the level of the ends of

the fingers and the grasp is automatically reinforced, [5].

Figure 2.8: First version of the hand Figure 2.9: Second version of the hand
of Southampton. of Southampton.
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2.3.6 Conclusion

There are many articles in the news about the latest developments in intelligent
prostheses devices, which are high-tech but expensive prostheses. The use of a mi-
croprocessor in the system allows the operator to supervise only the actions of the
hand while the microprocessor controls the low level reflexes of grip force and shape.
The processor can control more of the functions of the hand itself. The operator
gives simple grasping movement (hand closing or opening), which are interpreted as
commands and the controller co-ordinates multiple degrees of freedom to shape the
hand to maximise the contact area between the hand and the object and so minimise
contact forces. If the object slips this is detected and the controller responds. This
frees the user to make only the strategic decisions while the functional range is in-
creased. We can mention here that these developed prostheses don’t recognise the

desired motion of fingers separately, which is our first goal in this research thesis.

2.4 EMG controlled Hand-Exoskeleton devices

The exoskeleton devices are used as an assisting systems for affected people by stroke
or other motor diseases or spinal cord injure. Hand-exoskeleton devices are an inno-
vative ideas to reduce physiotherapist intervention and to improve therapy results.
In this case the EMG signals are used as self body’s neural signals to realise intended
hand movements. Several exoskeleton devices in robotic systems for rehabilitation
have been constructed to perform rehabilitation support system. Many works in this
topic are done during the two last years and some of them will be introduced in the

following sections.
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2.4.1 Carnegie Mellon Exoskeleton (Pittsburgh USA)

The mechanical framework of the exoskeleton consisted of an aluminum anchoring
plate mounted to the back of the hand and three aluminum bands, one for each of the
finger bones. The aluminum bands are designed to be adjustable for different finger
sizes. The flexion of the Proximal Interphalangeal (PIP) and Distal Interphalangeal
(DIP) joints is produced by steel cable running along the front of each finger band and

through to the backside of the hand. These cables are pulled by a pneumatic cylinder

Figure 2.10: Carnegie Mellon Exoskeleton, Lab of the Pittsburgh University USA.

acting in compression. The metacarpophalangeal (MCP) flexion, on the other hand,
is achieved by a linkage mechanism: a floating link is mounted between the finger
band closest to the base plate and a second pneumatic actuator, acting in extension

(labeled as linkage mechanism), figure 2.10, [18].

2.4.2 Politecnico di Milano Exoskeleton

This exoskeleton-hand, figure 2.11, is composed of a glove, upon which a supporting
structure is built, implemented in plastic. The plastic part on the glove is used for two
reasons: guiding the fingers of the patient in order to accomplish a natural movement

and avoiding that the fingers had to bear an excessive load on their tips. In addition to
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o
~ gctuators

Figure 2.11: hand Exoskeleton, Lab of Politecnico di, University Milano Italy.

this, two plastic bended covers are placed upon and under the forearm of the patient
and bound together by straps. In order to improve the system stability the upper
cover on the forearm is fastened with the plastic structure on the glove by means of
a metallic bar. On the upper cover (in the palmar side) two actuators are fastened,
that are Hitec servos HS-805BB. These electric motors can be controlled in position.
Two wires are joined to the fingers tips at one end, and rolled up to the pulleys of
the servos to the other end. The wires slide through some little plastic pipes and
can transmit the maximum force produced by the actuators, about 100 N. One wire
is dedicated to the flexion of the thumb, while the other flexes the four fingers at
the same time. On the dorsal side, two springs are required to allow the extension
movements. In this way, with only two actuated degrees of freedom, the device is
able to perform a grasp movement. Finally two potentiometers on the pulleys of the

servos are placed in order to record two position signals [48].

2.4.3 Conclusion

Two exoskeleton devices systems for rehabilitation have been described in this section
to show the importance of using EMG signals In order to help patients, who had a

function disability of their hands, to get normal daily life. Such Exoskeleton devices
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controlled by EMG signals can provide a self-performing rehabilitation system that

supports the patients to practice the rehabilitation exercise by them self.

2.5 Hand Prostheses Types

The control of hand prosthesis exist in two categories, the first one are conventional
body-powered prostheses, which are powered and controlled by gross body move-
ments, usually of the shoulder. The second one are Myoelectrically controlled pros-
theses, which are considered, at present, as the best way to restore the functionality
of an amputated hand. These hand prostheses, which belong to this second category
are them self divided also in two types. The first type are those exploit EMG sig-
nals that are not issued from muscles responsible on corresponding movement, but
from any other muscles usually biceps. Such type of prostheses use EMG signals only
as switch impulses. The second type of Myoelectrically hand prostheses are able to
recognise the desired movement, on the way as the subject thinks about moving the

prosthesis. This case is considered in this thesis.

2.5.1 EMG signals don’t correspond to movement’s muscles

There is the possibility to use EMG signals issued from any part of our body, for
example biceps, as switch (ON-OFF) signal to control hand Prostheses. This type of
control is easier, because it doesn’t need any data processing but only signal acqui-
sition, rectification and then integration. the rectified signal can be compared to a
threshold reference, if it is bigger then an ON command is given otherwise the hand

prostheses is not acted.
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2.5.2 EMG signals correspond to movement’s muscles

The idea in this case is the use of surface electrodes to record the electrical activity
of muscle fibres and to send these signals to a computer, which interprets them using
convenable algorithms. The algorithms translate the signals into commands that can
control a hand prosthesis. The essential task is based on signal acquisition and data
processing. Intended hand movement can be interpreted through the EMG signals
issued from responsible muscles for such movement. These signals are detected in the
region of activated muscles for intended movements. This task, which is considered
in this thesis, requires bio-signal processing algorithms for different processing and
discrimination stages, which can be resumed in the following steps:

Steps:

e Data Collection through sensing devices

EMG signal transformation: analysis or Modeling

Extraction of relevant features, which can discriminate movements

Classification-models building

Evaluation and classification



Chapter 3

EMG signal acquisition

3.1 Introduction

The physical phenomena observed generate often analogical signals. The power and
the diversity of the realisable transformations by the computers makes desirable the
conversion, figure 3.1, of these analogical signals into discrete signals, obtained by

measurements with intervals of regular times. This operation of sampling, realised by

X(t)

x(k)

y(k)

Figure 3.1: The first stage of signal acquisition

the analog-to-digital converters (ADC), can involve a loss of information. It is thus

advisable to carry out this operation correctly, in order not to make imperceptible the

23
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information sought in the signal. The exponential increase in computational abilities
of computers and the advancement of sensor technology are all factors contributing
to the expansion of EMG research with fidelity. EMG signal energy increases with
the activation level of a muscle. We observe the variation also in EMG measurements
from experiment to experiment so the energy of an EMG signal is a largely qualitative

measure. EMG signals can be measured using two electrode types:

e indwelling (fine wire or needle) electrodes, which are inserted directly into the

muscle fibres.

e surface electrodes, which are placed on the skin overlying the muscle.

The surface electrodes transduce the motor action potential MAP, converting ionic
currents into electrical currents, and the resultant EMG signal can be recorded fol-
lowing appropriate amplification and filtering. However some disturbances may be
introduced in measured EMG signal through many ways. First the human body
himself is a good antenna, which picks up electrical signal emissions, issued from
electrical equipments in the laboratory. Second the cables of measurements are good
conductors for power line noise, 50-60 Hz signals. Additionally it’s not possible to
ignore the effect of artifacts, which are results of cable and electrode movements.

The use of available highly sophisticated devices with help of the advances made
in electronics technology had made the acquisition of EMG signal possible with high
fidelity and more efficiency. Generally signals are the means (ways) by which informa-
tion is transmitted, whether we use the vibrations of accelerometers, the electricity of
circuitry or electromyograph (EMQG) signals of electrods. There are certain fundamen-
tal common aspects of signals that are universal. Signal acquisition and processing

allow us to understand the systems, which produce these signals. Therefore, the
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principles of this operation are extremely important for many aspects of electrical
engineering, and can easily be extended to any other study domain.

The size of the Electromyograph (EMG) signal depends on: 1) the thickness of the
connective muscle tissue, 2) the quality of the contact between the electrode and the
skin, 3) the size of the electrodes and 4) the individual motor unit action potentials.
After signal acquisition and processing, it’s possible to identify and control the sys-
tem, which is source of this signal. But the important question explored in digital
acquisition is how to sample an analog signal while preserving its full information.
The sampling rate for the analog to digital conversion (A/D) must be at least twice
as high as the highest frequency or bandwidth of the signal being sampled, according
to Nyquist-Shannon sampling theorem, [54]. The knowledge of frequency bandwidth,
which envelope the most power of EMG signal is necessary to choose the appropriate
sampling frequency. With low sampling frequency it’s not possible to track with fi-
delity most rapid changes in the signal, however the high sampling frequency increases
the number of samples, which leads to a time consuming. In case of on-line prostheses
control, the procedure of signal acquisition, processing till decision control should be
short in time. Law sampling rate means time computation consuming, for which the
time-delay-phase between human intention of acting and prosthesis response is not
acceptable. So it should be found a compromise between them. To avoid another
undesirable effect of sampling, it’s well to employ an anti-aliasing filter before the
signal is sampled, which requires also a knowledge of signal frequency bandwidth of
interest in order to perform this task. By definition, the anti-aliasing filter [54] is used
to prevent the sampling of frequencies, in the signal, that are higher than the half of

sampling frequency. These frequencies will be misrepresented if they are sampled. For
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example, a 1 kHZ sampling frequency needs an anti-aliasing filter with a bandwidth
of 500H z (%Fs), the effect of this filter is to avoid the aliasing to a lower frequency
for the signals above 500Hz due to under-sampling of these signals. As consequence
to this phenomenon there is the production of a new aliased frequency Fa, which is

a mirror of the original signal frequency F' about %F 5.

3.2 Surface EMG signal characteristics

The measurements of EMG signals issued from muscle contractions are realisations
of a complex time-variant process that control electrical activation of muscle. They
provide an access to physiological processes that cause muscles to generate forces,
produce movements, and accomplish functions which allow us to interact with the
world around us. It’s difficult to discern any distinguishing characteristics of these
signals and it’s not apparent how to quantify them. With help of two non-invasive
EMG surface electrodes placed on forearm muscles it’s possible to detect EMG signals,
which will be subtracted before amplification. In this differential configuration, the
shape and area of surface electrodes and the distance between them are important
factors, which affect the characteristics of this measured EMG signal. This signal,
issue from a time-variant complex dynamical system figure 3.2, has an amplitude
in the range of uV; or mVy, it depends on type and/or size of the muscle and its
state (level of activation). The usable spectre of this stochastic (random) signal
can be limited in the area of 20 to 500H z, see for deep study about this factor the

sections 4.3.1 and 7.2.
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Figure 3.2: Two channels measure of raw EMG signal corresponding to thumb-,
pointer- and middle-finger flexion movement. Sampling frequency equal to 4KHz

3.3 Factors affecting EMG signal measurement

3.3.1 Electrodes

The form and the size of the surface electrodes have an influence on measured EMG
signal. For a performed extraction of quantitative information from the EMG signal
it is required greater focus on the configuration of the electrodes. The major points

to consider are:

e Electrodes material:
Two types of surface electrodes are known, 1) dry electrodes in direct contact
with the skin and 2) gelled electrodes, which contain an electrolytic gel between

the skin and the metallic part of the electrode.
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e Electrodes technology:
It’s recommended that the electrodes make very good electrical contact with the
skin through electrically conductive gels. Therefor, the electrode gels material
should be highly conductive and the electrodes adhesive material should have
strong adhesive properties to the skin for considerable mechanical stability to

avoid movement artifacts.

e Electrodes position:
The placement of electrode should be along the longitudinal midline of the
muscle. The longitudinal axis should be aligned parallel to the length of the

muscle fibers.

e Reference electrode placement:
it’s a common reference electrode to the differential amplifier input. The place-

ment of this electrode should be on electrically neutral tissue (the bone).

3.3.2 Amplifier technology

In amplification process of small bioelectric signals generated by the muscles, which
are typically in uV/, it’s necessary to reduce as possible the effect of noisy electrical
signals. This task is accomplished through the use of a differential amplifier, figure 3.3,
which effectively cancels the ambient electrical noises collected by human body. These
ambient electrical noises collected by human body can reach the order of volts. This
subtraction operation of differential amplifier eliminates these noises and amplify the
small physiological signals. There are several important properties to consider in this

differential amplifier:
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High common mode rejection ratio (CMRR)

Very high input impedance: amplifier’s input impedance must be higher than

the impedance of the electrode-muscle area.

Using short connecting cables between signal source (electrodes) and Amplifier,

otherwise they will collect ambient noises.

DC signal: they are generated by chemical reaction between skin and electrode.

Muscle

Channel 1

ADC—
Channel 2
ADC—
Patient
'rQ Ground .

1

Figure 3.3: Differential Amplifier

3.3.3 Movement artifacts

The motion of the electrode relative to the skin produces motion artifact, which occurs
in the range of 0 to 15Hz For these reasons, the surface EMG is typically filtered
under the range of 20 Hz to eliminate low frequency noise and increase the signal to

noise ratio
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3.3.4 Disturbances

The acquisition of an accurate EMG signal is very dependent on the noisy electrical
environment and the performance of acquisition instruments, [20] [58] [45]. Noises
can be described as any aspect of the output signal which is undesirable. Elimination
of influences of these noises is not possible, but it’s possible to reduce them with
examination of circumstance’s effects. They are two typical types of disturbances.
First are conducted disturbances, which can be caused by electrical disturbances
intrinsic to the recording environment and it can be caused also by the nature of the
recording devices themselves. Second are radiated disturbances, which can be caused

by electromagnetic emissions of environment.
e 1) Conducted Disturbances:

-Transducer noises (through the cables)

-Alternative current, generated by fluctuations in impedance between the con-
ductive transducer and the skin (Duchene and Goubel, 1993).

-Direct current, caused by differences in the impedance between the skin and
the electrode sensor, and from oxidative and reductive chemical reactions tak-
ing place in the contact region between the electrode and the conductive gel

(Gerdle et al., 1999).

e 2) Ambient Disturbances:

Disturbances from the environment (electromagnetic waves), are noises orig-
inate from sources of electromagnetic radiation, such as radio and television

transmission, electrical-power wires, light bulbs, fluorescent lamps, ... |45].
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3.3.5 Cross talk

Recorded EMG signals are dominated by muscles activities signals, which are close
to the electrode. This recorded EMG signal from desired muscle could be mixed
"crosstalk" with other EMG activities issued from one or more neighboring muscles.
Other effect of muscles on recorded EMG signals is the distance (width) between
the muscle fibres and electrodes, which increases the spatial low filtering effect. This
phenomenon is due to the fact that muscle fibres act as low spatial filter [43].

The above factors illustrate clearly that it is not easy to measure an electro-physiological
signals without disturbances. Therefor it is very important to select the right mea-

surement system and the right sensors to maintain optimal electro-physiological data.

3.4 Experimental recording equipment (Digitimer
Neurolog System)

EMG signals are low in amplitude with respect to other ambient signals on the body
surface, hence it is necessary to detect the signal in a differential amplifier configura-
tion in order to reduce noises. The bipolar recording technique is based on bipolar
electrode arrangements with a differential amplifier, figure 3.3, which suppresses sig-
nals that are common to both electrodes. Correlated signals common to both sites,
power sources and electromagnetic devices, are suppressed. The placement of elec-
trodes is required to be on the large face of muscle. The amplification of the two
differential inputs should not deviate from each other more than 1/100000, which
requires highest common mode rejection (CMR) possible. Common mode rejection

by around 100dB is generally sufficient to eliminate such common mode disturbances.
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The CMR is expressed in logarithmic form in equation 3.4.1.
Ao
CMR(dB) = 20log T (3.4.1)
1

The balance in the input impedance between electrodes may be an addition source
of a substantial effect on generation of noise. such problems can be avoided if short
connection cables between electrodes and amplifier are used. The best solution for

this problem is to use the new developed electrodes with incorporated amplifiers.

Overview:
In this study the equipment of measurement used is Digitimer NeuroLog System,

figure 3.4, figure 3.5 and figure 3.6

Modules of this equipement:

e it has four channels.

amplification’s range: x 10 bis X 10000.

low band filter (3, 10 and 30Hz).

push button for movement artifact elimination for (NL824) module.

possibility of signal amplification through one or many channels. (4 channel

filters).

Notch Filter: this filter is used to remove a particular frequency from a signal
and has a frequency response that falls to zero over a narrow range of frequencies (i.e.

a H0Hz notch may block signals from 49.5 to 50.5Hz). Notch filter is also available
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Figure 3.5: Four-Channel Isolated Amplifier System with Filtering and Signal Con-
ditioning

in this instrument. The NeuroLog System is a flexible and upgradeable multi-
channel recording device for research applications such as electromyography (EMG).
The NL820 is the module at the heart of the isolated amplifier range of components.
It is ideal for AC coupled recording applications in the research environment. It has
four channel units with independent gain and filtering control of each channel as well
as a mute facility. The NL155 FILTER is a 4 channels, second order low-pass, with
Notch reject filter module. The filter settings can be selected. Therefor a rotary
switch selects the 14 frequency settings giving repeatability over a wide range with

40dB/decade attenuation above the selected frequency value. The active Notch filter
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Figure 3.6: Measurements system in Max Plank institute laboratory, Magdeburg,
Germany

provides rejection of line frequency 50Hz interference when switched on. The NL1/4
is a 4 channels, second order high pass filter which complements the NL135 when
used with the NL820 isolator, this module provides a compact solution to 4 channel
high and low pass filtering. This module designed to give gain and offset set-up
controls when interfacing signals to the analog-to-digital converters (ADCs) of PCs.
It contains four channels each with independently adjustable filter settings and front
panel gain and offset presets. There is also a master ADC offset control to allow

unipolar ADCs to be used with bipolar signals.

3.5 Functional anatomy of hand and forearm

The Engineers entrusted with the management of the hand-prostheses and hand-
exoskeleton must possess a competent knowledge of the functional anatomy and phys-
iology of the hand and forearm, which is a complex biological structure. Necessary
also is the ability to correlate the surface topography of muscles, underlying muscle-
tendon units, skeleton, joints, and nerves. So here are some information to help to
understand the mechanical and anatomical properties of the hand and forearm mus-

cles. The Bones of the Forearm and Hand [1] are presented in figure 3.7. The forearm
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contains many muscles [35], a flexor of the elbow (brachioradialis), and pronators and
supinators that turn the hand to face upwards or down. In cross-section the forearm
can be divided into two fascial compartments. The posterior compartment contains
the extensors of the hand, which are supplied by the radial nerve. The anterior

compartment contains the flexors, and is mainly supplied by the median nerve.
1. Anterior Compartment

e Superficial Group
— Flexors of the hand and wrist
x Flexor Carpi Radialis
* Palmaris Longus
* Flexor Carpi Ulnaris

x Flexor digitorum superficialis (sublimis)
2. Posterior Compartment

e Extensors of the hand and wrist

Extensor Carpi Radialis Longus

— Extensor Carpi Radialis Brevis

Extensor Digitorum (Communis)

Extensor Digiti Minimi (Proprius)

Extensor Carpi Ulnaris

— Abductor Pollicis Longus

Extensor Pollicis Brevis

Extensor Pollicis Longus
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— Extensor Indicis (Proprius)
e Intrinsic forearm muscles

— Brachioradialis (technically a flexor of the forearm)
— Supinator

— Anconeus

Humerus

Radius
Ulna

1
Carpals
Metacarpals

Figure 3.7: The Bones of the Forearm and Hand

In [35] the globally corresponding muscles participating in finger and hand move-
ments are described. The following muscles, Flexor-digitorum-profundus, Flexor-
digitorum-superficialis and Flexor-polcis-longus participate in fingers flexion. Fin-
gers extension need globally the activation of Eztensor-digitorum, Extensor-indicis
and FExtensor-digiti-minimi, and thumb extension needs Fxtensor-pollicis-longus and
Extensor-pollicis-breuvis.

Surface electrodes are placed in the manner to cover the large skin surface of these
muscles. The locations of electrodes on the subject’s arm do not isolate a speci-

fied single muscle but collect the EMG activation from all muscles around, even the
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muscles of the deep layer, which contribute to this activation signal, although they
undergo a space filtering. Some of these important muscles, which contribute in hand

and finger motions are presented in figure 3.8 and figure 3.9.

Extenzor Digitorum Communis Extenszor Indlicis Propring Estenszor Follicis Longus

Figure 3.8: Some Forearm muscles for extension movements

Flexor Digitorum Superficialis Flexor Pollicis Longus

Figure 3.9: Some Forearm muscles for flexion movements

3.6 Conclusion

Surface electrodes placed over the muscle can sense electrical potentials produced
when a muscle is contracted. This signal detected by the electrodes is called Electro-

Myo-Graphic signal (EMG). This signal is recorded and amplified using convenable
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instrumentations. It should be recorded with a certain fidelity to assure the trans-
mission of its inside information (without loss of information). This recording fidelity
require some fundamental concepts in EMG signal acquisition. Moreover competent
knowledge about the functional anatomy of hand and forearm aids to get fidel EMG

signals.



Chapter 4

Signal processing and feature
extraction

4.1 Introduction

The choice of classification Algorithms begin with finding the features data, which
can be available in several forms. These features data must be collected and the
question is which features data are needed and can be extracted according to systems
and classification problems. Most classification algorithms are highly sensitive to the
quality of the data representation. In this chapter we will discuss EMG signal analysis
methods, which give relevant features. These features are used as clusters for classes
recognition.

There are many sources of high- and low-frequency contamination on EMG signals.
For example computers introduce high-frequency noises into acquired signals, espe-
cially when the acquisition card is located within the computer chassis. Moreover mo-
tion artifacts introduce also low-frequency noises. Generally a 10 till 15 Hz high-pass
filter is used to eliminate the movement artifacts and 300 till 500 Hz low-pass filter is
used to eliminate the high frequencies. There are recommendations to cut frequencies

below 50 Hz for large muscles like for the leg. However there are another muscles

39
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in which low frequencies can have relevant and useful information about correspon-
dent movement type. Thus the intended use of the EMG signals must be considered.
More deep study about filtering effect will be given in this chapter, section 4.3.2 and

in chapter 7 section 7.2.

4.2 Detection of activation period

Threshold method which compares the level of EMG signal with a given level, is the
most intuitive and common computer-based method to detect ON-OFF timing of the
muscle activation [47]. The EMG signal is processed in the time-domain. Two first
transformations are commonly used as primary tools to analyse the acquired EMG
signal, which are the rectification and M-point moving average Filtering, figure 4.1.
These primary tools are appropriate and provide useful measurements of the signal
amplitude to detect the muscles activation times, which are start and stop phases.

The moving average filter is the most common filter for time-domain processing signal,

-3
1x10 :

Raw EMG signal

Q 10™ 2000 4000 6000 8000 10000 12000

Rectified signal

Amplitude

00 10000 12000

Moving Averagde Filter

VN

0 2000 4000 6000 8000 10000 12000
Time (samples)

Figure 4.1: Full wave rectified and filtering of raw EMG signal (Hand closing) using
moving average filter (window = 50ms)
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figure 4.2. Tt operates by averaging a number of points from the input signal to one
point in the output signal, defined by the equation 4.2.1.

=
=
—

y(t) =
where

==

z(t — k)

e
Il

(4.2.1)
0
x: is the input signal,
y: is the output filtered signal,

M: the number of points in the average, Fc (cut off frequency) = Fs / M;
Fs (sampling frequency) = 4 kHz;

M (length of Window ) = 200 samples (50ms).
Fe = 20 Hz.

In a comparison form, figure 4.3 shows from top to bottom: raw EMG signal, rectified
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Figure 4.2: frequency response of the moving average filter with window of 200 sam-

EMG signal and then filtered signal. The signal in blod line in bottom represents

Average Moving Filter response using 200 averaged samples or a window of 50ms
(sampling frequency = 4 kHz).
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Figure 4.3: From top to bottom:Raw EMG signal, full rectification EMG signal and
EMG signal after moving average filter application.

It is possible to detect the beginning of EMG activation after the estimation of the
noise amplitude that will be considered as threshold between activation-phase and
noise of the signal EMG. Hence Some knowledge about the noise signal is required
before the estimation of its level. This threshold level can be defined as a certain
amplitude above noise mean value, figure 4.4. The threshold level value can be
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Figure 4.4: Noise threshold value estimation.

considered as a factor of standard deviation value, (dispersion). It is necessary first
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to record a certain period of noise signal before EMG signal activation. There are

four steps for accomplishing this task in the following way:
e Centering the signal (mean value equal zero).
e Rectifying the signal (absolute value).
e Calculation of mean value.
e (Calculation of Standard deviation.

The determination of the ON-OFF timing of the muscle’s activation may be found as
the intersection between: 1) Moving Average Value (MAV') of EMG signal and 2) noise
threshold level. These curves, figure 4.5, are measurements of thumb finger flexion

activation. This estimation of noise threshold value is calculated using noise signal

------ Filtered EMG
—— Noise threshold level

Amplitude (V)

i .
HE WL

p activation '

Time
Figure 4.5: Activation periods determination based on estimated noise threshold level.

(no muscle activation) during a period of 2000 samples (500ms). Figure 4.5 presents

from the top to bottom: 1) the measured raw EMG signal of thumb finger flexion, 2)
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filtered EMG signal and noise threshold level in dashed line, 3) the ON-OFF timing
activations. This noise threshold level represents the border between noise signal
and activation signal. The noise reference level estimation, and consequently initial
time-activation of EMG signal is depending on availability of a priori knowledge of
the stochastic properties of noise’s amplitude.

Concretely this method is not applicable efficiently alone in this way, because there
are cases in which the beginning of activation EMG signal presents some oscillations

above and under the noise threshold level like in figure 4.6. This phenomenon gives

Raw EMG

| Filtered EMG S
i 7 —— Noise threshold |
A,

‘(On-Off time oscillations

5 ! i ; 750.

Time

850

Figure 4.6: Some real oscillations above and under the noise threshold level in the
beginning of ON-timing activation.

as consequence many oscillations of ON-OFF timing activations. These oscillations
present a big problem for the choice of the right activation beginning (on-time). To
resolve such problem it is necessary to develop an algorithm to test the duration of
the activation period which is estimated, in our case, to be $20ms. The period of

activation is equal to 320ms (1280 samples). If the duration of ON-timing, during
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the first 128 ms of 320ms falls down to OFF-timing then this ON-timing activation
is ignored, otherwise it will be considered as the right instance-time of the beginning
of muscle’s activation. This method gives the following positive results shown in

figure 4.7.

. | ) I Raw EMG signal

Amplitude (V)
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i n | — Noise threshold J

S
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Figure 4.7: Top fig: EMG signal of middle finger flexion. Middle fig: moving average
filtering of this signal. Bottom fig: Elimination of oscillations above and under the
noise threshold level in the beginning of ON-timing activation and determination of
desired activation signal period.

4.2.1 Conclusion

In contrast to commonly used threshold-based estimation methods for detection of
activation period ON-OFF timing, the proposed algorithm proves to be reasonably
accurate even for low levels of EMG activity. The improved behaviour of this algo-
rithm, with just a modest increase in the computational complexity, can avoid the
oscillations of ON-OFF timing. The aim of this Algorithm it was to use the sim-

plest noise threshold-based estimation method, which determine the beginning level
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of EMG signal, and to avoid the drawback presented by some oscillations of ON-OFF

timing in the beginning of EMG signal’s activation.

4.3 Filter design

Signal processing can be defined as signal manipulation for either extracting infor-
mation or producing an new representation of this signal through analysis. Other
motivations of signal processing are the removing of unwanted components corrupt-
ing the signal of interest, which is our study in this section and the extracting of
useful information, which is the goal of our study in the following sections 4.4.2, 4.4.3
and 4.4.4. This section points on filtering and frequency domain representation of the
Signal. The principle function of a filter, figure 4.8, is to filter out the unwanted parts

of an input signal. The unwanted frequency parts of the signal as described in section

Input signal Filter Output signal

A 'y

Figure 4.8: Filter effect on signal’s specter.

3.3 can not be all eliminated, but only reduced. In many cases, the sequentially lo-
calisations of the information carried by the observed signal and the disturbances are
generally known a priori. The objective is then to build a new signal from the raw
signal by exclusion of the disturbances. A digital filter is just a filter that operates on

digital signals represented inside a computer. There are plenty of softwares available
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for designing digital filters. The effective use of a filter design algorithm requires an
understanding of its parameters designing, which requires also some understanding of
filter theory [64]. Filtering is a computation which takes one sequence of numbers of
input signal and produces a new sequence of numbers of filtered output signal. The
digital filter design methods fall into two main categories: 1) Finite Impulse Response
(FIR) filter design and, 2) Infinite Impulse Response (IIR) filter design. Both these
two types can be designed with any standard method (Butterworth, Chebeshev, etc...).
Impulse response of a digital filter is the output sequence from the filter when a unit
impulse is applied at its input. A unit impulse is a simple input sequence consisting
of a single value of 1 at time ¢t = 0, followed by zeros at all subsequent sampling
instants. For FIR filters, the current output y(n) is calculated solely from the current

and previous input values:
y(n) =z(n),z(n—1),z(n —2), ... (4.3.1)

This type of filter is said also non-recursive, because these filters usually require no
feedback. In this case the impulse response of FIR filter is of finite duration.

The IIR filters are commonly implemented using a feedback (recursive) structure. The
word recursive means "running back", and refers to the fact that previously-calculated
output values go back into the calculation of the latest output. The expression for a
recursive filter therefore contains not only terms of input values: z(n), x(n—1),z(n—
2), ..., but also terms of output values: y(n — 1),y(n — 2), . . .. In this case the
impulse response of IIR filter is theoretically not of finite duration but continues for
ever. The recursive terms or previous output terms feed back energy into the filter
input.

Generally, to design a given frequency response characteristic, recursive filter requires
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fewer terms to be evaluated by the processor than the equivalent non-recursive filter.
The recursive system is specified by two vectors a and b. The coefficients of vector
b are convolved with the current and past input samples, while a coefficients are
convolved with the past output samples. To calculate [53] output sample y(n), the
filter multiplies the current and past input samples x(n), x(n — 1), z(n —2), z(n —
3), ..., (n—k) by the set of b coefficients: b(0), b(1), b(2), b(3), ..., b(k); and sums
them, then the filter multiplies the past output samples: y(n — 1), y(n —2), y(n —
3), ..., y(n— k) by the a coefficients: a(1),a(2), a(3), ..., a(k) and sums them, then

it combines them to form the output y(n), according to this equation 4.3.2:

y(n) = Z x(n —1)b(i) — Z y(n —1)a(7) (4.3.2)

In MATLAB toolbox, this whole process is performed by the filter function: y =
filter(b, a, z). This function uses an infinite impulse response (IIR) or finite impulse
response (FIR) filter; where: x is the input signal, y the output signal, and where b
and a are the coefficients. The values of these coefficients determine the characteristics
of a particular filter. The order of a digital filter can be defined also as the number
of previous inputs (stored in the processor’s memory) used to calculate the current
output. In the case of recursive filters, the definition can be extended to previous
input and output values required to compute the current output.

Before to go farther it is preferable to talk about the aliasing problem, which has been
described already in section 3.1. To prevent aliasing problem it is more advantageous
to filter the continuous-time signal, using analog filters before sampling it, (biomedical
applications involve the acquisition of continuous-time signals).

Matlab toolbox has several design algorithms that can be used to create both IIR and

FIR digital filters. The IIR filters that can be created in Matlab are Butterworth,
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Chebyshev-1, Chebyshev-2, and elliptic. The FIR filter algorithms in Matlab are
equiripple, least squares, and Kaiser window types. We should know the parameters
of the filter that we are going to design. Some of these parameters are described in

following section.

4.3.1 Optimised filter design

Design mode allows us to specify a FIR or IIR filter by setting design parameters such
as filter type, passband/stopband edge frequencies, pass-band and stop-band ripple
levels, and stop-band attenuation. We can select from design methods that include
Butterworth, Chebyshev, Inverse Chebyshev, Elliptic, Kaiser, Equiripple, . . . . The
designer should then use different parameters to suggest a filter meeting as many of
those specifications as possible. The goal is then to optimise the designed filter to meet
desired needs. The MATLAB signal processing toolbox contains a number of different
functions for designing recursive low-pass, high-pass and band-pass filters. Using
Matlab, a digital filter is designed with various prototypes: Chebyshev, Butterworth,
and Ellptic for IIR type. Equiripple, least squares, and Kaiser window are designed
for FIR type. The optimum filter type is chosen on the basis of implementation
complexity and magnitude response. The design specifications of the band-pass filter
and the order are given for the following examples. A comparison of these filters is
attempted in this section in order to evaluate the advantages and drawbacks of each

filter for the same band frequency, which equal to BP = [30Hz, 500Hz|.

1) Infinite Impulse Response (IIR) digital filters:
The Butterworth filter, for Infinite Impulse Response filter design without specified

requirements, is often sufficient. More rigorous filter requirements can be met with
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Chebyshev and elliptic filters, figure 4.9. For each type of IIR filter, three order

values have been chosen: 2, 4 and 6. These filter responses figure 4.9 designed with

[IR: butterworth, BP = [30 500] Hz IIR: chebyshev1, BP = [30 500] Hz
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Figure 4.9: Infinite Impulse Response (ITR) band-pass filters comparison for orders
n =2, 4 and 6.

low orders, which are 2, 4 and 6 seem to be good acceptable. We can conclude that
the elliptic filter of order 6 presents the best band-pass frequency response, because
its pass-band and stop-band cutoff frequencies transition are fast, in comparison with

the two others.

2) Finite Impulse Response (FIR) digital filters:
FIR filters require a much higher filter order than /IR filters to achieve a given almost
same level of performance. The MATLAB function firl (N, Wn, type of window(N))
designs conventional FIR filters based on the windowing method. Without explicit
specifications, the Hamming window is employed in this design. Other windowing

functions can be used by specifying the windowing function as an extra argument of
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the function. For example, Blackman window, Hanning window or rectangular win-
dow. The Parks-McClellan method (called "Remez" by Matlab) designs FIR filter
of order N based on Parks-McClellan algorithm and exhibits an equiripple behavior
in their frequency responses and are sometimes called equiripple filters. Filter speci-
fications are given in terms of pass-band and stop-band cutoff frequencies, moreover
using also pass-band and stop-band ripples attenuation. Some of FIR filter types
are presented in figure 4.10. Note that the frequency response of F'IR filter based on
Parks-McClellan algorithm, presented in figure 4.10 has a high stop-band gain, this
is due to the narrow transition band. If the transition band becomes larger we will
get lower stop-band gain. There is a trade-off between stop-band gain and transition

width. Both [TR and FIR defines a class of digital Filters. ITR filters, which may

FIR: rectangular, BP = [30 500] Hz FIR: hanning, BP = [30 500] Hz
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Figure 4.10: Finite Impulse Response (FIR) band-pas filters comparison for orders
n=40, 60 and 80.

have both zeros and poles on the z-plane, are not guaranteed to be stable, and they
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have nonlinear phase responses. F'I R has zeros only on the z-plane, the consequences
of this are that FIR filters are always stable, and they have linear phase responses
(filter’s coefficients are symmetrical). In this case the delay is constant for all fre-
quencies.

A simple design specification for a filter is to remove noise outside a certain band-pass
frequency. A more complete specification need some other specific characteristics like
pass-band ripple (R, in decibels), stop-band attenuation (R, in decibels), or transi-
tion width (W,, Wy, in hertz). These specifications should achieve the performance
goals with the minimum filter order. Such task can be done using the following matlab
functions like: chebyord, butterord, ellipord, ....

Filter Specifications in Matlab are:
o W,: Pass-band cutoff frequencies
e W,: Stop-band cutoff frequencies
e R,: Pass-band ripple: deviation from maximum gain (dB) in the pass-band
e R,: Stop-band attenuation: deviation from 0 gain (dB) in the stop-band

In figure 4.11, two examples are presented to compare the required order for each type
of filter for almost the same specified characteristics, which are: stop-band cutoff fre-
quency Wy = [30Hz, 500Hz], Pass-band cutoff frequencies W, = [40Hz,400H z|,
R, = 2dB (ripple in the pass-band), Ry = 20dB (attenuation in the stop-band) for
ITR Chebychev filter. Concerning F'IR filter with Kaiser window, the parameters
of vector devs = [0.29, 2, 0.29], specify the pass-band, ripple and the stop-band
attenuation in absolute values and not in decibels. For almost same filter charac-

teristics, F'IR with Kaiserwindow required an order n = 80, but /IR Chebychev
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filter has required only an order n = 6. Note that the number of filter coefficients

Kaiser Bandpass FIR Filter Chebyshev Type | Bandpass IIR Filter
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Figure 4.11: Required order for both FIR and /IR filters in case of almost same
characteristics.

affects significantly on the computational effort needed for the designing of the filter.
A large number of filter coefficients requires larger computational time that may not
be feasible in certain real-time applications. A general desire in any filter design is
that the number of operations (additions and multiplications) needed to compute the

filter response is to be as low as possible.

4.3.2 FIR-80"" and IIR-6" order filter responses for different
window types

This section deal with the frequency response of an F'I R-80" order and I R-6" order
Pass-band filters corresponding to different window types. We will consider different
window characteristics in frequency range of 30 —200H z, and will compare the quality
measures and complexity issues related with these two design techniques. For TR
filter the window types used are: butterworth, chebychev-1 and elliptic, which are
presented in figure 4.12. In figure 4.13 are presented the frequency responses of

four 80" order FIR filter corresponding to the following four windows: rectangular
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window, hanning window, Blackman and Parks — McClellan.  The filter order

Band-Pass = [30 200] Hz, Fs = 4000Hz, Order = 6
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Figure 4.12: Frequency response of I1R-6'" order filter for three different windows.

is given by the length of its filter impulse response, which can be considered as its
measure of complexity. Although ITR filter design has smaller order (6" order), its
frequency response is comparable with that of the 80" order FIIR filter. On viewpoint
of complexity IIR filter is preferable. In 6! order I1R filter design, the measure of

filter quality is good enough with also less complexity.

4.3.3 Order effect of IIR-elliptic filter

The investigation of the viability of myoelectric signal recognition by different filtering
processes is considered. EMG signal analysis need first the use of low-pass anti-
aliasing analog-filter. This anti-aliasing analog-filter has cutoff frequency somewhat
above 500H z, in this case 900H z, and has sampling frequency at almost four times
the highest frequency, in this case 4000H z. The digitised EMG signal can be then
filtered.
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Band-Pass = [30 200] Hz, Fs = 4000Hz, Order = 80.
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Figure 4.13: Frequency response of F'I R-80"" order filter for four different windows.

A variety of above IIR-elliptic filter were applied with different orders: 2, 4 and 6.
EMG signals corresponding to three different finger movements, which are the flexion
of thumb-, pointer- and middle-finger are considered. Three different features are
extracted from these filtered signals and classified using RBF intelligent classification
method. These features are Moments of frequency 'M,,’ given in equation 4.3.3 with

different values of n (order), n =0, 1 and 2.
Zw | STFT(t, k) |,n=0,1,2,3,.. (4.3.3)

where

M,, : is the n'* moment of the frequency distribution at time ¢,

n: order,

w : frequency.

The following figure 4.14, in case of Elliptic I/R filter and Radial Basis Function
(RBF) classification method, presents the classification results of these three finger

movements. Radial Basis Function (RBF') neural network architecture is designed
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Figure 4.14: Effect of IR filter orders on EMG signal classification accuracy.

and trained by "newrb" Matlab function with 16 test sets and 16 training sets. The
output layer is linear and the rate of classification is depending on spread values of
hidden unit. Hence four values of spread between 0.4 and 1.6 with a step of 0.4 are
used. The evaluation of the filter order effect on EMG signal classification accuracy
will be clearly presented with these four different spread values and three different
features. The pass-band frequency is chosen to be in the range of 10 — 500H z. These

results show clearly that the increasing of filter order values has a positive effect on

EMG signals classification.

4.3.4 Effect of different filter window types

All filters, FIR and IIR, described in section 4.3.1 will be used to compare the
discrimination accuracy between them, figure 4.15. The choice of filter type is an

important decision for EMG signals recognition. The features and the method of
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Figure 4.15: Effect of different window types of 6 order ITR filter and 80 order
FIR filter, on EMG signal classification accuracy.

classification used in this part are the same with those given in above section 4.3.6,
and are illustrated in figure 4.14. The orders of /1R and F'IR filters are selected with
consideration of the best results found in above study, section 4.3.1, figures 4.9 and
4.10). These all filters are tested on real EMG signal measurements of three different

finger movements. RBF classification method is used to evaluate the effect of the

window type for both 80" order FIR filter and 6" order I1R filter design.

4.3.5 Pass-band effect of IIR-elliptic filter

Filters play a vital role in data acquisition and processing systems to remove unwanted

selected frequencies from an incoming EMG signal and minimise artifacts, conducted
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disturbances and emitted disturbances. EMG signal offers a great deal of useful in-
formation, which is depending on its band frequency. For some features, like moment
of second order (M2) illustrated in this following example given in figure 4.16, the

choice of the Pass-band filter is very important in viewpoint of its information. This

Feat:M2, Method: RBF, Train-Test=17, Threshold=1*STD, lIR-ellip: 6
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Figure 4.16: Effect of IIR-elliptic filter’s Pass-band on EMG signal classification.

information depends on filter frequency pass-band. The figure 4.16 shows clearly that
the different pass-band widths have an influence on the classification accuracy. As
example three finger movements (thumb-, pointer- and middle-finger) are considered.
Five pass-bands are chosen, which are: 3-800Hz, 10-500Hz, 20-400Hz, 30-300Hz, 50-
200Hz. Classification method used here is Radial Basis Function (RBF') method,
which considers four spread values: 0.4, 0.8, 1.2 and 1.6. The best classification re-
sults are obtained with pass-band equal to 10-500Hz. 1t is necessary here to give this

following important remark. This optimised pass-band found for used feature (M2)
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can not be generalised for all other features. More details about this observation and
its approvement is given in

chapter 7, section 7.2.

4.3.6 Conclusion

The signals in a digital filter are represented by finite and quantised binary values.
In this section several filter orders, filter types, windows and filter pass-bands were
designed, tested and compared to evaluate their effect on an electro-myogram signal
recognition. These systems are generally used to perform a filtering operation. It
is important to evaluate the effect of these different filtering methods on the EMG
signal recognition to be able to choose the optimal one.

The cost of the filter is determined by its complexity. This complexity can be eval-
uated on the basis of the following four simple parameters: order, adder operations,
multiplier operations and delays, [23]. If only order-parameter is considered, the
classification results occurred with RBF classification method, figure 4.15 are almost
the same for these both filters(/IR filters, which have order = 6, and FIR filters,
which have order = 80). It is possible here to conclude that I1R filters are less com-
plex and lead to the same accuracy classification results than FIR filters, which are
more complex. About the choice of pass-band filter, which have a great importance to
transmit a well-defined information and to reject other disturbances, it is for us now
not possible to confirm if the pass-band filter 10-500 Hz, found in above section as
best one for the feature M2, can be generalised for all other features. It will be shown
in section 7 that the described information inside the same signal through different

features is not located in the same frequency bands of this signal. Finally six different
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features, three of them belong to 6" order I1R filter and three others belong to 80"
order F'IR filter, are evaluated and compared to get their classification effects. Most

of these filters have almost the same results for feature M2 and for frequency band

in the range of 10-500Hz.

4.4 Signal analysis and feature extraction

4.4.1 Introduction

Signal representation is very important before to deal with features extraction. There
are three known different representations of a signal: 1) time-domain, 2) frequency-
domain and 3) time-frequency domain representation.

The first study will be focused on features extraction in time domain, then we use
the frequency domain and finally time-frequency domain is considered. EMG signal
is a very complex signal. Generally a signal is a carrier of information, which can be

represented as a function of variables.
Signal = f(x,y, ). (4.4.1)

Signals, e.g. an Electromyograph (EMG), are signals of complex physical phenomena
varying in the time:

Signal = f(t;z,vy,). (4.4.2)

The EMG activity represents the sum of potentials of all active motor unit actions,
figure 4.17, under the derivative area of the electrodes. For the analysis of these real
and complex EMG signals, special methods of analysis are necessary, which allow

the examination of the important information variability in the temporal change of
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Figure 4.17: Active motor unit actions

a feature "z". Thereby it is possible to build several clusters regarding to clusters
information differences. The acceptable features obtained using certain extraction
methods from a signal, which belongs to one category, should have the following

characteristics:

they have strong discriminating capabilities

they are robust and reliable

they are not time consummating

they don’t have many parameters

This set of attributes is called a signature for the associated signal. This signature
can then be used to detect the presence of similar attributes in unknown data. Since
the EMG signals are non-stationary these signatures will be extracted using a Time-
frequency analysis of the signals, like Short Time Fourier Transform (STFT). Briefly,

in this chapter we want to answer these two following questions:
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1) Which analysis methods are suitable to use for extraction of the useful features? -

2) Which features are the best for the discrimination of different muscle dynamics?

4.4.2 Time domain feature extraction

We want to test the different known forms of EMG signal representations that are
more efficient for feature extraction. There are three known representations for each

time varying signal:
e Amplitude vs. time representation (2D dimensional space).
e Amplitude vs. frequency representation (2D dimensional space).
e Time-Frequency vs. Amplitude representation (3D dimensional space).

The process begins with reading the EMG signals from two surface electrode channels
attached to the test subject’s forearm. The transient part (the beginning part) of
EMG signal during 400 ms has been exploited to extract time domain features for
the recognition of 4 movement classes. These classes are: 3 finger flexion movements
and hand closing. These movements were identified when the signal’s envelope crosses
the noise threshold level (see section 4.2, which represents the considered noise level
reference. The used signal can be extracted from each initial part of signal, which
needs to be done synchronously from both channels. Once the required part of the
Myoelectric signal is obtained, many time domain features of signal can be extracted

like:
e Mean absolute value (MAV),

e Variance (VAR),
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o Waveform length (WL),

e Root mean square(RMS).

We take in consideration only one feature, mean absolute value (MAV), as example
to show the distribution of these feature instances. Two figures are presented for

raw signal, figure 4.18, and filtered signal in 20-250Hz, figure 4.19. The values are

normalised to get mean value equal zero and variance value equal to one.  This
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Figure 4.18: Mean absolute value instances distribution with raw EMG signal

example shows us that the features extracted simply, from raw and filtered EMG
signal in time domain presentation, without any signal analysis are not relevant. The
four classes are not regrouped in discriminated clusters, hence we can’t differentiate
between them. Temporal approach can not extract important information for the
classification of these four difficult gasp types, especially with only two measurement

channels.
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Figure 4.19: Mean Absolute value instances distribution with filtered EMG signal,
20 — 250H 2.

4.4.3 Frequency domain feature extraction
a) Frequency domain analysis:

The frequency domain is used to extract information contained in EMG signal. The
transformation from time domain to frequency domain [46] is achieved through the
use of the Fourier transform, which allows us to look at EMG signal energy as a
function of frequency. Fourier Transform method is an optimal solution when we
assume that there is no frequency change, for each component, over entire time of
Analysis. Such analysis does not take in consideration the information on a time
localisation of the frequency component of the signal. The Fourier Transform (F'T)

is defined in equation 4.4.3:

“+oo
X(f) = / o(t)e 2 (4.4.3)
X(f) is a complex function of frequency, f, which describes the complex voltages

(amplitudes and phases) as a function of frequency, f, of the signal z(t).
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The Discrete Fourier Transform (DFT):

If 2(t) is time-function limited to a duration of nT" samples then DF'T, equation 4.4.4,
can convert a sampled function of time xz(nT') into a sampled function of frequency
X(mF). In simple terms we use the DF'T to represent digital signal, x(nT), of length
nT" as a sum of m different sinusoidal waveforms. In these sinusoidal waveforms each
sinusoidal function (complex exponential function) X (mF'), will have only one single

frequency amplitude and phase.
X(mF) =Y a(nT)e /" (4.4.4)

n

The Fast Fourier Transform (FFT) is a class of algorithm, which deals only with
time computation reduction. It allows the computation of the DFT to be performed
in O(N log N) rather than O(N?) computations. The DFT of EMG signal produced
with thumb-finger flexion during 400ms and sampled at Fy = 4K hz, is presented in
figure 4.20
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Figure 4.20: Fourier Transform (F'T") analysis of raw EMG signal of 400ms length,
corresponding to thumb finger flexion movement.
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b) sinusoidal harmonic waves

The DFT is used to model our EMG signal as a sum of simple sinusoidal signals. The
magnitudes of spectral lines of these simple sinusoidal signals quantify their energy
contribution for the global EMG signal. However EMG signals are much more com-
plex than simple sinusoidal functions. For a signal z(nT'), which contains nT" data
samples, the DFT in this case is resulted in n7" discrete harmonically related sinu-
soids. The spectral lines will be occurred at the fundamental frequency that equal to
5—%. This fundamental frequency can be used to get all decomposed signal frequencies
of our original signal x(nT"). In the following figure 4.21 we present 8 sinusoidal de-
composed signals. These signals are contained in a band of frequency between 2.5H 2
and 2400H z, of EMG signal according to thumb finger flexion recorded during 400ms

and sampled at F equal to 4k H z. Each signal of figure 4.21 is a combination of 12 ele-

Amplitude

600 800 1000 1200 1400 1600

Time(samples)

0 200 400

Figure 4.21: Hand closing Raw EMG signal decomposition, in 8 group signals. Each
of them is composed of 12 spectral lines issued from DF'T analysis method.

mentary sinusoidal decomposed D F'T"’s signals, and its frequency is the average value
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of their frequencies, and its amplitude is a sum of their amplitudes. Average frequen-
cies for these 8 signals are: 15Hz, 45.5HZ, T5Hz, 106Hz, 135Hz, 165Hz, 195H 2
and 225H z. The domain frequency covered by each spectral line is equal to 2.5H z.
We use this representation of the EMG signal, which is frequency-domain analysis
to know, through extraction of correspondent features, if there is amelioration in
discrimination classes. The changes in the spectrum of EMG signal have been used
as an objective measurement of muscle dynamics. The used signal can be extracted
from initial part, which needs to be done synchronously from two channels. Once the
required initial part of the Myoelectric signal is obtained, many frequency-domain

features, which are known in the literature, can be extracted like:

e Median frequency

e Mean frequency

c¢) Frequency domain feature extraction

1- Median frequency:

We attempt to improve the discrimination capability for our four classes using features
related to domain frequency representation. One measure of the frequency content in
a signal is the median frequency. It’s the measure of the EMG signal frequency that
divides the signal into two halves of equal power. The feature samples are presented

in two dimensional feature space (2D) defined with two measure channels, figure 4.22

2- Mean frequency:

The second measure of the frequency content in a signal is the mean frequency. The
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Figure 4.22: Median frequency feature instances distribution corresponding to
frequency-domain EMG signal representation.

mean frequency, equation 4.4.5, can be determined from the F'FT as:

JiAS
MeanFrequencyFeature = i fidi” (4.4.5)

Zi Ai2 ’

These feature values are presented in two dimensional feature space defined with
two measurement, channels, figure 4.23. Clusters discrimination with this feature,
mean frequency, is more clear than with median frequency. In figure 4.23 it can be
clearly distingued the pointer finger class represented with circles. The second class,
which is less discriminated is Hand closing that is represented with stars. Between
thumb finger cluster and middle finger cluster there is a big interference. This second
measure, mean frequency, has more discrimination accuracy than median frequency.

Remark:
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Figure 4.23: Mean frequency feature instances distribution corresponding to
frequency-domain EMG signal representation.

A new mean-frequency feature can be defined in the following equation 4.4.6:

Zi A

where A; is the F'F'T amplitude at frequency f;. The A; values are not squared like in

MeanFrequencyFeature =

(4.4.6)

the above example. In this case we get the following distribution of feature samples,
figure 4.24: If we compare this distribution with the above one in figure 4.23, the

discrimination accuracy became worse.

3- Norm of power density:
A new feature in the frequency domain is defined, which is the spectrum’s norm
(Norm-Spctr) of the signal EMG. The spectrum’s norm can be determined as:

> (43 (4.4.7)

i
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Figure 4.24: Mean frequency feature instances distribution corresponding to
frequency-domain EMG signal representation.

where A; is the Spectrum amplitude at frequency f;, and the summations are token
over all frequencies in the spectrum.

Power spectrum estimates the Power Spectral Density of the signal EMG using
Welch’s averaged periodogram method, figure 4.25 As it is shown in figure 4.26,
our investigations in frequency domain for relevant features have lead to an improved

clusters discrimination of our four classes.
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Figure 4.25: Raw EMG signal of 400ms length and its spectral power density.
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Figure 4.26: Norm of power density feature instances distribution corresponding to
frequency-domain EMG signal representation.



72 4.0 Signal processing and feature extraction

4.4.4 Time-frequency domain feature extraction

a) Time-frequency domain analysis

Mono-dimensional signal analysis seems not to be sufficient for extraction of relevant
information to characterise signals of complex systems like EMG signals. Therefor
we have to consider bi-dimensional, time and frequency, analysis methods. Time-
frequency representation combines time domain and frequency domain analysis to
get temporal localisations of a signal’s spectrum. The Short Time Fourier Transform
(STFT) considers that the statistical properties of the non-stationary signal are vary-
ing in the time. This method of analysis help to extract the information according to
the signal time variation. The choice of time-window to track these variations of the
signal is of great importance.

This particular Fourier-based analysed method, STFT, designs smooth time win-
dows W;(t) : i =1, .., p, figure 4.27, to chop a given signal into short p pieces and
then applying the DF'T to each piece. Since we use a signal of nT" values length,
we have to consider that p < n. We can’t simply shop the signal into short pieces,
without smooth functions, because this will cause sharp discontinuities between these
sections. Hence the smooth windowing is constructed by multiplying the signal z,
by the time-window W;(t).

p: number of windows, and W;(¢): short time analysis window
Xi(mF) = ay(nT)e /" (4.4.8)

The easiest way to be sure that there is continuity between ends of these pieces of
signals is to force them to be zero at the extremities, thus their values is necessarily

the same. The choice among many existent window functions depends on knowledge
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Figure 4.27: An example of how the EMG signal is windowed to create a new signal
with smoothed extremities.

of the signal and application. Now it is possible to apply DF'T on each time-windowed
signal, figure 4.28.

After summation of all Fourier transformed signals X;(mF'); where ¢ = 1,. . ., p;
we get as consequence result the Short Time Fourier Transform of our original signal
x(t). Thus the STFT considers the signal z(t) as a series of DFT's of time-windowed
pieces. It remains some questions about how to choose the time-window length and
the rate of time-windows overlapping, which depend on the application.

Now it’s possible to identify how the frequency content of the signal evolves over time.
An analysed part of Hand closing EMG signal during 400ms and for 25ms time-
window length, using ST F'T" method representation, can be shown in the following

figure 4.29. We get the following presentation of muscle activation:
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Figure 4.28: Fourier Transform for a windowed EMG signal corresponding to thumb
finger flexion.
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Figure 4.29: STF'T analysis of 400ms length EMG signal and for 25ms time window
length, corresponding to hand closing movement using contour presentation.
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b) sinusoidal harmonic waves

If the digital signal, 2(nT'), of length nT is represented, using DFT, (as a sum of
m different sinusoidal waveforms), these sinusoidal waveforms have only one single
frequency component independently of time. However with ST FT transform the
amplitudes of these spectral lines are not constant. For the same signal in figure 4.29

the spectral lines are presented in the following figure 4.30. Each signal of figure 4.30

Amplitiude

0 200 400 600 800 1000 1200 1400 1600
time(samples)

Figure 4.30: Hand closing Raw EMG signal decomposition in 8 group signals. Each
of them is composed of 12 spectral lines issued from ST F'T analysis method. Signal
length is equal to 400ms and sampling frequency equal to 4K H z.

is composed of 12 elementary spectral lines obtained from ST FT’s signal analysis.

Middle frequencies for these 8 signals are:

16Hz, 45.5HZ, T5Hz, 10bHz, 135Hz, 1656Hz, 195H z and 225H z.
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c) Feature extraction

After time-domain and frequency-domain features extraction, we want to improve
more the clusters discrimination of the four classes of hand movements described
above using time-frequency domain features extraction. EMG signal pre-processing
operation using spectrum analysis based on Short-Time Fourier Transform (STFT)
is applied. This analysis is a form of local Fourier analysis that treats time and
frequency simultaneously. It is possible to exploit and to quantify the behaviour of
dynamic (non linear and time varying) information present in these EMG signals and
to design discrete characteristic vectors. These discrete characteristic vectors can
perform some relevant features that, may be, lead to high and accurate classification
rates of these different movement classes. The basic spectral parameters, momentary
power and momentary frequency, are used as features [26]. The extracted features are:
1) central frequency 'Cent.freq’, 2) standard deviation ’'Std.dev’ and 3) moments of

frequency 'M,,’. The definition of each feature is given in equations 4.4.9, 4.4.10 and

4.4.11.
M, (t) =) wi | STFT(t, k) |,n=0,1,2,3, ... (4.4.9)

k

M
Cent.freq = ﬁ; (4.4.10)
M, M,

td.dev = (| =2 — ()2 4.4.11
Std.dev M, (MO) ( )

where: M, : is the n'® moment of the frequency distribution at time ¢, n: order, and
w : frequency.

With two channels of measurement, 34 raw EMG signals are recorded for each move-
ment class. The four classes, labeled 1, 2, 3 and 4, give 136 feature samples. The

distribution of all these feature samples in two dimensional (2D) space, channel;
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Figure 4.31: Variance-frequency feature distribution.

and channels, for these three following features: 1) variance frequency, 2) central
frequency and 3) second order Moment, are shown respectively in figures 4.31, 4.32
and 4.33. Finally we reach our goal, that to find EMG signal representation, which
gives best clusters discrimination between these four movement classes. From these
three feature distributions, presented in figures 4.31, 4.32 and 4.33, it’s possible to
observe, visually, that the groups are better separated than with those extracted from

the two precedent EMG signal representations: time-domain and frequency-domain

representations.
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4.4.5 Conclusion

This section is focused on mechanisms and EMG-signal analysis methods in order to
produce discrete characteristics (features), which can recognise different hand and fin-
ger movement classes. These different features extracted with help of different analysis
methods, are more or less discriminative. In this study three different analysis meth-
ods are used: 1) time-domain, 2) frequency-domain and 3) time-frequency-domain.
The goal was to extract features corresponding to each analysis method and to com-
pare between their clusters discrimination. Based on only visual distribution of these
different feature clusters it was possible to compare the level of discrimination between
them and to select the best analysis methods and consequently best features. As re-
sults it was found that the features extracted from time-frequency-domain analysis

method were more discriminative than for those two other methods.
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Chapter 5

Feature input space reduction

5.1 Introduction

Dimension reduction can be used for different purposes, in our case, it is used for
classification problem. There are linear reduction methods and non linear reduction
methods. Linear methods like Principle Components Analysis, which is used in this
chapter, is more interpretable than non linear methods, which can deal with compli-
cated structures. The role of dimensionality reduction is to simplify high-dimensional
data sets to retain information, that is important for classes discrimination, and
discard that which are irrelevant. Dimension reduction methods present several ad-

vantages like:

possibility to visualise feature data in low-dimensional space.

produce uncorrelated new features.

allow building simple modelling or/and classification models.

reduce space complexity.

81
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The effective way of reducing the time-consuming of calculation is to reduce or to use
as small as possible the number of feature vectors. The goal of this chapter is first
to present efficient method that can transform a given data set X of dimension m to
an alternative data set Y of smaller dimension p. Secondly it will be discussed if it’s
necessary to use always such methods for solving classification problems or there is

another alternative.

5.2 Projection method

PCA is a way of expressing a high dimensional data set in an alternative set of low
dimensional data set with high variability, which is used for data visualisation and
clustering. In this study a linear dimension reduction technique (PCA), originally
introduced by K. Pearson in 1902 see also [33], is investigated. Many problems
in information processing involve some form of dimensionality reduction. Popular
method of dimensionality reduction, PCA, is an eigenvector method designed to
model linear variability in high dimensional data space. It considers the greatest
variance, i.e. get a maximum value of the quantity: >, (¥; — Zmean)?, for the eigen-
vectors of the data covariance matrix. This reduction is achieved by taking m vectors
Xy, Xo,. .., X, and finding combinations of them to produce principal compo-
nents: PCy, PC, ,. .., PC,, which are uncorrelated; where p < m. Principle
Components (PC's) are ordered so that PC} exhibits the greatest amount of the
variation, then PCy exhibits the second greatest amount of the variation, and so on.
Once eigenvectors are found from the covariance matrix, the next step is to order
them following the values’ order of their eigenvalues, from the highest to lowest. This

gives us the principal components in order of significance. Generally it is written in
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the literature that this transformation leads to a more discriminated representation
of data. In this study it will be shown that for relevant feature vectors this procedure
may lead to less discriminated representation of data set distribution. It would be
concluded also that there is, some times, a loss of information in using dimensional

reduction of data space for relevant features.

5.3 PCA illustration

Following is a detailed description of PC'A using the covariance method, which pro-
vides us the explanation of PC'A algorithm at each step. To present this tutorial
in details and graphically, an example of two dimensional space is proposed. Two
EMG surface electrodes are placed on two muscle groups, palnaris longus channel;
and extensor digitorum channely. The location of electrodes on the subject’s arm is

given in figure 5.1. Two feature vectors Vj,.; and Vj,. for zero order moment (M0), are

Figure 5.1: surface electrodes posisition for forearm EMG signals measurements

considered. Vj,. is feature Vector of 34 variables, 5.3.1, for hand closing of channel;,

and V. is feature vector of 34 variables, 5.3.2, for hand closing of channels.
VhJ;I =T, T2, ..., T34. (531)

Vika = U1, Y2, - - - s (5.3.2)
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where T': denotes transpose.

In figure 5.2 some of 34 movements are presented as EMG activation for both chan-

nels. The distribution of feature vectors of MO0 for raw EMG signal in 2D dimensional

Channel 2

A

time

Amplitude

Figure 5.2: some of 34 muscles’ activation of hand closing with two channels EMG
signals measurements

space is presented in figure 5.3, see chapter 4 section 4.4 about the definition of this

feature.

5.3.1 Algorithm’s steps illustration

The steps for computing mean values, covariance matrix, eigenvectors and eigenvalues
[30] require the use of a computer-based algorithms. These algorithms are available

in matrix algebra systems and also in MatLab.

Step 1: Normalisation
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Figure 5.3: Plot of 34 feature samples (M0) in 2D space, Vi1 and Vj,eo

Subtraction of mean value, figure 5.4, from each vector, Vj,.; and Vj., equation 5.3.3.

MOpr = Vhea —mean(Vie)

MOpez = Vier — mean(Viez) (5.3.3)
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Figure 5.4: Plot of 34 normalised feature samples (M0) on two variables Vj,.; and
thQ

Step2: covariance matrix
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The covariance measure 2] of two vectors X and Y, with means of E{X} and E{Y'},

describes the behavior of their co-variability, and is given by equation 5.3.4.
Cov(X,Y) = E{[X — E{X}][Y — E{Y }]}. (5.3.4)

Covariance calculation is the multiplication of differences between the vectors X =
r1, To, . ..xpand Y =y, yo, ..., Y, and their mean values. The value of the
covariance is interpreted as follows:

A positive covariance indicates that the two variables tend to move up and down
together, however a negative covariance indicates that when one moves higher, the
other tends to go lower.

In our example covariance matrix is defined as, equation 5.3.5

COU(MOhCl, MOhd) COU(MOhCl, Mohcz)

matriz MocaMOc = 5.3.5
Ovmatriz(MOhc1, MOncz) <00U<M0hc27 MOpe1) COU(MOhc27M0hc2)> (5:8.5)
Using Matlab command "cov” we get the following covariance matrix values, equa-

tion 5.3.6, of the data presented in figure 5.4

(5.3.6)

0.7648 0.3700
Covmatrix(MOhcla MOth) = 1.06_005 * ( ) .

0.3700 0.9944

Step 3: calculation of eigenvectors and eigenvalues of covariance matrix

Since covariance matrix is square, it’s possible to calculate the eigenvectors and eigen-

values for this matrix. Some properties of eigenvectors are described as :

e only the square matrices have Eigenvectors, and not every square matrix has

eigenvectors.

e all the eigenvectors of a matrix are perpendicular (orthogonal) i.e. at right

angles to each other, and it doesn’t depend on the dimension of this matrix.
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e some matrices do not have an eigenvector decomposition, These matrices are
defective, or not diagonalizable. A Matrix M is diagonalisable if it is a square
matrix and there is an invertible matrix INV such that INV L. M.INV is a

diagonal matrix.

"peacov” is a matlab command, which computes the eigenvectors matrix (Eigenvectorsmatriz ),
equation 5.3.7 and the eigenvalues matrix (Eigenvalues,qriz), or PC variances (vari-
ances of Principle Components), equation 5.3.8. [EigenvectorsSmatriz, Eigenvaluesmatriz] =

pcacov(Covmatriz)

—0.5931 —0.8051
) t matric — ' o
LGENVECLOT Smat ( —0.8051 0.5931 ) ( )
0.1267 O
Ei [ matriz = 1. - . -
igenvalues,,q Oe * (0 0.0492> (5:3:5)

Eigenvectors matrix of dimension 2 x 2, contains 2 column vectors, each of length 2,
which represent the 2 eigenvectors of the covariance matrix cov,,qs-i- Note that both

of these eigenvectors (Figenvector; and FEigenvectors) have been scaled to a unit

i.e. their module equal to 1; 1/0.593122 + 0.805122 = 1. The name ” Eigenvector” is
derived from the German word "eigen", and was first used in this context by Hilbert
in 1904, it means "proper" or "own". The Eigenvalues matrix (Eigenvaluesqiriz)
takes also the form of an 2 x 2 diagonal matrix, where the first value (0.12671e™*) is
bigger than the second one (0.0492 1e=%). That means the first principle component
(eigenvector;) presents more data variability than the second principle component
(eigenvectors).

Mean values and covariance matrix are calculated from the data, however Eigenvec-

tors and eigenvalues are calculated from the covariance matrix. The directions of
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Figure 5.5: Plot of first and second Eigenvectors

eigenvectors are drawn in figure 5.5 as dashed and doted lines. The first eigenvec-
tor, which has the largest eigenvalue points to the direction of largest variance of
variables, figure 5.5, in doted red line, whereas the second eigenvector, which is or-
thogonal to the first one points to the direction of less variables variance, figure 5.5,

in dashed green line. In this example the first eigenvalue, Figenvalue; = 0.1267,

in equation 5.3.8 corresponding to the first eigenvector, EFigenvector, = (:8@321),
in equation 5.3.7. While the second eigenvalue, Figenvalues = 0.0492, in equa-

—0.8051

0.5931 )7 1n equa-

tion 5.3.8 corresponding to the second eigenvector, Figenvectory = (
tion 5.3.7. By comparing the values of eigenvalues we can say that the first eigenvector

presents more variability. The data could be well approximated with a 1D dimen-

—0.5931

0 8051), representation. The eigenvalues and eigenvectors

sional, Eigenvector; = (

found above should satisfy the equation 5.3.9

COUpmatriz - Eigenvectorspyapiz = Eigenvalues oz  Eigenvectorsmapriz  (5.3.9)
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Verification:
For the first principle component, the value of the left term of equation 5.3.9 is given
in equation 5.3.10, however the value of the right term of equation 5.3.9 is given in

equation 5.3.11.

COVpmatriz - Figenvector; =

L gu-s , (07648 03700 —0.5931\
' 0.3700 0.9944 ~0.8051)

L0004, (—0.0751)

3.1
—0.1020 (5:3.10)

Figenvalue, - Eigenvector; =

—0.5931)

—0.8051
—0.0751
—0.1020

1.0e79% % 0.1267 (

1.0e7% % ( (5.3.11)
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Step 4: Projection of original data onto Eigenvectors

The original data set, M0, = [MOpe1, MOpe2l, is projected onto these two found

orthogonal eigenvectors (step 3) (Eigenvectory, and Eigenvectory) figure 5.6. . This
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Figure 5.6: projected data samples onto first and second eigenvectors

projection of data samples onto these new axis leads to creation of two principal
components PC; and PCs, figure 5.6. We can observe that data samples (variables)
of first principal component (PC}) presented with circles are good distinguishable,
however the images of variables of second principal component (PCs) presented with

stars, are less distinguishable.

5.3.2 Graphical determination of eigenvectors

For several directions of these two orthogonal eigenvectors is possible to get after data
projection different principal components according to their Eigenvectors’ directions.

These new reduced data set have different variabilities, more the variability is big less
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Figure 5.7: The plot of ten (z, y) coordinates corresponding to ten unit eigenvectors

we have loss of information due to the transformation function between original data
space and new reduced data space. This variability can be measured with variance
function. For ten different directions of unit projection eigenvectors, some values
between 0 and 0.9 of x abscise coordinates are given, circles in figure 5.7, and its cor-
respondent y coordinates values are calculated, squares in figure 5.7. Correspondent
projected data variables, for these ten unit projection vectors, are also calculated and
presented in figure 5.8. Between these ten produced components, through data projec-
tion, the component with higher variability (or maximum variance) will be considered
as the principle component (PC'). The curve that connect all precedent calculated
eigenvalues is presented in figure 5.9 . These Eigenvalues are presented as eigenvector
coordinates (x,y). The intersection of the maximum variance value of variance curve
with these coordinates in vertical line, figure 5.10, gives us the coordinates of the best

Eigenvector which is considered as principal component.
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Figure 5.8: Rotation of eigenvector inside 2D data space in ten directions and their
corresponding Principal Component vectors

5
y GX 10
SO Wy Ty e
: ! wn [a] o W !
e} 2 P 9 g o)
o} Q 1) ) < o
0 @ o] + o) & S
=} i @ i © o ! ‘!C?}
14— i - :FE B
o d e I\ o N W & <
© @ I @© N -~ - 3 o b
o @ (=] -— — ~— o~ I~
o P~ [¢r] - - w
%] b [To) - i i = 2]
Q 120 G e : S e
= : —e—1st eigenvector
g -=- 2nd eigenvector
O T | N - 2SS S
[&] [ea] H H |
€ e 8 : i §
o 8 9 38 o g b
o <t =) o © ©D S <
® L P Q S =S SR © ... PSR TR
> 08 gy e g e g
g X £ 2 & 8 ¢
s K 8§ o 8 :
T [Ts) 