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To my mother my father my sisters and my brothers 
 
 
 
 
 
 
 
 
 
 
 
 

I shall return again. I shall return 
To laugh and love and watch with wonder-eyes 
At golden noon the forest fires burn 
Wafting their blue-black smoke to sapphire skies. 
I shall return to loiter by streams 
That bathe the brown blades of the bending grasses, 
And realise once more my thousand dreams 
Of waters rushing down the mountain passes. 

by Claude McKay 
 
 
 
Life is nothing but a big struggle, but just keep the faith and focus on your goals.  
Don't let life beat you or you will be walking around like zombies.  
Keep on pushing, keep on trying, life can be whatever you make it to be.  
But life can also be a bowl of cherries with whip cream and apple pie.  
I say this again; life is what you make of it.  
You can achieve or conquer anything it throws at you,  
you can't quit or give up, you have got to keep on working,  
look higher some way, some how you are going to make it. 
 

By David Cook 
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Zusammenfassung

Wie erreichen Menchen die beeindruckende Leistung während der Bewe-

gung?

Diese Dissertation Betrachtet das biologische System der Bewegung, sie wird in
zwei Teilen dargestellt. Im ersten Teil steht die Erkennung der gemessenen elek-
tromyographischen Signale der Unterarmmuskeln im Fokus, die den Handbewegun-
gen entsprechen. Der zweite Teil beinhaltet die Betrachtung des Muskulosketal-
Systems, welches den dynamischen Kniebeugewinkel unter isotonischen Kontraktio-
nen darstellt. Der dabei gemessene Winkel zwischen dem Schenkel und dem Bein
zeigt das Ansprechverhalten der elektrischen Stimulation (FES). Dieses Verfahren ist
unter Systemidenti�kation bekannt.
Das Verstehen der Funktionen der menschlichen Bewegung bildeten in der letzten
Dekade einen Schwerpunkt auf dem Gebiet der Neuromuskulären und Skelettären
Systeme innerhalb der Biomechanik. Körperbewegungen stellen eine Interaktion zwis-
chen dem neuro-muskulärem Steuersignal und dem muskuloskeletal Dynamiksystem
dar. Viele Elemente des neuromuskuloskeletal Systems wirken so aufeinander ein,
dass eine reibungslose und koordinierte Bewegung ermöglicht wird. Das skelettartige
System, besteht aus Knochen und deren Verbindungen zu den Muskeln (Sehnen), die
das muskuloskeletal System unterstützen - sie übertragen die notwendigen Kontrak-
tionen auf das Skelett und realisieren damit die gewünschten Bewegungen. In dieser
Dissertation konzentrieren wir uns zum Einen auf die menschlichen neuromusculären
Steuersignale sowie deren Klassi�zierung und zum Anderen auf die Identi�zierung der
muskuloskeletal Dynamik. Diese komplexen Systeme erfordern intelligente Modelle,
Neuronal Netz und Fuzzy logic, die durch künstliche Intelligenz sich adaptieren.
Informationen, in Form von Nervenimpulsen, �gure 1, wandern nach und von unserem
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Zentralnervensystem (Gehirn) entlang unseres Rückenmarks und erlauben uns, un-
sere freiwilligen Bewegungen des Körpers zu koordinieren. Elektrische Impulse des
Gehirns, die über die Nervenzellen den Muskeln übermittelt werden, verursachen die
Bewegungen (Kontraktionen) dieser Muskeln. Diese Muskeln reagieren, wenn sie die
elektrischen Signale des Gehirns empfangen. Diese elektrischen Signale sind über die
Muskeln gemessen und sie sie sind als Electromyographische Signale (EMG) erkannt.
Die menschliche Bewegung ist ein komplizierter Prozess und kann in die neuronale

Brain 
Command

Muscle 
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     Motor Unit Potentials ∑

Spinal 
cord
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system

Figure 1: Die Illustration des menschlichen neuromuskulären Signals und des Muskeln
Systems als zwei Komponenten für Durchführung der Bewegung

Steuerung, die neuromuskulären Signale und schlieÿlich die Muskelkraft eingeteilt
werden. Im Rahmen der vorliegenden Dissertation stehen die zwei letzten Kompo-
nente der Bewegung im Fokus:
1) Erkennung der EMG Signale (Klassi�zierung) und
2) Die Identi�zierung der Muskuloskeletal- dynamischen Belastung.
Das verursachende Verhältnis, zwischen neuromuscular EMG und musculoskeletal
Dynamik, wird, in dieser Dissertation, nicht betrachtet. Jedes Teil gilt als allein.
Das erste Ziel ist die Erkennung des EMG, welches die neuromuskulären Signale
erkennt und klassi�ziert. Dieses neuromuskulär Signal besteht aus einzelnen Muske-
laktionspotentialen (MUAPs) von Nerven. Die Summe der Muskelfaser Aktionspo-
tentiale aller Muskelfasern kann mit Hilfe der Elektroden gemessen werden, die auf
dem entsprechenden Muskel als Electro-myographsignal (EMG) gesetzt werden. Ein
entsprechendes (Online-) Programm zur Erkennung des EMG- Signals ist bereits en-
twickelt worden.
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Das zweite Ziel dieser Dissertation ist, die muskuloskeletal Strukturdynamik zu iden-
ti�zieren, die für die Bewegung des Körpers verantwortlich ist (Beine und Arme).
Solche Bewegungen können mit �Functional Electrical Stimulation�(FES) produziert
werden, sofern die Dynamik zwischen der FES und der sich daraus ableitenden Bewe-
gung bekannt ist. Dieses Studium kann auch für den Ellbogen angewendet werden.
Ein besseres Verständnis dieser zwei Komponenten der Humanbewegungen (move-
ment realisation dynamics), Musculoskeletal Last und Neuromuskulär Rekrutierung,
kann körperbehinderten Personen helfen, durch Wiedergewinnung der verlorenen Be-
wegungsfunktionen eine Verbesserung ihrer Lebensqualität zu erreichen. Sie unter-
stützt auch den Fortschritt der Rehabilitation und ermöglicht zudem eine bessere
Einschätzung und therapeutische Behandlung für körperbehinderte Personen. Diese
zwei Komponenten sind in dieser Dissertation separat behandelt worden. Die En-
twicklung von technischen Verfahren für die Erforschung des Verhältnisses zwischen
beiden Komponenten wird in der vorliegenden Arbeit von groÿem Interesse sein. Mit
Hilfe der ermittelten schwachen freiwilligen Muskelaktivitäten bei Schlaganfallpatien-
ten durch elektromyographische Signale, welche die elektrischen Stimulationen (FES)
steuern, kann dieses Verhältnis (der beiden Komponenten) dargestellt werden. Die
Steuerung der FES-Signale wird den Patienten helfen, eine korrekte Bewegung der
Arme und/oder der Beine durchzuführen. Diese Verfahren helfen das Verhältnis zwis-
chen den mechanischen Bewegungen und den EMG- Eigenschaften zu ergründen.
Die aktuelle Technik erlaubt die technische Annäherung an die Biosignalverarbeitung
sowie die Identi�zierung solcher komplizierter und dynamischen Systeme wie Muskeln,
die als Generator aller Bewegungen des menschlichen Körpers zu betrachten sind.
Fuzzy Logic Systeme und neuronale Netze sind intelligente Methoden, die in dieser
Dissertation für die Lösung der Identi�zierung und Klassi�zierung genutzt worden
sind. Sie werden als computerunterstütztes Problem dargestellt, um sie im tagtäglichen
komplexen System der Biomedizin anzuwenden.
Diese Signale, die von den Muskeln mittels Ober�ächenelektroden gemessen wer-
den, erfordern weitere Berechnungsmethoden für die Erfassung (aquisition), Analyse,
Zerlegung (decomposition), und Klassi�kation. Der Zweck des ersten Teils ist die
Illustrierung der verschiedenen Methodologien und Algorithmen für alle notwendigen
Schritte, die für die Finger- und Handbewegungen entsprechend ihren EMG-Signalen
zu erkennen sind. Ein Algorithmus für die Klassi�kation dieser EMG-Signale konnte
bereits in früheren Publikationen vorgestellt werden. Die Klassi�kationsergebnisse
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dieses vorgeschlagenen Algorithmus werden mit anderen bekanten Berechnungsmeth-
oden verglichen (Fuzzy logic und Neuronale Netz). Diese erste Komponente enthält
die Entwicklung aller Verfahren von EMG-Signalen von der Erfassung bis zur Erken-
nung ihrer entsprechenden Hand- oder Fingerbewegungen mittels Extraktion der rel-
evanten Merkmale und ihrer Klassi�kation. Weiterhin soll Patienten mit amputierten
Gliedmaÿen geholfen werden. Das bedeutet, dass die neuromuskulären Aktivitäten,
beispielsweise seiner Unterarmmuskeln, für die Steuerung der Myo-Prothese benutzt
werden. Zudem wird die Aktivität seiner Gehirnneurone entsprechend der Neuronen
der Unterarmsmuskeln dauerhaft angeregt.
Die zweite Komponente der Realisierung der Humanbewegungen, das Muskuloskele-
talsystem, ist von weiterem Interesse. Die Dynamik dieses Systems ist komplex. Da-
her sollten wir nach einer e�ektiven Methode suchen, mit der diese komplizierte Dy-
namik (Motorsystem) modelliert werden kann. Mathematische Modellierungsmetho-
den (morphologische Modelle) können eine solche Dynamik nicht mit Genauigkeit (�-
delity) beschreiben. Als weiterer Beitrag wird ein Hybridalgorythmus vorgeschlagen,
um e�ektiver und schneller eine Lösung (Muskuloskeletalsystem) herbeizuführen. Die
Oberschenkelmuskeln werden aufgrund ihrer Grösse betrachtet. Das erleichtert die
gewünschten Muskeln zu stimulieren. Des Weiteren ermöglicht die Muskelauswahl die
Eindeutigkeit der Stimulation. Anhand eingangs erzeugter elektrischer Impulse und
den daraus resultierenden Winkel zwischen dem Knie und dem Oberschenkel können
die Modellparameter des "hybrid fuzzy identi�er-model" ermittelt werden. Die eis-
tungsfähigkeit des "hybrid fuzzy identi�er-model", das eine nicht lineare Input/Output-
Dynamik darstellt, hängt von der "fuzzy partition" seines Eingang-Raumes ab. (the
initialisation of premise fuzzy sets is an important issue in fuzzy modeling). "Rapid
Prototyping" Methode wird durch diesen vorgeschlagenen Algorithmus eingeführt,
um die Leistung der Initialisierung der "Fuzzy Sets" durchzuführen. Dieses vorgeschla-
genen Hybridalgorithmus besteht aus drei Komponenten: "Rapid Prototyping" Algo-
rithmus, "Gradient Descent" Method, und "Least Squares Estimator". Alle diese drei
Teilen sind kombiniert, um diese Modellierungsaufgabe durchzuführen. Des Weiteren
ermöglicht die Steuerung der "human knee-joint movements".



Abstract

How do humans achieve the remarkably impressive performance when they

move?

The speci�c aim of this thesis, which considers the biological system "human
movement", is presented in two parts. The �rst part considers the recognition (clas-
si�cation) of measured Electro-myography (EMG) signals of forearm muscles corre-
sponding to hand movements. The second part treats the musculoskeletal system,
which is considered by Knee-joint dynamics under non-isometric conditions, in terms
of its measured angle between thigh and shank as response for Functional Electrical
Stimulation (FES ) impulses. This procedure is known as system-identi�cation.
Understanding human movement functions is of a great importance in the domain of
neuromusculoskeletal systems and biomechanics. Whole-body movement is achieved
with help of the interaction between the neuromuscular control signal and muscu-
loskeletal dynamics system. Many elements of the neuromusculoskeletal system in-
teract to enable smooth and coordinated movements. The skeletal system, composed
of bones and joint connections with muscles, which complete the musculoskeletal sys-
tem, apply the necessary driving forces for movement realisation. In this thesis we
will focus on human Neuromuscular control signals classi�cation and Musculoskeletal
dynamics identi�cation. These complex systems require much knowledge by learning.
Hence an improvement of the learning ability, using arti�cial intelligent methods, is
also covered.
The information, in the form of nerve impulses, �gure 2, travels to and from our
central nervous system (brain) along our spinal cord, allows us to coordinate our vol-
untary movements of our body. Brain electrical impulses, which are transmitted via
nerve cells to the muscles, cause the movement of these muscles. These muscles re-
spond by contracting when the brain's electrical signals reach them. These electrical
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signals can be measured over muscles and they are called electromyography (EMG)
signals. Generation of human movement is a complex process, involving the following

Brain 
Command

Muscle 
fibers

EMG signal =
     Motor Unit Potentials ∑

Spinal 
cord

Muscule
system

Figure 2: Illustration of human neuromuscular signal and musculoskeletal system as
two components of movement realisation

ways: neural command, neuromuscular signals and �nally muscle force. This thesis
considers the two last components of movement realisation, which are:
1) EMG Neuromuscular recruitment signals recognition (classi�cation), and
2) Musculoskeletal loading dynamics identi�cation.
In this thesis the causal relationships between neuromuscular EMG signals and mus-
culoskeletal dynamics will not be considered. Each part is considered alone.
The �rst goal, is to recognise and classify the EMG neuromuscular signal. This neu-
romuscular signal represents the Motor Unit Action Potentials (MUAPs) of nerves.
The summation of the muscle �ber action potentials from all muscle �bers can be
measured with help of electrodes placed on the corresponding muscle as electromyog-
raphy (EMG) signal. An on-line Algorithm for this part of EMG signals recognition
is also developed.
The second goal of this thesis is to identify musculoskeletal structure dynamics, which
act as actuators producing the joint torques to drive the body (legs and arms). Such
movements can be produced using Functional Electrical Stimulations (FES ), if the
dynamics between FES and joint torques are known. Although this part of study
focuses on walking, using quadriceps muscles, the �ndings can be generalised to other
motor control systems such as elbow joint through biceps and triceps muscles.
A better understanding of these two components of movement realisation dynamics
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(musculoskeletal load and neuromuscular recruitment) can help disabled persons in
regaining lost function and/or improving their activity of daily living life and for as-
sessing rehabilitation progress. These two components have been studied in this thesis
separately. Developing techniques for investigating the relationship between them,
in further work, will be of great importance. Such relationship can be illustrated
by using the recognition of detected weak voluntary muscle activity, by post-stroke
subjects, through electromyography signals (EMG) to control Functional Electrical
Stimulation (FES ) impulses, which will support the patients to accomplish correct
leg or arm movements. These techniques help the investigating of the relationship
between the mechanics of movement and the characteristics of the EMG signals
The domain of engineers provides e�cient technical approaches and tools for bio-
signals processing and complex dynamic systems identi�cation as muscle, which is
the generator of all human body movements. Soft computing includes both neural
networks (NN ) and fuzzy logic (FL) systems represent intelligent approaches, which
are used in this thesis for solving the identi�cation and classi�cation problem of such
realistic complex systems in biomedical area.
These EMG signals acquired from muscles, through surface electrodes, require ad-
vanced computational methods as acquisition, analysis, decomposition, and classi-
�cation. The purpose of this part is to illustrate the various methodologies and
algorithms for all necessary steps used to discriminate the di�erent movements of
�nger and hand grasps according to their corresponding EMG signals. For the recog-
nition and classi�cation of these EMG signals, a fuzzy-classi�er-model algorithm is
proposed in this thesis. This classi�er-model algorithm, Fuzzy Trimmed Mean Classi-
�er (FTMC ) uses the trimmed mean method as tool for input space-set initialisation.
The results of this algorithm are compared with other known intelligent computa-
tional methods. This �rst part contains the development of all procedures, starting
from EMG signals acquisition till the recognition of their corresponding hand/�nger
movements, using extraction of relevant features and their classi�cation. The main
goal of this �rst part is to help the patient with the amputated hand to keep the
neuromuscular activity of forearm muscles, which will be used to manipulate a myo-
prosthesis, and to keep the virtual neural activity of the brain related also to this
activity of forearm's motor unit potentials .
The second component of movement realisation dynamics, which is musculoskeletal
dynamics has a great importance. These dynamics are very complex, hence we should
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look for an e�ective method that can model this complex motor system. Mathemati-
cal modelling methods-based morphological models cannot describe with �delity such
complex dynamics. For this problem an e�ective and fast hybrid fuzzy Algorithm for
modelling is developed and proposed in this thesis. The quadriceps muscles are used
because their dimension, which help to choose the desired muscle to be stimulated.
The choice of desired muscle to be stimulated is not possible in case of many small
muscles that are located together. The parameters of this hybrid fuzzy identi�er-
model are obtained using generated Functional Electrical Stimulation (FES ) impulses
as an input set, and the measured knee-joint angle as an output set. The e�ciency
of this fuzzy identi�er-model representing non-linear input-output dynamics depends
on the fuzzy partition of its input-space (the initialisation of premise fuzzy sets is an
important issue in fuzzy modeling). Hence Rapid Prototyping method is introduced
in this proposed algorithm to perform this initialisation of premise fuzzy sets. In
this proposed algorithm three techniques: Rapid Prototyping algorithm, Gradient
Descent method and Least Squares Estimator are combined as a hybrid algorithm
to achieve this modelling task. The main issues of this study, concern the knee-joint
dynamics identi�cation, are developed for further control-application of the human
knee-joint movements by Functional Electrical Stimulation (FES ).
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Chapter 1

Introduction

The use of neuromuscular signals and identi�ed Musculoskeletal systems in upper

extremity and lower-extremity o�er a new generation of assistive technology for both

healthy and disabled people. First, they aid disabled persons in regaining lost func-

tion or improving their activity of daily living life and for assessing rehabilitation

progress. Second, they can be introduced in setting the human machine interface

using neuromuscular signals as command signals for the exoskeleton devices.

In chapter 2 it is described �rst the state of the art concerning myoelectric prostheses,

which are used to restore the functionality of an amputated hand. Second, the state

of the art of myoelectric-exoskeletons, which are used as human-machine interfaces.

These devices can be able to recognise the desired movements of the operator and as-

sist both healthy and disabled people. They are considered also as human movement

ampli�er. The study of the �rst part of movement realisation, using electromyograph

(EMG) signals to recognise and classify di�erent hand movements, needs �rst to pro-

ceed with signal acquisition. This task is of a great importance. The study of EMG

signal acquisition is described in chapter 3. In this chapter, the forearm muscles activ-

ity can be read as electro-myographic (EMG) signals via surface-electrodes attached

1
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to the forearm muscles: These EMG signals can be then analysed for further classi-

�cation tasks. Developing Electro-myograph-hand prosthesis has a problem with the

realisation of performed grasping capability, which is still a study subject. This prob-

lem of performed grasping manipulation with independent �nger movements has been

investigated in this �rst part. The popularity of designing and building hand prosthe-

sis is achieved by a number of universities and research centres that have prosthesis

hands named after them. In the past, the hand-prostheses were limited on motion in

one degree of freedom and were basically only motorised hooks. Now many research

laboratories try to perform voluntary closing and opening hand-prostheses based on

EMG neuromuscular signals of forearm muscles. The control of hand-prostheses exist

in two categories, the �rst is conventional body-powered prostheses, which are pow-

ered and controlled by gross body movements as mechanical commands, usually of the

shoulder. The second, Myoelectrical prostheses, present the best considered way to

restore the functionality of an amputated hand. These hand-prostheses, which belong

to this second category are divided into two types. The �rst type exploit EMG signals

that are not issued from muscles responsible for corresponding movement, but from

any muscles usually biceps. Such type of prosthesis use EMG signals only as switch

impulses. The second type of Myoelectrical hand-prostheses are able to recognise the

desired movement from EMG neuromuscular signals issued from group of muscles

responsible for corresponding movements. The �rst part of this thesis considers this

second type of myoelectric hand-prostheses control. If a machine can understand hu-

man movement, it can be used in rehabilitation as a personal trainer that interprets

a patient's EMG signals and help to provide a right movement. The most e�ective
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rehabilitation methods employ EMG-machine assisted exercises, to improve the func-

tional capacity and strengthen the a�ected muscles. In the same way it can also be

used to control leg exoskeleton devices, that can be able to support the leg muscles

during common movements like getting up from a chair, walking and climbing stairs.

It's important to mention that the leg's neuromuscular EMG signals are more easily

recognised than those of the forearm's neuromuscular EMG signals.

Extracted features in time-, frequency- and time-frequency-domain will be described

and compared, see chapter 4, to �nd the relevant ones, which are able to discriminate

these movement classes in clear separated clusters. Finding the best feature distri-

bution, which has the best discrimination between classes is a crucial step before

selecting the classi�cation technique for the speci�c task of control.

This study goes forward and investigates the recognition capability, which is depend-

ing on the number of channels used for collecting EMG signals. This recognition

capability increases with the number of measurement channels. In this thesis, it is

shown that with only two channels it is possible to recognise and classify hand and

also �nger �exion movements, which are thumb-, pointer- and middle-�nger. Gen-

erally, in other published studies, the number of measurement channels are at least

four channels. Therefore, it is necessary to take a part of the study for the e�ect

evaluation of the feature space-dimension. If this feature space-dimension increases,

its in�uence on discrimination-accuracy will be positive, but this increasing of space-

dimension has a drawback regarding time consuming. For this question we have two

solutions: either to take a large feature space-dimension and then to apply space-

reduction methods like Principle Component Analysis (PCA), or to consider a small

space-dimension, see our publication [74]. This study will be detailed in chapter 5 to
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compare between them and to give very important results.

The presentation of these EMG signals in di�erent discriminated clusters correspond-

ing to their movement classes is possible with help of extracted information from their

various signal characteristics, particularly in time-frequency domain. This represen-

tation will be useful to map out and control hand prostheses or exoskeleton devices,

which requires advanced computational methods for acquisition, analysis, decompo-

sition, and classi�cation. Intelligent computational algorithms, described and com-

pared in chapter 6, are those based on neural networks like Multi-Layer Perceptron

(MLP), Radial Basis Networks (RBF) and Learning Vector Quantization network

(LVQ). The others are based on Fuzzy logic like Fuzzy Subtractive Clustering (FSC)

and proposed Fuzzy Trimmed Mean Classi�cation (FTMC) algorithm, see our pub-

lications [73] [75]. This proposed intelligent classi�er approach, based on trimmed

mean clustering and fuzzy logic, will be also compared with above cited intelligent

computational methods to be evaluated.

In chapter 7 a general study of some important parameters, which have a great in-

�uence on classi�cation performances is considered. These parameters should be op-

timised to perform the classi�cation accuracy results. Some of these parameters are:

pass-band frequency, �lter-type, beginning part length of EMG signal, noise base-line

reference, and frequency sampling. This study allows us to get a global view about

how to choose the values of these parameters in order to get the best classi�cation

accuracy.

Models evaluation of musculoskeletal structures is considered in the second part of
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this thesis. The FES procedure should stimulate the muscles (quadriceps as appli-

cation) at the correct time during walking . To perform this task of synchronisation

and to assess the stability of walking, a right musculo-skeletal-model is needed for

rapid and dynamic adjustments to correct and control the motion of limb segments

and consequently the body. A proposed performed musculo-skeletal identi�er-model

for quadricep muscles properties based on proposed fuzzy-modeling Algorithm see

our publications [72] and [16], is described in chapter 8. This model uses Func-

tional Electrical Stimulation (FES) as input set and knee-joint angle as output set.

The muscles of legs and arms are enough big, which allows the use of this method

for stimulating exactly the desired muscle. Functional electrical stimulation (FES)

impulses have been used to activate muscles disabled by spinal cord injuries. Stimu-

lators worn on the leg, which stimulate muscles through electrodes can help to restore

or perform muscle activation for walking.

The last chapter, will concern the recapitulation of all this thesis and moreover gives

the real applications of this study and the attempted future work.
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Chapter 2

State of the art of myoelectrical hand

prostheses and exoskeleton devices

2.1 Introduction

The research in "myo-prostheses" is part of a larger trend in human-machine inter-

action that aims to integrate body, muscle and machine. First goal of this research

is focused on the classi�cation (recognition) of myoelectric signals for further control

of hand-prostheses. It is expected to advance in this chapter the state of the art

about today's most common commercially available myoelectrical-prostheses. Since

1970 a big progression is done in this �eld. In the beginning they were limited on

motion in one degree of freedom and are basically motorized hooks. Now by use of a

suitable combination of electronic hardware and software, it is possible to recognise

the myoelectric features of at least two di�erent grips in real time, with an accuracy

of almost 95 percent. Further researches might eventually include comfortable hand-

prostheses that could act, in a nearly lifelike manner and in real time of as many as

six di�erent grips. On other side The designs of majority of commercially available

electrical hand-prostheses do not provide independent control of �ngers and thumbs

7
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but most of them are capable of only simple one degree of freedom grips. Experts in

prostheses generally agree that the electrical hand prostheses should respond to the

following criteria which are vital to a person's daily activities:

• relatively comparable to the weight of human hand (low weight).

• relatively comparable also to the size of human hand (low size)

• appearance satisfaction for the patient (cosmetic)

• don't be a source of noisy sounds (noiselessness)

• have su�cient autonomy in energy

• have a time of reaction as short as possible, ideally real time.

• reliable

The second application of EMG signals recognition is rehabilitation issue, see section

2.4. There is a growing need for physical rehabilitation and assistance to improve the

quality of life for physically disabled peoples. Several exoskeleton devices [51] [65]

[18] in robotic systems for rehabilitation have been constructed to perform rehabilita-

tion support systems and many works in this topic are done during the two last years.

Some of them [18] exploit EMG signals that are not issued from muscles responsible

on corresponding movement, but from biceps. These authors focused their attention

on a basic pinching motion between the index �nger and the thumb. The ampli�ed,

�ltered and normalised EMG signal measured from biceps can be used to control

the exoskeleton devices. Other works [48] [7] consider the recognition of desired
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movement using EMG signals issued from some arm-muscles responsible on corre-

sponding movements. In these cases EMG signals, are simply recti�ed and �ltered

then compared to a de�ned threshold to control the actuators of the exoskeleton.

2.2 Commercially available hand prostheses

2.2.1 The hand WIME (Japan)

As an application for the study of arti�cial hands and the study of upper-limb pros-

theses; the WH (Waseda Hand) series was started in 1964. The development of the

mechanism of hands and their control methods using electromyogram was the main

point. Their achievements resulted in the WIME hand (Waseda Imasen Myo Elec-

tric hand), which has been commercially available since 1978, �gure 2.1. The WIME

HAND is a practical EMG-controlled forearm prosthesis and manufactured by the

Imasen Engineering Corp. Su�cient �eld tests were carried out during the devel-

opmental period with the cooperation of 30 amputees over a period of three years.

The mechanical �ip-�op allowed gripping by the �ngers and pinching by three �n-

gers using only one motor, which was voluntarily controlled by EMG signals obtained

from the arm of the amputee. The pressure sensor attached to the �ngers sensed the

reaction force of objects, which was then fed back to amputees by electrocutaneous

stimulation. The WIME HAND has been commercially available since 1978, [6]

2.2.2 The sensor-hand with SUVA Technology, Germany

Years ago Winkler and Bierwirth in the Swiss Bellikon at SUVA had the idea of

feeding measured �impressions of senses� back into the hand-prostheses. For the
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Figure 2.1: Assemly of the WIME HAND

�rst time this hand-prosthesis was equipped with an automatic grip control system,

�gure 2.2. The SUVA sensor is steadily metering the direction and the size of the

force, which exist between the thumb and the gripped object. It sends no signal if, in

the case of small objects, the tip of the thumb is not touched. In order to recognize

a grip nevertheless a second sensor, the �nger lever sensor was built into the sensor

hand. With this one also these grips are recognizable and governable. The measuring

data of the SUVA sensor will be read and the amount as well the angle of force

is calculated from the measured force components. As long as this measured angle

remains under a critical value the object does not slip from the hand, [56]. These

devices allow to carry out two types of control:

• 1) Automatic mode of control:

In this mode the hand is closed with a maximum speed and seizes an object

with the weakest grip force (10 N). If the sensor detects a change of position,

it automatically makes increase the grip force to its maximum (100 N) to avoid

the fall of objects.

• 2) Variable mode of control:

The speed of opening is determined by the power and the speed of the muscular
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signal. The speed of closing is a function of the reduction of the muscular

activation, [3].

Figure 2.2: Assemly of the SUVA Hand

2.2.3 RSL Steeper Prostheses UK

RSL Steeper is the principal service of rehabilitation of the United Kingdom. This

company in particular designed the prostheses of 13-year-old Ali Abbas, �gure 2.3,

who lost both arms in the Iraq war. Doctors plan to �t the teenager with two arti�cial

arms, which will be strapped together and worn somewhat like a rucksack. On his

right-hand side, Ali will be �tted with a "myoelectric" control system, a state-of-the-

art technology which uses electrodes to pick up nerve signals from existing muscles

in the stump. Because Ali's left arm was amputated higher up, at the shoulder, its

replacement may not o�er the same functionality since there is less muscle to work

with. So, a tensing of the upper arm muscle would cause a motorised hand to grip,

while relaxing it would release the pincer movement. The greater the tension, the

quicker the motor works. His right hand could be wired to his bicep and his motorised

wrist to his triceps. For the elbow, a better option might be to use a simple pulley

system which Ali would operate simply by shrugging. The electrics depend on a
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lithium ion battery, which would be worn in a pouch on the upper body and replaced

daily. Mr Cooper, who works for the prosthetics makers RSL Steeper says: Cutting

with a knife will be di�cult but he'll be able to use a fork or spoon almost naturally,

comb his hair, type with two �ngers, [4].

Figure 2.3: RSL Steeper Prostheses UK

2.2.4 Conclusion

The development and the improvement of three examples of commercially available

electrical hand prostheses in three di�erent countries, like Germany, UK and Japan

are described. The study of these commercially arti�cial hands began with passive

prostheses, but it was possible to develop the active prostheses . The studies had

at �rst aimed only to develop machines to perform motion in one degree of freedom

and were basically motorised hooks. Recently the aim has been to develop prostheses

that can perform, using EMG signals, more complicated tasks.

2.3 Intelligent hand prostheses in the laboratories
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2.3.1 The hand MARCUS

Hand MARCUS was initially designed like an evolution of Otto-Bock hand-prothesis.

It consists of three �ngers: thumb, index and major, �gure 2.4. It has two degrees

of freedom and is driven by two separated motors, the �rst one is responsible for the

movements of the inch and second one acting in the movements of the index and the

major, which are dependent. The hand moreover is equipped with Hall-e�ect-sensors

to obtain information on the position of the �ngers and a tactile sensor on the thumb

giving information on the force of grasping, [28] [71] [41].

Figure 2.4: Marcus Hand

2.3.2 The hand of KFZ, Germany

The hand of Karlsruhe is a very light hand, each �nger weighs only (20g) which

approximates very well the aptitudes of handling of the human hand, by making it

possible to move independently all the �ngers. It uses for that an original approach;

in the place of motors with D.C. current, this hand has 18 �uidic, �exible and minia-

turised actuators which order 5 �ngers. Each �nger contains the actuators responsible

for its in�ection, and tactile sensors. The metacarpus provides enough space to place

there a micro-controller, micro-valves, the source of energy and a micro-pump. An
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optional actuators as designed to fold the wrist, �gure 2.5.

The �exible �ngers are able to grasp objects of various sizes and forms, by distribut-

ing the force of contact on a larger surface. Thus, thanks to this self-adaptation, a

large variety of objects can be seized without using sensory information. Moreover,

the surface of the �ngers is soft and the coe�cient of friction is increased using a

rubbery glove which covers the arti�cial hand. Because of �exibility of the hand,

this one appears more natural than a rigid robot-like hand and the risk of the direct

interactions with other people is minimised, [57].

Figure 2.5: The hand of KFZ, Germany

2.3.3 RTR-2, Rehabilitation Technology Research, Italian

Hand RTR2 is consisted of thumb and two identical �ngers, the major and the index.

It has nine degrees of freedom, �gure 2.6. RTR2 contains only two motors, for the

movements of in�ection and extension of the �ngers and the thumb, and for the

adduction and the abduction of the thumb. The movements are based on a system

of transmission per tendon. To improve the grasping operation, the information

provided by an arti�cial sensory system is considered, which react automatically in
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Figure 2.6: RTR2 Hand

case of objects slipping from the hand without any reaction from the user. The

hand RTR2 is equipped with position sensors and a tensiometer on the cable which

control the pointer and force sensor on the end of the thumb. All sensors and the

two motors are inside the structure of the hand, but its weight remains very light

since it is lower than 320g. From other side the grip strength remains insu�cient: it

is of 16 N whereas that of the commercial prostheses reaches 100 N. The controlling

of the prosthesis takes place via a Top level Controlling module (TCM ) and a Low

level Controlling module (LCM ). The TCM uses the myoelectric signals (EMG) to

produce a control for the LCM, which regulates the motors after collection of the

sensory signals. This hand is a scheme for future Myoelectric hand prosthetic RTR4

and Cyber-hand Prothetic, [14] [12].

2.3.4 Hand-prosthesis of Hokkaido university (Japan)

This hand is developed by the Autonomous Systems Engineering Lab of the Hokkaido

University (Japan), �gure 2.7, within the framework of a project to design a prosthesis

of hand having the behavior of a natural hand and ordered by EMG signals. It uses an

adjustable transmission system in which the course of the cable depends on the size

of the load. The �ngers move quickly under a light load and slowly with a high couple
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of torque under a heavy load. A method of order using tendons was selected to locate

the actuators outside the driven elements. The hand has 7 degrees of freedom, for

each �nger plus the abduction/adduction of the thumb and the pronation/supination

of the wrist. It's built of aluminium and each �nger weighs 25 G. All the actuators are

external of the hand, the total size of the hand is big, which makes its use impossible

as a prosthesis, [22].

Figure 2.7: pictures of the prosthetic hand developed at the Autonomous Systems
Engineering Lab of the Hokkaido University.

2.3.5 Die Hand von Southampton, (UK )

The Southampton philosophy concentrates on devolving the responsibility of grip ad-

justment from the user to the hand itself. The intelligent hand uses sensors, electron-

ics and microprocessor technology to allow this adaptive device to maintain optimum

grip (thereby ensuring that objects do not slip from the hand) under the jurisdiction

of a state driven control system (which allows easy control of the prosthesis). The

arti�cial hand of Southampton, is in development since several decades. It has been

elaborated with the idea to be controlled in a hierarchical way using EMG signals.

To grasp objects with a natural hand, the brain must have a multitude of informa-

tion so as to adjust the grasping operation and to prevent the slipping of the object.
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However, with many myo-electric arti�cial hands, to control the force to be exerted

by the hand, the user is asked to use only the visual signal as feedback signal while

acting on EMG signals of forearm. In order to cure this insu�ciency, the hand of

Southampton has an intelligent device: the responsibility for the adjustment of the

grasping is con�ded to the hand itself and not to the user. This device uses sensors,

electronics and microprocessors to maintain an optimal force of grasping, while the

user gives overall orders to open or close using simple signals.

The hand of Southampton provides two types of grasp: grasp with precision and

grasp with force. The type of grasping adopted is determined by the point of the �rst

contact. If an object touches the palm in �rst, the grasp with force is applied; if they

are the ends of the �ngers which enter the �rst in contact, a grasp with precision is

used. The hand is closed until the object is taken in the softest possible way �gure 2.8

and 2.9. If a slip occurs, it is detected by acoustic sensors on the level of the ends of

the �ngers and the grasp is automatically reinforced, [5].

Figure 2.8: First version of the hand
of Southampton.

Figure 2.9: Second version of the hand
of Southampton.
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2.3.6 Conclusion

There are many articles in the news about the latest developments in intelligent

prostheses devices, which are high-tech but expensive prostheses. The use of a mi-

croprocessor in the system allows the operator to supervise only the actions of the

hand while the microprocessor controls the low level re�exes of grip force and shape.

The processor can control more of the functions of the hand itself. The operator

gives simple grasping movement (hand closing or opening), which are interpreted as

commands and the controller co-ordinates multiple degrees of freedom to shape the

hand to maximise the contact area between the hand and the object and so minimise

contact forces. If the object slips this is detected and the controller responds. This

frees the user to make only the strategic decisions while the functional range is in-

creased. We can mention here that these developed prostheses don't recognise the

desired motion of �ngers separately, which is our �rst goal in this research thesis.

2.4 EMG controlled Hand-Exoskeleton devices

The exoskeleton devices are used as an assisting systems for a�ected people by stroke

or other motor diseases or spinal cord injure. Hand-exoskeleton devices are an inno-

vative ideas to reduce physiotherapist intervention and to improve therapy results.

In this case the EMG signals are used as self body's neural signals to realise intended

hand movements. Several exoskeleton devices in robotic systems for rehabilitation

have been constructed to perform rehabilitation support system. Many works in this

topic are done during the two last years and some of them will be introduced in the

following sections.



2.4. EMG controlled Hand-Exoskeleton devices 19

2.4.1 Carnegie Mellon Exoskeleton (Pittsburgh USA)

The mechanical framework of the exoskeleton consisted of an aluminum anchoring

plate mounted to the back of the hand and three aluminum bands, one for each of the

�nger bones. The aluminum bands are designed to be adjustable for di�erent �nger

sizes. The �exion of the Proximal Interphalangeal (PIP) and Distal Interphalangeal

(DIP) joints is produced by steel cable running along the front of each �nger band and

through to the backside of the hand. These cables are pulled by a pneumatic cylinder

Figure 2.10: Carnegie Mellon Exoskeleton, Lab of the Pittsburgh University USA.

acting in compression. The metacarpophalangeal (MCP) �exion, on the other hand,

is achieved by a linkage mechanism: a �oating link is mounted between the �nger

band closest to the base plate and a second pneumatic actuator, acting in extension

(labeled as linkage mechanism), �gure 2.10, [18].

2.4.2 Politecnico di Milano Exoskeleton

This exoskeleton-hand, �gure 2.11, is composed of a glove, upon which a supporting

structure is built, implemented in plastic. The plastic part on the glove is used for two

reasons: guiding the �ngers of the patient in order to accomplish a natural movement

and avoiding that the �ngers had to bear an excessive load on their tips. In addition to
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Figure 2.11: hand Exoskeleton, Lab of Politecnico di, University Milano Italy.

this, two plastic bended covers are placed upon and under the forearm of the patient

and bound together by straps. In order to improve the system stability the upper

cover on the forearm is fastened with the plastic structure on the glove by means of

a metallic bar. On the upper cover (in the palmar side) two actuators are fastened,

that are Hitec servos HS-805BB. These electric motors can be controlled in position.

Two wires are joined to the �ngers tips at one end, and rolled up to the pulleys of

the servos to the other end. The wires slide through some little plastic pipes and

can transmit the maximum force produced by the actuators, about 100 N. One wire

is dedicated to the �exion of the thumb, while the other �exes the four �ngers at

the same time. On the dorsal side, two springs are required to allow the extension

movements. In this way, with only two actuated degrees of freedom, the device is

able to perform a grasp movement. Finally two potentiometers on the pulleys of the

servos are placed in order to record two position signals [48].

2.4.3 Conclusion

Two exoskeleton devices systems for rehabilitation have been described in this section

to show the importance of using EMG signals In order to help patients, who had a

function disability of their hands, to get normal daily life. Such Exoskeleton devices
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controlled by EMG signals can provide a self-performing rehabilitation system that

supports the patients to practice the rehabilitation exercise by them self.

2.5 Hand Prostheses Types

The control of hand prosthesis exist in two categories, the �rst one are conventional

body-powered prostheses, which are powered and controlled by gross body move-

ments, usually of the shoulder. The second one are Myoelectrically controlled pros-

theses, which are considered, at present, as the best way to restore the functionality

of an amputated hand. These hand prostheses, which belong to this second category

are them self divided also in two types. The �rst type are those exploit EMG sig-

nals that are not issued from muscles responsible on corresponding movement, but

from any other muscles usually biceps. Such type of prostheses use EMG signals only

as switch impulses. The second type of Myoelectrically hand prostheses are able to

recognise the desired movement, on the way as the subject thinks about moving the

prosthesis. This case is considered in this thesis.

2.5.1 EMG signals don't correspond to movement's muscles

There is the possibility to use EMG signals issued from any part of our body, for

example biceps, as switch (ON-OFF) signal to control hand Prostheses. This type of

control is easier, because it doesn't need any data processing but only signal acqui-

sition, recti�cation and then integration. the recti�ed signal can be compared to a

threshold reference, if it is bigger then an ON command is given otherwise the hand

prostheses is not acted.
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2.5.2 EMG signals correspond to movement's muscles

The idea in this case is the use of surface electrodes to record the electrical activity

of muscle �bres and to send these signals to a computer, which interprets them using

convenable algorithms. The algorithms translate the signals into commands that can

control a hand prosthesis. The essential task is based on signal acquisition and data

processing. Intended hand movement can be interpreted through the EMG signals

issued from responsible muscles for such movement. These signals are detected in the

region of activated muscles for intended movements. This task, which is considered

in this thesis, requires bio-signal processing algorithms for di�erent processing and

discrimination stages, which can be resumed in the following steps:

Steps:

• Data Collection through sensing devices

• EMG signal transformation: analysis or Modeling

• Extraction of relevant features, which can discriminate movements

• Classi�cation-models building

• Evaluation and classi�cation



Chapter 3

EMG signal acquisition

3.1 Introduction

The physical phenomena observed generate often analogical signals. The power and

the diversity of the realisable transformations by the computers makes desirable the

conversion, �gure 3.1, of these analogical signals into discrete signals, obtained by

measurements with intervals of regular times. This operation of sampling, realised by

Physical
phenomina

Sampling

Filtering
y(k)

x(k)

x(t)

Figure 3.1: The �rst stage of signal acquisition

the analog-to-digital converters (ADC ), can involve a loss of information. It is thus

advisable to carry out this operation correctly, in order not to make imperceptible the

23
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information sought in the signal. The exponential increase in computational abilities

of computers and the advancement of sensor technology are all factors contributing

to the expansion of EMG research with �delity. EMG signal energy increases with

the activation level of a muscle. We observe the variation also in EMG measurements

from experiment to experiment so the energy of an EMG signal is a largely qualitative

measure. EMG signals can be measured using two electrode types:

• indwelling (�ne wire or needle) electrodes, which are inserted directly into the

muscle �bres.

• surface electrodes, which are placed on the skin overlying the muscle.

The surface electrodes transduce the motor action potential MAP, converting ionic

currents into electrical currents, and the resultant EMG signal can be recorded fol-

lowing appropriate ampli�cation and �ltering. However some disturbances may be

introduced in measured EMG signal through many ways. First the human body

himself is a good antenna, which picks up electrical signal emissions, issued from

electrical equipments in the laboratory. Second the cables of measurements are good

conductors for power line noise, 50-60 Hz signals. Additionally it's not possible to

ignore the e�ect of artifacts, which are results of cable and electrode movements.

The use of available highly sophisticated devices with help of the advances made

in electronics technology had made the acquisition of EMG signal possible with high

�delity and more e�ciency. Generally signals are the means (ways) by which informa-

tion is transmitted, whether we use the vibrations of accelerometers, the electricity of

circuitry or electromyograph (EMG) signals of electrods. There are certain fundamen-

tal common aspects of signals that are universal. Signal acquisition and processing

allow us to understand the systems, which produce these signals. Therefore, the
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principles of this operation are extremely important for many aspects of electrical

engineering, and can easily be extended to any other study domain.

The size of the Electromyograph (EMG) signal depends on: 1) the thickness of the

connective muscle tissue, 2) the quality of the contact between the electrode and the

skin, 3) the size of the electrodes and 4) the individual motor unit action potentials.

After signal acquisition and processing, it's possible to identify and control the sys-

tem, which is source of this signal. But the important question explored in digital

acquisition is how to sample an analog signal while preserving its full information.

The sampling rate for the analog to digital conversion (A/D) must be at least twice

as high as the highest frequency or bandwidth of the signal being sampled, according

to Nyquist-Shannon sampling theorem, [54]. The knowledge of frequency bandwidth,

which envelope the most power of EMG signal is necessary to choose the appropriate

sampling frequency. With low sampling frequency it's not possible to track with �-

delity most rapid changes in the signal, however the high sampling frequency increases

the number of samples, which leads to a time consuming. In case of on-line prostheses

control, the procedure of signal acquisition, processing till decision control should be

short in time. Law sampling rate means time computation consuming, for which the

time-delay-phase between human intention of acting and prosthesis response is not

acceptable. So it should be found a compromise between them. To avoid another

undesirable e�ect of sampling, it's well to employ an anti-aliasing �lter before the

signal is sampled, which requires also a knowledge of signal frequency bandwidth of

interest in order to perform this task. By de�nition, the anti-aliasing �lter [54] is used

to prevent the sampling of frequencies, in the signal, that are higher than the half of

sampling frequency. These frequencies will be misrepresented if they are sampled. For
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example, a 1 kHZ sampling frequency needs an anti-aliasing �lter with a bandwidth

of 500Hz (1
2
Fs), the e�ect of this �lter is to avoid the aliasing to a lower frequency

for the signals above 500Hz due to under-sampling of these signals. As consequence

to this phenomenon there is the production of a new aliased frequency Fa, which is

a mirror of the original signal frequency F about 1
2
Fs.

3.2 Surface EMG signal characteristics

The measurements of EMG signals issued from muscle contractions are realisations

of a complex time-variant process that control electrical activation of muscle. They

provide an access to physiological processes that cause muscles to generate forces,

produce movements, and accomplish functions which allow us to interact with the

world around us. It's di�cult to discern any distinguishing characteristics of these

signals and it's not apparent how to quantify them. With help of two non-invasive

EMG surface electrodes placed on forearm muscles it's possible to detect EMG signals,

which will be subtracted before ampli�cation. In this di�erential con�guration, the

shape and area of surface electrodes and the distance between them are important

factors, which a�ect the characteristics of this measured EMG signal. This signal,

issue from a time-variant complex dynamical system �gure 3.2, has an amplitude

in the range of µVs or mVs, it depends on type and/or size of the muscle and its

state (level of activation). The usable spectre of this stochastic (random) signal

can be limited in the area of 20 to 500Hz, see for deep study about this factor the

sections 4.3.1 and 7.2.
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Figure 3.2: Two channels measure of raw EMG signal corresponding to thumb-,
pointer- and middle-�nger �exion movement. Sampling frequency equal to 4KHz

3.3 Factors a�ecting EMG signal measurement

3.3.1 Electrodes

The form and the size of the surface electrodes have an in�uence on measured EMG

signal. For a performed extraction of quantitative information from the EMG signal

it is required greater focus on the con�guration of the electrodes. The major points

to consider are:

• Electrodes material:

Two types of surface electrodes are known, 1) dry electrodes in direct contact

with the skin and 2) gelled electrodes, which contain an electrolytic gel between

the skin and the metallic part of the electrode.
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• Electrodes technology:

It's recommended that the electrodes make very good electrical contact with the

skin through electrically conductive gels. Therefor, the electrode gels material

should be highly conductive and the electrodes adhesive material should have

strong adhesive properties to the skin for considerable mechanical stability to

avoid movement artifacts.

• Electrodes position:

The placement of electrode should be along the longitudinal midline of the

muscle. The longitudinal axis should be aligned parallel to the length of the

muscle �bers.

• Reference electrode placement:

it's a common reference electrode to the di�erential ampli�er input. The place-

ment of this electrode should be on electrically neutral tissue (the bone).

3.3.2 Ampli�er technology

In ampli�cation process of small bioelectric signals generated by the muscles, which

are typically in uV , it's necessary to reduce as possible the e�ect of noisy electrical

signals. This task is accomplished through the use of a di�erential ampli�er, �gure 3.3,

which e�ectively cancels the ambient electrical noises collected by human body. These

ambient electrical noises collected by human body can reach the order of volts. This

subtraction operation of di�erential ampli�er eliminates these noises and amplify the

small physiological signals. There are several important properties to consider in this

di�erential ampli�er:
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• High common mode rejection ratio (CMRR)

• Very high input impedance: ampli�er's input impedance must be higher than

the impedance of the electrode-muscle area.

• Using short connecting cables between signal source (electrodes) and Ampli�er,

otherwise they will collect ambient noises.

• DC signal: they are generated by chemical reaction between skin and electrode.

ADC

Channel 1

Channel 2

Muscle

Patient
Ground

ADC

Figure 3.3: Di�erential Ampli�er

3.3.3 Movement artifacts

The motion of the electrode relative to the skin produces motion artifact, which occurs

in the range of 0 to 15Hz. For these reasons, the surface EMG is typically �ltered

under the range of 20 Hz to eliminate low frequency noise and increase the signal to

noise ratio
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3.3.4 Disturbances

The acquisition of an accurate EMG signal is very dependent on the noisy electrical

environment and the performance of acquisition instruments, [20] [58] [45]. Noises

can be described as any aspect of the output signal which is undesirable. Elimination

of in�uences of these noises is not possible, but it's possible to reduce them with

examination of circumstance's e�ects. They are two typical types of disturbances.

First are conducted disturbances, which can be caused by electrical disturbances

intrinsic to the recording environment and it can be caused also by the nature of the

recording devices themselves. Second are radiated disturbances, which can be caused

by electromagnetic emissions of environment.

• 1) Conducted Disturbances:

-Transducer noises (through the cables)

-Alternative current, generated by �uctuations in impedance between the con-

ductive transducer and the skin (Duchene and Goubel, 1993).

-Direct current, caused by di�erences in the impedance between the skin and

the electrode sensor, and from oxidative and reductive chemical reactions tak-

ing place in the contact region between the electrode and the conductive gel

(Gerdle et al., 1999 ).

• 2) Ambient Disturbances:

Disturbances from the environment (electromagnetic waves), are noises orig-

inate from sources of electromagnetic radiation, such as radio and television

transmission, electrical-power wires, light bulbs, �uorescent lamps, ... [45].
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3.3.5 Cross talk

Recorded EMG signals are dominated by muscles activities signals, which are close

to the electrode. This recorded EMG signal from desired muscle could be mixed

"crosstalk" with other EMG activities issued from one or more neighboring muscles.

Other e�ect of muscles on recorded EMG signals is the distance (width) between

the muscle �bres and electrodes, which increases the spatial low �ltering e�ect. This

phenomenon is due to the fact that muscle �bres act as low spatial �lter [43].

The above factors illustrate clearly that it is not easy to measure an electro-physiological

signals without disturbances. Therefor it is very important to select the right mea-

surement system and the right sensors to maintain optimal electro-physiological data.

3.4 Experimental recording equipment (Digitimer

Neurolog System)

EMG signals are low in amplitude with respect to other ambient signals on the body

surface, hence it is necessary to detect the signal in a di�erential ampli�er con�gura-

tion in order to reduce noises. The bipolar recording technique is based on bipolar

electrode arrangements with a di�erential ampli�er, �gure 3.3, which suppresses sig-

nals that are common to both electrodes. Correlated signals common to both sites,

power sources and electromagnetic devices, are suppressed. The placement of elec-

trodes is required to be on the large face of muscle. The ampli�cation of the two

di�erential inputs should not deviate from each other more than 1/100000, which

requires highest common mode rejection (CMR) possible. Common mode rejection

by around 100dB is generally su�cient to eliminate such common mode disturbances.
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The CMR is expressed in logarithmic form in equation 3.4.1.

CMR(dB) = 20 log
A0

A1

(3.4.1)

The balance in the input impedance between electrodes may be an addition source

of a substantial e�ect on generation of noise. such problems can be avoided if short

connection cables between electrodes and ampli�er are used. The best solution for

this problem is to use the new developed electrodes with incorporated ampli�ers.

Overview:

In this study the equipment of measurement used is Digitimer NeuroLog System,

�gure 3.4, �gure 3.5 and �gure 3.6

Modules of this equipement:

• it has four channels.

• ampli�cation's range: ×10 bis ×10000.

• low band �lter (3, 10 and 30Hz ).

• push button for movement artifact elimination for (NL824 ) module.

• possibility of signal ampli�cation through one or many channels. (4 channel

�lters).

Notch Filter: this �lter is used to remove a particular frequency from a signal

and has a frequency response that falls to zero over a narrow range of frequencies (i.e.

a 50Hz notch may block signals from 49.5 to 50.5Hz ). Notch �lter is also available
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Figure 3.4: Digitimer Neurolog System. EMG-Measure-system (Bloc diagramm)

Figure 3.5: Four-Channel Isolated Ampli�er System with Filtering and Signal Con-
ditioning

in this instrument. The NeuroLog System is a �exible and upgradeable multi-

channel recording device for research applications such as electromyography (EMG).

The NL820 is the module at the heart of the isolated ampli�er range of components.

It is ideal for AC coupled recording applications in the research environment. It has

four channel units with independent gain and �ltering control of each channel as well

as a mute facility. The NL135 FILTER is a 4 channels, second order low-pass, with

Notch reject �lter module. The �lter settings can be selected. Therefor a rotary

switch selects the 14 frequency settings giving repeatability over a wide range with

40dB/decade attenuation above the selected frequency value. The active Notch �lter
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Figure 3.6: Measurements system in Max Plank institute laboratory, Magdeburg,
Germany

provides rejection of line frequency 50Hz interference when switched on. The NL144

is a 4 channels, second order high pass �lter which complements the NL135 when

used with the NL820 isolator, this module provides a compact solution to 4 channel

high and low pass �ltering. This module designed to give gain and o�set set-up

controls when interfacing signals to the analog-to-digital converters (ADCs) of PCs.

It contains four channels each with independently adjustable �lter settings and front

panel gain and o�set presets. There is also a master ADC o�set control to allow

unipolar ADCs to be used with bipolar signals.

3.5 Functional anatomy of hand and forearm

The Engineers entrusted with the management of the hand-prostheses and hand-

exoskeleton must possess a competent knowledge of the functional anatomy and phys-

iology of the hand and forearm, which is a complex biological structure. Necessary

also is the ability to correlate the surface topography of muscles, underlying muscle-

tendon units, skeleton, joints, and nerves. So here are some information to help to

understand the mechanical and anatomical properties of the hand and forearm mus-

cles. The Bones of the Forearm and Hand [1] are presented in �gure 3.7. The forearm
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contains many muscles [35], a �exor of the elbow (brachioradialis), and pronators and

supinators that turn the hand to face upwards or down. In cross-section the forearm

can be divided into two fascial compartments. The posterior compartment contains

the extensors of the hand, which are supplied by the radial nerve. The anterior

compartment contains the �exors, and is mainly supplied by the median nerve.

1. Anterior Compartment

• Super�cial Group

� Flexors of the hand and wrist

∗ Flexor Carpi Radialis

∗ Palmaris Longus

∗ Flexor Carpi Ulnaris

∗ Flexor digitorum super�cialis (sublimis)

2. Posterior Compartment

• Extensors of the hand and wrist

� Extensor Carpi Radialis Longus

� Extensor Carpi Radialis Brevis

� Extensor Digitorum (Communis)

� Extensor Digiti Minimi (Proprius)

� Extensor Carpi Ulnaris

� Abductor Pollicis Longus

� Extensor Pollicis Brevis

� Extensor Pollicis Longus
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� Extensor Indicis (Proprius)

• Intrinsic forearm muscles

� Brachioradialis (technically a �exor of the forearm)

� Supinator

� Anconeus

Figure 3.7: The Bones of the Forearm and Hand

In [35] the globally corresponding muscles participating in �nger and hand move-

ments are described. The following muscles, Flexor-digitorum-profundus, Flexor-

digitorum-super�cialis and Flexor-polcis-longus participate in �ngers �exion. Fin-

gers extension need globally the activation of Extensor-digitorum, Extensor-indicis

and Extensor-digiti-minimi, and thumb extension needs Extensor-pollicis-longus and

Extensor-pollicis-brevis.

Surface electrodes are placed in the manner to cover the large skin surface of these

muscles. The locations of electrodes on the subject's arm do not isolate a speci-

�ed single muscle but collect the EMG activation from all muscles around, even the
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muscles of the deep layer, which contribute to this activation signal, although they

undergo a space �ltering. Some of these important muscles, which contribute in hand

and �nger motions are presented in �gure 3.8 and �gure 3.9.

Figure 3.8: Some Forearm muscles for extension movements

Figure 3.9: Some Forearm muscles for �exion movements

3.6 Conclusion

Surface electrodes placed over the muscle can sense electrical potentials produced

when a muscle is contracted. This signal detected by the electrodes is called Electro-

Myo-Graphic signal (EMG). This signal is recorded and ampli�ed using convenable
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instrumentations. It should be recorded with a certain �delity to assure the trans-

mission of its inside information (without loss of information). This recording �delity

require some fundamental concepts in EMG signal acquisition. Moreover competent

knowledge about the functional anatomy of hand and forearm aids to get �del EMG

signals.



Chapter 4

Signal processing and feature

extraction

4.1 Introduction

The choice of classi�cation Algorithms begin with �nding the features data, which

can be available in several forms. These features data must be collected and the

question is which features data are needed and can be extracted according to systems

and classi�cation problems. Most classi�cation algorithms are highly sensitive to the

quality of the data representation. In this chapter we will discuss EMG signal analysis

methods, which give relevant features. These features are used as clusters for classes

recognition.

There are many sources of high- and low-frequency contamination on EMG signals.

For example computers introduce high-frequency noises into acquired signals, espe-

cially when the acquisition card is located within the computer chassis. Moreover mo-

tion artifacts introduce also low-frequency noises. Generally a 10 till 15 Hz high-pass

�lter is used to eliminate the movement artifacts and 300 till 500 Hz low-pass �lter is

used to eliminate the high frequencies. There are recommendations to cut frequencies

below 50 Hz for large muscles like for the leg. However there are another muscles

39
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in which low frequencies can have relevant and useful information about correspon-

dent movement type. Thus the intended use of the EMG signals must be considered.

More deep study about �ltering e�ect will be given in this chapter, section 4.3.2 and

in chapter 7 section 7.2.

4.2 Detection of activation period

Threshold method which compares the level of EMG signal with a given level, is the

most intuitive and common computer-based method to detect ON-OFF timing of the

muscle activation [47]. The EMG signal is processed in the time-domain. Two �rst

transformations are commonly used as primary tools to analyse the acquired EMG

signal, which are the recti�cation and M-point moving average Filtering, �gure 4.1.

These primary tools are appropriate and provide useful measurements of the signal

amplitude to detect the muscles activation times, which are start and stop phases.

The moving average �lter is the most common �lter for time-domain processing signal,

Figure 4.1: Full wave recti�ed and �ltering of raw EMG signal (Hand closing) using
moving average �lter (window = 50ms)
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�gure 4.2. It operates by averaging a number of points from the input signal to one

point in the output signal, de�ned by the equation 4.2.1.

y(t) =
1

M

M−1∑
k=0

x(t− k) (4.2.1)

where

x: is the input signal,

y: is the output �ltered signal,

M: the number of points in the average, Fc (cut o� frequency) = Fs / M;

Fs (sampling frequency) = 4 kHz;

M (length of Window ) = 200 samples (50ms).

Fc = 20 Hz.

In a comparison form, �gure 4.3 shows from top to bottom: raw EMG signal, recti�ed

Figure 4.2: frequency response of the moving average �lter with window of 200 sam-
ples.

EMG signal and then �ltered signal. The signal in blod line in bottom represents

Average Moving Filter response using 200 averaged samples or a window of 50ms

(sampling frequency = 4 kHz ).
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Figure 4.3: From top to bottom:Raw EMG signal, full recti�cation EMG signal and
EMG signal after moving average �lter application.

It is possible to detect the beginning of EMG activation after the estimation of the

noise amplitude that will be considered as threshold between activation-phase and

noise of the signal EMG. Hence Some knowledge about the noise signal is required

before the estimation of its level. This threshold level can be de�ned as a certain

amplitude above noise mean value, �gure 4.4. The threshold level value can be

Figure 4.4: Noise threshold value estimation.

considered as a factor of standard deviation value, (dispersion). It is necessary �rst
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to record a certain period of noise signal before EMG signal activation. There are

four steps for accomplishing this task in the following way:

• Centering the signal (mean value equal zero).

• Rectifying the signal (absolute value).

• Calculation of mean value.

• Calculation of Standard deviation.

The determination of the ON-OFF timing of the muscle's activation may be found as

the intersection between: 1) Moving Average Value (MAV ) of EMG signal and 2) noise

threshold level. These curves, �gure 4.5, are measurements of thumb �nger �exion

activation. This estimation of noise threshold value is calculated using noise signal

Figure 4.5: Activation periods determination based on estimated noise threshold level.

(no muscle activation) during a period of 2000 samples (500ms). Figure 4.5 presents

from the top to bottom: 1) the measured raw EMG signal of thumb �nger �exion, 2)
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�ltered EMG signal and noise threshold level in dashed line, 3) the ON-OFF timing

activations. This noise threshold level represents the border between noise signal

and activation signal. The noise reference level estimation, and consequently initial

time-activation of EMG signal is depending on availability of a priori knowledge of

the stochastic properties of noise's amplitude.

Concretely this method is not applicable e�ciently alone in this way, because there

are cases in which the beginning of activation EMG signal presents some oscillations

above and under the noise threshold level like in �gure 4.6. This phenomenon gives

Figure 4.6: Some real oscillations above and under the noise threshold level in the
beginning of ON-timing activation.

as consequence many oscillations of ON-OFF timing activations. These oscillations

present a big problem for the choice of the right activation beginning (on-time). To

resolve such problem it is necessary to develop an algorithm to test the duration of

the activation period which is estimated, in our case, to be 320ms. The period of

activation is equal to 320ms (1280 samples). If the duration of ON-timing, during
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the �rst 128 ms of 320ms falls down to OFF-timing then this ON-timing activation

is ignored, otherwise it will be considered as the right instance-time of the beginning

of muscle's activation. This method gives the following positive results shown in

�gure 4.7.

Figure 4.7: Top �g: EMG signal of middle �nger �exion. Middle �g: moving average
�ltering of this signal. Bottom �g: Elimination of oscillations above and under the
noise threshold level in the beginning of ON-timing activation and determination of
desired activation signal period.

4.2.1 Conclusion

In contrast to commonly used threshold-based estimation methods for detection of

activation period ON-OFF timing, the proposed algorithm proves to be reasonably

accurate even for low levels of EMG activity. The improved behaviour of this algo-

rithm, with just a modest increase in the computational complexity, can avoid the

oscillations of ON-OFF timing. The aim of this Algorithm it was to use the sim-

plest noise threshold-based estimation method, which determine the beginning level
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of EMG signal, and to avoid the drawback presented by some oscillations of ON-OFF

timing in the beginning of EMG signal's activation.

4.3 Filter design

Signal processing can be de�ned as signal manipulation for either extracting infor-

mation or producing an new representation of this signal through analysis. Other

motivations of signal processing are the removing of unwanted components corrupt-

ing the signal of interest, which is our study in this section and the extracting of

useful information, which is the goal of our study in the following sections 4.4.2, 4.4.3

and 4.4.4. This section points on �ltering and frequency domain representation of the

Signal. The principle function of a �lter, �gure 4.8, is to �lter out the unwanted parts

of an input signal. The unwanted frequency parts of the signal as described in section

Figure 4.8: Filter e�ect on signal's specter.

3.3 can not be all eliminated, but only reduced. In many cases, the sequentially lo-

calisations of the information carried by the observed signal and the disturbances are

generally known a priori. The objective is then to build a new signal from the raw

signal by exclusion of the disturbances. A digital �lter is just a �lter that operates on

digital signals represented inside a computer. There are plenty of softwares available
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for designing digital �lters. The e�ective use of a �lter design algorithm requires an

understanding of its parameters designing, which requires also some understanding of

�lter theory [64]. Filtering is a computation which takes one sequence of numbers of

input signal and produces a new sequence of numbers of �ltered output signal. The

digital �lter design methods fall into two main categories: 1) Finite Impulse Response

(FIR) �lter design and, 2) In�nite Impulse Response (IIR) �lter design. Both these

two types can be designed with any standard method (Butterworth, Chebeshev, etc...).

Impulse response of a digital �lter is the output sequence from the �lter when a unit

impulse is applied at its input. A unit impulse is a simple input sequence consisting

of a single value of 1 at time t = 0, followed by zeros at all subsequent sampling

instants. For FIR �lters, the current output y(n) is calculated solely from the current

and previous input values:

y(n) = x(n), x(n− 1), x(n− 2), ... (4.3.1)

This type of �lter is said also non-recursive, because these �lters usually require no

feedback. In this case the impulse response of FIR �lter is of �nite duration.

The IIR �lters are commonly implemented using a feedback (recursive) structure. The

word recursive means "running back", and refers to the fact that previously-calculated

output values go back into the calculation of the latest output. The expression for a

recursive �lter therefore contains not only terms of input values: x(n), x(n−1), x(n−

2), . . ., but also terms of output values: y(n − 1), y(n − 2), . . .. In this case the

impulse response of IIR �lter is theoretically not of �nite duration but continues for

ever. The recursive terms or previous output terms feed back energy into the �lter

input.

Generally, to design a given frequency response characteristic, recursive �lter requires



48 4.0 Signal processing and feature extraction

fewer terms to be evaluated by the processor than the equivalent non-recursive �lter.

The recursive system is speci�ed by two vectors a and b. The coe�cients of vector

b are convolved with the current and past input samples, while a coe�cients are

convolved with the past output samples. To calculate [53] output sample y(n), the

�lter multiplies the current and past input samples x(n), x(n− 1), x(n− 2), x(n−

3), ..., x(n− k) by the set of b coe�cients: b(0), b(1), b(2), b(3), ..., b(k); and sums

them, then the �lter multiplies the past output samples: y(n − 1), y(n − 2), y(n −

3), ..., y(n− k) by the a coe�cients: a(1), a(2), a(3), ..., a(k) and sums them, then

it combines them to form the output y(n), according to this equation 4.3.2:

y(n) =
∑

x(n− i)b(i)−
∑

y(n− i)a(i) (4.3.2)

In MATLAB toolbox, this whole process is performed by the �lter function: y =

filter(b, a, x). This function uses an in�nite impulse response (IIR) or �nite impulse

response (FIR) �lter; where: x is the input signal, y the output signal, and where b

and a are the coe�cients. The values of these coe�cients determine the characteristics

of a particular �lter. The order of a digital �lter can be de�ned also as the number

of previous inputs (stored in the processor's memory) used to calculate the current

output. In the case of recursive �lters, the de�nition can be extended to previous

input and output values required to compute the current output.

Before to go farther it is preferable to talk about the aliasing problem, which has been

described already in section 3.1. To prevent aliasing problem it is more advantageous

to �lter the continuous-time signal, using analog �lters before sampling it, (biomedical

applications involve the acquisition of continuous-time signals).

Matlab toolbox has several design algorithms that can be used to create both IIR and

FIR digital �lters. The IIR �lters that can be created in Matlab are Butterworth,
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Chebyshev-1, Chebyshev-2, and elliptic. The FIR �lter algorithms in Matlab are

equiripple, least squares, and Kaiser window types. We should know the parameters

of the �lter that we are going to design. Some of these parameters are described in

following section.

4.3.1 Optimised �lter design

Design mode allows us to specify a FIR or IIR �lter by setting design parameters such

as �lter type, passband/stopband edge frequencies, pass-band and stop-band ripple

levels, and stop-band attenuation. We can select from design methods that include

Butterworth, Chebyshev, Inverse Chebyshev, Elliptic, Kaiser, Equiripple, . . . . The

designer should then use di�erent parameters to suggest a �lter meeting as many of

those speci�cations as possible. The goal is then to optimise the designed �lter to meet

desired needs. TheMATLAB signal processing toolbox contains a number of di�erent

functions for designing recursive low-pass, high-pass and band-pass �lters. Using

Matlab, a digital �lter is designed with various prototypes: Chebyshev, Butterworth,

and Elliptic for IIR type. Equiripple, least squares, and Kaiser window are designed

for FIR type. The optimum �lter type is chosen on the basis of implementation

complexity and magnitude response. The design speci�cations of the band-pass �lter

and the order are given for the following examples. A comparison of these �lters is

attempted in this section in order to evaluate the advantages and drawbacks of each

�lter for the same band frequency, which equal to BP = [30Hz, 500Hz ].

1) In�nite Impulse Response (IIR) digital �lters:

The Butterworth �lter, for In�nite Impulse Response �lter design without speci�ed

requirements, is often su�cient. More rigorous �lter requirements can be met with
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Chebyshev and elliptic �lters, �gure 4.9. For each type of IIR �lter, three order

values have been chosen: 2, 4 and 6. These �lter responses �gure 4.9 designed with

Figure 4.9: In�nite Impulse Response (IIR) band-pass �lters comparison for orders
n = 2, 4 and 6.

low orders, which are 2, 4 and 6 seem to be good acceptable. We can conclude that

the elliptic �lter of order 6 presents the best band-pass frequency response, because

its pass-band and stop-band cuto� frequencies transition are fast, in comparison with

the two others.

2) Finite Impulse Response (FIR) digital �lters:

FIR �lters require a much higher �lter order than IIR �lters to achieve a given almost

same level of performance. The MATLAB function �r1 (N, Wn, type of window(N))

designs conventional FIR �lters based on the windowing method. Without explicit

speci�cations, the Hamming window is employed in this design. Other windowing

functions can be used by specifying the windowing function as an extra argument of
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the function. For example, Blackman window, Hanning window or rectangular win-

dow. The Parks-McClellan method (called "Remez" by Matlab) designs FIR �lter

of order N based on Parks-McClellan algorithm and exhibits an equiripple behavior

in their frequency responses and are sometimes called equiripple �lters. Filter speci-

�cations are given in terms of pass-band and stop-band cuto� frequencies, moreover

using also pass-band and stop-band ripples attenuation. Some of FIR �lter types

are presented in �gure 4.10. Note that the frequency response of FIR �lter based on

Parks-McClellan algorithm, presented in �gure 4.10 has a high stop-band gain, this

is due to the narrow transition band. If the transition band becomes larger we will

get lower stop-band gain. There is a trade-o� between stop-band gain and transition

width. Both IIR and FIR de�nes a class of digital Filters. IIR �lters, which may

Figure 4.10: Finite Impulse Response (FIR) band-pas �lters comparison for orders
n=40, 60 and 80.

have both zeros and poles on the z-plane, are not guaranteed to be stable, and they
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have nonlinear phase responses. FIR has zeros only on the z-plane, the consequences

of this are that FIR �lters are always stable, and they have linear phase responses

(�lter's coe�cients are symmetrical). In this case the delay is constant for all fre-

quencies.

A simple design speci�cation for a �lter is to remove noise outside a certain band-pass

frequency. A more complete speci�cation need some other speci�c characteristics like

pass-band ripple (Rp, in decibels), stop-band attenuation (Rs, in decibels), or transi-

tion width (Wp, Ws, in hertz). These speci�cations should achieve the performance

goals with the minimum �lter order. Such task can be done using the following matlab

functions like: chebyord, butterord, ellipord, ....

Filter Speci�cations in Matlab are:

• Wp: Pass-band cuto� frequencies

• Ws: Stop-band cuto� frequencies

• Rp: Pass-band ripple: deviation from maximum gain (dB) in the pass-band

• Rs: Stop-band attenuation: deviation from 0 gain (dB) in the stop-band

In �gure 4.11, two examples are presented to compare the required order for each type

of �lter for almost the same speci�ed characteristics, which are: stop-band cuto� fre-

quency Ws = [30Hz, 500Hz], Pass-band cuto� frequencies Wp = [40Hz, 400Hz],

Rp = 2dB (ripple in the pass-band), Rs = 20dB (attenuation in the stop-band) for

IIR Chebychev �lter. Concerning FIR �lter with Kaiser window, the parameters

of vector devs = [0.29, 2, 0.29], specify the pass-band, ripple and the stop-band

attenuation in absolute values and not in decibels. For almost same �lter charac-

teristics, FIR with Kaiserwindow required an order n = 80, but IIR Chebychev
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�lter has required only an order n = 6. Note that the number of �lter coe�cients

Figure 4.11: Required order for both FIR and IIR �lters in case of almost same
characteristics.

a�ects signi�cantly on the computational e�ort needed for the designing of the �lter.

A large number of �lter coe�cients requires larger computational time that may not

be feasible in certain real-time applications. A general desire in any �lter design is

that the number of operations (additions and multiplications) needed to compute the

�lter response is to be as low as possible.

4.3.2 FIR-80th and IIR-6th order �lter responses for di�erent

window types

This section deal with the frequency response of an FIR-80th order and IIR-6th order

Pass-band �lters corresponding to di�erent window types. We will consider di�erent

window characteristics in frequency range of 30−200Hz, and will compare the quality

measures and complexity issues related with these two design techniques. For IIR

�lter the window types used are: butterworth, chebychev-1 and elliptic, which are

presented in �gure 4.12. In �gure 4.13 are presented the frequency responses of

four 80th order FIR �lter corresponding to the following four windows: rectangular
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window, hanning window, Blackman and Parks − McClellan. The �lter order

Figure 4.12: Frequency response of IIR-6th order �lter for three di�erent windows.

is given by the length of its �lter impulse response, which can be considered as its

measure of complexity. Although IIR �lter design has smaller order (6th order), its

frequency response is comparable with that of the 80th order FIR �lter. On viewpoint

of complexity IIR �lter is preferable. In 6th order IIR �lter design, the measure of

�lter quality is good enough with also less complexity.

4.3.3 Order e�ect of IIR-elliptic �lter

The investigation of the viability of myoelectric signal recognition by di�erent �ltering

processes is considered. EMG signal analysis need �rst the use of low-pass anti-

aliasing analog-�lter. This anti-aliasing analog-�lter has cuto� frequency somewhat

above 500Hz, in this case 900Hz, and has sampling frequency at almost four times

the highest frequency, in this case 4000Hz. The digitised EMG signal can be then

�ltered.
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Figure 4.13: Frequency response of FIR-80th order �lter for four di�erent windows.

A variety of above IIR-elliptic �lter were applied with di�erent orders: 2, 4 and 6.

EMG signals corresponding to three di�erent �nger movements, which are the �exion

of thumb-, pointer- and middle-�nger are considered. Three di�erent features are

extracted from these �ltered signals and classi�ed using RBF intelligent classi�cation

method. These features are Moments of frequency 'Mn' given in equation 4.3.3 with

di�erent values of n (order), n = 0, 1 and 2.

Mn(t) =
∑

k

ωn
k | STFT (t, k) |, n = 0, 1, 2, 3, ... (4.3.3)

where

Mn : is the nth moment of the frequency distribution at time t,

n: order,

ω : frequency.

The following �gure 4.14, in case of Elliptic IIR �lter and Radial Basis Function

(RBF ) classi�cation method, presents the classi�cation results of these three �nger

movements. Radial Basis Function (RBF ) neural network architecture is designed
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Figure 4.14: E�ect of IIR �lter orders on EMG signal classi�cation accuracy.

and trained by "newrb" Matlab function with 16 test sets and 16 training sets. The

output layer is linear and the rate of classi�cation is depending on spread values of

hidden unit. Hence four values of spread between 0.4 and 1.6 with a step of 0.4 are

used. The evaluation of the �lter order e�ect on EMG signal classi�cation accuracy

will be clearly presented with these four di�erent spread values and three di�erent

features. The pass-band frequency is chosen to be in the range of 10− 500Hz. These

results show clearly that the increasing of �lter order values has a positive e�ect on

EMG signals classi�cation.

4.3.4 E�ect of di�erent �lter window types

All �lters, FIR and IIR, described in section 4.3.1 will be used to compare the

discrimination accuracy between them, �gure 4.15. The choice of �lter type is an

important decision for EMG signals recognition. The features and the method of
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Figure 4.15: E�ect of di�erent window types of 6th order IIR �lter and 80th order
FIR �lter, on EMG signal classi�cation accuracy.

classi�cation used in this part are the same with those given in above section 4.3.6,

and are illustrated in �gure 4.14. The orders of IIR and FIR �lters are selected with

consideration of the best results found in above study, section 4.3.1, �gures 4.9 and

4.10). These all �lters are tested on real EMG signal measurements of three di�erent

�nger movements. RBF classi�cation method is used to evaluate the e�ect of the

window type for both 80th order FIR �lter and 6th order IIR �lter design.

4.3.5 Pass-band e�ect of IIR-elliptic �lter

Filters play a vital role in data acquisition and processing systems to remove unwanted

selected frequencies from an incoming EMG signal and minimise artifacts, conducted
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disturbances and emitted disturbances. EMG signal o�ers a great deal of useful in-

formation, which is depending on its band frequency. For some features, like moment

of second order (M2 ) illustrated in this following example given in �gure 4.16, the

choice of the Pass-band �lter is very important in viewpoint of its information. This

Figure 4.16: E�ect of IIR-elliptic �lter's Pass-band on EMG signal classi�cation.

information depends on �lter frequency pass-band. The �gure 4.16 shows clearly that

the di�erent pass-band widths have an in�uence on the classi�cation accuracy. As

example three �nger movements (thumb-, pointer- and middle-�nger) are considered.

Five pass-bands are chosen, which are: 3-800Hz, 10-500Hz, 20-400Hz, 30-300Hz, 50-

200Hz. Classi�cation method used here is Radial Basis Function (RBF ) method,

which considers four spread values: 0.4, 0.8, 1.2 and 1.6. The best classi�cation re-

sults are obtained with pass-band equal to 10-500Hz. It is necessary here to give this

following important remark. This optimised pass-band found for used feature (M2 )
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can not be generalised for all other features. More details about this observation and

its approvement is given in

chapter 7, section 7.2.

4.3.6 Conclusion

The signals in a digital �lter are represented by �nite and quantised binary values.

In this section several �lter orders, �lter types, windows and �lter pass-bands were

designed, tested and compared to evaluate their e�ect on an electro-myogram signal

recognition. These systems are generally used to perform a �ltering operation. It

is important to evaluate the e�ect of these di�erent �ltering methods on the EMG

signal recognition to be able to choose the optimal one.

The cost of the �lter is determined by its complexity. This complexity can be eval-

uated on the basis of the following four simple parameters: order, adder operations,

multiplier operations and delays, [23]. If only order-parameter is considered, the

classi�cation results occurred with RBF classi�cation method, �gure 4.15 are almost

the same for these both �lters(IIR �lters, which have order = 6, and FIR �lters,

which have order = 80). It is possible here to conclude that IIR �lters are less com-

plex and lead to the same accuracy classi�cation results than FIR �lters, which are

more complex. About the choice of pass-band �lter, which have a great importance to

transmit a well-de�ned information and to reject other disturbances, it is for us now

not possible to con�rm if the pass-band �lter 10-500 Hz, found in above section as

best one for the feature M2, can be generalised for all other features. It will be shown

in section 7 that the described information inside the same signal through di�erent

features is not located in the same frequency bands of this signal. Finally six di�erent
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features, three of them belong to 6th order IIR �lter and three others belong to 80th

order FIR �lter, are evaluated and compared to get their classi�cation e�ects. Most

of these �lters have almost the same results for feature M2 and for frequency band

in the range of 10-500Hz.

4.4 Signal analysis and feature extraction

4.4.1 Introduction

Signal representation is very important before to deal with features extraction. There

are three known di�erent representations of a signal: 1) time-domain, 2) frequency-

domain and 3) time-frequency domain representation.

The �rst study will be focused on features extraction in time domain, then we use

the frequency domain and �nally time-frequency domain is considered. EMG signal

is a very complex signal. Generally a signal is a carrier of information, which can be

represented as a function of variables.

Signal = f(x, y, ). (4.4.1)

Signals, e.g. an Electromyograph (EMG), are signals of complex physical phenomena

varying in the time:

Signal = f(t; x, y, ). (4.4.2)

The EMG activity represents the sum of potentials of all active motor unit actions,

�gure 4.17, under the derivative area of the electrodes. For the analysis of these real

and complex EMG signals, special methods of analysis are necessary, which allow

the examination of the important information variability in the temporal change of
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Figure 4.17: Active motor unit actions

a feature "x". Thereby it is possible to build several clusters regarding to clusters

information di�erences. The acceptable features obtained using certain extraction

methods from a signal, which belongs to one category, should have the following

characteristics:

• they have strong discriminating capabilities

• they are robust and reliable

• they are not time consummating

• they don't have many parameters

This set of attributes is called a signature for the associated signal. This signature

can then be used to detect the presence of similar attributes in unknown data. Since

the EMG signals are non-stationary these signatures will be extracted using a Time-

frequency analysis of the signals, like Short Time Fourier Transform (STFT ). Brie�y,

in this chapter we want to answer these two following questions:
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1) Which analysis methods are suitable to use for extraction of the useful features? -

2) Which features are the best for the discrimination of di�erent muscle dynamics?

4.4.2 Time domain feature extraction

We want to test the di�erent known forms of EMG signal representations that are

more e�cient for feature extraction. There are three known representations for each

time varying signal:

• Amplitude vs. time representation (2D dimensional space).

• Amplitude vs. frequency representation (2D dimensional space).

• Time-Frequency vs. Amplitude representation (3D dimensional space).

The process begins with reading the EMG signals from two surface electrode channels

attached to the test subject's forearm. The transient part (the beginning part) of

EMG signal during 400 ms has been exploited to extract time domain features for

the recognition of 4 movement classes. These classes are: 3 �nger �exion movements

and hand closing. These movements were identi�ed when the signal's envelope crosses

the noise threshold level (see section 4.2, which represents the considered noise level

reference. The used signal can be extracted from each initial part of signal, which

needs to be done synchronously from both channels. Once the required part of the

Myoelectric signal is obtained, many time domain features of signal can be extracted

like:

• Mean absolute value (MAV ),

• Variance (VAR),
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• Waveform length (WL),

• Root mean square(RMS).

We take in consideration only one feature, mean absolute value (MAV ), as example

to show the distribution of these feature instances. Two �gures are presented for

raw signal, �gure 4.18, and �ltered signal in 20-250Hz, �gure 4.19. The values are

normalised to get mean value equal zero and variance value equal to one. This

Figure 4.18: Mean absolute value instances distribution with raw EMG signal

example shows us that the features extracted simply, from raw and �ltered EMG

signal in time domain presentation, without any signal analysis are not relevant. The

four classes are not regrouped in discriminated clusters, hence we can't di�erentiate

between them. Temporal approach can not extract important information for the

classi�cation of these four di�cult gasp types, especially with only two measurement

channels.
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Figure 4.19: Mean Absolute value instances distribution with �ltered EMG signal,
20− 250Hz.

4.4.3 Frequency domain feature extraction

a) Frequency domain analysis:

The frequency domain is used to extract information contained in EMG signal. The

transformation from time domain to frequency domain [46] is achieved through the

use of the Fourier transform, which allows us to look at EMG signal energy as a

function of frequency. Fourier Transform method is an optimal solution when we

assume that there is no frequency change, for each component, over entire time of

Analysis. Such analysis does not take in consideration the information on a time

localisation of the frequency component of the signal. The Fourier Transform (FT )

is de�ned in equation 4.4.3:

X(f) =

∫ +∞

−∞
x(t)e−j2πft (4.4.3)

X(f) is a complex function of frequency, f , which describes the complex voltages

(amplitudes and phases) as a function of frequency, f , of the signal x(t).
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The Discrete Fourier Transform (DFT ):

If x(t) is time-function limited to a duration of nT samples then DFT , equation 4.4.4,

can convert a sampled function of time x(nT ) into a sampled function of frequency

X(mF ). In simple terms we use the DFT to represent digital signal, x(nT ), of length

nT as a sum of m di�erent sinusoidal waveforms. In these sinusoidal waveforms each

sinusoidal function (complex exponential function) X(mF ), will have only one single

frequency amplitude and phase.

X(mF ) =
∑

n

x(nT )e−jnm2π (4.4.4)

The Fast Fourier Transform (FFT ) is a class of algorithm, which deals only with

time computation reduction. It allows the computation of the DFT to be performed

in O(N log N) rather than O(N2) computations. The DFT of EMG signal produced

with thumb-�nger �exion during 400ms and sampled at Fs = 4Khz, is presented in

�gure 4.20

Figure 4.20: Fourier Transform (FT ) analysis of raw EMG signal of 400ms length,
corresponding to thumb �nger �exion movement.
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b) sinusoidal harmonic waves

The DFT is used to model our EMG signal as a sum of simple sinusoidal signals. The

magnitudes of spectral lines of these simple sinusoidal signals quantify their energy

contribution for the global EMG signal. However EMG signals are much more com-

plex than simple sinusoidal functions. For a signal x(nT ), which contains nT data

samples, the DFT in this case is resulted in nT discrete harmonically related sinu-

soids. The spectral lines will be occurred at the fundamental frequency that equal to

FS

nT
. This fundamental frequency can be used to get all decomposed signal frequencies

of our original signal x(nT ). In the following �gure 4.21 we present 8 sinusoidal de-

composed signals. These signals are contained in a band of frequency between 2.5Hz

and 2400Hz, of EMG signal according to thumb �nger �exion recorded during 400ms

and sampled at Fs equal to 4kHz. Each signal of �gure 4.21 is a combination of 12 ele-

Figure 4.21: Hand closing Raw EMG signal decomposition, in 8 group signals. Each
of them is composed of 12 spectral lines issued from DFT analysis method.

mentary sinusoidal decomposed DFT 's signals, and its frequency is the average value
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of their frequencies, and its amplitude is a sum of their amplitudes. Average frequen-

cies for these 8 signals are: 15Hz, 45.5HZ, 75Hz, 105Hz, 135Hz, 165Hz, 195Hz

and 225Hz. The domain frequency covered by each spectral line is equal to 2.5Hz.

We use this representation of the EMG signal, which is frequency-domain analysis

to know, through extraction of correspondent features, if there is amelioration in

discrimination classes. The changes in the spectrum of EMG signal have been used

as an objective measurement of muscle dynamics. The used signal can be extracted

from initial part, which needs to be done synchronously from two channels. Once the

required initial part of the Myoelectric signal is obtained, many frequency-domain

features, which are known in the literature, can be extracted like:

• Median frequency

• Mean frequency

c) Frequency domain feature extraction

1- Median frequency:

We attempt to improve the discrimination capability for our four classes using features

related to domain frequency representation. One measure of the frequency content in

a signal is the median frequency. It's the measure of the EMG signal frequency that

divides the signal into two halves of equal power. The feature samples are presented

in two dimensional feature space (2D) de�ned with two measure channels, �gure 4.22

2- Mean frequency :

The second measure of the frequency content in a signal is the mean frequency. The
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Figure 4.22: Median frequency feature instances distribution corresponding to
frequency-domain EMG signal representation.

mean frequency, equation 4.4.5, can be determined from the FFT as:

MeanFrequencyFeature =

∑
i fiAi

2∑
i Ai

2 , (4.4.5)

These feature values are presented in two dimensional feature space de�ned with

two measurement channels, �gure 4.23. Clusters discrimination with this feature,

mean frequency, is more clear than with median frequency. In �gure 4.23 it can be

clearly distingued the pointer �nger class represented with circles. The second class,

which is less discriminated is Hand closing that is represented with stars. Between

thumb �nger cluster and middle �nger cluster there is a big interference. This second

measure, mean frequency, has more discrimination accuracy than median frequency.

Remark:
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Figure 4.23: Mean frequency feature instances distribution corresponding to
frequency-domain EMG signal representation.

A new mean-frequency feature can be de�ned in the following equation 4.4.6:

MeanFrequencyFeature =

∑
i fiAi∑
i Ai

, (4.4.6)

where Ai is the FFT amplitude at frequency fi. The Ai values are not squared like in

the above example. In this case we get the following distribution of feature samples,

�gure 4.24: If we compare this distribution with the above one in �gure 4.23, the

discrimination accuracy became worse.

3- Norm of power density :

A new feature in the frequency domain is de�ned, which is the spectrum's norm

(Norm-Spctr) of the signal EMG. The spectrum's norm can be determined as:√∑
i

(Ai
2) (4.4.7)
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Figure 4.24: Mean frequency feature instances distribution corresponding to
frequency-domain EMG signal representation.

where Ai is the Spectrum amplitude at frequency fi, and the summations are token

over all frequencies in the spectrum.

Power spectrum estimates the Power Spectral Density of the signal EMG using

Welch's averaged periodogram method, �gure 4.25 As it is shown in �gure 4.26,

our investigations in frequency domain for relevant features have lead to an improved

clusters discrimination of our four classes.
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Figure 4.25: Raw EMG signal of 400ms length and its spectral power density.

Figure 4.26: Norm of power density feature instances distribution corresponding to
frequency-domain EMG signal representation.
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4.4.4 Time-frequency domain feature extraction

a) Time-frequency domain analysis

Mono-dimensional signal analysis seems not to be su�cient for extraction of relevant

information to characterise signals of complex systems like EMG signals. Therefor

we have to consider bi-dimensional, time and frequency, analysis methods. Time-

frequency representation combines time domain and frequency domain analysis to

get temporal localisations of a signal's spectrum. The Short Time Fourier Transform

(STFT ) considers that the statistical properties of the non-stationary signal are vary-

ing in the time. This method of analysis help to extract the information according to

the signal time variation. The choice of time-window to track these variations of the

signal is of great importance.

This particular Fourier-based analysed method, STFT , designs smooth time win-

dows Wi(t) : i = 1, .., p, �gure 4.27, to chop a given signal into short p pieces and

then applying the DFT to each piece. Since we use a signal of nT values length,

we have to consider that p ≤ n. We can't simply shop the signal into short pieces,

without smooth functions, because this will cause sharp discontinuities between these

sections. Hence the smooth windowing is constructed by multiplying the signal xnT

by the time-window Wi(t).

p: number of windows, and Wi(t): short time analysis window

Xi(mF ) =
∑

n

xi(nT )e−jnm2π (4.4.8)

The easiest way to be sure that there is continuity between ends of these pieces of

signals is to force them to be zero at the extremities, thus their values is necessarily

the same. The choice among many existent window functions depends on knowledge
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Figure 4.27: An example of how the EMG signal is windowed to create a new signal
with smoothed extremities.

of the signal and application. Now it is possible to apply DFT on each time-windowed

signal, �gure 4.28.

After summation of all Fourier transformed signals Xi(mF ); where i = 1, . . ., p;

we get as consequence result the Short Time Fourier Transform of our original signal

x(t). Thus the STFT considers the signal x(t) as a series of DFTs of time-windowed

pieces. It remains some questions about how to choose the time-window length and

the rate of time-windows overlapping, which depend on the application.

Now it's possible to identify how the frequency content of the signal evolves over time.

An analysed part of Hand closing EMG signal during 400ms and for 25ms time-

window length, using STFT method representation, can be shown in the following

�gure 4.29. We get the following presentation of muscle activation:
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Figure 4.28: Fourier Transform for a windowed EMG signal corresponding to thumb
�nger �exion.

Figure 4.29: STFT analysis of 400ms length EMG signal and for 25ms time window
length, corresponding to hand closing movement using contour presentation.
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b) sinusoidal harmonic waves

If the digital signal, x(nT ), of length nT is represented, using DFT , (as a sum of

m di�erent sinusoidal waveforms), these sinusoidal waveforms have only one single

frequency component independently of time. However with STFT transform the

amplitudes of these spectral lines are not constant. For the same signal in �gure 4.29

the spectral lines are presented in the following �gure 4.30. Each signal of �gure 4.30

Figure 4.30: Hand closing Raw EMG signal decomposition in 8 group signals. Each
of them is composed of 12 spectral lines issued from STFT analysis method. Signal
length is equal to 400ms and sampling frequency equal to 4KHz.

is composed of 12 elementary spectral lines obtained from STFT 's signal analysis.

Middle frequencies for these 8 signals are:

15Hz, 45.5HZ, 75Hz, 105Hz, 135Hz, 165Hz, 195Hz and 225Hz.
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c) Feature extraction

After time-domain and frequency-domain features extraction, we want to improve

more the clusters discrimination of the four classes of hand movements described

above using time-frequency domain features extraction. EMG signal pre-processing

operation using spectrum analysis based on Short-Time Fourier Transform (STFT )

is applied. This analysis is a form of local Fourier analysis that treats time and

frequency simultaneously. It is possible to exploit and to quantify the behaviour of

dynamic (non linear and time varying) information present in these EMG signals and

to design discrete characteristic vectors. These discrete characteristic vectors can

perform some relevant features that, may be, lead to high and accurate classi�cation

rates of these di�erent movement classes. The basic spectral parameters, momentary

power and momentary frequency, are used as features [26]. The extracted features are:

1) central frequency 'Cent.freq', 2) standard deviation 'Std.dev' and 3) moments of

frequency 'Mn'. The de�nition of each feature is given in equations 4.4.9, 4.4.10 and

4.4.11.

Mn(t) =
∑

k

ωn
k | STFT (t, k) |, n = 0, 1, 2, 3, ... (4.4.9)

Cent.freq =
M1

M0

(4.4.10)

Std.dev =

√
M2

M0

− (
M1

M0

)2 (4.4.11)

where: Mn : is the nth moment of the frequency distribution at time t, n: order, and

ω : frequency.

With two channels of measurement, 34 raw EMG signals are recorded for each move-

ment class. The four classes, labeled 1, 2, 3 and 4, give 136 feature samples. The

distribution of all these feature samples in two dimensional (2D) space, channel1
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Figure 4.31: Variance-frequency feature distribution.

and channel2, for these three following features: 1) variance frequency, 2) central

frequency and 3) second order Moment, are shown respectively in �gures 4.31, 4.32

and 4.33. Finally we reach our goal, that to �nd EMG signal representation, which

gives best clusters discrimination between these four movement classes. From these

three feature distributions, presented in �gures 4.31, 4.32 and 4.33, it's possible to

observe, visually, that the groups are better separated than with those extracted from

the two precedent EMG signal representations: time-domain and frequency-domain

representations.
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Figure 4.32: Central-frequency feature distribution

Figure 4.33: feature distribution of second order frequency-moment
.
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4.4.5 Conclusion

This section is focused on mechanisms and EMG-signal analysis methods in order to

produce discrete characteristics (features), which can recognise di�erent hand and �n-

ger movement classes. These di�erent features extracted with help of di�erent analysis

methods, are more or less discriminative. In this study three di�erent analysis meth-

ods are used: 1) time-domain, 2) frequency-domain and 3) time-frequency-domain.

The goal was to extract features corresponding to each analysis method and to com-

pare between their clusters discrimination. Based on only visual distribution of these

di�erent feature clusters it was possible to compare the level of discrimination between

them and to select the best analysis methods and consequently best features. As re-

sults it was found that the features extracted from time-frequency-domain analysis

method were more discriminative than for those two other methods.
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Chapter 5

Feature input space reduction

5.1 Introduction

Dimension reduction can be used for di�erent purposes, in our case, it is used for

classi�cation problem. There are linear reduction methods and non linear reduction

methods. Linear methods like Principle Components Analysis, which is used in this

chapter, is more interpretable than non linear methods, which can deal with compli-

cated structures. The role of dimensionality reduction is to simplify high-dimensional

data sets to retain information, that is important for classes discrimination, and

discard that which are irrelevant. Dimension reduction methods present several ad-

vantages like:

• possibility to visualise feature data in low-dimensional space.

• produce uncorrelated new features.

• allow building simple modelling or/and classi�cation models.

• reduce space complexity.

81
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The e�ective way of reducing the time-consuming of calculation is to reduce or to use

as small as possible the number of feature vectors. The goal of this chapter is �rst

to present e�cient method that can transform a given data set X of dimension m to

an alternative data set Y of smaller dimension p. Secondly it will be discussed if it's

necessary to use always such methods for solving classi�cation problems or there is

another alternative.

5.2 Projection method

PCA is a way of expressing a high dimensional data set in an alternative set of low

dimensional data set with high variability, which is used for data visualisation and

clustering. In this study a linear dimension reduction technique (PCA), originally

introduced by K. Pearson in 1902 see also [33], is investigated. Many problems

in information processing involve some form of dimensionality reduction. Popular

method of dimensionality reduction, PCA, is an eigenvector method designed to

model linear variability in high dimensional data space. It considers the greatest

variance, i.e. get a maximum value of the quantity:
∑

i (xi − xmean)2, for the eigen-

vectors of the data covariance matrix. This reduction is achieved by taking m vectors

X1, X2 , . . . , Xm and �nding combinations of them to produce principal compo-

nents: PC1, PC2 , . . . , PCp, which are uncorrelated; where p < m. Principle

Components (PCs) are ordered so that PC1 exhibits the greatest amount of the

variation, then PC2 exhibits the second greatest amount of the variation, and so on.

Once eigenvectors are found from the covariance matrix, the next step is to order

them following the values' order of their eigenvalues, from the highest to lowest. This

gives us the principal components in order of signi�cance. Generally it is written in
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the literature that this transformation leads to a more discriminated representation

of data. In this study it will be shown that for relevant feature vectors this procedure

may lead to less discriminated representation of data set distribution. It would be

concluded also that there is, some times, a loss of information in using dimensional

reduction of data space for relevant features.

5.3 PCA illustration

Following is a detailed description of PCA using the covariance method, which pro-

vides us the explanation of PCA algorithm at each step. To present this tutorial

in details and graphically, an example of two dimensional space is proposed. Two

EMG surface electrodes are placed on two muscle groups, palnaris longus channel1

and extensor digitorum channel2. The location of electrodes on the subject's arm is

given in �gure 5.1. Two feature vectors Vhc1 and Vhc2 for zero order moment (M0), are

Figure 5.1: surface electrodes posisition for forearm EMG signals measurements

considered. Vhc1 is feature Vector of 34 variables, 5.3.1, for hand closing of channel1,

and Vhc2 is feature vector of 34 variables, 5.3.2, for hand closing of channel2.

V T
hc1 = x1, x2, . . ., x34. (5.3.1)

V T
hc2 = y1, y2, . . ., y34. (5.3.2)
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where T : denotes transpose.

In �gure 5.2 some of 34 movements are presented as EMG activation for both chan-

nels. The distribution of feature vectors of M0 for raw EMG signal in 2D dimensional

Figure 5.2: some of 34 muscles' activation of hand closing with two channels EMG
signals measurements

space is presented in �gure 5.3, see chapter 4 section 4.4 about the de�nition of this

feature.

5.3.1 Algorithm's steps illustration

The steps for computing mean values, covariance matrix, eigenvectors and eigenvalues

[30] require the use of a computer-based algorithms. These algorithms are available

in matrix algebra systems and also in MatLab.

Step 1: Normalisation
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Figure 5.3: Plot of 34 feature samples (M0 ) in 2D space, Vhc1 and Vhc2

Subtraction of mean value, �gure 5.4, from each vector, Vhc1 and Vhc2, equation 5.3.3.

M0hc1 = Vhc1 −mean(Vhc1)

M0hc2 = Vhc2 −mean(Vhc2) (5.3.3)

Figure 5.4: Plot of 34 normalised feature samples (M0 ) on two variables Vhc1 and
Vhc2

Step2: covariance matrix
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The covariance measure [2] of two vectors X and Y , with means of E{X} and E{Y },

describes the behavior of their co-variability, and is given by equation 5.3.4.

Cov(X, Y ) = E{[X − E{X}][Y − E{Y }]}. (5.3.4)

Covariance calculation is the multiplication of di�erences between the vectors X =

x1, x2, . . . xn and Y = y1, y2, . . . , yn, and their mean values. The value of the

covariance is interpreted as follows:

A positive covariance indicates that the two variables tend to move up and down

together, however a negative covariance indicates that when one moves higher, the

other tends to go lower.

In our example covariance matrix is de�ned as, equation 5.3.5

covmatrix(M0hc1, M0hc2) =

(
cov(M0hc1, M0hc1) cov(M0hc1, M0hc2)

cov(M0hc2, M0hc1) cov(M0hc2, M0hc2)

)
(5.3.5)

Using Matlab command ”cov” we get the following covariance matrix values, equa-

tion 5.3.6, of the data presented in �gure 5.4

covmatrix(M0hc1, M0hc2) = 1.0e−005 ∗
(

0.7648 0.3700

0.3700 0.9944

)
. (5.3.6)

Step 3: calculation of eigenvectors and eigenvalues of covariance matrix

Since covariance matrix is square, it's possible to calculate the eigenvectors and eigen-

values for this matrix. Some properties of eigenvectors are described as :

• only the square matrices have Eigenvectors, and not every square matrix has

eigenvectors.

• all the eigenvectors of a matrix are perpendicular (orthogonal) i.e. at right

angles to each other, and it doesn't depend on the dimension of this matrix.
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• some matrices do not have an eigenvector decomposition, These matrices are

defective, or not diagonalizable. A Matrix M is diagonalisable if it is a square

matrix and there is an invertible matrix INV such that INV −1.M.INV is a

diagonal matrix.

”pcacov” is amatlab command, which computes the eigenvectors matrix (Eigenvectorsmatrix),

equation 5.3.7 and the eigenvalues matrix (Eigenvaluesmatrix), or PC variances (vari-

ances of Principle Components), equation 5.3.8. [Eigenvectorsmatrix, Eigenvaluesmatrix] =

pcacov(covmatrix)

Eigenvectorsmatrix =

(
−0.5931 − 0.8051

−0.8051 0.5931

)
. (5.3.7)

Eigenvaluesmatrix = 1.0e−004 ∗
(

0.1267 0

0 0.0492

)
. (5.3.8)

Eigenvectors matrix of dimension 2× 2, contains 2 column vectors, each of length 2,

which represent the 2 eigenvectors of the covariance matrix covmatrix. Note that both

of these eigenvectors (Eigenvector1 and Eigenvector2) have been scaled to a unit

i.e. their module equal to 1;
√

0.593122 + 0.805122 = 1. The name ”Eigenvector” is

derived from the German word "eigen", and was �rst used in this context by Hilbert

in 1904, it means "proper" or "own". The Eigenvalues matrix (Eigenvaluesmatrix)

takes also the form of an 2×2 diagonal matrix, where the �rst value (0.1267∗1e−4) is

bigger than the second one (0.0492∗1e−4). That means the �rst principle component

(eigenvector1) presents more data variability than the second principle component

(eigenvector2).

Mean values and covariance matrix are calculated from the data, however Eigenvec-

tors and eigenvalues are calculated from the covariance matrix. The directions of



88 5.0 Feature input space reduction

Figure 5.5: Plot of �rst and second Eigenvectors

eigenvectors are drawn in �gure 5.5 as dashed and doted lines. The �rst eigenvec-

tor, which has the largest eigenvalue points to the direction of largest variance of

variables, �gure 5.5, in doted red line, whereas the second eigenvector, which is or-

thogonal to the �rst one points to the direction of less variables variance, �gure 5.5,

in dashed green line. In this example the �rst eigenvalue, Eigenvalue1 = 0.1267,

in equation 5.3.8 corresponding to the �rst eigenvector, Eigenvector1 =
(−0.5931
−0.8051

)
,

in equation 5.3.7. While the second eigenvalue, Eigenvalue2 = 0.0492, in equa-

tion 5.3.8 corresponding to the second eigenvector, Eigenvector2 =
(−0.8051

0.5931

)
, in equa-

tion 5.3.7. By comparing the values of eigenvalues we can say that the �rst eigenvector

presents more variability. The data could be well approximated with a 1D dimen-

sional, Eigenvector1 =
(−0.5931
−0.8051

)
, representation. The eigenvalues and eigenvectors

found above should satisfy the equation 5.3.9

covmatrix · Eigenvectorsmatrix = Eigenvaluesmatrix Eigenvectorsmatrix (5.3.9)
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Veri�cation:

For the �rst principle component, the value of the left term of equation 5.3.9 is given

in equation 5.3.10, however the value of the right term of equation 5.3.9 is given in

equation 5.3.11.

covmatrix · Eigenvector1 =

1.0e−005 ∗
(

0.7648 0.3700

0.3700 0.9944

) (
−0.5931

−0.8051

)
=

1.0e−004 ∗
(
−0.0751

−0.1020

)
(5.3.10)

Eigenvalue1 · Eigenvector1 =

1.0e−004 ∗ 0.1267

(
−0.5931

−0.8051

)
=

1.0e−004 ∗
(
−0.0751

−0.1020

)
(5.3.11)
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Step 4: Projection of original data onto Eigenvectors

The original data set, M0hc = [M0hc1, M0hc2], is projected onto these two found

orthogonal eigenvectors (step 3) (Eigenvector1, and Eigenvector2) �gure 5.6. . This

Figure 5.6: projected data samples onto �rst and second eigenvectors

projection of data samples onto these new axis leads to creation of two principal

components PC1 and PC2, �gure 5.6. We can observe that data samples (variables)

of �rst principal component (PC1) presented with circles are good distinguishable,

however the images of variables of second principal component (PC2) presented with

stars, are less distinguishable.

5.3.2 Graphical determination of eigenvectors

For several directions of these two orthogonal eigenvectors is possible to get after data

projection di�erent principal components according to their Eigenvectors' directions.

These new reduced data set have di�erent variabilities, more the variability is big less
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Figure 5.7: The plot of ten (x, y) coordinates corresponding to ten unit eigenvectors

we have loss of information due to the transformation function between original data

space and new reduced data space. This variability can be measured with variance

function. For ten di�erent directions of unit projection eigenvectors, some values

between 0 and 0.9 of x abscise coordinates are given, circles in �gure 5.7, and its cor-

respondent y coordinates values are calculated, squares in �gure 5.7. Correspondent

projected data variables, for these ten unit projection vectors, are also calculated and

presented in �gure 5.8. Between these ten produced components, through data projec-

tion, the component with higher variability (or maximum variance) will be considered

as the principle component (PC). The curve that connect all precedent calculated

eigenvalues is presented in �gure 5.9 . These Eigenvalues are presented as eigenvector

coordinates (x, y). The intersection of the maximum variance value of variance curve

with these coordinates in vertical line, �gure 5.10, gives us the coordinates of the best

Eigenvector which is considered as principal component.
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Figure 5.8: Rotation of eigenvector inside 2D data space in ten directions and their
corresponding Principal Component vectors

Figure 5.9: The plot of curves of Eigenvalues corresponding to two orthogonal Eigen-
vectors
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Figure 5.10: Graphical determination of �rst Eigenvector component

5.4 E�ciency of projection method

Surface EMG signal-based hand movement classi�cation for the control of prostheses

is considered. EMG surface electrodes are placed on two muscle groups: palmaris

longus and extensor digitorum. From the input feature space, the classi�er, see chap-

ter 6, should be able to classify four hand movements: �exion of the thumb, the

pointer and the middle �nger movements as well as hand closing. The initial part

(400ms) of each single contraction period is extracted from the raw signal and anal-

ysed using Short Time Fourier Transform (STFT ), see section 4.4.4. This analysis

method gives a measure of both time and frequency information. Three relevant

features, moment of second order, central frequency and standard deviation see chap-

ter 4 section 4.4.4, are extracted for each channel. Three intelligent computational

methods, Radial Basis Function (RBF ) networks, Multi-Layer Perceptrons (MLP )
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and Learning Vector Quantization (LV Q) networks are used to distinguish between

our four di�erent types of hand movements. In �rst step the classi�cation is applied

on each feature separately using the above cited three methods. In the second step

all three features are considered together as 6D dimensional feature space. Finally,

the Principal Components Analysis (PCA) algorithm is applied to reduce this 6D

dimensional feature input space to 2D dimensional input feature space.

PCA is used to reduce the dimensionality of a data set and to retain as much infor-

mation as possible of the relevant information in the original multi-dimensional input

feature space. In case of feature instances of big variability in multi-dimensional input

space, the application of PCA algorithm may produce or lead to a loss of information

which give as consequence a decrease in classi�cation accuracy. At the end of this

study all results will be compared in tables to resume the e�ect of PCA dimension

reduction algorithm on surface EMG signal classi�cation in case of relevant feature

vectors.

5.4.1 Problem illustration

The following �gure shows us three cases of feature set presentation. The classi�ca-

tion task can use these three variants of feature presentation. The problem or the

question is to look for a best variant of feature set presentation, �gure 5.11, to use for

classi�cation. To answer this question, each type of these three feature set presenta-

tions for classi�cation is studied alone and in the end we compare them for the choice

of the best variant according to their results. The �rst feature set presentation, for

classi�cation, is based on feature selection among n features, F1, . . ., Fn, and we

test each feature alone. This method allows us to discriminate the best features from
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f1

f2

fn

Presentation 1

Presentation 3Presentation 2

n Dimensional
input space PCA

Reduced
p Dimensional

input space
p < n

Figure 5.11: three cases of data set features presentation

another. In the second feature set presentation, all our set features are considered

together and an n multi dimensional space is builded, which gives us clusters in many

dimensional axis. The third and last feature set presentation procedure considers a

reduced feature space through linear reduction PCA method. The question is which

data set presentation should be used for classi�cation. The answer should take in

consideration not only the results but also the complexity of generated classi�cation

models.

5.4.2 Features considered separately

1) Learning Vector Quantization classi�er model

LV Q networks can classify any set of input vectors, which can be linearly separable

or not. The following table presents the value ranges of our four classes used by LV Q

model-classi�er. The architecture of this network, �gure 5.12, resembles to that of

unsupervised competitive learning network, except that each output is assigned to

a target class and works in two steps. First it uses an unsupervised data clustering

method to locate several clusters without using the information about the number
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Table 5.1: Class range for each neuron output
classes Target Output Output range Type of Movement

Class1 1 < 1.5 Thumb �nger
Class2 2 1.5 - 2.5 Pointer �nger
Class3 3 2.5 - 3.5 Middle �nger
Class4 4 > 3.5 Hand closing

Class 1

Class 2

Competitive
layer

Input
layer

Output
layer

Figure 5.12: Architecture example for LV Q network

of classes. Second it optimises the cluster centres using a priori information about

the number of classes. In this type of network, LV Q, there is only one neuron

a�ected in the second linear layer for each output class. The number of clusters

can be also, a priori, speci�ed. This network is able to reduce large data sets to a

smaller number of codebook vectors (cluster centres) suitable for data compressing.

LVQ was introduced by T. Kohonen [36]. A new version with improved classi�cation

performances have been proposed in [38]. Since then, it has been widely used for an

extensive bibliography. The "newlvq" function in Matlab programm creates a two

layer network. This matlab function use the learning function "learnlv2" according

to the developed learning Algorithm LVQ2 [39]. In the learning quantization method,

the weight in the hidden competitive layer are re�ned and then the input vector is

classi�ed to its target class. This layer is partitioned into groups of neurons, each one

is associated to a class.
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a) Case of feature (M2):

LV Q network used in this work has been �rst tested for several neuron numbers com-

posed the �rst competitive layer during 25 train epochs, see �gure 5.13, and then

Figure 5.13: Classi�cation accuracy and global number of misclassi�ed instances for
di�erent number of neurons in Competitive layer. Number of training epochs = 25.
Feature: M2. Method:LVQ

the optimal neurons number found, 27 neurons in this case, in competitive layer is

trained again during 100 train epochs. In �gure 5.14 the accuracy classi�cation and

misclassi�ed instances are presented for each type of movement. The interferences

between classes are also presented to know exactly the original class of each misclas-

si�ed instance. Additionally are presented the global correct classi�ed instances and

the global misclassi�ed instances.
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Figure 5.14: Number of misclassi�ed instances for each class with 27 neurons and
during 100 epochs. This �gure shows even the numerical distribution of misclassi�ed
instances in other classes.

b) Case of feature (Fcent):

The same study is applied for the feature Fcent. The network LV Q has been tested

for several neuron numbers composed the �rst competitive layer, and an optimal

model is found during 25 train epochs, see �gure 5.15. The best one of them, 12

neurons in competitive layer, is trained again during 100 epochs. In �gure 5.16

the accuracy classi�cation and misclassi�ed instances are presented for each type of

movement. The interferences between classes are also presented to know exactly the

original class of each misclassi�ed instance. Additionally are presented the global

correct classi�ed instances and the global misclassi�ed instances.
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Figure 5.15: Classi�cation accuracy and global number of misclassi�ed instances for
di�erent number of neurons in Competitive layer. The number of training epochs =
25. Feature: Fcent. Method: LVQ

Figure 5.16: Misclassi�ed instances with 12 neurons and during 100 epochs. This
�gure shows even the numerical distribution of misclassi�ed instances in other classes.
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c) Case of feature (Fstd):

The same study is applied for the feature Fstd. The network LV Q has been tested for

several neuron numbers composed the �rst competitive layer during 25 train epochs,

see �gure 5.17. The best one of them, 22 neurons in competitive layer, is trained

again during 100 epochs. In �gure 5.18 the accuracy classi�cation and misclassi�ed

Figure 5.17: Classi�cation accuracy and global number of misclassi�ed instances for
di�erent number of neurons in Competitive layer. The number of training epochs =
25. Feature: Fstd. Method: LVQ

instances are presented for each type of movement. The interferences between classes

are also presented to know exactly the original class of each misclassi�ed instance.

Additionally are presented the global correct classi�ed instances and the global mis-

classi�ed instances.

We resume all above results about accuracy classi�cation and misclassi�ed instances

of the features M2, Fcent and Fstd with LV Q classi�cation method in the following

two �gures 5.19 and 5.20.
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Figure 5.18: Misclassi�ed instances with 22 neurons, and during 100 epochs. This
�gure shows even the numerical distribution of misclassi�ed instances in other classes.

Figure 5.19: Global misclassi�ed in-
stances for three features: M2, F cent
and Fstd using LV Q classi�cation
method.

Figure 5.20: Classi�cation accu-
racy corresponding to three features:
M2, F cent and Fstd using LV Q clas-
si�cation method.
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2) Multi-Layer Perceptron networks

This network is used in many di�erent applications. Its architecture, �gure 5.21, has

a large class of network types with many di�erent topologies and training methods.

MLP has been widely used for an extensive number of applications. The "new� "

function in Matlab programm Creates a feed-forward backpropagation network. Feed-

forward networks have the following characteristics. Perceptrons are arranged in

layers, inputs are presented in the �rst layer and the last layer producing outputs.

The middle layers are called hidden layers and don't have any connections with the

external world. Each perceptron in one layer is connected to every perceptron on the

next layer, and their information are "fed forward" from one layer to the next. The

size of the input and output layers are de�ned according to the number of system's

inputs and outputs. However the number of hidden neurons can be speci�ed according

to the needed performances and complexity of the network, for more details see section

6.2. The number of "tansig" neurons in the hidden layer is determined based on their

Tansig

Logsig

OutputInput Hidden 
layer

x

y

Figure 5.21: Architecture example for MLP network

performance in training process. The one-neuron output-layer log-sigmoid transfer

function "logsig"is used, which gives an output in the range of 0 to 1. Our output

range between 0 and 1 will be divided in four ranges, since we have four classes to be



5.4. E�ciency of projection method 103

Table 5.2: Class range for each neuron output
classes Target Output Output range Type of Movement

Class1 0.125 0.00 - 0.25 Thumb �nger
Class2 0.375 0.25 - 0.50 Pointer �nger
Class3 0.625 0.50 - 0.75 middle �nger
Class4 0.875 0.75 - 1.00 Hand closing

identi�ed table 5.2.

The MLP network used in this work has been tested for several neuron numbers

in the hidden layer during 25 epochs. The optimal one found is trained again during

100 epochs. The accuracy classi�cation and misclassi�ed instances are calculated for

each type of movement. Additionally are calculated the average accuracy and the

total number of misclassi�ed instances. This same study is applied for each feature

for these following three features: M2, F cent and Fstd. All results of classi�cation

accuracy and misclassi�ed instances, corresponding to each feature, are resumed and

presented in the following two �gures 5.22 and 5.23.

Figure 5.22: Global misclassi�ed in-
stances for three features : M2, F cent
and Fstd using MLP classi�cation
method.

Figure 5.23: Classi�cation accu-
racy corresponding to three features:
M2, F cent and Fstd using MLP clas-
si�cation method
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3) Radial Basis Function networks

Compared to the MLP network, the radial basis function (RBF ) network is the

next most used network model, see section 6.5.3 for more details. This Network,

�gure 5.24, is a one hidden layer neural Network with several forms of radial basis

activation functions, like bell Gaussian function, which is the basis function chosen for

the most commonly used applications. The "newrb" function in Matlab programm

Gauss

Linear

OutputInput Hidden 
layer

x

y

Figure 5.24: Architecture example for RBF network

creates a two layer network. The �rst layer contains neurons of radial basis functions

and the second contains neurons of linear functions. This matlab function creates a

new neuron for every iteration. The error of the new network is checked, and if it

is not low enough the next neuron is added. This procedure is repeated until the

error goal is met, or the maximum number of neurons is reached. The output layer

is linear and the rate of classi�cation is depending on the spread value of the hidden

unit. We give many values between 0.1 and 1 to �nd the optimal spread value.

These networks are trained during 25 epochs for all three features. The optimal

spread value found during 25 training iterations is trained again during 100 epochs.

The accuracy classi�cation and misclassi�ed instances are calculated for each type of

movement. Additionally are calculated the average accuracy and the total number
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Table 5.3: Class ranges for one linear neuron output
classes Target Output Output range Type of Movement

Class1 0.125 0.00 - 0.25 Thumb �nger
Class2 0.375 0.25 - 0.50 Pointer �nger
Class3 0.625 0.50 - 0.75 middle �nger
Class4 0.875 0.75 - 1.00 Hand closing

Figure 5.25: Global misclassi�ed in-
stances for three features : M2, F cent
and Fstd using RBF classi�cation
method.

Figure 5.26: Classi�cation accu-
racy corresponding to three features:
M2, F cent and Fstd using RBF clas-
si�cation method

of misclassi�ed instances. This same study is applied for each feature for our three

features: M2, F cent and Fstd. All results concerning accuracy classi�cation and

misclassi�ed instances, corresponding to each feature are resumed and presented in

�gures 5.25 and 5.26.

4) Comparison of LVQ, MLP and RBF methods

Results comparison of accuracy classi�cation and misclassi�ed instances of these three

features M2, F cent and Fstd for all three classi�cation methods: LV Q, MLP and

RBF , are compared and presented in the following �gures 5.27 and 5.28.
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Figure 5.27: Nb of total mis-
classi�ed instances for three fea-
tures: M2, F cent and Fstd using
LV Q, MLP and RBF classi�cation
methods.

Figure 5.28: Classi�cation accuracy
comparison corresponding to three
features: M2, F cent and Fstd using
LV Q, MLP and RBF classi�cation
methods

5.4.3 Features considered together in 6D input space

In the �rst part, section 5.4.2, the classi�cation was applied on each feature separately

using the above cited three methods LV Q, MLP and RBF . In this second part

of this chapter our four movements will be classi�ed using all these three features

together in one 6D input space, �gure 5.29. The discussion about these results will

be done in section 5.5.

5.4.4 Feature space reduced in 2D space

Principle Component Analysis (PCA) as a projection method onto a low dimensional

subspace aids to �lter out the uninteresting variables. It takes in consideration the

interactions and correlations between variables. In this third part of study, the input

space dimension of the original data features, which is equal to six, will be reduced

to two dimensional input space. This procedure allows us to present graphically

our feature variables. The three networks, LV Q, MLP and RBF were trained
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Figure 5.29: Top:Comparison of correct classi�ed instances for each movement cor-
responding to six features together. Bottom: Comparison of total correct- and
mis-classi�ed instances corresponding to six features together. In both �gures
LV Q, MLP and RBF classi�cation methods are used.

�rst during 25 epochs for these two obtained feature vectors using linear dimension

reduction algorithm PCA. During these 25 training epochs we look for the optimal

parameters for each method: spread value, number of hidden neurons and number

of neurons in competitive layer for respectively RBF, MLP and LV Q classi�cation

methods. We train again our networks with these optimal parameters in 2D feature

vectors space during 100 epochs. The correct classi�ed instances for each type of

movement and the total correct classi�ed and misclassi�ed instances for all movements

are calculated. All these results are presented in �gure 5.30.

5.5 Results discussion

First the results of section 5.4.3 in comparison with section 5.4.4 are discussed, see

�gures 5.31 and 5.32. Second it will be considered the comparison of results between
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Figure 5.30: Top: Comparison of correct classi�ed instances for each movement
corresponding to 2D reduced feature space with PCA for each movement using
LV Q, MLP and RBF methods. Bottom: Comparison of total correct- and mis-
classi�ed instances number corresponding to 2D reduced feature space with PCA:
using LV Q, MLP and RBF classi�cation methods.

section 5.4.2, section 5.4.3, and section 5.4.4, see �gure 5.33.

a) First discussion:

The global number of misclassi�ed instances, for each classi�cation method, in the

case of 6D dimensional feature space, �gure 5.31, is just little less than in the case of

2D dimensional feature space, �gure 5.32, obtained after application of PCA reduc-

tion method. With LV Q classi�cation method there are three misclassi�ed instances

more in case of 2D reduced space than in 6D space. With MLP classi�cation method

there are 4 misclassi�ed instances more in case of 2D reduced space than in 6D space.

Only with RBF method we observe amelioration by one instance in case of 2D re-

duced space than in 6D space. These detailed results are resumed in table 5.4.
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Figure 5.31: Case of section 5.4.3;
Top: Comparison of correct classi�ed
instances number for each movement
corresponding to 6D feature space.
Bottom:Global number of misclassi-
�ed instances corresponding to 6D fea-
ture space. Using LV Q, MLP and
RBF classi�cation methods for both
cases.

Figure 5.32: Case of section 5.4.4;
Top:Comparison of correct classi�ed
instances number for each movement
corresponding to 2D reduced feature
space with PCA. Bottom:Total num-
ber of misclassi�ed instances corre-
sponding to 2D reduced feature space
of 6D feature space with PCA. Using
LV Q, MLP and RBF methods

Table 5.4: global number of misclassi�ed instances comparison between 6D features
space and reduced 2D features space for LV Q, MLP and RBF classi�cation methods

Methods 6D space 2D reduced space

LVQ 6 9
MLP 6 10
RBF 13 12
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Figure 5.33: Case of section 5.4.2; Global number of misclassi�ed instances for each
feature: M2, F cent and Fstd using LV Q, MLP and RBF classi�cation methods.

b) Second discussion:

Now the classi�cation results using LV Q, MLP and RBF methods for each feature

separately, which is done in section 5.4.2, is considered. These results, �gure 5.33

show us how relevant are these features. The third feature, Fstd, alone in 2D di-

mensional space (Fstd channel1 and Fstd channel2) gives less average number of

misclassi�ed instances with these three methods, which equal to 7,33 than in the case

of 2D dimensional reduced features space, which gives an average number of misclas-

si�ed instances equal to 10,33. In table 5.5 all results found in sections 5.4.2, 5.4.3

and 5.4.4 are resumed and compared.

5.6 Conclusion

Generally the Principal Component Analysis method leads to a more discriminated

representation of data. The spatial reduction, in this study, for classi�cation issue
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Table 5.5: global number of misclassi�ed instances comparison between 6D features
space and reduced 2D features space for LV Q, MLP and RBF classi�cation methods

Methods 6D space 2D reduced space 2D separated three features space

LV Q 6 9 M2=17 Fcent=20, Fstd=7
MLP 6 10 M2=16 Fcent=31, Fstd=6
RBF 13 12 M2=14 Fcent=14, Fstd=9

Average Nb 8,33 10,33 M2:15,66 Fcent=21,66 Fstd=7,33

using PCA, has not lead to a better results. Hence for relevant features, this pro-

cedure of space reduction may decrease this discrimination between data groups. In

this study the feature Fstd in 2Dimensional feature space gives by it self an average

number of misclassi�ed instances, which is equal to 7,33, less than in the case of 2Di-

mensional reduced space, which gives an average number of misclassi�ed instances

equal to 10,33. Therefor in this thesis and for all following studies the features are

considered separately.
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Chapter 6

Performances of proposed FTMC

algorithm

6.1 Introduction

The goal of recognition (classi�cation) procedure is to build a set of models that

can correctly predict the right classes for di�erent objects (features). This procedure

is performed on the basis of extracted features through builded classi�cation mod-

els. Classi�cation models belong to two categories. First are supervised models, like

Multi-Layer Perceptron, Radial Basis Networks, and Learning Vector Quantization

network. Second are unsupervised models, like Self Organizing Map, Fuzzy Sub-

tractive Clustering and Competitive Layer. There is a large set of neural networks

and fuzzy logic methods in the literature addressing classi�cation problems. These

methods in case of supervised learning employ optimisation techniques to process

the inputs and compare their resulting outputs against the desired outputs. Errors

are then calculated, causing the system to adjust its parameters. In case of unsu-

pervised learning, training algorithms attempt to locate clusters in the input data,

which approximate the distribution of the data, without a prior knowledge. More

113
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details about clustering data in [42]. Hykin published a comprehensive foundation

for the study of Neural Networks [27], J. -S. R. Jang, C. -T. Sun and E. Mizutani,

published a book about a foundation of Neuro-Fuzzy systems, [31]. All these methods

have functions parameters and variables to be optimised.

The objective in this chapter is �rst to describe brie�y the known classi�cation pro-

cedures, based on Fuzzy logic and Neural Network methods, moreover a proposed

Fuzzy Trimmed Mean Classi�cation (FTMC) algorithm will be described. Second

objective is to compare between these di�erent intelligent computational methods:

Multi-Layer Perceptron (MLP ), Radial Basis Function Networks (RBF ), Learning

Vector Quantization network (LV Q), proposed Fuzzy Trimmed Mean Classi�cation

(FTMC) algorithm, and fuzzy Subtractive Clustering (FSC).

6.2 Neural Network Systems

This section describes brie�y the architectures and learning procedures of adaptive

neural networks (ANN). Various ANN -based models [9] were applied to identify

di�erent systems. There are many functions and variables, which should be identi�ed

for each neural network model. Neural networks process information in a similar

way the human brain does. It is a network structure consisting of a large number of

interconnected processing neurones, through directional links, working in parallel to

solve a speci�c problem. Each neurone has an adaptive interaction with another. The

learning methods specify how these interactions should be updated to minimise error

measure between the desired and computed output data sets. There are many learning

methods to build neural models. Generally an adaptive network is heterogeneous and

each neuron has a speci�c function di�erent from the others. It is possible to classify
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these model learning methods and architectures.

6.2.1 Architecture

A simple architecture of an adaptive neural network is expressed in this following

mathematical function with parameter p and variables (x, y), and presented in �g-

ure 6.1.

Mathematical function: y = f(x, p)

yfx

p

Figure 6.1: Simple perceptron with one output unit.

.

An adaptive network with only one neuron is shown in �gure 6.1, which has the

function f , where x and y are the input and output sets, and p is a parameter to be

optimised.

6.2.2 Example of illustration

We want to build an adaptive network, which can give the result of a simple subtrac-

tive function f between two real numbers x1 and x2.

This function is given as: y = f(x, p). de�ned in <2 → <

The variables are:

x = [x1, x2], p = [w1, w2] and y

The subtractive function is de�ned as:
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y = w1 × x1 + w2 × x2

Our task is to �nd the values of w1 and w2, which can produce a correct subtraction

output result for all inputs.

For this example we test all the values of w1 and w2 between -2 and 2. The errors

corresponding to each couple of ( w1 and w2) are calculated for some example values

of x1, and x2. It is obvious that the values: w1 = 1, and w2 = -1 are the right values

to achieve the function of subtraction in the following operation : y = x1 − x2, but

we will show how proceeds an adaptive neural network to �nd this solution.

1) Learning procedure to �nd optimised w1 and w2

The question now is how does work the Neural Networks to �nd, with learning pro-

cedure, these two parameter values of w1 and w2. The adaptive procedure to �nd w1

Table 6.1: Some example values of input and their output results for the function of
subtraction f

Input 1 Input 2 Output
x1 x2 y = w1x1 + w2x2

1 2 -1
12 5 7
-4 6 -10
-2 -5 3

and w2 should use only some values of input-output sets as training data and then

we hope that these found w1 and w2 values will give the correct results of subtraction

for all other input values of x1 and x2. In the table 6.1 some train values of x1 and x2

are given with their corresponding outputs y.

In this classical example it will be shown the simplest intelligent self-learning model
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(single perceptron) that can adapt its parameters to achieve (or give)the desired out-

put. The architecture of this neural network, is shown in �gure 6.2, .

Σ

x1

x2

Output  y

Targe  tt-y

W1

W2

Figure 6.2: Architecture of Simple neural network NN.

The output y of a network is a weighted linear combination of inputs x1 and x2,

equation 6.2.1.

y =
∑
i=1,2

wixi (6.2.1)

The measure error is given in equation 6.2.2.

E = (t− y)2 (6.2.2)

where t design a target output.

2) Derivative-based optimisation method

The objective function E is de�ned on a 2D dimensional input space w. This input

space is given in equation 6.2.3.

w = [w1, w2]
T (6.2.3)

The aim is to �nd the vector w = w∗ which minimizes our objective function E(w).

The gradient of di�erentiable function E is a vector of �rst derivatives of E, denoted
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as g in equation 6.2.4.

g(w) = [∂E(w)/∂w1, ∂E(w)/∂w2]
T (6.2.4)

The perceptron in �gure 6.2 is treated as a single layer perceptron. Starting with a set

of initial weights (w0). Learning algorithm for this single-layer perceptron is achieved

in these two following steps until the convergence of weights to the acceptable values

is reached. These optimised weights allow the network to give a right target output.

1. select an input vector x = [x1, x2]

2. adapt the weights w1 and w2 if the output y is false.

The well known steepest formula that used to adapt the weights w1 and w2 is de�ned

in equation 6.2.5.

w(t + 1) = w(t)− ηg(w) (6.2.5)

where η is the learning rate.

The given training data set has 4 pairs, and the overall error measure is de�ned as

the following squared sum in equation 6.2.6.

E =
∑
p=1,4

(Ep)
2, Ep = tp − yp (6.2.6)

where p: index number of training data pairs, tp: desired output, and yp: predicted

output.

The derivative of the error with respect to each weight are given in equations 6.2.7, 6.2.8,

and 6.2.9.

∂E(w)/∂wi = −2
∑
p=1,4

(tp − yp)xip (6.2.7)

∂E(w)/∂w1 = −2
∑
p=1,4

(tp − w1x1p − w2x2p)x1p. (6.2.8)
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∂E(w)/∂w2 = −2
∑
p=1,4

(tp − w1x1p − w2x2p)x2p. (6.2.9)

If the initial values of w1 and w2 are -1.8 and 1.8, the steepest descent minimisation

algorithm gives, after 30 iterations with η = 0.01, the following learning curve con-

vergence, �gures 6.3 and 6.4. This example illustrates how the algorithm follows the

gradient down, on the error-surface, to reach the optimised values, which are equal

to (w1 = 1, and w2 = −1).

This example represents the simplest neural network (NN) model. It provides

-2 -1 0 1 2 -2

0

2

0

w2
w1

Figure 6.3: Steepest descent conver-
gence (3D).

w1

w
2

-2 -1 0 1 2
-2

-1

0

1

2

Figure 6.4: Steepest descent conver-
gence (2D).

the ground for other complex NN models like Multi-Layer-Perceptron (MLP ). The

neurons of backpropagation Multilayer Perceptrons (MLP ) are a composite of the

weighted sum and a di�erentiable nonlinear activation function (transfer function).The

most used activation functions in back-propagation MLP are:

• Logistic function: f(x) = 1
1+e−x .

• Hyperbolic tangent function: f(x) = 1−e−x

1+e−x .

• Identity function: f(x) = x.



120 6.0 Performances of proposed FTMC algorithm

The gradient vector in this type of NN models is calculated in the opposite direction

to the �ow of the output of each neuron. Once the gradient is obtained , it is possible

to apply many methods of derivative-based optimisation, which will be described in

the following section 6.2.3.

6.2.3 Gradient-based optimisation methods

This section gives an introduction to nonlinear optimisation techniques using derivative-

based method such as gradient-based optimisation algorithm. Optimisation is the

process to �nd the values of a vector Θ that minimises a given function f de�ned on

an n-dimensional input space Θ. Many algorithms for minimising f(Θ) are derived

from algorithms, which are used for solving the following equation 6.2.10.

g(Θ) = ∂f/∂Θ = 0. (6.2.10)

g is the gradient of a di�erentiable function f : <n → <

It is often useful to use algorithms, which proceed iteratively starting from an approx-

imate trial solution and then will gradually re�ne the values of parameters of vector

Θ until the predetermined precision is reached. The next point Θnext, in iterative de-

scent procedure, is determined by a learning rate (step-down) from the current value

Θnow in the direction vector dv, equation 6.2.11

Θnext = Θnow + ρdv. (6.2.11)

where ρ : represent a learning rate.

dv (descent vector): is a vector of descent direction that moves us closer towards a

local minimum Θ∗ of our objective function f : <n → <.

Descent methods calculate the term dv in two steps: �rst step is determination of
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the direction vector dv, and in the second step is calculation of learning rate ρ. The

values of next vector Θnext should satisfy the inequality in equation 6.2.12.

f(Θnow) > f(Θnow) + ρdv. (6.2.12)

ρ must be chosen so that we don't take too big or too small value of step, and the

value of the step size is allowed to be changed at every iteration.

All descent algorithms look for to reach the minimum point following the line deter-

mined by the current value of Θnow and the direction dv. Every descent algorithm

has its own method to choose the way of successive directions.

1) Mathematical description

The aim of these methods for a given objective function f is to reduce the value of

this function after every iteration. The �rst derivatives of a di�erentiable function

f at the values of vector parameters Θ represent the gradient vector g de�ned in

equation 6.2.13.

g(Θ) = ∂f(Θ)/∂(Θ) = ∇f. (6.2.13)

Gradient based optimisation strategies search iteratively the minimum of the objective

function f , and it proceeds in the three following steps:

• compute the objective function f(Θnow) using the initialisation vector values

Θinitial

• compute the vector direction dv and a step width ρ.

• compute of the new point Θnext = Θinitial + ρdv; and go to step 1 until to reach

the optimum Θ∗
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The linear approximation (�rst order) of the objective function, f , is given in equation

6.2.14.

f(Θnow + ρ dv) ≈ f(Θnow) + ρ gT dv. (6.2.14)

The condition of error convergence is that "gT dv" must be negative, hence we will

have f(Θnow + ρdv) < f(Θnow), this condition is described in equation 6.2.12.

Various methods are available to compute descent directions, like: gradient descent,

conjugate gradient method, Newton's method and Levenberg-Marquardt method.

One condition must be hold in use of these methods: the angle between the gradient

vector g and descent vector direction dv, equation 6.2.15, must be in the area of 90◦

and 270◦, see �gure 6.5. The gradient directions are always perpendicular to the

contour curves.

Θnext = Θnow + ρ dv g = Θnow + ρ ‖ g ‖ ‖ dv ‖ cos (angle(g, dv)) (6.2.15)

The directions from the starting point Θnow, �gure 6.5, which shows the surface error

w1

w
2

-2 -1 0 1 2
-2

-1

0

1

2

g(Өnow)

dv

Figure 6.5: possible descent directions from the starting point Θnow.
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of our example in section 6.2.2.1, are the all acceptable descent vectors possibilities. If

dv = −g, (angle(g, dv) = 180◦), this descent is called the steepest descent method, in

which dv represents the same direction as the negative gradient direction (−g). The

negative gradient direction is not, always, a short way to reach the minimum Θ∗. For

this reason many other methods like: conjugate gradient method, Newton's method

and Levenberg-Marquardt, are developed to direct, quickly as possible, toward the

minimum point of objective function f . For more details see [31].

Generally the derivative-based optimisation methods are used to �nd the nearest

local minimum of an objective function, which presupposes that the gradient of this

function is computable. It starts from the point Θnow and moves in the direction of

the following vector de�ned in equation, 6.2.16:

‖ g ‖ cos (angle(g, dv)) (6.2.16)

6.3 Neuro-fuzzy systems

The fuzzy inference is a an intelligent computing method based on the concepts of

fuzzy set theory, Lotfi A. Zadeh [69]. This method has many applications in variety

of domains like: control, time series prediction, robotics, systems modelling, and

pattern recognitions. The fuzzy rules represent a human knowledge, expressed in

natural language, using fuzzy words (in an approximate manner). With help of the

composition rules of inference it will be possible to formulate this knowledge of fuzzy

reasoning in mathematical relations. This new approach of the analysis of natural

physical systems allows us to:

• introduce the knowledge into a model system.
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• re�ne this knowledge by taking in consideration model errors.

The Fuzzy Inference Systems (FIS) are composed of a collection of rules which have

the general form:

If such Situation then such Conclusion.

A situation is characterized by certain number of expressions of the type x is A, where

x is a variable and A a label. It is necessary, for the operational phase, to interpret

the qualitative set to the quantitative set, or the subjective set with the objective

set. That is carried out primarily by the choice of the expression universe and the

membership functions which will de�ne precisely to which degree x is A. There are

two various types of FIS, which are mainly used:

- Mamdani, and

- Takagi-Sugeno and Kang.

In our thesis, the second type of FIS, Takagi-Sugeno and Kang model [67], is

used. The main di�erence between Mamdani and Sugeno is that the Sugeno output

membership functions are either linear or constant. This type is based on rules where

the antecedent is composed of linguistic variables and the consequence is represented

by a linear function of input variables. The most used form for this type of FIS

models is shown in the following equation, 6.3.1, in which the consequence constitutes

a linear combination of variables implied in the antecedent.

ifx1 is A1 and . . . . xn is An Then Y = p1 x1 + . . . + pn xn + p0 (6.3.1)

where:

xi: are input variables of the system

Y : is output variable of the system
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pi: real variables

Ai: are parameters of subsets (membership-functions), which de�ne the degree of

membership, between 0 and 1, of each point of the input space, corresponding to

linguistic labels.

The output of a Takagi-Sugeno and Kang model using Fuzzy Inference System

composed of m rules is formulated as a weighted average of the individual outputs,

yi : i = 1 . . . , m, provided by each rule, equation 6.3.2.∑
i=1,...,m wiyi∑
i=1,...,m wi

(6.3.2)

where wi: is the product of membership degrees of inputs xi for corresponding mem-

bership functions.

A Sugeno system is suited for modeling nonlinear physical phenomenon (process

systems) by interpolating between multiple linear models, because of the linear de-

pendence of each rule on the input variables of a system.

Fuzzy systems are knowledge-based models constructed from a collection of linguistic

IF-THEN rules, which need automatic tuning of their parameters like the center and

basis of membership functions . Many researchers in the fuzzy community have con-

sidered Neural Networks (NN) to provide for fuzzy models the capacity of automatic

parameters self-tune. They aim to conjugate and combine between learning ability

of NN and reasoning ability of FIS. In Neural Networks the information about

the system consist in the values of inputs and outputs without �xed model structure,

which is considered consequently as black-box model [50]. In this case the parameters

have no signi�cant physical sense (no interpretability), and no physical description

of their corresponding real systems. However, in fuzzy models, available prior knowl-

edge about the system allows the construction of knowledge-based models. With
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fuzzy logic method it is possible to introduce or integrate such prior knowledge of

the system into the mathematical model. After this introduction about these two ap-

proaches, it is necessary to notify that the hybridising between them (Neuro−Fuzzy

Systems) to improve the behaviour of their resulting models for either modelling or

classi�cation of systems, lead generally to the loss of the physical interpretation of

the various FIS' parameters. This noti�cation is given because the notion of the

Interpretability of FIS must be considered in such hybrid Neuro− Fuzzy Systems.

Otherwise, the resulting optimised models, which are knowledge-based models before

optimisation, loss the notion of knowledge and will be uninterpreted. To preserve

the notion of model-interpretation in case of neuro-fuzzy systems, it is necessary to

require some constraints on their optimisation methods.

In the next section, 6.4, hybrid supervised approach, Fuzzy Trimmed Mean Classi�ca-

tion (FTMC) algorithm is proposed. This approach is mathematical derivative-based

optimisation method, without introducing of Neural Networks. Trimmed mean-based

rules initialisation gives an interpreted optimised �nal classi�er-model in this ap-

proach.

6.3.1 Neuro-fuzzy systems architecture

In the preceding two sections, 6.2 and 6.3, both fuzzy logic systems and neural network

systems are described. The hybrid system known as neuro-fuzzy system has been

became worldwide tool for many researchers in this �eld and found its birth in the

increase of complexity of systems and their identi�cation. Di�erent architectures of

neuro-fuzzy system have been investigated by number of researchers.

In case of �rst order Takagi-Sugeno and Kang system, the fuzzy inference system,
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for two inputs x and y and one output z, can be presented as example of four rules.

Each input space is presented with two membership functions in the following way:

two membership functions A1 and A2 for the input space x and two membership

functions B1 and B2 for the input space y. Consequently we get a system, which

is described with four rules Ri : i = 1, . . . 4, in equation 6.3.3. The output level

zi of each rule is weighted by the �ring strength wi of the rule. The �ring strength

is wi = T (A(x), B(y)). Many operators T are possible, in this case T is AND

mathematical operation.

R1 : If xi is A1 and yi is B1 then z1 = p1 xi + q1 yi + r1.

R2 : If xi is A1 and yi is B2 then z2 = p2 xi + q2 yi + r2.

R3 : If xi is A2 and yi is B1 then z3 = p3 xi + q3 yi + r3.

R4 : If xi is A2 and yi is B2 then z4 = p4 xi + q4 yi + r4.

(6.3.3)

where A(.), B(.) are the membership functions for Inputs x and y. In �gure 6.6 the

X

Y

Layer 1 Layer 2 Layer 3 Layer 4
x, y

A1

A1

A2

A4

A3

Z

Figure 6.6: General connection structure of FIS for Neuro-Fuzzy model, in case of
four rules with linear consequents.

neurons of every layer are similar and have the same speci�c function. The �rst one
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is adaptive and calculate the membership degrees for di�erent membership functions,

which subdivides the corresponding input variable set. The corresponding function

for every gbellmf (generalised bell-shaped membership function) is given for x input

variable set as:

output = µAi
(x) =

1

1 + (x−b
a

)2c
(6.3.4)

where (a, b, and c): are parameters set.

The second layer calculate the product of all the incoming signals, each neurone's

output represents the �ring strength of its rule:

output = wi = µAi
(x) · µBi

(y), i = 1, 2. (6.3.5)

In the third layer each neuron has input variables: x, y and θ, θ: is parameters vector.

As output it gives the product of normalised �ring strength wi and rules outputs zi

as:

output = wizi =
wi

w1 + w2 + w3 + w4

· zi. (6.3.6)

In case of �rst order Takagi-Sugeno model, the functions zi, i = 1, . . , 4, have the

following expression:

zi = f(x, y, θ) = pix + qiy + ri. (6.3.7)

The last layer unit calculates the overall output:

output = Zi =
w1z1 + w2z2 + w3z3 + w4z4

w1 + w2 + w3 + w4

. (6.3.8)

All parameters of �gure 6.6 can be initialised using the prior knowledge about the

system.
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6.3.2 Neuro-fuzzy systems optimisation

The precedent section treated the general neuro-fuzzy models architecture. This neu-

ral architecture needs both structure and parameters to be designed, which should be

able to describe and model the corresponding real system. Optimisation procedure

of the builded neuro-fuzzy model can be accomplished by the optimisation of both

structure and parameters. Hybrid Neuro-Fuzzy Systems are under intensive investi-

gations. Such attention to them is mainly provoked by the combination of fuzzy sets

and rules initialisation using prior knowledge of system, and also learning algorithms

derived from neural networks theory. Fuzzy rules contain information generally in ra-

dial basis functions (RBF ) parameters, the experts can de�ne membership functions

of input set and rules output parameters (consequents) to design fuzzy systems. Neu-

ral Networks (NN) have the task to train these parameters for getting the optimised

model-parameters. Such neuro-fuzzy models have generally parameters divided in

two parts. The �rst one is the input-set parameters, which are called also nonlinear

parameters, these parameters describe the Gaussian functions. The second part is

the output-set parameters, which are called also consequent parameters, because they

describe the rules' consequents.

Model optimisation is the process to �nd parameters setting and model-archeticture,

which lead to the best performances. Usually, this kind of problems is solved by di�er-

ent techniques for model-parameters and model-archeticture. The �rst part of opti-

misation is called paramitrical optimisation, it deals with only the model-parameters.

Usually, this type of optimisation is divided it self in two other optimisation types:

the �rst type are derivative-based optimisation methods like descent methods and
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newton's methods, and the second type are non derivative-based optimisation meth-

ods like Genetic Algorithms (GA) and Random Search (RS ). The second part of op-

timisation is called structural optimisation, it deals with only the model-archeticture.

Usually this part treats the selection and projection of feature input-vectors, see sec-

tion 5.4, and also deals with the input space partitioning and clustering.

About the parametrical-optimisation, it is possible to create many hybrid algorithms,

which work together to deal with input and output parameters. Many hybrid algo-

rithms are known actually see [68, 32, 49, 40].

6.4 Notion of interpretability

This section describes the proposed supervised classi�cation approach, Fuzzy Trimmed

Mean Classi�cation (FTMC). It ful�lls the transparency (interpretability) of fuzzy

system and good accuracy, and allows the cooperation between expert rules and in-

duced rules. An initial fuzzy rules system is generated using the statistic's trimmed

mean method [17]. This method provides this algorithm a good initial values of the

centers and bases of the membership functions. In this approach, each class is clus-

tered independently from the other classes, and is modeled by the components of

gaussian functions. Some of known initialisation methods, such as grid-type parti-

tioning, build a complex and non-interpretable initial models and the optimisation

learning steps become computationally demanding and long. Statistic's trimmed

mean method can avoid infrequent observations data points and gives an optimal

model initialisation, which needs, after that, only a few train-epochs to reach the de-

sired level of performance. Thus it can be considered as a rapid model-identi�cation

development tool.



6.4. Notion of interpretability 131

The classical fuzzy rule-based classi�er-models consists of an interpretable if-then

fuzzy rules, each one describing one of some de�ned classes. In this section the goal

of study is not only to look for the classi�cation accuracy but it focuses on the design

of interpretable fuzzy rule based classi�er-model. The parameters of this classi�er-

model after its optimisation should have a physical signi�cance corresponding to the

real system. The notion of interpretability in system models based on fuzzy logic is

primordial. The interpretability of the parameters in optimised neuro-fuzzy models

without some constraints is not guaranteed. Hence real e�ort must be made to keep

the transparency in rule parameters. The proposed fuzzy classi�cation algorithm

(FTMC) to perform the EMG-based �nger-movements classi�cation has some ad-

vantages like: interpretability, transparency, distinguishable fuzzy sets, coverage and

simplicity. It will be compared with other known intelligent computational methods

to evaluate its performances.

6.4.1 Input fuzzy sets initialisation

Initial fuzzy rule base, section 6.3, is derived from n available input-output data pairs

(Xnf , Yn), the input Matrix Xnf = [Xij] , where i = 1, ..., n is number of measured

samples and j = 1, ..., f is number of features. First, proposed supervised FTMC

classi�cation method, see our publication [73], extracts initial fuzzy model from data

set using statistical trimmed mean method to obtain a set of initial rules. Second,

it applies optimisation algorithms to adapt its rules' parameters. Initial fuzzy model

can be de�ned using centres and radius values for di�erent classes. For this task the

mean value for each feature vector Fj and each class k is calculated without taking

in consideration the outlier samples. Fj = Xij ( i = 1, ..., nk) represents the feature
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of indices j for the class Ck, where nk denotes the number of samples for the class

Ck. The number of classes is K, where k = 1, ..., K . The number of samples for all

classes is n =
∑K

k=1 nk. In short description of this method, each feature vector of

matrix (label for each class) in the matrix Xnf is ordered from the smallest to largest

value, deleting a selected number of samples from each end of the ordered list, and

then averaging the remaining values, see example �gure 6.7. For this task we have

Figure 6.7: Mean of original data and mean of trimmed data.

to choose the trimming percentage β, 1− β denotes the percentage of values deleted

from each end of the ordered list, in this case β=0.9.

The mean of each feature vector Fj and for each class Ck is given as:

Vjk =
1

nk

nk∑
1=1

Xij (6.4.1)

This mean has an extreme sensitivity to each single outlier, hence there is a suspect to

take the mean vector Vij as a measure of centres. Outliers are infrequent observations

data points, which do not appear to follow the characteristic distribution of the rest
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of data. Statisticians have proposed a trimmed mean as solution for this problem.

The number of samples that will be deleted from both ends of the ordered label vector

is given as:

ndk = 2× round(nk × (1− β)) (6.4.2)

round is matlab command: it rounds the elements to the nearest integer.

This procedure lets us de�ne the coordinates of centres for the Ck classes in f multi-

dimensional space. For f=2, the samples of each class can be delimited with ellipses,

which have the above described centres and radius on each axis. In this example,

Figure 6.8: Trimmed mean method-based groups delimitation.

�gure 6.8, there are three classes corresponding to three di�erent �nger movements,

which are :thumb, pointer and middle. The parameters of each ellipsoid will be used

to generate the initial fuzzy sets. For this task generalised membership function,

equation 6.4.19 is chosen. Hence input fuzzy sets initialisation, using trimmed mean-

based for these data samples, will have the following partition, �gure 6.9, of the input

space. If zero order Takagi-sugeno model is chosen, then the consequent parameters
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Figure 6.9: Trimmed mean method-based input fuzzy sets initialisation.

of this classi�er-model are independent from input variables.

This approach can �nd a good starting point in proximity of the global minimum,

and consequently the learning-time of derivative-based optimisation methods will be

shorter, only few epochs of training are required. This procedure avoids also the

big changes in membership functions overlapping, which can lead to an inversion of

fuzzy sets. The initial input-space partition with this method ful�ls many criteria of

transparency and semantic properties [24] and [15].

• coverage: the all entry space is covered. That means the model is able to

perform an output for all input samples.

• semantic order relation: we have not inversion of fuzzy sets.
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6.4.2 Mathematical description

Consider the continuous-time nonlinear system of two inputs x, y and one output z

of dimension n.

xT = x1 , x2, . . . , xn

yT = y1 , y2, . . . , yn

Each input space is presented with two membership functions in the following way:

two membership functions A1 and A2 for the input space x and two membership

functions B1 and B2 for the input space y. Consequently we get a system, which

is described with four rules Rr : r = 1, . . . 4, equation 6.4.3. The output level zj

of each rule is weighted by the �ring strength wr of the rule. The �ring strength

is wr = T (A(x), B(y)). Many operators T are available, in this case T is AND

mathematical operation.

R1 : If xj is A1 and yj is B1 then z1 = p1 xj + q1 yj + r1.

R2 : If xj is A1 and yj is B2 then z2 = p2 xj + q2 yj + r2.

R3 : If xj is A2 and yj is B1 then z3 = p3 xj + q3 yj + r3.

R4 : If xj is A2 and yj is B2 then z4 = p4 xj + q4 yj + r4. (6.4.3)

where A(.), B(.): are the membership functions for Inputs x and y. The global output

of the system is the weighted average of all rule outputs, computed in equation 6.4.4

as:

Z =

∑
r=1,...,4 wr(x, y)zj∑

r=1,...,4 wr

(6.4.4)

The �rst order Takagi-Sugeno rule architecture is shown in the following diagram,

�gure 6.10. Where pi, qi and ri: are the linear parameter sets.

The �ring strength wr, r = 1, 2, 3, 4 of each rule is given as a T operator function
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Figure 6.10: Two inputs and four rules Takagi-Sugeno fuzzy inference system.

of the membership degrees:

w1 = T [µA1(x), µB1(y)].

w2 = T [µA1(x), µB2(y)].

w3 = T [µA2(x), µB1(y)].

w4 = T [µA2(x), µB2(y)].

where T : is the Operator function, in our case it presents the AND or product oper-

ator, and µAi(x), µBi(y): are membership degrees.

Then the overall output is expressed as a linear combination of the consequent pa-

rameters, equation 6.4.5:

Z =
w1z1 + w2z2 + w3z3 + w4z4

w1 + w2 + w3 + w4

(6.4.5)

or,

Z = w1z1 + w2z2 + w3z3 + w4z4. with wr =
wr∑

r=1,4(wr)
(6.4.6)
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6.4.3 Parameters identi�cation

By observing input-output data pairs of nonlinear physical phenomenon it is possible

to build a mathematical model with adapted parameters, which can identify our real

system. The purposes of system identi�cation can be: approximation, modelling [44]

or classi�cation [52].

The following �gure shows a schematic diagram of real system identi�cation where

outputs Z and Z∗ are both system and model outputs respectively. The identi�ed

mathematical model should be updated till the acceptable di�erence measure D =

Z −Z∗ is reached, �gure 6.11. In section 6.4.2 the continuous-time nonlinear system

Z* - Z

Real system to be identified

Builded Model

Identification procedure

Z* 

Z 

X

Figure 6.11: Schematic diagram for mathematical model identi�cation

of two inputs x, y and one output Z of dimension n is described in the following

mathematical model,6.4.7

Z = w1z1 + w2z2 + w3z3 + w4z4. (6.4.7)

The structure of this model is already de�ned empirically, this structure in fuzzy

inference system is determined by an expert who has enough knowledge about the

real system. There are many methods, which help us to de�ne the number of MFs
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and rules, such as clustering methods. Now it remains only the optimisation of

model parameters. This model is composed of two parameter sets, �rst are the

nonlinear parameters of the membership functions, A1, A2, B1, and B2. Second

the linear parameters of the consequent rules, pi, qi and ri, i = 1, 2, 3, 4. To

illustrate identi�cation methods for these two types of parameters, this study will

be divided in two parts, �rst identi�cation of linear parameters with consideration

that the nonlinear parameters are constant, and second identi�cation of nonlinear

parameters with consideration that the linear parameters are constant.

a) Linear parameters identi�cation

The expressions of the functions z1, z2, z3, and z4 in equation 6.4.7 are introduced

to get the following equation 6.4.8

zj = w1( p1 xj + q1 yj + r1) + w2( p2 xj + q2 yj + r2)

+w3( p3 xj + q3 yj + r3) + w4( p4 xj + q4 yj + r4).

or,

zj = (w1xj)p1 + (w1yj)q1 + (w1)r1 + (w2xj)p2 + (w2yj)q2 + (w2)r2

+(w3xj)p3 + (w3yj)q3 + (w3)r3 + +(w4xj)p4 + (w4yj)q4 + (w4)r4 (6.4.8)

This last equation 6.4.8 can be formulated in the following new equation 6.4.9

zj = f1(xj, yj)p1 + f2(xj, yj)q1 + f3(xj, yj)r1

+f4(xj, yj)p2 + f5(xj, yj)q2 + f6(xj, yj)r2

+f7(xj, yj)p3 + f8(xj, yj)q3 + f9(xj, yj)r3

+f10(xj, yj)p4 + f11(xj, yj)q4 + f12(xj, yj)r4 (6.4.9)
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fm(xj, yj): are the known functions of our input vector pairs {xj, yj}, where m:

represents the number of linear parameters.

Finally the output Z in equation 6.4.9 describes an output of a linear model, which

is generally given by the linearly parameterised expression, equation 6.4.10

Z = f1(u)θ1 + f2(u)θ2 + . . . + fm(u)θm (6.4.10)

where f1, . . ., fm: are known functions of u = [u1, . . ., uj]
T , uj = {xj, yj}, and

θ1, . . ., θm: are unknown parameters.

In equation 6.4.9 the linear parameters are pi, qi and ri, i = 1, 2, 3, 4. It is

considered that there are n measured data pairs [(xj, yj); zj] of the real system,

where j = 1, . . ., n. Our identi�ed model is presented in these following n linear

equations 6.4.11:

z1 = f1(u1)p1 + f2(u1)q1 + f3(u1)r1 + . . . + f10(u1)p4 + f11(u1)q4 + f12(u1)r4,

z2 = f1(u2)p1 + f2(u2)q1 + f3(u2)r1 + . . . + f10(u2)p4 + f11(u2)q4 + f12(u2)r4,

..............................................................................................,

..............................................................................................,

zn = f1(un)p1 + f2(un)q1 + f3(un)r1 + . . . + f10(un)p4 + f11(un)q4 + f12(un)r4,

(6.4.11)

In matrix form, the precedent equations can be written as:

MΘ = Z (6.4.12)

where M is a matrix of dimension n ×m:
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M =


f1(u1) . . . f12(u1)

. . .

. . .

f1(un) . . . f12(un)


Θ is a vector of unknown linear parameters of dimension 1×m = 12 to be identi�ed:

Θ = [p1, q1, r1, p2, q2, r2, p3, q3, r3, p4, q4, r4]
T

Z is an output vector of dimension 1× n:

Z = [z1, z2, ., ., ., zn]T

To identify this unknown nonlinear parameters vector it is necessary that the mea-

sured data pairs dimension of the system, should be greater than unknown parameters

dimension of its identi�ed model. This condition is veri�ed in this case (n ≥ 12,). If

M is square and nonsingular (its determinant is nonzero), then it is possible to solve

the equation: M Θ = Z, as:

Θ = M−1Z (6.4.13)

Unfortunately there is always, in real systems, a di�erence between the measured real

system response Z∗ and the identi�ed mathematical system response. This di�erence

can be described as the error e due to many external factors non identi�ed. Then to

represent the real output response, the error among e will be added in the following

way:

M Θ + e = Z∗ (6.4.14)

For each measured data pairs [(xj, yj), zj], j = 1, . . . , n, the error ej is given as: ej =

z∗j − zj(pi, qi, ri) = zj
∗ −

∑
m=1,12[M

T
jm Θm], j = 1... n, i = 1... 4, and m = 1, ..., 12.

The sum of squared error of the error vector e(Θ) = [e1, . . . , en]T represents the
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error in our identi�ed model response. This error is occurred in estimating unknown

linear parameters vector Θ, hence the sum of squared error is symbolised as E(Θ):

E(Θ) =
∑
j=1,n

(zj
∗ −

∑
m=1,12

[MT
jm Θm])2 = eT e. (6.4.15)

In matrix form, the precedent equation can be written as:

E(Θ) = (Z∗ −M Θ)T (Z∗ −M Θ). (6.4.16)

The sum squared error, E(Θ), de�ned in equation 6.4.15 is depending on the values of

the unknown linear parameters of vector Θ. The best parameter values of this vector

Θ, which is designed as Θ∗ corresponding to the minimum value of sum squared error

E(Θ).

Using Least Squares Estimator (LSE) method [63] it is possible to solve the precedent

equation 6.4.16 to reach this optimal solution Θ = Θ∗, which satis�es the normal

equation:

MT M (Θ∗) = MT Z. (6.4.17)

If MT M is nonsingular, then the optimal solution Θ∗ is unique:

Θ∗ = [MT Z]−1 MT Z. (6.4.18)

b) Nonlinear parameters identi�cation

The case of generalised bell-shaped membership function for the membership func-

tions, A1, A2, B1 and B2, �gure 6.10, is considered. These functions are de�ned

as:

A1,2(x) =
1

1 + (x−b11,12

a11,12
)2c11,12

(6.4.19)
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and

B1,2(y) =
1

1 + (y−b11,12

a11,12
)2c11,12

(6.4.20)

The nonlinear parameters of vector Ω for these four membership functions are given

respectively as:

Ω = [a11, b11, c11︸ ︷︷ ︸, a12, b12, c12︸ ︷︷ ︸, a21, b21, c21︸ ︷︷ ︸, a22, b22, c22︸ ︷︷ ︸]T (6.4.21)

In this case these parameters are considered unknown, and the linear parameters

vector, Θ = [p1, q1, r1, p2, q2, r2, p3, q3, r3, p4, q4, r4]
T is considered known. Ω

is a vector of unknown nonlinear parameters of dimension 1 × m = 12 (the same

dimension as linear parameters). Since the membership functions are continuous and

di�erentiable, the basic learning rule, which is the simple steepest descent method

discussed in section 6.2.3 is applied. Like manner as for linear parameters, the error

e(Ω) = [e1, . . . , en]T represents the error in our identi�ed model response. This

error is occurred in estimating unknown nonlinear parameters of vector Ω, hence the

sum of squared error is symbolised as E(Ω):

E(Ω) = E([a11, b11, c11︸ ︷︷ ︸, a12, b12, c12︸ ︷︷ ︸, a21, b21, c21︸ ︷︷ ︸, a22, b22, c22︸ ︷︷ ︸]T ) (6.4.22)

For each measured data pairs [(xj, yj), zj], j = 1, . . . , n, the error ej is given as:

ej = z∗j − zj(ast, bst, cst), st = 11, 12, 21 and 22.

where z∗j : is the measured output, and zj(ast, bst, cst): is the output of the builded

model. The gradient-based optimisation method described in section 6.2.3 can be

applied to identify each parameter of the vector Ω. Our objective function is E(Ω).

In iterative descent method, like steepest descent, the next values, Ωnext, of the vector

Ω is determined using a learning rate "step down" and the current point Ωnow in the
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direction of the gradient g:

Ωnext = Ωnow − ρg (6.4.23)

where ρ: represents a learning rate.

g: is a gradient vector that moves towards a local minimum Ω∗ of our objective func-

tion E : <n → <

Parameters identi�cation of vector Ω:

In the equation 6.4.19, the generalised bell-shaped membership function (gbellmf)

A1 has three unknown parameters, which are: a11, b11, and c11. The identi�cation of

each of them is given as:

(a, b, c)11,next = (a, b, c)11,now − ρ
∂ej

∂(a, b, c)11

(6.4.24)

∂ej

∂(a, b, c)11

= (z∗j − zj(ast, bst, cst))
∂zj(ast, bst, cst)

∂(a, b, c)11

(6.4.25)

If the equation 6.4.5 is considered, then we get:

∂zr(ast, bst, cst)

∂(a, b, c)11

=
∂

∂(a, b, c)11

(

∑r=4
r=1 wrzr∑r=4
r=1 wr

), (6.4.26)

where r: number of rules.

remark: don't confuse between zj, which is the measured system output and zr, which

represents the only rules' conclusion.

Further computations of equation 6.4.26 lead to �nal derivative results of A1(x) with
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respect to parameters (a, b, c)11 as:

∂A1(x)

∂a11

=
2c11

a11

· (1− A1(x)) · A1(x) (6.4.27)

∂A1(x)

∂b11

=
2c11

a11

· (x− b11

a11

)2c11−1 · (A1(x))2 (6.4.28)

∂A1(x)

∂c11

= −2c11 · (
x− b11

a11

)2c11−1 · (A1(x))2 (6.4.29)

In the same way, the �nal derivative results of A2(x) with respect to the parameters

(a, b, c)12 is given as:

∂A2(x)

∂a12

=
2c12

a12

· (1− A2(x)) · A2(x) (6.4.30)

∂A2(x)

∂b12

=
2c12

a12

· (x− b12

a12

)2c12−1 · (A2(x))2 (6.4.31)

∂A2(x)

∂c12

= −2c12 · (
x− b12

a12

)2c12−1 · (A2(x))2 (6.4.32)

The �nal derivative results of B1(y) with respect to the parameters (a, b, c)21 is given

as:

∂B1(y)

∂a21

=
2c21

a21

· (1−B1(y)) ·B1(y) (6.4.33)

∂B1(y)

∂b21

=
2c21

a21

· (y − b21

a21

)2c21−1 · (B1(y))2 (6.4.34)

∂B1(y)

∂c21

= −2c21 · (
y − b21

a21

)2c21−1 · (B1(y))2 (6.4.35)

At the end the �nal derivative results of B2(y) with respect to the parameters (a, b, c)22

is given as:

∂B2(y)

∂a22

=
2c22

a22

· (1−B2(y)) ·B2(y) (6.4.36)

∂B2(y)

∂b22

=
2c22

a22

· (y − b22

a22

)2c22−1 · (B2(y))2 (6.4.37)

∂B2(y)

∂c22

= −2c22 · (
y − b22

a22

)2c22−1 · (B2(y))2 (6.4.38)
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6.4.4 Complexity and interpretability consideration in both

FSC and FTMC models

Two EMG surface electrodes are placed on two muscle groups, palnaris longus (channel1)

and extensor digitorum (channel2), the locations of electrodes on the subject's arm

is given in �gure 6.12. From the input feature space, the classi�er must be able

to classify the three output classes exploiting the information in EMG signal mea-

surements. For each channel the signal was recorded using a single bipolar surface

electrode pair. The signal was sampled at a rate of 4Khz using A/D board in an IBM

Figure 6.12: Recording of EMG signals using two pairs of surface-electrodes

PC/AT compatible microcomputer. This algorithm is developed with MATLAB 6.5

and is performed in a PC-based o�-line process. The human subject was asked to

produce a number of continuous movements, 34 single contraction periods are sepa-

rated from the corresponding sets of continuous movements. Initial 400ms signal part

of each single contraction period is extracted from the raw signal considering de�ned

threshold relative to noise standard-deviation value, see sections 4.2 and 7.3. These

extracted signals are analysed using Short Time Fourier Transform (STFT ). This

analysis method gives a measure of both time and frequency information for short

signal segments, see section 4.4.4.

Extraction of relevant features, see section 4.4.4.c, needs the use of spectrum analysis

based time-frequency domain. Time-frequency analysis based on short-time Fourier



146 6.0 Performances of proposed FTMC algorithm

transform (STFT ), is a form of local Fourier analysis that shows the changes of power

spectral density (PSD) of EMG signals during time. This method leads to a better

solution to design feature extraction, see section 4.4.4.c. The nth order of frequency

moment distribution at time t is de�ned as:

Mn(t) =
∑

k

ωn
k |STFT (t, k)| (6.4.39)

where Mn(t): is the nth moment of the frequency distribution at time t, n: order and

ω: frequency.

Using two channels, some EMG training and test data, from �ltered raw EMG signal

between 30Hz and 250Hz are prepared see sections 4.3.1 and 7.2. Three classes

labelled 1, 2 and 3 have 51 train-samples and 51 test-samples. The distribution of

all samples in 2D dimensional space, Channel1 and channel2, is shown in �gure 6.13.

Also train and test samples distribution is presented in �gure 6.14.

Figure 6.13: Global samples distribution
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Figure 6.14: Train and test samples distribution.

a) FTMC fuzzy classi�er-model

The samples of each class for these all train and test data, �gure 6.13, can be delimited,

according to trimming percentage β = 0.9. these delimitations are done with ellipses

using described Trimmed Mean Inisialisation method (TMI), see section 6.4.1. De-

rived ellipses for only train samples are presented in �gure 6.15. The parameters,

Figure 6.15: Ellipses derived from
TMI algorithm for train-samples.

Figure 6.16: Input fuzzy sets initiali-
sation using FTMC algorithm.
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centres and radius, of each ellipsoid will be used to generate the initial fuzzy sets.

For this task the generalized bell membership function is chosen. Ellipsoids-based

input fuzzy sets initialisation for train data, which gives us the partition of our in-

put train-samples space is presented in �gure 6.16. Now, after using Trimmed Mean

Inisialisation method (TMI), it is possible to build, from data, a compact fuzzy clas-

si�er rules with singleton consequents to get zero-order T.S. model. In this method

the number of rules to be generated needs to be determined, a priori, which are in

this case three rules corresponding to our three classes. This builded fuzzy model has

three membership functions for each input. The singleton output consequents of this

model use the following classi�cation rules, 6.4.40

Classk =


1 if Zk < 1, 5

2 if 1, 5 ≤ Zk < 2, 5

3 if Zk ≥ 2, 5

(6.4.40)

The input fuzzy set parameters of the initial model, �gure 6.16, are given in table

6.2. This initial model with three rules, which describes 3 classes with singleton con-

Table 6.2: Gbellmf membership functions Parameters of initial fuzzy FTMC
classi�er-model

Input 1 gbellmf parameters Functions

A1 0.351 0.702 -0.946 gbellmf A1
A2 0.324 0.647 -0.285 gbellmf A2
A3 0.960 1.921 1.463 gbellmf A3

Input 2 gbellmf parameters Functions

B1 1.510 3.020 0.319 gbellmf B1
B2 1.169 2.337 -0.316 gbellmf B2
B3 1.122 2.244 0.529 gbellmf B3

sequents, has average classi�cation accuracy of 80.3922% giving "10" misclassi�ed

samples on the test data, �gure 6.17. With more detailed study, it is possible, not
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Figure 6.17: Misclassi�ed samples of initial fuzzy FTMC classi�er-model

only, to locate the global misclassi�ed samples for all three classes, but also the mis-

classi�ed samples for each class. For the �rst class, thumb �nger �exion, there are "3"

misclassi�ed samples ( 82.3529%), which are classi�ed as pointer �nger movement.

About the second class, pointer �nger �exion, there is only "1" misclassi�ed sample,

or 94.1176% correct, which is classi�ed as thumb �nger movement. The third class,

middle �nger �exion, has "6" misclassi�ed samples, or 64.7059 % correct, which are

classi�ed as pointer �nger movement.

After generating the initial TMI partitioning of input space using FTMC-classi�er

model, the following adaptation method is applied to perform and increase the re-

sults accuracy of this classi�er-model. This optimisation is done in two steps: the

�rst one is optimisation of premise parameters (membership functions parameters)

using Gradient Descent (GD), see section 6.4.3.b. The second step is the optimisation
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of the linear parameters (Consequence parameters) using linear Least Squares Esti-

mator (LSE), see section 6.4.3.a. Initial proposed FTMC classi�cation algorithm,

described above has found a good starting point in proximity of the global minimum,

which had a classi�cation accuracy equal to 80.3922%. Hence we expect that the

adaptation of this initial model will need the application of only a few optimisation

epochs and consequently will not have a big e�ect on the overlap of membership

functions and also will not be time-consuming. The optimisation, during only four

epochs, of our initial FTMC-classi�er model, �gure 6.16, on both antecedents and

consequents parameters using GD and LSE respectively, gives a new repartition of

input space. This repartition is presented, with gbellmf membership functions, in

�gure 6.18. These new optimised functions don't present a big di�erence in compar-

Figure 6.18: Gebellmf functions after 4 epochs FTMC optimisation

ison with their initial functions. Hence the Semantic order relation (no inversion of

fuzzy sets) see section 6.4.1, is conserved. We obtain consequently the new classi�ca-

tion accuracy equal to 88.2353% giving 6 samples of misclassi�cation, they were "10"
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before optimisation on the data test see �gure, 6.19. It is possible also to locate the

Figure 6.19: Misclassi�ed samples of optimised FTMC classi�er-model

global misclassi�ed samples, after optimisation, for all these three classes, and the

misclassi�ed samples for each class. For the �rst class (thumb �nger �exion) there

are "3" misclassi�ed samples, or 82.3529%, which are classi�ed as pointer �nger �ex-

ion. About the second class, pointer �nger �exion, all samples are classi�ed correctly

(100.0% correct). The third class, middle �nger �exion, has "3" misclassi�ed samples,

or 82.3529 % correct, which are classi�ed as pointer �nger movement.

The corresponding rules to the new input fuzzy sets of optimised FTMC classi�er-

model and their singleton output consequents are given in equation 6.4.41.

Classk =


1 if x is A1 and y is B1 then Zk = 0.686 < 1, 5

2 if x is A2 and y is B2 then 1, 5 ≤ Zk = 2.305 < 2, 5

3 if x is A3 and y is B3 then Zk = 3.173 ≥ 2, 5

(6.4.41)

All optimised parameters, nonlinear parameters and linear parameters, belong to the

de�ned domain-space of the real system. There is interpretability and transparency
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for the obtained optimised fuzzy FTMC classi�er-model. Its parameters values have

a clear physical meaning.

b) Fuzzy subtractive clustering (FSC )

The subtractive clustering algorithm is proposed by Chiu (1994). It estimates the

number of clusters and the cluster centres in a set of data by an iterative procedure.

The clusters obtained are used to initialise the fuzzy sets, for ANFIS-model. The

results, model performances and the notion of interpretability, will be compared with

those of our allgorithm. The Matlab command genfis2, in fuzzy logic toolbox to gen-

erate the initial model with subtractive clustering, uses the �rst order Takagi-Sugeno

(T.S.) model. After ANFIS optimisation method, �gure 6.20, the classi�cation accu-

racies for di�erent epochs: 5, 20 and 50 epochs, are equal to 86.2745% 88,2353% and

90.1961% giving 7, 6 and 5 misclassi�ed samples respectively on the data test. The

Figure 6.20: ANFIS Optimisation of input fuzzy sets for Subtractive Clustering
(FSC ) method
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obtained fuzzy model with Subtractive clustering method hasn't a physical meaning

and is not interpretable, equation 6.4.42. The consequent parameters of the �ve rules

in optimised �rst order "T.S." model are given in equation 6.4.42.

Classk =



1 if x is A1 and y is B1 then Zk = −1.521 0.6723 2.014

2 if x is A2 and y is B2 then Zk = −1.081 0.3386 − 0.215

3 if x is A3 and y is B3 then Zk = −0.0390 0.0102 3.072

4 if x is A3 and y is B3 then Zk = 0.7526 − 0.1067 1.76

5 if x is A3 and y is B3 then Zk = −2.512 1.537 3.805

(6.4.42)

In the following table 6.3, some characteristics of both methods, FSC and FTMC,

are resumed in comparison form. .

Table 6.3: FSC and FTMC classi�er-models characteristics comparison
Our approach Sub. Clustering

Mf. Typ. Gbellmf Gaussmf

Nb. Fuzzy sets In-1 3 5
Nb. Fuzzy sets In-2 3 5

Nb Parmtr. In 18 20
Consequent typ. Singleton linear
Nb Parmtr. Out 3 15
Nb. of rules 3 5

Interpretability yes no
Training(epochs) 4 20
Accuracy(%) 88,2353 88,2353

6.4.5 Conclusion

The proposed fuzzy classi�cation algorithm, to perform the EMG signals-based �nger-

movements classi�cation, has several advantages that motivate the use of fuzzy sys-

tems like: interpretability, transparency, distinguishable fuzzy sets, coverage and sim-

plicity. This algorithm extract fuzzy rules from measured real system data set, which
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use trimmed mean measure to avoid infrequent observations data points. It gives an

optimal model initialisation, which needs after that only 4 train-epochs to reach the

same performance as with FSC, which needs 20 epochs.

A fast and practical method for classi�cation with a simpli�ed fuzzy classi�er-model

is developed. The structure and parameters, of this proposed fuzzy FTMC classi�er-

model, are simultaneously optimized. Moreover this model does not loss its inter-

pretability.

6.5 Comparison btweenMLP, RBF, LVQ and FTMC

Three intelligent computational algorithms will be used to perform the classi�cation

of a new considered real system, which is a discrimination of four di�erent hand

movements according to their corresponding EMG signals. Intelligent computational

algorithms used in this section are those based on neural networks and neuro-fuzzy

networks like Multi-Layer Perceptron (MLP ), Radial Basis Networks (RBF ) and

Learning Vector Quantization network (LV Q). The purpose of this section is to illus-

trate these various intelligent computational algorithms and to compare them with

the performance of proposed FTMC fuzzy classi�er-algorithm, see our publication

[73]. EMG signal pre-processing operation, see section 4.4.4, is performed using spec-

trum analysis based on Short Time Fourier Transform (STFT ). With this method it

is possible to exploit and to quantify the behaviour of dynamic information presented

in EMG signals and to design characteristic (feature) vectors. These vectors can

perform a relevant features that lead to a good discrimination of these four di�erent

classes of hand movements. The function, which describes the second order moment,

(M2), is used as feature for the further discrimination task. The de�nition of this
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function is given in equation 6.4.39 section 6.4.4.

6.5.1 Proposed FTMC classi�er-model

a) Initial fuzzy (FTMC ) classi�er-model

Figure 6.21: Global samples distribution of feature M2.

Since all training and test data in the case of Moment of second order feature (M2)

are prepared, �gures 6.21 and 6.22, the accuracy of fuzzy FTMC classi�er-model ac-

cording to trimming percentage β = 0.9 will be performed. The clusters (ellipses)

derived from TMC algorithm for the training samples of each class In 2D space (two

channels), corresponding to four classes: thumb �nger �exion, pointer �nger �exion,

middle �nger �exion and hand close movements are presented in �gure 6.23. The

parameters of each ellipse will be used to generate the initial input-sets of FTMC

classi�er-model, for this task the generalised bell membership function (gbellmf) is

chosen. FTMC-based input fuzzy sets initialisation for train data gives us the fol-

lowing partition of the input space, �gure 6.24. You have obviously observed in this
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Figure 6.22: Train and test samples distribution of feature M2.

�gure the existence, in input-2, of redundant sets (similar fuzzy sets). these redun-

dant fuzzy sets can be removed using a similarity measure [61]. This initial model

with four rules, which describes four classes with singleton consequents, has average

classi�cation accuracy of 79.4118% giving "14" misclassi�cations on the test data,

�gure 6.25. It is possible to locate the misclassi�ed samples for each class. For the

�rst class, thumb �nger �exion, there are "5" misclassi�ed samples, or 70.5882% cor-

rect, which are classi�ed as pointer �nger movement. About the second class, pointer

�nger �exion, there are also "3" misclassi�ed samples, or 82.3529% correct, which

are classi�ed as middle �nger movement. The third class, middle �nger �exion, has

only "4" misclassi�ed sample or 76.4706% correct, which is classi�ed as pointer �nger

movement. the last class, hand closing, has "2" misclassi�ed samples, or 88.2353%

correct, which are classi�ed as middle �nger movement.
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Figure 6.23: Ellipses derived from
TMC algorithm for train-samples.

Figure 6.24: Input fuzzy sets initiali-
sation using FTMC classi�er-model.

Figure 6.25: Misclassi�ed samples of initial fuzzy FTMC classi�er-model for test
data
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b) Optimised FTMC classi�er-model

Optimisation procedure is applied in two steps. The �rst step concerns nonlinear

parameters using the gradient, see section 6.4.3.b. The second step concerns the op-

timisation of linear parameters (consequent parameters) with linear Least Squares

Estimator (LSE), see section 6.4.3.a. Initial FTMC classi�cation algorithm, de-

scribed above has found a good starting point in proximity of the global minimum.

This initial classi�er-model had a classi�cation accuracy equal to 79.4118%. Hence

the farther application of a few optimisation epochs will not have a big e�ect on over-

lap of the membership functions and will not be time-consuming. The optimisation,

during only four epochs, of the initial FTMC-classi�er model, �gure 6.24, on both

antecedents and consequents parameters using GD and LSE respectively, gives a new

repartition of input space. This repartition is presented in �gure 6.26. We obtain

Figure 6.26: New gebellmf functions after 4 epochs FTMC optimisation

consequently the new classi�cation accuracy equal to 86.7647% giving 9 samples of

misclassi�cation. They were "10" misclassi�ed samples before optimisation, on the
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Figure 6.27: Misclassi�ed samples of optimised FTMC classi�er-model during 4
epochs

data test, �gure 6.27. All these results are resumed in the following �gure 6.28. After

optimisation of these four initial Gebellmf functions, the following results are ob-

tained:

For the �rst class, thumb �nger �exion, there is "1" misclassi�ed sample or 94.1176%

correct, which is classi�ed as pointer �nger movement. About the second class, pointer

�nger �exion, there is "1" misclassi�ed sample, which is classi�ed as thumb move-

ment, and "2" samples as middle �nger �exion ,82.3529% correct. The third class,

middle �nger �exion, has "3" misclassi�ed samples or 82.3529 % correct, two of them

are classi�ed as pointer �nger movement, and one as HC. The last class ,hand clos-

ing, has "2" misclassi�ed samples or 88.2353% correct, which are classi�ed as middle

�nger movement. The corresponding rules to the fuzzy sets of optimised FTMC



160 6.0 Performances of proposed FTMC algorithm

Figure 6.28: FTMC classi�er-model: Correct- and mis-classi�ed samples for each
class and the interferences between them

classi�er-model and their singleton output consequents are given in equation 6.5.1.

Classk =


1 if x is A1 and y is B1 then Zk = 0.4436 < 1, 5

2 if x is A2 and y is B2 then 1, 5 ≤ Zk = 1.522 < 2, 5

3 if x is A3 and y is B3 then 2, 5 ≤ Zk = 3.267 < 3, 5

4 if x is A4 and y is B4 then Zk = 4.072 ≥ 3, 5

(6.5.1)

6.5.2 Multi layer perceptron classi�er-model

This network is used in many di�erent types of applications, its architecture has a

large class of network types with many di�erent topologies and training methods,

see section 6.2. The number of neurons in hidden layer is determined based on their

performance in training process. For one-neuron output-layer, log sigmoid transfer

function logsig is used, which gives an output in the range of 0 to 1. The output

range between 0 and 1 will be divided in four ranges, since there are four classes to

be identi�ed, see Table 6.4. The MLP Network is trained, during 100 epochs, with
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Table 6.4: One-neuron output-layer de�ned with log sigmoid transfer function
(logsig), that is divided in four ranges between 0 and 1

classes Target Output Output range Type of Movement

Class1 0.125 0.00 - 0.25 Thumb �nger
Class2 0.375 0.25 - 0.50 Pointer �nger
Class3 0.625 0.50 - 0.75 middle �nger
Class4 0.875 0.75 - 1.00 Hand closing

Table 6.5: MLP -model classi�cation accuracy (class- and average-accuracy), for dif-
ferent hidden layer neuron numbers. (M2 time-frequency feature)

Classi�cation accuracy (test data) %

number of Thumb Pointer Middle HC average
neurons

10 94.11 70.58 88.23 94.11 86.76
20 94.11 58.82 94.11 88.23 83.82
50 94.11 70.58 82.35 94.11 85.29

Number of correct classi�ed instances /17

number of Thumb Pointer Middle HC Total
neurons

10 16 12 15 16 59/68
20 16 10 16 15 57/68
50 16 12 14 16 58/68

di�erent number of neurons in hidden layer: 10, 20 and 50 neurons. The obtained

classi�cation accuracy results are presented in table 6.5, in which the increasing of

neurons-number in hidden layer doesn't enhance always the accuracy. More detailed

results, �gure 6.29, are given for the best obtained MLP classi�er-model, which has

10 neurons. In the �rst class, thumb �nger �exion, there is "1" misclassi�ed sample,

or 94.11% correct, which is classi�ed as pointer �nger movement. About the second

class, pointer �nger �exion, there are "2" misclassi�ed sample, which are classi�ed as
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Figure 6.29: Misclassi�ed samples of optimised MLP classi�er-model during 100
epochs

thumb movement, and "2" samples as middle �nger �exion and "1" sample as "HC"

(70.58% correct). The third class, middle �nger �exion, has "2" misclassi�ed samples,

or 88.23 % correct, which are classi�ed as "HC" movement. The last class, hand

closing, has only "1" misclassi�ed sample, or 88.2353% correct, which is classi�ed as

pointer �nger movement.
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6.5.3 Radial Basis Networks classi�er-model

The RBF Network is a one hidden layer neural Network with several forms of radial

basis activation functions, like Gaussian function. The output layer of this type of

network is linear. Gaussian functions are monotone and their centre and radius are

the parameters of the RBF -model.

RBF networks have been applied for many applications including approximation

[29], modelling [66] and classi�cation [21], more details see [55] [11]. In classi�cation

case the outputs layer correspond to a classes. This method exist in MATLAB tool

as "newrb" command for which the training implementation is the orthogonal least

squares (OLS) learning algorithm [13]. The method of creating neurons or centres

one at a time (newrb), is used. In each iteration the input vector is applied to create

a new neuron, then the error of the new network is checked, if it is not low enough the

next neuron is added. This procedure is repeated until the error goal is met, or the

maximum number of neurons is reached. So is possible to �nd the smallest network

that can solve the problem within a given error goal. The rate of classi�cation is

depending on the hidden unit spread values. Di�erent values for spread parameters

between 0.5 and 2.5 are given with a step of 0.2. The aim is to �nd the optimal value

of spread, which is in this case equal to 0.5 and 0.7 see �gure 6.30.

One of these two best spread values is chosen. The RBF -classi�er model is built and

tested using M2 extracted feature. Classi�cation results are presented in �gure 6.31.

The global classi�cation accuracy is equal to 83.82 % giving "11" misclassi�ed sam-

ples. More detailed results for this best obtained RBF classi�er-model, with spread

value equal to 0.7, are given. In the �rst class, thumb �nger �exion, there is "1" mis-

classi�ed sample, or 94.11% correct, which is classi�ed as pointer-�nger movement.
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Figure 6.30: Average accuracy according to di�erent spread values of RBF network.
(For M2 time-frequency domain feature)

Figure 6.31: Misclassi�ed samples of RBF -classi�er-model
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In the second class, pointer �nger �exion, there are "2" misclassi�ed sample, which

are classi�ed as thumb-�nger movement, and "2" samples as middle-�nger �exion

(76.47% correct). The third class, middle-�nger �exion, has "2" misclassi�ed sam-

ples, or 88.23 % correct, which are classi�ed as pointer-�nger movement. The last

class, hand closing, has only "4" misclassi�ed samples, or 76.47% correct, which are

classi�ed as middle �nger movement. All these results are resumed in the following

�gure 6.32.

Figure 6.32: RBF classi�er-model: Correct- and mis-classi�ed samples for each class
and the classi�cation-interferences between them

6.5.4 Learning Vector Quantization classi�er-model

Learning Vector Quantization [37] [38] networks can classify any set of input vectors

like non linearly separable sets of input vectors. Its architecture resembles to that

of unsupervised competitive learning network, except that each output is assigned

to a target class and works in two steps. In �rst step it uses an unsupervised data

clustering method to locate several clusters. In second step it optimises the cluster
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centres. The number of clusters can be speci�ed a priori or determined via cluster

techniques. It is able to reduce large data sets to a smaller number of codebook

vectors (cluster centres) suitable for data compressing. LV Q network used in this

work has four neurons in the �rst competitive layer and one neuron for each class in

the second linear layer. After 15 training epochs, the optimal number of neurons in

competitive layer found is 12 or 17 neurons, �gure 6.33. . The value of 12 neurones

Figure 6.33: LV Q classi�er-model: Average accuracy according to competitive neu-
rones number For M2 time-frequency domain feature

is chosen to built our LV Q classi�er-model, then this model is optimised during 100

epochs. This optimisation leads to the following classi�cation results, �gure 6.34 . In

the �rst class, thumb-�nger �exion, there is no misclassi�ed samples, or 100% correct.

In the second class, pointer-�nger �exion, there are "5" misclassi�ed samples, which

are classi�ed as thumb-�nger movement, and "1" sample as middle-�nger movement

(64.70% correct). The third class, middle-�nger �exion, has no misclassi�ed samples

(100 % correct). The last class, hand closing, has only "2" misclassi�ed samples, or

88.23% correct, which are classi�ed as middle-�nger movement. All these results are

resumed in the following �gure 6.35.
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Figure 6.34: Misclassi�ed samples, of optimised LV Q classi�er-model during 100
epochs

Figure 6.35: LVQ classi�er-model: Correct- and mis-classi�ed samples for each class
and the classi�cation-interferences between them
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6.5.5 Classi�cation accuracy comparison

In this section the previous four studied intelligent computational classi�cation meth-

ods, MLP, RBF and LV Q, with the proposed supervised FTMC classi�cation al-

gorithm will be compared. In this case the extracted M2 time-frequency feature is

used. Top �gure shows the methods results comparison for each class of hand move-

ment classi�cation. Bottom �gure shows methods performance comparison for global

classi�cation. Following �gure 6.36 resumes all previous results. It's important to re-

member that this proposed approach has needed only 4 training epochs in comparison

with 100 training epochs for other methods.

Figure 6.36: Classi�cation accuracy comparison of MLP , RBF , LV Q and proposed
FTMC algorithm with extracted M2 time-frequency feature.

6.5.6 Conclusion

In case of dynamical complex systems, like forearm EMG signals recognition, intelli-

gent computational methods show their e�ciency to deal with such complex systems
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and give good classi�cation-models.

The strategy to choose between di�erent classi�cation methods is of great impor-

tance. In case of on-line prosthesis control or exoskeleton devices control, the needed

time for signal acquisition, then for processing till decision control should be short.

Therefor the choice decision of this method to use for classi�cation should considers

both time consuming and performance. For these considerations this fuzzy FTMC

classi�er-algorithm is proposed for such application like surface EMG signals classi�-

cation. As it is proved in this section 6.5, this algorithm presents acceptable results.

Its advantage can be seen in optimisation methods, which are simple and not time

consuming, like Gradient Descent (GD) and Least Squared Error (LSE), and also

utilisation of simple Trimmed Mean method for determination of initial input fuzzy

sets (initial classi�er-model structure).
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Chapter 7

In�uence evaluation of important

parameters

7.1 Introduction

After completing the Study of EMG signal processing phases and classi�cation pro-

cedures, this �rst part of thesis will be �nalised by some di�erent real application

studies. This chapter will consider the in�uence or the e�ect of important parame-

ters on classi�cation accuracy. The measurement of surface EMG signals is depending

on di�erent factors. Hence the recognition of these signals corresponding to their mus-

cle dynamics has to take in consideration the following factors, which will be studied

in details:

a) E�ect of �lter frequency band: di�erent �lter frequency bands will be applied

to test their e�ect on classi�cation performances.

b) E�ect of noise threshold level: di�erent noise threshold levels based on noise's

standard deviation will be tested and compared

171
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c) E�ect of EMG signal length and sampling frequency: di�erent sampling fre-

quencies will be tested also in combination with di�erent EMG signal lengths.

For an available conclusions, di�erent classi�cation methods are considered, three

methods, and also seven di�erent features are used. Taking in consideration the re-

sults studied in section 4.4. These features are those extracted from EMG signals

time-frequency analysis:

- zero order moment (M0 ).

- �rst order moment (M1 ).

- second order moment (M2 ).

- Central frequency (Fcnt).

- Frequency variance (Fvar).

- Frequency standard deviation (Fstd).

- Energy of signal (Eng).

Di�erent intelligent computational classi�cation methods are tested to get also more

available results. These methods, described in chapter 6 are: Radial Basis Function

Networks (RBF ), Fuzzy Subtractive Clustering (FSC) and proposed fuzzy trimmed

mean classi�er-algorithm (FTMC).

The reason that incited us to use these di�erent classi�cation methods is to con�rm

if the in�uence of each parameter is depending on classi�cation-method or not. If

the in�uence of a parameter changes between these methods, then it's not possible

to get a conclusion about the in�uence of this parameter. Otherwise if this in�uence

of a parameter is the same for all classi�cation methods, in this case it's possible for

us to conclude which type of in�uence has this parameter. Before the beginning

of mathematical study, it is preferable, as we believe, to show and to explain these
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Figure 7.1: Butterworth-, chebyshev-1 - and Elliptic-�lter frequency bands.

Figure 7.2: Noise threshold level and EMG signal length.
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parameter e�ects using only schematic procedure. Figure 7.1 presents three �lter fre-

quency bands using butterworth, chebyshev-1 and Elliptic �lters. The two following

parameters: noise threshold level and EMG signal length, are presented in �gure 7.2

7.2 Frequency Bandpass e�ect

The study of signal �ltering to remove undesired signals, which contribute to drown

the important information in the signal, is described in section 4.3.6. The choice of

the �lter type and its order is based on the study did also in section 4.3.6. The recog-

nition of this signal is depending on its information contents, if this information is

kipped inside the signal after �ltering, then the signal recognition accuracy increases,

otherwise it will be worse. The objective of this section is to show the e�ect of �lter-

ing and to get the tools of the best �ltering strategy. In the literature, it is known

that the �lter frequency band to eliminate undesirable noise frequencies is given in

the range of 20Hz and 500Hz. Through the study of this section, we will have the

possibility to conclude if this pass-band frequency is always useful.

Three di�erent frequency pass-bands, 10-300Hz, 10-500Hz and 10-800Hz, are selected

to be tested for all our seven features described above. These seven di�erent features

are divided also in three di�erent groups according to their common behaviours re-

garding these frequency-bands. The �rst group is composed of the three �rst features:

M0, M1 and M2. The second group is composed of the next three features: Fcnt,

Fvar and Fstd. The last group is presented with only one feature: Eng. The perfor-

mances of each group are calculated for all the three frequency-bands de�ned above.

In this way it will be possible to look for the frequency-band for each feature group,

which gives the best classi�cation performance.
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7.2.1 Classi�cation performance with RBF -based approach

Using RBF classi�cation method, �gure 7.3, it can be seen that the �rst feature group

(M0, M1 and M2 ) has good global classi�cation performance in the frequency-band

of 10-300Hz. For the second features group (Fcnt, Fvar and Fstd) the frequency-band

of 10-800Hz gives the best global classi�cation performance. The global classi�cation

performance of third feature group, Eng, seems unsensible to the frequency-band, it

gives almost the same performances for these three frequency bands. These results

are obtained in the case of four di�erent spread values between 0.4 and 1.6 with a

step of 0.4 for these seven features.

Figure 7.3: Filter frequency Pass-band e�ect on classi�cation performance using RBF
classi�cation method for �exion movements of three �ngers: Thumb, pointer and
middle.
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7.2.2 Classi�cation performance with FSC -based approach

Like with RBF method, FSC classi�cation method, �gure 7.4, has almost the same

results. The �rst group-feature (M0, M1 and M2 ) has best classi�cation perfor-

mance in the frequency-band of 10-300Hz. The best classi�cation performance for

the second group-feature (Fcnt, Fvar and Fstd) is given by frequency-band of 10-

800Hz. The classi�cation performance of third feature group, Eng, seems unsensible

to the frequency-band, it gives almost the same performances for these three fre-

quency bands. These results are obtained in the case of four di�erent radius values

between 0.2 and 0.8 with a step of 0.2 for these seven features.

Figure 7.4: Filter frequency Pass-band e�ect on classi�cation performance using FSC
classi�cation method for �exion movements of three �ngers: Thumb, pointer and
middle.
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7.2.3 Classi�cation performance with FTMC algorithm

Proposed algorithm FTMC gives, Like with RBF and FSC methods, the same re-

sults of classi�cation performances, which are shown in �gure 7.5. For the �rst feature

group (M0, M1 and M2 ) the best classi�cation performance has been found in the

frequency-band of 10-300Hz. The best classi�cation performance for the second fea-

ture group (Fcnt, Fvar and Fstd) is given by frequency-band of 10-800Hz. The clas-

si�cation performance of third feature group, Eng, seems unsensible to the frequency-

band, it gives almost the same performances for these three frequency bands. These

results are obtained in the case of four di�erent trimming percentage, β, values be-

tween 0.64 and 0.94 with a step of 0.1 for these seven features.

Figure 7.5: Filter frequency Pass-band e�ect on classi�cation performance using pro-
posed FTMC classi�cation algorithm for �exion movements of three �ngers: Thumb,
pointer and middle.
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7.2.4 Conclusion

It is possible for us to conclude now, after these almost same results found with these

three di�erent classi�cation methods and seven di�erent features, that the optimal

frequency band is depending on the nature of the feature. The study in this section

using three di�erent classi�cation methods and seven features gives the optimal fre-

quency band 10-300Hz for the �rst group (M0, M1 and M2 ). For the second group

Fcnt, Fvar and Fstd, optimal frequency band is 10-800Hz. Finally for the third fea-

ture group, Eng, classi�cation accuracy it's almost the same for all three frequency

bands.

7.3 Threshold level e�ect

What is the e�ect of the noise's threshold level on the performance of EMG signal

classi�cation (recognition)?. This question had generated intensive discussion be-

tween researchers. This parameter is very important because it represents the �rst

step of EMG signal processing, see section 4.2. The beginning time of EMG signal

activation is depending on this reference level, therefor this parameter is considered

as very sensible factor. In this section three di�erent values of this parameter are

tested, which are relative to the value of noise's standard-deviation (Std). If the

noise's standard-deviation value is given as Thresholdstd, then these values are given

as: 0.5Thresholdstd, Thresholdstd and 2Thresholdstd.

Our seven di�erent features are divided in three di�erent groups according to their

common behaviours regarding these values, see section above. The choice of value

of frequency-bands for each feature group is de�ned using the optimal result found

in the preceding section 7.3. These frequency-bands are: 10-300Hz for feature group
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(M0, M1 and M2 ), 10-800Hz for feature group (Fcnt, Fvar and Fstd), and 10-500Hz

for feature Eng.

7.3.1 Classi�cation performance with RBF -based approach

Using RBF classi�cation method, �gure 7.6, it can be seen, that for the �rst features

group (M0, M1 and M2 ) �ltered in frequency band of 10-300Hz has good classi�cation

performance for the noise's threshold level equal to 2 · Thresholdstd. The second

Figure 7.6: Noise threshold level e�ect on classi�cation performance using RBF clas-
si�cation method for �exion movements of three �ngers: Thumb, pointer and middle.

feature group (Fcnt, Fvar and Fstd) �ltered in frequency band of 10-800 Hz has

good classi�cation performance with noise's threshold level equal to 1 · Thresholdstd.

Finally the classi�cation performance of third feature group, Eng, �ltered in frequency

band of 10-500Hz get good classi�cation performance for the noise's threshold level

equal to 2 · Thresholdstd). These results are obtained in the case of four di�erent
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spread values of RBF membership functions between 0.4 and 1.6 with a step of 0.4.

7.3.2 Classi�cation performance with FSC -based approach

This method gives the same results, see �gure 7.7, as with RBF method described

above in section 7.3.1. For the �rst group (M0, M1 and M2 ) �ltered in frequency band

Figure 7.7: Noise threshold level e�ect on classi�cation performance using FSC clas-
si�cation method for �exion movements of three �ngers: Thumb, pointer and middle.

of 10-300Hz, the classi�cation is globally performed for the threshold level equal to

2·Thresholdstd. The second features group: Fcnt, Fvar and Fstd, �ltered in frequency

band of 10-800Hz has good classi�cation performance for the threshold level equal

to 1 · Thresholdstd. Finally the classi�cation performance of the third feature group,

Eng, �ltered in frequency band of 10-500Hz get good classi�cation performance for

the threshold level equal to 2 · Thresholdstd. These results are obtained in the case

of four di�erent radius values of FSC clusters between 0.2 and 0.8 with a step of 0.2.
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7.3.3 Classi�cation performance with FTMC algorithm

With this proposed classi�cation model the results, �gure 7.8, are the same with those

described above using RBF and FSC methods. These results are obtained in the case

Figure 7.8: Noise threshold level e�ect on classi�cation performance using proposed
FTMC classi�cation method for �exion movements of three �ngers: Thumb, pointer
and middle.

of four di�erent trimming percentage, β, values of FTMC ellipses between 0.64 and

0.94 with a step of 0.1.

7.3.4 Conclusion

Noise threshold level parameter is a decisive factor for EMG signals classi�cation.

It is di�cult to give an optimal value. There are some developed methods, in the

literature, which tried to optimise this parameter. The study of this section using

three di�erent classi�cation methods and seven features led to the value of noise's
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threshold level equal to 2Thresholdstd for the �rst group (M0, M1 and M2 ) and the

third feature group, Eng. For the second group Fcnt, Fvar and Fstd, both noise

threshold values 1 · Thresholdstd and 2 · Thresholdstd are optimal.

7.4 Both signal length and sampling frequency ef-

fects

This study, which considers the e�ect of both EMG signal length and sampling fre-

quency parameters on neuromuscular signals recognition, is of a great importance. It

helps to optimise the choice of these parameter values for the best performances and

in the same time for the shorter online processing-time.

The considered EMG signal length has a signi�cant importance for the classi�cation

performance for the all EMG signal. If this length is of small duration, it will be

possible for us to talk about EMG signal prediction. In this case the task becomes

prediction and classi�cation. The class of this all EMG activation signal is predicted

only from the beginning signal part. Three di�erent values, 512 samples (128ms),

1024 samples (256ms) and 1536 samples (384 ms) are considered. It is known that

if the considered signal length part is bigger, then the classi�cation performance is

better, but the researchers in this domain are limited this length because of online-

processing consideration. We can say, based on our study in this section, that this

monotone positive in�uence of signal length is not always veri�ed if we take addition-

ally in consideration the sampling frequency parameter. Three di�erent Sampling

frequency parameters are used, which are: 1kHz, 2kHz and 4kHz. Two feature groups

are considered also, which are: M0, M1 and M2, �ltered with frequency band of 10-

300Hz, and Eng �ltered with frequency band of 10-500Hz. The value of noise baseline,
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see above study in section 7.3, is considered equal to two times noise's threshold value

(2Thresholdstd). Three classi�cation methods are applied for each feature group, and

the results are regrouped together in one �gure for each method.

7.4.1 Classi�cation performance with RBF -based approach

a) Case of feature-group M0, M1 and M2

Using RBF classi�cation method it can be seen in �gure 7.9, for the �rst feature-group

(M0, M1 and M2 ) �ltered in frequency band 10-300Hz with noise baseline equal to

2 Thresholdstd, that the classi�cation performance does not increase proportionally

with the increasing in signal length. If the �rst frequency sampling value 1kHz is

Figure 7.9: Sampling frequency and signal length e�ect on classi�cation performance
in case of M0, M1 and M2 features using RBF classi�cation method.

considered, the classi�cation performance decreases when the signal length increases

from the �rst length 512 samples (128ms) to the second length 1024 samples (256ms),
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and then this performance increases for the third value of 2048 samples (512ms). In

this case, for 1kHz sampling frequency, the optimal and the practical value for online-

processing is the value of 512 samples (128ms). These two parameters, 1kHz sampling

frequency and 128ms signal length, give almost the same performance if we consider

the values of 1536 samples (384ms) for signal length and 1kHz for sampling frequency,

which require four times more of processing-time.

For the second and third frequency sampling values, 2kHz and 4kHz �gure 7.9, the

classi�cation performance is proportionally increasing with the signal length. But for

both cases, 2kHz and 4kHz frequency sampling values, the classi�cation performances

are almost the same for signal length of 1024 samples (256ms) and 1536 samples

(384ms). From these results it's possible now to choose the optimal values of these

two parameters, which are: 256ms for signal length and 2kHz for sampling frequency.

These values satisfy both good classi�cation performance and reduced processing-

time. The classi�cation performance is equal to 95%, with feature M0, in case of

RBF spread value equal to 1.6.

b) Case of Eng feature

For the second feature-group, Eng, �ltered in frequency band of 10-500Hz, and with

noise baseline equal to 2 Thresholdstd, the classi�cation performance does not in-

crease proportionally with the increasing in signal length. From the results shown in

�gure 7.10, it's possible to choose the optimal values of these two parameters: 128ms

for signal length and 2kHz for sampling frequency, which satisfy both good classi�ca-

tion performance and reduced processing-time, relatively to all other values of these

two parameters. The classi�cation performance is equal 79% max.
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Figure 7.10: Sampling frequency and signal length e�ect on classi�cation performance
in case of Eng feature, using RBF classi�cation method.

7.4.2 Classi�cation performance with FSC -based approach

a) Case of feature-group M0, M1 and M2

From the results shown in �gure 7.11, and using the same procedure, see above study

section 7.4.1.a, it's possible to choose the optimal values of these two parameters,

which are: 256ms for signal length and 2kHz for sampling frequency. These values

satisfy both good classi�cation performances and reduced processing-time. The clas-

si�cation performance is equal to 97% max, with feature M0, in case of FSC radius

value equal to 0.8, and reduced processing-time.
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Figure 7.11: Sampling frequency and signal length e�ect on classi�cation performance
in case of frequency moment features using FSC classi�cation method.

b) Case of Eng feature

Also from the results shown in �gure 7.12, and using the same procedure, see above

study section 7.4.1.b, it's possible to choose the optimal values of these two param-

eters, which are: 128ms for signal length and 2kHz for sampling frequency. These

values satisfy both good classi�cation performances, which is equal to 80% max, in

case of FSC radius value equal to 0.6, and reduced processing-time.
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Figure 7.12: Sampling frequency and signal length e�ect on classi�cation performance
in case of Eng feature, using FSC classi�cation method.

7.4.3 Classi�cation performance with FTMC algorithm

a) Case of feature-group M0, M1 and M2

From the results shown in �gure 7.13, and using the same procedure, see above study

section 7.4.1.a, it's possible to choose the optimal values of these two parameters,

which are: 256ms for signal length and 2kHz for sampling frequency. These values

satisfy both good classi�cation performance and reduced processing-time. The clas-

si�cation accuracy is equal to 95%, with feature M1, in case of trimming percentage,

β, equal to 0.85,

b) Case of Eng feature

In the same way, from the results shown in �gure 7.14, and using the same procedure,

see above study section 7.4.1.b, it's possible to choose the optimal values of these
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Figure 7.13: Sampling frequency and signal length e�ect on classi�cation performance
in case of frequency moment features using FTMC classi�cation method.

two parameters, which are: 128ms for signal length and 2kHz for sampling frequency.

These values satisfy both good classi�cation performances, which is equal to 82%

max, in case of trimming percentage, β equal to 0.94, and reduced processing-time.
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Figure 7.14: Sampling frequency and signal length e�ect on classi�cation performance
in case of Eng feature, using FTMC classi�cation method.

7.4.4 Conclusion

The choice of EMG signal length and Sampling frequency values are of a great impor-

tance for the optimisation of processing-time consummation and for the classi�cation

performances. As it has been shown in this study, it's possible with only a part of

activation EMG signal length to predict and recognise the all activation signal. More-

over, for some features, a shorter part of activation EMG signal length can predict

and classify better than with longer one. Also about frequency sampling, smaller val-

ues can give better results. Because the nature of features present di�erent behaviors

we should not use the same values of these parameters for all features.
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7.5 Conclusion

The objective of this Chapter was focused on the study of important factors that

in�uence the EMG signal representation, the classi�cation accuracy and processing

time consuming. For getting able results three di�erent classi�cation methods and

seven di�erent features are used. Through this study we could show how these pa-

rameters in�uence EMG signal recognition. The goal was to clarify which parameters

are important and how to proceed the choice of the optimal values.



Chapter 8

Musculoskeletal dynamics

identi�cation

8.1 Introduction

Whole-body movement is achieved with help of the interaction between the neuromus-

cular signal control and musculoskeletal dynamics. Measured neuromuscular signals

as EMG signals are investigated in the �rst part of this thesis. It was shown the

possibility of hand movements recognition through the classi�cation of these neuro-

muscular EMG signals. Now, in this second part of thesis, a new study will be ini-

tiated. This study concerns the ability of builded musculoskeletal model to capture

and identify the highly non-linear dynamics, case of knee-joint dynamics, of human

motion as a result of FES stimulations. This system has complex nonlinear me-

chanical properties. The accuracy of computer models depends on experimental data

measurement and the power of intelligent computational methods. Our developed

fuzzy-identi�cation system from experimental data demonstrates the model's ability

to capture the nonlinear time-varying e�ects observed experimentally in quadriceps

191
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muscles. The examined system consisted of the quadriceps, surface electrical stimu-

lation (FES) signals and a freely swinging shank. The output of the system is the

angular position, measured by externally mounted sensors. The gaol is identi�ca-

tion model of the active quadriceps dynamics (total quadriceps-shank system) and

the FES -induced movement (angle prediction). In few words, the task is resumed in

building computer model of the musculoskeletal system that can reproduce the mus-

culoskeletal dynamics response of electrical stimulation (FES ) with good precision.

Dynamical systems are complex systems like in human movement functions and other

real systems. They are described by system variables whose values at the next time

step cannot be predict with complete certainty. Building models of real dynamical

systems needs suitable �delity to describe and identify the system components and

their interactions with the environment. These models should adequately mimic the

discrete motor unit structure of quadriceps muscles. Quantitative studies of muscu-

loskeletal dynamics may be divided in two types:

1) Morphological models: the muscle is represented as one single component with

viscoelastic properties [8]. The well-controlled phenomenological studies of isolated

muscle tissue realised by Hill is known as hill-model. This classical model consists of

contractile element (CE ) and the series viscoelastic element (VE ). The component

(CE ) has no e�ect in case of muscle extension, its force is depending on the speed of

muscle's �exion.

This type of model has a structure which is related to the anatomy and physiology.

The weakness of this approach deal with the structure model parameters, which is

unique.

2) Models of adaptable parameters: such models are builded on the basis of
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overall system behavior [34] and are derived from measured input-output data sets.

These models can describe and identify quantitative behaviors of this real system's

dynamics (knee-joint dynamics) through the analysis of the relation between mea-

sured experimental input-output data sets. However Process identi�cation based

upon conventional mathematical models e.g., linear or nonlinear di�erential equa-

tions, are not well suited for dealing with ill-de�ned, complex and uncertain systems

[25]. This study considers this second type of models. For this task an e�cient fuzzy

identi�cation model is developed see our publication [72]

8.2 Foundations and Methods

The research in system identi�cation covers a wide applications, system identi�cation

is the procedure of making mathematical models of systems starting from experi-

mental data, measurements, and observations. The model of a system is often very

important for analysis, control design, simulation and prediction. However for the

real complex systems, like Biomedical systems in our life, it's not easy to �nd al-

ways models. In studying musculoskeletal system in humans, researchers must rely

on comprehensive mathematical models representing the system of interest for simu-

lating behaviors which would only be experimentally observable. The builded models

must be compatible to the signals �ow between the input and the output. In the

literature there are a number of developed models to help the building of muscu-

loskeletal dynamics. The goal is to use the predictive ability of each model to further

our understanding of how these systems work.

Mathematics serves as the language with which we try to understand how nature
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works. Many systems are modeled with a continuous time variable t. The continuous

systems can be described with di�erential equations which in its simplest form looks

like: x́(t) = f(t, x). However a physical setting is often reduced to a set of discrete

measurements. In discrete-systems these measurements are given at a sequence of

speci�c times. Speci�c values of the measurements of the system are often called the

state of this dynamical system, the state space is the unit interval. When a system

is quali�ed as a linear system, it is possible to use the responses of a small set of

inputs to predict the response to any possible input. To see whether a system is

linear, we need to test whether it obeys certain rules of linear systems. The two basic

tests of linearity are homogeneity and additivity and Shift-invariance. Homogeneity

of a system doesn't produce or cause response compression or response expansion.

Most of real life problems involve nonlinear systems. However it is possible to ap-

proximate a nonlinear system by a linear one. This is called linearisation of nonlinear

systems. The main idea of linearisation is to approximate a nonlinear system by a

linear one around the equilibrium point. System dynamics can change signi�cantly

with a change in the system operating conditions. A system can be represented with

multiple local models, each local model is valid for a speci�c operating region. Local

model can be a set of some basis activation functions, as in �gure 8.1, in case of two

dimensional 9 local models using basis Gaussian activation functions. There are two

components to identify a model: the structure and the parameters. The structure is

the number of local models, the centres of their activation functions and their widths.

The local model's parameters could be the complete set of coe�cients for these local

models.

Many parameter estimation algorithms are available to identify the parameters of
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Figure 8.1: Two dimension 9 local models with Gaussian activation functions.

these local models. The models themselves can be black box systems (neural net-

works) or white box (fuzzy networks) systems, without the need for explicit higher

order derivative function forms. This type of models are applicable in a large variety

of contexts, including very complex models.

8.3 Experimental setup and procedure

Experimental measurements and procedures are done in Max Planck Institute of

Magdeburg, Germany. A short description of this experimental procedure, �gure 8.2,

is given using the measurement protocol from this Laboratory. Surface stimulation

electrodes are placed on the thigh, the quadriceps group of muscles form the major

part of the muscles on the front of the thigh. The knee angle θ (system output) be-

tween thigh and shank is sampled at 20Hz, and measured using an electrogoniometer.

Input signal is the variable pulse width of the mono-phasic current pulses with �xed

frequency, 20Hz, and �xed Amplitude. The range of θ angle variation between 90o
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Goniometer

Electrical pulses
FES

Sensory
nerves

Motor
nerves

Figure 8.2: Measurement setup.

(Rest position) and 180o (full extension), is normalised to the range z = [ 0, 1]. Many

tests are carried out, and classi�ed by the kind of experiments into three experimental

sessions. These data are already used for modelling and control using neural networks

[60] [59]

1) Test-A: the purpose of this test is to establish a suitable stimulation current

Amplitude, �gure 8.3. The current level I is equal to 40mA, and stimulation frequency

f is equal to 20Hz. This signal will be used as validation signal.

2) Test-SC : this is an open-loop test signal where the pulse-width possesses

speci�c Stochastic Characteristics. The goal is to generate a sequence of input steps

which leads to an almost uniform distribution over the interval of the output. We

have two measurements of this this signal type, test-SC1 in �gure 8.4 and train-SC2

in �gure 8.5. The �rst one will be used as testing signal and the second one will be

used as training signal.
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Figure 8.3: Measurement of Test-A.

Figure 8.4: Measurement of Test-SC1 (testing data).
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Figure 8.5: Measurement of Train-SC2 (training data).

3) Test-PRBS : The PRBS signal, �gure 8.6, is applied around a range of mean

stimulation pulsewidth levels. Suitable stimulation mean levels are, µ = 0.043, 0,23,

0.40, 0.59 and 0.82. This signal will be used also as testing signal.

Figure 8.6: Measurement of Test-PRBS1.
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8.4 Morphological models

In macroscopic models the muscle system is represented as one single component with

viscoelastic properties [8]. Hill-Model is one of the earliest most popularly employed

muscle model, he attempts to capture the force-length-velocity properties of the mus-

cle in the way to create a mechanical muscle model. This classical model consists of

contractile element (CE ) and the series viscoelastic element (VE ). This type of model

has a structure which is related to the anatomy and physiology. The most basic build-

ing bloc comprising a muscle model is the ideal spring in serial form with a damper.

A linear spring creates a force proportional to its de�ection: Fk = Kx, where F :

is the force, x: the de�exion, and K: the elasticity. An ideal damper creates a force

proportional to its viscosity, Fb = Bẋ, where B: is the viscous damping constant.

The response of physiological tissues to a constant force shows both of delay time

response and a slower length evolution, which gradually approaches an asymptotic

value, �gure 8.7. The muscle-joint structure can then be treated as a second (or a

Figure 8.7: Real illustration of both delay-time and asymptotic length evolution of a
muscle in response to force excitation.



200 8.0 Musculoskeletal dynamics identi�cation

third) order system. Although a second order linear model can be mathematically

represented in several ways,t he basic equation of motion for a second order model,

with laplace transfer function is given as:

H(s) = a.
ω2

n

s2 + 2sξωn + ω2
n

(8.4.1)

where a: a constant, ξ:damper factor, and ωn: proper system pulsation.

In other form this equation can be formulated as:

H(s) =
1

s2 1
aω2n + s 2ξ

aωn
+ 1

a

(8.4.2)

In analogy form with linear spring, the model parameters will take the following val-

ues:

The masse: M= 1
aω2n , the viscous element B= 2ξ

aωn
, and the elastic element K= 1

a
.

If the viscous element B is considered constant, this model will be linear system of

second order.

This simple model is simulated. The model presents mechanical model of quadriceps

muscles, that cause the extension of the knee, as 2 degrees of freedom planar manip-

ulator for the following parameter values as example:

B=4,5[N.s/rad], K=30[N/rad], and M=1kg.

The muscle-model response of an impulse excitation is shown in �gure 8.8. Second

order linear systems are widely used to represent a variety of dynamic systems and

have been used to represent muscle dynamics [70] [10]. This simple and basic mod-

eling approach for predicting stimulated muscle properties provides a valuable basis

for the interpretation and comparison of more complex muscle modelling approaches.

For more complex second order nonlinear muscle model see [19]
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Figure 8.8: Muscle response to force excitation for second order linear model simulated
example.

8.5 Proposed hybrid fuzzy modelling algorithm

Methods for data-driven fuzzy modelling and identi�cation are of great e�ciency.

Many publications focus on hybrid neuro-fuzzy models without taking in considera-

tion the notion of interpretability of the builded model. Such models are black-box

models like in neural networks. In this proposed hybrid modelling algorithm two

important criteria have been considered. The �rst one is the problem of model ini-

tialisation, which can help us, in case of good initialisation, to start with a model that

is close to the optimal needed model. The second one concerns the learning meth-

ods, with optimal identi�cation model initialisation we don't need a complex learning

methods and the number of learning epochs (time learning) will be hugely reduced.

These two criteria has been introduced in this proposed hybrid modelling algorithm.

The results using four di�erent testing data, see following setion 8.10, show that this

proposed identi�er-model is able to identify the real system using only its measured

input-output data.



202 8.0 Musculoskeletal dynamics identi�cation

The optimisation of this proposed hybrid algorithm considers the membership func-

tions and the rule consequence coe�cients that minimise certain quadratic objective

function. Thus the main goal is to minimise the following sum of squared errors E in

equation 8.5.1, see for more details section 6.4.3:

E =
∑

n=1,N

(dn − xn)2 (8.5.1)

Where dn: desired output (Knee-joint angle), xn: the proposed hybrid algorithm

output, and N : number of measured training data samples available from the real

system.

The Hybrid Algorithm Proposed here has the following functional structure:

1) zero order Takagi-Sugeno (T.S.) model [67].

2) two inputs as mentioned in section 8.5.

3) each input is partitioned with three gaussian membership functions (gbellmf ).

Three membership functions: A1, A2, and A3 for the �rst input x, and three mem-

bership functions: B1, B2, and B3 for the second input y. This partition lead to a

fuzzy model with 9 rules. These rules are described in equation 8.5.2.

if x is Ai and y is Bj then z is rk. (8.5.2)

Where i, j = 1, 2, 3, and r = 1, . . ., 9 (number of rules).

The degree of membership for each input x and y is de�ned in equation 8.5.3:

µA, B(x, y) =
1

1 + ( (x, y)−b
a

)2c
(8.5.3)

Where a, b and c: are the premise parameters that will be updated using the Gradient

Descent (GD), see section 6.2.3. The �ring strength of each rule is given as a product

of the membership degrees in equation 8.5.4:

wm = µAi
(x) · µBj

(y), i, j = 1, 2, 3, and m = 1 , . . ., 9. (8.5.4)
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The overall output can be expressed as linear combinations of the consequent param-

eters. More precisely, the output z can be written in equation 8.5.5:

Z =

∑
m=1,...,9 wm ∗ zm∑

m=1,...,9 wi

(8.5.5)

8.6 Rules consequent parameters initialisation using

RPA

The Rapid Prototyping Algorithm RPA [24] reposes on the fact that more a measured

point of training data is close to the core of the membership function, more the

conclusion of the corresponding rule is close to the desired output associated to this

measured point. The core of a fuzzy membership function A is de�ned by equation

8.6.1:

NA = {x ∈ R�µA(x) = 1} (8.6.1)

Example:

The input-output couples {(xi, yi); zi} are considered,

where i = { 1, . ., N}, and N : number of samples.

Each rule has only one consequent parameter zp that represents the image of the

input couple (xp, yp) with maximum inference, where 1 ≤ p ≤ N . With this

method it's possible to �nd 9 prototypes from measured data set for rules consequent

parameters. This method gives rapidly the initial solution close to the desired output

and prevent the derivative-based optimisation algorithms getting stuck to the local

minimum.
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8.7 Hybrid algorithm steps

In short word, this approach (hybrid algorithm) optimizes:

a) premise parameters with Gradient Descent (GD), for more details see section

6.4.3.b.

b) consequent parameters with Least Squares Estimators (LSE ), for more details see

section 6.4.3.a.

Following steps give global description of this algorithm:

1) initialise the 9 rule conclusions using Rapid Prototyping Algorithm (RPA).

2) create the initial model from measured input-output data set and initialised rules.

3) calculate the response Zmodel of this initial-model.

4) for each measured data pairs {(xi, yi), zi}, i = 1, . . . , N , measure the error ep

given as:

ei = zidesired
− zimodel

.

5) epochs = 1 to epoch-max

6) Test if this error Emodel is acceptable or not:

7) if yes, then END.

8) apply nonlinear parameters optimisation for all membership functions in the fol-

lowing way:

∂A(x)

∂a
=

2c

a
· (1− A(x)) · A1(x) (8.7.1)

∂A(x)

∂b
=

2c

a
· (x− b

a
)2c−1 · (A1(x))2 (8.7.2)

∂A(x)

∂c
= −2c · (x− b

a
)2c−1 · (A(x))2 (8.7.3)
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where A: represents gbellmf function.

9) calculate the new membership function parameters:

(a, b, c)next = (a, b, c)now − ρ
∂ei

∂(a, b, c)
(8.7.4)

10) apply linear parameters optimisation for all rule consequents (see section 6.4.3.a

11) calculate the new rule consequents

12) go to step 3.

8.8 Methodology

A wide class of nonlinear dynamic processes are SISO. In this case, the knee-joint

dynamic process has one input u (pulse width) and one output y (angle); the dynamic

model can be described by the following formula, using 6 historical (past) inputs:

u(k − 1), . . ., u(k − 6), and 4 historical outputs: y(k − 1), . . ., y(k − 4), equation

8.8.1:

y(k) = f [u(k − 1), u(k − 2), ..., u(k − 6), y(k − 1), y(k − 2), ..., y(k − 4)]. (8.8.1)

Where f is the function to be identi�ed based on measurement input-output data of

real system. This function has ten (10) inputs. The number of inputs is big to use

fuzzy modelling procedure. For fuzzy model, the number of rules will be hugely big.

If all combinations are considered for a fuzzy inference system with 10 inputs, each

one with three membership functions, the grid partitioning leads to 310 rules, which is

very large for any practical learning methods. Therefor the number of inputs must be

reduced, we consider therefor only two inputs. The question now is to de�ne or �nd

these two best inputs between these ten inputs, which can give the best description
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of our real system dynamics. The solution is to build models of two inputs through

the combination between historical inputs and historical outputs. The number of

combinations is equal to 6 × 4 = 24. The optimisation of these 24 models will be

done during only one epoch, and then the best one undergo further re�ne optimisation

epochs.

All these 24 pair-inputs will be tested in one built model. This method, section

8.5, uses constant consequent parameters with zero-order T.S. model and is based on

generating only one fuzzy model (Hybrid Algorithm) that employs all 24 possible data

pair inputs. Note that the fuzzy model has nine rules, three generalized bell-shaped

membership functions for each input. The training procedure for each pair input is

done during only one epoch.

The pair inputs, y(k-1) and u(k-6), has been found as the best model, hence we take

this pair as input variables for the further study in following section 8.9. Note that

the computation time for this identi�cation of the best pair input is done during

2.2660 sec [AMD Athlon (tm) Processor ]. Thus the best found model of knee-joints

dynamics is described by the following formula, equation 8.8.2:

yi(k) = f [ui(k − 6), yi(k − 1)]. (8.8.2)

where i is the rank of the set input, i = {1, ., ., ., N}, and N : number of training

data samples.
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8.9 Optimisation of selected model

The training data set (data-sc2 ), see �gure 8.5 contains 895 points (samples). Each

input is partitioned into three fuzzy sets using gbellmf membership functions. Follow-

ing �gure 8.9 shows us the resulting initial membership functions. The initial hybrid

Figure 8.9: Initial membership functions with overlap equal to 0.5, for input1 and
input2.

algorithm is built using described rapid prototyping method, see section 8.6, with se-

lected pair inputs y(k-1) and u(k-6). Without any optimisation, this initial model is

tested using the same input signal for training data (data-sc2 ). The output response

of this initial model, is shown in �gure 8.10. This output signal of our initial model,

using only rapid prototyping algorithm, is close enough to the desired output of real

system. Now this initial model is trained during only 10 epochs, with learning rate

�xed to 0.003 for all epochs. The �nal fuzzy sets generated by this optimised hybrid

model is illustrated in the following �gure 8.11(b). The time needed for the opti-

misation of this hybrid model during 10 epochs is equal to 1.7660 sec [AMD Athlon

(tm) Processor ]. In this application the consequent parameters are remained in the



208 8.0 Musculoskeletal dynamics identi�cation

Figure 8.10: Response of initial proposed hybrid model (solid line), and desired system
output (dashed line).

envelope of possible values of real system output. The initial values of consequent

parameters found with PRA algorithm are: z1, z2, . . . z9 =

[0.2692 0.2159 0.3779 0.4466 0.4769 0.4686 0.6567 0.6925 0.6932].

The resulting values after 10 epochs optimisation are:

[0.2238 0.2134 0.1459 0.4327 0.4787 0.5144 0.7142 0.6920 0.7139].

From the viewpoint of interpretability, the consequent parameters have physical inter-

pretation that represent the normalised angle between thigh and shank, �gure 8.11(c).

The membership functions that partition the two input space have not undergos great

changes, 8.11(a).

8.10 Hybrid model validation

Model validation is the heart of the identi�cation problem. The following signals Test-

sc1, Test-sc3, Test-a and Test-prbs described in section 8.3 will be tested with this

optimised hybrid model to evaluate the qualities of the obtained knee-joint dynamics



8.10. Hybrid model validation 209

Figure 8.11: a. Optimised gbellmf ; b. Prediction performance of hybrid Algorithm
(solid line), and system output (dashed line); c. Evolution of rules consequents; d.
Error between desired system output and hybrid model output after 10 epochs (using
train-data set (test-sc2 ).

identi�er-model.

The e�ciency of the this hybrid fuzzy model, representing non-linear input-output

dynamics, depends on the initial fuzzy partition of the input space. The tuning of the

premise fuzzy sets and consequent parameters is achieved through three techniques:

Rapid Prototyping Algorithm, Gradient Descent and Least squares Estimator.

8.10.1 Signal Test-SC1

The identi�cation e�ciency of the this hybrid fuzzy model representing non-linear

input-output dynamics with data test− sc1 is shown in �gure 8.12.



210 8.0 Musculoskeletal dynamics identi�cation

Figure 8.12: Above: dynamic system response with hybrid algorithm (solid line) and
system output (dashed line). Below: the identi�cation error of their di�erence. (for
testing data: test-sc1 ).

8.10.2 Signal Test-A

The identi�cation e�ciency of the this hybrid fuzzy model representing non-linear

input-output dynamics with data test-A is shown in �gure 8.13.

Figure 8.13: Above: dynamic system response with hybrid algorithm (solid line) and
system output (dashed line). Below: the error of their di�erence. (for testing data:
test-A).
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8.10.3 Signal Test-PRBS

The identi�cation e�ciency of the this hybrid fuzzy model representing non-linear

input-output dynamics with data test-prbs is shown in �gure 8.14.

Figure 8.14: Above: dynamic system response with hybrid algorithm (solid line) and
system output (dashed line). Below: the error of their di�erence. (for testing data:
test-prbs).

8.11 Conclusion

In this Chapter, an e�ective fuzzy identi�er-model based on Hybrid Algorithm is

proposed. In this proposed Algorithm the fuzzy rule-conclusion and membership-

function parameters can be generated and optimized automatically from the training

data.

The proposed fuzzy hybrid algorithm provides a fast and e�ective method for identi-

�cation of knee-joint system dynamics (thigh-shank). This method focuses on model

simplicity and time-consuming, under a satisfactory modeling accuracy with trans-

parent fuzzy sets. The results obtained demonstrate that this hybrid algorithm ap-

proach is e�ective for identi�cation of nonlinear dynamic process and can be a good
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alternative when a mathematical model of the plant is not available. The further im-

provement in the model structure, (for example: three inputs and adapting learning

rate), for this method would be bene�cial.



Chapter 9

Conclusions and future works

9.1 Recapitulation

The human neuromusculoskeletal system is considered in this thesis in two parts: 1)

Surface electromyogram (EMG) neuromuscular signals recognition for hand move-

ments classi�cation. 2) Musculoskeletal system dynamics identi�cation.

The �rst goal of this thesis, concerned the classi�cation of surface EMG neuromuscular

signals, which can be designed for the control of myo-prostheses and also exoskeleton

devices. The surface electrodes transduce the motor unit action potentials MUAPs

into resultant electrical EMG signal, which can be recorded following appropriate

processing, ampli�cation and �ltering procedures.

EMG signals are electrical activities originating in the brain and that are transported

via nerve cells to the muscles. These signals cause the contraction of muscles. These

measurements of EMG signals issued from muscle contractions are realisations of

a complex time-variant process that control electrical activation of muscles. They

provide an access to physiological processes, which cause muscles to generate forces,

produce movements, and accomplish functions that allow the human to interact with

213
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the world around. In the ampli�cation process of these small bioelectric signals, which

are typically in uV , it's necessary to reduce as much as possible the e�ect of noisy

electrical signals. This signal (EMG) should be recorded with a certain �delity to

assure the transmission of its inside information (without loss of information), which

should be recognised and classi�ed after that.

In many cases, the sequentially localisations of the information carried by the ob-

served signal and the disturbances are known as a priori. The objective is then to

build a new signal starting from the raw signal, which preserves important informa-

tion carried by the signal, and excludes the disturbances. The principle function of

a �lter then, is to �lter out the unwanted parts of an input signal. These unwanted

frequency parts cannot be all eliminated, but only reduced. The MATLAB signal

processing toolbox contains a number of di�erent functions and commands for de-

signing low-pass, high-pass and band-pass �lters. Digital �lters are designed through

various prototypes: Chebyshev, Butterworth, and Elliptic for IIR type. Equiripple,

least squares, and Kaiser window are designed for FIR type. The optimal type �l-

ters are chosen on the basis of implementation complexity, magnitude response and

e�ciency. The design speci�cations of the band-pass �lter and its order are given

for many examples. A comparison of these �lters was attempted in order to evaluate

the advantages and drawbacks of each �lter. It was concluded that IIR �lters are

less complex and lead to the same accuracy classi�cation results than FIR �lters.

Filter pass-bands have a great importance to transmit well-de�ned information, and

to reject other disturbances. About the choice of this �lter pass-band, it was proved

that one �xed pass-band �lter can not be generalised, as an optimal frequency band,

for all other features. In this thesis three di�erent analysis methods are used:



9.1. Recapitulation 215

1) time-domain, 2) frequency-domain and 3) time-frequency-domain. The goal was to

extract features corresponding to each analysis method and compare between them.

After EMG signal pre-processing operation, using spectrum analysis based on short-

time Fourier transform (STFT ), which is a form of local Fourier analysis that treats

time and frequency simultaneously. It was possible to exploit and to quantify the

behaviour of dynamic information present in these EMG signals and design charac-

teristic vectors (features). Some of these characteristic vectors could perform a good

discrimination of di�erent hand movement classes.

The following task was to reduce the space of the number of extracted feature vec-

tors. PCA is a way of expressing a high dimensional data set in an alternative set of

a low dimensional data set with high variability. Such method is also used for data

visualisation and clustering. In this study a linear dimension reduction technique

(PCA) was investigated. In this thesis it was shown that the feature Fstd alone, in

2D feature space, gives by it self an average number of misclassi�ed instances less

than in the case of 2D reduced feature space using PCA. Hence we could conclude

that the spatial reduction, using PCA, of many features for classi�cation accuracy

doesn't lead necessarily to better results.

The classi�cation procedure is performed on the basis of classes' feature distribution.

These classi�cation models belong to two categories. First are supervised models, like

Multi-Layer Perceptron, Radial Basis Networks, and Learning Vector Quantization

network. Second are unsupervised models, like Self Organizing Map, Fuzzy Subtrac-

tive Clustering and Competitive Layer. Four intelligent computational algorithms

were be used to perform the classi�cation of four di�erent hand movements according

to their corresponding EMG signals. Intelligent computational algorithms used in
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this thesis are Multi-Layer Perceptron (MLP), Radial Basis Networks (RBF ), Learn-

ing Vector Quantization network (LVQ) and fuzzy subtractive clustering (FSC ). The

purpose of this study was to illustrate these various intelligent computational al-

gorithms and to compare them with the performance of our proposed FTMC fuzzy

classi�er-algorithm. The strategy of choosing between di�erent classi�cation methods

is of great importance. In case of on-line prosthesis control, or exoskeleton device con-

trol, the needed time for signal acquisition, then for processing and �nally decision

control, should be short. Hence the choice of classi�cation method should consid-

ers both time consuming and performance. For these considerations proposed fuzzy

FTMC classi�er-algorithm presents acceptable results. Its advantage can be seen in

optimisation methods, which are simple and not time consuming, like Gradient De-

scent (GD) and Least Squared Error (LSE ), and also utilisation of simple Trimmed

Mean method for determination of initial input fuzzy sets (structural optimisation).

In case of dynamical complex systems, like forearm EMG signals analysis, intelli-

gent computational methods are shown, through the comparison between them, their

e�ciency and ability to deal with these systems and to give good classi�cation-models.

After EMG neuromuscular signals classi�cation, the second part of this thesis,

considered the study of musculoskeletal system dynamics identi�cation. Such identi-

�cation operation should be able to capture the highly non-linear dynamics of muscu-

loskeletal systems (case of knee-joint dynamics) as a result of FES stimulations. Our

developed fuzzy-identi�er model, from experimental data, demonstrated the model's

ability to capture the nonlinear time-varying dynamics observed experimentally from

data-measure. The examined real system is consisted of the quadriceps, Surface
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Electrical Stimulation signal and a freely swinging shank. The output of this sys-

tem is the angular position, measured by externally mounted sensors. The gaol was

the identi�cation of the dynamic relationship between quadriceps dynamics (total

quadriceps-shank system) and the FES -induced movement (angle). Surface stimula-

tion electrodes are placed on the quadriceps group of muscles form the major part of

the muscles on the front of the thigh. The knee angle θ (system output) between thigh

and shank is sampled at 20Hz, and measured using an electrogoniometer. Input signal

is the variable pulse width of the mono-phasic current pulses with �xed frequency,

20Hz, and �xed Amplitude. The range of θ angle variation between 90 (rest posi-

tion) and 180 (full extension), is normalised to the range z = [0, 1]. Many tests are

carried out, and classi�ed by the kind of experiments into four experimental sessions.

One measured data is used for this proposed model as training (learning)data, and

four other measured data are served for this proposed model as evaluating (testing)

data. The proposed hybrid fuzzy model provided a fast and e�ective algorithm for

modeling the knee-joint dynamics system. This algorithm is based on model simplic-

ity and time-computing e�ciency, under a satisfactory identi�cation accuracy with

transparent fuzzy sets.

9.2 What are the applications of this Thesis

An understanding of EMG neuromuscular signals and musculoskeletal system dynam-

ics can help disabled persons in regaining lost function and improving their activity

of daily living life and also for assessing rehabilitation progress. Moreover it enables

better assessment and therapeutic operations for them.

The results obtained were very well. With the known Short Time Fourier Transform
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(STFT ) and our proposed interpretable fuzzy classi�er-model (FTMC ) and also other

known methods, we could reach good accuracy classi�cations. In case of optimised

values of these two parameters, which are: 256 ms for signal length and 2kHz for

sampling frequency, the classi�cation accuracy, using our proposed algorithm, could

raech 95% see �gure 7.13. Moreover, in this thesis, it is shown that with only two

channels (one feature vector) it was possible to recognise and classify hand and also

�nger �exion movements, which are thumb-, pointer- and middle-�nger. This discrim-

ination can be increased if the number of channels and feature vectors are increased.

This is an important result that will determine the future implementations of hand-

prostheses control.

The results of �rst part of this thesis can be applied to help the patient, with am-

putated hand, to keep the neuromuscular activity of his forearm muscles for the

manipulation of a myo-prosthesis or hand-exoskeleton device. Moreover this recogni-

tion of EMG signals help to keep also the virtual neural activity of the brain related to

forearm-neuromuscular activity. The devices, myo-prosthesis and hand-exoskeleton,

can be considered as human-machine interfaces that can be able to recognise the de-

sired hand and �nger movements of the operator and reproduce the same movement

as intelligent and real-time human-machine interface.

Functional electrical stimulation (FES ) impulses can be used to activate muscles

disabled by spinal cord injuries, after stroke, and support the weak voluntary muscle

activities. The e�ciency of muscle-stimulator worn on the leg or arm of patient and

placed over a�ected muscles need a musculoskeletal system models, which are able to

reproduce the knee-joint dynamics or elbow-joint dynamics. Such systems can control
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Functional Electrical Stimulation (FES ) that will support the patients to accomplish

a right legs or arms movements. The proposed interpretable fuzzy hybrid identi�er-

model had a well results, it could reproduce the knee-joint dynamics in estimating

of the angle output of four di�erent stochastic FES signal inputs: �gures 8.12, 8.13,

and 8.14

9.3 The goal of this research and future works

The goal of this thesis was to classify the EMG neuromuscular control signals for hand

and �nger movements and also to identify the musculoskeletal system of knee-joint

dynamics using electro stimulation (FES ), which is done with success.

The future work is attempted to combine the recognition of EMG signals and the

models of musculoskeletal system dynamics of elbow-joint and knee-joint movements

[62]. Such models allow determination of the set of electrical stimulation that produce

the desired movement through their inverse dynamic models. It will be necessary to

develop the causal relationship between neuromuscular EMG patterns and muscu-

loskeletal system dynamics.

By post-stroke subjects, there are weak EMG signals, which are extremely small and

unable to control the muscles. The correction control of muscle activations with con-

sideration of their musculoskeletal system dynamics would correct their gait pattern

so that they match the healthy gait patterns. This is a method of cognitive re-learning

to rehabilitate the muscles of paralyzed legs or arms, which cannot be done with elec-

trical stimulation alone.
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Finally we can conclude that this thesis covered the study of many intelligent com-

putational tools that are used to analyze and process bio-experimental data. The

techniques presented are those that have been most widely and successfully applied

to the analysis of physiological systems. Moreover they address issues such as random-

ness, complexity, dynamic and nonlinearity. In addition, in this thesis it is brought

together the most useful methods, and su�cient mathematical details are provided

to enable the understanding of these intelligent computational techniques. Thus, this

complete and detailed research, in this thesis, will be useful to life-science investiga-

tors on several levels to realise several projects, which deal with EMG control signals

and musculoskeletal system dynamics, and do further investigations in this area.
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