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Zusammenfassung

Mehrphasige metallische Verbundwerkstoffe werden häufig in der Automo-

bilindustrie und der Luft- und Raumfahrt verwendet. In dieser Arbeit wird

das mechanische Verhalten von mehrphasigen Werkstoffen am Beispiel von

zwei-phasigen α-Eisen-Kupfer-Verbundwerkstoffen untersucht. Das Ziel der

Arbeit ist es, das mechanische Verhalten von zweiphasigen Polykristallen und

dabei insbesondere die Kopplung des Verformungsverhaltens auf der Mikro- und

Makroebene bei großen plastischen Verformungen zu verstehen.

Es werden sieben Typen von Fe-Cu-Verbundwerkstoffen mit unterschiedlichem

Phasenvolumenanteil untersucht. Fe-Cu Polykristalle zeichnen sich durch eine

großen Inhomogenität und Anisotropie bei plastischen Verformungen aus. Zur

Untersuchung der plastischen Eigenschaften der betrachteten Fe-Cu-Werkstoffe

wird ein elastisch-viskoplastisches Materialmodell verwendet. Mit Hilfe der Finite-

Elemente-Methode werden rotationssymmetrische und dreidimensionale Berech-

nungen durchgeführt. Für das rotationssymmetrische Modell dienen experi-

mentelle Schliffbilder von Fe-Cu als Grundlage. Die 3D-Simulation basiert auf

Poisson-Voronoi-Mikrostrukturen mit periodischen Randbedingungen. Es erfolgt

ein Vergleich der numerischen Ergebnisse mit experimentellen Daten für das

Fließverhalten, das lokale Deformationsverhalten, und die kristallographische Tex-

turentwicklung.
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Chapter 1

Introduction

Multi-phase metals are widely applicable in the automobile and aerospace indus-

tries, since they can show good ductility, enhanced strength at elevated tempera-

ture, and improved corrosion resistance. To study the rather complex mechanical

behaviour of such multi-phase materials, we investigate iron-copper polycrystalline

composites as a model material. During the deformation process, the microstruc-

ture and its evolution are essential for the determination of the macroscopic me-

chanical behaviour of the aforementioned polycrystals. The main features of a

microstructure are the geometry, the arrangement, and the orientation of the

grains. The volume fraction of each phase and the interaction among grains are

also important factors which influence the global material properties.

The main purpose of the present work is the investigation of mechanical properties

of Fe-Cu composites and, particularly, the relationship between the local and

macroscopic deformation behaviour under large plastic deformations. Due to the

difference of the yield stresses of these two phases (σFe
0.2 ≈ 410 MPa and σCu

0.2 ≈ 115

MPa), both the stress and the strain field are highly heterogeneous. The harder

phase shows higher stresses than the softer phase in such two-phase polycrystals

(Raabe et al., 1995; Soppa et al., 1998; Commentz et al., 1999). The softer phase

has to undergo a larger local deformation which modifies the local stress field

(Raabe et al., 1995). The rule of mixture is insufficient to describe the stress-strain

behaviour of the aforementioned composites. A reliable model is necessary to

successfully describe the plastic behaviour of two-phase polycrystals. The Taylor

model (Taylor, 1938) and the Sachs model (Sachs, 1928) are not suitable to predict

the mechanical properties of such two-phase materials. In the Taylor model, the

5



6 Introduction

assumption of a homogeneous strain field neglects the fact that the softer phase

takes more deformation. The deformation field is essential for the analysis of

the mechanical properties. The Sachs model assumes a homogeneous stress field

in the grains of aggregates, which is not the case for the stress distribution in

reality. These aforementioned two models take no interactions among grains and

phases into account, which is important for the deformation process in two-phase

polycrystals (Soppa et al., 1998). A viscoplastic self-consistent model has been

applied by Commentz et al. (1999) to study the mechanical behaviour of Fe-Cu

composites, where the simulation results (compressive stress versus strain and

rolling textures) are compared with the corresponding measurements. Since this

model could not predict the texture development well, Commentz et al. (1999)

suggested to use the finite element method in order to model the deformation

behaviour of two-phase composites. This homogenization method allows for a

local interaction of the grains and is able to more accurately describe the texture

and the microstructure evolution.

In this work, the mechanical behaviour is simulated for pure iron, pure copper, and

five of their composites which are Fe17vol.%-Cu83vol.%, Fe33vol.%-Cu67vol.%,

Fe50vol.%-Cu50vol.%, Fe67vol.%-Cu33vol.% and Fe83vol.%-Cu17vol.%. For the

first time, Commentz et al. (1999); Commentz (2000); Hartig and Mecking (2005);

Daymond et al. (2005) investigated the complex plastic deformation of this type

of composite. We introduce a mechanical approach based on finite elements to nu-

merically study the properties of iron-copper composites and compare the results

with experimental data (Commentz et al., 1999; Commentz, 2000).

The outline of the present work is given as following. Chapter 2 presents a brief

description of applied materials, production of samples, and processes of tests

including compression and tension (Commentz et al., 1999; Commentz, 2000).

The stress-strain data are obtained for pure iron, pure copper, and five of their

composites under the compression test until 90% plastic strain. The texture of the

iron and the copper phase are measured from the above compressively deformed

samples at 90% plastic strain. The measurement of the local strain is performed

in a tensile test at about 20% plastic strain.

In Chapter 3, the elasto-viscoplastic and the viscoplastic material model for single

crystals are described by constitutive equations. The viscoplastic material model
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with less internal variables is efficient with respect to the simulation time. The

description of the material model begins with the elastic law. A short introduction

to the crystal lattice and slip systems is followed by the discussion of the flow rule

which is taken from finite crystal plasticity theory. The Kocks-Mecking hardening

rule (Voce rule) is chosen, which puts emphasis on mechanisms of the dislocation

movement, the accumulation, and the annealing (Kocks, 1976; Kocks and Mecking,

2003). This hardening rule is suitable for both the face-centered-cubic (fcc) and

the body-centered-cubic (bcc) crystals.

Chapter 4 describes the homogenisation technique, which establishes the macro-

scopic material behaviour based on the constitutive equations of single crystals.

A short discussion is given for the Taylor (Taylor, 1938), the Sachs (Sachs, 1928),

and the modified (Taylor, Sachs) model. For the self-consistent model, we begin

with the determination of the average elastic polycrystalline constants (Hershey

and Dahlgren, 1954; Kröner, 1958) and give a brief view on the development

of different self-consistent methods, e.g. Hill (1965); Budianski and Wu (1962);

Berveiller and Zaoui (1979). Reasons are also presented for the preference of the

finite element model to simulate mechanical properties of Fe-Cu composites in

this work.

In Chapter 5, the material parameters are identified based on the experimental σ−ε

data in compression tests. The process is performed with the elasto-viscoplastic

material law. The slip systems applied in the numerical simulation are discussed

for both the iron and the copper phase.

Chapter 6 predicts the mechanical behaviour of Fe-Cu polycrystals using an ax-

isymmetric finite element (FE) model. The Fe17-Cu83 and the Fe50-Cu50 com-

posites are chosen as two examples. Real two-dimensional (2D) microscopic cut-

outs are applied as cross-sections. Grain boundaries are meshed finer than other

parts of microstructures, with the aim of investigating the local interaction. Since

the meshing could not provide a corresponding node on the opposite side for

each boundary node, homogeneous boundary conditions are used. We incorpo-

rate realistic morphologies (experimental 2D cut-outs as cross-sections) and grain

orientations in the aforementioned model which is implemented in the FE software

ABAQUS. A study of the local plastic deformation shows the flow behaviour and

the misorientation of the iron and the copper phases. This chapter also gives a
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prediction of the stress in each phase. Numerical results are compared with the

experimental ones for the texture and the strain distribution for both phases.

Chapter 7 is aimed at enhancing and improving the numerical predictions of Chap-

ter 6, in which periodic boundary conditions are used in the three-dimensional

(3D) model with a regular mesh and a Poisson Voronoi tessellation. Compared

to the axisymmetric model with a small number of iron and copper grains and

homogeneous boundary conditions, the 3D model with more grains (500-1500)

and periodic boundary conditions should give even better results than the ax-

isymmetric model. Simulations are performed for pure iron, pure copper, and five

of their composites to study the texture evolution according to the phase volume

change which is not predicted in detail by the axisymmetric simulation. Based on

simulated results, a quantitative conclusion is drawn for the stress distribution in

each phase. The local strain distribution predicted by the finite element model is

compared with that of the reality.

Notation

a, b, c, ... reals

a, b, c, ... vectors

A,B,C, ... 2nd-order tensors

A, B, C, ... 4th-order tensors

{ei} orthonormal basis

ai, Aij , Aijkl components of a,A and A with

respect to {ei}
C = a ⊗ b, C = A ⊗ B dyadic product between vectors

and 2nd-order tensors

c = a · b, c = aibi scalar product of vectors

c = A · B, c = AijBij scalar product of 2nd-order ten-

sors

c = Ab, ci = Aijbj 2nd-order tensor and a vector

product result in a vector

C = AB, Cik = AijBjk composition of two 2nd-order

tensor
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C = A[B], Cij = AijklBkl 4th- and 2nd-order tensor prod-

uct result in 2nd-order tensor

A ? B = Bijkl(Aei) ⊗ (Aej) ⊗ (Aek) ⊗ (Ael) Rayleigh product

A′ deviatoric part of tensor A

A◦ spherical part of tensor A

grad (A) gradient of A with respect to the

current placement

Grad (A) gradient of A with respect to the

reference placement

Sym(A) symmetric part of A

Skw(A) skew part of A

tr(A) trace of A

det(A) determinant of A

exp(A) exponential function of A

‖A‖ =
√

A · A Frobenius norm of A

(̃·) quantity with respect to the

undistorted placement

(·)t quantity with respect to the cur-

rent placement

(̄·) homogenised quantity

(·)· material time derivative

B material body

R set of real numbers

R+ set of positive real numbers

E Euclidean space

Sym+ set of symmetric and positive def-

inite 2nd-order tensors

Inv+ set of invertible 2nd-order tensors

with positive definite

SO(3) set of orthogonal 2nd-order ten-

sors with positive determinants
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Frequently used symbols

Symbol Name occurrence

J determinant of the deformation gradient (3.54)

K bulk modulus (3.54)

m strain rate sensitivity parameter (3.40)

n stress exponent (3.52)

v volume in the current placement (4.4)

V volume in the reference placement (4.1)

λ eigenvalue of the elasticity tensor (3.29)

γα shear rate in slip system α (3.39)

γ0 reference shear rate (3.39)

κ Boltzmann constant (3.39)

τα resolved shear stress (3.39)

τC
α critical resolved shear stress (3.40)

µ shear modulus section 3.2.4

ρ dislocation density (3.47)

d̃α slip direction α section 3.2.2

{gi} orthonormal basis of crystal lattice section 3.2.1

ñα normal of slip plane α section 3.2.2

u displacement vector (3.4)

B left Cauchy-Green tensor (3.7)

C right Cauchy-Green tensor (3.7)

D symmetric part of velocity gradient tensor (3.14)

EA Almansi’s strain tensor (3.8)

EG Green’s strain tensor (3.8)

EH Hencky strain tensor in the reference placement (3.10)

Eh Hencky strain tensor in the current placement (3.10)

F deformation gradient (3.5)

F̃ elastic part of the deformation gradient (3.32)

F p plastic part of the deformation gradient (3.33)
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Symbol Name occurrence

H displacement gradient (3.11)

I 2nd-order identity tensor (3.8)

L velocity gradient (3.13)

Mα Schmid tensor (3.42)

P plastic transformation tensor (3.23)

Q crystal orientation (3.56)

R proper orthogonal part of the deformation gra-

dient

(3.6)

σ Cauchy stress tensor (3.19)

T 1PK 1st Piola-Kirchhoff stress tensor (4.2)

T 2PK 2nd Piola-Kirchhoff stress tensor (3.18)

T K Kirchhoff stress tensor (3.19)

T Mandel stress tensor (3.43)

U right stretch tensor of the deformation gradient (3.6)

V left stretch tensor of the deformation gradient (3.6)

W skew part of the velocity gradient tensor (3.14)

C elasticity tensor (3.18)

I 4th-order identity tensor (3.29)

P cubic projector (3.30)

J Jacobian matrix in Newton method (A.5)

2D two-dimensional chapter 1

3D three-dimensional chapter 1

bcc body-centered-cubic chapter 1

fcc face-centered-cubic chapter 1

FE finite element chapter 1

FEM finite element method section 4.3

hcp hexagonal close-packed lattice section 3.2.2

HBC homogeneous boundary conditions chapter 4

MMC metal matrix composite section 5.1.2

ODF orientation distribution function section 2.2.1

OOF Object-Oriented Finite Element Analysis of Real

Material Microstructures Working Group

section 6.2
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Symbol Name occurrence

PBC periodic boundary conditions chapter 4

PISM principle of invariance under superimposed rigid

body motions

section 3.2.1

PMO principle of material objectivity section 3.2.1

ROM rule of mixture section 5.1.2

RVE representative volume element chapter 4



Chapter 2

Iron-Copper Polycrystals:

Experiments

Figure 2.1: Phase solubility diagram of copper and
iron systems (Kubaschewski, 1982).

The inelastic deformation of ductile two-phase polycrystalline composites is stud-

ied in order to obtain the influence of the micromechanical interaction of phases

13



14 Iron-Copper Polycrystals: Experiments

on the macroscopic material behaviour. Both phases in such composites are duc-

tile and have significantly different strength. There is no a priori crystallographic

orientation-dependence between these two phases. The deformation behaviour of

the single phase is relatively well known. The composite hardens with increas-

ing deformation and has a different crystal structure for each phase. The mutual

solubility of both phases is negligible.

PSfrag replacements

20 µm

PSfrag replacements 20 µm

Figure 2.2: Microstructure of Fe50-Cu50 composite
with polycrystalline particles where an iron particle
(darker phase) is composed of several grains in the
circle A. (Commentz, 2000)

Considering the above-mentioned criteria, iron-copper polycrystalline composites

are chosen in the present work. The phase diagram of iron and copper (Figure

2.1) shows the solubility of the iron in the copper and vice versa at the maximum

830 ◦C (Kubaschewski, 1982).
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2.1 Production of Iron-Copper Polycrystals

2.1.1 Iron and Copper Powders

The iron-copper polycrystals1 were produced from mixtures of iron and copper

powder by powder metallurgy. All powders have a purity higher than 99% and

the major impurity is the oxide on the surface of the copper powders. Both the

iron and the copper powders consist of spherical polycrystalline particles with a

diameter less than 63 µm. Such particles, normally, are composed of several grains,

e.g., the darker phase in circle A in Figure 2.2 (some particles may have just one

grain). The mean value of the particle size is 20.5 µm for the iron phase and 18.3

µm for the copper phase. The carbon content of the iron powder is 0.015 wt%.

2.1.2 Production Process

The production of iron-copper composites follows three steps: the mixing, the pre-

compression, and the final compression. The mixtures are identified by the volume

fraction (vol.%) of the iron and the copper phase. Here we consider seven such mix-

tures, namely Fe100, Fe83-Cu17, Fe67-Cu33, Fe50-Cu50, Fe33-Cu67, Fe17-Cu83

and Cu100. The microstructures (Figure 2.3) of these two-phase composites can

be sorted as the inclusion/matrix type (e.g., Fe17-Cu83) and an interpenetrating

network of these two phases (Fe50-Cu50).

The iron and the copper powders are mixed in a whirling blender. The mixing

time is one hour, which is optimal for a good mixture and for avoiding powder

agglomerates. After the mixing of the powders, the precompression, which lasts

two hours, is performed cold isostatically in a cylindrical and elastic rubber capsule

at a pressure between 130-230 MPa. Through this process, the mixture (compact)

has a density about 80% of the theoretical one. The porous compact receives its

final density by hot-processing in a cylindrical die. This process with a pressure

of 190 MPa is performed at 800 ◦C in the vacuum. In order to obtain a density of

the mixture higher than 99% of the theoretical one, this process lasts between 0.5

1Such polycrystal samples and the corresponding experiments are produced and performed in
the Technische Universität Hamburg-Harburg. Concerning the details of the composite produc-
tion and the experimental processing of the tests, we refer to Commentz et al. (1999); Commentz
(2000); Hartig and Mecking (2005).
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Inclusion/Matrix Interpenetrating Matrix/Inclusion

PSfrag replacements

20 µm

Fe17-Cu83 Fe33-Cu67 Fe50-Cu50 Fe67-Cu33 Fe83-Cu17

Figure 2.3: Microstructures of iron-copper polycrystals (compositions in
vol.%) (Hartig and Mecking, 2005).

to 6 hour(s). The final iron-copper sample has dimensions of height × diameter

= 17 × 25 (mm2) and is used for the compression test. Samples are named after

their composition.

2.2 Experiments

2.2.1 Mechanical Testing and Texture Measurement

A schematic overview of the extractions of samples is shown in Figure 2.4 for

the compression test, where ND, TD and RD means the normal direction, the

transverse direction, and the rolling direction, respectively. Firstly, the plates

with quadratic surfaces are cut out from the cylindrical sample. Secondly, the

surfaces of the plate are ground until the dimensions of the plate are 17×17×5

mm3. Thirdly, the cylindrical sample (height=9 mm and diameter=6 mm) for the

compression test is obtained from the ground plate, where the normal direction of

this cut-out specimen corresponds to the rolling direction of the plate. After the

compression test (90% logarithmic plastic strain), the sample (a in Figure 2.4) is

ground and polished until its middle plane which is parallel to the top/bottom

surface is laid open (b in Figure 2.4). The texture measurement is accomplished

on this middle surface, i.e., the top surface in b of Figure 2.4.

The compression tests on the cylindrical samples are performed at room temper-

ature (20 ◦C) with a constant strain rate ε̇ = 10−4 s−1 in order to determine the

stress-strain behaviour. Aimed to reduce the friction between the top/bottom sur-

face of the sample and front surfaces of the punching tool, a lubricant (BN-spray)
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25

17

17

17 6

9

8

6

ab

PSfrag replacements

20 µm

TD

ND(RD)

TD(ND)

RD(TD)

ND

RD

Figure 2.4: Sample after production processes and extracted sam-
ple for the compression test (“a”: sample after compression; “b”:
sample ground from “a” for texture measurement) (Commentz,
2000).

is used. A correction for the stress calculation is also performed to compensate

for the dynamical and the static friction between the sample and the punching

tool. The coefficient of the friction is taken as µ = 0.235.

Concerning the textures from experimental measurements, pole figures are firstly

determined by the experiment. Subsequently, the orientation distribution function

(ODF) is calculated from the above pole figures. A detailed overlook about the

terminologies applied for the texture is given by Kocks et al. (1998).

At room temperature, all measurements are determined by a computer controlled

four-circle goniometer by an X-ray (CoKα ray) diffraction procedure. Pole figures

are measured for three reflections, namely {200}, {211}, and {220} for the iron

phase and {200}, {220}, and {311} for the copper phase, by scanning the hexago-

nal grid (Matthies and Wenk, 1992). The measured data are further processed in

a 5 × 5 grid. The statistics of the measurement are improved by the translational

movement of the sample in the rolling direction with an amplitude between 0.5

and 2 mm.

After the normalization and the correction of the coarse data from three reflections

of each phase, the data are used as the input for the calculation of the ODF f(Q)
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which quantitatively describes the density distribution of the orientation Q of all

the crystal coordinates with respect to the sample coordinate. The Q in f(Q) is

presented by three Euler angles φ1, Φ, and φ2 following Bunge (1993). The ODF

is separately calculated from the pole figures for each phase by using the WIMV-

algorithm (Kallend et al., 1991) in the popLA texture package (Popla, 8918). The

iteration is performed 6 to 20 times until the error between the measured pole

figure and the one back-calculated by the ODF is smaller than 1.5%. The final

texture for the simple compression test is presented as the standard inverse pole

figure. The typical fibre texture, <100>- and <111>-fibre, is shown for the α-

iron. The copper phase is characterised by the <110>-fibre which develops in

the <210> direction. Besides, a very weak <411>-fibre texture appears for the

compressively deformed copper (see Figure B.2 for fibre directions).

2.2.2 Strain Distribution

The strain field1 is performed on a tension sample from the Fe17-Cu83 composite2.

The geometry of the sample for the tension test is presented in Figure 2.5. The

measured cut-out is extracted from the middle plane (through the tension direction

LD and the transverse direction TD in Figure 2.5b) of the unloaded sample and has

a rectangular geometry with the dimensions of 640×480 µm2 and 160×120 µm2 for

the undeformed case and at a large deformation, respectively. The grid of sampling

points is 3×3. A monochrome photo is taken in BSE-contrast (back scattering

electron) in order to make both phases in the cut-out visible. Additionally, photos

are taken from the same sample region in the unloaded state and each further

deformed step by SE-contrast-conditions (secondary electron).

The change of the displacement in the chosen cut-out is achieved by comparing

the (digital) photos before and after a given load step. The rigid body translation

and the rotation are subtracted from the measured displacement vector (WMA,

1The measurement and the calculation of the local strain field has been performed by V.
Heitmann and Dr. A. Cornec (Institut für Werkstoffforschung, GKSS Forschungszentrum,
Geesthacht.)

2Concerning the production of this Fe17-Cu83 composite, there is some difference from that
described in section 2.1, where the size of Cu powder is less than7 80 µm (63 µm in section
2.1) and the hot isostatic pressure is applied to obtain the final density of the composite (hot
pressure in section 2.1).
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Institut für Werkstofforschung, GKSS Forschungszentrum, Geesthacht, Germany).

Therefore, only the local displacement remains.
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Figure 2.5: Extracted sample used for the measure-
ment of the distribution of the local strain field in
a tension test (the loading direction LD in b is also
the tension direction) (Commentz, 2000).

Since the determination of the strain as the local derivative of the displacement

field is sensitive to the unevenness in the displacement field, the numerically ob-

tained displacement field is smoothed by another computer code (Software Surfer,

GOLDEN SOFTWARE INC., Golden, Colorado, U.S.A.). During this process,

only the small peaks are smoothed from the irregular surface of the displacement

field by considering the environment so that the local gradient is not significantly

changed. The effect of the smoothing is proved and optimised by directly com-

paring the output data.

The strain field is calculated componentwise by a computer code (WMA, Intstitut

für Werkstoffforschung, GKSS Forschungszentrum, Geesthacht, Germany). The

strain presented in this work is referred to the undeformed position.





Chapter 3

Continuum Mechanics

3.1 Kinematics

The object of mechanics is to investigate the motion of material bodies under the

influence of forces. In continuum mechanics, such bodies are at least piecewise

continuously differentiable with respect to the coordinates at each position, i.e.,

a differentiable manifold (Haupt, 2000). Kinematics is the subject of describing

the aforementioned movements under their temporal and spatial aspects. In the

present work classical mechanics are used to describe the placement of the material

body. This means that such placement of material bodies are domains of the

three-dimensional Euclidean space.

A material body B is assumed to be composed of material points X which are also

called particles or material elements. A placement1 of the body B is a mapping

χ : B → E in the Euclidean space. The position of a material point is given through

the mapping

x = χ(X). (3.1)

A motion of the body can be considered as a time-dependent sequence of place-

ments. It is advantageous to introduce a reference placement B0. We denote the

positions of material points in the reference placement by vectors X at the time

t = 0, i.e.,

1Some literature uses “configuration” instead of “placement”, e.g., Haupt (2000); Lubarda
(2002).

21
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X = χ(X, t = 0). (3.2)

Positions of material points in the current placement Bt are given as x at time t

∈ R+. Through the inversion of equation (3.2), x can be written as

x = χ(χ−1(X, t = 0), t). (3.3)

In the following, we specify X and x with respect to an orthonormal basis {ei}
with the point of the origin O (see Figure 3.1).

The displacement vector u is the difference of the position vector of a material

point in the current and in the reference placement

u(X, t) := χ(X, t) − X, (3.4)

which is shown in Figure 3.1.
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Figure 3.1: Sketch of the reference placement, the current placement, and the
displacement of a material point in the Euclidean space with respect to the or-
thonormal basis {ei}.

The deformation gradient F is defined as



Kinematics 23

F := Grad (χ(X, t)) =
∂χ(X, t)

∂X
, (3.5)

which is usually used to describe the deformation behaviour of materials. The

2nd-order tensor F is dimensionless and invertible for every point at each time. It

connects the reference and the current placement and is called a two-point tensor.

The deformation gradient can be polarly decomposed as

F = R U = V R. (3.6)

R is a proper orthogonal tensor, U and V are the right and the left stretch tensors,

which are symmetric and positive definite, i.e., U , V ∈ Sym+.

The right Cauchy-Green tensor C and the left Cauchy-Green tensor B are defined

as

C := U2 = F TF ,

B := V 2 = FF T.

(3.7)

The Green’s strain EG and the Almansi’s strain EA are defined as

EG =
1

2
(C − I),

EA =
1

2
(I − B−1),

(3.8)

where I indicates the 2nd-order identity tensor. These two strain tensors can be

transformed into each other by using F ,

EG = F TEAF . (3.9)

If a quantity is transformed from the current placement into the reference place-

ment, it is named as pull back. In equation (3.9), EA is pulled back from the

current placement to the reference placement. When the transformation is per-

formed in the other direction, it is called push forward. The Hencky (logarithmic)

strain tensor in the reference and the current placement are given as
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EH := ln U =
1

2
ln C,

Eh := ln V =
1

2
ln B,

(3.10)

respectively.

The deformation behaviour of materials can also be described in terms of the

displacement gradient H defined by

H := Grad (u(X, t)) =
∂χ

∂X
− ∂X

∂X
= F − I. (3.11)

All the above strain tensors can be expressed by H instead of F , e.g.,

EG =
1

2
(H + HT + HTH). (3.12)

The term HTH in equation (3.12) shows that the strain tensor EG is non-linear

in H and thus non-linear in the displacement field u.

The spatial velocity gradient L is defined as

L :=
∂v

∂x
= ḞF−1 (3.13)

with the velocity field v. It is useful for the analysis of motions to decompose

additively the tensor L as

L = D + W , (3.14)

where

D =
1

2
(L + LT), W =

1

2
(L − LT). (3.15)

D is the symmetric part of L and is the rate of deformation tensor, and W is the

skew spin tensor. D can be additively decomposed into the deviatoric part D ′

and the spheric (volumetric) part D◦ with
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D = D′ + D◦ = D′ +
1

3
tr(D)I. (3.16)

The deformation gradient F and the velocity gradient L are essential for the

analysis of the motion of the deformable bodies. Since F describes the changes of

the material elements (line, surface and volume elements) and L presents the rate

at which these changes take place.

3.2 Elasto-viscoplasticity

For elastic materials, the current stress is determined by the current strain. In

hyperelasticity, the elastic strain energy serves as a potential for the stresses. The

rate-independence is assumed for the elasto-plasticity. A more realistic description

of the material behaviour requires that the model is rate-dependent. A viscoplastic

formulation is one of such possibilities to include the rate-dependence.

3.2.1 Elastic Law

In order to formulate an elastic law, we assume that the 2nd Piola-Kirchhoff stress

tensor T 2PK is a function of the right Cauchy-Green tensor C

T 2PK = h(C). (3.17)

The above reduced form fulfills the principle of the material objectivity (PMO)

and the principle of invariance under superimposed rigid body motions (Bertram,

2005). Since metals possess a small elastic range, it is possible to find a physical

linear relation between T 2PK and C

T 2PK = C

[

1

2
(C − I)

]

= C[EG]. (3.18)

In equation (3.18), C is the 4th-order symmetric elasticity tensor. The Kirchhoff

stress T K is defined by the Cauchy stress σ

T K = det(F )σ. (3.19)
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The relation between the Kirchhoff stress tensor T K and T 2PK is

T 2PK = F−1T KF−T. (3.20)

Voigt (1910) classified crystals into 32 classes based on the number of the ro-

tations or reflections of the symmetry. Physically possible 2- and 3-dimensional

symmetry groups are reported by Zheng and Boehler (1994). Forte and Vianello

(1996) and Ting (1996) have shown that only 8 different symmetry classes can

be distinguished in the context of the 4th-order linear operators. For simplic-

ity, we present the tensor C by six by six matrices, and the components Cαβ

refer to the orthonormal basis Bα of the symmetric 2nd-order tensors, namely,

Cαβ = Bα · C[Bβ ], with

B1 = e1 ⊗ e1,

B2 = e2 ⊗ e2,

B3 = e3 ⊗ e3,

B4 =

√
2

2
(e2 ⊗ e3 + e3 ⊗ e2),

B5 =

√
2

2
(e1 ⊗ e3 + e3 ⊗ e1),

B6 =

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1).

(3.21)

The above presentation of C is the modified Voigt notation (see, e.g., Cowin

(1989)). In the case of cubic symmetry, there are three independent components

C1111, C1122 and C2323 in C
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C =

























C1111 C1122 C1122 0 0 0

C1122 C1111 C1122 0 0 0

C1122 C1122 C1111 0 0 0

0 0 0 2C2323 0 0

0 0 0 0 2C2323 0

0 0 0 0 0 2C2323

























Bα ⊗ Bβ . (3.22)

Following the theory of materials with isomorphic elastic ranges (Bertram, 1992,

1999), we introduce the plastic transformation P ∈ Inv+. An elastic reference law

can be found, which is constant and given as

T 2PK = P h̃(P TCP )P T (3.23)

instead of the elastic law in equation (3.17). The right hand side of equation (3.23)

does not change as a function, but only through the time-dependent variables of

P and C. Since the elastic range is always small for metals, a physically linear

relation

T 2PK =
1

det(P )
P C̃

[

1

2
(P TCP − I)

]

P T (3.24)

is available based on the isomorphy condition. The elasticity tensor C̃ describes a

constant stiffness tetrade during the deformation process. The tilde for C̃ means

that C̃ is formulated with respect to the undistorted state B̃. This state is charac-

terised by the fact that the corresponding symmetry transformations are elements

of SO(3) (Truesdell and Noll, 1965). In the following, this concept is also applied

to other quantities. A detailed description of the isomorphic elasticity can be

referenced to Truesdell and Noll (1965); Bertram (2005). Numerical applications

of this model are given in Bertram and Kraska (1995a,b); Bertram et al. (1997);

Böhlke et al. (1997).

Let gi be the basis vectors of the crystal lattice in the reference placement B0

and gE
i be those in the current placement Bt. Under the help of the plastic

transformation P and the deformation gradient F , gi and gE
i can be determined

by the basis vectors g̃i in the undistorted placement, i.e.,
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gi = P g̃i (3.25)

and

gE
i = FP g̃i, (3.26)

respectively. Basis vectors of the elasticity tensors C and C
E are specified by gi

and gE
i . The material and the spatial elasticity tensors are given as

C = P ? C̃ = C̃ijkl(P g̃i) ⊗ (P g̃j) ⊗ (P g̃k) ⊗ (P g̃l) (3.27)

and

CE = FP ? C̃ = C̃ijkl(FP g̃i) ⊗ (FP g̃j) ⊗ (FP g̃k) ⊗ (FP g̃l), (3.28)

respectively. In equations (3.27) and (3.28), the components of the elasticity

tensor C are not constant in the reference placement. The operator ? indicates

the Rayleigh product, and C̃ is a constant tensor. The elasticity tensor C̃ can also

be presented by projection operators (Rychlewski and Zhang, 1989; Bertram and

Olschewski, 1991) and, in the case of the cubic symmetry, has the form of

C̃ =
3
∑

i=1

λiP
C
i . (3.29)

λi denote the distinct eigenvalues of C̃ and can be written in terms of the

components of C̃ with respect to the orthonormal lattice vectors {g̃i}, i.e.,

λ1 = C̃1111 + 2C̃1122, λ2 = C̃1111 − C̃1122 and λ3 = 2C̃1212. The three projectors

PC
i are

P
C
1 =

1

3
I ⊗ I, P

C
2 = D − P

C
1 , P

C
3 = I

S − P
C
2 − P

C
1 (3.30)

D =
3
∑

i=1

g̃i ⊗ g̃i ⊗ g̃i ⊗ g̃i. (3.31)
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with IS being the 4th-order identity tensor for symmetric 2nd-order tensors. The

anisotropic part D is determined by the lattice vectors g̃i. These three projectors

satisfy the following conditions: idempotent PC
i PC

i = PC
i , biorthogonal PC

i PC
j = O

with i 6= j, and the complete
∑3

i=1 PC
i = I.

In the theory of finite plasticity, the undistorted placement can be obtained at

each instant by a local unloading process. For a given deformation F (t), let F̃
−1

be the consecutive deformation of the elastic unloading, then

F p := F̃
−1

F (t) (3.32)

is the remaining stress-free deformation. The above mentioned unloading process

is not unique, since F = F̃QTQF p is also valid for each orthogonal tensor Q.
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Figure 3.2: The reference, the undistorted and the
current placements.

Following Lee (1969), the deformation gradient F is multiplicatively decomposed

into the elastic part F̃ and the plastic part F p (see Figure 3.2)

F = F̃ F p. (3.33)

Asaro and Needleman (1985), Nemat-Nasser et al. (1998), and Lee et al. (1999)

applied this concept of the decomposition of F . F̃ indicates the elastic distortion,

the dilatation and the rotations which also account for any rigid body rotations.

F p indicates the crystallographic slipping along the slip system (d,n), in which d

is the unit slip direction and n is the unit normal vector to the slip plane in the

reference placement. F p also gives the plastic incompressibility
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det(F p) = 1. (3.34)

From the product of the deformation gradient F and the plastic transformation

P in equations (3.26) and (3.28), and applying equation (3.33), we have

F p = P−1. (3.35)

The multiplicative decomposition is not needed if equation (3.33) is deduced from

the isomorphy concept. In this case, the elastic law in equation (3.24) is

det(P )P−1T 2PKP−T = C̃

[

1

2

(

F̃
T
F̃ − I

)

]

. (3.36)

We have the relation

T̃
2PK

= det(P )P−1T 2PKP−T. (3.37)

for the 2nd Piola-Kirchhoff stress between the undistorted placement and the

reference placement. Applying C̃ = F̃
T
F̃ , it follows that

T̃
2PK

= C̃

[

1

2
(C̃ − I)

]

= C̃[Ẽ
G

]

(3.38)

for the elastic law. Analogously, the Kirchhoff and the Cauchy stress tensors can

also be given in terms of F̃ .

3.2.2 Crystal Lattice and Slip Systems

Metals have crystalline structures. The plastic flow in metals is confined to certain

crystallographic planes (slip planes) in certain crystallographic directions (slip

directions) on the microscopic level. Crystalline structures of metals consist of

the crystal lattices, the periodic nature of which allows us to fully describe these

structures by the smallest crystal unit known as unit cell. The most common
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lattices for metals are the face-centred-cubic (fcc) lattice, body-centred-cubic (fcc)

lattice and the hexagonal (or close-packed hexagonal) lattice (hcp). Figure 3.3

shows the fcc and bcc unit cells. Table 3.1 lists some typical metals for fcc, bcc

and hcp.
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Figure 3.3: Unit cell of fcc and bcc.

Lattices Metals
fcc Cu, Al, Ni, Au, γ-Fe (Austenite)
bcc α-Fe (ferrite), Nb, Mo, W
hcp Mg, Zn

Table 3.1: List of some metals sorted by crystal
lattices.

In crystal plasticity, dislocation glide is essential for the permanent deformation

of materials. It is necessary to specify the crystal structure to describe the motion

of a single crystal deformed by the plastic slip.

Miller indices are used to distinguish a certain plane of the basic lattice and a

direction lying on this plane. Detailed information about Miller indices may be

found in, e.g., Gambin (2001). Taking into account the symmetry of crystallo-

graphic planes, and directions, and with the aid of the Miller indices, we present

slip planes and directions in {hkl}<uvw> form, where {} presents multiple slip

planes and <> gives multiple slip directions. For fcc materials and at room tem-

perature, there are twelve slip systems {111}<101>, i.e., 4 glide planes × 3 glide

directions. Table 3.2 lists the 48 slip systems for bcc1 materials.

1At high temperature more slip systems than those given in Table 3.2 are possible (Gambin,
2001). However, we presently restrict our applications to room temperature.
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Slip planes Slip directions Slip systems
{110} <111> 6 × 2 = 12
{112} <111> 12 × 1 = 12
{123} <111> 24 × 1 = 24

Table 3.2: List of 48 bcc crystallographic slip sys-
tems.

A particular slip system α can be specified by d̃α and ñα, which indicate the slip

direction and the normal of the slip plane in the undistorted placement, respec-

tively.

The resolved shear stress component along the slip direction on the slip plane

(the resolved shear stress) initiates the plastic deformation (Schmid, 1924). The

activation of a slip system α is related to the shear strain with the shear rate γ̇α.

There are different ways to specify the shear rate γ̇α. Harder (1997) applied

γ̇α = γ̇0 sgn
(

τα − τB
α

)

(

τα − τB
α

µ

)2

exp





4F

κT

∣

∣

∣τα − τB
α

∣

∣

∣

τD
α



 (3.39)

by taking the shear modulus µ, the absolute temperature T and the Boltzmann

constant κ into consideration. γ̇0, τα, and τD
α indicate the reference shear rate,

the resolved shear stress, and the drag stress in the slip system, correspondingly.

4F and τB
α in (3.39) are activation entropies, and the scalar back-stress in each

slip system, respectively. Méric et al. (1994) and Forest (1996) gave an ansatz for

the viscoplastic approach

γ̇α = γ̇0 sgn
(

τα − τB
α

)

〈

∣

∣

∣
τα − τB

α

∣

∣

∣
− τC

α

τD
α

〉

m

, (3.40)

where τC
α and m are the critical resolved shear stress, and the strain-rate sensitivity

parameter, respectively. The bracket 〈x〉 is defined by (x − |x|)/2. In equation

(3.40), a slip system is activated when the resolved stress τα is larger than a

critical value. We apply the ansatz

γ̇α = γ̇0 sgn (τα)

∣

∣

∣

∣

τα

τC
α

∣

∣

∣

∣

m

(3.41)
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(Hutchinson, 1976). γ̇0 is taken as constant for all the slip systems. Since the

parameter m is generally larger than 80 (Bronkhorst et al., 1992) at room tem-

perature, the shear rate will increase when τα ≈ τC
α .

3.2.3 Flow Rule

An evolution equation of P is needed to describe the flow behaviour. The ansatz

for the flow rule applied in this work has the form

P−1Ṗ = −Ḟ pF
−1
p = −k̃(T̃

′
, τC

α )

= −
∑n

α=1 γ̇α(T̃
′
, τC

α )M̃α

(3.42)

in the undistorted placement (Rice, 1971; Peirce et al., 1982), where k̃ is a constant

function. n and M̃α are the number of slip systems and the Schmid tensor with

M̃α = d̃α ⊗ ñα, respectively. The Mandel tensor T̃ is related to the Kirchhoff

stress tensor T K and given as

T̃ = F̃
T
T K F̃

−T
. (3.43)

At room temperature, the slip systems of the fcc material harden approximately

in an isotropic manner (Kocks and Mecking, 2003) such that only one critical

resolved shear stress τC remains in equation (3.41), i.e.,

γ̇α = γ̇0 sgn (τα)
∣

∣

∣

τα

τC

∣

∣

∣

m
. (3.44)

For simplicity and limited by the experimental data, this isotropic hardening con-

cept is also used for the iron phase in this work. The same assumption for bcc is

also adopted by Hartig and Mecking (2005). The resolved shear stress τ α is given

as

τα = T̃
′ · M̃α. (3.45)

The flow rule can also be equivalently written in terms of F̃ , i.e.,
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˙̃
F F̃

−1
= L − F̃ k̃(T̃

′
, τC)F̃

−1
. (3.46)

3.2.4 Hardening

The hardening rule is necessary to describe the evolution of the critical resolved

shear stresses of all slip systems. When materials are under monotonous defor-

mations (simple tension and compression) at room temperature, the plastic defor-

mation is characterised by the accumulation of dislocations in the crystal lattice.

The increase in the strength of the material that accompanies this accumulation

is called work hardening. The Kocks-Mecking hardening rule (Voce rule) puts

emphasis on the mechanisms of the dislocation movement, the accumulation, and

the annealing. This rule is suitable to describe the hardening behaviour of the

Fe-Cu composites in this work.

Kocks and Mecking (2003) summarised the work hardening in five stages according

to the strain hardening rate (θ := dτC

dγ ). These stages are:

• Stage I is the easy-glide stage and depends strongly on the orientation of

the crystal. The slip occurs only on one crystallographic slip system in this

stage. This mode of slip does not exist for polycrystals for which multiple slip

systems are necessary from the beginning in order to maintain the material

continuity at the grain boundaries.

• Stage II gives the steepest rate of strain hardening in the order of µ/200 (µ:

shear modulus) and depends on the orientation for both the single and the

polycrystals.

• Stage III strongly depends on the temperature and the strain rate in both

single crystals and polycrystals. The thermally activated processes (dynamic

recovery), the dislocation annihilation and the rearrangement in stage III

counteract the athermal dislocation storage by stage II processes.

• Stage IV is characterised by a very low hardening rate and the hardening

rate of stage V drops to zero.
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The aforementioned five stages in the work-hardening are better understood as

regions in which one or another of the various processes dominates. The hardening

mechanism concentrates majorly on stage II to III for materials in this work.

Based on observations in the dislocation theory of plasticity, the relation between

the critical resolved shear stress τC and the dislocation density ρ can be given as

τC = α µ b
√

ρ (3.47)

with the magnitude of the Burgers vector b and a scalar constant α. α depends only

weakly on the temperature and the geometrical arrangement of the dislocations.

The flow stress σ and the critical resolved shear stress τC are related by the Taylor

factor M which is defined as the ratio of the flow stress and the critical resolved

shear stress (M = σ/τC). The work-hardening rate is defined as

Θ :=
dσ

dε
, (3.48)

with the accumulated plastic strain ε. Θ is a direct measurement of the accumu-

lation rate of the dislocations. Kocks and Mecking (2003) gave a detailed analysis

for the fundamental interdependencies among the stress σ, the work hardening

rate Θ, the temperature T , and the plastic strain rate ε̇.

The Voce rule can be written as

Θ = Θ∗
0

(

1 − σ

σv

)

(3.49)

with Θ∗
0 = M2αµ/(2β). In the context of finite deformations, the evolution of the

density of the dislocation can be given as

ρ̇(τα, ρ) =

(√
ρ

βb
− κ

∣

∣

∣

∣

γ̇(τα, ρ)

γ̇∗0

∣

∣

∣

∣

− 1

n

ρ

)

γ̇(τα, ρ) (3.50)

where

γ̇(τα, ρ) =
N
∑

α=1

∣

∣

∣γ̇α(τα, τC(ρ))
∣

∣

∣ . (3.51)
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γ̇∗0 is a material constant. β is a proportionality constant. In equation (3.50),

the first term describes the statistical storage of the dislocations, i.e., the afore-

mentioned stage II. The second term shows dynamic recovery processes which are

assumed to be thermally activated and to increase in proportion to the density

of stored dislocations. A detailed deduction for the work hardening is given in

Kocks (1976) and Kocks and Mecking (2003). The evolution equation in terms of

the critical resolved shear stress is

τ̇C(τα, τC) = Θ0

(

1 − τC

τv
c (τα, τC)

)

γ̇(τα, τC),

τv
c (τα, τC) = τv

c 0

∣

∣

∣

∣

∣

γ̇(τα, τC)

γ̇∗0

∣

∣

∣

∣

∣

1/n

,

γ̇ =
∑N

α=1 |γ̇α|

(3.52)

with the critical resolved shear stress τC and the number of considered slip systems

N . In equation (3.52), γ̇ presents the shear rate which is the sum over all systems.

n is the stress exponent. Θ0 = αµ/(2β), τv
c 0 = αµ/(κβ) and γ̇∗0 are input material

parameters identified from experiments. In equation (3.52), Θ0 is a characteristic

strain hardening and τ v
c is a scaling stress.

3.3 Viscoplasticity

3.3.1 Elastic Law

For the rigid viscoplastic material model, it is assumed that the distortion of the

crystal lattice is purely viscoplastic, and the dilatation is purely elastic. Purely

viscoplasticity means that the complete deformation or strain-rate is due to in-

elastic processes. In addition, the above two deformation modes are taken as

decoupled. Although there are elastic stresses related to the volume changes in

the model, it is called rigid-viscoplastic model. To formulate the elastic law, the

Kirchhoff stress tensor T K is additively decomposed into the spherical (T K◦
) and

the deviatoric (T K ′
) part
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T K = T K◦
+ T K ′

. (3.53)

T K◦
is associated with the volume changes and indicates the equilibrium part of

the stress tensor T K (Šilhavý, 1997). The distortions in T K ′
presents the dynamic

part of the stress tensor T K (Šilhavý, 1997).

Based on the aforementioned assumptions, the strain energy density depends only

on the determinant J = det(F ) of the deformation gradient. The strain energy

density denoted as W (J) is given as

W (J) =
K

4

(

J2 − 2 ln J − 1
)

(3.54)

with K being the bulk modulus (Ogden, 1972; Simo and Miehe, 1992; Böhlke

et al., 2005). The above equation describes a convex curve. In equation (3.54),

the strain energy density W (J) goes to infinity, if J goes to infinity or to zero. As

a result, the equilibrium stress is given by

T K◦
= J

∂W (J)

∂J
I

=
K

2

(

J2 − 1
)

I.

(3.55)

3.3.2 Flow Rule

The inelastic deformation in the slip systems results in the viscoplastic distortions.

The slip is assumed to be driven by the resolved shear stress in the corresponding

slip system. It depends on the dynamical part (being equal to the deviatoric

part) of the stress tensor. For the viscoplastic single crystal, the distortions can

be modelled by

0 = D′ − Q sym(k̃(QTT K ′
Q, τC

α ))QT,

Q̇Q−1 = W − Q skw(k̃(QTT K ′
Q, τC

α ))QT

(3.56)

(Hutchinson, 1976). D′ and W are the traceless symmetric and the skew (an-

tisymmetric) parts of the velocity gradient L. The critical resolved shear stress
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τC
α in each slip system is considered as an internal variable. The orientation of a

single crystal is specified by an orthogonal tensor Q. Q is specially chosen such

that, for a given point, it maps the lattice vectors g0
i at time t = 0 onto the lattice

vectors gi at time t ≥ 0, i.e.,

gi(t) = Q(t)g0
i . (3.57)

If the initial lattice vector g0
i coincides with the reference basis {ei}, the orthogonal

tensor Q can be written as Q = gi(t) ⊗ ei.

Equation (3.56a) is an implicit equation for the stress deviator part T K ′
when

the deviator part of the strain rate, D′, is given. Equation (3.56b) determines the

spin Q̇Q−1 of the crystal lattice for given T K ′
, W , and Q. The equation (3.56)

can also be deduced from the elasto-viscoplastic flow rule (3.46) by taking

F̃ = R̃Ũ = QŨ . (3.58)

The function k̃(QTTK ′
Q, τC

α ) is assumed to be given by

k̃(QTTK ′
Q, τC

α ) =
N
∑

α=1

γ̇α(τα, τC
α )M̃α (3.59)

with

γ̇α = γ̇0 sgn (τα)

∣

∣

∣

∣

τα

τC
α

∣

∣

∣

∣

m

,

τα = (QTT K ′
Q) · M̃α.

(3.60)

τα is the resolved shear stress in the slip system α. m is the strain rate sensi-

tivity parameter which is temperature related. In the limit as m → ∞, a rate-

independent behaviour is described. Note that equation (3.60) implies that the

rate of the deformation is positively homogeneous of degree m in the stress ten-

sor, whereas the stress is homogeneous of degree 1/m in the rate of deformation

(Böhlke et al., 2005).
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The Kocks-Mecking hardening rule in section (3.2.4) is also applied in the vis-

coplastic material model.

The elastic law in the elasto-viscoplastic model directly gives the relation between

the stress tensor and the strain tensor, where an elasticity tensor C (or C̃) is

necessary (see equations (3.18) or (3.38)). The elastic part of deformation gradient

F̃ can be calculated from the flow rule for the elasto-viscoplasticity model. The

equilibrium stress in the rigid viscoplastic model is purely spherical, which is much

simpler than the elasto-viscoplastic case. The deviatoric part of the stress tensor

is determined by the symmetric part of the flow rule. No elasticity tensor appears

in the rigid viscoplastic model. Only the orthogonal part of F̃ , i.e. Q in equation

(3.58), can be determined by the flow rule in the rigid viscoplasticity model. In

comparison to the elasto-viscoplastic model, the rigid viscoplastic model has a

lower numerical effort.





Chapter 4

Homogenisation Techniques

The homogenisation theory establishes the macromechanical material behaviour

based on constitutive equations of single crystals and takes into account the infor-

mation of the microstructures. To describe the transition from the micro to the

macro variables, we introduce a representative volume element (RVE). An RVE

is a volume which contains a statistically representative volume fraction of the

microstructure. Macro fields are determined through homogenising corresponding

micro fields by appropriate averages over the RVE. In this chapter, the over-

all macroscopic quantities will be denoted by a superposed bar. For example, F̄

presents the deformation gradient on the macroscale, while F is the corresponding

one on the local level. The volume average of the deformation gradient is

F̄ (X, t) =
1

V

∫

B0

F (X, t) dV, (4.1)

with V the volume of the RVE. Equation (4.1) is a volumetric mean taken over

the volume of the RVE in the reference placement. Based on the postulate of the

equivalence of work on the micro and the macroscale (Hill, 1963), the local and

the global 1st Piolar-Kirchhoff stresses are related by

T̄
1PK · ˙̄F =

1

V

∫

∂B0

T 1PK · Ḟ dV. (4.2)

This postulate is the link of micro and macro quantities. By restricting the con-

sideration to the quasi-static case and the homogeneous boundary condition or

the periodic boundary condition, one achieves the average stresses

41



42 Homogenisation Techniques

T̄
1PK =

1

V

∫

B0

T 1PK dV. (4.3)

Analogously, the macroscopic Cauchy stress can be calculated as

σ̄ =
1

v

∫

B
σ dv (4.4)

in the current placement, where v is the volume of the RVE in the current place-

ment. However, the T̄
2PK is not equal to the volume average of the microscopic

2nd-Piolar Kirchhoff stress

T̄
2PK 6= 1

V

∫

B0

T 2PK dV, (4.5)

since

T̄
2PK := F̄

−1
T̄

1PK 6= F−1T 1PK . (4.6)

The macroscopic measurement of Green’s strain is defined by

Ē
G =

1

2
(F̄T

F̄ − I). (4.7)

Due to

F TF 6= F̄
T
F̄ , (4.8)

Ē is not a volume average of the microscopic Lagrangian strain E

Ē 6= 1

V

∫

B0

E dV. (4.9)

4.1 Taylor and Sachs Models

The rigid plastic model for polycrystals (Taylor, 1938) successfully describes the

stress-strain relation and the texture development of polycrystals with a high-

stacking-fault energy under the uniaxial loading in terms of the single crystal
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constitutive behaviour. The Taylor model assumes that the deformation field of

the RVE is homogeneous and equals that of the macro one, i.e.,

F̄ = F . (4.10)

This deformation field is compatible in the Taylor model on the micro level. The

equilibrium is fulfilled inside each grain but not on the grain boundaries, since

all the single grains are forced to deform in the same way as the aggregate. The

macroscopic stress tensor is the average over the microscopic stress tensor of each

element. The stress tensor is

σ̄ =
1

v

N
∑

i

viσi (4.11)

with the total grain number N. v and vi present the volume of the RVE and the

volume of each grain in the current placement with v =
∑N

i=1 vi.

The Taylor model fails to describe details observed in experiments due to its strict

constraints. Honneff and Mecking (1978); Mecking (1981) modified these extreme

assumptions in the form of the relaxed Taylor model in which some components of

the strain tensor are considered as being unconstrained. Nevertheless, the Taylor

model can predict basic features of polycrystalline deformations, e.g., the texture

and the stress-strain curves.

In the sense of the Sachs model, one assumes a constant stress field. Sachs (1928)

assumed a model with a homogeneous stress field for each grain. In this model,

the micro stress is identical to the macroscopic stress

σ̄ = σ. (4.12)

The deformation field is inhomogeneous and the macroscopic deformation gradient

equals to

F̄ =
1

V

N
∑

i

ViF i, (4.13)
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where Vi is the element volume in the reference placement with V =
∑N

i=1 Vi.

The equilibrium is trivially satisfied in this case but not the compatibility. Leffers

(1968) described a relaxed Sachs model. This model permits the application of the

additional stresses together with the basic stress system, where additional stresses

will provoke multiple glide.

In single crystals, multislips are possible in the Taylor model while Sach’s model,

normally, has only single slip. The slip system, which is in the favourable position

with regard to the loading direction, will be activated. Only when no slip system

has such favourable position, can multislips occur in the Sachs model. Voigt

(1910) approximated the elastic constants of polycrystals from those of single

crystals by assuming a homogeneous deformation field. Reuss (1929) assumed an

homogeneous stress field to deduce the elastic properties of polycrystals.

4.2 Self-consistent Models

In Hershey and Dahlgren (1954) and Kröner (1958) a self-consistent method was

used in elasticity to determine average elastic polycrystalline constants in terms of

the single crystal constants. In this method, a single crystal is taken to be embed-

ded in an infinite medium with the average polycrystalline moduli (homogeneous

equivalent medium). Eshelby (1957) proposed a model which took the interaction

into account and allowed a stress-free plastic deformation of inclusions by consid-

ering a grain to be embedded in the matrix. Kröner (1958) used the solution of

Eshelby (1957) to determine the elastic constants of polycrystals with isotropic

distribution of the crystal orientation and the spherical grain shape. Kröner (1961)

formulated the plastic deformation of polycrystals, where the orientations of grains

were random.

Hill (1965) proposed an elasto-plastic model for polycrystals, in which both the

single crystal and the matrix were considered as being elastic-plastic. To de-

scribe elastic-plastic properties of aggregates, the concept of the constraint tensor

was introduced to the single crystal grain. The model in Budianski and Wu

(1962) applied the elastic constraint to the single-crystal grain by surrounding

aggregates while Hill’s model defined the constraint by the plastically deformed

aggregate. Hutchinson (1970) compared the stress-strain curves predicted by the
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Kröner (1961), the Budianski and Wu (1962) and the Hill (1965) model for fcc

polycrystals under tensile loading. He indicated that Hill’s model was more re-

alistic than others during the progression of the plastic deformation. Based on a

creep power law, a study of the macroscopic relations between stress and strain

rates for fcc polycrystals was given in Hutchinson (1976) by using the upper bound

technique and the Hill (1965) self-consistent theory. In the rigid plastic case, re-

sults predicted by these two methods were similar for a wide range of the strain

rates. Berveiller and Zaoui (1979) used a plastic accommodation model to pre-

dict the stress-strain behaviour of the polycrystal specimen in uniaxial tension.

Another self-consistent approach was formulated for large deformations of poly-

crystals by Molinari et al. (1987). This rigid viscoplastic model is also applied to

calculate the texture in tension, compression, and torsion, in which better results

are shown than the predictions by the Taylor model. In Molinari et al. (1987)

and Canova et al. (1992), the grain to grain interaction is taken into account.

Harren et al. (1989); Weng (1981, 1982); Tóth and Molinari (1994) studied the

rate-dependent polycrystalline response by applying self-consistent models. An-

other model (Nebozhyn et al., 2001), variational self-consistent, was applied to

compute the effective behaviour of the viscoplastic polycrystals by using the non-

linear homogenisation method of deBotton and Ponte Castaneda (1995). The

effective stress vs. the strain-rate sensitivity curves were compared among the

Taylor model, the Sachs model, the variational and other self-consistent models.

Results have shown that incremental (Hill, 1965; Hutchinson, 1976) estimations

tend to the Taylor model and tangent (Molinari et al., 1987; Lebensohn and Tomè,

1993) are near to the Sachs bound, while the variational estimations remained dis-

tinct from the aforementioned models for all values of the strain-rate sensititvity

parameter. This variational self-consistent model is especially suitable for ionic

polycrystals, for which the effect of the grain shape is more significant than for the

fcc case. Böhlke (2004) determined the Voigt bound of the stress potential of fcc

polycrystals for all types of strain rate states. It has been shown that the isotropic

Voigt bound of the stress potential depends strongly on the determinant of the

strain rate deviator. This implies that the viscoplastic flow is not proportional to

the stress deviator.
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4.3 Finite Element-based Representative Volume El-

ements

The common disadvantage of the aforementioned (Taylor, Sachs and self-

consistent) methods is that, for a given grain, the influence from neighbouring

ones in the structure is neglected. Only in some special cases of the self-consistent

model, is this effect taken into account. These approximate analytical approaches

seem to be most accurate in limited cases: metals with high-symmetry and low-

anisotropy single crystal grains (e.g., fcc and bcc). Under such conditions, the

local fluctuations within each phase possibly do not play a significant role in de-

termining the overall response (Dawson et al., 1994). The overall mechanical

behaviour of polycrystals strongly depends on the internal structure under large

plastic deformations, in particular for the two- or the multi-phase materials. A

good representation of the real microstructure including the grain geometry and

the phase boundary is essential for the analysis of the overall behaviour of highly

heterogeneous materials. In this case, microstructures assumed as spheres or el-

lipsoids embedded in an infinite medium, which is often used in self-consistent

models, are insufficient to simulate the plastic deformation of polycrystals. Ny-

gards and Gudmundson (2002b); Li et al. (2006) utilised Voronoi tessellations

to present microstructures in their finite element simulations. Soppa et al. (2001,

2003) applied cut-outs of real microstructures to predict the mechanical behaviours

of two-phase composites.

By postulating that the mechanical behaviour of all phases can be adequately pre-

dicted by the continuum constitutive relations, the aggregate deformation history

is determined by solving equations of momentum and energy balances and the

compatibility in conjunction with the phase constitutive relations, suitable ini-

tial conditions, and boundary conditions (Dawson et al., 1994). For the complete

boundary value problem solutions, the finite element method is a suitable numer-

ical procedure for realistic microstructure models, while the equation system is

too complex to be successful for the analytical solutions. If the initial boundary

value problem on the microscale is solved by the finite element method, both the

equilibrium and the compatibility are fulfilled in a weak sense. The finite element

method based on the representative volume element should predict better results,

if the properties of each phase of the material (or composite) are highly hetero-
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geneous. This method accounts for the influences of neighbouring grains and can

capture the effect of the geometrical shape and distribution of microstructural

reinforcements on the overall material behaviour.

FE simulations with homogeneous boundary condition make the material struc-

ture stiffer and overestimate the material strength due to the restriction that the

displacement of nodes on the boundary is independent of the inhomogeneous so-

lutions inside the structure. Because of its simplicity and being directly used in

standard-FE-software, it is also used, e.g., Takahashi et al. (1996); Kabir et al.

(2006). The periodic boundary conditions allow for (periodic) fluctuations on the

boundaries, and this improves the simulated results which are much nearer to

the reality (e.g., Xia et al. (2003); Yang and Qin (2004)). But the PBC is more

complex and, usually, needs extra codes and constraint equations to calculate the

displacement on the boundary. Thus, more computational effort is necessary.

Finite element approaches can predict the material behaviour on a rather differ-

ent scale covering from nano- to macro-level. Harder (1997) studied the local

stress field. Kraska (1998) and Miehe et al. (1999) reported the macro-response

according to certain textures. Bertram et al. (1997); Bertram (1999); Böhlke

et al. (1997) studied the changes of the elastic properties due to an evolving crys-

tallographic texture. Miehe and Schotte (2004) combined the polycrystal model

with the finite element model to simulate the earing of deep-drawing of sheets,

where the Taylor assumption was applied to the homogenization of Gauss points

of the finite element model. Two different texture-dependent material models,

i.e. an elastic-viscoplastic model based on the discrete orientations and a rigid-

viscoplastic model, are discussed and applied to the simulation of deep drawing

operations of aluminium in Böhlke et al. (2006b). In this work, they also took

the Taylor assumption as the homogenization method for the Gauss points in FE

simulations.

Mishnaevsky and Schmauder (1999) summarised the recent advances in the nu-

merical modelling of strength, deformation, damage, and fracture of the hetero-

geneous material.





Chapter 5

Parameter Identification Based on

the Taylor Model

5.1 Parameter Identification

5.1.1 Boundary Condition

We use the Taylor model to identify the input material parameters for the given

polycrystals mentioned in chapter 1. The material parameters are estimated by

simulating a uniaxial compression, i.e. simple compression, test and comparing

the results with the corresponding experimental data (Commentz et al., 1999).

The velocity gradient L (3.13) in the form of

L = γ̇0
L1

‖L1‖
(5.1)

is kept constant which means that the material is loaded under a constant strain

rate and spin. Since the material is assumed to be volume preserving, L1 in (5.1)

is given as

L1=̂











1

2
0 0

0
1

2
0

0 0 −1


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


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with the unit of s−1. Macroscopically, the plastic strain (ε̄p in the loading direc-

tion) and the height (h) of the specimen after the loading are presented as

ε̄p = − ln
h

h0

h = h0 − ∆h

(5.2)

where h0 and ∆h denote the initial height and the displacement of the specimen.

PSfrag replacements

20 µm h0

h

∆h

Z

X

Y

Figure 5.1: A sketch of the specimen be-
fore (solid lines) and after (dashed lines)
a uniaxial compression load.

The corresponding variables in equation (5.2) are shown in Figure 5.1. The Cauchy

stress in the loading direction (σzz in (3.19)) matches the true stress in the exper-

iment. The macroscopic strain ε is numerically calculated as

F (t) = exp(Lt)F 0

u(X, t) = H(t)X

= (F − I)X

ε = − ln
xz

Xz

(5.3)

with the reference displacement gradient H (see equations (3.5) and (3.11)). xz
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and Xz (Xz 6= 0) present the loading direction component of the position tensor

in the current and the reference placement, respectively. If a special orthogonal

basis is chosen as in Figure 5.1, the reference displacement gradient equals to the

spatial displacement in the simple compression case. Initially, F 0 is given as

F 0=̂









1 0 0

0 1 0

0 0 1









.

The elastic part of the deformation gradient F̃ is equal to the crystal orientation

Q (see (3.58)) at the beginning of the loading with

F̃ (0) = Q, (5.4)

since no residual stress is considered in the material which means that the right

stretch tensor Ũ is the unit tensor.

5.1.2 Material Parameters

Three independent components of the elasticity tensor C̃ (3.22) in the cubic sym-

metry case are presented in Table 5.1 (Commentz et al., 1999).

Material C̃1111(GPa) C̃1122(GPa) C̃2323(GPa)
Cu 166.1 119.9 75.6
Fe 230.1 134.6 116.6

Table 5.1: Three independent components of the elas-
ticity tensor C̃ in cubic symmetry case for Cu and Fe.

Twelve glide systems1 {111}〈110〉 are considered for the fcc and twelve glide sys-

tems {110}〈111〉 are for the bcc crystals, respectively. According to Gottstein

(2001), the shear stress in the glide plane, called Peierls stress, is proportional

to the shear modulus, and (exponentially proportional) to the Burgers vector

(glide direction), but exponentially antiproportional to the distance of the glide

planes. Among the {110}〈111〉, {112}〈111〉, and {123}〈111〉 glide systems in the

bcc, the {110}〈111〉 glide systems are firstly activated, because the Peierls stress

1Details concerning glide planes and glide directions for both the fcc (Cu) and the bcc (Fe)
are shown in the tables B.1 and B.2 in appendix B.
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is the smallest one for them. Furthermore, the dislocation motion at the begin-

ning of the yielding strongly affects the texture development. The simplicity for

the simulation is another reason for just considering twelve glide systems for bcc

crystals.

Material γ̇0(s
−1) m γ̇∗0(107s−1) n

all 0.001 80 1.0 46.3

Table 5.2: Constant material parameters for
Fe/Cu and their composites.

Table 5.2 lists values of the constant parameters1 applied in the simulation. Other

values of γ̇∗0 are also possible, but it should be kept in the same magnitude which is

expected from the dislocation theory. Firstly, n is determined for the pure Cu by

the experimental curves in Kocks and Mecking (2003). Limited by experimental

data and for simplicity, this parameter (n) is also applied for the pure Fe and iron-

copper composites. It is found that the stress exponent n does not influence the

texture development much (Canova et al., 1988). Isotropic hardening is assumed

for the simulation.

Material τv
c 0(MPa) τc

0(MPa) Θ0

Cu 258 70 330
Fe 436 187 750

Table 5.3: Hardening material parameters
for the pure Cu and the pure Fe determined
by the trial-and-error method.

Table 5.3 presents the material parameters which are determined by the trial-and-

error method for the pure Fe and the pure Cu. Figure 5.2 shows the comparison

of the stress-strain curves between the Taylor simulation and the experiment.

For the numerical solution in Figure 5.2, the Cauchy stress is the average of 1000

initially arbitrarily oriented crystals with identical volume fraction. The stress

of the Fe-Cu composite is also determined by 1000 initially arbitrarily oriented

crystals, in which the Fe phase includes 500 crystals. Since the volume fraction of

each phase is an essential factor which influences the strength of the composite,

the rule of mixture (ROM)

1The meaning of the corresponding material parameters is referred to section 3.2.2 and 3.2.4.
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Figure 5.2: Numerical and experimental stress-strain curves of the
pure Fe and the pure Cu under the compressive load until 90% plastic
strain.

σ = σd
Fe vFe + σd

Cu vCu, (5.5)

is used to calculate the stress of the composite. vFe and vCu in equation (5.5)

indicate the volume fraction of the Fe and the Cu phase in the current placement,

correspondingly. The stress σd
Fe is the Cauchy stress for the Fe phase, where the

upper index“d”means that the stress is obtained by applying the input parameters

of the pure iron in Table 5.3. Analogously, σd
Cu has the same meaning for the Cu

phase.

In Figure 5.3 and 5.4, “direct matching” means that the stress of the composite is

calculated by using the parameters of the pure Fe and the pure Cu in Table 5.3.

The flow stress predicted by the Taylor simulation for the Fe17-Cu83 composite

is lower than that of the experiment (see Figure 5.3), but it is higher than the ex-

perimental one for the Fe83-Cu17 composite (see Figure 5.4). The aforementioned

deviations of the numerical stress-strain curves from the experimental ones mean

that the rule of mixture cannot predict well the stress of the Fe-Cu composites by
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Figure 5.3: Numerical and experimental stress-strain
curves of the Fe17-Cu83 composite under the compres-
sive load until 90% plastic strain where input parameters
for the Fe/Cu phase are identical to those of the pure
Fe/Cu.
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Figure 5.4: Numerical and experimental stress-strain
curves of the Fe83-Cu17 composite under the compres-
sive load until 90% plastic strain where input parameters
for the Fe/Cu phase are identical to those of the pure
Fe/Cu.
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using the material parameters of the pure Fe and the pure Cu.

Raabe et al. (1995) also presented the same phenomenon where the (macroscopic)

tensile strength of the Cu-20 mass% Nb was much greater than that expected from

the rule of mixture. The deformation of the two-phase polycrystals is strongly in-

fluenced by the incompatibility of the deformation of the fcc and the bcc phases.

The softer phase has to undergo a higher local deformation than the harder phase

(see e.g. Raabe et al., 1995; Commentz et al., 1999) and this modifies the lo-

cal stress distribution. These facts indicate that the modification of the rule of

mixture is necessary.

In order to capture the extra high strength in the composites in which the volume

fraction of the harder phase is approximately 20%, Hangen and Raabe (1995)

described the yield strength of the metal matrix composite (MMC) in terms of

a modified linear rule of mixtures. The yield strength of the composite, σRP0.2
1,

is considered as the sum of the volumetric weighted average of the yield strength

of each phase (conventional rule of mixtures), presented as σROM , and a Hall-

Petch type contribution attributed to the impact of the Cu-Nb phase boundaries,

presented as σMMC . At a certain macroscopic strain, the term σMMC includes

influences from the distance of the phase boundaries, the pile-up of the disloca-

tions on the phase boundaries, the Burgers vector, the filament thickness and the

spacing, etc. Ratke et al. (1984) presented that the Fe-Cu composites manifested

a pronounced interphase hardening mechanism by studying the age hardening

in ultrafine composite wires under thermal treatment. The yield stress of such

composite wires is quantitatively treated as a linear approximation from the yield

stress of the Fe and the Cu phase (σCu and σFe). The yield stress in each phase

(σCu, σFe) is affected by five different factors, namely:

1. the yield stress of the pure Cu and pure Fe,

2. the additional yield stress due to the solid solution hardening,

3. the part due to the age-hardening by particles,

4. the influence of the grain boundaries,

1Because of the simple tension test, only yield stresses in the loading direction are considered.
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5. the additional increase due to the phase boundaries.

To modify the rule of mixture, methods in both Hangen and Raabe (1995) and

Ratke et al. (1984) are, firstly, suitable for the special composite mentioned in

the corresponding literature and, secondly, they require the corresponding exper-

imental measurements as input material parameters. Concerning this work, the

hardening rule in section 3.2.4 is still preferred because of its simplicity and appli-

cability for the mentioned Fe-Cu composites. Aiming to match the experimental

data, however confined by the limited measurements obtained from experiments,

a modification of the material parameters of the pure iron and the pure copper is

performed to find suitable input parameters for each Fe-Cu composite. Material

parameters of the pure Fe and Cu provide the first guess for the new ones of the

composites. Due to the fact that the strength of the copper phase (in Fe-Cu com-

posites) is enhanced by the presence of the iron phase (Commentz et al., 1999),

the stress of the Cu phase is considered as higher than that of the pure copper and,

simultaneously, lower than that of the given composite during the trial process

(of searching for the suitable material parameters). Analogously, the Fe phase

has a strength which is lower than that of the pure iron and higher than that of

the composite. The above consideration also fits for the experimental observation

that the harder phase takes more strength than the softer one in such two-phase

polycrystals.

The calculation of the composite stress is based on equation (5.5), but the stress

of each phase is obtained from the modified material parameters. The new form

for such calculation can be written as

σ = σFe vFe + σCu vCu, (5.6)

where σFe and σCu mean that stresses of both the Fe and the Cu phase are

determined by the new input parameters which are given in Table 5.4. Figures 5.5

to 5.9 present the comparison between numerically and experimentally determined

stress-strain curves.
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Material τv
c 0(MPa) τc

0(MPa) Θ0

Fe(vol.%)/Cu (vol.%) Fe/Cu Fe/Cu Fe/Cu
Fe17-Cu83 405/280 180/70 780/330
Fe33-Cu67 360/280 180/80 800/466
Fe50-Cu50 403/276 186/80 830/490
Fe67-Cu33 415/275 186/80 860/430
Fe83-Cu17 415.5/280 186/80 892/450

Table 5.4: Hardening material parameters for Fe-Cu com-
posites determined by the trial-and-error.
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Figure 5.5: Numerical and experimental stress-strain
curves of the Fe17-Cu83 composite under compressive
load until 90% plastic strain.
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Figure 5.6: Numerical and experimental stress-strain
curves of the Fe33-Cu67 composite under compressive
load until 90% plastic strain.
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Figure 5.7: Numerical and experimental stress-strain
curves of the Fe50-Cu50 composite under compressive
load until 90% plastic strain.



Parameter Identification 59

 250

 300

 350

 400

 450

 500

 550

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

σ 
[M

P
a]

εp [-]

experimental/Fe67
numerical/Fe67

P
S
frag

rep
lacem

en
ts

20
µ
m

Figure 5.8: Numerical and experimental stress-strain
curves of the Fe67-Cu33 composite under compressive
load until 90% plastic strain.
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Figure 5.9: Numerical and experimental stress-strain
curves of the Fe83-Cu17 composite under compressive
load until 90% plastic strain.





Chapter 6

Axisymmetric Finite Element

Simulations

6.1 Introduction

The finite element model is very applicable for the complex structure, the inhomo-

geneity, and the anisotropy. To predict the mechanical behaviour in detail for the

two-phase polycrystals with a high local heterogeneity as the iron-copper poly-

crystals, the finite element simulation is the suitable homogenisation technique.

Polycrystal plasticity is appropriate for the aforementioned materials under large

plastic deformations. This theory can describe the main micromechanisms that are

responsible for the observed macroscopic phenomenon of the plastic deformation.

It can also describe such items as internal stresses, the texture development due to

large plastic deformations, and the effect of the grain size and shape. Since poly-

crystals consist of an enormous number of grains, their properties are influenced

not only by characters of the individual grains but also by the interaction between

them and, particularly, the interaction between phases for two-phase polycrystals.

The structure in the material has a strong effect on the plastic deformation pat-

tern. Furthermore, simulations, in which structures present the real microstruc-

tures more precisely, can predict better results. Therefore, 2D real microstructures

are applied as cross-sections of axisymmetric models presented in this chapter. We

incorporate a realistic morphology, the internal interphase and the grain orienta-

tion in the model to simulate complex mechanisms of Fe-Cu polycrystals under the

61
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large plastic deformation. The axisymmetric simulation1 with the assumption of a

finite length in the third direction (hoop direction) should give better predictions

than 2D ones with the assumption of the infinite length in the third direction.

LLorca and Segurado (2004) compared the results of the axisymmetric simulation

with that of the 3D one to analyse the effect of the reinforcement volume fraction

and the matrix damage parameters on the composite behaviour.

6.2 Morphology Identification from Real Microstruc-

tures

Based on their results predicted by the self-consistent model, Commentz et al.

(1999) recommended using a model, which takes into account local micromechan-

ical interactions among grains, to more successfully simulate the texture of two-

phase polycrystals. Through studying Ag-Ni two-phase polycrystals, Soppa et al.

(1998) concluded that the deformation process was significantly determined by

the interaction between phases. A mesh net with more and smaller elements for

the simulated structure is one way to emphasize the importance of the interaction

among grains and phases. But by considering the cost of the simulating time, the

relative finer meshing on grain boundaries2 is preferred.

In order to fulfill the above requirements, the mesh is generated by the public do-

main software OOF (NIST, 2003). This software is aimed to investigate properties

of the microstructure for the material simulation when the physical/mechanical

properties depend on microstructural details, such as the spatial correlation of the

crystallite orientation, the shape and the dispersion of the second phase and local

anisotropies.

Figure 6.1 and Figure 6.2 with subfigures of (a), (b), (c) and (d) present the real

microstructure, identified phases (black: Fe, white: Cu), identified grains (relative

darker ones present Cu grains), and the finite element net with the refined mesh

1The axisymmetric simulation is viewed as a special 3D simulation, because it also presents
all the 3D information.

2Phase boundaries are included in grain boundaries. In this work, we consider that grain
boundaries include Fe-Fe, Cu-Cu and Fe-Cu (grain) boundaries. Phase boundary always means
the Fe-Cu (grain) boundaries.
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on grain boundaries, respectively. Element edges are aligned on grain boundaries.

There are no multiphase elements, which means that all the integration points

belonging to the same element have identical material properties. The Fe17-Cu83

composite should give a better view of the material flow behaviour than other

Fe-Cu composites, because it is composed with a large volume fraction of the

copper phase, and the softer phase is the major one which flows in the whole

material structure. The Fe50-Cu50 composite provides the largest possibility for

phase-to-phase interaction. And this interaction is the key point to study the

local deformation behaviour of two-phase polycrystals with large differences in

the strength.

Figure 6.3 shows an image of such axisymmetric models. The smallest coordinate

of all the nodes in Figure 6.1(d) and 6.2(d) is chosen as 100 in both the X and the

Y direction. The 3D model, which is presented by the axisymmetric simulation,

is obtained by revolving a symmetrical cross-section.

Table 6.1 lists the information about the number of identified iron and copper

grains, the total number of elements, and the element type used in the simulation

for the Fe17-Cu83 and the Fe50-Cu50 composite (Figure 6.1(c)(d) and 6.2(c)(d)).

The extra marked grain Cua in Figure 6.2(c) is a very large grain of the softer

phase, the diameter of which is approximately one-half of the total length in the

transverse (horizontal) direction and one-third in the loading (vertical) direction.

This special grain is supposed to undergo an even larger plastic deformation than

the mean value.

Composite Fe Vol(%)
Grain number Element

Fe phase Cu phase total number type

Fe17-Cu83 22 34 47 10327 CGAX3H
Fe50-Cu50 49 38 29 9449 CGAX3H

Table 6.1: The volume fraction of the Fe phase, the number of grains for the
iron/copper phase, the total number of the elements, and the element type for the
Fe17-Cu83 and the Fe50-Cu50 composite (Figure 6.1(d) and Figure 6.2(d)).

Due to the fact that the volume of the material associated with the element is that

of a body revolution, as shown in Figure 6.3, the volume of a given phase calcu-

lated from the 2D axisymmetric cross-section may not exactly present the volume
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Figure 6.1: The real microstructure (a), the modelled microstructure with the
darker phase Fe (b), modelled grains (c), and the finite element net (d).
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Figure 6.2: The real microstructure (a), the modelled microstructure with the
darker phase Fe (b), modelled grains (c), and the finite element net (d).
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Figure 6.3: A sketch of an axisymmetric model (ABAQUS/Standard, 2003) where
the 2D microstructure is cut out from a cross-section of a cylindrical sample.

in the (experimental) 3D case. The volume fraction of the iron phase is 22% and

49% in the simulation for the above-mentioned two composites, respectively. Since

there are high heterogeneity and anisotropy in Fe-Cu two-phase polycrystal struc-

tures, the element type applied in the models is CGAX3H which belongs to the

generalized axisymmetric solid element (ABAQUS/Standard, 2003). Due to the

automatic mesh refinement on grain boundaries, the meshing could not provide

a corresponding node on the opposite side for each boundary node. Therefore,

homogeneous boundary conditions are applied for the simulation.

6.3 Local Behaviour under Simple Compression

6.3.1 Solution Mapping Technique for Large Plastic Deforma-

tions

In modelling a material structure under large plastic deformations, the mesh that

has deformed significantly from its original configuration has to be replaced by a

new mesh with a better quality in order to continue the analysis, i.e., remeshing

is necessary. When the strain becomes large in the geometrically nonlinear anal-

ysis, generally, elements become so severely distorted that they no longer provide

a good discretisation of the problem and could even cause inaccurate solutions.
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Besides the plastic or the viscoplastic calculation, the modelling of the rubber elas-

ticity problems, manufacturing processes, fracture propagations in materials and

structures, and crack development also frequently require remeshing techniques.

By applying the remeshing technique to trace the crack geometry as well as to

preserve an adequate element shape, Mediavilla et al. (2006) focused their study

on the numerical and stability aspects related to the discrete crack propagation in

the quasi-static ductile fracture. Logé and Chastel (2006) presented some numer-

ical strategies which included automatic remeshing and can be applied to couple

the finite element formulation to metallurgical models. In this work, the loading

process could not be performed until εp=90% due to the serious distortion of some

elements located on grain boundaries or shear bands. The plastic property of a

single Fe or Cu grain in its composite is highly anisotropic and related to the

grain orientation. When such polycrystals are subjected to large plastic deforma-

tions, the strain between neighbouring grains with different orientations is highly

incompatible, and the deformation ability of some elements is exhausted before

reaching the desired amount of the deformation.

It is one of the necessary steps in such remeshing analysis to map a solution

from the old mesh to the new one. Concerning the solution mapping algorithm

in ABAQUS (ABAQUS/Standard, 2003), the interpolation technique obtains the

solution variables at the nodes of the old mesh by extrapolating all values from the

integration points to the nodes of each element and then averaging these values

over all similar elements abutting each node. Consequently, variables of the inte-

gration point in the new mesh are assigned from the nodes of the old element in

which this (new integration) point is located. When this default solution mapping

algorithm is applied to the current problem (simulation of the local micromechan-

ical behaviour of Fe-Cu polycrystals by using the real microstructure under large

plastic deformations), new elements on the grain boundaries in an Fe grain obtain

variables which are averaged from other (old) Fe grains and even from (old) Cu

grains. The same problem of the solution mapping also occurs for elements of Cu

grains. Such grain boundary elements1 take quite an amount of the total volume

in the material structure used for the simulation (Figure 6.1(d) and 6.2(d)). This

causes great inhomogeneity among integration points even in the same grain. Ad-

1In this work, the ratio between the mesh after refinement on grain boundaries and that
before is approximately 3-4 for the total number of the elements.
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ditionally, since high anisotropy and heterogeneity exist among the Fe-Fe, Cu-Cu

and Fe-Cu grains, ABAQUS could not start the calculation for the newly meshed

structure.
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Figure 6.4: The iron and the copper phase (black: iron, white: copper), the phase
boundary at deformed states predicted by the viscoplastic material model and
with the remeshing technique ((a): end state of the 1st calculation, (b): initial
state of the 2nd calculation after remeshing, (c): end state of the 2nd calculation).

Figure 6.4(a) presents the deformed iron and copper phase at εp=45% at the

end of the first calculation (before remeshing), Figure 6.4(b) shows the modelled

Fe and Cu phases (identified from the 6.4(a)) at the beginning of the second

calculation and 6.4(c) shows the final deformed Fe and Cu phases at εp=90%

at the end of the second calculation. The tool for the remeshing is still OOF

mentioned in Section 6.2. The mesh is also refined on grain boundaries for the

new model which has 11,258 elements in total. The solution mapping is done

with a grain-to-grain mapping. For a given integration point A in the new mesh,

its internal variables are mapped from an integration point B in the same grain

of the old mesh. The condition for this mapping is that the distance between

points A and B is minimum. Thus, it avoids the problem of mixing properties of

the Fe and the Cu in assigning internal variables for the new integration point.

The aim of this Section (6.3.1) is to provide a method (remeshing) to solve the
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problem of simulating the large plastic deformation for the highly heterogeneous

and anisotropic material with a complex morphology.

Whenever the solution is mapped from another mesh, there will be some discon-

tinuity in the solution because of the change in the mesh (ABAQUS/Standard,

2003). For the above-mentioned two composites (Figure 6.1 and Figure 6.2), the

simulation has to be performed about twenty times in order to predict the ef-

fective stress-strain flow behaviour and the texture development. In this case,

the accumulated error resulting from the solution mapping is difficult to estimate.

Therefore, the elasto-viscoplastic material model1 (without remeshing) is preferred

to predict the mechanical behaviours of Fe-Cu composites.

6.3.2 Local Deformation Behaviour of the Grains

The overall elastoplastic behaviour of inhomogeneous materials, like Fe-Cu poly-

crystals, can be strongly influenced by very local events such as the initiation and

the propagation of shear bands, recrystallisation processes, grain geometry and

orientation. Studies on the grain-level interaction, the deformation and the ori-

entation are carried out on polycrystals (typically containing a number of grains

between 10 and 100) to understand the local deformation behaviour of individual

grains, particularly, how their interactions cause a locally, highly heterogeneous

plastic deformation. This is also the motivation of this section. Acharya and

Beaudoin (2000) studied the grain-size dependent hardening in the fcc and the

bcc polycrystalline metals at moderately high strains (2-30%). Sachtleber et al.

(2002) investigated the effect of grain interaction and orientation on the plastic

strain pattern for aluminum polycrystals by both experiments and FE simulations.

By using Al-Mg-Si sheets as model material, Raabe et al. (2003) performed a study

on the grain-scale micromechanics of polycrystal surfaces during the plastic strain-

ing in order to understand the relationship between the microstrain heterogeneity

and the surface roughness.

Different initial orientations, which are randomly generated, are assigned to the

iron and copper grains for the simulations in (a) and (b) of Figure 6.5 and Figure

6.6. We take the distance of the orientation space of the crystal orientation from

1In this work, this material model is the default one if there is no other specification.
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its initial one as the misorientation. Initially, there is no misorientation inside

each grain, but it exists between two arbitrary grains.

The rotation of the small harder phase particle b in Figure 6.5(a) is strongly

influenced by the grain orientations. The particle c (Figure 6.5(a)) shows the effect

of the grain orientation on the displacement of the particle. The above-mentioned

influence and the effect are caused not only by the orientation of the particle

itself but also by those of its neighbouring grains and particles. The alteration

of the initial grain orientation modifies the local deformation which affects the

material flow. Since the Fe17-Cu83 composite has a large amount of the softer

phase which flows around the harder phase, small particles, like b and c which

locate on such material flow ways, behave quite differently for the change of the

grain orientation. Furthermore, the grain geometry is another factor which also

affects the local deformation behaviour. Generally, the deformation behaviour of

the grain or the particle with a large size varies less than small ones due to different

grain orientations. In large grains, some parts, which are slender and near grain

boundaries, are more sensitive to the change of the crystallographic orientation

than other parts, e.g., particles a in Figure 6.5(a). The (microstructure) cut-out

of the Fe50-Cu50 composite includes large harder phase particles, e.g., particle a,

b, c, and d in Figure 6.6(a). These particles are on the four corners of the cut-out

and they (particles and 2D cut-out) share many boundaries with each other. This

special particle distribution makes such Fe phase grains even harder, since many

boundaries of the aforementiond four grains (particle a, b, c, and d in Figure

6.6(a)) are confined by homogeneous boundary conditions during the deformation

process. Both small and large particles (Figure 6.6(a) and (b)) behave like the

aforementioned ones (Figure 6.5(a) and (b)), i.e., the sensitivity to the change of

the grain orientation.

6.3.3 Local Plastic Deformation and Misorientation

Besides the grain orientation which influences the plastic deformation of the grains

in polycrystals, the grain morphology and the phase arrangement also affect the

pattern of deformation or the strain distribution of the material structure. Such

microstructure should be representatively large enough in order to show some

important indications for the plasticity, e.g., shear band, (Soppa et al., 1998).
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Figure 6.5: The influence of the initial orientation of grains (black: iron phase,
white: copper phase) on the particle deformation at εp=90% for the Fe17-Cu83
composite (letters a to c in (a) indicate iron particles).

The strain rate (traceless part ‖D′‖) is plotted in Figure 6.7 for the Fe50-Cu50

composite at the plastic strain εp=90%, where lines show four major shear bands

numbered from 1 to 4. These shear bands surround the largest grain Cua (refer-

enced to Figure 6.2(c) in section 6.2) of the softer phase and stop at the boundaries

of harder (Fe) phase particles a, b, c, d (referenced to Figure 6.6(a) in section

6.3.2). This pattern of the shear band distribution keeps its form for different

initial grain orientations. Shear bands 2 and 4 appear very early. The shear band

3 forms at about εp = 30%. The shear band 1 appears after the band 3. Dur-

ing the loading process, there are also some secondary short shear bands which

disappear at high plastic strains. A shear band depends also on the crystallo-

graphic orientation of grains since it does not always follow a continuous straight

line. Such phenomenon is also observed in Al-0.5wt%Mg polycrystals (Zhang and

Tong, 2004). The large grain Cua plastically deforms more near the boundary

than inside the grain. The plastic deformation of the grain Cua is quantitatively

analysed by the histogram 6.8. The extremely deformed part which corresponds

to the value of ‖D′‖ > 1.7−3s−1 localises in the black region of the shear band 2 in

Figure 6.7. Since the mean value of the misorientation for grain Cua is increasing
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Figure 6.6: The influence of the initial orientation of grains (black: iron phase,
white: copper phase) on the particle deformation at εp=90% for the Fe50-Cu50
composite (letter a to e in (a) indicate iron particles).

(Figure 6.9), the anisotropy of the distribution of the lattice rotation within Cua

is also amplified according to the macroscopic plastic strain. In the experiment

(analysed region of the specimen ≈ 250 × 200 µm), Tatschl and Kolednik (2003)

observed the same property that strong heterogeneities in the in-plane strain and

in the local lattice rotation exist within a single grain of copper polycrystals under

tension.

Figure 6.10 (left column) displays the distribution of the misorientation for the

iron and the copper phases of the Fe17-Cu83 composite. The iron phase shows a

lower mean value of the misorientation than the copper phase (Fe: ≈15, Cu: ≈17).

But the oscillation of the misorientation distribution is much larger for the iron

phase than for the copper phase. The geometry and the distribution of the harder

phase particles could be one of the reasons for such distribution. Compared to
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Figure 6.7: The strain rate (traceless part ‖D′‖) distribution with shear bands
shown by lines at εp=90% for the Fe50-Cu50 composite.
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Figure 6.8: Histogram of the strain
rate (traceless part ‖D′‖) distribution
at εp=90% for grain “Cua”.
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grain“Cua”of the Fe50-Cu50 composite
until the plastic strain εp=90%.



74 Axisymmetric Finite Element Simulations

 0

 2

 4

 6

 8

 10

 12

 0  10  20  30  40  50  60

V
ol

. [
%

]

α [°]

Fe17/Fe phase
Fe17/mean value

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 2

 4

 6

 8

 10

 12

 0  10  20  30  40  50  60

V
ol

. [
%

]

α [°]

Fe50/Fe phase
Fe50/mean value

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 2

 4

 6

 8

 10

 12

 0  10  20  30  40  50  60

V
ol

. [
%

]

α [°]

Fe17/Cu phase
Fe17/mean value

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 2

 4

 6

 8

 10

 12

 0  10  20  30  40  50  60

V
ol

. [
%

]

α [°]

Fe50/Cu phase
Fe50/mean value

P
S
frag

rep
lacem

en
ts

20
µ
m

Figure 6.10: Histograph of the misorientation (α = ∠(Qt,Q0)) distribution of
the Fe and the Cu phase at εp=90% for Fe17-Cu83 (left column) and Fe50-Cu50
composite (right column).

the particles partly confined by boundary conditions and inside regions of large

particles, the rotations are very likely much larger for small particles embedded

in the Cu phase and for regions near grain boundaries. The distribution of the

misorientation of both the iron and the copper phase of the Fe50-Cu50 composite

(Figure 6.10 (right column)) is not so smooth as that of the copper phase of the

Fe17-Cu83 composite. This means that the interaction between phases and the

four strong shear bands (Figure 6.7) results in a high heterogeneity of the lattice

rotation. The mean value for both the iron and the copper phases of the Fe50-

Cu50 (Figure 6.10) is higher than those of the Fe17-Cu83 composite. There is no

big difference for the misorientation mean value between the iron and the copper

phases for Fe50-Cu50. This proves that interactions among phases and grains

enhance a non-uniform distribution of the misorientations, in particular for the

iron phase.
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6.4 Crystallographic Texture and Effective Flow Be-

haviour under Simple Compression

6.4.1 Modification of the Hardening Rule

The stress-strain curve predicted by the axisymmetric FE model does not match

the experimental one well (Figure 6.11), even though the input material param-

eters (Table 5.4 in section 5.1.2) are identical to those for the Taylor simulation

which presents good stress-strain curves compared to those of the experiment

(Figure 5.5). This result is reasonable since the Taylor model usually leads to

a stiffer behaviour than the FE model for materials with cubic symmetry. To

achieve better σ − ε curves predicted by FE simulations, one can use FE sim-

ulations to identify the input material parameters by trial-and-error, and apply

such parameters in other FE simulations. This is unacceptable due to the cost of

the time. The major problem, which causes the misfit of the σ − ε curve (Figure

6.11), is the hardening rate at εp > 40%. The simulated σ − ε curve (Figure 6.11)

indicates a slower hardening rate than the reality when the plastic strain εp is be-

tween 40% and 60%, and is nearly converged at εp > 60% while the experimental

curve hardens until εp =90%. By recalling the hardening rule (equation (3.52)),

it is obvious that the hardening rate is lower if τC is nearer to τ v
c . Therefore, an

extra term is necessary in the hardening rule in order to describe the hardening

behaviour observed in experiments.

As indicated in Figure 6.12, the relation between stress τ C and strain γ can be

written as (Kocks and Mecking, 2003) :

τC(γ) = τC∞ − (τC∞ − τC
0 ) exp(− Θ0

τC∞ − τC
0

γ) + Θ∞γ

with :

τC
0 = lim

γ→0
τC(γ) τC∞ = lim

γ→∞ τC(γ),

Θ0 = lim
γ→0

dτC

dγ
Θ∞ = lim

γ→∞
dτC

dγ
,

(6.1)

or equivalently,
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Figure 6.11: Stress-strain curves of the
simulation and the experiment for the
Fe17-Cu83 composite until εp=90%
under a simple compression load.
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Figure 6.12: A sketch of the
stress-strain curve to present
the hardening rate coefficient
Θ0 and Θ∞ in equation 6.1.

τC(γ) = a + bγ + c(1 − exp(−dγ))

with :

a = τC
0 , b = Θ∞, c = τC∞ − τC

0 and d =
Θ0

τC∞ − τC
0

.

(6.2)

The input material parameters in equation (6.2) can be deduced from Table (5.4)

(Section 5.1.2). In this work, the ratio Θ∞:Θ0 is taken as 1:50. When τ̇C = 0,

then τC

τv
c
=1. It follows that τ v

c = τC∞ = τv
c0|

γ̇
γ̇∗
0

|
1

n . For clarity, Table 6.2 indicates the

input parameters mentioned in Equation (6.1) or (6.2).

Material a = τ0
C(MPa) b = Θ∞ c = τ∞ − τ0 d =

Θ0

τC∞ − τC
0

Fe(vol.%)/Cu (vol.%) Fe/Cu Fe/Cu Fe/Cu Fe/Cu
Cu100 -/70 -/6.60 -/86.86 -/3.80
Fe100 187 /- 15.00/- 78.00/- 9.60/-

Fe17-Cu83 180/70 15.60/6.6 66.00/100.00 11.80/3.30
Fe33-Cu67 180/80 16.00/9.32 38.89/90.24 20.57/5.16
Fe50-Cu50 186/80 16.60/9.80 59.00/87.85 14.06/5.57
Fe67-Cu33 186/80 17.20/8.60 66.32/87.2 12.97/4.93
Fe83-Cu17 186/80 17.80/9.00 66.62/90.24 13.38/4.90

Table 6.2: Material parameters for the Fe, the Cu and their composites.
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6.4.2 Effective Flow Behaviour

If the morphology of the material structure is fixed, and the other conditions,

e.g., loading and boundary conditions, also do not change in the simulation, the

microscopic stress-strain behaviour will be modified by the anisotropy of the grain

orientation distribution. Thus, the macroscopic flow stress indicates the deviation

among the simulations with different initial grain orientations. Therefore, the

number of local grain orientations should be large enough to predict σ − ε curves

which are comparable with the experimental ones. In Figure 6.13, the σ − ε curve

is averaged over 18 calculations with different initial grain orientations for the

Fe17-Cu83 composite. Since the volume fraction of the Fe phase is about 22% (as

mentioned in Section 6.2) in the axisymmetric simulation, it should be reasonable

that the simulated σ − ε curve is between those of the Fe33-Cu67 and the Fe17-

Cu83 composite (Figure 6.13). In this sense, the axisymmetric (FE) simulation

captures the flow behaviour of the Fe17-Cu83 composite.
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Figure 6.13: Stress-strain curves of the simulation (averaged from 18 calculations
with different initial grain orientations, Fe17-Cu83) and experiments (Fe17-Cu83,
Fe33-Cu67) until εp=90% under the simple compression load.

Figure 6.14 compares σ − ε curves of the experiment and the FE prediction, in

which the numerical result is the average over 22 simulations with different ini-

tial grain orientations. For the Fe50-Cu50 case, the simulated curve also matches

experimental one well. For the experiment, the hardening rate is nearly constant
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Figure 6.14: Stress-strain curves of the simulation (averaged from 22 calculations
with different initial grain orientations) and the experiment for the Fe50-Cu50
composite until εp=90% under the simple compression load.

at approximately εp<62% and it decreases in the range of 62%<εp<70%. After

that, the σ − ε curve converges. These hardening behaviours are special for the

Fe50-Cu50 composite, which means that such observations are not shown in other

composites. The corresponding microscopic mechanisms for the above-mentioned

phenomena may be that the relatively large amount of slip systems (from both the

iron and the copper phase) are activated between 62%<εp<70% to accommodate

the local geometrical requirement. As a result, the hardening rate is (approxi-

mately) the same. Beyond this deformation range, the stress converges at the

macroscopic strain εp>70%. The local mechanism (in 62%<εp<90% of the Fe50-

Cu50 composite) may also be related to the extra soft texture of Fe/Cu phases

among all the composites. At a large plastic strain, the material hardens nearly

linearly since the term bγ (equation 6.2) is the major part for the hardening in

the simulation. A more complicated ansatz for the hardening rule is necessary

to predict better stress-strain behaviour for Fe50-Cu50. This is not done in the

present work since the simulated result fits the reality already well enough (Figure

6.14) and, on the other hand, this special hardening behaviour is only observed in

the Fe50-Cu50 composite among mentioned seven samples (pure iron, pure copper

and 5 Fe-Cu composites) in this work.

In order to show the influence of the initial grain orientation on the flow behaviour,
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Figure 6.15: Minimum and maximum stress-strain curves among 18 simulations
for the Fe17-Cu83 composite where the stress is normalised by the averaged stress
(numerical σ − ε curve in Figure 6.13).
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Figure 6.16: Minimum and maximum stress-strain curves among 22 simulations
for the Fe50-Cu50 composite where the stress is normalised by the averaged stress
(numerical σ − ε curve in Figure 6.14).
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Figure 6.15 and 6.16 present the normalized σ − ε curves which are obtained by

σN (t) =
σmax/min(t)

σaver(t)

σaver(t) =

∑n
i=1 σi

n
(t)

(6.3)

with n=18 for the Fe17-Cu83 and n=22 for the Fe50-Cu50 composite. σmax and

σmin are given by the simulated stress-strain curves which locate at highest and

lowest position among all the simulations, correspondingly. The averaged stress is

calculated from equation (6.3b) which also presents the way to get the simulated

stress-strain curves in Figure 6.13 and Figure 6.14. The deviation from the aver-

aged stress-strain curve is about 1% to 2% for the minimum stress-strain curve

(dashed line in Figure 6.15) of the Fe17-Cu83 composite while it is about 5% for

the maximum case. This 5% deviation remains true also for both “maximum”and

“minimum”stress-strain curves for the Fe50-Cu50 composite (Figure 6.16). There-

fore, different orientation distributions of grains may cause 5% fluctuation for the

local stress-strain curves in the case that the microstructures contain relatively

small number of grains1.

Fe-Cu composites exhibit a greater stiffness than copper and a better ductility

than iron. The reason for the former property is that the softer phase transfers

the load to the harder phase. Figures 6.17 and 6.18 study the stress flow in each

phase for the Fe17-Cu83 and the Fe50-Cu50 composite, respectively. σphase and

σ present the stress for the Fe or Cu phase and the total stress of the composite,

where both stresses are the averaged value from 3 simulations. One σ − ε curve is

nearest to the averaged (σ − ε) curve among 18 (Fe17-Cu83) and 22 (Fe50-Cu50)

calculations. The other two simulations predict the largest, and the smallest stress

for a given strain, respectively. At the beginning of the yielding, the strength of

the iron phase decreases rapidly, and that of the copper phase exhibits the reverse

effect for both composites (Figure 6.17 and 6.18), where a smaller volume fraction

of the iron/copper phase indicates the higher rate of this decrement/increment

for this phase. This trend diminishes with the increasing of the plastic strain.

Finally, the normalized stress in both phases converges to a certain value which

1According to Cheong and Busso (2006), such number of grains is between 10 to 100.
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Figure 6.17: Normalised stress-strain curves of Fe and Cu phases for the Fe17-
Cu83 composite until the plastic strain ε=90%.
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Figure 6.18: Normalised stress-strain curves of Fe and Cu phases for the Fe50-
Cu50 composite until the plastic strain ε=90%.
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varies according to the ratio of the Fe:Cu phase volume fractions. Based on the FE

axisymmetric simulation, Li and Schmauder (2000) studied the relationship among

the phase-stress partition in metal matrix composites, the reinforcement volume

fraction and the geometry, the matrix hardening behaviour, and the applied strain

level.

6.4.3 Crystallographic Texture

The iron-phase texture, presented as the standard inverse pole figure1, is indi-

cated in Figure 6.19 for both simulations and experiments at the 90% plastic

strain. Such a texture is characterised by the fibre type texture (<100>- and

<111>-fibere) which is well captured by the simulations for both the Fe17-Cu83

and the Fe50-Cu50 composite. Predictions of FE axisymmetric simulations also

grasp the difference of the fibre intensity due to the phase volume variation, even

though the maximum value of the fiber intensity is higher than that of the ex-

periment. Since each inverse pole figure2 includes more than 600 orientations

which are initially randomly assigned to each grain, the effect of the local grain

orientation on the texture can be neglected. Therefore, the local interaction and

the phase arrangement are two major factors influencing the texture evolution.

Due to the limited number of grains in both considered real microstructures, the

possibility is approximately the same for interactions between Fe and Cu grains

for the Fe17-Cu83 and the Fe50-Cu50 composite. Thus, the aforementioned first

reason (interaction) is not essential for the analysis of the texture shown in Figure

6.19. The analysing type (axisymmetric model) and the restricted confinement

(homogeneous boundary conditions, especially for a limited real microstructure)

should be the reasons for the sharper textures in the simulation than real ones.

The particle distribution contributes to the denser fibre-intensity of Fe50-Cu50

than that of Fe17-Cu83, while it leads to the even stiffer material structure in

which four large iron particles (a, b, c, and d in Figure 6.6) are on boundaries.

The simulated and experimental texture of the copper phase is given in Figure

1In the following, the standard inverse pole figure will be called the inverse pole figure. Some
detailed information concerning the calculation of the inverse pole figure is given in Appendix
B.

2Inverse pole figures are obtained from 18 and 22 calculations for the Fe17-Cu83 and the
Fe50-Cu50 composite, respectively.
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Figure 6.19: Texture (inverse pole figure) of Fe phases from axisymmetric FE
simulations and experiments at εp=90% for the Fe17-Cu83 and the Fe50-Cu50
composite.
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Figure 6.20: Texture (inverse pole figure) of Cu phases from axisymmetric FE
simulations and experiments at εp=90% for the Fe17-Cu83 and the Fe50-Cu50
composite.
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6.20 for the Fe17-Cu83 and the Fe50-Cu50 composite. The pronounced <110>-

fibre smears in the <210> direction and develops in the <411> direction (for

the position of the <210> and the <411> fibre see Figure B.2 in appendix B),

especially in the simulated textures. A rather soft texture of the Cu phase is

presented by the measurement for the Fe50-Cu50 composite, which is not well

simulated by the FE model. Except for above-mentioned reasons, i.e., the local

interaction, the limited material structure, and boundary conditions, the present

model is probably not able to catch the local change of the activation of slip

systems fast enough due to the isotropic hardening assumption.

6.5 Strain Distribution under Uniaxial Tension

If the polycrystalline structure is under load, the anisotropy of the constituent

grains results in high heterogeneities of the stress and strain on the grain level.

In order to reveal the deformation process and the plastic strain field of polycrys-

tals on the microlevel, many experiments, FE simulations and theoretical models

are investigated. Allais et al. (1994) described an (experimental) technique to

study the local strain field over a domain representative of the microstructure of

the two-phase (e.g., iron/silver and iron/copper) polycrystals. The strain map

is also plotted to give qualitative information on the strain-localisation modes.

Sachtleber et al. (2002) experimentally and numerically introduced the spatial

distribution of the accumulated plastic surface strain for aluminum polycrystals

which were plastically compressed in a channel die. Through combining the exper-

imental data of the local in-plane strain and the local crystal orientation, Tatschl

and Kolednik (2003) estimated slip systems that are locally activated at arbitrary

positions within a grain by a simple kinematic model. Harder (1999) developed a

crystallographic model to investigate the local deformation processes. In this sec-

tion, the local strain distribution of the iron and the copper phases is investigated

by the FE axisymmetric model considering the real microstructure (Figure 6.1)

for the Fe17-Cu83 composite at a tensile plastic strain εp=19.8%. Since the slight

difference of the size of the copper phase and the production process are not the

influential factors for the local strain field and the production process of samples is

not considered in the simulation, the microstructure of the Fe17-Cu83 composite

in Figure 6.1 is applied for the simulation for the simplicity. Some quantitative
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analysis is also presented for the mean value of the plastic strain in each phase.

 0

 5

 10

 15

 20

 25

 30

 35

 40

re
la

tiv
e 

fr
eq

ue
nc

y 
[%

] 

Fe LD
Fe LD/TD

Fe TD

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 5

 10

 15

 20

 25

 30

 35

 40

re
la

tiv
e 

fr
eq

ue
nc

y 
[%

] 

Fe LD
Fe LD/TD

Fe TD

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 5

 10

 15

 20

 25

 30

 35

 40

-0.2 -0.1  0  0.1  0.2  0.3  0.4

re
la

tiv
e 

fr
eq

ue
nc

y 
[%

] 

Cu LD
Cu LD/TD

Cu TD

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 5

 10

 15

 20

 25

 30

 35

 40

-0.2 -0.1  0  0.1  0.2  0.3  0.4

re
la

tiv
e 

fr
eq

ue
nc

y 
[%

] 

Cu LD
Cu LD/TD

Cu TD

P
S
frag

rep
lacem

en
ts

20
µ
m

Figure 6.21: Strain field distribution of Fe and Cu phases of axisymmetric FE
simulations (left column) and experiments (right column) for the Fe17-Cu83 com-
posite under the tensile loading until εp=19.8%.

Figure 6.21 presents the distribution of the local plastic strain for the iron and the

copper phases in the simulation (left column) and the experiment (right column),

where LD, TD, and LD/TD indicate the loading, the transverse, and the shear

direction, respectively.

Both the distribution and the mean value of the plastic strain match the reality

well for the iron phase in all the three directions. The strain of the iron phase

behaves more heterogeneously in the loading direction (LD) than in the shear

direction (LD/TD) due to the wider range and the larger oscillation of the dis-

tribution curve in the LD direction, while this nonhomogeneity lies in the middle

for the transverse direction (TD). An obvious higher concentration of the strain

shows in the LD/TD than that of the LD and the TD directions. The mean value

of the plastic strain is εFe
LD=16.99% in the loading direction for the simulation and

εFe
LD=15.3% for the experiment. Both these two values are much smaller than the

mean value of the composite (εFe+Cu
LD =19.80%). They are εFe

TD=-7.1% and εFe
TD=-
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7.0% for the transverse direction in the numerical and the experimental prediction,

correspondingly. There is only small deviation (of the strain mean value from the

total one) for the shear direction. Generally, the (absolute) mean value of the

plastic strain for the harder phase is less than that of the whole composite, which

corresponds to the general conclusion in the two-phase polycrystal plasticity that

the harder phase takes less deformation than the softer one.

For the copper phase, the experiment (lower right in Figure 6.21) clearly presents

a wider range of the strain distribution in the loading direction than in the other

two directions, i.e., more inhomogeneity in the LD direction. This property is well

predicted by the numerical simulation (lower left in Figure 6.21). In the loading

direction, the numerical curve even captures the second peak shown at approxi-

mately εCu
LD=27% in the experiment. The mean value of the copper-phase plastic

strain is εCu
LD=20.8% in the simulation and εCu

LD=20.9% in the experiment. The

corresponding results for the TD direction are εCu
TD=-10.6% for the FE prediction

and εCu
TD=-9.1% for the reality, respectively. Like in the iron phase, this value is

still approximately zero for the shear direction. Contrary to the harder phase, the

copper phase burdens more plastic deformation, which is indicated from the fact

that the mean value of the plastic strain for the Cu phase is higher than that of

the total composite.



Chapter 7

Three-Dimensional Finite Element

Simulations

7.1 Introduction

In this chapter, the three-dimensional FE model is applied to simulate the crys-

tallographic texture, the stress in each phase, and the local strain. In particular,

inverse pole figures of the iron and the copper phases (pure iron/copper and five

Fe-Cu composites) are numerically predicted to systematically study the texture

evolution due to the phase volume variation, the type change of the inclusion-

matrix and the possibility of Fe-Cu phase interactions. The texture evolution

according to the change of the volume ratio of Fe:Cu phase is not predicted in

detail by the axisymmetric simulation. A material model which can predict well

the numerical results statistically requires a number of elements large enough for

the material structure, realistic boundary conditions and a microstructure which

can well present the real local morphology. A larger material structure with more

grains allows for a larger amount of local interactions which is very important for

the micro-mechanical behaviour of two-phase materials, like Fe-Cu composites.

Due to the systematic errors in the boundary layer of the RVE for the homo-

geneous boundary condition (Bertram, 2005), the periodic boundary conditions

are applied in all the 3D FE simulations with the regular mesh and the Poisson

Voronoi tessellation. Compared to axisymmetric models with a small number of

iron and copper grains and the HBC, 3D models with more grains (500-1500) and

PBC should give even better results.

87
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7.2 Artificial Microstructure and Periodicity

7.2.1 Artificial Microstructure: Poisson Voronoi Mosaics

To evaluate microstructural influences on material properties, it is important to

statistically estimate the mean grain size, the grain size distribution and geomet-

rical characteristics. Such geometrical characteristics can give quantitative insight

into the effects of the processing parameters (Ohser and Mücklich, 2000). Since

the iron and the copper powders have an identical shape geometry in the experi-

ments, the artificial microstructure can be presented by the same type of cells (or

grains) for both phases. It is a reasonable assumption that grains are randomly

distributed. A random microstructure can be approximately presented by the

Voronoi algorithm. For models shown in this chapter, the grain structure is given

as Voronoi tessellations (Ohser and Mücklich, 2000) in three dimensions where the

points are generated from a Poisson process. In the 3D case, such Voronoi tes-

sellation partitions the Euclidean spaces (E) into sets (Si) with non-overlapping

interior, which means E = ∪Si (Andersson, 2005). Let {pi} be a set of points,

which are randomly generated and called generator points (Ohser and Mücklich,

2000). Each point in this set generates a cell (or grain) Si. A certain grain Si

consists of all points which have pi as their nearest generator point in E, i.e., if

pi 6= pj

Si = {x ∈ E : ‖pi − x‖ ≤ ‖pj − x‖,∀pj}, (7.1)

where ‖ · ‖ indicates the distance between two points in E. For a Poisson Voronoi

cell, the number of points is finite in the set {pi}, and such generator points are

prescribed in a control volume.

Figure 7.1 shows spatial (3D) Voronoi tessellations with respect to a Poisson field.

Periodic cells are applied in our 3D FE models. Firstly, generator points are cre-

ated within a cube. These points are uniformly distributed (Poisson distribution).

Secondly, the periodicity is obtained by copying the generator points in the hor-

izontal, vertical and third directions. Finally, there are totally 33=27 such point

sets (cubes) for the periodic cell in the 3D space. A unique periodic cell is taken

from the centre of the above-created Voronoi structure.
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Figure 7.1: Computer simulations of spatial Poisson Voronoi tessellations (Ohser
and Mücklich, 2000).

7.2.2 Periodic Boundary Conditions

We consider the RVE and assume that F̄ is the mean deformation. For a periodic

cell, the boundary condition can be expressed as

uk = (F̄ − I)xk + wk, (7.2)

where uk and xk present the displacement and position vectors for a given node

k, correspondingly. wk in equation (7.2) denotes the fluctuation of node k. We

prescribe the part (F̄ − I)xk in equation (7.2). The fluctuation is permitted on

the boundaries and set to be equal on the opposite boundaries +
A and −

A, i.e.

wα| +
A = wβ| −A. (7.3)

α and β in equation (7.3) denote equivalent boundary nodes according to the

periodicity condition. In addition, the stress field is assumed to be equilibrated

on opposite boudaries. This can be denoted as

tα| +
A = −tβ| −A. (7.4)

The periodic boundary condition is implemented by the above-mentioned condi-

tion (equation (7.2)) with the aid of the finite element method. The requirement

of such calculations is a periodic mesh, which means, for a node on an edge, there
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is at least one exact equivalent point on the opposite edge of the cell. For simplic-

ity, a regular mesh is preferred for Poisson Voronoi micromechanical models, the

element number of which is 253 or 363. Figure 7.2 presents a model with regular

mesh and periodic boundary conditions in the deformed state.
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Figure 7.2: Undeformed 3D finite element model with the regular mesh (a) and
the periodic boundary condition in deformed state (b).

To simulate the micromechanical behaviour of two-phase ferrite/pearlitic steels,

models based on the Voronoi algorithm and periodic boundary conditions are also

applied by Nygards and Gudmundson (2002a) in the 2D case and Nygards and

Gudmundson (2002b) in the 3D case.

7.3 Finite Element Simulations Based on a Regular

Mesh

In the simulations, the hybrid element C3D8H is chosen as element type, because

such elements are primarily intended for the usage with incompressible (or almost

incompressible) material behaviour (ABAQUS/Standard, 2003). The number of

averaged elements per grain is approximately taken as 30 (30×8=240 integration

points). All the integration points inside one grain initially have an identical

crystallographic orientation which varies from one grain to another. Since the

suitable grain size is also important for the study of the mechanical material
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behaviour, the information concerning the grain size is shown in Figure 7.3 for

both the iron and the copper phases.

The assumption is made that each integration point presents the 1/x volume

fraction of the total element which has x integration points. The data in Figure

7.3 are obtained from one calculation of the model with 253 elements for the Fe17-

Cu83 and the Fe50-Cu50 composite, separately. Except for the copper phase of the

Fe50-Cu50 composite, the ratio is between 2 to 15 for the volume fraction of most

grains to that of the minimum one in each phase. Even though this ratio is between

5-25 for the copper phase of Fe50-Cu50, such grain size distribution is still suitable.

In the experiment, the diameter of the input iron and copper powder is, mostly,

between 10-50 µm, and the corresponding mean value is 20.5µm (iron) and 18.3µm

(copper). The same distribution is detected for both the iron and the copper

phases in the output material (Commentz, 2000). The above observations indicate

that the volume ratio of grains considered in our microstructures is acceptable.
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Figure 7.3: Grain size distribution of iron and copper phases for the Fe17-Cu83
(upper row) and Fe50-Cu50 composite (lower row), where the volume of each grain
is normalized by the minimum one of the grains in each phase.
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Since the grain number should be large enough to analyze the mechanical be-

haviour of the material, e.g., the flow behaviour and the texture evolution, the

simulation is performed more than once for Fe-Cu composites, where a new mor-

phology is applied for each calculation. Table 7.1 gives the information about the

simulation of 3D models with 253 elements. The number of the initial orientations

for the texture analysis is the same as that of the grains of each phase (Table

7.1), since the crystal orientations are initially identical inside the same grain. No

identical orientations exist between any different grains. Based on experience, the

data obtained from 440 different initial orientations (grains) should also give an

accurate enough texture (copper phases of the Fe83-Cu17 composite in Table 7.1).

The deviation is less than 1% for the volume fraction of the iron and the copper

phase of each composite in the simulation. To be efficient in the simulation time

and make the requirement of the hardware lower, models with 253 elements are

preferred for most simulations, and those with 363 elements are applied to improve

the texture prediction and to study the mean stresses of the iron and the copper

phases.

Material
Grains vol. (%)

Element type
Fe Cu Fe Cu

Cu100 - 520 - 100 C3D8H
Fe100 520 - 100 - C3D8H

Fe17-Cu83 445 2155 17.16 82.84 C3D8H
Fe33-Cu67 516 1044 32.44 67.56 C3D8H
Fe50-Cu50 520 520 49.27 50.73 C3D8H
Fe67-Cu33 1047 513 66.21 33.79 C3D8H
Fe83-Cu17 2160 440 83.01 16.99 C3D8H

Table 7.1: The number of grain orientations, the volume fraction of the iron and
the copper phases, and the applied element type in models with 253 elements.

7.3.1 Flow Behaviour and Texture Evolution

Different grain geometries and orientations modify the local stress and the strain

field. This influence can diminish to be a minor factor which affects the effective

flow behaviour, if a large enough number of grains and grain orientations is con-

sidered. Each graph in Figure 7.4 includes the same number of grains as shown

in Table 7.1, correspondingly.



Finite Element Simulations Based on a Regular Mesh 93

 0

 100

 200

 300

 400

 500

 600

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

σ 
[M

P
a]

εp [-]

Cu100/simulation
Cu100/experiment
Fe100/simulation

Fe100/experiment

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 100

 200

 300

 400

 500

 600

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

σ 
[M

P
a]

εp [-]

Fe50/simulation
Fe50/experiment

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 100

 200

 300

 400

 500

 600

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

σ 
[M

P
a]

εp [-]

Fe17/simulation
Fe17/experiment
Fe83/simulation

Fe83/experiment

P
S
frag

rep
lacem

en
ts

20
µ
m

 0

 100

 200

 300

 400

 500

 600

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

σ 
[M

P
a]

εp [-]

Fe33/simulation
Fe33/experiment
Fe67/simulation

Fe67/experiment

P
S
frag

rep
lacem

en
ts

20
µ
m

Figure 7.4: Simulated and experimental stress-strain (σ − ε) curves for pure iron,
pure copper and their composites until 90% plastic strain.

All the simulated σ − ε curves match the experimental ones well until about 10%-

15% plastic strain. In the range of 80%-90% plastic strain, the prediction is also

good. Among the seven polycrystalline materials mentioned, the flow behaviour of

pure copper is captured at best. Due to the complex hardening process, which has

not been well understood up to now, in the polycrystalline composites at large

plastic strain, some deviation is shown in the range of 15%-80% plastic strain.

Compared to the experimental σ−ε curves, the calculated curve for the Fe67-Cu33

composite exhibits the largest deviation which is approximately 10%. The stress

flow behaviour is underestimated to a certain extent (mostly less than 10%) by 3D

FE models. Compared to the σ − ε curves predicted by the axisymmetric model

(Figure 6.14), the 3D FEM analysis predicts a softer material behaviour than

the axisymmetric one for the same input parameters. There may be two reasons

for this effect. Firstly, since more grains are considered in the microstructures

of the 3D case, this leads to a larger amount of interactions between grains and

phases on the microlevel, which causes a lower stress. Secondly, the axisymmetric
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analysis generally gives stiffer material behaviour due to its special assumption

(see section 6.2). Particularly in this work, homogeneous boundary conditions are

also responsible for the higher stress predicted in the axisymmetric model.

The texture of the iron phase presented as the inverse pole figure is shown in Figure

7.5 for both the experimental (left column) and the simulation (right column) at

the compressive plastic strain εp =90%. The measured textures are characterised

by the following properties:

• Typical fibre textures are shown, which concentrate on the <100>- and the

<111>-fibre.

• The pure iron polycrystal presents the sharpest texture; the presence of the

second phase (Cu phase), even with a small amount of volume fraction (17%

volume fraction), obviously reduces the sharpness of the texture.

• The effect of the volume fraction of the second phase (copper) on the texture

evolution of the iron phase is obvious, if one compares textures among the

Fe17-Cu83, the Fe33-Cu67, and the Fe50-Cu50 composites.

• The maximum intensity of the <111>-fibre is similar for composites with

the same volume fraction of the inclusion, i.e., Fe83-Cu17 v.s. Fe17-Cu83

and Fe67-Cu33 v.s. Fe33-Cu67.

• Even though the interpenetrating network of iron-copper phases (Fe50-Cu50)

has a much higher harder phase content than the Fe17-Cu83 composite,

there is not much difference for the sharpness of the texture between the

aforementioned two composites.

Since the numerical predictions capture all the above-mentioned experimental

observations of the crystallographic texture, we conclude that the elasto-visco-

plastic 3D model with Poisson Voronoi microstructures predicts quite well the

textures for the harder phase of Fe-Cu polycrystals. Concerning the property

in the fourth point, the simulated results are limited to the Fe67-Cu33 and the

Fe33-Cu67 composites.

The maximum value of the <111>-fibre density is lower for the iron phase in

the Fe17-Cu83 than in the Fe83-Cu17 composite in the simulation. It may result
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Figure 7.5: Comparison of inverse pole figures of the iron phase in normal direction
between the experiment (left) and the 3D finite element simulation (right) under
the compressive load at the 90% plastic strain.



96 Three-Dimensional Finite Element Simulations
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Figure 7.6: Comparison of inverse pole figures of the copper phase in normal di-
rection between the experiment (left) and the 3D finite element simulation (right)
under the simple compressive load at the 90% plastic strain.
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from the consideration of bcc slip systems (in the calculation) during the harden-

ing process which can be changed by the presence of the copper phase. Besides

<111>{110} slip systems, other ones are also observed in the experiment. For

the Fe83-Cu17 composite, this disadvantage in the model may be accumulatively

large due to the high amount of the iron content. The above-mentioned points 4

and 5 indicate that the local interaction is essential for the texture evolution in

the Fe-Cu composite, since the possibility for such interactions is the same for the

Fe33-Cu67 and the Fe67-Cu33 (or for the Fe17-Cu83 and the Fe83-Cu17) com-

posites. As mentioned in Section 2.1.1, the size of the input powders of iron and

copper has approximately the same size distribution. During the composition,

the solubility of the iron in the copper and vice versa is negligible. The Fe/Cu

grain size and the size distribution are not changed by the production process.

To a large extent, the distribution of the phase-area is in the same range for both

phases. However, to fix the above conclusion (the strong influence of the inter-

action between phases on the texture), more experimental data is necessary, in

particular, the distribution of the phase-area for composites with the same volume

ratio of the inclusion to the matrix (e.g., Fe17-Cu83 v.s. Fe83-Cu17). Numerical

predictions of the iron phase texture show less inflection of the radial width of the

<100>- and the <111>-fibres than the experiment.

The texture of the copper phase is presented in Figure 7.6 for the Cu and Fe-Cu

composites in the normal direction at 90% plastic strain under a simple compres-

sive load. The measured texture of the copper phase has the following properties:

• The texture of the single-phase (pure) copper strongly concentrates in the

<110>-fibre, which develops in the <210>- and the <411>-direction (fibre

directions referenced to Figure B.2 in appendix B).

• The copper phase texture becomes much weaker by the presence of the second

phase even with only 17% volume fraction, which is similar to the influence

of copper on the texture of the iron phase.

• In reality, the maximum pole density and its position varies due to a different

phase volume ratio among Fe-Cu two-phase polycrystals.

The above properties are well presented by 3D simulations. Predictions for the

above third point capture how the maximum pole density changes according to the
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increasing volume fraction of the second (iron) phase, even though the difference

is not so big as that in the experiment. For the Fe83-Cu17 composite, the position

of the maximum pole density is not predicted by the simulation (last row in Figure

7.6).

In order to give a clear view of the maximum fibre intensity for both phases, Figure

7.7 compares the (maximum) value of the <111>-fibre for the iron phase (upper)

and the <110>-fibre for the copper phase (lower) among the mentioned five Fe-

Cu composites at a plastic strain εp=90%. The grain number in the simulation

for the corresponding composite is shown in Table 7.1. For the iron phase, the

discussion is referenced to those (points 4 and 5) for Figure 7.5. In the case of

the copper phase, the <110>-fibre intensity increases with its volume fraction in

the experiment, where the interpenetrating network of Fe-Cu phases is excluded.

These experimental measurements mean that the effect of the harder phase on the

texture of the softer phase is larger than vice versa. This phenomenon is predicted

by simulations, where the maximum intensity of <110>-fibre is approximately

the same for the Fe67-Cu33 and the Fe83-Cu17 composite. The difference of the

maximum intensities among composites is not so large as those in the experiment

for both phases.

For the interpenetrating network of the Fe and Cu phases (Fe50-Cu50 compos-

ite) in the experiments, the <111>- and <110>fibre intensity is the lowest one

among all the composites for both the iron and the copper phases, correspond-

ingly. This proves that local interactions between iron and copper grains strongly

influence the texture development in both phases, i.e. more interactions cause

softer texture. The comparison of the aforementioned property is concentrated

on the Fe33-Cu67 and the Fe50-Cu50 composite for the numerical results. The

reasons for this choice are that, firstly, it is significant to predict that the texture

of Fe-Cu polycrystals with less volume fraction of the harder phase gives a higher

fibre intensity (maximum value). Secondly, the difference of the Fe-phase volume

fraction is kept as small as possible for composites due to the above-mentioned

imperfection (bcc slip systems) in the simulation. In numerical predictions, the

lower fiber intensity is shown in the interpenetrating network (Fe50-Cu50) com-

pared to the Fe33-Cu67 composite for both the iron and the copper phases (Figure

7.7). The difference of the maximum fibre intensity (the <111>-fibre for the iron

phase and the <110>-fibre for the copper phase) between the Fe33-Cu67 and the
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Figure 7.7: Comparison of the maximum intensity of the <111>-fibre for the
iron phase (upper) and the <110>-fibre for the copper phase (lower) between the
experiment and the 3D FE simulation with 253 elements under a compressive load
at 90% plastic strain.
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Fe50-Cu50 composite is not so big in the simulation as in the experiment. The

numerical result would be more convincing if an improved model could enlarge the

difference of the maximum fibre intensity. Based on the above discussion, there are

two ways to improve the texture prediction, first, to enlarge the total number of

grains (orientation) for the texture calculation or, second, enlarge the interaction

possibilities for iron and copper grains in each simulation. The minimum number

of initial grain orientations considered in these two composites is 516 (for the iron

phase of the Fe33-Cu67 composite). The grain number is not the key point to

improve the texture prediction. As a result, a model with larger elements (363 ele-

ments) is preferred, where 1550 grains are considered in the whole microstructure.

Figure 7.8 compares the iron-phase texture among the experiment (left column),

the simulation with 253 elements (middle column), and the simulation with 363

elements (right column), where the numerical calculation is performed only once

for the model with 363 elements to predict the texture. An even better prediction

is shown for the variation of the maximum <111>-fibre intensity between these

two composites. Compared to numerical results obtained from 253 elements, the

difference of the <110>-fibre intensity (copper phase in Figure 7.9) between these

two composites becomes smaller for the model with 363 elements. Briefly, the

model with 363 elements predicts a slightly better texture for the iron phase but

no improvement for the copper phase. This means numerical results predicted by

the model with 253 elements are already acceptable.

7.3.2 Stress Distribution

In two-phase polycrystalline materials, the harder phase acts as a strong stress

concentrator during the deformation (Commentz et al., 1999; Soppa et al., 1998).

The normalised stress of the iron and the copper phases is presented for the Fe33-

Cu67, the Fe50-Cu50 and the Fe67-Cu33 composite in Figure 7.10 where σphase

and σ indicate the stress of the iron phase or the copper phase, and the total stress

of the corresponding composite. The calculation is performed only once by using

the model with 363 elements.

We define σphase/σ as the normalized stress in each phase. The stress of the iron

phase decreases quickly before 20% plastic strain while that of the copper phase

behaves inversely. The rate of this decrease (Fe phase) is faster for a lower Fe phase
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strain (left column: experiment, middle column: FE model with 253 elements,
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Figure 7.10: Normalised Fe and Cu phase stresses predicted by 3D finite element
models with 363 elements for the Fe33-Cu67, the Fe50-Cu50, and the Fe67-Cu33
composite under compressive load until εp=90%.
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content in composites. The speed of the increase (Cu phase) is slightly slower for

a lower Fe phase content in composites. Such phenomenon shows that the local

stress field is very sensitive to the plastic deformation at the early stage. The

above observation is also shown in the axisymmetric simulation (Section 6.4.2).

After such rapid change of stresses in both phases, the normalised stress-strain

curves converge to certain values for both the iron and the copper phases. For the

iron phase, this value is about 1.1 for all the three composites. The normalized

stress-strain curves of the copper phase converge to different values. This value

is higher for a lower Fe phase content in composites. Since the stress of the Fe

phase converges to the same value for all the three composites but the stress

of the Cu phase does not, we conclude that the effect of the iron phase on the

copper phase is larger than vice versa. In the experiment (Commentz, 2000), it

is observed that the iron phase starts to yield shortly after the beginning of the

yielding of the composite. On the other hand, some iron phase is still in the

elastic-plastic transition up to higher macroscopic strain (Commentz et al., 1999).

This means that the plastic deformation of the iron phase takes place step by step.

If the harder phase yields, the load will be transferred back to the softer phase

(Daymond et al., 2005). As a result, the stress of the iron phase decreases while

the stress of the copper phase presents the opposite effect with the increase of the

plastic strain. Observations in the experiment proved that numerical results in

Figure 7.10 are reasonable for the flow behaviour of the stress in each phase.

7.3.3 Strain Distribution

The material heterogeneity on the microscale can be studied by the non-uniform

distribution of the strain field. Figure 7.11 presents the distribution of the local

strain field for both the iron and the copper phase in the simulation (left column)

and the experiment (right column) at the macroscopic tensile strain εp=19.8%.

The grain number considered in numerical calculations is referenced to Table 7.1.

In reality (Figure 7.11) and as mentioned in Section 6.5, the distribution of the

local strain field has a higher concentration in the shear direction (LD/TD) than

in the other two directions (LD and TD) for both the iron and the copper phase,

which means that more nonhomogeneity is shown in the loading (LD) and the

transverse directions (TD). Besides, this distribution in the loading direction cov-
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Figure 7.11: Strain field distribution of Fe (upper row) and Cu (lower row) phases
of 3D FE simulations (left column) and experiments (right column) for Fe17-Cu83
composite under tensile loading at εp=19.8%.

ers the widest range among these three directions. This indicates that the mate-

rial deforms more heterogeneously in the LD direction than in the TD direction.

The numerical results predict all the above-mentioned properties well for both

the harder and the softer phase. The simulations also capture how the Fe phase

presents less heterogeneity than the Cu phase, especially in the shear direction.

There are two indicators for the above conclusion for the comparison between the

harder and the softer phases, i.e., the concentration of the distribution curves and

the mean values of the local strain in each direction. The former can be obtained

from the range of the distribution curve and the maximum (relative) frequency.

Averaged values of local strains of the Fe and the Cu phase are exhibited in Table

7.2 for each direction, where a comparison is made between the simulation and

the experiment.

For both the iron and the copper phases, the numerical results quantitatively

predict the mean value of local strains (Table 7.2) well in all the three directions.

The softer phase takes more plastic strains, since its averaged strain (absolute)

value is much higher than the harder phase one in both the loading and the
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transverse directions.

Direction
Fe phase Cu phase

sim. exp. sim. exp.
LD 0.150 0.153 0.209 0.209
TD -0.075 -0.070 -0.104 -0.091

LD/TD 0.0 0.0 0.0 0.0

Table 7.2: Mean values of local strains in the loading (LD), the transverse (TD),
and the shear (LD/TD) direction in simulations (sim.) and experiments (exp.)
for Fe17-Cu83 composite at the tensile plastic strain εp=19.8%.





Chapter 8

Summary and Outlook

The aim of the present project is to understand the mechanical behaviour of Fe-Cu

composites and, in particular, the coupling of the microscopic and the macroscopic

deformation behaviour under large plastic deformations. Seven types of compos-

ites have been investigated. These polycrystalline composites are produced from

spherical iron and copper powders by powder metallurgy (Hartig and Mecking,

2005). The crystallographic texture, the stress, and the strain data are obtained

from simple compression tests until 90% plastic strain. The measurement of the

local strain is performed in a tensile test at 19.8% plastic strain (Commentz, 2000).

An elasto-viscoplastic material model is used to investigate the plastic properties

of the aforementioned two-phase polycrystals. Caused by the complex local defor-

mation mechanisms, the rule of mixture is insufficient to describe the stress-strain

behaviour of such polycrystals. Due to limited experimental data for Fe-Cu com-

posites, material parameters of the two-phase composites are obtained from the

modification of input parameters of pure iron and copper. The axisymmetric and

the three-dimensional simulations are performed by the finite element software

ABAQUS. In order to study the influence of the local micromechanical properties

on the macroscopic material behaviour, material structures are modelled based

on real microscopic cut-outs which are used as cross sections in axisymmetric

simulations. In these structures, regions near grain boundaries are finer meshed

than other parts. Two composites, i.e., Fe17-Cu83 and Fe50-Cu50, are taken as

representative microstructures which are investigated carefully. 3D models with

Poisson Voronoi microstructures and periodic boundary conditions are performed

for the aforementioned seven polycrystals. We incorporate the micro-morphology,
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the grain orientation, and the local interaction in the simulation to numerically

study the flow behaviour, the crystallographic texture, and the distribution of the

strain.

The following conclusions are obtained for the mechanical behaviour of pure iron,

copper, and their composites from the numerical and experimental results.

• Misorientation Distribution

In the axisymmetric simulations, there is only a slight difference between the

mean value of misorientation in the iron phase and that in the copper phase,

where the misorientation is defined as the distance of the crystal orientation

from its initial one.

• Stress Strain Behaviour

1. When the local stress is influenced only by initial grain orientations in a given

microstructure, i.e., all other conditions are kept identical in axisymmetric sim-

ulations, a deviation of 5% to 10% is shown for the local stress normalised by

the macroscopic stress in the simulation.

2. The stress of the iron or the copper phase, which is normalised by the total

stress (σFe/σcomp., σCu/σcomp.), in 3D predictions indicates that the stress of

the copper phase increases rapidly and that of the iron phase decreases at the

beginning of the yielding.

3. The normalised stress of the iron and the copper phase, which is defined as the

ratio of the stress of the iron or copper phase to the stress of composite, converge

to different values in the 3D simulations. The ratio of the copper phase stress

to the total stress is higher for the composite with a fewer iron-phase content

while this ratio is relatively constant for the iron phase.

• Crystallographic Texture

1. In the axisymmetry case, the simulated texture of the iron phase describes well

the experimental fibre texture. The predicted texture of the Cu phase also

captures the experimental fibre texture in the Fe17-Cu83 composite. Due to

the limited number of grains in the microstructure for the simulation, the Fe50-

Cu50 composite presents a higher fibre intensity than the Fe17-Cu83 composite,

which is not the case in the experiment.
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2. For both types of composites in the 3D predictions, the presence of the second

phase even with a small amount of the volume fraction drastically reduces the

sharpness of the crystallographic texture in both phases.

3. The maximum fibre intensities (<100>- and <111>-fibre) of the iron phase

are similar for composites of Fe17-Cu83 v.s. Fe83-Cu17 and Fe33-Cu67 vs.

Fe67-Cu33. Simulation results predicted by the 3D model capture the above

mentioned maximum fibre intensity for the Fe33-Cu67 and the Fe67-Cu33 com-

posite.

4. Without considering the Fe50-Cu50 composite in the 3D case, the fibre inten-

sity (<110>-fibre) of the copper phase increases with a decreasing harder phase

content. The same phenomenon for the <110>-fibre is observed in the experi-

ment. This means that the harder phase has a stronger influence on the texture

evolution of the softer phase than vice versa.

5. The phase interaction exhibits a significant effect on the texture since the softest

texture is shown in the interpenetrating network of the iron and the copper

phases (Fe50-Cu50), especially in the copper phase.

• Strain Distribution

1. In the normal and the transverse direction, the mean value of the strain in both

the harder phase and the softer phase presents a deviation from the total mean

value, and the copper phase undergoes larger deformation than the iron phase

in the composite. These properties are well predicted by both the axisymmetric

and the 3D simulations.

2. The mean value of the strain is quantitatively well predicted for both the iron

and the copper phases. This mean value is about 0% in the shear direction

for both phases. The deviation of the mean value between the experiment

and the prediction is 16% in the transverse direction for the copper phase in

the axisymmetric simulation, while this deviation is about 0% in the loading

direction. The corresponding values are 14% and ≈0% in the 3D case. For the

iron phase, this deviation is 1.4% in the transverse direction and 11% in the

loading direction in the axisymmetric simulation and they are 7% and 1.9% in

the 3D case, respectively.

For a quantitatively good prediction of the fibre intensity evolution according to

the variation of the phase volume fraction, a more realistic activation mechanism
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of slip systems should be applied instead of the isotropic hardening, especially for

the bcc phase in bcc-fcc composites. If pencil glide systems are considered for the

iron phase, it may be possible to give even better results than those presented

in this work for the fibre texture. Since the microstructure is also essential for

the plastic deformation behaviour of polycrystals, numerical predictions should

be improved if a 3D finite element model is used which is based on the real 3D

morphology and with a relatively large amount of grains, e.g., approximately 500

grains for each phase.



Appendix A

Numerical Time Integration

A.1 Elasto-viscoplastic Material Model

The differential equation systems for F̃ can be obtained by reforming equation

(3.46), i.e.,

˙̃
F (F̃ , τC) = LF̃ − F̃ k̃(T̃ , τC)

with

T̃ = F̃
T
TK F̃

−T
= C̃T̃

2PK
.

(A.1)

T̃ is the Mandel tensor in the undistorted placement. At room temperature,

fcc materials can be approximately taken as isotropic hardening for all the slip

systems, i.e., τC
α = τC (Kocks and Mecking, 2003). The differential equation for

the hardening (3.52) has the form of

τ̇C(τα, τC) = τ̇C(F̃ , τC). (A.2)

Since the evolution equations of (A.1) and (A.2) are coupled, F̃ and τC can be

written together in a vector h for further consideration.

By applying the backward (implicit) Euler method to solve the equation systems

ḣ(F̃ , τC),
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hn+1 = hn + 4tḣn+1 (A.3)

is used for the time increment 4t. Obviously, hn+1 depends on the F̃ and τC at

the time steps t = n and t = n + 1. The Newton method is preferred to solve the

nonlinear equation system g(F̃ n+1, τ
C
n+1).

g(F̃ n+1, τ
C
n+1) = hn+1 − hn −4tḣn+1 (A.4)

The Jacobian matrix

Jn+1 =
∂gn+1

∂hn+1
(A.5)

is analytically specified. Since the backward Euler scheme does not preserve the

incompressibility condition det(P ) = det(F p) = 1 (see equations (3.23), (3.32) for

P and F p) by nature, a correction of the numerical solution is applied following

Böhlke (2001), i.e.,

F̃
∗
n+1 = 3

√

det(F )n+1

det(F̃ )n+1
F̃ n+1. (A.6)

Shown in (A.1) and (3.13), ˙̃
F and F relate to the velocity gradient L. Ln+1 can

be approximated by

Ln+1 =
1

4t
(F n+1 − F n)F−1

n+1. (A.7)

The initial condition is considered as

F̃ (t = 0) = Q(t = 0),

τC(t = 0) = τC
0 .

(A.8)

The orthogonal tensor Q ∈ SO(3) defines the basis of the crystal orientation. This

tensor maps the orthonormal (sample) basis {ei} to the orthonormal lattice basis

{gi}, i.e.
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Q = gi ⊗ ei. (A.9)

A.2 Viscoplastic Material Model

In order to solve the differential equation of (3.56b) which specifies the evolution of

the crystal orientation, the Kirchhoff stress (deviator part T K ′
) should be firstly

specified from equation (3.56a). At time tn, T K ′
can be expressed in terms of

the orientation tensor Qn, and the deviator part of the strain rate tensor D′ (see

equation (3.16)). D′ can be prescribed from L for each time step. Since T K ′
and

D′ are symmetric and traceless, they can be formulated in a 5-dimensional vector

with the basis {Bα} where

TK ′
=

[

√

3

2
TK

11
′
√

1

2
(TK

22
′ − TK

33
′
)
√

2TK
23

′ √
2TK

13
′ √

2TK
12

′
]

Bi,

D′ =

[

√

3

2
D′

11

√

1

2
(D′

22 − D′
33)

√
2D′

23

√
2D′

13

√
2D′

12

]

Bi.

(A.10)

The corresponding basis {Bα} is defined as

B1 =
1√
6
(2e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3),

B2 =
1√
2
(e2 ⊗ e2 − e3 ⊗ e3),

B3 =
1√
2
(e2 ⊗ e3 + e3 ⊗ e2),

B4 =
1√
2
(e1 ⊗ e3 + e3 ⊗ e1),

B5 =
1√
2
(e1 ⊗ e2 + e2 ⊗ e1).

(A.11)

Analogously to equation (A.4) and at the time tn, equation (3.56a) can be written

in the form of
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Gn = (Dn
′,Qn,T K ′

) = 0 (A.12)

with the 5-dimensional basis. The Jacobian matrix

Jn
′ =

∂Gn

∂T K ′ (A.13)

is a 5×5 dimension matrix. The Newton method is applied to find the solution

of the equation systems. With T K ′
at the time tn, Qn+1 can be calculated at the

time tn+1. Equation

W ∗ = QTQ̇ = QTWQ − skw(K̃(QTT K ′
Q, τC)) (A.14)

is reformed from equation (3.56b). An explicit exponential method is used to solve

the differential equation (A.14) (Weber and Anand, 1990; Miehe, 1996), i.e.,

Qn+1 = Qn exp(W ∗4t). (A.15)

The critical resolved shear stress can be explicitly updated by

τC
n+1 = τC

n + 4tτ̇C(Qn, τC
n ). (A.16)

Using Qn+1 and ταn+1 as input, the Kirchhoff stress T K
n+1 can be solved through

equation (3.56a).



Appendix B

Slip Systems and Representation of

Crystallographic Texture

B.1 Slip Systems

Table B.1 presents the considered glide systems, {111}<110>, for the fcc (copper)

crystals (Böhlke, 2001). Glide systems, {110}<111>, for bcc Fe are given in Table

B.2 (Nemat-Nasser et al., 1998).

α 1 2 3 4 5 6√
2 d̃i

α [1,0,-1] [-1,1,0] [0,-1,1] [0,1,-1] [-1,-1,0] [1,0,1]√
3 ñi

α (1,1,1) (1,1,1) (1,1,1) (-1,1,1) (-1,1,1) (-1,1,1)

α 7 8 9 10 11 12√
2 d̃i

α [-1,0,-1] [1,-1,0] [0,1,1] [0,-1,-1] [1,1,0] [-1,0,1]√
3 ñi

α (-1,-1,1) (-1,-1,1) (-1,-1,1) (1,-1,1) (1,-1,1) (1,-1,1)

Table B.1: The glide direction (d̃α) and the normal direction (ñα) of glide planes
for fcc glide systems.

B.2 Standard Inverse Pole Figure

To obtain the numerically solved standard inverse pole figure, the orthogonal part

Re of F̃ (F̃ = ReUe) is taken as the input for crystal orientations (Q in equation
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CRYSTALLOGRAPHIC TEXTURE

α 1 2 3 4 5 6√
3 d̃i

α [-1,1,1] [1,-1,1] [1,1,1] [1,1,-1] [1,1,-1] [-1,1,1]√
2 ñi

α (1,1,0) (1,1,0) (1,-1,0) (1,-1,0) (1,0,1) (1,0,1)

α 7 8 9 10 11 12√
3 d̃i

α [1,1,1] [1,-1,1] [1,1,-1] [1,-1,1] [1,1,1] [-1,1,1]√
2 ñi

α (1,0,-1) (1,0,-1) (0,1,1) (0,1,1) (0,1,-1) (0,1,-1)

Table B.2: The glide direction (d̃α) and the normal direction (ñα) of glide planes
for bcc {110}〈111〉 glide systems.

(3.56) for the viscoplastic material law). The Bunge convention (Bunge, 1993) for

Euler angles are used during the texture calculation, i.e.,

Rij =







cos ϕ1 cos ϕ2 − sin ϕ1 cos Φ sin ϕ2 sin ϕ1 cos ϕ2 + cos ϕ1 cos Φ sin ϕ2 sin Φ sin ϕ2

− cos ϕ1 sin ϕ2 − sin ϕ1 cos Φ cos ϕ2 − sin ϕ1 sin ϕ2 + cos ϕ1 cos Φ cos ϕ2 sin Φ cos ϕ2

sin ϕ1 sin Φ − cos ϕ1 sin Φ cos Φ






.

The conversion among different conventions for Euler angles is given in Table B.3.

Bunge Roe Canova Kocks
ϕ1 α = ϕ1 − π

2 ω = −ϕ1 Ψ = ϕ1 − π
2

Φ β −Θ Θ

ϕ2 γ = ϕ2 − 3π
2 φ = −ϕ2 φ = π

2 − ϕ2

Table B.3: The relationship among different conventions for the three Euler angles.

The crystallographic texture can be quantitatively described by the orientation

distribution function (ODF). For the approximation of the ODF, a central distri-

bution function can be used, e.g., the Mises-Fischer distribution function (Eschner,

1995). This distribution function (the Mises-Fischer distribution) ensures the re-

quirement of the non-negativity for the ODF. Pole and inverse pole figures can

be calculated from the ODF. By applying the Mises-Fischer distribution function,

(Böhlke et al., 2006a) considered the problem of approximating a given crystallite

ODF by a set of texture components. Instead of the Mises-Fischer distribution

functioon, the ODF can also be presented by the tensorial Fourier series. Gen-

erally, the nonnegativity of the ODF is not ensured by this (tensorial Fourier

coefficient) approach. (Böhlke, 2005) extented the Fourier coefficient approach of
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the ODF. In this work, maximum entropy method is applied to estimate the crys-

tallite ODF, where a coordinate-free representation of the distribution is given.

By using this maximum entropy approach, a derivation of the evolution equation

of the tensorial texture coefficients of the crystallite ODF is given in (Böhlke,

2006).

All the standard inverse pole figures are projected to the normal plane in the

present work. In the experiment, the texture is plotted in a 5 grid with the

Berkeley texture package (Wenk and Matthies, 1997)1 developed by Matthies

and his co-workers. The Euler angles, ϕ1 and ϕ2, are presented in Figure B.1

for a crystal orientation projected to the normal (loading) direction. The half-

width2 for the distribution function is chosen as 15. All textures of numerical

predictions, including both the axisymmetric and the 3D simulation, are plotted

in a 2 increment3 in both the ϕ1 and the ϕ2 directions.

Figure B.2 shows the three poles, <001>, <101> and <111>, for the standard

inverse pole figure and the fibres, <114> and <102>, which are typical for the

copper texture.
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Figure B.1: A sketch of
the presentation of the Euler
angles,ϕ1 and ϕ2, with a crys-
tal orientation projected to the
normal (loading) direction.

PSfrag replacements

20 µm

Figure B.2: Texture of single
phase (pure) copper under the
compressive load at 90% plas-
tic strain (Commentz, 2000).

1The standard Euler convention is the Roe convention in this package (programme).
2The half-width chosen in the experiment is not equal to 15.
3This choice is calculating time favourite and provides the texture in a better quality than

in 5. This may be one of the reasons why the simulated textures look smoother than the
experimental ones.
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