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1. Introduction 

 

The immune system protects our body against a broad variety of pathogens and ensures 

homeostasis within the body. The immune system consists of two parts – the innate immune 

system and the acquired (or adaptive) immune system. 

Innate immunity represents the basic resistance to pathogens. It is the first line of defense, 

acting immediately after infection. Its action is nonspecific and it does not possess any immune 

memory. The innate immune system includes also skin and surfaces of mucous membranes as 

anatomical barriers, various physiological barriers (e.g. low pH within stomach) and soluble 

factors like lysosyme, interferons, acute-phase proteins and the complement system. The cellular 

components of innate immunity consist mainly of granulocytes, monocytes and macrophages, 

specialized cells capable of phagocytosis – ingestion of particles and whole microorganisms. 

Adaptive immunity is able to specifically recognize and selectively eliminate foreign 

microorganisms and molecules. The adaptive immune response is induced only later during 

infection. Its main properties are specificity (capability of distinguishing even subtle differences 

among antigens), diversity (generation of a broad spectrum of recognition molecules), memory 

(second encounter with the same antigen induces a faster and stronger response) and self/nonself 

recognition (ability to respond only to foreign antigens and tolerate self-antigens). Adaptive 

immunity consists of two distinct components: 

- Humoral response – mediated by antibodies produced and secreted by B lymphocytes 

- Cellular response – mediated primarily by T lymphocytes 

T lymphocytes are further divided into helper T cells (Th), cytotoxic T cells (Tc), suppressor 

T cells (Ts) and regulatory T cells (Tregs). Helper T cells express the CD4 coreceptor on their 

surface. They recognize foreign antigens presented by major histocompatibility complex (MHC) 

class II molecules on the surface of professional antigen presenting cells (i.e. dendritic cells, B 

cells or macrophages). Upon activation, Th cells secrete a variety of cytokines and provide help 

to B cells and cytotoxic T cells leading to their full activation. B cells proliferate and mature into 

plasma cells producing huge amounts of antibodies. Cytotoxic T cells on the contrary express the 

CD8 coreceptor and recognize antigens presented by MHC class I molecules expressed on any 

nucleated cell within the body. Activation of Tc cells induces multiple mechanisms leading to an 
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apoptosis of the target cell. Ts and Treg cells regulate the activities and the activation status of 

other T cells. 

Every immune cell originates from a pluripotent stem cell in bone marrow. The pluripotent 

stem cell differentiates initially into either a myeloid stem cell or a lymphoid stem cell, which 

then give rise to a committed progenitor for each type of immune cell. Immature lymphocytes 

then mature and become immunocompetent within the primary (central) immune organs – bone 

marrow (in the case of B cells) and thymus (in the case of T cells). A variety of secondary 

(peripheral) immune organs exist, which trap antigens in the periphery and provide sites where 

immunocompetent cells can interact effectively with these antigens. Such secondary immune 

organs are lymph nodes, spleen and mucosa-associated lymphatic tissues (MALT) within 

respiratory and gastrointestinal tracts. 

 

1.1. T-cell development 

Thymocyte development had been fairly well studied (Shortman and Wu, 1996; Sebzda et al., 

1999). T-cell precursors develop, as mentioned above, in the bone marrow and then migrate to 

the thymus where they gain immunocompetence. First they receive survival and instructive 

signals to initiate the αβ T-cell developmental pathway. At this stage, they are called double 

negative (DN1) cells as they express neither the T-cell coreceptor CD4 nor CD8. Various DN 

stages exist, which are mainly characterized by the expression of CD44 and CD25, with DN1 

being CD44+CD25-, DN2 CD44+CD25+, DN3 CD44-CD25+ and DN4 CD44-CD25-. The cells 

then proceed to the DN2 and DN3 stage, for which Notch and interleukin-7 (IL-7) signals are 

required. The DN3 stage is where the first critical checkpoint takes place, the so called TCR (T-

cell receptor) β selection checkpoint. Only cells that have productively rearranged the TCR β 

chain can develop further. This newly formed TCR β chain pairs with an invariant pre-TCR α 

chain and this heterodimer is transported together with the CD3 and TCRζ molecules to the 

plasma membrane. Here the pre-TCR provides survival signals that rescue the cell from 

apoptosis, initiate allelic exclusion and lead to cell cycle entry and proliferation. Thymocytes 

downregulate CD25 expression and upregulate expression of the coreceptors CD4 and CD8. Note 

that this signal is ligand independent as pre-TCR α chain lacks any antigen binding site. T cells 

that are unable to generate a proper pre-TCR signal are arrested and die via apoptosis at the DN3 

stage. 
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The DN thymocytes then proceed through the DN4 stage to the double positive (DP) stage, 

expressing both CD4 and CD8, where the second critical checkpoint occurs, TCR αβ selection. 

This stage requires that a properly rearranged TCR α chain pairs with the previously expressed 

TCR β chain. As the rearrangements of gene segments are random and α chains pair randomly 

with β chains, every T cell expresses a unique T-cell receptor with one specificity. The selection 

of functional TCR-bearing cells is very critical at this point. Therefore, newly formed TCR αβ 

heterodimers interact with self-peptides presented by MHC molecules expressed on stromal 

thymic epithelial cells. Each thymocyte will undergo one of three fates. The cells without a 

functional TCR are not able to generate a positively selecting signal and die by neglect. The cells 

with too strong interaction with self-peptides/MHC represent potentially autoreactive cells and 

are deleted via apoptosis (= negative selection). Only the cells with low affinity binding 

transduce the proper survival signal allowing their further development (= positive selection) 

(Starr et al., 2003). They selectively downregulate either CD4 or CD8 becoming single positive 

(SP) thymocytes and can migrate into the periphery. The mechanism responsible for CD4 versus 

CD8 lineage commitment is not fully clarified. The strength of the signal that these cells receive 

may play a role, however Notch signaling and Src family kinase Lck involved in the positive 

signal might also contribute. 

 

However, thymic selection is not a perfect process and some T cells expressing self-reactive 

TCRs do escape into the periphery. Such cells would then recognize self-peptides, become 

activated and initiate immune reaction against self tissues leading to autoimmunity. To prevent 

the development and activation of these potentially destructive T cells, several mechanisms of 

peripheral tolerance have developed: activation-induced cell death (AICD), anergy, regulatory T 

cells (Tregs) and T-cell ignorance (Walker and Abbas, 2002). 

 

1.2. Peripheral T-cell tolerance 

1.2.1. AICD (Activation-induced cell death) (van Parijs et al., 1998) 

Activation-induced cell death is initiated by repeated activation of T cells with their cognate 

antigen and is accompanied by high interleukin-2 (IL-2) production and cell death. T cells 

undergoing AICD co-express Fas (CD95) and Fas ligand (FasL) and the consequent engagement 

of Fas delivers the death-inducing signal. Fas signaling seems to be the major pathway involved 
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in AICD-mediated peripheral tolerance as mice with defects in either Fas or FasL exhibit defects 

in AICD and develop a fatal lupus-like systemic autoimmune disease. A similar disease has also 

been observed in humans with mutations in the Fas protein (Poppema et al., 2004).  

Note that AICD is a phenomenon distinct from a passive cell death occurring after inadequate 

stimulation or the depletion of growth factors. Passive cell death is not receptor mediated and is 

prevented by CD28 and IL-2 signals, well known survival factors inducing the expression of 

proteins of the Bcl family. On the contrary, CD28 or IL-2 signaling does not prevent Fas-

mediated death, but rather potentiates it. The mechanism behind this is not well understood, but 

IL-2 is known to enhance the expression of FasL and may promote the association of various 

proteins with the cytoplasmic domain of Fas that constitute a functional death complex. 

 

1.2.2. Anergy 

Anergy is a cellular state in which a lymphocyte is alive but fails to display certain functional 

responses when optimally stimulated through both its antigen-specific receptor and any other 

receptors that are normally required for full activation (Schwartz, 1996). Thus, anergic cells are 

functionally inactivated and are characterized by a block in their ability to produce IL-2 and to 

proliferate upon subsequent challenge with Ag presented on a mature antigen-presenting cell 

(APC) (i.e. with full costimulation) (Jenkins et al., 1987). Anergy is not an intermediate step to 

cell death, but rather persists for a prolonged time. TCR ligand is both necessary and sufficient to 

induce anergy (Quill and Schwartz, 1987). 

 

1.2.2.1. Models of anergy 

There are several different approaches that have been used to generate anergic T cells 

(reviewed in Schwartz, 1996; Lechler et al., 2001; Macian et al., 2004). Traditionally, anergy is 

induced by TCR occupancy in the absence of positive costimulation (i.e. CD28) or on the 

contrary in the presence of inhibitory costimulation (i.e. via CTLA4) (Greenwald et al., 2001). 

Also addition of IL-10 into a mixed lymphocyte reaction renders T cells anergic (Groux et al., 

1996). Alternatively, anergy can be induced by using altered peptide ligands (Sloan-Lancaster et 

al., 1993) or in the presence of high concentrations of soluble peptides (O’Hehir et al., 1991; 

LaSalle and Hafler, 1994). Also immature dendritic cells proved to be a potent tolerogenic agent 

since they express only moderate levels of MHC class II and almost no costimulatory molecules 
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(Kubsch et al., 2003; Steinbrink et al., 2002). Anergic cells generated with these models possess 

different degree of unresponsiveness, which usually results from defective Ras signaling and 

blocked cytokine production (see below). Here I shall describe two commonly used anergy 

models – anergy induction in the absence of costimulation and the ionomycin-induced anergy. 

 

a) Anergy induced by TCR occupancy in the absence of costimulation 

The two-signal model proposes that a T cell requires both antigen recognition via the T-cell 

receptor and an additional costimulatory signal via CD28 or another costimulatory molecule 

(Bretscher and Cohn, 1970). TCR engagement alone in the absence of costimulation is 

insufficient to provide a stimulatory signal and to induce IL-2 production, but instead results in 

long lasting anergy, i.e. the cells fail to proliferate when restimulated with normal APC and 

antigen (Schwartz, 2003). Several models have been demonstrated to induce this type of anergy – 

antigen presentation on chemically fixed APCs, CD3 crosslinking with immobilized antibodies, 

purified MHC complexes with peptide (Jenkins and Schwartz, 1987; Jenkins et al., 1990; Wolf et 

al., 1994; Quill and Schwartz, 1987). The defect in proliferation is caused by a block in IL-2 

production (Jenkins et al., 1987). Beside IL-2, anergic cells also possess reduced production of 

IL-3, IFNγ (interferon γ) and GM-CSF (granulocyte and monocyte-colony stimulating factor), 

whereas IL-4 secretion is unaffected (Jenkins et al., 1987; Trenn et al., 1992; Beverly et al., 

1992). Interestingly, anergic cells are unable to proliferate to IL-4 (Chiodetti and Schwartz, 1992) 

or IL-12 (Quill et al., 1994) mediated signals. Additionally, anergic CD4+ cells cannot provide 

help to B cells due to their impaired expression of CD40 ligand (Bowen et al., 1995). Anergic 

CD8+ cells have a block in IL-2 production, but not in TCR-dependent cytotoxicity (Otten and 

Germain, 1991). 

Costimulation. When fully stimulated, naïve T cells produce high amounts of IL-2. 

However, if only the TCR is triggered without costimulation, the amount of produced IL-2 is low 

and the cells enter an anergic state. Costimulation given up to 2 hours after TCR triggering is still 

sufficient to block the induction of anergy (Jenkins et al., 1988; Harding et al., 1992). Thus, 

costimulation provides not only the second signal needed for proliferation, but it also delivers 

signals that prevent anergy induction. This “second signal” pathway either prevents the 

production of the molecular inhibitors responsible for anergy, or the large amount of IL-2 

produced upon costimulation prevents the expression of the inhibitors through an IL-2R signaling 

pathway. Alternatively, the inhibitor may be diluted out after multiple rounds of division that are 
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induced by IL-2. Costimulation via CD28 causes activation of PI3K (phosphatidylinositol-3-

kinase) (Prasad et al., 1994), followed by the activation of JNK (c-Jun N-terminal kinase) (Saez-

Rodriguez et al., 2007), which together with MAPKs (mitogen-activated protein kinases) 

activated by the TCR induces activation of the transcription factor AP-1 and augments IL-2 gene 

transcription (Su et al., 1994). Additionally, CD28 signaling increases the stability of IL-2 

mRNA (Lindsten et al., 1989).  

In summary, costimulation is critically important for the decision of the immune system to 

make a response or not (Janeway, 1992; Matzinger, 1994). Importantly, costimulatory receptors 

are upregulated during inflammation, infection and under other pathological conditions, therefore 

sensing their expression levels seems to be an ideal mechanism that enables T cells to make the 

decision between “non-infectious self” and “infectious non-self” (Medzhitov and Janeway, 

2000). 

Anergy reversal. The anergic state can be reversed by stimulation with exogenous IL-2 

(Beverly et al., 1992). The reversal was demonstrated both on the level of cytokine production 

(Beverly et al., 1992) and by transcriptional activation of the IL-2 gene (Kang et al., 1992). This 

IL-2 responsiveness demonstrates that anergic cells are partially activated, in that they express a 

high-affinity IL-2 receptor upon their surface, and also confirms that it is indeed an unresponsive 

state instead of non-viability (Macian et al., 2004). The block in anergic cells can be also 

overcome by stimulation with phorbol ester plus ionomycin (Schwartz, 2003).  

 

b) Ionomycin-induced anergy 

In this model, anergy is induced simply by treating T cells with the calcium ionophore 

ionomycin (Jenkins et al., 1987; Trenn et al., 1992). This causes an influx of calcium without 

inducing diacylglycerol and thereby leads to the activation of the transcription factor NFAT 

(nuclear factor of activated T cells) without activating either AP-1 or NFκB. The selective 

activation of the calcium/NFAT pathway alone resembles the processes occurring in the previous 

model induced by TCR triggering without costimulation (see also 1.2.2.3.). Activation of NFAT 

alone leads to the transcription of a new set of genes believed to be responsible for the 

unresponsive state (Macian et al., 2002; Im and Rao, 2004). Since the ionomycin-induced anergy 

mimics the characteristics of anergy induced by TCR triggering alone, the ionomycin model is 

considered to be very similar to the one induced in the absence of costimulation (Jenkins et al., 

1987). 
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1.2.2.2. Clinical applications of anergy 

Establishing anergy is of particular interest in the treatment of patients with autoimmunity 

and after transplantation, as specific tolerance to self-antigen is desired without inducing total 

immunosuppression. Systemic or mucosal administration of antigens or altered peptide ligands 

causes TCR stimulation in the absence of costimulation. Tolerance induction depends upon the 

route of administration and the dose and form of the antigen. Soluble peptide:MHC complexes 

have been used to induce anergy in autoreactive CD4+ cells of diabetic mice (Casares et al., 

2002). In bone marrow transplantation, blockade of CD28-B7 costimulation by CTLA4-Ig 

induces long-lasting tolerance and extended graft survival (Wekerle et al., 2002). 

Genetically modified DCs have also been used to treat allograft rejection and autoimmune 

diseases (Morel et al., 2003). Thus, tolerogenic DCs were effective in modulating long-term 

allograft survival (Guillot et al., 2003) and preventing autoimmune diabetes (Feili-Hariri et al., 

2003), multiple sclerosis (Menges et al., 2002), myasthenia gravis (Yarilin et al., 2002) and 

collagen-induced arthritis (Morita et al., 2001). 

 

1.2.2.3. Biochemical characteristics of anergic cells 

Here I shall focus on anergy induced in the absence of costimulation, one of the most well 

studied and best characterized types of anergy. When describing changes within anergic cells 

though, one should distinguish between the induction of anergy and its maintenance. 

Anergy induction. Calcium signaling was shown to be critical for anergy induction (Jenkins 

et al., 1987; Jenkins et al., 1990). CD28 signaling influences only the pathways of TCR signaling 

that do not induce calcium flux, thus the lack of CD28 costimulation causes an unbalanced 

signaling in which the calcium signal predominates (Macian et al., 2002). Anergic cells have 

been shown to possess increased levels of intracellular calcium (Gajewski et al., 1994; Gajewski 

et al., 1995). Calcium signaling results in the activation of NFAT, which normally cooperates 

with AP-1 to induce the expression of genes required for full activation (Hogan et al., 2003). 

Activation of NFAT alone without other transcription factors, however, leads to the transcription 

of a completely different set of genes encoding proteins that could function as negative regulators 

of TCR signaling (Macian et al., 2002; Im and Rao, 2004). Such proteins include phosphatases, 

proteases and transcriptional repressors. The RNA expression of anergy-associated genes was 

investigated by the group of Jan Buer using gene array analysis (Lechner et al., 2001). 
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Interestingly, fusing anergic and non-anergic T cells maintains the anergic phenotype, meaning 

that anergic T cells indeed express proteins that dominantly suppress TCR activation (Telander et 

al., 1999). 

Maintenance of anergy. There are many factors believed to be important for the 

maintenance of the anergic state. These factors are upregulated during anergy induction and 

might be responsible for both inducing and also maintaining the unresponsive state. Some 

mechanisms interfering with the proper signal progression are found already at the membrane 

proximal level, i.e. at the level of Src kinases and LAT (Linker for activation of T cells). The Src 

family kinase Fyn has been implicated in anergy, as Fyn was shown to be upregulated in anergic 

cells both on the protein level (Quill et al., 1992; Welke and Zavazava, 2002) and in its kinase 

activity (Gajewski et al., 1994; Gajewski et al., 1995). Additionally, the CD4-Lck complex 

appears to be displaced from lipid rafts in cells anergized by dimeric peptide:MHC molecules and 

consequently the recruitment and phosphorylation of ZAP70 is reduced (Thomas et al., 2003). 

Recently, impaired palmitoylation of the adaptor protein LAT has been observed, leading to 

defective LAT localization within plasma membrane and its impaired phosphorylation (Hundt et 

al., 2006). A reduction in ZAP70 and LAT phosphorylation was also shown using in vivo 

anergized transgenic T cells (Utting et al., 2000). 

Another mechanism hindering the activation of anergic cells is based on the regulation of IL-

2 promotor transcriptional activity. A hallmark of anergic cells is the block in Ras activation 

(Fields et al., 1996; Rapoport et al., 1993). This leads to a decrease in the activities of ERK and 

JNK (Li et al., 1996) and consequently to a failure to activate AP-1 (Kang et al., 1992), a 

transcription factor critical for IL-2 production. Additionally, increased expression of Nil-2a, a 

negative regulator of AP-1 transactivation, was observed (Becker et al., 1995). Anergic cells also 

overexpress Tob, a protein enhancing the binding of Smad proteins to the negative regulatory 

element in the IL-2 promoter (Tzachanis et al., 2001). Additionally, the CREB/CREM (cAMP 

response element binding protein/cAMP responsive element modulator) repressor complexes 

bind to the IL-2 promoter in anergic cells (Powell et al., 1999). 

Three E3 ubiquitin ligases were also shown to be upregulated in anergic cells – GRAIL (gene 

related to anergy in lymphocytes), Itch and Cbl-b that specifically ubiquitinate and degrade 

important signaling proteins like PLCγ1 (phospholipase C gamma 1) and PKCθ (protein kinase C 

theta) (Anandasabapathy et al., 2003; Heissmeyer et al., 2004). Interestingly, T cells from Itch- 
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and Cbl-b-deficient mice are resistant to anergy induction (Heissmeyer et al., 2004; Jeon et al., 

2004). 

Another key feature of anergic cells is the lack of proliferation caused by a block in the cell 

cycle progression at the G1 to S stage transition (Gilbert et al., 1992). To this end, increased 

expression of p27kip1 and p21cip1 were found and these inhibitors of the cyclin-dependent 

kinases (Cdk) were proposed to promote cell cycle arrest at the G1 phase (Boussiotis et al., 2000; 

Jackson et al., 2001). Surprisingly, anergy still can be induced in p27kip1 and p21cip1 deficient 

cells (Verdoodt et al., 2003). However, when p27kip1 lacking the Cdk-binding domain is 

expressed in murine T cells, these cells proliferate under tolerizing conditions suggesting that 

intact p27kip1 is indeed required for anergy induction (Li et al., 2006). 

 

1.2.3. Regulatory T cells (Tregs) (reviewed in Jonuleit and Schmitt, 2003) 

Regulatory T cells are a specific population of T cells with suppressive properties. Two 

different subsets of Tregs can be distinguished based upon their suppressive mechanisms. 

Naturally occurring CD4+CD25+ Tregs were suggested to exert their regulatory activities 

probably via cell-cell contact, although the membrane molecules responsible have not yet been 

fully identified. CD4+CD25+ regulatory T cells are hyporesponsive to TCR stimulation, but they 

remain responsive to IL-2. However, they need to be activated through their TCR in order to 

suppress the proliferation of conventional CD4+CD25- cells. Once activated, their suppressive 

ability is nonspecific to the antigen, meaning that suppression is independent of antigen 

specificity of the responding population. The exact mechanism of their suppressive effects is not 

clear, but it results in the inhibition of IL-2 transcription. 

The second subset consists of Th3 and Tr1 cells, which develop from conventional 

CD4+CD25- cells in the periphery and represent altered states of differentiation rather than a 

unique cell lineage. Their suppressory properties are independent of cell contact and thus are 

mediated via soluble suppressive cytokines. Tr1 cells were found to produce large amounts of IL-

10, whereas Th3 cells preferentially secrete TGF-β. 

 

1.2.4. T-cell ignorance  

Self-reactive T cells can exist in the periphery if their antigen is sequestered from them or is 

not presented in its immunogenic form. In this case, these autoreactive T cells persist in the 
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periphery without meeting their cognate antigen and thereby not becoming activated (Walker and 

Abbas, 2002). Additionally, there are specialized organs that are immunologically privileged, e.g. 

the brain, eyes, testes and ovaria. These organs must be protected from the consequences of 

inflammatory damage, which would destroy the microanatomical structure of these organs 

(Streilein, 1996). Therefore, these organs possess mechanisms to attenuate both the innate and 

adaptive immune response, e.g. the presence of blood-tissue barriers, reduced migration of 

dendritic cells due to limited number of draining lymphatic vessels, production of 

immunosuppressive and anti-inflammatory cytokines like TGF-β and expression of death 

inducing molecules like FasL (Chen et al., 1998; Griffith et al., 1995). 

 

1.3. Ras proteins 

Ras proteins are members of the guanine nucleotide binding protein superfamily. They are 

highly conserved, ubiquitously expressed and play an important role in signaling pathways 

activating transcription factors involved in cytokine gene induction in lymphocytes (Downward 

et al., 1990). Ras is activated in a rapid and sustained manner by the TCR, but also by some 

cytokines, mainly IL-2, IL-3 and GM-CSF (Satoh et al., 1991; Graves et al., 1992). Ras was 

originally identified as a proto-oncogene and its mutated forms are found in many human tumors 

(Bos, 1989). These mutations usually confer resistance to the GTPase-activating proteins or 

decrease GTP hydrolysis. Additionally, Ras is essential for thymocyte development, as it 

mediates some of the pre-TCR signals during β selection and is required for positive selection of 

thymocytes (Swat et al., 1996; Alberola-Ila et al., 1996). 

 

1.3.1. Ras structure and localization 

There are three main isoforms of Ras expressed in humans – N-Ras, K-Ras and H-Ras. They 

are highly homologous, with conserved effector-binding domains, but distinct hypervariable 

regions constituting the last 23 amino acids, which may be responsible for their distinct 

localization. Ras proteins contain a CAAX box at their C-terminus, which becomes isoprenylated 

upon the cysteine residue, the last three amino acids are cleaved off and consequently the new C-

terminal cysteine is methylated (Hancock et al., 1989). Isoprenylation is essential for their 

biological activity as it anchors Ras to the membrane (Willumsen et al., 1984; Hancock et al., 

1989). Additionally, H- and N-Ras proteins can be palmitoylated on cysteines adjacent to the 
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CAAX box (Hancock et al., 1989) and this is presumably responsible for their targeting into lipid 

rafts. Whereas K-Ras is constitutively located outside of lipid rafts, H-Ras can shuffle laterally 

within the membrane depending upon its activation state (Prior et al., 2001). Inactive H-Ras sits 

in lipid rafts, however the activation of H-Ras redistributes it from the lipid rafts into the non-raft 

membrane by a mechanism requiring its hypervariable region. This redistribution is necessary for 

the proper activation of H-Ras and interaction with its effectors (Prior et al., 2001).  

 

1.3.2. Ras regulation  

Ras exists in one of two forms – either a GDP-bound form that is catalytically inactive or a 

GTP-bound form, which is active and interacts with its downstream effectors. Ras is able to 

rapidly cycle between these two forms and this cycling is controlled by the balanced activities of 

two groups of proteins. Guanine nucleotide exchange factors (GEFs) promote the transition from 

the inactive GDP-bound form to the active GTP-bound state. This activity is opposed by GTPase-

activating proteins (GAPs), which stimulate the intrinsic Ras GTPase activity resulting in 

hydrolysis of bound GTP to GDP thereby inactivating the protein (see Figure 1.1.). Note that in 

lymphocytes, there are relatively high basal levels of nucleotide exchange onto Ras (Genot and 

Cantrell, 2000). Importantly, there has been a discrepancy whether Ras activation and signaling 

occurs at the plasma membrane or rather upon endomembranes of the Golgi apparatus (Perez de 

Pi 

GAPs 
(GTPase-activating proteins) 

GTP 
GEFs 

(guanine-nucleotide exchange factors) 

GDP 

Ras 

active, 
outside of lipid rafts 

inactive, 
in lipid rafts 

Ras  GTP  GDP 

Figure 1.1. Regulation of Ras. Inactive Ras (Ras-GDP) is located in lipid rafts where it is loaded with 

GTP by GEFs and consequently moves out of lipid rafts. Its GTPase activity is enhanced by GAPs thereby 

inactivating the protein. 
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Castro et al., 2004; Rocks et al., 2005). However, a recent approach has enabled visualization of 

endogenous Ras and has illustrated preferential Ras activation at the plasma membrane (Augsten 

et al., 2006). 

 

1.3.3. RasGEFs (Ras guanine-nucleotide exchange factors) 

There are two RasGEFs known in T cells, Sos (son of sevenless) and RasGRP. Sos forms a 

complex with the SH3 (Src homology 3) domains of the cytosolic adaptor protein Grb2 (growth 

factor receptor-bound protein 2) (Cheng et al., 1998). Upon TCR triggering, Grb2 binds to 

phosphorylated LAT, bringing Sos to the plasma membrane, thereby inducing Ras activation 

(Zhang et al., 2000). The other GEF, RasGRP, contains a diacylglycerol/phorbol-ester binding C1 

domain (O’Ebinu et al., 1998; Tognon et al., 1998). TCR stimulation induces tyrosine 

phosphorylation of LAT and recruitment and activation of PLCγ1, which hydrolysis 

phosphoinositide-4,5-bisphosphate (PIP2) to produce inositol-1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG) (see 1.4.3.). DAG, in turn, is bound by the C1 domain of RasGRP 

recruiting it to the plasma membrane. However, the contribution of each GEF pathway to Ras 

activation is not clear. On one hand, the PLCγ1-mediated pathway was found to be required for 

Ras activation in Jurkat T cells (Yablonski et al., 1998), while on the other hand, experiments 

with peripheral blood T cells showed Ras activation even in the absence of PLCγ1 activity and 

DAG production (Izquierdo et al., 1992). Thus, knocking down one or the other GEF directly in 

primary T cells should help to resolve this issue of Ras activation and this approach is currently 

being performed in our institute by Dr. Luca Simeoni. 

 

1.3.4. RasGAPs (Ras GTPase-activating proteins) 

The ever-growing family of RasGAPs contains 14 members in human so far. The best 

characterized RasGAPs in T cells are p120RasGAP, Neurofibromin 1 (NF1) and CAPRI. All of 

them are ubiquitously expressed. CAPRI contains tandem C2 domains, which recruit the protein 

to the plasma membrane in a calcium dependent manner and thereby CAPRI switches off the Ras 

pathway following elevated calcium levels (Lockyer et al., 2001). NF1 was originally identified 

as the protein mutated in patients with neurofibromatosis (Bernards, 1995). It seems that beside 

Ras regulation, NF1 may also link Ras signaling to tubulin as NF1 was found to interact with 

microtubules and tubulin (Bollag et al., 1993; Xu and Gutmann, 1997). 
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p120RasGAP contains two SH2 (Src homology 2) domains and one SH3 domain that mediate 

its association with other proteins and additionally a PH (pleckstrin homology) and C2 domain 

(protein kinase C conserved region 2 domain) that are responsible for binding to membrane 

phospholipids. The central region of the C2 domain is known as a CaLB domain (calcium and 

lipid binding domain). The CaLB domain interacts with the calcium-dependent phospholipid-

binding protein annexin VI in response to increased intracellular calcium and thus may increase 

p120RasGAP association with the plasma membrane in the presence of elevated calcium (Chow 

et al., 1999). p120RasGAP was shown to interact with the phosphorylated adaptors p62dok 

(downstream of kinase) (Yamanashi and Baltimore, 1997) and Sam68 (Src-associated in mitosis) 

(Guitard et al., 1998; Jabado et al., 1998) upon T-cell stimulation and these interactions are 

supposed to regulate GAP activity either by changing its conformation or by recruiting GAP to 

the appropriate location. Furthermore, p120RasGAP associates with p190RhoGAP and thereby 

contributes to the coordinated downregulation of both Ras and Rho GTPases. Additionally, the 

function of p120RasGAP may be also regulated through its tyrosine phosphorylation and binding 

to the Src family kinase Lck (Amrein et al, 1992). Interestingly, mice deficient for p120RasGAP 

die in utero by embryonic day 10 due to defects in vascular and neuronal development, indicating 

the importance of proper Ras regulation during embryogenesis (Henkemeyer et al., 1995). 

Although a downregulation of RasGAP activity has long been observed upon TCR 

stimulation (Downward et al., 1990; Izquierdo et al., 1992), the molecular details of antigen 

receptor-mediated GAP regulation are not understood. Additionally, the contribution of GAP 

regulation to the overall Ras equilibrium has also been ignored for the past few years (Genot and 

Cantrell, 2000; Cantrell, 2003). 

 

1.3.5. Ras effectors 

The best characterized Ras effector pathway is the MAPK (mitogen-activated protein kinase) 

pathway - Ras-Raf1-ERK cascade (Marshall, 1994). GTP-bound Ras recruits the serine/threonine 

kinase Raf-1 to the membrane, where Raf becomes activated and in turn phosphorylates Mek, 

which in turn phosphorylates and activates both ERK1 and ERK2. The main substrate for ERK is 

the transcription factor Elk-1, which regulates the SRF (serum response factor) controlling c-Fos 

and Egr expression (Marshall, 1994; Turner and Cantrell, 1997). The Ras-ERK pathway also 

controls serine phosphorylation of STAT3 (signal transducer and activator of transcription), thus 
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forming a link between the antigen receptor and the cytokine signaling pathways (Ng and 

Cantrell, 1997). Additionally, a direct association between Ras and PI3K leading to PI3K 

activation was observed (Rodriguez-Viciana et al., 1994; Rubio et al., 1997), however the 

evidence of such an interaction and its physiological role in T cells is obscure.  

 

1.4. T-cell signaling 

1.4.1. T-cell receptor (TCR) 

Peptide/MHC complexes bind to the variable regions within the extracellular portion of the T-

cell receptor. During thymocyte development, the genes encoding the variable region of the T-

cell receptor undergo somatic recombination resulting in a unique random combination of gene 

segments. This ensures that each T cell has a unique TCR specificity. Note that all of the TCRs 

within one T cell possess a single specificity. The T-cell receptor exists as a multisubunit 

complex consisting of one α and one β chain, which form the antigen binding subunit that is 

capable of specific recognition of peptide/MHC. However, these chains are themselves not able 

to transmit this signal. Instead, additional immunoreceptor associated signal-transducing proteins 

are required to perpetuate the signal. Therefore, the αβ heterodimer noncovalently associates with 

CD3 subunits, namely one heterodimer consisting of γ and ε and the other of δ and ε chain. 

Additionally, two ζ chains pair with the TCR (Weissman, 1994). All of these proteins possess 

specialized signaling motifs called immunoreceptor tyrosine-based activation motifs (ITAMs), 

which are dually phosphorylated by a member of the Src family of protein tyrosine kinases, 

namely Lck. The ITAM sequence is D/ExYxxL(x)nYxxL where n is between 6 and 8 amino acids 

(Reth et al., 1989). The spacing between tyrosines is believed to be crucial for signaling. CD3-γ, -

δ and -ε chains each contain one ITAM, whereas the TCR-ζ chains each contain three of them 

(Cambier, 1995). Thus the TCR possesses 10 ITAMs in total. Both tyrosines within the ITAM 

are phosphorylated and serve as binding sites for proteins containing tandem SH2 domains, 

mainly ZAP70, a member of the Syk family protein tyrosine kinases. The six tyrosines within 

TCR-ζ chain are sequentially phosphorylated in a highly ordered manner and their complete 

phosphorylation is dependent upon the strength of TCR occupancy (Kersh et al., 1998). 

Interestingly, since T cells constantly encounter self-peptide/MHC complexes in the periphery, 

there is a low level signaling (so called tonic signaling) within T cells, which induces constitutive 

basal phosphorylation of TCR-ζ chains even in resting state (Pitcher et al., 2003). This 
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phosphorylation is believed to be mediated by a pool of Fyn kinase constitutively associated with 

the TCR complex (Samelson et al., 1990; Timson Gauen et al., 1992). 

Interestingly, resting T cells were shown to express a mixture of monovalent and multivalent 

TCR complexes upon the membrane, having two or more (up to 20) αβ ligand-binding subunits 

(Schamel et al., 2005). This observation seems to provide an answer as to how the T cell 

maintains high sensitivity and specificity of interaction with pMHC despite low-affinity binding 

of TCR-pMHC. At low concentrations of pMHC, only the multivalent complexes become 

phosphorylated, whereas the monovalent receptors are phosphorylated only when the antigen 

concentration increases. Thus, the multivalent complexes may be responsible for sensing low 

antigen doses, where they can augment the sensitivity to antigen by increasing the avidity or by 

spreading the signal through cooperative interactions between different receptors. On the 

contrary, the monovalent receptors may be responsible for producing the concentration dependent 

response even at high antigen doses, when the multivalent complexes might be saturated 

(Schamel et al., 2005). Recently, it has been shown that full TCR activation requires both 

receptor clustering and conformational changes at CD3 that are mediated by cooperative 

rearrangements of two TCR-CD3 complexes (Minguet et al., 2007). 

 

1.4.2. Lipid rafts 

Lipid rafts are also called glycosphingolipid-enriched membrane microdomains (GEMs) and 

were originally described as detergent-resistant membranes (DRMs). Lipid rafts are islets within 

the plasma membrane enriched in glycosphingolipids, sphingomyelin and cholesterol (Brown and 

London, 1998) and have been found in most cell types studied. Because of the high content of 

cholesterol and lipids with saturated acyl chains, lipid rafts form a specific ordered liquid phase 

separated from the less-ordered bulk membrane (Schroeder et al., 1998). This ensures their 

relative resistance to solubilization by some types of detergents (e.g. Brij 58, Triton X-100, NP-

40) and enables their isolation by sucrose density gradient ultracentrifugation (Brown and Rose, 

1992). 

The lipid raft-associated components on the extracellular side of the membrane are anchored 

to the outer membrane leaflet via a glycosylphosphatidylinositol anchor. The cytoplasmic side of 

lipid rafts is associated mainly with heterotrimeric G proteins, Src family kinases and some 

transmembrane adaptor proteins. The signal responsible for targeting proteins into the lipid rafts 
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is believed to be fatty acid modification of the protein, mainly acylation with long saturated fatty 

acids, e.g. myristoylation and/or palmitoylation (Melkonian et al., 1999). Whereas myristoylation 

occurs co-translationally, palmitoylation is a post-translational event. Palmitoylation is also a 

reversible process and may occur at any time during a life span of the proteins. This enables that 

certain proteins can be targeted into the lipid rafts once they are required for the signaling and 

moved out again (i.e. depalmitoylated) when they are no longer needed. Indeed, the initiation of 

TCR signaling is accompanied by the aggregation of lipid rafts and the lateral recruitment of the 

T-cell receptor components towards these aggregates (Xavier et al., 1998; Janes et al., 1999; 

Kosugi et al., 1999). Merging of the immunoreceptor complexes with the lipid rafts brings the 

TCR chains closer to the raft-associated Src family kinases and enables phosphorylation of their 

ITAMs and the initiation of the signaling. Furthermore, the critical adaptor protein LAT is also 

localized in lipid rafts (Zhang et al., 1998). Therefore, lipid rafts seem to act as signalosomes 

important for both the initiation and spatial organization of immunoreceptor signaling. However, 

the exact role and requirement of lipid rafts for TCR signaling is still a lively discussed question. 

 

1.4.3. T-cell signaling pathways (see Figure 1.2.) 

The signaling pathways activated upon triggering of the T-cell receptor have been extensively 

studied and are reviewed in many publications (Cantrell, 1996; van Leeuwen and Samelson, 

1999; Kane et al., 2000; Samelson, 2002; Cantrell, 2002). Lymphocyte activation is initiated by 

the T-cell receptor encountering its antigen presented in complex with an MHC molecule. This in 

turn leads to the activation of Src family kinases, however the exact mechanism as to how Src 

kinases are activated is not well understood. The current model proposes that a subpopulation of 

Lck constitutively associated with the coreceptor CD4/CD8 becomes activated upon coreceptor 

dimerization (Moldovan et al., 2002). These activated Lck molecules then phosphorylate the 

tandem tyrosine residues of the ITAMs located within the cytoplasmic tail of the CD3 molecules 

and the zeta chains. Phosphorylated ITAMs provide docking sites for the tandem SH2 domains of 

the Syk family kinase ZAP70, which is thereby recruited to the plasma membrane and itself 

becomes activated via phosphorylation by Lck (Chan et al., 1992; Chan et al., 1995). ZAP70 

consequently trans-autophosphorylates to achieve full activation. The main substrate for ZAP70 

is the transmembrane adaptor protein LAT (Zhang et al, 1998), which functions as a signaling 

scaffold for the Grb2/Sos complex and the Ca2+-initiation complex. When phosphorylated, LAT 
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recruits several key signaling molecules containing SH2 domains, such as Grb2, Gads (Grb2-

related adaptor downstream of Shc) and PLCγ1 (Zhang et al., 2000). The SH2 domain of Grb2 

and Gads is flanked by two additional SH3 domains and these adaptors can thus recruit additional 

signaling molecules to LAT. Grb2 binds the guanine nucleotide exchange factor Sos, which then 

contributes to activation of the GTPase Ras. Gads is constitutively associated with SLP-76 (SH2 

domain containing leukocyte protein of 76 kDa), which when phosphorylated binds the SH2 

domain of the Tec-family tyrosine kinase Itk. Itk then phosphorylates PLCγ1 leading to its 

activation. Activated PLCγ1 cleaves membrane phosphoinositide-4,5-bisphosphate (PIP2) to 

produce the second messengers IP3 and diacylglycerol.  

IP3 causes the mobilization of Ca2+ from intracellular stores into the cytoplasm, where it binds 

to the calcium-binding protein calmodulin. Calmodulin in turn activates calcineurin, which 

dephosphorylates the transcription factor NFAT. Upon dephosphorylation, NFAT moves into the 

nucleus to initiate the transcription of specific genes. 

TCRCD4/CD8

Zap70

RasGRPRasGRP

SLP-76

N
c
k

Itk

Rac Cdc42

Actin polymerization

Gab2

Shp2

Ca++

L

A

T

NF-AT NF-κκκκB Adhesion

L

A

T

Sos

HPK1

L

A

T

PIP2

IKKIKK

IP3 DAG

ADAP

PKC

RasRas

RafRaf

Erk

AP1

rafts

rafts rafts

Gads
Grb2

VavPLC-γ1γ1γ1γ1

Lck

Vav

Grb2

Gads

Gads

Lck

SLP-76

PLC-γ1γ1γ1γ1

Itk

Gab2

Shp2

SKAP55

Figure 1.2. T-cell receptor signaling pathways. A scheme of the main signaling pathways activated 

upon TCR triggering is presented. See 1.4.3. for further details. 
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Diacylglycerol activates conventional and novel protein kinase C (PKC) isotypes and the 

guanine nucleotide exchange factor RasGRP. Among the PKC isoforms, PKC theta is of special 

interest, as it is required for activation of the transcription factor NF-kB. Additionally, PKC theta 

phosphorylates RasGRP, thereby further enhancing RasGRP activation (Roose et al., 2005). The 

function of RasGRP appears to be the same as that of the Grb2/Sos complex, namely the 

activation of the Ras/MAPK pathway leading to the activation of a transcription factor AP-1. At 

present, it is unclear whether Grb/Sos or the RasGRP pathway is the main contributor to Ras 

activation. 

The Tec-kinase Itk also phosphorylates LAT resulting in the recruitment of the guanine 

nucleotide exchange factor Vav both to SLP-76 (Wu et al., 1996; Tuosto et al., 1996) and directly 

to LAT (Perez-Villar et al., 2002). Vav then activates small G-proteins of the Rho family, i.e. 

Cdc42 and Rac, required for the activation of WASP (Wiskott-Aldrich syndrome protein) and 

cytoskeletal reorganization (Crespo et al., 1997; Fischer et al., 1998). Additionally, SLP-76 binds 

the ADAP (Adhesion and degranulation promoting adaptor protein)/SKAP55 (Src kinase 

associated phosphoprotein of 55 kDa) complex, which then becomes phosphorylated by Fyn. The 

ADAP/SKAP55 module then recruits GTPase Rap1 to the membrane, thereby increasing integrin 

affinity, inducing integrin clustering and integrin-mediated adhesion further stabilizing conjugate 

formation between the T cell and the antigen-presenting cell (Griffiths et al., 2001; Peterson et 

al., 2001; Kliche et al., 2006), leading to formation of the immune synapse. 

 

1.5. Adaptor proteins 

Adaptors are proteins that lack both enzymatic and transcriptional activities. Instead, they 

participate in the regulation of lymphocyte activation by mediating constitutive and/or inducible 

protein-protein or protein-lipid interactions via their modular interaction domains. The role of 

adaptor proteins in lymphocyte signaling has been extensively reviewed (Leo et al., 2002; Horejsi 

et al., 2004; Togni et al., 2004; Simeoni et al., 2005). Adaptors can be divided into two main 

groups: transmembrane adaptor proteins (TRAPs) and cytosolic adaptor proteins (CAPs). Upon 

TCR triggering, CAPs are recruited from the cytosol to the plasma membrane where they bind 

via their modular domains to other critical signaling molecules like receptors, adaptors and 

enzymes and thereby enable the formation of the various multiprotein complexes that are 

required for signal transduction (see 1.4.3.). 
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1.5.1. Transmembrane adaptor proteins (TRAPs) 

TRAPs are integral membrane proteins possessing a short extracellular domain, which does 

not bind ligand. Their transmembrane domain is followed by a long cytoplasmic tail that lacks 

any modular protein-protein interaction domains, but contains proline rich regions and/or 

multiple tyrosine based signaling motifs (TBSMs). The TBSM is a short peptide sequence 

containing a core tyrosine residue (YxxV/L/I). These residues become phosphorylated by Src 

and/or Syk family protein tyrosine kinases after antigen receptor triggering and provide binding 

sites for the SH2 and PTB domains of intracellular signaling and effector molecules, with the 

binding specificity being determined by the amino acids surrounding the core tyrosine residue. 

By recruiting these proteins to the plasma membrane, transmembrane adaptors allow the 

nucleation and formation of membrane associated signaling scaffolds required for the 

propagation of receptor-mediated signals into the intracellular compartment. Notably, TRAPs 

have also recently been suggested as potential diagnostic/prognostic markers in 

hematopathological studies for their distinct expression patterns in different types of human 

Figure 1.3. Overview of known TRAPs (with their MW). Structure, localization, known interacting 

partners and the main function for each adaptor are shown. Arrows show known binding sites for the proteins.

Binding sites within LAX are unidentified yet. 
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lymphoid neoplasms (Tedoldi et al., 2006). 

So far, seven transmembrane adaptor proteins have been identified – LAT, the T-cell receptor 

interacting molecule (TRIM), SHP-2 interacting transmembrane adaptor protein (SIT), the 

phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG) also called the 

Csk-binding protein (Cbp), the non-T cell activation linker (NTAL) also called the Linker for 

activation of B cells (LAB), the Lck-interacting molecule (LIME), and the Linker for activation 

of X cells (LAX) (see Figure 1.3.). 

The TRAPs can be further subdivided into two groups: the TRAPs associated with lipid rafts, 

which include LAT, PAG, NTAL and LIME, and the TRAPs localized outside of lipid rafts – 

SIT, TRIM and LAX. The raft-associated TRAPs are monomeric type III transmembrane 

proteins that possess a palmitoylation motif CxxC juxtaposed to the transmembrane region. This 

motif becomes palmitoylated and is believed to be responsible for the targeting of these proteins 

into lipid rafts. The non-raft TRAPs are either monomeric (LAX) or disulfide-linked homodimers 

(SIT and TRIM) (see Figure 1.3.). 

 

1.6. PAG (Phosphoprotein associated with glycosphingolipid-enriched microdomains; 

also called Csk-binding protein, Cbp) [hereafter referred to as PAG] 

1.6.1. Structure and expression of PAG 

The adaptor protein PAG is unique among the transmembrane adaptor proteins as it is 

expressed ubiquitously rather than being restricted to only hematopoietic cells, suggesting a more 

general function in the regulation of cell activation and differentiation. PAG is strongly expressed 

in lymphocytes and monocytes and weakly in neutrophils, but the expression of PAG-encoding 

mRNA was found in almost all tissues examined, with the highest levels in the immune system, 

developing brain, lung, heart, testis and placenta (Brdicka et al., 2000; Kawabuchi et al., 2000). 

PAG is a type III transmembrane protein, meaning that its initial methionine is not followed 

by a typical signal sequence, but rather the N-proximal amino acids regulate its insertion into the 

membrane during protein synthesis (Brdicka et al., 2000). PAG consists of a short extracellular 

domain (16 amino acids), a single membrane-spanning hydrophobic domain (20 amino acids) and 

a long cytoplasmic tail, in total having 432 amino acids in humans (429 in mouse and 425 in rat). 

The extracellular part appears to lack any external ligand and no functional significance has been 

shown so far. 
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PAG predominantly localizes to the plasma membrane, namely into the lipid rafts or GEMs 

(Brdicka et al., 2000; Kawabuchi et al., 2000). Its cytoplasmic domain contains a dicysteine motif 

CSSC juxtaposed to the transmembrane region. This motif was shown to be palmitoylated and 

this is believed to be responsible for targeting PAG into the lipid rafts. The exact role of this 

motif and its importance for PAG function is the thesis topic of another PhD student in the lab, 

Anita Posevitz-Fejfar (Posevitz-Fejfar et al., 2007).  

The cytoplasmic tail of PAG contains ten tyrosines, nine of which are found within so called 

tyrosine-based signaling motifs. These are potential phosphorylation sites for Src kinases and 

thus potential binding sites for PTB or SH2 domain-containing proteins. Six of them are arranged 

into three ITAM-like motifs, but with a longer spacing between the tyrosines. In vitro GST-SH2 

pull-down assays revealed that phosphorylated PAG is capable of binding the tandem SH2 

domains of ZAP70 and Syk as well as the SH2 domains of Lck, Fyn, Lyn, Csk, Shc, Vav, 

RasGAP and PI3K (Brdicka et al., 2000; Durrheim et al., 2001). Additionally, the cytoplasmic 

domain contains multiple Ser and Thr residues (12 serines and 10 threonines) that are potential 

sites of phosphorylation by casein kinase 2 and protein kinase B and C. Furthermore, PAG 

contains two proline rich regions that may bind SH3 domain-containing proteins. The overall 

acidic nature of PAG and its multiple sites of phosphorylation result in an anomalous binding of 

SDS and retarded migration on SDS-PAGE leading to an apparent molecular mass of 70 – 85 

kDa rather than predicted MW of 47 kDa (Brdicka et al., 2000; Kawabuchi et al., 2000). 

 

1.6.2. Interacting partners of PAG 

While it was suggested that multiple proteins could bind to PAG, only three proteins have 

been reproducibly shown to be associated: Csk (Brdicka et al., 2000; Kawabuchi et al., 2000), 

Fyn (Brdicka et al., 2000) and EBP50 (Brdickova et al., 2001; Itoh et al., 2002). The interaction 

between PAG and Fyn was shown to be independent of phosphorylation and thus it was proposed 

to be mediated via the SH3 domain of Fyn binding to a proline-rich region of PAG (Brdicka et 

al., 2000). The mapping of the Fyn binding site within PAG is also a topic of the PhD thesis of 

Anita Posevitz-Fejfar. In contrast, the interaction of Csk (C-terminal Src kinase) with PAG 

requires tyrosine phosphorylation of PAG by Src family kinases. Mutational analysis has 

demonstrated that this association is mediated primarily via the phosphorylation of tyrosine 317 

of PAG (in human; Y314 in mouse and rat), which is then bound by the SH2 domain of Csk 
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(Brdicka et al., 2000; Kawabuchi et al., 2000). An additional Csk binding site at tyrosine 299 has 

been suggested (Lindquist, unpublished observation). 

Fyn is the main kinase responsible for PAG phosphorylation and thereby mediates Csk 

recruitment to PAG. Fyn deficient T cells show impaired PAG phosphorylation, Csk recruitment 

and thus reduced Csk activity towards Lck (Yasuda et al., 2002; Shima et al., 2003; Filby et al., 

2007). However other kinases like Lck and Lyn may be involved in PAG phosphorylation 

(Brdicka et al., 2000; Ohtake et al., 2002). 

 

1.6.3. The PAG phosphatase 

The phosphorylation of PAG is a tightly regulated process as it is very rapidly 

dephosphorylated upon TCR triggering. Although several attempts have been made to identify 

the PAG phosphatase, they have however not brought clear results. On one hand, CD45, a 

positive regulator of TCR signaling, appears to be the PAG phosphatase, since CD45 deficient 

cells have enhanced basal phosphorylation of PAG with basically no detectable decrease upon 

stimulation (Davidson et al., 2003). On the other hand, PAG still becomes dephosphorylated in 

Jurkat cells lacking CD45 (Brdicka et al., 2000). Furthermore, CD45 expression is restricted only 

to hematopoietic cells and thus other PAG phosphatases must exist. One candidate would be PEP 

(PEST-enriched phosphatase), which can directly associate with the SH3 domain of Csk (Cloutier 

and Veillette, 1996). PEP is also able to dephosphorylate the activatory tyrosine within Src 

kinases (Gjorloff-Wingren et al., 1999; Cloutier and Veillette, 1999). However, mice deficient in 

PEP show normal PAG dephosphorylation upon stimulation (Davidson et al., 2003). Also 

experiments on protein tyrosine phosphatase PTPα deficient cells excluded this phosphatase as a 

potential candidate (Maksumova et al., 2005). Additionally, the SH2 domain-containing 

phosphatases SHP-1 or SHP-2 might contribute to PAG dephosphorylation, especially as SHP-1 

was found to be recruited to lipid rafts upon TCR stimulation (Kosugi et al., 2001). PAG was, 

however, again found to be normally dephosphorylated in stimulated thymocytes from SHP-1 

deficient mice (Davidson et al., 2003). Interestingly, SHP-2 was found in a complex with PAG 

and was shown to influence PAG dephosphorylation. Furthermore, hyperphosphorylation of 

endogenous PAG and sustained Csk recruitment were observed in SHP-2 deficient cells (Zhang 

et al., 2004). However, this observation was demonstrated only in fibroblasts and only upon 

growth factor stimulation. Importantly, as mentioned above, PAG is ubiquitously expressed, 
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whereas the phosphatases are usually specific to certain cell types. Thus, it appears that several 

distinct phosphatases could be responsible for PAG dephoshorylation depending upon the cell 

type. Also note, that, due to tonic signaling (see 1.7.3.), PAG is phosphorylated in resting T cells, 

but in mast cells is not and becomes phosphorylated only upon FcεRI triggering (Ohtake et al., 

2002). Therefore, the PAG phosphatase(s) seem to be also differentially regulated in different cell 

types. 

 

1.6.4. Function of PAG 

The main function of PAG seems to be the recruitment of Csk, a negative regulator of Src 

family kinases, to the plasma membrane; thereby setting the threshold for activation and keeping 

cells in a resting state. PAG is constitutively phosphorylated in resting T cells and binds the 

tyrosine kinase Csk. The activity of Csk increases upon binding to PAG (Takeuchi et al., 2000). 

Csk in turn phosphorylates the C-terminal inhibitory tyrosine within Src kinases and keeps them 

under tonic inhibition in the resting state (see Figure 1.4., bottom right panel). Upon TCR 

triggering, PAG becomes rapidly dephosphorylated by a yet unknown phosphatase at the Csk 

binding site, leading to the release of Csk. This enables the activation of Src kinases and the 

initiation of T-cell signaling (see Figure 1.4., top panel). However, when Fyn becomes activated, 

it re-phosphorylates PAG after several minutes (see Figure 1.4., bottom left panel), recruiting 

Csk back to the plasma membrane where Csk inhibits Src kinases by phosphorylation of their 

inhibitory tyrosine. In this way, the Src kinases become inactivated and signaling is shut down 

(Brdicka et al., 2000; Kawabuchi et al., 2000; Torgersen et al., 2001). Fitting with this model, the 

overexpression of PAG decreases overall tyrosine phosphorylation and inhibits TCR-mediated 

proximal events like Ca2+ flux (Davidson et al., 2003), downregulates TCR mediated NFAT 

activation in Jurkat T cells (Brdicka et al., 2000), IL-2 production both in Jurkat T cells (Itoh et 

al., 2002) and in transgenic mice (Davidson et al., 2003) and causes a block in cell proliferation 

(Davidson et al., 2003).  

Interestingly, this proliferative defect was partially restored by exogenous IL-2 and the 

production of IL-4 and IFN-γ was not affected by PAG overexpression. On the contrary, 

mutation of the Csk binding site Y317 (respectively Y314 in mice) results in a drastic reduction of 

PAG phosphorylation, complete abrogation of Csk recruitment and the restoration of calcium 

flux, IL-2 production and cell proliferation (Davidson et al., 2003). 
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Notably, tyrosine 317 is the only tyrosine within PAG for which a functional significance has 

been shown. The role of the other nine tyrosines has not been clarified. Clearly, there might be 

more proteins in addition to Csk associated with PAG and thus, PAG may have other distinct 

functions in addition to the negative regulation of Src kinases. Identification of new binding 

partners and one novel function of PAG are the outcome of this thesis. 

PAG seems to be implemented also in other pathways beside TCR signaling. Experiments 

with mast cells suggested a role in the negative feedback of FcεRI signaling (Ohtake et al., 2002). 

Upon FcεRI aggregation, PAG becomes rapidly phosphorylated and recruits Csk, thus inhibiting 

Lyn kinase activity. Furthermore, the overexpression of PAG leads to an inhibition of FcεRI-

mediated cell activation. A role for PAG has also been suggested in cell migration and cell 

Figure 1.4. PAG regulatory function in T-cell signaling. PAG is phosphorylated in resting T cells 

and binds Csk (bottom right). Upon activation, PAG becomes dephosphorylated, thereby loosing Csk and allowing 

activation (top). Fyn then re-phosphorylates PAG, leading to Csk recruitment and inhibition of signaling (bottom 

left). 
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spreading (Shima et al., 2003). Upon adhesion to fibronectin, PAG becomes phosphorylated and 

recruits Csk, which in turn inactivates the Src kinases. Knocking down PAG expression leads to 

impaired cell spreading. 

An additional function of PAG is based upon its interaction with the cytoplasmic adaptor 

EBP50 (ezrin-radixin-moesin binding protein of 50 kDa) also known as NHERF (Na+/H+ 

exchanger regulatory factor) (Reczek et al., 1997; Yun et al, 1997). EBP50 binds through one of 

its two PDZ domains to the C-terminal VTRL motif of PAG and through its C-terminus to the 

ezrin-radixin-moesin family proteins, thus linking PAG to the actin cytoskeleton (Itoh et al., 

2002; Brdickova et al., 2001). Considering the fact that PAG is located within the lipid rafts, 

PAG may in this way regulate their mobility. Indeed, the overexpression of PAG reduces the 

mobility of lipid rafts and inhibits immune synapse formation and subsequent T-cell activation 

(Itoh et al., 2002). The expression of a mutant PAG incapable of EBP50 binding restored both 

synapse formation and T-cell activation. This suggests that PAG also regulates the dynamics of 

the membrane, namely it keeps mobility of lipid rafts low in resting cells, but upon activation the 

association of EBP50 is lost (by an unknown mechanism) and the rafts become more mobile and 

thus able to aggregate within the immune synapse (Itoh et al., 2002). 

Recently, PAG has been shown to play an important role in Theileria parva infection. 

Transformation of B lymphocytes with this intracellular parasite causes the downregulation of 

PAG and concomitant loss of Csk from lipid rafts. This in turn enables the constitutive activation 

of the Src kinase Hck, activation of the transcription factor AP-1 and continuous proliferation 

reminiscent of leukemic cells (Baumgartner et al., 2003). Histologically, PAG was found 

expressed also in germinal centers of lymphoid follicles and in follicular lymphomas. Thus, the 

presence of PAG may potentially be a new marker of follicular lymphomas and its absence a 

marker of some mantle cell lymphomas (Svec et al., 2005). 

 

In spite of the apparent importance of PAG, two papers characterizing PAG knockout mice 

have been recently published suggesting that PAG is basically dispensable for T-cell 

development and function (Xu et al., 2005; Dobenecker et al., 2005). The first paper showed 

generally normal T-cell development with increased number of thymocytes in PAG deficient 

mice. Although they observed mild reduction in Csk localization within lipid rafts in cells lacking 

PAG, the TCR-induced calcium flux, cell proliferation and production of IL-2, IL-4 and IFN-γ 

were normal (Xu et al., 2005). However, the authors only deleted the last coding exon in the hope 
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of inactivating the whole PAG gene. But they themselves show expression of a protein in their 

mice detectable by anti-PAG antisera and claim this to be nonspecific band. This might, however, 

very well be the truncated form of PAG, which can still partially fulfill PAG function. The 

second study demonstrated that PAG deficiency had no effect upon embryogenesis, thymic 

development and T-cell functions in vivo. Moreover, Csk recruitment into the lipid rafts was not 

affected by the loss of PAG and proximal signaling events like the phosphorylation of key 

signaling molecules was not altered (Dobenecker et al., 2005). Thus it seems, that there is a 

redundancy among transmembrane adaptor proteins and some are able to compensate for the loss 

of PAG by taking over its function. 

 

1.7. Src family kinases (SFKs) 

1.7.1. Structure and localization of Src family kinases 

The Src family consists of 9 members: Blk, Fgr, Fyn, Hck, Lck, Lyn, Src, Yes and Yrk. 

Among these, Src, Yes and Fyn are mainly ubiquitously expressed. Myeloid cells express Hck, 

Fgr and Lyn, B cells express Lyn, Fyn and Blk and T cells express primarily Lck and Fyn 

(Thomas and Brugge, 1997). Src kinases have a common structure consisting of an N-terminal 

region possessing sites for fatty acid modification, followed by a unique region, an SH3 domain, 

an SH2 domain, a linker region, a tyrosine kinase domain (SH1) and a C-terminal negative 

regulatory tyrosine. The N-terminal region is cotranslationally myristoylated on a glycine residue 

at position 2. This modification enables the kinase to attach to the cell membrane. Furthermore, 

Src kinases undergo posttranslationally reversible palmitoylation on dual cysteines and this is 

believed to target them into the lipid rafts. Additionally, Fyn was observed to be methylated at 

lysine residues within the N-terminal region and this may be required for its function in cell 

adhesion and spreading (Liang et al., 2004). Interestingly, the localization of Lck and Fyn within 

plasma membrane is largely different. Whereas Lck was predominantly detected in the non-raft 

fraction, Fyn in contrast is highly enriched in the raft fractions (Yasuda et al., 2002; Filipp et al., 

2003). The unique domain, as well as different binding partners, are likely to contribute to their 

distinct subcellular localization. 
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1.7.2. Regulation and activation of Src family kinases 

When the crystal structure of Src and Hck was solved, it inspired the model for a common 

mechanism of Src kinase activation (Xu et al., 1997; Sicheri et al., 1997) (see Figure 1.5.). 

According to this model, a Src kinase adopts an inactive conformation when its C-terminal 

inhibitory tyrosine (Y505 of Lck, Y529 of Fyn) becomes phosphorylated. In this conformation, the 

inhibitory phosphotyrosine is bound by the SH2 domain, bringing the SH3 domain closer to the 

linker region located between the SH2 and kinase domain. The SH3 domain forms an additional 

interaction with the proline-rich region within the linker, further stabilizing the closed inactive 

conformation (Xu et al., 1997; Sicheri et al., 1997). On the other hand, dephosphorylation of the 

inhibitory tyrosine releases the structure into a primed state, from which the kinase can then 

autophosphorylate the activatory tyrosine within the activation loop of the kinase domains 

leading to its full activation. 

However, activatory tyrosine phosphorylation is not the only way to activate an Src kinase. 

Phosphorylation of other tyrosines have also been demonstrated that enhance kinase activity, 

although only for Src and only upon growth factor stimulation. In these studies, epidermal growth 

factor and platelet-derived growth factor selectively induced phosphorylation of a tyrosine within 

the SH2 domain of Src (Y215) causing a dramatic increase in the kinase activity (Vadlamudi et al., 

Figure 1.5. Src kinase regulation. The inactive form of SFKs has the linker region bound to its SH3 and 

phosphorylated C-terminal tyrosine bound to its SH2 domain (middle). This tyrosine can be dephosphorylated by 

CD45, thereby priming the kinase (right), which can then autophosphorylate, leading to the active state. The 

phosphorylation of a tyrosine within SH2 domain in addition to the C-terminal tyrosine phosphorylation results in the 

hyperactive form of kinase (left). For further details see 1.7.2. 
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2003; Stover et al., 1996). This phosphorylated SH2 domain specifically prevents binding of the 

phosphorylated C-terminal negative regulatory tyrosine and thus prevents folding of the kinase 

into an inactive state. This in consequence leads to an over 50-fold increase in the kinase activity 

(Stover et al., 1996) (see Figure 1.5. hyper-active). 

 The main proteins regulating the phosphorylation status and thereby the activity of SFKs are 

the phosphatase CD45 and the kinase Csk, which act antagonistically. CD45 is believed to be a 

critical positive regulator, which forms a complex with Lck (Schraven et al., 1991) and 

specifically dephosphorylates the C-terminal inhibitory tyrosine (Hermiston et al., 2003). On the 

other hand, Csk is able to phosphorylate this inhibitory tyrosine, thereby inactivating the enzyme 

(Okada et al., 1991; Bergman et al., 1992). The enzyme dephosphorylating the activatory tyrosine 

was shown to be the PEP (Gjorloff-Wingren et al., 1999; Cloutier and Veillette, 1999). 

Interestingly, this phosphatase binds to Csk (Cloutier and Veillette, 1996), thereby forming a 

functional complex that synergistically inhibits the Src kinases by acting upon both critical 

tyrosines simultaneously (Cloutier and Veillette, 1999). An additional protein tyrosine 

phosphatase (PTP) involved in the regulation of SFK activity, particularly that of Fyn, seems to 

be PTPα. PTPα deficient thymocytes exhibit enhanced phosphorylation of both the activatory and 

inhibitory tyrosines of Fyn, increased Fyn activity, hyperphosphorylation of PAG and reduced 

proliferation (Maksumova et al., 2005).  

Furthermore, SFKs can be activated by interaction of either their SH2 or SH3 domains with 

other proteins. In this case, this domain is no longer available for the intramolecular interaction 

and thus the kinase cannot fold into its closed inactive conformation. One such interacting protein 

is SAP (SLAM-associated protein), which binds the SH3 domain of Fyn leading to its activation 

(Simarro et al., 2004). Another SFK activator is Unc119 (Uncoordinated 119), which was shown 

to increase the kinase activity of both Lck and Fyn by binding to their SH3 domain. Since Lck 

and Fyn are found associated with CD3 and the coreceptor CD4, Unc119 was found complexed 

with both CD3 and CD4. Recruiting Unc119 to the CD3- and CD4-associated Src kinases may 

provide the mechanism activating SFKs upon TCR triggering (Gorska et al., 2004). 

Since Fyn and Lck are differentially localized within the plasma membrane (Fyn being 

mainly in the lipid rafts and Lck predominantly outside), the question arises as to how the TCR 

recruits and activates both proteins. The group of Julius, however, has proposed a model of 

sequential activation, according to which Lck is initially activated outside of lipid rafts, and then 



INTRODUCTION  29 

 

translocates into the lipid rafts to activate Fyn (Filipp et al., 2003). Supporting this hypothesis is 

also the observation that Fyn cannot be activated in Lck deficient cells (Filipp et al., 2003). 

 

1.7.3. Function of Lck and Fyn 

Src family protein tyrosine kinases play a crucial role in cell differentiation, motility, 

adhesion, proliferation and survival. In T cells, a fraction of Lck interacts with the coreceptors 

CD4 and CD8 (Veillette et al., 1988; Barber et al., 1989). This noncovalent interaction is 

mediated via a dicysteine motif within the unique domain of Lck and two cysteines in the 

cytoplasmic region of CD4 or CD8 alpha (Turner et al., 1990). It facilitates participation of Lck 

in the initiation of TCR signal transduction upon antigen recognition. During TCR-pMHC 

interaction, Lck is recruited into the complex through its association with either the CD4 or CD8 

coreceptor (Holdorf et al., 2002). Upon clustering of the coreceptors, Lck molecules 

transphosphorylate the tyrosine within the activation loop leading to their full activation. 

Additionally, a pool of Lck interacts with the costimulatory molecule CD28 and this interaction 

further sustains the activation of Lck (Holdorf et al., 2002). Furthermore, Fyn was shown to 

directly interact with CD3 subunits and TCR ζ chains (Samelson et al., 1990; Timson Gauen et 

al., 1992). Thus, active Lck and Fyn coclustered with the receptors are perfectly positioned to 

phosphorylate the tyrosine residues within the ITAMs of both the CD3 complex and TCR ζ 

chains. Phosphorylated ITAMs recruit ZAP70, which is then phosphorylated and activated by 

Lck. The subsequent events of proximal signaling are described in section 1.4.3. Underlining the 

essential role of Lck in TCR signaling is the finding that Jurkat cells lacking Lck possess a block 

in ZAP70 phosphorylation and activation, a lack in LAT phosphorylation and calcium flux and 

no NFAT activation and IL-2 production (Straus and Weiss, 1992; Denny et al., 2000). 

Lck was suggested to be involved in a negative feedback pathway allowing the cell to 

discriminate between self and nonself antigen. Generally, activated Lck induces the 

phosphorylation of the phosphatase SHP-1, which then binds to the SH2 domain of Lck leading 

to a downregulation of the activity of the latter and dephosphorylation of TCR-associated 

ITAMs. However, Lck can also be phosphorylated by ERK on a serine residue, which interferes 

with SHP-1 binding. Thus, strong binding ligands (i.e. antigenic peptides) induce sufficiently 

rapid ERK activation to phosphorylate Lck and thus prevent SHP-1 binding. On the contrary, 

weak ligands (i.e. self peptides) induce a delayed ERK activation, which is simply too slow to 
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protect Lck from accumulated phospho-SHP-1 and signaling is in this case aborted (Stefanova et 

al., 2003). 

 

Fyn appears to play a more negative regulatory role in TCR signaling by phosphorylating 

PAG, thereby mediating Csk recruitment and PAG-Csk interaction (Yasuda et al, 2002; Shima et 

al., 2003; Filby et al., 2007). The loss of Fyn results in a lack of PAG phosphorylation, a loss of 

Csk recruitment and reduced phosphorylation of the inhibitory tyrosine of Lck. This then 

correlates with elevated cytokine production and hyperproliferation (Filby et al., 2007). Reducing 

Lck levels additionally to Fyn deficiency causes spontaneous T-cell activation in vivo and the 

development of severe autoimmune disorders (Filby et al., 2007). Fyn deficient mice show a 

reduced presence of naïve CD44lowCD62Lhigh T cells in the periphery, presumably due to the 

inhibition of PAG phosphorylation and Csk recruitment (Yasuda et al., 2002). 

Fyn was additionally shown to associate with the adapter proteins SKAP55 (Src kinase-

associated phosphoprotein of 55 kDa) (Marie-Cardine et al., 1997) and ADAP (Adhesion and 

degranulation promoting adaptor protein), also known as Fyb (Fyn binding protein) or SLAP 

(SLP-76 associated protein) (da Silva et al., 1997). Therefore Fyn also seems to be involved in 

integrin signaling. Upon TCR triggering, Fyn phosphorylates ADAP and consequently ADAP 

induces integrin clustering and integrin-mediated adhesion (Griffiths et al., 2001; Peterson et al., 

2001). In addition, Fyn contributes to the regulation of cytoskeletal reorganization as Fyn 

phosphorylates WASP (Wiskott-Aldrich syndrome protein), a critical regulator of the Arp2/3 

complex and actin polarization in T cells (Badour et al., 2004). Fyn was also suggested to bind 

phosphorylated alpha-tubulin and to regulate tubulin cytoskeleton reorganization upon T-cell 

activation (Marie-Cardine et al., 1995; Martin-Cofreces et al., 2006). 

A role for Lck and Fyn in naïve T cell maintenance and survival in the periphery has been 

suggested, since there is a constant low level of signaling in peripheral T cells and a constitutive 

low level of TCR ζ chain phosphorylation (Pitcher et al., 2003). As T cells are continuously 

scanning their environment, their TCRs are constantly encountering self-peptide/MHC 

complexes inducing weak signaling. Especially Fyn was believed to be responsible for the 

constitutive low level of zeta chain phosphorylation as Fyn associates with CD3 and TCR ζ 

chains (Samelson et al., 1990; Timson Gauen et al., 1992). This so called tonic signaling is 

believed to be responsible for naïve T cell survival and lymphopenic expansion in the periphery. 

An elegant series of experiments performed by Zamoyska et al. suggested that both Fyn and Lck 
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(at least one of them) are required for TCR dependent naïve T cell survival in the periphery and 

Lck, but not Fyn, is essential for TCR dependent homeostatic proliferation (Seddon et al., 2000; 

Seddon and Zamoyska, 2002a; Seddon and Zamoyska, 2002b). 

Finally, Src kinases are required during thymocyte development. Knockout mice deficient for 

both Fyn and Lck possess an absolute block at the transition from DN3 to DN4 stage during 

TCRβ selection (Groves et al., 1996; van Oers et al., 1996). Additionally, Lck is primarily 

responsible for transmitting the positive selection signal during the DP stage and it seems that 

this signal also determines the fate of CD4 versus CD8 lineage (Hernandez-Hoyos et al., 2000; 

Legname et al., 2000). 

 

1.8. Csk (C-terminal Src kinase) 

Csk is a ubiquitously expressed cytoplasmic protein tyrosine kinase with a structure similar to 

the SFKs, consisting of an SH3, SH2 and a kinase domain (Nada et al., 1991). However, it lacks 

both an N-terminal acylation signal and a C-terminal regulatory tyrosine. 

Csk is the major negative regulator of Src kinases as it phosphorylates their inhibitory 

tyrosine at the C-terminus and these adopt the closed inactive conformation (see 1.7.2.) (Nada et 

al., 1991; Okada et al., 1991; Bergman et al., 1992). Overexpression of Csk results in a dramatic 

inhibition of TCR-induced protein tyrosine phosphorylation and IL-2 production (Chow et al., 

1993). The SH3 and SH2 domains of Csk were found to be absolutely critical for Csk function, 

therefore Csk probably requires association with other proteins to inhibit SFK activation in the 

cell (Cloutier et al., 1995). In resting T cells, a portion of Csk is localized within the lipid rafts 

through its interaction with various membrane proteins (e.g. PAG) and sets an activation 

threshold for TCR signaling (Brdicka et al., 2000; Kawabuchi et al., 2000). PAG can not only 

relocate Csk to the lipid rafts, but was also shown to activate Csk and increase its kinase activity 

up to 6-fold (Takeuchi et al., 2000). Additionally, Csk can be phosphorylated upon a serine 

residue within the catalytic loop by the cAMP-dependent protein kinase (PKA), resulting in a 2-4 

fold increase in Csk activity (Vang et al., 2001), which is additive to the increase caused by PAG 

binding (Vang et al., 2003). Upon TCR triggering, PAG is dephosphorylated and Csk association 

is lost, thus enabling activation of Src kinases and proper signaling (Torgersen et al., 2001). In 

this phase, Csk may be sequestered by another binding partner G3BP (RasGAP-SH3-binding 
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protein), which is located outside of lipid rafts and augments T-cell activation simply be reducing 

the amount of Csk in the rafts (Rahmouni et al., 2005). 

Csk forms complexes with all three members of the PEP phosphatase family, protein tyrosine 

phosphatase PEP and PTP-PEST (PTP containing PEST domain) bind to the SH3 domain 

(Cloutier and Veillette, 1996; Davidson et al., 1997), whereas PTP-HSCF (hematopoietic stem 

cell fraction derived PTP) binding was shown to be SH2 domain mediated (Wang et al., 2001). 

As PEP phosphatases are believed to dephosphorylate the activatory tyrosines within the Src 

kinases (Gjorloff-Wingren et al., 1999; Cloutier and Veillette, 1999), the formation of Csk-PEP 

complex would constitute an efficient mechanism to inactivate Src kinase-mediated signaling.  

The adaptor proteins Dok-1 and Dok-3 were also reported to associate with Csk through its 

SH2 domain (Neet and Hunter, 1995; Lemay et al., 2000). Dok proteins are efficient inhibitors of 

immunoreceptor signaling (at least in B cells) as they coordinate the recruitment of three 

inhibitory effectors, Csk, the phosphatase SHIP-1, and p120RasGAP, to the membrane upon 

receptor stimulation (Lemay et al., 2000; Tamir et al., 2000). Additionally, Csk was shown to 

bind to the transmembrane adaptor protein SIT in vitro and might contribute to the inhibition of 

TCR induced NFAT activation caused by SIT overexpression (Pfrepper et al., 2001). Csk is also 

recruited to another transmembrane adaptor protein, LIME, that is phosphorylated upon CD4 or 

CD8 crosslinking (Brdickova et al., 2003). Csk can also associate with focal adhesion-associated 

proteins paxillin, tensin and FAK (focal adhesion kinase), although the physiological relevance of 

such interactions is unclear at present (Sabe et al., 1994). 

Csk deficient mice die in utero because of abnormalities in neuronal development, which 

result from uncontrolled Src kinase activity (Nada et al., 1993; Imamoto and Soriano, 1993). 

Conditional inactivation of Csk in thymocytes abrogates the requirement for pre-TCR mediated 

signals during TCR β checkpoint and also uncouples positive selection from the TCR-mediated 

signal, presumably because of hyperactive Src kinases, and single positive CD4+ T cells develop 

and leave into periphery (Schmedt et al., 1998; Schmedt et al., 2001). 

Given the lethal phenotype of Csk knockout mice and the fact that PAG is believed to be the 

main protein recruiting Csk to the plasma membrane, it was expected that PAG deficiency would 

also have fatal consequences (Hermiston et al., 2002). Therefore it was surprising to find that 

PAG knockout mice have no severe phenotype (Xu et al., 2005; Dobenecker et al., 2005; see 

1.6.4.). However, if one investigates the newborn mice, they indeed possess enhanced Src kinase 

activity, which is then downregulated at three months of age, clearly demonstrating a 
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development of compensatory mechanism (J. Lindquist, unpublished observation). For this 

reason, a simple knockout may not be the ideal approach and therefore we applied RNA 

interference to knock down PAG expression in primary human T cells in order to demonstrate the 

importance of PAG as a negative regulator of T cell signaling. 

 

 

1.9. Aim of the project 

The aim of this study was to investigate the alterations in signaling pathways upon induction 

of an unresponsive state, anergy, in primary human T cells. We were mainly interested in the 

membrane proximal signaling events with the special focus on PAG, the negative regulator of T-

cell signaling. There are three main observations that this project was based on. First, the Src 

family kinase Fyn was shown to be upregulated in anergic T cells both on the protein level and 

activity (Quill et al., 1992; Gajewski et al., 1994). Second, Fyn is the kinase responsible for 

phosphorylation of the transmembrane adaptor protein PAG (Yasuda et al., 2002). And third, 

most importantly, T cells overexpressing PAG were shown to be unresponsive to any further 

stimulation via TCR and this is phenotype very similar to anergy (Brdicka et al., 2000; Davidson 

et al., 2003). Moreover, PAG overexpressing cells produce reduced levels of IL-2 whereas 

normal amount of IFN-γ and IL-4 (Davidson et al., 2003). The similar alteration in cytokine 

production has been observed also in anergic T cells (Jenkins et al., 1987; Blish et al., 1999). 

Therefore we hypothesized that PAG may play a role in the maintenance of the anergic state.  
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2. Methods 
2.1. Antibodies used in this study 

Antibody Species and clone Application Source 

actin 
mouse monoclonal IgG1 

(AC-15) 
WB - 1:10,000 Sigma 

anti-mouse rabbit coating - 10 µg/ml DAKO 

anti-mouse-HRP goat WB - 1:10,000 Dianova 

anti-rabbit-HRP goat WB - 1:10,000 Dianova 

CD25-FITC 
mouse monoclonal IgG1 

(M-A251) FACS - 1:10 BD Biosciences 

CD28 
mouse monoclonal IgM 

(248.23.2) 

coating - 1:1 
stimulation - 

undiluted 

hybridoma grown in our 
laboratory 

CD3 
mouse monoclonal IgM 

(MEM92) 
stimulation - 

undiluted 

hybridoma from V. 
Horejsi, Prague, grown 

in our laboratory 

CD3 
mouse monoclonal IgG2a 

(OKT3) 
coating - 1:100, 1:10 

stimulation - 1:1 
hybridoma grown in our 

laboratory 

CD3-PE 
mouse monoclonal IgG1 

(UCHT1) 
FACS - 1:10 BD Biosciences 

CD59 
mouse monoclonal IgG2b 

(MEM43/5) 
WB - 1:250 V. Horejsi, Prague 

CD69-FITC 
mouse monoclonal IgG1 

(FN50) FACS - 1:10 BD Biosciences 

Csk 
rabbit polyclonal IgG 

(C-20) 
WB - 1:200 Santa Cruz 

Csk-pSer364 rabbit polyclonal WB – 1:50 K. Tasken, Norway 

DGK alpha rabbit polyclonal 
WB - 1:2,000                   

IP - 5 µl 
I. Merida, Spain 

DGK zeta rabbit polyclonal WB - 1:1,000 T. Judd, Utah 

FLAG rabbit polyclonal WB - 1:400 Sigma 

FoxP3 rabbit polyclonal IgG WB - 2 µg/ml E. Schmitt, Mainz 

Fyn rabbit polyclonal WB - 1:1,000 Biosource 
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Fyn 
mouse monoclonal IgG1 

(1S) 
WB - 1:1,000 Biosource 

Fyn 
mouse monoclonal IgG2 

(Fyn-02) 
IP - 0.5 µl V. Horejsi, Prague 

GAPDH-HRP 
mouse monoclonal IgG2b 

(mAbcam 9484) 
WB - 1:10,000 Abcam 

Grb2 
rabbit polyclonal IgG 

(C-23) 
WB - 1:1,000 Santa Cruz 

Lamin A rabbit polyclonal WB - 1:500 BioLegend 

LAT rabbit polyclonal 
WB - 1:1,000             

IP - 1 µl V. Horejsi, Prague 

Lck rabbit polyclonal IP - 0.5 µl A. Magee, London 

Lck rabbit polyclonal WB - 1:1,000 Biosource 

Lck 
mouse monoclonal IgG2b 

(3A5) WB - 1:200 Biosource 

Lck 
mouse monoclonal IgG1 

(Lck-04) 
IP - 30 µl coupled to 

sepharose 
V. Horejsi, Prague 

Lck-pY505 rabbit polyclonal WB - 1:1,000 Biosource 

LIME rabbit polyclonal WB - 1:1,000 V. Horejsi, Prague 

NTAL 
mouse monoclonal 

(NAP03) WB - 1:1,000 V. Horejsi, Prague 

p62Dok 
mouse monoclonal IgG1 

(45) 
WB - 1:250 BD Biosciences 

PAG rabbit polyclonal WB - 1:2,000 V. Horejsi, Prague 

PAG 
mouse monoclonal IgG2a 

(MEM255) WB - 1:100 
hybridoma from V. 

Horejsi, Prague, grown 
in our laboratory 

PAG-C6 
mouse monoclonal IgG2b 

(PAG-C6) 
IP - 30 µl coupled to 

sepharose 

hybridoma from V. 
Horejsi, Prague, grown 

in our laboratory 

PAG-pY317 rabbit polyclonal WB - 1:10,000 
produced in our 

laboratory 

pan-Ras 
mouse monoclonal IgG2b 

(Ab-4) WB - 1:1,000 Oncogene 

pTyr 
mouse monoclonal IgG2b 

(4G10) 
WB - 1:100 

hybridoma grown in our 
laboratory 

RasGAP 
mouse monoclonal IgG2a 

(B4F8) 
WB - 1:100               

IP - 5 µl Santa Cruz 
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Sam68 
mouse monoclonal IgG1 

(15) 
WB - 1:10,000           

IP - 4 µl 
BD Biosciences 

Src-pY215 rabbit polyclonal 
WB - 1:1,000             

IP - 4 µl 
Abcam 

Src-pY418 rabbit polyclonal WB - 1:1,000 Biosource 

Src-pY529 rabbit polyclonal WB - 1:1,000 Biosource 

zeta chain 
mouse monoclonal IgG1 

(6B10) 
WB - 1:1,000                     

IP - 3 µl 
Sigma 

 

2.2. General reagents for cell culture 

RPMI 1640 medium with NaHCO3 and stable glutamine   Biochrom AG 

PBS without Ca2+Mg2+       Biochrom AG 

PBS with Ca2+Mg2+        Biochrom AG 

FCS          PAN Biotech GmbH  

CiproBay 200        Bayer 

Phorbol myristate acetate (PMA)     Calbiochem 

Ionomycin         Sigma 

Interleukin 2        Tebu-bio 

Trypan blue        Sigma 

 

2.3. T cell isolation and purification 

Reagents and instruments:  

Ficoll         Biochrom AG 

Heparin        Biochrom AG 

Pan T cell isolation kit II       Miltenyi Biotec 

AutoMACS        Miltenyi Biotec 

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll gradient centrifugation 

of heparinized blood collected from healthy volunteers. A ring containing PBMCs formed during 

the gradient centrifugation. PBMCs were carefully aspirated and washed 3x with RPMI 1640 

medium. The cells were rested in RPMI 1640 medium supplemented with 10% FCS for 2 hours 

in an incubator. T cells were further purified by non-T cell depletion on the AutoMACS machine 

using the Pan T cell isolation kit II. T cell populations of greater than 95% purity were obtained, 

as determined by flow cytometry analysis. 
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2.4. Anergy induction 

Reagents and instruments: 

24-well flat-bottomed tissue culture plates     TPP 

To induce anergy in vitro, 24-well flat-bottomed tissue culture plates were precoated with 10 

µg/ml rabbit-anti-mouse immunoglobulin in 0.3 ml/well PBS without Ca2+Mg2+ overnight at 4°C. 

After washing the plates three times with 0.5 ml/well PBS, anti-CD3 (OKT3) supernatant diluted 

to approx. 1µg/ml was immobilized in 0.3 ml/well PBS overnight at 4°C.  The plates were 

washed again three times with 0.5 ml/well PBS and T cells were inoculated at 6x105 cells/ml in 1 

ml/well RPMI 1640 medium supplemented with 10% FCS and CiproBay 200 (1:200). Rescued 

samples received additionally 10-9 M PMA to mimic costimulation. The resting sample was kept 

in culture without stimulus. 

After three days of incubation in a humidified atmosphere at 37°C and 5% CO2, the cells 

were collected, centrifuged and transferred into new, uncoated 24-well plates again in 1 ml/well 

fresh RPMI/10% FCS/CiproBay and rested for one additional day. After a total of 4 days in 

culture, the cells were harvested, cell viability determined by trypan blue staining and the dead 

cells removed by Ficoll centrifugation. 

2.5. Proliferation assay 

Reagents and instruments: 

96-well round-bottomed tissue culture plates    Costar 

[3H]-thymidine        ICN 

PHD cell harvester        Inotech AG 

liquid scintillator 1450 Microbeta Wallac     Perkin Elmer   

To assess the proliferative capacity after anergy induction, the cells were restimulated in 96-

well round-bottomed tissue culture plates. The plates were coated with anti-CD3 (OKT3, 100 µl 

supernatant/well) or with anti-CD3 plus anti-CD28 (100 µl of each supernatant/well) as described 

above. The cells were then plated at 5x104 cells/well in triplicates and restimulated with either 

anti-CD3 alone, anti-CD3 plus anti-CD28, anti-CD3 plus exogenous IL-2 (100 U/well), 

exogenous IL-2 alone or PMA (10-9 M) plus ionomycin (0.25 µg/ml).  

[3H]-thymidine (0.3 µCi/well) was added for the last 8-10 hours of the three-day incubation 

and the plates were harvested using the PHD cell harvester. Thymidine incorporation was 

measured by liquid scintillation and the results expressed as the mean cpm. 
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2.6. Stimulation of T cells 

Buffers: 

TBS (per 1 liter) -  8.0 g NaCl      

0.2 g KCl      

3.0 g Tris      

to pH 8.0, dI H2O to 1 liter final 

Resting, anergic and rescued cells coming from the primary stimulation described in section 

2.3. were washed once with 1 ml RPMI 1640 without FCS and re-challenged by anti-CD3 

(MEM92) stimulation for 2 min at 37°C; 100 µl antibody supernatant was used for 5x106 cells. 

Stimulation was stopped by adding 1 ml ice-cold TBS, the cells were quickly spun down at 5,000 

rpm, 2 min, 4°C and lysed. 

 

2.7. Cell lysis, immunoprecipitation and Western blot analysis 

Reagents and instruments: 

BSA          Sigma 

protein A sepharose CL-4B       Pharmacia Biotech 

CNBr-activated sepharose 4B beads      GE Healthcare 

Gel electrophoresis system       Bio-Rad 

Western blotter Multiphor II      GE Healthcare 

nitrocellulose membrane      GE Healthcare 

Milk powder        Lasana 

Tween 20         Roth 

ECL Western Blotting Detection reagents     GE Healthcare 

Hyperfilm ECL       GE Healthcare 

Buffers: 

NP-40 lysis buffer –  1% Nonidet P-40    Sigma  

100 mM NaCl      

50 mM Hepes pH 7.4     

5 mM EDTA      

1% Lauryl maltoside    Calbiochem 

1 mM phenylmethylsulfonylfluoride (PMSF)  
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1 mM sodium orthovanadate    

50 mM sodium fluoride    

10 mM sodium pyrophosphate   

Digitonin lysis buffer –  1% digitonin    Sigma  

100 mM NaCl 

50 mM Hepes pH 7.4 

5 mM EDTA  

1 mM PMSF 

1 mM sodium orthovanadate 

50 mM sodium fluoride 

10 mM sodium pyrophosphate 

NP-40 washing buffer –  0.05% NP-40 

5 mM EDTA 

150 mM NaCl 

50 mM Tris pH 7.4    

Digitonin washing buffer –  0.05% digitonin  

5 mM EDTA  

150 mM NaCl 

50 mM Tris pH 7.4 

Sample buffer –  10% glycerol      

60 mM Tris pH 6.8 

2% SDS      

0.002% bromphenol blue    

1% 2-mercaptoethanol    

10% SDS-polyacrylamide gel –  4.7 ml H2O 

2.5 ml 40% Acrylamide/Bis solution 37.5:1 Bio-Rad 

2.6 ml 1.5 M Tris pH 8.8 

0.1 ml 10% SDS 

0.1 ml 10% APS 

0.004 ml TEMED 
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Stacking gel – 2.19 ml H2O 

0.375 ml 40% Acrylamide/Bis solution 37.5:1 

0.375 ml 1.0 M Tris pH 6.8 

0.03 ml 10% SDS 

0.03 ml 10% APS 

0.003 ml TEMED 

Electrophoresis buffer – 10x TGS buffer    Bio-Rad 

Blotting buffer (per 1 liter) –  5.8 g Tris base 

2.9 g glycine 

0.37 g SDS 

to 800 ml dI H2O, add 200 ml methanol 

TBS – see section 2.6. 

 

Cells (5x106) were lysed in 120 µl ice-cold NP-40 lysis buffer. After 30 min incubation on 

ice, lysates were centrifuged for 15 min at 13,000 rpm, 4°C. Post-nuclear supernatants were 

transferred into new tubes containing 30 µl 5x reducing sample buffer and heated for 5 min at 

95°C. 

For immunoprecipitation, 20x106 cells were lysed in 500 µl NP-40 lysis buffer, 10% of 

postnuclear lysate was kept for whole cell analysis and the rest incubated together with 1 mg/ml 

BSA, the immunoprecipitating antibody and 30 µl protein A sepharose for 2-18 h with gentle 

rotation at 4°C. Note, that some antibodies were produced from hybridoma cells in our laboratory 

(see section 2.1.). In this case, the antibody (Ab) was purified from the hybridoma supernatant by 

affinity chromatography on a column filled with protein A sepharose. The antibody was eluted, 

concentrated to 6 mg/ml and covalently coupled to CNBr-activated sepharose 4B beads. 30 µl of 

the Ab-sepharose was then used for immunoprecipitation. Immunoprecipitates were washed five 

times with 1 ml low detergent NP-40 washing buffer and the immunoprecipitated material was 

released by heating with 30 µl 1x reducing sample buffer for 5 min at 95°C. To detect the 

Sam68-p120RasGAP-PAG complex, cells were lysed in 500 µl digitonin lysis buffer and the 

immunoprecipitates washed afterwards with low digitonin washing buffer. 

Whole cell lysate or immunoprecipitates were electrophoretically separated on 10% SDS-

polyacrylamide gel (30 µl sample/lane) at 130V and transferred onto nitrocellulose membrane at 
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140 mA/gel for 1 h 15 min. The blots were blocked in 5% non-fat milk in TBS pH 8 for 1 hour. 

Primary antibodies were diluted in 2% milk-TBS pH 8 and incubated for 1 hour at room 

temperature with gentle shaking. Blots were washed three times with TBS + 0.01% Tween 20 (5 

min each wash), followed by 45 min incubation with appropriate horseradish-peroxidase 

conjugated secondary antibody. After three additional washing steps with TBS/Tween, blots were 

developed using ECL Western Blotting Detection reagents and exposed on Hyperfilm ECL. 

 

2.8. Mass spectrometry (MS) 

Reagents and instruments: 

Non-reducing sample buffer (2x)     Bio-Rad 

Buffers: 

Fixative –  10% acetic acid 

30% methanol 

To identify the p120 protein recognized by anti-DGK alpha antibody using mass 

spectrometry, the DGK alpha immunoprecipitates were washed with NP-40 washing buffer as 

described above and heated with non-reducing sample buffer for 5 min at 95°C. The supernatants 

were then reduced in a new tube by heating with 10 mM dithiothreitol (DTT) for 5 min, 95°C. 

The cysteines within proteins were modified by incubation with 55 mM iodoacetamide for 30 

min in the dark. Samples were loaded onto large 8% polyacrylamide gel and SDS-PAGE was 

performed. The gel was then fixed for 30 min and stained with Silver. The bands of interest were 

excised from the gel, digested with trypsin and subjected to MALDI-TOF-MS, which was 

performed by Dr. Thilo Kähne in the Institute of Internal Medicine, Magdeburg. The results were 

then compared to the protein database. 

 

2.9. Subcellular fractionation 

Buffers: 

Buffer I –  10 mM Hepes pH 7.9 

10 mM KCl 

0.1 mM EDTA 

0.1 mM EGTA 
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1 mM DTT 

1 mM PMSF 

2 mM Na3OV4 

2 mM NaF 

10 mM sodium pyrophosphate 

Buffer II – 1% NP-40 

1% LM 

50 mM Tris pH 7.4 

170 mM NaCl 

1 mM DTT 

1 mM PMSF 

2 mM Na3OV4 

2 mM NaF 

10 mM sodium pyrophosphate 

Cells (10x106) were lysed in 50 µl buffer I for 20 min on ice. Then 3 µl 10% NP-40 was 

added and the sample incubated for an additional 10 min. Samples were then centrifuged at 2,000 

rpm, 5 min, 4°C. Supernatant represented the cytoplasmic fraction containing both the cytosol 

and the membranes. The pellet was washed twice with buffer I. The pellet was then lysed in 25 µl 

buffer II for 1 hr at 4°C with agitation, then centrifuged at 13,000 rpm, 10 min, 4°C. Supernatant 

represented the nuclear fraction. 

 

2.10. Flowcytometry 

Reagents and instruments: 

FACS Calibur        Becton Dickinson 

Cell Quest Pro software       Becton Dickinson 

Cells (5x105) were stained with FITC- or PE- labeled antibodies against CD3 and surface 

activation markers CD25 and CD69 for 20 min at 4°C. After one wash with cold PBS, samples 

were measured on a FACS Calibur and the data analyzed using the Cell Quest Pro software. 
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2.11. Lipid raft preparation 

Reagents and instruments: 

80% sucrose         Sigma 

dounce homogenizer       Wheaton 

ultracentrifuge tubes        Beckmann 

Sorval OTD-Combi ultracentrifuge      DuPont Company 

rotor TH-660         Sorvall 

 

Buffers: 

Brij 58-lysis buffer – 3% Brij 58     Pierce 

50 mM Hepes pH 7.4 

100 mM NaCl 

1 mM PMSF 

5 mM EDTA 

1 mM sodium orthovanadate 

50 mM sodium fluoride 

10 mM sodium pyrophosphate 

MNE buffer – 25 mM MES pH 6.5      Sigma 

5 mM EDTA 

150 mM NaCl 

To isolate lipid rafts, 50x106 cells were lysed in 0.5 ml Brij 58-containing lysis buffer for 10 

min on ice. Lysates were mixed with 0.5 ml ice-cold 80% sucrose in MNE buffer and 

homogenized with 10 strokes in a dounce homogenizer. Samples were then transferred into 

ultracentrifuge tubes and overlaid with 2 ml ice-cold 30% sucrose and 1 ml ice-cold 5% sucrose. 

The sucrose gradients were centrifuged in Sorval OTD-Combi ultracentrifuge, rotor TH-660, at 

44,000 rpm (200,000g), 4°C for 20 hours without brakes. The following day, 10 equal fractions, 

400 µl each, were collected from the top of the gradient. Fractions containing lipid rafts were 

detected by spotting 3 µl of each fraction onto a nitrocellulose membrane, which was then 

blocked in 5% milk/TBS and probed for the localization of the lipid raft-associated marker CD59. 
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2.12. In vitro kinase assay 

Reagents and instruments: 

Hyperfilm MP        GE Healthcare 

Buffers: 

Kinase buffer –  50 mM Tris-HCl pH 7.4 

10 mM MnCl2 

0.1% NP-40 

10 µg acid-denatured enolase   Sigma  

10 µCi [γ-32P] ATP     GE Healthcare 

Cells (10x106/sample) were lysed as described in section 2.7. and immunoprecipitated with 

either 30 µl PAG-C6 sepharose; 0.5 µl Fyn02 and 30 µl protein A sepharose; or 0.5 µl Lck and 

30 µl protein A sepharose for 18h at 4°C with gentle rotation. Immunoprecipitates were washed 

5x with NP-40 washing buffer (see 2.7.) and 10% taken for Western blotting analysis. Remaining 

90% was resuspended in 40 µl kinase reaction buffer containing [γ-32P]-ATP. The reaction was 

allowed to proceed for 5 min at room temperature and stopped by adding 10 µl 5x sample buffer 

(see 2.7.) and heating at 95°C for 5 min. Samples were analyzed on 10% SDS-PAGE, the gels 

were dried and exposed to film for 10 min–6 h at -70°C with intensifying screen. 

 

2.13. cAMP measurement 

Reagents and instruments: 

cAMP Biotrak Enzymeimmunoassay System    GE Healthcare 

ELISA reader Dynatech MR 5000     DPC Biermann GmbH 

GraphPad Prism software [version 3.0] 

TMB liquid substrate system      Sigma 

Intracellular cyclic AMP levels from 1x105 T cells were determined using the cAMP Biotrak 

Enzymeimmunoassay System according to the manufacturers instructions. Briefly, the cells were 

lysed in 200 µl lysis buffer provided. 100 µl of the lysate or of the cAMP standard dilutions 

ranging from 12.5-1,600 fmol were inoculated together with rabbit anti-cAMP antiserum into 

duplicate microplate wells precoated with donkey anti-rabbit immunoglobulin. The plate was 

incubated for 2 hours in fridge and then 50 µl cAMP-peroxidase conjugate was added, which 
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competes with the endogenous cAMP of the sample or standard for the binding sites of anti-

cAMP antiserum. After additional 60 min incubation in fridge, the plate was washed and shaked 

with 150 µl/well enzyme substrate TMB at room temperature for 60 min. The intensity of the 

color reaction was read at 630 nm. Data were analyzed using the GraphPad Prism software. 

 

2.14. Transfection 

Reagents and instruments: 

BTX cuvette, gap size 4 mm      Qbiogene  

Gene Pulser II        Bio-Rad 

QuickChangeTM site-directed mutagenesis kit   Stratagene 

Nucleofection kit       Amaxa biosystems 

Nucleofector instrument      Amaxa biosystems 

12-well-plate        TPP 

 

DNA constructs:  

pEF Bos        Mizushima and Nagata, 1990 

wt FLAG-PAG      Brdicka et al., 2000 

Y317F-FLAG-PAG       Brdicka et al., 2000 

Y181F-FLAG-PAG       Brdicka et al., 2000 

Y181/317F-FLAG-PAG     Smida et al., 2007 

FLAG-LAT        Brdicka et al., 2002 

Fyn         Dr. A. da Silva, Boston, USA 

pCMS3-EGFP/Renilla     Smida et al., 2007 

pCMS3-EGFP/PAG       Smida et al., 2007 

siRNA PAG       Invitrogen 

siRNA Renilla       Invitrogen 

The Y181/317F-FLAG-PAG construct was generated using the QuickChange site-directed 

mutagenesis kit according to the manufacturers instructions. For RNA interference, the human 

sequence 5’ GCGAUACAGACUCUCAACATT 3’ corresponding to Shima et al. (Shima et al., 

2003) was cloned as shRNA into the vector pCMS3-EGFP. As a control, Renilla siRNA was also 

cloned into pCMS3-EGFP. All constructs were sequenced to ensure integrity. 
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Jurkat T cells (20x106) grown at a density of 2-5x105 cells/ml were washed once with 20 ml 

PBS with Ca2+ and Mg2+ and resuspended in 350 µl PBS. The cells were electroporated in BTX 

cuvette with 30 µg DNA at 210V, 950 µF using a Bio-Rad Gene Pulser II. 1 ml of prewarmed 

medium was immediately added to the cells in cuvette, the precipitated DNA was removed and 

the cells were transferred into 40 ml medium and cultured for 20-24 hours in an incubator. Jurkat 

cells transfected with siRNA constructs were cultured for 72 hours to ensure protein 

downregulation. 

Primary human T cells (3x106) were washed once with PBS with Ca2+ and Mg2+, resuspended 

in 100 µl Nucleofector solution and nucleofected with 8 µg siRNA oligonucleotides (of the same 

sequence as cloned into pCMS3-EGFP) using the Nucleofection kit on a Nucleofector instrument 

with program U-14. 0.5 ml of prewarmed medium was immediately added to the cells in cuvette 

and the cells were transferred into 1.5 ml prewarmed medium in 12-well-plate and cultured for 72 

hours in an incubator. 

 

2.15. Ras activation assay 

Reagents and instruments: 

GDP         Sigma 

IPTG         BTS 

Glutathione-sepharose 4B       GE Healthcare 

LB Broth        Sigma 

Branson sonifier 450       Branson Ultrasonics 

GST- Raf1-RBD       Foschi et al., 1997 

 

Buffers: 

Starving medium – RPMI 1640 medium supplemented with 

0.2% BSA, endotoxin low   Sigma 

50 mM Hepes    Biochrom AG 

Lysis buffer –  25 mM Hepes 

150 mM NaCl 

1% NP40 

10 mM MgCl2 
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1 mM EDTA 

1 mM PMSF 

1 mM sodium orthovanadate 

50 mM sodium fluoride 

Bacterial lysis buffer –  49.5 ml PBS 

25 µl 1M DTT 

1 tablet protease inhibitor cocktail Roche 

0.5 ml Triton X-100 

Cells (18x106/time point) were washed once with 20 ml starving medium and resuspended in 

50 ml starving medium. After 2 hours of starving, the cells were stimulated with anti-CD3 

(OKT3) plus anti-CD28 supernatants (1:1, 200 µl each) for 0, 1, 2, 5 and 10 minutes at 37°C. 

Cells were quickly spun down and lysed in 1 ml lysis buffer supplemented with 1 mM GDP, 

vigorously vortexed and centrifuged at 13,000 rpm, 5 min, 4°C. 10 % of the postnuclear lysate 

was kept as a loading control and the rest was used for the pull-down assay. 

GST-Raf1-Ras binding domain (RBD) was expressed in bacteria by induction with 1 mM 

IPTG for 3 hours. The bacteria were then sonicated, lysed and the extranuclear lysate was 

incubated with glutathione-sepharose (120 µl sepharose in 1 ml of bacterial lysate) for 1 hour 

with gentle rotation at RT. The Raf1-RBD-sepharose was washed twice with 1 ml cold TBS and 

as 50% slurry with TBS used for pull-down assay. Active Ras was pulled down with 30 µl Raf1-

RBD-sepharose by rotating for 35-45 min at 4°C. Pull-downs were washed twice with 0.5 ml 

lysis buffer (without GDP), heated in 50 µl 2x reducing sample buffer (see 2.7.) at 95°C, 5 min 

and separated on 14% SDS-PAGE. The gel was then blotted and stained with anti-Pan-Ras 

antibody to detect precipitated active Ras. 

 

2.16. Scanning and quantification 

Western blots were scanned with an Epson Perfection 4990 Photo scanner. The optical 

density of the bands was determined using Kodak 1D 3.6 software. The fold induction (FI) was 

then calculated as the density of the band of interest in proportion to the density of the loading 

control normalized to the value in resting cells.  

e.g. FI = [(Fyn/Actin)/(Fynrest/Actinrest)] 
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3. Results 

3.1. Proximal alterations within Anergic T cells 

3.1.1. Induction of Anergic T cells 

To prepare anergic T cells, we applied a well established protocol using stimulation of the 

cells with immobilized anti-CD3 antibodies in the absence of costimulation (Wolf et al., 1994). 

Note that this is the only system reproducibly shown to induce anergy in naïve T cells in vitro 

(Fathman and Lineberry, 2007). Thus, fresh human PBMCs (peripheral blood mononuclear cells) 

were isolated from healthy human volunteers by Ficoll gradient centrifugation and T cells were 

further purified by magnetic separation to more than 95% purity as determined by CD3 versus 

CD19 staining (Figure 3.1.).  

 

Figure 3.1. T-cell purity. T cells were isolated by Ficoll gradient centrifugation and further purified by 

magnetic separation (MACS). The purity was determined by staining with CD3 and CD19 antibodies and measuring 

by flow cytometry. Result from one representative experiment is shown. Note that T cells used in all the experiments 

were of more than 95% purity. Also please note that all the experiments were performed at least three times and 

always one representative experiment is shown. 

 

Purified T cells were then divided into three populations. The first population was left 

untreated and is referred to as Resting cells. The second population was inoculated into anti-CD3-

coated plastic plates and cultured for three days to induce anergy (= Anergic cells). The third 

population, so called Rescued cells, was cultured also in anti-CD3 coated plates, but received 

additionally the phorbol ester PMA (phorbol myristate acetate) to mimic costimulation and 

thereby prevent anergy. After three days of culture, Anergic and Rescued cells proliferated as 

expected and increased their numbers approximately 3 - 4 fold (Figure 3.2.).  
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Figure 3.2. Anergic and Rescued cells proliferate on CD3-coated plates. Purified T cells (6x105) were 

inoculated into plastic plates coated with either no antibody (Resting), anti-CD3 (Anergic) or with anti-CD3 plus 

PMA (Rescued). Averaged cell numbers and standard deviations from 10 experiments after 3 days of culture are 

shown. 

Figure 3.3. Anergic and Rescued cells upregulate activation markers. Expression of activation markers 

CD25 (top) and CD69 (bottom) upon Resting, Anergic and Rescued cells after 3 days of culture was analyzed by 

staining with appropriate antibodies and measuring by flow cytometry. Results from one representative experiment 

are shown. 
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Proliferation was accompanied by an upregulation of the surface activation markers CD25 

and CD69 as measured by flow cytometry (Figure 3.3.). Whereas the late activation marker 

CD25 was still expressed at high levels (top panels), the early activation marker CD69 was 

already being downregulated after three days of stimulation (bottom panels). 

Following 3 days of culture, the cells were allowed to rest without stimulus for 1 additional 

day and then restimulated with no stimulus, anti-CD3 alone, anti-CD3 plus anti-CD28 or anti-

CD3 plus IL-2 to demonstrate that the cells are anergic (Figure 3.4.). The cells do not proliferate 

without stimulus, showing that they are indeed rested. The Resting cells will proliferate to all 

stimuli (white bars), as is the case also of the Rescued cells. The magnitude of Rescued cell 

proliferation (grey bars) is much higher than that of Resting cells, because Rescued cells already 

possess a preactivated phenotype. On the contrary, Anergic cells (black bars) will not proliferate 

when restimulated with either anti-CD3 alone or anti-CD3 plus anti-CD28. However, this 

proliferative block is broken by adding exogenous IL-2 to the culture. This is because these cells 

are not able to produce their own IL-2, indicating that these cells are indeed anergic (Jenkins et 

al., 1987). 

Figure 3.4. Anergic T cells are able to proliferate only in response to exogenous IL-2. Resting (white bars), 

Anergic (black bars) and Rescued (grey bars) cells were restimulated with no stimulus, anti-CD3, anti-CD3 plus anti-

CD28 and anti-CD3 plus IL-2 and the proliferation after 72h was assessed by 3H-thymidine incorporation. Average 

values and standard deviations from triplicate wells of one representative experiment are shown. Data were analyzed 

using one-way ANOVA (** p<0.01, *** p<0.001). 
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However, we also needed to show that we are in fact not inducing the expansion of regulatory 

T cells (Tregs), which are also unresponsive and would additionally suppress the proliferation of 

other T cells. Regulatory T cells are known to have a markedly upregulated expression of the 

transcription factor FoxP3 (Hori et al., 2003; Fontenot et al., 2003), which has become their main 

characteristic. Therefore, to exclude the possibility of Tregs induction in our culture, we 

immunoblotted lysates of Resting, Anergic and Rescued cells with an antibody against FoxP3. To 

determine the basal level of FoxP3 expression in normal cells, lysates of Th cells were used and 

compared to Tregs, the positive control. As shown in figure 3.5., Tregs indeed possess an 

increased amount of FoxP3 on the protein level compared to Th cells. On the contrary, there is no 

increase in FoxP3 expression in any of our cultures, indicating that we are not inducing 

regulatory T cells.  

 

Figure 3.5. Absent induction of FoxP3 in the unresponsive cells. Lysates of Resting, Anergic and Rescued 

cells were imunoblotted with anti-FoxP3 antibody. Lysates of Th and Treg cells were included as negative and 

positive control, respectively. Actin staining is shown for equal loading. 

 

 

3.1.2. Increased Fyn activity and expression within Anergic T cells 

We next investigated whether our anergic cells also upregulate the level of Fyn protein and/or 

kinase activity as originally described (Quill et al., 1992; Gajewski et al., 1994; Gajewski et al., 

1995). Resting, Anergic and Rescued cells were lysed, Fyn and Lck were immunoprecipitated and 

in vitro kinase assays (IVKs) were performed (Figure 3.6.). An exogenous substrate of Src 

kinases, acid-denatured enolase, was added to the IVK reactions. We found that both Fyn 

autophosphorylation and phosphorylation of the substrate enolase were dramatically enhanced in 

Anergic cells compared to the Resting sample and approximately 2-fold increased when 

compared to the  Rescued  cells, meaning that Fyn is hyperactive in anergic cells. (Figure 3.6.A). 
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The levels of phosphorylation were normalized with respect to Fyn protein levels and are 

presented as relative ratios. Lck activity, however, was only slightly increased compared to 

Rescued cells as visible by the phosphorylation of enolase (Figure 3.6.B). Lck 

autophosphorylation was not detected, because the antibody chosen for immunoprecipitation (IP) 

seems to preferentially recognize the autophosphorylated form of Lck. We additionally 

determined the expression levels of Fyn and Lck and observed a specific increase in the 

expression level of Fyn in Anergic cells [1:2,6:1,6], but only a marginal increase in Lck 

expression that was also detected in Rescued cells [1:1,7:1,7] (Figure 3.6.C). 

 

 

 

 

Figure 3.6. Anergic cells show markedly enhanced Fyn kinase activity. Fyn (A) and Lck (B) were 

immunoprecipitated from Resting (Rest.), Anergic (Aner.) and Rescued (Resc.) T cells and in vitro kinase (IVK) 

assays were performed. Phosphorylation was visualised by autoradiography. The amount of precipitated kinase was 

detected by immunoblotting with specific antibodies. Phosphorylation of Fyn and enolase were normalized to the 

level of precipitated kinase and are presented here as the fold induction (FI) of the Resting cells value. (C) 

Expression of Fyn and Lck in whole cell lysates is shown and normalized to the amount of actin. 
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3.1.3. Altered phosphorylation profile in Anergic T cells 

Due to the increase in SFK activity, we next examined the global tyrosine phosphorylation in 

whole lysates. Resting, Anergic and Rescued cells were either left untreated (-) or rechallenged 

with anti-CD3 antibody for 2 minutes (+), lysed and subjected to Western blotting (Figure 3.7.). 

The basal tyrosine phosphorylation in Anergic cells is markedly increased when compared to 

Resting cells and corresponds more to that seen in Rescued cells. Whereas the only protein 

phosphorylation observed in Resting cells is that of PAG, Src kinases and the constitutive basal 

phosphorylation of ITAMs within TCR-zeta chains, Anergic and Rescued cells show a dramatic 

increase in phosphorylation at 55 kDa (i.e. phosphorylation of Src kinases), in the range of 60-80 

kDa and around 30 kDa. Additionally, Anergic cells also react differently upon TCR 

restimulation and show an increased number of phosphorylated proteins. Further experiments 

have excluded that the band induced at 30 kDa is either the Lck interacting molecule (LIME) or 

the non-T-cell activation linker (NTAL), two adapter proteins involved in immunoreceptor 

signaling (Brdickova et al., 2003; Brdicka et al., 2002) (data not shown). It is important to point 

out that since both Anergic and Rescued cells originally received the same stimulus via the TCR, 

the pattern observed with anti-phosphotyrosine staining is quite similar.  

 

Figure 3.7. Anergic cells have altered phosphotyrosine profile. Resting, Anergic and Rescued cells were 

either left untreated (-) or restimulated with anti-CD3 antibody for 2 minutes (+). The cells were lysed, subjected to 

Western blotting and probed with anti-phosphotyrosine antibody (4G10) to show changes in overall phosphorylation 

pattern. Actin staining is shown for equal loading.  
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The difference between these cells is found more distal in the signaling cascade. Rescued cells 

received additional stimulation via PMA, an analogue of diacylglycerol, which acts directly upon 

PKC-θ (protein kinase C theta) and RasGRP (Ras guanyl releasing protein) to activate Ras and 

promote transcription, thereby preventing anergy induction.  

 

 

3.1.4. Defective proximal signaling in Anergic T cells 

We next investigated the alterations in proximal signaling caused by the induction of anergy. 

One of the most proximal events upon TCR triggering is the phosphorylation of zeta chain 

associated with the TCR complex (see 1.4.3.). This is followed by the recruitment and activation 

of ZAP70, which in turn phosphorylates the adaptor protein LAT (Zhang et al., 1998). Figure 3.8. 

shows that the phosphorylation of the zeta chains upon TCR triggering is almost completely 

abolished in both Anergic and Rescued cells in comparison with Resting cells. Note that Anergic 

cells possess an even more profound defect, having only 50% of the zeta-phosphorylation seen in 

the Rescued sample (compare FI of lane 4 versus lane 6, left panel). However, the 

phosphorylation of LAT is undetectable in both the Anergic and Rescued cells. Thus, the 

proximal signaling appears to be affected to the similar extent in both cell populations, which 

reflects the fact that both Anergic and Rescued cells originally received the same stimulus via the 

TCR. 

 

Figure 3.8. Anergic cells have abolished phosphorylation of zeta chain and LAT. Resting, Anergic and 

Rescued cells were either left untreated (-) or restimulated with anti-CD3 antibody for 2 minutes (+). The cells were 

lysed and zeta chain (left panel) or LAT (right panel) were immunoprecipitated. Western blots of phosphotyrosine 

staining (4G10) and total protein are shown. The amount of zeta chain phosphorylation was normalized to the total 

zeta immunoprecipitated and is presented as the fold induction (FI) of the Resting cell value. 
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3.2. Alterations within PAG-associated complex in Anergic T cells 

3.2.1. PAG-associated kinase activity is enhanced in Anergic T cells 

Considering the fact that Fyn constitutively associates with PAG and that we found enhanced 

Fyn activity in anergic cells, we were interested in whether also the activity of the Fyn pool 

bound to PAG had specifically increased. Thus, we performed in vitro kinase assays on PAG 

immunoprecipitates and found markedly enhanced phosphorylation of the substrate enolase in 

Anergic cells when compared to both the Resting and Rescued cells (Figure 3.9.). Interestingly, it 

seems that PAG is the preferred substrate for Fyn as we observed only very minor 

phosphorylation of enolase in Resting cells, despite clear PAG phosphorylation meaning that Fyn 

was indeed active. Note that Fyn kinase levels coprecipitated with PAG were similar throughout 

the samples and thus the differences in phosphorylation are indeed caused by increased kinase 

activity and not by an increased amount of Fyn associated to PAG. 

 

 

 

 

Figure 3.9. Anergic cells show markedly enhanced PAG-associated Fyn kinase activity. PAG was 

immunoprecipitated from Resting (Rest.), Anergic (Aner.) and Rescued (Resc.) T cells and in vitro kinase (IVK) 

assays were performed. Phosphorylation was visualised by autoradiography. The amount of precipitated PAG and 

coprecipitated Fyn was detected by immunoblotting with specific antibodies. Phosphorylation of enolase was 

normalized with respect to the level of precipitated PAG and is presented here as the fold induction (FI) of the 

Resting cell value. 
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3.2.2. PAG is hyperphosphorylated at Y317 in Anergic T cells 

Since Fyn is the kinase primarily responsible for PAG phosphorylation and we observed an 

increase in PAG-associated Fyn kinase activity, we next investigated PAG phosphorylation and 

its changes upon restimulation of the cells (Figure 3.10.). Note that in the resting state, PAG is 

phosphorylated and becomes dephosphorylated by an unknown phosphatase upon TCR 

stimulation, thereby releasing Csk and allowing T-cell activation (see 1.6.4.). Probing the 

Western blots of whole cell lysates with a phospho-specific antibody to the Csk binding site 

(pY317) showed that PAG becomes hyperphosphorylated during anergy induction. An increase 

in PAG phosphorylation was also observed in Rescued cells, but the increase in phosphorylation 

was not so dramatic as in the case of Anergic cells. Upon restimulation, PAG becomes 

dephosphorylated in all samples, including Anergic cells, indicating that the phosphatase is still 

active. However, in Anergic cells the level of PAG dephosphorylation upon restimulation never 

falls below the level observed in unstimulated Resting T cells. On the other hand, upon TCR 

triggering of the Rescued cells, PAG is rapidly dephosphorylated to the same level as in 

restimulated Resting T cells. Also note that the expression of PAG protein does not seem to be 

altered by the induction of anergy. We have quantified the level of PAG phosphorylation, since 

the expression of phospho-PAG in the cells is, as we believe, the critical event for the regulation 

of signaling. 

 

Figure 3.10. PAG is hyperphosphorylated in Anergic cells. Resting, Anergic and Rescued cells were either 

left untreated (-) or restimulated with anti-CD3 antibody for 2 minutes (+). The cells were lysed, separated by SDS-

PAGE, subjected to Western blotting and probed with a phospho-specific antibody recognizing pY317 of PAG and 

with an antibody against total PAG. Actin staining is shown for equal loading. The level of phospho-PAG in the cells 

(determined by Y317 phosphorylation) was normalized to actin and is presented as the fold induction (FI) of the 

Resting cell value. 
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3.2.3. Hyperphosphorylated PAG recruits more Csk in Anergic T cells 

Having found that PAG becomes hyperphosphorylated in Anergic cells, we next wanted to 

analyze how does this hyperphosphorylation affect the amount of the proteins associated to PAG. 

Therefore we immunoprecipitated PAG from untreated or restimulated cells and probed by 

Western blotting for the presence of Fyn and Csk (Figure 3.11.). Here we demonstrate that 

hyperphosphorylation of Y317 observed in Anergic cells leads also to an enhanced Csk 

recruitment to PAG. In Resting and Rescued cells, Csk association decreases upon TCR 

restimulation, whereas in Anergic cells, Csk is only partially lost, but the Csk level is still 

increased compared to Resting unstimulated cells. Fyn association, which was proposed to be 

phosphorylation-independent (Brdicka et al., 2000), was largely unchanged in these samples. 

 

 

Figure 3.11. Hyperphosphorylated PAG recruits more Csk in Anergic cells. Resting, Anergic and Rescued 

cells were either left untreated (-) or restimulated with anti-CD3 antibody for 2 minutes (+). PAG was 

immunoprecipitated and the associated proteins detected by immunoblotting with anti-Csk and anti-Fyn antibody. 

The amount of Csk co-precipitated with PAG was normalized to the PAG level and is presented as the fold induction 

(FI) of the Resting cell value. 

 

 

3.2.4. Elevated levels of the PAG-Csk complex create an inhibitory environment in 

Anergic cells 

Once Csk is recruited by PAG to the plasma membrane, it can phosphorylate the inhibitory 

tyrosines within the C-terminus of the Src kinases. Since we observe increased Csk association 

with PAG, we next investigated whether the phosphorylation of the inhibitory tyrosine residues 

within the SFKs was altered. Thus, whole cell lysates from Resting, Anergic and Activated cells 
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were probed with phospho-specific antibodies against the inhibitory tyrosine of Fyn (Y529) and 

Lck (Y505), and against their activatory tyrosine residues Y418 or Y394, respectively (Figure 3.12.). 

Reflecting the increased Csk recruitment, we found a 2-fold enhancement in the phosphorylation 

of the inhibitory tyrosine within Fyn in Anergic cells (Figure 3.12.A, upper panel). We also 

observed increased levels of Y529 phosphorylation in Rescued cells, but this change was not as 

dramatic as that seen in Anergic cells. In contrast, the inhibitory tyrosine within Lck is not altered 

in Anergic cells. This we attribute to the fact that little Lck resides within lipid rafts (Yasuda et 

al., 2002; Filipp et al., 2003) where the PAG-Csk complex is located (Figure 3.12.B, upper 

panel). Surprisingly, we observed a mild decrease in the phosphorylation status of the activatory 

tyrosines in both Fyn and Lck in Anergic and Rescued cells (Figure 3.12.A and B, lower panels). 

Since both protein tyrosine kinases show substantially increased kinase activity (compare Figure 

3.6.), we conclude that autophosphorylation is probably not a direct measure of kinase activity. 

 

A       B 

 

 

Figure 3.12. Fyn possesses increased inhibitory tyrosine phosphorylation in Anergic cells. (A) Whole 

lysates of Resting (Rest.), Anergic (Aner.) and Rescued (Resc.) T cells were immunoblotted with phosphospecific 

antibodies against the inhibitory (Y529; upper panel) and activatory (Y418; lower panel) tyrosines of Fyn. The level of 

phosphorylation was normalized to the total amount of Fyn and is presented as the fold induction (FI) of the Resting 

cell value. (B) The same lysates as in A were probed with phosphospecific antibodies against the inhibitory (Y505; 

upper panel) and activatory (Y394; lower panel) tyrosine of Lck and the phosphorylation was normalized to the total 

amount of kinase. 
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3.2.5. Increased cAMP level and pSer364-Csk in Anergic T cells 

There are two explanations for the increased phosphorylation of the inhibitory tyrosine within 

Fyn observed in Anergic cells. It may be either due to a decrease in phosphatase activity or on the 

contrary to an increase in kinase activity, which would result from enhanced Csk recruitment to 

the lipid rafts and/or increased Csk activity. Although we indeed observed increased amounts of 

Csk associated with PAG in Anergic cells compared to Resting cells (Figure 3.11.), the amount 

was basically equal to that in unstimulated Rescued cells. Therefore we presumed that there 

might be difference in Csk activity between Anergic and Rescued cells, which is responsible for 

the specific increase in Fyn inhibitory tyrosine phosphorylation observed in Anergic cells. Csk 

activity was shown to be enhanced upon binding to PAG and additionally upon Ser364 

phosphorylation through PKA (cAMP-dependent protein kinase). As cAMP levels increase upon 

TCR triggering, we measured the cAMP levels in our cells (Figure 3.13.A). We indeed found an 

approximately 2,5-fold increase in cAMP levels in Anergic and Rescued cells compared to 

Resting cells. Next we investigated the phosphorylation status of Csk using the phospho-specific 

 

 A       B  

 

Figure 3.13. Anergic cells contain both increased cAMP levels and augmented Ser364-Csk phosphorylation. 

(A) Resting, Anergic and Rescued cells were lysed and cAMP levels measured using the cAMP Biotrak 

Enzymeimmunoassay System. The mean values and standard deviations from four independent experiments are 

shown. Data were analyzed using one-way ANOVA (** p<0.01). (B) The level of Ser364 phosphorylation within Csk 

was determined by Western blotting. Total Csk staining is shown for equal loading. The level of phosphorylation 

normalized to total Csk is presented as the fold induction (FI) of the Resting cell value. 
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antibody against Ser364 (Yagub et al., 2003) (Figure 3.13.B). We observed an approximately 20% 

increase in PKA-dependent phosphorylation at Ser364 of Csk in Anergic cells, whereas there was 

a decrease in Ser364 phosphorylation in Rescued cells. Although it does not seem to be 

proportional with the elevations of the cAMP levels, the increase in pSer-Csk argues for an 

increased activity of Csk specifically in Anergic cells. However, the increase in Fyn inhibitory 

tyrosine phosphorylation was much higher (+100%) than the increase in Ser364-Csk 

phosphorylation and therefore we must conclude that it is also the phosphatase activity of either 

CD45 or RPTPα that is altered in Anergic cells and thus contributing to the differences in Fyn 

inhibitory tyrosine phosphorylation observed (Figure 3.12.A). 

 

3.2.6. Fyn is dually phosphorylated on its Y529 and Y215 in Anergic T cells 

A somewhat puzzling observation is the fact that we observe increased inhibitory tyrosine 

phosphorylation and, simultaneously, increased kinase activity of Fyn in anergic cells. Normally, 

one would expect phosphorylation of inhibitory tyrosine to lead to a closed conformation of the 

kinase and thereby inhibit its activity. However, phosphorylation of the inhibitory tyrosine may, 

in some cases, lead to a hyperactive state if a tyrosine located within the SH2 domain of the Src 

kinase is also phosphorylated at the same time (Stover et al., 1996). To investigate whether this 

mechanism applies to our system, we probed whole lysates from Resting, Anergic and Rescued 

cells with a phospho-specific antibody to the tyrosine within SH2 domain of the SFKs (i.e. pY215) 

(Vadlamudi et al., 2003) (Figure 3.14.A). Interestingly, we observed an increase in Y215 

phosphorylation in both Anergic and Rescued cells. However the epitope recognized by this 

antibody is conserved among the SFKs and therefore it is difficult to judge which kinase is 

responsible for the increased staining. To solve this problem, we decided to immunoprecipitate 

Src kinases with the anti-pY215 antibody and reprobe for the presence of Fyn (Figure 3.14.B). 

The phosphorylation of Y215 within Fyn is clearly enhanced in Anergic cells compared to both the 

Resting and Rescued cells and even further increases upon TCR triggering. Reprobing the same 

blot with a phosphospecific antibody against Y529 demonstrates that Fyn phosphorylated on Y215 

is simultaneously phosphorylated also on its inhibitory tyrosine. This in turn results in the 

hyperactive state of Fyn observed in Anergic cells. Interestingly, Lck does not seem to follow the 

same kinetic as Fyn and its Y215 is rather dephosphorylated upon restimulation of Resting and 

Anergic cells. 
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Figure 3.14. Anergic cells possess increased phosphorylation of Y215 within SH2 domain of Fyn. (A) Whole 

cell lysates of Resting, Anergic and Rescued cells were immunoblotted with antibodies against phospho-Y215, Fyn 

and actin. (B) Lysates from A were used for immunoprecipitation with pY215 antibody, samples were resolved by 

SDS-PAGE, blotted and probed for the presence of Fyn, pY529 and Lck. 

 

 

3.2.7. Increased Fyn kinase activity and inhibitory tyrosine phosphorylation within the 

lipid rafts of Anergic T cells 

Fyn and Lck kinases are differentially localized within the plasma membrane and this spatial 

distribution is believed to be important for their proper activation and function (Filipp et al., 

2003). As we observed a specific increase in both protein level and kinase activity for Fyn in 

whole lysates of anergic cells, we looked to see whether the localization and/or activity within the 

lipid rafts and the non-raft fraction had changed. Therefore, we lysed the cells and isolated lipid 

rafts by sucrose density gradient centrifugation. Aliquots of fractions taken from the gradient 

were spotted onto nitrocellulose and the raft-containing fractions identified using an antibody 

against CD59, a known lipid raft-associated protein (data not shown). Pooled raft-containing 

fractions (fractions 2-4) and non-raft fractions (fractions 9-10) from Resting, Anergic and 

Rescued cells were then analyzed by Western blotting and the distribution of Fyn and Lck within 

the various fractions was detected with specific antibodies (Figure 3.15.A). As previously 

described, Fyn was mainly localized in the lipid raft fractions, whereas Lck is found 

predominantly outside of the lipid rafts. We observed increased expression of both Fyn and Lck 

in Anergic and Rescued cells in comparison to the Resting sample. However, this increase was 

observed in both the rafts as well as the non-raft fractions and no specific shift in the localization 

of these kinases upon anergy induction was found. 
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Consequently, Fyn and Lck were immunoprecipitated from either lipid rafts or the non-raft 

fractions and in vitro kinase assays were performed (Figure 3.15.B). We observed that Fyn kinase 

activity predominates within lipid rafts, whereas the non-raft-fractions had to be exposed for an 

extended time to obtain a good signal. In agreement with the previously observed Fyn 

hyperactivity in whole lysates (Figure 3.6.), we again found augmented Fyn kinase activity in 

both the raft and non-raft compartment of Anergic cells (Figure 3.15.B, upper panel). This 

suggests that the distribution of Fyn activity within the membrane is not altered by anergy 

induction. Additionally, the localization of Lck activity was not disturbed and moreover, we did 

not find dramatic changes regarding Lck activity in Anergic cells in comparison with other 

samples (Figure 3.15.B, lower panel). 

 

Since we found a dramatic increase in the inhibitory tyrosine phosphorylation of Fyn in 

Anergic cells, we were further interested whether this change was specific to a certain membrane 

compartment. Therefore we probed the blots of pooled lipid raft and non-raft fractions with 

phosphospecific antibodies against the activatory and inhibitory tyrosines of Fyn and Lck (Figure 

3.15.C). The phosphorylation of the activatory tyrosine (Y418 or Y394 respectively) seems to be 

unchanged for both Fyn and Lck and we also do not observe any remarkable changes in 

phosphorylation of the inhibitory tyrosine of Lck (Y505), neither in the lipid rafts nor outside. On 

the contrary, our results clearly demonstrate a specific increase in the phosphorylation of the 

inhibitory tyrosine within Fyn (Y529) in the lipid rafts of Anergic cells, whereas there is hardly 

any Y529 phosphorylation detected outside of lipid rafts. Thus, the dramatic increase in the 

phosphorylation of the inhibitory tyrosine of Fyn observed in whole lysates of Anergic cells 

(compare figure 3.12.) seems to be preferentially located in the lipid rafts where the bulk of Fyn 

and the PAG-Csk complex reside. 
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Figure 3.15. Anergic cells possess enhanced Fyn kinase activity and increased inhibitory tyrosine 

phosphorylation of Fyn in lipid rafts. (A) Resting, Anergic and Rescued cells were lysed and subjected to sucrose 

density gradient centrifugation. Fractions containing lipid rafts (fr. 2-4) and heavy fractions (fr. 9-10) were pooled, 

subjected to SDS-PAGE and immunoblotted with antibodies against total Fyn and Lck, respectively. (B) Fyn (upper 

panel) or Lck (lower panel) were immunoprecipitated from pooled raft-fractions (fr. 2-4) and non-raft-fractions (fr. 

9-10) from A and subjected to in vitro kinase assay (IVK). Phosphorylation was visualized by autoradiography. The 

amount of precipitated kinase was detected by immunoblotting with specific antibodies. Note that Fyn IVK and 

immunoblot from fractions 9-10 were exposed for extended time due to low Fyn localization in these fractions. (C) 

The blots from A were reprobed with phospho-specific antibody (pY418) recognizing the activatory tyrosine of both 

Fyn (Y418) and Lck (Y394) and with phospho-specific antibodies against the inhibitory tyrosine of Fyn (pY529) and 

Lck (pY505). Bands corresponding to Fyn and Lck in pY418 staining are marked. 



RESULTS  65 

 

3.3. PAG forms a novel multiprotein complex, which regulates Ras 

activation 

3.3.1. Increased expression of Sam68 and p120RasGAP 

In the previous section, we have identified a mechanism that leads to the hyper-activation of 

Fyn kinase and consequently to an increased Csk recruitment and alterations in proximal 

signaling. This mechanism, however, does not explain the connection between increased Fyn 

kinase activity and the block in Ras activation, a key feature of anergic T cells. If such a link 

between Fyn and Ras exists, we hypothesized that the candidate protein (or proteins) must be a 

substrate of Fyn and must possess the ability to attenuate Ras activity, either directly or 

indirectly, i.e. by recruiting Ras GTPase-activating proteins (RasGAPs). Since we observed an 

increased phosphorylation of proteins in the range of 60 – 80 kDa in Anergic cells (see Figure 

3.7.), we hypothesized that the protein should be of this size. Therefore we searched the literature 

and found two candidates that fulfilled our criteria in addition to p120RasGAP itself – the 

nuclear/cytosolic protein Sam68 (Src-associated in mitosis of 68 kDa) (Najib et al., 2005) and the 

cytosolic adaptor protein p62Dok (Downstream of kinase; Dok1) (Yamanashi and Baltimore, 

1997). Both of these proteins are phosphorylated by Fyn and were shown to associate with 

p120RasGAP, the main RasGAP within T cells (Guitard et al., 1998; Jabado et al., 1998; 

Yamanashi and Baltimore, 1997). We first investigated the expression of these proteins by 

probing post-nuclear lysates from Resting, Anergic and Rescued cells with antibodies specific for 

Sam68, p62Dok and p120RasGAP. Interestingly, we found that the expression of both Sam68 

and p120RasGAP is enhanced in Anergic and Rescued cells, whereas p62Dok was not altered 

(Figure 3.16.A and data not shown).  

However, Sam68 seems to be drastically upregulated also in Resting cells already after 2 

minutes of stimulation (Figure 3.16.A, lane 2). One has to realize though, that these are 

postnuclear lysates of cells and that Sam68 is an RNA-binding protein that shuttles from the 

cytosol into the nucleus and back. Indeed, it was shown that, upon stimulation of T cells, Sam68 

is rapidly phosphorylated by Fyn (Fusaki et al., 1997) and that Sam68 phosphorylation negatively 

correlates with its nuclear localization and retains the protein in the cytosol (Wang et al., 1995). 

To determine whether Sam68 is upregulated in Anergic cells or whether only the intracellular 

distribution of Sam68 is altered, we applied a different fractionation protocol using different 

lysing conditions to separate the nuclear and cytosolic fractions; note that cytosol in this case 
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contains both the cytoplasm and the membranes. Using this other fractionation approach, the 

cytosolic fraction of Sam68 appeared to be unchanged, however we observed a clear increase in 

Sam68 within the nuclear fraction of Anergic and Rescued cells (Figure 3.16.B). Thus, it appears 

that the expression of total Sam68 is indeed increased.  

  

 

Figure 3.16. Increased expression of Sam68 and p120RasGAP. (A) Resting, Anergic and Rescued cells were 

either left untreated (-) or restimulated with anti-CD3 antibody for 2 minutes (+). Postnuclear lysates were 

immunoblotted and probed for the expression of Sam68 and p120RasGAP. Actin staining is shown for equal 

loading. (B) Cytosolic and nuclear fractions were prepared from Resting, Anergic and Rescued cells and blotted with 

antibody against Sam68. GAPDH and Lamin A staining is presented as marker for cytosolic and nuclear fraction, 

respectively. 
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Since it had been suggested using GST-SH2-pulldown assays that p120RasGAP could 
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associate with p120RasGAP (Jabado et al., 1998), we were also interested to see whether we 

could find Sam68 in a complex with PAG as well. Therefore, we immunoprecipitated PAG from 

Resting, Anergic and Rescued cell lysates and looked for the presence of Sam68 and 

p120RasGAP (Figure 3.17.A). Recall that we have already earlier investigated the association of 

Fyn and PAG and found this to be unchanged upon anergy induction (Figure 3.11.). Panel A 

shows that there is a very weak association of p120RasGAP and Sam68 with PAG in Resting T 

cells, but this interaction clearly increases upon prolonged stimulation of the cells (i.e. in Anergic 

  

Figure 3.17. Sam68 and p120RasGAP associate with PAG. (A) Resting, Anergic and Rescued cells were 

either left untreated (-) or restimulated with anti-CD3 antibody for 2 minutes (+). PAG was immunoprecipitated from 

the lysates and associated proteins detected by immunoblotting with anti-p120RasGAP and anti-Sam68 antibody. 

The amount of precipitated material is shown with anti-PAG staining. (B) Purified T cells were cultured in the 

presence (+) or absence (-) of PMA for three days. PAG was immunoprecipitated and associated Sam68 detected by 

immunoblotting. (C) Samples prepared as in A were used to immunoprecipitate Sam68 and then probed with anti-

p120RasGAP, anti-PAG and anti-Fyn antibodies. The amount of precipitated material is shown by probing with anti-

Sam68 antibody. 
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and Rescued cells). Restimulation of the cells for 2 minutes appears not to affect the extent of 

p120RasGAP-PAG interaction. The abundant association of Sam68 upon restimulation of 

Rescued cells is partially the additive effect of PMA treatment itself, as we could also induce 

some Sam68-PAG association by treating T cells with PMA alone (Figure 3.17.B). Indeed, it was 

recently shown that the Ser/Thr phosphorylation influences the localization of Sam68 (Paronetto 

et al., 2006) and thus PMA may prime Sam68 for nuclear export. 

To confirm the specificity of these interactions, we performed the reciprocal experiment by 

precipitating Sam68 and looking for p120RasGAP, PAG and Fyn association (Figure 3.17.C). 

Sam68 binds p120RasGAP in both Anergic and Rescued cells, but not in Resting state. 

Surprisingly, Sam68 appears to be constitutively associated with Fyn and PAG in all samples. 

That we can detect PAG association in Sam68-IP’s from Resting cells, but not Sam68 in PAG-

IP’s, may simply result from the inability of the PAG antibody to recognize its epitope within the 

complex. However, we can clearly detect the complex in Anergic and Rescued cells when the 

amount of Sam68 and the phosphorylation of proteins in the cell increase, suggesting that we are 

at the limit of detectability in Resting cells. Also note that the abundant association of Sam68 

with PAG in restimulated Rescued cells (3.17.A, last lane) was not visible in Sam68 

immunoprecipitates (3.17.C, last lane). One explanation would be that Sam68 oligomerizes 

(Chen et al., 1997) and by precipitating PAG we would then coprecipitate also oligomerized 

Sam68 bound to it. Whereas if we perform Sam68 IP, the antibody could disturb oligomerization 

by competing for the same epitope. Alternatively, since we propose that Sam68 is phosphorylated 

on Ser/Thr after treatment with PMA (see above), such a phosphorylation could affect binding 

affinity and/or epitope accessibility for the Sam68 antibody towards the native versus denatured 

protein. Taken together, these results suggest that PAG forms a novel multiprotein complex 

consisting of PAG, Fyn, Sam68 and p120RasGAP. 

 

 

3.3.3. PAG negatively regulates Ras activation 

In the previous section, we have identified a novel complex containing PAG, Fyn, Sam68 and 

p120RasGAP. Since PAG is constitutively present in lipid rafts, recruiting p120RasGAP into this 

compartment would be an ideal mechanism of Ras regulation, since Ras-GDP is also lipid raft-

associated (Prior at el., 2001). Thereby, p120RasGAP localized within the lipid rafts would be 
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perfectly positioned to inactivate any Ras-GTP that is formed before it had the chance to 

translocate and fulfill its function. Recall that LAT, the adaptor required for recruiting the 

activators of Ras (i.e. Sos and RasGRP), is also localized within the lipid rafts. To test whether 

the PAG-associated complex is indeed involved in Ras regulation, we switched to a different 

system and used the Jurkat T-cell line, since these cells can be easily transfected and 

consequently Ras assays can be performed, which require large amounts of cells. Thus, Jurkat T 

cells were transfected with constructs encoding PAG and Fyn, thereby attempting to mimic the 

situation observed in Anergic T cells. Consequently, the cells were stimulated and active Ras was 

pulled down using the GST-Raf1-RBD (Ras binding domain) construct (Foschi et al., 1997). This 

construct contains the Ras binding domain of Raf1, the main downstream effector of Ras, which 

binds specifically only to active Ras. Since the RBD is tagged with GST, one can easily isolate 

active Ras bound to the GST-RBD with glutathione-sepharose. Total Ras and active Ras in pull-

downs were detected by imunoblotting with a pan-Ras antibody (Figure 3.18.). Cells transfected 

with vector alone activate Ras with normal kinetic peaking at 1 to 2 minutes (Figure 3.18.A). 

Remarkably, cells expressing PAG together with Fyn demonstrate complete suppression of Ras 

activation. To prove that this is not simply the result of a disturbed lipid raft organization caused 

by PAG overexpression, we used another lipid raft marker LAT. The cotransfection of LAT 

together with Fyn, however, did not block Ras activation (Figure 3.18.A). The Ras kinetic in this 

sample seems to be slightly faster compared to vector alone, which is not so surprising since LAT 

recruits Grb2/Sos and PLCγ1, both of which contribute to Ras activation. Panel B shows that the 

overexpression of Fyn alone does not disturb the Ras kinetic. Cells expressing PAG alone show a 

more truncated response, although the peak is comparable to the Fyn-transfected cells. Thus, only 

the cells expressing both PAG and Fyn demonstrate strong suppression of Ras activation (Figure 

3.18.B). Interestingly, the ability to block Ras activation appears to correspond with the level of 

PAG phosphorylation, as indicated by pY317 staining (Figure 3.18.C). These results suggest that 

a hyper-phosphorylated PAG can recruit other proteins, probably via SH2 or PTB domains, that 

are able to block Ras activation. However, one could also hypothesize that a hyper-

phosphorylated PAG recruits more Csk and thereby suppresses Src kinases activation, blocking 

LAT phosphorylation and consequently Ras activation. To exclude this possibility, we decided to 

repeat the Ras assay using the PAG Y317F mutant, which is unable to bind Csk. 
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Figure 3.18. PAG overexpression together with Fyn blocks Ras activation. (A) and (B) Jurkat T cells were 

transfected either with empty vector or with constructs encoding FLAG-PAG, FLAG-LAT and Fyn. Cells were then 

stimulated with anti-CD3 and anti-CD28 antibodies for the indicated time and lysed. Active Ras was pulled-down 

using GST-Raf1-RBD (left panels). Total Ras is shown to prove that equal amounts of lysates were used for the 

assay (right panels). A quantitative analysis of the data is shown under appropriate pull-down assay. (C) Total 

expression of various constructs and phosphorylation of Y317 after transfection is presented here. 

 

 

3.3.4. Basic characterization of Y317F mutant of PAG 

First, we needed to characterize the PAG Y317F mutant to show that the mutated protein 

functions as expected. Replacing tyrosine 317 with phenylalanine abrogates Csk binding 

(Brdicka et al., 2000) and thus Csk is no longer recruited to the membrane and cannot 

phosphorylate the inhibitory tyrosine within the Src kinases. Therefore Jurkat T cells were 

transfected with Fyn alone or Fyn in combination with either FLAG-tagged wildtype (wt) PAG 

or the Y317F mutant and the lysates were immunoblotted with a phospho-specific antibody to the 

inhibitory tyrosine of Fyn (pY529) (Figure 3.19.A). As expected, expression of wt PAG markedly 

increased the phosphorylation of Y529 while the mutated form of PAG did not show this increase. 

Additionally, we performed PAG immunoprecipitation and can demonstrate that, although both 

constructs are being phosphorylated, only the wildtype PAG is capable of binding Csk, whereas 

Y317F mutant has indeed lost its ability to recruit Csk (Figure 3.19.B). Importantly, both the 

wildtype and mutated form of PAG are able to associate with p120RasGAP as shown in the 

p120RasGAP immunoprecipitation reprobed with anti-FLAG antibody (Figure 3.19.C). This 

demonstrates that the loss of Csk binding does not interfere with the binding of p120RasGAP. 
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Figure 3.19. Y317F-PAG does not enhance inhibitory tyrosine phosphorylation, but still binds 

p120RasGAP. (A) Jurkat T cells were transfected with Fyn alone, wt FLAG-PAG plus Fyn or FLAG-Y317F-PAG 

plus Fyn. The cells were lysed and immunoblotted with anti-pY529 antibody. FLAG staining shows equal expression 

of the PAG constructs. Actin staining is shown for equal loading. (B) Samples as in A were used for FLAG 

immunoprecipitation and reprobed with anti-phosphotyrosine and anti-Csk antibodies. FLAG staining shows that 

equal amount of material was precipitated. (C) Samples as in A were used for p120RasGAP immunoprecipitation 

and reprobed with anti-FLAG antibody; p120RasGAP staining shows equal amount of precipitated material. 
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(Figure 3.20.). Cells transfected with Fyn alone show normal kinetic of Ras activation with a 

peak at 2 minutes, whereas cells expressing wt PAG together with Fyn have a strongly abolished 

Ras activation similar to the data shown above. Most importantly, if we express the Y317F 

mutant together with Fyn, we can block Ras activity almost to the same extent as with the wt 

protein. If we compare the quantitative analysis of the data, it seems that the Y317F mutant can 

slightly restore the block in Ras activation induced by the wt PAG. Thus, Csk-mediated Ras 

inactivation may contribute to the total PAG-mediated Ras inhibition, but it represents only a 

minor pathway. The majority of the effect upon Ras activity must be caused via recruiting 

another protein, most presumably p120RasGAP. 

 

 

Figure 3.20. PAG negatively regulates Ras activation independently of Csk binding. (A) Jurkat T cells were 

transfected with constructs encoding Fyn, Fyn plus wt FLAG-PAG or Fyn plus FLAG-Y317F-PAG. Cells were then 

stimulated with anti-CD3 and anti-CD28 antibodies for the indicated time and lysed. Active Ras was pulled-down 

using GST-Raf-RBD (left panels). Total Ras is shown to prove that equal amounts of lysates were used for the assay 

(right panels). (B) A quantitative analysis of the amount of an active Ras compared to a total Ras protein is shown 

underneath. (C) Total expression of the constructs and phosphorylation of Y317 after transfection is presented here. 
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3.3.6. Y181 of PAG is the p120RasGAP binding site 

To confirm that PAG is able to inhibit Ras activation by the means of p120RasGAP 

recruitment, we first needed to identify the binding site for p120RasGAP within the PAG protein 

and then to use the mutant of this tyrosine for the Ras assay. We took the advantage of having the 

complete set of FLAG-tagged PAG constructs with single tyrosines mutated to phenylalanine and 

used these mutants to identify the p120RasGAP binding site. Note that these constructs have been 

already successfully used for the identification of the Csk binding site (Brdicka et al., 2000). 

These PAG mutants were transfected into the Jurkat T-cell line and p120RasGAP was 

immunoprecipitated. IP’s were resolved by Western blotting and the blot was probed with an 

anti-FLAG antibody to detect associated FLAG-PAG mutants (Figure 3.21.). Since the Y181F 

mutant reproducibly did not coprecipitate with p120RasGAP, we conclude that Y181 is the main 

p120RasGAP binding site. 

 

Figure 3.21. Y181 of PAG is the p120RasGAP binding site. Jurkat T cells were transfected with constructs 

encoding individual tyrosine mutants of PAG. The p120RasGAP protein was immunoprecipitated (IP) from cell 

lysates, IP’s were subjected to SDS-PAGE and immunoblotted for the association of FLAG-PAG constructs. 

p120RasGAP staining shows the amount of precipitated material. Lysates are shown for the expression of FLAG-

PAG mutants and p120RasGAP. Note that due to space restrictions, the samples were run in parallel on two gels. 

 

 

3.3.7. PAG negatively regulates Ras activation also in the absence of p120RasGAP 

binding 

Having identified the p120RasGAP binding site, we could test to see whether the Y181F 

PAG mutant ablates the block in Ras activation induced upon the expression of either wt or 

IP 

ve
ct

or
 

F
P

A
G

 

Y
10

5F
 

Y
16

3F
 

Y
18

1F
 

Y
22

7F
 

Y
29

9F
 

Y
31

7F
 

Y
34

1F
 

Y
35

9F
 

Y
38

7F
 

Y
41

7F
 

p120RasGAP 

FLAG 

lysate 
p120RasGAP 

FLAG 



RESULTS  75 

 

Y317F PAG. Thus, we transfected Jurkat T cells with constructs encoding Fyn alone or Fyn in 

combination with either wildtype PAG or the Y181F mutant. Ras, activated upon stimulation, 

was pulled-down again using GST-Raf1-RBD and detected by immunoblotting with anti-pan-Ras 

antibody. To our surprise, mutant PAG incapable of p120RasGAP binding was still as efficient in 

suppressing Ras activation as the wildtype protein (Figure 3.22.). Therefore we had to postulate 

that the ability of PAG to block Ras activation is still maintained because of the intact Csk 

binding. 

 

 

 

 

Figure 3.22. PAG negatively regulates Ras activation in the absence of p120RasGAP binding. (A) Jurkat T 

cells were transfected with constructs encoding Fyn, Fyn plus wt FLAG-PAG or Fyn plus FLAG-Y181F-PAG. Cells 

were then stimulated with anti-CD3 and anti-CD28 antibodies for the indicated time and lysed. Active Ras was 

pulled-down using GST-Raf1-RBD (left panels). Total Ras is shown to prove that equal amounts of lysates were 

used for the assay (right panels). (B) A quantitative analysis of the amount of an active Ras compared to a total Ras 

protein is shown underneath. (C) Total expression of the constructs after transfection is presented here. 
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3.3.8. Both Csk and p120RasGAP binding contribute to the block in Ras activation 

Since the Y181F mutant was still capable of suppressing Ras activation, we suspected that the 

Csk-mediated inhibition and the p120RasGAP-meidated inhibition could compensate for each 

other to ensure proper regulation of Ras. Therefore we had to mutate both tyrosines (i.e. Y181 

and Y317) in order to abolish the binding of both Csk and p120RasGAP to PAG. We utilized the 

Y317F mutant and introduced an additional mutation at Y181 to phenylalanine by site-directed 

mutagenesis. This double mutant was then transfected into Jurkat T cells together with Fyn. 

Whereas expression of wildtype PAG with Fyn again lead to a diminished Ras activity, the 

Y181/317F was able to rescue this block and showed activation of Ras comparable to Fyn alone 

(Figure 3.23.). 

 

 

 

Figure 3.23. Mutation of both Y181 and Y317 ablates Ras suppression by PAG. (A) Jurkat T cells were 

transfected with constructs encoding Fyn, Fyn plus wt FLAG-PAG or Fyn plus FLAG-Y181/317F-PAG. Cells were 

then stimulated with anti-CD3 and anti-CD28 antibodies for the indicated time and lysed. Active Ras was pulled-

down using GST-Raf1-RBD (upper panel). Total Ras is shown to prove that equal amounts of lysates were used for 

the assay (lower panel). (B) A quantitative analysis of the amount of an active Ras compared to a total Ras protein is 

shown underneath. (C) Total expression of the constructs after transfection is presented here. 

0,00

0,25

0,50

0,75

1,00

0 90'' 5'

stimulation

a
ct

iv
e

/t
o

ta
l R

a
s **  

Y181/317F+Fyn 

Fyn 

PAG+Fyn 

total Ras 

active Ras 

Y181/317F+Fyn Fyn PAG+Fyn 
0 90’’  5’ 0 90’’  5’ 0 90’’  5’ CD3/CD28: 

A 

B C 

F
-Y

18
1

/3
17

F
+

F
yn

 

F
yn

 

F
-P

A
G

+
F

yn
 

Fyn 

FLAG 

actin 



RESULTS  77 

 

Therefore, in addition to identifying two new PAG associated proteins, i.e. Sam68 and 

p120RasGAP, we have identified a novel function of PAG. Namely, its ability to negatively 

regulate Ras by recruiting GAPs into the lipid rafts where they would associate with Ras-GDP 

rapidly and efficiently inactivating any Ras-GTP that formed before it had a chance to 

translocate. Additionally, it seems that this pathway may be partially compensated by Csk-

mediated Src inhibition and only deletion of both Csk and p120RasGAP binding ablates the 

ability of PAG to suppress Ras activation. 

 

3.3.9. PAG downregulation leads to enhanced and sustained SFK and Ras activation 

The fact that PAG negatively regulates both Src kinases and Ras suggests that PAG is an 

important negative regulator of cellular activation. However, two recent publications have 

demonstrated that PAG knockout mice are perfectly normal and do not demonstrate defects in 

thymic development and/or T-cell function (Xu et al., 2005; Dobenecker et al., 2005). One should 

hypothesize though, that there might be various compensatory mechanisms developed to regulate 

Src kinase activity and, upon further investigation, this has indeed turned to be the truth (J. 

Lindquist, unpublished observation). Therefore, to determine the role and importance of PAG for 

T-cell signaling, we used RNA interference in both primary human and Jurkat T cells. Primary 

human T cells were nucleofected with siRNA oligonucleotides against PAG or Renilla using 

Amaxa’s Nucleofection technology, whereas Jurkat T cells were electroporated with vectors 

encoding shRNA. The cells were kept 72 hours in culture and then stimulated, lysed and 

subjected to Western blotting to detect phosphorylation pattern upon stimulation (Figure 3.24.). 

One can clearly see that already unstimulated cells possess enhanced basal tyrosine 

phosphorylation of several proteins in the absence of PAG. The protein phosphorylation further 

increases upon stimulation and the activation is sustained in the cells transfected with PAG 

siRNA. These results suggest that knocking down PAG expression results in markedly enhanced 

basal Src kinase activity and mainly that it does not become down-modulated later on to shut off 

signaling.  

Additionally, since we have shown that PAG negatively regulates Ras, we investigated the 

impact of PAG downregulation on Ras activation. Thus, we transfected Jurkat T cells with 

siRNA against PAG or Renilla, stimulated them, lysed and performed Ras activation assays with 

the GST-Raf1-RBD (Figure 3.24.C). Here we can show that suppression of PAG expression 



RESULTS  78 

 

leads to a dramatic enhancement (approximately 5-fold) in Ras activation. We believe that these 

data together clearly demonstrate that PAG is indeed an important negative regulator of both the 

Src kinases and Ras. 
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Figure 3.24. PAG downregulation leads to enhanced SFK and Ras activation. (A) Primary human T cells 

were nucleofected with siRNA oligos against PAG or Renilla control. After 72 hours, the cells were stimulated with 

CD3/CD28 antibodies, lysed and subjected to Western blotting. Immunoblotting with anti-phosphotyrosine antibody 

(4G10) shows changes in the phosphorylation signature in these cells. Arrows indicate proteins hyperphosphorylated 

in the absence of PAG. Actin staining is shown for equal loading. PAG expression in both samples is shown on the 

right, the amount of PAG was normalized to actin and is presented as percentage of PAG expression in control cells. 

(B) Jurkat T cells were transfected with pCMS3-EGFP plasmid containing either PAG shRNA or Renilla shRNA 

and processed as described in panel A. (C) Jurkat T cells were transfected with pCMS3-EGFP plasmid containing 

either PAG shRNA or Renilla shRNA. Cells were then stimulated with anti-CD3 and anti-CD28 antibodies, lysed 

and active Ras was pulled-down using GST-Raf1-RBD (left panels). Total Ras is shown to prove that equal amounts 

of lysates were used for the assay (right panels). A quantitative analysis of the amount of an active Ras compared to 

a total Ras protein is shown underneath. PAG expression in both samples is shown (bottom right). 
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3.4. Identification and characterization of IGAP 

3.4.1. Expression of DGKs is unchanged in Anergic T cells 

An interesting issue with regard to anergic cells is that they have increased calcium levels, but 

simultaneously possess a block in the Ras/MAPK pathway. However, such a situation should not 

theoretically happen, because PLCγ produces IP3 and DAG in an equimolar ratio. IP3 then 

induces calcium flux, whereas DAG activates PKC and RasGRP leading to the activation of Ras. 

One explanation would be that diacylglycerol is rapidly metabolized by diacylglycerolkinases 

(DGK). Therefore we lysed Resting, Anergic and Rescued cells and immunoblotted to see 

whether the expression of any of the DGK isoforms is enhanced upon anergy induction. 

However, we did not find any alteration in expression of either DGK alpha (Figure 3.25.A) or 

DGK zeta (Figure 3.20.B), the two main DGKs present in T cells. However, from these blots we 

cannot exclude that the activity of either of the DGKs is enhanced in anergic T cells. 

 

 

 

Figure 3.25. Normal DGK expression in Anergic T cells. Resting, Anergic and Rescued cells were either left 

untreated (-) or restimulated with anti-CD3 antibody for 2 minutes (+). Lysates were immunoblotted with anti-DGK 

alpha (A) or anti-DGK zeta (B) antibody. Note, that DGK zeta exists in several isoforms. Actin staining is shown for 

equal loading. 
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3.4.2. DGK alpha antibody cross-reacts with p120 protein 

Surprisingly, when probing the lysates with the anti-DGK alpha antibody, we observed a 

strong induction in the expression of a protein at 120 kDa in Anergic and Rescued cells (Figure 

3.26.A). However, there exists no known isoforms of DGK alpha. Therefore, we used the anti-

DGK alpha antibody for immunoprecipitation and tested whether this antibody recognizes the 

p120 protein also in its native form. By reprobing Western blots of DGK alpha-IP’s with anti-

DGK alpha antibody, we demonstrate that we can specifically precipitate not only DGK alpha, 

but also the p120 protein (Figure 3.26.B).  

 

Figure 3.26. Anti-DGK alpha antiserum specifically cross-reacts with induced p120 protein. (A) Resting, 

Anergic and Rescued cells were either left untreated (-) or restimulated with anti-CD3 antibody for 2 minutes (+) and 

whole cell lysates were immunoblotted with anti-DGK alpha antibody. Bands corresponding to DGK alpha and p120 

are marked. Actin staining is shown for equal loading. (B) Lysates as in A were used for immunoprecipitation with 

anti-DGK alpha antibody, IP’s were subjected to Western blotting and reprobed again with the DGK alpha antibody. 

Bands corresponding to DGK alpha and p120 are indicated. 

 

Since we could immunoprecipitate p120, we decided to identify this protein. Therefore we 

prepared a large number of Rescued cells and used them for immunoprecipitation with the anti-

DGK alpha antibody. Anergic cells were omitted since Rescued cells can be produced in a higher 
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amount and also express high levels of p120. As a negative control, resting cells were taken, as 

they express only very low levels of p120 (see figure 3.26.A). These IP’s were loaded onto a 

large acrylamide gel to ensure better separation and the gel stained with silver to visualize the 

proteins (Figure 3.27.). We observed a number of bands that were specifically precipitated with 

the DGK alpha antibody, some were present in all samples (bands 2, 5, 6, 7), but interestingly, 

others were selectively co-precipitated only in long-term stimulated cells (bands 1, 3, 4). 

 

Figure 3.27. Silver staining of DGK alpha-IP’s. Lysates of Resting and Rescued cells (50x106 or 100x106) 

were used for immunoprecipitation with anti-DGK alpha antibody. Samples were then loaded onto large 8% 

acrylamide gel and stained with silver. Bands marked with arrows were cut out and subjected to peptide mass 

mapping. 
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3.4.3. Identification of IGAP 

Bands 1 – 7 shown in figure 3.27. were excised from the silver gel and subjected to trypsic 

digestion, which was performed by Dr. Thilo Kähne in the Institute of Experimental Internal 

Medicine, Magdeburg. The resulting peptides were then analyzed by MALDI-TOF mass 

spectrometry and the results compared to the protein database to identify the corresponding 

proteins. The results obtained are shown in Figure 3.28. Band number 2 was identified as DGK 

alpha, the protein against which the immunoprecipitating antibody was raised. Bands 3 and 4 

could not be identified due to low quality of tryptic peptides. Bands 5 and 6 were identified as the 

non-muscle myosin heavy chain II (MYH9). Band 7 contained actin plus an additional protein 

that could not be clearly determined. Most interestingly, band 1 (i.e. p120) was identified as a 

hypothetical protein with the accession number XP_029084, which was originally predicted by 

automated computational analysis of the human genome. 

 

 

Band number Identified protein 

1 XP_029084 

2 DGK alpha 

3 not determined 

4 not determined 

5 MYH9 

6 MYH9 

7 Actin + ? 

 

 

Figure 3.28. List of proteins identified by mass spectrometry. The indicated bands from figure 3.22. were 

excised, digested with trypsin and subjected to mass spectrometric analysis to identify the proteins. 

 

The SMART algorithm (Schultz et al., 1998) enabled us to model the predicted domain 

structure of p120 based upon its primary amino acid sequence (Figure 3.29.). To our surprise, 

p120 contains a RasGAP domain and thus belongs to a family of Ras GTPase activating proteins. 

Since p120 is expressed in Resting T cells only in very small amount, but is drastically induced 

upon long-term stimulation of the cells, we have named this protein IGAP  (Inducible GTPase-



RESULTS  84 

 

activating protein). In addition to the GAP domain, IGAP also possesses one PH and one C2 

domain, both of which are believed to be responsible mainly for targeting proteins to the 

phospholipids within plasma membrane. Moreover, the C2 domain does so in a calcium-

dependent manner. Additionally, there are several predicted sites of phosphorylation within the 

IGAP sequence – multiple serine and threonine residues and several tyrosine residues, two of 

which are surprisingly arranged into an atypical ITAM sequence. A coiled-coil domain is situated 

at the C-terminus, which is involved in protein dimerization. 

 

 

 

Figure 3.29. Structure and predicted domains of IGAP. The structure and domains of IGAP were predicted 

based upon the primary amino acid sequence using the SMART tool available on http://smart.embl-heidelberg.de. 

 

When we compare IGAP structure with other known RasGAPs, we realize that IGAP is quite 

unique among the RasGAPs and is more similar to SynGAP and NGAP, which are, however, not 

expressed in T cells, but are rather specific for neuronal cells (Figure 3.30.). Compared to the 

main known GAP in T cells, p120RasGAP, IGAP completely lacks any protein-protein 

interaction domains like SH2 or SH3. 
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Figure 3.30. Comparison of known RasGAPs. 

 

 

3.4.4. IGAP is phosphorylated in vivo 

Since we found an atypical ITAM sequence within the GAP domain, we were interested to 

see whether IGAP indeed becomes phosphorylated in T cells. Therefore we took the advantage 

that we could immunoprecipitate IGAP with the anti-DGK alpha antibody (see figure 3.26.B) and 

reprobed these IP’s with anti-phosphotyrosine (Figure 3.31.). We could not detect any 

phosphorylation in Resting cells where there is only minimal expression of IGAP, but we indeed 

observed IGAP phosphorylation in Anergic and Rescued cells, which upregulated the IGAP 

protein. 
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Figure 3.31. IGAP is phosphorylated in vivo. Western blot of the DGK alpha-IP from figure 3.26.B was 

reprobed with anti-phosphotyrosine antibody (4G10). Bands corresponding to IGAP and DGK alpha are indicated.  

 

 

3.4.5. IGAP is upregulated during long-term stimulation of T cells 

Since we originally found IGAP only in cells that had been stimulated for three days and not 

in resting cells, we wanted to determine more precisely the time kinetic of IGAP induction. Thus, 

we prepared Anergic and Rescued cells as always by culturing T cells on CD3-coated plates with 

or without PMA for three days and resting them for one additional day. Aliquots of cells were 

taken at each day of culture and lysed for Western blot analysis (Figure 3.32.). Whereas resting T 

cells express only very little of IGAP, the expression increases during stimulation, with a 

maximum at day 2. As the cells rest for one day without any stimulus, the level of IGAP 

expression decreases again (Figure 3.32., last two lanes). There was no difference between 

Anergic and Rescued cells with regard to IGAP expression. 

 

Figure 3.32. IGAP is upregulated during long-term stimulation.  Resting T cells (Rest.) were cultured on anti-

CD3-coated plastic plates for three days plus one day of resting with (Resc.) or without (Aner.) PMA. Aliquots of 

Anergic and Rescued cells were taken at each day of culture and probed with anti-DGK alpha antibody. Bands 

corresponding to IGAP and DGK alpha are indicated. Actin staining is shown for equal loading. 

 

DGKalpha - IP 

IB:  pTyr 

Resting Anergic Rescued 

- + - anti-CD3: + - + 

DGK alpha 

IGAP 

A
ne

r.
 

R
es

c.
 

R
es

t. 

A
ne

r.
 

R
es

c.
 

A
ne

r.
 

R
es

c.
 

A
ne

r.
 

R
es

c.
 day 1 day 2 day 3 day 3+1

actin 

DGK alpha 

IGAP 
IB:  DGK alpha 



RESULTS  87 

 

3.4.6. IGAP is predominantly plasma membrane localized 

The predicted structure suggests that IGAP contains two domains (PH and C2 domain, see 

figure 3.29.) responsible for targeting to the membrane phospholipids. In order to investigate the 

subcellular localization of IGAP, we used Jurkat T cells, which also express endogenous IGAP 

(data not shown) and can be produced in high amount needed for subcellular fractionation. Jurkat 

T cells were lysed, their membranes separated from the cytosolic compartment by gradient 

centrifugation and both membrane and cytosolic fractions were subjected to Western blotting 

(Figure 3.33.). The transmembrane adapter protein LAT was chosen as a marker for the 

membrane fraction and the cytosolic adapter protein Grb2 was used to stain the cytosolic fraction. 

Probing the blot with anti-p120RasGAP antibody showed that this RasGAP is primarily a 

cytosolic protein. On the contrary, IGAP was detected mainly in the membrane fraction.  

 

Figure 3.33. IGAP is prelocalized at the plasma membrane. Membrane and cytosolic fractions were isolated 

from Jurkat T cells and probed with indicated antibodies. 

 

 

3.4.7. IGAP associates with PAG 

Since we identified p120RasGAP in a complex together with PAG, we were further interested 

to look whether the new protein IGAP can also be found associated to a PAG complex. Therefore 

we prepared lysates of Resting, Anergic and Rescued cells, immunoprecipitated PAG and looked 

for the presence of IGAP in these IP’s by immunoprobing with anti-DGK alpha antibody (Figure 

3.34.A). Surprisingly, we indeed detected IGAP associated with PAG in Anergic and Rescued 

cells, whereas there was no IGAP in PAG-IP’s from Resting sample. Additionally, we performed 

reciprocal IP’s and used the anti-DGK alpha antibody for immunoprecipitation. Also using this 
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approach, we could detect the interaction of PAG and IGAP in Anergic and Rescued cells (Figure 

3.34.B). Although one could argue that the anti-DGK alpha antibody precipitates both DGK 

alpha and IGAP and therefore some PAG may have also been associated with DGK alpha and not 

only specifically with IGAP, we do not find DGK alpha present in PAG-IP’s. Thus it seems safe 

to conclude that immunoprecipitated IGAP was indeed associated with the PAG complex. 

 

Figure 3.34. IGAP associates with PAG. (A) Resting (Rest.), Anergic (Aner.) and Rescued (Resc.) cells were 

lysed and PAG was immunoprecipitated. Associated IGAP was detected by immunoblotting with anti-DGK alpha 

antibody. PAG staining shows the amount of precipitated material. (B) Samples as in A were subjected to 

immunoprecipitation with anti-DGK alpha antibody and the associated PAG was detected by immunoprobing with 

anti-PAG antibody. IGAP staining shows the amount of precipitated material. 

 

In summary, we have demonstrated that PAG is able to recruit at least two RasGAPs – 

p120RasGAP and the novel IGAP. This observation further supports our findings that PAG is a 

potent negative regulator of Ras GTPases. Whether IGAP is recruited to the same complex of 

PAG as p120RasGAP or whether two separate complexes exist within the cells is unclear at this 

moment. What is the exact role of IGAP and whether it can fulfill the same functions as 

p120RasGAP will be certainly the subject of further investigations. 
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4. Discussion 

4.1. Proximal alterations within anergic T cells (see 3.1.) 

In this study, we investigated the signaling alterations underlying anergy, an important 

mechanism of peripheral tolerance. To perform this, we purified freshly isolated peripheral 

human T cells and used a well established method of anergy induction, namely culturing the cells 

on anti-CD3-coated plates. The absence of costimulation drove the cells into anergy, as they no 

longer proliferated upon subsequent restimulation via CD3 or CD3+CD28 (Figure 3.4.). This is 

because the CD3-mediated pathway triggered in the primary culture is alone not sufficient to 

induce the production of sufficient amounts of IL-2. And indeed, the addition of exogenous IL-2 

to the culture induced dramatic proliferation of these cells during the secondary stimulation, 

showing that these cells are indeed anergic. Corresponding to previous findings, we observed a 

dramatic upregulation of the Src family kinase Fyn in anergic T cells, both at the kinase activity 

and the protein level, whereas only a marginal increase in the activity and expression level of Lck 

was observed (Figure 3.6.). Moreover, Lck expression and activity were also enhanced in rescued 

cells and therefore the Lck upregulation appears to be more related to the proliferation and 

activation of the cells. Therefore, it seems that Fyn is the main kinase playing an important role in 

anergic T cells. 

Interestingly, we found an enhanced overall tyrosine phosphorylation in anergic T cells 

(Figure 3.7.), whereas phosphorylation of key signaling molecules, i.e. TCR zeta chain and LAT 

was completely abolished (Figure 3.8.). This means that there is no general increase in 

phosphorylation of all proteins that would correspond to the enhanced activity of Src kinases. 

Instead, the SFK activity is targeted towards specific proteins, which may play an important role 

in maintaining the anergic state, whereas proteins required for activation and proliferation of the 

cell are kept inactive (i.e. unphosphorylated). Interestingly, Lck is believed to play the main role 

in phosphorylating signaling molecules during activation of the cell, whereas Fyn is not so 

critical for activatory signal progression as it rather phosphorylates more specific proteins. Since 

Fyn was shown to be specifically upregulated in anergic T cells, the main role of Fyn may be to 

phosphorylate the proteins responsible for anergy. Note that a large portion of Lck is associated 

with the coreceptor CD4 or CD8 and the costimulatory molecule CD28 and that these pools of 

Lck only become activated upon co-triggering of these receptors. CD3 crosslinking alone 

therefore does not activate these pools of Lck and the positive signal may be “overridden” by the 
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Fyn-mediated phosphorylation of anergy-promoting factors. Based upon the apparent molecular 

weight, we propose that the proteins specifically hyper-phosphorylated in anergic T cells are 

mainly Src kinases and Cbl. Importantly, both Src kinases and the E3 ubiquitin ligases (e.g. Cbl, 

Itch, GRAIL) are indeed believed to contribute to the maintenance of anergy (Quill et al., 1992; 

Mueller, 2004). Certainly an interesting approach would be an immunoprecipitation using an 

anti-phosphotyrosine antibody followed by mass spectrometry as this would enable the 

identification of other proteins hyperphosphorylated in anergic T cells. This would then lead to a 

better understanding of the mechanism(s) responsible for the block in signaling pathways. 

Currently, we are trying to identify pp30, which is the most abundant phospho-protein in anergic 

and rescued T cells (Figure 3.7.). Since pp30 is equal in both anergic and rescued cells, we 

propose that the phosphorylation (and possibly also the upregulation) of this protein is associated 

with the activation and proliferation of the cells and is not specific to anergy. 

Note that since both the anergic and rescued cells originally received the same stimulus via 

the TCR, the phosphorylation profile and the proximal signaling appear to be very similar in both 

populations. The difference is that the rescued cells received additionally PMA, which acts more 

distal in the signaling cascade, where it mimics costimulation and overcomes the block in anergy. 

Alternatively, we could have used stimulation of the cells with CD3 plus CD28 to produce 

activated cells as the positive control. However, CD28 costimulation may also lead under certain 

circumstances to anergy and the final outcome of anergy versus activation depends probably 

upon the proper amount of CD28 antibody used for stimulation (Schwartz, 2003). Additionally, 

using the stimulation with CD3 plus PMA clearly demonstrates that it is presumably indeed the 

DAG-mediated pathway that is not activated upon CD3 crosslinking alone, thereby resulting in 

anergy. As we demonstrate, simple reconstitution of DAG in the CD3-stimulated T cells by its 

analogue PMA enhances the DAG-mediated signaling and this is sufficient to prevent anergy 

induction (compare figure 3.4.). 

 

4.2. Alterations within the PAG-associated complex in anergic T cells (see 3.2.1. – 3.2.5.) 

Since PAG overexpressing T cells behave very similar to anergic T cells, i.e. they are both 

unresponsive to TCR stimulation and fail to produce IL-2, we hypothesized that PAG might be 

upregulated either on the protein level and/or on the phosphorylation level in anergic T cells. 

Although we did not observe any increase in PAG expression, we can show that, in anergic T 

cells, the activity of the Src family kinase Fyn associated to PAG is markedly enhanced leading 
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to the hyperphosphorylation of PAG, determined by anti-Y317 phospho-specific antibody (Figure 

3.9. and 3.10.). Please note that PAG possesses 10 tyrosines and we have found that whereas 

some are dephosphorylated (mainly Y317), others become phosphorylated only upon TCR 

triggering (J. Lindquist, unpublished observation). Therefore it would be rather difficult and 

potentially misleading to interpret total PAG phosphorylation by performing PAG-IPs and 

probing with a pan-phosphotyrosine antibody (e.g. 4G10).  

This hyperphosphorylation could also be the result of decreased PAG phosphatase activity. 

However, upon stimulation of the cells, PAG becomes rapidly dephosphorylated in all samples 

and, in fact, the extent of dephosphorylation is largest in anergic T cells, meaning that the 

phosphatase is still active. Importantly, the level of phospho-PAG in anergic cells never 

decreases below that of unstimulated resting cells (Figure 3.10.). Consequently, we also observed 

an increased recruitment of Csk to PAG in anergic cells (Figure 3.11.). This in turn leads to the 

increased phosphorylation of the inhibitory tyrosine of Fyn within the total Fyn pool (Figure 

3.12.). Thus it seems that hyperphosphorylation ensures that PAG may still fulfill its inhibitory 

function even upon restimulation of anergic cells and we propose that PAG may, in this way, 

contribute to the defects in proximal signaling. Until now, we have investigated only the changes 

in phosphorylation for total Fyn, however it would be interesting to look at specific pools of Fyn 

within the cell and compare Fyn tyrosine phosphorylation and kinase activity for the fraction 

associated to PAG with the fraction bound to TCR zeta chain. Since we observed a dramatic 

decrease in zeta chain phosphorylation, we predict that the associated kinase activity must also be 

strongly reduced. 

Interestingly, a phenotype very similar to the one that we observe in anergic T cells has also 

been found in PTPalpha knockout mice (Maksumova et al., 2005). PTPalpha deficient 

thymocytes show increased phosphorylation of several proteins and enhanced Fyn kinase 

activity. Since PTP alpha localizes in the lipid rafts, it regulates the raft-associated Fyn. The 

hyperactive Fyn in the rafts in turn induces a hyperphosphorylation of PAG and increased 

association of Csk with PAG. Consequently, the inhibitory tyrosine within Fyn is more 

phosphorylated. Importantly, the PTPalpha deficient thymocytes elicit reduced proliferation and 

impaired IL-2 production upon stimulation with CD3 alone or CD3 plus costimulation and this is 

a phenotype very similar to anergy. Moreover, stimulation with PMA plus Ionomycin, i.e. with 

stimulus that normally breaks anergy, induces proliferation and IL-2 production also in PTPalpha 

deficient thymocytes comparable to the wildtype cells. This data clearly confirms our own 



DISCUSSION  92 

 

observations and our hypothesis that increased Fyn activity together with increased Csk 

recruitment to hyperphosphorylated PAG may constitute an effective mechanism to block T-cell 

signaling. 

Opposite to our results, the group of Andre Veillette has very recently demonstrated an 

increased Fyn recruitment to PAG whereas Csk association was unchanged in murine anergic T 

cells (Davidson et al., 2007). They have however used the ionomycin-induced model of anergy, 

where they have first preactivated the cells with CD3 and CD28 antibodies and then expanded 

them with IL-2 before applying ionomycin to induce anergy. Hence, they were investigating 

anergy induced in murine effector T cells, whereas we used human naïve T cells. Due to these 

major differences it is difficult to directly compare the results obtained from two distinct systems. 

Unfortunately, they did not investigate the kinase activity of Fyn associated to PAG and/or PAG 

phosphorylation upon anergy induction and thus it is difficult to speculate why the increased 

recruitment of Fyn did not lead to an increased phosphorylation of PAG and consequently also to 

enhanced recruitment of Csk in their anergic cells. However, using various transgenic mice, they 

have shown that the PAG-Fyn complex plays an important role in the maintenance of anergy, 

mainly by increasing calcium flux without activating the Ras-MAPK pathway; although the 

authors could not find the mechanism responsible for this effect. We complement this finding 

with the observation that the PAG-Fyn complex can also actively inhibit proximal signaling and 

Ras activation by hyperphosphorylating PAG, thereby leading to enhanced recruitment of other 

critical proteins like Csk and p120RasGAP, two important negative regulators of SFKs and Ras, 

in order to prevent cell activation and proliferation (see also 4.5.). Indeed, we can show using 

PAG siRNA that knocking down PAG expression leads to an unbalanced hyperactivation of both 

Src kinases and Ras (see 4.7.). 

 

4.3. Fyn is dually phosphorylated on Y529 and Y215 in anergic T cells (see 3.2.6.) 

An interesting and also somewhat confusing observation is that we find increased Fyn activity 

simultaneously with the increased phosphorylation of its inhibitory tyrosine (compare Figure 3.6. 

and 3.12.). Normally, the phosphorylated inhibitory tyrosine binds to the SH2 domain of Fyn and 

thus one would expect that its hyperphosphorylation should lead to a decreased kinase activity. 

However, it is known from the crystal structure that another intramolecular interaction is required 

for the inactive state of the kinase, namely the binding of the SH3 domain to the linker region 

between the kinase domain and SH2 domain (see section 1.7.2.). In fact, there is a growing body 
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of evidence to suggest that interfering with the SH3-linker interaction is sufficient to activate the 

kinase (Simarro et al., 2004; Gorska et al., 2004). The interaction of Fyn with PAG was 

demonstrated to be phosphorylation independent in human T cells and therefore mediated by 

binding of the SH3 domain in Fyn to a proline-rich region within PAG. Conversely, Fyn 

association appears to be phosphorylation dependent in murine T cells (Davidson et al., 2007). 

Since the amount of Fyn associated to PAG is not enhanced in our anergic T cells (Figure 3.11.), 

the strength of interaction with PAG would have to be more stable in anergic cells, thereby 

preventing the folding of the kinase into the inactive conformation. However, this would concern 

only the pool of Fyn associated with PAG. Since we also observed hyperactivity of Fyn in whole 

lysates, we searched for additional mechanisms that would apply to total Fyn. We found two 

publications proposing that the phosphorylation of the inhibitory tyrosine of chicken Src leads to 

a hyperactive state of the kinase if a tyrosine within its SH2 domain (Y215) is also phosphorylated 

(Vadlamudi et al., 2003; Stover et al., 1996). It was proposed that the inhibitory tyrosine cannot 

bind to the SH2 domain because of the charge repulsion between phosphorylated Y215 and a 

conserved glutamate residue at + 4 position relative to the inhibitory tyrosine within the C-

terminus (Src chicken [P00523]: 525-PQpYQPGE-531). Since the sequence around Y215 of Src is 

conserved also among the SFKs, we tested whether this mechanism could also apply to Fyn. We 

can indeed clearly show that the phosphorylation of Fyn at Y215 is remarkably increased in 

anergic cells compared to both the resting and rescued cells and increases even more upon 

restimulation. Importantly, Y215 phosphorylation clearly correlates with inhibitory tyrosine 

phosphorylation and therefore we believe that this dual phosphorylation of Fyn in anergic cells 

results in its opened hyperactive conformation. One may also hypothesize that if the 

phosphorylated inhibitory tyrosine does not bind to the SH2 domain in this hyperactive state, 

both the SH2 domain and the C-terminal phosphotyrosine are free and provide binding sites for 

other proteins that may be additionally recruited to the Fyn complexes, e.g. to the PAG-Fyn 

complex. Such an amplificatory mechanism has been also proposed for the complex of Lck with 

LIME (Lck-interacting molecule) (Brdickova et al., 2003). 

Note that the paper from Maksumova et al. mentioned above also shows increased activity of 

Fyn simultaneously with the increased phosphorylation of the inhibitory tyrosine in PTPalpha 

deficient thymocytes (Maksumova et al., 2005). They propose that Fyn is kept in its active 

conformation, because it is dually phosphorylated on both the activatory and the inhibitory 

tyrosine. However they did not investigate the phosphorylation status of Y215. It is tempting to 
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speculate that PTP alpha may be the phosphatase responsible for the dephosphorylation of Y215 

and its deficiency leads to Y215 hyperphosphorylation and consequently to increased Fyn kinase 

activity.  

So far Y215 has only been shown to be phosphorylated in Src upon growth factor receptor 

stimulation and the phosphorylation is probably mediated by the receptor tyrosine kinase. We are 

the first to show that Y215 phosphorylation occurs also in the case of Fyn and that this takes place 

in human T cells in vivo. Furthermore, we predict that this mechanism might play a role in TCR-

mediated signaling and especially in T-cell anergy. Currently, we do not know the kinase 

responsible for Y215 phosphorylation. This tyrosine may either undergo autophosphorylation as is 

the case for the activatory tyrosine or other kinases may be involved. Certainly, this will be the 

subject of further investigations. 

 

4.4. Increased Fyn kinase activity and inhibitory tyrosine phosphorylation within the 

lipid rafts of anergic T cells (see 3.2.7.) 

Since lipid rafts play an important role in T-cell signaling, we looked whether the results 

found in whole lysates of anergic cells are specifically enhanced within the lipid rafts. We found 

that Fyn and Lck upregulation occurs in both the lipid raft and non-raft membrane compartments 

of anergic cells. Also the distribution of their kinase activities seems to be unchanged and the 

increased Fyn activation is detected both in the rafts and outside, with much stronger activity in 

the raft fraction. The enhanced phosphorylation of the inhibitory tyrosine of Fyn within anergic 

cells is located almost exclusively within the lipid rafts, where most of the Fyn and PAG-Csk 

complex are located. Importantly, the localization of PAG is not altered upon anergy induction 

and PAG is still targeted into the lipid rafts to the same extent as in resting and rescued cells. 

That also explains why the PAG-Csk complex has a stronger impact upon Fyn, which is mainly 

situated in the rafts, whereas only a minor effect upon a non-raft kinase Lck. 

Notably, it was recently demonstrated that another transmembrane adaptor protein LAT is 

displaced from the lipid rafts in anergic T cells (Hundt et al., 2006). Since LAT is not 

palmitoylated in anergic T cells, it cannot be targeted into the rafts and therefore does not 

function properly. Since palmitoylation is necessary also for other adaptor proteins to be targeted 

into lipid rafts, one would expect that the lack of palmitoylation and the dislocation would be 

common also to the other raft-associated transmembrane adaptors. However, we know that 

treating T cells with polyunsaturated fatty acids (PUFA) also displaces LAT from lipid rafts, 
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whereas PAG is not dislocated (Zeyda et al., 2002). Thus it seems that PAG is more stably 

inserted within the rafts by an unidentified mechanism probably involving the transmembrane 

and/or the extracellular part of PAG. Additionally, protein-protein interactions can be responsible 

for stable PAG localization within lipid rafts, e.g. its constitutive association with Fyn that is 

mainly present in the rafts. This stable insertion may ensure that PAG is not so easily displaced 

from the rafts, e.g. upon PUFA treatment or anergy induction. However, we were unable to show 

displacement of LAT from the lipid rafts in anergic T cells in our system. This discrepancy might 

be due to the different systems investigated, as we induced anergy in primary naïve human T 

cells with immobilized anti-CD3 antibodies, while they applied the ionomycin-induced model of 

anergy induction using activated murine transgenic T cells (Hundt et al., 2006). 

 

4.5. PAG forms a novel multiprotein complex (see 3.3.1., 3.3.2.) 

When searching for the possible link connecting Fyn activity and PAG hyperphosphorylation 

to the block in Ras activation, we found two proteins whose expression is upregulated in anergic 

T cells, Sam68 and p120RasGAP (Figure 3.16.). Sam68 was originally identified also as KH 

domain containing, RNA-binding, signal transduction associated 1 protein (KHDRBS1). By 

immunoprecipitating either PAG, Sam68 or p120RasGAP, we are the first to demonstrate the 

formation of a multi-molecular complex consisting of PAG, Fyn, Sam68 and p120RasGAP 

(Figure 3.17.). The fact that we do not see any detectable difference in p120RasGAP association 

to PAG between anergic and rescued cells may be again attributed to the fact that rescued cells 

received the same stimulus as anergic cells (namely immobilized anti-CD3 antibody) and were 

rescued from anergy by adding PMA, which acts only more downstream on the level of DAG and 

therefore downstream of PAG. In fact, PMA directly stimulates RasGRP1, a GEF for Ras. The 

signal delivered by PMA is presumably much more robust than the intrinsic activity of 

p120RasGAP, thus leading to Ras activation and proliferation of rescued cells. Moreover, we 

investigated only the association of p120RasGAP with PAG, but not its activity. Interestingly, 

p120RasGAP was shown to be phosphorylated by receptor tyrosine kinases or transformed Src 

kinase and this tyrosine phosphorylation was suggested to modulate its GAP activity or 

interaction with other proteins (Molloy et al., 1989; Kaplan et al., 1990; Liu and Pawson, 1991). 

Since we find p120RasGAP in a complex with PAG and Fyn and we have observed increased 

Fyn activity associated with PAG in anergic cells, it is tempting to speculate that Fyn could 

phosphorylate p120RasGAP in this complex, leading to its activation and consequently Ras 
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inhibition in anergic T cells. Alternatively, PAG-associated Csk might also phosphorylate 

p120RasGAP. Since we observed enhanced amount of Csk associated with PAG specifically in 

anergic cells, the PAG-associated p120RasGAP may be more active in these cells. 

The next important step is to identify the binding sites of the individual proteins and to find 

out how the complex is assembled. The binding of p120RasGAP to PAG appeared to be 

phosphorylation-dependent as it increased when we induced maximal phosphorylation, i.e. upon 

pervanadate treatment of the cells (data not shown). Previously, it was shown by an in vitro GST-

SH2 pull-down assay that the N-terminal SH2 domain of p120RasGAP is capable of binding to 

PAG. Therefore we utilized the set of individual PAG Y∆F mutants that had been previously 

made in our laboratory to identify which tyrosine might be critical for p120RasGAP binding. By 

transfecting these PAG mutants into Jurkat T cells and looking for the presence of PAG in 

p120RasGAP immunoprecipitations, we found out that Y181 is the main p120RasGAP binding 

site within PAG. Surprisingly, we do not observe any decrease in p120RasGAP association to 

PAG upon restimulation of anergic cells for 2 minutes (Figure 3.17.A), although it induces 

maximal dephosphorylation of the Csk binding site, Y317. Thus it seems that the tyrosine binding 

p120RasGAP is dephosphorylated with a different time kinetic than the Csk binding tyrosine and 

one would have to do the whole time course of stimulation in order to characterize the dynamics 

of p120RasGAP-PAG association. In addition, we need to generate a phospho-specific antibody 

against Y181 to fully characterize the kinetics of its phosphorylation and dephosphorylation. One 

should point out that attempts to identify the PAG phosphatase are until now very inconsistent 

(see 1.6.3.). The fact that different tyrosines are dephosphorylated in a different time manner 

suggests that there may be not only one phosphatase, but rather several phosphatases with distinct 

specificities for individual tyrosine-based signaling motifs.  

Sam68 most probably does not bind directly to PAG as it lacks any protein-binding domains. 

Instead it possesses several tyrosines and proline-rich motifs and therefore can bind to either Fyn 

or p120RasGAP (Fusaki et al., 1997; Guitard et al., 1998; Jabado et al., 1998). Since Fyn binds to 

PAG presumably via its SH3 domain (Brdicka et al., 2000), its SH2 domain is free to bind 

phosphorylated Sam68. Additionally, p120RasGAP could be the direct Sam68 binding partner as 

it possesses two SH2 domains and whereas the N-terminal SH2 was suggested to bind PAG, the 

C-terminal domain binds preferentially to Sam68 (Brdicka et al., 2000; Durrheim et al., 2001; 

Sanchez-Margalet and Najib, 2001). The phosphorylation-dependent interaction of Sam68 with 

the complex would also explain why we could not detect the Sam68-PAG complex in PAG 
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immunoprecipitates from resting cells, possessing low Fyn activity. Namely, the complex 

stability may be increased only when the Fyn kinase activity is upregulated by the induction of 

anergy. The role of Sam68 in this complex is unclear. It may function simply as an adaptor 

further stabilizing the binding of p120RasGAP. Beside its adaptor function (Najib et al., 2005), 

Sam68 also belongs to the STAR (signal transduction and activation of RNA) family of RNA 

binding proteins (Lukong and Richard, 2003). It is postulated that Sam68 binds specific RNAs 

and their release into the cytosol enables their translation. Thus, Sam68 may enable the cells to 

become anergic by releasing RNAs for anergy-promoting factors. Additionally, Sam68 is 

phosphorylated by Fyn and this negatively correlates with RNA binding and leads to the 

relocalization of Sam68 into the cytosol (Hartmann et al., 1999; Wang et al., 1995). Therefore, 

increased phosphorylation by Fyn and recruitment into the cytosol towards the PAG complex 

might mediate enhanced shuffling from the nucleus and more rapid release of RNAs needed for 

translation of various factors important for anergy. 

The fact that we found an upregulation of Sam68 expression in anergic T cells may provide 

an explanation for the proliferative block attributed to anergy. Sam68 was shown to regulate the 

cell cycle progression and the expression of cyclin D1, which is required for the transition into S 

phase (Barlat et al., 1997). Importantly, the overexpression of Sam68 results in decreased levels 

of cyclin D1 and E and in cell cycle arrest in the G1 phase (Taylor et al., 2004). Notably, anergic 

cells were also shown to possess a block in the cell cycle at G1/S transition (Gilbert et al., 1992). 

Since recent studies have questioned the role of p27kip1 and p21cip1 as candidates responsible 

for the block in cell cycle progression (Verdoodt et al., 2003; Li et al., 2006), it will be interesting 

to see whether Sam68 deficient mice possess a defect in anergy induction. 

 

4.6. PAG negatively regulates Ras activation (see 3.3.3. – 3.3.8.) 

Using the GST-RBD pull-down assay, we can demonstrate that PAG is a novel negative 

regulator of Ras signaling. Transfection of wildtype PAG and Fyn into the Jurkat T-cell line leads 

to the hyperphosphorylation of PAG, the same phenotype as we observe in anergic T cells, and 

this results in an almost completely abolished activation of Ras upon TCR stimulation (Figure 

3.18.). We can additionally show that this effect is not dependent upon Y317 and therefore is not 

due to the enhanced recruitment of Csk and reduction of SFK activation. In fact, the Y317F 

mutant of PAG only minimally restores Ras activation and thus, the Csk-mediated pathway might 

not play the major role in the downregulation of Ras activity (Figure 3.20.). Interestingly, murine 
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fibroblasts deficient for the phosphatase Shp2 possess a block in Ras and ERK activation, 

presumably because of PAG hyperphosphorylation and increased Csk recruitment (Zhang et al., 

2004). However, the expression of Y314F-PAG mutant in Shp2 deficient cells also only partially 

restored ERK activation (Zhang et al., 2004). In addition, T cells from Y314F-PAG transgenic 

mice demonstrate a reduction in ERK activation compared to control cells; although the 

mechanism could not be found (Davidson et al., 2007). Therefore it seems that the block in Ras 

activation is induced mainly by recruiting another protein to hyperphosphorylated PAG and we 

propose that such a protein is p120RasGAP. However, mutation of p120RasGAP binding site 

within PAG is not sufficient to restore the block in Ras activation (Figure 3.22.). Thus it seems 

that both Csk and p120RasGAP participate in the inhibition of Ras signaling. Therefore the 

presence of either of these mechanisms is sufficient to maintain Ras inactive. Indeed, deletion of 

both the Csk and p120RasGAP binding sites restores Ras activation comparable with the control 

cells (Figure 3.23.). Since Ras signaling is initiated in the lipid rafts and active Ras-GTP must 

translocate out of the rafts to interact with its effectors, formation of a multimolecular complex 

including p120RasGAP within the rafts would be an effective mean of inhibiting Ras before it 

had the chance to translocate (Figure 4.1.). 

 

4.7. PAG downregulation leads to enhanced and sustained SFK and Ras activation (see 

3.3.9.) 

Since PAG knockout mice had been published with no apparent phenotype (Xu et al., 2005; 

Dobenecker et al., 2005), we had difficulties to convince reviewers that PAG is indeed such an 

important negative regulator of SFKs and Ras as our data would suggest. Because preliminary 

experiments had suggested the development of a compensatory mechanism in PAG knockout 

mice (J. Lindquist, unpublished observation), we decided to investigate the role of PAG directly 

in human T cells. Downregulation of PAG expression both in Jurkat and in primary human T 

cells using RNA interference lead to a dramatic upregulation of SFK activity as measured by 

overall protein tyrosine phosphorylation (Figure 3.24.A, B). In addition, the activity of Src 

kinases was sustained during stimulation, clearly reflecting the lack of a critical regulatory 

mechanism. When investigating Ras activation, we found that the loss of PAG results in a 5-fold 

induction of Ras activity compared to control cells (Figure 3.24.C). This clearly indicates that 

PAG is indeed an important negative regulator of both SFKs and Ras in human T cells. These 

results also confirm that there are differences between mouse and human, including development 
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Figure 4.1. Schematic model of PAG function in T-cell anergy. 1. PAG is hyperphosphorylated by Fyn 

leading to increased recruitment of Csk. Csk in turn phosphorylates the inhibitory tyrosine within Fyn. However, Fyn 

becomes phosphorylated additionally on its Y215 within the SH2 domain, leading to the hyperactive state of Fyn. 2. 

Hyperphosphorylated PAG recruits p120RasGAP into lipid rafts, where it stimulates the intrinsic GTPase activity of 

Ras thereby preventing its activation and translocation out of rafts. 3. Additionally, PAG binds Sam68, which may 

further stabilize the complex and release mRNAs for anergy-promoting factors. Increased Sam68 expression can 

reduce cyclin D1 levels and thereby prevent transition of the cell cycle from G1 to S phase. 

 

 

of alternative compensatory pathways in knockout mice, and this should always be taken into 

consideration. Therefore, it is impossible to generalize mouse data onto the human system or vice 

versa, but rather the data should always be verified by performing the appropriate experiment. 

Interestingly, mutation of the Csk and p120RasGAP binding sites within PAG leads to a Ras 

activation equal to empty vector transfected cells (Figure 3.23.), whereas removal of the total 

PAG protein induces 5-fold higher Ras activation than the control cells. Clearly, when the mutant 

form of PAG is expressed in Jurkat T cells, there is still endogenous PAG present that attenuates 

Ras activation. Only if we downregulate endogenous PAG expression by siRNA, Ras becomes 
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hyperactive. On the other hand, there might be also additional mechanisms by which PAG can 

block Ras and thus, these pathways are still present in the mutant lacking both Csk and 

p120RasGAP binding. Their existence and affect upon Ras would then only become apparent 

when the whole protein was lost. This also means that these other pathways must be dependent 

upon the recruitment of proteins to tyrosines other than Y317 and Y181 and/or they might be 

recruited to phosphoserines or phosphothreonines or in a phosphorylation-independent manner to 

the proline-rich regions within PAG. We propose that one such protein recruited to PAG that 

could negatively regulate Ras might be IGAP, the inducible GTPase-activating protein that we 

have newly identified (see 4.9.). 

 

4.8. Expression of DGKs is unchanged in anergic T cells (see 3.4.1.) 

Anergic T cells are known to have normal calcium signaling but abolished activation of 

ERK and JNK pathway. Since activated PLCγ1 produces both IP3 and DAG in an equimolar 

ratio, it is not clear how calcium flux should be activated by IP3 without the MAPK cascade 

being simultaneously activated via DAG. One hypothesis would be that DAG is immediately 

converted into phosphatidic acid by diacylglycerolkinases.  Therefore we hypothesized that the 

expression of either DGK alpha or zeta, the two main DGK isoforms expressed in T cells, would 

be enhanced in anergic cells. However, we did not find upregulation of either of these isoforms in 

our system (Figure 3.25.). This is in contrast to the very recent publications implicating DGK 

alpha in the regulation of anergy (Olenchock et al., 2006; Zha et al., 2006). These two papers 

showed that overexpression of DGK alpha in murine T cells leads to reduced activation of ERK 

and JNK, reduced production of IL-2 and diminished proliferation. Additionally, DGK alpha 

deficient T cells still produced IL-2 under anergizing conditions and thus it was concluded that 

DGK alpha deficiency impairs anergy induction. These results are however not so surprising, if 

one imagines that DGK alpha removal should enhance the DAG levels in the cells and thus lead 

to the upregulation of the whole DAG-Ras-MAPK pathway, which may in fact out compete the 

downregulation of Ras activation implemented by anergy-promoting machinery. Only the group 

of Gajewski showed that the expression of DGK alpha is indeed upregulated in anergic T cells 

and that the pharmacological inhibition of DGK alpha in these cells could rescue the production 

of IL-2 (Zha et al., 2006). The fact that we do not observe an upregulation of DGK alpha in our 

anergic cells may simply result from the differences between murine and human T cells as there 
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are clearly many differences. Additionally, the use of different DGK alpha antibodies with 

distinct affinities and epitopes may also give slightly different results. We also cannot exclude 

that the activity of any DGK isoform be enhanced in anergic cells, therefore one should test DGK 

activity, e.g. by assessing the rate of DAG conversion in vitro. 

 

4.9. Identification and characterization of IGAP (see 3.4.2. – 3.4.7.) 

While investigating the expression of DGK isoforms in anergic T cells, we observed a band 

at 120 kDa specifically cross-reacting with the anti-DGK alpha antibody (Figure 3.26.), which we 

identified as a predicted hypothetical protein with the accession number XP_029084 (Figure 

3.27. and 3.28.). Since this protein is induced upon long-term stimulation of T cells and has a 

putative GAP domain, we named this protein IGAP (Inducible GTPase-activating protein). IGAP 

differs from p120RasGAP, the main RasGAP in T cells, in that it lacks SH2 and SH3 domains. 

Its predicted structure is rather similar to the neuronal GAPs expressed primarily in the brain, 

SynGAP and NGAP (Figure 3.29. and 3.30.). Surprisingly, IGAP possesses within its GAP 

domain an ITAM, which is usually found in immunoreceptors. We found that IGAP indeed 

becomes tyrosine phosphorylated (Figure 3.31.) and we propose that this may regulate its activity 

and/or accessibility to its interacting partners and substrates. IGAP is expressed only at low levels 

in resting T cells, but is dramatically upregulated upon prolonged stimulation of the cells. 

Therefore we hypothesize that IGAP may play role in shutting down signaling and the activation 

status of the cells. Resting cells do not need IGAP since they need to be activated, however once 

they are activated and have performed their effector function, signaling must be shut down. 

Therefore they upregulate IGAP, which may inactivate Ras and thereby terminate AP-1 

activation. Once IGAP is not needed anymore, it may be degraded. That would explain why we 

see a downregulation of IGAP levels when we rest the cells for one day (Figure 3.32.). Whereas 

IGAP might diminish AP-1 activation, other transcription factors like NFAT and NFkB may 

remain active. This way, IGAP may switch the transcriptional program within the cell so that a 

new set of genes would be transcribed leading to the expression of proteins that would alter the 

fate of the cell. In this scenario, IGAP might affect the development of memory cells or regulate 

expression of anergy-promoting factors. Interestingly, the main pool of IGAP is localized at the 

plasma membrane, whereas p120RasGAP is primarily cytosolic in unstimulated cells (Figure 

3.33.). Thus, IGAP is already prelocalized in the proximity of Ras and might more efficiently 
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inactivate Ras signaling. Importantly, there are three main isoforms of Ras, which differ in their 

subcellular localization. Therefore, IGAP may only be selective for a specific Ras isoform and 

thereby may have partially distinct effect compared to other RasGAPs expressed in T cells. 

Finally, we can show that IGAP is able to associate with PAG (Figure 3.34.). The nature of 

this association is not clear yet, since IGAP lacks any protein-protein interaction domains. The 

interaction is therefore most probably not direct, but rather mediated via another yet unidentified 

partner. One good candidate would be Fyn, which constitutively binds to PAG and could 

additionally bind the phosphorylated ITAM within IGAP via its SH2 domain. Additionally, since 

p120RasGAP is recruited to PAG through its SH2 domain, it still has a free SH3 domain that 

could bind the multiple proline-rich domains within IGAP. Interestingly, there has been an 

unexpected observation recently that the C2 domain of PKCδ is able to directly bind to a 

phosphotyrosine (Benes et al., 2005). Since IGAP also possesses a C2 domain, we must consider 

also the possibility that IGAP binds directly to the phosphotyrosine within PAG via its C2 

domain. 

Taken together, we conclude that PAG functions as a potent negative regulator of Ras 

signaling through recruiting two GAPs to the multiprotein complexes at the membrane and 

thereby situating them to the proximity of their substrates to provide rapid and efficient Ras 

inactivation. 
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5. Conclusion 

Anergy is an important mechanism of peripheral tolerance preventing self-reactive T cells 

from becoming activated and thereby the development of autoimmune disorders. Despite many 

attempts to identify signaling alterations responsible for the unresponsive phenotype of anergic 

cells, the real molecular mechanism still remains unresolved. The hallmarks of anergic cells are 

the upregulation of Fyn kinase and the defect in Ras activation. In human T cells, a pool of Fyn is 

constitutively associated with PAG and was shown to be responsible for PAG phosphorylation. 

Importantly, we found that PAG-associated Fyn possesses enhanced kinase activity and this leads 

to hyperphosphorylation of PAG in human anergic T cells. Consequently, PAG recruits more Csk 

and although a portion of Csk is lost upon restimulation of the cells, there is still a remarkable 

amount of Csk bound to PAG that leads to enhanced phosphorylation of the inhibitory tyrosine 

within Fyn. This mechanism might then contribute also to a block in proximal signaling, which 

was attributed to anergic cells. 

Additionally, we have described a novel mechanism of Fyn kinase regulation. We have 

shown here that Fyn becomes phosphorylated not only on its C-terminal inhibitory tyrosine, but 

at the same time also on a tyrosine within its SH2 domain and we propose that this leads to its 

opened hyper-active conformation in human anergic T cells. 

Furthermore, we have identified a novel multiprotein complex consisting of PAG, Fyn, 

Sam68 and p120RasGAP and have demonstrated an important inhibitory role of PAG on Ras 

activation. We have also shown that its ability to regulate Ras is dependent on both Csk and 

p120RasGAP association and only the deletion of both binding sites completely ablates PAGs 

impact on Ras signaling. Using RNA interference, we could demonstrate that suppression of 

PAG expression leads to an unbalanced upregulation of both Src kinase and Ras activity resulting 

from the loss of a critical negative feedback loop. 

Finally, we have identified a new protein, which we called IGAP, as it appears to be a 

GTPase-activating protein that is induced only upon activation of T cells. We hypothesize that 

IGAP may be needed by the activated T cells to shut down their activation status in order to 

terminate the immune response. We could show that, contrary to p120RasGAP, IGAP is already 

prelocalized at the plasma membrane and that one mechanism of its regulation might be mediated 

via its association to PAG. 
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In conclusion, we have established PAG as a potent negative regulator of Ras activation 

recruiting two RasGAPs and we propose that this regulatory mechanism may play a role in 

anergy. Thus, PAG is involved in the regulation of both Src kinases and Ras, two important 

oncoproteins implicated in many forms of cancer. Therefore it is tempting to speculate that there 

might be alterations in PAG expression and/or various PAG mutations found in certain types of 

cancer that might be responsible for dysregulation of cellular signaling leading to a pathological 

transformation of the cell. 
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6. Zusammenfassung 

 

Anergie ist ein Mechanismus der peripheren Toleranz, der eine Aktivierung von auto-

reaktiven T Zellen verhindert und damit der Entstehung verschiedener autoimmuner 

Erkrankungen vorbeugt. Trotz vieler Versuche, die modifizierte Signalwege zu definieren, 

welche den aresponsiven Phänotyp der anergischen Zellen verursachen, bleibt der molekulare 

Mechanismus bisher weitgehend unklar. Die wichtigste Merkmale der anergischen Zellen sind 

sowohl eine erhöhte Fyn-Kinase-Aktivität und -Expression als auch ein Block in der Aktivierung 

des kleinen G-Proteins Ras. In humanen T Zellen ist ein Teil von Fyn konstitutiv an PAG 

gebunden, der auch für die PAG-Phosphorylierung verantwortlich ist. Interessanterweise sind T 

Zellen mit einer erhöhten PAG-Expression nach T-Zell-Rezeptor-Stimulation aresponsiv, ein 

Phänotyp, der Anergie sehr ähnelt. Auf diesen Grundlagen basierend war es Ziel der 

vorliegenden Dissertation, die Rolle von PAG für die Aufrechterhaltung von Anergie zu 

untersuchen. In anergischen humanen T Zellen konnten wir zeigen, dass die PAG-assoziierte 

Fyn-Kinase eine erhöhte Aktivität besitzt. Dies führt zu einer Hyperphosphorylierung von PAG. 

Nachfolgend bindet PAG mehr Csk. Trotzdem ein Teil von Csk nach der Stimulation der 

anergischen T Zellen seine Assoziation zu PAG verliert, bleibt es noch mehr Csk an PAG 

gebunden als in unstimulierten oder aktivierten T Zellen. Dies resultiert in einer erhöhten 

Phosphorylierung des inhibitorischen Tyrosins von Fyn. Dieser Mechanismus kann einen Block 

in den proximalen Signalwege verursachen, der ein wesentliches Merkmal der anergischen Zellen 

darstellt. 

Zusätzlich haben wir hier einen neuen Mechanismus für Fyn-Kinase-Regulation 

beschrieben. Wir haben belegt, dass die Fyn-Kinase nicht nur auf ihrem C-terminalen 

inhibitorischen Tyrosin phosphoryliert wird, sondern gleichzeitig auch an einem Tyrosin, das sich 

innerhalb der SH2-Domäne befindet. Wir behaupten, dass diese duale Phosphorylierung eine 

offene Struktur der Kinase bewirkt und so eine Hyperaktivierung von Fyn in humanen 

anergischen T Zellen herbeiführt. 

Weiterhin haben wir einen Multiproteinkomplex entdeckt, der aus PAG, Fyn, Sam68 und 

p120RasGAP entsteht. Darüber hinaus haben wir eine wichtige Rolle von PAG für die Inhibition 

der Ras-Aktivierung nachgewiesen. Hierzu konnten wir zeigen, dass das Vermögen von PAG, 

Ras-Aktivität zu regulieren, von seiner Fähigkeit, sowohl Csk als auch p120RasGAP zu 
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rekrutieren, abhängt. Nur wenn beide Bindungsstellen für Csk und p120RasGAP eliminiert sind, 

hat PAG keinen Effekt auf die Ras-Signalwege mehr. Mit Hilfe von RNA-Interferenz ist es uns 

gelungen, zu zeigen, dass die Herunterregulierung der PAG-Expression zu einer unbalancierter 

Hochregulation von sowohl Src-Kinasen als auch Ras-Aktivität führt, der ein Verlust eines 

kritischen negativen Rückkopplungsmechanismen zugrunde liegt. 

Zusätzlich haben wir ein neues Protein entdeckt, das wir IGAP benannt haben, da es sich 

um ein GTPase-aktivierendes Protein handelt, welches erst nach einer Stimulation der T Zellen 

exprimiert wird. Wir vermuten, dass IGAP erst in aktivierten Zellen benötigt wird, um ihre 

Aktivation und Proliferation einzustellen und somit die Immunantwort zu beenden. Im Gegensatz 

zu p120RasGAP ist IGAP schon auf der Zellmembrane vorhanden und kann so effektiver seine 

Wirkung auf Ras-Proteine ausüben. Zusätzlich haben wir IGAP im Komplex mit PAG gefunden 

und schlagen vor, dass diese Assoziation einen Einfluss auf die IGAP-Regulation haben könnte. 

Zusammengefasst haben wir PAG als einen potenten negativen Regulator der Ras- 

Aktivierung dargestellt, der zwei RasGAP Proteine rekrutieren kann. Wir vermuten, dass dieser 

regulatorischer Mechanismus auch eine wichtige Rolle in der Ausbildung und Aufrechterhaltung 

von Anergie spielen könnte. PAG ist also an der Regulation sowohl von Src-Kinasen als auch 

Ras beteiligt. Beide sind wichtige Onkoproteine, deren Defekte mit einer Vielzahl von 

Krebserkrankungen assoziiert sind. Aus diesem Grund spekulieren wir, dass verschiedene 

Änderungen in PAG-Expression bzw. Phosphorylierung und/oder verschiedene PAG-Mutationen 

in bestimmten Arten maligner Erkrankungen zu finden sind, die eine Dysregulation der zellulären 

Signalwege verursachen und somit zu einer pathologischen Transformation von Zellen führen. 
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8. Abbreviations 
 

AICD    activation-induced cell death 

AP-1    activator protein 1 

APC    antigen-presenting cell 

C2 domain   protein kinase C conserved region 2 domain 

cAMP    cyclic adenosine monophosphate 

CAPRI    calcium-promoted Ras inactivator 

Cbl     casitas B-lineage lymphoma 

CD     cluster of differentiation 

Cdk    cyclin-dependent kinase 

Csk    C-terminal Src kinase 

CTLA4    cytotoxic T lymphocyte antigen 4 

DAG    diacylglycerol 

DC     dendritic cell 

DGK    diacylglycerolkinase 

DN     double negative 

Dok    downstream of kinase 

DP     double positive 

EBP50    ezrin-radixin-moesin binding protein of 50 kDa 

ERK    extracellular signal related kinase 

FI     fold induction 

FoxP3    forkhead box P3 protein 

Gads    Grb2-related adaptor downstream of Shc 

GEMs    glycosphingolipid-enriched membrane microdomains 

GM-CSF    granulocyte and monocyte colony-stimulating factor 

Grb2    growth factor receptor-bound protein2 

GST    glutathione S-transferase 

IB     immunoblotting 

IFN-γ    interferon gamma 

IGAP    inducible GTPase-activating protein 

IL     interleukin 
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IP     immunoprecipitation 

IP3     inositol-1,4,5-trisphosphate 

ITAM    immunoreceptor tyrosine-based activation motif 

IVK    in vitro kinase assay 

JNK    c-Jun N-terminal kinase 

LAT    linker for activation of T cells 

Lck    lymphocyte-specific protein tyrosine kinase 

LIME    Lck-interacting molecule 

MAPK    mitogen-activated protein kinase 

MHC    major histocompatibility complex 

MW    molecular weight 

NF1    neurofibromin 1 

NFAT    nuclear factor of activated T cells 

NFkB    nuclear factor kappa B 

p21cip1    cyclin-dependent kinase inhibitor 1 

p27kip1    kinase inhibitor protein 1 

PAG phosphoprotein associated with glycosphingolipid-enriched 

microdomains 

PAGE    polyacrylamide gel electrophoresis 

PEP    PEST-enriched phosphatase 

PH domain   pleckstrin homology domain 

PI3K    phosphatidylinositol-3-kinase 

PKCθ    protein kinase C theta 

PLCγ1    phospholipase C gamma 1 

PMA    phorbol myristate acetate 

PTB domain   phosphotyrosine-binding domain 

PTPα     protein tyrosine phosphatase alpha 

pTyr    phosphotyrosine 

RasGAP    Ras GTPase-activating protein 

RasGEF    Ras guanine-nucleotide exchange factor 

RasGRP    Ras guanyl-releasing protein 

RBD    Ras binding domain 



ABBREVIATIONS  132 

 

Sam68    Src-associated in mitosis of 68kDa 

SDS    sodium dodecyl sulphate 

SFK    Src family kinase 

SH2     Src homology 2 

SH3    Src homology 3 

SHP    SH2 domain-containing phosphatase 

SHIP    SH2 domain-containing inositol 5‘ phosphatase 

shRNA    short hairpin RNA 

siRNA    short interfering RNA 

SIT    SHP-2 interacting transmembrane adaptor protein 

SLP-76    SH2 domain containing leukocyte protein of 76 kDa 

Sos     son of sevenless 

Syk    spleen tyrosine kinase 

TBSM    tyrosine based signaling motif 

Tc     cytotoxic T cell 

TCR    T-cell receptor 

TGF-β    transforming growth factor beta 

Th     helper T cell 

TRAPs    transmembrane adaptor proteins 

Treg    regulatory T cell 

WB    Western blotting 

ZAP70    zeta-associated protein of 70kDa 
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