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„Das Schönste, was wir erleben können, 
ist das Geheimnisvolle. 
Es ist das Grundgefühl, 
das an der Wiege von wahrer Kunst 
und Wissenschaft steht. 
Wer es nicht kennt 
und sich nicht mehr wundern, 
nicht mehr staunen kann, 
der ist sozusagen tot 
und sein Auge erloschen.“ 
 
Albert Einstein 

 

„The most beautiful thing we can experience, 
is the mysterious. 
It is the source of all true art and all science.  
He to whom this emotion is a stranger,  
who can no longer pause to wonder  
and stand rapt in awe,  
is as good as dead: his eyes are closed.“ 
 
Albert Einstein 
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Abstract 1 

1. Abstract 
 

Campylobacter jejuni is the leading bacterial cause of food-borne illness worldwide and  

a major cause of Guillain-Barré paralysis. Invasion of host target cells has been reported as 

one of the primary reasons of tissue damage caused by this pathogen but molecular 

mechanisms are widely unclear. In the present study, I characterized the fibronectin-binding 

protein CadF as important pathogenicity factor expressed in all tested C. jejuni and C. coli 

strains. CadF is involved not only in adhesion but also required for maximal host cell invasion 

of Campylobacter. Additionally, the difference in molecular size and nucleotide sequence 

between CadF of C. jejuni and C. coli, described here, may potentially be applicable to 

discriminate these species in food and clinical specimens. Furthermore, detailed 

understanding of the signaling events induced by C. jejuni infection is presented in this study. 

It is shown that C. jejuni triggers membrane ruffling in the eukaryotic cell followed by invasion 

in a very specific manner first with its tip followed by the flagellar end. To pinpoint important 

signaling events involved in the C. jejuni invasion process, the role of small Rho family 

GTPases was examined for the first time. Using several molecular biological tools including 

specific GTPase-modifying toxins, inhibitors, siRNA and GTPase expression constructs it is 

shown that Rac1 and Cdc42, but not RhoA, are involved in C. jejuni invasion. In agreement 

with these observations, it was found that internalization of C. jejuni is accompanied by  

a time-dependent activation of both Rac1 and Cdc42. Furthermore, with use of ß1- and FAK-

knockout cells, different expression constructs, siRNA and inhibitors it is shown that the 

integrins, EGFR, PDGFR, FAK, DOCK180, Vav-2, α-PIX and Tiam1 are critically involved in 

mediating C. jejuni invasion-promoting signals. It is proposed that activated integrins and 

PDGFR/EGFR interact during C. jejuni infection and trigger formation of various signaling 

complexes including FAK, DOCK180, Vav-2, α-PIX and Tiam1 leading to the activation of 

Rac1 and Cdc42 and stimulation of common downstream signaling pathways. This in turn 

causes actin rearrangements and efficient C. jejuni uptake. Moreover, evidence is presented 

that activation of Rac1 and Cdc42 involves the CadF protein and the flagellar apparatus. 

Thus, CadF appears to be a bi-functional protein enabling bacterial binding to host cells as 

well as stimulating integrin clustering, which subsequently can activate downstream factors 

triggering GTPase signaling in infected host cells. Collectively, results of this study suggest 

that C. jejuni invade host target cells by a unique mechanism and the activation of the 

integrins, FAK, Rac1 and Cdc42, but not RhoA plays a central role in this entry process.  

Finally, the role of the surface array protein SapA and its phosphorylation in infection 

with Campylobacter fetus is here established. With use of SapA cloning, purification and in 

vitro tests as well as examination of SapA-non expressing strains, it is shown that Src-like 

PTKs mediate SapA phosphorylation and indicated that phosphorylated SapA plays 

significant role during C. fetus infection.  
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2. Zusammenfassung 
 

Campylobacter jejuni zählt zu den weltweit häufigsten lebensmittelbedingten Erregern der 

bakteriellen Enteritis und kann das Guillain-Barré Syndrom als eine mögliche Spätfolge 

verursachen. Die infektiöse Enteritis kann in Einzelfällen, zum Beispiel bei 

immunsupprimierten Menschen und Kleinkindern tödlich verlaufen. Desweiteren ist sie von 

hoher volkwirtschaftlicher Bedeutung. Die Invasion des Pathogens C. jejuni in die 

epithelialen Zellen wird als wichtigste Ursache für die Gewebeschädigung beschrieben, über 

die molekularen Mechanismen war zu Beginn der Dissertation jedoch noch wenig bekannt.  

In der vorliegenden Arbeit, konnte zunächst das Fibronektin-bindende Protein CadF 

als ein wichtiger Pathogenitätsfaktor charakterisiert werden. CadF wird in allen bisher 

getesteten C. jejuni und C. coli Stämme exprimiert. Es ist nicht nur an der Adhäsion beteiligt, 

sondern auch für eine maximale Invasion von Campylobacter notwendig. Die beobachteten 

Unterschiede in Molekulargröße und Nukleotidensequenzen zwischen den CadF-Proteinen 

aus C. jejuni und C. coli könnten zur Etablierung eines neuen Assays für die Identifizierung 

und Diskriminierung von CadF-expremierenden C. jejuni und C. coli in Lebensmitteln sowie 

in klinischen Proben genutzt werden. Weiterhin konnten wichtige neue Erkenntnisse über die 

C. jejuni-induzierten Signalwege mit dieser Arbeit dargestellt werden. Es wurde gezeigt, dass 

die Bakterien die Kräuselung der Zellmembran verursachen und in die Zelle mit ihrer Spitze, 

folgend durch ein flagellares Ende eindringen. Um die durch C. jejuni-induzierten Signalwege 

während der Invasion im Detail zu untersuchen, wurde zunächst die Rolle der kleinen  

Rho-GTPasen, welche wichtige Schaltstellen für die Signaltransduktion zum Aktin-

Zytoskelett sind, näher untersucht. Durch die Verwendung von spezifischen GTPase-

modifizieriende-Toxinen, Inhibitoren, siRNA, dominant-negativen und konstitutiv-aktiven Rho-

GTPase-Konstrukten, sowie spezifischen „Pull-Down“-Assays mit anschließender Western-

Blot-Analyse, war es möglich Rac1 und Cdc42, aber nicht RhoA, als an der C. jejuni Invasion 

beteiligte GTPasen zu identifizieren. Übereinstimmend mit diesen Daten konnte gezeigt 

werden, dass eine Internalisierung von C. jejuni durch eine zeitabhängige Aktivierung von 

Rac1 und Cdc42 begleitet ist. Darüber hinaus, konnte unter Verwendung von ß1- und FAK-

knockout Zellen, verschiedenen Expressions-Konstrukten, siRNA und Inhibitoren die 

Beteiligung von Integrine, EGFR, PDGFR, FAK, DOCK180, Vav-2, α-PIX und Tiam1  

bei der C. jejuni Invasion dargestellt werden. Diese Daten münden in einem neuen Modell 

zur C. jejuni Invasion. Dabei interagieren die aktivierten Integrine und EGFR/PDGFR 

während C. jejuni Infektion um die Bildung von verschiedenen Signalkomplexen, 

einschließlich FAK, DOCK180, Vav-2, α-PIX und Tiam1, auszulösen was zu einer 

Aktivierung von Rac1 und Cdc42, Stimulierung von gemeinsamen Downstream-Signalwegen 

und zu Aktin-Zytoskelettalen Veränderungen führt. So ist eine effiziente Internalisierung von 

C. jejuni möglich. Weiterhin wurde gezeigt, dass an der Aktivierung von Rac1 und Cdc42 
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CadF und der flagellare Apparat involviert sind. CadF scheint somit ein bi-funktionales 

Protein zu sein, das zum einen an der Adhäsion beteiligt ist und zum anderem die Integrine 

stimuliert und dadurch die GTPasen aktiviert. Zusammengefasst, weisen die in dieser Arbeit 

dargestellten Ergebnisse darauf hin, dass C. jejuni durch einen einzigartigen Mechanismus 

in die Zielzellen eindringt, und die Aktivierung von Integrinen, FAK, der Rho GTPasen  

Rac1 und Cdc42, allerdings nicht RhoA, eine entscheidende Rolle bei der C. jejuni Invasion 

spielen. 

Schließlich wurde im Rahmen dieser Arbeit die Rolle des Surface-array-Proteins 

SapA während der Infektion mit Campylobacter fetus dargestellt. Mittels SapA-Klonierung, 

sowie der Reinigung und zahlreichen in vitro Untersuchungen, aber auch durch die 

Verwendung von SapA-negativen Stämmen konnte gezeigt werden, dass die Src-Kinase  

die SapA-Phosphorylierung vermittelt. Die Ergebnisse weisen darauf hin, dass die 

Phosphorylierung von SapA eine wichtige Rolle während der C. fetus Infektion spielt. 
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3. Introduction 
 

3.1. Epidemiology of Campylobacter species 

 

After successful isolation from human stool in the 1970s, Campylobacter jejuni rapidly has 

become the most commonly recognized cause of bacterial gastroenteritis in humans. 

Fastidious culture requirements (Skirrow, 1977) and difficulties with early attempts at genetic 

modification have hampered progress in understanding this organism compared with other 

enteric pathogens such as Escherichia coli and Salmonella species. Currently, however, 

there is a renaissance of interest in Campylobacter. The first completed C. jejuni genome 

project (Parkhill et al., 2000) and a recent emergence of antibiotic-resistant strains (Engberg 

et al., 2001; Luo et al., 2005) provided the new impetus for further research into this 

pathogen.  

Campylobacter are gram-negative, spiral-shaped, (0.2 to 0.8 µm wide and 0.5 to 5.0 

µm long), non-spore-forming rods, possessing a polar flagellum, which exhibits a high degree 

of motility. They do not metabolize carbohydrates and use intermediates of the tricarboxylic 

acid (TCA) cycle as a source of energy. They are microaerophilic, requiring 5 to 10% oxygen, 

3 to 15% carbon dioxide and grow best at temperatures ranging from 37°C to 42°C. After 

exposure to unfavorable environmental conditions, such as an increased oxygen 

concentration, or during prolonged culture, the cells round up to “coccoid forms”. The role  

of theses putative dormant forms remains controversial (reviewed in Ketley, 1997;  

Kist & Bereswill, 2001; Konkel et al., 2001; Bereswill & Kist, 2003; Crushell et al., 2004). Until 

now genome sequences of seven Campylobacter strains are available including four C. jejuni 

isolates NCTC11168 (Parkhill et al., 2000), 81-176 (Hofreuter et al., 2006) and CG8486 (Poly 

et al., 2007) of human origin and RM1221 (Fouts et al., 2005) from chicken carcasses, C. coli 

strain RM2228, C. lari RM2100 and C. upsaliensis RM3195 (Fouts et al., 2005). Ten 

additional strains of Campylobacter have been sequenced by the Institute for Genomic 

Research (D. Fouts unpublished, reported by Poly et al., 2007). The relatively small genome 

of C. jejuni is a singular, circular chromosome, 1.59–1.77 Mbp in size, with an average G+C 

ratio of 30.3–30.6%. High gene content of 94–94.3% makes it one of the most dense 

bacterial genomes sequenced to date (Parkhill et al., 2000; Fouts et al., 2005; Hofreuter  

et al., 2006). 

Although C. jejuni, responsible for 80–85% of all human enteric Campylobacter 

infections, is the best-studied member of the genus, there exist a number of other 

Campylobacter species of relevance to human disease (Moore et al., 2005). Among 

seventeen described species belonging to the Campylobacter genus (Vandamme, 2000; 

Korczak et al., 2006), C. jejuni, C. coli and C. fetus are the most frequently associated with 

the human illness (Konkel et al., 2001). The true incidence of infection by other species such 
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as C. lari, C. upsaliensis, and C. hyointestinalis is still widely unclear (ACMSF, 1993; Butzler, 

2004) and probably underreported (Bourke et al., 1998; Engberg et al., 2000). 

Campylobacter jejuni and related species are the major cause of human bacterial 

gastroenteritis and may be responsible for as many as 400–500 million cases worldwide 

each year (Friedman et al., 2000). Statistical data show that Campylobacter infections cause 

considerable use of medication and health service burden. In the USA, it has been estimated 

that the human Campylobacter illness cost up to $ 6.2 billion per year (Forsythe, 2000). 

Remarkably, in many studies in the United States and other industrialized countries, 

Campylobacter were found to cause diarrheal disease more than 2-7 times as frequently as 

Salmonella species, Shigella species or Escherichia coli O157:H7 (Allos, 2001; Tam, 2001). 

According to the Robert Koch Institute Statistical Report, the annual incidence of reported 

Campylobacter cases in Germany was 63/100,000 with a total of about 52,000 cases in 

2006. This constituted 44 % of all reported food-borne infections (Fig. 1).  

 

6%4%
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Salmonella
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1%

Campylobacter Salmonella E. coli Yersinia Other

 

 

Campylobacter jejuni and C. coli live predominantly as commensals in a wide range 

of wild and domestic birds and mammals, including poultry for food production, dairy cows as 

well as domestic pets. Their growth optimum 42°C is well adapted to the body temperature of 

birds. Swine are mainly colonized by C. coli (Kist & Bereswill, 2001; Newell, 2001).  

In contrast, C. fetus is a pathogen of cattle and sheep (Blaser, 1993). Whereas large-scale 

outbreaks of human campylobacteriosis are rare and usually linked to the consumption of 

contaminated water (Mentzing, 1981; Jones & Roworth, 1996; Koenraad et al., 1997; Kuusi 

Fig. 1. The annual incidence of infections with pathogens transmitted commonly 
through food, based on German Disease Statistics Report for year 2006 published by 
Robert Koch Institute, Berlin, Germany. 
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et al., 2005; Schuster et al., 2005) or raw milk (CDC, 1983; 2002; Korlath et al., 1985; Evans 

et al., 1996; Frost et al., 2002), sporadic cases are more common (Friedman et al., 2004). 

Campylobacter-contaminated chickens’ carcasses constitute the largest potential source  

of human sporadic infections (Adak et al., 1995; 2005). In a recent study aimed to determine 

the risk factors for Campylobacter infection in the USA, the largest population attributable 

fraction (PAF) of 24% was associated with the consumption of the chicken prepared in 

restaurants (Friedman et al., 2004). Chickens are also an important source of human 

campylobacteriosis in developing countries (Coker et al., 2002). In these countries, where 

Campylobacter are hyperendemic owing to poor sanitation and close contact with animals, 

infection is very common in early childhood, with five to ten separate episodes occurring in 

the first two years of life (Taylor et al., 1993; Lindblom et al., 1995; Coker et al., 2002). 

Consequently, campylobacteriosis significantly contributes to malnutrition in infants, who 

represent the highest risk group (Butzler, 2004). In developed countries, Campylobacter 

affects all age groups, but infants and young adults have the highest reported rates of 

disease (Allos & Blaser, 1995). Campylobacter infections in industrialized countries typically 

result in acute inflammatory enteritis, whereas similar infections in developing countries tend 

to result in watery, non-inflammatory diarrhea. However, a spectrum of disease symptoms 

can be triggered by Campylobacter, regardless of geographical location (Taylor, 1992; 

Oberhelman & Taylor, 2000). It is not clear what mechanism underlies the different clinical 

presentations of infections in patients from developed and developing countries. It seems 

reasonable to presume that Campylobacter pathogenesis is largely influenced by the relative 

susceptibility of the host, but can also be affected by the relative virulence of the infecting 

strain. Probably both the bacterial and the host factors play a role for the diverse clinical 

manifestations. 

 

3.2. Clinical manifestations 

 

The most common illness associated with C. jejuni infection in humans is enteritis,  

the inflammation of small intestine. Frequently, a prodromal period lasting from a few hours 

to a few days and characterized by headache, back pain, myalgia and low fever precedes 

the acute phase of the disease, which often starts with severe abdominal cramps, followed 

by up to 20 watery evacuations per 24 hrs, or gross bloody diarrhea in a remarkable number 

of cases (Kist & Bereswill, 2001). Although C. jejuni enteritis is generally considered  

a benign self-limiting illness, there is a significant morbidity and mortality for humans, even in 

developed countries (Mead et al., 1999). Individuals suffering from AIDS are at a greater risk 

of acquiring C. jejuni than the background population (Butzler, 2004). Campylobacter jejuni 

infections can be accompanied by bacteremia, septic arthritis (Peterson, 1994a) and followed 
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by rheumatic (Reiter’s syndrome, post-infectious arthritis) (Peterson, 1994b) and neurological 

complications [Guillain-Barré syndrome, (GBS)] (Nachamkin, 2002; Yuki et al., 2004; 2005; 

Yuki & Koga, 2006). GBS is an acute, post-infectious immune-mediated paralytic disorder 

affecting the peripheral nervous system, and is the most common cause of acute flaccid 

paralysis in the post-polio era (Nachamkin, 2002). Recent studies have revealed that 

carbohydrate mimicry of C. jejuni lipooligosaccharide (LOS) by the human ganglioside is an 

important cause of the syndrome (Yuki et al., 2004; 2005; Yuki & Koga, 2006).  

C. fetus is rarely found as a cause of enteritis but is often isolated in systemic 

infections. The number of systemic infections observed with C. fetus indeed exceeds the 

number due to thermotolerant Campylobacter species such as C. jejuni and C. coli (Moore et 

al., 2005). However, more than half of the patients harbour an underlying disease (diabetes, 

cirrhosis, cancer, immunosupression, HIV infection). In contrast to cattle and sheep, C. fetus 

rarely induces abortions in humans (Sauerwein et al., 1993; van Bergen et al., 2005).  

The likelihood of bacteremia during infection with C. fetus is increased nearly 1,000-fold over 

that due to C. jejuni (Blaser, 1986). Bacteremia may result in lesions in organs distant from 

the gastrointestinal tract. A number of tissues can be involved, especially the vascular 

endothelium, bones, joints and meninges (Moore et al., 2005). Campylobacter fetus 

infections must be treated vigorously with antibiotics because of a bad prognosis. In a survey 

of more than 100 cases, death occurred in 15% of the cases, one-third being attributable to 

the infection, and a relapse occurred in 10% (Moore et al., 2005).  

 

3.3. Pathogenicity and virulence factors of Campylobacter jejuni 

 

Since the association of Campylobacter with human enteric disease, a reasonable 

understanding of the general clinical, microbiological, and epidemiological aspects of 

infection has been achieved. However, the molecular mechanisms involved in pathogenesis 

are still rather poorly understood. Few of the factors and/or virulence determinants required 

to establish an infection and to cause disease have a proven role. This chapter reviews the 

information available for major enteropathogenic species, C. jejuni. The pathogenicity and 

virulence factors of C. jejuni are presented in Table 1.  

Campylobacter jejuni pathogenicity determinants are generally not well characterized, 

and some are rather controversially discussed. Potential reasons underlying this relative 

paucity of understanding of C. jejuni pathogenesis include initial difficulties at molecular 

genetic manipulations, interstrain variability in virulence, and the lack of an effective animal 

model of human enteric infection. As research in this area is intensifying with the availability 

of genome sequences of seven Campylobacter strains, a clear picture of Campylobacter 

pathogenesis is awaited.  
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Table 1. Pathogenicity and virulence factors of Campylobacter jejuni. 
 

 

Name 

 

Gene 

 

Function 

 

References 

 

Pathogenicity factors 
 

   

Chemotaxin cheY detection of chemical 
gradients, colonization 

Yao et al., 1997; Hendrixson 
& DiRita, 2004 

Iron acquisition and its 
regulation factors 

ceuB,C,D, 
E, crfA, 
feoB, fur 

iron acquisition and its 
regulation, colonization, 
intracellular survival 

van Vliet et al., 2002; 
Palyada et al., 2004; Naikare 
et al., 2006 

Stringent response 
regulator SpoT 

spoT growth and survival under 
low CO2/high O2, rifampicin 
resistance, adherence, 
invasion, intraepithelial 
survival 

Gaynor et al., 2005 

Superoxide dimutase 
 
Catalase  

sodB  
 
katA 

defence against oxidative 
damage, intraepithelial 
survival, intramacrophage 
persistence 

Pesci et al., 1994; Purdy & 
Park, 1994; Grant & Park, 
1995; Day et al., 2000 

Flagellum 
 
 

flaA, flaB 
(more than 
50 genes) 

motility, colonization, 
invasion 

Guerry et al., 1990; Yao et 
al., 1994; Parkhill et al., 2000 

Flagellum export 
apparatus 

flhA,B, 
fliF,G,H,I,M,
NO,P,Q,R 

flagellar assembly, 
Cia secretion, 
FlaC secretion 

Hendrixson & DiRita, 2003;  
Konkel et al., 2004;  
Song et al., 2004; Wosten et 
al., 2004 

Adhesins cadF,  
jlpA, 
peb1 

adherence Konkel et al., 1997; 1999a; 
2005; Pei et al., 1998; Jin et 
al., 2001; 2003 

Lipooligosaccharide 
(LOS) and its sialic acid 
moieties  

LOS 
biosynthe-
sis locus, 
variable 

immunogenicity, serum 
resistance, induction of 
GBS by human ganglioside 
mimicry 

Guerry et al., 2000; 2002; 
Gilbert et al., 2002; Yuki et 
al., 2004; 2005 

Capsular polysaccharide 
(CPS) 

cps locus, 
variable 

evasion of host immune 
responses, serum 
resistance, adherence, 
invasion  

Karlyshev et al., 2000; Bacon 
et al., 2001; Karlyshev et al., 
2005b 

O-linked flagellar 
glycosylation system 

flagellar 
glycosyl. 
locus, 
variable 
 ~50 genes 

flagellar glycosylation and 
assembly, auto- 
agglutination, evasion of 
host immune responses 

Thibault et al., 2001; Golden 
& Acheson, 2002; Logan et 
al., 2002; Guerry et al., 2006  

N-linked general 
glycosylation system 

pgl locus  glycosylation of >30 
proteins, colonization, 
adherence, invasion 

Szymanski et al., 1999; 2002; 
Linton et al., 2002; 2005; 
Jones et al., 2004  
 

 

Virulence factors 
 

   

Campylobacter invasion 
antigens (Cia proteins)  

ciaB, not 
determined 

invasion, unknown Konkel et al., 1999b; 2004 
 

FlaC flaC invasion Song et al., 2004 
pVir  comB3,  

virB11 
homolog of type IV 
secretion system, 
adhesion, invasion 

Bacon et al., 2000; Bacon et 
al., 2002 

Cytolethal Distending 
Toxin 

cdtA,B,C host cell cycle arrest in 
G2/M phase, IL-8 induction 

Pickett et al., 1996; Hickey et 
al., 1999; Lara-Tajero & 
Galan, 2000; 2002 
 

 

Campylobacter jejuni and Helicobacter pylori are closely related at the 16S rRNA 

phylogeny level, share many biological properties, and due to strong similarities, the latter 

was previously classified within the Campylobacter genus. However, the genome sequence 

analysis revealed that despite a close phylogenetic relationship, similarities between these 
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two species are mainly confined to the housekeeping functions. Only 55.4% of C. jejuni 

genes have orthologs in H. pylori (Parkhill et al., 2000). In most functions related to survival, 

transmission and pathogenesis, the organisms have remarkably little in common. Genes 

encoding for well-established H. pylori virulence factors, namely vacuolating cytotoxin VacA, 

the urease, nickel uptake systems, the adhesins Bab and Alp, the cag pathogenicity island 

and the large hop gene family encoding outer membrane proteins of H. pylori (reviewed in 

Kusters et al., 2006), are absent in C. jejuni (Parkhill et al., 2000). However, pathogenicity 

genes present in both species include functions for chemotaxis, iron acquisition, and motility. 

The high degree of similarity in housekeeping genes on the one hand, and the striking 

diversities in virulence factor equipment on the other, provide evidence that although both 

species evolved from a relatively close common ancestor, selective pressure has driven 

profound evolutionary changes to create two very different and specific pathogens 

appropriate to their niches (Parkhill et al., 2000).  

Campylobacter jejuni is a classical food-borne pathogen, in association with 

contaminated food or water it enters the host intestine via the stomach acid barrier and 

colonizes the distal ileum and colon of humans. Following colonization of the mucus and 

adhesion to the intestinal cell surface, C. jejuni perturbs the normal absorptive capacity of the 

intestine by damaging epithelial cell function either directly by cell invasion and/or the 

production of toxins, or indirectly via initiation of an inflammatory response (Ketley, 1997; 

Wooldrige & Ketley, 1997). As effective colonization requires chemotaxis, C. jejuni has 

evolved mechanisms to detect chemical gradients, which provide appropriate directionality 

towards mucus. Chemically mutagenized, nonchemotactic mutants of C. jejuni fail to colonize 

the suckling mice intestine (Takata et al., 1992). Furthermore, C. jejuni cheY null mutants, 

displaying a nonchemotactic phenotype, are unable to colonize chicks (Hendrixson & DiRita, 

2004) and mice or cause symptoms in infected ferrets (Yao et al., 1997). Thus, the 

chemotactic response of C. jejuni appears to be important in directing the organism to 

specific sites in the host’s intestinal tract.  

Acquisition of iron is another important pathogenicity factor for bacteria to cope with 

the severe iron limitation that occurs in their host environment (Braun & Killmann, 1999). No 

siderophores (small iron scavenger molecules) have so far been identified in C. jejuni (Field 

et al., 1986; Pickett et al., 1992), which is in agreement with the absence of putative genes 

encoding these factors in the C. jejuni genome sequences (Parkhill et al., 2000; Fouts et al., 

2005; Hofreuter et al., 2006). However, it has been reported that C. jejuni makes use of 

exogenous siderophores produced by other bacteria or the host (e.g. ferrichrome, 

enterobactin, and heme compounds) (Field et al., 1986; Palyada et al., 2004; Ridley et al., 

2006). Several putative uptake systems for these siderophores have been identified in the 

genomes of C. jejuni, and some of them have been functionally characterized (reviewed in 
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van Vliet et al., 2002). Recently presented data indicate the requirement of both ferric-

siderophore and ferrous iron transport systems for the colonization of the chick and highlight 

the importance of ferrous iron acquisition in the pathogenesis of C. jejuni (Palyada et al., 

2004; Naikare et al., 2006).  

Campylobacter jejuni is natural zoonotic, and therefore factors involved in cell survival 

and resistance to physiological stress are important for its successful transmission and 

infection. Campylobacter jejuni responds very actively to temperature shifts from 37°C to 

42°C, which may occur during transmission between different hosts, humans and birds, 

respectively. The global regulatory responses observed indicate that bacteria are able to 

adapt rapidly to new environments (Konkel et al., 1998; Stintzi et al., 2003). Recently,  

a critical role for the C. jejuni stringent response, regulated by spoT, in stationary phase 

survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance has 

been shown. Detailed analyses of a C. jejuni ∆spoT mutant revealed that the stringent 

response is in addition required for adherence, invasion, and intracellular survival in human 

epithelial cells (Gaynor et al., 2005). The superoxide dismutase protein SodB, the main 

component of the C. jejuni defense against oxidative damage, is also known to have  

a potential role in intraepithelial survival (Pesci et al., 1994; Purdy & Park 1994; Park, 1999). 

The identification of the gene encoding catalase, katA (Grant & Park; 1995), indicates that  

C. jejuni may have other determinants that form part of a defense system against oxidative 

stress. In agreement to this, a role of catalase in C. jejuni intra-macrophage persistence has 

been reported (Day et al., 2000).  

A combination of the unique characteristics of the flagellum and the spiral shape of 

the bacterial cell has been reported to give C. jejuni an unusually high level of motility 

(Ferrero & Lee, 1988). This motility helps the bacteria to overcome the clearing movement of 

peristalsis in the gut and enables them to enter and cross the viscous mucous layer covering 

the epithelium of the small and large intestine (Lee et al., 1986). The flagellum is one of the 

most intensively investigated pathogenicity determinant of C. jejuni. It is composed of basal 

body, hook and filament. The filament consists of multimers of flagellin and is attached by the 

hook protein to the basal body, which is embedded in the membrane and serves as a motor 

for rotation (Wassenaar & Blaser, 1999). The flagellar filament is comprised of two proteins, 

FlaA and FlaB (Guerry et al., 1990; Nuijten et al., 1990). Both are synthesized concomitantly, 

but flaA, which is regulated by σ28 (Guerry et al., 1990), is expressed at much higher levels 

than flaB, which is regulated by σ54 (Alm et al., 1993; Wassenaar et al., 1994; Hendrixson  

et al., 2001). The FlgS-FlgR two-component regulatory system is essential for flagellar 

biosynthesis (Hendrixson & DiRita, 2003; Wosten et al., 2004). Moreover, transcription of σ54-

dependent but not σ28-dependent flagellar genes in C. jejuni is associated with formation of 

the flagellar secretory apparatus, encoded in part by flhA,B, fliP, fliR genes (Hendrixson & 
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DiRita, 2003). The unsheathed flagellum exhibits phase (Caldwell et al., 1985; Diker et al., 

1992; Park et al., 2000) and antigenic variation (Harris et al., 1987; Alm et al., 1992). 

Furthermore, human volunteers dosed with a mixture of motile and nonmotile variants of  

C. jejuni excreted with stool only motile bacteria (Black et al., 1988). The flagellum has been 

shown to be required for colonization in a number of animal models (Morooka et al., 1985; 

Pavlovskis et al., 1991; Nachamkin et al., 1993; Wassenaar et al., 1993; Hendrixson & 

DiRita, 2004). It has also been reported to play an active role in the invasion of epithelial cells 

(Wassenaar et al., 1991; Grant et al., 1993; Yao et al., 1994) and, surprisingly, may have  

a role in adhesion (Yao et al., 1994). Thus the motility, needed to reach the intestinal cells 

and to establish close contact, is not the only consequence of flagellation.  

Campylobacter jejuni can either survive as free-living bacteria in the mucous layer or 

invade the gastrointestinal epithelium. Prior to invasion, the bacteria attach to the epithelial 

cells (Wassenaar & Blaser, 1999). Adherence of C. jejuni is a multifactorial event in which 

several binding factors may be required to bind to their respective receptors to achieve  

an efficient interaction with the host. The precise mechanism underlying C. jejuni adhesion to 

host cells has not been defined but a number of putative bacterial adhesins have been 

recognized. To date, the best-characterized C. jejuni adhesins are the Campylobacter 

adhesin to fibronectin (CadF) (Konkel et al., 1997; 2005), the jejuni lipoprotein A (JlpA)  

(Jin et al., 2001; 2003) and the periplasmic binding protein PEB1 (Pei at al., 1998). The CadF 

protein has been shown to mediate the binding of C. jejuni to fibronectin and to promote 

bacteria-host cell interactions (Konkel et al., 1997; 1999a; Monteville et al., 2003). A mutation 

in jlpA gene results in 19% reduction in adherence when compared to the C. jejuni wild-type 

isolate, but has no effect on C. jejuni invasion. In addition, pre-treatment of Hep-2 cells with 

recombinant JlpA reduces binding of C. jejuni to the cells in a dose-dependent fashion (Jin  

et al., 2001). Ablation of PEB1 affects adherence to and invasion of epithelial cells as well as 

colonization of mice (Pei at al., 1998). Other molecules proposed to function as adhesins 

include the flagellum, lipooligosacharide (LOS) (McSweegan & Walker, 1986; Fry et al., 

2000), the major outer membrane protein (MOMP, also called OmpE) (Moser et al., 1997; 

Schroder & Moser, 1997) and P95 (Kelle et al., 1998), but their adhesive properties are still 

not well characterized.  

The capability to translocate across the cell barrier is considered an important 

virulence attribute for some microbial pathogens as it allows access to underlying tissues and 

could promote their dissemination throughout the host (Konkel et al., 2001). The advantages 

for C. jejuni reaching the underlying tissue and submucosa include access to a different set 

of cellular molecules that serve as receptors and the fact that the bacteria are no longer 

subject to peristaltic action of the intestine. There exists evidence both for paracellular 

passage (Monteville & Konkel, 2002; Chen et al., 2006) and M-cell transcytosis of C. jejuni 
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(Walker et al., 1988; 1992; Kopecko et al., 2001). It has been shown that basolateral 

infection with C. jejuni causes a more rapid decrease in transepithelial electrical resistance 

(TER), comparable redistribution of tight-junction proteins, and secretion of more interleukin 

8 (IL-8) than infection from the apical surface (Chen et al., 2006). In addition, C. jejuni 

preferentially enters polarized cells via the basolateral membrane (Monteville & Konkel, 

2002). Moreover, MacCallum and co-workers (MacCallum et al., 2005) proposed that 

inhibition of absorptive cell function, changes in epithelial resistance and rearrangement of 

tight junctional proteins such as occludin represent a potential diarrheal mechanism of  

C. jejuni.  

Active participation of bacterial pathogens in the translocation of specific virulence 

factors into host cells for subverting cellular processes is a paradigm among a diverse group 

of bacterial pathogens, including C. jejuni (Konkel et al., 2004). Campylobacter jejuni 

synthesizes a set of proteins during co-culture with epithelial cells, some of which are 

secreted (Konkel & Cieplak, 1992; Konkel et al., 1993; Konkel et al., 1999b). The secreted 

proteins have been collectively referred to as Campylobacter invasion antigens (Cia proteins) 

(Konkel et al., 1999b). The functions of the secreted proteins are not yet known; however, 

insertional mutagenesis of ciaB encoding the secreted protein CiaB results in deficiency  

in the secretion of all Cia proteins and in a significant reduction in the number of internalized 

bacteria (Konkel et al., 1999b). Campylobacter jejuni does not encode a classical type III 

secretion system (T3SS) (Parkhill et al., 2000; Fouts et al., 2005; Hofreuter et al., 2006), 

thus, the flagellar export system has been proposed to secrete both flagellar and non-

flagellar proteins (Konkel et al., 2004; Song et al., 2004). Konkel and co-workers (Konkel  

et al., 2004) reported that the intact flagellar structure, containing the basal body, the hook 

and at least a partial filament, is required for CiaB protein secretion. They also showed that 

the flagellar export apparatus serves as the export apparatus for Cia proteins. Another lately 

characterized C. jejuni protein, FlaC, also requires the functional flagellar apparatus for its 

secretion. FlaC mutants form a morphologically normal flagellum and are highly motile,  

but are defective in invasion of epithelial cells (Song et al., 2004).  

In addition, the homologs of other secretion systems, namely the type IV secretion 

system (T4SS), have been identified on a large plasmid (pVir) in C. jejuni 81-176 (Bacon  

et al., 2000). In general, T4SSs are widespread in gram-negative bacteria and are involved in 

interbacterial DNA-transfer and protein transport, contributing to virulence (reviewed in 

Backert & Meyer, 2006). pVir is a 37.5-kb plasmid containing 54 predicted open reading 

frames (Bacon et al., 2002). Mutation of the plasmid genes comB3 and virB11, which encode 

two putative homologs of T4SS components, reduces adhesion and invasion in vitro 

comparing with the parental strain. Furthermore, the virulence of the virB11 mutant  

is reduced in the ferret diarrheal model. However, transfer of the plasmid to the sequenced 
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strain, NCTC 11168, does not increase the relatively low invasiveness of this isolate (Bacon 

et al., 2002).  

 In the last few years, a variety of toxic activities have been attributed to C. jejuni 

(reviewed in Wassenaar, 1997; Pickett, 2000). However, the cytolethal distending toxin CDT 

is the only verified C. jejuni toxin reported so far (Crushell et al., 2004). Apart from CDT, 

hemolysin and putative phospholipase A, no other toxin-like homologs could be identified in 

the sequenced strains (Parkhill et al., 2000; Fouts et al., 2005; Hofreuter et al., 2006) still, 

reports of a novel toxin-mediated activity continue to appear (Lee et al., 2000). CDT  

is encoded by three adjacent genes termed cdtA, cdtB, and cdtC (Pickett et al., 1996). All the 

C. jejuni isolates tested possess cdt genes, but the levels of expressed toxin activities are 

strain-dependent (Eyigor et al., 1999; Bang et al., 2001; AbuOun et al., 2005). CDT is  

a classical AB toxin composed of CdtB as the enzymatically active (A) subunit and of CdtA 

and CdtC as the heterodimeric (B) subunit, which is required for the delivery of CdtB into the 

target cells (Lara-Tajero & Galan, 2001). The CdtB exerts its effect as DNAase (Elwell & 

Dreyfus, 2000; Lara-Tajero & Galan, 2000). The chromatin disruption observed after 

transient expression of CdtB in cultured cells indicates that the cell death is caused by Cdt-

mediated DNA degradation, which is in turn responsible for the cell cycle arrest in G2/M 

phase (Lara-Tajero & Galan, 2000). The effects of CDT on cultured cells are profound, but 

little is known regarding the functional role of the toxin for bacterial pathogenesis in vivo. It is 

likely that CDT exerts its effect on the cells that normally undergo continuous replication, 

such as those that line the intestinal epithelium or those associated with the immune system. 

By inducing cell cycle arrest, the C. jejuni CDT toxin could influence the renewal and 

developmental process of epithelial cells to facilitate intestinal colonization, perhaps by 

increasing the number of cells that could be permissive for bacterial attachment. Likewise, 

CDT could influence the activity of cells of the immune system such as B or T cells by 

interfering with their developmental maturation into effector cells (Lara-Tajero & Galan, 

2002). In agreement to this assumptions, Fox and co-workers (Fox et al., 2004) 

demonstrated that the C. jejuni cdtB mutant is less efficient than the wild-type in colonizing 

mice, but not nuclear factor κB (NF-κB)-deficient mice. Despite 100% colonization of NF-κB-

deficient mice, the C. jejuni cdtB mutant induce significantly less gastritis. In contrast, the 

recent isolation of CDT-negative strains from cases of human enteric disease raised 

questions about the role of active CDT in the pathogenesis of campylobacteriosis (AbuOun 

et al., 2005).  
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3.4. Host cell factors involved in Campylobacter jejuni invasion  

 

Microbial internalization in host cells can occur by several described mechanisms. The co-

evolution of bacterial pathogens and their host has contributed to the development of very 

complex and sophisticated functional pathogen-host interfaces. Thus, well-adapted 

pathogens have evolved a variety of strategies to manipulate host cell functions precisely 

and initiate disease. Many invasive bacterial pathogens are known to interact with host cells 

via intimate biochemical crosstalk, stimulating signaling cascades in both the bacterium and 

the host that ultimately trigger rearrangements of the host cytoskeleton and cause 

internalization of the pathogen (reviewed in Knodler et al., 2001; Pizarro-Cerda & Cossart, 

2006). Bacterial invasion of human epithelial cells in vivo ultimately results in cellular injury, 

the consequent loss of cellular function and diarrhea. Therefore, the invasion of gut tissue 

cells has been proposed as an important pathogenic mechanism for C. jejuni. Early studies 

of intestinal biopsies from patients (van Spreeuwel et al., 1985), experimental studies in 

primates (Russel et al., 1993) and other experimental model animals (Babakhani et al., 1993) 

together with in vitro infection experiments with cultured human intestinal epithelial cells  

(De Melo et al., 1989; Grant et al., 1993; Oelschlaeger et al., 1993) supported this 

hypothesis. Histological examination has indicated pathology primarily in the colon (Black  

et al., 1988; Babakhani & Jones, 1993; Russell et al., 1993), with C. jejuni being observed 

within intestinal crypts, both close to the cell surface and inside intestinal epithelial cells 

(Babakhani et al., 1993; Babakhani & Jones, 1993; Russell et al., 1993) and mononuclear 

phagocytes infiltrating the submucosal lining (van Spreeuwel et al., 1985). Since then, the 

invasion of host target cells has been indicated as one of the primary reasons of tissue 

damage caused by C. jejuni in vivo (reviewed in Kopecko et al., 2001). As an in vitro model 

system to study C. jejuni invasion intestinal epithelial cells (INT-407) and C. jejuni  

81-176 strain are used world-wide. 81-176 is a clinical isolate exhibiting a high level of 

invasion of host cells and its entire genome sequence has been recently determined (Hu & 

Kopecko, 1999; Hu et al., 2006a; Hofreuter et al., 2006).  

Common signal transduction pathways in eukaryotic cells are initiated via activation 

of membrane-associated receptor protein kinases, which results in specific protein 

phosphorylation events, thereby activating host proteins (Kopecko et al., 2001). Recent 

studies have shown that inhibition of protein tyrosine kinases markedly reduces C. jejuni 

invasion (Wooldridge et al., 1996; Biswas et al., 2000; 2004; Hu et al., 2006a) and that  

C. jejuni infection induces tyrosine phosphorylation of several host cell proteins (Biswas  

et al., 2004; Hu et al., 2006a). Additionally, the heterotrimeric G proteins of the Gαi subfamily 

have also been implicated in various host signaling events necessary for C. jejuni entry 

(Wooldridge et al., 1996). Furthermore, host cells normally respond to transient increases in 
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intracellular free Ca2+ levels by rearranging the cytoskeleton or by upregulating specific 

nuclear gene transcription machineries. Campylobacter jejuni induces Ca2+ release from host 

intracellular stores, which is essential for its uptake into the host cells (Hu et al., 2005). 

Numerous reports suggest microtubule-dependent (actin-filament-independent) and/or actin-

filament-dependent mechanisms by which C. jejuni invades gut tissue cells but no consensus 

has been established (Oelschlaeger et al., 1993; Hu & Kopecko, 1999; Biswas et al., 2000, 

2003; Monteville et al., 2003). Hu and Kopecko (Hu & Kopecko, 1999) reported that  

a successful interaction between C. jejuni ligand and host cell receptor activates dynein 

bound in caveolae leading to invagination of the dynein-bound membrane, resulting in 

engulfment of the adjacent adherent bacterium (Hu & Kopecko, 1999). Once internalized,  

C. jejuni can survive for extended periods of time within epithelial cells and ultimately induce 

a cytotoxic response in vitro (Konkel et al., 1992; Day et al., 2000). Intracellular survival may 

enhance its ability to evade the host immune system, cause relapse of the acute infection, 

and establish long-term persistent infections (Lastovica, 1996; Day et al., 2000).  

Although major pathogenicity and virulence determinants of C. jejuni, shown in  

Table 1, represent bacterial factors which may also be involved in host cell invasion, their 

exact role is not well characterized and the mechanism by which C. jejuni triggers eukaryotic 

cell entry is still poorly understood. Very limited information is currently available concerning 

not only bacterial but also the host cell factors involved in this process (Biswas et al., 2004).  

 

3.5. Host inflammatory responses 

 

A feature of C. jejuni induced pathology is its ability to induce inflammatory diarrhea. 

Although very little is known about the mechanisms by which C. jejuni induces diarrhea, it is 

likely that its capability to stimulate the production of proinflammatory cytokines plays  

a central role in this process. Upon C. jejuni infection, increased expression and release of 

proinflammatory cytokines that are dependent on NF-κB and mitogen-activated protein 

(MAP) kinase signaling pathways has been detected in cultured epithelial cells (Hickey et al., 

1999; 2000; Mellits et al., 2002; Hu & Hickey, 2005; Watson & Galan, 2005; Chen et al., 

2006; Johanesen & Dwinell, 2006) monocytes (Jones et al., 2003; Siegesmund et al., 2004; 

Hickey et al., 2005) and dendritic cells (DCs) (Hu et al., 2006b). 

The intestinal epithelium forms not only a crucial physical barrier between the body 

and the luminal environment but also, by producing a defined set of chemoattractant 

molecules, actively participate in innate and adaptive immune surveillance, thus forming the 

primary defense against many mucosal enteropathogens. During C. jejuni infection in vitro, 

human epithelial cells liberate interleukin 8 (IL-8), a potent proinflammatory cytokine (Hickey 

et al., 1999; 2000; Johanesen & Dwinell, 2006). Such innate immune response may help limit 
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the extent of the infection but may be partially responsible for the symptoms. Additionally,  

C. jejuni infection induces transcription and secretion of growth-related oncogene α (GROα) 

and γ (GROγ), macrophage inflammatory protein 1 α (MIP-1α) and 3 α, (MIP-3α), monocyte 

chemoattractant protein 1 (MCP-1) and gamma interferon-inducible protein 10 (γIP-10) in 

epithelial cells in vitro (Hu & Hickey, 2005; Johanesen & Dwinell, 2006). Signaling pathways 

activated in C. jejuni-infected epithelial cells share features with host innate immune 

responses mediated by members of the Toll-like receptor (TLR) and nucleotide-binding 

oligomerization domain (NOD) family of proteins that recognize conserved microbial 

components (Akira & Takeda, 2004; Chen et al., 2006; Johanesen & Dwinell, 2006). 

Chemokine secretion from epithelial cells requires activation of the transcription factor  

NF-κB, live bacteria and is highly correlated with the efficiency of C. jejuni invasion in vitro 

(Johanesen & Dwinell, 2006). However, C. jejuni lipooligosaccharide and flagellin are not 

potent TLR ligands (Hu & Hickey, 2005; Watson & Galan, 2005; Johanesen & Dwinell, 2006) 

in opposition to lipopolysaccharide and flagellin from Escherichia coli (Andersen-Nissen et 

al., 2005) and Salmonella enterica serovar Typhimurium (Gewirtz et al., 2001), respectively. 

Johanesen & Dwinell (Johanesen & Dwinell, 2006) proposed a novel mechanism of 

proinflammatory chemokine production whereby C. jejuni avoids signaling trough TLR and 

speculated that intracellular pattern recognition receptors, such as NOD proteins (Viala et al., 

2004), may be involved in C. jejuni signaling in the host. In contrast, Watson and co-workers 

(Watson et al., 2007) have recently shown that mice deficient in the adaptor protein myeloid 

differentiation factor (MyD88), which is required for signaling trough most TLRs (Akira et al., 

2001), could be efficiently and persistently colonized by C. jejuni, indicating the important role 

of TLRs in the control of C. jejuni infections. One C. jejuni-derived factor that can induce IL-8 

production from epithelial cells in vitro is CDT (Hickey et al., 1999), but CDT is not required 

for induction of IL-8 release from cultured INT-407 cells by live C. jejuni infection, indicating 

that IL-8 may be induced by other stimuli (Hickey et al., 2000). Thus, the stimulatory signal 

by which C. jejuni triggers innate immune responses in epithelial cells remains to be 

investigated. The up-regulation of chemoattractants, whose major known function is to attract 

cells important for antigen presentation and the development of the host adaptive immune 

response, implicates the epithelium as a key regulator of mucosal immunity in C. jejuni 

infection. Most bacteria eventually will be phagocytosed by leukocytes or macrophages in the 

reticuloendothelial system in vivo (Wassenaar & Blaser 1999). Survival of C. jejuni within 

monocytes has been observed in vitro for up to seven days and this intracellular survival has 

been used to explain the complication of long-term bacteremia, since such a niche could 

provide the bacteria with an immunologically privileged site (Kiehlbauch et al., 1985; Hickey 

et al., 2005). However, in other in vitro studies the macrophages (Wassenaar et al., 1997) 

and DCs (Hu et al., 2006b) were able to kill all tested strains with high efficiency, findings in 
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agreement with the self-limiting nature of most C. jejuni infections. Thus, DCs may play a key 

role in antigen processing and directing the development of the adaptive immune response in 

campylobacteriosis (Hu et al., 2006b). As demonstrated by the higher incidence, severity, 

and relapse of C. jejuni infections in HIV-infected patients, adaptive immunity is important to 

limit and clear the bacterial infection (Sorvillo et al., 1991; Morpeth & Thielman, 2006). Since 

epidemiological observations in developing countries suggest that the high-level exposure to 

C. jejuni leads to immunity with protection from disease, the development of a vaccine 

against C. jejuni seems feasible (Scott, 1997). However, it has been hindered by the lack of 

understanding of the virulence mechanisms, antigenic complexity of these organisms and by 

the theoretical risk of triggering immunological sequel, such as GBS. In view of these 

findings, a vaccine should be carefully designed and a subunit vaccine may be preferable to 

a whole cell vaccine (Kopecko, 1997; Girard et al., 2006).  

 

3.6. Campylobacter jejuni surface structures and their role in evasion of host 

immune responses  

 

Generation of antigenic variation is one of the mechanisms enabling bacteria to express new 

variants of surface components and evade host immune responses during infection (Finlay & 

Falkow, 1997; Abramovitch et al., 2006; Pizarro-Cerda & Cossart, 2006). Antigenic variations 

can be achieved by several mechanisms including slipped-strand mispairing, exchange of 

genes and entire clusters by horizontal transfer or contingency gene variations. 

Rearrangement of genetic loci involved in expression of major antigens, an efficient 

mechanism for generation of diversity, is employed by a wide range of microbes (Henderson 

et al., 1999; Tu et al., 2005).  

Campylobacter jejuni possesses enormous capacity to produce a variety of 

carbohydrates. Presence of several cell surface glycoconjugates such as a capsule and  

N-linked glycosylation pathway, as well as the lipooligosacharide (LOS) and the O-linked 

glycosylation system that decorates the flagellum has recently been reported (reviewed in 

Szymanski et al., 2003; Karlyshev et al., 2005a; Szymanski & Wren, 2005). Interestingly,  

C. jejuni genome has several hypervariable homopolymeric repeats responsible for slipped-

strand mispairing and phase variation in glycan moieties present in LOS, capsule and 

flagellum (Parkhill et al., 2000; Fouts et al., 2005; Hofreuter et al., 2006). LOS and capsule 

are important surface structures in C. jejuni that function in the interactions of the organism 

with the environment. Modulation of the expression of these surface structures is likely to be 

important C. jejuni strategy for avoiding host defenses and possibly adaptation to dynamic 

and hostile environments (Karlyshev et al., 2005a). Various C. jejuni LOS structures have 

been described (reviewed in Moran et al., 2000). The degree of genetic variation that 
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generates the diversity apparent in LOS structure signifies its functional importance for  

C. jejuni (Karlyshev et al., 2005a). The LOS sialic acid (NeuNAc) moieties affect 

immunogenicity and serum resistance of C. jejuni (Guerry et al., 2000; 2002) and resemble 

human gangliosides (reviewed in Yuki et al., 2005; Yuki & Koga, 2006). This molecular 

mimicry and the subsequent generation of cross reacting antibodies against gangliosides are 

though to play a role in the ability of some strains of C. jejuni to induce GBS (Gilbert et al., 

2002; Godschalk et al., 2004; Yuki et al., 2004, 2005; Yuki & Koga, 2006). Nevertheless, 

given that most enteric infections with C. jejuni strains expressing ganglioside mimics do not 

result in GBS (Nachamkin et al., 1999; Nachamkin, 2002), suggest that other unknown host 

and/or bacterial factors are also essential. However, the latter factors remain unknown 

(Karlysev et al., 2005a).  

Another class of C. jejuni cell surface molecules with a potential for structural 

variation is capsular polysaccharide (CPS) (Karlyshev et al., 2005a). It is the major antigenic 

component of the classical Penner serotyping system distinguishing C. jejuni into more than 

60 groups (Moran & Penner, 1999; Karlyshev et al., 2000). CPS undergoes antigenic 

variation at high frequency (Bacon et al., 2001). There exist multiple genetic mechanisms 

underlying the structural heterogeneity in CPS including exchange of capsular genes and 

entire clusters by horizontal transfer, contingency gene variation, gene duplication, deletion 

and fusion (Karlyshev et al., 2005b). Variation in the CPS structure may be essential for 

escape from host immune surveillance and this is supported by the finding that loss of CPS 

is associated with attenuated C. jejuni virulence in vitro and in ferret diarrheal disease model 

(Bacon et al., 2001). Moreover, the CPS of C. jejuni has been reported to have a role in 

increasing surface hydrophilicity and serum resistance (Bacon et al., 2001). 

Campylobacter jejuni flagellins are among the most heavily glycosylated prokaryotic 

proteins described (Thibault et al., 2001; Logan et al., 2002). Recently, the complete flagellin 

O-linked glycosylation locus of C. jejuni has been characterized (Guerry et al., 2006;  

Mc Nally et al., 2006). Although the glycans show variability among strains and can confer 

serospecificity (Logan et al., 2002), the major carbohydrate modifications on both flagellins 

are pseudaminic acid (Pse5NAc7NAc), a sugar that is structurally similar to sialic acid, and 

its acetamidino derivative (PseAm) (Thibault et al., 2001). Glycosylation is not only essential 

for flagellar assembly and consequent motility (Linton et al., 2000; Thibault et al., 2001; 

Logan et al., 2002; Goon et al., 2003) but the glycans on flagellin play also a role in 

autoagglutination and pathogenesis of C. jejuni (Golden & Acheson, 2002; Guerry et al., 

2006). The potential for generating structural diversity in the flagellin owing to O-linked 

glycosylation suggest that it enables the bacteria to generate antigenic diversity in this 

surface exposed and immunodominant protein. This would suggest a role in immune 

evasion, probably in avian part of the life cycle (Szymanski et al., 2003).  
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Significantly, unlike loci involved in C. jejuni capsule, LOS and flagellin biosynthesis 

which are highly variable among different strains (Linton et al., 2000; Bacon et al., 2001; 

Dorrell et al., 2001; Gilbert et al., 2002; Guerry et al., 2002; Karlyshev et al., 2002; 2005a; 

Logan et al., 2002), the N-linked glycosylation locus is highly conserved even among some 

other Campylobacter species (Szymanski et al., 2003; Szymanski & Wren, 2005). 

Campylobacter jejuni is unique for a prokaryotic organism with respect to the presence of  

a general system of N-linked protein glycosylation (Pgl), affecting a substantial number of 

periplasmic and surface proteins (Szymanski et al., 1999; Linton et al., 2002; Wacker et al., 

2002; Young et al., 2002; Larsen et al., 2004). The proteins glycosylated via the pgl locus 

harbour a heptasaccharide motif that contains diacetamidobacillosamine (DAB) (Wacker  

et al., 2002; Young et al., 2002; Linton et al., 2005; Vijayakumar et al., 2006). The loss of the 

carbohydrate components appears to cause drastic reduction in reactivity of these 

glycoproteins with antisera, indicating that the glycosyl moieties may be immunodominant. 

Moreover, C. jejuni pgl mutants have a reduced ability to adhere to and invade human 

epithelial cells and to colonize the intestinal tract of mice (Szymanski et al., 2002) and 

chickens (Hendrixson & DiRita, 2004; Jones et al., 2004; Karlyshev et al., 2004), reinforcing 

the importance of protein glycosylation for the pathogenesis of C. jejuni (Szymanski et al., 

2002). However, the precise functional contribution of N-linked glycosylation to the 

pathogenesis of C. jejuni remains unclear (Larsen et al., 2004). In contrast to the O-linked 

glycan, the relative conservation of the N-linked glycan argues against a role in avoidance of 

host defense for this modification (Szymanski et al., 2003). Possible functions of N-linked 

glycosylation may include protection against proteolytic cleavage, enhancement of protein 

stability or signals for cellular sorting as has been suggested for analogues eukaryote  

N-linked glycans (Herrmann et al., 1996; Helenius & Aebi, 2001). 

 

3.7. Pathogenicity and virulence factors of Campylobacter fetus 

 

The pathogenesis of C. fetus disease is even less well defined than that of C. jejuni 

(Graham, 2002). Campylobacter fetus is known to possess flagella (McCoy et al., 1975) and 

cdt genes (Asakura et al., 2007) but their role in C. fetus pathogenesis has not been 

investigated yet. C. fetus was shown to adhere and invade intestinal epithelial cells but the 

pathogenicity factors playing a role in these processes are unknown (Graham, 2002). Unlike 

C. jejuni, C. fetus expresses a paracrystalline surface layer (S-layer) on its outermost cell 

surface (Dubreuil et al., 1988; 1990; Fujimoto et al., 1991). S-layer is composed of acidic 

high-molecular-weight S-layer proteins (SLPs) encoded by up to nine homologous genes 

(sapA1 to sapA8) in each strain (Dworkin et al., 1995; Garcia et al., 1995; Tu et al., 2001a). 

The S-layer is the major pathogenicity factor of C. fetus (Pei & Blaser, 1990; Blaser & Pei, 
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1993; Grogono-Thomas et al., 2000). The SLPs play a critical role in C. fetus pathogenesis 

by protecting the bacterium from phagocytosis and serum killing, via impairing C3b binding 

(Blaser et al., 1987; 1988; Blaser & Pei, 1993). Moreover, SLPs are essential for host 

colonization (Grogono-Thomas et al., 2000). In addition, the SLPs are able to undergo 

antigenic variation (Dubreuil et al., 1990; Garcia et al., 1995; Wang et al., 1993) by DNA 

invertion (Dworkin & Blaser, 1996; 1997a; 1997b; Tu et al., 2001b; 2003). Each sapA 

homologue can reciprocally recombine with the others, with rearrangements permitting the 

creation of new sapA homologues within the sap locus. This genomic plasticity, based on 

recombination of homologues units, can result in substantial antigenic variation, beyond that 

produced by independent genes, leading to a repertoire of great complexity (Tu et al., 2003). 

Generation of antigenic diversity allows C. fetus to escape the immune defense of the host 

and permits the pathogen to endure an immunologically hostile environment (Blaser & Pei, 

1993). 

 The multiple immune system evasion mechanisms levied by the S-layer undoubtedly 

facilitate C. fetus survival within a host, contributing to the persistence observed in C. fetus 

infections (Neuzil et al., 1994; Tu et al., 2005).  

 

3.8.  A model of Campylobacter jejuni pathogenesis 

 

The interplay between target cells and variety of pathogenicity factors modulates multiple 

host responses, leading to enteritis. Figure 2 presents a hypothetical model of C. jejuni 

pathogenesis which is based on articles discussed above.  
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Fig. 2. Hypothetical model of C. jejuni pathogenesis. (1) C. jejuni initially colonizes 
the mucous layer of the jejunum and ileum, and then the colon. (2) C. jejuni adheres to 
the apical surface at the perijunctional region of host intestinal epithelial cells, via 
adhesins including CadF, JlpA, and PEB1. (3) Upon contact with cells C. jejuni 
synthesizes and secretes Campylobacter invasion antigens (Cia proteins). (4) Host 
signaling cascades trigger microfilaments (MF) and microtubules (MT) rearrangements. 
(5) These events are crucial for C. jejuni host cells invasion. (6) C. jejuni CDT toxin 
induces host cell cycle arrest, apoptosis and proinflammatory cytokine, IL-8, secretion. 
(7) Opening of tight junctions (TJ) and disruption of the epithelial barrier by CDT and 
intracellular C. jejuni enable (8) bacterial transcytosis via a “leaky” paracellular pathway 
to (9) the basolateral surface where they continue to invade cells and induce host 
proteins phosphorylation, activation of PI3 kinase and the release of Ca2+ from 
intracellular stores. (10) C. jejuni survive and replicate, at least to some extent, within 
intracytoplasmic vacuoles. (11) During infection epithelial cells liberate cytokines: IL-8, 
GROα,γ, MIP-3α, MCP-1, γIP-10 which lead to recruitment of polymorphonuclear 
leucocytes (PMNs), macrophages (Mφ), dendritic cells (DCs) and lymphocytes to the site 
of infection. (12) Activated macrophages release several proinflammatory cytokines, 
such as IL-1α,β, IL-6, IL-8, TNFα. (13) The IL-12 micro-environment induced by 
maturated DCs is particularly important for (14) shifting CD4+ helper response into 
prominent Th1 type which may play a key role in the development of the adaptive 
immune response in campylobacteriosis. (15) The loss of epithelial integrity may cause 
the net loss of fluid, which also contains blood, protein, and inflammatory cells, into 
lumen thus (16) causing diarrhea and enteritis. 
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3.9. Aim of the study 

 

Campylobacter infections are the leading cause of bacterial diarrhea in the developed world 

and therefore present a significant challenge to public health. Despite their importance, 

effective control of Campylobacter in the food chain and the design of disease prevention 

strategies are hindered by a poor understanding of pathogenesis of the organisms. Despite 

the array of virulence factors identified so far, it has not been possible to develop a vaccine. 

Further progress in both understanding of biological significance of the Campylobacter 

pathogenicity factors and the nature of the bacterial interactions with the host during invasion 

process will lead to new strategies for detecting, controlling, and reducing Campylobacter 

infections. This will help to decrease the human illness in the long term and ultimately reduce 

the economic loss because of lost working hours and clinical testing costs. 

 

The present study was performed to characterize bacterial pathogenicity factors, which are 

involved in invasion process of C. jejuni and C. fetus.  

 

1. The first aim of this study was to determine the genetic and functional diversity of 

CadF protein among Campylobacter strains. For this purpose, the expression of 

CadF proteins of a large number of C. jejuni and C. coli isolates of human and animal 

origin should be investigated and the role of CadF in the attachment and 

internalization of INT-407 epithelial cells should be determined. 

2. The next aim was to analyze the interaction of C. jejuni with the surface of INT-407 

epithelial cells by high resolution field emission scanning electron microscopy 

(FESEM) and to investigate the functional importance of small Rho GTPase members 

during host cell entry of C. jejuni with use of specific GTPase-modifying toxins, 

inhibitors, siRNA and GTPase expression constructs. Furthermore, to identify 

bacterial factors involved in C. jejuni-induced GTPase activation several isogenic 

mutants of C. jejuni pathogenicity factors should be tested. 

3. Subsequently, host signal transduction events upstream of C. jejuni-induced GTPase 

activation ought to be examined and importance of the ß1 integrins, epidermal growth 

factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and the 

focal adhesion kinase (FAK) in host cell invasion of C. jejuni should be determined, 

using ß1- and FAK-deficient cell lines, expression constructs and inhibitors.  

4. Finally, the role of the surface array protein SapA in infection with Campylobacter 

fetus should be established by SapA cloning, purification and in vitro tests as well as, 

by examination of SapA-non-expressing strains. 
 

The results of this study should provide a detailed understanding of unique mechanism by 

which C. jejuni invade host target cells.  
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4. Materials & Methods 
 

4.1. Campylobacter strains and growth conditions 

 

Campylobacter jejuni, C. coli and C. fetus wild-type isolates and their isogenic mutants used 

in this study were provided by cooperation partners and are listed in Table 2. 

 

Table 2. Campylobacter strains used in this study. 
 

 

Strains
 a, b

 

 

Origin  

 

C. jejuni and C. coli wild-type isolates 
 

 

Han 36, 1991, 2371, Han 35, 503, Han 153, 
K1102/03, av245, av352 

Prof. Dr. Thomas Alter, Federal Institute for Risk 
Assessment, Unit Food Hygiene and Safety 
Concepts, Berlin, Germany 
 
 

158/96, 157/96, 73 Di, 100204ZH0021, 151003Z- 
H0099, 201004ZH0078, 51/89, 230205ZH0017, 
230205ZH0018, C130 
 

Dr. Ingrid Hänel, Federal Research Institute for 
Animal Health, Jena, Germany 

Alk1116, G447, G448, G450, G451, G427, 
Alk1158, G464, G465, G467, Alk1179, Alk1184, 
Alk1185, Alk1187, G472, G477, G478, G479, 
G481, G482, Alk1290, Alk1295, G487, G500, 
G510, G506, Alk1233, Alk1282 
 

Dr. Annette Schliephake, Federal Institute of 
Saxonia Anhalt (Landesamt für Verbraucher- 
schutz), Stendal, Germany 

CDC 2004-341 Prof. Dr. Omar A. Oyarzabal, Department of 
Poultry Science, Auburn University, Auburn, USA 
 

RM1221, ATCC43430, ATCC43431, NCTC 
11168, RM1849, 81-176, 81-176 pWM1007-gfp 
 

Dr. William G. Miller, USDA, ARS, WRRC, 
Produce Safety and Microbiology Research Unit, 
Albany, USA 
 

ST3046, 1543/01 Institute of Medical Microbiology, Magdeburg, 
Germany 
 

 

C. jejuni wild-type isolates and their 
isogenic mutants 

 

 

F38011 and F38011∆cadF Prof. Dr. Michael E. Konkel, School of Molecular 
Biosciences, Center for Biotechnology, 
Washington State University, Pullman, USA 
      

81116 and 81116∆cadF Prof. Dr. Jos P. M. van Putten, Department of 
Infectious Diseases and Immunology, Utrecht 
University, Utrecht, The Netherlands  
 

84-25, 84-25∆kpsS, 84-25∆kpsS/kpsS,    
84-25∆waaF, 84-25∆waaF/waaF, 81-176,  
81-176∆pEB1A, 81-176∆flaA/B, 81-176∆flhA 
     

Prof. Martin J. Blaser, Department of Medicine, 
New York University School of Medicine, New 
York, USA 
 
 

81-176∆cdtB Prof. Patricia Guerry, Enteric Diseases 
Department, Naval Medical Research Center, 
Silver Spring, Maryland, USA 

 

C. fetus wild-type isolates and their 
mutants 

 

 

S1-, S1+, S2-, S2+, S3-, S3+ Prof. Shuji Fujimoto, Department of Bacteriology, 
Faculty of Medicine, Kyushu University, Fukuoka, 
Japan 

MGH 97-2126, MGH 97-3574 Prof. David B. Schauer, Massachusetts Institute 
of Technology, Cambridge, Massachusetts, USA 
 

5361 Institute of Medical Microbiology, Magdeburg, 
Germany 

  

a Further characteristic of these strains is presented in Table 8 and Table 9 in Results 
chapter. 
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b Refers to the Table 2 on page 23. Species identification, performed by the cooperation 
partners, was based on biochemical tests (catalase, oxidase, urease activity, hippurate 
and indoxyl acetate hydrolysis, and sensitivity to cephalothin and nalidixic acid), and  
a multiplex PCR assay (Cloak & Fratamico, 2002; Oyarzabal et al., 2005). 

 

 

All Campylobacter strains were grown on Campylobacter blood-free selective Agar Base 

(Oxoid Basingstoke, UK) containing Campylobacter growth selective supplement (Oxoid) or, 

when appropriate, on Mueller-Hinton (MH) agar amended with antibiotics at 37°C under 

microaerophilic conditions (generated by CampyGen (Oxoid) in AnaeroJar (Oxoid)) for  

48 hrs.  

 
 

Campylobacter Blood Free 

Selective Agar Base 

  

 

Mueller-Hinton-Agar  

 

  

per liter 
 

    

per liter  
 

 

Nutrient Broth No. 2  25.0 g  Beef infusion solids  4.0 g 
Bacteriological charcoal  4.0 g  Casein hydrolysate  17.5 g 
Casein hydrolysate  3.0 g  Starch 1.5 g 
Sodium desoxycholate 1.0 g  Agar  15.0 g 
Ferrous sulphate  0.25 g     

Sodium pyruvate  0.25 g     
Agar  12.0 g    
     

 
 

 

Campylobacter Selective 

Supplement 

 

 

 

per liter 
 

 

Cefoperazone 32.0 mg 

Amphotericin B 10.0 mg 
  

 
 

 

Antibiotics 

 

Final 

concentration 

  

Chloramphenicol 4 µg/ml 
Tatracycline 10 µg/ml 
Kanamycin 20 µg/ml, 

 resp. 200 µg/ml* 
  

* Used for selection of Campylobacter cells expressing pWM1007-gfp (Miller et al., 2000). 
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4.2. Escherichia coli (E. coli) strains and growth conditions 

 

E. coli strains used in this work are presented in Table 3. 

 

Table 3. E. coli strains used in this study. 
 

 

Strain 

 

Genotype 

  

TOP10 F– mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 

∆lacX74 recA1 araD139 ∆(ara-leu)7697 galU 
galK rspL (StrR) endA1 nupG     

  

BL21 F– ompT hsdSB(rB– mB–) gal dcm 
  

 

Cultivation of E. coli was carried out on Luria-Bertani (LB) and Yeast tryptone medium 2xYT 

at 37ºC with shaking at 200 rpm or on LB agar plates. All strains were kept as Brain Heart 

Infusion (BHI)-20% (v/v) glycerol stock cultures at -70°C.  

 
 

LB medium 
a
 

   

2xYT 

 

 

  

per liter 
 

   

per liter 
 

 

tryptone 10.0 g  tryptone 16.0 g 

yeast extract 5.0 g  yeast extract 10.0 g 

NaCl 10.0 g  NaCl 10.0 g 
     

a 18 g/L agar was added to media for preparation of agar plates. 
 

 

BHI medium 

 

 

 

per liter 
 

 

BHI 37.0 g 

  

 

For selection of antibiotic resistant E. coli, sterile-filtered antibiotics were added to the media. 

 

 

Antibiotics 

 

Final 

concentration 

  

Ampicillin 100 µg/ml 
Kanamycin 30 µg/ml 
  

 

 

4.3. Plasmids 

 

Plasmids used in this work are presented in Table 4. 
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Table 4. Plasmids used in this study. 
 

 

Plasmid 

 

Marker/characteristics 

 

Origin/References 

   

pRK5 ColE ori, CMV Promoter, MCS, 
SV40 PolyA, SV40 ori, f1 ori, 
AmpR , c-Myc  

BD Biosciences, San Diego, 
USA 

pRK5-Rac1-Q61L, pRK5-RhoA-
G14V, pRK5-Cdc42-Q61L 

pRK5 constructs containing 
cDNAs of c-Myc-tagged 
constitutively-active GTPase 
mutants  

Prof. Laura Machesky, School of 
Biosciences, The University of 
Birmingham, UK; Caron & Hall, 
1998 

pRK5-Rac1-T17N, pRK5-RhoA-
T19N, pRK5-Cdc42-T17N 

pRK5 constructs containing 
cDNAs of c-Myc-tagged 
dominant-negative GTPase 
mutants 

Prof. L. Machesky; Caron & Hall, 
1998 

pRK5-sapA pRK5 construct containing 
cDNA of c-Myc-tagged surface 
array protein  

This study 

pcDNA3.1; pcDNA3.1-NT-GFP 
 
 

CMV Promoter, T7 Promoter,  
MCS, BGH PolyA, SV40 ori, f1 
ori, SV40 PolyA, pUC ori, AmpR , 
NeoR; (GFP) 

Invitrogen, Karlsruhe, Germany 
 

pcDNA3.1-NT-GFP-Cdc42-
T17N 

pcDNA3.1-NT-GFP construct 
containing cDNA of GFP-tagged 
dominant-negative Cdc42 
mutant 

Prof. Dr. Ilan Rosenshine, 
Hebrew University, Tel Aviv, 
Israel; Ben-Ami et al., 1998 
 

pcDNA3.1-FAK, pcDNA3.1-FAK 
Y397F, pcDNA3.1-FAK K454R, 
pcDNA3.1-FAK Pro–, pcDNA3.1-
FAK Y925F 

pcDNA3.1 constructs containing 
cDNAs of HA-tagged wild-type 
FAK or different FAK mutants 
 

Prof. Christof Hauck, Chair of 
Cell Biology, University of 
Konstanz, Konstanz, Germany; 
Sieg et al., 1999 

PDGFRß, DN-PDGFRß  constructs containing cDNAs of 
wild-type PDGFRß or dominant-
negative PDGFRß mutant 
 

Prof. Tony Hunter, The Salk 
Institute, Molecular Biology and 
Virology Laboratory, University 
of California, San Diego, La 
Jolla, USA 

EGFR, DN-EGFR constructs containing cDNAs of 
wild-type EGFR or dominant-
negative EGFR mutant 

Prof. Gordon Gill, Department of 
Medicine, University of 
California, San Diego, La Jolla, 
USA 

pEGFP-C2 CMV Promoter, EGFP, MCS, 
SV40 PolyA, f1 ori SV40 
Promoter, SV40 ori, NeoR, KanR 
HSV TK PolyA, pUC ori 

BD Clontech, Heidelberg, 
Germany 

pEGFP-C2-Vav-2, pEGFP-C2-
Vav-2 Y172/159F, pEGFP-C2-
Vav-2 R425C, pEGFP-C2-Vav-2 
W673R and pEGFP-C2-Vav-2 
G693R 

pEGFP-C2 constructs 
containing cDNAs of wild-type 
GFP-tagged Vav-2 or different 
Vav-2 mutants 

Prof. Laszlo Buday, Department 
of Medical Chemistry, 
Semmelweis University Medical 
School, Budapest, Hungary; 
Tamas et

 
al., 2003 

pLP-CMV-Myc CMV Promoter, SV40 SD/SA, c-
Myc, loxP, SV40 PolyA, pUC ori, 
AmpR ,  

BD Clontech, Heidelberg, 
Germany 

pLP-CMV-Myc-Vav-2,  
pLP-CMV-Myc-DN Vav-2 

pLP-CMV-Myc constructs 
containing cDNAs of GFP-
tagged wild-type Vav-2 or 
dominant-negative Vav-2 mutant 

Prof. Ch. Hauck; Schmitter et 
al., 2007 

pCR4-TOPO pUC ori, lac Promoter, LacZα-
ccdB, AmpR , KanR 

Invitrogen 

pCR4-TOPO-sapA pCR4-TOPO construct 
containing cDNA of surface 
array protein 

This study 

pGEX-4T-1 pBR322 ori, lac I
q, tac Promoter, 

GST, thrombin recognition site, 
MCS, AmpR 

Amersham Biosciences, Upsala,  
Sweden 

pGEX-4T-1-sapA pGEX-4T-1 construct containing 
cDNA of surface array protein 
 

This study 
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4.4. Eukaryotic cells and cell culture conditions 

 

Cells used in this work, listed in Table 5, were grown in indicated media with heat inactivated 

(56°C, 30 min) fetal bovine serum (FBS) at 37°C in a humidified, 5% CO2 incubator and were 

subcultured every two to three days after reaching 90% confluency. Briefly, cells were 

harvested by trypsin-EDTA treatment, re-suspended in fresh serum-containing medium and 

dispensed into new culture flask or wells (Greiner Bio-one GmbH, Frickenhausen, Germany).  

 

Table 5. Eukaryotic cells used in this study. 
 

 

Cell line 

 

Characteristics 

 

Origin/References 

 

Human cell lines 
 

  

 
 

INT-407 Embryonic intestinal epithelial 
cells, adherent 

ATCC CCL-6 

HeLa Cervix epithelial carcinoma cells, 
adherent 

ATCC CCL-2 

THP-1 Leukemic monocytes, 
suspension 

ATCC TIB-202 

 

Mouse cell lines 
 

  

GD25 Integrin subunit ß1-deficient 
fibroblasts, adherent 

Prof. Reinhard Fässler, 
Department of Molecular 
Medicine, Max Planck Institute 
of Biochemistry, Martinsried, 
Germany; Fässler et al., 1995 
 

GD25-ß1A GD25 stably re-expressing wild-
type ß1A 

Prof. R. Fässler; Wennerberg et 
al., 1996 

GD25-ß1ATT788-9AA GD25 stably re-expressing 
mutated integrin subunit ß1A 

Prof. R. Fässler; Wennerberg et 
al., 1998 

GD25-ß1AY783/795F GD25 stably re-expressing 
mutated integrin subunit ß1A 

Prof. R. Fässler; Wennerberg et 
al., 2000 

FAK-/- , here called FAK (-) fibroblasts derived from FAK-
deficient mouse embryos 

Prof. Ch. Hauck; Sieg et al., 
1999 

DA2, here called FAK (+) FAK (-) stably re-expressing HA-
epitope-tagged FAK 

Prof. Ch. Hauck; Sieg et al., 
1999 

   

 
 

Cell line
 
 

 

Medium  

  

INT-407 Eagle’s Minimum Essential Medium (MEM) containing 2 mM  
L-glutamine and Earle’s salts, 100 units (U)/ml penicillin, 100 µg/ml 
streptomycin, 10% (FBS) (Invitrogen) 
 

HeLa Roswell Park Memorial Institute Media (RPMI) 1640 containing  
2 mM L-glutamine, 25 mM HEPES, 100 U/ml penicillin, 100 µg/ml 
streptomycin, 0.25 µg/ml amphotericin B, 10% FBS (Invitrogen) 
 

THP-1 RPMI 1640 containing 2 mM L-glutamine, 25mM HEPES, 10% FBS  
 

GD25 Dulbecco’s Modified Eagle Medium (D-MEM) containing 4500 mg/L 
D-glucose, 4 mM L-glutamine, 110 mg/L sodium pyruvate, 100 U/ml 
penicillin, 100 µg/ml streptomycin, 0.25 µg/ml amphotericin B, 10% 
FBS (Invitrogen) 

GD25-ß1A, GD25-ß1ATT788-9AA, 
GD25-ß1AY783/795F 

See GD25 cells, with 10 µg/ml puromycin 

FAK (-) D-MEM containing 4500 mg/L D-glucose, 4 mM L-glutamine,  
110 mg/L sodium pyruvate, 100 U/ml penicillin, 100 µg/ml 
streptomycin, 0.25 µg/ml amphotericin B, 10% FBS (Invitrogen) 
 

FAK (+) See FAK (-) cells, with 200 µg/ml hygromycin 
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4.5. Infection of host cells with Campylobacter strains 

 

For the infection assays, host cells were grown in 6- or 12-well tissue culture plates to reach 

~70% confluency. The culture medium was replaced with fresh medium without antibiotics  

12 hrs before infection. Bacteria were suspended in phosphate-buffered saline (PBS)  

(10 mM Na2HPO4, 1.8 mM KH2PO4, 0.137 M NaCl, 2.7 mM KCl, pH 7.4), followed by optical 

density measurement at λ=600 nm (OD600) in a UV/Vis spectrometer Lambda 2 (Perkin 

Elmer Waltham, USA). Subsequently, bacteria were added to and co-incubated with host 

cells at a multiplicity of infection (MOI) of 200 (if not stated otherwise) for the indicated 

periods of time at 37°C in 5% CO2. 

 

4.6. Transfection experiments 

 

Transfection is the process in which foreign nucleic acids are introduced into eukaryotic cells. 

It involves typically opening chemically-created transient pores in the cell plasma membrane, 

to allow the uptake of DNA material. Transfection is frequently carried out with a positively 

charged reagent which coats the negative charged DNA, allowing it to fuse with the plasma 

membrane of eukaryotic cells, releasing the DNA into the cell (Vaheri & Pagano, 1965). 

Transient transfections of constructs presented in Table 4 were performed using 

GeneJammer transfection reagent, according to the manufacturer’s instructions (Stratagene, 

La Jolla, USA). Prior to transfection, the cells were seeded to reach 70-80% confluency. 

GeneJammer reagent was mixed with DNA, ratio of 3µl/1µg and added to the cells for 48 hrs. 

The efficiency of transfection was verified by either Western blotting using appropriate 

antibodies or by immunofluorescence (IF) staining in confocal microscopy.  

 

4.7. RNA interference (RNAi) 

 

RNAi is the process where the introduction of double stranded RNA (dsRNA) into a cell 

inhibits gene expression in a sequence dependent fashion. RNAi is usually described as  

a post-transcriptional gene-silencing mechanism in which dsRNA triggers degradation of 

homologous messenger RNA in the cytoplasm (Hannon, 2002). The mediators of RNA 

interference are 21- and 22-nucleotide small interfering RNAs (siRNA) which are thought to 

be generated by the cleavage of longer dsRNA by RNaseIII-type enzymes (Bernstein et al., 

2001). In a second step, siRNAs bind to a ribonuclease complex called RNA-induced 

silencing complex (RISC) that guides the small double stranded RNA to its homologous 

mRNA target (Hammond et al., 2000). Consequently, RISC cuts the mRNA approximately  
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in the middle of the region paired with the antisense siRNA, after which the mRNA is further 

degraded what results in gene silencing (Elbashir et al., 2001; Martinez et al., 2002).  

In my studies, siRNA(s) directed against human DOCK180, Vav-2, α-PIX, Tiam1, Trio 

and control siRNA containing scrambled sequence were purchased from Santa Cruz 

Biotechnology, Santa Cruz, USA. siRNA(s) targeted against human Rac1, Cdc42 and RhoA 

were synthesized as follows. Rac1 target sequence (5'-AAAACTTGCCTACTGATCAGT-3'), 

Cdc42 target sequence (5'-TTCAGCAATGCAGACAATTAA-3'), RhoA target sequence  

(5'-TACCTTATAGTTACTGTGTAA-3') were utilized. For down-regulation of Tiam1 both the 

siRNA from Santa Cruz Biotechnology and the one obtained from MWG-Biotech, Ebersberg, 

Germany [Tiam1 target sequence (5'-ACAGCTTCAGAAGCCTGAC-3')], were used 

simultaneously. 

Transfection of siRNA was performed using siRNA Transfection Reagent according 

to the manufacturer’s instructions (Santa Cruz Biotechnology). Prior to transfection, the cells 

were seeded to reach 70-80% confluency. siRNA Transfection Reagent was mixed with 

target or scrambled siRNA at ratio of 5µl/1µg and added to the cells in serum-free medium. 

After 5 hrs of incubation the normal growth medium containing two-times serum 

concentration was added without removing the transfection mixture. Cells were assayed  

48 hrs post transfection. The efficiency of transfection was verified by Western blotting using 

appropriate antibodies. 

 

4.8. Gentamicin protection assay 

 

Gentamicin protection assay is a standard method used extensively to analyze cellular 

invasion by several bacterial species including Campylobacter (Kopecko et al., 2001). During 

infection gentamicin is added, an antibiotic which does not cross the eukaryotic plasma 

membrane, followed by cell lysis and plating. The bacterial counts obtained from gentamicin-

treated cells represent the bacteria internalized and alive whereas the non-protected 

extracellular bacteria are killed. For these purpose, 4×105 cells were seeded in 12-well tissue 

culture plates and infected as described above. After infection, the cells were washed three 

times with 1 ml of pre-warmed medium per well to remove non-adherent bacteria. To 

determine the colony-forming units (CFU) corresponding to intracellular bacteria, the cell 

monolayers were treated with 250 µg/ml gentamicin (Sigma-Aldrich, Steinheim, Germany)  

at 37°C for 2 hrs, washed three times with medium, and then incubated with 1 ml of PBS-

0.1% (w/v) saponin (Sigma-Aldrich) at 37°C for 15 min. The treated monolayers were re-

suspended thoroughly, diluted in BHI medium, and plated on MH agar plates. To determine 

the total CFU corresponding to host-associated bacteria, the infected monolayers were 

incubated with saponin without prior treatment with gentamicin. The resulting suspensions 
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were diluted and plated as described above. For each assay, the level of bacterial adhesion 

and uptake was determined by calculating the number of CFU. All experiments were 

routinely performed in triplicates. In parallel control experiments, 250 µg/ml gentamicin killed 

all extracellular bacteria (data not shown). 

 

4.9. Inhibitor and activator studies 

 

For uptake inhibition and activation studies, host cells in 1 ml medium were pre-treated for  

30 min with inhibitors or activators presented in Table 6, followed by infection with 

Campylobacter. In case of Compactin and Toxin B, TcdB, TcdBF cell were pre-treated for  

16 hrs and 2 hrs, respectively.  

 

Table 6. Inhibitors and activators used in this study. 
 

 

Name 

 

Final 

concentration 

 

Function 

 

Origin/References 

 

Inhibitors 
 

   

Compactin 50 µM Inactivates GTPases by 
blocking their isoprenylation 
and membrane targeting 
 

Calbiochem, Darmstadt, 
Germany; Chong et al., 1994 
 

Toxin B, TcdB toxin 2-6 ng/ml Mono-glucosylates Rho, 
Rac and Cdc42, leading to 
their irreversible inactivation 
  

Dr. Harald Genth, 
Department of Toxicology, 
Hannover Medical School, 
Hannover, Germany; Barbieri 
& Aktories, 2005; Genth et 
al., 2006 

TcdBF toxin  50 ng/ml Glucosylates Rac1 and R-
Ras but not RhoA and 
Cdc42, leading to their 
irreversible inactivation 
 

Dr. Harald Genth, Chaves-
Olarte et al., 2003 

cell-permeable C3 
toxin (C2IN-C3 
together with C2II) 
 

1 µg/ml ADP-Ribosylates RhoA-C 
leading to their inactivation  
 

Dr. Harald Genth, Genth et 
al., 2003 

NSC23766 50 µM Inhibits Rac1 GDP/GTP 
exchange activity by 
interfering with the 
interaction between Rac1 
and its GEFs Tiam1 and 
Trio 

Calbiochem; Gao et al., 2004 
 

Genistein 250 µM Inhibits broad-spectrum of 
tyrosine kinases 

Calbiochem; Wooldridge et 
al., 1996; Biswas et al., 2004; 
Hu et al., 2006a 

Tyrphostin-46  600 µM Inhibits EGFR, p56Lck and 
PDGFR 

Biomol, Hamburg, Germany; 
Biswas et al., 2004 

Wortmannin 1 µM Inhibits PI3 kinase Calbiochem; Biswas et al., 
2000; Hu et al., 2006a 

Staurosporine 0.4 µM Inhibits broad-spectrum of 
serine/threonine kinases 
 

Calbiochem; Biswas et al., 
2004 

PP2 50 µM Inhibits Src tyrosine kinase 
 

Calbiochem; Hanke et al., 
1996 

    

See next page for continuation of table. 
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Table 6.    Inhibitors and activators used in this study, continued 
 

 

Name 

 

Final 

concentration 

 

Function 

 

Origin/References 

 

Activators 
 

   

CNF-1  350 ng/ml Deamidates and trans-
glutaminates Rho, Rac, and 
Cdc42, leading to their 
activation 

Prof. Gudula Schmidt; 
Institute for Experimental and 
Clinical Pharmacology and 
Toxicology, Albert Ludwigs 
University Freiburg, Freiburg, 
Germany; Schmidt et al., 
1997 

CNF-1 (C866S) 350 ng/ml Functionally inactive CNF-1 
carrying a single point 
mutation (C866S) 

Prof. G. Schmidt; Schmidt et 
al., 1998 

CNF-Y 350 ng/ml Deamidates and specifically 
activates RhoA  

Prof. G. Schmidt; Hoffmann 
et al., 2004; Hoffmann & 
Schmidt, 2004 

    

 

 

4.10. GTPase activation assays 

 

Rac1 and Cdc42 activation in infected cells was determined with the Rac1 and Cdc42 

activation assay kit (Cytoskeleton, Denver, USA). The assay uses the Cdc42/Rac1 

Interactive Binding (CRIB) region (also called the p21 Binding Domain, PBD) of p21 activated 

kinase 1 (PAK), an Rac1/Cdc42 effector protein (Benard et al., 1999). The PBD protein motif 

has been shown to bind specifically to the active, GTP-bound form of Rac1 and/or Cdc42 

proteins (Burbelo et al., 1995; Zhao & Manser, 2005). The PAK-PBD is in the form of a GST 

fusion protein, which allows one to "pull-down" the PAK-PBD/GTP-Rac1 (or GTP-Cdc42) 

complex with glutathione affinity beads. The assay therefore provides a simple method for 

quantifying Rac1 or Cdc42 activation in cells. 

Host cells were grown to 80% confluency in 175 cm2 tissue culture flasks (Greiner 

Bio-one GmbH) and serum-starved overnight. Subsequently, cells were incubated in culture 

medium, as a control, or infected with C. jejuni suspended in medium (MOI of 200) for 

indicated periods of time. Uninfected and infected cells were washed with PBS, re-

suspended in the lysis buffer of the kit, and detached from dishes with a cell scraper. The 

lysates were centrifuged (5000 x g, 5 min, 4°C) and the total protein concentration in each 

lysate was determined by BCA assay (Pierce, Rockford, USA). Two mg of total protein for 

each activation assay reaction was used. For a positive and negative control, the GTPγ-S 

and GDP were added to uninfected cell lysates for 15 min, respectively. Cell lysates (treated 

with bacteria, GTPγ-S, GDP or untreated) were mixed with the PAK-RBD slurry and 

incubated at 4°C on a rotator for 1 h. Finally, the beads were collected by centrifuging  

(5000 x g, 3 min, 4°C), washed two times with assay buffer and re-suspended in 15 µl of 
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SDS buffer. Activated Rac1 and Cdc42 were then visualized by immunoblotting. To confirm 

equal amounts of protein for each sample, aliquots of the lysates from different time points 

were also analyzed by immunoblotting. The GTPase activities were quantified as band 

intensities representing the amount of active Rac1-GTP and Cdc42-GTP using the Lumi-

Imager F1 software program (Roche, Mannheim, Germany). 

 

4.11. Immunoprecipitation 

 

Immunoprecipitation (IP) is the technique of precipitating an antigen out of a given 

suspension using an antibody specific to that antigen. This process can be used to separate 

and enrich a specific protein from whole cell lysates or culture supernatants. Co-

immunoprecipitation (“pull-down”) can identify protein complexes present in cell extracts; by 

immunoprecipitating one protein known to be in a complex, additional members of the 

complex can also be identified. The complexes are enriched using insoluble antibody-binding 

proteins such as Protein A and Protein G coupled to sepharose beads. After multiple 

washing steps with PBS, the precipitate can be analyzed by Western blotting.  

In typical experiments, 1 x 107 INT-407 or THP-1 cells were washed with cold PBS 

and lysed for 30 min at 4°C in lysis buffer [20 mM Tris pH 7.2, 150 mM NaCl, 5 mM EDTA, 

1% Triton X-100, 10% glycerol, 1 mM Na3VO4, protease inhibitor cocktail (Roche)]. To lower 

the amount of non-specifically-attached proteins, lysates were pre-cleared by incubation with 

protein G-Sepharose (Amersham Biosciences) for 2 hrs at 4°C. Subsequently, the lysates 

were centrifuged (3000 x g, 5 min, 4°C), and then 2 µg of α-SapA or α-Tiam1 (Santa Cruz 

Biotechnology) antibodies were added to the supernatants and incubated overnight at 4°C. 

Immune complexes were precipitated by the addition of protein G-Sepharose for 2 hrs, 

washed once with lysis buffer and tree times with 0.5 x PBS and finally re-suspended in 80 µl 

of SDS buffer. Samples were analyzed by SDS-PAGE and immunoblotting. 

 

4.12. Determination of protein concentration  

 

The protein concentration was quantified with BCA Protein Assay (Pierce). The assay is 

based on reduction of Cu+2 to Cu+1 by protein in an alkaline medium (the biuret reaction) and 

colorimetric detection of the cuprous cation (Cu+1) using reagent containing bicinchoninic 

acid (BCA) (Smith et al., 1985). The reaction product of this assay is formed by the chelation 

of two molecules of BCA with one cuprous ion. This complex exhibits a strong absorbance  

at λ=562 nm.  

For this purpose, protein samples were diluted, mixed with BCA working reagent  

and incubated for 30 min at 60°C. Subsequently, the absorbance of the samples was 
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measured at λ=562 nm. In parallel series of dilutions of known concentration (5-250 µg/ml) of 

bovine albumin serum (BSA) (Pierce) were prepared and assayed alongside. The 

concentration of proteins was determined based on standard curve obtained from BSA 

measurement. 

 

4.13. Generation of the CadF and SapA antibodies 

 

Polyclonal antiserum α-CadF-1 was raised according to standard protocols (BioGenes, 

Berlin, Germany) by immunization of two rabbits with a conserved CadF-derived peptide 

(amino acids 293-306: QDNPRSSNDTKEGR) conjugated to Limulus polyphemus 

haemocyanin carrier protein. The polyclonal rabbit antiserum α-CadF-2 was gained by 

immunization with gel-purified CadF protein (Konkel et al., 1997) and was kind gift of  

Prof. Michael Konkel (School of Molecular Biosciences, Center for Biotechnology, 

Washington State University, Pullman, USA). Antiserum α-SapA was obtained by 

immunization of mice with 470 µg of purified SapA-GST (1.3 mg/ml in PBS pH 7.4) 

conjugated to Limulus polyphemus haemocyanin carrier protein (BioGenes). 

 

4.14. SDS polyacrylamide gel electrophoresis (SDS-PAGE) and 

immunoblotting 

 

SDS-PAGE involves the separation of proteins based on their size. By heating the sample 

under denaturing and reducing conditions, proteins become unfolded and coated with SDS 

detergent molecules, acquiring a high net negative charge that is proportional to the length of 

the polypeptide chain. When loaded onto a gel matrix and placed in an electric field, the 

negatively charged protein molecules migrate towards the positively charged electrode and 

are separated by a molecular sieving effect. Following electrophoresis, proteins in  

a polyacrylamide gel can be visualized by staining (e.g. Coomassie staining) or blotted onto 

a positively charged membrane and probed with protein-specific antibodies. With the semi-

dry electro-blotting method, the gel and membrane are sandwiched between two stacks of 

filter paper that have been pre-wet with transfer buffer. The membrane is placed near  

the anode, and the gel is placed near the cathode. Proteins are transferred to the membrane 

when an electric current is applied. The specificity of the antibody-antigen interaction enables 

a single protein to be identified in the midst of a complex protein mixture that has been 

immobilized on a membrane. The membrane is blocked to prevent any non-specific binding 

of antibodies to its surface and then primary antibody is added. In order to locate it,  

a secondary antibody is applied which binds to all IgG antibodies from animal species in 

which primary antibody was generated. The secondary antibody is chemically coupled to  
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a reporter, e.g. to an enzyme that after addition of appropriate substrate produces 

luminescent reaction products which allows its detection. 

Whole bacterial cells harvested from agar plates or proteins from transfected and/or 

infected cells were lysed in SDS-PAGE buffer (2% SDS, 10 % glycerol, 0.01% bromophenol 

blue, 62.6 mM Tris-HCl pH 6.8, 0.1 M DTT) (Fermentas, St. Leon-Rot, Germany), boiled  

at 95°C for 5 min, separated on 6-15 % polyacrylamide gels (depending on the size of the 

protein of interest), and either stained with Coomassie-Brilliant Blue or blotted onto 

polyvinylidene difluoride (PVDF) membranes (Immobilon-P; Millipore, Bedford, USA).  

As a standard, PageRuler Prestained Protein Ladder Plus (Fermentas) was used. 

Preparation, running, blotting and staining of the gels was performed according to Sambrook 

et al., 1989 with use of Mini-Protean 3 gel system, (120 V, 1.5-2 hrs, RT) (Bio-Rad 

Laboratories, Hercules, USA), semi-dry blotting apparatus (0.8 mA/cm2, 2 hrs, RT) (Roth, 

Karlsruhe, Germany ) and buffers listed below.  

 
 

 

Gel running 

buffer pH 8.3 

   

Transfer 

buffer pH 8.4 

  

 

 

10xTBS 

buffer pH 7.4 

 

 

  

per liter 
 

   

per liter 
 

   

per liter 
 

 

Tris  3.2 g  Tris  3.0 g 
 

Tris  24.2 g 

Glicine 18.8 g  Glicine 14.5 g  NaCl 80.0 g 
10% (v/v) SDS 10 ml  10% (v/v) SDS 10 ml    

   Methanol 200 ml    

        

 
 

TBS-T 

buffer pH 7.4 

   

Coomassie 

stain 

  

 

 

Coomassie 

de-stain sol. 

 

 

  

per liter 
 

   

per liter 
 

   

per liter 
 

 

10xTBS pH 7.4 100 ml  Coomassie  2.5 g 
 

Methanol 300 ml 
Tween 20 1ml  Briliant Blue   Acetic acid 100 ml 
   Methanol 450 ml    
   Acetic acid 100 ml    

        

 
 

After blotting, membranes were blocked with TBS-T-5%-BSA or TBS-T-5% non-fat dry milk, 

either at 4°C overnight or 1-2 hrs at RT. Subsequently, membranes were incubated with 

primary antibodies, listed in Table 7, overnight at 4°C or 2 hrs at RT rotating, according to the 

manufacturer’s instructions and then washed three times for 10 min with TBS-T.  

As secondary antibodies, horseradish peroxidase-conjugated α-mouse IgG, α-rabbit IgG or  

α-goat IgG were applied for 1 h at RT, rotating (DakoCytomation, Hamburg, Germany), 

followed by washing three times for 15 min with TBS-T. Immuno-reactive bands were 

visualized by ECL plus Western Blotting Detection System (Amersham Biosciences). 
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Table 7. Antibodies used in this study for Western Blotting analysis. 
 

 

Antibody
 a, b

 

 

Origin
 a, b

 

 

Purchased from  

 

Monoclonal 
 

 

 
 

 

α-GFP (JL-8) mouse BD Biosciences 
α-c-Myc antibody (hybridoma 
clone 9E10)  

mouse ATCC, CRL-1729 

α-Rac (clone 23A8) mouse Upstate Biotechnology, USA 
 

α-Rho A (26C4) mouse Santa Cruz Biotechnology 
 

α-HA (6E2) mouse Cell Signaling, Danvers, USA 
 

α-DOCK180 (H-4) mouse Santa Cruz Biotechnology 
 

α-Tyr (PY99) mouse Santa Cruz Biotechnology 
 

 

Polyclonal 
 

 

 
 

α-CadF-1 rabbit This study 
α-CadF-2 rabbit Konkel et al., 1997 
α-GAPDH (V-18) goat Santa Cruz Biotechnology 

 

α-Cdc42 (P1) rabbit Santa Cruz Biotechnology 
 

α-Integrin ß1  rabbit Cell Signaling 
α-FAK (A17) rabbit Santa Cruz Biotechnology 

 

α-FAK-PY-397 rabbit Biomol, Hamburg, Germany 
 

α-Vav-2 (H-200) rabbit Santa Cruz Biotechnology 
 

α-PIX (Q-20) goat Santa Cruz Biotechnology 
 

α-Tiam1 (C-16) rabbit Santa Cruz Biotechnology 
 

α-Trio (D-20) goat Santa Cruz Biotechnology 
 

α-EGFR rabbit Cell Signaling 
α-PDGFR ß rabbit Cell Signaling 
α-SapA mouse This study 
   

 

To re-probe the membrane with another primary antibody, membrane was incubated  

in stripping buffer for 45 min at 60°C, washed extensively in TBS-T, blocked and probed 

again as described above. 

 
 

Stripping buffer 

pH 6.7 

 

 

per 100 ml 
 

 

1M Tris  6.25 ml 
10% (v/v) SDS 20.0 ml 
ß-merkaptoethanol 0.833 ml 
  

 

 

4.15. Enzyme-linked immunosorbent assay (ELISA) 

 

ELISA is a method that is used for the quantitative assay of proteins in solution. In sandwich 

ELISA, proteins are immobilized on a solid support (e.g. the wells of a 96-well plate)  

and used as capture molecules to bind the protein that is being assayed. After a wash step to 

remove non-specifically bound material, a secondary antibody, specific for the target protein, 
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is added. This secondary antibody is usually conjugated to an enzyme that allows its 

detection by chromogenic or chemiluminescent methods. In parallel series of dilutions of 

known concentration of a standard are assayed alongside. The concentration of protein is 

determined based on standard curve obtained from standard measurement.  

In my studies, the amount of IL-8 secreted into the cell culture supernatants was 

determined by ELISA using the OptEIA™ human IL-8 kit (BD Biosciences) and Quantikine 

mouse KC kit (R&D Systems GmbH, Wiesbaden-Nordenstadt, Germany), according to the 

manufacturers’ instructions. For this purpose, 96-well plates were coated with 100 µl/well of  

a human IL-8 monoclonal antibody diluted (1:250) in Coating Buffer (0.1 NaCO3 pH 9.5)  

and incubate overnight at 4°C. Wells were aspirated and washed three times with 300 µl/well 

of Wash Buffer (PBS-0.05% Tween 20). Plates were blocked with 200 µl/well of Assay 

Diluent (PBS-10% FBS) and incubated for 1 h at RT. Wells were aspirated and washed three 

times with 300 µl/well of Wash Buffer. Standard and sample dilutions (1:20) in Assay Diluent 

were prepared. 100 µl of standard or sample was pipetted into appropriate wells and 

incubated for 2 hrs at RT. Wells were aspirated and washed three times with 300 µl/well of 

Wash Buffer. 100 µl of Working Detector (biotinylated anti-human IL-8 monoclonal antibody, 

streptavidin-horseradish peroxidase conjugate reagent) was added to each well and 

incubated for 1 h at RT. Wells were aspirated and washed three times with 300 µl/well  

of Wash Buffer. 100 µl of Substrate Solution (tetramethylbenzidine (TMB) and hydrogen 

peroxide) was added to each well and incubate for 30 min at RT in the dark. The reaction 

was stopped by adding of 50 µl of Stop Solution (2 N H2SO4) to each well. The absorbance 

was measured at λ=450 nm with λ correction at 570 nm in a microplate reader (Spectrafluor 

Plus, TECAN, Crailsheim, Germany). Values were calculated from a standard curve. IL-8 

secreted into the mouse fibroblast cell culture supernatants was quantified according to 

procedure described above. The polyclonal antibody specific for mouse KC (functional  

IL-8 homologue) (Lee et al., 1995) and horseradish peroxide-linked polyclonal antibody 

specific for mouse KC were used as capture and secondary antibody, respectively. As Stop 

Solution hydrochloric acid was applied.  

 

4.16. Isolation of DNA 

 

Plasmid DNA isolation from E. coli was carried out with the modified alkaline/SDS lysis 

(Birnboim & Doly, 1979) and anion exchange adsorption method using JETSTAR plasmid 

purification system (Genomed, Löhne, Germany), according to the manufacturer’s 

instructions. For this purpose, E. coli cells were prepared by alkaline/SDS lysis and after 

neutralization, applied onto JETSTAR Columns (Mini, Midi or Maxi). The plasmid DNA, 

selectively bound to the anion exchange resin, was washed to remove impurities. Finally,  
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the purified plasmid DNA was eluted from the column and concentrated by isopropanol 

precipitation. The precipitated DNA was re-dissolved in water. 

The presence or absence of Campylobacter plasmids such as pVir (Bacon et al., 

2000; 2002) was evaluated by standard plasmid isolation as depicted above.  

Genomic DNA was extracted as described by Wilson, 1989. Campylobacter growing  

on Campylobacter selective agar plate were suspended in PBS and harvested by 

centrifuging (5000 x g, 5 min, RT). The pellet was mixed with 200 µl of lysis buffer (50 mM 

EDTA, pH 8.0, 1 % SDS, 0.1 mg/ml proteinase K) and kept at 55°C for 1-2 hrs to ensure 

complete cell lysis. Subsequently, one-tenth volume of 3 M sodium acetate pH 5.5 was 

added. To remove proteins, solution was extracted with a mixture of phenol: chloroform: 

isoamyl alcohol (25:24:1) and then with chloroform to get pure DNA. The DNA-containing 

aqueous phase was separated by centrifuging (13000 x g, 10 min, RT). DNA was 

precipitated with 2.5 volumes of absolute ethanol and collected by centrifuging (13000 x g, 

30 min, 4°C). Co-precipitated salts were removed by washing with 70% (v/v) ethanol. DNA 

was dried at RT and re-suspended in 50 µl of water. The purified DNA was used as template 

for PCR amplification. 

 

4.16.1.  Determination of DNA concentration and quality 

 

DNA concentration and quality was determined spectro-photometrically with use of 

Biophotometer and UVette cuvettes (Eppendorf, Hamburg, Germany), according to 

Sambrook et al., 1989. The concentration of DNA in aqueous solutions can be estimated by 

adjusting the A260 measurement for turbidity (measured by absorbance at A320), multiplying 

by the dilution factor, and using the relationship that an A260 of 1.0 = 50 µg/ml pure DNA.  
 

DNA concentration (µg/ml) = (A260 reading – A320 reading) × dilution factor × 50 µg/ml  
 

By additional measurement at λ=280 nm, the purity of DNA can be estimated. Samples with 

A260/A280 ratio between 1.7 and 2.0 were accepted as high-quality DNA and were used for 

transfection experiments. 

 

4.17. Restriction, modification and purification of DNA 

 

4.17.1.  Cleavage of DNA with restriction enzymes 

 

Restriction enzymes were used according to the manufacturer’s instructions (New England 

Biolabs GmbH, Frankfurt am Main, Germany). For analytic restriction, 20 µl reaction mixes 

containing: 0.5 µg of DNA and 5 U of enzyme were prepared. For preparative restriction,  
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30 µl reaction mixes containing 2.5 µg of DNA and 15 U of enzyme were used. Reaction 

mixes were incubated 2 hrs at the optimal temperature for the chosen enzymes.  

 

4.17.2.  DNA Ligation  

 

Ligations were carried out using the Rapid DNA Ligation Kit (Fermentas) according to the 

manufacturer’s instructions. 

The molar ratio of insert DNA to vector DNA used was 3:1. The amount of applied insert 

DNA was calculated using the following formula: 

 

                        X ng vector x Y kb insert           3 

                                Z kb vector                        1 

 

X, amount of vector DNA 

Y, length of insert DNA 

Z, length of vector DNA 

N, amount of applied insert DNA  

 

For cloning of PCR-amplified sapA, TOPO TA Cloning Kit with topoisomerase I covalently 

bound to the pCR4-TOPO vector (Invitrogen) was used, according to the manufacturer’s 

instructions. Subsequently, ligation preparation was transformed into E. coli competent cells 

(see 4.20.) 

 

4.17.3.  Agarose gel electrophoresis 

 

Agarose gel electrophoresis was used for separation and size determination of DNA 

fragments. Agarose gels 0.8% (w/v) with 0.1 µg/ml ethidium bromide and 0.5 x TBE-buffer 

(44.5 mM Tris, 44.5 mM Boric acid, 1 mM EDTA, pH 8.0), as running buffer were utilized. 

Before application on the gel, samples were mixed with 1/5 volume of 6x loading buffer 

(0.09% (w/v) bromophenol blue, 0.09% (w/v) xylene cyanol, 60% (v/v) glycerol, 60 mM 

EDTA) (Fermentas). For determination of DNA fragment sizes, GeneRuler 1 kb DNA Ladder 

(Fermentas) was applied. Ultraviolet-induced fluorescence, emitted by ethidium bromide 

molecules intercalated into DNA, was detected with use of the Lumi-Imager F1 (Roche). 

 

 

 

                                
= N ng insert 
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4.17.4.  Purification of DNA fragments and extraction from agarose gel 

 

Purification of DNA fragments was performed by agarose gel electrophoresis followed by gel 

extraction using QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany), according to the 

manufacturer’s instructions. DNA bands of interest were excised from the 0.8% (w/v) 

agarose gels stained with 0.04% (w/v) methylene blue and solubilized by addition of three 

volumes of QG buffer and incubation at 50°C for 10 min. Subsequently, sample was applied 

to the QIAquick column. DNA selectively bound to the resin was washed with PE buffer and 

eluted with 30 µl of water. Extracted DNA was verified by standard agarose gel 

electrophoresis. 

 

4.18. Polymerase chain reaction (PCR) 

 

PCR was used for amplification of DNA fragments, cloning and verification of bacterial 

strains. Reactions were carried out in the PTC-225 Peltier Thermal Cycler (MJ Research, 

Waltham, USA). DNA was amplified with pairs of specific primers (MWG-Biotech, Ebersberg, 

Germany) and Taq DNA polymerase (Qiagen) in PCR reaction mix as listed below. Pfu DNA 

Polymerase (Fermentas) was used for high fidelity amplification. The PCR program included: 

one denaturation step (94°C, 5 min) and 35 times repeated cycles consisting of denaturation, 

oligonucleotide hybridization (primer annealing) and DNA synthesis. The annealing 

temperature used was 4°C lower than the Tm value of the shorter primer. The Tm value  

of primers depends on oligonucleotides’ base composition and can be calculated with the 

following formula: Tm=2*Σ(AT) + 4*Σ(GC). The elongation times used were depending on the 

length of DNA fragments which were to be amplified and were calculated as follows: 1 min 

per 1000 bp. 

 

 

Reagents 

 

Final 

concentration 

  

dNTP-Mix 0,2 mM 
Each primer 100 pmol 
DNA (template) 50 ng 
10 x PCR buffer 5 µl 
with MgCl2 3 mM 
Taq-polymerase 2,5 U 
H2O Until 50µl 
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4.18.1.  PCR Primers 

 

Primers used for amplification and cloning of the surface array protein gene sapA: 

 

SapA Fwd: 5’-CGGGATCCATGTTAAACAAAACAGATGTTTCAATG-3’ 

SapA Rev: 5’-GGAATTCTTAAATTACGCTTCCATCATCAAC-3’ 

 

Bold, BamHI restriction site (SapA Fwd) and EcoRI restriction site (SapA Rev). Underlined, 

start and stop codon, respectively. SapA Fwd and SapA Rev correspond to positions: 43863-

43889 and 46682-46659 in the C. fetus strain 23D sap gene locus sequence AY211269, 

NCBI. 

Primers used by cooperation partner Lieke B. van Alphen (Department of Infectious 

Diseases and Immunology, Utrecht University, The Netherlands) for amplification, cloning 

and sequencing of CadF protein gene cadF and its flanking regions: 

 

CadF1 Fwd: 5'-TTGCTCTAAAGGATAACCTATGA-3' 

CadF1 Rev: 5'-TATGGACGCCGCAAAGCAAG-3' 

CadF2 Fwd: 5'-CCACTCTTCTATTATCCGCTCTACC-3' 

CadF2 Rev: 5'-GGTGCTGATAACAATGTAAAATTTG-3' 

 

Amplified products were analyzed by agarose gel electrophoresis, cloned into pGEM-T-easy 

vector (Promega, Madison, USA) and sequenced by L. van Alphen. 

 

 

4.19. Preparation of E. coli chemically competent cells 

 

For preparation of E. coli chemically competent cells, 10 ml LB medium was inoculated with 

a single colony of TOP10 or BL21 (Invitrogen) from a fresh plate and incubated overnight  

at 37°C, 200 rpm. Subsequently, 100 ml LB medium was inoculated with 1 ml of this pre-

culture and grown to an OD600 of 0.45-0.55. The culture was chilled on ice and centrifuged 

(4000 x g, 10 min, 4°C). The pellet was re-suspended in 50 ml of cold 0.1 M CaCl2 and 

incubated on ice for 30 min. Cells were centrifuged again and re-suspended in 5 ml of cold 

0.1 M CaCl2/10% (v/v) glycerol. 100 µl aliquots were shock frozen on dry ice and stored  

at -80°C.  
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4.20. Transformation of chemically competent E. coli  

 

Transformation was performed according to standard protocols (Hanahan et al., 1983). For 

this purpose, 100 µl of chemically competent E. coli TOP10 or BL21 cells were thawed on ice 

and mixed with 0.25 µg plasmid DNA or the total ligation sample. After 15 min on ice, cells 

were heat-shocked for 30 s at 42°C for DNA incorporation. Afterwards, 1 ml of SOC medium 

(2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 

20 mM glucose) was added and cells were regenerated for 45 min at 37°C under shaking at 

200 rpm and plated on the corresponding LB selective plates. 

 

4.21. Overexpression and purification of C. fetus surface array protein SapA 

 

Fresh overnight culture of BL21-pGEX-4T-1-sapA was inoculated 1:100 in 2xYT medium 

supplemented with 100 µg/ml ampicillin and grown at 37ºC with shaking at 200 rpm to an  

OD600 of 0.75. Overexpression was induced in the presence of 1 mM IPTG at 30ºC for 4 hrs 

shaking at 200 rpm. After induction of SapA, the bacterial culture was centrifuged (4000 x g, 

15 min, 4ºC). The pellet obtained was stored at -80ºC until further processing. Whole cell 

lysate was prepared as follows: bacterial pellet was re-suspended in B-PER Reagent 

(Pierce) in 1/25 of the original culture volume. Protease inhibitor cocktail (Roche) was added 

to the pellet resuspension immediately. Once a homogenous mixture was established it was 

gently shaken at RT for 10 min. Whole cell lysate obtained was then centrifuged in rotor  

JA 25.5 in a Beckman Avanti J-25 centrifuge (Beckman Coulter, Fullerton, USA)  

(27000 x g,15 min, 4ºC) to separate soluble from insoluble proteins. Supernatant containing 

soluble proteins was incubated with 10 ml of glutathione S-transferase (GST) immobilized 

resin (Pierce) pre-equilibrated with B-PER Reagent. Incubation was carried out at RT with 

gentle shaking for 1 h, after which the slurry was transferred to a low-pressure 

chromatography column and the breakthrough was collected. The resin was than washed 

with nine column volumes of Wash Buffer 1 (Pierce) followed by three column volumes of 

Wash Buffer 2 (Pierce). Elution was carried out with six column volumes of 5 mM reduced 

glutathione in Wash Buffer 2 (Pierce). Eluate was collected in 4-ml fractions. SapA eluted as 

a predominant species in the second (main) and third fraction (side fraction). Each of the 

fractions was then concentrated four-fold with use of Amicon Ultra centifugal filter devices 

(Millipore) before final step of purification by gel filtration through a HiLoad 16/60 Sephacryl 

S-200 HR gel filtration column (Amersham Biosciences) in PBS pH 7.4. Gel filtration was 

carried out at 4ºC at a flow rate of 1 ml/min using an AKTAprime FPLC pump system 

(Amersham Biosciences). The protein concentration of both fractions obtained was 

determined by BCA protein assay (Pierce). For cleavage of SapA from GST, 5-10 U of 
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thrombin per 1 mg of fusion protein was used according to the manufacturer’s instructions 

(Amersham Biosciences). During cleavage performed at RT or 37°C, samples were removed 

at various time points (1-24 hrs) and subjected to SDS-PAGE/Coomassie staining analysis, 

to estimate extent of digestion, which even after many optimizing trials, was weak. GST was 

purified according to procedure described above with the following exceptions: culture  

of BL21-pGEX-4T-1 was grown to an OD600 of 0.78. Overexpression was induced in the 

presence of 1 mM IPTG at 37ºC for 2 hrs. As first purification step yielded pure GST the gel 

filtration was omitted.  

 

4.22. In vitro SapA phosphorylation assay with recombinant c-Src or c-Abl 

 

To prove whether SapA can be phosphorylated by host cell tyrosine kinases, in vitro kinase 

assays using recombinant c-Src kinase or c-Abl kinase were performed. For this purpose, 

1010 C. fetus cells were harvested and lysed in 1 ml ice-cold kinase buffer (25 mM HEPES 

pH 7.0, 150 mM NaCl, 10 mM MgCl2, 1% Nonidet P-40, 5 mM dithiothreitol (DDT), 1 mM 

Na3VO4, protease inhibitor cocktail (Roche) (Selbach et al., 2002). Five U of recombinant 

human c-Src (Upstate, USA) and 1 µM adenosine-5’-tri-phosphate (ATP) were mixed with  

30 µl of the C. fetus lysate and incubated for 30 min at 30°C. In a similar experiment,  

1 µg of purified SapA-GST or SapA was mixed with 25 µl of ice-cold kinase buffer and 

incubated with 1.5 U of recombinant human c-Src (Upstate) or c-Abl (New England Biolabs) 

and 1 µM ATP for 30 min at 30°C. Reactions were stopped by addition of SDS. Samples 

were analyzed by SDS-PAGE and immunoblotting. 

 

4.23. Preparation of SapA-coated latex beads 

 

Latex beads (1.1 µm in diameter, Sigma-Aldrich) were coated with SapA protein as follows: 

the SapA-GST was dialyzed with use of Slide-A-Lyzer Mini Dialysis Units (Pierce) against 

coupling buffer (50 mM MES pH 6.1, 200 mM NaCl) for 12 hrs at 4oC. The beads were 

incubated with SapA-GST protein (0.5 mg/ml) or with GST (0.5 mg/ml) as negative control  

in coupling buffer at 4oC overnight. Beads were then washed three times with coupling buffer 

and nonspecific sites were blocked with 2% BSA at 37oC for 1 h. After washing with PBS-

0.1% BSA, the SapA-coated beads were finally re-suspended in PBS-0.02% BSA. 

 

4.24. Analysis of the binding and internalization of SapA-coated latex beads 

into host cells 

 

Cells were grown in MEM/D-MEM with 10% FBS on poly-L-lysine-coated glass coverslips  

at 37oC in 5% CO2 to 70-80% confluence. Cell monolayers were co-incubated with protein-
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coated latex beads at an approximate cell:bead ratio of 1:200 (binding studies) and 1:100 

(internalization studies) at 37oC in 5% CO2 for indicated periods of time. After gentle washing 

with medium, cells were fixed with 3.8% (v/v) paraformaldehyde (PFA) and subjected  

to phase contrast microscopy or double IF staining as described below. The number  

of extracellular and intracellular beads was counted in 80 randomly selected cells, based on 

micrographs obtained after double IF staining. For binding experiment, 25 randomly selected 

cells were analyzed. 

 

4.25. Cell attachment assay 

 

Cell attachment assays were used to investigate cell binding on ligand-coated wells. Bound 

cells were quantified by crystal violet staining and subsequent absorbance measurement 

(Steffensen et al., 1998). For this purpose, 96-well MICROLON ELISA plates (Greiner Bio-

one GmbH) were coated with SapA-GST protein (50 µg/ml in 100 µl PBS/well) at 4oC 

overnight. Positive control wells were coated with 50 µg/ml fibronectin (Chemicon 

International, USA) whereas (50 µg/ml) GST and BSA served as negative controls. 

Nonspecific binding sites were blocked by incubation with heat-denatured PBS-5% BSA for  

2 hrs at RT. After washing with PBS, 4 x 104 INT-407 cells in serum-free MEM were allowed 

to attach to wells for 4 hrs at 37oC in humidified atmosphere supplemented with 5% CO2. 

Cells were then washed with MEM and fixed with 3.8% (v/v) PFA for 15 min at RT. 

Adherence of INT-407 cells was firstly assessed by phase contrast microscopy (LH50A, 

Olympus, Tokyo, Japan), then the bound cells were stained with 0.5% crystal violet in 20% 

methanol for 15 min at RT. After extensive rinses in PBS, cellular stain was dissolved in 10% 

acetic acid, and cell numbers were quantified by measurement of the absorbance  

at λ=590 nm in a microplate reader (Spectrafluor Plus, TECAN). 

 

4.26. Immunofluorescence labeling, Fluorescence and Confocal Laser 

Scanning Microscopy (CLSM) 

 

Specimens were fixed in 3.8% (v/v) PFA at RT for 15 min followed by permeabilization of the 

mammalian cell membrane with PBS-0.1% Triton X-100 for 15 min. All antibodies were 

diluted in PBS-1% BSA, and all incubations with antibodies were carried out for 1 h. 

Filamentous actin in the host cell was labeled with rhodamine- or fluorescein isothiocyanate 

(FITC)-conjugated phalloidin (Molecular Probes, Eugene, Oregon, USA; Sigma-Aldrich, 

respectively). Expression of GTPase constructs was detected using an α-c-Myc antibody, 

followed by Alexa 350-labeled α-mouse IgG (Molecular Probes).  
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For differential staining of intracellular and extracellular SapA-coated latex beads, 

fixed cells were probed with mouse α-SapA antibody followed by Alexa 350-labeled α-mouse 

IgG (Molecular Probes). Subsequently specimens were permeabilized with PBS-0.1% Triton 

X-100 for 15 min and probed with α-SapA antibody, followed by tetramethylrhodamine 

isothiocyanate (TRITC)-labeled α-mouse IgG (Sigma-Aldrich). IF-labeled samples were 

analyzed in cooperation with Dr. Roland Hartig, Otto von Guericke University, Magdeburg, 

Germany, with a Leica DMRE7 fluorescence microscope and TCS SP2 confocal laser 

scanning microscope (Leica Microsystems, Bensheim, Germany). Confocal image data 

obtained with a 100×/1.4 N.A. oil immersion objective and CLSM-software (Leica 

Microsystems) were processed digitally using Velocity software (version 3.6) which allows 

optimizing images in brightness and contrast and pseudo-coloring: GFP, FITC (green), 

rhodamine, TRITC (red) and Alexa-350 (blue) and the determination whether the bacteria are 

inside or outside of infected cells. 

 

4.27. Field Emission Scanning Electron Microscopy (FESEM) 

 

Cells grown on coverslips were infected with C. jejuni for either 4 hrs or 6 hrs, then fixed with 

a fixation solution containing 5% formaldehyde and 2% glutaraldehyde in cacodylate buffer 

(0.1 M cacodylate, 0.01 M CaCl2, 0.01 M MgCl2, 0.09 M sucrose; pH 6.9) and subsequently 

washed several times with cacodylate buffer. Samples were further processed by 

cooperation partner Dr. Manfred Rohde (Helmholtz Center for Infection Research, 

Braunschweig, Germany). Briefly, fixed samples were dehydrated with a graded series of 

acetone (10, 30, 50, 70, 90 and 100%) on ice for 15 min for each step. Samples in the 100% 

acetone step were allowed to reach RT before another change of 100% acetone. They were 

then subjected to critical-point drying with liquid CO2 (CPD030, Balzers, Liechtenstein). Dried 

samples were covered with a 10 nm thick gold film by sputter coating (SCD040, Balzers 

Union, Liechtenstein) before examination in a field emission scanning electron microscope 

(Zeiss DSM-982-Gemini) using the Everhart Thornley SE detector and the inlens detector 

in a 50:50 ratio at an acceleration voltage of 5 kV.  

 

4.28. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-

MS) 

 

Mass spectrometry is an analytical method that determines the molecular mass of a sample. 

Once inside the ionization source, the sample molecules are ionized. The ions are extracted 

into the analyzer region of the mass spectrometer where they are separated according to 

their mass (m) -to-charge (z) ratios (m/z). The separated ions are detected and this signal 
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sent to a data system where the m/z ratios are stored together with their relative abundance 

for presentation in the format of a m/z spectrum, which can be used e.g. to generate protein 

sequence information.  

In-Gel Digestion, Peptide Extraction and MALDI-MS were performed by cooperation 

partners Dr. Manfred Nimtz (Helmholtz Center for Infection Research, Braunschweig, 

Germany) and Dr. Sophie Haebel (Interdisciplinary Research Center for Mass Spectrometry 

of Biopolymers, University of Potsdam, Germany). 

Protein bands were excised from Coomassie-stained SDS-PAGE gel and washed 

two times for 15 min with 50 mM ammonium bicarbonate, pH 8.0 and two times for 15 min 

with 60% acetonitrile/0.5% formic acid. After drying under vacuum, protein spots were 

reduced with 10 mM DTT for 20 min at 56°C and alkylated with 100 mM iodoacetamide for 

20 min at RT in the dark. Then gel spots were washed with 50 mM ammonium bicarbonate, 

pH 8.0, followed by 60% acetonitrile/ 0.5% formic acid and dried as described above. Protein 

digestion was performed with trypsin (Promega) according to the manufacturer’s instructions. 

For peptide extraction, gel pieces were washed with 50 mM ammonium bicarbonate  

and 60% acetonitrile/0.5% formic acid as described above. The extracts were pooled and 

concentrated under vacuum to a final volume of 20 µl. ZipTip C18 Sepharose tips (Millipore) 

were used to desalt and concentrate the peptide samples to a volume of 10 µl. Proteolytic 

peptides were analyzed with a Bruker ULTRAFLEX time-of-flight (TOF/TOF) instrument 

using a matrix of 19 mg α-cyano-4-hydroxy-cinnamic acid in 400 µl of acetonitrile and 600 µl 

of 0.1% (v/v) trifluoroacetic acid in H2O. Samples of 1 µl and an approximate concentration of 

1-10 pmol/µl were mixed with equal amounts of matrix. This mixture was spotted onto  

a stainless steel target and dried at RT before analysis. Matrix Science 

(http://www.matrixscience.com) and NCBI Data Bases (http://www.ncbi.nlm.nih.gov) were 

used for evaluation of the generated spectra. 

 

4.29. Statistical analysis and database search 

 

All data were analyzed using the Student’s t-test with SigmaStat statistical software (version 

2.0). P<0.05 were considered as statistically significant. Data are shown as mean  

values ± standard deviation. Nucleotide sequence analysis and protein sequence alignments 

were performed using free software (http://searchlauncher.bcm.tmc.edu/seq-util/Options/ 

sixframe.html; http://www.ebi. ac.uk/clustalw) and NCBI, ExPASy Data Bases. 

 

Unless not otherwise indicated the standard chemicals and reagents were purchased from 

Roth, Sigma or Merck (Darmstadt, Germany). 



Results 46

5. Results 
 

5.1. Expression patterns and the role of the CadF protein in Campylobacter 

jejuni and Campylobacter coli 

 

5.1.1. Immunodetection of CadF in Campylobacter isolates 

 

The binding of Campylobacter jejuni and Campylobacter coli to human fibronectin (Fn),  

a component of the extracellular matrix, is mediated by a 37 kDa outer-membrane protein 

termed CadF for Campylobacter adhesion to Fn (Konkel et al., 1997; Konkel et al., 1999a; 

Konkel et al., 2005). CadF is a single-copy, highly-conserved chromosomal encoded gene of 

multiple Campylobacter species (Konkel et al., 1999a; Parkhill et al., 2000; Fouts et al., 2005; 

Hofreuter et al., 2006). Previous work based on immunoblot analysis of clinical isolates 

indicated that the CadF protein is highly conserved among C. jejuni strains from the USA 

(Konkel et al., 1997; Konkel et al., 1999a). Therefore, a variety of assays could be developed 

based on the detection of the cadF pathogenicity factor gene and its product. The first aim of 

the present study was to determine the genetic and functional diversity of CadF protein 

among Campylobacter strains in Germany. For this purpose the CadF proteins of a large 

number of C. jejuni and C. coli isolates of human and animal origin were compared and the 

role of CadF in the attachment and internalization of INT-407 epithelial cells was determined. 

The 58 Campylobacter isolates, provided by cooperation partners (Table 2), were 

characterized as C. jejuni (40 strains) and C. coli (18 strains). Species identification, 

performed by cooperation partners, was based on biochemical tests (catalase, oxidase, 

urease activity, hippurate and indoxyl acetate hydrolysis, sensitivity to cephalothin and 

nalidixic acid), and a multiplex PCR assay (Cloak & Fratamico, 2002; Oyarzabal et al., 2005). 

The C. jejuni isolates included strains isolated from both humans and animals, while the  

C. coli strains were all recovered from animals (Table 8).  

To investigate the expression of CadF in these strains, α-CadF-1, an antibody against 

a conserved sequence in this protein was generated and applied in Western blot 

experiments along with the α-CadF-2 antibody raised against gel-purified CadF protein 

(Konkel et al., 1997). Using these two CadF-specific antisera, a 37 kDa band (p37) and  

a less prominent 32 kDa band (p32) were detected in C. jejuni strains by immunoblotting of 

total cell lysates. These bands corresponded to previously described CadF protein species 

(Konkel et al., 1997; Mamelli et al., 2006; 2007). While p37 was present in all C. jejuni 

isolates, five human isolates and one from a calf failed to exhibit the less prominent p32 band 

(Table 8). A representative immunoblot of several C. jejuni isolates is shown in Fig. 3A.  
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Table 8. C. jejuni and C. coli isolates used in the study and detection of CadF proteins. 
 

Presence of CadF protein 
bands Species Origin Strain designation 

 

37 kDa(p37) 
 

 

32 kDa (p32) 
 

 

C. jejuni Human, feces ATCC 43431 + + 
  NCTC 11168 + + 
  81-176 + + 
  1543/01 + + 
  ST3046 + + 
  81116 + + 
  F38011 + + 
  CDC 2004-341 + + 
  158/96 + - 
  157/96 + - 
  51/89 + - 
  230205ZH0017 + - 
  230205ZH0018 + - 
 Chicken, intestine G 447 + + 
  G 448 + + 
  G 450 + + 
  G 451 + + 
  G 464 + + 
  G 465 + + 
  G 467 + + 
  G 477 + + 
  G 478 + + 
  G 479 + + 
  G 481 + + 
  G 482 + + 
  G 487 + + 
  G 500 + + 
  G 506 + + 
 Chicken, cloaca RM1849 + + 
 Chicken carcass RM1221 + + 
 Chicken, liver 151003ZH0099 + + 
 Poultry, feces 1991 + + 
 Turkey 201004ZH0078 + + 
  503 + + 
  av245 + + 
 Cat, feces ALK 1116 + + 
 Calf, feces ATCC 43430 + + 
 Calf, abomasum C 130 + - 
 Cow, milk 73 Di + + 
  100204ZH0021 + + 

C. coli
*
 Pig, feces ALK 1158 + + 

  ALK 1179 + - 
  ALK 1184 + + 
  ALK 1185 + - 
  ALK 1187 + + 
  ALK 1290 + - 
  ALK 1295 + + 
  ALK 1233 + + 
  ALK 1282 + - 
 Chicken, intestine G 427 + + 
  G 472 + + 
 Poultry, feces Han35 + + 
  Han36 + + 
  Han135 + + 
  2371 + + 
 Poultry, liver K1102/03 + + 
 Quail, intestine G 510 + - 
 Turkey av352 + - 
     

 

* In these strains the CadF protein is slightly larger (39 kDa and 34 kDa, respectively). 
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To verify the specificity of our α-CadF antibodies, two isogenic cadF mutants in  

C. jejuni strains 81116 (Krause-Gruszczynska et al., 2007) and F38011 (Konkel et al., 1997) 

were tested. These mutants lacked the p37 and p32 bands observed for the parental strains  

(Fig. 3C and Fig. 7A, arrows). As expected, whole-cell extracts of C. fetus, H. pylori or E. coli 

controls did not react with the CadF-specific antisera (data not shown). Equivalent amounts 

of proteins present were confirmed by Coomassie staining for all tested strains (Fig. 3B, D). 

 

 

 

Fig. 3. Representative immunoblot analysis demonstrating CadF immunoreactivity 
with the α-CadF-1 antibody among C. jejuni isolates. (A) C. jejuni isolates showing  
32 kDa and 37 kDa bands corresponding to the CadF proteins. (C) These bands were 
not detected in 81116∆cadF mutant (arrows). (B, D) Coomassie stainings presenting 
equivalent amounts of protein in each lane. 

 

5.1.2. Variability of CadF proteins among C. jejuni and C. coli isolates  

 

Although the pattern of α-CadF-1 and α-CadF-2 antibodies reactivity was largely identical 

among the isolates, the number and intensities of the CadF protein species slightly varied 

among C. jejuni strains (Fig. 4A, arrows and asterisks), despite loading equivalent amounts 

of proteins (Fig. 4B). In some cases, intermediate CadF bands of ~34 kDa were also 

observed (Fig. 4A, arrows). Interestingly, in all C. coli isolates tested, CadF was slightly 

larger and had a weaker expression, as judged from Western blot analysis (Fig. 5A). All  

C. coli isolates exhibited a 39 kDa band (p39), while a lower migrating 34 kDa band (p34) 

was detected in 12 out of 18 C. coli strains (Fig. 5A, Table 8).  
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Fig. 4. Variability in number and band intensities of CadF proteins in C. jejuni.  
(A) Immunoblot analysis showing the variability in α-CadF-1 staining among strains. 
Arrows indicate additional bands in the pattern and asterisks indicate bands which are 
absent in some strains. (B) Coomassie staining presenting equivalent amounts of protein 
in each lane.  

 

5.1.3. PCR amplification and sequencing of cadF genes 

 

To elucidate the differences in CadF protein size and expression between C. jejuni and  

C. coli strains, the sequence analysis on a set of cadF genes was performed. PCR analysis 

of the C. coli strains, performed by cooperation partner Like van Alphen, (Utrecht University, 

The Netherlands) revealed a slightly larger cadF than that of C. jejuni 81116 (1320 bp versus 

1285 bp for cadF and some flanking sequence, respectively) (Fig. 5B, arrows). PCR with 

primers directed against the most conserved parts within the cadF gene yielded 930 bps for 

C. coli strains and 890 bps for C. jejuni 81116 (Fig. 5B, arrows). Insertion of  

a kanamycin resistance cassette in 81116∆cadF mutant resulted in a 1.5 kb increase in 

product size in both PCRs, as expected (Fig. 5B, arrowheads).  

Sequencing of the cadF coding region from three C. coli isolates consistently 

revealed an additional sequence (39 bp) at the indicated position compared to cadF of  

C. jejuni (Fig. 5C). Analysis of the cadF sequences from three C. jejuni and one C. coli 

available sequenced genomes (Parkhill et al., 2000; Fouts et al., 2005; Hofreuter et al., 2006) 

confirmed these findings. Alignment of deduced amino acid sequences showed that the 

CadF protein from C. coli strains is 13 amino acids larger than those from C. jejuni, in 

agreement with the size differences seen in the Western blots (Fig. 5D). 
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Fig. 5. Refers to the figure on page 50. Different CadF protein sizes and expression 
levels in C. jejuni and C. coli strains. (A) Representative immunoblot analysis with  
α-CadF-2 antibody showing that CadF proteins of C. coli strains are slightly larger and 
less immuno-reactive than C. jejuni CadF (arrows). (B) PCR analysis of cadF genes in  
C. jejuni and C. coli isolates by agarose gel elecrophoresis using two sets of primers 
(PCR-1 and PCR-2). Arrows indicate the difference in size of C. coli amplified products 
as compared to the C. jejuni 81116 control. Insertion of a kanamycin resistance cassette 
in 81116∆cadF mutant resulted in expected increase in product size (arrowheads).  
(C) Sequencing of the PCR products revealed insertion sequences in the C. coli cadF 
genes at the indicated positions. An extra 39 bp sequence was detected in the C. coli 
cadF genes (indicated in red). (D) Alignment of the deduced amino acid sequences 
coding for CadF proteins showing differences between C. jejuni and C. coli strains. Extra 
13 amino acids in the C. coli sequences are indicated in red. Symbols: *, identical amino 
acids; :, conserved substitution; ., semi-conserved substitution. 

 

 

5.1.4. Binding and invasion of INT-407 cells by differently CadF-expressing C. jejuni 

and C. coli strains  

 

Possible differences in bacterial adhesion and invasion between the CadF-expressing  

C. jejuni and C. coli isolates were explored in infection assays with INT-407 cells. These non-

phagocytic intestinal epithelial cells are widely used as an in vitro model system to study 

Campylobacter invasion (Hu & Kopecko, 1999; Biswas et al., 2000; Konkel et al., 2004; 

Hu et al., 2005). Quantification of cell-associated (Fig. 6A) and intracellular bacteria (Fig. 6B) 

by the gentamicin protection assay revealed that the C. jejuni isolates expressing p37 CadF 

exhibited significantly higher binding and invasion rates than C. coli strains expressing p39 

CadF (P≤0.001). The C. coli isolates Han35 and Han153 exhibited the lowest values of cell-

associated and intracellular bacteria.  

To determine the overall contribution of the CadF protein in the binding and invasion 

of C. jejuni to INT-407 cells, the interactions of C. jejuni 81116∆cadF and F38011∆cadF 

mutants and their respective wild-type strains with cells were examined. Immunoblot analysis 

confirmed that the CadF protein was not synthesized by either cadF mutant strain (Fig. 7A). 

Quantification of cell-associated (Fig. 7B) and intracellular bacteria (Fig. 7C) by the 

gentamicin protection assay revealed that the cadF mutants exhibited lower binding and 

invasion rates than wild-type C. jejuni. The 81116∆cadF mutant showed 49% reduction in 

adherence and 36.5% in invasion when compared to its wild-type strain 81116, whereas 

F38011∆cadF showed 64% reduction in adherence and 60% in invasion when compared to 

the F38011 wild-type (Fig. 7B, C). These data were statistically significant (P≤0.001). These 

findings demonstrate that CadF is an important pathogenicity factor of C. jejuni. The data 

also show that CadF is not only important for bacterial binding to host cells, as suggested 

recently (Konkel et al., 2005) but also for host cell entry. 
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Fig. 6. Effect of CadF on adhesion to and invasion of C. jejuni and C. coli isolates. 
INT-407 cells were infected for 6 hrs with C. jejuni and C. coli strains. (A) Total cell 
associated and (B) intracellular Campylobacter cells were quantified by gentamicin 
protection assays. (**) Statistically significant (P≤0.001). (C) To ensure equal numbers of 
INT-407 cells, each infection was performed in duplicate including one sample for the 
GAPDH house keeping protein control immunostaining. 
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Fig. 7. Effect of CadF expression on adhesion and invasion of C. jejuni. INT-407 
cells were infected for 6 hrs with wild-type 81116 vs. 81116∆cadF and wild-type F38011 

vs. F38011∆cadF. (A) The expression of CadF proteins during infection was verified by 
immunoblotting using the α-CadF-1 antibody. (B) Total cell associated and  
(C) intracellular Campylobacter cells were quantified by gentamicin protection assays. 
(**) Statistically significant (P≤0.001). (D) To ensure equal numbers of INT-407 cells, 
each infection was performed in duplicate including one sample for the GAPDH house 
keeping protein control immunostaining. 
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5.2. Role of the small Rho GTPases Rac1 and Cdc42 in host cell invasion  

of Campylobacter jejuni 

 

5.2.1. Campylobacter jejuni invasion is time-dependent and associated with dynamic 

host actin cytoskeletal rearrangements 

 

Since C. coli exhibited only weak invasiveness as compared to C. jejuni and was 

independent of CadF, further studies concentrated on C. jejuni. Most of these studies were 

performed with C. jejuni 81-176, a model strain used world-wide as described in chapter 3.4. 

To investigate the C. jejuni entry process in more detail, the interaction of 81-176 with the 

surface of INT-407 epithelial cells was analyzed by high resolution field emission scanning 

electron microscopy (FESEM), performed by cooperation partner Dr. M. Rohde (Helmholtz 

Center for Infection Research, Braunschweig, Germany). FESEM analysis revealed that the 

bacteria were able to attach to the host cell surface, followed by cellular invasion of the  

C. jejuni which was observed predominantly after 4-6 hrs of infection (Fig. 8A, red arrows). 

Interestingly, it was found that the bacterium invaded into the cell in a very specific manner 

first with its tip followed by the flagellar end (Fig. 8A-B, yellow arrowheads). Tight engulfment 

and membrane ruffles were also observed regularly, suggesting the occurrence of GTPase 

activation followed by dynamic membrane rearrangements during the invasion process  

(Fig. 8B, blue arrows).  

To determine the time frame required for C. jejuni to enter the eukaryotic cells,  

INT-407 monolayers were infected for different time periods, ranging from 30 min to 24 hrs, 

and the number of intracellular bacteria was then determined by gentamicin protection 

assays (Fig. 9A). The results indicated that penetration of C. jejuni into cultured cells 

occurred as early as 30 min after infection and that the number of intracellular bacteria 

increased rapidly between 4 to 6 hrs. These data are in good agreement with those obtained 

by FESEM. Intracellular persistence of C. jejuni could be shown by the fact that the number 

of intracellular bacteria even increased during 24 hrs infections. However, survival of the 

internalized C. jejuni past 24 hrs could not be assessed because the infected INT-407 cells 

started detaching after this time period.  

The data obtained with the gentamicin protection assays and FESEM were then 

confirmed by confocal microscopy examination. For example, INT-407 cells infected with 

GFP-expressing C. jejuni also revealed numerous intracellular bacteria (Fig. 9B-E, arrows). 

Interestingly, immunofluorescence staining with rhodamine-conjugated phalloidin indicated 

condensation of actin filaments around and beneath the adherent or entering bacteria  

(Fig. 9B-E, arrows). This result is consistent with previous observations (Konkel et al., 1992; 

Monteville et al., 2003). In addition, a significant proportion of intracellular C. jejuni was also 
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observed to be closely associated with condensed patches of host filamentous actin  

(Fig. 9F-H, arrowheads). These findings support the view, in addition to previous reported 

microtubule-dependent invasion (Oelschlaeger et al., 1993), that C. jejuni induces actin-

cytoskeletal rearrangements and Rho GTPase activation. 

 
 

 

 

Fig. 8. High resolution field emission scanning electron microscopy of C. jejuni 
invasion into INT-407 epithelial cells. (A) C. jejuni 81-176 (red arrows) infected for 4-6 hrs 
were able to induce their entry into the eukaryotic target cells and (B) were often 
associated with membrane ruffles (blue arrows) and tight engulfment of the bacteria. The 
bacteria invaded into the cell first with their tip followed by the other end carrying the 
flagella (yellow arrowheads).  

 
 

5.2.2. Inactivation of Rac and Cdc42, but not RhoA, prevents C. jejuni internalization 

 

Internalization of bacterial pathogens in general has typically been observed to induce 

rearrangement of the host actin-cytoskeletal structure caused by activation of small Rho 

family GTPases (Hardt et al., 1998; Criss et al., 2001; Kazmierczak et al., 2001; Cossart & 

Sansonetti, 2004; Rottner et al., 2004; Pizarro-Cerda & Cossart, 2006), but their  

importance and role in infections with C. jejuni has not been investigated yet.  
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Fig. 9. Quantification and confocal scanning microscopy of C. jejuni invasion.  
(A) INT-407 cells were infected with C. jejuni for the indicated periods of time and the 
numbers of intracellular bacteria were quantified by gentamicin protection assay. To 
directly visualize the internalized bacteria the INT-407 cells were infected with GFP-
expressing C. jejuni for (B, C) 4 hrs or (D, F-H) 24 hrs and stained the cells with 
rhodamine-phalloidin (red). Invading or internalized bacteria are labeled with arrows.  
(F-H) Enlarged micrographs show the proximity between internalized bacteria and 
filamentous actin (arrowheads) in the infected host cells. 
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To investigate if small Rho GTPases play a role in the uptake of C. jejuni, INT-407 

cells were first incubated with the pharmacological inhibitor compactin which inactivates 

GTPases by blocking their isoprenylation and membrane targeting (Chong et al., 1994). 

Indeed, exposure of INT-407 cells to compactin significantly reduced C. jejuni internalization 

as quantified by gentamicin protection assays (Fig. 10A). Next, the cells were treated with 

toxin B from Clostridium difficile prior to bacterial infection. Toxin B is a protein which mono-

glucosylates Rho, Rac and Cdc42, leading to their irreversible inactivation in a very efficient 

manner (Barbieri & Aktories, 2005). As expected, in the presence of toxin B, INT-407 cells 

started rounding up and actin structures were disrupted (data not shown), leading to 

profound inhibition of C. jejuni internalization in a dose-dependent manner, as determined by 

gentamicin protection assays (Figs. 10A, C) and confocal microscopy (Fig. 11D). Toxin B 

had no effect on bacterial viability, as indicated by the cell-associated C. jejuni CFU  

(Fig. 10C). Similar results were obtained with TcdB toxin which expresses similar inactivating 

activities on Rho, Rac and Cdc42 (Fig. 10B). To further elucidate which GTPases are 

involved in C. jejuni invasion, another variant of toxin B from C. difficile strain 1470 serotype 

F (TcdBF) was applied which inactivates Rac and R-Ras but not Rho and Cdc42 (Chaves-

Olarte et al., 2003). Interestingly, TcdBF also had a pronounced blocking effect (Fig. 10B). 

These results suggest that Rac but not Rho is involved in the entry process of C. jejuni.  

To confirm this idea, exoenzyme C3 from Clostridium botulinum which specifically inactivates 

RhoA-C was used (Genth et al., 2003). Treatment of INT-407 cells with the cell-permeable 

C3 fusion protein for 6 hrs resulted in the complete loss of stress fibers consistent with 

inhibition of Rho (Genth et al., 2003 and data not shown). Infection of INT-407 cells 

pretreated with C3 led to a slight increase of bacterial binding but did not block C. jejuni 

internalization, excluding a role of RhoA-C in this effect (Fig. 10A). The latter result further 

excludes the possibility that the reduced C. jejuni invasion was due to mere changes of actin 

dynamics.  

To confirm that Rac1 and Cdc42 activity was required for bacterial internalization, 

INT-407 cells were transiently transfected with the dominant-negative (DN) alleles of Rac1 

(Rac1-T17N) or Cdc42 (Cdc42-T17N), and the empty vector as a control. Transfection of 

INT-407 cells with both DN-Rac1 and DN-Cdc42 resulted in a significantly reduced C. jejuni 

invasion as determined by gentamicin protection assays; expression of either DN-Rac1 or 

DN-Cdc42 alone was less effective (Fig. 12A). In conclusion, Rac1 and Cdc42 were required 

for the internalization of C. jejuni.  
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Fig. 10. Effects of pharmacological inhibitors and bacterial protein toxins targeting 
small Rho GTPases on host cell internalization of C. jejuni. (A, B) INT-407 monolayers 
were pre-incubated with the indicated inhibitors or toxins (Materials & Methods) and 
infected with C. jejuni for 6 hrs. Total cell associated and intracellular C. jejuni were 
quantified by gentamicin protection assays. (C) Dose-dependent inhibition of C. jejuni 
uptake by toxin B. (*) P<0.05 and (**) P≤0.005 were considered as statistically significant 
as compared to the mock control. 
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Fig. 11. Confocal scanning microscopy of C. jejuni invasion in the presence of 
GTPase-modulating toxins. (Panel A with corresponding phase contrast picture in B) 
INT-407 monolayers were treated with control buffer, (C) Rho GTPase activating toxin 
CNF-1 or (D) Rho GTPase inactivating toxin B, (Materials & Methods). Subsequently, the 
cells were infected with GFP-expressing C. jejuni for 6 hrs. Arrows indicate examples of 
internalized bacteria. 

 

 

To prove by more direct approach whether small Rho GTPases are involved in  

C. jejuni invasion, expression of Rac1, Cdc42 or RhoA was down-regulated using target-

specific small-interfering RNA (siRNA). While silencing of Rac1 and Cdc42 expression led to 

the significant reduction in C. jejuni internalization (Fig. 13A, B), both down-regulation of 

RhoA (Fig. 13C), and transfection with non-targeting scrambled sequence, used as mock 

control had no effect on C. jejuni uptake, as quantified by gentamicin protection assays  

(Fig. 13A-C). This data further confirmed that Rac1 and Cdc42 but not RhoA are involved in 

C. jejuni host cell invasion. 
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Fig. 12. Effect of expression of dominant-negative forms of Rho GTPases on C. jejuni 
uptake. Myc-tagged or GFP-tagged GTPase constructs and the empty vector control 
were transfected into INT-407 cells. After 48 hrs, GTPase-expressing cells were infected 
with C. jejuni for 6 hrs. (A, C) Intracellular bacteria were quantified by gentamicin 
protection assays. (*) P≤0.05 and (**) P≤0.005 were considered as statistically significant 
as compared to the mock control. (B) Expression of the individual GTPase constructs 
was verified by Western blot analysis using α-c-Myc and α-GFP antibodies. GAPDH 
expression levels were determined as control. 

 

5.2.3. Activation of Rac1 and Cdc42, but not RhoA, promotes C. jejuni internalization 

 

To investigate whether activation of Rac1 and Cdc42 trigger bacterial invasion, INT-407 cells 

were pre-treated with the cytotoxic necrotizing factor 1 (CNF-1), a bacterial toxin that 

activates Rho, Rac, and Cdc42 followed by the accumulation of stress fibers, focal 

adhesions, microspikes and membrane ruffles in treated cells (Flatau et al., 1997; Schmidt  

et al., 1997; Lerm et al., 1999). Exposure of INT-407 cells to CNF-1 resulted in an 

approximately 3.3-fold increase in C. jejuni internalization (as compared with untreated cells), 

while a functionally inactive CNF-1 carrying a single point mutation (C866S) (Schmidt et al., 

1998) did not, thereby excluding effects other than GTPase activation (Fig. 10A and data not 

shown). Enhanced bacterial uptake triggered by CNF-1 was also confirmed by confocal 

microscopy (Fig. 11C).  
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Fig. 13. Effect of knockdown of Rac1, Cdc42 or RhoA on C. jejuni invasion. INT-407 
cells were transfected with (A) Rac1- (B) Cdc42- (C) RhoA-small interfering RNA 
(siRNA). After 48 hrs, cells were infected with C. jejuni for 6 hrs. Intracellular bacteria 
were quantified by gentamicin protection assays. (**) P≤0.005 were considered as 
statistically significant as compared to the mock control. Immunoblotting with α-Rac1,  
α-Cdc42, α-RhoA antibodies confirmed down-regulation of the proteins. GAPDH 
expression levels were determined as control. 

 

It is noteworthy that the number of bacteria bound to epithelial cells was also 

significantly increased in both the CNF-1- and toxin B-treated samples as compared to the 

control (Fig. 10A). However, this is not surprising as the toxins markedly altered the 

morphology of the INT-407 cells in a manner which should improve bacterial access to  

the basolateral pole, where C. jejuni binding (and internalization) are thought to occur 

preferentially (Monteville & Konkel, 2002). In contrast, increased internalization of C. jejuni 

was not observed after treatment of the cells with the CNF-Y (Fig. 10A), a specific activator 

of RhoA (Hoffmann et al., 2004; Hoffmann & Schmidt, 2004). This result strongly suggests 

that the elevated internalization of C. jejuni in CNF1-treated cells was based on activation of 

Rac and Cdc42.  

To confirm the latter idea, INT-407 cells were transiently transfected with 

constitutively-active (CA) mutant alleles of Rac1 (Rac1-Q61L), Cdc42 (Cdc42-Q61L), and 

RhoA (RhoA-G14V), and the empty vector as a control. After 48 hrs, the transfected cells 

were infected with C. jejuni for another 6 hrs and intracellular bacteria were quantified by 

gentamicin protection assays (Fig. 14A). The most pronounced effect was observed with  
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CA-Rac1 whose expression stimulated C. jejuni internalization about 4.7-fold as compared to 

the empty vector control (P=0.003, Student's t-test). A moderate effect was seen with  

CA-Cdc42 (about 1.7-fold increase) which was also statistically significant (P=0.011). In 

agreement with the data obtained with CNF-Y toxin, expression of CA-RhoA resulted in  

a significant decrease of C. jejuni internalization (P=0.003, Fig. 14A). Similar expression of 

each of the CA-GTPase proteins in the assays was confirmed by immunoblotting using an  

α-c-Myc antibody with GAPDH as a control (Fig. 14B). Thus, the data suggest that activation 

of Rac1 and Cdc42 but not RhoA is most likely to govern C. jejuni invasion. 

 

 

 

Fig. 14. Effect of expression of constitutively-active forms of Rho GTPases on 
C. jejuni uptake. Myc-tagged GTPase constructs and the empty vector control were 
transfected into INT-407 cells. After 48 hrs, GTPase-expressing cells were infected with 
C. jejuni for 6 hrs. (A) Intracellular bacteria were quantified by gentamicin protection 
assays. (*) P≤0.05 and (**) P≤0.005 were considered as statistically significant as 
compared to the mock control. (B) Expression of the individual GTPase constructs was 
verified by Western blot analysis using α-c-Myc and α-GFP antibodies. GAPDH 
expression levels were determined as control. 

 

To reveal by another more direct approach whether the activity of Rac1 and Cdc42  

is crucial for the cellular entry of C. jejuni, the presence of internalized bacteria was analyzed 

by confocal microscopy, in 50 individual INT-407 cells, each overexpressing the DN- or CA-

GTPase proteins, respectively (Fig. 15). Internalized GFP-expressing C. jejuni were detected 

within multiple non-transfected cells of the field (data not shown).  
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Fig. 15. Rac1 and Cdc42 activities are important for C. jejuni invasion. Confocal 
scanning microscopy of C. jejuni 81-176 invasion into single host target cells expressing 
(A) DN-Rac1, (B) CA-Rac1, (C) DN-Cdc42 or (D) CA-Cdc42. INT-407 cells were 
transfected with the indicated constructs for 48 hrs, washed and infected for 6 hrs with 
GFP-expressing 81-176. IF-staining: α-c-Myc antibody for GTPase expression (blue) and 
rhodamine-phalloidin for F-actin (red). Arrows indicate examples of internalized bacteria. 
(E) The number of internalized bacteria was quantified in 50 randomly selected blue 
cells, verifying expression of the respective GTPase construct. Box-Whiskers plots of 
internalized bacteria per cell are shown with the whiskers giving the minimum and 
maximum achieved. (***) P<0.0005 were considered as statistically significant as 
compared to the mock control. 
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In contrast, C. jejuni were rarely found internalized into either Rac1-T17N or Cdc42-T17N 

expressing cells (Fig. 15A and C, respectively). Instead, internalized bacteria were 

prominently observed in both Rac1-Q61L- and Cdc42-Q61L-expressing INT-407 cells in  

a statistically significant manner (Fig. 15B and D, respectively). The quantification data are 

shown in Fig. 15E. Thus, activated Rac1 and Cdc42 positively regulate the uptake of  

C. jejuni in INT-407 epithelial cells. 

 

5.2.4. Campylobacter jejuni internalization is accompanied by activation of 

endogenous Rac1 and Cdc42 

 

The data described above suggest that Rac1 and Cdc42 are involved in C. jejuni invasion, 

but do not show whether these GTPases are activated during infection. To test whether the 

activation of Rac1 and Cdc42 occurs during infection with C. jejuni, GTPase pull-down 

assays were performed. GTPases cycle between the inactive, GDP-bound and active, GTP-

bound forms (reviewed in Schmidt & Hall, 2002). Thus, GTP-loading onto Rac1 and Cdc42 

was determined by specific binding of the active GTPase to the Cdc42-Rac1 interactive 

binding domain of PAK1 fused to glutathione S-transferase (GST-CRIB) (Burbelo et al., 

1995; Zhao & Manser, 2005). Positive and negative controls were carried out with GTPγ-S 

and GDP, respectively (data not shown). Monolayers of INT-407 cells were infected with  

C. jejuni for different time periods. Lysates were prepared, and the amount of GTP-loaded 

Rac1 and Cdc42 was determined. As shown in Fig. 16A-C, prominent activation of Rac1 and 

Cdc42 in INT-407 cells was detected between 2-4 hrs after infection. These results are 

consistent with the finding that high rates of C. jejuni-induced membrane ruffling and invasion 

can be detected as soon as 4-6 hrs after infection (Figs. 8-15). Moreover, they further 

support the hypothesis that activation of both Rac1 and Cdc42 activity is biologically relevant 

to C. jejuni internalization. 
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Fig. 16. Time-dependent activation of Rac1 and Cdc42 during C. jejuni infection.  
INT-407 cells were infected with C. jejuni for indicated periods of time. The presence of 
bound, (A) active Rac1-GTP or (B) Cdc42-GTP was analyzed in CRIB-GST pull-down 
assays followed by Western blotting using α-Rac1 and α-Cdc42 antibodies, respectively. 
Similar quantities of individual GTPases at every time point were confirmed by Western 
blotting using equivalent volumes of cell lysates. (C) Quantification of Rac1 and Cdc42 
GTPase activities during the course of infection. One hundred % of activity corresponds 
to the highest amount of detected GTPase-GTP levels. 

 

 

5.2.5. Activation of Rac1 and Cdc42 by C. jejuni involves the fibronectin-binding 

protein CadF 

 

Next, an attempt was made to identify or exclude bacterial factors involved in C. jejuni-

induced GTPase activation. For this purpose, five isogenic mutants of C. jejuni well-known 

pathogenicity factors were employed: CadF, KpsS, WaaF, PEB1 and CDT (Table 9). While 

almost no difference in activation of Rac1 and Cdc42 was observed with the 81-176∆cdtB 

and 84-25∆waaF mutants, infection with 84-25∆kpsS, and 81-176∆PEB1A mutants slightly 

enhanced the activation of the GTPases when compared to their respective wt strains  

(Table 9). Interestingly, the virulence plasmid-free C. jejuni strains 84-25 and F38011 (see 
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Materials & Methods) activated Rac1 and Cdc42 as efficiently as the pVir-carrying strain  

81-176, indicating that pVir is not involved in the signaling upstream of GTPases (Table 9). 

Reduced activation of Rho GTPases was observed in cells infected with the F38011∆cadF 

mutant strain; this strain less efficiently activated Rac1 (68% compared to wt) and Cdc42 

(37% compared to wt) (Fig. 17A-C, Table 9). This further confirmed the findings described in 

chapter 5.1.4. The activation of Rho GTPases correlated with the association of CadF-

positive C. jejuni to the cells and their internalization into INT-407 cells, which was 

significantly higher as compared to the isogenic cadF mutant (Fig. 7B, C). Thus, the 

fibronectin-binding protein CadF plays a role in the activation of Rac1 and Cdc42. However, 

CadF does not appear to be the sole factor involved in GTPase activation and invasion of  

C. jejuni. The CadF mutant was still able to induce some GTPase activation suggesting that 

other bacterial factor(s) are also implicated (Fig. 17A-C). 

 

 

Table 9. Activation of Rac1 and Cdc42 GTPases by C. jejuni wild-type strains and 
isogenic mutants. 

 
 

GTPase activation  
(in %) 

b
 

 

C. jejuni 
Strains 

 

 

Function of mutated gene 
a 

 Rac1           Cdc42 

 

References 
 

 

F38011  

 

wt strain  
 

100 +/-3 
 

100 +/-3 
 

Konkel et al., 1992 
 

F38011∆cadF fibronectin-binding protein 
(adhesin) 

68 +/-2 37 +/-2  Konkel et al., 1997 
 

     
84-25  wt strain 100 +/-2 100 +/-3 Blaser et al., 1986 

 

84-25∆kpsS  capsule polysaccharide export  
protein, involved in biosynthesis  
of CPS 

105 +/-3 125 +/-4 Keo & Blaser, 
personal communi-
cation 

84-25∆kpsS/kpsS insertion mutant complemented 
with wt kpsS gene 

102 +/-2 105 +/-4 Keo & Blaser, 
personal communi-
cation 

84-25∆waaF ADP-heptosyltransferase, adds a  
second heptose to the core  
oligosaccharide of LOS (loss of  
function results in truncated LOS) 

103 +/-2 101 +/-3 Keo et al., submitted  
 

84-25∆waaF/waaF insertion mutant complemented  
with wt waaF gene 

103 +/-3 101 +/-2 Keo et al., submitted  
 

     
81-176  wt strain 100 +/-3 100 +/-3 Korlath et al., 1985 

 

81-176∆pEB1A aspartate/glutamate binding 
protein of an ABC transporter 
(adhesin) 

99 +/-2 116 +/-2 Misawa & Blaser, 
2000 

81-176∆cdtB cytolethal distending toxin  
(subunit B), exported DNase 
 

101 +/-2 98 +/-2 Hickey et al., 2000 
 

a Inactivation of the indicated genes was obtained by insertion of a resistance gene 
cassette, as published in the given references.  
b The GTPase activity in infections with wild-type C. jejuni was set 100% in each 
experiment. 
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Fig. 17. Importance of CadF expression on C. jejuni-induced activation of Rac1  
and Cdc42. INT-407 cells were infected with isogenic F38011∆cadF mutant vs. wt 
F38011 for 6 hrs at 37°C. The presence of bound, (A) active Cdc42-GTP or (B) Rac1-
GTP was analyzed in CRIB-GST pull-down assays followed by Western blotting using α-
Rac1 and α-Cdc42 antibodies, respectively. Similar quantities of individual GTPases in 
each lane were confirmed by Western blotting using equivalent volumes of cell lysates.  
(C) Quantification of Rac1 and Cdc42 GTPase activities during the course of infection. 
One hundred % of activity corresponds to the highest amount of detected GTPase-GTP 
levels. 
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5.3. Role of the ß1 integrins, platelet derived growth factor receptor (PDGFR), 

epidermal growth factor receptor (EGFR) and the focal adhesion kinase 

(FAK) in host cell invasion of Campylobacter jejuni 

 

5.3.1. ß1 integrins and FAK are required for maximal C. jejuni internalization 

 

As the important pathogenicity factor CadF mediates the binding of C. jejuni to Fn, the next 

aim of my study was to investigate whether integrins and FAK are involved in C. jejuni 

uptake. Integrins are a large class of transmembrane receptors composed of heterodimeric  

α and ß subunits which are critically involved in cell-cell and cell-matrix adhesion (Danen & 

Yamada, 2001; van der Flier & Sonnenberg, 2001; Hynes, 2002). These surface exposed 

and structurally conserved proteins are exploited by a number of microbial pathogens to 

contact and enter host cells and tissues (Hauck, 2002; van der Flier & Sonnenberg, 2001). 

Many bacteria have evolved surface proteins that bind to integrins or the associated 

extracellular matrix protein Fn (Schwarz-Linek et al., 2004). Fn recruited to the surface of the 

bacteria serves as a molecular bridge linking the bacteria with a common host Fn receptor, 

the integrin α5ß1 (Joh et al., 1999). To reveal whether the ß1 integrins play a role in the  

C. jejuni internalization, the ß1 integrin-deficient cell line (GD25) (Fässler et al., 1995) and 

GD25 stably re-expressing mutated integrin subunit ß1A (GD25-ß1ATT788-9AA) (Wennerberg  

et al., 1998), (GD25-ß1AY783/795F) (Wennerberg et al., 2000) and wild-type ß1A (GD25-ß1A) 

(Wennerberg et al., 1996) were tested by gentamycin protection assay. Invasion of C. jejuni 

was found to be significantly reduced in ß1 integrin-deficient GD25 cells as well as in both 

mutant cell lines as compared to the GD25-ß1A control (P≤0.001) (Fig. 18A).  

Integrin activation and clustering is associated with tyrosine phosphorylation of the 

non-receptor kinase FAK, and is a strategy of regulating host signal transduction events 

leading to actin rearrangements (Tachibana et al., 1995; Miyamoto et al., 1998). Indeed, the 

lowest values of intracellular bacteria were observed with GD25-ß1AY783/795F cells which are 

defective in signaling to FAK due to the defect in ß1-dependent autophosphorylation of FAK 

at tyrosine 397 (Wennerberg et al., 2000) (Fig. 18A). This result suggests that besides  

ß1 integrin FAK maybe also required for C. jejuni uptake. To confirm this idea, mouse 

fibroblasts derived from FAK-deficient embryos [FAK-/- cells, called here FAK (-)] and FAK (-) 

cells stably re-expressing HA-epitope-tagged FAK [clone DA2, called here FAK (+)]  

(Sieg et al., 1999) were employed in gentamicin protection assays. Quantification of 

intracellular bacteria revealed that FAK-deficient cells were significantly impaired in their 

ability to internalize C. jejuni (P≤0.01) (Fig. 18C). 
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Fig. 18. Effect of ß1 integrin and FAK deficiency on C. jejuni invasion. (A) ß1 integrin-
deficient cells (GD25) and GD25 stably re-expressing mutated integrin subunit ß1A 
(GD25-ß1ATT788-9AA, GD25-ß1AY783/795F or wild-type ß1A (GD25-ß1A) cells and (C) FAK-re-
expressing [FAK (+)) and FAK-deficient (FAK (-)] cells were infected for 6 hrs with  
C. jejuni. Intracellular Campylobacter cells were quantified by gentamicin protection 
assays. (*) P<0.01 and (**) P≤0.001 were considered as statistically significant.  
(B) ß1 integrin expression was analyzed by immunoblotting of enriched membrane 
fractions (Backert et al., 2000) with α-ß1 integrin antibody. (D) FAK expression was 
analyzed by immunoblotting with α-FAK antibody. GAPDH expression levels were 
determined as control. 

 

5.3.2. Activation of FAK is critical for efficient uptake of C. jejuni 

 

FAK is an important modulator of integrin-dependent focal contacts thereby orchestrating 

important cellular events such as cell spreading, cell migration or integrin-initiated signaling 

events (Hauck et al., 2002). To investigate which function of FAK plays a role for the integrin-

initiated internalization of C. jejuni, FAK (-) cells were transiently transfected with wild-type 

FAK or different FAK mutants that were either not capable of autophosphorylation (FAK 

Y397F), were impaired in their kinase activity (FAK K454R), lacked several proline residues 

necessary for association with SH3-containing proteins such as p130CAS or Graf (FAK Pro–) 

or the Grb2-binding site (FAK Y925F) (Sieg et al., 1999; Hauck et al., 2002). Gentamicin 
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protection assays revealed that overexpression of each of these FAK mutants significantly 

reduced the internalization of C. jejuni (P≤0.001) by about 35-50% (Fig. 19) indicating  

an important role of FAK signaling in facilitating efficient uptake of C. jejuni. 

 

 

 

Fig. 19. Interference with FAK function reduces uptake of C. jejuni. (A) FAK (-) cells 
were transfected with the indicated HA-tagged FAK constructs. After 48 hrs, the cells 
were infected with C. jejuni for 6 hrs. (A) Intracellular bacteria were quantified by 
gentamicin protection assays. (**) P≤0.001 were considered as statistically significant as 
compared to wt FAK control. Expression of the individual FAK constructs was verified by 
Western blot analysis using α-HA antibody.  

 

As outlined above, FAK localizes with β1-integrins and becomes activated by 

autophosphorylation at position Y397 in response to many integrin-initiated signaling 

processes (Parsons, 2003). Consequently, it is not surprising that the most pronounced 

effect on C. jejuni invasion was observed with cells transfected with FAK Y397F mutant. 

Expression of this mutant resulted in reduction to 53% of wild-type FAK level (Fig. 19).  

The next experiment was therefore to examine whether C. jejuni can stimulate the 

autophosphorylation of FAK. For this purpose, FAK (+) monolayers were infected with  

C. jejuni wild-type F38011 for different time periods (30 min to 4 hrs) and cell lysates were 

analyzed by immunoblotting with an antibody specific for FAK phosphorylated at position 

Y397. To investigate the contribution of the CadF protein for FAK autophosphorylation the 

effect of the F38011∆cadF mutant was examined in parallel. Infection of FAK (+) cells with  

C. jejuni wild-type F38011 resulted in an increased amount of Y397 phosphorylated FAK, 

which was detectable within 60 min and remained elevated for at least 4 hrs of incubation 

(Fig. 20, left lanes). In contrast, FAK phosphorylation was not detected after infection with 
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F38011∆cadF mutant (Fig. 20, right lanes). These findings suggest that infection with  

C. jejuni leads to activation of FAK by autophosphorylation at position Y397, which is fully 

dependent on the expression of CadF.  

 

 
 

Fig. 20. Activation of FAK upon CadF-mediated cell adhesion and invasion. FAK (+) 
cells were infected with C. jejuni wild-type F38011 vs. F38011∆cadF for indicated periods 
of time. Cell lysates were analyzed by immunoblotting with α-FAK-PY-397. Total FAK 
expression levels were determined as control.  

 

5.3.3. Importance of FAK and CadF expression for C. jejuni-induced Rac1 and Cdc42 

activation 

 

The results described above suggest that both FAK and Campylobacter Fn-binding protein 

CadF are important for C. jejuni internalization. Interestingly, the time-dependent activation of 

Rho GTPases correlated with the association and internalization of CadF-positive C. jejuni to 

the cells (see Fig. 7 in chapter 5.1.4 and Fig. 17 in chapter 5.2.5). This led me to test the role 

of FAK in CadF-mediated Rac1 and Cdc42 activation. For this purpose, monolayers of  

FAK (+) and FAK (-) cells were infected with C. jejuni isogenic F38011∆cadF mutant vs. wt 

F38011 for different time periods and CRIB-GST pull-down assays were performed. While 

activated Rac1 and Cdc42 were detected in FAK (+) cells 4 hrs after infection, no detectable 

activation was found in FAK (-) cells during the course of infection (Fig. 21A-E), indicating the 

involvement of FAK in signaling upstream of Rac1 and Cdc42 activation during C. jejuni 

invasion. Furthermore, reduced activation of Rho GTPases was observed in FAK (+) cells 

infected with the F38011∆cadF mutant strain (Fig. 21A-C). This result is consistent with the 

finding that F38011∆cadF less efficiently activated Rac1 and Cdc42 in INT-407 cells  

(Fig. 17A-C and Table 9). Moreover, these findings further support the hypothesis that the 

CadF protein plays a role in signaling leading to the activation of Rac1 and Cdc42. However, 

as observed in INT-407 cells, the CadF mutant was still able to induce some GTPase 

activation in Fak (+) cells suggesting that other bacterial factor(s) are also implicated in this 

signaling (Fig. 21A-C). 
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Fig. 21. Refers to the figure on page 72. Importance of FAK and CadF expression for 
C. jejuni-induced activation of Rac1 and Cdc42. (A, B, C) FAK (+) and (C, D) FAK (-) 
cells were infected with C. jejuni wt F38011 vs. isogenic F38011∆cadF mutant for 
indicated periods of time. The presence of bound, (A, D) active Rac1-GTP or (B, E) 
Cdc42-GTP was analyzed in CRIB-GST pull-down assays followed by Western blotting 
using α-Rac1 and α-Cdc42 antibodies, respectively. Similar quantities of individual 
GTPases at every time point were confirmed by Western blotting using equivalent 
volumes of cell lysates. (C) Quantification of Rac1 and Cdc42 GTPase activities during 
the course of infection of FAK (+) cells. One hundred % of activity corresponds to the 
highest amount of detected GTPase-GTP levels. 

 

 

 

5.3.4. Activation of Rac1 and Cdc42 by C. jejuni involves another bacterial 

component: flagellar apparatus 

 

Since CadF is not the sole bacterial factor involved in C. jejuni-induced GTPase activation, 

the next aim was to search for other factor(s) playing a role in this signaling. The flagellar 

apparatus was reported to be one of the most intensively investigated pathogenicity 

determinant in Campylobacter. FlaA/B proteins have been shown to be required for bacterial 

colonization in a number of animal models (Morooka et al., 1985; Wassenaar et al., 1993; 

Hendrixson & DiRita, 2004), and they play an active but yet unknown role in the invasion of 

epithelial cells (Wassenaar et al., 1991; Grant et al., 1993; Yao et al., 1994). To test  

a potential role in GTPase activation, FAK (+) cells were infected with C. jejuni wt 81-176, 

flagellin mutant 81-176∆flaA/B and flagellar biosynthesis mutant 81-176∆flhA. As expected 

activated Rac1 and Cdc42 were detected in FAK (+) cells between 2-4 hrs after infection with 

wt 81-176 (Fig. 22A-C), confirming the findings obtained with INT-407 cells (Fig. 16A-C). 

However, no detectable activation was found in FAK (+) cells infected with 81-176∆flaA/B or 

81-176∆flhA during the course of infection (Fig. 22A-C), indicating important role of flagellar 

apparatus in activation of Rac1 and Cdc42 by C. jejuni. Taken together, the findings 

described here suggest that both the flagella and CadF are able to trigger GTPase signaling 

in infected host cells. 
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Fig. 22. Importance of FAK and flagellar apparatus for C. jejuni-induced activation of 
Rac1 and Cdc42. FAK (+) cells were infected with C. jejuni wt 81-176 vs 81-176∆flaA/B 

and 81-176∆flhA mutants for indicated periods of time. The presence of bound, (A) active 
Rac1-GTP or (B) Cdc42-GTP was analyzed in CRIB-GST pull-down assays followed by 
Western blotting using α-Rac1 and α-Cdc42 antibodies, respectively. Similar quantities 
of individual GTPases at every time point were confirmed by Western blotting using 
equivalent volumes of cell lysates. (C) Quantification of Rac1 and Cdc42 GTPase 
activities during the course of infection. One hundred % of activity corresponds to the 
highest amount of detected GTPase-GTP levels. 
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5.3.5. Identification of guanine nucleotide exchange factors involved in C. jejuni-

induced activation of Rac1 and Cdc42 and host cell invasion 

 

Next aim was to determine a number of signaling components upstream of GTPases 

activation during infection with C. jejuni. Cycling of Rho GTPases between the inactive and 

active forms is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-

activating proteins (GAPs). GEFs stimulate the exchange of GDP for GTP to generate the 

active form of GTPase, which is then capable of recognizing downstream targets, or effector 

proteins (reviewed in Schmidt & Hall, 2002). Whereas some of the GEFs display specific 

activity toward one Rho GTPase, e.g. Tiam1 or DOCK180 for Rac1 (Michiels et al., 1995; 

1997; Kiyokawa et al., 1998; Cote & Vuori, 2002; 2007), others can activate multiple Rho 

GTPases promiscuously, e.g. Vav-2 can activate RhoA, Cdc42 and Rac1 (Abe et al., 2000),  

α-PIX activates Rac1 and Cdc42 (Manser et al., 1998; Yoshii et al., 1999), and Trio can 

activate Rac1 and RhoA (Debant et al., 1996). To identify which GEFs are involved in  

C. jejuni invasion, the expression of Vav-2, DOCK180, α-PIX, Tiam1 or Trio was down-

regulated using target-specific siRNA. While down-regulation of Vav-2, DOCK180, α-PIX, 

and Tiam1 led to the significant reduction in C. jejuni internalization (Fig. 23A-D), both down-

regulation of Trio (Fig. 23E), and transfection with non-targeting scrambled control sequence 

had no effect on C. jejuni uptake as quantified by gentamicin protection assays (Fig. 23A-E). 

It has to be noted that down-regulation of these individual GEFs did not lead to a complete 

blockade of C. jejuni uptake. This suggests that multiple GEFs such as Vav-2, DOCK180,  

α-PIX, and Tiam1 but not Trio may play a role in C. jejuni invasion. Although not shown by 

direct approach, these GEFs could be involved in C. jejuni-induced Rac1 and Cdc42 

activation.  

 

The role of Tiam1 for C. jejuni internalization was further examined with the use of  

a specific Rac1 inhibitor, NSC23766 (Gao et al., 2004). This cell-permeable compound 

specifically inhibits Rac1 GDP/GTP exchange activity by interfering with the interaction 

between Rac1 and its GEFs Tiam1 and Trio. Furthermore, it exhibits no effect on Cdc42 or 

RhoA activation and does not affect Rac1 interaction with its effector protein p21 activated 

kinase 1 (PAK1) (Gao et al., 2004). Gentamycin protection assay revealed that the uptake of 

C. jejuni was significantly reduced in the presence of the NSC23766, a result which further 

confirms a role of Rac1 and Tiam1 for C. jejuni invasion (Fig. 24). 
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Fig. 23. Effect of down-regulation of GEFs for Rac1 and Cdc42 on C. jejuni invasion. 
INT-407 cells were transfected with small interfering RNA (siRNA) for (A) Vav-2  
(B) DOCK180 (C) α-PIX (D) Tiam1 (E) Trio. After 48 hrs, cells were infected with  
C. jejuni for 6 hrs. Intracellular bacteria were quantified by gentamicin protection assays.  
(**) P≤0.001 were considered as statistically significant as compared to the mock control. 
Immunoblotting with indicated antibodies confirmed knockdown of the proteins. To detect 
Tiam1 immunoprecipitation with α-Tiam1 antibody was performed. GAPDH expression 
levels were determined as control.  
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Fig. 24. Effect of the Rac1 inhibitor NSC23766 on C. jejuni invasion. INT-407 
monolayers were pre-incubated for 30 min with 50 µM NSC23766 and infected with  
C. jejuni for 6 hrs. Total cell associated and intracellular Campylobacter cells were 
quantified by gentamicin protection assays. (**) P≤0.001 were considered as statistically 
significant as compared to the mock control. 

 

5.3.6. Identification of upstream kinases involved in C. jejuni-induced activation of 

Rac1 and Cdc42 and host cell invasion 

 

To further elucidate signaling pathways leading to C. jejuni-induced activation of Rac1 and 

Cdc42, several well-known pharmacological kinase inhibitors were applied. In previous 

studies, treatment of the cells with kinase inhibitors resulted in a decrease of C. jejuni 

invasion (Wooldridge et al., 1996; Biswas et al., 2004; Hu et al., 2006a). In agreement with 

these results, invasion of C. jejuni was significantly reduced in the presence of the kinase 

inhibitors genistein, tyrphostin-46, wortmannin, or staurosporine (Fig. 25A). To test if the 

latter effect is based on inhibition of Rac1 and Cdc42 activation, INT-407 cells pre-treated 

with the inhibitor were infected with C. jejuni for 2 hrs. Rac1 and Cdc42 activity was then 

assessed by CRIB-pull-down assay as described above. Genistein, a broad-spectrum 

inhibitor of tyrosine kinases, had no significant influence on the activation of Rac1-GTP  

(Fig. 25B, D) but it reduced the levels of Cdc42-GTP (Fig. 25C, D). Furthermore, tyrphostin-

46, an inhibitor of EGFR, p56Lck and PDGFR, and wortmannin, an inhibitor of PI3 kinase, 

completely blocked the activation of Cdc42 but not Rac1 during infection with C. jejuni  

(Fig. 25). Thus, the genistein-/tyrphostin-/wortmannin-mediated decrease in bacterial cell 

entry may be based on reduced Cdc42 activation. Staurosporine, a potent broad-spectrum 

inhibitor of serine/threonine kinases, that also reduced bacterial uptake, completely inhibited 

the activation of both Rac1 and Cdc42, which may account for the reduced bacterial uptake. 

Although the pleiotropic effects of the inhibitors cannot be fully ruled out, these data suggest 

that the EGFR, PDGFR, p56 Lck, PI3 kinase, and several tyrosine kinases are involved in  

C. jejuni-induced activation of Cdc42 but not Rac1, while serine/threonine kinases appear to 

be involved in the activation of both Rac1 and Cdc42. 
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Fig. 25. Effects of pharmacological inhibitors on the activation of small Rho GTPases 
by C. jejuni. INT-407 monolayers were pre-incubated for 30 min with the indicated 
inhibitors and infected with C. jejuni for 6 hrs. (A) Total cell associated and intracellular 
Campylobacter cells were quantified by gentamicin protection assays, (**) P≤0.001. The 
presence of bound, (B) active Rac1-GTP or (C) Cdc42-GTP was analyzed in CRIB-GST 
pull-down assays followed by Western blotting using α-Rac1 and α-Cdc42 antibodies, 
respectively. Similar quantities of individual GTPases in each lane were confirmed by 
Western blotting using equivalent volumes of cell lysates. (D) Quantification of Rac1 and 
Cdc42 GTPase activities during the course of infection. One hundred % of activity 
corresponds to the highest amount of detected GTPase-GTP levels. 
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5.3.7. Vav-2 links receptor tyrosine kinases (RTKs) to Rac1 and Cdc42 activation 

during infection with C. jejuni 

 

The inhibitor studies described above indicated a potential role of PDGFR and EGFR both in 

C. jejuni-induced GTPases activation and host cell invasion. To further corroborate these 

findings, INT-407 cells were transiently transfected with wild-type PDGFR and EGFR 

constructs, and their respective dominant-negative (DN) forms, followed by infection with  

C. jejuni for 6 hrs. Gentamicin protection assays showed that overexpression of either  

DN mutant significantly reduced the internalization of C. jejuni, further suggesting the 

involvement of PDGFR and EGFR in uptake of C. jejuni (Fig. 26). Notably, transfection with 

both DN-PDGFR and DN-EGFR constructs resulted in no additive reduction of C. jejuni 

invasion. The latter finding suggests that besides EGFR and PDGFR other signaling 

pathway(s) are also implicated in C. jejuni internalization. 

 
 

Fig. 26. Effect of overexpression of dominant-negative forms of PDGFR and EGFR on 
C. jejuni uptake. 48 hrs post transfection INT-407 cells were infected with C. jejuni for  
6 hrs. Intracellular bacteria were quantified by gentamicin protection assays. (*) P≤0.01 
and (**) P≤0.001 were considered as statistically significant as compared to the wt 
control. Expression of the individual constructs was verified by Western blot analysis 
using α-EGFR and α-PDGFR antibodies. GAPDH expression levels were determined as 
control. 
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Vav-2 is a substrate for EGFR/PDGFR and Rac1/Cdc42 can be activated 

downstream of both receptors through Vav-2 exchange activity (Liu & Burridge, 2000; 

Marcoux & Vuori, 2003; Tamas et al., 2003). As siRNA mediated gene silencing of Vav-2 

interfered with uptake of C. jejuni, the impact of Vav-2 on C. jejuni cell entry was further 

examined. For this purpose, INT-407 cells were transiently transfected with the wild-type 

Vav-2 and different Vav-2 mutants that were either impaired in EGFR-dependent 

phosphorylation of Vav-2 (Vav-2 Y172/159F), lacked the primary phosphatidylinositol 3,4,5-

triphosphate binding site (Vav-2 R425C) or were not capable of binding to activated EGF 

receptor (Vav-2 W673R and Vav-2 G693R) (Tamas et al., 2003). Gentamicin protection 

assays revealed that overexpression of either Vav-2 mutant significantly reduced the 

internalization of C. jejuni (P≤0.001) (Fig. 27A), confirming the role of Vav-2 in uptake of  

C. jejuni. This result was further verified by transfection of INT-407 cells with dominant-

negative form of Vav-2 which also significantly reduced C. jejuni internalization (P=0.007) 

(Fig. 27B). Therefore it is likely that Vav-2 may contribute to the C. jejuni induced 

EGFR/PDGFR-dependent Rac1 and Cdc42 activation.  

 

 
 

Fig. 27. Interference with Vav-2 function reduces the uptake of C. jejuni in host cells. 
INT-407 cells were transfected with indicated (A) GFP-tagged and (B) Myc-tagged Vav-2 
constructs. After 48 hrs, cells were infected with C. jejuni for 6 hrs. Intracellular bacteria 
were quantified by gentamicin protection assays. (*) P≤0.01 and (**) P≤0.001 were 
considered as statistically significant as compared to wt Vav-2 control. (B) Expression of 
the individual Vav-2 constructs was verified by Western blot analysis using α-GFP or 
α-c-Myc antibodies. GAPDH expression levels were determined as control.  
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5.4. Role of the surface array protein SapA in infection of host cells with 

Campylobacter fetus  

 

5.4.1. Identification of a 97 kDa phospho-protein during infection with C. fetus 

 

Since the tyrosine phosphorylation of proteins has a central role during signal transduction in 

eukaryotes (Blume-Jensen & Hunter, 2001; Pawson, 2004), the tyrosine phosphorylation 

patterns of host cells infected with Campylobacter were investigated. Western blot analysis 

with phospho-specific antibody α-PY-99 revealed strain-dependent 97 kDa phospho-protein 

for C. fetus 97-3574 strain. It was not observed for all C. jejuni strains and C. fetus 5361 

strain (Fig. 28A). To identify the 97 kDa protein, the band was excised from Coomassie-

stained SDS-PAGE gel and subjected to matrix-assisted laser desorption/ionization-mass 

spectrometry (MALDI-MS) which was performed by cooperation partner Dr. Manfred Nimtz 

(Helmholtz Center for Infection Research, Braunschweig, Germany). By this approach the  

97 kDa protein was identified as the bacterial surface array protein SapA of C. fetus 

(accession no. P35827). Nine SapA peptides were detected, leading to sequence coverage 

of 41% (Fig. 28B, C). However, the MALDI-MS analysis did not identify any phospho-

peptides of SapA. These findings were very surprising because SapA is not an effector 

protein of C. fetus but a well known surface array protein (Blaser & Pei, 1993; Blaser, 1998). 

 

5.4.2. Cloning, overexpression and purification of C. fetus SapA 

 

To investigate the role of SapA during infection, sapA gene was amplified and two vectors, 

pRK5-sapA and pGEX-4T-1-sapA, were constructed. Subsequently, SapA was 

overexpressed and purified as glutathione S-transferase (GST)-fusion protein with use of 

glutathione-affinity column, followed by gel filtration through a HiLoad 16/60 Sephacryl S-200 

HR gel filtration column, as depicted in Materials & Methods. Using described procedures,  

a 500 ml bacterial culture yielded 430 µg of protein in main fraction and 880 µg of protein of 

side fraction, of which SapA was the predominant protein species. Fractions from each 

purification step were subjected to SDS-PAGE/Coomassie staining analysis. On basis of 

that, SapA-GST purified via gel filtration column was judged to be of >95% homogeneity 

(Figure 29). Unfortunately, cleavage of SapA from GST with thrombin, even after many 

optimizing trials, was not very efficient. Hence, SapA-GST was used in most experiments 

with purified GST alone as control. Pure SapA without GST tag was utilized only when 

indicated. Purified SapA-GST was used for generation of α-SapA antibody (Materials & 

Methods).  
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Fig. 28. Identification of a 97 kDa phospho-protein by immunoblotting and MALDI-MS. 
(A) HeLa cells were infected with indicated Campylobacter strains for 24 hrs. Cell lysates 
were analyzed by immunoblotting with α-PY-99 antibody. Asterisk shows additional  
97 kDa phospho-protein band which is absent in other lysates (B) MALDI-MS spectrum 
of peptide pattern obtained after digestion of 97 kDa protein excised from Coomassie-
stained SDS-PAGE gel with trypsin. (C) Identified peptides highlighted in red were 
matched against NCBI protein database and were identified as part of shown C. fetus 
surface array protein SapA. 
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Fig. 29. Overexpression and purification of SapA. Coomassie-stained SDS-PAGE gel 
of E. coli BL21-pGEX-4T-1-sapA whole cell extract (1) before and (2) after IPTG 
induction, (3) supernatant (or soluble) fraction of the cell lysate after induction, (4) pellet 
(or insoluble) fraction of the cell lysate after induction, (5) flow-through from glutathione-
affinity column, (6) eluate from glutathione-affinity column (peak fraction) and (7) purified 
SapA-GST from gel filtration. 

 

To further confirm that the identified 97 kDa phospho-protein is SapA and to verify the 

specificity of the generated α-SapA antibody, Western blot analysis of cell lysates after 

Campylobacter infection was performed with α-PY-99 and α-SapA antibodies. The 97 kDa 

protein band was detected both with α-PY-99 and α-SapA for C. fetus 97-3574 strain as 

expected (Fig. 30A, B). In agreement with these findings, no SapA bands and no 97 kDa 

phospho-proteins were observed with C. jejuni ST 3046, 1543/01 and C. fetus 5361 (Fig. 30). 

These observations suggest that SapA from C. fetus strain 97-3574 undergoes tyrosine 

phosphorylation during infection. 
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Fig. 30. Identification of a 97 kDa phospho-protein as SapA. HeLa cells were infected 
with indicated C. jejuni and C. fetus strains for 24 hrs. Cell lysates were analyzed by 
immunoblotting with (A) α-PY-99 antibody followed by stripping and re-probing with  
(B) α-SapA antibody. Asterisk shows the 97 kDa SapA protein band.  

 

5.4.3. SapA is phosphorylated by Src kinase in vitro and in vivo 

 

To prove whether SapA can be phosphorylated by well-known host cell tyrosine kinases,  

in vitro kinase assays were performed using purified SapA-GST and recombinant c-Src 

kinase or c-Abl kinase. Whereas strong SapA phosphorylation signals were detected after  

co-incubation of SapA-GST with recombinant c-Src, only a weak signal was observed with 

c-Abl. As control, reaction without recombinant kinases was unable to phosphorylate SapA 

(Fig. 31A). This indicates that both kinases can phosphorylate SapA in vitro, but c-Src 

phosphorylates SapA more efficiently than c-Abl. To confirm that SapA can function as  

a c-Src substrate, purified SapA without GST was tested in in vitro kinase assay with 

recombinant c-Src kinase. As expected, incubation of c-Src with SapA resulted in SapA 

phosphorylation (Fig. 31B). These findings demonstrate that SapA serves as c-Src substrate 

in vitro.  

To directly prove that SapA can be phosphorylated in cultured host cells, SapA was 

transiently expressed in INT-407 cells and immunoprecipitated with the α-SapA antibody. 

Subsequently, phosphorylation of SapA was analyzed by immunoblotting with α-PY-99.  

As expected, a phosphorylated band of 97 kDa was observed in INT-407 cells expressing  
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Myc-tagged SapA but not in cells expressing the empty vector control. The identity of the 

band as SapA was verified both with α-SapA and α-c-Myc antibodies (Fig. 31C).  

To determine whether Src kinase is important for SapA phosphorylation in cultured cells  

in vivo, infection was performed with C. fetus S2+ strain in presence or absence of PP2,  

a Src-specific tyrosine kinase inhibitor (Hanke et al., 1996), followed by immunoprecipitation 

of SapA with α-SapA antibody and Western blot analysis with α-PY-99. Treatment of the 

infected cells with PP2 blocked SapA phosphorylation (Fig. 31D), confirming that SapA can 

be phosphorylated during C. fetus infection of cultured cells by Src kinase in vivo.  

 

 
 

Fig. 31. Tyrosine phosphorylation of SapA in vivo and in vitro. (A) In vitro kinase 
assay with SapA-GST co-incubated with recombinant c-Src or c-Abl followed by 
immunoblotting with α-PY-99 (upper panel), stripping and re-probing with α-SapA 
(middle panel). As positive control, autophosphorylation of both kinases is shown (lower 
panel). (B) In vitro kinase assay with pure SapA without GST co-incubated with 
recombinant c-Src followed by immunoblotting with α-PY-99 (upper panel), stripping and 
re-probing with α-SapA (lower panel). (C) SapA phosphorylation in cultured cells.  
INT-407 cells were transfected with a vector encoding Myc-tagged SapA and empty 
vector as control. Subsequently, immunoprecipitation with α-SapA antibody was 
performed and SapA phosphorylation was analyzed by immunoblotting with α-PY-99 
(upper panel). Expression of SapA was determined with α-SapA and α-c-Myc antibodies 
(middle and lower panels, respectively). (D) Phosphorylation of SapA during C. fetus 
infection. THP-1 cells were infected for 6 hrs with C. fetus S2+ strain in absence or 
presence of PP2 inhibitor. Subsequently, immunoprecipitation with α-SapA antibody was 
performed, followed by immunoblotting with α-PY-99 (upper panel), stripping and re-
probing with α-SapA (lower panel).  



Results 86

5.4.4. Variability of surface layer proteins expression among C. fetus strains 

 

As described in chapter 5.4.1. Western blot analysis of tyrosine-phosphorylation patterns of 

Campylobacter infected cells revealed phosphorylation of the C. fetus 97-3574 SapA protein. 

No bacterial phospho-proteins were detected after infection with C. fetus 5361 (Figs. 28A 

and 30A, B). To see if clinical isolates express SapA, the total bacterial-cell lysates from  

C. fetus 5361 (Magdeburg, Germany) and C. fetus 97-2126 (Young et al., 2000) along with 

C. fetus 97-3574 strain (Young et al., 2000) were subjected to SDS-PAGE/Coomassie 

staining and immunoblotting with α-SapA antibody. While the 97 kDa SapA protein was 

detected as one major band in C. fetus 97-2126 and C. fetus 97-3574 strains, other SapA 

protein species of 130 kDa and 112 kDa, were also observed as less prominent bands (Fig. 

32A, B). To confirm that these proteins correspond to SapA protein species, the proteins 

were excised from Coomassie-stained gel and subjected to MALDI-MS which was performed 

by cooperation partner Dr. Sophie Haebel (Interdisciplinary Research Center for Mass 

Spectrometry of Biopolymers, University of Potsdam, Germany). Using this approach the 130 

kDa and 112 kDa proteins were identified as C. fetus surface array protein SapA6 (accession 

no. Q841Y8), with 22% sequence coverage and C. fetus surface array protein SapA2 

(accession no. Q53505), with 33% sequence coverage, respectively (data not shown).  

In agreement with the previous findings (Fig. 30B), C. fetus 5361 cell lysate failed to react 

with α-SapA antibody, suggesting that this strain lost its S-layer, during in vitro culturing, a 

phenomenon previously reported for other C. fetus strains (Fujita & Amako, 1994) (Fig. 32B).  
 

 
 

Fig. 32. Surface layer protein expression is variable among C. fetus strains. Cell 
lysates of indicated C. fetus isolates were analyzed by (A) SDS-PAGE/Coomassie 
staining and (B) immunoblotting with α-SapA antibody. Arrows show 97 kDa protein 
bands corresponding to the SapA proteins and additional bands which were identified as 
SapA6 and SapA2 proteins (see text). These bands were not detected for C. fetus 5361 
strain.  
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To check whether SapA of different C. fetus isolates can be phosphorylated by 

recombinant c-Src kinase, in vitro kinase assays were performed. For this purpose cell 

lysates of C. fetus 5361, 97-2126 and 97-3574 strains were co-incubated with recombinant  

c-Src kinase followed by Western blot analysis with α-PY-99 and α-SapA antibodies. While 

SapA phosphorylation signal was detected with C. fetus 97-2126 and 97-3574 lysates  

no signal was observed with C. fetus 5361 (Fig. 33A). In addition, phosphorylation of SapA6 

and SapA2 proteins was observed with C. fetus 97-2126 and 97-3574 lysates, respectively 

(Fig. 33A). As control, reaction without recombinant kinase was unable to phosphorylate 

SapA (Fig. 33A). This clearly indicates that c-Src kinase can phosphorylate SapA in vitro of 

both C. fetus 97-2126 and 97-3574 strains. 

 

 

 

 

SapA from different C. fetus strains can be phosphorylated by c-Src in vitro. (A) 
Incubation of indicated C. fetus lysates with recombinant human c-Src in an in vitro 
kinase reaction resulted in specific phosphorylation of SapA, SapA2 and SapA6 proteins. 
SapA phosphorylation was neither detected in C. fetus 5361 lysate incubated with c-Src 
nor in lysates incubated without c-Src. (B) The expression of SapA proteins was verified 
by immunoblotting using the α-SapA antibody. (C) Coomassie staining presenting 
equivalent amounts of protein in each lane.  
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5.4.5. SapA-coated beads bind to INT-407 cells  

 

Since the SapA protein is expressed on C. fetus surface, it may act as an adhesin/invasin 

during C. fetus infection. To test this hypothesis, latex beads were coated with SapA-GST, 

GST or BSA, used as negative controls, and their abilities to interact with INT-407 cells were 

investigated. SapA-GST-coated latex beads bound significantly more abundantly to INT-407 

as compared to BSA-coated latex beads after 1-3 hrs of incubation (Fig. 34A-E, G-I, arrows). 

Whereas more SapA-GST-coated beads than GST-coated beads bound to INT-407 cells,  

the difference didn’t reach statistical significance (Fig. 34A-F, I).  

 

 
 

Fig. 34. Attachment of SapA-coated beads to INT-407 cells. Cell monolayers were  
co-incubated with (A-E) SapA-GST, (F) GST- (G-H) BSA-coated latex beads at an 
approximate cell:bead ratio of 1:200 for (A-D) 1 h or (E-H) 3 hrs. After gentle washing to 
remove unattached beads, cells were subjected to phase contrast microscopy. Arrows 
indicate examples of attached beads. (I) The number of adherent beads was counted in 
25 randomly selected cells, based on micrographs obtained. (*) P<0.05 was considered 
as statistically significant.  
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5.4.6. INT-407 cells do not bind to SapA-coated surfaces 

 

By analogy to known bacterial adhesins or invasins (Pizarro-Cerda & Cossart, 2006), it was 

assumed that SapA may induce host cell binding of C. fetus. To test this hypothesis cell 

attachment assays with SapA-GST were performed. In contrast to fibronectin (Fn)-coated 

wells, which were used as positive control (Fig. 35A, E), INT-407 cells did not bind to SapA-

GST-coated plastic surface (96-well plates). No differences were observed between the level 

of adhesion of INT-407 cells to SapA and on the GST or BSA negative controls (Fig. 35B-E), 

indicating that SapA does not promote adhesion to host cells. Moreover, INT-407 cells were 

able to spread on Fn but not on SapA, GST or BSA (Fig. 35A-D).  
 

 
 

Fig. 35. INT-407 cells binding on different ligands. Wells were coated with 50 µg of 
(A) Fn (positive control), (B) SapA-GST, (C) GST and (D) BSA (negative controls). INT-407 
cells were added and allowed to bind for 4 hrs. (A-D) Adherence of INT-407 cells was 
assessed by phase contrast microscopy. (E) The number of bound cells was quantified by 
crystal violet staining and subsequent absorbance measurement (Materials & Methods). 
(**) P<0.005 was considered as statistically significant. 

 

5.4.7. SapA-coated beads are internalized into INT-407 cells 

 

In the next experiment it was tested whether SapA-coated beads can be taken up by the 

INT-407 cells to investigate if SapA plays a role in invasion process. For this purpose INT-

407 cells were incubated with SapA-GST- and GST-coated beads for 6 hrs and then they 

were subjected to differential IF-staining with α-SapA antibody. Whereas SapA-GST-coated 

beads attached to INT-407 cells and ECM with higher frequency as GST-coated control 

beads, the difference didn’t reach statistical significance (Fig. 36A-G) confirming previous 

observations (Fig. 34I). Notably, SapA-GST coated beads were internalized more abundantly 

into INT-407 than GST-coated beads (Fig. 36A-G), indicating that SapA is important for host 

cells entry.  
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Fig. 36. Internalization of SapA-coated beads into INT-407 cells. Cell monolayers 
were co-incubated with (A-C) SapA-GST-, (D-F) GST-coated latex beads at an 
approximate cell:bead ratio of 1:100 for 6 hrs. After gentle washing to remove unattached 
beads, cells were subjected to differential IF staining and IF microscopy (Materials & 
Methods). Intracellular beads were probed with α-SapA antibody (red), extracellular 
beads were double stained with SapA-antibody (red and blue), actin was stained with 
FITC-phalloidin (green). Arrows indicate examples of internalized beads. (G) The number 
of internalized and attached beads was counted in 80 randomly selected cells, based on 
micrographs obtained. (*) P<0.05 was considered as statistically significant.  
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5.4.8. Importance of SapA expression during infection of host cells with C. fetus  

 

To determine the contribution of the SapA protein in adhesion and invasion of C. fetus during 

infection of INT-407 cells, the interactions of C. fetus SapA-non-expressing strains, carrying 

13.3-kb chromosomal deletion in SapA promoter region, S1-, S2-, S3- and their respective 

wild type SapA-expressing strains S1+, S2+, S3+ (Fujita & Amako, 1994; Fujita et al., 1997) 

were examined.  

 

 
 

Fig. 37. Effect of SapA deficiency on cellular adhesion and invasion of C. fetus.  
INT-407 cells were infected for 6 hrs with indicated C. fetus SapA-expressing and SapA-
non-expressing strains. (A) Total cell associated and (B) intracellular Campylobacter 
cells were quantified by gentamicin protection assays. (**) P≤0.001 were considered as 
statistically significant. (C) The expression of SapA protein was verified by 
immunoblotting using the α-SapA antibody. GAPDH expression levels were determined 
as control. 



Results 92

Whereas quantification of intracellular bacteria by the gentamicin protection assay revealed 

that the SapA-deficient strains exhibited significantly lower invasion rates than their wild-type 

strains (Fig. 37B), no difference in binding of these strains was observed (Fig. 37A). 

Immunoblot analysis with α-SapA proved that the SapA protein was not expressed by either 

SapA-negative strains (Fig. 37C). These findings confirmed previous beads experiments 

results as described in chapters 5.4.5.-5.4.7, demonstrating that SapA is not essential for 

bacterial binding to host cells, but SapA appears to play a role in C. fetus host cell entry.  

The data clearly show that SapA is an important C. fetus pathogenicity factor. 

 

5.4.9. Importance of SapA phosphorylation during infection of host cells with C. fetus  

 

To further investigate the role of SapA phosphorylation by Src kinase during C. fetus 

infection, the pharmacological inhibitor PP2 was applied. While treatment of cells with PP2 

significantly reduced invasion of C. fetus S1+, S2+ and S3+ strains, it had no effect on low 

invasion rates of C. fetus S1-, S2- and S3-, as quantified by gentamycin protection assay 

(Fig. 38, grey and black bars). Thus, Src and probably SapA phosphorylation by this kinase 

plays an important role in invasion of C. fetus. 

 

 
 

Fig. 38. Effect of lack of SapA phosphorylation by Src kinase on C. fetus invasion. 
INT-407 cells were infected for 6 hrs with indicated C. fetus SapA-expressing and SapA-
non-expressing strains, in absence (grey bars) or presence (black bars) of PP2 inhibitor. 
Intracellular Campylobacter cells were quantified by gentamicin protection assays.  
(**) P≤0.001 were considered as statistically significant.  

 

5.4.10.  SapA triggers IL-8 secretion 

 

To investigate whether recombinant SapA is a biologically active protein which may influence 

immunoregulatory signaling, its ability to induce IL-8 release was tested by standard ELISA. 

Significant difference in IL-8 secretion was observed between cells co-incubated with SapA-
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GST- and GST-coated beads (Fig. 39), indicating that SapA exhibits the capability to trigger 

IL-8 secretion of host cells.  

 
 

Fig. 39. Purified recombinant SapA is able to induce IL-8 secretion of host cells. 
Mouse fibroblast monolayers were co-incubated with SapA-GST- and GST-coated latex 
beads at an approximate cell:bead ratio of 1:100 for 6 hrs. IL-8 release into the culture 
supernatant was determined by standard ELISA. (*) P≤0.05 and (**) P≤0.005 were 
considered as statistically significant. 

 

Next, the role of SapA protein expression for the induction of IL-8 release during  

C. fetus infection was examined. For this purpose, INT-407 cells were infected with C. fetus 

SapA-expressing strains and respective SapA-deficient strains, and their capability to trigger 

IL-8 secretion was compared. C. fetus SapA-non-expressing strains (S2- and S3-) showed 

reduced ability to induce IL-8 release from INT-407 in comparison to wt C. fetus S2+ and 

S3+, respectively (Fig. 40). These statistically significant (P≤0.001) data further confirm that 

SapA is important pathogenicity factor triggering IL-8 secretion from host cells during C. fetus 

infection. 
 

 
 

Fig. 40. Effect of SapA on induction of IL-8 secretion from infected host cells. INT-407 
cells were infected for 24 hrs with indicated C. fetus SapA-expressing and SapA-non-
expressing strains. IL-8 release into the culture supernatant after infection was 
determined by standard ELISA. (**) P≤0.001 were considered as statistically significant.  
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5.4.11.  Campylobacter fetus binding and invasion occurs on the edges of and between 

INT-407 cells, as revealed by FESEM 

 

The interaction of C. fetus S2+ and S2- strains with the surface of INT-407 epithelial cells 

was analyzed by FESEM, performed by Dr. M. Rohde. One hundred infected cells were 

investigated in each experiment. Analysis revealed that the bacteria were able to bind and 

invade into the host cells (Fig. 41A-F, red arrows). Interestingly, it was found that the bacteria 

attached to the cells in a very specific manner. Whereas C. fetus S2+ was regularly observed 

in association with the edges of and between the infected cells, the C. fetus S2- was only 

rarely seen bound to cells.  

 

 
 

Fig. 41. High resolution field emission scanning electron microscopy of C. fetus 
adhesion and invasion into INT-407 epithelial cells after 4 hrs of infection. (A-E) C. fetus 
S2+ was often found on the edges of and between the cells. (F) C. fetus S2- was rarely 
observed bound to cells. Arrows indicate examples of C. fetus.  
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6. Discussion 
 

6.1. Role of CadF protein in Campylobacter jejuni and Campylobacter coli 

 

The ability of pathogenic bacteria to bind to host tissues is important as it represents an early 

event in the establishment of an in vivo niche. In some instances, such binding is also  

a prerequisite for host cell invasion, where the organisms are protected intracellularly from 

the humoral and cellular immune responses of the host (Alrutz & Isberg, 1998; Cossart & 

Sansonetti, 2004). The common theme among pathogenic micro-organisms is their ability to 

utilize host cell molecules during the infectious process to facilitate their binding and entry 

into host cells (Watarai et al., 1996, Pizarro-Cerda & Cossart, 2006). The pathogenicity of 

several Campylobacter species is dependent on their ability to attach and invade the human 

intestine (Kopecko et al., 2001; Mooney et al., 2003). One of the adhesion factors that  

C. jejuni uses to attach, and eventually invade mammalian cells, is CadF, a protein that binds 

to fibronectin (Fn) – a component of the extracellular matrix (Konkel et al., 1997). In vitro 

assays revealed that the binding of C. jejuni clinical isolates to immobilized Fn can be 

reduced using a α-CadF polyclonal serum (Monteville et al., 2003). Most recently, a single 

surface-exposed domain was identified within the CadF protein that binds to the Fn. Using  

an overlapping peptide library derived from CadF, maximal Fn-binding activity was localized 

within four amino acids (aa 134-137) consisting of the phenylalanine-arginine-leucine-serine 

motif (Konkel et al., 2005). Furthermore, the importance of CadF for the adherence of  

C. jejuni to epithelial cells has been demonstrated in vitro (Konkel et al., 1997). Finally, the 

biological significance of the CadF as an adhesin has been validated upon performing in vivo 

studies. Ziprin and co-workers (Ziprin et al., 1999; 2001) reported that C. jejuni cadF mutant 

is unable to colonize the intestinal tract of Leghorn chickens, thus providing evidence that this 

37 kDa outer-membrane protein plays an in vivo role in mediating the organism's binding to 

the intestinal epithelium. 

One of the aims of my study was to determine the genetic and functional diversity of 

CadF protein among a large number of C. jejuni and C. coli isolates. Therefore, protein 

separation, blotting and staining with two highly specific α-CadF antibodies was performed. 

The expected, prominent 37 kDa CadF protein (p37) was detected in all tested C. jejuni and 

C. coli isolates. In addition, Western blot analysis indicated second protein species of 32 kDa 

(p32) that was mostly less prominent. The results, which are consistent and extend earlier 

observations (Konkel et al., 1997; 1999a), also revealed both that the number and intensity 

of CadF bands varied among C. jejuni strains. While p37 was detected in all  

C. jejuni isolates of human and animal origin, the less prominent p32 band was found only in 

62% of the C. jejuni isolates of human origin and in 96% of the C. jejuni of animal origin.  
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        To prove the specificity of the α-CadF antibodies, CadF expression pattern of two 

isogenic cadF knockout mutants was tested. By lack of staining it was shown that p32 and 

p37 are not expressed in the cadF mutants. This confirms that both bands indeed 

correspond to CadF translation products. Heat-modifiability is a well-known feature of outer 

membrane proteins (Nakamura & Mizushima, 1976; Bolla et al., 1995), including CadF 

(Konkel et al., 1997; 1999a; Mamelli et al., 2006; 2007). The differences in conformational 

states of membrane proteins are readily apparent by SDS-PAGE, where the native protein 

exhibits a faster migration than the denaturated form of the protein. Further boiling in SDS-

containing sample solubilization buffer results in a complete disruption of protein folding and 

a change in the apparent molecular weight (Nakamura & Mizushima, 1976; Sugawara et al., 

1996). Therefore, the migration of CadF as two protein species is likely caused by their heat-

modifiable conformational state, where p32 is the incompletely denaturated and partially 

folded form of CadF.  

In contrast to earlier reports, where the CadF protein was found to be conserved in 

size and antigenicity among C. jejuni and C. coli isolates from USA (Konkel et al., 1999a),  

it was observed that all C. coli isolates tested in my study possessed a larger CadF (p39 and 

p34) than C. jejuni. Sequence analysis of three C. coli isolates confirmed this difference 

between species and indicated that C. coli carried a stretch of 13 amino acids in the middle 

region of the protein. Interestingly, the latter insertion sequence was not found in one C. coli 

isolate from the USA which instead contained another insertion sequence of 7 amino acids 

(Konkel et al., 1999a). However, whether the differences in amino acid sequence or a lower 

expression level accounted for the apparent weaker immunoreactivity of the C. coli CadF 

with the polyclonal antisera remains to be determined. Nevertheless, the data strongly 

suggest that the differences in molecular size and differences in nucleotide sequence 

between the C. jejuni and C. coli isolates may be a suitable diagnostic marker to discriminate 

between these species in food and clinical specimen. 

The possible biological significance of the variation in CadF was investigated by 

comparing a subset of C. jejuni and C. coli strains for their ability to infect INT-407 intestinal 

epithelial cells, which serves as an in vitro model system for C. jejuni and C. coli attachment 

and invasion (Hu & Kopecko, 1999; Biswas et al., 2000; Monteville et al., 2003; Nadeau  

et al., 2003; Konkel et al., 2004; Hu et al., 2005). Interestingly, C. jejuni strains adhered and 

invaded INT-407 cells at significantly greater levels than C. coli strains. This effect was at 

least in part caused by CadF as the 81116∆cadF and F38011∆cadF mutants showed 

reduced adhesion, which is consistent with previous studies showing a reduced adherence to 

INT-407 cells of a C. jejuni cadF mutant (Konkel et al., 1997; Monteville et al., 2003). These 

results may indicate that C. coli CadF is less functional than its C. jejuni counterpart, 

although one cannot exclude that additional differences between the subspecies could be 
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involved (Wassenaar & Blaser, 1999). Furthermore, a significant reduction in invasion of  

INT-407 cells was noted with both C. jejuni cadF mutants when compared with wild-type 

isolates, confirming that CadF is a major pathogenicity factor of Campylobacter, which is not 

only important for bacterial binding but also required for maximal invasion of intestinal 

epithelial cells. 

 

6.2. Rac1 and Cdc42 as central players mediating Campylobacter jejuni 

invasion 

 

Host cell invasion is an essential process in the pathogenesis of many bacteria, including  

C. jejuni (Kopecko et al., 2001). The extracellular milieu can be a harsh environment in which 

pathogens are subjected, in addition to physical stresses (such as low pH or shear stress 

imposed by flow of mucosal secretions or blood), to many other host defense mechanisms 

including cellular exfoliation, complement deposition, antibody labeling and subsequent 

recognition by macrophages or cytotoxic T cells (Pizarro-Cerda & Cossart, 2006). Several 

bacterial species have evolved molecular strategies to actively induce their entry into target 

cells for replication and/or dissemination to other host tissues. For example, organisms, such 

as the enteropathogenic Yersinia and Salmonella appear to utilize cellular entry to gain 

access to subepithelial regions. Whereas Neisseria meningitis may use specific uptake 

factors to directly access deep tissue sites, Shigella or Chlamydia must replicate within host 

cells to cause disease (Sansonetti et al., 1999). Once microorganisms translocate to 

epithelium, the routes that different organisms take to promote disease may diverge 

significantly from one to another. Invasion involves numerous steps: bacterial binding at 

specific receptor sites, signaling to the host cell, modification of intracellular host signal 

transduction pathways, membrane and cytoskeletal rearrangements, and eventual 

engulfment of the bacterium, which commonly involves the activity of one or more of the host 

cell proteins of small Rho family GTPases (Gruenheid & Finlay, 2003; Cossart & Sansonetti, 

2004; Rottner et al., 2004). Rho family members are small GTP-binding proteins that induce 

a variety of host cell responses (Nobes & Hall, 1995; Caron & Hall, 1998; Tran Van Nhieu  

et al., 1999; Cossart & Sansonetti, 2004). They are known principally for their pivotal role in 

regulating the actin cytoskeleton, but their ability to influence cell polarity, microtubule 

dynamics, membrane transport pathways and transcription factor activity is probably just as 

significant (Ettiene-Manneville & Hall, 2002). They cycle between a GDP-bound (inactive) 

state and GTP-bound (active) state, and, in the GTP-bound state, the GTPase relays 

extracellular signals to a large number of downstream effectors. RhoA, Rac1 and Cdc42,  

the best-characterized members of the family, have distinct effects on the actin cytoskeleton 

(Ridley et al., 1992; Olson et al., 1995; Caron & Hall, 1998). It has been shown that Rho 
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proteins are involved in formation of stress fibers and focal adhesion complexes, whereas 

Rac1 triggers lamellipodia and membrane ruffling, and Cdc42 proteins induce filopodia 

formation (Nobes & Hall, 1995). It is important to note that the role of Cdc42 is still not fully 

clear because Cdc42-deficient fibroblast cells are still capable to induce the formation of 

filopodia and lamellipodia (Czuchra et al., 2005). During cell spreading, Rho family members 

function sequentially, with initial activation of Cdc42, followed by Rac1 and RhoA (Ridley  

et al., 1992; Nobes & Hall, 1995). However, in other actin-dependent processes such as 

bacterial invasion, a distinct subset of Rho GTPases becomes activated, often in a cell-type 

specific manner. For example, it has been demonstrated that Rac1 and Cdc42 play a crucial 

role in the invasion of Salmonella enterica and Shigella flexneri (Hardt et al., 1998; Tran Van 

Nhieu et al., 1999), whereas RhoA is important for the uptake of Mycobacterium avium 

(Sangari et al., 2000) or Pseudomonas aeruginosa (Kazmierczak et al., 2001). Rac1 is 

required for internalization of Chlamydia trachomatis (Carabeo et al., 2004), Listeria 

monocytogenes (Seveau et al., 2007) and Yersinia pseudotuberculosis (Alrutz et al., 2001). 

Invasion of enteropathogenic Escherichia coli (EPEC) has been shown to be Cdc42 

dependent (Kenny et al., 2002; Jepson et al., 2003). However, the role of Rho GTPases in  

C. jejuni invasion is not known. 

The growing number of known bacterial virulence factors acting on small Rho family 

GTPases comprises GEFs and GAPs, which are capable of inducing localized signaling to 

actin rearrangement at the sites of bacterial invasion (Gruenheid & Finlay, 2003; Cossart  

& Sansonetti, 2004; Rottner et al., 2004), or a novel class of type III effector proteins which 

mimic Rho GTPases (Alto et al., 2006). In addition, numerous bacterial protein toxins are 

specialized to activate, inhibit or modify Rho family GTPases (Barbieri et al., 2002; Barbieri  

& Aktories, 2005). Thus, conceptually, the latter toxins can modulate many aspects of actin-

cytoskeletal function and provide a powerful tool to study the role of GTPases during the 

invasion of other pathogens, including C. jejuni. 

Here, inhibition of endogenous Rho-family members by compactin and Clostridium 

difficile toxin B and TcdB (Just et al., 1995) effectively reduced the internalization of C. jejuni, 

suggesting an involvement of these proteins in the invasion process. Inactivation of Rac and 

R-Ras but not Rho and Cdc42 by TcdBF (Chaves-Olarte et al., 2003) also showed a blocking 

effect indicating that Rac but not Rho is involved in the entry process of C. jejuni. Treatment 

of host cells with exoenzyme C3 from Clostridium botulinum, which specifically inactivates 

RhoA-C (Aktories, 1997; Genth et al., 2003; Barbieri & Aktories, 2005) did not inhibit C. jejuni 

uptake, confirming that RhoA-C does not play a role in this process. Furthermore, both the 

transient transfection of DN-Rac1 or DN-Cdc42 and down regulation of Rac1 and Cdc42 but 

not RhoA using target-specific siRNA led to significant reduction of C. jejuni invasion. In turn, 

internalization of C. jejuni was enhanced significantly through activation of endogenous Rac1 
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and Cdc42 but not RhoA. Whereas treatment of host cells with the E. coli CNF-1, which has 

the ability to permanently activate all three GTPases by deamidation of glutamine residues 

(Flatau et al., 1997; Schmidt et al., 1997; Lerm et al., 1999), promoted C. jejuni uptake, 

exposure to CNF-Y, a specific activator of RhoA, did not lead to increased invasion. 

Additionally, transient expression of CA-Rac1 and/or CA-Cdc42 confirmed previous results.  

It is important to note that in comparison to CA-Cdc42, CA-Rac1 transfection had a much 

more pronounced stimulatory effect on C. jejuni uptake. These finding could suggest that 

Rac1 may be the major player regulating host cell internalization of C. jejuni. 

Interestingly, expression of CA-RhoA reduced the levels of C. jejuni invasion. 

Numerous studies have shown that CA-RhoA or endogenous RhoA activation inhibited Rac1 

activation in neurons (Yamaguchi et al., 2001; Negishi & Katoh, 2002) and CHO cells 

(Sugimoto et al., 2003). Activation of Rho kinase by RhoA induces the phosphorylation and 

activation of myosin, located at the cell periphery, and consequently elevates contractile 

activity of actomyosin, enhancing the stabilization of cortical actin filaments. This stabilization 

disturbs the Rac1-mediated reorganization of the actin cytoskeleton at the cell periphery and 

subsequent protrusion (Negishi & Katoh, 2002). Thus, activated RhoA may block Rac1 

resulting in blocking of C. jejuni host cell entry. However, if the latter signaling occurs in  

INT-407 epithelial cells, remains to be identified. In summary, the data described above 

indicate that Rac1 and Cdc42 but not RhoA are involved in C. jejuni invasion. This idea was 

further confirmed by the finding that Rac1 and Cdc42 are prominently activated in INT-407 

cells between 2-4 hrs after infection with C. jejuni. This is also consistent with the observation 

that high rates of C. jejuni-induced membrane ruffling and invasion can be detected as soon 

as 4-6 hrs after infection. 

Changes of actin-dependent membrane dynamics generated by active Cdc42 and 

Rac1 have been shown to be associated with the uptake of numerous other invasive 

pathogens into non-phagocytic mammalian cells, including S. flexneri (Tran Van Nhieu et al., 

1999) and S. enterica (Hardt et al., 1998). Invasion is thereby accompanied by extensive 

membrane ruffling and requires different Rho GTPases including Rac1 and Cdc42, which are 

regulated directly through bacterial factors injected into the host cell by a T3SS (“trigger 

mechanism”) (Hardt et al., 1998; Tran Van Nhieu et al., 1999; Cossart & Sansonetti, 2004). 

However, other than the flagella, C. jejuni does not encode a classical T3SS (Konkel et al., 

1999; Hofreuter et al., 2006). In contrast, the “zipper mechanism” of invasion used by Listeria 

and Yersinia involves direct contact between the bacterium and the host cell surface and 

results in a tight association between bacterial ligands and host receptors. For engulfment of 

the bacterium, localized actin-cytoskeletal reorganization is also required (Finlay & Cossart, 

1997; Lecuit et al., 1997). As the cell surface rearrangements observed during C. jejuni 

invasion were not so pronounced as in case of S. flexneri (Adam et al., 1995; 1996; Tran Van 
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Nhieu et al., 1999) or S. enterica (Hardt et al., 1998; Zhou et al., 1999; 2001), my electron 

microscopic studies support the view that C. jejuni did not enter host cells by a classical 

trigger-like mechanism.  

 

6.3. Involvement of CadF in Campylobacter jejuni-induced activation of Rac1 

and Cdc42 

 

Whereas the entry of Yersinia and Listeria can be mediated by a single bacterial protein,  

the invasins InvA (Isberg & Tran Van Nhieu, 1994) and INlA or INlB (Lecuit et al., 1997; 

Braun et al., 1998), respectively, invasion of Salmonella and Shigella is a multifactorial 

process with more than 20 bacterial proteins being involved (Finlay & Falkow, 1997). In case 

of C. jejuni, it was tempting to propose that known pathogenicity factors such as plasmid 

pVir, CDT, KpsS, WaaF, PEB1 or CadF may be involved in C. jejuni-induced GTPase 

activation. Thus, isogenic mutants of the respective genes or strains lacking pVir were used 

in order to investigate the role of one or the other bacterial factor in this process.  

 A number of bacterial enteric pathogens contain plasmids that contribute to 

pathogenesis, including Shigella (Sasakawa et al., 1992; Sansonetti & Egile, 1998), 

Salmonella (Chikami et al., 1985; Guiney et al., 1995), and EPEC (Tobe et al., 1999).  

No evidence was seen for the involvement of plasmids in the virulence of C. jejuni until 

Bacon and co-workers (Bacon et al., 2000) identified pVir in strain 81-176. pVir is a plasmid 

encoding homologues of components of T4SS (Bacon et al., 2000; 2002) known to be 

important for the virulence of a number of major bacterial pathogens (Backert & Meyer, 

2006). pVir plasmid was shown to be involved in the virulence of C. jejuni both in vitro and  

in vivo (Bacon et al., 2000). Recently, pVir was identified in 17 of 104 (17%) clinical isolates 

and associated with occurrence of blood in patients stool and more severe invasive 

Campylobacter infections (Tracz et al., 2005). In contrast to this communication, Louwen and 

co-workers (Louwen et al., 2006) reported the absence of an association with the plasmid 

pVir in patients infected with C. jejuni who developed bloody diarrhea. Interestingly,  

wt C. jejuni strains, 84-25 and F38011 tested in this study, which lack pVir, induced the 

activation of Rho GTPases, suggesting that pVir and the encoded factors ComB3 and VirB11 

are not involved in the invasion of C. jejuni 81-176 into host cells. Furthermore, certain genes 

such as kpsS and waaF which play a role in the biosynthesis of CPS and LOS, respectively, 

have been shown previously to be implicated in C. jejuni invasion (Karlyshev et al., 2000; 

Bacon et al., 2001; Kanipes et al., 2004). Here it was found that their respective isogenic 

mutants activated Rho GTPases comparable to wt C. jejuni, suggesting that kpsS and waaF 

genes may have other functions during the invasion process. The cytolethal distending toxin 

(CDT) is also considered as an important C. jejuni virulence factor (Hickey et al., 2000).  
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The cdtB gene encodes the active subunit of CDT, exerting its effect as a nuclease that 

damages DNA (Lara-Tajero & Galan, 2000). The cdtB isogenic mutant was able to activate 

Rho GTPases, indicating no role of CDT in Rho GTPases activation. In addition, inactivation 

of the important bacterial adhesin PEB1, previously reported to affect C. jejuni adherence to 

epithelial cells, as well as colonization of mice (Pei at al., 1998), even enhanced C. jejuni-

induced Rac1 and Cdc42 activation, suggesting that PEB1-dependent bacterial binding to 

host cells per se does not trigger GTPase activation. Importantly, I reproducibly found that  

an isogenic cadF mutant less efficiently induced the activation of Rho GTPases as compared 

to wt bacteria. This suggests that CadF, at least in part, is involved in Rac1/Cdc42 activation. 

Because CadF is a Fn-binding protein, it could be a bi-functional protein, acting not only as  

a canonical adhesin for bacterial binding to Fn but also stimulating integrins and growth 

factor receptor clustering, which subsequently could activate downstream factors such as 

GEFs of Rac1 and Cdc42.  

 

6.4. Role of the ß1 integrins in host cell invasion of Campylobacter jejuni 

 

Integrins are large heterodimeric transmembrane proteins of multicellular organisms involved 

in a wide variety of adhesive functions such as cell-cell interaction, cell migration, 

differentiation and adhesion. Members of this receptor family are able to bind extracellular 

matrix proteins as well as cytoskeletal components, thus providing a sophisticated 

communication system between the extracellular environment and intracellular cytoskeleton 

(Hynes, 2002). Integrins are composed of two subunits, α and ß, that can heterodimerize  

to form more than 20 different receptors exhibiting specific patterns of expression 

(Schlaepfer & Hunter, 1998; van der Flier & Sonnenberg, 2001). Many mammalian cells 

express integrin heterodimers with a ß1 chain. In epithelial layers, members of this family are 

usually involved in binding to extracellular matrix components such as Fn, collagen and 

laminin (Isberg & Tran Van Nhieu, 1994). Several pathogens exploit their interaction with 

integrins not only to adhere to host cells but also to trigger actin-cytoskeletal rearrangements 

that can result in cellular invasion. For example, the invasin InvA, a surface protein of  

Y. enterocolitica and Y. pseudotuberculosis promotes cell attachment and entry by direct 

binding to at least five different members of the ß1 integrin receptor family (Isberg & Leong, 

1990; Leong et al., 1990). A number of other microbial pathogens are known to produce 

adhesive factors that bind ECM proteins and promote cell uptake by bridging ECM 

molecules. For instance, attachment and cell entry of Neisseria gonorrhoeae, Streptococcus 

pyogenes, and Staphylococcus aureus occur by interaction of their adhesins, e.g. Opa 

(Opacity-associated outer membrane proteins), Cpa (Collagen-binding protein of  

group A streptococci), EbpS (Elastin-binding protein of Staphylococcus aureus) with 
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vitronectin, collagen or elastin (Dehio et al., 1998; Park et al., 1999; Kreikemeyer et al., 

2005). Numerous bacteria have evolved surface proteins that possess the ability to 

specifically bind to Fn and exploit its interaction with integrin α5ß1, the principal Fn receptor, 

including M. avium (Schorey et al., 1996), N. gonorrhoeae (van Putten et al., 1998),  

S. aureus (Jonsson et al., 1991; Joh et al., 1999; Agerer et al., 2003) and S. pyogenes (Ozeri 

et al., 1998; 2001). In C. jejuni, the CadF protein mediates the binding of C. jejuni to Fn, 

however, the precise mechanism of bacterial invasion and the roles of Fn and integrins in 

this process have been not fully elucidated (Konkel et al., 1997; 2005). It is not clear whether 

Fn-coated C. jejuni engage integrins to promote its entry into host cells and how the binding 

of integrins is translated into an uptake signal. In my study, C. jejuni invasion of ß1-deficient 

cells GD25 was found to be significantly reduced as compared to ß1A expressing cells, 

demonstrating the essentiality of ß1 integrin for uptake of this pathogen. C. jejuni is most 

probably able to invade eukaryotic cells by indirectly engaging ß1 integrin-containing host 

receptors, where Fn can act as a bridge and indirectly link the bacteria expressing CadF 

protein to integrins on human cells. 

 

6.5. Importance of the focal adhesion kinase and CadF for Rac1 and Cdc42 

activation and host cell invasion of Campylobacter jejuni 

 

The short cytoplasmic tail of integrins possesses no enzymatic activity, hence integrins 

transduce signals by associating with adapter proteins that connect the integrin to the 

cytoskeleton, cytoplasmic kinases, and transmembrane growth factor receptors (Schwartz, 

2001; Hynes, 2002). FAK is a non-receptor protein-tyrosine kinase (PTK) that indirectly 

localizes to sites of integrin-receptor clustering through carboxy-terminal-domain-mediated 

interactions (Hildebrand et al., 1993) with integrin-associated proteins such as paxillin 

(Tachibana et al., 1995; Liu et al., 1999) and talin (Chen et al., 1995). FAK becomes 

phosphorylated at seven to eight different tyrosine residues in vivo after engagement of 

integrin with matrix proteins (Schlaepfer & Hunter, 1996; Schlaepfer et al., 2004). The amino-

terminal domain of FAK contains an autophosphorylation site (Y397), which serves as a high-

affinity binding site for the SH2 domain of Src family of PTKs in vivo (Schlaepfer et al., 2004). 

Active FAK and Src PTKs phosphorylate paxillin, α-actinin and p130CAS, a docking protein 

that recruits the adapter proteins Crk and Nck (Richardson & Parsons, 1996; Schlaepfer  

et al., 1997). Phosphorylation of tyrosine residues in the FAK carboxy-terminal domain by 

Src kinases at Y925 creates a binding site for the SH2 domain of Grb2 (Schlaepfer & Hunter, 

1996; Schlaepfer et al., 1998). Thus, FAK appears to act as a scaffold for organizing  

a network of signaling and cytoskeletal proteins. Notably, FAK has been shown to be 

required for the integrin-initiated invasion processes induced by bacterial invasion factors, 
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including the invasin protein of Y. pseudotuberculosis (Alrutz & Isberg, 1998), the Fn-binding 

proteins of S. aureus (Agerer et al., 2005) and invasive factors of E. coli (Reddy et al., 2000). 

The role of FAK in C. jejuni invasion has not been investigated yet. Here, FAK-deficient cells 

and cells transfected with different FAK mutants were shown to be significantly impaired in 

their ability to internalize C. jejuni, demonstrating a requirement of FAK for C. jejuni uptake. 

Furthermore, an increased level of FAK phosphorylation at position Y397, indicating FAK 

activation, was observed after infection of FAK (+) cells with a wild-type isolate of C. jejuni.  

In contrast to this finding, no FAK phosphorylation was detected in cells inoculated with the  

C. jejuni F38011∆cadF mutant. These results are consistent with a previous study, where  

an increase in the phosphorylation of paxillin, an event considered to be downstream of FAK 

activation (Richardson & Parsons, 1996), was observed upon cellular challenge with wild-

type C. jejuni but not with the C. jejuni cadF mutant (Monteville et al., 2003). In summary, my 

data suggest that CadF not only enables C. jejuni to bind to Fn for efficient attachment and 

invasion but appears to be involved in a signal transduction pathway leading to tyrosine 

phosphorylation of FAK and paxillin, which in turn can regulate host signaling events leading 

to actin rearrangement (Tachibana et al., 1995; Miyamoto et al., 1998). Accordingly, C. jejuni-

triggered Rac1 and Cdc42 activation was abolished in the absence of FAK, thus 

demonstrating that FAK is essential in connecting an integrin initiated stimulus with Rho 

GTPases activation during C. jejuni invasion. This was further confirmed by my finding that 

F38011∆cadF mutant less efficiently induced activation of Rho GTPases in FAK (+) cells 

compared to wt, result consistent with reduced activation of Rho GTPases in INT-407 cells 

infected with F38011∆cadF mutant. However, the CadF mutant was still able to induce some 

residual GTPase activation suggesting that other bacterial factor(s) are also implicated in this 

signaling. The idea that the CadF is not the sole C. jejuni pathogenicity factor playing a role 

in signaling leading to the activation of Rac1 and Cdc42 was proved by the fact that no 

detectable activation was found in FAK (+) cells infected with flagellin mutant 81-176∆flaA/B 

or flagellar biosynthesis mutant 81-176∆flhA during the course of infection. Functional 

flagella have been previously shown to be required for C. jejuni invasion, but their 

involvement is as yet uncharacterized (Wassenaar et al., 1991; Grant et al., 1993; Yao et al., 

1994). Results presented here indicate significance of flagellar apparatus in activation of 

Rac1 and Cdc42 by C. jejuni, thus explaining a role of flagellar apparatus in C. jejuni uptake. 

However, whether flagella interact directly with host receptors or if flagellar apparatus serves 

as secretory apparatus for effector proteins remains to be elucidated in future studies.  

In summary, these findings suggest that both the CadF and flagella are able to trigger 

GTPase signaling in infected host cells. 
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6.6. Role of guanine nucleotide exchange factors in host cell invasion  

of Campylobacter jejuni 

 

To determine signaling molecules downstream from integrins and FAK that could lead to 

Rac1 and Cdc42 activation during C. jejuni infection, the impact of a number of GEFs was 

analyzed. One candidate for a role in C. jejuni-mediated activation of Rho family GTPases  

is DOCK180 (Kiyokawa et al., 1998). DOCK180 is an unconventional GEF for Rac1 devoid 

of the Dbl-homology/pleckstrin-homology tandem domains characteristic of Rho-family GEFs 

(Brugnera et al., 2002; Cote & Vuori, 2002; Katoh & Negishi, 2003). DOCK180 forms  

a signaling complex with FAK, c-Src, p130Cas and Crk which in turn can activate Rac1 

(Kiyokawa et al., 1998; Gu et al., 2001; Hsia et al., 2003). DOCK180 appears to be a good 

candidate for linking Rac1 activation to C. jejuni invasion as down-regulation of DOCK180 

using target-specific siRNA led to the significant reduction of C. jejuni uptake by host cells. 

This finding is consistent with reduced C. jejuni internalization observed by FAK (-) cells 

transfected with FAK Pro- mutant lacking several proline residues necessary for association 

of SH3-containing p130Cas (Sieg et al., 1999). In this context, it is interesting to note that 

DOCK180 has been recently implicated both in IpgB1-promoted Shigella entry (Handa et al., 

2007) as well as in InvA-mediated internalization of Yersinia (Bruce-Staskal et al., 2002; 

Wong & Isberg, 2005). Additionally, expression of Pro- mutated FAK was reported to lead to  

a strong impairment of S. aureus uptake (Agerer et al., 2005).  

Another example of a GEF that can be activated downstream from integrin 

engagement is Vav-2 (Marcoux & Vuori, 2003). Vav-2 is a crucial downstream component in 

EGFR- and PI3-kinase-dependent Rac1 activation upon integrin-mediated cell adhesion 

(Marcoux & Vouri, 2003). It was reported to display GEF activity for Rac1, Cdc42, and RhoA 

(Abe et al., 2000; Heo et al., 2005). Notably, siRNA mediated gene silencing of Vav-2  

and overexpression of several Vav-2 mutants significantly reduced the uptake of C. jejuni by 

host cells.  

Other pathways downstream of integrins that eventually lead to GTPases activation 

may also be involved during C. jejuni infection. Paxillin is proposed to play a role in targeting 

effectors of activated Rac1 rather than stimulating Rac1 activation (Manser et al., 1997; 

Brown et al., 2002). For example, FAK can directly or indirectly interact via paxillin with the 

Cool/PIX family of proteins, GEFs for Rac1 and Cdc42 (Turner et al., 1999; Zhao et al., 

2000). The existence of paxillin-paxillin kinase linker (PKL)-α-PIX-PAK-complex is required 

for recruitment of PAK to focal complexes and plays an important role in the regulation of 

Rac1 activity (Turner et al., 1999; West et al., 2001; Brown et al., 2002). α-PIX can be 

activated by signaling cascades from the PDGFR and from integrin-induced signaling either 

by the formation of a complex with PAK and Nck, or direct association with the p85 
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regulatory subunit of PI3-kinase (Yoshii et al., 1999). Reduction of C. jejuni invasion was 

observed after down-regulation of α-PIX with siRNA indicating a role of α-PIX in C. jejuni 

uptake by host cells. Interestingly, α-PIX has been also reported to interact with CagA protein 

during H. pylori infection of AGS cells which demonstrates that this GEF may be a common 

target of bacterial pathogens (Baek et al., 2007). 

Activated FAK can bind and phosphorylate a range of different substrates, which 

allow further recruitment of adaptor and signaling molecules. The phosphorylation of FAK  

at Y397 and subsequently at Y925 creates the SH2-binding site for the Grb2-SOS complex 

and provides a link to the activation of the Ras signal transduction pathway (Schlaepfer  

& Hunter, 1996). Ras can activate several downstream effectors including Rac1 (Bar-Sagi  

& Hall, 2000). Here, transfected FAK knockout fibroblasts re-expressing FAK Y397F or FAK 

Y925F mutants were impaired in C. jejuni invasion, suggesting that loss of Grb2 binding site 

reduces C. jejuni uptake. Interestingly, Lambert and co-workers (Lambert et al., 2002) 

demonstrated that Tiam1, a Rac1-specific GEF, preferentially associates with activated GTP-

bound Ras through a Ras-binding domain. Furthermore, activated Ras and Tiam1 cooperate 

to cause synergistic formation of Rac1-GTP in a PI-3-kinase-independent manner. Thus,  

it is tempting to speculate that Tiam1 could function as an effector that directly mediates Ras 

activation of Rac1 during C. jejuni invasion of host cells. In support of this notion both, down-

regulation of Tiam1 and host cell treatment with Rac1 inhibitor, NSC23766 (Gao et al., 2004) 

significantly reduced C. jejuni internalization by host cells. Although FAK and Trio comprise 

bi-directional signaling complex and Trio may be involved in effecting changes in the actin 

cytoskeleton trough the activation of Rho GTPases RhoA and Rac1 (Medley et al., 2003),  

no role for Trio in C. jejuni invasion was found. Down-regulation of Trio had no effect on  

C. jejuni internalization. 

The results of inhibitor studies suggest that Rac1 and Cdc42 are activated by at least 

two signaling pathways upon infection with C. jejuni. The activation of Cdc42 but not Rac1 

was entirely blocked by tyrphostin-46 and wortmannin, suggesting that growth factor 

receptors and PI-3 kinase play a crucial role in the C. jejuni-induced activation of Cdc42. This 

indicates that Cdc42 is likely activated by a classical growth factor receptor (e.g. EGFR  

or PDGFR) and PI-3 kinase-dependent pathway. Importantly, both inhibitors had almost  

no effect on the activation of Rac1. This is remarkable since most of the known signaling 

pathways leading to the activation of Rac1 are PI-3 kinase dependent (Rottner et al., 2004; 

Disanza et al., 2005). The only known exception was shown for a PI-3 kinase-independent 

pathway involving Tiam1. Interestingly, the interaction between Tiam1 and the actin-related 

protein 2/3 (Arp2/3) complex links activation of Rac1 to actin polymerization (Ten Klooster  

et al., 2006) and the intrinsic exchange factor activity specific for Rac1 is enhanced by 

threonine phosphorylation of Tiam1 (Michiels et al., 1997; Fleming et al., 1999; 2000).  
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In agreement with this hypothesis, it was observed that the activation of Rac1 is entirely 

blocked by staurosporine, a well-known inhibitor of threonine and serine kinases. Thus, one 

could hypothesize that C. jejuni CadF may activate Rac1 by a pathway involving serine and 

threonine kinases and Tiam1. The latter conclusions are consistent with previous inhibitor 

studies, demonstrating that C. jejuni entry into host target cells (as measured by gentamicin 

protection assays) is blocked by inhibitors including genistein, tyrphostin-46, staurosporine  

or wortmannin (Wooldridge et al., 1996; Biswas et al., 2000; 2004; Hu et al., 2006a).  

 

6.7. Impact of the epidermal growth factor and platelet-derived growth factor 

receptors for host cell invasion of Campylobacter jejuni 

 

EGFR and PDGFR belong to RTK family of proteins, essential components of the signal 

transduction pathways that mediate cell-to-cell communication. These single-pass 

transmembrane receptors, which bind polypeptide ligands, mainly growth factors, play key 

roles in processes such as cellular growth, differentiation, metabolism and motility (Hubbard 

& Miller, 2007). Their role in host cell invasion of C. jejuni has not been investigated yet. 

Several lines of evidence support the hypothesis that Rac1 and Cdc42 can be activated 

downstream from EGFR/PDGFR through Vav-2 during C. jejuni infection. Vav-2 is  

a substrate of the EGFR and PDGFR (Liu & Burridge, 2000; Marcoux & Vuori, 2003; Tamas 

et al., 2003), thus the first indications came form down regulation of Vav-2 and inhibitor 

studies as discussed above, followed by the findings with dominant-negative forms of 

EGFR/PDGFR and Vav-2. Inhibition of both receptors by tyrphostin-46 as well as transient 

transfection of host cells with both DN-EGFR/DN-PDGFR significantly reduced C. jejuni 

uptake. Furthermore, reduction in internalization of C. jejuni was observed in cells 

transfected with different Vav-2 mutants, findings consistent with reduced uptake of cells in 

which expression of Vav-2 was down regulated. Other studies have demonstrated that Vav-2 

has the ability to reorganize the actin cytoskeleton through activation of Rho GTPases 

(Bustelo, 2000). Thus, Vav-2 could likely be a critical integrator of receptor signals and direct 

effectors of the changes in the actin cytoskeleton involved in C. jejuni invasion. Significantly, 

no additive reduction of C. jejuni uptake was noted upon transfection of host cells with both 

DN-EGFR and DN-PDGFR constructs. This finding is in a good agreement with results 

indicating that other signaling pathways are also implicated in C. jejuni internalization. 

Integrin occupancy, clustering and assembly of integrin-dependent signaling complexes can 

lead to ligand-independent phosphorylation and trans-activation of PDGFR and EGFR, 

followed by induction of downstream signaling (Miyamoto et al., 1996; Moro et al., 1998; 

2002). Effects of this type have the potential to broaden the range of integrin signals and 

enhance their activity (Schwartz & Ginsberg, 2002). In this respect, it is tempting to speculate 
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that integrin and PDGFR/EGFR interact during C. jejuni infection leading to the stimulation of 

common downstream signaling pathways, including activation of FAK, Rac1 and Cdc42. This 

in turn causes actin rearrangements and efficient C. jejuni uptake. 

 

6.8. Interplay between the microtubule and actin cytoskeleton during  

Campylobacter jejuni invasion 

 

Microtubule-dependent host cell entry by C. jejuni is considered as one of the primary 

reasons for bacterial-caused tissue damage; however, the molecular mechanisms of C. jejuni 

invasion are widely unknown. Although interfering with microtubule organization using 

nocodazole has been shown to suppress C. jejuni uptake by host cells, the role of 

microtubules in C. jejuni invasion has not been fully clarified (Oelschlaeger et al., 1993; 

Biswas et al., 2000; 2003). Numerous reports suggest an actin-filament-dependent 

(microtubule-independent) and/or microtubule-dependent mechanisms by which C. jejuni 

invades gut tissue cells but no consensus has been established (Oelschlaeger et al., 1993; 

Hu & Kopecko, 1999; Biswas et al., 2000; 2003; Monteville et al., 2003). Many studies are 

currently focused on unraveling the precise mechanism of cross-talk between the actin and 

microtubule systems. Recent observations indicate the co-ordination of signals between the 

actin and microtubule cytoskeleton, which is mediated through Rho family GTPases during 

cell locomotion (Waterman-Storer & Salmon, 1999; Wittmann & Waterman-Storer, 2001; 

Kaverina et al., 2002). Rho GTPases can influence, or are influenced by, microtubule 

dynamics (Fukata et al, 2002; Ory et al., 2002). Interestingly, Rho GTPases were reported to 

be regulated by the microtubule system during Y. pseudotuberculosis uptake (McGee et al., 

2003). The nocodazole effect on microtubule depolymerization was partially inhibited through 

overexpression of Rho GTPase family members and completely prevented by expression of 

their regulator Vav-2. This suggests that microtubules influence Rho GTPases during 

invasin-mediated internalization and in the absence of functional microtubules Vav-2 can 

mimic their effect on one, or more, of the Rho family GTPases. Moreover, it seems that  

an intact microtubule network, which implies a functional microtubule rail system, controls 

actin dynamics via Rho GTPases (McGee et al., 2003). Hence, C. jejuni internalization could 

involve interplay between the microtubule and actin cytoskeleton, which is mediated by Rho 

GTPases. This remains to be investigated in future studies. 
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6.9. Downstream targets of Rac1 and Cdc42 possibly mediating 

Campylobacter jejuni-induced actin rearrangements 

 

The identity of the downstream targets of Cdc42 and Rac1 that mediate C. jejuni-induced 

actin rearrangements is not known. A very good candidate is the Arp2/3 complex. This is  

a ubiquitous, eukaryotic actin-organizer capable of initiating actin nucleation, branching and 

cross-linking (Welch & Mullins, 2002). Notably, numerous pathogens, including  

L. monocytogenes, Shigella, Salmonella and EPEC employ host Arp2/3 complex to tailor 

actin remodeling (Cossart, 2000; Frischknecht & Way, 2001; Criss & Casanova, 2003). 

Activated Cdc42 and Rac1 can promote actin nucleation via Arp2/3 complex trough the 

family of Wiskott-Aldrich syndrome-proteins (WASP) and Scar/WAVE proteins, respectively 

(Symons et al., 1996; Rohatgi et al., 1999; Eden et al., 2002; Millard et al., 2004). In this 

study, the impact of a number of GEFs during C. jejuni infection was analyzed. GEFs not 

only activate Rho GTPases but also participate in the signaling to downstream effectors by 

either binding to these effectors directly or to scaffold proteins that complex with components 

of effector pathway (Zhou et al., 1998; Wang et al., 2004). For example, association of Tiam1 

with the Arp2/3 complex has been recently shown to promote the local activation of Rac1, 

which is required for the subsequent activation of Arp2/3 complex proteins leading to actin 

filament assembly (Ten Kloster et al., 2006). As several lines of evidence indicate 

involvement of Tiam1 in C. jejuni-mediated Rac1 activation and invasion, it is tempting to 

speculate that the Arp2/3 complex could mediate C. jejuni-induced actin rearrangements. 

Furthermore, in other systems, targets of both Rac1 and Cdc42 include PAK protein family 

(Gruenheid & Finlay, 2003; Cossart & Sansonetti, 2004; Rottner et al., 2004). These 

serine/threonine kinases are engaged in multiple signaling pathways. Upon binding to either 

GTP-bound Rac1 or Cdc42, PAKs undergo autophosphorylation on multiple sites and 

become activated (Bagrodia & Cerione, 1999). PAKs may control the actin cytoskeleton 

through phosphorylation and subsequent activation of LIM kinase that promotes inactivation 

of the actin severing/depolymerizing activity of cofilin (Arber et al., 1998; Edwards et al., 

1999). In addition, PAKs function includes activation of the JNK/SAPK, p38 MAP kinase 

cascades (Bagrodia & Cerione, 1999; Hofmann et al., 2004). Recent studies demonstrate 

that C. jejuni infection of host cells results in the activation of the Erk and p38 MAP kinase 

pathways (Watson & Galan, 2005; Hu et al., 2006a). Notably, in this study role of α-PIX in  

C. jejuni invasion has been shown. α-PIX is a PAK-binding partner that localizes at focal 

complexes with PAK (Manser et al. 1998). Interestingly, interaction of PAK with α-PIX leads 

to an increase in PAK activity and allows for the formation of GEF/GTPase/effector complex 

with a built-in positive feedback loop and mutual regulation of activity (Manser et al., 1998; 

Obermeier et al., 1998). All of these processes potentially stimulate localized rearrangements 
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of the actin cytoskeleton and C. jejuni uptake. However, how activated Rac1 and Cdc42 

potentially regulate the downstream C. jejuni invasion pathway needs to be further elucidated 

in future studies.  

 

6.10. A model of Campylobacter jejuni host cell invasion  

 

In summary, results of this study develop detailed understanding of unique mechanism by 

which C. jejuni invade host target cells. The current hypothetical model of C. jejuni host cell 

entry presented in Figure 42 is based on results discussed above and implicates Rac1 and 

Cdc42 as main players mediating C. jejuni uptake in epithelial cells. In this scenario, bacteria 

bound to Fn via CadF trigger Rac1 and Cdc42 activation through interactions with integrin 

receptors, resulting in actin cytoskeleton rearrangements that lead to bacterial internalization. 

 

6.11. Role of the surface array protein SapA in infection of host cells with 

Campylobacter fetus 

 

Another important finding of my work is that I established a role of SapA and SapA 

phosphorylation in C. fetus invasion. The presented data provide a first detailed study of 

SapA tyrosine phosphorylation and its role in C. fetus pathogenesis. Significantly, Src kinase 

phosphorylated purified SapA protein in vitro as well as SapA transiently expressed in 

cultured cells in vivo. Furthermore, the Src-specific tyrosine kinase inhibitor PP2 specifically 

blocked SapA phosphorylation in C. fetus infected cells and reduced invasion of SapA-

expressing strains, but had no effect on low invasion rates of SapA-non-expressing strains. 

This clearly demonstrates that Src-like PTKs mediate SapA phosphorylation and indicates  

an important role of SapA phosphorylation during C. fetus infection. 

The tyrosine phosphorylation of proteins has a central role during signal transduction 

in eukaryotes and many signaling cascades involve this highly regulated post-translational 

modification (Blume-Jensen & Hunter, 2001; Pawson, 2004). Interestingly, tyrosine 

phosphorylation of injected bacterial proteins is an emerging cellular signaling mechanism 

among pathogenic micro-organisms (Backert & Selbach, 2005). Directed injection of 

bacterial virulence factors into host target cells has been described for two distinct secretion 

machineries, namely T3SS and T4SS. After translocation, these effector molecules target 

various components of eukaryotic signaling pathways in order to mediate bacterial 

attachment or entry, to transform the host cell or to block bacterial uptake by  

phagocytosis (Hueck, 1998; Christie & Vogel, 2000; Lee & Schneewind, 2001).  
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Fig. 42. Hypothetical model of C. jejuni invasion. (A) C. jejuni adheres to host cells via 
the Fn binding protein CadF which acts as a bridge engaging integrin receptors. Integrin 
occupancy and clustering leads to recruitment and activation of FAK. Active FAK and Src 
phosphorylate paxillin and p130CAS. Phosphorylation of FAK creates binding site for 
Grb2. These events in turn trigger a cascade of signals resulting in formation of signaling 
complexes leading to activation of GEFs such as DOCK180, α-PIX and Tiam1. 
Assembly of integrin-dependent complexes leads to ligand-independent phosphorylation 
and trans-activation of PDGFR and EGFR, followed by stimulation of Vav-2.  
(B) Activated DOCK180, Tiam1, α-PIX and Vav-2 induce the exchange of GDP for GTP 
to generate the active forms of Rac1 and Cdc42. Upon binding to GTP-bound Rac1 or 
Cdc42, PAK becomes activated and phosphorylates LIM kinase that promotes 
inactivation of the actin depolymerizing activity of cofilin. Whereas interaction of PAK with 
α-PIX leads to an increase in PAK activity, association of Tiam1 with the Arp2/3 complex 
promote activation of Rac1 and provide a link to actin polymerization. All of these 
signaling pathways potentially cause localized actin rearrangements at the site of  
C. jejuni entry, resulting in bacterial uptake. Co-ordination of signals between the actin 
and microtubule cytoskeleton, mediated by Rho family GTPases during C. jejuni invasion 
needs to be elucidated in future studies. 
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A good example is the translocated intimin receptor (Tir) of EPEC that, after injection and 

tyrosine phosphorylation, serves as a receptor for intimin adhesin (Kenny et al., 1997; Deibel 

et al., 1998). Furthermore, by recruiting Nck, phosphorylated Tir can initiate actin pedestal 

formation in host cells (Gruenheid et al., 2001). Similar to EPEC, the mouse pathogen 

Citrobacter rodentium expresses Tir, and phosphorylated Tir is essential for actin 

polymerization (Deng et al., 2003). Recently, effector proteins of Chlamydia trachomatis and 

Bartonella henselae, the translocated actin-recruiting phosphoprotein (Tarp) and Bartonella-

effector protein D (BepD), respectively, were shown to be phosphorylated on tyrosine 

residues after translocation into host cells (Clifton et al., 2004; Schulein et al., 2005). 

Whereas phosphorylated Tarp may stimulate actin-driven C. trachomatis invasion, the 

cellular effects of phosphorylated BepD remain to be defined (Clifton et al., 2004; Schulein  

et al., 2005). H. pylori CagA is another example of a bacterial effector protein that upon 

translocation into the host cells undergoes tyrosine phosphorylation, mediated by two PTKs 

Src and Abl (Segal et al., 1999; Backert et al., 2000; Odenbreit et al., 2000; Selbach et al., 

2002; Tammer et al., 2007). CagA phosphorylation induces rearrangements of the host cell 

actin cytoskeleton and cell scattering (Backert et al., 2001; Stein et al., 2002) and is required 

for binding to the Shp-2 tyrosine phosphatase (Higashi et al., 2002), the Csk tyrosine kinase 

(Tsutsumi et al., 2003) and FAK (Tsutsumi et al., 2006). Interestingly, all named bacterial 

proteins are effector proteins, which upon translocation into the host cells undergo tyrosine 

phosphorylation in order to target various components of eukaryotic signaling pathways. 

These injected molecules appear as host proteins but act as Trojan horses containing  

a bacterial hidden core message that allows the microorganism to take control over the host 

cell. Although the exact role of phosphorylated SapA during C. fetus invasion remains to be 

investigated, it seems that SapA is the first non-effector bacterial protein, which becomes 

tyrosine-phosphorylated by the host cell kinases. All named pathogens use the T3SS or 

T4SS to inject their effector proteins into host cells, in contrast, SapA belongs to the surface 

array proteins forming S-layer of C. fetus and T1SS has been shown to be responsible for its 

transport to the bacterial surface (Thompson et al., 1998). S-layers, or paracrystalline surface 

protein arrays, constitute the outermost component of several gram-negative and gram-

positive bacteria (Bahl et al., 1997; Sara & Sleytr, 2000). Diverse functions have been 

proposed for S-layers, such as acting as protective coats, cell shape determinants, and 

promoters for cell adhesion and surface recognition; however, a general function for all  

S-layers has not been determined (Beveridge et al., 1997; Sara & Sleytr, 2000). There  

is increasing evidence that S-layers can contribute to virulence when they are present as  

a structural component of the cell envelope of pathogens. For example, the S-layer of 

Aeromonas salmonicida contributes to protection against the bactericidal activities of both 

nonimmune and immune sera. Additionally, Aeromonas mutants unable to produce an  
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S-layer are altered in their ability to cause disease (Noonan & Trust, 1997).  

A similar observation was reported for the S-layer from Bacillus cereus isolated from 

periodontal infections. Only the S-layer-carrying cells were resistant to polymorphonuclear 

leukocytes in the absence of opsonins (Kotiranta et al., 1998). The Campylobacter rectus  

S-layer confers resistance to complement-mediated killing and causes the down-regulation of 

proinflammatory cytokines (Thompson, 2002). Evidence from experiments using bovine and 

human C. fetus isolates suggests that S-layer is the predominant virulence factor for this 

organism (Pei & Blaser, 1990). C. fetus wt strains, possessing S-layer, are highly resistant to 

the bactericidal activity of normal serum and ingestion by phagocytes, which correlates with 

their ability to cause bacteraemia (Blaser et al., 1988). In contrast, mutant strains lacking the 

S-layer, are sensitive to both serum- and phagocytosis-mediated killing and have reduced 

virulence in both ungulate (Grogono-Thomas et al., 1996; 2000) and rodent models (Blaser  

& Pei, 1993). These findings are in a good agreement with results presented in this study. 

Namely, C. fetus strains expressing SapA exhibited significantly higher invasion rates and 

showed enhanced ability to trigger IL-8 release from host cells than SapA-non-expressing 

mutants lacking S-layer. This indicates a role of SapA in C. fetus invasion and adds a totally 

new aspect to C. fetus pathogenesis. Intracellular location can protect C. fetus from host 

innate and adaptive immune defenses and establish a reservoir of infecting bacteria, thereby 

contributing to persistence of this organism within a host.  

Interestingly, in recent years, the involvement of the S-layer in bacterial adhesion and 

in bacteria-host interactions has attracted interest due to the potential association with 

bacterial virulence. S-layers have been shown to function as adhesins in several pathogenic 

and commensal bacteria, mediating binding to epithelial cells and/or ECM (Kotiranta et al., 

1998; Hynonen et al., 2002). Attachment to laminin and Fn in Aeromonas salmonicida (Doing 

et al., 1992; Noonan & Trust, 1997), to avian intestinal epithelial cells in Lactobacillus 

acidophilus (Schneitz et al., 1993), and to collagen in Lactobacillus crispatus (Toba et al., 

1995) has been reported to require S-layer. Recently, S-layer of Lactobacillus brevis has 

been demonstrated to function as an adhesin to human epithelial cells and Fn, laminin, 

fibrinogen as well as collagen (Hynonen et al., 2002; de Leeuw et al., 2006). Furthermore, 

binding of Bacillus cereus to laminin is mediated by the S-layer (Kotiranta, 1998; 2000). 

However, here it was shown that despite a prominent cell surface localization, SapA does not 

function as a primary adhesin for C. fetus. SapA-non expressing C. fetus strains adhered to 

host cells at equivalent levels as wt strains and no correlation between SapA expression and 

C. fetus adherence was observed, confirming results of previous study (Graham  

& MacDonald, 1998). Furthermore, host cells did not bind to SapA-coated surfaces. It seems 

that unlike the S-layer of A. salmonicida, which functions as an adhesin that promotes but 
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does not mediate invasion (Garduno et al., 2000), SapA can contribute to the virulence of  

C. fetus by enhancing its internalization into host cells.  

It is becoming clear that C. fetus has evolved many mechanisms for survival in  

an immunologically hostile host and enabling chronic infection. It appears that S-layer  

not only gives C. fetus protection from the alternative pathway of complement and permits 

the evasion of antibodies via antigenic variation but also in phosphorylated form plays a role 

in C. fetus internalization of host cells. However, it remains a challenge to identify the host 

proteins that interact with phosphorylated SapA and to decipher its exact role in invasion and 

pathogenesis during C. fetus infection. 

 

6.12. Conclusions 

 

The interaction of C. jejuni with epithelial cells has the clinical consequences of  

an inflammatory response and enteritis. Therefore, detailed understanding of the signaling 

events triggered by C. jejuni infection, presented here, should help to explain its nature and 

may lead to the development of novel therapeutic strategies to limit the clinical 

consequences of inflammatory diarrhea. Findings of this study elucidating C. jejuni invasion 

mechanism, not only reveal important molecular details of the cell biology of this process, but 

also add important aspects to the understanding of Campylobacter-induced pathogenesis.  

Taken together, the work presented here identifies and characterizes CadF protein as 

important pathogenicity factor expressed in all tested C. jejuni and C. coli strains and 

involved not only in adhesion but also required for maximal invasion of Campylobacter. 

Additionally, the data strongly suggest that the differences in molecular size and nucleotide 

sequence between CadF of C. jejuni and C. coli isolates may be a suitable diagnostic marker 

to discriminate between these species in food and clinical specimen. Moreover, CadF is 

proposed to be a bi-functional protein, acting as both a canonical adhesin for bacterial 

binding to Fn and also stimulating integrin clustering, which subsequently can activate 

downstream factors triggering GTPase signaling in infected host cells.  

Furthermore, this study demonstrates several lines of evidence for a role of Rac1 and 

Cdc42 but not RhoA during host cell entry of C. jejuni. Additionally, integrins, EGFR, PDGFR, 

FAK, DOCK180, Vav-2, α-PIX and Tiam1 are critically involved in mediating C. jejuni 

invasion-promoting signals. In this scenario activated integrins and PDGFR/EGFR interact 

during C. jejuni infection and trigger formation of various signaling complexes including FAK, 

DOCK180, Vav-2, α-PIX and Tiam1 leading to the activation of Rac1 and Cdc42 and 

stimulation of common downstream signaling pathways. This in turn causes actin 

rearrangement and efficient C. jejuni uptake, as summarized in Figure 42.  
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Finally, the presented data provide a first detailed study of SapA tyrosine 

phosphorylation and its importance in C. fetus pathogenesis, clearly showing that Src-like 

PTKs mediate SapA phosphorylation and indicate significant role of phosphorylated SapA 

during infection. 

There remain many open areas of investigation regarding the analysis of signal 

transduction events during C. jejuni invasion. It is worth pointing out that although here Rac1 

and Cdc42 have been placed as the central players transmitting signals to the actin 

cytoskeleton after bacterial engagement of integrin receptors, there are many intermediary 

factors upstream and downstream of Rac1 and Cdc42 linking activated integrins to the actin 

cytoskeleton, which have not been studied in detail here. Thus, further work can provide 

more information about how activated Rac1 and Cdc42 potentially regulate the downstream  

C. jejuni invasion pathway and decipher the importance of the different signal transduction 

events that potentially lead to Rac1 and Cdc42 activation during C. jejuni uptake. Clearly, 

additional studies on interplay between the microtubule and actin cytoskeleton, potentially 

mediated by Rho GTPases during C. jejuni invasion, would be highly interesting. Finally, 

defining the precise mechanisms of how C. jejuni flagellar apparatus induces activation of 

Rac1 and Cdc42 to regulate actin rearrangement and microtubule dynamics involved in the 

bacterial entry process will be of particular interest. Last but not least, the exact function of 

tyrosine phosphorylated SapA during C. fetus infection remains to be elucidated in future 

studies. 

Undoubtedly, the expanded knowledge of the molecular mechanisms of C. jejuni and 

C. fetus pathogenesis will lead to improved methods for chemotherapeutic and prophylactic 

intervention of diarrhea, enteritis and bacteraemia.  
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