

D I SSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Abstract Sensor Event Processing to Achieve Dynamic

Composition of Cyber-Physical Systems

Doktoringenieur (Dr.-Ing.)

Dipl.-Inform. Christoph Steup

29.01.1985 Halle (Saale)

Prof. Dr. rer. nat. Jörg Kaiser

Prof. Dr. s.c. ETH Kay Uwe Römer

Prof. Dr.-Ing. Christian Diedrich

19.02.2018

Zusammenfassung
Diese Thesis widmet sich dem übergeordneten Ziel Cyber-Physische Systeme (CPS) dy-
namisch aus Komponenten zusammenzusetzen. CPS sind eine Schlüsseltechnologie für die
Industrie 4.0, moderne Robotik und autonom fahrende Fahrzeuge. Jedoch werden die realen
Systeme immer komplexer und setzen sich aus immer mehr einzelnen Komponenten zusam-
men, welche über ein Kommunikationsnetz verbunden sind. Die Herausforderung bei der En-
twicklung dieser Systeme ist die Spezifikation und der Austausch der im System vorhandenen
Informationen um die vorhandenen Komponenten bestmöglich zu nutzen. Die notwendigen
Informationen sind dabei sehr Szenario spezifisch. Diese Arbeit versucht die Konstruktion
und Komposition dieser Systeme zu vereinfachen indem eine neue Form der Information-
sabstraktion für CPS eingeführt wird: Abstract Sensor Events (ASE). Diese stellen die
Kapselung von Sensorinformation in maschinenlesbare Form dar. Die Kapselung vereint die
inhärenten Sensordaten mit den notwendigen Kontextdaten. Der Kontext der Information
besteht hierbei mindestens aus Zeitpunkt, Position, Ersteller und semantischer Beschrei-
bung. Um die unvermeidbare Unschärfe der Sensorinformationen abzubilden, enthalten ASE
eine intervallbasierte Unschärfebeschreibung, der Daten und des Kontextes. Die semantische
Beschreibung basiert auf einem Wörterbuch von Attributen, die in den Ereignissen enthal-
ten sein können. Dieses Wörterbuch enthält Attribute, die physikalische Phänomene wie
Temperatur, Geschwindigkeit etc. abbilden. Szenerio spezifische Erweiterung dieses Wörter-
buchs sind möglich, insbesondere mit Attributen, die physikalische Phänomene nur indirekt
abbilden. Das Ziel ist es die einzelnen Komponenten des CPS in die Lage zu versetzen ihre
Anforderungen bezüglich der eingehenden Informationen mithilfe von ASE zu spezifizieren,
so dass ein zugrundeliegendes Kommunikationssystem diese automatisch ausliefern kann.
Hierzu wurde die Abstract Sensor Event Information Architecture (ASEIA) geschaffen, die

es Komponenten ermöglicht sich für relevante ASE zu registrieren und mithilfe einer Filter-
sprache deren Attribute einzuschränken. ASEIAs Aufgabe ist es die benötigten Ereignisse
zur Verfügung zu stellen. Jedoch sind die angeforderten Informationen oft nicht direkt
im System verfügbar, sondern müssen erst über Verarbeitungsprozesse aus diesen gener-
iert werden. Um diesen Vorgang automatisch ausführen zu können, greift ASEIA auf
eine Wissenbasis von Transformationen zurück die es ermöglichen Ereignissen in andere
Ereignisse umzuwandeln. Damit stellen die ASE eine Form von aktiven Schnittstellen dar,
die zusätzlich zur Abstraktion ihr Verhalten an die gegebenen Bedingungen anpassen. Um
die Transformationen auszuführen greift ASEIA auf vorhandene Broker im Netzwerk zurück
die die Informationen auf dem Weg von der Quelle zum Ziel anpassen. Die möglichen
Transformationen sind in Kategorien unterteilt und verschiedene Beispiele werden in der
Arbeit untersucht. Hierbei werden spezielle Transformationen zur Verringerung der Un-
scharfe der Ereignisse oder zur Zeitsynchronisation darstellt. Klassische Sensorsignalverar-
beitungsprozesse werden in Transformationen überführt und theoretisch und experimentell
evaluiert. Die Ergebnisse der Evaluation zeigen ASEIAs Nutzen bei der Entkoppelung der
Cyber-Physical-System (CPS) Komponenten bei gleichzeitiger Erhöhung der Anpassungs-
fähigkeit gegenüber Veränderungen in der vorhandenen Informations- und/oder Komponen-
tenmenge. Zusätzlich wurde durch das Design und die Evaluation ASEIAs Eignung auch
für eingebettete System bestätigt. Das ermöglicht den Einsatz auf allen typischen CPS
Plattformen was ein wichtiger Aspekt für die zukünftige Nutzung in realen Systemen ist.

I

Danksagung

Ich wäre ohne die Unterstützung von vielen Leuten nicht in der Lage gewesen diese Arbeit
fertig zu stellen. Insbesondere möchte ich mich bei Prof. Kaiser bedanken, der mir durch
das Karyon Projekt und seine große Erfahrung dabei geholfen hat ein interessantes Thema
zu finden und zu bearbeiten und mich sogar nach seiner Pensionierung weiter betreut hat.
Ebenso möchte ich Jun.-Prof. Zug danken, der immer ein offenes Ohr für meine Probleme
hatte und mit dem ich jederzeit die Inhalte der Arbeit diskutieren konnte. Prof. Mostaghim
möchte ich für ich unendliches Verständnis danken, dass die Arbeit doch signifikant länger
in ihrer Fertigstellung gedauert hat als geplant. Sie hat immer das richtige Maß an Druck
aufgebaut, mich dabei aber nie überfordert. Prof. Römer möchte ich für seine Bereitschaft
danken meine Arbeit vorab zu lesen und mir wichtiges Feedback zu geben, das die Arbeit
noch mal ein Stück besser gemacht hat. Abschließend möchte ich mich bei meiner Freundin
und meiner Familie bedanken, die diesen durchaus langen Weg mit mir zusammen gegangen
sind und immer Verständnis dafür hatten, wenn ich mal wieder keine Zeit für sie hatte.

III

Contents

Table of Figures XI

Table of Tables XIII

Table of Listings XV

Table of Algorithms XVII

Table of Acronyms XXI

1. Introduction 1
1.1. Motivation . 1
1.2. Example Scenarios . 1

1.2.1. Distributed Event Detection: WSN to Detect Forest Fires 2
1.2.2. Semi-Autonomous Systems: Vehicular Collision Warning System . . . 3
1.2.3. Fully-Autonomous Systems: Dynamic Robot Navigation 4

1.3. Goals . 6

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS) 7
2.1. Definition: Cyber-Physical Systems . 7

2.1.1. Properties . 8
2.1.2. Data and Information . 8
2.1.3. Context . 9

2.2. Functional Decomposition of CPS . 10
2.2.1. Smart Connection Layer . 11
2.2.2. Data-to-Information Conversion Level 12
2.2.3. Cyber Layer . 13
2.2.4. Cognition Layer . 17
2.2.5. Configuration Level . 18
2.2.6. Summary . 21

2.3. Component View of CPS . 21
2.3.1. Sensing . 21
2.3.2. Actuation . 24
2.3.3. Processing . 25
2.3.4. Communication . 26
2.3.5. Storage and User Interface . 28

V

Contents

2.4. Summary . 29

3. State of the Art 33
3.1. Comparison Criteria . 33

3.1.1. Couplings . 33
3.1.2. Context . 33
3.1.3. Quality . 33
3.1.4. Distribution Type . 34
3.1.5. Filter Model . 34
3.1.6. Filter Expressiveness . 34
3.1.7. Processing Model . 35
3.1.8. Processing Expressiveness . 36
3.1.9. Resource Efficiency . 36

3.2. Sensor Description Framework (SDF) . 36
3.3. Communication Middlewares . 41

3.3.1. Publish/Subscribe Middlewares . 41
3.3.2. Wireless Sensor Network (WSN) Middlewares 46
3.3.3. Wireless Sensor Network (WSN) Ontology Systems 52

3.4. Complex Event Detection Systems . 57
3.5. Stream Processing Frameworks . 62
3.6. Context Frameworks . 68
3.7. Conclusion . 73

4. Abstract Sensor Event Information Architecture (ASEIA) 75
4.1. Goals . 75
4.2. General Architecture . 76
4.3. Sensor Information and Context . 81

4.3.1. Attribute Context . 81
4.3.2. Uncertainty Model . 82
4.3.3. Time Model . 86
4.3.4. Space Model . 87
4.3.5. Producer ID . 88

4.4. Abstract Sensor Event Model . 88
4.4.1. Attribute Values . 91
4.4.2. Attribute Units . 91
4.4.3. Scale Representation . 92
4.4.4. Attribute Operations . 93
4.4.5. Event Schemes and Event Format . 94
4.4.6. Event Hierarchy . 95
4.4.7. Semantic Annotation - Event IDs . 98
4.4.8. Format Hashes . 100

VI

Contents

4.5. Abstract Sensor Event Transformations . 101
4.5.1. Selection . 104
4.5.2. Attribute Transformations . 105
4.5.3. Event Transformations . 108
4.5.4. Complementary Sensor Fusion Transformations 108
4.5.5. Cooperative Sensor Fusion Transformations 110
4.5.6. Concurrent Fusion . 113
4.5.7. Aggregation Transformation . 116
4.5.8. Kalman Transformations . 119
4.5.9. Uncertainty-aware Hybrid Clock Synchronization 125

4.6. Abstract Sensor Event Transformation Engine 133
4.6.1. Automatic Configuration of Generic Transforms 134
4.6.2. Representing Rules as Knowledge Graph 135
4.6.3. ASETE Channel Creation . 138
4.6.4. Buffering Incoming Events . 139
4.6.5. Activating Transformations . 141

4.7. Summary . 143

5. Implementation 145
5.1. ASETE Implementation and Language Bindings 145

5.1.1. ASETE Implementation Language . 146
5.1.2. CPS Application Binding . 146
5.1.3. Transformation Implementation . 148

5.2. Implementation of the Publish/Subscribe (P/S) Overlay 149
5.2.1. Overview of the Implementation . 149
5.2.2. CPS Abstract Sensor Event (ASE) API 152
5.2.3. Transformation ASE API . 157
5.2.4. Implementation of the Knowledge Base 162
5.2.5. Implementation of Adapters . 165

5.3. Extension on Run Time . 169
5.3.1. Insertion of Additional Transformations 170
5.3.2. Plugins . 171
5.3.3. LLVM-based compiler/interpreter . 171

5.4. Summary . 171

6. Evaluation 173
6.1. Hybrid Clock Synchronization . 173

6.1.1. Simulation Setup . 173
6.1.2. Beacon Interval Analysis . 174
6.1.3. Topology Analysis . 174
6.1.4. Small Scale Wireless Sensor Network Setup 182
6.1.5. Single-Hop Synchronization . 182

VII

Contents

6.1.6. Multi-Hop Synchronization . 183
6.1.7. Comparison with related protocols . 184

6.2. Robotic Navigation Test . 185
6.2.1. Scenario . 185
6.2.2. Tests . 190
6.2.3. Results . 190

6.3. Automotive Scenario . 191
6.3.1. Scenario . 192
6.3.2. Implementation . 192
6.3.3. Distributed Virtual ACC Sensor . 196
6.3.4. Results of the Basic Evaluation Test Case 202
6.3.5. Speed Results of the UTM Transformation Graph 203
6.3.6. Speed Results of the Road Transformation Graph 203
6.3.7. Distance Results UTM Transformation Graph 207
6.3.8. Distance Results Road Transformation Graph 207
6.3.9. Delay Analysis . 210
6.3.10. Event Rate Analysis . 210
6.3.11. Performance Analysis . 212

6.4. Scalability Analysis . 214
6.4.1. Sub-Topology Analysis . 219
6.4.2. Subscriber and Publisher Scalability 222

6.5. Summary . 223

7. Conclusion 225

Bibliography 243

A. Additional Evaluation Results of the Automotive Scenario 245

VIII

List of Figures

1.1. Vehicular Collision Warning Scenario . 4
1.2. Heterogenous Sensor Scenario with Mobile Robots 5

2.1. 5-Layer CPS Funtionality Architecture . 11
2.2. Example Structured According to CPS Layers 20
2.3. Schematic Overview of CPS . 22
2.4. General Structure of P/S Middlewares . 28

4.1. General Architecture of ASEIA . 77
4.2. Flow Charts of ASEIA Broker Functionality 79
4.4. Visualization of an Example Vehicle Context 83
4.5. Generic ASEIA Event Structure . 90
4.6. Attribute Operations Overview . 94
4.7. Example Event Hierarchy . 97
4.8. Generic Transformation Layout . 101
4.9. Hierarchy of Event Transformations . 103
4.10. Example Attribute Transformation . 106
4.11. Example Scale Change Transformation . 107
4.12. Speed Transformation . 108
4.13. Distance to Position Transformation . 109
4.14. Concatenating Transformation . 111
4.15. Interpolation Transformation . 111
4.16. Extrapolation Transformation . 112
4.17. Specification Transformation . 113
4.18. Voting Transformation . 114
4.19. Occupancy Grid Overlay Example Transformation 115
4.20. Averaging Transformation . 117
4.21. Virtual Fire Detect Sensor Transformation . 118
4.22. Virtual Crowding Sensor for Robotic Navigation 119
4.23. Road Jam Detect Example . 120
4.24. Generic Linear Kalman Filter Transformation 121
4.25. Distributed Enhanced ACC-Sensor . 124

IX

List of Figures

4.26. Illustration of the Cluster Tree Structure of IEEE 802.15.4 Networks. 128

4.27. Example Network Showing the Behavior of the Clock Synchronization 131

4.28. Knowledge Graph Example . 137

5.1. Generic UML-Structure of supported ASEs 150

5.2. Generic UML-Structure of ASE Attributes . 151

5.3. UML-Diagram Showing the Implementation Structure of CPS API Values . . 155

5.4. UML-Class Daiagram of Transformation Class Hierarchy 159

5.5. UML-Class Diagram of MetaValues . 160

5.6. UML-Class Diagram of the Storage Implementation of the Knowledge Base . 164

5.7. UML-Sequence diagram of Channel Creation 168

6.1. Beacon-Order Result Graph . 175

6.2. Evaluation Topologies for Clock Synchronization 176

6.3. Synchronization Precision of Linear Topology 177

6.4. Synchronization Precision of Circle Topology 178

6.5. Synchronization Precision of Grid Topology 179

6.6. Synchronization Precision of Random Topology 180

6.7. Setup of Experimental WSN . 183

6.8. Precision of Uncertainty-aware Hybrid Clock Synchronization 184

6.9. Robot Navigation Paths with and without Obstacles 186

6.10. Graph of the Dynamic Environment OccupancyGrid generating Transformation187

6.11. Overview of the Car Scenario Evaluation Framework 193

6.12. Car Scenario Event Hierarchy . 194

6.13. UML Sequence Diagram of the Lock Step Execution of the Simulation 195

6.14. UTM Transformation Graph . 197

6.15. Road Transformation Graph . 198

6.16. Results of Automotive Scenario Experiment Basic 204

6.17. Comparison of Speeds for the UTM Transformation Graph 205

6.18. Comparison of Speeds for the Road Transformation Graph 206

6.19. Comparison of Distances for the UTM Transformation Graph 208

6.20. Comparison of Distances for the Road Transformation Graph 209

6.21. Box-Whisker Plot of Delivery Delay for the UTM Transformation Graph . . . 211

6.22. Visualization of a Transformation DAG overlayed to an example network . . 215

6.23. Scalability metric results of the example Transformation Graph 217

6.24. Examples of Possible Broker and Subscriber Topologies 218

6.25. Example Linear Topology . 219

6.26. Example Star Topology with Publishers as Center. 220

6.27. Example Star Topology with Subscribers as Center 221

X

List of Figures

6.28. Example Grid Topology . 221
6.29. Plot of Optimal Number of Brokers for Uniform Grid Topologies 222

A.1. Box-Whisker Plot of Delivery Delay for the Road Transformation Graph . . . 245
A.2. Comparison of Speeds as Histograms for the UTM Transformation Graph . . 247
A.3. Comparison of Speeds as Heat Maps for the UTM Transformation Graph . . 249
A.4. Comparison of Speeds as Histograms for the Road Transformation Graph . . 251
A.5. Comparison of Speeds as Heat Maps for the Road Transformation Graph . . 253
A.6. Comparison of Distances as Histograms for the UTM Transformation Graph . 255
A.7. Comparison of Distances as Heat Maps for the UTM Transformation Graph . 257
A.8. Comparision of Distance Uncertainties for the UTM Transformation Graph . 259
A.9. Comparison of Distances as Histograms for the Road Transformation Graph . 261
A.10.Comparison of Distances as Heat Maps for the Road Transformation Graph . 263
A.11.Comparison of Distance Uncertainties for the Road Transformation Graph . . 265

XI

List of Tables

3.1. Evaluation of Sensor Description Frameworks 40
3.2. Evaluation of Communication Middlewares 45
3.3. Evaluation of WSN Middlewares . 51
3.4. Evaluation of WSN Ontology Systems . 56
3.5. Evaluation of Complex Event Systems . 61
3.6. Evaluation of Stream Processing Systems . 67
3.7. Evaluation of Context Frameworks . 72

4.1. Comparison of Clock Synchronization Protocols 128

6.1. Synchronization Error of Different Topologies 181
6.2. Statistical Results of the Robotic Scenario Test Case 191
6.3. Car Scenario Experimet Setup Overview . 196
6.4. Publication Rates and Startup Times of Different Event Types 213
6.5. CPU Utilization of Different Transformations 214
6.6. Overview of Theoretical Performance of Transformation Types 217

7.1. Comparison Criteria Results of ASEIA . 226

XIII

Table of Listings

5.1. Generic EBNF Definitions of DSLs . 153
5.2. ASE Specification DSL . 153
5.3. Implementation of Type Safe Unit Modification 154
5.4. Example Filter Expressions . 156
5.5. Execution and Serialization of Filter Expressions 157
5.6. Filter Expression Specification DSL . 158
5.7. Example Position to Speed Transformation 163
5.8. ROS Message Definitions . 165
5.9. Example of SensorEventSubscriber and SensorEventPublisher 166
5.10. Example of ASE Extension . 169

6.1. Angle Publisher Source Code . 188
6.2. Occupancy Grid Subscriber Source Code . 189
6.3. Implementation of Used Event Hierarchy . 199
6.4. Source of State Publisher in Car Scenarios . 200
6.5. Distance Publisher and Subscriber Source Code 201
6.6. Virtual ACC Transormation Source Code . 202

XV

Table of Algorithms

1. Generation of a Transformation DAG . 138
2. Algorithm Executing a Transformation DAG 141

XVII

Table of Acronyms

ACC Adaptive Cruise Control

AID Attribute Identificator

API Application Progamming Interface

ASEIA Abstract Sensor Event Information Architecture

ASETE Abstract Sensor Event Transformation Engine

ASE Abstract Sensor Event

AS Abstract Sensor

CAN Controller Area Network

CED Complex Event Detection

CEP Complex Event Processing

CE Complex Event

CPS Cyber-Physical-System

CPU Central Processing Unit

CWS Collision Warning System

DAG Directed Acyclic Graph

DBMS DataBase Management System

DHT Distributed Hash Table

DSL Domain Specific Language

DSMS Data Stream Management System

ECA Event-Condition-Action

EBNF Extended Backus-Naur Form

XIX

Table of Algorithms

EID Event Identificator

FIFO First-In First-Out

GPS Global Positioning System

HTTP Hyper-Text-Transfer-Protocol

IP Internet Protocol

InfAlg Inference Algorithm

IoT Internet of Things

KB Knowledge Base

LLVM Low-Level Virtual Machine

MAD Multiple Add

MANET Mobile Ad-Hoc Network

MCU Micro Controller

NURB Non-Uniform Rational B-Spline

OS Operating System

p2p peer-to-peer

PC Personal Computer

PDC Park Distance Control

PE Primitive Event

P/S Publish/Subscribe

QoC Quality of Context

QoS Quality of Service

RAM Random Access Memory

RDF Ressource Description Framework

RMI Remote Method Invocation

ROS Robot Operating System

RelAlg Relational Algebra

XX

Table of Algorithms

SDF Sensor Description Framework

SI Système international d’unités

SN Sensor Node

SOA Service Oriented Architecture

SQL Structured Query Language

STL Standard Template Library

tc Traffic Control

TCP Transmission Control Protocol

TMP Template Meta-Programming

ToF Time of Flight

UDP User Datagram Protocol

UHCS Uncertainty-aware Hybrid Clock Synchronization

UTM Universal Transverse Mercator

UI User Interface

UML Unified Modelling Language

VANET Vehicular Area Network

VM Virtual Machine

V-Rep Virtual Robotik Experimentation Platform

WRelAlg Windowed Relational Algebra

WSN Wireless Sensor Network

XML eXtensible Markup Language

XXI

1. Introduction

1.1. Motivation

Since the beginning of the industrial revolution mankind has strived towards more and more
automation to facilitate the daily lives of people. The first major problem that needed to be
solved was the continuous supply with energy. One big step towards a solution was James
Watt’s steam engine, which was patented in 1781. The next major problem was the trans-
portation of goods and people. Carl Benz’s 1886 patented car with a combustion engine
paved the way for a new individual mobility. Over time cars as well as factories grew more
and more complex, which increased the difficulty for people to handle and control them.
This third major problem is currently being tackled with the integration of autonomous
control system employing sensors and actuators together with digital and analogue control
systems to automatically adapt the systems to the environment. So far, all these systems
are statically designed and built. Current visions such as Internet of Things (IoT) as de-
scribed by Mattern and Floerkemeier [109] and Industry 4.0 as described by Brettel et al. [39]
promise a dynamic composition and adaptation of entities in a digital world. However, the
new possibilities are accompanied by a multitude of new challenges. One of this is the
acquisition, management and fusion of sensor data for the various control systems within
the autonomous entities. Nowadays, the plethora of available sensors and their individ-
ual characteristics are handled by experts designing the systems, but for dynamic systems
this approach is not feasible any more. The systems of the future will need to construct
themselves out of the available components and data depending on the current state of the
environment. This necessitates a different view on development process of the individual
components as well as the technology used to implement and connect them. Therefore,
this thesis investigates the design, abstraction and combination of independent, maximally
decoupled components fetching, managing and processing sensor data within CPS using a
special information architecture: Abstract Sensor Events.

To show the challenges this thesis tackles, three example scenarios are sketched in the
next Section 1.2. These are used throughout the thesis.

1.2. Example Scenarios

The complexity of CPS is very hard to grasp. Therefore, the following example scenarios
provide an introduction to the challenges that may arise in real-word applications. The
different scenarios show the different challenges of energy and resources efficiency, dynamic
integration of heterogeneous sensor information and tracking of information quality.

1

1. Introduction

1.2.1. Distributed Event Detection: Wireless Sensor Network (WSN)
to Detect Forest Fires

WSNs are considered to be the foundation of the IoT. On the one hand, they provide means
to acquire, disseminate and partially process sensor data in large areas. On the other hand,
Römer and Mattern [134] describe the vast design space of WSN which creates multiple
challenges in the development of generic solutions. Therefore, the thesis will use a special
applications to discuss the application of the concepts to WSN: the detection of fires within
large forests. This application is highly relevant since forest fires cause large monetary and
humanitarian damages every year. Consequently, an early detection is a desirable goal.
However, there are multiple challenges in building such a system in a reliable and cost
efficient way as described by Yu et al.[169].

All envisioned systems consist of Sensor Node (SN)s containing sensors as well as a Micro
Controller (MCU) and a communication interface. These are distributed over a large area
and build a meshed network acquiring sensor readings and disseminating them towards a
sink. The sink processes the data and forwards the results to an user.

A major concern regarding these systems are costs, maintenance overhead and reliability.
An expensive system or one needing lots of maintenance or outputs wrong information will be
rejected by human operators. This requires the deployed SNs to use low-power embedded
hardware to minimize cost and maximize life-time. However, such low-power embedded
hardware necessitates a special development process, in which all parts of the system are
adapted towards the resource constraints of the hardware.

Typically delay requirements are relatively lax for WSN since the final consumer of the
information is generally a human user. This paves the way for the optimization of the
system towards efficiency to decrease resource consumption and increase battery life time.
Especially communication is extremely expensive compared to computation as described by
Sadler and Martonosi [139] and needs to be minimized to extend SN life-time.

Even though it is possible to build static systems implementingthe exactly needed behavior
to detect forest fires, it might be beneficial to support multiple sinks subscribing for the fire
information or even derived information. Two examples of such additional sinks are fire
fighter teams, who want to track down the detected fire. They are interested in two aspects,
their distance and direction towards the fire as well as the current speed of the fire. This
data can easily be derived from the raw data of the sensor nodes. However, a computation
at the global sink and forwarding of this information might be not ideal. Long information
paths in sensor networks create large latencies as well as a high unreliability of data delivery.
Both are drawbacks for the usage by fire fighters, who need actual and reliable data.

One solution might be an intelligent event based sensor abstraction. This enables pro-
cessing of information within the network and direct delivery to the mobile equipment of
the fire fighters. In consequence more robust and more actual information are delivered to
them by reusing information already existing in the network. If the additional data paths
are only used when an actual fire is detected the additional energy consumption might be
negligible.

2

1.2. Example Scenarios

1.2.2. Semi-Autonomous Systems: Vehicular Collision Warning System

Since the development of Carl Benz’s patented "Motorwagen" a lot has changed. Cars nowa-
days focus not only on speed and efficiency, but also on safety and comfort. Currently, the
car manufacturers are trying to include more and more driving assistance systems to support
the driver. Some of them such as the Adaptive Cruise Control (ACC) focuses on the comfort
of the driver, while others like side-assist focus on safety. One such system is the Collision
Warning System (CWS), which tries to warn the driver of imminent dangers on the road.
Nowadays, it is implemented using local sensors equipped in the car perceiving the direct
surroundings. Depending on the sensory setup it can detect imminent collisions at the front
or back of the car or warn because an action the driver initiates is not considered safe. The
amount of situations the assistance system can detect depends on the cars’ actual sensor
setup. To increase the usability of the system more environmental perception is necessary.
One way to acquire additional information is the communication with surrounding cars.
Therefore, standard organizations strive towards car-2-car and car-2-roadside communica-
tion standards [11],[4]. These standards will provide manufacturers means of communication
that are especially tailored towards vehicle needs and allow transmission of information di-
rectly between adjacent cars.
However, from an application point of view this is not enough. The standards only define

the basic layer of communication and the allowed message types and formats, which include
no semantic information. To allow cooperation between multiple cars of different manufac-
turers a basic semantic abstraction is necessary. An example scenario is the detection of an
overtaking car on a highway as described in [157]. The cars in such a scenario might not all
be networked and some of them need to be treated as moving obstacles, which need to be
detected by surrounding cars. This scenario is depicted in Fig 1.1.
An abstraction of the individual cars’ sensor data into an event based sensor abstraction

might unify the available sensor data. This enables the use of existing control algorithms
as described in [160]. However, the high requirements towards reliability necessary for such
safety critical systems hinder the integration of general event systems. Consequently, the
communicated data can only be used as an extension of an existing local solution. Each car
still needs to have its own CWS. Even though a distributed CWS might be very difficult to
create, the individual cars can still exploit the sensors of surrounding cars to extend their
local view of the road.
To allow the integration of the data of another car, the local CWS needs to convert the

received sensor data into its local representation and assess its trustworthiness as well as its
usefulness. Without this step a trustworthy warning can neither be issued nor suppressed
by the system.
Finally, the real-time requirements of such a systems are very tight. Classical Internet Pro-

tocol (IP)-based approaches might not even fulfil the necessary soft-real time requirements.
However, compared to the WSN scenario battery life-time as well as hardware resources
and communication bandwidth are not as limited. Additionally, roads are a well struc-
tured environments, which eases the development of specially tailored events representing
environmental situations.
In summary, an appropriate event system abstracting the individual cars sensor informa-

tion may support the development an "Internet of Cars", which is able to share the view of
surrounding cars to increase the safety and comfort of the passengers.

3

1. Introduction

Figure 1.1.: An example scenario of a CWS system detecting overtaking cars on a highway.
The overtaking car is not able to communicate and needs to be detected by
surrounding cars.

1.2.3. Fully-Autonomous Systems: Dynamic Robot Navigation

Currently, a lot of research is conducted in the area of autonomous robots. Especially, in the
context of Industry 4.0 autonomous cooperating robots are envisioned as a key technology for
future factories. The logistics companies already review autonomous flying delivery systems
to redefine their logistic processes.
In the consumer market the second and third generation of autonomous cleaning robots

has reached the markets. These robots are still very simple in their behavior, which is due to
their very limited sensory equipment. The Scooba wet floor cleaning robot of the company
iRobot has only a front bumper and an odometry sensor for each wheel together with a
detector for infra-red beams.
In the talk [152] an example scenario was depicted in which robots need external infor-

mation to enhance their navigation. In this idea robots should pre-adjust their trajectory
to avoid dynamic obstacles. The obstacles could be other robots, objects or persons. De-
pending on the type of object the acquisition of the necessary information is vastly different.
However, all data paths could be grasped with a single event-based sensor abstraction. An
illustration of the scenario is visible in Fig 1.2. The image shows two robots R1 and R2 in a
hallway. The robots are incapable of seeing each other, but there are additional sensors in
the environment which extend the perception of them. The goal of this scenario is to enable
an awareness of each robot towards the other to enable them to change their navigation
plan before they actually see each other. This leads to a better performance than purely
reactive navigation strategies. This scenario becomes increasingly complex if the robots are
heterogeneous or if one of them is incapable of communication.

4

1.2. Example Scenarios

Door

Camera

Distance
Sensor

R1

R2

Figure 1.2.: Illustration of a mobile robot avoiding dynamic obstacles based on sensor data
from a wireless sensor network.

In future, more autonomous robots will be present in the factories and in the consumers’
homes, which will benefit from a mechanism to efficiently share their information. This
enables a better perception of the environment for these robots and in consequence en-
able more complex behavior. Even though current systems are able to handle singular
autonomous robots very well, multiple robots acting together is still a big task. Addition-
ally, the robots are similar to the cars, described in Section 1.2.2, very heterogeneous because
of different sensory equipment. The necessary parameters of these sensors are relevant for
the signal processing and the semantics of the sensor information. An event-based special-
ized sensor abstraction could be a language enabling the sharing of environment perception
between robots without pre-defined messages including additional parameters of the under-
lying sensors. This might provide a viable solution for multiple robots acting in unknown
environments with heterogeneous and possibly unknown sensory equipment.

5

1. Introduction

1.3. Goals

The thesis develops the concept of ASE as an abstraction between CPS components to
fullfil the two following main goals, which were motivated in the CPS scenarios described in
Sections 1.2.1-1.2.3:

Dynamic Compositon CPS are inherently distributed and components may fail or move
out-of-range during run time. This forces the system to adapt by changing the internal
structure. The thesis eases this process by dynamically routing connections between
CPS components at run-time based on applications needs.

Independent Development The thesis aims to provide ASE as an abstraction to allow an
individual development of CPS components. This eases the development process and
allows for faster and more reliable production of CPS.

To enable these two main goals, two conceptual sub-goals need to be fulfilled:

Structured Description of Exchanged Information CPS need more explicit data repre-
senting the implicit information to handle real-world interaction than classical general
purpose software does. Therefore, the thesis investigates the necessary description of
this information using machine-readable data structures exchanged between compo-
nents of CPS. Finally, this information is generalized into an ASE interface.

In-Network Processing of Information Independently developed CPS components that
are connected on run-time need interface software mapping their respective possibly
incompatible interfaces. The thesis provides these software mappings through the ASE
transformations on run-time. The transformations are designed to be distributed in the
network to prevent single-points of failure and provide load balancing and scalability.

Additionally, two requirements are necessary to enable the application of the described
concept to generic CPS systems:

Flexible Communication Infrastructure CPS need to adapt to the environment, they are
used in. To achieve this adaption, a communication is necessary, which establishes com-
munication regarding component requirements. The communication backbone needs
to automatically track existing information providers and create links between com-
ponents depending on the description of the required and provided interfaces of the
CPS components.

Compatibility to Embedded Systems CPS are composed of multiple hardware compo-
nents that range from low-power embedded systems to high-power general purpose
processing architectures. The thesis aims to conceptually support a maximum amount
of them to maximize the applicability to currently existing CPS. Therefore, resource
consumption regarding processing power, memory consumption and network commu-
nication bandwidth needs to be considered and evaluated in the design of the system.

6

2. Challenges of Dynamically
Composed
Cyber-Physical-System (CPS)

This chapter analyzes, based on the example systems presented in Section 1.2, the chal-
lenges that need to be tackled to successfully decouple individual components of a CPS. As
a starting point CPS are defined and the general structure of a CPS are described based on
Figure 2.3. Afterwards, the individual challenges are described based on the functionality
and the components of the CPS. Finally, an overview of additional design challenges is pro-
vided, assuming that the components and their functionality are developed in a distributed
way.

2.1. Definition: Cyber-Physical Systems

A CPS is defined by Baheti and Gill as:
“The term cyber-physical systems (CPS) refers to a new generation of systems with in-

tegrated computational and physical capabilities that can interact with humans through
many new modalities. The ability to interact with, and expand the capabilities of the phys-
ical world through computation, communication, and control is a key enabler for future
technology developments.” [33]
Edwar A. Lee describes CPS as:
“Cyber-Physical Systems (CPS) are integrations of computation with physical processes.

Embedded computers and networks monitor and control the physical processes, usually with
feedback loops where physical processes affect computations and vice versa. ” [98]
A disambiguation between a classical embedded system and a CPS is not easy. As de-

scribed by Arlat et al. [28] a CPS focus on the connection of individual autonomous entities,
which together perform four major activities: "data collection (sensors), communication
(openess and interaction), information processing (analysis, optimization and decision) and
action on the environment". As most of these activities are also present in embedded systems
CPS might be viewed as an evolved form of embedded systems. In general, CPS may consist
of multiple autonomous components interacting with the real world in a way that is invisi-
ble to the user. Additionally, these components are connected using digital communication
interfaces.
This definition of CPS is very generic and needs further refinement to be able to deduce

generic challenges in the design of these systems. The following section provides some
properties that are typical for CPS to enhance the understanding of the challenges.

7

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

2.1.1. Properties

Typical CPS need to fullfil functionalities while providing specific properties. Wan et al. [146]
defined the following properties:

Integration of software and physical properties in a complex system.

Limited Ressources : The CPS functionality is embedded in every component, especially
in the resource constraints ones such as MCUs.

Networking and Scalability : The CPS consists of many components connected with var-
ious communication technologies.

Dynamic Reconfiguration : CPS need to adapt themselves to changes in topology or en-
vironment.

Autonomy : CPS favor autonomous behavior and closed control loops over human-
interaction.

Dependability : Users depend on the delivered functionality, which requires the system to
provide guarantees on the quality of its service.

Not all of these properties need to be fullfilled by all components of the CPS. Depend-
ing on the functionality of the component different properties are relevant. The individual
components need to communicate to work together and form the CPS. The next section dis-
cusses the difference between data and information from the perspective of these components
and how this difference influences the interface between the components.

2.1.2. Data and Information

CPS are inherently distributed, where each components is focused on processing, interpre-
tation and communicating data. The whole design of CPS is data-driven as no application
can exists without at least some sensory input from the real world. Two typical application
classes of CPS are control and monitoring. A control application uses incoming sensor data
to modify the real world using actuators to fullfil its goal. A monitoring application uses
incoming sensor data to output condensed information to an observing user in a periodic
or event-driven way. Both system types need to acquire information on the environment
through existing sensors, process it and react to it. If the individual components of the CPS
are developed by different parties, the used abstractions are different. As a consequence, the
data inside one component may be incompatible with the data of another component. To
be able to use these components together in a single CPS, the internally used data needs
to be enhanced to represent the contained information in a machine-readable way to enable
communication between the components without human intervention.
In this thesis the terms data and information are used based on the following definitions:

Data denotes raw digital values abstracting specific parameters of the environment, com-
ponents or applications.

Information denotes enhanced data that is prepared to be subject to automated processing,
distribution and reasoning without additional external knowledge.

8

2.1. Definition: Cyber-Physical Systems

Consequently, the generic problem of large scale CPS is the specification of the information
as data in a machine-readable way. Currently, this meta-information translating data to
information is called context. The next section will discuss the structure and possible and
mandatory attributes of a generic context.

2.1.3. Context

CPS are deeply integrated in real world processes. Typically, the CPS logic contains a model
of the process it is part of, to enable estimation, prediction and detection of abnormal
states. This is important because CPS directly influence the real world and the persons
living in it. Reliability and trustworthiness are therefore important aspects. To be able to
assess this real world state, contextual information in addition to the pure sensory input is
necessary. Context provides the necessary link between the different low level sensor data,
static knowledge and model information to enable the CPS application to reason on its
current functional state and maybe reconfigure itself to adapt to changes in the environment,
as described by Zug et al. [170].
The context information necessary for a CPS application is very much dependent on the

functionality. As a consequence, it may consist of numerous parameters, which describe
aspects of acquisitions, processing and delivery of data. Additionally, the context may
contain information on temporal and spatial relations between individual observations of
sensors and components in general. To describe generic sensor information, at least the
following context attributes are necessary:

Time is the most basic parameter because of its relevance for most physical processes. The
benefits of having a trustworthy time information reaches from the ability to order the
events to the computation of time derivatives. Additionally, it may be used to observe
the latency of a system and react to it by e.g. dropping very old data or prioritize
recent data. However, the provision of a stable, reliable time base for a distributed
system is a challenge itself. There are no perfect solution and the system designer
always needs to choose an appropriate mechanism.

Position is almost as relevant as time. It enables filtering of data based on physical lo-
cations. Additionally, it enables the deduction of neighborhoods and groups of nodes
possibly observing the same phenomenon, which is important for fusion algorithms
enhancing data quality and aggregation.

Uncertainty measures the quality of non-faulty data. This enables applications using this
data to decide on the usefulness of the individual event towards their goals. It also
enables applications to adapt its decisions based on the quality of the incoming data,
which is relevant for robust systems. However, providing a trustworthy uncertainty
measure is a challenge on its own. Uncertainty exist in two flavors. On the one hand,
the existence of the event itself may be uncertain, which is especially relevant for events
directly relating to changes in the environment. On the other hand, the attributes of
the event limiting the information contained in the event may be uncertain.

Semantic defines the meaning of the sensors data regarding the observed physical phenom-
ena. The same sensor may provide different information depending on the physical

9

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

process it is used to observe. An example is a distance sensor attached to a car as
part of a Park Distance Control (PDC) and the same distance sensor used to detect
the current fill level of a tank of fluids. The sensor data is similar, but the information
differs strongly. One typical approach handle the information as object observation
complexes, which allows disambiguation based on the object. Another approach is the
definition of virtual sensors that enhances the raw sensor data with data representing
the semantic information and provide virtual semantic sensors.

Quality is typically considered on two levels. The first is Quality of Service (QoS), which
describes the current state of a component to fullfil is specification. QoS parameters
allow the specification of different metrics, to which a component should optimize its
delivered function. An example is the QoS parameter latency, which describes the age
of the information provided by a component. Another often used QoS parameter is
package loss, which describes the probability of the information to be completely lost.
Through the QoS parameters an application is able to specify its needs regarding these
parameters to the component and the component shall aim to provide its service with
the specified parameters. Another level of quality is Quality of Context (QoC), which
describes the quality of the information produced by the component. As information is
an interpretable self-contained enhancement of pure data, QoC parameters describe the
context in terms of completeness and accuracy. An example is the context of a distance
sensor, which typically consists of the position, time and angle of the measurement,
together with the uncertainty of the actual distance. A maximum QoC is achieved if all
information is provided with maximum accuracy. In general, arbitrary high accuracy
is infeasible, an example is a distance sensor which cannot know where in its opening
angle the object was detected. This creates inaccuracies in the provided information
decreasing the achievable QoC.

CPS can be viewed from two perspectives. The first perspective looks at the functionality
of CPS on different levels of abstraction and how the general requirements provide challenges
for each layer. The second perspective focuses on the physical topology of the components.
This allows a classification of functionality typically present in each component and the nec-
essary interfaces. Both of these views are discusses in the following to extract the challenges
of dynamically composed CPS.

2.2. Functional Decomposition of CPS

A CPS combines multiple Layers of functionality reaching from low-level acquisition of data
to high-level decision and adaptation processes. A possible 5-Layer architecture is shown in
Figure 2.1 proposed by Lee, Bagheri and Kao [100]. This architecture is tailored towards
Industry 4.0 [99]-based manufacturing processes. It consists of the following functionalities:

Smart Connection Layer enables Plug&Play communication between the components.

Data-to-Information Conversion Layer analyzes and enhances the data of the low-level
sensor to incorporate contextual information.

10

2.2. Functional Decomposition of CPS

Figure 2.1.: Visualization of the 5-Layer CPS functionality architecture by Lee, Bagheri and
Kao [100].

Cyber Layer fuses the data from the lower layer to enhance the quality of data and QoC.
Additionally, it may inter- and extrapolate data as necessary.

Cognition Layer simulates possible results and enables collaborative diagnostics and deci-
sion making.

Configuration Layer adapts the system to environmental changes and allows user interac-
tion and configuration.

2.2.1. Smart Connection Layer

The Smart Connection Layer is responsible for coupling the different components forming
the CPS dynamically on run-time. To this end, it needs to provide communication abstrac-
tions that may be used by higher level functionalities, as well as low-level functionalities
to interact with hardware. A sensor component needs to be able to acquire sensor data
and distribute them to other components using communication facilities. On the hand , an
actuator requires actuation data which is provided by other components through communi-
cations facilities to modify the environment accordingly. Some components may not contain
any sensing or actuation facilities and are solely responsible for computation and forwarding
of communicated messages. Depending on the current task of the system different informa-
tion flows need to be handled by the Smart Connection Layer. During normal operation
information needs to be routed from the sensors to the processing and storage components
and processed information needs to be distributed from the control applications to the ac-
tuators. Additionally, monitoring information is distributed from all components to the

11

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

user(s). During configuration of the system the information flow is typically backwards,
configuration information needs to be distributed back from the actuators to the processing
components and from the processing components to the sensor components. Additionally,
configuration information may be distributed by the user to the different components of the
system. The generic challenges observed in this layer are the following:

Timeliness : Information in a CPS always consists of time-value entities and therefore ages.
The timely delivery of information is often crucial for the functionality of the system,
but even systems not depending on timeliness delivery at least need information on
the age of the information.

Reliability : A reliable communication is generally the baseline of any CPS. Applications
for systems, in which information delivery can be guaranteed, are much easier to de-
velop. However, reliability cannot be guaranteed in all cases. Therefore, additional
mechanisms need to handle the loss and possible retransmission of the relevant infor-
mation. In case automatic recovery is not possible, higher layers need to be informed
to enable adaptation of the system.

Hardware-Constraints : Depending on the system different amounts of bandwidth and
latencies can be achieved. These parameters need to be considered in the design phase
of the application. This hinders the development of generic applications unless the
applications adapt to varying network context parameters.

As described in Section 2.1.3, pure data is not enough to link components together. The
dynamic link needs information to enable automatically composition of the system from
existing components. The next section describes the layer that enhances the data with
context to information.

2.2.2. Data-to-Information Conversion Level

This layer is responsible to enhance the raw data of the sensors with context to represent the
whole information delivered by the sensor. This provides a local view of the environment
at a specific location at a specific time for a specific phenomenon. The context attributes
are discussed in Section 2.1.3. This functionality is similar to the functional difference
between a classic sensor and a Smart Sensor. However, classically Smart Sensor focus on
self-description and self-assessment, while the enhanced CPS sensor components additionally
need structured machine-readable context descriptions. The source of the context informa-
tion is heavily application dependent. In special cases, the necessary context data can be
statically compiled in the component. An example is a fixed distance sensor as part of an
instrumented environment. However, in most cases the context data need to be acquired
through other low-level sensors. Unfortunately, the context of such low-level data can by
definition not be complete. Therefore, a CPS need to be able to also express the QoC to
disambiguate between fully contextually enhanced sensor data and raw-data, whose context
is yet unknown.
This layer may also contain self-testing functionality to add contextual information on

reliability of the data. This quality estimation relies on static analyses of the low-level
sensors, the results of the self-assessment and possible cross-validation of redundant sensors.

12

2.2. Functional Decomposition of CPS

As a consequence, the layer needs to tackle multiple challenges:

Context Information Aquisition : The layer needs to use the Smart Connection Layer
to acquire the necessary contextual information to provide the maximum amount of
context specification to enhance the usability of the data for other components. The
necessary contextual information is dependent on the system but at least contains data
on time, position and semantics.

Quality Estimation : To disambiguate between the different levels of contextual specifica-
tion and reliability of context information, the data and context quality need to be
estimated to enable other components to handle incomplete or unreliable information.

Semantic Enhancement : To be able to automatically use the acquired data, a machine
readable description of the semantics of the information is necessary. This enables
higher layer functionality to assess the usability and the compatibility of the informa-
tion towards their own goals.

As described, the Data to Information Conversion Layer cannot always fully define the
context. Additionally, it can only estimate the quality of the information, but it does not
modify the quality. These two functionalities are typical for the next layer: the Cyber Layer.

2.2.3. Cyber Layer

The Cyber Layer uses the information created in Data to Information Conversion Layer
to produce an adequate virtual representation of the real world in cyberspace. To this end,
it needs to be able to combine multiple possibly heterogeneous independent information to
fullfil the application’s requirements on semantic, QoC and QoS. Afterwards, The resulting
information can be used again as input for another instance of the Cyber Layer or be directly
transmitted to the Cognition Layer to be used in decision making and control. It may also
be forwarded to the Configuration Layer for monitoring purposes.

The combination of multiple heterogeneous information is a very broad field of processing
with lots of possibilities researched over the years. The field can be separated into three
sub-categories.

Selection describes the process of assessing the usefulness of contained information towards
the goal of the component and classifying it in two groups of use and don’t use.

Fusion describes the combination of multiple sensor information to a single new sensory
output information with higher quality.

Reasoning describes the combination of multiple discrete information on the sub-state of
the system to new information on the (sub-)state of the system.

Selection

Selection describes the process of estimating the compatibility of available information
against the application’s goals. This process is very important in CPS, because much in-
formation may be generated, but only a small fraction of it may be relevant to achieve the

13

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

desired functionality. The selection process allows the system to route the relevant informa-
tion to the individual components, without overloading processing and network links. The
selection can work on multiple levels, but generally it can only reference existing context and
sensory data. In the most trivial case, hard coded paths may be used based on the actual
publishers and subscribers of the information. These hard coded path are for example IP-
Address port pairs or Controller Area Network (CAN) identifiers. However, this approach is
unsuited for dynamic systems as these IDs are not known on design time. In this case more
content-based selection criteria may be used. An example are time- and space-based de-
scription routing as done by geo-casting systems, as described by Recksiedler [131]. A third
approach is the actual statement of parts of the content of the information as a template to
match existing information as done by content-based P/S and most database systems.
Additional, to the type of comparison used in the selection process the type of reference

is also important. An example is the comparison of the content-based P/S selection against
general database queries. The content-based subscription only allows the comparison against
static values, because it typically has no knowledge of other Events existing at the same time
in the system. On the other hand the database already contains all existing information and
can also compare different information.
Therefore, the Selection processes can be classified based on the flexibility of comparison

operations and regarding the available type of references for these comparisons.

Fusion

Fusion is a general term that describes any combination of incoming sensor information
to output sensor information of higher quality. The input sensor information is classified
into homogeneous and heterogeneous modality and into overlapping and non-overlapping.
The modality in this notion relates to the observed phenomenon type. Sensory information
of homogeneous modality observes the same type of phenomenon, whereas heterogeneous
modality sensor information observes different types. Overlapping relates to the time space
relation of different sensor information. The information overlaps when the time and position
of the contained phenomena overlaps. Based on these classification of sensor information,
Elmenreich [61] categorized three general types of Fusion mechanisms:

Cooperating Fusion combines multiple non-overlapping information of homogeneous
modality to a single information with an extended range. A typical example is the
combination of multiple cameras with a limited viewing angle to a single camera with
an extended viewing angle. The resulting sensor can never be more reliable or more
certain than the worst originating one.

Concurrent Fusion combines multiple overlapping information of homogeneous modality
to a single information with a higher reliability and/or a smaller uncertainty. A typ-
ical example is the combination of three distance sensors facing exactly in the same
direction at the same time by majority vote.

Complementary Fusion combines multiple information of heterogeneous modality to a sin-
gle information of heterogeneous or homogeneous modality. An example is the com-
bination of two distance sensors being orthogonal to each other, that detected the
same object at the same time. The fusion can now produce a 2D-position out of these

14

2.2. Functional Decomposition of CPS

1D-distances. The combination of the individual Time of Flight (ToF) distances of
Global Positioning System (GPS) to a position is also an example.

Actual existing Fusion mechanisms are often a combination of these theoretical concepts,
especially if the fusion mechanisms was specially designed for an application. In the follow-
ing, some general examples of fusion operations are described.

Digital Filter uses homogeneous input data and combines them using Multiple Add
(MAD)-operations over time. The incoming data needs to originate from different
sensors observing the same physical phenomenon or different times of observation, but
not both. Since physical phenomena are typically only observable in a limited space,
the sensory data needs to stem from the same position. The result is a pure Concur-
rent Fusion. Typical examples are Digital Low-Pass- and Digital High-Pass-Filters,
which separate the information into a fast changing and a slow changing part and
attenuate one of these parts. These general filters can also be used to implement a
Cooperating Fusion if the input sensory data is not from the same time or from the
same position. In this case the quality of the data may be enhanced, but the QoC is
decreased as the actual position or time of the observation is also combined.

Kalman-Filters are specialized filters, that combine multiple heterogeneous information
sources over time using an estimation of each source’s uncertainty. Additionally, the
Kalman-Filter uses a model of the environmental physical processes to predict the
future state of the system. The prediction as well as the different input information are
evaluated regarding their uncertainty and combined accordingly. This allows the filter
to adapt itself to quality changes in the input information and even provide output in
the case of complete omission of input. The Kalman-Filter is very flexible and can
create any kind of fusion, but is typically used for Concurrent and Complementary
Fusion.

Concatenation stitches different homogeneous data together to form a larger data set. This
operation is typically used with multi-dimensional information such as images, maps
and point lists. The input information needs to be from the same time or position.
An example would be a virtual 360˝ camera detecting objects in the surroundings.
The individual images of the cameras need to be stitched together based on the time
of acquisition and their position and orientation. The resulting image can then be
evaluated regarding contained objects. This even allows detection of objects, which are
partially visible in two adjacent images. The resulting fusion is a typical Cooperating
Fusion.

Reasoning

Reasoning algorithms provide the CPS with the ability to deduce its current state based on
observed (sub-)state changes. The difference to Fusion is the focus of these reasoning algo-
rithms on discrete states. In general, reasoning and fusion tackle the same generic problem
of either generating new information from existing one or to validate existing information
based on other existing information. Reasoning Algorithms can be categorized in two major
classes: probabilistic reasoning and rule-based reasoning.

15

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

Probabilistic Reasoning uses random variables to represent sub-states of components and
uses for example Bayes Theorem to reason about more general states based on
observed information. In general, this type of reasoning considers the state to be
discrete or continuous. The reasoning is done in a form of an acyclic graph of inference
relations combining the different sub-states in the form of random variables. The graph
can grow arbitrarily complex, but the computational effort is exponential limiting
realistically usable sizes. The complexity of continuous Bayesian Networks, see [93],
leads to the development of specialized algorithms to handle typical types of these
networks e.g: Markov Networks [93] or Kalman Filter, see Section 2.2.3. Discrete
Bayesian networks can be used to reason on state information in a quality aware way.

Rule-based Reasoning uses exact state information in the form of facts as input and logi-
cal deduction rules to infer new state information from existing one. This approach is
heavily used in logic programming. Existing logic programming language interpreters
use algorithms such as RETE [66] to efficiently compute new facts by matching pat-
terns to existing facts and generate new facts as result. The algorithm is typically
executed recursively to enable the generation of all possible facts from the existing
information.

Challenges

The previous sections described existing mechanisms to process incoming sensory informa-
tion based on user specified operations. General CPS typically contain multiple types of
these operations distributed over multiple components. Fusion operations may be executed
directly in the Smart Sensor, whereas, Reasoning is executed in the application on the mo-
bile device. However, for a dynamically composable CPS the functionality of executing
these operations need to be flexible enough to be executed at multiple points in the CPS.
Therefore, multiple challenges that need to enable dynamic composition of this layer arise.

Generality : The CPS needs to provide a general approach towards the specification of the
necessary operations. The system designer is then able to express his or her needs on
the systems functionality.

Dynamic Configuration : The CPS should reconfigure the connections between the indi-
vidual processing functionalities depending on the current state of the system. Certain
fusion types enhancing the quality might not be needed if the quality of the input in-
formation is already high.

Quality Estimation : The processing needs to be quality-aware. The quality of the informa-
tion is relevant for the design of system, but the dynamic composability makes off-line
quality computations impossible. In consequence, the quality information needs to be
processed and output as well.

Quality Guarantees : Quality requirements stated by the application designer need to be
used to configure the necessary processing. This allows the system to adapt itself based
on the required and provided quality of the different components.

16

2.2. Functional Decomposition of CPS

Context Awareness : The contextual information is very important for the CPS. Therefore
the processing cannot limit itself to use the existing contextual information, but also
needs to modify it according to the executed operations. An example is the aggregation
operation, which typically modifies the time or space context of the information.

After the sensor information was processed to deduce the necessary information on the
current state of the system in all continuous and discrete variables, the application may
decide on the actuation. This is done in the next layer: the Cognition Layer.

2.2.4. Cognition Layer

The Cognition Layer contains the functionality, which defines the actual behavior of the
CPS. In general, it defines which situations demand which actions by the system. For the
robot navigation scenario this represent the actual choice of direction of the robot and for
the vehicle warning scenario alarming the user.
The baseline of all these behaviors are applications representing the core of the CPS. Most

CPS try to provide the developer of the behavior with abstractions that ease the task of
implementing the necessary functionality. These abstractions typically consist of interfaces
abstracting away the details of the lower layer, especially of the Smart Connection and Cyber
Layer. The developer of the behavior should only state his or her requirements on the data
and implement the necessary applications based on these data. The lower layers shall take
care of the fullfilment of these requirements. The requirements differ heavily depending on
the application implemented. For the forest fire scenario latency and timeliness are not as
important as consistency and accuracy of data. If the fire detection system issues false pos-
itives all the time, no one will react to the alarm. In the robotic navigation scenario latency
and uncertainty estimation are important, as the robots need to plan ahead depending on the
amount and quality of information they receive from the lower layers of the system. In this
case the environment is too dynamic to guarantee the fullfilment of requirements. Therefore,
the application designer needs to cope with the existing uncertainties. In the vehicle scenario
some requirements such as age of information needs to be guaranteed, whereas, others such
as position uncertainty may be handled by the application. In consequence, the application
needs to be provided with the ability to express requirements to the lower layers and also
be informed of the quality of the information it gets from the lower layers. In the following,
some example applications are sketched, which lead to the definition of the challenges these
present to a dynamically composed CPS.

Closed Loop Control enables the control of physical phenomena relevant for the system.
This control needs up-to-date information on the current state of the phenomenon.
Also, uncertainties of the observation or errors in the acquisition lead to wrong infor-
mation fed to the control algorithm and consequently to wrong actuation. This type of
application is generally very sensitive to age and quality of information. An example
is a Distributed ACC system envisioned for autonomous cars.

Collaborative Decision Making enables CPS consisting of multiple active entities to coor-
dinate their behavior and act as a single entity. An example is the robotic navigation
scenario, in which multiple robots coordinate their movement based on the actual po-
sition information of each other and the obstacles. The decision making is typically

17

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

done using communication facilities of the network and therefore needs time to be exe-
cuted. The timeliness of sensor information is not as important in this case. However,
the quality of the sensor information is very important as byzantine errors increase
the necessary time for consensus. As a result, an awareness of quality may decrease
the time to consensus, even though this speed-up cannot be guaranteed.

Navigation is a generic application in any CPS containing autonomous mobile entities.
Depending on the observation capabilities of the system the navigation task has to
face different challenges. In general, the aim is to plan a movement for an entity
from position A to position B. If the environment is obstacle free, the execution is a
simple Closed Loop Control. However, if unknown unmoving obstacles may be present,
additional sensors are necessary to detect these. Therefore, the navigation needs access
to these sensors and it needs to evaluate the quality of the sensors to evaluate the risk of
collision based on the requirements. If the obstacle itself is able to move, the challenge
can extend to Collaborative Decision Making using the current movements as input for
both entities trying to evade each other. In this case either timing is very important
or the entities adapt their speed.

These generic examples of applications present in CPS lead to the following challenges:

Flexible Control is necessary as the environment of CPS may be dynamic and changes in
the environment may not be compensated by lower level components. This requires
changes in the behavior of the system as a whole and especially in the functionality of
this layer.

Unknown Environments : As the environment is typically not fully known, the layer needs
to contain mechanism to evaluate how well the system is suited to the current situation.
In case of environment situations in which the quality of the sensor information is to
small the system may change its behavior to a fail-safe to prevent harm.

Incomplete Knowledge : Typically, either the context or the information is partially in-
complete. The behavioral functionalities present in this layer need to be inherently
aware of this lack of information. Additionally, they need to be able to take this lack
of information into account, whenever they decide on appropriate actions.

Lack of Guarantees : In dynamic CPS not all requirements can always be guaranteed to
be fullfilled. Therefore, the application needs to be able to handle these situations, by
requiring lower quality input or degrade its output quality if necessary, as described
by the Karyon Architecture [52].

Heterogeneity of Interfaces : The incoming information is delivered by numerous hetero-
geneous components, this layer needs to hide the heterogeneity to present the appli-
cation with a uniform interface independent of the informations source.

2.2.5. Configuration Level

The Configuration Layer is used to enable the user of the system to monitor and reconfigure
the system on runtime. It may also contain automatic reconfiguration components watching

18

2.2. Functional Decomposition of CPS

over the system and rewiring components if the environment changes. There are two general
Use-Cases in this layer. The first consists of automatic information collection on arbitrary
states of the system. This is typically configured by a human user if the system shall be
evaluated or if some errors where observed and additional information for error mitigation is
necessary. To this end, the system needs to provide the user with information on its internal
state on request of the user. Depending on the interfaces present in the system this can
be achieved either through displays visualizing the information to the user or through the
communication interface of the system. The other Use-Case is the reconfiguration of the
system. This typically means that the user changes the parameters of the application or the
environment changes and a monitoring component reconfigures parameters of the system.
An example of such a reconfiguration is the change of the warning distance of the front crash
warning system in a car. The user may change this distance because of his or her driving
behavior to prevent a high amount of false positives. A sufficiently intelligent system may
also be able to learn that its warning distance is to small because of a high amount of false
positives and automatically extends the distance to minimize the amount of false positives.
The challenges of this layer are mainly in the changes the layer can induce in other layers.

Therefore, the other layers need to be designed to be flexible. The reconfiguration process
may change requirements of the system in a way that can only be achieved by changing
the underlying communication paths and the executed functionality, especially in the Cyber
Layer. Additionally, the presentation of the data to the user is difficult, as a high amount
of information is present at each time instance in a CPS. Even by using a user supplied
filter for the data, the update of information might still be too fast for humans to recognize.
Therefore, the layer needs to provide some sort of information fusion mechanism to distill
the relevant information for presentation to the user. This may be enabled by correctly
configuring the Cyber Layer to handle the fusion of the information to be presented.

19

2.
C
hallenges

of
D
ynam

ically
C
om

posed
C
yber-P

hysical-System
(C

P
S)

GPS Sensor

Car 0

Distance
Sensor

GPS Sensor

Car 1

Distance
Sensor

Distance
Sensor

GPS Sensor

Car 2

Virtual
Position Sensor

Virtual
Speed Sensor

Virtual
GPS Sensor

Crash Detection
Application

Cockpit

Data-to-
Information

Conversion Layer

Cyber Layer

Cognition Layer

Configuration
Layer

Figure 2.2.: Schematic illustration of the layers used in the CWS example system.

20

2.3. Component View of CPS

2.2.6. Summary

This layered architecture shows the idea of an increasing level of abstraction and a transition
from sensor processing to high-level decisions. On the lowest level of abstraction, raw sensor
data and direct actuation commands are handled. On higher layers of abstraction, the
sensor data become more an more abstract as do the actuation commands. The processing
changes from signal processing to data fusion configured by context to information fusion and
inference. On the highest level of abstraction reconfiguration and user control is provided.
To present an example of an application split into these layers, the vehicular CWS is depicted
in Figure 2.2 showing the functionalities assigned to the different layers.

2.3. Component View of CPS

Generally, CPS consist of multiple nodes connected by a communication network. Each
individual node is autonomous and itself composed of at least two components: Processing
and Communication. The actuation, sensing, storage and user interface components are
optional, but often present. This basic structure is illustrated in Figure 2.3. The tight
interaction between these components on different levels of abstraction, see Section 2.2 on
different nodes creates the behavior of the CPS .
In the following, the individual components are described in more detail. The character-

istic properties are outlined together with some examples for components used in exemplary
systems.
Components can be categorized into the following groups:

Sensing components acquire observations of real world phenomena and provide them as
digital information to the CPS.

Actuation components use digital information on real world phenomena to change the
current state of the real world.

Communication components route and deliver information from one component to another
in the CPS.

Processing components modify incoming information into outgoing information.

Storage components allow the permanent or semi-permanent storage of information for
later retrieval.

Montoring and Configuration components allow users to interact with the system.

2.3.1. Sensing

CPS may only perceive their environment through sensors. The acquired Sensor Information
is highly relevant to assess the environment and react to it. The process of acquiring the
sensor information is performed by specialized components that together form a Sensor. The
acquisition starts with the transduction of any kind of physical phenomenon to a digital
signal. Afterwards, the digital signal is processed and conditioned. As a result, Sensor
Data are acquired. To be able to use this data, it needs to be extended with additional

21

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

NetworkEnvironment

Control

Perception Actuation

Communication

Node 0

Control

Perception Actuation

Communication

Node 1

Figure 2.3.: Schematic overview of a CPS. The dashed components represent optional com-
ponents that disambiguate a CPS from a basic embedded system.

information describing the phenomenon that was observed. The result of this process is
Sensory Information that may be used by any other CPS component to react to changes of
the physical phenomenon in the environment. In the following, the most important terms
are defined:

Phenomenon denotes a measurable physical property of the environment or an object
within it.

Sensor is a physical component transforming a physical phenomenon such as pressure or
speed to an electrical signal.

Sensor Data denotes the raw digital output of a Sensor.

22

2.3. Component View of CPS

Sensor Information denotes the enhanced information that is formed by extending the
Sensor Data with Context information to unambiguously describe the phenomenon.

Smart Sensor is a component which outputs sensor data on one or more phenomena in-
cluding additional data regarding the context of data acquisition such as quality, time
or position. The data is delivered through a digital communication interface. The
Smart Sensor is composed of at least a single Sensor, a communication interface and
a processing unit handling the necessary signal processing.

Such a sensor is a component observing a physical phenomenon and transforming its state
into an electrical or digital representation. In CPS, sensors are used in the Smart Connection
Layer, the Data-To-Information Layer and the Cyber Layer. In the Smart Connection Layer
they acquire and distribute data on phenomena observed in the environment. In the Data-
To-Information Layer the CPS sensor attaches context information to the raw sensor data,
which are used in the Cyber Layer to enable fusion of sensor information to enhance quality.
The functionality of the different layers need not be contained in a single node. Consequently,
sensors used in CPS need to provide data on attributes defining their behavior such as:
interface, modality, context and quality to enable the CPS to use them dynamically.

Interface may either be analogue through an electrical voltage or current or digital through
a field bus interface. The analogue interface is very easy to use, but does not provide
any meta information besides the raw measurements. The digital interface may provide
health information or parameters of the sensor, but a suitable field bus interface is
needed to access the sensor data.

Modality describes the type of phenomenon the sensor observes. Generally, these relate
to physical parameters like temperature, pressure, humidity etc. However, there exist
other sensors such as object detection sensors, which do not directly relate to physics.
Alternative sensors based on cameras might even detect special features such as speed
limits for parts of the road or the gestures of humans.

Quality describes the meta-information provided by the sensor regarding error-probability,
uncertainty, latency and the availability and quality of context information such as
position and time.

Smart Sensors enhance the functionality of a sensor with the ability to deliver more
contextual data. In general, it is able to self-test its functionality to output contextual data
regarding the quality of the output data on run-time. Additionally,it may contain more
functionalities such as dynamic estimation of its current position and time synchronization
to provide self-sufficient sensor information. A Smart Sensor producing sensor data and
the necessary contextual data is an information producing component in the CPS, which
may be added and removed dynamically, because the system can dynamically assess the
impact of this structural change and adapt to it. In [172] Zug describes an architecture to
develop smart sensors hierarchical based on different functional groups with a focus on self-
testing and quality estimation. In this case the necessary contextual information is already
contained in the sensors. However, a general problem of Smart Sensors is the acquisition
of complete context information. Relevant information such as position, time and network

23

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

quality parameters can only be obtained by other sensors in the system. Therefore, Smart
Sensors are typically composed of multiple internal sensors that are combined to form the
necessary Smart Sensor needed by the CPS.

Some examples of Smart Sensors which additionally output context data are the following:

Context-aware Distance Sensor is a digital distance sensor with a known position, orien-
tation and an embedded digital data sheet. It enables the subscribers to transform
the acquired distance information into positions in a local map. This enables further
automated processing such as the combination of multiple distance sensors to virtual
speed information.

Car-Detection Cameras are distributed along roads to account car tolls on roads. They
acquire high-quality sensor information on cars on the roads. This information consist
of at least an identification of the car, its position, the time of detection and possibly
its speed. Multiple of these sensor allow the deduction of average speeds on roads and
road usage.

GPS Sensor are inherently contextual sensors, as they provide tempo-spatial information
on an object with with a known uncertainty. The uncertainty of the sensor is inher-
ently dynamic, as the provided accuracy of the tempo-spatial information depends on
communication links and quality to the available satellites.

Weather Station typically consists of multiple heterogeneous low-quality sensors. They
provide information with on multiple modalities such as temperature, humidity, air
pressure and illumination. To enable a global the individual weather stations’ data is
combined which needs tempo-spatial context information. Consequently, the produced
data contains at least information on the tempo-spatial context.

2.3.2. Actuation

The Smart Actuator is the counterpart to the Smart Sensor. While the smart sensors pro-
duces self-sufficient information on physical phenomena, the smart actuator consumes such
information to physically change the phenomena. It needs the same amount of context to
the information to be able to assess the correct phenomena to be manipulated. Typically,
content-based routing mechanism may be used to transmit information on relevant phenom-
ena to the correct smart actuator. The information on quality may be used by the Smart
Actuator to check the manipulation for validity to prevent possible dangerous operations.
An example is an emergency breaking system, which produces a false-positive emergency
information. If correct quality information is available, the smart actuator can decide not to
execute the break command, because the necessary validity of data is not guaranteed. An
even more sophisticated CPS might prepare an emergency breaking, but waits for additional
information to take a more reliable decision.
In general, Smart Actuators are combinations of sensors, controllers and actuators being

able to check the actual actuation whether it is executed or not. In the case of an internal
error the Smart Actuators are able to diagnose the error and feed back the information
to the other components of the system. They follow the same classification as the Smart
Sensors regarding Interface, Modality and Quality. Some examples of actuators in CPS are:

24

2.3. Component View of CPS

Motors allow rotational or lateral movement of parts. A typical example are the breaks of
a car that create a negative acceleration. However, these actuators do not need to be
smart as they are designed to supply their effect with very high reliability as stated
by the ASIL D of the ISO26262.

Piezo Elements are another type of actuator which are able to create low-amplitude lateral
movement. This may be used to create sounds, heat or vibrations. This actuator is
very unreliable and therefore used for tasks where no reliability is needed. It can be
extended to Smart Actuators by using additional acceleration sensors or microphones.

Electrical Heaters are used inside a control loop, as the heating is typically used to control
the temperature of an element. An example is the seat heating of cars, which increases
the temperature of the seat untill a user specified temperature is reached. Since these
actuators are only used inside of control loops, the actuator, the sensors and the control
loop form a Smart Actuator.

Leds are used to create light. This may either be used to indicate system states to users or
to illuminate the environment. In the case of state indication they are often combined
with a self-diagnose test, that allows the user to access the functionality of the actor.
This mechanism is not a Smart Actuator, because human interaction is necessary to
evaluate the quality.

2.3.3. Processing

Processing of sensor information in the CPS is done by distributed processing units. These
units consist of a Central Processing Unit (CPU) or MCU and a software abstraction of the
hardware, which typically consists of an Operating System (OS) or a Hardware Abstraction
Layer. The processing components do not influence the environment. They take various
sensor information as input as well as a processing specification and output the processed in-
formation. However, the processing done can be of arbitrary complexity. The computational
power regarding CPU and available Random Access Memory (RAM) vary heavily depending
on the envisioned application. A low-power WSN processing unit uses a MCU such as Atmel
AVRs with less than 100kB of RAM. Whereas, a robotic control Personal Computer (PC)
typically uses general purpose CPUs with billions of operations per second and multiple Gbs
of RAM. As a consequence, the abstraction used in the different systems are adapted to the
capabilities of the system. Therefore, a low-power system is more limited in the possible
processing it can execute. Additionally, pc-like general purpose systems provide the ability
of executing interpreted programming languages, which allows the distribution of programs
in a uniform way without caring for the actual hardware. In contrast to this flexibility,
MCU-based system often provide better support for real-time and reliable execution of the
functionality. Therefore, critical static functionality of a CPS is typically implemented as
fixed-function units on MCUs. In very high-reliability cases the hard and software of these
units may even be fault-aware and enable the detection and possible correction of compu-
tational faults. Reliability and real-time may be incorporated in the functionality as QoS
parameters in the form of latency and validity. The following section describes classifying
parameters of processing units found in CPS:

25

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

Computational Power denotes the amount of computations a processing unit can execute
per time frame. More complex tasks need more time when the computation power is
low.

Memory denotes the amount of non-persistant storage the processing units has for histor-
ical values and temporary data.

Flexibility denotes the ability of the processing unit to change the executed functionality
by either reconfiguring existing programs or by being updated with new programs.

Reliability denotes the error probability of the executed calculations

Real-Time Capability denotes the probability of the executed functionality to provide the
result within a specified time margin. There are two flavors named hard and soft
real-time, where the first one specifies the probability of lateness to be zero.

2.3.4. Communication

To connect Sensor Actuators and Processors in a CPS, one or more communication links are
needed. These links acquire information from the individual component and distribute it to
the different components. There are multiple low-level protocols to network the individual
components depending on the application’s requirements. The individual solutions can be
classified based on their expected message timing, their supported topologies, their timeliness
of delivery and their reliability. The different classes are presented very shortly in the
following:

Expected Message Timing describes the periodicity of the messages generated by the ap-
plications. Periodic communication systems expect the application to deliver messages
in a fixed period, whereas, sporadic communication systems allow the delivery of mes-
sages at any point in time. These sporadic messages typically denote events changing
the state of a component or the environment.

Supported Topologies describe the type of connectivity layout the communication links
support. This ranges from single-hop communication in bus-like structure over single-
hop broadcast communication to multi-hop routing using Ad hoc On-Demand Distance
Vector (AODV) Routing [121].

Timeliness of Delivery describes the existence of real-time guarantees for certain messages
transmitted in the network. Typically, purely periodic communication systems allow
the computation of message transmission tables offline and therefore guarantee timely
delivery of any message, as provided by the Time Triggered Protocol (TTP) [89]. Other
communication systems may only provide real-time guarantees for specially designed
messages, as provided by Controller Area Network (CAN) [1]. Some communication
systems provide no guarantee on timing of delivery at all such as Ethernet andWireless
LAN.

Reliability denotes the ability of the network to detect delivery faults and mitigate them.
This ranges from automatic retransmission of lost messages over Forward Error Correc-
tion to prevent the loss of messages to fully redundant systems that transmit messages
in parallel over multiple separate connections.

26

2.3. Component View of CPS

All these parameters highly influence the provided QoS of the communication. Depending
on the actual task of the CPS it is necessary to supply the network with appropriate QoS
specifications to guarantee the functionality of the individual components. The guarantee
of the specified QoS parameters needs to be provided by the underlying network. However,
it is possible for the network to not be able to guarantee the parameters. In this case the
CPS needs to adapt itself or disable the functionality. A typical case for the necessity of
QoS parameters are distributed control loops. They are typically defined in periodic manner
and need information to be delivered with at least the same period as the control loop itself.
Any delay in the delivery can jeopardize the stability of the control.
In the case of broadcast communication, no addressing is necessary to link individual

components of a CPS. However, broadcast communication does not scale well and there-
fore, for larger CPS some kind of information routing is necessary. A classical approach is
routing based on identifiers of components, which designate source and destination address.
However, this is inflexible, as it provides no information on the actual data the components
need to share. For statically designed systems the designer may hard wire the components’
links based on the necessary information, but for dynamically composed systems some kind
of content-based routing needs to be applied. In the case of CPS one possible source of
the content-based routing information may be the context data. In this case, the individual
messages or events need to contain the context additionally to the data. Two types of com-
munication abstraction are well suited for content-based routing in dynamically composed
systems. They are described in the following:

Publish/Subscribe (P/S)-based systems uses a communication paradigm proposes a
means to communicate events without space, time and flow-coupling [63]. This en-
ables complex large-scale dynamic networks to consist of autonomous units, which
communicate and act independently. The focus of these systems is on the data that is
communicated rather than communication itself. Compared to traditional communi-
cation paradigms like client-server or multicast datagrams, P/S provides content-based
dissemination of data in a scalable way, as visible in Figure 2.4. Over time, different
flavors of P/S systems such as topic-based, content-based and hybrid systems emerged.
The topic-based systems attach a tag to each event, which is called topic, and allows
to filter data based on this topic. The content-based systems apply filters directly to
the content of the events. The hybrid systems combine both mechanisms by attaching
topics to events and allow filtering on known attributes of events.

Service Oriented Architecture (SOA) use machine-readable service descriptions together
with a lookup system to automatically connect individual components. The lookup
of services is executed by a possibly distributed service repository. This containing
the necessary information on the description of the service and its current location in
the system. In contrast to P/S-based systems the service scheme does not decouple
the flow of client and server. Typically, the client waits until the server has processed
the request and delivered the answer. This allows for an automatic synchronization
between client and server, but also creates a stronger coupling between the compo-
nents. Another important aspect is the distribution of the service repository. A fully
distributed service repository creates a very scalable dynamic system, but also has
large overhead to keep the data up to date or to query the repository. On the other

27

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

hand, a centralized repository is easy to update and search, but is a bottleneck for the
growth of the system.

Sensor CSensor BSensor A Sensor D Sensor E

Actuator BActuator A Actuator C

C
ha

nn
el

A

C
ha

nn
el

B

P
ub

lis
h/

Su
bs
cr
ib
e

N
et
w
or
k

Figure 2.4.: General structure of a P/S middleware connecting sensors, actuators and con-
trollers of CPS.

2.3.5. Storage and User Interface

In addition to the communication of data, some CPS need to store data for later use. This
storage may either be temporary or permanent depending on the indented usage. However,
only some CPS provide storage facilities to keep data permanently. Storage is also provided
by the memory of processing units, see Section 2.3.3, but this storage is mostly short term
and buffers data based on time, size or other specific requirements. The short term storage
is mostly handled internally by the CPS, whereas, long term storage needs to be activated
explicitly in the CPS. Systems such as Aurora enable the user to activate storage components
to persistently store data for later queries.
In general, long term storage needs to be explicitly activated by the user. The user

also needs to actively request the contained data. Consequently, permanent storage and
later delivery can be considered part of the User Interface (UI) of the CPS. The UI in
general consists of all components that enable an interaction between the user of the CPS
and the system itself. Typically, the UI consists either of an API to query information on
the system using the communication facilities, see Section 2.2.1, or of display and input
facilities for direct interaction. An example are modern cars, which have multiple buttons
and displays that enable the user to change the behavior of the system in various ways,
like dynamic adaption of steering aid strength or change of the ride’s height. On the other
hand, WSN have no direct UI components, but may be monitored and configured using the
communication links used for data dissemination. The power of the UI components can
range from a purely monitoring functionality as in the WSN forest fire detection scenario to
a fully reconfigurable system as provided by an intelligent robot in the dynamic navigation
scenario.

28

2.4. Summary

The storage components of a CPS can be classified based on the time horizon of storage
and the existence of a long-term storage option. The UI components can be classified based
on the power of the monitoring and configuration components.

2.4. Summary

The Sections 2.2.1 - 2.2.5 describe the functional and physical components of a generic
CPS. The description shows that CPS are very complex systems consisting of multiple
components in hardware and software and adhering to multiple functional and non-functional
requirements. The individual development of each component is already challenging, but
the integration of all these components without violating requirements and still guaranteeing
functionality is a very complex and error-prone task, as described by Bangemann et al. [34].
The complexity of the system can only be reduced by either dividing the system into

smaller parts or by using high level abstraction layers. The first approach relates to the tra-
ditional software engineering goal of reusage of components. The second approach relates to
the software engineering goal of information hiding, which encapsulates details of function-
ality and enables separation of the development within a component vertically. However,
general abstractions are not applicable to CPS, because CPS need to be adaptive regarding
their environment and their structure. This can only be achieved by providing a maximum of
information to all the functional layers of the CPS. An example are real-time requirements,
which are very difficult to be included in flexible abstractions. The current development
process solves this problem by separating the scheduling and the timing constraints from
the used programming abstraction, which induces additional challenges during integration of
separately developed components. Edward Lee [98] proposed a change in the development
process by natively include time and timing constraints in the abstractions. This allows
combines the benefits of the independent development of traditional abstraction without
the additional integration effort. However, the abstractions need to gain enhanced func-
tionality to handle violations of constraints on run-time. If this approach is generalized
to the whole context of the CPS, it enables a system composed of basic components on
run-time. Additionally, the system may even adapt on run-time because all design decisions
can be implemented in the system providing additional adaptivity. The Karyon [52] project
aimed to provide an architecture to support reliable adaptive systems based on individual
components.
The key to enable this new design and development process for the development of CPS is

the definition of the context of the system and the inclusion of the context in the abstractions
used to develop and integrate the components of the system. Consequently, all functional
components need to be context adaptive, since the context of their supplied information may
change at run-time. The first and most important step towards this goal is the development
of a generic architecture to handle and distribute the sensor data and context in and between
the components of the system. The aim should be to have as little as possible manual
developer and designer interaction with the system in the configuration phase to allow
the system to adapt to the environment. The challenge is to still fullfil the applications’
requirements on information quality and context quality, which also enables the statement
of real-time guarantees.

29

2. Challenges of Dynamically Composed Cyber-Physical-System (CPS)

The context contained in the abstractions can be viewed as a way to decouple the com-
ponents. In strongly coupled system the engineer hard-codes the contextual information
during design-time. Consequently, the components of the system cannot be separated and
recombined unless the contextual assessment of the information shared between the compo-
nents fit. An example is a car using two radar-based distance sensors in the front to enable
reliable ACC functionality in combination with the engine control unit. If one of the sensors
is moved to the back of the car, the fusion of the data does not produce correct output
anymore and the resulting functionality will be erroneous. This is caused by the change of
context of the produced information of the back sensor to something, which does not fit the
hard coded context in the engine control unit.
Therefore, the automatic composition of the system is hindered when components are

strongly coupled because the context of their abstraction is not extensive enough. The
flexibility provided by the explicit handling of context of a component directly relates to
its capability to be reused and to be reconfigured on run-time. The following paragraph
provides a general overview of the couplings between components limiting the flexibility
of the components. Some of them (Time, Space, Flow) directly relate to the couplings
described by Eugster et al. [63] for P/S-Systems. Others such as (Data Format, Semantics
and Context) are described by Sheth [145]. All these couplings may be present in CPS,
especially in the Smart Connection Layer (Section 2.2.1) and in the Data-to-Information
Conversion Layer (2.2.2)

Time coupled systems require the components exchanging information to be active at the
same time. Consequently, a system uncoupled in time needs the ability to store events
on route to deliver them on reactivation of the participating node.

Space coupled systems need to address the individual components explicitly. Systems
uncoupled in space do not need any address to establish a communication channel
between components. Of course, other means to identify the endpoints of the commu-
nication or the communication itself are necessary. One example of such alternative
specifications is content-based communication, where communication partners state
their interest in data instead of participants of the communication.

Flow coupled systems enforce a single flow of control between the participating communi-
cation partners. This is typical for client-server systems, in which the client waits for
the reply of the server. Systems uncoupled in flow enable their components to keep
their autonomy even during communication.

Data Format coupled systems need the components to know or agree on a certain data
structure for each communicated event during the design-phase of the system. Sys-
tems uncoupling their components against the data structure of the communication
either need a generic description languages or use meta-languages to describe the data
structure. XML is an example of the first, whereas IDL is an example of the later.

Semantics coupled systems need to agree on the semantics of the communicated data in
the system’s design phase. A system decoupling the components semantically needs
an ontology to translate between the different vocabularies and properties of the terms
of the individual components on run-time.

30

2.4. Summary

Context coupled systems specify a static context for different components on design-time,
which consists of tempo-spatial information, reference points and uncertainties of dif-
ferent observed physical phenomena.

Currently, two possible solutions exists to solve the generic challenge of dynamic composi-
tion of CPS. The first uses a powerful domain specific language to enable flexible acquisition
of data for each component. Dynamic modification of these statements allows the system
to adapt to failures of other components or to changes in the environment. The other ap-
proach uses components with special interfaces to enable automatic adaptation based on
the context description. The first case moves the adaptation mechanism to the application,
whereas the second approach handles adaptation internally. In both cases a component ex-
ists, that executes the acquisition commands or links the individual components. In general,
this component is distributed in the network, but some systems may implement it central-
ized. Depending on the mechanism existing systems exhibit strong differences in capabilities
regarding sensor data processing and filtering. Additionally, the systems differ heavily in
context description and the statement of requirements regarding data, context and quality.
Finally, scalability, resource efficiency and computational complexity are different, too.
The next chapter investigates the capabilities and limitations of different existing systems

aiming to solve the task of dynamic composition of CPS and compares them. The final goal
is the assessment of existing solutions regarding the stated challenges and the inference of
the challenges this thesis needs to tackle.

31

3. State of the Art

This chapter describes existing work tackling the challenges of CPS. In the beginning, com-
parison criteria are described based on the challenges identified in Chapter 2. Afterwards,
the individual work is described and evaluated using these criteria. The chapter ends with
a conclusion regarding the current state of the art of dynamic composition of CPS.

3.1. Comparison Criteria

To evaluate and compare existing work regarding dynamic composition of CPS, a definition
of criteria is necessary. These need to reflect the challenges as described in Chapter 2. The
criteria are categorized in five groups which are describe in the following sections.

3.1.1. Couplings

As stated in Section 2.4, couplings between components of CPS hinders independent develop-
ment. The more couplings exist between the individual components, the more coordination
is necessary between the developers of the components. To enable a dynamic composable
and distributed CPS, it is beneficial to limit the coupling to the minimum. The described
coupling forms a good comparison metric to rate the level of decoupling of a CPS abstrac-
tion system. The relevant couplings are the following: Time, Space, Flow, Data Format,
Semantics.

3.1.2. Context

Section 2.1.3 describes the importance of the context of data exchanged in CPSs. Addition-
ally, a minimal set of context attributes is specified to enable later reasoning and processing
of incoming information. This set is used as the context criterion to rate CPS systems re-
garding their ability to handle, preserve and process contextual information. The set consists
of the following attributes: Time, Position, Uncertainty and Semantics.
Semantics is also part of the couplings between components, because explicit statement of

the semantics does not generally decouples the information processing components semanti-
cally. It is still possible that the used communication system and the information processing
does not allow exploitation of this contextual attribute.

3.1.3. Quality

Quality is a special context attribute as it has two important sub-aspects. The quality
of the exchanged data together with the latency is considered QoS of the sensor and the
distribution network, whereas, the QoC describes the completeness and accuracy of the
contextual data.

33

3. State of the Art

3.1.4. Distribution Type

CPS are inherently distributed systems. As described in Section 2.1, they consist of multiple
autonomous networked components. For these components to work together, the used distri-
bution mechanism may either rely on a central node or distribute computation and decision
making over the components. A fully distributed system enables maximum scalability and
robustness, since nodes are mostly independent of each other. Additionally, such systems
often employ failure mitigation strategies handling the crash of individual nodes providing
additional robustness. This flexibility is expensive. Fully distributed systems need a lot of
network bandwidth and time to reach consensus. Centralized systems are cheaper, but at
the same time not a robust since a failure of the central node disables the whole system.
A third class of system uses a master node to simplify consensus and organization on a
distributed system. This master node may either be defined on design-time or be chosen on
run-time from the amount of existing nodes.
This comparison criteria classifies the systems into one of these three types: centralized,

distributed or master-based.

3.1.5. Filter Model

Each component of a CPS needs sensory data to be able to perform its duty. To enable a
dynamic coupling, the necessary data paths cannot be built statically. An approach towards
dynamic binding is the specification of necessary parameters of the sensory data. Conse-
quently, the task of delivering matching data is delegated to the underlying middleware.
To this end, filter expressions may be used that select data based on specific properties or
values of contained attributes as described in Section 2.2.3. To specify such filters, multiple
approaches are possible. The database community uses Structured Query Language (SQL)-
like languages to specify them. SQL-like languages are composed of expressions containing
SELECT, FROM and WHERE statements. These statements allow the specification of
interesting attributes, sources and ranges. P/S systems typically embed filters in the sub-
scription specification. These filters work on topics, types or individual attributes of the data
depending on the P/S system used. Another approach towards filtering of data is based on
patterns. It uses pattern descriptions such as regular expressions or query-by-example as
input and generates appropriate filtering rules based on them. The last method to filter
data is based on the specification of processes, which only propagate data when the data
fulfills the filter. These processes are typically not specified using a specific language, but are
programmed in a native programming language and selected as part of the channel specifica-
tion. Consequently, the filter model is either SQL-based, Subscription-based, Pattern-based
or Process-based.

3.1.6. Filter Expressiveness

The expressiveness of the filter specification can be measured for different filter operations.
These operations form three groups:

Elementary Filters are filters, that check individual attributes of the data. Typical opera-
tions for these filters are ă,ą,““.

34

3.1. Comparison Criteria

Filter Compositions are operations that combine elementary filters to form more complex
filters. Typical operations are logical operators: and, or, etc..

Filter Sequences enable compositions over multiple separate data sets. Typically, they
are used in the temporal domain and contain operations such as: BEFORE, AFTER,
CONCURRENT.

The expressiveness is measured in a scale ranging from ´´, describing no filter expression
exist, to ``, allowing the description of any arbitrary filter.

3.1.7. Processing Model

The processing model describes how specified processing operations are applied to input
data to create output data. The following classification is based on the described sensor in-
formation processing and reasoning mechanism of Sections 2.2.3 and 2.2.3. This comparison
criteria can take on three major forms:

Inference Algorithm (InfAlg) uses existing data as facts in a knowledge base. The pro-
cessing and filter operations are transformed to rules on this knowledge base. Finally,
the inference algorithm is run on this extended knowledge base and puts each inferred
data back in the knowledge base.

Relational Algebra (RelAlg) handles data in the form of tuples in a relational database.
The specified processing and filter operations are transformed to relational algebra and
applied to the database. Systems using the windowed version allow the specification
of an additional time or tuple count filter to limit the pairing of possible input data
in a Windowed Relational Algebra (WRelAlg). This is often necessary to increase the
performance of the system. Additionally, the window specification can be used to limit
the memory consumption of the underlying system. Depending on the specific system,
data are either consumed whenever they are part of processing operations or not. This
has a strong impact on the output of the system, especially when multiple processing
operations can be applied to the input data.

Automata systems transform filter and transformation expressions to formal automata.
The automata are then fed with the data. The amount of storage needed for each
automata depends on the expression creating it. The expressiveness depends on the
type of automata used. One major benefit of these systems is the ability to prove the
expressiveness and the correctness of the used automata.

Process -based computations of input data use implemented and maybe configurable pro-
cesses. These cane either be implemented as modules or be described in a special
Domain Specific Language (DSL). The processing may include historical data us-
ing local memory to enable fusion or aggregation. The computational process output
data only, whenever input data is received, but they may output multiple data sets
depending on the consumption policy.

Rule computation uses a rule syntax to specify the transformation from incoming data to
outgoing data. The selection of the appropriate rules for applied to the incoming data

35

3. State of the Art

is done automatically by the system without an explicit specification by the user. In
contrast to the Inference Algorithm (InfAlg) computations, the Rule selection is only
applied on channel creation and not for each individual data set.

3.1.8. Processing Expressiveness

The processing of input data to new outputs can take on multiple forms. Three major
groups of operations are used:

Transformation take a single input dataset and apply operations to it to create a single
output. Examples are unit conversions or transformations of one physical phenomenon
to another.

Aggregation takes multiple input dataset and combines them to a single output using
special aggregation operations like min, max, average and median. These operations
generalize the information contained in the input data to extract trends or minimize
network bandwidth at the cost of additional uncertainty.

Sensor Fusion can take on three forms (cooperative, competitive and complementary) as
described by Elmenreich [61]. Each form needs different mathematical operations,
typically in the form of sensor signal processing such as digital filters (Finite Impulse
Response Filters, Infinite Impulse Response Filter or Kalman-Filters).

The expressiveness of each system is graded using a scale from ´´, stating no expressions
of this type are available, to `` enabling all possible expressions.

3.1.9. Resource Efficiency

The components of a CPS differ in available computation, memory and communication re-
sources. The used hardware range from small MCUs with low-bandwidth communication
links such as MicaZ motes used in WSN to industrial PCs used in industrial automation.
Based on this heterogeneity of available processing resources, it is necessary to evaluate the
general consumption of resources of the individual solutions. This evaluation always depends
on the individual implementation, therefore, systems with hight resource consumption are
not generally unsuited for the task. However, a system evaluated on an embedded system
with fewer resources is guaranteed to be able to be distributed to even the low-power compo-
nents. There are three different resources, which need to be evaluated: the necessary CPU
power, the needed memory footprint and the necessary network bandwidth of the system.
These three sub-criteria are based on the description of the processing components of CPS
in Section 2.3.3 and communication components in Section 2.3.4. Since a general statement
can only be very coarse, a 5 level assessment system is used in the remains of this chapter.
The assessment ranges from ´´ over o to``, where ´´ means high resource consumption,
o meaning average resource consumption and `` indicating very low resource consumption.

3.2. Sensor Description Framework (SDF)

The first category of systems aiming to handle the challenges of dynamically composed CPS
are SDFs. These frameworks describe the individual sensors, processing nodes and commu-

36

3.2. Sensor Description Framework (SDF)

nication facilities used to couple sensors and applications in a generic way. Consequently,
these enable the analysis of the data path regarding attributes such as uncertainty, reliability
and latency. Additionally, they may ease the integration of sensors in existing systems on
design- or run-time. To achieve their goals, they focus on machine-readable descriptions of
sensor characteristics, configurations and data formats to automatically adapt components
in the resulting system. The generic computational model of these systems is a linear process
model with a possibly flexible amount of inputs and outputs. In the following, the relevant
SDFs are described:

IEEE 1451/21451 is a standard originally developed between 1998 to 2012. It considers
sensor as Plug’n’Play elements, which communicate with Network Capable Application Pro-
cessors (NCAP) [6]. By integrating electronic transducer data sheets [5] in the sensors, the
processors can adapt their behavior to integrate them. To enable this, the communication
links need to be specified in a way that IEEE 1451/21451-compatible sensors and NCAPs
may communicate without any additional configuration. Therefore, different wired [7] and
wireless [2, 8] communication interfaces are specified.
The standard focuses on the low-level description and integration of sensors through de-

scription of data types and communication details. The described processing only contains
basic signal pre-processing without any filters or fusion mechanisms. Additionally, a discov-
ery mechanism to detect and integrate newly attached sensors is included in the standard.
Because of the low level of abstraction, the implementation is very light-weight and resource
consumption is low. The Transducer Electronic Data Sheets are binary encoded and thus
small and easy to transmit even on low-bandwidth networks.
The used processing is based on the process model with a dynamic amount of inputs and

a fixed amount of outputs. This model handles transformations very well, but the amount of
existing aggregation and data fusion processes are limited. Additionally, the processes may
be used as filters based on the sensory data providing elementary comparisons and logical
connectors. Sequences are not filterable by the processes. Processing is directly handled
by the (NCAP) enabling a fully distributed system. The systems are loosely coupled since
(NCAP) and sensors only need to be active at the same time. Because of the used discovery
mechanism, no addresses of sensors need to be known and the data structures are defined for
each sensor modality. However, the semantics of the data is only grasped by a fixed amount of
sensor types defined in the standard, which is not adequate to completely capture semantics.

SensorML is an SDF originally created by the Open Geospatial Consortium between 2007
to 2014 [117]. It aims to enable fully automated world-wide access to any sensor from any
point of the world. To this end, sensor and all processing components are modelled as
eXtensible Markup Language (XML)-described web-services. The sensors’ description con-
tains the relevant context like position, orientation (if applicable), measurement uncertainty
and more. Accessing sensors is done by communicating with a web-service through well
established service frameworks such as SOAP. The processing is also specified using XML as
linear multi-input multi-output processes. The mathematical computation of the individual
process is described using MathML [31]. The service discovery necessary to find a specific
sensor is not covered in SensorML and needs to be handled externally. The completeness of
the information processing chain from data acquisition over transport to processing enables

37

3. State of the Art

the usage of described chains for modelling and simulation as well as configuring and using
enabled sensors.

The extensive description of the sensor and processing services decouple the sensors and
processing services regarding data structure and quality of the sensors’ information. The
lack of an embedded sensor discovery mechanism creates a space-coupling between the sen-
sors and the consuming services. Depending on the individual content of the description and
external discovery mechanism a semantic-decoupling is possible. The usage of web services
and their client-server communication architecture enforces a flow-coupling. The resulting
systems are generally time, position and uncertainty-aware, since these are mandatory at-
tributes of sensors. Reliability and bandwidth are not considered in the descriptions at
all.

The used SOA creates a rather large overhead concerning memory. The used XML-
based description creates a large network bandwidth consumption. The resulting systems
are generally not suited for embedded applications. Currently, only a single Java-based
implementation [162] of the standard exists, which is not usable on embedded systems.

The processing model is process-based and enables mathematical operations on input data
through MathML. This enables arbitrary transformations, but aggregation and data fusion
need to be implemented manually and may be configured using XML. Filtering may also
be implemented using the process model.

MOSAIC by Zug 2011 [172] is an SDF focusing on the detection and handling of possible
failures of sensor processing chains. It uses sensor data sheets similar to the Transducer
Electronic Data Sheets of IEEE1451, but extends them with information regarding failure
propabilities and failure effects. It contains two independent sensor processing chain de-
velopment frameworks using Mathworks Matlab and Python as basis. The user is able to
specify a data path containing input sensors based on modality together with sensor data
selection components and fusion mechanisms. The input data is acquired using a P/S-based
communication system and each specified node is considered an instance of the sentient
object model, see Section 3.6.

MOSAIC enables fully failure-aware acquisition and processing of sensor data. Uncer-
tainty is mapped to failures and not handled separately. The used P/S system reduces the
necessary couplings to acquire sensory data to time and semantics. The semantic coupling is
induced by the need for pre-known sensor topics necessary to establish the channels between
the sentient objects. The awareness of the system is limited to failures, position and time
since uncertainty is considered to be one type of failure. The resource consumption of the
created systems depend heavily on the used backend. The Python backend is not able to
generate embedded solutions because of large memory and CPU overhead. TheMatlab back-
end can generate embedded code with a slight overhead in memory consumption because of
the Matlab-specific scheduler. The bandwidth consumption is generally low, because of the
used specially tailored P/S system FAMOUSO. The expressiveness of the system is good
concerning sensor information because of the extensive data sheets used, but lacks in the
processing part as processing needs to be implemented by hand. The system only generates
code skeletons for this purpose.

38

3.2. Sensor Description Framework (SDF)

AutomationML AutomationML [50] is a description language for industrial processes and
entities in the Industry 4.0 context. It focuses on the description of necessary configurations
and connections between entities in an automated factory environment. The standard is
very expressive regarding the entities existing in a typical factory. Typical objects such
as robots, sensors, actuators and communication infrastructure , see [49], can be described
by the language using XML datasheets. However, the main goal of AutomationML is a
homogeneous description of a flexible production environment to unify the data exchange
between different industrial tools. The language is very high-level and optimized towards
factory automatization means, but allows an extension of the described entities towards
different scenarios.
AutomationML aims to enable the description of factory configurations that are auto-

matically applied to the factory. In the future, the entities contained in the factory will
use the AutomationML descriptions to configure their behavior and adapt to them. The
implementation of the entities is unknown by AutomationML. Therefore, the parameters
time and flow coupling and the resource consumption cannot be evaluated generally. Space
coupling is prevented by the communication description and semantic description of factory
elements, which is a native part of the language. However, some semantic coupling may be
present, whenever extended entity descriptions are used because AutomationML provides
no means to relate different extensions to the basic entity description mechanism. QoS de-
scriptions are supported, but the application and provision of conformance to them is up to
the implementing entity.
AutomationML allows the specification of behavior of entities using a Automata approach,

see [51]. This enables the description of automata, which react to incoming events and change
their state accordingly by executing different actions. The automata guards used to filter
the incoming events can be specified as a programmable logic controller program, which
provides large flexibility. Therefore, AutomationML allows the specification of arbitrary
filters containing elementary and composite comparisons. However, sequence filtering of
events is only possible indirectly using special automata. The automata are tailored towards
the execution of actions regarding actuators. Therefore, they provide extensive possibilities
to transform incoming events. Unfortunately, they lack native means to aggregate and
fuse incoming events. In theory these operations are executable using specially constructed
automata, but this creates a large overhead in specification and execution. Uncertainty of
incoming events or events’ attributes is not considered at all.

39

3.
State

of
the

A
rt

Criteria IEEE 1451/21451 SensorML AutomationML MOSAIC

Coupling

Time x x () x
Space (x) ()
Flow (x) ()
Data Type
Semantic (x) (x) x

Context

Time x x x x
Space x x x
Uncertainty x x x
Semantics (x) x

Quality
Service x
Context (x) x (x)

Distribution Type distributed (distributed) (distributed) (distributed)

Resources
CPU + - o
Memory + - o
Network + - +

Filter
Model Process-based Process-based Process-based Subscription-based
Elementary o o ++ +
Composite o o ++ o
Sequence – o o –

Processing
Model Process Process Automata Process
Transformation + ++ + ++
Aggregation - o - –
Fusion o o - –

Table 3.1.: Evaluation of the described Sensor Description Frameworks against the comparison criteria, see Section 3.1.

40

3.3. Communication Middlewares

Summary As visible in Table 3.1, the described SDF provide extensive descriptions of sen-
sor information together with a varying amount of couplings. The awareness of the individual
systems depend on the level of abstraction and the focus of the system. SensorML focuses
on usage of generic solutions and wide-spread applicability, whereas IEEE 1451 focuses on
ease of integration and MOSAIC focuses on reliability and fault-tolerance. Depending on
the level of abstraction, the fitness towards embedded solutions is very different. SensorML
provides the highest level of abstraction, but it completely unsuited to embedded appli-
cations, whereas IEEE 1451 is specially tailored for embedded systems at the cost of less
functionality and abstraction. AutomationML provides extensive descriptions for a special
use case, but can be also be applied to general sensor processing. The expressiveness of
all system is not enough to enable a dynamically coupled CPS since either processing or
selection lack.

3.3. Communication Middlewares

The following section describes Communication Middlewares aiming to provide awareness
against different parameters and to decouple the nodes regarding different attributes. The
first type of middleware are P/S middlewares focusing on space, flow and semantic coupling.
Afterwards generic WSN middlewares are described that aim to provide a low resource
footprint to enable them on embedded hardware used for real-world WSN. The last type are
WSN Ontology Frameworks aiming to provide a semantic decoupling between the individual
nodes while maintaining a low resource footprint.

3.3.1. Publish/Subscribe Middlewares

A P/S middleware is a possible instance of a communication component of CPS. The details
are described in Section 2.3.4. In general, multiple flavours of P/S system exist, but all of
them aim to decouple the components in space and flow. Some even provide time decoupling.
The major difference is the used event abstraction and the filter expressions usable by the
subscriber. In the following relevant P/S systems are described and compared regarding the
criteria stated in Section 3.1.

Scalable Internet Event Notification Architecture (Siena) is a scalable purely content-
based P/S-system. It features fully distributed event dissemination based on an statically
configured overlay network designed by Carzaniga et al [42]. Filters are expressed over
attributes of events, which are tuples of attributes. It supports limited aggregation on
meta-level by merging subscriptions and announcements.
The communication between publishers and subscribers is handled by brokers. The bro-

kers create an event mediating static overlay network, which eases the routing of event
subscriptions. To support different application scenarios, Siena provides three types of over-
lay networks, which are hierarchical, acyclic peer-to-peer (p2p) and general p2p, to meet
different needs of applications. The overlay network consists of servers forming client/server
relationships dynamically based on subscriptions and announcements.
Even though Siena is scalable and efficient, it suffers from its static overlay network, which

must be separately administrated and is not useful in dynamic network scenarios. The differ-

41

3. State of the Art

ent overlay networks provide a certain amount of adaptability to applications’ requirements.
Siena exploits already existing internet technology as the basic communication mechanism.
It provides a decoupling in space as expected by a P/S system. However, a decoupling in
time and flow is not mentioned by the authors. That may be caused by the used forwarding
mechanism in the overlay-network and the used client/server communication mechanism.
Even though there is no topic or type used to name individual communication channels, the
individual applications still need to know the attributes of the events they are interested in,
which creates a semantic coupling between publishers and subscribers. The context of each
event is not generally specified, except for time. Therefore position, uncertainty cannot are
not generally available to applications. Even though the authors mentioned time stamps
to be attached to each event, they did not state the used time source. Siena’s distribu-
tion model is based on different nodes communicating to servers distributed in an overlay
network. From a resource perspective, the used server/client structure is computationally
expensive, since each node needs to investigate each subscription or publication on forward-
ing. Additionally, Siena stores all subscriptions and publications in the nodes to minimize
the used bandwidth by aggregating them. This minimizes bandwidth, but increases memory
consumption. Finally, Siena contains a sophisticated data description language to describe
patterns of content to which events are matched. These filters can be combined to cre-
ate baseline Complex Event Detection (CED), with the absence of sequence operations.
Additionally, no processing expressions are included in the language disabling any event
processing besides the meta-level aggregation.

PADRES is a fully distributed P/S system developed by Li and Jacobsen [102] in 2005.
It uses an overlay network of broker nodes distributing the events from publishing nodes
to subscriber nodes. Subscribers may describe content-based filters using the attribute of
the events. The individual filter expressions are attribute comparisons using the operators:
ă,ď,“,ě,ą. These can be combined using logical operators such as and and or, excluding
not. Sequences of events can be detected using either the sequence operator to detect two
consecutive heterogeneous events or the repetition operator for consecutive homogeneous
events. The sequence operators additionally need a maximum time between the events. The
system is implemented on top of the Jess [68] rule engine, by translating all filter operations
to rules forwarding the input events. In addition to the RETE-Trees used by Jess, the
authors evaluated a predicate counting algorithm, which used much less memory at expense
of latency.
PADRES uses an absolute time model and enables time-based subscriptions. The indi-

vidual content-filters of the subscriptions are decomposed and distributed in the network to
minimize network bandwidth and latency. It contains no notion of event processing and is
only able to detect sets of events and deliver them. The processing of these events needs to
be done within the applications. The main goal of the composite subscription is the mini-
mization of notifications in the subscribers to save network bandwidth and CPU resources.
The resulting couplings of the system are semantic and time coupling, since PADRES stores
no events and the meaning of the individual event attributes is application-dependent.

FAMily of AutOnomous Sentient Objects (FAMOUSO) is a hybrid P/S middleware for a
wide-range of target systems by Schulze [142]. It uses Template Meta-Programming (TMP)

42

3.3. Communication Middlewares

techniques to adapt itself to the applications’ needs in different configurations. This mech-
anism allows the usage on extremely low end 8-bit microcontrollers as well as full-fledged
PC-systems. Subscribers and publishers can specify requirements and provisions regarding
attributes of the events and the current network context such as latency and bandwidth.
These are checked on compile-time or run-time dependent on the configured network. Addi-
tionally, a compile-time verification system detects misconfigurations and infeasible require-
ment provision pairs. It is used as the backend of prototypes for the KARYON project [83],
which aims to provide a hybrid system enabling dynamically configured CPS providing safety
guarantees.
Using the latency and bandwidth checking system, a limited QoS context can be estab-

lished for events transmitted via FAMOUSO. However, its generic use-case does not enforce
any position or uncertainty information for the communicated events. The necessary topic-
names used to establish a communication-channel between publisher and subscriber create a
semantic coupling between them. FAMOUSO uses an attribute system to pack information
in events in flexible manner. This system specifies the attribute structure as a compile-time
structure and encodes the type of each attribute together with the used data range in the
event. The events are then dynamically unpacked on the subscriber side. Because of limita-
tions in the used C++ TMP system, only a limited set of primitive data types like integers
and booleans are supported as attribute data types. The used filter model is, as expected of
a P/S system, Subscription-based. FAMOUSO enables filters to be specified as expression
templates on the specified event and channel attributes, providing a very rich elementary
filter set. The elementary filters can only be combined using a logical AND providing a very
limited set of filter composition operations and no filter sequence operations at all. As typical
for P/S-systems flow and space coupling are not existent but time coupling is. The resource
consumption is extremely low as tests and evaluation on Atmel 8-Bit microcontrollers have
shown. However, no processing functions are contained in the middleware.

Robot Operating System (ROS) is a hybrid P/S and service-based communication mid-
dleware for robotic applications originally described by Quigley et al. [128]. It uses a central
master to manage channel creation and service discovery between the nodes. In ROS a node
is program running on a PC machine and communicating either via TCP/IP or UDP/IP.
Currently, extensions are available enabling a multi-master ROS, which behaves similar to
a P/S-system using an overlay network. Each master acts as a broker in such a system,
however, these extension are not stable yet.
The communicated event types and service call messages need to be defined on design-time

of the system, but the choice of message for each connection is done on run-time. Filtering
and processing of information is done using specialized nodes for concrete application scenar-
ios. Consequently, ROS contains a large set of already defined message filters and processors
for different use-cases such as point cloud operations or image processing. However, each
filter or processing node is only executed locally, therefore, the performance of these nodes
is limited especially in the case of high bandwidth communication. Nevertheless, this large
ecosystem makes it a versatile tool to implement, test and evaluate robotic applications.
The centralized master enables a very limited storage of messages, that may be delivered

even if one node is currently not active. Therefore, ROS is only partially time-coupled. ROS
provides decoupling regarding space and flow as most P/S systems do. Additionally, ROS is

43

3. State of the Art

a topic-based P/S-system, which creates a semantic coupling since topic names need to be
known. However, this is mitigated by a namespace support enabling the creation of generic
topic name patterns for special use-cases.
ROS is time-aware since the central master attaches time-stamps to most of the events.

Position is typically handled by the TF sub-system of ROS enabling the specification and
translation between arbitrary Cartesian coordinate systems. Uncertainty, QoS need to be
handled by each node in the system and are seldom implemented. The resource consump-
tion of ROS is high for serialization and connection establishing. The memory overhead
is very large because of a heavy usage of shared pointers and threads within the general
implementation. The network bandwidth is high to establish a channel, since XML-based
communication is used in this case. The serialization of events is efficient because of the
specialized message system. A message can contain all primitive data types such as integers,
floats and booleans. Additionally, it can contain vectors of these values and other messages
as members. This enables a very fine-grained message hierarchy. However, this hierarchy
needs to be established on design-time, since messages need to be compiled to C++-header
files and integrated in publisher and subscriber. The processing itself uses a general lan-
guage approach, processing nodes may either be programmed in C++ or Python and focus
on reusability. Most processing nodes can be configured on execution or on run-time en-
abling a very powerful processing framework, but with a large overhead in the creation and
usage of the individual processing operations. Since the overhead of communication between
nodes is large, the granularity of the processing operations is large as well. ROS provides
high-level processing operations for special use-cases such as point-cloud resampling or con-
vex hull computations. Arbitrary transformations need to be implemented manually by the
CPS designer. Selection of incoming data is handled exactly like processing using special-
ized nodes to filter the data and forwarding only relevant data, which is quite inefficient and
seldom used. In consequence, messages in ROS are typically filtered directly by applications.

Summary The described P/S middlewares focus on the decoupling of the components
in flow and space, as visible in Table 3.2. This enables an easy creation of autonomous
components, which are not directly dependent on each other. Because of the design as
communication middlewares, they only provide limited support for storage of events, which
typically results in time coupling. Additionally, the filter mechanism depends on content
descriptions, which use attribute names defined by the system designer. This creates a
semantic coupling between the components of the system. Most of the systems focus on
scalability and favor a fully distributed design. The only exception is ROS, which uses a
central master in current implementations.
To enable an efficient communication, the systems enable a wide variety of filter operations

to be applied to the established channels. This limits the used network bandwidth and also
reduces the amount of events needed to be evaluated by the applications. Processing is not
very well represented in these systems.

44

3.3.
C
om

m
unication

M
iddlew

ares

Criteria Siena PADRES FAMOUSO ROS

Coupling

Time x x x (x)
Space
Flow x
Data Type
Semantic x x x x

Context

Time x x (x) x
Space
Uncertainty
Semantic

Quality
Service (x) (x)
Context

Distribution Type distributed distributed distributed (master-based)

Ressources
CPU – - ++ -
Memory – - ++ –
Network + o ++ o

Filter
Model Subscription-based SQL-based Subscription-based Subscription-based
Elementary ++ ++ + -
Composite + + o –
Sequence – + – –

Processing
Model RelAlg RelAlg none Process
Transformation – – – +
Aggregation + + – +
Fusion – – – +

Table 3.2.: Evaluation of the described Communication Middlewares against the comparison criteria, see Section 3.1.

45

3. State of the Art

3.3.2. Wireless Sensor Network (WSN) Middlewares

In contrast to generic P/S systems middlewares for WSN are more tailored towards sensor
data dissemination and efficiency. WSN are inherently Mobile Ad-Hoc Network (MANET)s,
which focus on scalability and robustness. They exploit the large number of nodes they are
composed of to provide tolerance against singular sensing errors and node crashes. Another
type of networks providing similar functionality are Vehicular Area Network (VANET)s
focusing on vehicles as data sources and sinks. The limited ressources of these networks
enforcees a specialization in the application domain. Therefore, typical WSN either focus
on a specific application type or require the system developer to integrate custom code
to implement the application specific behavior. The following section discusses the most
common and representing approaches of this domain.

TinyDB is a WSN middleware by Madden et al. [105] published in 2005. It uses TinyOS
by Levis [101] on low-power wireless nodes as a basic system. Queries are specified using
the SQL-based ACquisitional Query Processing (ACQP) language. The queries are dis-
tributed into the network by the gateway receiving the query. The distribution is based
on a Semantic Routing Tree (SRT), which holds relevant meta information on the routing
structure between the nodes and on the sensory equipment of the nodes. The queries are
broadcasted into this tree and the results are continuously transmitted by the individual
nodes towards the gateway at the root of the tree until the query time is over or a specific
stop event is received. The ACQP language enables SQL-like queries, which contain the
typical statements SELECT, FROM, WHERE and GROUP-BY with the same semantics
as in general SQL. FROM differs slightly, since only a single table sensors exist. Additional
tables containing historical information may be created by materialization points, which are
explicit storage descriptions. The language only contains aggregation as processing opera-
tion, creating a simple Windowed Relational Algebra (WRelAlg). Aggregations are specified
in the SELECT block and a special aggregation function. TinyDB only contains very basic
aggregation functions such as min, max and avg. However, these can be extended by the
user by implementing three functions, that realize the aggregation operation. The distribu-
tion of the user-supplied functions needs to be handled by the application using TinyDB.
The aggregations are distributed in the network and each node executes the parts of the
aggregation while the events are transmitted towards the root.
TinyDB enables decoupling in time, because of explicitly specified materialization points.

The decoupling in space , is realized through the maintained SRT. Decoupling regarding
flow is based on the event-based processing of TinyOS. Data structure decoupling uses the
SQL-based description of the results of the query. Semantic coupling is present, since no
predefined attributes besides time exist and the meaning of the individual attributes depends
on the sensor. The context of the sensors only contains time. Position is considered to be
location-based and is handled by general attribute predicates. A special combination of
QoC and QoS is considered through the ability to prioritize events based on the contained
information. The authors propose a special diff operator measuring the change between
two consecutive homogeneous events. The distribution model is master-based, because of
the gateway node distributing the query and collecting the events. Resource efficiency is a
strong point of TinyDB, since it is used on low-power wireless motes with low bandwidth
communication. Additionally, the distribution of the computational expensive aggregation

46

3.3. Communication Middlewares

conserves CPU power. The explicitly defined storage points limit memory needs and the
efficient hierarchical routing saves network bandwidth. However, the maintenances of the
SRT also needs memory in the nodes and communication bandwidth. The filter model
is SQL-based with a rich set of elementary filters and the typical composition operations.
Sequence filters are not available.

EnviroTrack is a WSN middleware by Abdelzaher [16] published in 2004. It focuses on the
tracking of activities using the distributed sensing facilities of a WSN. To this end, applica-
tions specify events they want to track using the EnviroTrack language. The relevant events
are filtered using application specific boolean functions. A tracking context is constructed
by the system using a specified aggregation function on filtered events. The quality of the
tracking context may be described by the application using a freshness value, filtering out
old events, and a critical mass, describing a minimum amount of events to be aggregated
before a tracking event is emitted. Whenever a tracking context detects an event, a unique
object id is created and maintained while the object is tracked. This id and the tracking
context, which created it, are delivered to a central repository to enable applications to find
the object. Tracking of the object itself is done using an approximate aggregation mitigating
the influence of time on the aggregation. The critical mass definition prevents false-positive
tracking events to be emitted. Using the language, functions may be attached to the tracked
object, which can be called by the application enabling interaction with the tracked objects.
A direct delivery of the tracking events is not implemented and every access to tracked ob-
ject data is done through the Remote Method Invocation (RMI)-Application Progamming
Interface (API). Group management is used to distribute the processing of the tracking and
the RMI close to the tracked object.
The system is built on top of TinyOS by Levis [101]. The application specific tracking con-

texts and objects are preprocessed and translated to native NesC code. It is implemented
on MicaZ motes and showed excellent resource efficiency. The tracking of a tank using
magnetometer sensors was possible with the resources of the nodes and a low-bandwidth
communication link. EnviroTrack enables a decoupling of applications from the low-level
sensor in space and time. Flow coupling is present through the usage of RMI. The applica-
tion needs to know the sensor data to describe the tracking context which couples it to the
sensor regarding data structures and sensor semantics. Consequently, semantic coupling is
also present. The considered context of the tracked object is time and position. Through
the age and critical mass definitions a QoC specification is possible. Filters are specified
Subscription-based using application specific predicates and general composition operations
such as logical connectors. Sequences are not available. Processing is limited to the aggre-
gation using a Process approach. However, only a limited amount of aggregation functions
are available.

PeerTIS is a VANETmiddleware by Rybicki [138] published in 2009. VANETs focus on the
dissemination of data between vehicles. They differ from classical WSN through the inherent
high-velocity mobility and consequently highly dynamic topology. PeerTIS proposes a peer-
to-peer network between vehicles using internet technologies such as UMTS cell phones and
IP-based networks. The authors consider structured overlays to be best suited for the task.
Consequently, they adapt the Distributed Hash Table (DHT) idea of Content Addressable

47

3. State of the Art

Networks (CAN) of Ratnasamy [130]. Furthermore, PeerTIS uses the geographical and time
context of vehicles to optimize the queries and provide a higher quality of service. The
position of the cars is stored as a road segment id inferred from the GPS of the car. A
DHT stores key-value pairs of data in a hash table by hashing the key and distributing the
element to a certain node in the system. The value can be retrieved by hashing the key and
finding the node responsible for the hash of the key. PeerTIS directly uses the segment id
of the road as the hash of the key. By using this the keys are not randomly distributed to
the nodes in the system, but are close the producer. The authors observed that applications
on the car are typical interested in information in the local vicinity of the car or in data
following a linear set of road segments. In both cases it is beneficial to have the values stored
close to the road segment. Consequently, the authors uses geographical routing protocols to
find the data. Data which is stored along a consecutive set of road segments need to travel
back along the road segments. Consequently, aggregation along the road may be used to
save bandwidth. QoS is considered by the authors by equally distributing the storage of
key-value pairs on the nodes, because this balances the latency of delivery. However, heavily
crowded road segments may need to store more data because more sensors are available.
This is mitigated by using the geographical position of the cars to distribute the storage.
Densely populated roads will also distribute the key-value pairs more fine-grained. A cache
for peers along consecutive road segments increases the responsiveness of the system for
queries supplying information for the navigation systems of the cars.

The resulting system is coupled in flow and semantics. The queries issued by a car need to
be answered by the respective peer, creating a flow coupling between them. The lack of any
semantic annotation enforces the applications to know which keys are present in the system
as well as their meaning. The context of the data is time and position, uncertainty and
bandwidth are not considered. The system is fully distributed using its structured overlay
approach. Selection is Pattern-based using the key as filter element. The processing is
Process and limited to aggregation of homogeneous data propagating back to the querying
car. The resource consumption is very low for CPU, since no hash computation is needed
and the aggregation operations are distributed among the peers. The memory overhead is
low, since every node only needs to store a local geographic routing table. The network
overhead is also low because of the used aggregation and the inherent locality of the data
distribution.

UPSP is a WSN P/S middleware by Tong and Ngai [159] published in 2012. It is a hybrid
system with the sensor nodes being based on Contiki by Dunkels, Grönvall and Voigt [59]
and Android-based mobile nodes. The system is tailored to a sparse network of static sensor
nodes (SSensors) deployed in remote locations. Mobile Brokers are based on cell phones
using Android 1.5. The Mobile Brokers are equipped with sensors for position (GPS),
time etc, which are called mobile sensors (MSensors) by the authors. Additionally, the
Mobile Brokers connect to neighboring (SSensors) using near-field communication such as
802.15.4. Subscribers connect to a central server running a web-enabled RESTfull service
and a MySQL database to cache events for offline subscribers. It relays subscriptions to
geographically localMobile Brokers to fetch the sensor data. To this end, theMobile Brokers
periodically report their position to the central server.

48

3.3. Communication Middlewares

The P/S system is content-based and enables filtering on modality, time and location.
However, the composition of these is limited to a single time interval and a single centroid-
based location. Mobile Brokers may move at an arbitrary speed, but nodes moving faster
than 1.5 m

s are excluded from brokerage. Together with the use of reliable unicast mecha-
nism a robust delivery of SSensor data is achieved. Unfortunately, the delivery latency is
approximately 22 s for MSensors and more than 3000 s SSensors. The network protocol is
very efficient, since MSensors use the broadband connection of the cell phones to enable a
push-based P/S, whereas, the SSensors use pull-based P/S by aggregating the sensory data
in memory and delivering them in a single batch to the Mobile Brokers. Even though meta-
data aggregation is used to enable efficient communication to Mobile Brokers, aggregation
on the sensory data itself is not considered in the solution. Consequently, the system lack
any means of event processing. The resource consumption in the SSensors is very low for
CPU and network usage. The memory usage is limited to 2MB, which proved to be enough
for the considered example scenario. The Java-based Android and web-service components
use more CPU, memory and network resources compared to the other WSN middlewares.

Global Sensor Network (GSN) The Global Sensor Network (GSN) was developed by
Aberer, Hauswirth und Salehi [18, 17] in 2006. It presents a middleware enabling access
to Virtual Sensors through XML descriptions. The middleware consists of a SQL database
to process and query the sensor information together with specialized query processors to
handle timing information and multiple wrappers to integrate different WSN hardware. The
timing model of the system uses multiple local time stamps that are independently processed
and evaluated. Consequently, the ability of the system to filter sequences of events is lim-
ited to events originating from the same source. The system provides extensive SQL-based
filtering using elementary and composite operations. Sequence filtering is enabled using a
window. The XML descriptions contain location descriptions, which are handled together
with time data separately by the query processor. Therefore, not all filtering and aggre-
gation operations might be applicable to the whole context. The semantics of the sensor
data is contained in the XML description as specification of physical phenomenon of the
sensor. The generic architecture is peer-to-peer, but queries are processed in specialized
database nodes. These nodes need large CPU and memory resources to handle the sensor
event processing and query execution. The individual sensor delivering the data can be
low-resource embedded WSN hardware. The centralized database nodes enable persistent
storage of the sensor data to decouple the querying application from the sensors in time.
The capabilities of the system regarding event processing are limited to simple transforma-
tions such as projection of event attribute sets to subsets and joining attribute sets in tuple
form. Data fusion operations are not provided. The system handles QoS through active
dropping of high-frequency event streams to prevent large latencies in event delivery. QoC
and uncertainty of sensor data are not handled by the system.

Summary As visible in Table 3.3, the discussed WSN and VANET middlewares provide a
very good decoupling of the composing nodes in space, flow and data type. The systems pro-
vide at least position and time context to the applications. However, uncertainty and failure
awareness is typically not provided. Quality of context and service are partially provided.
PeerTIS, TinyDB and GSN handle QoS, while EnviroTrack handles QoC. The resource

49

3. State of the Art

efficiency is generally very good as the systems are tailored towards low-power embedded
devices. GSN is an exception because its resource consumption is very heterogeneous. WSN
nodes are supported, but the filter and transformation operations are provided by specialized
database nodes. The filtering is limited to very basic filters, only TinyDB provides better
filtering support at the cost of a higher routing overhead. GSN again is an exception as it
provides very good filtering. The inherent processing capabilities are limited to aggregation.
Data fusion needs to be implemented by hand by the application designer. The semantics of
the data are specified and embedded in the application for most of the systems. Only GSN
provides some semantic abstraction based on physical phenomena observed by sensors.

50

3.3.
C
om

m
unication

M
iddlew

ares

Criteria TinyDB EnviroTrack PeerTIS UPSP GSN

Coupling

Time
Space
Flow x x x
Data Type x
Semantic x x x x (x)

Context

Time x x x x x
Space x x x x x
Uncertainty
Semantics (x)

Quality
Service (x) x x
Context (x) x

Distribution Type master-based master-based distributed master-based master-based

Resources
CPU ++ ++ ++ o +
Memory + ++ ++ o o
Network + ++ ++ o +

Filter
Model SQL-based Subscription-based Pattern-based Subscription-based SQL-based
Elementary ++ o - o ++
Composite + + – - ++
Sequence – – – – ++

Processing
Model WRelAlg Process Process None WRelAlg
Transformation – – – – +
Aggregation + + o – +
Fusion – – – – –

Table 3.3.: Evaluation of the described WSN Middlewares against the comparison criteria, see Section 3.1.

51

3. State of the Art

3.3.3. Wireless Sensor Network (WSN) Ontology Systems

The problem of semantic coupling embedded in WSN is tackled by WSN Ontology systems.
These focus on the specification of the different semantics of the communicated events using
ontologies. One application of such a semantic decoupling is the combination of multiple
heterogeneous WSN to a single data source. Additionally, it can be used to translate data
between independently developed WSN to form a singular homogeneous WSN. The fol-
lowing section discusses some representative systems applying ontologies or semantic meta
information to WSNs.

SepSen was developed by Kasi et al. [85] in 2012. It enables a distributed inference of
events using a distributed ontology. To this end, the ontology was split manually into
different parts, which were deployed to the sensor nodes. On each sensor node a RETE-
Algorithm [66] runs and uses the specified ontology to infer events. The goal of the system
is to reduce the amount of messages transmitted in the system to save power. On reception
of a raw sensor event, semantic information is attached to the event and is forwarded to
the distributed RETE-Algorithm. The RETE-Algorithm creates a pattern network using
the application defined rules and the knowledge base. Each event passing through a node
is either discarded if it does not fit any rule, shared with another node if the rule needs
more than one ontology fragment distributed among the nodes or forwarded if inference
was possible. The RETE-Algorithm reuses already created events, since those are attached
to the knowledge base.
The system decouples the application from the sensory input semantically, since the used

ontology enables a semantic matching and transformation between input and output of the
nodes. Additionally, the storage of the resulting events in the knowledge base enables a
time decoupling as all events are stored. Flow coupling is not explicitly mentioned by the
authors. The used serialization mechanism is not explicitly stated either and therefore, data
structure coupling cannot be evaluated. Space coupling is not present, since the application
states its needed information to the network and the distributed RETE-Algorithm shares
the data as needed.
The system proposes a context attached to the events, to enable inference on the con-

textual information, however, only energy is explicitly stated as context attribute. Quality
metrics are not considered in the system. Filtering is based on explicit rules stated by the
application. The possible filter expressions are not explicitly stated, but the shown example
indicates that typical Prolog elementary filters and compositors are available. The process-
ing model follows the Inference Algorithm (InfAlg)model. The processing operations enable
aggregation in the form of context annotation.
The RETE-Algorithm is generally computationally expensive and may create an infinite

amount of events, depending on the input rules. Additionally, the storage of all inferred
events requires a lot of memory. The system has shown a decrease in message count in the
example network, but the sharing of events between nodes might also create larger message
counts, depending on the distribution of the ontology fragments.

Sensors-as-a-Service (SeenaS) is an event-based service oriented sensor ontology system
by Alam et al. [22] published in 2010. It enables the encapsulation of sensors as services with

52

3.3. Communication Middlewares

a machine-readable SensorML description, which is used to infer sensor events. It uses on-
tologies to translate the data provided by different sensors based on SensorML descriptions.
The goal of the approach is to translate standardized solutions of the service world to the
sensor world. To this end, the authors designed their system with three layers: Real-World
Access Layer, Semantic Overlay Layer and the Service Virtualization Layer, which are built
on top of an IoT-Cloud. The Real-World Access Layer uses adapter to fetch and translate
the sensor events from the IoT-Cloud. The Semantic Overlay Layer contains different on-
tologies and policies to enhance the basic sensor events fetched from the IoT-Cloud based
on the SensorML description of the IoT-Sensor. Finally, the Service Virtualization Layer
aims to provide the functionality of the IoT-Cloud in a semantic and service-oriented way.
SeenaS uses Web Ontology Language described ontologies with a global vocabulary en-

abling inference on the individual sensor events. Additionally, access policies are defined
to enable role-based access descriptions to enhance the security of the produced sensor
data. The access policies are embedded in the rules of the knowledge base used to infer
events. Additionally, the prototypical centralized system showed complex event processing
by employing complementary fusion to infer sensor events for different modalities from ex-
isting ones. Even though aggregation and transformation are not explicitly mentioned, these
should be expressible. The filter model uses patterns to match the applications’ service needs
to existing service-encapsulated sensors. No further filtering is described by the authors.
The system decouples the subscribers of sensor events from the IoT-Cloud publishers in

time, space, data structure and semantics. It tries to enhance the raw sensor events by
a context of time and position to enable tempo-spatial reasoning on the data. Quality is
not considered in any form in the system. The resource consumption is not specified but
the used PC indicate a quite high CPU and memory resource consumption. The network
bandwidth consumption is not stated by the authors.

Semantic Web Architecture for Sensor Networks (SWASN) is a web-based sensor ontol-
ogy system by Huang and Javed [80] published in 2008. It aims to translate events between
different WSN deployed by different entities with incompatible formats using specially con-
structed ontologies. It is composed of four layers: Sensor Network Data Sources, Ontology
Layer, Semantic Web Processing Layer and the Application Layer. The Sensor Network
Data Sources represent the gateway to different heterogeneous WSN providing sensory data
to SWASN. Sensor events fetched from gateways are forwarded to the Ontology Layer, which
semantically enhances them using the concepts of the ontologies. SWASN follows the hybrid
ontology approach, as proposed by Wache et al. [167] in 2001. Therefore, each WSN can
use its own local ontology to translate its internal semantics to the global ontology used
for inference. The semantically enhanced sensor events are forwarded to the Semantic Web
Processing Layer, which uses the Jena API [110] to include external reasoners and enable
querying of values using SPARQL Protocol And RDF Query Language (SPARQL) [127]. Fi-
nally, the applications contained in the Application Layer can query the information through
Hyper-Text-Transfer-Protocol (HTTP). To enable tempo-spatial reasoning the context of
the sensor data always contains position and time of the sensor data. The processing of the
data uses an inference-based approach on application specified rules.
The system effectively decouples the applications from the WSN in time, space and flow,

since all data are fetched, transformed and stored in the centralized SWASN server. The data

53

3. State of the Art

structure used in the communication with the applications is based on Ressource Description
Framework (RDF), whereas, the data structure of the individual WSN needs to be converted
by the gateway node. Even though, the context of the sensor data contains time and position,
while uncertainty is not considered. The quality of context and service is not in the focus
of the system. The filter model uses patterns matched to RDF-triples combined by logical
operators without sequence compositors. The processing model uses an Inference Algorithm
(InfAlg) approach with a rich set of transformations. Aggregation should be possible even
though it is not explicitly stated by the authors. Sensor fusion may be implemented using
baseline inference operations, but is also not stated by the authors.
The resource consumption of the system is hard to estimate, since no measurements are

published. However, the used RETE-Algorithm is generally computationally expensive.
The memory overhead is probably high, because the local ontologies as well as the global
ontologies and the whole knowledge base need to be kept in memory to enable the reasoning.
The centralized reasoning also needs to forward all the data of the individual WSNs to the
central sink increasing bandwidth consumption.

Loosely-coupled Component Infrastructure (LooCI) is a WSN middleware with an in-
cluded sensor ontology by Hugh et al. [81] published in 2012. The system’s main goal is
the decoupling of individual components of WSN. To this end, a lightweight component
model based on the Java programming language is used. The authors used the SUN SPOT
WSN nodes with their integrated SQUEAK VM providing a Java ME execution environ-
ment. The used component model distinguishes between two types of components: Micro
and Macrocomponents. Macrocomponents represent a process-like abstraction. They are
isolated from each other and provide multiple threads, file system access as well as the in-
clusion of external libraries. Microcomponents are generally single-threaded, may not use
external library and are not isolated. The components are bound to each other on run-time
and provide introspection and reconfiguration facilities. The communication between the
components is based on an abstract event bus. Depending on the binding, events are passed
between components based on Inter Isolation RPC (IIRPC) when the components run on
the same node, or on network communication based on a Network Manager. The events
are classified using a type system, providing a topic-based P/S. Each node is connected
through the Network Manager to other nodes in its neighborhood. It distributes received
events of local components using either a reliable or unreliable Unicast or a neighborhood-
or broadcast providing a fully distributed system.
The event type system uses an event tree, which also provides an ontology. Events in the

tree may be converted automatically from events further down a specific branch to events
closer to the root. This behavior is similar to a class inheritance model. A consequence of
this event tree ontology is an increasing specificity of the represented event the further down
it is situated in the tree.
The event tree system enables efficient type based subscriptions, but no processing of

events. To this end, the authors describe an Event-Condition-Action (ECA) based Policy
Framework. It consists of a Policy Engine checking the conditions of the rules, a Rule
Manager executing the rules in which the conditions are fulfilled, and a Policy Distribution
Component distributing and integrating new rules on run-time. The conditions of the rules
are logically connected attribute comparisons. The actions are limited to the transformation

54

3.3. Communication Middlewares

of single events or the execution of component-internal functions. As a consequence, the rule
engine enables complex filters and simple transformations, but no aggregation, filtering on
event sequences or data fusion is available unless a specialized component provides exactly
this functionality.
LooCI components are only coupled in time, since no storage components are directly

available. Space, flow and data structure coupling is prevented by the used topic-based
P/S system. Semantic coupling is partially mitigated through the ontology event type tree.
However, only simple is-a relationships can be captured by the tree. The context of the
events is not further specified. The system does not consider quality of service or quality
of context. The implemented example scenario shows a small memory footprint and a very
small CPU overhead for the implementation of the LooCI components. Unfortunately, the
authors did not conduct any network usage benchmarks.

Summary Table 3.4 attests all systems a decoupling of components in the semantic domain.
For SepSen, Seenas and Swasn it is achieved by the explicit usage of ontologies and inference
systems, while LooCI follows the approach of a homogeneous vocabulary describing the
handled sensory information. The context of the data is only specified in Seenas and Swasn
as time and position. Uncertainty is generally not considered in these systems, as uncertain
inference using ontologies is still an open research topic. Based on the used inference systems
in SepSen, Seenas and Swasn the resource consumption is rather large, which is often
mitigated using application specific optimization such as manual distribution of ontologies.
As a consequence, these systems allow many processing operations to be specified in the
ontologies and are very flexible in the processing domain. LooCI is an exception, as it
uses a static vocabulary to describe the sensor events, which needs no explicit processing.
Consequently, it has very low resource consumption, but only allows very limited processing.
Filtering of the created and inferred events is limited to singular events. Sequences of events
are not considered in the composed systems at all.

55

3.
State

of
the

A
rt

Criteria SepSen Seenas Swasn LooCI

Coupling

Time x
Space
Flow
Data Type o
Semantic

Context

Time x x
Space x x
Uncertainty
Semantics x x x x

Quality
Service
Context

Distribution Type distributed centralized centralized distributed

Resources
CPU - - (-) ++
Memory - - (-) ++
Network o (-) ()

Filter
Model Subscription-based Pattern-based Pattern-based Subscription-based/Pattern-based
Elementary + o ++ +
Composite + – + +
Sequence – – – –

Processing
Model InfAlg InfAlg InfAlg Rule
Transformation – (o) ++ +
Aggregation + (o) (+) -
Fusion – + (o) -

Table 3.4.: Evaluation of the described WSN Ontology Systems against the comparison criteria, see Section 3.1.

56

3.4. Complex Event Detection Systems

3.4. Complex Event Detection Systems

A CED language allows the specification of events as combinations of other events. In
general, two types of events are distinguished: Primitive Event (PE) and Complex Event
(CE). PEs are low level events that are generated directly by the nodes of the network. CEs
in contrast are composed of multiple PEs through application specific relations.
The amount of possible relations between two or more PEs leads to numerous CED sys-

tems, which focus on different aspects of the composition process such as time, order or
event consumption. Some relevant CED systems are the following:

Snoop(IB) is a CED system by Chakravarthy and Misha [43], which focus on the spec-
ification of temporal behavior of event detection. It is developed on top of a centralized
DataBase Management System (DBMS) and handles typical database operations as input
events.
It contains an event composition language that follows the ECA-principle. Rules executed

by snoop are triggered by certain events and a predicate. The events handled by Snoop are
classified into Primitive Events, which are native to the system and Composite Events,
which are generated by composite event generation rules. The Primitive Events contain
typical database operations such as transaction, access, insert, delete and update.
Additionally, explicit user events and temporal events can be handled by the system. The
used language to express composite event detection rules resembles SQL. The main difference
is the ability to handle the detection of sequences of heterogeneous or homogeneous events.
Additionally, multiple events can be combined using logical connectors (AND, OR, NOT).
The condition part may contain arbitrary predicates on the events’ attributes.
Since events may not always relate to a certain point in time, the used language contains

the begin-of and end-of operators to convert time spans into two explicit events. The
system transforms the expressed rules to expressions of classical relational algebra to input
them in the underlying DBMS. To handle the generation of multiply events, Snoop uses
parameter contexts, which are stated by the application, to differentiate how composite
events are generated. Snoop supports four special contexts: Recent, Chronicle, Continuous
and Cumulative. Recent only outputs the latest instance of the composite event. Chronicle
uses an at-most-once consumption policy for the input events, limiting the amount of output
events to the number of input events. Continuous outputs an event for each begin-of an
event expression, making it suitable to detect trends in continuous valued data. Cumulative
includes in each composite event the previous instances of the composite event, creating an
aggregation-like behavior.
The memory consumption depends heavily on the used parameter context. Contexts

such as Cumulative and Continuous need memory depending on the amount of input data,
whereas, Recent only needs a fixed size buffer. The CPU consumption depends on the
generated relational algebra operators, but is typically high whenever joins are involved.
The network consumption is not addressed by the authors.
The time point model for the individual events is considered as a limitation and in 2003,

Adaikkalavan and Chakravarthy [20] extended Snoop to handle uncertainty in the time of
events using time intervals for the Recent context. The resulting extended system was called
SnoopIB, providing a quality of context metric.

57

3. State of the Art

The system itself is decoupled in time because of the DBMS storage backend. Space- and
flow-coupling is present, since applications need to connect to the central DBMS running
Snoop. Semantic coupling is also present, as no semantic information is contained in the
events.

SENSID is a CED system especially tailored towards WSN by Kranz [92]. It is based on the
Amit CED system by Adi and Etzion [21] and modifies the used language by temporal and
spatial matching operators. The system describes events as 4-tuples consisting of type, data,
time stamp and position. Complex events are described as predicates on sets of events and
are evaluated in Lifespans. A Lifespan contains all events, that fulfill the predicates and may
be contained in the created complex event. A Lifespan that actually fulfills all predicates is
called a Situation and may emit a complex event. Since complex events are only produced
when a Lifespan ends, the end of a Lifespan can be triggered by time or explicit termination
events. The situation language, as described by Cardell-Oliver, Reynolds and Kranz [40],
already contains predicates to filter events based on elementary attribute comparison and
logical and connections. Furthermore, the authors added the ability to add new predicates
using a plug-in system, providing the user with the ability to implement arbitrary predicates
detecting sequences and more complex compositions. All situation detecting nodes work
independently of each other and form a distributed system. However, a single Situation
detection cannot be distributed to different nodes.
SENSID enables the native use of temporal and spatial information for complex event

detection and is tested in real WSN on MicaZ Motes indicating a very low CPU and mem-
ory overhead. However, the described filter predicates are limited to elementary comparison
and logical AND connections. Sequence filtering may be emulated using time attribute com-
parisons. The handling of uncertainty or failures is completely up to the application, which
needs deep knowledge of the underlying generation processes of these data. The system de-
couples the applications from the sensors in space and data structure through the underlying
P/S-Network. Processing of the resulting complex events is not considered in the language
and can only be implemented using the plug-in system.

Abstract Events are a programming model proposed by Katsiri and Mycroft [86]. It ex-
tends the classical event definition, which describes state changes of real systems, to abstract
events, which describe state changes of virtual systems. The authors defined a higher-level
service called Abstract Event Detector (AED) on top of a P/S system. These detectors take
an Abstract Event description in Abstract Event Specification Language (AESL) as input
and use the existing publication and subscription mechanism to provide applications with
the resulting Abstract Events. The used (AESL) is a subset of Temporal First Order Logic
(TFOL). It uses horn-clauses to describe the predicates and the transformation of primitive
events to abstract events. The (TFOL) rules are executed using RETE-Trees, which output
an Abstract Event on each newly generated event. The generated events are contained in
memory and serve as a history, which can be queried. Subscribing applications can addition-
ally attach filter expressions using logically connected predicates on the events’ attributes.
Sequences of events can only be detected by creating a dedicated (AED).
All (AED)s are managed by a centralized Abstract Event Repository creating a master-

based architecture. The applications can use the repository to find the responsible (AED)

58

3.4. Complex Event Detection Systems

decoupling them in space. The history of the (AED)s enable a time decoupling, because
arbitrary past information can be queried. However, older events are not automatically
delivered to the applications. The used P/S system can be freely chosen. In consequence
coupling between components and applications regarding time, space and data structure are
undefined. Since no semantic information is contained in the events, a semantic coupling is
always present.
The context of the events contains time and position, but no bandwidth, uncertainty

or failures are considered. Quality of context or service is not considered by the authors.
The filter model is Subscription-based and enables the expression of complex filters using
elementary predicates and logical compositions. However, sequences can only be detected
by a dedicated (AED). The processing model uses an Inference Algorithm (InfAlg) approach
and contains a rich set of transformations inspired by Prolog. Aggregation is not explicitly
mentioned, but may be expressed using horn-clauses. Data fusion is not considered either,
but may also be expressed in horn-clauses. The resource consumption of the system is
quite large regarding CPU and memory because of the used RETE algorithm. The network
overhead is smaller, because subscriptions may be reused in the system.

Hermes is a scalable P/S-middleware similar to Siena, see Section 3.3.1, by Pietzuch [123]
published 2004.It uses a different approach to an event mediating overlay network by exploit-
ing the Pastry DHT [137]. In contrast to Siena’s purely content-based approach, Hermes
uses a hybrid approach by describing events as types according to a scheme similar to ROS’
messages. This scheme needs to be known to the middleware before communication. Fil-
tering is possible on types of events as well as on attributes of events. The schemas of the
individual events types are stored in the DHT.
Compared to Siena, Hermes solves the problem of the statical overlay network through the

DHT. It decouples its nodes in flow and space as typical for P/S systems. Time decoupling
is not implemented as events are not stored on route. The event type system enables
decoupling of data structure very efficiently. Semantics coupling is created by the implicitly
defined event types used to create communication channels. The context of each message
only contains a time stamp. No position, uncertainty, failure or bandwidth information is
provided to the application. Hermes distribution model is similar to Siena’s based on their
overlay-networks of nodes. The DHT enables an efficient large scale routing of events based
on the event types. This decreases CPU consumption, but may slightly increase bandwidth
consumption in special cases. The memory consumption is still high, because based on the
used hash function an storage model, the DHT present in every broker may consume much
memory. Fortunately, the size of the local DHT depends on the network architecture and
not on the amount of subscriptions or publications.
Hermes uses the Subscription-based filter model exploiting its event types to describe

attribute filters. These filters can be combined using logical operations. O’Keeffe [115]
extended Hermes’ filters system with an SQL-basedone to additionally support sequence
filter composition and aggregation. The goal of his extension is to enable complex event
detection in a truly distributed system. Therefore, the language focuses on the use of time
specification using uncertainty intervals, to cope with the lack of a reliable fine-grained
global clock. Additionally, the specified language allows for decomposition of complex event
statements in parameter space to limit the possible events to specific regions of the network.

59

3. State of the Art

The statements are parsed into a tree, which creates a hierarchical event statement that can
be distributed afterwards. The system is based on Hermes’ rendezvous points as complex
event detectors.
Even though the author states to target WSNs with his work, the usage of an IP-based

communication middleware on a DHT limits it’s usage on low resource nodes. Additionally,
the described operations are SQL-like and allow for simple aggregators such as MIN, MAX and
AVG, but more complex composition operations such as digital filters or event transformation
processes are hard to achieve.

Summary As visible in Table 3.5, Complex Event Detection Systems provide very good
event filtering support even for sequences of events. However, the processing capabilities are
limited to simple event transformations and aggregation of homogeneous events using basic
operators such as MIN, MAX and AVG. All systems provide a time context to the events
and some additionally, a position context, which may be used in the filter expressions. How-
ever, the systems do typically not handle QoS. Only Snoop(IB) and Hermes provide QoC
using interval representation of time. While Snoop(IB) is centralized, the other systems are
either fully distributed or only use a central master to ease consensus. The components of
the systems are coupled only semantically because of the lack of a generic event type defi-
nition. The resource consumption is very heterogeneous. SENSID is very efficient, because
it is already tailored towards sensor networks. HERMES uses a DHT as communication
backend, which scales very well, but needs memory and CPU time to distribute the data.
Snoop(IB)’s DBMS increases the resource consumption.

60

3.4.
C
om

plex
E
vent

D
etection

System
s

Criteria Snoop(IB) SENSID Abstract Events HERMES

Coupling

Time x
Space x
Flow x
Data Type (x)
Semantic x x x x

Context

Time x x x x
Space x x
Uncertainty (x)
Semantics

Quality
Service
Context x

Distribution Type centralized distributed master-based distributed

Resources
CPU - ++ o
Memory - ++ o
Network +

Filter
Model SQL-based Subscription-based Subscription-based Subscription-based/SQL-based
Elementary ++ + ++ ++
Composite ++ - ++ ++
Sequence ++ o o ++

Processing
Model RelAlg none InfAlg RelAlg
Transformation + – ++ o
Aggregation o – o +
Fusion – – o –

Table 3.5.: Evaluation of the described CEP and CED systems against the comparison criteria, see Section 3.1.

61

3. State of the Art

3.5. Stream Processing Frameworks

Stream processing frameworks enable the processing of continuous data streams. They view
the data stream as a continuous flow of independent events. To enable operations on this
flow, they select a set of events from the stream into a window. After this transformation
they can operate on the events similar to a relational database. The major use cases for these
systems are monitoring applications as described by Carney [41] in 2002. These applications
differ from traditional DBMS applications in the way that the active instances creating
events are not human operators but sensors. This changed the focus of the system from
pure storage of data in a robust and predictable way to the delivery of real-time data
streams even on incomplete inputs.

Aurora/Borealis by Abadi et al. [13] published in 2005 is a Data Stream Management
System (DSMS) based on Aurora [14, 15] published in 2003.
Aurora enables distributed QoS-aware stream processing based on user-specified graphs of

pre-defined operators. It is very much focused on the optimization of the QoS-parameters of
the systems, which are latency, data/package loss and importance. The system is bandwidth-
aware by detecting overload situations and inserting artificial DROP -operations to the
stream processing to trade data accuracy against latency.
The contained extensive query language SQuAl enables operations such as filter,

aggregate, union, resample and map on incoming event streams. In general, three types
of queries can be issued:Continuous Query, Ad-Hoc Query and View. The Continuous Query
applies the defined operators directly on the events flowing through the system without any
additional storage of the events. The Ad-Hoc Queries use persistence blocks storing events
for longer time to enable the delivery of arbitrary data. A View enables the declaration
of an event stream, which is processed by the system, even if no application is currently
requesting the resulting output. This enables event stream computations which need setup
time to deliver data as soon as an application needs the results.
Borealis extends the Aurora system using concepts of Medusa by Cherniack et al. [46]. It

focuses on the distribution of the processing operations between nodes. At the same time it
aims to preserve Aurora’s focus on QoS-awareness and optimization.
The systems using Aurora or Borealis are only coupled in the semantic domain, since the

meaning of the individual attributes of the event tuples is not defined. Time coupling is
mitigated by the persistence blocks, space coupling is mitigated by the centralized Aurora
server or the neighborhood distribution of Borealis. The context of the events contains
time and bandwidth, but examples also show the ability to handle positions. Quality is
only considered for the defined QoS-Attributes: latency and bandwidth. Event filtering is
done using the query language in an SQL-based manner. It enables arbitrary elementary
predicates and the composition of these on single event streams. Filtering of multiple event
streams and filtering of sequences of multiple events within one stream can only be achieved
by exploiting the aggregation and union operator. The processing language is Process
and follows the Box-and-Arrows concept to derive procedural data flows. The application
of arbitrary map functions allow a large set of transformations of single events, whereas, the
aggregation operation allows aggregation of events in a similar flexible manner. Data fusion
is not directly included in the system, but may be emulated using the existing operations.

62

3.5. Stream Processing Frameworks

The resource efficiency of the system depends very much on the query graph defined by
the user. In general, the CPU load is pretty high because of expensive processing operations
such as join. Additionally, Aurora/Borealis needs to maintain two QoS graphs in the
background, which creates additional overhead. The memory overhead depends on the used
window size of the operations and the amount of persistence storage blocks used. The
network bandwidth consumption is limited by the load shedding dropping events on user
specified overload conditions.

Complex Query Language (CQL) on STREAM was developed and implemented by
Arasu et al.[25, 26] in 2003. It uses the STanford StREAm DatA Manager (STREAM)
DSMS developed by Arasu et al. [24] and Babcock et al. [32] in 2002/2003. CQL is a
SQL-baseddeclarative language to create complex events out of event streams. To this end,
CQL formally disambiguates between streams and time-varying relations, which both are
described by schemes defining the contained data formats. The contained operators are
classified into stream-relation, relation-relation and relation-stream ones. Relation-relation
operations are time-varying versions of the classical SQL-operators such as WHERE, SELECT
and FROM. Stream-relation operations consist of a sliding windows extracting time-varying
relations out of a tuple stream. CQL considers three types of these operators: time-based,
tuple-based and partitioning, which is similar to SQL’s GROUP-BY statement. The relation-
stream operators enable the insertion or deletion of tuples into the output stream.
The implementation of CQL on STREAM is based on tagged tuples, which are tuples

annotated by a time stamp and a deletion or insertion mark. This approach enables the
system to keep track of the whole history, while still providing a notion of time and time-
varying relations and streams. The system is centralized and enforces its input to either be
in First-In First-Out (FIFO) order or to provide an explicit heartbeat to tell the system up
to which time stamp tuples may be processed.
Systems using CQL are uncoupled in time, since any arbitrary historical data can be

retrieved, but they need to know the CQL server to issue their queries. There is no infor-
mation available if queries block the issuing node or not, so flow coupling is unknown. Data
structure is uncoupled using the schema description of streams and relations. The context
of the tuples is limited to time and no quality awareness of service or context is available.
The provided filter expressions are SQL-basedand provide elementary filters against con-
stant values. The native composition is limited to logical connectors. More complex filters
can be emulated using the partition windowing and aggregation, which is also necessary
for filtering sequences of events. The processing language constructs Windowed Relational
Algebra (WRelAlg), which enables transformations using attribute assignment and natively
supports aggregation. Data fusion is not considered in the language.
The integration in the STREAM system heavily relies on joins and needs to sort the

stored tuples to be efficient this creates considerable overhead for the CPU. The memory
consumption is quite large, since all inserted and deleted tuples stay in the database. The
network overhead is not described by the authors.

Odysseus is a centralized Stream Processing System developed by Appelrath et al. [23].
The DBMS provides typical Relational Algebra operations such as Selection, Projection and
Cartesian Product. Additionally, it enables the use of an arbitrary map function to transform

63

3. State of the Art

events. The system is currently centralized using a single server, but authors stated it may
be easily distributed. The baseline system is component-based enabling easy reuse of parts of
the systems and uses Transmission Control Protocol (TCP)/IP or User Datagram Protocol
(UDP)/IP as communication mechanism between components. The incoming raw data are
processed and fed to processing pipes. After the processing, the results are distributed to
the applications issuing the queries. The queries themselves are stated in CQL. Additional
work was done by Kuka et al. [94] to use the system to describe higher level contextual
sensors for automotive applications. For this application, the system was extended to handle
events containing a time span providing some notion of time uncertainty. This approach
uses a Bayesian inference system to pessimistically fuse the incoming raw events to create an
occupancy grid providing a special sensor fusion operation. Even though the implementation
of such fusion mechanisms is possible, they always need specially developed components to
be introduced to the system and cannot be stated in native CQL statements.
Kuka and Nicklas [95] added the possibility to describe, process and propagate the uncer-

tainty of individual events. To this end, they modelled the uncertainty of each event source
as a Gaussian Mixture Model [111], which may either be provided by the source itself or
by an estimation algorithm using maximum likelihood. The approach performed well in the
described evaluation, minimizing false-positives and false-negatives in most cases. However,
the necessary Monte-Carlo-based operation to combine the Gaussian Mixture Models is ex-
pensive. The map function can only multiply the existing probabilistic values of the events
with static probabilities, heavily limiting the expressiveness. The authors also mentioned
the need to integrate aggregation in their probabilistic uncertainty, but considered it outside
the scope of their paper.
Odysseus contains a rich set of elementary filters, which can be combined very flexibly.

Additionally, it allows aggregation through CQL operations and transformation based on
the arbitrary map operation. However, the map operator and all fusion operations are outside
the scope of CQL and need to be implemented as individual components limiting the ex-
pressiveness in these dimensions. The resource efficiency is limited by the expensive internet
scale technologies such as web-services and TCP/IP communications. Additionally, all pro-
cessing is executed in the centralized server. The implemented uncertainty concept is very
powerful to handle uncertain events, but lacks the handling of uncertain attributes besides
time. Consequently, the system considers an event context containing time, uncertainty and
position. The baseline DBMS provides native decoupling of producers and consumers in
time, space and data structure. A semantic decoupling is not considered in the system.

Complex Event Detection and Response (CEDR) is an event stream system by
Barga et al. [35] published in 2007. It uses a very extensive temporal model containing
multiple time stamps to handle uncertainty of timing information in different nodes. The
three temporal domains used by the system are system time as used by the CEDR system
itself, occurrence time and valid time. The valid time is used to check the validity of an
event from the publisher’s perspective. This enables the specification of a lifetime of each
native event. The occurrence time specifies the last occurrence of a change in the data
of an event though a processing operation. Both are specified in the time domain of the
event publisher as intervals. CEDR uses this extensive time model to provide an application
controllable consistency. Depending on the chosen consistency level, the behavior of the

64

3.5. Stream Processing Frameworks

operators change. For example Strong consistency needs the operators to block the input
stream while ordering the incoming data.

The used SQL-based language enables a rich set of filter expressions supporting complex
composition of arbitrary elementary filters. In contrast to typical window-based filter lan-
guages CEDR has no window operator, but embeds the window specification in the dedicated
operators. The SEQUENCE operator for example needs an explicit duration to search for spec-
ified events. The processing part of the language is limited to simple attribute assignments
to events. The system uses a Windowed Relational Algebra (WRelAlg) and supports basic
transformations of events and aggregation. Data fusion is not contained in the language.

CEDR queries may create an arbitrary amount of output events, if the application does
not explicitly state a non-zero consumption policy. This may create large CPU, memory
and network resource usage.

Semantic Streams Semantic Streams is sensor data streaming framework by Whitehouse,
Zhao and Liu [168] published in 2006. It is based on Inference Graphs described by infer-
ence relations and queries in Prolog Constraint Logic Programming (CLP). It uses a semantic
description of sensor data streams through a common vocabulary. These streams can au-
tomatically be combined based on queries by applications. The system automatically uses
available inference relations to match existing streams to requested streams. The result are
multiple Inference Graphs, which use different inference relations to combine the sensor data
of the input streams to the requested output stream. The system can handle contextual in-
formation regarding time, position and uncertainty. Time is handled by time stamps and
latencies. The queries of the applications and the inference relations can specify constraints
on these attributes to enable filtering and optimization. Additionally, position is handled by
special relation to detect containment and intersection of regions. Uncertainty is expressed
as a confidence value, which is suitable to detection events, but the applicability to contin-
uous attributes of events is not described by the authors. The queries provide the ability
to specify QoS constraints, which are used to select appropriate Inference Graphs or search
the best graphs regarding a certain QoS metric such as latency. The constraints attached
to queries and inference relations enable a Pattern-based filtering system, which provides
good elementary filter support, but only supports limited composition operations. The con-
tained information of the streams is unspecified and the inference will fail automatically if
a stream does not provide the necessary information. The system can also handle run time
information and adapt its behavior regarding different QoS parameters like event frequency.
The system is implemented using a centralized Prolog interpreter, which is fed by multiple
low-resource embedded sensor nodes. The authors did not describe how inference relations
are implemented, which disable an estimation of performance of the CPU and memory us-
age. As the events need to be forwarded to the central Prolog instance the network resource
consumption might be high depending on use-case. The authors stated the time to gener-
ate an Inference Graph to be minutes, which implicates a large overhead in CPU resources
to create a communication stream between sensor and applications. The system especially
enables mutual dependency of inference relations, which may create infinite inference loops
further decreasing performance. The performance is mitigated by the inherent capability
of the system to share the inference relations between different requests served at the same

65

3. State of the Art

time. This enhances CPU performance and decreases memory consumption as no duplicate
events need to be kept and processed in the system. The system considers no QoC.

Summary As visible in Table 3.6, Stream Processing Systems provide extensive processing
and filtering capabilities. Semantic Streams is more limited regarding the filter capabilities
because of its used Prolog CLP(R) expressions. However, the necessary abstraction used
to implement these consume a lot of resources. Besides Aurora/Borealis and Semantic
Streams, all systems enable processing using join operation, which is executed on windows
of streams of events. This operation is very expensive. Semantic Streams uses inference
relations, whose expressiveness depends on the amount of implemented relations. Borealis
is the only fully distributed system in this context. The other systems are implemented
in a centralized way to provide better consistency guarantees regarding the detection of
composed events. Depending on the envisioned application, these systems provide different
context information attached to the tuples. Time is present in all systems, but position,
uncertainty and bandwidth information is present only in some of the systems. QoC is only
considered by Odysseus, whereas, QoS is considered only by Aurora/Borealis and Semantic
Streams. Semantic coupling is present in all systems because of the undefined structure
of the tuples besides Semantic Streams which uses a vocabulary of streams and inference
relations. The tuples are defined by the application developer and incorporated as schema.
Since different application designers may generate different schema, a semantic translation
is not easily possible. Flow and Space coupling is present in all the centralized systems,
again Semantic Streams is an exception as it decouples sensors and applications regarding
all but data types.

66

3.5.
Stream

P
rocessing

Fram
ew

orks

Criteria Aurora/Borealis CQL/STREAM Odysseus CEDR Semantic Streams

Coupling

Time
Space x x x
Flow () x (x)
Data Type x
Semantic x x x x

Context

Time x x x x x
Space (x) x x
Uncertainty x (x)
Semantics x

Quality
Service x x
Context x

Distribution Type distributed centralized centralized centralized centralized

Resources
CPU - – – - -
Memory o – – - –
Network + - o +

Filter
Model SQL-based SQL-based SQL-based SQL-based Pattern-based
Elementary ++ o ++ ++ o
Composite + o ++ ++ -
Sequence o + + ++ -

Processing
Model Process WRelAlg RelAlg WRelAlg InfAlg
Transformation ++ o + o o
Aggregation ++ + ++ o o
Fusion o – o – o

Table 3.6.: Evaluation of the described Stream Processing Systems against the comparison criteria, see Section 3.1.

67

3. State of the Art

3.6. Context Frameworks

As discussed in Section 2.1.3, flexible CPS need awareness of the data’s context in addition
to the data. Therefore, a number of context-aware development frameworks for mobile
dynamic networks were created, which define operations based on sensory data and the
current context of the system.

Solar is a Context Fusion Network (CFN) by Chen , Li and Kotz [45] published in 2004.
It requires users to write explicit context fusion operators, which merge sensory data based
on the current context of the system. These operators are combined to a pipe connecting
a sensor (a data source) to an application (a data sink), processing the sensory data in
between. The individual operators act as event sink and source. They consume sensor
data on input ports and produce new sensor data on outgoing ports. An input port can
be connected to an output port of another operator using a channel. Channels can either
be push-based, the data is passed as events towards the application, or pull-based, the data
is explicitly requested from the application. The disseminated data are records containing
tuples of tag-value pairs. The operators are executed on the peers of a structured overlay
network implemented using the Pastry DHT [137]. Applications can discover peers as well
as sensors using services provided by the overlay network. Operators are requested by
applications and passed to a Fusion component on a peer creating an operator graph. The
operator graph is checked for already existing sub-graphs in the network and uses them. This
reduces the amount of computation needed because results of operators are shared between
peers. Additionally, Chen and Kotz developed an alternative multicast-based transport
called PACK [44]. It provides the ability to describe data reduction policies in case of
overflowing routing queues within the nodes. These policies allow the node to drop specified
events or aggregate them to save network bandwidth.

Solar uses XML descriptions to enable applications to select operators, queries and poli-
cies. However, the implementation of the operators needs to be done explicitly. Queries
are limited to the selection of specific tags contained in a record, but using the policy sys-
tem, a content-based selection can be used, if an appropriate policy was implemented. The
context fusion operators can contain arbitrary code, making them very powerful, but they
need to be explicitly implemented and contain no means of configuration. This enables
reuse of the operator, but even a slight change in behavior requires a newly implemented
operator. The context of the records only consists of bandwidth. The system contains no
inherent capabilities to handle time, position or uncertainty. The resulting systems are only
partially coupled in semantic, since the semantics of the records are defined by the service
providing them. Depending on the extend of the machine-readable service description, a
semantic selection of services may be possible. The resource consumption of the system is
limited for network bandwidth due to the aggregation and dropping policy. These policies
may also be used to distribute load and enable load shedding providing limited QoS. The
CPU consumption is medium through the distribution of the operators and the policies, but
the used technologies such as XML and HTTP increase CPU resource usage. The memory
consumption is medium to heavy depending on the amount of records stored in the DHT
and the amount of peers existing in the system.

68

3.6. Context Frameworks

Sentient Objects are an abstract programming model developed by Fitzpatrick et al. [64,
37]. It focuses on the notion of a sentient object as an autonomous, proactive and event-
triggered entity within a complex networked system. A Sentient System is composed of
Sensors transforming real world phenomena to events, Actuators transforming events to
real world phenomena and Sentient Objects computing and processing events. The main
goal of this abstraction is the reuse of defined components to ease the development of complex
applications.
The output of a Sentient Object depends on its current context, where context is defined

as the combination of all relevant sensory information. The generation of the necessary
context is divided into two steps. First a Bayesian network is used to fuse incoming sensor
event data in a robust manner to provide low-level contexts. Afterwards, low-level contexts
are combined using a rule-based inference system. The possible contexts are pre-defined
by the developer of the Sentient Object and are heavily mission specific. To increase the
performance of the system, only a single context in each Sentient Object is active at a time.
Consequently, only the relevant sensory data for this context are fed to the Bayesian network
increasing the efficiency.
The used Scalable Timed Events and Mobility (STEAM) middleware provides a P/S-

based filtering of events based on topic, content and position. The Bayesian networks provide
inherent data fusion capabilities even for uncertain data. However, the relevant networks
need to be constructed through a GUI by the developer of the Sentient Object. The rules of
the context fusion are also constructed using a GUI by the developer.
The resulting Sentient Systems are decoupled in space, flow and data structure providing

each Sentient Object with a context containing at least time, position and uncertainty.
The system is fully distributed. A demo application of an autonomous sentient vehicle
using Sentient Objects by Sivaharan et al. [149] is developed using iPAQ embedded PCs as
basis. Consequently, the efficiency optimisations of the Bayesian networks and the context
inference limit the CPU resource consumption. The application uses 11 MBit WLan and a
1Mbit CAN-Bus showing the ability to work with limited bandwidth networks. The memory
consumption is not described by the authors. QoS can be described as declarative properties
attached to the event subscription. Verissimo and Casimiro [165] described how to enforce
timeliness as a QoS attribute for Sentient Systems. QoC is considered implicitly using the
Bayesian network to handle noisy sensor data.

ACTrESS is an extension to the Java Message Service API by Freudenreich et al. [67]. It
is a context framework aiming to describe sensor data as contextual messages. The context
consists of timing, positional and value information accompanied by the respective unit and
scaling information. To this end, it uses the Java Message Service API on top of an overlay
networked P/S system as communication backbone. The authors identified the problem of
the context of individual messages being incompatible and solved this using a hierarchy of
contexts with a dynamic context translation. However, they also stated that there is no
general root context, which is always the top of the hierarchy. Therefore, they infer the hier-
archy dynamically and translate all received contexts to and from this inferred root context.
The transformation is composed of basic arithmetic operations on the contained attributes.
The defined context directly induces the necessary operations such as e.g. rescaling, unit
conversions or change of reference system. The system uses a transformation engine in

69

3. State of the Art

each broker implemented on top of ActiveMQ [150] to dynamically translate incoming mes-
sages. Additionally, each broker contains a context description cache to decrease network
bandwidth needed to gather the necessary information for each transformation.
The nodes of the system are only coupled by the semantics of the contextual message,

since all other couplings are abstracted by the used P/S backbone and the Java Message
API. The contextual information is rich containing time, position and unit and scaling
information. The system is fully distributed using the P/S overlay network. The resource
consumption is medium concerning CPU and memory because of the used Java system.
The used network bandwidth is rather small because the Java Message API uses a binary
serialization mechanism that creates serialized representations with little overhead. Since
Javas byte code is the same on all platforms, no further conversion is necessary. Because of
the used P/S system, a subscription-based filter model is used, which only allows filtering
using topics. Therefore, only limited elementary filters are possible. The transformation
model is process-based using dynamically generated context transformations. These allow
the transformation of one event from one context to another. Consequently, no aggregation
or fusion is possible using this system.

Semantic Markov Logic Networks (SMLN) described by Mohammed et al. [113] enable
logical inference on events in CPS. The goal is to do CED in a scenario specific context. The
described approach uses an ontological context description, where the context is separated
in a generic part called Base Ontology and a specific part called Extended Ontology. The
ontologies are used to describe an SOA composed of agents, which collaborate and communi-
cate using the ontologies. Agents using different Extended Ontologies can only communicate
through the Base Ontology, whereas, agents using the same Extended Ontology can also com-
municate and collaborate through them. The used SOA uses no service lookup mechanism,
but explicitly needs specification of the agents’ deployment to direct the service requests to
the receiving agent. The contextual representation is dependent on scenario, but contains
at least a time stamp, a unit and a Unified Resource Identifier. The inference is executed
through a Markov Logic Network [132] using fuzzy membership variables instead of prob-
abilities to enable the handling and expression of uncertainties of the sensor data. The
Markov Logic Network needs training to be able to classify incoming events correctly and
to output detection events accordingly. The authors tested the system with an automotive
and a smart home test data set. In these data sets they achieved between 60% and 70% of
correct classification. The system was never deployed or tested in real CPS.
The proposed system provides strong couplings in time and flow because of the used SOA.

It enables distributed computing using the agent-based communication and collaboration
without central coordination. However, the necessary deployment attribute used to address
the individual agent’s services establishes space coupling. Even though the system allows the
specification and processing of uncertainty in the sensor data through the fuzzy inference
process, it provides no means to specify and handle QoS and QoC. The CPU, memory
and network utilization is unknown, as the system is not tested in a real environment and
the authors did not provide any results on these metrics. Filtering is executed through the
Markov Logical Network and the specified inference operations. It allows for elementary
filters, but no notion of sequential filters exists. Composite filters can be expressed through
logical combination of elementary filters in the network. The processing is done solely

70

3.6. Context Frameworks

through the inference network and only allows event-based reasoning without any data
processing. Consequently, only transformations are generally expressible. Aggregation can
only be expressed towards uncertainty increasing the reliability of the results. Data fusion
in the sensor processing sense cannot be expressed.

Summary As visible in Table 3.7, Context Frameworks provide very heterogeneous at-
tributes. They decouple the components very well regarding space, flow and data structure.
Solar additionally provides a decoupling in time and partially in semantics using service
description mechanisms. ACTrESS mitigates the semantic coupling for the position and
time context of the exchanged data using implicitly generated context trees. The context
definition is heterogeneous as well, Solar focuses on bandwidth as context, while Sentient
Objects and ACTrESS provide time and position as context. Sentient Objects handle uncer-
tainty as a context attribute using an incorporated Bayesian Fusion Network. The resource
consumption is larger than WSN Middlewares but still lower compared to the Stream Pro-
cessing Frameworks. The filter and processing expressiveness is very heterogeneous as well,
depending on the envisioned usage. Solar provides good aggregation to handle network
overload, Sentient Objects provide implicit data fusion using the Bayesian Fusion Network
and ACTtrESS provides very good transformation between event contexts. A very strong
point is the handling of QoS and QoC in Solar and Sentient Objects, which most other
systems cannot provide.

71

3.
State

of
the

A
rt

Criteria Solar Sentient Objects ACTrESS SMLN

Coupling

Time x x x
Space x
Flow x
Data Type
Semantic (x) x (x)

Context

Time x x x
Space x x x
Uncertainty x x
Semantics x

Quality
Service (x) x
Context x

Distribution Type distributed distributed distributed distributed

Resources
CPU o o -
Memory - () –
Network o o +

Filter
Model Subscription-based Subscription-based Subscription-based Pattern-based
Elementary + + - +
Composite + + – +
Sequence o – – –

Processing
Model Process InfAlg/Rule Process InfAlg
Transformation o - ++ o
Aggregation + - – -
Fusion o + – –

Table 3.7.: Evaluation of the described Context Frameworks against the comparison criteria, see Section 3.1.

72

3.7. Conclusion

3.7. Conclusion

The review of existing solutions in this chapter showed that existing systems can only pro-
vide a partial decoupling of components of CPS. The SDF provide very extensive mecha-
nisms for the description of the sensory data and their context. Additionally, they provide
mechanisms to detect, select and integrate sensors dynamically into systems. However,
these frameworks lack extensive capabilities to filter and process or distribute events cre-
ated by the sensors. Classical P/S middlewares enable a scalable and efficient distribution
of events. They typically provide event filtering capabilities, but only limited processing.
Additionally, only some are usable on embedded devices used in WSN and CPS. Special
middlewares for WSN enable very efficient communication suitable for embedded devices.
However they are designed for good processing capabilities, mainly focused on aggregation,
or for very low resource consumption. A special type of WSN middlewares uses ontologies
to dynamically translate events between semantic domains. They provide semantic decou-
pling between the components forming the system, but typically need additional resources.
CED systems enable a distributed filtering and processing of events using expressions de-
scribed by the consuming applications. They provide good decoupling in space, flow and
data structure. Stream processing frameworks contain the richest set of event filtering and
processing capabilities, but are often implemented in a centralized way to provide strong
consistency guarantees. The used operations performing the processing and filtering are
expensive and require additional resources. An exception is Semantic Streams, which limits
resource consumption to the stream generation phase and provides more efficient Inference
Graph-based processing and filtering after the stream is established. The last category of
systems reviewed are Context Frameworks, which focus on the description and processing of
the context of the disseminated events. However, they either enable a very extensive implicit
context processing or focus on large scalability.
The reviewed systems already provide a good decoupling of components in space, flow and

data structure using P/S communication. Time decoupling may be implemented through
additional storage facilities. Semantic decoupling is very difficult to achieve. Therefore
many systems do not handle it at all. Some systems such as LooCI and Semantic Streams
provide solutions using local vocabularies of sensors, which are used in automatic inference
of processing. The context descriptions of events in time is generally available. Positional
context information is dependent on the envisioned application. Uncertainty of events is
only handled by a small part of the systems mostly as an extension. QoS is present in some
systems and focuses on package drop and latency. QoC is very rarely tackled in the systems.
Filtering and Processing is extremely heterogeneous and depends strongly on the application,
the system was tailored to. In general, good support for filter expressions decreases the
necessary network bandwidth used. In contrast, powerful processing operations need many
resources to be executed and create possibly unbounded output overloading the network.
LooCI, Semantic Streams and ACTrESS are interesting systems, because they together fulfill
most of the criteria. They still lack time decoupling , support for full uncertaintz specification
and processing and full QoC support. Some of them also need too many resources to be
used in small embedded systems. Consequently, the goal of this thesis is the development
of a system fulfilling these missing properties, while still maintaining the properties of these
three systems.

73

4. Abstract Sensor Event Information
Architecture (ASEIA)

Following the analyses of the state of the art in Chapter 3, this chapter presents the ASEIA
to tackle the remaining challenges. The next section summarizes the challenges ASEIA
needs to solve, based on existing solutions from Chapter 3. The chapter continues with the
description of the the general architecture in Section 4.2. Afterwards, the context attributes
and their descriptions are explained in Section 4.3. The main part describes the ASE model
used in ASEIA in Section 4.4 and the different types of transformations in Section 4.5 with
different examples in the context of the scenarios of Section 1.2. The final part of the
chapter provides mechanisms to select and execute these transformations within the CPS
on demand. The chapter closes with a summary in Section 4.7

4.1. Goals

The ultimate goal of dynamic composition of CPS on run time can only be achieved by
minimizing the coupling between the components of the CPS. The secondary goal of dynamic
adaptation to the environment is achieved by the same means of decoupled components
changing their composition at run time. To enable a decoupling of components of CPS a
solution for the domain specific processing of events and the specification of their context in
uncertain environments needs to be found.
As described in Section 2.4, ways to decouple the components according to Time, Flow,

Space, Data Format, Semantic and Context need to be found.
Context decoupling is realized by a context description which is able to handle uncer-

tainties and provides a QoC metric that enables CPS applications to evaluate the benefit
of the contained information. Additionally, the events themselves need to be considered as
uncertain, because the existence of an event already conveys information. Furthermore, the
system needs to enable processing of events automatically. This allows an automatic adap-
tation of components’ interfaces to each other to automatically fulfill requirements of CPS
applications. The automatic processing needs to process context information attached to the
events to enable adaptation of context. The definition of context, QoC and the automatic
processing of this data is not well tackled by the systems described in Chapter 3.
Flow and Space decoupling may be achieved by choosing an appropriate communication

paradigm. P/S enables the decoupling of components in space and flow, which is a good
basis for the system, as described in Section 3.3.1.
The semantic decoupling can be achieved by using semantic enhancement of the event

description either through ontologies or through LooCI’s, see Section 3.3.3, approach of a
unified event vocabulary.

75

4. Abstract Sensor Event Information Architecture (ASEIA)

Data Format decoupling may be achieved through a machine readable event meta-
description as used by Hermes, which allows an automatic analysis of contained values
of physical phenomena. The components can use these information to automatically select
the information necessary for their implemented behavior.
As the system needs to be usable on a wide variety of system ranging from low-power micro

controller used for WSN to full-scale PC-architecture used to monitor and control industrial
processes, the used abstractions a mechanism need to be designed with low resources in
mind. Especially the encoding and processing of the meta-information on context, data
format and semantics need to be light-weight enough to be handled by embedded systems.
This challenge is not sufficiently solved by any of the systems described in Chapter 3.
The resulting system needs to be able to execute complex sensor data transformation,

aggregation and fusion operations to provide the applications with the necessary data. Ad-
ditionally, the available and generated sensor data needs to be filtered early in the system to
prevent overloading the network, CPU and memory resources of the nodes. The SQL-based
systems already provide flexible filter operations usable to this end. Aurora/Borealis pro-
vide these operations with the addition of good transformation and aggregation capabilities.
However, sensor data fusion operations are only present in very few systems like MOSAIC,
SensorML and IEEE1451, because most systems aim at a higher level of abstraction.
The shortcomings of the systems discussed in Chapter 3 shall be solved by the systems

described in this chapter. The systems shall fulfill the following goals:

Data Format Decoupling The system shall automatically translate between different data
formats to enable independent development and specification of the components of
CPS.

Context Description The system shall enable a definition of the necessary context to enable
automatic processing of the whole sensor information. The context shall be described
regarding the semantics, data format and quality.

Data Fusion Operations The quality (QoS and QoC) information of sensor data is a neces-
sary parameter for any CPS application. Specific existing data fusion operations shall
be available to the applications as processing mechanism adapting the sensor data and
the context.

Ressource Efficiency The system shall be tailored towards low-resource nodes to enable
maximum deployability towards generic CPS.

Distribution The system shall natively support distribution of acquisition and processing
of sensor information.

4.2. General Architecture

ASEIA considers a fully distributed system using P/S as communication paradigm. Conse-
quently, each node in the system fulfills on of the following roles:

Publishers generate events based on their input data or their observations of the environ-
ment and pass these to brokers or subscribers.

76

4.2. General Architecture

Subscribers receive the events generated by either publishers or brokers and pass them
using an API to the CPS application.

Brokers forward and process the incoming events to fit requirements of subscribers to the
provisions of publishers.

The network of the system is considered to change because of failures of individual nodes
or the movement of nodes. However, the design and implementation of the actual P/S com-
munication is not handled by ASEIA. ASEIA only uses an existing P/S system to provide
enhanced functionality and abstractions. The full distribution of nodes without any cen-
tralized component induces additional synchronization functionality. These functionalities
are the matching of publisher and subscribers to create communication channels, clock syn-
chronization between the nodes as well as synchronization of references of different physical
phenomena such as origins and orientations of coordinate systems or zero points of temper-
ature scales. This contextual information is handled by ASEIA through machine readable
descriptions, transformations and automatic inference mechanism.
ASEIA is designed to be an extension to an existing P/S-System. The Figure 4.1 shows

the different components of ASEIA and their integration in the typical event flow of a P/S-
System. The system consists of the following components:

Publish/Subscribe System

Event
System

Sensor

ASEIA Sensor

Event
System

Application

ASEIA Application

Event
System

Rule Base Broker

Trans-
formation
Engine

ASEIA Broker

Figure 4.1.: An overview diagram of the general ASEIA Architecture. Blue lines represent
Sensor Events. Green lines represent Channel Events and red lines indicate
Transformations.

Publisher Adapters extend the Publishers of the basic P/S according to the system model,
which adds format, semantic and context descriptions of the contained information in
a machine readable way.

77

4. Abstract Sensor Event Information Architecture (ASEIA)

Subscriber Adapters extend Subscribers of the basic P/S system. They extend the API
used by CPS systems with the ability to specify requirements on the information
regarding data, format, semantics and context.

ASEs extend the basic Events of the P/S system by a machine readable description of the
context of the contained information to enable automatic processing.

Transformations are operations on ASE that modify the semantics, format, context and/or
content. They are described to be automatically executed if necessary.

Event Types denote the semantic and format meta-information used by the system to
evaluate compatibility of publishers and subscribers. It is also used to evaluate the
usability of transformations.

Knowledge Base is the storage of existing transformation rules available to transform
ASEs.

Transformation Engine is responsible for the inference of transformations necessary to es-
tablish a channel between Publishers and Subscribers. Additionally, it executes the
transformations on ASE reception.

ASEIA Channels are combinations of existing transformations that accept incoming ASEs
of special Event Types. The incoming events are forwarded to the internal transfor-
mations to output ASEs fulfilling the requirements of the associated subscribers.

ASEIA-Brokers extend the P/S brokers with the capability to execute Transformations,
while ASEs are routed from Publisher to Subscriber. The necessary transformations
for a Publisher-Subscriber-Combination are stored in ASEIA-Channels.

The general architecture consists of an abstract ASE System providing a type hierarchy of
ASE together with (de)-serialization and processing facilities. ASEs may be transformed and
aggregated by using Transformations abstracting generic sensor and information processing
mechanisms.
The system uses the existing P/S-Mechanism to communicate Channel Events and ASEs.

Channel Events containing meta-information on an ASE are automatically published by
ASEIA-Publishers and ASEIA-Subscribers on creation. In each broker node of the under-
lying P/S-System an ASEIA-Broker is present. It handles the Channel Events of ASEIA-
Publishers and -Subscribers. It forwards this information to the Transformation Engine,
which searches for combinations of relevant Transformations in the Knowledge Base that
produce the required ASE. This search is executed whenever a new Event Type is used
in the system. Afterwards, the resulting Transformations act as subscribers and publishers
themselves and automatically transform incoming ASEs. The process of handling announce-
ments and subscriptions is visualized in Figure 4.2a. On reception of an ASE compatible
to the input Event Types of a created channel, the event is fed to the Transformations of
the channel to produce output ASEs, which are published. This process is visualized in
Figure 4.2b.
The ASEIA-Brokers can be distributed in the network. Multiple brokers on route between

publisher and subscriber may execute separate parts of the possibly combined Transforma-
tion. In case no ASEIA-Broker exists on route, the ASEIA-Subscriber itself acts as a

78

4.2. General Architecture

Publisher an-
nounces new
EventType

Get all
announced
EventTypes

Subscriber
subscribes
new Event-

Type

Get all
available
Transfor-
mations

Find Trans-
formations

Graph

All Trans-
formation

Graphs found

Create
Channel

Subscribe
Input

EventType

Announce
Output

EventType

no

Finished

yes

ASEIA
Channel

Knowledge
Base

Transformation
Engine

(a) ASEIA Channel Creation.

Transformation
Engine
receives

Sensor Event

Get all
existing
Channels

Find channels
accepting

Event Type of
Input Event

No Channel
found

Execute
Channel
Transfor-
mations

Publish all
output Events

no

Finished

yes

ASEIA
Channel

Transformation
Engine

(b) ASEIA Channel Execution.

Figure 4.2.: Flow charts showing the behavior of the ASEIA Broker on ASEIA Channel
creation and Sensor Event reception.

79

4. Abstract Sensor Event Information Architecture (ASEIA)

s0 b1 n0 b0 p0

n1

p1

p2

n2

n3n4 n5

etempeout

e1

e0

e2

(a) Illustration of an example network enabling the transformation of input events e0, e1, e2 to
output event eout by two intermediate brokers.

s0 n7 n0 n6 p0

n1

p1

p2

n2

n3n4 n5

e1

e0

e2

(b) Illustration of an example network enabling the transformation of input events e0, e1, e2 to
output event eout without intermediate brokers.

80

4.3. Sensor Information and Context

fall-back broker. The following Figures 4.3a and 4.3b show an exemplary event flow from
publishers p0, p1 and p2 to subscriber s0. The first figure shows the usage of distributed
brokers b0 and b1 transforming the input events e0, e1 and e2 to intermediate event etemp
and finally to the output event eout. The second figure contains no dedicated brokers and
all events are delivered to the subscriber s0 which acts as fall-back broker and executes the
Transformations internally before delivering the result to the application.

The following section discusses the context attributes which this thesis assumes necessary
for generic CPS.

4.3. Sensor Information and Context

In order to use raw sensor data in a CPS application, a transformation from data to informa-
tion is necessary, as described in Section 2.2.2. This process enhances the data produced by
the sensor. The result is sensor data accompanied with contextual data and semantic data,
which represents the inherent sensor information. The context of the sensor data enables
subscribing applications to assess the usability of the data regarding its own needs as well
as reasoning on abstract sensor information, as described by Zug [172].
It is difficult to estimate the necessary context of sensor data for an arbitrary system.

However, for generic CPS systems, some baseline Attributes can be estimated based on the
typical processing operations applied to the sensor data. These operations are typically
executed in the Cyber Layer, see Section 2.2.3 or in the Cognition Layer, see Section 2.2.4
of a CPS. The contained operations are tempo-spatial computations and comparisons on
the data as well as estimations and improvements of data quality. The concrete operations
executed are discussed in Section 4.5.
The resulting contextual information of this analysis can be separated into Event Context

and Attribute Context. The Event Context contains attributes that are necessary to identify,
reason and process the sensor data in the CPS. It at least contains information on time,
position and origin of the sensor information. The Attribute Context enhances each attribute
in the event with additional information intrinsic to the process in which the information
is used. In classically developed systems this attribute context is handled implicitly by the
engineer or is defined prior to the actual implementation. It contains information on units,
scaling, references and uncertainty. The individual context attributes are described in the
following sections.

4.3.1. Attribute Context

The Attribute Context consists of four parameters: Scale, Unit, Reference and Uncertainty.
The unit of an attribute enables the representation of a physical phenomenon’s context.

Typically, the Système international d’unités (SI)-System assigns each physical phenomenon
a certain Unit. The Unit parameter enables applications to further assess the content of
attributes contained in events. Mathematical operations on attributes need to take the Unit
into account and modify it accordingly. This enables additional checks to prevent misuse
or erroneous operations. In contrast to other Attribute Context Parameters the Unit of an
Attribute cannot be transformed explicitly.

81

4. Abstract Sensor Event Information Architecture (ASEIA)

The Scale is part of the Unit in the SI-System. However, ASEIA handles the scale as a
separate context parameter. It assigns each attribute value a strictly monotonous function
that modifies the value. It enables the designer of a CPS component to optimize the used
data types in processing and communication to the scenario. An example is the usage of
the milli scale, which multiplies each value with 1{1000. It enables a phenomenon, which
contains values v in the range ´1 ă v ă 1, to be meaningful transported as integers.
The Reference attribute contains the reference of measurement of the phenomenon. This

context parameter enables different measurements with different mechanisms to be used
together in computations. Examples are temperature measurements in Kelvin and Degree
Celsius. The values are compatible regarding mathematical operations if they are trans-
formed to the same reference point. In classical systems, reference points are typically fixed
based on the pre-defined SI-Unit definitions. ROS, see Section 3.3, for example defines each
value communicated to be in basic SI-Units. However, some SI-Units define no absolute
reference, e.g: Position. ROS established a dedicated system to handle the different position
references, which is named TF [65]. ACTrESS, described in Section 3.6, dynamically creates
hierarchies of different scales used for position data. This enables a translation of the sensor
data produced in one scale to any other scale within the hierarchy. However, the transla-
tions between the entries in the hierarchy are executed on certain information and output
certain information. In consequence, translations, which decrease the quality of the data
pass silently through. This creates problems for the CPS applications using the contextual
information as the usability of the contained information cannot be evaluated anymore.
Consequently, ASEIA enforces a generic attribute context parameter Uncertainty, which

is described in the next section.

4.3.2. Uncertainty Model

An identified challenge of the dynamic composition of CPS, as discussed in Section 2.2.3,
is the definition, communication and propagation of uncertainty of sensor information in
the system. Currently, a major task of an engineer designing and implementing CPS is the
estimation of the inherent uncertainty and its management as this uncertainty is inherent
to the system and cannot be avoided as Elmenreich [61] described.
Figure 4.4 shows an example situation in the car scenario. A car equipped with a distance

sensor has a certain observation area of this sensor. Within this observation area it is able
to reliably detect and estimate the distance to another object. However, the exact angle of
this other object is unknown as only a distance is produced. If the distance information is
transformed to a position information of the other object, the angular uncertainty needs to
be considered and transformed to a positional uncertainty.
A fully distributed and individually developed CPS needs to handle this process auto-

matically by explicitly handling the existing uncertainty in all information and processes.
This includes the sensor data as well as the context of the sensor information. To handle
this uncertainty information, uncertainty models that enable a mathematical abstraction of
the existing uncertainty are necessary. These models need to include operations to forward
and modify the uncertainty through the processes executed in the CPS from source (sensor)
to sink (actuator). The uncertainty of the information is dependent on the information,
therefore, it is useful to have separate uncertainty models for different types of information.

82

4.3. Sensor Information and Context

x

y

4.2m˘ 0.1m

4.2m˘ 0.1m

1.1m˘ 0.1m

Figure 4.4.: Visualization of the time space uncertainty context of an abstract distance sensor
in a vehicle scenario.

Semantic Streams, see Section 3.5 focuses on an Uncertainty Model for the whole event,
which describes the confidence in the event’s existence. Odysseus uses Gaussian Mixture
models to model and process the uncertainty of the sensor data. This approach enables
an accurate estimation of the uncertainty of acquired sensor data, if enough training data
to fit the model can be acquired. The operations on Gaussian Mixture Models are Monte-
Carlo algorithms sampling the distribution to execute mathematical operations, which is
computationally expensive. Sentient Objects attach Bayesian beliefs to the sensor data to
enable Bayesian inference on the distribution of the continuous values, which needs a known
distribution of the sensor data in case of continuous data. All three approaches are valid,
but handle different types of information and use different amounts and types of input data.

In this thesis two uncertainty models are considered. One model handles discrete valued
information and another one handles continuous valued information. These two uncertainty
models aim to provide an uncertainty representation for continuous and discrete values
of sensors and context. Mathematical operations executed on the sensor data are also
executed on the uncertainty and transform the contained information accordingly. The
defined operations aim to induce minimal computation overhead to enable the application
to low-power embedded systems. Additionally, the uncertainty models trade exactness of
the uncertainty representation against easy specification and fast operations at run-time.
However, ASEIA is designed to handle any type of uncertainty model as long as necessary
mathematical operations are defined. The following Section shows the used discrete and
continuous uncertainty models designed and later evaluated for ASEIA.

83

4. Abstract Sensor Event Information Architecture (ASEIA)

Discrete Value Uncertainty

Discrete valued data has the special property that neighboring values are independent. In a
mathematical sense no distance metric exists on the data. An example is the classification
of an object. The object might be classified as a cup or as a ball. However, these two
results are completely independent. In general, it is not possible to deduce the probability
of the object being a ball, if the object was classified as a cup. Therefore, discrete valued
information uses probability-based uncertainty. The probability describes the amount of
possible miss-classification depending on the value of the information.
The information uncertainty complex v P IX “ X ˆ r0, 1s can be described as a tuple of

the actual information vv P X with the associated miss-classification probability vu P r0, 1s.
The necessary operations for discrete values information are mainly comparison operations
such as ˛ P t“,‰u. Consequently, the comparison operations can be defined based on the
probabilities as:

a ˛ b : I2
X Ñ t0, 1u ˆ r0, 1s (4.1)

a ˛ b “ pav ˛ bv, 1´ p1´ auq p1´ buqq . (4.2)

The output of these comparisons are discrete values of booleans. These have two additional
operations that enable the expression of logical connections ˝ P t`, ¨u. The operations
represent logical or and logical and. They are defined according to Equations 4.4 and 4.3.
Additionally, the negation of a boolean is defined in Equation 4.5.

a ˝ b : I2
t0,1u Ñ It0,1u (4.3)

a ˝ b “ pav ˝ bv, 1´ p1´ auq p1´ buqq (4.4)

 a “ p av, 1´ auq (4.5)

This approach enables the propagation of the uncertainty of the different decision steps
in the processes executed in the CPS. In general, the uncertainty of this information is
monotonously increasing, but special transformations such as filters and aggregations may
decrease it.

Continuous Value Uncertainty

In this work continuous valued uncertainty is modelled by using interval arithmetic, because
interval arithmetics is a well understood tool to express uncertainty, see Dawood [55]. To
enable the processing layer of ASEIA to use the uncertainty model, an algebra needs to be
defined that provides the necessary operations by using operations defined on intervals. The
described operations are based on the algebraic operations described in [56].
An interval is defined as a continuous subset of a domain D. In the case of computer

arithmetic, this domain is generated by the possible values of the generic data types such
as unsigned integer with 32 bit, signed integer with 16 bit and IEEE754 floating point
numbers [9]. An interval I may either be defined by the smallest contained value a´ P D
and the largest contained value a` P D, with a´ ď a` as a “ ra´, a`s or as the center of
the interval av P D and a distance to the bounds of the interval au P D`. D` denotes a

84

4.3. Sensor Information and Context

domain related to D containing only positive values 0 ď d P D`. The resulting interval may
be written as a “ rav ˘ aus. This representation eases the evaluation of the uncertainty and
the value part of the interval. It also enables the interval to span outside of the domain D,
which may be used to indicate computation errors such as negation of an unsigned value.
Mathematically, both representations can be converted by using Equations 4.6 and 4.7.
Consequently, this work will use the representation of Equation 4.7.

“

a´, a`
‰

“

„

a´ ` a`

2
˘
a` ´ a´

2

(4.6)

rav ˘ aus “ rav ´ au, av ` aus (4.7)

To be able to handle intervals similar to normal arithmetic types, the operations
`,´, ˚, ||,2 ,?, ă,ą,“,‰,ď,ě need to be defined. The basic arithmetic operations
˝ “ `,´, ˚, { are defined through Equation 4.8.

a ˝ b “

„

minpa ˝ bq `maxpa ˝ bq

2
˘
maxpa ˝ bq ´minpa ˝ bq

2

(4.8)

The approach of Equation 4.8 can also be used to enable arbitrary mathematical functions
to be applied to the interval I. If the applied function is not monotonous, the interval needs
to be separated at the points of monotony change. The function can then be applied and
the resulting sub-intervals need to be merged again.
The comparison operations ˛ “ ă,ą,ď,ě,“,‰ can be reduced to the definition of the

two ordering relations ă in Equation 4.10 and ą in Equation 4.11 and the equality relation
“, see Equation 4.12.

a ˛ b : I2
X Ñ It0,1u (4.9)

a ă b :

#

p1, 0q if av ` au ă bv ´ bu

p0, pa ě bquq otherwise
(4.10)

a ą b :

#

p1, 0q if av ´ au ą bv ` bu

p0, pa ď bquq otherwise
(4.11)

a “ b :

#

p1, pa “ bquq ifmin pav ` au, bv ` buq ą max pav ´ au, bv ´ buq

p0, 0q otherwise
(4.12)

pa “ bqu “
pmin pav ` au, bv ` buq ´max pav ´ au, bv ´ buqq

2

4aubu
(4.13)

pa ě bqu “ 1{2pa “ bqu `
max ppav ` auq ´ pbv ` buq , 0q

au
(4.14)

pa ď bqu “ 1{2pa “ bqu `
max ppbv ´ buq ´ pav ´ auq , 0q

au
(4.15)

The order relations ă and ą provide an exact output if the intervals in question are
not intersecting. Otherwise, they provide a measure of the ratio between intersecting and
accurate parts of the intervals. The defined equality comparison “ represents an intersection

85

4. Abstract Sensor Event Information Architecture (ASEIA)

test relation between a and b. A minimum uncertainty is only established if the intervals
are exactly equal. Otherwise, the relation defines an integrated measure of intersection area.
The other comparison operations can then be expressed in terms of ă,ą and “.

a ď b : pa ą bq (4.16)

a ě b : pa ă bq (4.17)

a ‰ b : pa “ bq (4.18)

4.3.3. Time Model

Time is a very important attribute of any information used in CPS. As described by
Kopetz [89], the information and the time of creation, respectively acquisition, form a
time-value entity, which cannot be separated during the whole processing. Since time is
considered to advance monotonously, information can only become older, unless new in-
formation is acquired. This process of aging is very relevant to any CPS since the age of
the information is directly coupled to the uncertainty of the information. In general, older
information induces additional uncertainty to the information. The actual coupling between
age and uncertainty is very system-specific and is typically not known. However, special op-
erations such as Kalman Filters, as described in Section 4.5.8, may use explicit information
on the time uncertainty coupling of a specific process to minimize the uncertainty of the
information.
As stated by Einstein [87] time is a local attribute, which cannot be observed globally.

Consequently, each component in the system has its own local time. Even if clock syn-
chronization is applied, a residual uncertainty still persists. Clock synchronization is gen-
erally used to synchronize the clocks of the different components to a common value until
a desired uncertainty goal. For an arbitrary large system the estimation of this common
value becomes more difficult and might induce additional uncertainties. Existing clock syn-
chronization algorithms are typically bound to certain network topologies and/or enable
a static trade-off between uncertainty and overhead. For example Continous Clock Syn-
chronization (CCS) [112] generally considers single-hop neighborhoods to ensure minimum
uncertainty. Caesium Spray [166] on the other hand uses a second network level consisting
of GPS-receivers to limit the number of hops. Other approaches such as the one proposed
by Römer [135] modify the time stamps on transmission of the information from sender to
receiver. This approach scales well, but induces statically unknown uncertainties.
This thesis uses a time model that is based on local time domains in each node, which

is similar to GSN, see Section 3.3.2. In addition to to the approach of GSN, translations
between the individual node’s time domains are estimated by observing the time of neigh-
boring nodes. This enables the node to assess the difference between the time domains up
to the inherent uncertainty of the system. This difference of time domains may be used to
transform information with a local time stamp from one domain to another, which relates
to ACTrESS approach, but applies it to the time domain. However, the estimation can
never be fully accurate, therefore, the transformation increases the uncertainty of the time
information of the transformed Events. Information flowing through the system is trans-
formed from one time domain to the other depending on its current topological position in

86

4.3. Sensor Information and Context

the system. On each transformation the uncertainty increases, resulting in smaller uncer-
tainties for topologically closer time domains and larger uncertainties for topological distant
nodes. The used Transformation to implement the used Time Transformations is described
in Section 4.5.9. A consequence of the used Time Transformation system is the definition
of the time context of an attribute itself as a time stamp with an attached uncertainty. This
uncertainty naturally defines a time-span instead of a certain time stamp, as done by e.g.
Sensid. Therefore, time spans can be expressed using an uncertainty in the events time
context. Finally, events are considered to exist not at a certain point in time, but have a
minimum start time and a maximum end time.
A large benefit of this approach is the locality of the time information, which eases the

processing of sensor data. Additionally, time stamps are inherently considered as time
spans, which enables a native uncertainty propagation during processing. Comparison of
time stamps can yield a third result maybe describing the inability of the system to exactly
establish an order. This concept is similar to the approach of Römer [135]. The resulting
time attribute uses one dimensional values with continuous uncertainty, see Section 4.3.2,
which supports the classical mathematical operations for scalars `,´, ˚, { and the typical
comparison operations ă,ď,“,‰,ą,ě. The maybe ordering is realized by the definition of
the comparison operations, which contain different semantics compared to certain compar-
ison. The unit of time is generally Seconds with an arbitrary linear scaling based on the
precision of the local clock of the node. The reference of time can be an arbitrary point in
time such as the Unix epoch 00:00:00 1.1.1970. Typically, each node has its own reference
point, which gets transformed automatically when the time is transformed between nodes.

4.3.4. Space Model

It is not enough to specify the time of the phenomenon in a distributed CPS, because multiple
components of the CPS may observe the same phenomenon from different positions. Conse-
quently, the position is also relevant to the processing of information. In currently existing
systems multiple position data formats are used. They reach from geodesic coordinates as
used by GPS [84] to Cartesian projections such as Universal Transverse Mercator (UTM) [77]
to abstract representations such as topological maps. Each of these representations are op-
timized towards a special application. However, each sensor used to acquire positional
information typically only delivers a single representation, which is optimized towards its
general usage scenario. GPS-Sensors for example often output their information in National
Marine Electronics Association (NMEA) format. This format is very well suited for navi-
gation on streets, but is to coarse to be used indoors. This format can be transformed to
UTM format using mathematical operations.
The information may also be transformed to topological representations such as street

maps. The opposite is generally more difficult and produces statically unknown uncertain-
ties depending on the current information. As a consequence, this thesis considers position
to be a multi-dimensional uncertain value with a special anchor point providing an ori-
gin. The individual positional information can be transformed from one representation to
the other if a mathematical transformation description is available. This transformation
creates additional uncertainty in the data similar to the time transformations described in
Section 4.3.3. An example is the transformation of the RFID-based detection of an entity

87

4. Abstract Sensor Event Information Architecture (ASEIA)

entering a room. This information is a topological position. If the GPS-coordinates of the
room are known, the topological information can be transformed to NMEA information.
However, the current position of the entity is uncertain within the room. This introduces
additional uncertainty in relation to the size of the room. ACTrESS, as described in Sec-
tion 3.6, provides a similar system enabling a generalized position information system for
ubiquitous architectures. However, this system uses a root context as base to a hierarchical
tree of position representations, which is optimized towards minimum information loss. For
a general purpose system this approach is not suited since existing positional representa-
tions might not be transformable at all. For example, two topological maps without common
nodes are inherently incompatible. However, if reasoning and information transfer only hap-
pens between components of each topological map, no information is transfered between the
disconnected sub-graphs of the maps and the system can process the information separately
in each sub-system.
This thesis proposes a local position domain approach similar to the local time domain

approach described in Section 4.3.3. Each component of the distributed CPS has its own
positional representation that is transformed to another representation if the information
is transferred to another component. This enables a very efficient usage of local sensor
equipment, but still provides the ability to use local sensors on remote components with
increased uncertainty. Additionally, all representation may be used to filter information
regarding position. Similar to the time domain, the position context need to be considered
as a region, which the event relates to. The region is expressed using the possibly multi-
dimensional uncertainties, which are attached to the certain center of the region. The layout
of the region is dependent on the used coordinate representation. For Cartesian coordinates
the uncertainty description only allows the specification of rectangular areas, whereas for
polar coordinate the regions always indicate circle or sphere segments.

4.3.5. Producer ID

The Producer ID uses unique identifiers of nodes in the system to enable an identification
of the source of the information. It enables a detection of loops in the processing. These
loops are typically unwanted, as they produce an infinite amount of output events, which
may have a decreasing uncertainty. This data incest is highly dangerous to the system,
as it creates invalid context information passed to other components. The Producer ID
detects such loops and eliminates them by preventing the creation of the invalid information
and also by preventing the additional overhead of producing the events. The producer ID
is an uncertainty free attribute, as the producer of the data attaches its own id to the
created event, which is always an exact information. The ID supports a special combination
operation ˚ used in transformations to update the producer of the information and prevent
loops between brokers. This operations follows the same definition as the Event ID explained
in Section 4.4.7. Additionally, it supports the generic discrete value comparison operations.

4.4. Abstract Sensor Event Model

The described context information regarding time, space producer and uncertainty needs to
be combined with the various sensor data to a single entity used in the system. To this end,

88

4.4. Abstract Sensor Event Model

ASEIA uses the abstraction proposed by Marzullo in 1989 [108] as inspiration. Marzullo
proposed the abstraction of actual sensor through a concept called ‘Abstract Sensors’, which
hides the actual implementation of the sensor and replaces it with a more general concept.
This enables the designer of the system to limit the specification of the sensor to the informa-
tion relevant for the actual application. As a consequence, the system could use any sensor
which fulfills the specified requirements. Additionally, the actual implementation itself may
be composed of multiple sensors to enhance the performance for example, an abstract dis-
tance sensor may be implemented using three redundant infrared distance sensors.

This thesis extends the concept from specification in the design phase to a machine read-
able description of these parameters at run-time. In distributed systems like WSN commu-
nication parameters such as endianess and latency are relevant too. As a consequence the
abstraction is generalized to handle communication parameters, format information, con-
text and semantic information encapsulated in ASEs. These events may be transmitted,
processed and evaluated by applications distributed in the network.

The first challenge is the specification of the necessary contained information in ASEs.
The context is described in Section 2.1.3 and contains at least information on time, space
and quality. The semantic information is needed to enable automatic selection of applicable
transformations, based on ontological information. The decision on applicable transforma-
tions is typically done when the actual event channel between publisher and subscriber is
established. During the life-time the selected transformations do not change. This enables a
separation of dynamic and static context of the event. Consequently, the ASE specification
is separated into two parts: on the one hand the Event Type containing the semantic data
endianess, data format, scale and reference data and on the other hand the ASE containing
the actual phenomenons data and the data on the context attributes. This separation pro-
vides the benefit of efficient transmission of events, since static information does not need to
be transmitted periodically, This decreases network load. The benefit of this optimization
largely depends on the creation and destruction rate of channels.

The encapsulation of all sensor information in ASE enables a homogeneous design of
complex processing systems even for heterogeneous information sources. Additionally, the
systems transmission and processing may be optimized to enable resource-efficiency by re-
using established transformations. Finally, the semantic annotation and the context provide
additional information to extend the adaptability of the CPS applications towards changes
in the environment or the systems structure.

The general event structure of ASE is a tuple of attributes. Each attribute represents
a singular parameter of a phenomenon or its context. It includes information on value,
type, scale, unit, uncertainty and semantics of the contained information. The separation
of the generic ASE in a static part and a dynamic part is done through the separation of
the attributes which the ASE consists of. The static information of the attribute consists of
data type, scale, unit and semantic data. The dynamic information is formed by the value
and the uncertainty data. Figure 4.5 shows the generic structure of an ASE as an Unified
Modelling Language (UML) class diagram.

Each attribute is identified by a unique Attribute ID which identifies the semantics of the
attribute. The set of Attribute IDs forms the basic vocabulary of the semantic data of the

89

4. Abstract Sensor Event Information Architecture (ASEIA)

aseia

id

1

1..*

1

1

1

1..*

1

1

1

1

1 1

1 1

1 1

Event

Attribute

Value

ValueElement

Unit Scale

AttributeID

ScaleID

TypeID

Figure 4.5.: UML class diagram showing the general structure of an ASEIA Event.

system. To form an attribute the attribute id aid P N is combined with a value av P V, a
unit au P U and a scale as P S as shown by Equation 4.19.

a “ paid, av, au, asq P A “ Nˆ V ˆ U ˆ S (4.19)

Each Attribute has an associated Attribute Type Ta, which consists of all information
besides the actual value and uncertainty. The Attribute Type is considered as the static
information of an Attribute that is used to establish channels between publishers and sub-
scribers. The data exchanged in the channel consists of value and uncertainty and is called
Va, as shown in Equation 4.20 and 4.21

Ta “ paid, Tav, au, asq (4.20)
Va “ pavq (4.21)

The set of all ASEs E form a subset of all possible combinations of Attributes. However,
for one of these combinations to be a valid ASE some requirements need to be fulfilled. The

90

4.4. Abstract Sensor Event Model

combination is only allowed to contain any Attribute ID at most once and the combination
needs to contain at least the mandatory context attributes B as defined in Section 4.3.
Equations 4.22 and 4.23 show these properties of ASEs.

E Ă P pAq{ pP pBq{Bq (4.22)

E “

pa0 . . . anq|@i, j P r0, ns : i ‰ j Ñ aidi ‰ aidj
(

(4.23)

An Event Type is composed of all contained Attribute Types and is called Te. Consequently
the ASE value is formed by all contained Attribute Values and is called V e, as described by
Equations 4.24 and 4.25.

Te “
`

Ta0, . . . ,
Tan

˘

(4.24)
Ve “

`

Va0, . . . ,
Van

˘

(4.25)

The following sections describe the representation of the values, units, scales, operations
and semantic data. The representation of uncertainty is described in Section 4.3, which
describes the context attributes mandatory for an ASE.

4.4.1. Attribute Values

Attribute Values store the dynamic data of the attribute. Attribute Value Types store the
static information on the data format of a specific Attributess’ values. The values represent
matrices of n ˆ m : n,m P N0 instances of a numerical data type T . Each type T has a
unique id idT P N associated to it. Additionally, it may include uncertainty information
indicated by the uncertainty parameter u P t0, 1u. The value and the uncertainty of an
attribute are strongly correlated. This thesis uses uncertainty described as intervals which
is described in Section 4.3.2.
Independent of the chosen type and uncertainty Attribute Values support the generic

operations defined for a linear algebra with an inner product on vector space V nˆm over
a field K. These operations are addition ` : pV nˆmq

2
Ñ V nˆm, scalar multiplication

¨ : K ˆ V nˆm Ñ V nˆm, inner product ăą: pV nˆmq
2
Ñ K and matrix multiplication

¨ : pV nˆmq
2
Ñ V nˆk. Additionally to the basic operations, the attribute values support

element-wise operations like boolean comparisons and non-linear functions.
The value type vt P VT reflects the structure of the value of an attribute. It can be

represented as a tuple of type id id P N, rows r P N, columns c P N and uncertainty indicator
u P t0, 1u, as shown in Equation 4.26:

pid, r, c, uq P VT “ N3 ˆ t0, 1u (4.26)

Value types cannot be modified and only allow comparison regarding equality ” and
inequality ı.

91

4. Abstract Sensor Event Information Architecture (ASEIA)

4.4.2. Attribute Units

Similar to the Boost Unit Library [140], the unit of the attribute is represented as combina-
tion of the basic SI-Units [82]. The SI-System defines seven basic units that are combined
using multiplication and exponents. Additionally, the definition of radians and steradians
are meaningful for physical processes. The unit of force Newton can be represented as shown
in Equation 4.27.

rF s “ N “
kgm
s2

“ sr0 ¨ rad0
¨ cd0

¨mol0 ¨K0
¨A0

¨ s´2 ¨ kg1
¨m1 (4.27)

Consequently, ASEIA stores and uses units au P U as nine tuples containing the exponents
as real values exp P Q as shown by Equation 4.28.

au P U “ Q9 (4.28)

Addition and subtraction of attributes is only possible if their units match. Multiplication
and division of attributes produces new attributes with different units as output, since the
base units are multiplied element-wise. The unit system forms an Abelian Group pU , ¨q with
an identity element. This element is the Dimensionless unit p0, 0, 0, 0, 0, 0, 0, 0, 0q. Similar
to other type information used, ASEIA units only support comparison regarding equality ”
and inequality ı.

4.4.3. Scale Representation

The SI-System [82] and the Boost Unit Library [140] define the scale of the value to be
an inherent part of the unit. However, ASEIA separates the scale into an independent
parameter, as the considered linear scaling which uses a factor in the form of 10x is too
specialized to be used in general purpose physical processes. Physics and engineering also
use other scales such asDbm orDb for processes and phenomena with special characteristics.
ASEIA introduces a scale system by using an object-oriented approach. The scale as is
separated into a strictly monotonous function f defined on the whole domain of observations
of the phenomenon and a reference point r. The value attribute of the attribute is then
constructed from the observation o according to Equation 4.29. Since the function f is
strictly monotonous and needs to be defined on the whole domain of o, an inverse function
f´1 always exists.

av “ faspo, rasq (4.29)

As a result, the scale can be omitted for value computations as long as function and
reference are the same. If they differ, a scale change needs to be executed to translate an
attributes’ value av0 to the domain of another attribute av1. This translation is done by
applying the scaling functions according to Equation 4.30

av1 “ f´1
as1
pfas0pa

v
0, ras0q, ras1q (4.30)

92

4.4. Abstract Sensor Event Model

An example is the translation of a temperature from Fahrenheit to Celsius.

fF po, rq “ 9{5 ¨ o` r

f´1
F pv, rq “ 5{9 pvF ´ rq

rF “ ´459.67

fCpo, rq “ o` r

f´1
C pv, rq “ v ´ r

rC “ ´273.15

vC “ fCpf
´1
F pvF , rF q, rCq

“ 5{9 pvF ` 459.67q ´ 273.15

“ 5{9 pvF ´ 32q

Another example is the translation of the phenomenon power from Dbm to mW .

fdbmpo, rq “ 10 log
o

r

f´1
dbmpv, rq “ 10

v{10r

rdbm “ 1m “ 0.001

fmW po, rq “ 1000 ¨ o` r

f´1
mW pv, rq “

v ´ r

1000

rmW “ 0

vmW “ fmW pf
´1
dbmpvdbm, rdbmq, rmW q

“ 1000 ¨ 10
vdbm{100.001` 0

“ 10
vdbm{10

4.4.4. Attribute Operations

Attributes allow multiple operations to use them directly in the CPS-Application. The goal
of ASEIA is a seamless integration of the communication facilities into the CPS-Application.
Therefore, attributes extracted from received ASEs can be used directly for computations,
as they allow a lot of computation operations.
Each attribute supports operations to compare them regarding their value and their pos-

sibly existing uncertainty as well as their static information. Attributes directly support
the operations defined for the Attributes’ Values. This enables computations on Attributes
without additional conversion. In addition to the operations defined on values, attributes
do additional checks, such as the comparison of scale and unit. This allows the formulation
of type-aware computations that minimize the possibility of programming errors. If scale or
data type of the value need to be changed, additional operations are available that change
the Attribute Type. These operations are rescaling (multiplication with a Scale), casting
of the numeric type used in the value and resizing of the matrix contained in the value.
Comparison of attributes can either be done regarding the attributes’ type or regarding the

93

4. Abstract Sensor Event Information Architecture (ASEIA)

attributes’ value. Type comparisons only support equality and inequality tests, but value
comparisons enable more types of comparisons based on the value type and the presence
of uncertainty. An overview of the supported operations of the different attribute types is
shown in Figure 4.6.

Operations

Value Modi-
fication

Addition

M
ultiplication

Inner Product

Element-W
ise

Type Modification

rescaling

cast
resize

Type Com-
parision

type equal:
”

type inequal:
ı

Value Comparision

approx. equal:
«

less:
ă

greater:
ą

equal:
“

Figure 4.6.: Overview of supported operation classes on ASE Attributes.

The type comparison operations m “ p”,ıq combine the comparison operations on the
sub-types of the attribute unit, scale, value type and Attribute ID, as shown in Equation 4.31-
4.33.

”,ı : AˆAÑ t0, 1u (4.31)
Ta0 ”

T a1
.
“
`

aid0 ” aid1
˘

^
`

Tav0 ”
Tav1

˘

^ pau0 ” au1 q ^ pa
s
0 ” as1q (4.32)

Ta0 ı
T a1

.
“

`

Ta0 ”
Ta1

˘

(4.33)

The value modification operations ˛ “ p“,´,`q are directly applied to the values of the
attributes. However, only compatible attributes may be used in the process, as described by
Equation 4.34. In case invalid attributes are used, the system detects the error and outputs
a void attribute K indicating an error. The multiplication operations check less parameters
of the Attribute Type because the output of the operations is another Attribute Type with
possibly modified unit, scale and value dimensions.

a0 ˛ a1 “

"

av0 ˛ a
v
1 , Ta0 ”

Ta1

K , otherwise
(4.34)

The attribute operations are available to the CPS-Applications as well as the Transfor-
mations used to operate on whole ASEs, as described in Section 4.5. The operations defined
on whole events are Transformations and are described in Section 4.5.

4.4.5. Event Schemes and Event Format

To enable an easy integration of ASEIAs extended functionalities into existing P/S systems,
a separation of the Event Type into a content description and a data format description is

94

4.4. Abstract Sensor Event Model

beneficial. The pure content description is realized by the Event Scheme Se, whereas, the
data format is described by the Event Format F e information. The Event Scheme is defined
as the set of all Attribute Identificator (AID)s contained in the event e, see Equation 4.35.

Se “

aidi |ai P e
(

(4.35)

The Event Format is realized by the Value Type, Unit and Scale of all contained Attributes,
see Equation 4.36.

Fe “

pTavi , a
s
i , a

u
i q|ai P e

(

(4.36)

The Event Scheme represents a classification system for the content of events, a similar
approach is also used in the HERMES middle ware, see Section 3.4. Each Event Scheme
represents an instance of an Abstract Sensor (AS) which communicates by using ASEs.
The Event Scheme defines the semantic classification of the existing sensors based on the
contained information.
The Event Format defines the used data types, scaling system and values as well as units

of the attributes and their references. This information is relevant to establish a Channel
between an arbitrary Publisher and an arbitrary Subscriber exchanging information accord-
ing to the content description of the same Event Scheme. The Event Format is therefore
coupled to the Event Scheme and extends it to the complete static information of an ASE in
form of Event Types. However, the independence of Publisher and Subscriber enables them
to use different Event Formats for the same content. A classical P/S-Channel can only be
established if Event Scheme and Event Format fit, which limits the automatic communica-
tion of independent CPS components. ASEIA solves this problem by using Transformations.
These are described in Section 4.5 to adapt the Event Scheme and/or Event Format.
Event Scheme and Event Format are basic concepts to establish ASEIA-Channels and

need to be efficiently represented and processed even by low-power systems. The represen-
tation of Event Schemes is described in Section 4.4.7.

4.4.6. Event Hierarchy

To ease the definition of different ASE Schemes representing numerous heterogeneous AS,
an ASE Hierarchy is beneficial. This hierarchy specifies the semantic vocabulary of the
system it is used in and enables reuse of existing definitions of ASE Schemes by extending
them with additional information or combining them.
The hierarchy forms a Directed Acyclic Graph (DAG) with a single root node representing

the Base Event. It contains the necessary attributes to describe general phenomena in an
unknown environment according to the Context, see Section 4.3. Elements of the DAG
can be extended by inserting additional AIDs or by combining existing elements to form
new extended Event Schemes. The combination of two Event Schemes to a new event
scheme containing all information of the two individual Event Schemes without duplicating
redundant information. The generated Event Schemes are more specific and contain more
information than basic ones closer to the Base Event. The resulting hierarchy is very

95

4. Abstract Sensor Event Information Architecture (ASEIA)

similar to an object-oriented class hierarchy, see [70], enabling inheritance and automatic
conversion of more specialized elements to more general ones.
An example hierarchy for the robotic and vehicle scenario is shown in Figure 4.7. In this

picture multiple AS are represented that relate to generic physical phenomena, which may
be observed in these scenarios. The Acceleration Event Scheme contains the necessary
information to represent an n-dimensional acceleration value. In addition to the actual
value of the acceleration it may contain additional information on the position and time
of acquisition of the data based on the definition of the mandatory Context. For multi
dimensional acceleration values, applications may need the orientation of the sensor to map
the individual vector components to their coordinate system. In this case the AS representing
the phenomenon DirectedAcceleration, which combines the Acceleration information
with the Orientation of the sensor. It can be used to supply the CPS-Application with the
necessary information. DirectedAcceleration is further away from the root compared to
Acceleration and Orientation, which means that it contains more specialized information.
On the other hand, it extends the two Event Schemes and may automatically be converted
into instances of these, if a CPS-Application only needs Acceleration or Orientation
information. This allows all generated oriented sensor values to be used also as orientation
updates of the sensor itself. This follows exactly the behavior of an object-oriented class
hierarchy. However, converting a generic Event Scheme like Acceleration to a more special
one such as DirectedAcceleration is only possible by using Transformations, which are
described in Section 4.5.

96

4.4.
A
bstract

Sensor
E
vent

M
odel

Base
position
time

producerID

Distance
distance

Angular-
Distance

Proximity

Angular-
Proximity

Object

objectID

ObjectPose

Position

Pose

Orientation
orientation

TurnRate
turnRate

Twist

Speed

speed

Directed-
Speed

Acceleration
acceleration

Directed-
Acceleration

Figure 4.7.: An example event hierarchy usable in the robotic and the vehicle context.

97

4. Abstract Sensor Event Information Architecture (ASEIA)

4.4.7. Semantic Annotation - Event IDs

A semantic annotation of the events is necessary to enable a content based reasoning. This
reasoning is the baseline of all ontology-based systems enabling the deduction of new infor-
mation from existing ones. In the case of ASE, the semantic annotation is the foundation of
the transformation selection process which is executed on channel creation. The annotation
needs to contain the condensed information classifying the AS. However, the annotation
needs to be simple enough to be used for low-level systems and still supports necessary
operations to check for equality and inheritance between different AS.
As proposed by LooCI, see Section 3.3.3, the semantic annotation used in the thesis will

not directly create an ontology, but rather establish a vocabulary of ASE types with the
according inheritance relations and conversion through the Transformations. The content of
the vocabulary needs to be extensible and still provides backwards compatibility to enable
an extension of the system on run-time.
The thesis uses Event Identificator (EID)s that are based on one dimensional integer

values, which are dynamically computed from the Event Scheme. The vocabulary grasps
the content of the ASEs and not the format or meta-information. The attributes, which are
identifiable by their unique AID, exactly define the content of the event. Therefore, they
provide a reasonable information source to generate EIDs. Since the amount of attributes in
an ASE might be potentially large, a compression function is necessary to combine multiple
AIDs to a single integer value.
Preuveneers and Berbers [126] proposed and proved a combination system that is based

on prime numbers. The system efficiently computes unique ids for the event tree by using
a list of primes P and sequence numbers of event types from N . Each added event type is
assigned a sequence number ni P N and a prime number pi P P . The root of the tree is the
base event EVENT and is always assigned p0 “ 11 and n0 “ 1. The id of the base event b0
is defined as b0 “ 1. The resulting id is computed as product of all parents’ ids bj and the
assigned prime number bi “ bj ¨ pi; i ą j; i, j P N . An inheritance test is performed by the
predicate b0 mod b1 “ 0.
This approach has two major drawbacks. Firstly, the inheritance scheme is strictly single

inheritance as it only allows the definition of new event schemes based on existing ones.
Combinations of existing event schemes are not supported. The second drawback is the
assignment of the prime numbers based on event scheme creation. The necessary global
counter for prime number enumeration is very hard to realize for distributed systems.
The thesis proposes a modified version of their approach resulting in EIDs eid, which are

a subset of the natural numbers, see Equation 4.37. The foundation of the EID genera-
tion are prime numbers, which are assigned to attributes based on the attributes’ unique
IDs aid. The event scheme ID eid is generated by multiplying the prime numbers of the
contained attributes, as described by Equation 4.39. The event ID 0 indicates a special
id used in filters that specify any event schemes eidany. The event scheme combination op-
eration is implemented by the construction of the union of the individual Event Schemes
Secombined “

Ť

Sei and the generation of an EID for the resulting scheme, as described
by Equation 4.40. Extensions with specific attributes are possible, since a pseudo event
scheme can be constructed for a single attribute Sea “ aid. The definition by using the AID

1even though 1 is not a prime number itself

98

4.4. Abstract Sensor Event Model

set automatically filters out the common root of all the combined events and guarantees
uniqueness of the resulting EIDs.
The inheritance check a ą b ðñ a mod b “ 0 works exactly as described by Preuveneers

and Berbers by using the modulo operation to check for remainders, see Equation 4.43. This
approach automatically enables testing of inclusion of a certain attribute in an event scheme
solely based on the EID. Since event schemes are sets of attributes, this can also be used to
test for the inclusion of arbitrary AID sets by creating a pseudo event.
The drawback of the extended system is the increase in the value of the ids and a much

sparser EID space. The created ids grow very quickly and need a careful decision on the used
data type to represent the EID. A large data type increases the size of each ASE transmitted
through the network, whereas, a small data type is vulnerable to integer overflow disabling
the extension of the system with extended Event Schemes or Attributes.

eid P N (4.37)

primepnq “ NÑ P : n-th prime number (4.38)

eid “
ź

aidi P
Se

primepaidi q (4.39)

eidcombined “
n
ź

i“0

eidi “
ź

aidj P
Ťn
i“0

Sei

primepaidj q (4.40)

Event ID Uniqueness - : For each pair of events e0, e1 P E a difference in Event Schemes
yields a difference in EIDs:

@e0, e1 P E , Se0 ‰
Se1 ðñ eid0 ‰ eid1 (4.41)

Proof. Consider two different Event Schemes Se0 and Se1 yielding the same EID Seid. By
applying the EID generation Equation 4.39, the event schemes can be reduced to Attribute ID
sets, which need to be different, because each attribute has a unique AID. As consequence,
the product of the primes associated with these Event Schemes needs to be equal, see
Equation 4.42.

ź

aidi P
Se0

primepaidi q “
ź

aidi P
Se1

primepaidi q (4.42)

However, this is in conflict with the fundamental theorem of arithmetic, which states
that any natural number can be represented by exactly one product of prime numbers [79].
Therefore, the original assumption of the equality of the EIDs is false.

Event Inheritance - : For each pair of Event Schemes Se0,
Se1 P

SE iff Se1 inherits from
Se0 ðñ eid0 P e

id
1 :

Se1 Ą
Se0 ðñ eid1 mod eid0 “ 0 (4.43)

99

4. Abstract Sensor Event Information Architecture (ASEIA)

Proof. Consider e0 and e1 to have the same Event Scheme. It follows based on Equation 4.41
that the EIDs need to be the same as well eid0 “ eid1 “ eid. Applying the test stated
in Equation 4.43 yields eid mod eid “ 0 Ñ e0 P e1. If Se0 and Se1 have different Event
Schemes, two cases may occur:

1. Se1 Ą
Se0 and eid0 P eid1

2. Se1 Ğ
Se0 and eid0 R eid1

Case 1 means that eid1 can be separated into eid0 and the id of the extension set eidext:

eid1 “ eid0 ¨
ź

aidi P
Se1{ Se0

aidi “ eid0 ¨ e
id
ext (4.44)

eid0 ¨ e
id
ext mod eid0 “ eidextpe

id
0 mod eid0 q “ 0 (4.45)

(4.46)

Following Equation 4.43 the inheritance test is simplified to Equation 4.45, which proofs
e0 P e1.
Case 2 means that Se1 and Se0 can each be separated in a common Event Scheme

Secommon “
Se0 X

Se1 and two non-empty remainder Event Schemes Se11 “
Se1{

Secommon
and Se01 “

Se0{
Secommon, which are pair-wise disjunct. The inheritance test, see Equa-

tion 4.47 can be simplified to Equation 4.48 through the application of the rule ca ”

cb mod
´

m
gcdpc,mq

¯

, with c “ eidcommon.

eid11 e
id
common mod eid01 e

id
common “ 0 (4.47)

eid11 mod eid01 “ 0 (4.48)

4.48 cannot be true because Se11 X
S e01 “ H and therefore the gcdpeid11 , e

id
01 q is “ 1.

4.4.8. Format Hashes

Similar to the EID, a compact representation of the Event Format is necessary to allow
efficient checking of ASE compatibility between publisher and subscriber. Therefore, a
function is necessary to map the potentially large format definition to single dimensional
value. In contrast to Event Schemes, no inheritance information needs to be preserved.
Consequently, only equality and inequality comparison need to be supported.
The best choice for this mapping is a hash function, that maps the arbitrary long infor-

mation contained in the Event Format to an integer value of fixed size. The function needs
to be executed. Therefore, it needs to be executed fast. To prevent mismatches of Event
Formats, the hash function should minimize collisions. If collisions occur, additional ASE
are transmitted through the network increasing the network load. However, no erroneous
ASE will be received as these wrongly delivered ASEs are additionally checked regarding
network meta-information such as length of serialized data.
The actual choice of hash function is irrelevant as long as the described requirements are

met.

100

4.5. Abstract Sensor Event Transformations

4.5. Abstract Sensor Event Transformations

The basic concept of ASEIAs dynamic composition of CPS components are Transforma-
tions of ASEs flowing through the network to couple existing publisher in the network to
subscribers of the CPS applications. These Transformations need to be described in a ma-
chine readable way to enable the network to deploy them on run-time if necessary. The
description consists of the Event Type of the input and output events. The system decides
whether the execution of the transformation is necessary based on the existing subscriptions
and announcements of publishers and subscribers. The Transformations consist of the in-
put and output Event Type Tei, additional Filter Expressions pi :T eni Ñ 0, 1 and a function
f : Teni Ñ

Teout which takes n input events of types Tei and outputs a single event eout of
type Teout. The Transformation may be selected according to its specified Event Scheme
ID and Event Format. This generic setup of Transformations is displayed in Figure 4.8.
On execution of the Transformation, the Filter Predicates pi are checked and on positive
evaluation of all of them, the Transformation Function f is executed.
Transformations are very flexible regarding their parameters. To this end, different types

of Transformations need to be considered to enable detection of incoming events, processing
them and output appropriate events as expected by the subscribers. The different Trans-
formations can be classified into Unary-Transformations and N-Ary-Transformations based
on the amount of input events. Additionally, the transformations can be separated based on
the Event Scheme IDs of the input and output. Transformations which contain compatible
Event Schemes in their set of input event scheme set and their output event scheme set are
called homogeneous. Heterogeneous Transformations on the other hand have disjunct sets of
input and output Event Schemes. A third classification is based on the abstraction level the
Transformation acts on. Attribute Transformations transform single attributes of incom-
ing events, whereas, Event Transformations work on the event as a whole. The following
terminology is used in the thesis to describe the different types of Transformations.

eout “ fpe0, . . . , en´1q

Ź

pipe0, . . . , en´1q

Teout

Te0
Ten´1

e0 en´1

eout

Figure 4.8.: Graphical illustration of a generic Sensor Event Transformation with n inputs,
m filter expressions p0, . . . , pm´1 and a transformation operation f .

Unary Transformations take a single event of a known Event Scheme as input and output
a single event of an also known Event Scheme. This type of transformation can directly
be executed whenever an appropriate event is received by the broker node.

101

4. Abstract Sensor Event Information Architecture (ASEIA)

N-Ary Transformations take multiple events of possibly heterogeneous Event Schemes and
combine them to a single output event. The incoming events need to be buffered in
the node executing the Transformation, since the events are typically not received at
the same time. The buffering of the events can follow different strategies based on the
goal of the application. This can be expressed by buffering strategies such as the ones
described in Section 4.6.4.

Homogeneus Transformations output events of the same Event Scheme which they also
take as input events. This may produce transformation cycles, where the same trans-
formation is executed on the same events repeatedly. This is dangerous, because it will
create an infinite amount of events flooding the network. This can only be avoided by
appropriate filter expression attached to the transformation.

Heterogeneus Transformations output events of Event Schemes which are not part of
the input event set. This will never produce transformation cycles producing infinite
amounts of events.

Generic Transformations are Transformations that modify their behavior according to in-
formation provided by the publisher and subscribers on channel creation, which con-
sists of Event Types and Filter Predicates.

Composed Transformations are Generic Transformations created by combining multiple
Transformations selected from the Knowledge Base and placed in a single connected
Transformation DAG.

Attribute Transformation operate on attributes of events. They can be and be combined
with other Attribute Transformations as long as they operate on disjunct attributes of
the same Event Scheme to form a single Heterogeneous Event Transformation. They
are are Generic Transformations as they need to adapt to the Event Format specified
by subscriber and publisher.

Event Transformations operate on all attributes of a single Event Scheme. The Event
Scheme describes the necessary attributes for the given transformation. Because of
the used Event Hierarchy, they may also use events of Event Schemes further down
the hierarchy.

The classes of the different Transformations form a hierarchy, which is displayed in Fig-
ure 4.9. Additionally, some example Transformations are inserted into the Figure to display
the relation of typical operations used to processing sensor data mechanism to the classes
of Transformations.

The individual Transformations are selected as necessary by the brokers in the network
and form Transformation DAGs in each broker, which are executed on ASE reception. The
individual Transformation classes and exemplary instances of them are described in the
following sections. The creation and execution of the Transformation DAGs is described in
Section 4.6.

102

4.5.
A
bstract

Sensor
E
vent

T
ransform

ations

Transformation

Unary

Homogeneus

Attribute

Rescale

Cast

Selection

Constant

Heterogeneus

Fusion
Complementary

P
rocess

N-ary

Heterogeneus

Fusion
Complementary

K
alm

an

P
rocess

Homogeneus

Aggregation

m
in

m
ax

avg
sum
count

Fusion

Cooperative

Interpolation

E
xtrapolation

K
alm

an

C
oncatenation

Concurrent

F
ilter

K
alm

an
Selection

Dynamic

Attribute

Scale Change

Figure 4.9.: Hierarchy of Event Transformations

103

4. Abstract Sensor Event Information Architecture (ASEIA)

4.5.1. Selection

Selection is a major mechanism used in many CEP and CED systems, see Section 3.4 to
fulfill functionalities of the Smart Connection Layer, see Section 2.2.1. It enables the indi-
vidual nodes to specify their interest in certain information contained in an event or an Event
Combination. ASEIA considers selection to happen before any Transformation is executed.
The selection is executed on three layers of information: Event Scheme, Event Format and
event content. The scheme and format are static information and part of the established
channel. Therefore, this selection is executed automatically for any communication in the
P/S system. The filtering of Event Combinations based on content is executed in the form
of special Selection Transformations. These consist of a set of filter predicates pi on a set
of event types TE “

Te0, . . . ,
Ten´1

(

. Each predicate consists of a comparison operation,
as described in Section 4.3.2, between an attribute of an input event and a constant or the
same attribute of a different input event. Consequently, each predicate can be considered to
be a tuple of the constant predicate set Pc “

pi, aidj , ˛, cq|0 ď i ă n, aidj P §ei, Tc ” Taj
(

or
the dynamic predicate set Pc “

pi, aidj , ˛, kq|0 ď i, k ă n, aidj P
Sei, a

id
j P

Sek
(

on the input
events. These predicates are issued by the subscriber and forwarded to the brokers on chan-
nel creation. The brokers include these predicates in the form of Selection Transformations
in their Transformation Graphs to enable native filtering of events. The resulting transfor-
mation is always a homogeneous transformation as it forwards one input event on fulfilled
predicates.
Some CED systems allow the specification of detection rules allowing the exclusion of an

event. ASEIA does not allow this type of operations, as this operations needs the capability
of the underlying P/S system to detect if an event does not exists. In asynchronous systems
this information cannot reliably be established as the event in question can be delayed
arbitrarily. This problem has already been discussed by the authors of Abstract Events
(Section 3.4). An additional problem is the disambiguation between an event with maximum
uncertainty and no event. An event containing maximum uncertainty for each sensor data
and context parameter conveys no information and is comparable to receiving no event at
all. The approach of event exclusion typically relates to detection events. ASEIA’s discrete
uncertainty model needs these events to contain a discrete detection sensor data attribute.
Instead of specifying that a special detection event did not exist, an event Filter Expression
can be constructed, which compares the detection event regarding uncertainty. Using this
approach similar expressiveness can be achieved, but it also allows the CPS application to
detect and react to situations without available information.
The selection mechanism consists of two subtypes that have inherently different properties.

The Static Selection and Dynamic Selection are described in the next paragraphs.

Static Selection The Static Selection compares the values of the attribute and the context
of the attributes against constant values. Therefore, it may only contain predicates from the
constant predicate set. This operation is very efficient, since each predicate only operates
on a single event. Therefore, events can be directly classified into “usable” and “unusable”
on reception. Consequently, unusable events can directly be discarded without storing them
temporarily. The operation of this transformation resembles the “WHERE” statement of
SQL expressions and may be used to limit the amount of incoming events, especially in the
case of periodic events.

104

4.5. Abstract Sensor Event Transformations

Dynamic Selection The Dynamic Selection compares values and context of attributes be-
tween incoming ASE. This is a very expensive operation, since in worst case every Event
Combination of buffered events needs to created and evaluated. This requires many opera-
tions to be executed by the buffering filtering system of the transformation. On the other
hand, the results directly enable distributed event detection in the CPS. Depending on the
used operation in the transformation executed, detection of composed events, abnormal sit-
uations and even dangerous situations are possible. As a Dynamic Selection Transformation
may also contain predicates of the constant predicate set, it can be separated into a purely
static part and a dynamic part. An early execution of the static selection might mitigate
the performance issues of the Dynamic Selection.

4.5.2. Attribute Transformations

The Attribute Transformations enable a decoupling of the publisher and subscriber in the
data format domain. They only need to agree on the Event Scheme as vocabulary to be
able to communicate with ASEIA automatically by taking care of the adaption of scale,
reference and data types. This allows each component of the CPS to work with the data
types best suited to the inherent limitations of the platform which it runs on. An 8-bit
micro controller for example can favor 16-bit integers over 32-bits floats to represent the
values. Whereas, a general purpose system such as ROS favors floats in SI Base Units
because of standardization. Generally, data type and scale are coupled, because depending
on the scaling of values different ranges of values are encountered on run-time, which needs
different data types to handle them without over- or underflow. However, ASEIA models
both Transformations as individual transformations that are configured and composed to a
single Event Transformation if necessary. The following example transformation show the
process of Attribute Transformation based on an example transformation extracted from the
robotic scenario: The robotic scenario shows some deeply embedded distance sensors used
to detect the presence of an entity. These sensors may be used by a robot to enhance its
positioning if no other absolute position information is present. However, robotic systems
typically consider position to be a floating point value either in polar coordinates, as provided
by a GPS sensor, or in a Cartesian coordinate system. Typical distance sensors used in the
robotic context have a limited range ă 10m and seldom surpass millimeter resolution. As
a consequence, they provide their data as integer values in centi- or millimeters. To enable
the robot to use the distance information a cast from integer to float is necessary together
with a rescaling of the value from centimeters to meters. This combined homogeneous
unary transformation is shown in Figure 4.10. It consists of two basic Unary Attribute
Transformations: Cast Transformation and Rescale Transformation, which are described in
the next paragraphs.

Cast Transformation The Cast Transformation enables a translation of the Attributes
Value Type, as described in Section 4.4.1, from one data type to another. It is a Unary
Generic Homogeneous Attribute Transformation. An example is the translation of a vector
or matrix of 32-bit integers to IEEE754 single precision floats. The Transformation only
needs a single event as all necessary information is present on creation of the channel through
the exchanged Event Types between publisher and subscriber. In cases, where the target

105

4. Abstract Sensor Event Information Architecture (ASEIA)

eout.dist “ pfloatqe0.dist

Distance

Distance

eout.dist “ e0.dist
100

Distance

e0

eout

e0

eout

Figure 4.10.: Figure showing the combined transformation used to convert distances from
centimeters as integer to meters as float.

data type is larger than the source data type, no additional uncertainty is created. However,
in the other case additional uncertainty might be created by the conversion because of a loss
of precision for floating point values or because of saturation for integers.

Rescale Transformation The Rescale Transformation enables the translation of different
linear scales, as described in Section 4.4.3. It enables the rescaling of values between SI-
Prefixes like milli- or kilo-. This behavior is a specialized case of the generic Scale Trans-
formation, which is described in the next paragraph. In contrast to the generic one, no
additional run time information is necessary to execute the Transformation, as all necessary
information is contained in the Event Type.
Linear scaling as used for SI-Prefixes can be represented by three parameters n, d and

r. n and d are the numerator and denominator of the scaling quotient m “ n{d of the
linear function f “ mx ` r. r represents the reference point of the scaling. Therefore,
the Event Type in case of linear scaling directly contains the numerator and denominator
and a reference id rid0 . To translate a value v0 from scale s0 “ pn0, d0, r0q to the scale
s1 “ pn1, d1, r1q, the difference between reference points ∆r0,1 is needed together with two
numerators and denominators, according to Equation 4.49. The Rescale Translation can
only be used if the reference identified by the two reference ids are equal. Consequently,
∆r0,1 is 0, which simplifies the operation to v1 “ v0 ¨∆s0,1. The value ∆s0,1 is the rescaling
coefficient computed on channel creation for each attribute.

v1 “ v0
d0

n0

n1

d1
`∆r0,1 “ v0 ¨∆s0,1 `∆r0,1 (4.49)

This Transformation only creates additional uncertainty if the multiplication saturates be-
cause of overflow or because of a loss of precision for floating point values.

106

4.5. Abstract Sensor Event Transformations

Scale Change Transformations The generic handling of scaling and especially references
of coordinate systems is a very important topic in robotics. ROS uses a special subsystem
developed by Foote called tf [65]. This system enables a hierarchy of coordinate systems to
be handled automatically through the specification of the translation and rotation between
them. ASEIA provides the Scale Representation, see Section 4.4.3, as a generalization of
this concept attached to each attribute. The Scale Change Transformation is a Generic
Dual Homogeneous Attribute Transformation enabling a generic translation from one scale
to another by providing a functionality similar to tf transformPose. To this end, it needs
an additional event containing the necessary Reference Information for the two scales. This
event needs to be provided by the system similar to ROS tf. The resulting Transformation
needs to buffer at least the most recent Reference Information to be able to execute. Ad-
ditionally, the age of the Reference Information impacts the uncertainty, which is captured
by the time attribute of the transformed event. The time interval is extended to contain
the time stamp of the Reference Information to enable the CPS Applications to handle the
age of the Sensor Information as well as the age of Reference Information. An example

eout.pos “ e1.rot ¨ e0.pos ` e1.off

e0.pos.ref “ e1.in.ref

Position

Position-
Reference

Position

eout.rot “ e0.rot ¨ e1.rot
1;

eout.off “ e0.off ´ e1.off ;

eout.in.ref “ e0.in.ref ;

eout.out.ref “ e1.in.ref ;

e0.out.ref “ e1.out.ref

Position-
Reference

Position-
Reference

e0
e1

eout

e1
e0

eout

Figure 4.11.: Figure showing the Composed Transformation used to convert Position events
of one robot translated to another robots coordinate system.

of this transformation is the transformation of Position Information of a robot from the
robot scenario to another robots coordinate system. This transformation needs additional
information to be executed, namely the relation between the two coordinate systems of the
robots. The resulting transformation needs to find a common coordinate system of the two
robots to deduce the coordinate transformation necessary to transform positions of one coor-

107

4. Abstract Sensor Event Information Architecture (ASEIA)

dinate system to the other. The resulting combined transformation is shown in Figure 4.11.
This figure shows two Transformations. The lower one takes the two Reference Points of
the two scales of the robots and computes their ∆r0,1. This is based on their relation to a
third common coordinate system. This behavior is also the base of ACTrESS, discussed in
Section 3.6. The upper one uses the resulting ∆r0,1 to change the reference of the incoming
positions. For clarification purposes the modification of the time attribute is omitted.

4.5.3. Event Transformations

Attribute Transformations, as described in Section 4.5.2, allow the dynamic adaption of the
data formats of publishers and subscribers of the same Event Scheme to establish com-
munication between them. Event Transformations on the other hand use the semantic
annotation to automatically establish channels between publishers and subscribers of differ-
ent Event Schemes. They provide mechanism to execute sensor signal processing within a
CPS’ Cyber Layer, see Section 2.2.3, in the network to dynamically link publishers and
subscribers as required by the application. To this end, different types of signal processing
might be used. The different classes of processing are described in the next Sections.

4.5.4. Complementary Sensor Fusion Transformations

Complementary Sensor Fusion Transformations are a Heterogeneous Unary or N-Ary Event
Transformations. They use a single or multiple input events ein “ pe0, . . . , enq to compute
new sensor events of a different Event Scheme @ei P ein : eidout ‰ eidi . The physical process
description of the Transformation uses the Attribute Operations, see Section 4.4.4, to for-
mulate the translation function f of the Transformation. Additionally, the Constant and
Dynamic Selection Predicates, see Section 4.5.1, pi P PC X PD may be used to specify filter
expressions stating the constraints of the physical process. An example is the transformation
of position information of an object to speed information, as shown in Figure 4.12.

e.speed “
e1.pos´e0.pos
e1.time´e0.time

e0.time ă e1.time

e0.object “ e1.object

Speed

Position Position

e0 e1

e

Figure 4.12.: An example heterogeneous transformation to infer speed data from position
data.

This Transformation uses the difference quotient ∆x
∆t as an approximation of the differ-

ential quotient δx
δt . This operation is only valid, if ∆t ‰ 0. Therefore, filter expressions

are needed to prevent this situation. In this case it is necessary to ensure that the posi-

108

4.5. Abstract Sensor Event Transformations

tion ASEs relate to the same object and can be ordered regarding time. The ordering is
especially important, because the Continuous Uncertainty Comparison Operations, see Sec-
tion 4.3.2, guarantee that ordered intervals are never equal and therefore, the subtraction
of these intervals may not contain 0, which ensures the correctness of the physical process
description.
This type of Transformation can be used to match incompatible Event IDs of publisher

and subscriber if an appropriate Transformation exists. To enable an automatic composition
of a CPS, the network needs to be equipped with a database of physical process descrip-
tions suited to the scenario of the CPS. The resulting Complementary Transformations
are employed dynamically whenever adequate publishers are present in the network and a
subscriber for the output Event Scheme exists. The following two examples show typical
use-cases for Complementary Transformations in the robotic and vehicular scenarios.

eout.pos “ R pe0.oriq e0.dist ` e0.pos

e0.dist ă maxdist

Position

Directed-
Distance

e0

eout

Figure 4.13.: An example heterogeneous transformation to infer an object’s position from a
distance.

Virtual Speed Sensor The robotic scenario imposes the robots to broadcast their position.
However, for path planning it may be necessary to additionally gain speed information
for each entity. This might be interesting for robots, but also for indirectly observed
humans. A Virtual Speed Sensor provides exactly this functionality by differentiating
position data over time to speed data. To this end multiple Positions need to be
observed over a small time scale in either a close area |e0.pos´ e1.pos| ă ε or with the
same Object Information e0.objectID “ e1.objectID. The resulting transformation
is shown in Figure 4.12.

Virtual Object Position Sensor As described for the Virtual Speed Sensor, position infor-
mation is very relevant to the robotic scenario. The existing distance sensors imposed
by the scenario can be used to create additional position information to be used di-
rectly by the robots or fed to other transformations. To this end, a DirectedDistance
created by a statically placed sensor can be transformed to a Position. This can be
done for each distance information that indicates the presence of an object. The Dis-
tance information e0.dist needs to be multiplied with an uncertain rotation matrix
Rpe0.oriq created by the contained Orientation of the sensor. The resulting Position
eout.pos is related to the Position e0.pos of the original information created by the
sensor, which contains the sensor’s position. However, no Object information may

109

4. Abstract Sensor Event Information Architecture (ASEIA)

be inferred by this transformation as a distance sensor does not provide the necessary
data. Figure 4.13 shows the resulting transformation.

4.5.5. Cooperative Sensor Fusion Transformations

Cooperative Sensor Fusion uses multiple events of the same Event Scheme to extend the
observation of a phenomenon and outputs an event of the same Event Scheme with a larger
coverage. The extension of coverage typically applies to the time and space domain, but
it might also be applied to a scenario specific object domain. Time and spacial coopera-
tive fusion combines multiple sensors observing the same phenomenon. The used operation
may either preserve the existing information, such as a concatenation of data or inter- and
extrapolation or it combines the information at the cost of increased uncertainty. Aggrega-
tion Transformations typically use Cooperative Fusion internally. Because of some special
properties of these Transformations, which are discussed in Section 4.5.7. Cooperative Sen-
sor Fusion Transformations are Generic Homogeneous N-Ary Transformations producing
events that provide sensor information in the time space domain, where no sensor informa-
tion was provided by the existing sensors in the system. The Interpolation Transformation
uses existing sensor information in form of ASEs in the neighborhood of the required time
space point and computes the most likely sensor information at this point. Multiple pro-
cessing operations are possible to achieve this behavior, ranging from linear and quadratic
interpolation by using two and three input events to stochastic estimators such as Kalman
Filters, described in Section 4.5.8. Depending on the type of interpolation, different amounts
of ASE are necessary. In general, these operations increase the uncertainty of the sensor
information, as no new information is created, but only estimated based on existing data.
This type of transformation is generic, because it acts on whole events and the specified

operations are executed on all attributes contained in the input events. Therefore, the Event
Scheme of all input events needs to be exactly equal, with the exception of the system model
event used by the Extrapolation Transformation and the Kalman Transformation, which is
discussed in Section 4.5.8.
In contrast to the Complementary Fusion Transformations, the Cooperative Sensor Fusion

Transformations need to always be always in the Transformation DAG of the resulting Com-
posite Transformation for channel. This enables the system to trade certainty of information
against delivery of information, because a selection predicate may be unfulfilled by existing
events. Interpolation of existing events may provide an appropriate event with an increased
uncertainty. As a result, this type of fusion transformations allows the system to use all
existing information to fulfill the requirements of the subscriber. Of course subscribers can
also express selection predicates to filter out information with a very high uncertainty to
limit their input to useful information. The following paragraph explains the four general
Cooperative Sensor Fusion Transformations of ASEIA: Concatenation, Interpolation and
Extrapolation.

Concatenation Concatenation Transformation enables the accumulation of multiple ho-
mogeneous events to a single event. It is generally used on multi-dimensional attribute
values and enables the stitching of camera images or maps. The target of the Transforma-
tion is to generate data according to the subscribers attribute value type dimension. The

110

4.5. Abstract Sensor Event Transformations

eout “ re0, e1s

e1.ts “ tgoal ^ e1.pos “ posgoal ^ e0.ts ‰ e1.ts

Te

Te Te

e0 e1

eout

Figure 4.14.: An example homogeneous transformation concatenating sensor information.

transformation can be subdivided into spacial and timeline concatenation. In case of spacial
concatenation, the input matrices of each attribute are combined according to the spacial
relation, which needs to be 2-dimensional. Afterwards, the result is clipped to match the
size required by the subscriber. The spacial relation is formulated as the interval on the x-y
plane that the goal matrix should cover. The input events need to cover this area completely.
Therefore, the offset of the sub-matrices of the input events can be computed based on the
input events position ei.pos, the target position eout.pos, the target matrix dimension nˆm
and the input value’s dimension n1 ˆm1 to be pi, jq “ ei.pos

v
´eout.pos

v
`eout.pos

u

eout.posu´ei.posu
. In case the

input events matrix exceeds the range, the indices of the matrix will be ă 0 or bigger then
ě n or ě m and these values will be discarded. In case of temporal concatenation, the input
events are ordered according to time and afterwards, the matrix is extended column wise to
the right. The resulting transformation is shown in Figure 4.14.

eout.a
v
i “

1
2 pe0.a

v
i ` e1.a

v
i q ˘

1
2 pe1.a

v
i ´ e0.a

v
i q

e0.ts ă e1.ts

Te

Te Te

e0 e1

eout

Figure 4.15.: An example homogeneous transformation interpolating sensor information.

Interpolation Interpolation Transformations enable the generation of intermediate events
by approximating the attributes values of an event at a desired tempo-spatial target goal
relating to a vectored value of the input events v “ pv0, . . . , vnq. It is automatically activated
whenever n events exist surrounding the target of the filter expression. n depends on the
dimensionality d of the filter expression and is expressed as n “ 2d. For each dimension i a
pair of events ei,0 and ei,1 is needed that fulfill the following relation ei,0.vi ă goali ă ei,1.
To this end, the transformation needs exactly n input events of the same Event Type with
disjunct time and position and with equal discrete valued attributes. It follows that only

111

4. Abstract Sensor Event Information Architecture (ASEIA)

the continuous valued attributes values may be different between the input events e0 and
e1. The intermediate event continues attributes values avout,i are generated as the axis-
aligned bounding box of the input event’s attribute values following Equation 4.50. The one
dimensional Interpolation Transformation is shown in Figure 4.15.

eout.a
v
i “

1

2

ˆ

min
ePein

pe.avi q ` max
ePein

pe.avi q

˙

˘
1

2

ˆ

max
ePein

pe.avi q ´ min
ePein

pe.avi q

˙

(4.50)

eout.a
v
i “ s.avi

e0.a
v
i ´e1.a

v
i

e0.ts´e1.ts
pt´ e0.tsq ` e0.a

v
i

t ą e0.ts ą e1.ts

Te

Te Temodel
Te

e0 s e1

eout

Figure 4.16.: An example homogeneous transformation extrapolating sensor information.

Extrapolation Extrapolation Transformations are similar to Interpolation Transforma-
tions, but provide sensor information where no sensor information had been available before.
Therefore, it is activated if n events ei,0 and ei,1 exist, which fulfill the following relation
goali ă ei,0.vi ă ei,1. Based on each dimensions event pair, a difference quotient is computed
estimating the Jacobian Matrix Jj for the attributes values established by the n input events.
This matrix contains the linearized estimation of the attributes values change. The target
event eout is computed by the multiplication of the Jacobian with the distance vector d.
The distance vector contains the distance between the closest event c of the hypercube and
the target. The Extrapolation needs an additional input event providing a system model of
the physical process to estimate the uncertainty of the resulting output event. This Model
event contains a matrix for each continuous valued attribute sj . The resulting event con-
tains attribute values of the form eout.a

v
j “ sjJjd ` cj . The one dimensional Extrapolation

Transformation is shown in Figure 4.16.

Examples

Distributed Object Tracking : Nowadays cars are equipped with multiple sensors, some of
them are cameras, which enable the possibility to locate and identify other cars in the
vicinity. Additionally, statically installed sensors such as id detection sensors for toll
accounting provide position information for cars on the road, even if these cars are not
networked. These information can be used to track a single car by using the temporal
Concatenation Transformation on the individual Object events over the time interval
tgoal and the object id idgoal. The resulting event contains a n ˆ m matrix which
consists of m position vectors of the Object.

112

4.5. Abstract Sensor Event Transformations

Position Interpolation : A general problem in event driven systems is timing. As no global
notion of periodicity exists, it is very difficult for independently developed components
to state time based requirements. An example is a robot subscribing to position infor-
mation at a certain time t ˘ ε. Another robot’s position publications might occur at
t´∆ and t` δ. Therefore, these publications will not be delivered to the subscriber
because they do not fulfill the specified filter expression. However, the information is
still in the system. With a loss of certainty it can be concluded, that the publishing
robot has moved between the two publications from the first position e0.pos to the
second position e1.pos. As a consequence, both events could be interpolated to fulfill
the specified subscription. The interpolation transformation achieves exactly this pro-
cess in an automatic way and delivers the robot’s Position as the interpolation of the
two events with increases uncertainty.

4.5.6. Concurrent Fusion

Concurrent Fusion Transformations are Generic Homogeneous N-Ary Transformations,
which may be used to increase the quality of the sensor data by exploiting existing re-
dundancy in the system. To this end, multiple homogeneous input events observing the
same phenomenon at the same spatio temporal point need to be present. The redundancy
in the events can then be used to minimize the uncertainty of the sensor information if
the different events agree on the observation. Without a specific model, improvements can
only be achieved for individual values of an multidimensional attribute or for discrete val-
ued attributes. For generic improvement of uncertainty for continuous valued attributes,
special filter operations are necessary such as the Kalman Filter Transformation, described
in Section 4.5.8. The two generic Concurrent Filter Transformations are the Specification
Transformation and the Majority Vote Transformation.

eout.a
v
i k,j “

$

&

%

e0.a
v
i k,j

, e0.
´

avi k,j

¯u
ă e1.

´

avi i,j

¯u

e1.a
v
i i,j

, otherwise

e0.pos ď e1.pos ^ e0.time “ e1.time

Te

Te Te

e0 e1

eout

Figure 4.17.: An example homogeneous transformation specifying parts of a multi dimen-
sional sensor information.

Specification The Specification Transformation enables the composition of multiple events
that agree on the current observation, but with a different uncertainty. It uses the redun-
dancy in observation to minimize uncertainty by selecting for each attributes dimension the

113

4. Abstract Sensor Event Information Architecture (ASEIA)

value uncertainty complex with minimum uncertainty. This Transformation is enabled if
the subscriber specifies an uncertainty filter expression on a subscription. The operation is
transitive as the elementary uncertainty comparison operation ă is transitive. Consequently,
a N-Ary Specification operation can be broken down into a sequence of dual Transforma-
tions always using the result of the last Transformation as input to the next. The resulting
Generic Dual Homogeneous Transformation is shown in Figure 4.17. Two events e0 and e1

can be used in this transformation if the combined time-space vector of one is completely
contained in the other.

Voting Transformation The Voting Transformations enable decreasing of the uncertainty
of discrete valued attributes. They enable an agreement based on multiple samples formed
by the individual decisions or classifications of separate components. The samples need
to overlap in time and space. This transformation is selected whenever an uncertainty
constraint is stated by the subscriber for a discrete attribute. The consensus uses Bayesian
inference,see [93], to compute an uncertainty for each observed value in the sample event set.
Depending on the result of this computation, the value with the least uncertainty is selected
and output. If two ore more values have an uncertainty 0, at least two input samples with
different values have an uncertainty of 0, which is erroneous. In this case they are removed
from the sample set and the result will be output. If still no consensus is reached, all
equivalently uncertain values are output with maximum uncertainty.

eout.ai “

maxargc

´

s.avi
ś

ej.a
v
i
“c impact pej .a

u
i q

¯

Ź

ei,ejPein,i‰j
ei.ts ““ ej .ts ^

ei.pos ““ ej .pos

Te

Te Te Temodel

e0
en

eout

s

Figure 4.18.: An example homogeneous transformation using multiple events to vote on a
discrete attributes ai value.

Occupancy Grid Overlay : Multidimensional information may contain information of vary-
ing quality. This is especially possible for map-like data. If multiple compatible infor-
mation sets exist, a fusion of them to increase the overall quality of the data is possible.
To this end, a combination operation such as the one described in Figure 4.17 may be
used. In the robotic scenario a generic tool to represent the map information are occu-
pancy grids, which provide a discretized representation of the ground around a robot
as cells, which are either free or occupied. However, sometimes it is not clear whether
a cell is occupied which induces an uncertainty in the map. If multiple of these maps
exists, which contain heterogeneous information, the overlaying parts of the maps may

114

4.5. Abstract Sensor Event Transformations

eout.grid
v
i,j “

#

e0.grid
v
i,j , e0.

´

gridvi,j

¯u
ă e1.

´

gridvi,j

¯u

e1.grid
v
i,j , otherwise

eDynamicMap P eStaticMap

Occupancy-
Grid

Occupancy-
Grid

Occupancy-
Grid

eStaticMap eDynamicMap

eout

Position Scale Change

eStaticMap.pos.ref “ eSensorPos.out.ref^

egridMap.pos.ref “ eSensorPos.in.ref

Occupancy-
Grid

Position-
Reference

egrid.grid “ doorGrid

edoorPose.pos “ doorPos

Orientation

edoorPose

egrid

egrid

eFittingGrid

eSensorPos

Figure 4.19.: An example homogeneous transformation overlaying multiple occupancy grids
to decrease the uncertainty and enhance quality.

115

4. Abstract Sensor Event Information Architecture (ASEIA)

be combined by selecting for each cell the value with the smaller uncertainty. This
enables the combination of the information from redundant sources and increases the
quality of the input data for the navigation algorithm. A static map of a room for
example may have very certain values for unmovable objects such as walls, but the
certainty of free spaces is low, because mobile objects may occupy them. Occupancy
information gathered by sensors in the environment enable the acquisition of more
certain information because the generated information is more actual. The Specifica-
tion Transformations allows to combine these two maps according to the contained
uncertainty. This enables better navigation decisions of a robot, because the free path
can be detected with a higher certainty.

Road State Sensor : In the vehicle scenario it might prove beneficial to detect abnormal
road states such as excessive bumps, wetness, ice or gusts. However, a single car
observing such phenomenon is very unreliable and will only provide low quality data.
However, if multiple cars observe the phenomenon, the observation is much more
reliable and of higher quality. If these phenomena are considered discrete road states,
the combination of individual information can be done by a Voting Transformation of
all cars passing through a specific road section formulated as an uncertain position in
specific time formulated as an uncertain time.

4.5.7. Aggregation Transformation

Sensor Aggregation Transformation are Generic Homogeneous N-Ary Transformations,
which combine multiple homogeneous input events to a single output event of same Event
Type with a largely increased uncertainty, as described in [141]. The large increase in
uncertainty is the major difference to Cooperative Transformations. As described for
TinyAgg [104], Aggregation Transformation may be separated into three different steps ex-
pressed as functions finit :Ñ Eagg , fagg : Eagg ˆ E Ñ Eagg and ffinish : Eagg Ñ E. finit
creates an intermediate aggregation event eagg that starts the aggregation process. This
function is typically executed by the CPS application if a certain aggregation is wanted.
fagg is the Generic Dual Homogeneous Transformation combining the intermediate aggre-
gation event with the compatible input events. The aggregation is finished if the stated
aggregation range in the intermediate event is filled and the finalization function ffinish
is executed to produce the final output event. The intermediate event needs to contain
a special discrete valued Attribute specifying the operation to execute. This is removed
by the finalization Transformation. Typical Aggregation Transformations are Minimum,
Maximum, Average and Count.

Average The Average Transformation is initialized by the creation of a special event. This
events needs to contain the goal time and space as interval, a list of attributes it should ag-
gregate and possibly a maximum event count. The aggregation adds each input event’s
attributes to the intermediate event if the discrete attributes match and the event is con-
tained in the specified time-space range. On finalization of the aggregation, the intermediate
event is transformed to the output event by dividing every sum by the count. The resulting
Composite Transformation is visualized in Figure 4.20.

116

4.5. Abstract Sensor Event Transformations

eagg.a
i
“

ř

ei.a
i eagg.count “ n

Ź

ei.ts P einit.ts ^ ei.pos P einit.pos

Teagg

eout.a
v
i “ 1

e0.count
e0.a

v
i

e0.agg “ AVG

Te

Teinit
Te Te

einit e0 en´1

eagg

e0

eout

Figure 4.20.: An example homogeneous transformation aggregating multiple values to the
average value.

Minimum, Maximum The Minimum and Maximum Transformations are Transformations
computing maximum and minimum of the input events. The CPS need to create an extended
event of the input events with an additional discrete value attribute containing either the
constant MIN or MAX and all attributes set to either the maximum value or respectively
the minimum value. The input events are included through the execution of element-wise
minimum or maximum for each continuous attribute if the discrete attributes match. The
finalization function is not necessary in this case, as the intermediate event is already the
result event, because of the extension operation used in its creation.

Count and Sum The Count and Sum Aggregation Transformations are specializations of
the Average Transformation as the finalization step is ignored. They are initialized by the
creation of an initial event with aggregation constant COUNT or SUM.

Examples

Virtual fire detector of a forest WSN : The forest fire WSN scenario considers the detec-
tion of fires in forest. To this end, the WSN needs to acquire, combine and decide on
the emerging temperature information created in the network. One possible approach
is the aggregation of the temperature over the regions of the forest. This aggregation
may use the maximum of the existing temperature to decide on the existence of a fire.
Afterwards, a simple complementary fusion transformation may decide on the presence
of a fire based on the maximum temperature in the network. To enhance the quality
of the result, it may be coupled with a concurrent fusion transformation to decrease

117

4. Abstract Sensor Event Information Architecture (ASEIA)

eagg.temp “ max pei.tempq

Ź

ei.ts P einit.ts ^ ei.pos P einit.pos

TempMax

TempMax Temp Temp

eout.fire “ pe0.temp “ 370Kq

e0.temp “ 370K ^

goal.pos P e0.pos ^ goal.ts P eo.ts

Fire

einit e0 en´1

emax

e0

eout

Figure 4.21.: An example aggregation transformation detecting the maximum temperature
to detect forest fires.

the uncertainty. The combined heterogeneous n-ary cooperative and complementary
transformations usable to implement the virtual sensors is shown in Figure 4.21.

Virtual crowding sensor for robotic navigation : In the robotic scenario it is very useful
for robots to detect rooms with lots of dynamic entities. Examples for such rooms are
dining halls and elevators. These rooms should be avoided in the navigation, because
excessive replanning is necessary as the navigational situations are very complex and
dynamic. To detect such rooms, a counting aggregation might be used, which operates
on position sensor information. Based on these information the amount of entities in
region can be counted and based on the count in relation to the size of the region,
a crowding factor may be computed. The transformation used to implement this
transformation is a cooperative and complementary n-ary one as shown in Figure 4.22.

Virtual Jam Detect Sensor : Sometimes a single source of information is not enough to
decide on the state of a distributed phenomenon. An example are jams on the road.
They are characterized by a very low speed of most of the cars in a certain area. An
Average Transformation on Speed events on the road in a certain spatial range will
deduce an average speed information from all the cars in the area. Because of the aver-
aging the position of the resulting event grows with each considered event, as averaging
using interval arithmetics modifies the center and extends the borders. Afterwards,
a simple decision rule may decide if a jam exists in this area or not. This process is
shown in Figure 4.23. The resulting transformation represents a homogeneous n-ary
cooperative fusion.

118

4.5. Abstract Sensor Event Transformations

eagg.count “ n

Ź

ei.ts P einit.ts ^ ei.pos P einit.pos

Count

Count Position Position

eout.crowding “
e0.count
||e0.pos

u||

goal.pos P e0.pos ^ goal.ts P e0.ts

Crowding

einit e0 en´1

ecount

e0

eout

Figure 4.22.: An example aggregation transformation counting the entities in a room to infer
a crowding value to be used in navigation.

4.5.8. Kalman Transformations

A Kalman Filter is a process that uses observations ~zk at time k and model information
Fk, Bk, Qk, Rk and Hk on a system to estimate the state of the system x̂k. In its basic
form, it models linear systems as a combination of system specific state prediction Fk and
user defined input ~uk, see Equation 4.51. To guarantee convergence of the observations and
the state predication, all variables of the filter ~zk, ~uk and x̂k are considered to be Gaussian
distributed random variables with a covariance. The inputs ~zk and ~uk have static covariances
Rk and Qk. The state of the system has a variable covariance depending on the quality of
the state prediction and the observations Pk. The remaining matrices Bk and Hk are part
of the system model and represent transformations from the input space to the state space
and from the state space to the sensor space respectively. The state prediction also updates
the covariance of the state variable according to Equation 4.52. The convergence is done
by weighted averaging of the updated state with observations based on a dynamic so-called
Kalman Gain as described in Equation 4.54. Additionally, the resulting covariance is also
computed, see Equation 4.55. The dynamic gain is computed as the overlap of the state
variable and the observation according to Equation 4.53.

x̂k|k´1 “ Fkx̂k´1|k´1 `Bk~uk (4.51)

Pk|k´1 “ FkPk´1|k´1F
T
k `Qk (4.52)

Kk “ Pk|k´1H
T
k

`

HkPk|k´1H
T
k `Rk

˘´1
(4.53)

x̂k|k “ x̂k|k´1 `Kk

`

~zk ´Hkx̂k|k´1

˘

(4.54)

Pk|k “ Pk|k´1 ´KkHkPk|k´1 (4.55)

119

4. Abstract Sensor Event Information Architecture (ASEIA)

eagg.speed “
ÿ

ei.speed

eagg.count “ n

Ź

ei.ts P einit.ts ^ ei.pos P einit.pos

SpeedAgg

aavg “ 1
e0.count

e0.speed

e0.agg “ AVG

Speed

SpeedAgg Speed Speed

eout.state “ ”JAM”

}e0.speed} ă 5

RoadState

einit e0 en´1

eagg

e0

eavg

eavg

eout

Figure 4.23.: An example homogeneous transformation averaging the speed on a road seg-
ment to detect road jams.

To enable a generic Kalman Filter Transformation, it is necessary to structure the inputs
and outputs in the form of the transformation abstraction. The inputs are the current state
of the system, the control input and the observations. Additionally, the system model con-
taining the necessary matrices needs to be supplied as an input event. This event needs to
be published only once, as these models are time-invariant. The buffering of the transforma-
tion keeps it, so that it may be used in every execution of the transformation. The output
of the Kalman is the state of the system with an updated time stamp, which is also used
to prevent infinite recursion through an appropriate filter expression. The generic Kalman
Transformation is shown in Figure 4.24.

120

4.5.
A
bstract

Sensor
E
vent

T
ransform

ations

eout “ kalmanpemodel, eobs, ectrl, estateq

eobs.ts ą estate.ts ^ eobs.pos “ estate.pos^

ectrl.ts ą estate.ts ^ ectrl.pos “ estate.pos

Teobservation
Tecontrol

eobs.z “
řn
i“0 eobsi .value ¨ ei

Ź

eobsi .ts ą estate.ts ^ eobsi .pos “ estate.pos

ectrl.u “
řn
i“0 ectrli .value ¨ ei

Ź

ectrli .ts ą estate.ts ^ ectrli .pos “ estate.pos

Teobservation0

Teobservationn´1
Tecontrol0 Tecontroln´1

TemodelTestate

Testate

eobs0
eobsn´1

eobs

ectrl0 ectrln´1

ectrl

emodel

estate

emodel

estate

estate emodel

ectrleobs

eout

Figure 4.24.: Figure showing transformation graph of a generic linear Kalman Filter transformation.

121

4. Abstract Sensor Event Information Architecture (ASEIA)

A typical problem of distributed event based systems is the unsynchronized timestamps of
these inputs. Therefore, it is useful to execute the Kalman Filter whenever new information
arrives. However, this needs some adoptions to the Kalman Filter’s structure, as observations
and control input may not be fed as a single vector, but as multiple individual values. On
the assumption that the observations and the control inputs are uncoupled, the vectors
can easily be separated in a linear combination of the observation/control input and the
Cartesian unit vectors according to Equation 4.56.

~zk “

¨

˚

˝

z0k
...

zn´1k

˛

‹

‚

“

n
ÿ

i“0

zikei (4.56)

Because the Kalman Filter is used in an event driven system, it will not necessarily be
executed with constant ∆t. The solution is the separation of the system matrices Fk, Bk
into a time step aware part F 1k, B

1
k and a matrix 0 P 1mˆn defining the application of the

∆t and an exponent matrix E P Qmˆn applying the ∆tk with the correct exponent to all
components of F 1k or B1k. The same replacement needs to be done for the covariance matrix
Qk.

Fk “ p∆tkOF q
EF F 1k (4.57)

Bk “ p∆tkOBq
EB B1k (4.58)

Qk “ p∆tkOQq
EQ Q1k (4.59)

The final necessary adaptation necessary is the transformation of the ASEs uncertainty
to Gaussian distribution’s standard deviations. This is can be achieved through the spec-
ification of an observation confidence probability α. This allows the computation of the
standard deviation based on the uncertainty uik of the observation, according to Equa-
tion 4.60. The resulting variances of the observation input can be used to formulate the
measurement covariance matrix to R1k “ R1 ~σk

σikpuq “
1

zp1´ α{2q
uik (4.60)

By combining everything one achieves the formulation of the linear varying time-step
separated discrete Kalman Filter transformation in Equation 4.63.

x̂k|k´1 “ p∆tkOF q
EF F 1kx̂k´1|k´1 ` p∆tkOBq

EB B1k~uk (4.61)

Pk|k´1 “

´

p∆tkOF q
EF F 1k

¯

Pk´1|k´1

´

p∆tkOF q
EF Fk

¯T

` p∆tkOQq
EQ Q1k (4.62)

(4.63)

As a result, the configuration space of the generic Kalman Transformation consists of
the EF , EB , EQ matrices defining the impact of the time step on the state F 1k, control

122

4.5. Abstract Sensor Event Transformations

Bk and covariance Qk matrix. Additonally, the sensor transformation matrix Hk and the
confidence probability of the sensor input α need to be specified. The state space of the
kalman is defined through a vector X of AttributeIDs, whereas the individual sensor inputs
are configured as a vector s of AttributeIDs to define the sensor input of the Kalman Filter
Transformation.

Example: Distributed ACC-Sensor Cars in the vehicle scenario primarily need to trust
their integrated sensors, as these are available without latency and with lower uncertainty.
However, in some situations such as mountain roads with limited front visibility some sensors
are unable to detect other cars because of occlusion. In these scenarios it might be beneficial
to use other cars’ sensors as additional data sources. A Kalman Filter Transformation may
be used to combine the existing data in a useful manner. In this case the incoming event
information is assessed based on the quality and the age using the system specific Model
event. The local information and the remote information are then averaged according to
their uncertainty. The described linear Kalman may be used if a road coordinate system is
used. Additionally, this eases the comparison of the compatibility of the incoming events.
This Transformation enables a car to dynamically combine the best incoming data of its
surroundings to provide its internal CPS driving application with better information. The
resulting Kalman Transformation is shown in Figure 4.25.

123

4.
A
bstract

Sensor
E
vent

Inform
ation

A
rchitecture

(A
SE

IA
)

Kalman

e0.ts ă e1.ts ^ e2.ts “ e1.ts

Directed-
Distance

Directed-
Distance

Directed-
Distance

Proximity ACCModel

e0
ei

en´1

emodel

eout

Scale Change

eout.pos.ref “ eref .out.ref^

efrom.pos.ref “ eref .in.ref

Directed-
Distance

Position-
Reference

eout.dist “ }e0.pos ´ e1.pos}

e0.time “ e1.time^ e0.id ‰ e1.id

Position Position

e0
e1

eout

e0
e1

eout

Figure 4.25.: An example homogeneous transformation using local, remote and inferred DirectedDistance information to enhance the
ACC behavior of an autonomous car.

124

4.5. Abstract Sensor Event Transformations

4.5.9. Uncertainty-aware Hybrid Clock Synchronization

As described in Section 2.1.3, time is one of the most important context attributes for CPS.
The distribution of the processing in a general CPS results in multiple independent clocks
existing in the system. These clocks are unsynchronized and therefore, the reference and/or
scale of their created time information is incompatible. To enable a processing of the in-
formation created in the different nodes these heterogeneous time information need to be
translated to a homogeneous scale. However, the distribution of time information in the
system is difficult to achieve without the addition of uncertainty created from propagation
and processing in the different nodes. The following section will investigate an uncertainty-
aware hybrid clock synchronization system based on the described transformation systems
for CPS. The major goal of this mechanism is the creation of a time transformation out-
putting additional uncertainty information. To provide references of the used ideas and
comparison the most important clock synchronization algorithms are briefly described in
the next paragraphs.

Reference Broadcast Synchronization (RBS) Reference Broadcast Synchronization by
Elson et al. [62] is an internal synchronization mechanism exploiting physical broadcasts.
The synchronization averages the current clock values of the participating nodes. To this
end, an initiating node transmits a NOW -message to all participating nodes. This message
is the indication for the other nodes to aquire a local time stamp from their clocks, which
are exchanged afterwards. The exchange of the time stamps is not critical towards the
synchronization’s performance , because the critical path is reduced to the transmission
time of the NOW -message and the local processing time on each node until the local time
stamp is taken. This provides very tight synchronization in single-hop scenarios as long as
the computation time is bounded. However, in worst case Opn2q messages are needed to
exchange the time stamps between all nodes.
In summary, RBS provides tight synchronization bounds for single-hop environments.

However, it reacts very sensitively to mobile or faulty nodes. This is caused by the used
averaging mechanism of the protocol. The contribution of all nodes to the averaged new
time and clock rate may create large shifts of agreed global clock whenever one node’s clock
is far off. This is especially problematic whenever a node is only a temporary member of
the broadcast group.

CesiumSpray (CS) CesiumSpray by Verissimo et al. [166] is a pseudo-hierarchical non-
averaging hybrid clock synchronization. Additionally, it provides strong failure resilience
in real-time networks. The baseline idea of this system is the synchronization of groups of
nodes towards an external reference. Since groups of nodes and external references are used,
the approach needs and internal an an external synchronization mechanism. The authors
proposed GPS receivers as the external reference, but other time sources such as DFC77
receivers are possible. The external reference forms a backbone of synchronization networks,
where the group members are leaf nodes.
CesiumSpray is resilient and real-time capable, because the failure of a group member

has no influence on other nodes and the failure of an external reference node only influences
the local group, unless no other external receiver node exists. It provides excellent failure
resilience with a proven upper bound on the synchronizations precision and accuracy. The

125

4. Abstract Sensor Event Information Architecture (ASEIA)

precision is dependent on the tightness of the network and the real-time capabilities of the
used platform. The drawbacks of the approach consist in the need for real-time capable
networks and operating systems to use the strong failure resilience and the need for an
external time source providing the "multi-hop" capability.

Delay Measurement Time Synchronization Protocol (DMTS) The Delay Measurement
Time Synchronization Protocol described by Ping [124] is a modified version of RB, which
exploits low-level hardware access and uses a master-slave architecture. It extends the
NOW -message with a time stamp taken and inserted just before sending. The master of
the synchronization sends this message to all slaves, which can directly use the time stamp
to update their time. Therefore, the exchange of the individual local time stamps is omitted
and the message count is heavily reduced.
DMTS provides a high precision clock synchronization in single-hop neighborhoods as well

as multi-hop synchronization with slowly degrading performance. It solves the large amount
of message necessary for a single synchronization of RBS. However, in-depth knowledge of
the needed hardware and communication mechanisms as well as low-level hardware access is
needed to implement it, which makes deployment in arbitrary systems difficult. The robust-
ness is limited as only a single time stamp is communicated from master to its neighborhood,
which leaves the protocol open to omission failures and faulty nodes spreading wrong clock
values when elected.

Continuous Clock Synchronization in Wireless Real-time Applications (CCS) The Con-
tinuous Clock Synchronization for Wireless Real-time Applications by Mock et al. [112] is a
non-averaging master-slave synchronization method extending the basic clock synchroniza-
tion of the 802.11 standard [10]. This is itself the adoption of the approach of Gergeleit and
Streich [72] towards 802.11 networks.
The major change is the slow adaptation of the offset between master and slave clocks to

avoid jumps in the time domain of the different nodes. Additionally, the beacon messages
used for the synchronization are embedded into the 802.11 access point protocols, which
minimizes overhead.
This approach enables continuous clock synchronization without gaps in the time base

suitable for real-time applications. Additionally, it provides better precision than the base-
line 802.11 synchronization mechanism without additional message overhead together with
failure resilience and a guaranteed precision for a known omission degree. However, it is
generally only useful for single-hop environments with a dedicated access point.

Probabilistic Clock Synchronization Service (PCS) The Probabilistic Clock Synchroniza-
tion Service by PalChaudhuri et al. [119] is an extension of RBS enabling a dynamic trade-off
between synchronization precision and message overhead. This approach transmits n NOW -
messages in one synchronization round, which are used to derive the skew of the sender’s
and the receiver’s clock through linear regression. The results are combined and transmitted
back to the receivers in range. The results are compared by each node with their own data,
which enables the agreement on the local time. The number of needed NOW -messages can
be derived based on a normal distributed synchronization error. This normal distribution
is modelled with zero mean and a standard deviation of σ. Based on this distribution, the

126

4.5. Abstract Sensor Event Transformations

authors analytically derive the probability P p|ε| ă εmaxq of the synchronization error to be
lower than a specified value εmax. This relation can be exploited to evaluate the number of
messages needed for a synchronization round.
The approach provides a dynamic trade-off between message overhead and synchronization

precision even in multi-hop scenarios. The biggest issue with the approach is the acquisition
of the normal distribution parameters of the synchronization errors if the error is Gaussian.
Additionally, it is difficult to handle dynamic synchronization errors as imposed by changing
environments with the system.

Time Synchronization in Ad-Hoc Networks (TSAN) Römer’s Time Synchronization in
Ad-Hoc Networks [135] is based on Christian’s Algorithm [53]. It is a non-averaging internal
synchronization using pair-wise offset estimation. It estimates the round trip time of a
messages between sender and receiver and ultimately tries to order events created by the
system. In contrast to Christian’s Algorithm which proposed a dedicated server for clients
to communicate to, this approach attaches time stamps to events communicated in the
network, which induces zero message overhead. However, not all events are acknowledged
by the receiver, which might create large durations between events flowing in both directions
between two nodes. This is mitigated by the insertion of additional dummy events in case
the duration grows too large, which creates additional overhead.
TSAN supports multi-hop synchronization directly, since it measures round-trip time from

sender to receiver and back. The basic concept makes no assumption on the amount of hops
between sender and receiver and works with an arbitrary amount of hops.
TSAN applies a very loose multi-hop synchronization with an ideal message overhead of

0 in a multi-hop network. Unfortunately, the real message overhead is heavily dependent on
the actual communication in the network and is therefore very hard to estimate for a real
system. The used time intervals together with the MAYBE -results of the event ordering
provide the protocol with robustness against large synchronization errors caused by message
loss or unpredictable delays.

Protocol Summary The individual problems and features of the protocols are summarized
in Table 4.1, which shows that none of the described approaches fully solve the problem of
multi-hop uncertainty aware clock synchronization. However, each protocol provides unique
solutions to certain sub-problems, which are used in the following Uncertainty-aware Hybrid
Clock Synchronization (UHCS).
WSN provide the hardest environment for clock synchronization mechanism, as they pro-

vide sparse connectivity in time and space between nodes together with a limited life-time
of nodes. Therefore, the UHCS Transformation is defined based on their requirements and
limitations. On the one hand, the synchronization needs to be scalable, while on the other
hand, the overhead may not exceed a certain threshold to safe battery and prevent an
overload of the network. The following UHCS Transformation is a Scale Change Transfor-
mation executed in every broker of the system to enable the time stamps to be converted
to appropriate domains. The Scale Change Transformation needs a reference source, which
provides the necessary conversion information on the offsets and skews between the clocks.
To this end, an estimation mechanism needs to be established which provides the necessary
Reference. Most of the approaches discussed in previous paragraphs favor either synchro-

127

4. Abstract Sensor Event Information Architecture (ASEIA)

Protocol Precision
Multi Hop
Capability

Message
Overhead

Robustness

CS medium inherent Opnq medium
RBS high none Opn2q fragile
DMTS high possible Opnq fragile
CCS high possible Op1q robust
PCS medium inherent dynamic medium
TSAN low inherent 0 - Op1q medium

Table 4.1.: Comparison of the discussed clock synchronization protocols.

nization accuracy (and with it certainty of offset and skew estimation) over minimization
of communication overhead. This generic trade-off can only be overcome if specific WSN
base topologies are exploited, which enable better solutions. One interesting topology is the
cluster tree structure of IEEE 802.15.4 networks [12] in beacon-enabled mode. This mode
divides the nodes in groups called Personal Area Networks (PANs), which have an individual
coordinating instance managing the internal communication. The individual PANs commu-
nicate only through their respective coordinators, as visible in Figure 4.26. This hierarchical
network structure may also be found in other types of networks like Bluetooth scatter nets
as proposed by the Bluetooth standard [38]. Interestingly, P/S networks using an overlay
structure also show this pattern. In this case the PAN coordinators are typically the brokers
of the network. The remainder for the section considers such an hierarchical structured
network with a coordinator and its directly connected local neighbors. In the following, the
coordinator will be called Master and the topologically adjacent neighbors Slaves. Each cell
of a single Master and its Slaves is called a Cluster.

The time model, described in Section 4.3.3, assumes that the synchronization may have
a decreasing precision based on topological distance between nodes in the network. Con-
sequently, a hybrid clock-synchronization is proposed [156], which consists of a tight syn-
chronization mechanism for each Master called Intra Cluster Synchronization and a loose
synchronization mechanism between the Masters, called Inter Cluster Synchronization.

Figure 4.26.: Example cluster tree structure of an IEEE 802.15.4 Network. The colors indi-
cate the topological distance between each node and PC9.

128

4.5. Abstract Sensor Event Transformations

Intra Cluster Synchronization The Intra Cluster Synchronization is executed below the
actual ASEIA Transformation Engine and directly synchronizes the clock of the Slaves in
the Cluster to the clock of the Master. No Transformation is necessary in this case as all
time stamps are created in the same Scale with the same Reference and a known Continuous
Uncertainty.

The Intra Cluster Synchronization is based on the CCS approach, see Section 4.5.9. There-
fore, each Slave Psj P Slaves has a virtual synchronized clock V Csj ptq. This clock uses the
time stamps created by the node’s hardware clock Csj ptq and modifies it based on the current
rate rsj ,i:

V Csj ptq “ rsj ,i
`

Cptqsj ´ Cptiqsj
˘

` V Csj ptiq (4.64)

The task of the Intra Cluster Synchronization is the estimation of the parameter rsj ,i for
each slave at each synchronization round i. To this end, a periodic exchange of information
on the current clock values of the Slaves is necessary. The implementation of this exchange
depends on the used communication system. The 802.15.4 standard, for example, allows a
PAN Coordinator to attach additional information to the beacon frame. This may be used
to attach a 64bit time stamp tc,i to each beacon bi`1 transmitted by the coordinator. The
attached time stamp represents the Masters’s time of successful transmission of the last
beacon. This time stamp together with the local reception time of the last beacon tsj,i is
then evaluated by each Slave Psj to compute a new rate rsj ,i.
As described by DMTS, see Section 4.5.9, hardware knowledge may be used to provide

the needed local time stamps with the necessary accuracy. The accuracy of this time stamp
directly influences the achievable synchronization of the Slaves to the Master. The 802.15.4
standard provides the PD-Data.confirm primitive as a local event indicating completion of
a transmission. The time of this event can be used as the source of the time stamp tc,i. On
reception of the beacon each Slave Psj takes a local time stamp tsj,i`1

. The networks tight-
ness τ together with the internal computation time tcomp of the nodes limits the accuracy
of the local time stamps. This computation time is mitigated by the PD-DATA.indication
primitive of the 802.15.4 standard. As most low level communication systems provide similar
mechanism, an appropriate optimization should be possible for each CPS. Therefore, the
UHCS considers tcomp to be very small. Consequently, the time difference between creation
of the local time stamps is bounded by τ .
After acquiring the time stamp for the actual synchronization round the Slaves compute

the offset δj,i “ tc,i ´ V Cptsj ,iq between their previous local time stamp V Cptsj ,iq and the
time stamp transmitted by the Master tc,i. This is used to compute a new rate rsj ,i`1 “

1` krδj,i for the node’s virtual clock to compensate the offset, with kr being a proportional
factor controlling the rate of adaption.
The Intra Cluster Synchronization provides continuous clock synchronization between the

Master and its Slaves within the Cluster. The overhead should be minimal since depending
on the used communication system embedded of the time stamps into existing periodic
communication can be exploited by following TSAN s method.

Inter Cluster Synchronization Diverging from the Intra Cluster Synchronization, as de-
scribed in the previous paragraph, a Master never modifies its own clock. Instead, every

129

4. Abstract Sensor Event Information Architecture (ASEIA)

event received by a Master Pcr , which is transmitted by another adjacent Master Pcs is
transformed to the time domain of the Master’s clock Crptq, as proposed by TSAN and
according to the Time Model, see Section 4.3.3. To achieve this, the Master Pcr needs to
estimate its Reference Offset ∆rr,si against the Time Attribute Scale of its neighboring Mas-
ter’s Virtual Clocks V Cr,siptq. ASEIA assumes the Time Attribute Scale to be linear scaled
with the parameters d and n representing the scaling quotient f “ n

dx` r. According to the
general definition of the Scale Change Transformation, see Section 4.5.2, a transformation
requires the scaling function fs and the inverse scaling function f´1

r to transform the events’
Time Attributes. The parameters ds, ns, dr and nr are part of the Event Type information
and exchanged on channel creation. Consequently, only the reference delta ∆rs,r need to be
estimated dynamically.

The virtual clocks are handled similarly to the Intra Cluster Synchronization, since all
beacons of all adjacent Masters Pcs are received by Master Pcr . On reception of a beacon
containing a time stamp ts,i, Pcr acquires a local time stamp tr,s,i`1. This enables the
computation of the offset δr,s,i “ ts,i ´ tr,s,i between Pcs and Pcr . Afterwards, Pcr updates
the rate rr,s,i “ 1 ` krδr,s,i for the virtual clock V Cr,sptq towards Pcs . Therefore, each
Master has an internal list of virtual clocks following the clocks of each adjacent Master as
visible in Figure 4.27. The generated Time Scale Reference Events enable the generic Scale
Change Transformation to be executed in each Master on reception of an event originating
in another Cluster.

In case of multi-hop communication the event’s time stamp is always transformed to the
receiver’s clock domain before forwarding it. Consequently, all nodes only need to estimate
the offset by using a virtual clock for their directly adjacent neighbors. An example scenario
is shown in Figure 4.27. In this picture three Masters are in direct vicinity and estimate
their offset by using virtual clocks. An event is transmitted from PC0 to PC2 via PC1.
During the forwarding of the event the time stamp of the event is adjusted by the estimated
offsets to transform it to the local time domain of the current node.

Performance Estimation

The performance of the synchronization depends on certain network and node parameters
such as the tightness of the network (including propagation speed and message delivery time)
τ , the drift of the nodes ρ and the algorithm parameter kr. To analyse the behavior of the
algorithm, two clocks are defined: one for the transmitter of the beacon Csptq “ Cspts,iq `

pt´ ts,iqp1˘ρq and one for the receiver of the beacon Crptq “ Crptr,iq`pt´ tr,iqp1˘ρq. The
offset between these two nodes is described as the difference between local clock of the sender
and the Virtual Clock of the receiver as or,sptq “ Csptq´V Crptq. The receiver cannot observe
this offset, but based on the algorithm it uses the visible offset δr,sptq “ or,sptq ˘ τ based
on the time stamp contained in the beacon. Consequently, the virtual clock’s propagation
formula may be rewritten to:

V Crptq “ V Crptr,iq ` pCrptq ´ Crptr,iqp1` krδr,sptr,iqq (4.65)

130

4.5. Abstract Sensor Event Transformations

PC0

1234

PC1

1000

PC2

1500

V CPC1
ptq “ 1001

V CPC2
ptq “ 1498

V CPC0
ptq “ 1200

V CPC2
ptq “ 1495

V CPC0
ptq “ 1250

V CPC1
ptq “ 1020

ts “ 1230

ts “ 1030

ts “ 1510

Figure 4.27.: An example network composed of three Masters with their respective virtual
clocks estimating their offset towards each other. An event transmitted from
PC0 to PC2 is shown in grey including its time stamp.

Entering V Crptq in optq enables replacing of Csptq´V Crptr,iq with or,sptr,iq`pt´tr,iqp1˘ρq.
Together with the simplification of Crptq ´ Crptr,iq to pt´ tr,iqp1˘ ρq one obtains:

or,sptq “ or,sptr,iq ´ pt´ tr,iqp1˘ ρqkrδr,sptr,iq ˘ pt´ tr,iq2ρ (4.66)

By substitution of δr,sptr,iq and pt ´ tr,iq to ∆t as well as factoring out or,sptr,iq the
following equation is achieved:

or,sptq “ or,sptr,iqp1´∆tkrq ˘ p∆tpkrρoptr,iq ` ρp2` τq ` krτqq (4.67)

To enable a normal flow of time, the rate of the Virtual Clock needs to be bigger than zero.
Therefore, the value of kr must not exceed 1

maxpδr,sptqq
. The propagation of the offset may

now be separated into an offset compensating part: o´r,sptq “ or,sptr,iqp1´∆tkrq and an offset
increasing part: o`r,sptq “ ˘∆tpkrρor,sptr,iq`ρp2` τq`krτq. The offset decreasing part will
converge towards zero, because it resembles the geometric sequence ai`1 “ aiq, 0 ă q ă 1.
The offset inducing part can be separated into an offset dependent and offset independent
part. The value of the offset dependent part ∆tkrρor,sptr,iq depends very much on the
offset between sender and receiver at the last synchronization and the time passed since this
synchronization. For tightly synchronized nodes the impact of this part will tend towards
zero.
The guaranteed precision of the method for tightly synchronized nodes is the absolute

value of the offset independent part of or,sptq. The resulting precision of the Intra Cluster
Synchronization is πintraptq “ ∆tpρp2` τq ` krτq.

131

4. Abstract Sensor Event Information Architecture (ASEIA)

The offset independent part is ∆tpρp2` τq ` krτq. In case no beacon loss occurs ∆t will
be approximately twice the beacon ∆tb interval, because every beacon contains the sender’s
time stamp of the last round and the maximum offset is always reached directly before the
next beacon arrives. The resulting precision in case of OD beacon omissions will therefore
be:

πintra ď p2`ODq∆tbpρp2` τq ` krτq (4.68)

The value kr can be viewed as a trade-off factor choosing between fast synchronization
and robust synchronization. This is caused by the presence of the factor in the offset
compensating part, where it decreases the existing offset stronger when it is bigger. On the
other hand, bigger kr values will increase the results of the offset increasing part depending
on the values of ρ and τ .
For the offset estimation of the adjacent neighbors, the Inter Cluster synchronization uses

the same approach as the Intra Cluster Synchronization uses. Therefore, the multi-hop
synchronization precision Πinter for tightly synchronized nodes can be bounded by using
the hop count h:

πinter ď hp2`ODq∆tbpρp2` τq ` krτq (4.69)

For loosely synchronized nodes the offset of the last synchronization will be a relevant
issue. However, this is only a problem in mobile systems, since static systems will always
compensate the offset as long as the time between synchronizations is not bigger than the
maximum considered offset. A direct consequence is that the synchronization precision in
multi-hop scenarios can be greatly enhanced if routes of tightly synchronized nodes are
chosen. However, such optimizations exceed the scope of this thesis.

Mobility

Mobility influences the networks topology and therefore, the association of Slaves toMasters
and the interconnectivity between Masters. Consequently, if a Slave loses connection to is
respective Master, its offset towards the Cluster increases as no further compensation of
the clock drift happens. If communication is re-established with the same Master, the
node’s maximum offset or,sptq will depend on the time between loss of link and the reception
of the next beacon ∆t and the offset of Master and Slave at the last synchronization as
described by (4.67). A tightly synchronized Slave will increase its offset based on the time
of the last synchronization and the drift of the nodes. A loosely synchronized node will
additionally increase the offset by a value proportional to last offset (or,sptr,iq), time since
last synchronization (∆t), drift (ρ) and network tightness (τ). Depending on the value of kr
fast moving Slaves will never reach a tightly synchronized state, because they are switching
Master faster than the algorithm is able to compensate the initial offset. On the other hand,
a high kr will enforce the induced errors when in orphaned state and the Slave reconnects
to the same Master.
In contrast to the independence of the movement of Slaves, the movement of Masters

has an impact on the whole PAN created by this Master. Therefore, the Master should

132

4.6. Abstract Sensor Event Transformation Engine

be selected based on their topological speed, representing the amount of changes in their
topology. Nodes with slowly changing topologies are better suited as Masters, as they
increase the time of the algorithm to converge the offset towards zero.
The Inter Cluster Synchronization handles mobility well, since the mobility of a node in

the local neighborhood of Pc1 does not change Pc1 ’s virtual clocks of the adjacent nodes.
Therefore, the transformation of the events is independent of each other. Since there is no
hierarchy between the Masters, the movement of each node only effects the offset estimation
towards its neighbors and the estimation of the neighbors towards this node. New nodes in
a neighborhood start with an infinite uncertainty in the offset estimation since they have not
yet established an offset estimation towards their neighbors. While the nodes receive beacons
from adjacent Masters, they improve the offset estimation and decrease the uncertainty.

Estimating the Uncertainty

The estimation of the current uncertainty of the synchronization of the virtual clocks is dif-
ficult. Multiple factors influence the actual uncertainty in the synchronization, like beacon
losses and the current drift of the individual clocks. In this approach the synchronization
error εr,s,i of synchronization round i between two adjacent Masters Pcs and Pcr is charac-
terized by their offset δr,s,i`1 at beginning of synchronization round i` 1.
Following PCS, the synchronization error is modelled as a zero-mean Gaussian distribution

Np0, σqr,s. To estimate the standard deviation, the synchronization errors of the previous
n synchronization rounds are used as sample set Er,s “ tεi´n, εi´n`1 . . . εiu. The standard
deviation σr,s of the zero-mean Gaussian distribution is estimated based on the sample set.
The confidence interval

”

x̄˘ zp 1`γ
2 q

σ?
n

ı

of the synchronization with typical probability γ

can now be computed. zp 1`γ
2 q

represents the 1`γ
2 -quantile of the standardized Gaussian

distribution. The resulting size of the confidence interval αr,s “ zp 1`γ
2 q

σ?
n

represents the
current uncertainty estimation, which is incorporated in the Time Attribute Reference and
consequently in the results of the Transformation.

The complexity of this computation is only dependent on n, which represents a trade-
off between estimation accuracy and memory and computation overhead. The quantile of
the standardized normal distribution is a pre-defined constant, characterizing the trade-off
between accuracy of the estimation and growth of the uncertainty of the transformed events.

4.6. Abstract Sensor Event Transformation Engine

The Abstract Sensor Event Transformation Engine (ASETE) is responsible to find, com-
bine and execute existing Transformations as necessary to automatically couple publishers
and subscribers. To this end, multiple sub-tasks need to be solved. Firstly, the existing
transformations need to be represented and stored in a machine readable way. Secondly,
on announcement of a publisher or subscription of a subscriber, necessary Transformations
need to be automatically selected. Thirdly, the transformations need to be executed on
reception of an ASE compatible to the Composite Transformation.
The generic structure of the transformations enable an easy description of the Transfor-

mation by using the EID of the Event Scheme and the Format Hash of the Event Format
as input and output data type, as described in Section 4.4.7 and 4.4.8. This information is

133

4. Abstract Sensor Event Information Architecture (ASEIA)

stored in ASETEs Knowledge Base (KB) of existing transformations. Additionally, the KB
needs to store the currently announced publications of the system with their EID and For-
mat Hash and the established Channels. The existing transformations need to be handled
differently depending on the following parameters:

Generality : General transforms are templates which automatically adept themselves to the
input Event Types. The adaptation is based on the EID and Format Hash of the input
events. This enables a more general description of the transformation behavior and
eases the system specification. Consequently, they need to be adapted to the supplied
input and output Event Types on run time. These Transformations are programs,
which are executed if a channel is established and output a Configured Transformation
matching the channel.

Homogenity : Homogeneous transforms are transparent regarding the Event Scheme.
Therefore, they need to be applied to each publisher or subscriber depending on the
currently considered events and filter expressions. On channel creation they need to
be considered as soon as a filter expression exists, either specified by the subscriber or
by a Transformation in the Composite Transformation DAG.

In the following sections, the selection, creation and application mechanisms of the ASETE
will be shown.

4.6.1. Automatic Configuration of Generic Transforms

Existing Generic Transformations such as Attribute Transformations or Inter- or Extrapo-
lation Transformations need to be fully specified on run-time. These transformations are
not specific to any phenomenon, but act directly on attributes or whole events. Conse-
quently, they are specified in the KB with the special output EID any. In general, these
Transformations are supplied with the list of Input Event Types T ein and the desired Out-
put Event Type TEgoal and the attached filter expressions P to enable configuration. In
the following the necessary configuration mechanisms for the Generic Transformations, see
Sections 4.5.2, 4.5.5 and 4.5.6, are described.

Cast Transformations are Unary Transformations and have only a single Input Event Type
T einr0s and an empty set of filter predicates P “ H. The configurations of these
transformations create an associative mapping from AID to the goal data type m “

paTi , a
T
j q|ai P

T einr0s, a
T
j P

T egoal, a
id
i “ aidj

(

. These are executed on reception of the
event as a cast operation eout.aj “

`

mraidi s
˘

e0.ai for each attribute contained in the
event.

Rescale Transformations are similar to Cast Transformations, but instead of transform-
ing the data type, they transform the scaling of linear scales of attributes. On
creation of the channel they create an associative map of attribute scale quotients
m “

!

paidi ,
asi
asj
q|ai P

T einr0s, a
T
j P

T egoal, a
id
i “ aidj

)

. On reception of an event they op-
erate on the value and the scale of the attributes according to Equations 4.70 and 4.71.

asj “ mraidi sa
s
i (4.70)

avj “ mraidi s
´1ai (4.71)

134

4.6. Abstract Sensor Event Transformation Engine

Scale Change Transformations are more complex than Cast and Rescale Transformation,
since they need additional external information to modify attributes of incoming ASEs.
They are Dual Transformations by using an input event e0 and a reference event
eref . The goal of Scale Change Transformations is the change of reference of the
attributes value or the switch to a completely new scaling system. An example is the
transformation from a local time value of a sensor node to an Unix time stamp. Similar
to the previous Transformations on channel creation, an associative set is created,
which contains tuples of AID and the scales of output and input m “

paidi , pa
s
i , a

s
jq|

(

.
On reception of a Reference event, the event is stored in a buffer to provide the
necessary ∆ri, j. On reception of an input event the scale change is executed as
described by Equation 4.30 of Section 4.4.3.

Generic Event Transformations are typically homogeneous transformations combining
multiple similar events to output events of the same type, but change context pa-
rameters. Consequently, they need to be configured on channel creation to the Event
Type of the input event, even though they may be applied dynamically on every in-
coming event. This adaptation consists of the extraction of the Attribute Types and
the selection of the operation executed on them. Two different types of attributes
need to be handled: Continuous Attributes and Discrete Attributes. The configuration
will assign the generic operations to the different AIDs according to the definition of
the Transformation. The Attributes the Transformation acts on are selected based on
the Filter Expression. The remaining Attributes act as internal Filter Expression to
prevent incompatible ASEs to be fused. Continuous Attributes need to be equal as
stated by the definition of equality for continuous uncertainty values in Section 4.4.4.
Discrete Attributes need to be equal with the resulting uncertainty be ă 1.

4.6.2. Representing Rules as Knowledge Graph

The existing Transformations form complex interactions as multiple individual transfor-
mations may be necessary to fulfill the subscription of a CPS component. An example
is a system containing publishers of Position Information, but CPS components require
acceleration information. To transform the existing Position Information in Acceleration
Information, two differentiation steps are necessary. Both operations can be described as
individual Complementary Fusion Transformations. However, a single stage lookup on the
transformations will not find any transformation enabling an inference of acceleration from
positions. Therefore, an extended lookup system needs to be used to find Complex Trans-
formations composed of multiple elementary transformations.

The base of this extended lookup is the representation of all non-Generic Fusion Trans-
formations in a directed graph. This graph connects each transformation with its outgoing
and incoming Event Schemes. Generic Transformations cannot be included in the graph as
they have unknown input and output EIDs until configured. The result of such a represen-
tation for an exemplary set of transformations is shown in Figure 4.28. As visible, the graph
contains cycles, as Event Schemes exist that are input and output to some subset of the
transformations. An example is the transformation of two positions to a proximity sensor
event and the back-transformation to a position event. Theoretically, this may create an
infinite amount of events, because results are fed back as input. Therefore, the used lookup

135

4. Abstract Sensor Event Information Architecture (ASEIA)

algorithm needs to only consider transformations decreasing the distance of the input Event
Schemes to the target Event Schemes.
Another property of the representation of the Transformations as a graph is the separation

of disjunct sets of transformations. If two sets of transformations share no Event Scheme
in the input and output specification of their transformations, they represent separate sub-
graphs. This enables a faster lookup of the necessary transformations, as only a single one
of these need to be considered.
The graph can be used to formulate the lookup of the necessary transformations as an

algorithm on graphs. In the case of a subscriber for an arbitrary Event Scheme in the graph,
this Event Scheme is used as the root node of a Spanning Tree. The resulting tree contains
all applicable transformations, that might lead to the desired output Event Scheme. The
exact algorithm used is described in the next Section 4.6.3.

136

4.6.
A
bstract

Sensor
E
vent

T
ransform

ation
E
ngine

PositionDistance

Orientation

Speed

Proximity Acceleration

eout.dist “ }e0.pos´e1.pos}

e0.time “ e1.time^

e0.id ‰ e1.id

eout.id “ e0.id2;

eout.pos “ e0.pos ˘ e1.dist

eout.id2 “ e0.id;

eout.dist “

||e0.pos ´ e1.pos||

e0.time “ e1.time^

e0.id ‰ e1.id

eout.id2 “ r0, 0s

eout.speed “

e0.pos´e1.pos
e0.time´e1.time

e0.time ă e1.time^

e0.id “ e1.id

eout.accel “

e0.speed´e1.speed
e0.time´e1.time

e0.time ă e1.time^

e0.id “ e1.id

1

2
2

1

2

2

Figure 4.28.: An example knowledge graph consisting of relevant transformations concerning physical properties of mobile entities.

137

4. Abstract Sensor Event Information Architecture (ASEIA)

4.6.3. ASETE Channel Creation

Algorithm 1 Algorithm to extract the Transformation DAG for Event Scheme s from the
Knowledge Base kb and the current published Event Scheme list pList.

procedure createDAG(s, kb, pList)
tÐ spanningTreeps, kbq Ź create spanning tree of kb with root node s
for n in t do Ź Iterate the nodes of the DAG

if n.type “ Transformation then Ź handle transformations
prunedÐ false

for sin in n.input do Ź check incoming event schemes
if sin not in pList then Ź check for existing publisher

prune(t, n) Ź prune sub-tree
prunedÐ true

end if
if not pruned^epsin, nq not in t then Ź check consistency

insert(epsin, nq, t) Ź Restore consistency
end if

end for
end if

end for
end procedure

The ASEIA broker handles the registration of publishers and subscribers in the system.
On each received publisher announcement the EID and Format Hash of the Event Type is
added to the Knowledge Base. On each received subscription ASETE checks the Transfor-
mations stored to create an ASEIA-Channel. To generate the Composite Transformations,
a complex search needs to be executed to generate a Transformation DAG stored in a
Composite Transformation. The first step is the generation of the Transformation DAG of
non-generic non-homogeneous Transformations. This process is described by Algorithm 1.
To select applicable Complementary Fusion Transformations from the Knowledge Base, the
graph representation of the knowledge base can be used. As described in Section 4.6.2,
the graph representation enables the creation of spanning trees by using the subscribers
Event Scheme as root node. The spanning tree should be as balanced as possible, since a
balanced tree minimizes the maximum distance of the transformations from the root node.
This helps to minimize the additionally generated uncertainty, because each transformation
on induce may induce uncertainty. Afterwards, the tree is not a valid transformation DAG,
since connections between input Event Schemes and Transformations are removed as the
tree is constructed, as shown in Figure 4.29a. However, a Composite Transformation is
only valid if all its incoming Event Schemes are connected and published by at least one
publisher. Consequently, the tree will be filled with the missing connections based on the
Transformation’s input Event Types. The repaired Transformation DAG of the example is
shown in Figure 4.29b. After the creation of the Transformation DAG compatibility be-
tween input Event Types and published Event Types has still not been established. The
Event Formats might be different for the individual input Event Schemes of the Composite
transformation. The Generic Attribute Transformations are now configured to match the

138

4.6. Abstract Sensor Event Transformation Engine

Proximity

eout.id2 “ e0.id;

eout.dist “

||e0.pos ´ e1.pos||

e0.time “ e1.time^

e0.id ‰ e1.id

eout.id2 “ p0, 1q

Distance

eout.dist “ }e0.pos´e1.pos}

e0.time “ e1.time^

e0.id ‰ e1.id

Position

(a) An example Spanning Tree created by
the system for the vehicle scenario for a
Proximity Subscriber.

Proximity

eout.id2 “ e0.id;

eout.dist “

||e0.pos ´ e1.pos||

e0.time “ e1.time^

e0.id ‰ e1.id

eout.id2 “ p0, 1q

Distance

eout.dist “ }e0.pos´e1.pos}

e0.time “ e1.time^

e0.id ‰ e1.id

Position

(b) An example Transformation DAG cre-
ated by the system for the vehicle sce-
nario for a Proximity Subscriber.

different Event Formats of the input Event Schemes. To this end, the N-Ary Transforma-
tions are searched and configured. Afterwards, the Unary Attribute Transformations are
searched and configured to finally match the Event Types. If no match can be found the part
of the Transformation DAG need to be pruned until an Event Scheme is reached, which is
fulfilled either by a publisher or by another sub-DAG. The process of configuring Generic
Transformations is described in Section 4.6.1.
On generation of the Composite Transformation from the Transformation DAG a buffer

needs to be created for each contained Transformation. The buffer handles the different
timing of the events received by the broker and serves as storage for multiple input Trans-
formations, this simplifies the API as described in Section 5.2.3. Multiple Buffer Types exist
to provide the different types of Transformations with an appropriate buffering mechanism,
which may also be configured. The general Buffer Types are described in the next section.

4.6.4. Buffering Incoming Events

Event-based systems allow no prediction of the arrival order of input ASEs. Therefore, it
is necessary to buffer them to provide consistent input event sets to the Transformations.
Consequently, each transformation is accompanied with a buffering structure to temporarily
store incoming events. This is similar to the concept of Aurora (see Section 3.5, which uses
temporary buffers to store windows of the input stream. The structure and the behavior

139

4. Abstract Sensor Event Information Architecture (ASEIA)

of these buffers depend on the type of the transformation. There exist five types of buffers
depending on the transformations:

Unary Transformation Buffers are pseudo-buffers, that do not store anything. The input
events are directly forwarded to the transformation for execution, since no other events
are necessary.

Reference Transformation Buffers are one element buffers, that store reference informa-
tion used in Generic Transformation. These transformations only need the most recent
information. Therefore, only the reference with the smallest age is kept in the buffer.
This assumption is reasonable, as the uncertainty of reference points should be smaller
then their change over time.

N-ary Transformation Buffers are generic buffers enabling separate storage of different
types of events. They provide the facility to automatically generate combinations of
stored input events and deliver them to the transformation. The transformation needs
to check the passed input event tuples for usability and generates output event sets
accordingly.

Associative N-Ary Buffers are generic buffers, which separate the incoming events into
multiple lists based on a specified Attribute. They are used to enhance performance,
as they limit the amount generated event combinations because of early filtering.

Custom Buffers are user implementable buffers enabling arbitrary ordering and combina-
tion generation.

The behavior of the buffers is very important to the performance of the Transformation
execution, as all transformations, which are not Attribute Transformations or Unary, need to
generate combinations of input events to form tuples. The generation of the tuples is handled
by the buffers and depend on the following configuration parameters, which consequently
influence execution performance heavily:

Maximum Size configures the maximum count of input events stored for each input event
type. The parameter is only applicable to N-ary Transformation Buffers or Custom
Buffers.

Maximum Age configures the timeout after which an event is removed from the input
event storage. The time reference is always the current time of the broker the buffer
is executed. The age is computed based on the time attribute of each input event and
the current time of the ASEIA Broker Node.

Maximum Uncertainty is a scalar value applied to the sum of uncertainty of all Attributes
which are used by the Transformation. Input events, whose uncertainty surpass this
value, will not be added to the input event storage. To compute the uncertainty of an
attribute, the norm of the uncertainty vector or matrix is used.

The Maximum Size parameter n is the most important one as it directly defines the worst
case complexity of the transformation execution as O pnmq, with m being the arity of the
transformation. In worst case all input event combinations need to be check regarding the

140

4.6. Abstract Sensor Event Transformation Engine

Filter Expression of the Transformation or the subscriber. In general, the actual effort is
much lower as static predicates lessen the necessary comparisons heavily. The impact of
Maximum Age and Maximum Uncertainty depend on the supplied ASEs. In systems with
very uncertain information or very long periods these parameters can greatly improve the
performance of the system.
The parameters are either configured on design time or passed as part of the Policy-

System, which is described in Section 4.6.5.

4.6.5. Activating Transformations

The activation of a Composite Transformation of a channel is executed by Algorithm 2.

Algorithm 2 Algorithm feeding an input ASE ein to a Transformation DAG tG to produce
a set of output ASEs Eout “ teout0, .., eoutnu.

1: procedure call(tG, ein) Ź Execution of the whole Transformation DAG
2: eout ÐH

3: for t P tG do Ź Iterate over all Transformations
4: if acceptpt, einq then Ź Check if Transformation accepts ein as input
5: eout Ð eout`callTransformationpt, einq Ź Append all results
6: end if
7: end for
8: return eout
9: end procedure

10: procedure callTransformation(t, ein) Ź Execute a single Transformation
11: etemp Ð tpeinq

12: T Ðlinkedptq Ź Get all linked transformations
13: if T ““ H then
14: return etemp Ź Pass results to eout
15: else
16: eout ÐH

17: for tnext P T do Ź Forward output inside DAG
18: for e P etemp do Ź Forward all created events
19: eout Ð eout`callTransformationptnext, eq Ź Recurse until root
20: end for
21: end for
22: return eout
23: end if
24: end procedure

Transformation DAGs, as part of established channels, are activated whenever a compati-
ble ASE is received by the broker. In this case compatibility is defined according to the Event
Type declared in the input event list of the channel. For an ASE ein and an Event Type
T e0 to be compatible, all Attribute Types Ta0,i contained in T e0 need to be compatible to
the corresponding Attribute Types Tain,i of the event. Two Attribute Types are considered

141

4. Abstract Sensor Event Information Architecture (ASEIA)

to be compatible when they are equal. In consequence, a channel may also accept events,
which contain more information than needed by the contained Transformations. This is to
be expected as the Event IDs of the Event Type and the ASE show the same behavior, see
Section 4.4.7.

The contained Transformation DAG forwards the received event e0 to the input buffers
of all leaf transformations t0,i through the execution operation of the individual Transfor-
mation. The output of the transformation e0,ij , if there is any, will then be put in the next
transformation’s t1,j input buffer through the execution operation of this transformation.
This process continues unless no output events are created for the next layer. If the trans-
formation is the root transformation of the Transformation DAG, the resulting events will
be published according to the specified execution policy.

Execution Policies enable the subscriber to influence the amount of published output
events based on their properties. These policies will act as a filter on the output events and
may change the behavior of the input buffers of the transformations. The subscribers state
the required policy through a filter statement on a virtual Policy attribute. This attribute
is not contained in neither the input nor the output events and is only used to provide a
concise API for selecting policies.

The generic Policies of ASEIA are:

All is the default Policy. It outputs all events, which fulfill the subscriber’s requirements
stated in the filter expression passed on channel creation. It may create a large amount
of output events depending on the size of the Transformation DAG, the buffer size
of the contained transformations and the conditioning of the events. However, the
amount of events is never infinite unless the resulting Transformation is homogeneous
and no recursion preventing filter expression is specified.

Newest is a Policy aiming to provide output events with the smallest age, which means
the difference between the time stamp of the output event and the current time of the
executing broker shall be minimal. This policy changes the behavior of the underlying
buffers of the individual transformations by sorting the buffer according to the time
attribute of the events. The transformations are executed from newest to oldest events
combinations. The execution of the Transformation DAG stops after the first event
is created that fulfills the requirements of the subscriber.

Best is a Policy aiming to minimize output of Transformation DAGs by sorting the
output events according to their uncertainty. The general approach is to compute for
each attribute the norm of the uncertainty and sum these over all attributes. The
policy will discard events which are equal according to: @a0 P e0,@a1 P e1 : a0.id ““

a1.id Ñ a0 ““ a1 and have larger uncertainty. Since the amount of output events
is unknown on design time, this operation needs an additional output buffer in the
created channel, which can grow dynamically. The comparison algorithm has a worst
case complexity of Opn2q, where n is the amount of created events. This policy allows
to trade computation against communication with minimum impact on the uncertainty
of the generated events.

142

4.7. Summary

4.7. Summary

This chapter describes the concepts of the ASEIA framework. The framework uses a generic
context description mechanism to represent sensor information in an abstract way and com-
municate them using events in a distributed system. The goal of the extensions is a dy-
namic composition of CPS, which consists of multiple independently developed components,
whose context requirements on the necessary sensor information is incompatible. It enables
filtering, publication and subscription of these events based on the contextual and semantic
information contained in the events with a focus on the applicability to low-power embedded
systems. The necessary information processing to translate the context of the information
between the CPS’ components is described by generic Transformations, which are enabled
automatically. The system infers necessary Transformation DAGs on run time to fulfill
subscriber’s requirements. The Transformations are categorized and described with their
properties in a hierarchy together with their adaptation mechanism used to decouple the
CPS components. Finally, the chapter describes the integration of the description and
transformation system to a generic P/S system. This enables an extension of most existing
systems with the additional functionality and paves the way for generic dynamic composable
and adaptive CPS.

143

5. Implementation

The following chapter describes the implementation of ASEIA, described in Chapter 4, and
its adaption to an actual P/S system.

5.1. ASETE Implementation and Language Bindings

The implementation of ASEIA’s concepts is divided into three major blocks:

ASETE Transformation Core consists of the implementation of the Knowledge Base, the
Transformation DAG generator and the Transformation DAG Execution Engine. The
Knowledge Base needs to be able to efficiently store and query existing Transforma-
tions. The Transformation DAG Generator enables the composition of existing Trans-
formations into DAGs based on dynamically specified requirements of the subscribers
regarding Event Scheme, Event Format, QoS, QoC and context. The Transformation
DAG Execution Engine executes the generated DAGs on incoming ASEs. It is the
most performance critical component of ASETE, as it is executed more often then the
others.

Transformations are either specified as Generic Transformations, which adapt themselves
to the requirements of the subscribers on Transformation DAG generation or as Het-
erogeneous Transformation, which needs to be specified based on the application sce-
nario. Both types benefit from a homogeneous abstraction providing linear algebra
operations on ASE attributes incorporating values, uncertainty and context. This
abstraction may either be provided as a programming API or in the form of a DSL.

CPS API provides the binding of the CPS applications to ASEIA’s automatic transfor-
mations and description mechanisms. The API should be designed to enable differ-
ent language bindings. This minimizes the effort of developers and designers to use
ASEIA in existing CPS components. The API shall provide mechanisms to specify
Event Schemes and Event Formats, Filter Expressions and linear algebra operations
directly on the received ASEs. The specification of Event Schemes, Event Formats
and Filter Expressions as DSLs enables an extensive error checking and optimization,
which is important for embedded systems.

These blocks provide logical separation in the implementation, which enables different lan-
guages to be chosen for the individual blocks. This increases ASEIAs flexibility regarding
the integration into existing CPS frameworks. However, some requirements regarding fea-
tures of the used languages exist, which are induced by the conceptual design of the ASEIA
components. The following sections will discuss possible languages usable to implement the
blocks and the actual choice used for the prototype.

145

5. Implementation

5.1.1. ASETE Implementation Language

The ASETE implementation language can be chosen independently of the other components
and is not visible to either the Transformations nor the CPS API. Additionally, it shares
no common dependent internal components with the other parts of ASEIA. Consequently,
a language can be chosen, which provides maximum efficiency regarding implementation
effort, storage efficiency and execution efficiency. In the following, the prototype of ASEIA
is implemented using C++, as it provides highly optimized code for many architectures
and many libraries implementing necessary algorithms such as the STL [103] for generic
algorithms regarding lists, heaps, hashes and more. Additionally, the Boost Graph Library
provides flexible, high efficiency algorithms on arbitrary graphs easing the implementation
of the Knowledge Base and the generation of Transformation DAGs.

5.1.2. Cyber-Physical-System (CPS) Application Bindings

Language bindings are necessary to enable CPS components to use ASEIA’s advanced con-
cepts. These bindings enable an CPS application to subscribe and publish any ASEs. To
this end, the ASEs need to be described. In the case of subscriptions, the requirements of the
CPS component regarding the ASE need to be specified too. The language binding needs
to provide an API, which provides access to publication and subscription of generic ASEs
together with the capability to specify the requirements in case of subscriptions. Addition-
ally, the algebraic operations defined on the ASEs shall be accessible to the CPS component
natively. This enables a direct integration of th received data in the local processing within
the component. ASEIA assumes some capabilities of the languages it binds to. ASEIA
considers object-oriented languages only, as the ASEs are defined as an Event Hierarchy,
which minimizes necessary definitions and automatically enables conversion of ASE towards
the root of the hierarchy as defined in Section 4.4.6. CPS publish and subscribe exactly de-
fined ASEs with fully specified Event Schemes and Event Formats. Consequently, statically
typed languages enable additional checks on compile-time, which may be used to detect
programming errors early, e.g incompatibility between ASE definition and supplied ASE
to an ASEIA publisher. Additionally, these languages may optimize the code to minimize
resource consumption and increase performance.
Each language binding consists of three parts:

ASE Specification DSL enables the composition of ASE from existing ASE and custom
attributes. It provides the specification infrastructure towards the Event Schemes and
Event Formats.

Filter Expressions DSL enables the specification of Static and Dynamic Selection criteria,
which can be attached to ASE subscriptions.

ASE P/S API enables publication and subscription of ASE described by the ASE Spec-
ification DSL and the Filter Expressions DSL. It implements mechanisms to access
Attributes contained in the ASE and type information regarding the channel static
Event Scheme and Event Format. Additionally, it provides access to the algebraic
operations on ASEs.

146

5.1. ASETE Implementation and Language Bindings

The following paragraphs discuss possibilities to implement these three parts for three
reference languages:

C++ [158] is a well established language, which has been existing for more than 20 years.
It provides strict type safety, checked on compile time, with the ability to heavily optimize
the resulting binary code. C++ supports multiple programming abstractions, ranging from
Object-Orientation over Functional to Generic Programming. The C++ TMP language is
an especially powerful tool to enhance the performance of applications, as it allows offloading
static checks and computations to the compiler [19]. TMP can be used to implement DSLs
directly in C++ without any additional tools, as described and used by Czarnecki et al. [54].
The integration of the DSL in the C++ compile process enables automatic optimization of
the DSL expressions. C++ does not need any run time infrastructure, which eases the
deployment to deeply embedded systems. It also enables highly flexible APIs without run
time overhead, see [154].

Java [73] was developed to be compiled once and shipped to every capable device. It is
supported on a wide range of architectures, but generally needs operating system support
to enable its Virtual Machine (VM). However, there are exceptions such as special ARM
architectures that provide a streamlined VM in hardware. Java provides many programming
abstractions as core concepts of the language. It enables object-oriented, functional and
stream programming. The Java class library implements solutions for most generic problems
and a huge set of libraries exists. As Java is a strictly typed language, type checks are
executed on compile time and only cast operations may fail on run time. The performance
of Java is generally worse compared to directly to machine code compiled languages, as
certain optimizations are not possible on compile time [164]. Some VMs, such as the HotSpot
VM [120], exist that solve this issue with dynamic optimization on run time on non-embedded
system. However, limited VMs exist which enable Java on embedded systems such as
the SQUAWK VM [148]. DSLs can be implemented using the Java Compiler Compiler
(javacc) [88], which generates a language parser from a DSL specification. The resulting
parsers provide native interfaces to integrate them in any Java program. This may be used
to implement the ASE Specification DSL and the Filter Expression DSL.

Python is a scripting language focusing on a simplistic language with a huge library solving
the most common generic problems [161]. Even though the language is designed for scientific
analysis and operating system scripting, there are ports of the interpreter to embedded sys-
tems. MicroPython [71] enables support for low power AVR architectures, but with limited
functionality. Python enables many programming abstractions such as Object-Orientation,
functional and generic programming. A positive aspect is the easy integration of C/C++
libraries in Python, which largely extends the available libraries. The drawback of Python
is similar to Java, optimization is very limited and the generic object orientation support
enables some run time overhead. In contrast to C++ and Java, the types of Python data
can only be checked on run time. Therefore, type errors are recognized late. Additionally,
Python only evaluates the code paths, which are currently executed. Consequently, bugs in
seldom used code paths are difficult to detect. The interpretation of the specified programs

147

5. Implementation

enable the implementation of arbitrary DSLs as a translation to native Python code and its
execution.

Result ASEIA’s prototype applications will use a C++ language binding because of the
minimal performance impact and the strict error checks. This eases the evaluation of
ASEIA’s performance regarding CPU and memory consumption. Additionally, it provides
the maximum amount of checks regarding implementation errors in the CPS components,
which will be discussed in Chapter 6.

5.1.3. Transformation Implementation

The Transformations need to be implemented differently from the CPS API because each
Transformation needs to be at least adaptive to changes in the Event Format. Conse-
quently, strict type checks at compile time are impossible. Generic Transformations need to
be adaptive regarding the Event Scheme and the specified requirements of the subscribers.
Consequently, they are small programs, which output Configured Transformations. These
are then included in the final Transformation DAG. Similar to the CPS API multiple lan-
guage bindings are possible for the implementation of Transformations. The requirements
are slightly different in this case. Languages providing object orientation are beneficial
to this case, as the Transformation Hierarchy provides different Abstract Transformation
Classes, which ease the programming effort. Additionally, languages, which allow operator
overloading enable a native use of mathematical operators to specify the necessary opera-
tions executed on the ASE’s attributes. To implement these operation the used language
should provide a high-performance linear algebra library. Transformations are executed of-
ten, which mandates a language enabling optimization to decrease the load of the broker
nodes executing them. Function shipping is a very beneficial property as it provides the
capability to deliver additional Transformations on run-time to the broker nodes of the sys-
tem. Another approach is the dynamic evaluation of the Transformations, which induces
large run-time overheads as no static optimization is possible. Consequently, Transformation
implementation is possible in all three languages considered in Section 5.1.2. C++ provides
run-time performance and operator overloading. The Eigen [74], [75] library provides fast
and flexible linear algebra operations usable to implement the mathematical operations on
ASE’s attributes. Java provides static and run-time optimization and function shipping
and enables linear algebra operations using la4j [91]. Python provides dynamic evaluation
and function shipping enabling maximum flexibility in the Transformation specification.
Numpy [116] provides a huge library of linear algebra operations and data types for Python.
Consequently, all three languages are viable candidates to implement the Transformation
API.

The prototype of ASEIA will use C++ to implement Transformations because of its inher-
ent optimization and run-time benefits. This enables the evaluation to test the performance
of the generic concept and minimizes the influence of the language and its abstractions.
However, the other languages can be supported similarly, by using the same implementation
design as specified in Section 5.2.3.

148

5.2. Implementation of the P/S Overlay

5.2. Implementation of the P/S Overlay

The implementation of ASEIA as an overlay to existing P/S systems needs a special soft-
ware design regarding the structure and operations on ASEs to enable support for deeply
embedded systems. The following Subsection 5.2.1 provides an overview of the used class
structure to implement ASEs. The next Subsection 5.2.2 describes the ASE API presented
to CPS applications. Afterwards, Subsection 5.2.3 describes the API used to implement the
Transformations as operations on ASEs. Subsection 5.2.4 shows the design and implemen-
tation of the ASEIA KB by using C++ facilities. The last Subsection 5.2.5 describes the
necessary adapters to link ASEIA to the underlaying P/S system.

5.2.1. Overview of the Implementation

The implementation of ASEIA is based on ASEs. ASEs present the basic infrastructure to
represent, transfer and process information in the system. The implementation is based on
a class hierarchy consisting of three main parts. These parts are shown in Figure 5.1.
One part represents the ASE interface of CPS applications. This ASE class is called Event

and uses TMP to configure the generic Event class with an application specified Event Type.
To this end, the Event is composed of configured Attributes. The Attributes’ configura-
tion consists of the information specified in Section 4.4: ValueType VT, Scale S, Unit Unit and
AttributeID ID. Similarly, the Transformation ASE interface consists of an ASE represent-
ing class called MetaEvent. This MetaEvent combines different MetaAttributes to a single
ASE. In contrast to the Event class, this classes are configured on run time without generic
programming. This enables the Transformations to be specified without exact knowledge
of the Event Format and the exact Event Scheme. To handle the static Event Type data a
third branch of the class hierarchy consists of the EventType, composed of AttributeTypes.
This abstraction allows the comparison of types of Events and MetaEvents on run time.
Additionally, it enables the configuration of MetaEvents on run time. There is no direct
connection between Events and MetaEvents. Conversion is done through the serialization
mechanism used to transport ASEs in the network. ASEIA uses a specialized serialization
system instead of generic ones such as boost serialize [144]. It separates Event Type and
Event Data serialization to optimize the amount of data needed to be transported. Addi-
tionally, it enables ASEIA to exchange Event Type data on channel creation independently
from the serialization of Event Data after the channel is established. This functionality
is realized by the (de-)serialization association between Event, MetaEvent, EventType and
PacketBuffer.
The Attribute and Attribute Type representations follow the same three parts design as

the Event representation. This structure is shown in Figure 5.2. The Attributes are
configured by using discrete TMP parameters, configuring the Attribute Type. These define
the implementation used for the four subparts of an Attribute. These parts are Value,
Scale, Unit and AttributeID. AttributeID, Scale and Unit are pure representation of
the Event Type. Value combines the Event Type with a run time storage of the Event Data.
ASEIA represents all Event Data as matrices of uncertain values. These are implemented
through the Eigen [74], [75] C++ library for linear algebra. AttributeTypes are used to
transfer this TMP parameters to a run time representation. This is necessary to create
a homogeneous abstraction independent of the exact configuration of a CPS applications’

149

5. Implementation

CPS API

Transformation API
1

(EventType)

1

(EventType)

1

1
0..*

(de-)serialize

1..*

0..*

(de-)serialize

1..*

0..* (de-)serialize

1..*

0..*

0..1

1..*

1

0..1
0..1

Event

AttrSpec[]

Attribute

Id, VT, S, Unit, U

MetaEvent

storage: map<AttributeID, MetaAttribute>

+ add(attr: MetaAttribute): bool

MetaAttribute

EventType

storage: map<AttributeID, AttributeType>

+ add(attr: AttributeType): bool

AttributeType

PacketBuffer

Figure 5.1.: Overview UML-Diagram showing the relations between the different abstrac-
tions used to represent ASEs.

150

5.2. Implementation of the P/S Overlay

CPS API

Transformation API

1

0..*

1 0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

10..*

1

0..*

10..*

1

0..*

1

0..*

1

1

1

(AttributeType)
0..*

1

(AttributeType)
0..*

1

(ValueType)
0..*

Attribute

Id, VT, S, Unit, U

Unit

Dim[9]

Scale
Value

DT, R, C, U

AttributeIDAttributeType

ValueType

+ typeID: uint8
+ rows: uint8
+ cols: uint8
+ uncertaintyID: uint8

ScaleType

+ scaleID: uint8
+ refID: uint8

UnitType

+ dims: int8[9]

MetaScale MetaValue

MetaAttribute

Figure 5.2.: UML-Diagram showing the different representations of Attributes of ASEs.

151

5. Implementation

ASE. The AttributeTypes also combine four information representation parts: ValueType,
ScaleType, UnitType and AttributeType. MetaAttributes contain the same Event Data
and Event Type data as Events, but configured and represented on run time. Consequently,
MetaScale and MetaUnit are extensions of ScaleType and UnitType. AttributeID is the
same in all three representations and is part of the interface to extract a single Attribute from
an ASE. The MetaValue implementation uses the object orientation feature of polymorphic
behavior. This enables the actual value implementation to be chosen automatically on run
time depending on the specified Event Type, Section 5.2.3 discusses this mechanism in detail.

The benefit of the separation of ASEIA into a dedicated CPS and a Transformation
sub-system is the applicability to deeply embedded systems, as shown in [154]. The Trans-
formations need considerably more memory and computational power to be executed than
the pure CPS ASE communication facilities. Therefore, two separate APIs are defined,
which are also implemented separately. The CPS API provides a maximum of compile time
checks with minimum resource consumption, while the Transformation API provides maxi-
mum flexibility and dynamic extendability on run time to provide the necessary adaptation
facilities.

5.2.2. CPS ASE API

The CPS ASE API is designed to provide maximum performance with maximum error
reporting on compile time to perfectly suit deeply embedded systems. To this end, Template
Meta-Programming (TMP) is used. TMP provides a functional language on top of C++,
which enables the compiler to compute ”classes”. This technique is extensively described
by Abrahams and Gurtovoy [19]. It is heavily used in the Standard Template Library
(STL) [103] of C++ to provide maximum performance with maximum flexibility by adapting
the data structures and algorithms on compile time. The same mechanism can be used to
adapt a generic Event class to different configurations. In this case, the Event is supplied
a TMP vector, as provided by the boost MPL [76] library, containing the specification
of each contained AttributeID. The compiler iterates the vector and creates appropriately
configured Attributes. If an AttributeID exists twice in the vector, a compile time error
is raised. The Event combines all generated Attributes through multi-inheritance. The
resulting Event ”is” all of the Attributes at the same time and allows the selection of a
single Attribute by using the attribute(AttributeID id) method. In case no Attribute
with the requested AttributeID is contained in the Event a compile time error is issued
and the developer directly realizes his or her error. The benefit of this abstraction is the
usage of the compiler to minimize run time overhead. The generated ASEs are guaranteed
to only contain the Event Data as content, all Event Type information is encoded by the
compiler in the generated C++ Type.
The specification of the ASEs forms a DSL representing a subset of C++. This DSL is

shown in Listing 5.2 in Extended Backus-Naur Form (EBNF) form according to [3]. Addi-
tionally, Listing 5.1 provides basic definitions used also in C++. For the sake of simplicity,
unnecessary whitespaces are removed from the EBNF definition. The ASE DSL consists of
the specification of five elements: Events (event), Attributes (attribute), ValueTypes
(valueType), Scales (scaleType) and Units (unitType). Events are specified as exten-
sions to the BaseEvent or any already defined event. The extension uses either a single

152

5.2. Implementation of the P/S Overlay

attribute or another event, as visible in Line 9. Attributes are tuples combining the At-
tribute ID, Value Type, Scale Type and UnitType (Line 1–3). ValueTypes combine a data
type declaration using a primitive type and a matrix size specification of rows and columns.
Additionally, the usage of the uncertainty representation needs to be specified (Line 4). The
ScalType is limited to linear scales in the current prototype. The ScaleTypes are specified
using three integers specifying the used ratio and the reference id (Line 5). Units are special,
as they are defined using template expression operations to combine them. This allows an
easy combination of the basic SI units to complex units according to Lines 6-10.

Listing 5.1 Generic Production Rules for EBNF of ASE specification and Filter Expression
DSLs

1 cap = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | " I " |
2 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
3 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" ;
4 l e t t e r = "a" | "b" | "c" | "d" | "e" | " f " | "g" | "h" | " i " |
5 " j " | "k" | " l " | "m" | "n" | "o" | "p" | "q" | " r " |
6 " s " | " t " | "u" | "v" | "w" | "x" | "y" | "z" ;
7 d i g i t = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" |
8 "9" ;
9 alnum = cap | l e t t e r | d i g i t | "_" ;

10 name = "_" | cap | l e t t e r , {alnum } ;
11 number = d i g i t , { d i g i t } ;
12 i n t e g e r = ["´"] , number ;
13 f l o a t = in tege r , [" . " , number] , [" e" , i n t e g e r] ;
14 bool = " true " | " f a l s e " ;

Listing 5.2 Syntax of the ASE specification DSL in EBNF form.

1 a t t r i b u t e = "Attr ibute<" , name , " , " , valueType | name , " , " ,
2 scaleType | name , " , " , unitType | name ,
3 ">" ;
4 valueType = "ValueType<" , var , " , " , number , " , " , number , " , " , bool , ">" ;
5 scaleType = "Scale<" , in t ege r , " , " , number , " , " , number , ">" ;
6 unitType = baseUnit | compositUnit
7 compositUnit = " dec l type (" , baseUnit , " () " {"∗" | "/" , baseUnit , " () " } , ") " ;
8 baseUnit = " Dimens ion les s " | "Meter" | "Second" | "Ampere" | "Mol" |
9 "Candela" | "Radians" | " Ste rad ians " | "Kilogram" | "Kelvin " ;

10 eventType = "BaseEvent<" , name , ">" | var , [" : : append<" , name | at t r , ">"] ;
11 de c l a r a t i on = " us ing " , name , "=" , a t t r | event | valueType | scaleType |
12 unitType ;

Each Attribute contains functions to extract the compile time information in form of
an AttributeType to provide means to pass the TMP configuration parameters to run
time. The EventType is created by iterating over all contained AttributeIDs of an Event
and by inserting each converted AttributeType into a single EventType. The relation
of Attribute, AttributeType and MetaAttribute follows the concept used for Events,
EventTypes and MetaEvents. The difference is the central usage of AttributeIDs to identify
the individual Attributes and relate the representations, as visible in Figure 5.3.

153

5. Implementation

The mechanism available through TMP can be extended to the definition of the opera-
tions on Attributes’ Values and Filter Expressions, which are described in the next two
paragraphs.

Operations The attribute operations, as defined in Section 4.4.4, are implemented as a
composition of TMP expressions and operator overloading. The TMP expressions are used
to modify the Attribute Type. This is necessary in case of multiplication or division of
Attributes, because the associated Unit needs to be changed, too. The code snippet 5.3
shows the implementation of this behavior. Line 11 computes the returned Attribute
Type, which is the output of the operation. It uses the internal template type Unit::mult,
which enables the multiplication of two units by the compiler, according to the definition
in Section 4.4.2. This enables a direct computation and modification of Attributes in the
CPS application without the need to convert the received ASEs before computation.

Listing 5.3 Implementation of Unit modification on multiplication of Attributes
1 template<typename AttributeID, typename Value, typename Unit, typename Scale>
2 class Attribute {
3 .
4 .
5 .
6 template<typename Unit2>
7 using multUnit = typename Unit::mult<Unit2>::type;
8

9 template<typename Unit2>
10 auto operator*(Attribute<ID, Value, Unit2, Scale>& b) const
11 -> typename Attribute<ID, Value, multUnit<Unit2>, Scale>::type
12 {
13 typename Attribute<ID, Value, multUnit<Unit2>, Scale> temp;
14 temp.value() = this->value() * b.value();
15 return temp;
16 }
17 };

The static type information is used to check the compatibility of Attributes as they are
assigned to Events. In case of differences a compile time error is issued preventing run
time errors. The operations on Values are implemented by using Eigens Matrix class with
ValueElement as the basic type to support the uncertainty representation of Section 4.3.2.
UML-Diagram 5.3 shows the implementation structure of the Values representing the Event
Data.
Special uncertain linear algebra operations such as norm and dot are implemented through

the operations of ValueElement. This delegation of functionality produces no overhead,
because the relation between the classes is evaluated at compile time and enables full op-
timization by the compiler. Value is a Proxy facading the configured Eigen::Matrix to
enable CPS applications to use the uncertain matrices like normal algebraic data types of
C++.

154

5.2. Implementation of the P/S Overlay

1

element1

1

storage1

1

cast
1

ValueElement

value: Type
uncertainty: U

+ operator+=(b: ValueElement): ValueElement&
+ operator-=(b: ValueElement): ValueElement&
+ operator*=(b: ValueElement): ValueElement&
+ operator/=(b: ValueElement): ValueElement&

Type, U

Eigen::Matrix

+ operator+=(b: Eigen::Matrix): EigenMatrix&
+ operator-=(b: Eigen::Matrix): EigenMatrix&
+ const operator*(b: Eigen::Matrix2): EigenMultMatrix
+ operator/=(b: VE): Eigen::Matrix&

VE, Rows, Cols

Value

data: Eigen::Matrix<ValueElement<Type, U>, Rows, Cols>

+ const operator+(b: Value): Value
+ const operator-(b: Value): Value
+ const operator*(b: Value2): MultType<Value, Value2>
+ operator/=(b: Value<VE, 1, 1, U>): Value&

Type, Rows, Cols, U

Figure 5.3.: UML-Diagram showing the implementation structure of the Values contained
in Attributes of ASEs in the CPS API.

155

5. Implementation

CPS Filter Expressions , as described in Section 4.5.1, are necessary to state the require-
ments of the subscriber towards the publishers. In classical P/S systems they are used to
limit the amount of information fed to the subscriber by filtering out irrelevant information.
Additionally, ASEIA uses these expressions to configure Homogeneous Transformations to
automatically employ sensor fusion to fulfill the requirements of the subscriber. The state-
ment of these expressions is based on TMP, more specific on template expressions, as de-
scribed by Veldhuizen in 1999 [163], to embed DSLs inside of C++ source code investigated
by Krysztof et al. in 2000 [54]. These expressions allow the formulation of lazy evaluated
code. They provide the capability to specify the static and dynamic Filter Predicates, which
are formulated as combinations of comparison operations, attribute assessors and boolean
connectors on Placeholders for Attributes and Values. Some example Filter Expressions
are shown in Listing 5.4.

Listing 5.4 Examples of Filter expressions.
1 const TimeAttr c0 = {{{ 1024 }}};
2 auto filter0 = e0[Time()] < c0;
3 auto filter1 = e0[Time()] == e1[Time()];
4 auto baseFilter0 = e0[Time()] > c0;
5 auto filter2 = baseFilter0(e0) && !baseFilter0(e1);
6 auto filter3 = (e0[Position()] != e1[Position()]) ||
7 (e0[Time()] > e1[Time()]);

In these examples different types of Filter Predicates are defined. Line 1 defines a constant
Time Attribute Value, which is used in filter0 and filter2 to enable Static Selection.
The individual filters are created by using one of the predefined Placeholders from the boost
phoenix [143] framework e0, . . . , e7 to select the n-th input ASE. The arity of the resulting
predicate is the maximum contained event placeholder. These placeholders use template
expressions overloading the C++ operators `,´, ˚, {,““, ! “,ă,ą,ď,ě to form complex
lazy evaluation functors, which represent the specified filter. Additionally, as visible in
filter2 multiple Static Selection expressions can be combined using logical connectors.
filter1 and filter3 are examples of Dynamic Selection as they compare attributes of
different ASEs. All these filters are functors, which are executed on run time. Depending
on the supplied object they either check the supplied ASEs or they are serialized into a
network buffer to be sent to brokers or publishers. Listing 5.5 shows these two use-cases.
Line 1 and 2 define the used ASE and PacketBuffer used for serialization. Some exam-

ple ASEs are created in the Lines 4 - 7. Lines 9 - 12 execute the filters on the example
events and output text depending on the result. Lines 14 - 18 set up the environment to
serialize the filters into the PacketBuffer. The serialization is executed in Lines 20 - 24
by supplying the special FilterEvents as parameters to the functors, which internally se-
rializes the Filter Expressions in a network buffer. Brokers or publishers receive these and
de-serialize the Filter Expressions in MetaFilters and execute them on run time. This
mechanism presents a very limited mechanism to allow functions shipping within ASEIA
for the purpose of exchanging Filter Expressions. This mechanism enables an extensive
error checking on compile time, testing the existence of attributes and the validity of filter
statements depending on scale, unit and other parameters of attributes. Additionally, the

156

5.2. Implementation of the P/S Overlay

Listing 5.5 Execution and serialization of Filter expressions.
1 using Event = BaseEvent<>;
2 using PacketBuffer = std::vector<uint8_t>;
3

4 Event trueEvent, falseEvent, compEvent;
5 trueEvent.attribute(Time()).value() = {{{1050}}};
6 compEvent.attribute(Time()) = c0;
7 falseEvent.attribute(Time()).value() = {{{100}}};
8

9 if(!filter0(trueEvent)) cout << "False negative";
10 if(!filter1(falseEvent)) cout << "False positive";
11 if(!filter2(trueEvent, compEvent)) cout << "False negative";
12 if(!filter3(falseEvent, compEvent)) cout << "False positive";
13

14 PacketBuffer buffer;
15 auto i = std::back_inserter(buffer);
16 Serializer<decltype(i)> s(i);
17 FilterEvent<decltype(s)> s0(0, s);
18 FilterEvent<decltype(s)> s1(1, s);
19

20 filter0(s0);
21 filter1(s0);
22 filter2(s0, s1);
23 filter3(s0, s1);

compiler can inline and optimize the filter predicates as they are fully specified on compile
time. This produces very efficient code, especially for embedded systems. The drawback of
this approach is the inability to capture the Filter Expressions without the exact knowledge
of the Event Type, which is necessary to execute received filters by brokers or publishers.
However, the specialized Transformation ASE API solves this problem.

The generic Filter Expressions syntax is described using EBNF syntax in Listing 5.6.
Lines 1–5 show the definition of matrices of value-uncertainty complexes, which are used
as constants in the Filter Expressions. Each Filter Expression consists of one or more
predicates concatenated using logical AND or OR, see Line 7 and 13. Each predicate consists
of a comparison operation, see Line 8 applied to an attribute and another attribute or a
constant, see Line 12. The attributes are defined through an event placeholder and the
attribute id, see Lines 9 and 10. Each attribute can be modified by executing an unary
function on it. This enables simple operations like computing the norm or separating value
and uncertainty before comparing it with another attribute or constant.

5.2.3. Transformation ASE API

Transformations are considered as generic processing steps in ASEIA. Therefore, they
should be specified by using minimal assumptions on the actual Event Type. Depending

157

5. Implementation

Listing 5.6 Syntax of the Filter Expressions specification DSL in EBNF form.

1 value = row , {" , " , row } ;
2 row = "{" , co l , {" , " , c o l } , "}" ;
3 c o l = "{" , elem , {" , " , elem } , "}" ;
4 elem = "{" , f l o a t , " , " , f l o a t , "}" ;
5 const = name , " " , name , "=" , va lue ;
6

7 con = "&&" | " | | " ;
8 comp = ">" | "<" | "<=" | ">=" | "==" | "!=" ;
9 p la c eho lde r = "e" , d i g i t ;

10 a t t r = placeho lder , " [" , id , "] " ;
11 a t t r = name , " (" , at t r , ") " ;
12 pred = attr , comp , a t t r | const
13 expr = expr {con , expr } ;

on the Transformations some information may be relevant such as the Event ID or special
Attribute Types. In general, the operations used in Transformation are specified by using
C++ constructs, that are independent from the actual implementation of the Attribute Val-
ues and Attribute Scales. This allows the designer of the system to specify Transformations
in general and the system configures and deploys the operations as necessary. To this end,
the Object- Orientation feature of polymorphic behavior is used. On the one hand, Trans-
formations themselves are abstract classes, whose implementation is chosen on run time
depending on the created Composite Transformation. On the other hand, the operations
stated in the Transformations are also specified by using abstract classes encapsulating the
actual data and uncertainty types. The two class hierarchies of Figure 5.4 and 5.5 show this
setup for the ASEIA implementation.

158

5.2.
Im

plem
entation

of
the

P
/S

O
verlay

0..*

create
1

0..*

create
1

Transformation

out: EventID
type: Type
arity: size_t

+ in(EventType goal, EventType provided): EventTypes
+ in(EventID goal): EventIDs

CompositeTransformation

Graph graph
Vertex root

+ addTransformation(Transformation t, Vertex v,
EventType goal,
EventType provided
): VertexResult
+ find(Transformation t): VertexResult
+ find(EventType eT): VertexList
+ contains(Transformation t): bool

Transformer

+ check(MetaEvent e): bool
+ operator()(MetaEvent e): Events

AbstractConfiguredTransformation

EventType out
EventTypes in

BufferedTransformer

EventStorage storage

+ operator()(MetaEvent e): Events
execute(Events in): Events

CompositeTransformer

graph: Graph
root: Vertex

+ check(MetaEvent e): bool
+ operator()(MetaEvent e): Events

SimpleTransformer

+ operator()(MetaEvent e): Events
execute(MetaEvent e): Events

Figure 5.4.: UML-Class diagram showing the Transformation class hierarchy.

159

5.
Im

plem
entation

1

impl1

1
1

1

<T, Eigen::Dynamic, Eigen::Dynamic, U>1

create

register

MetaValue

impl: BaseImpl

+ operator+=(b: MetaValue): MetaValue
+ operator*=(b: MetaValue): MetaValue
+ operator/=(b: MetaValue): MetaValue
+ operator-=(b: MetaValue): MetaValue
+ const operator==(b: MetaValue): MetaValue
+ const operato<(b: MetaValue): MetaValue
+ const operator>(b: MetaValue): MetaValue

!interface"

BaseImpl

copy(): BaseImpl*
unaryOp(op: UnaryOp): bool
constUnaryOp(op: ConstUnaryOp): BaseImpl*
binaryOp(op: BinaryOp, b: BaseImpl&): bool
constBinaryOp(op: ConstBinaryOp, b: BaseImpl&): BaseImpl*

MetaValueImplementation

data: Value

copy(): BaseImpl*
unaryOp(op: UnaryOp): bool
constUnaryOp(op: ConstUnaryOp): BaseImpl*
binaryOp(op: BinaryOp, b: BaseImpl&): bool
constBinaryOp(op: ConstBinaryOp, b: BaseImpl&): BaseImpl*

T, U

Value

T, R, C, U

MetaFactory

Figure 5.5.: UML-Class diagram showing the implementation structure of MetaValues.

160

5.2. Implementation of the P/S Overlay

The Transformation abstract class specifies the generic Transformation interface, as
shown in Figure 5.4. Transformation implementations are separated into two parts.
Transformations describe the capabilities and the signature of the Transformations,
whereas Transformers execute the functionality of the Transformation. This mechanism
enables the registration of additional Transformations on run time and the dynamic ex-
ecution of Transformation in each channel independently, as Transformers are created
by the create method of Transformations and included in the ASEIA Channels. The
Transformations can be stored in the KB as constants, which guarantee immutability to
prevent run time errors created by side-effects between Channels. The implementation
of Transformers and Transformations uses the MetaValue and MetaAttribute abstract
classes to specify the functionality.
The MetaValue class is a Facade wrapping the actual polymorphic implementation of the

different data type uncertainty combinations to a data type which looks like a normal C++
arithmetic class. This Virtual Arithmetic enables the Transformation implementation to
state the operations according to the interface of MetaValues and MetaAttributes. The
current implementation of value uncertainty complexes in Values is used to implement the
MetaValueImplementations. These are instantiated with all combinations of value types
and uncertainty types to provide the Virtual Arithmetics run time dynamic behavior, as
shown in Figure 5.5.
Additionally, the size of the Eigen:Matrices need to be dynamic, which can

be achieved by passing the correct configuration parameter Eigen::Dynamic to the
Values. The generic problem with such an approach is the creation of instances
of the MetaValueImplementations, as they shall be completely hidden from the
Transformation API. To this end, the MetaFactory registers all currently available
MetaValueImplementation instances and enables the creation and conversion of them. This
enables a run time lookup based on the TypeID of the value uncertainty complex.

The MetaValue hierarchy can be extended, but many methods need to be defined and
inserted in the system to do so. Especially, the convert and create functions are necessary
to enable the MetaFactory to enable creation and casting of the new Virtual Arithmetic
types.
The resulting Transformation API is completely TMP free enabling full run time adaption.

However, the internal usage of all possible Value implementation configurations enables
exactly equal behavior between the operations of Value and MetaValue. The difference is the
focus of the CPS API on performance and error prevention, whereas the Transformation API
enables a maximum flexibility and generality of the Transformation specification. Listing 5.7
shows the Heterogeneous Complementary Transformation of two Position ASEs to a Speed
ASE expressed by using the Transformation API.

MetaFilter Expressions are the run time equivalent of the CPS API Filter Expressions.
They are designed as containers for the serialized content of the Filter Expressions and
enable the execution of arbitrary Filter Expressions on MetaEvents. To this end, they
store an expression in conjunctive normal form of comparison operations on input events’
attributes or constants. The comparisons are stored as combinations of operations id , input
event number and AttributeID and a constant or secondary input event and AttributeID
as operand.

161

5. Implementation

This enables brokers to receive the serialized Filter Expressions and execute them on
their internal representation of the Event Data. Each MetaFilter needs to be filled through
de-serialization of received Filter Expressions before execution. Afterwards, it represents a
functor accepting a list of MetaEvent pointers, which it executes the de-serialized predicates
on. The result of the execution is a boolean value representing the fulfillment of the Filter
Expressions. Additionally, the MetaFilter enables access to the comparision operations it
consists of on run time to create the necessary input data for the Generic Transformation
configuration, see Section 4.6.1 and the deployment of Homogeneous Transformations.

5.2.4. Implementation of the Knowledge Base

The KB of ASEIA is the central data structure storing the current information on established
transformations, publishers, established channels and registered data uncertainty complexes.
It exists as an individual instance in each broker and subscriber to enable them to individu-
ally establish channels and deploy transformations. It is implemented as a Singleton, which
guarantees that in each broker and subscriber only a single instance exists and that the
contained data is consistent. The individual storages of the KB are associative maps. The
generic structure of a KB instance is shown by the UML class diagram in Figure 5.6.

162

5.2. Implementation of the P/S Overlay

Listing 5.7 Example Transformation for Position to Speed Conversion
1 class PosToSpeedExec : public BufferedTransformer {
2 public:
3 BufferedTransformer(in: EventTypes) : storage({in[0]}, Newest(10)){}
4 virtual Events execute(Events in) {
5 SpeedEvent e=in[0];
6 e.attribute(Speed()) =
7 (in[0].attribute(Position()) - in[1].attribute(Position()))/
8 (in[0].attribute(Time()) - in[1].attribute(Time()));
9 e.attribute(Position())+=in[1].attribute(Position);

10 e.attribute(Position())/=2;
11 e.attribute(Time())+=in[1].attribute(Time);
12 e.attribute(Time())/=2;
13 return {e};
14 }
15 virtual bool check(const MetaEvent& e) const {
16 if(storage.empty()) return true;
17 for(MetaEvent c : storage)
18 if(c.attribute(Time()) != e.attribute(Time()))
19 return true;
20 return false;
21 }
22 };
23 class PosToSpeed : public Transformation {
24 public:
25 Pos2Speed() : Transformation(((ValueType)SpeedEvent()).id(),
26 Type::Heterogeneus, 2) {
27 }
28 virtual EventTypes in(EventType goal, EventType provided) const {
29 goal.remove(Speed());
30 return {goal, goal};
31 }
32 virtual EventIDs in(EventID goal) const {
33 return goal/=EventID({Speed()});
34 }
35 };

163

5.
Im

plem
entation

<Channel>

<EventType>

<Transformation*>

<Transformation*>

graph

KnowledgeBase

+ register(t: Transformation*): void
+ register(eT: EventType): void
+ register(c: Channel*): void
+ findTransforms(goal: EventType):
CompositeTransformations
+ findChannels(goal: EventType):
CompositeTransformations

MetaFactory

#createStorage: MultiMap
#convertStorage: MultiMap

+ register(impl: MetaValueImplementation): void
+ create(data: Value, vT: ValueType): MetaValue
+ convert(vT: ValueType, MetaValue v): MetaValue

TransformationGraph

+ register(Transformation t): void
+ findTransformations(goal: EventType):
CompositeTransformations

EventTypeRegistry

ChannelRegistry

AttrTransRegistry

HomTransRegistry

AbstractRegistry

storage: MultiMap

+ register(eT: EventType, t: T): bool
+ find(eT: EventType): Ts
+ find(id: EventID): Ts

T

boost::graph

vector<T>

Figure 5.6.: UML-Class diagram showing the structure of the KB Implementation. The basic data structure used is an Associative
Multi-Map using the EID and the Format Hash as key.

164

5.2. Implementation of the P/S Overlay

Announcements are stored as pairs of Event ID, Format Hash and Event Type. Channels
are stored as pairs of Event ID, Format Hash and Channel. Homogeneous and Generic
Transformations are stored as lists of Transformations and Heterogeneous Transformations
are stored as a graph of the boost graph library (BGL)[147]. MetaeScales and MetaValues
are stored inside the MetaFactory in pairs of id and create function. The design of the
KB enables a full run time update of all information as long as no id space is exhausted.
The distribution of new Transformations is discussed in Section 5.3 and can be applied to
the distribution of new data uncertainty complex implementations and new scales.

5.2.5. Implementation of Adapters

The combination of ASEIA with the underlaying P/S system is realized through adapters
for the four main components of the system: Subscribers, Publishers, Channels and Brokers.
The following paragraphs discuss the structure and the functionality of the adapters with
ROS as the underlaying P/S system.

CPS P/S Adapters ASEIA CPS Publishers and Subscribers modify the basic behavior
of the ROS Publishers and Subscribers. ROS uses Messages to describe the format of the
exchanged data between Publishers and Subscriber. These messages are written in a special
DSL, which is afterwards transformed to C++, Python, Lisp and Javascript code. ASEIA
considers Event Types to be fully dynamic on run time, which is incompatible with ROS’
static message system. Therefore, two special ROS messages are created that represent an
ASE Announcement or Subscription, which is called Channel Event and ASE information
itself. ASEIAs serialization system is used to fill a generic buffer contained in these messages
with the run time serialized content of either information. The structure of these two ROS
messages is shown in Listing 5.8.

Listing 5.8 ROS message defintion for Channel and ASE integration.
1 //ChannelEvent
2 Header header
3 string topic
4 uint64 id
5 uint8 type
6 uint8[] buffer
7

8 uint8 PUBLISHER = 1
9 uint8 SUBSCRIBER = 2

10

11 //AbstractSensorEvent
12 Header header
13 uint8[] buffer

The Channel information is necessary for the KB and the Transformation Engine to assess
currently existing ASEIA Publishers and start the creation of ASEIA Channels. Therefore,
it contains the identifier of the channel consisting of Event ID and Format Hash stored as a

165

5. Implementation

string in the topic field. Additionally, the type of Channel Event is stored in type as either
PUBLISHER or SUBSCRIBER. The id field contains the unique node id of the node publishing
the ROS message.

To enable CPS applications to easily access extended functionalities of ASEIA, generic
SensorEventSubscriber and SensorEventPublisher classes are defined, which are config-
ured by using an Event Type and for the subscriber a Filter Expression. These classes
automatically handle periodic publications of the Channel Events as well as the seri-
alization and de-serialization of ASEs. Listing 5.9 shows the creation of an example
SensorEventSubscriber and SensorEventPublisher and their usage.

Listing 5.9 Code listing showing the usage of the SensorEventSubscriber and
SensorEventPublisher CPS API Adapter.

1 #include <ros/ros.h>
2

3 #include <SensorEventPublisher.h>
4 #include <SensorEventSubscriber.h>
5 #include <BaseEvent.h>
6 #include <IO.h>
7

8 using namespace ::id::attribute;
9 using ExampleEvent=BaseEvent<>;

10

11 void print(const ThisEvent& e) {
12 ROS_INFO_STREAM("received: " << e);
13 }
14

15 int main(int argc, char** argv) {
16

17 ros::init(argc, argv, "AseiaExample");
18 SensorEventPublisher<ExampleEvent> pub;
19 SensorEventSubscriber<ExampleEvent> sub(print, 10);
20 ThisEvent e;
21

22 e.attribute(Position()) = { { {0, 0} }, { {0, 0} }, { {0, 0} } };
23 e.attribute(Time()) = { { {ros::Time::now().toSec(), 0} } };
24 e.attribute(PublisherID()) = { { { pub.nodeId() } } };
25

26 pub.publish(e);
27

28 while(ros::ok())
29 ros::spin();
30

31 return 0;
32 }

166

5.2. Implementation of the P/S Overlay

Line 18 shows the creation of an ASEIA publisher of the configured ExampleEvent. The
template class SensorEventPublisher is configured with the Event Type the CPS appli-
cation wants to use. After the creation of an appropriate ASE in Line 20, the dynamic
information of the event can be modified as stated in Lines 22-24. The ASE is published
through a call to publish in Line 26. The creation is similar, but needs a callback function
specified on creation of the ASEIA subscriber. This function needs to accept a immutable
reference to the specified Event Type to ensure type safety.

Channel Adapter The Channel Adapter extends the basic ASEIA channel implementa-
tion, which encapsulates a Composite Transformation, with the capability to subscribe
and publish by using the underlaying P/S system. To this end, the Channel provides a
handleEvent method, which is called by the P/S specific implementation and forwards
the de-serialized ASE to the internal CompositeTransformer. Additionally, a virtual
publishEvent method exists that is internally called by the channel to publish all ASEs cre-
ated by the CompositeTransformer. This method needs to be implemented by the Channel
Adapter and serializes the ASEs into the format of the underlaying P/S system. Addition-
ally, the Adapter needs to create and store the necessary information for the publishers
and subscribers. In contrast to the CPS P/S Adapters no Channel Events are published.
This mechanism allows ASEIA to provide the Channel class as interface and minimizes the
implementation necessary to support a specific P/S system.

Broker Adapter The Broker Adapter consists of a special subscriber instantiated in each
broker of the underlaying P/S system. This subscriber registers for Channel Events and
feeds these to the KB. In case of Channel Events representing announcements, it adds
the published Event Type to the KB’s announcement list. In case of subscriptions it asks
the KB to findTransformations fitting to the supplied Event Type and Filter Expression.
The resulting list of Transformations are transformed into Channels, which are instantiated
as Channel Adapters and stored in the KBs channel map by using the register method.
The general broker behavior to create ASEIA Channels is shown in the UML sequence
Diagram 5.7. This Figure shows an example sequence of events exchanged between two
publishers and a subscriber. All three are considered to have different Event Types. After
the Broker received the Channel Events containing the different Event Types, it creates a
CompositeTransformation and wraps it in a Channel Adapter. Afterwards, ASEs transmit-
ted from the publishers to the broker are fed to the Transformation through the Channel
Adapter ’s handleEvent method and are transformed into the subscribers goal Event Type.
The results are delivered from the broker to the subscriber through the Channel Adapter ’s
publishEvent method.

167

5. Implementation

register
ASE

Channel Event

register
ASE

Channel Event

create

Channel Event

handleEvent
ASE

publishEvent
handleEvent

ASE

publishEvent
handleEvent

ASE

p0:Publisher p1:Publisher s:Subscriberb:Broker

c:Channel

Channel

once

loop

Figure 5.7.: This figure shows an example sequence of events exchanged to create and use
an ASEIA Channel.

168

5.3. Extension on Run Time

5.3. Extension on Run Time

As ASEIA is a generic architecture which aims at providing in-network processing for arbi-
trary CPS, it needs the capability to be adapted to changes in the CPS requirements and
environment. To this end, multiple parts of ASEIA may be extended with new functionality
on run time. The components of ASEIA that may be extended on run time are: Attributes,
Events, Data Types, Scales and Transformations. Events are created by each CPS appli-
cation as part of the CPS ASE API. The application specifies the basic Event Type and
extends it with additional AttributeTypes or another Event Type. The API automatically
creates the resulting Event Type, which can be used by the application as often as necessary
and may be used directly to publish and subscribe to other CPS components. The generic
CPS ASE API is described in Section 5.2.2. An example of the creation of a custom ASE
Event Type is shown in Listing 5.10.

Listing 5.10 Listing showing an example of the creation of a custom ASE to be used by a
CPS application.

1 #include <BaseEvent.h>
2 #include <ID.h>
3

4 using namespace ::id::attribute;
5

6 using Base = BaseEvent<>;
7 using Distance = Attribute<Distance, Value<float, 1>, Meter>;
8 using Angle = Attribute<Angle, Value<float, 1>, Radian>;
9 using CustomEvent = Base::append<Distance>::type::append<Angle>::type;

The example shows the usage of the BaseEvent as foundation of the CustomEvent. Af-
terwards, two Attributes are defined for Distance and Angle information. In Line 8 the
Base event is extended with the two Attributes to the resulting CustomEvent.
The Transformations use a generic ASE representation that may handle any event. There-

fore, no explicit extension is necessary in this case.
The extension of existing Event Types with new Attributes mandates the creation of new

AttributeIDs. These ids need to be unique in the whole system as they form the vocabulary
of the semantic description of the ASEs’ content. The introduction of new Attribute IDs is
possible, as long as the id space is not exhausted. For a new id to be inserted in the system a
consensus algorithm needs to be used, which ensures the uniqueness of the newly created id.
This problem is very complex as it relates to the inference of global state in an asynchronous
distributed system. Without additional assumptions the problem is not solvable as shown
by Römer and Mattern [136]. The acceptable assumptions such as eventual consistency,
maximum consensus time and omission degree need to be defined by the system designer
and an appropriate algorithm needs to be chosen. The defintion and integration of these
algorithms is considered to exceed the scope of this thesis.
Scales consist of three separate parts that may individually be extended. The type of

the Scale is indicated by the Scale ID, it needs to be extended similarly to Attribute IDs.
Additionally, a new Scale Type needs an implementation of the scales’ scaling functions f

169

5. Implementation

and f´1, as described in Section 4.4.3. The mechanisms to distribute the implementations
in the system are discussed in Section 5.3.2 and 5.3.3. The Scale Reference is indicated by
a Reference ID, which needs to be handled similarly to Atttribute IDs. The third part of a
Scale are the scaling parameters, which depend on the scaling type. These may be specified
by the CPS application and are transmitted in the Channel Events automatically.

Data Types are extended by acquiring a new Data Type ID and by the distribution of
the functionality necessary to compute the Data Types to all ASEIA Brokers. To this end,
a new specialization of ValueElement is necessary, which is used by the CPS application.
Additionally, the necessary functionality of MetaValueImplementations needs to be dis-
tributed in the system to all brokers and be registered with the MetaFactory. The brokers
then use the registered convert and create functions to cast between the existing data
types and the newly created ones. To implement new data types, the convert function needs
to be defined towards all currently existing data types. The necessary instances of convert
functions might grow very large for systems supporting many data types, as all combinations
of Value-Uncertainty complex types need to be covered.

Extensions, which need newly created unique IDs, are expensive because of the necessary
consensus in the CPS. However, these extensions typically occur seldom as Attributes are
only created by new CPS applications not planned on design time. New Scale Types are
seldom introduced as typical scaling mechanisms depend on the expected physical phenom-
ena, which are known on design time. Scale References are often bound to nodes’ or objects
in the system. Therefore, these may directly use the objects or nodes’ ids as reference id,
which lessens the effort to create new Scale References. Data Types extensions can be con-
sidered similar to Scale extensions. A typical case is the introduction of a new uncertainty
representation used in a dynamically added CPS application.

5.3.1. Insertion of Additional Transformations

The addition of Transformations on run time is the key feature of ASEIA to provide
run time adaption mechanism of the CPS towards new applications and environments.
To insert a new Transformation in the system, its parts need to be specified. In gen-
eral, a Transformation consists of the definition of four functions and two constants. The
two constants identify the arity and the type of the Transformation. The four functions
are in(EventID goal), in(EventType goal, EventType provided), check(MetaEvent
e) and operator()(MetaEvent e). Additionally, the buffer needs to be configured in case
the Transformation needs buffering. To ease the task of creating new Transformations, the
Transformation Hierarchy, as described in Section 5.2.3, can be used. It defines abstract
base classes that may be used to implement the Transformation. Depending on the type of
Transformation different base classes may be chosen. The resulting implementation needs
to be shipped to the different brokers in the system. As C++ provides no native means of
function shipping, other means need to be used to distribute the Transformation Implemen-
tation. Two mechanisms are supported by ASEIA: Plugins and LLVM-based Interpretation.
Both approaches are discussed in the next subsections.

170

5.4. Summary

5.3.2. Plugins

Plugins are a mechanism to ship compiled code and integrate it into existing applications.
To this end, the Plugin needs to adhere to a specified interface. In case of ASEIA this inter-
face may be Transformation and Transformer to represent Transformations or BaseImpl
in form of MetaValueImplementation to support additional Data Types or MetaScale to
support new Scale Types. The Plugin is a dynamically linked library containing the neces-
sary code to implement the specified API. It may be shipped by using any communication
means to the brokers in the system and can be loaded by the dynamic linker if the system
supports dynamic linking. If the system only support static linking, as typical for embedded
systems, it may be integrated through a partial update of the flash, which is supported by
most embedded architectures, as described by Marrón et al. [107]. The drawback of this
approach is the need to know all existing architectures of brokers on run time to enable the
generation of the Plugin for each architecture. The benefit of this approach is fast execution,
as the generated code may be heavily optimized by the compiler.

5.3.3. LLVM-based compiler/interpreter

Low-Level Virtual Machine (LLVM) [96], [97] invented by Chris A. Lattner is a compiler
architecture consisting of front-ends and back-ends, which use a common intermediate rep-
resentation. This architecture enables LLVM to efficiently support the compilation of n pro-
gramming languages on m architectures without the need to write nˆm compilers. It also
provides a modular optimization architecture enabling multiple optimization mechanisms to
be used by the front- and back-ends. An additional feature is the run time interpretation
of the intermediate representation. This enables the execution of compiled code without
the need to know the target architecture of the system. It provides an easy mechanism to
enable function shipping for C++. Consequently, brokers running the LLVM interpreter
may integrate additional Transformations Scales and Data Types without the need for a
specifically compiled Plugin. Only a generic Plugin needs to be provided containing the
intermediate representation. However, this approach has two major drawbacks. Firstly, the
intermediate code is not optimized for the target architecture, which disables architecture
specific optimizations. Secondly, the LLVM interpreter needs to run on the target system,
which needs at least a general purpose operating system as run time infrastructure.
LLVM might also be used to locally compile the shipped intermediate representation in

the broker to mitigate the lack of architecture specific optimization. In this case only the
need to provide the necessary infrastructure to execute LLVM remains.

5.4. Summary

This chapter describes the implementation of ASEIA on top of an existing P/S system. For
exemplary purposes ROS has been used, but it might be exchanged by any P/S system.
The chapter shows the usage of the extended functionalities of ASEIA from the perspective
of a CPS application and from the perspective of Transformations. Additionally, it shows
the mechanisms and requirements necessary to update and extend the system on run time
by providing new Transformations, Scales, Attributes, ASEs and Data Types. Finally, two
mechanisms to distribute and execute the run time extensions are described.

171

6. Evaluation

The following evaluation of ASEIA is performed to assess the usability of the mechanisms.
To this end, three seperate evaluations are performed, which check ASEIA’s features regard-
ing automatic Transformation of events in CPS. Especially, Time Scale Transformations
in WSN are evaluated, as these provide the foundation to many further Transformations.
Additionally, Heterogeneus Transformations are evaluated in a robotic context, to enable
the assessment of ASEIA’s performance on real mobile entities. These Transformations use
Attributes which do not relate directly to physical phenomena to check the generality of
the approach. A third evaluation scenario consists of a simulation of cars in a 3D envi-
ronment. This enables the assessment of the uncertainty propagation and its impact on
control. The last section of the evaluation analyses the scalability of ASEIA in different
network topologies and regarding different types of Transformations.

6.1. Hybrid Clock Synchronization

The uncertainty aware hybrid clock synchronization system is evaluated using a simulation
in the Omnet++ Network Simulator [125] version 4.2 and a small scale WSN composed of
six nodes [155].

6.1.1. Simulation Setup

For the simulated evaluation this thesis uses the INETMANET network model [27] as well
as the MiXiM model [90]. The implementation is distributed over two layers of the ISO/OSI
stack. One part is located at layer 5 of the ISO/OSI stack and handles the transformation
of time stamps for the Inter Cluster synchronization. The other is situated at layer 2 in
order to gather high precision time stamps. Both layers are connected through a cross layer
communication.
The evaluation focuses on the Inter Cluster Synchronization, because the simulation ex-

periments are to investigate the scalability of the approach. The single-hop performance are
evaluated by the real world experiments. Two main aspects are evaluated. The first con-
siders the influence of the beacon period on the precision of the synchronization. This test
provide information on the trade-off between message overhead and synchronization quality.
The second test investigates the influence of the communication topology on the reachable
multi-hop precision. It evaluates the usability of the provided time stamps for smaller and
longer routes. All tests used the internal 64 bit simtime of Omnet++ as reference for the
synchronized clocks to evaluate the synchronization error. The simtime was modified by
a randomly initialized drift ρ ď 10´5, to provide a realistic clock for each node. The test
considered 1000 randomly created routes between nodes in the network, which were created
by an optimal routing algorithm.

173

6. Evaluation

The simulation environment considers beacon losses, created by the collision of trans-
mitted beacons of adjacent coordinators, and the resulting lack of information for the time
synchronization. However, no data events are transmitted in the simulation. This decou-
ples the simulations from the used MAC Algorithm and its parameters. Consequently, the
simulations consider an optimal MAC-Algorithm preventing all collisions between beacons
and events in the network.
Additionally, no simulation of the interrupt handling timing is done, which increases the

tightness of the network. This approximation is valid, because the interrupt handling time
is estimated to be smaller than 1µs because of the optimization described in Section 6.1.4.

6.1.2. Beacon Interval Analysis

The beacon interval analysis considers a rectangular grid of 50 PAN Coordinators. The
area in which the nodes were distributed was 5000m times 5000m. The 2.4GHz channel
11 of the 802.15.4 standard with maximum transmission power of 1mW was chosen. The
thermal noise was fixed at 110dBm and the receiver’s sensitivity was set to ´85dBm. The
simulation sweep started with a BO parameter of 8 until the maximum allowed value of 14.
The resulting beacon interval can be computed by BI “ 16¨60S¨2BO

SymbolRate . The SymbolRate of
the 2.4GHz band of 65.2 ¨ 103 S

s results in beacon intervals from 3.8s to 241.2s.
Figure 6.1 shows a Box-Whisker plot of the simulation’s results. The boxes represent

the bounds, where 50% of all values are included. The lines represent the interval contain-
ing 75% of all values and remaining data points are included as points. As visible, with
linear increasing BO values, the mean synchronization error increases exponentially. This
is expected because the beacon interval also increases exponentially. Additionally, a large
standard deviation independent of the hop can be observed. This is caused by the unsyn-
chronized beacons of the individual PAN Coordinators, which might collide and therefore
increase the real beacon interval. Furthermore, the data base is better for smaller hop
counts, since in the given scenario short routes are much more probable than longer routes.
This test proved the expected direct correlation between the beacon interval and the syn-
chronization precision. Therefore, this value is to be considered critical for the performance
of the system. Following the analyses of Section 4.5.9, the worst case performance should
be better than h2p0.0147 ¨2BO2.1 ¨10´11s. In all the experiments the performance was never
worse than this analytical worst case bound. In the case of 1-hop long routes with a beacon
order of 14, the estimated worst case precision is 9.6ms, whereas, the experiment showed a
worst case result of 1.6ms. For beacon order 13 and a hop count of three, the worst case
precision of 1.2ms is achieved. However, the analytically derived worst case precision in this
scenario is 14.4ms. These large differences are most likely created by random drift, which
only generate the largest possible offset in rare extreme cases.

6.1.3. Topology Analysis

The second evaluation considers the performance of the system in different topologies. This
is interesting, because topologies might have an influence on the length of the routes, as
well as the collision probability of the beacon frames. Therefore, four basic topologies with
200 nodes each are considered. A linear (c.f. Figure 6.2a), a circular (c.f. Figure 6.2b), a
grid (c.f. Figure 6.2c) and a randomly generated (c.f. Figure 6.2d) topology was chosen.

174

6.1. Hybrid Clock Synchronization

●●●●●●● ●●●● ●●●●●● ●●●● ● ● ●●●●● ● ●●●●●●●● ●●●●●● ●●●●●●● ●●● ●●●● ●● ●● ● ●
●●●●●●●●● ●●●● ● ●●● ●● ●● ●●●

●●●●●●●●●●
●● ●●●

●●
● ●

●●●●●●
●●●●

●●
●
●

●
●
●●●

●●●●

●

●●
●

●
●●

●
●●

●

●

●●●●●

●

●●●
●
●
●
●

●

●

●

●●●●

●

●●
●●

●
●●●

●

●●

●

●●
●

●

●

●

●

●
●●●

●

●●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

 8 9 10

11 12 13

14

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11
#Hops

E
rr

or
 (

µ
s)

Figure 6.1.: Box-Whisker plot of the precision of a 50 node grid network with varying BO
values.

175

6. Evaluation

(a) Linear topology. (b) Circular topology.

(c) Grid topology. (d) Random topology.

Figure 6.2.: Different evaluation topologies used for the clock synchronization with 200 nodes
each.

For this scenario, the same parameters as for the Beacon Interval Analysis are used, see
Section 6.1.2, but with a static BO parameter of 8. As visible in Figure 6.3, the linear
topology showed a maximum synchronization error of 875µs. This is mainly caused by the
extremely long routes created by the evaluation. The maximum hop count was 69 and for
each pair of randomly selected nodes there is only one possible route. Consequently, a badly
synchronized node has a large influence on the resulting precision. Considering the worst
case analyses, the synchronization still performed far better than the worst case of 103.8ms.
This is caused by the very small possibility of randomly finding a long route containing
69 nodes with a maximum drift or a large amount of lost beacons. The circular topology
is expected to show similar results like the linear topology, but it performed a lot better,
as visible in Figure 6.4. The maximum hop count was 40 with a typical synchronization
error of 150µs. Compared with the linear topology, which provided a synchronization error
of approximately 500µs, it outperformed the linear topology. This is caused by the larger

176

6.1. Hybrid Clock Synchronization

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

250

500

750

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949697
#Hops

E
rr

or
 (

µ
s)

Figure 6.3.: Box-Whisker plot of the synchronization precision of a 200 Node linear topology.

177

6. Evaluation

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

0

50

100

150

200

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394043
#Hops

E
rr

or
 (

µ
s)

Figure 6.4.: Box-Whisker plot of the synchronization precision of a 200 Node circle topology.

178

6.1. Hybrid Clock Synchronization

amount of routes that were possible to connect two randomly selected nodes. A badly
synchronized node does not have much influence anymore, since it is not as likely a part
of the random route. Additionally, collisions of beacons are unlikely, because only a small
number of nodes are in the vicinity of each other. In this experiment, one route of 14 hops
had a comparably large synchronization error of 175µs which was still smaller than the
worst case approximation of 2107µs. The grid topologies (Figure 6.5) showed slightly worse

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#Hops

E
rr

or
 (

µ
s)

Figure 6.5.: Box-Wisker plot of the synchronization precision of a 200 Node grid topology.

performance compared to the circle topology. This is caused by the larger probability of
beacon collisions caused by a higher density of nodes. At the same time, the maximum hop
count is only 25, which created a maximum synchronization error of approximately 150µs.
The circle topology showed only a synchronization error of approximately 100µs for routes of
the same length. In Figure 6.6, the performance of the random topology is visible. It shows a
large deviation of individual results, which is caused by individual collisions of beacons. This
problem is very dependent on the local setup of nodes around a PAN. Therefore, it is very
hard to estimate and may only be observed on run time by an uncertainty evaluation. Such
hot spots are likely to be contained in a randomly generated route, since hot spots contain

179

6. Evaluation

●
●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Hops

E
rr

or
 (

µ
s)

Figure 6.6.: Box-Wisker plot of the synchronization precision of a 200 Node random topology.

180

6.1. Hybrid Clock Synchronization

more nodes compared to the surrounding areas. These facts decrease the achievable mean
precision. In this experiment a route of length 12 showed a large error of 161µs compared to
the main quantile of the 12 hop long routes. The worst case analyses predicted a maximum
error of 1806µs. Table 6.1 shows an overview on the results of the evaluation of the different

#Hop Count Topology Mean Standard Deviation
1 Random 7.069008 8.495
1 Grid 5.067219 5.454
1 Linear 12.181786 9.492
1 Circle 3.327730 3.993
6 Random 47.401797 23.945
6 Grid 26.574773 13.489
6 Linear 55.861373 31.209
6 Circle 21.579193 8.327
11 Random 89.191069 27.941
11 Grid 57.463772 19.879
11 Linear 91.408097 23.836
11 Circle 45.693382 15.802
16 Random 110.255113 29.990
16 Grid 80.882388 20.756
16 Linear 131.582874 31.220
16 Circle 73.628941 21.878

Table 6.1.: Synchronization error of the simulation of different topologies in µs.

topologies. This table shows that the performance of the individual topologies towards the
mean for each hop is ˘50%. However, the results for the standard deviation of the tests for
equally long routes show a larger difference between the individual topologies. Additionally,
the value of the standard deviation for all single-hop routes is approximately the same as
the mean error. This clearly indicates a need for a run time uncertainty estimation, as
described in Section 4.5.9. All topologies support the mathematical analyses of the worst
case synchronization error since no experiment exceeds the worst case.
As expected, in all simulations the linear topologies have the largest mean error, which is

caused by the highest collision probability of the beacons. The random topology performed
the second worst, which is caused by local hot spots in the topology with a lot of nodes
increasing the probability of beacon losses. All topologies clearly showed a linear relation
between the mean error and the hop count. This is to be expected, since the synchronization
error in the vicinity of each PAN is statistically the same within each topology. The sum-
mation of the uncertainties matches very well with the increasing error in the simulation.
The beacon loss probability is network specific and does not only depend on the topology,
but also on the density of nodes. This probability together with the mean length of routes
in the network is the major influence towards the synchronization precision.
These experiments indicate the validity of the basic assumptions. Additionally, it can

observed that regular non-linear topologies provide better synchronization results. The next
step is the evaluation of the performance of the approach on real hardware.

181

6. Evaluation

6.1.4. Small Scale Wireless Sensor Network Setup

To evaluate the correctness of the assumptions in the simulation a small, wireless network of
6 nodes is chosen to compare the results with the simulation and related work. The test net-
work is composed of three PAN Coordinators, two Slaves and a Raspberry Pi Model A [129].
The nodes are Cortex-M3 based devices from dresden elektronik [58] using a 2.4 GHz
802.14.5 transceiver of Atmel [30]. They run with an internal crystal oscillator and a PLL
providing a clock speed of 32 MHz, which is divided by 32 to provide an internal clock with a
granularity g “ 1µs. The used 18.432MHz oscillator has a drift of ρ “ 3¨10´5. The synchro-
nization was implemented using hardware timers of the Cortex-M3 microcontroller taking a
time stamp on each interrupt in hardware. Using this approach, the interrupt delay between
reception of the packet and the generation of the time stamp should be decreased to below
1µs. The propagation time of the wireless signal in the typical range of the AT86RF232 is
t ď 34ns. The time between the reception of a packet and the generation of the interrupt
by the transceiver is given as tirq “ 9µs. The interrupt latency of the transceiver is the
same for sender and receiver and, according to data sheet, constant. Therefore, it may be
omitted. The resulting tightness of the beacon network can be assumed to be τ « 1µs.

The Raspberry Pi uses a Preempt-RT patched Linux kernel [69] with a real-time enabled
listening program. The coordinators and the slaves use the Atmel MAC stack [29] to handle
time stamp generation, association and beacon transmission. Both slaves and the three
coordinators are connected to the Raspberry Pi through a GPIO cable as visible in Fig-
ure 6.7. Additionally, each device is connected to an evaluation PC to log the time stamps.
Each coordinator establishes its own PAN, but also receives the neighboring PAN’s bea-
cons. Whenever a PAN Coordinator transmits its beacon, it also logs its internal time to
the evaluation PC and toggles its GPIO. On reception of a beacon, each node transmits
its virtual clock time stamp following the sender to the evaluation PC and toggles the as-
sociated GPIO-Pin. The Raspberry Pi continuously monitors the GPIO-Pins and takes a
time stamp on each change. The resulting pair of Raspberry Pi and Cortex-M3 time stamps
are correlated and analyzed to provide an accurate offset estimation of the virtual clocks
against the internal clocks of the nodes. Since beacons are transmitted unsynchronized on
the different coordinators, linear interpolation to compute time stamps in between measured
values is used.
The benefit of this setup is the minimal critical path, which is established by the GPIO

connection. The toggling of the pin on the device is instantaneous. The available low-level
access library of the Raspberry Pi provides extremely small latencies accessing the pins.
Together with the used real-time program, the measurement error should be smaller than
« 1µs.

6.1.5. Single-Hop Synchronization

This setup evaluated the single-hop synchronization mechanism. It is used as a baseline to
verify the correctness of the parameters of the simulation. Therefore, the results should be
close to the one hop results of the simulation. All coordinators were running and transmitting
beacons, but only the two slaves ran the virtual clock towards their PAN Coordinator. The
experiment is run for 5 minutes with a beacon interval of 7.5s and 15s representing a BO
value of 9 and 10, respectively. The mean precision of the internal synchronization with a

182

6.1. Hybrid Clock Synchronization

PAN 0

PAN 1

PAN 2

Figure 6.7.: Small scale Wireless Sensor Network composed of dresden elektronik nodes [58]
and a Raspberry Pi [129] used to evaluate the hybrid synchronization.

beacon interval of 7.5s, as visible in Figure 6.8a, was approximately 8µs, which fits very well
to the simulated results. The deviation was approximately ˘1µs with the maximum error
being 13µs. This is less than the deviation measured in the simulation. An explanation
is the smaller network size creating less beacon loss. The distribution of the values is
approximately Gaussian, fitting to the assumption used in the uncertainty estimation.
Figure 6.8b shows the results of the experiment with a beacon interval of 15s. As visible,

the mean precision was also 8µs like in the previous experiment. The deviation of the
precision is higher being approximately 2µs with the maximum being 20µs. This is again
better than the simulation results, possibly because of less beacon loss. Additionally, the
crystal oscillator may be better than described in the data sheet causing less drift between
the nodes.

6.1.6. Multi-Hop Synchronization

The evaluation of the Inter Cluster Synchronization used only the three coordinators. All
coordinators were broadcasting beacons in this setup and ran a virtual clock for each neigh-
boring node. The virtual clock values of the different nodes and the time stamps of the
internal clocks are periodically evaluated. The used interval is the same as the beacon in-
terval. No real event was routed through the network, since the used MAC stack provides
no means of multi-hop communication. Therefore, the sum of the estimated offsets of the
virtual clocks of the two pairs of nodes are compared to the offsets of the internal clocks of
the first and the last coordinator. This scenario used a fixed beacon interval of 7.5s.

183

6. Evaluation

0 5 10 15 20
Error in µs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(a) Precision of the Intra Cluster Synchroniza-
tion with a beacon interval of 7.5s.

0 5 10 15 20
Error in µs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y
(b) Precision of the Intra Cluster Synchroniza-

tion with a beacon interval of 15s.

0 5 10 15 20
Error in µs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(c) Precision of the Inter Cluster Synchroniza-
tion with a beacon interval of 7.5s.

Figure 6.8.: Histograms of the achieved precision of UHCS with different beacon intervals.

As visible in Figure 6.8c, the mean precision was 16µs with a large deviation of ˘5µs and
a maximum offset of 20µs. This result fits very well with the expected simulation results.
The error is approximately doubled compared to the single-hop scenario. Additionally, the
deviation has increased by the same margin.
The results of the small scale wireless sensor network experiments fully support the sim-

ulation. The baseline performance fitted very well with the exception of the larger beacon
interval, which strangely showed nearly the same results.

6.1.7. Comparison with related protocols

Since the environments of the different described protocols differ, the approach is compared
to available multi-hop synchronization data. DMTS provided a mean synchronization error
of 32µs for one hop and 46µs for two hop communication. The approach performed better for

184

6.2. Robotic Navigation Test

single-hop (8µs) and two-hop synchronization (16µs). In comparison to DMTS, the approach
does not need a possibly incorrect model of the latency induced by the interrupt handling
of the nodes. Additionally, the granularity of the internal clocks of the nodes was far better
(g “ 1µs) than the ones used in the experiments evaluating DMTS (g “ 32µsq. Therefore,
the results are not directly comparable. TSAN showed a mean synchronization error of
200µs for one hop and 1113µs for six hop communication. The approach performed better in
both cases (on average 8µs and 25´37µs worst case 27µs and 110µs). However, Römer et al.
considered an unstructured abstract network, whereas, this approach exploited the structure
and the hardware of the network to increase the synchronization precision without message
overhead. Especially, the periodicity of the beacons enabled continuous synchronization,
which was not used in Römer’s system. Mock et al. showed a single-hop synchronization of
approximately 150µs, which was mainly caused by the driver abstraction and the interrupt
handling of the used operating system, since they considered an experimentally derived
tightness of the network τ “ 46µs. The performance of the synchronization stems from the
bare-metal implementation and the good local clock increasing the networks tightness to
τ « 1µs.

6.2. Robotic Navigation Test

The following evaluation of ASEIA’s functionality was done as part of Dirk Steindorf’s
Master Thesis [151]. The evaluation considers the scenario of robotic navigation in dynamic
instrumented environments. The goal of this evaluation is the demonstration of ASEIA’s
capabilities in a real world setup. Additionally, the evaluation shows the integration of
ASEIA into an existing CPS setup using ROS.

6.2.1. Scenario

The goal of this evaluation is the testing of ASEIA’s capabilities to process complex struc-
tured information and its context in a real scenario. The scenario consists of a MetraLabs
Scitos G5 robot driving autonomously in the lecture hall of the Faculty of Computer Science
of Otto-von-Guericke University Magdeburg. The lecture hall consists of a single room with
tables and chairs and three doors. Two of these doors lead to a hallway on the north side
of the lecture hall, whereas, the third door leads to a second hallway on the south side of
the hall. The evaluation considers different scenarios regarding the state of the doors on the
north side. As the faculty did not allow changes to the lecture hall itself, virtual rotation en-
coders are used, which are represented by laptops running ASEIA publishers. These publish
the current door opening angle through manual operation. Additionally, each publication
contains information on the context consisting of door position, sensor identification and
time. The robot’s goal was to drive from the middle of the lecture hall to the north west
corner of the northern hallway. Figure 6.9a shows the layout of the lecture hall with the
two doors and the optimal path. The problem to solve is the integration of the doors as
dynamic obstacles, because the state of the doors has a large influence on the chosen path
of the robot.
To this end, existing navigation software is used, which is fed with dynamically generated

occupancy grid maps. The maps consist of a static part, which are extracted from the

185

6. Evaluation

(a) Visualization of the the optimal shortest
path which is assumed by the robot before
any environmental information is included
or when both doors are open.

(b) The optimal path in case the right door is
closed. The fusion of the occupancy grids
can be seen by the added obstacle at the
right door.

Figure 6.9.: Visualization of the occupancy grid maps of the lecture hall of the Faculty of
Computer Science of the Otto-von-Guericke University Magdeburg. Addition-
ally, the start point and the goal of the robot are visualized as a filled and a
hollow blue dot. The red path indicates the planned path of the robot.

mapping step of the navigation software. Additionally, the rotational encoder information
is transformed using a Heterogeneous Unary Transformation, see Section 4.5.4 to a Door
Event. Afterwards, the Door Event is transformed to an OccupancyGrid centered at
the position of the door containing the door as obstacle. The resulting map contains only a
small part of the environment. Compared to the static map, the information is more certain,
because the source information used to generate the dynamic map is newer. To combine
both OccupancyGrids, the Specification Transformation, see Section 4.5.6, is used, which
overwrites the content of the static map with the current door state. The resulting map is
kept to include additional information. To overcome the problem of the map not updating
because minimum uncertainty is reached, the maps had a limited lifetime defined in the
subscriber of the navigation software. Therefore, old maps are automatically discarded by
the system. The resulting transformation network is shown in Figure 6.10.

The very good Mira Navigation Stack [60] of the Scitos G5 could not be used because
it did not allow dynamic updates of the provided occupancy grid map. Consequently, the
evaluation was performed using the ROS Navigation Stack [106]. To map ASEIA to the ROS
interface of the navigation stack, a special forwarding node is implemented that translates
ASEIAs OccupancyGrids to ROS maps.

186

6.2. Robotic Navigation Test

Occupancy-
Grid

Specification

AngleToGrid

e0.pos ““ door.pos

Angle

Occupancy-
Grid

(a) Angle-based Transformation Graph.

Occupancy-
Grid

Specification

AngleToGrid

e0.pos ““ door.pos

Angle

DistanceToAngle

e0.distance ““ r0 ˘ ranges

Distance

Occupancy-
Grid

(b) Distance-based Transformation Graph.

Figure 6.10.: Graph showing the resulting Composite Transformation used to enhance the
static occupancy grid of the robotic test scenario with dynamically generated
rotation information representing the door states of the lecture hall. The re-
sulting dynamic occupancy grid map has the same size and resolution as the
static one, but reduced uncertainty.

187

6. Evaluation

Listing 6.1 Source code of the Angle publisher for the robotic evaluation scenario.
1 using AngleVal = Value<int16_t, 1, 1, true>;
2 using AngleAttr = Attribute<Angle, AngleVal, Radian, Scale<1, 100, 0>>;
3 using ThisEvent = BaseEvent<>::append<AngleAttr>::type;
4

5 SensorEventPublisher<ThisEvent> pub;
6

7 void run(const ros::TimerEvent& msg) {
8 ThisEvent e;
9 e.attribute(Time()).value() = {{{std::time(nullptr), 1}}};

10 e.attribute(PublisherID()).value() = {{{55}}};
11 e.attribute(Angle()).value() = {{{147, 10}}};
12 e.attribute(Position()).value() = {{{232, 0}}, {{574, 0}}};
13 pub.publish(e);
14 }
15 ...

The usage of the CPS API, as described in Section 5.2.2, is shown in Listings 6.1 and 6.2.
Listing 6.1 shows an example Angle publisher. The Angle event is specified as an ASE
according to the ASE DSL in Line 1-3. The Angle event consists of a BaseEvent and an
Angle attribute. The BaseEvent contains data on position, time and publisher id. This in-
formation is later used to merge the generated OccupancyGrids. The Angle specification
consists of C++ TMP statements, which are evaluated by the compiler on compile time.
It specifies the scale, value structure, value type and unit of the sensor data and context
attributes contained in the event. Line 5 declares a publisher using the specified Angle
event. This publisher only accepts instances of this event type. This prevents programming
errors, like mixing up different types of events. The only parameters of the event, which
may change on run time are the values and uncertainties of the sensor data and the context
attributes. On assignment their structure is checked and if necessary conversions are done
(Line 9–12). If a context attribute is unset or the uncertainty is unset, a default value is
used. The default value consists of a value-uncertainty compound indicating maximum un-
certainty. This enables the detection of the programming error in the receiving component
if the uncertainty is evaluated.
Subscribers use the same specification language as publishers regarding the ASEs. This

is visible in Listing 6.2, which shows parts of the translation program converting Occupan-
cyGrid ASEs to ROS OccupancyMaps. Similar to the publisher the necessary attributes,
their data type, scale and unit are specified. This time no assignment is done, but the
subscriber is supplied with a callback function, which is executed on reception of a fitting
ASE. The structure of the received ASE is guaranteed by ASEIA, which enables the usage
of the contained grid attribute according to the specified size. The developer does not need
to care for out_of_range errors or segmentation violations. If the original event contains a
grid of different size, it will automatically be resized. If no information is present for certain
grid cells, the grid cells are initialized with the default value and maximum uncertainty. The
uncertainty cannot be transferred to the ROS message, but the ASE attributes automati-

188

6.2. Robotic Navigation Test

Listing 6.2 Source code of the OccupancyGrid subscriber for the robotic evaluation
scenario. The resulting OccpuancyGrid is translated to the native ROS message and
forwarded to the ROS Navigation Stack

1 using GridVal = Value<uint8_t, 1024, 1024, false>;
2 using GridAttr = Attribute<OccupancyGrid, GridVal, Dimensionless,
3 Scale<1, 1, 0>>;
4 using GridEvent = BaseEvent<>::append<GridAttr>::type;
5

6 void forward(const GridEvent& e){
7 nav_msgs::OccupancyGrid msg;
8 msg.data.resize(1024*1024);
9 auto occ = e[OccupancyGrid()].value();

10 copy(occ.begin(), occ.end(), msg.data.begin());
11 auto x = e[Position()].value()(0);
12 auto y = e[Position()].value()(1);
13 msg.header.stamp = e[Time()].value()(0);
14 msg.info.resolution = 0.05f;
15 msg.info.width = 1024;
16 msg.info.height = 1024;
17 msg.info.origin.position.x = x.value()-x.uncertainty();
18 msg.info.origin.position.y = y.value()-y.uncertainty();
19 msg.info.origin.position.z = 0;
20 pub.publish(msg);
21 }
22

23 int main(int argc, char** argv){
24 ...
25 SensorEventSubscriber<GridEvent> sub(1, forward);
26 ...
27 }

cally support the extraction of the value without uncertainty. This enables the integration
of ASEs and ASE attributes with existing software. Line 9 shows the usage of a C++ STL
algorithm to transfer the contained grid data to the ROS message. Additionally, the CPS
API enables the developer to use the received ASEs without any additional conversion in
linear algebra expressions. Line 16 and 17 show the extraction of the position of the lower
left pixel of the map to convert the position to the expectations of ROS. value() and
uncertainty separate the attribute into its value and uncertainty part respectively. The
benefit of the strict ASE specification is the guarantee of the system that any received event
contains exactly the requested information. If the specified ASE does not fit any publisher
and no Transformation Graph can be established, no channel is created and no data will be
received by the subscriber. This enables the subscriber to execute defined failure mitigation
behaviours instead of trusting false information.

189

6. Evaluation

6.2.2. Tests

The evaluation considers two test cases. The first test case uses the ROS Navigation
Stack as baseline to drive the robot from the start position to the goal position. The second
test uses the extended functionality implemented using ASEIA to enhance the behavior of
the baseline test in case the shortest path to the goal is blocked by a closed left door.
The execution of the test cases can be observed in the two videos baseline.mp41 and
extended.mp42.

Baseline Navigation Stack The baseline Navigation Stacks always choose the plan of
Figure 6.9a as the global plan. If the left door is open, the global planner generates the
shortest path and the robot follows this path without problems. If the right door is closed
the robot starts to follow the optimal path, but as soon as the laser scanner of the robot
detects the closed door, the local planner of the robot tries to circumvent the obstacle. This
is not possible in the scenario, which results in the global planner searching for an alternative
route to the goal. This generates the alternative path through the left door. The robot now
drives to the left door. If the left door is closed, the robot again tries to find an alternative
path again, which fails and the robot stops. If the door is open, it follows the new path to
the goal. The necessary detour to detect the closed door was rather long, because the laser
scanner of the robot has only 8 m range. The time until detection of the unavailability of a
path to goal in case both doors are closed is also very long and contains much unnecessary
movement.

Extended ROS Navigation Stack The extension Navigation Stack showed exactly the
intended behavior. In case of a closed right door the robot directly planned a route through
the left door according to Figure 6.9b. In case both doors were closed, the robot did
not start to move because a valid plan could not be found. This decreased the necessary
movement time in case of closed door and reported errors faster than the baseline Navigation
Stacks. However, the design of the Navigation Stacks did not enable an en-route detection
of changes in the Door Events. If a door was changed while the robot was driving, the
global plan remained unchanged unless an obstacle was detected, which required replanning.
This problem can only be solved by a change to the used architecture of the ROS Navigation
Stack, which by far exceeds the scope of this evaluation.

6.2.3. Results

The results of the evaluation show the applicability of ASEIA to dynamically integrate avail-
able sensor data to enhance robotic navigation. The Transformation infrastructure enables
a dynamic composition of environmental information sources and robotic information sinks
to robotic applications. To implement the system, only an adapter between ROS Navigation
Stack and ASEIA and the Heterogeneous Unary Transformation need to be implemented
as the environmental sensors are considered to exist in the environment. Finally, the static

1https://github.com/steup/ASEIA-ROS/blob/sensor-events/src/aseia_examples/common/baseline.
mp4

2https://github.com/steup/ASEIA-ROS/blob/sensor-events/src/aseia_examples/common/extended.
mp4

190

https://github.com/steup/ASEIA-ROS/blob/sensor-events/src/aseia_examples/common/baseline.mp4
https://github.com/steup/ASEIA-ROS/blob/sensor-events/src/aseia_examples/common/baseline.mp4
https://github.com/steup/ASEIA-ROS/blob/sensor-events/src/aseia_examples/common/extended.mp4
https://github.com/steup/ASEIA-ROS/blob/sensor-events/src/aseia_examples/common/extended.mp4

6.3. Automotive Scenario

OccupancyGrid of the environment needs to be published. The actual ROS Navigation
Stack never needs to be modified. Additional tests show the benefits of the approach by
replacing the virtual rotation sensor with a virtual door sensor, which yields the same results
without changing anything in the configuration of the Transformations or the navigation
stack. The used Transformation Graph is automatically extended to include an additional
Transformation as visible in Figure 6.10b.
The resource consumption is low. Table 6.2 shows some statistical numbers regarding

used communication bandwidth and CPU utilization of the Transformations. The results
were acquired with a laptop running Ubuntu 14.04 and ROS Indigo. The machine was
equipped with an Intel Core i5 2520M processor and 8 GiB of RAM. The CPU consump-
tion was measured using perf [57], whereas, the network throughput was measured using
Wireshark [118]. To enhance the statistical significance of the measurement, all experiments
are performed five times with two different setups. In these cases the robot is stopped, but
receives the dynamically generated occupancy grid maps and executes its path planning.
Each measurement was done with a publication rate of 1 Hz and 10 Hz.

1 Hz 10 Hz

Total Run Time 599.63 s 599.70 s

Used CPU Time 0.47 % 1.89 %

Time: Angle Event 9.87 % 7.02 %

Time: Door Grid Event 8.72 % 7.23 %

Time: Robot Grid Event 9.43 % 5.77 %

Traffic: Angle Event 380.00 B s´1 3800.00 B s´1

Traffic: Door Grid Event 762.00 B s´1 7620.00 B s´1

Traffic: Robot Grid Event 382.00 B s´1 3820.00 B s´1

Table 6.2.: Table showing statistical results of the evaluation of the robotic scenario. The
Transformations time is expressed as a fraction of the whole CPU time used.

The results clearly indicate the performance of the Transformations implemented in
ASEIA. Even though not exactly tested, the implemented transformation should be ex-
ecutable on microcontrollers, because of their limited usage of CPU and network resources.

6.3. Automotive Scenario

The automotive scenario, explained in Section 1.2.2, provides multiple physical phenomena
in dynamic environments, which are well suited to test the capabilities of ASEIA regarding
specification of context, quality of context and the propagation of this information through
the processing. The automotive test cases are designed to be highly reproducible and enable
a quantitative evaluation of ASEIA’s performance. To this end, a physical simulation of
car behaviors is needed in a sufficiently complex environment to produce realistic sensor
output. The virtual cars should be fully autonomous, as any human control limits the
amount of testing. The behavior of the cars uses the Karyon hybridization kernel approach
to approximate a realistic safe system [52] consisting of minimum functionality, which is
guaranteed to be safe, and extended behavior using external sensors as also done by Berger

191

6. Evaluation

et al. [36]. The cars themselves combine the autonomous behaviors of Lane Following and
Adaptive Cruise Control on a circular street to enable an unlimited test time. The street
itself approximates a rural worst case scenario with sharp turns, hills and mountains blocking
the direct perception. Finally, all sensor contain a configurable uncertainty model to enable
the evaluation of the uncertainty propagation within ASEIA.

6.3.1. Scenario

The scenario uses a custom build simulation scenario implemented in Virtual Robotik Ex-
perimentation Platform (V-Rep) [133]. It contains a circular road in mountainous terrain
with multiple cars. The cars are equipped with virtual sensors enabling the detection of
their Position, Orientation, Speed, and their minimum Distance to any car in front.
The cars will perform ACC and Lane Following autonomously using their on-board sen-
sors. The goal of the scenario is the evaluation of an extended behavior called Extended
ACC, which uses additional Pose Events to infer Distance Events and combine them
with the local observation to enhance the behavior of the local ACC. This Kalman-based
Distributed Virtual ACC Sensor is described and evaluated in following sections. It can be
considered and extension of the Collision Warning System, described in Section 1.2.2. The
scenario enables a coverage of ASEIA’s functionalities regarding Event Description, Event
Dissemination, Event Filtering and Event Fusion. Additionally, the quality of the resulting
information can be evaluated using the propagated uncertainty of the information and the
behavior of the simulated cars.

6.3.2. Implementation

The evaluation simulation is implemented using ROS as communication middleware con-
trolling and interacting with the V-Rep simulation. ASEIA provides, on top of ROS, se-
mantic annotation, context description and transformation deduction and execution. The
autonomous behavior of the cars is implemented directly as ROS nodes. The whole system is
running in lock-step mode to enable full reproducibility of the results. The implementation
can be found in the ASEIA-ROS GitHub repository [153].
The generic architecture used to control the cars and generate the virtual sensor informa-

tion from V-Rep is shown in Figure 6.11.
As visible, the central node sim controls the V-Rep simulation and enables the lock-

step updates of the car nodes. The car nodes contain virtual sensors, controllers and
actuators. The virtual sensors and actuators fetch and deliver their data directly to and from
the V-Rep simulation through V-Rep’s ROS API. This API is service-based and enforces
synchronization between V-Rep and the car nodes. The car nodes provide their virtual
sensor information as ASEIA Publishers and subscribe for enhanced sensor information
using ASEIA Subscribers. The manager node contains a single ASEIA Broker providing
the ability to create Channels, deduce Transformation Graphs and execute Transformations.
The record node is used to gather the Events during a simulation run for later analysis.
The used virtual ACC sensor implemented in the cars outputs the distance to the next

car in front or the maximum distance. The car nodes fetch their virtual sensor infor-
mation directly from the V-Rep simulation and add a configurable Gaussian-noise to the
gathered data. The noise is produced through the execution of a Mersenne-Twister with

192

6.3. Automotive Scenario

managermanager

simsim

car0car0

car1car1

V-RepV-Rep

rosbagrosbag

ASEIA

vrep

sim

Figure 6.11.: UML Component diagram visualizing the generic architecture of the simulation
used for the different evaluations of the car scenario.

a configurable seed to enable reproducibility. The noise is configured using the σ of the
Gaussian-distribution and a parameter α by indicating the confidence used to convert the
noise to sensor uncertainty. The used virtual distance sensor additionally defines the uncer-
tainty of the output information based on the distance to the front car. In case the distance
is below 90% of the maximum distance of the virtual sensor, the uncertainty is statically
fixated to 1 m. In case the detected distance is larger than 90%, the uncertainty is set to the
maximum distance. This is reasonable as the distance to a potential front car is unknown
when the sensor outputs its maximum distance, as the other car may be outside of the
detection area of the sensor. Only if a car is detected, the uncertainty can be lessened as
the sensor is guaranteed to cover the road in front as far as the detected object.

The available sensors are scarce on purpose to force the system to use Transformations
to infer the missing information. The ACC behavior is implemented as PD controller on
the distance information resulting in speed commands. The Lane Following behavior is
also implemented as PD control on the current lane position of the car’s resulting steering
commands. The control and actuation implementation of the car nodes are fully decoupled
from ASEIA, as only the virtual sensors publish and subscribe ASEIA Events. The scenario
uses the following ASEIA attributes:

193

6. Evaluation

Position of the car in the simulation scenario as triples of x, y, z coordinates or as road
coordinates as r, l, o, with r indicating the road, l indicating the lane offset and o

indicating the offset towards the beginning of the road.

Time stamp of the information in simulation time.

PublisherID encoding the source of the information.

Object indicating the car the information is related to.

Orientation of the car as 3 dimensional vector in the same coordinate system as Position.

Distance as headway to the next car in front of the current car.

Speed as absolute speed of the car.

The two different coordinate systems of Position, Orientation, Speed and Distance
enable the computation of the resulting events in two separate coordinate systems specified
by the subscriber. This enables the evaluation of ASEIA Attribute Transformations in
complex scenarios.
The attributes are used to create an Event Hierarchy visualized in Figure 6.12 to be used

by the car nodes and Transformations.

Base
position
time

producerID

CarBase
objectID

Distance
distance

CarState
orientation

speed

Road
NURB

Figure 6.12.: Visualization of the used Event Hierarchy of the car evaluation scenarios.

The ROS communication used to control and manage the simulation uses TCPROS as
protocol, whereas, the ASEIA communication uses UDPROS as transport layer. This en-
ables a simple separation of data streams between simulation control and ASE delivery.
Additionally, UDP communication enables direct emulation of network parameters such as
delay and packet loss for evaluation purposes. This network error injection is done using
the Linux Traffic Controller(TC)[114], which provides a network emulation module netem
providing support for delaying packets and dropping them with a certain probability. To use
this emulation module, the car nodes are put into special Control Groups (cgroups) (similar
to the approach by Handigol et al. [78]) enabling their network output to be modified based

194

6.3. Automotive Scenario

register

step

fetch
state
set
ok

finish
ok

step
ok

sim:sim vrep:V-Rep car-i:Car

Register

waitFor
[cars.done()]

Periodic

Figure 6.13.: UML Sequence Diagram visualizing the lock step update mechanism to syn-
chronize car nodes and V-Rep.

on defined Traffic Control (tc) network performance emulation rules. The used rules depend
on the test case, which is discussed in Section 6.3.3.

The lock-step mechanism is shown in Figure 6.13 as an UML-Sequence diagram. On
simulation start, all car nodes register themselves with sim node. In each simulation cycle,
the sim uses a ROS -Message to indicate the next step to all cars. Each car node fetches the
current sensor information from the V-Rep-Simulation and runs its internal virtual sensor,
controller and actuator behavior. Finally, it updates the simulated actuators in the V-Rep
simulation and indicate the end of their step to the sim node. After all cars are done, the
sim node activates the next step in the V-Rep simulation. This mechanism enables the car
nodes to be updated in sync with V-Rep, but in parallel towards each other to mimic a
distributed system.

The acquisition of the results of the simulation runs is done by the record node, which
uses rosbag to subscribe to all ASEIA Events. These events are fetched using the TCPROS
transport layer to guarantee the transmission. The CPU utilization of the executed Trans-
formations is queried and analyzed using the perf [57] framework. The acquisition of perfor-
mance information is executed system-wide to enable the inference of used CPU resources
in comparison with the other components of the system and to also track time spent in
kernel mode. It also enables a dedicated performance analysis of the different executed
Transformations within the manager node.

195

6. Evaluation

6.3.3. Distributed Virtual ACC Sensor

The first scenario aims to use ASEIA to implement an extended ACC behavior in the
simulation cars. To this end, three transformations are necessary: Virtual ACC Sensor
Transformation (VirtACC), ACC Sensor Kalman Fusion (VirtACCKalman) and UTM to
Road Coordinate Transformation (UTMToRoad).
The VirtACC Transformation uses two State events as input to compute the current

Distance between the objects related to the events. To this end, multiple events need to
be stored to enable a matching of the events regarding the ObjectID and the Time of the
events. This Event Storage uses an associative map sorting the incoming Events according
to ObjectID and Time. In the evaluated test cases the size of this storage was set to 10
Events per ObjectID. Only if the ObjectID is different and the Time is equal, a Distance
computation can be executed. However, these two filters are not enough. Additionally, the
Orientation of the car needs to be checked against the Orientation of the Distance to
prevent the VirtACC Transformation to output Distances to the back of the car.
The Kalman Transformation enables a minimization of uncertainties as it uses knowledge

of the system designer and redundancy in the information. According to the specification
of the Kalman Transformation in Section 4.5.8, it is activated when the subscriber specifies
a filter expression containing an upper bound on the uncertainty of the Distance attribute
(in this case). The used upper bound in the test cases is 0.9 m to limit the output of
results to Events, which are better then the locally produced Events. Depending on the
Scale Reference specified by the subscriber, an additional Transformation is used, which
transforms the UTM coordinates and orientations acquired from the simulation to Road
coordinates. This enables a more complex Transformation Graph, which might create better
results. The resulting Transformation Graphs are shown in Figures 6.14 and 6.15.

Table 6.3 shows the configuration of the different experiments. Each test case has been
running and recording for 10 minutes. The generic α confidence probability used in all test
cases is 0.99.

Name Ext. ACC Type Pos. σ Delay [Min., Max.] in ms Event Loss in %
Basic none 0 [0, 0] 0
Ext UTM 0 [0, 0] 0
Pos1 UTM 1 [0, 0] 0
Pos2 UTM 2 [0, 0] 0
Lossy UTM 0 [0, 0] 30
Late UTM 0 [40, 400] 0
Bad UTM 0 [40, 400] 30
ExtR Road 0 [0, 0] 0
Pos1R Road 1 [0, 0] 0
Pos2R Road 2 [0, 0] 0
LossyR Road 0 [0, 0] 30
LateR Road 0 [40, 400] 0
BadR Road 0 [40, 400] 30

Table 6.3.: Table showing the different configurations of the experiments used to evaluate
the car scenario.

196

6.3. Automotive Scenario

Virtual ACC Sensor Kalman Transformer with filter Filter: e0[Object] == (0)

Virtual ACC Transformer

EventType:
Position(1): uncertain float [3] (0) m
Time(2): uncertain uint32[1] (0) ms

Publisher ID(3): uint32[1] (0)
Distance(5): uncertain float [1] (0) m

Object(9): uint32[1] (0)

EventType:
Position(1): uncertain float [3] (0) m
Time(2): uncertain uint32[1] (0) ms

Publisher ID(3): uint32[1] (0)
Distance(5): uncertain float [1] (0) m

Object(9): uint32[1] (0)

Filter: e0[Distance].uncertainty() < (0.9)
 &&

e0[Object] == (0)

EventType:
Position(1): uncertain float [3] (0) m
Time(2): uncertain uint32[1] (0) ms

Publisher ID(3): uint32[1] (0)
Orientation(6): uncertain float [3] (0) rad

Object(9): uint32[1] (0)

Figure 6.14.: Transformation Graph used to provide ASEs for the Extended ACC in UTM
coordinates.

197

6. Evaluation

Virtual ACC Sensor Kalman Transformer with filter Filter: e0[Object] == (0)

Virtual ACC Transformer

EventType:
Position(1): uncertain float [3] (1) m
Time(2): uncertain uint32[1] (1) ms

Publisher ID(3): uint32[1] (0)
Distance(5): uncertain float [1] (1) m

Object(9): uint32[1] (0)

EventType:
Position(1): uncertain float [3] (1) m
Time(2): uncertain uint32[1] (1) ms

Publisher ID(3): uint32[1] (0)
Distance(5): uncertain float [1] (1) m

Object(9): uint32[1] (0)

Filter: e0[Distance].uncertainty() < (0.9)
 &&

e0[Object] == (0)

EventType:
Position(1): uncertain float [3] (0) m
Time(2): uncertain uint32[1] (0) ms

Publisher ID(3): uint32[1] (0)
Orientation(6): uncertain float [3] (0) rad

Object(9): uint32[1] (0)

EventType:
Position(1): uncertain float [3] (1) m
Time(2): uncertain uint32[1] (0) ms

Publisher ID(3): uint32[1] (0)
Reference(8): uncertain float [3] (0) m
Unspecified(100): float [100, 4] (1) m

UTM(0) to Road(1) Transformer

EventType:
Position(1): uncertain float [3] (1) m
Time(2): uncertain uint32[1] (1) ms

Publisher ID(3): uint32[1] (0)
Orientation(6): uncertain float [3] (0) rad

Object(9): uint32[1] (0)

Figure 6.15.: Transformation Graph used to provide ASEs for the Extended ACC in Road
coordinates.

198

6.3. Automotive Scenario

The Basic ACC provides a baseline analysis of the simulated behaviour of the cars. It only
uses locally equipped sensors on the car to control the Speed regarding the Distance to the
front. The other experiments use one of the two automatically generated Transformation
DAGs including computed information from all available cars’ sensors. The UTM experi-
ments generate the UTM Transformation Graph, as shown in Figure 6.14, whereas, the Road
experiments generate and execute the Road Transformation Graph, as shown in Figure 6.15.
The difference between the two Transformation Graphs is the additional UTMToRoad trans-
formation used to transform the original UTM coordinates to Road coordinates using a
special NURB event.

Listing 6.3 Implementation of the used Event Hierachy for the automtive scenario using
the ASE specification DSL

1 struct BaseConfig : public BaseEventConfig {
2 using TimeValueType = Value<uint32_t, 1>;
3 using TimeScale = Scale<1,1000,0>;
4 };
5 using ObjectID = Attribute<Object , Value<uint32_t, 1, 1, false>,
6 Dimensionless , Scale<1,1,0>>;
7 using Ori = Attribute<Orientation, Value<float , 3, 1, true>,
8 Radian , Scale<1,1,0>>;
9 using Speed = Attribute<Speed , Value<float , 1, 1, true>,

10 decltype(Meter()/Second()), Scale<1,1,0>>;
11 using Distance = Attribute<Distance , Value<float , 1, 1, true>,
12 Meter , Scale<1,1,0>>;
13 using PoseEvent = BaseEvent<BaseConfig>::append<ObjectID>::type::
14 append<Ori>::type;
15 using StateEvent = PoseEvent::append<Speed>::type;
16 using DistEvent = PoseEvent::append<Distance>::type;

Listing 6.3 shows the implementation of the used Event Hierarchy of the automotive
scenario. Lines 1–4 show the definition of the Base event configuration. In this case the
generic configuration is overwritten with the time context being stored as a single unsigned
32-bit integer with uncertainty in ms. The used attributes are defined in Lines 5-12. The
ASEs are constructed as a tree of Pose and two branches State and Distance. All events
are identified by their attribute combinations (Event Schemes). The names are defined for
convenience of human developers. The State publishers are similar to the Angle publisher
of the robotic scenario. However, this example shows the integration of the publisher in a
class enabling embedding of the P/S extension in existing software designs. Additionally,
more data needs to be specified as the State sensor data consists of position, orientation and
speed. Consequently, all this data needs to be supplied including uncertainty information.
The context of the event changed because more uncertainty information is contained.
Listing 6.5 shows the combination of a publisher and a subscriber in the same program. In

this specific case the publisher and subscriber share the same ASE definition. Line 3-4 and
Line 7-10 define a filter expression used to select beneficial events. In this case the goal event
needs to have a distance uncertainty of less than 0.9 m and needs to relate to the current

199

6. Evaluation

Listing 6.4 Partial source code of the State publisher in the automotive scenario
1 class StateSensor {
2 SensorEventPublisher<PoseEvent> mPub;
3 Object mCarBody;
4 public:
5 ...
6 virtual bool update() {
7 StateEvent mEvent;
8 const Object::Position pos = mCarBody.position();
9 const Object::Orientation ori = mCarBody.orientation();

10 const Object::Speed speed = mCarBody.speed();
11 auto& time = mEvent[Time()];
12 auto& pos = mEvent[Position()];
13 auto& ori = mEvent[Orientation()];
14 auto& speed = mEvent[Speed()];
15 auto& pubID = mEvent[PublisherID()];
16 auto& objID = mEvent[ObjectID()];
17 pubID.value()(0,0) = { mPub.nodeId() };
18 objID.value()(0,0) = { car.index() };
19 time.value()(0,0) = { getTime(), getDT() };
20 speed.value()(0,0) = { speed, 0 };
21 pos.value() = {{{pos[0], 0.2}},
22 {{pos[1], 0.2}},
23 {{pos[2], 1 }}};
24 ori.value() = {{{ori.x(), 0}},
25 {{ori.y(), 0}},
26 {{ori.z(), 0}}};
27 mPub.publish(mEvent);
28 return true;
29 }
30 };

car id. The filters are either executed by the subscriber or by the transformation engine,
depending on the generated Transformation Graph. The structure of the filter needs to be
defined on compile time, whereas constants can be expressed dynamically. The dynamic
constants are supplied to the subscriber in ines 18–20. This enables a limited configuration
of the filter expression. A structural change of the filter expressions requires the construction
of a new subscriber. The received ASEs provide access to their attributes using operator[],
which follows the associative map data type of C++. This enables a concise and easy to
use API to access the contained attributes. Additionally, the attributes provide native
linear algebra operations automatically modifying scale and unit. Lines 14–25 enable the
computation of the minimum distance and oldest contained time stamp using the attributes
of the received ASE. The time value is used by the CPS application to decide on the usability

200

6.3. Automotive Scenario

Listing 6.5 Source code of the Distance publisher and subscriber for each car in the
automotive scenario.

1 class ACCSensor {
2 DistEvent mEvent;
3 using ObjectComp = decltype(DistEvent[Object()]);
4 using UTMACCUComp = decltype(DistEvent[Distance()].uncertainty());
5 VisionDepthSensor mSensor;
6 const float mMaxDist = 100;
7 UTMACCUComp c = {0.9};
8 ObjectComp o;
9 using FilterExpr = decltype(uncertainty(e0[Distance()]) < c &&

10 e0[Object()] == o);
11 decltype(DistEvent[Time()]) recvTime;
12 decltype(DistEvent[Distance()]) recvDist;
13 SensorEventPublisher<DistEvent> mPub;
14 SensorEventSubscriber<DistEvent, FilterExpr> mSub;
15 public:
16 ACCSensor(const std::string& path, const Car& car)
17 : mSensor(car),
18 o(car.index()),
19 mSub(&VisionDistanceSensor::handleEvent, this,
20 uncertainty(e0[Distance()]) < c && e0[Object()] == o)
21 {
22 mEvent[PublisherID()].value()(0,0) = { car.index() };
23 mEvent[Object()].value()(0,0) = { car.index() };
24 ...
25 }
26

27 void handleEvent(const DistEvent& e) {
28 recvDist = e[Distance()] - e[Distance()].uncertainty();
29 recvTime = e[Time()] - e[Time()].uncertainty();
30 }
31

32 virtual bool update() {
33 auto& time = mEvent[Time()];
34 auto& dist = mEvent[Distance()];
35 time.value()(0,0) = { now, getDT() };
36 auto& value = mSensor.distance();
37 if(value > mMaxDist*0.9)
38 dist.value()(0,0) = { mMaxDist/2, mMaxDist/2};
39 else
40 dist.value()(0,0) = { value, 1};
41 mPub.publish(mEvent);
42 ...
43 }
44 };

201

6. Evaluation

of the received distance data. Depending on the age the application either used the locally
generated information or the remote information.

Listing 6.6 Parital Source code of the Position to Distance Virtual ACC Transformation..
1 class VirtACC : public BufferedTransformer {
2 ...
3 virtual Events execute(const Events& e) {
4 if(e[0][Time()] == e[1][Time()])
5 return {};
6

7 const MetaValue& ori = e[0][Orientation()].value();
8 MetaValue diff = (e[1][Position()]-e[0][Position()]).value();
9 if((ori*diff).sum() < 5)

10 return {};
11

12 MetaEvent eOut(out());
13 eOut=e[0];
14 eOut[Distance()]=diff.norm();
15 return {eOut};
16 }
17 };

Transformations use a different API as described in Section 5.2.3. The API is defined
to look similar to the CPS API, but omits the static type informatin checks. This enables
deployment independent off the Event Format of the supplied ASEs. This way, the specified
Transformations are more generic and adapt on run time to the Event Formats. Linear
Algebra operations are defined on value-uncertainty complex guaranteeing processing of
uncertainty, scale, and unit. This mechanism guarantees a maximum amount of checks being
executed during the processing to ensure the quality of the output data. After execution of
the Transformation DAG a final conversion is done to fit the Event Format of the result
to the requirements of the subscriber. However, as the data is generated on run time no
compiler generated error message are possible. Therefore, if errors occur during execution
of the operations, an invalid value is generated. In the default configuration these events
are suppressed and filtered at the end of the Transformation DAG. However, using a special
debug policy they can still be delivered for debugging purposes.

6.3.4. Results of the Basic Evaluation Test Case

The Basic test case is used to establish a baseline for the performance of the ACC behavior of
the cars. It will be evaluated regarding homogeneity of Speed and Distance and Distance
Uncertainty. Figure 6.16 shows the results of the Basic test case. As visible, the Speed was
very inhomogeneous with two peaks at 8 m s´1 and 12 m s´1 and a very wide distribution of
speeds in general. The heat map of Speeds show areas of different speeds on the road, which
is caused by the change in visibility between the following and front car. The homogeneity of
the Distance is better. However, the Distance Uncertainty contains two peaks, which are

202

6.3. Automotive Scenario

caused by the two possible detection cases. Whenever the following car can observe the front
car, the uncertainty is limited to 1 m. However, if the following car cannot see any front car,
the uncertainty jumps to ˘50 m, as specified for the virtual Distance sensor. Consequently,
the Distance Uncertainty heat map shows areas with very low average uncertainty, in which
the following car can observe the front car, and areas, in which the average uncertainty varies
because of occlusion of the Distance sensor of the following car.
In the following sections, relevant results of the Transformation Graphs implementing the

Extended ACC are presented and discussed. For additional results, refer to the appendix.

6.3.5. Speed Results of the UTM Transformation Graph

Speed Results of the UTM Transformation Graph
The first result to be analyzed is the distribution of speed over time and position of the

following car 0. The goal of the Extended ACC is to smooth the driving experience of the
passengers. Therefore, the speed should be as homogeneous as possible. Figure 6.17 shows
the speed of the following car 0 as histograms and heat maps for the UTM scenarios. The
histogram enables the evaluation of the homogeneity and the distribution of speed values,
whereas, the heat map allows the detection of hot spots on the road, which impact the
different ACC cases.
The results shown in Figure 6.17 of the UTM Transformation Graph experiments show

an increase in homogeneity of speed using the Extended ACC in test case Ext compared
to the local ACC Basic. Even if presented with uncertain information or if the delivery
is obstructed, the Transformations still provide output below the uncertainty threshold
of 0.9m, providing a more homogeneous performance. However, the performance of the
Transformations is coupled to the quality of the input information and degrades when input
quality degrades. Additionally, the homogeneity of speed also degrades. Especially in the
Bad configuration, inhomogeneous behavior can be observed, as the data was probability
delivered too late to be useful to the car and the car often switches to its internal controller
often. The heat maps show a decrease in intensity of the hot spots, which indicates a
smoother driving. The heat map of Ext is nearly hot spot free, which decreases with intensity
of injected errors. Even though the Kalman Transformation is able to compensate additional
uncertainty, the resulting speed is still effected by the injected errors. Even in the worst
case of errors of Pos2 and Bad, the heat maps show stronger homogeneity than the Basic
test case.
The resulting speed distribution is not fully homogeneous, even in the error-free test case

Ext. This is caused by offsets of the computed distance at certain spots in the map. This
stems from the used Euclidean distance, which under-estimates the real distance of the cars
on the track, especially in steep corners. Consequently, the largest inhomogeneities exist
between cornering and straight parts of the map.

6.3.6. Speed Results of the Road Transformation Graph

The Road Transformation Graph is evaluated similarly to the UTM Transformation Graph
using histograms and heat maps of Speed , see Figure 6.18, visualizing the results of the
Road test cases.

203

6. Evaluation

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(a) Speed Histogram.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(b) Speed Heat Map.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(c) Distance Histogram.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Distance Heat Map.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Distance Uncertainty Heat Map.

Figure 6.16.: Visualization of result of the Basic test case. Heat Maps visualize values of
either Speedr0 m s´1, 12 m s´1s or Distancer0 m, 100 ms. Blue colors indicate
values, whereas, red colors indicate uncertainty.

204

6.3. Automotive Scenario

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(a) Histogram of Experiment Ext.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(b) Histogram of Experiment Pos2.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(c) Histogram of Experiment Bad.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Heat Map of Experiment Ext.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Heat Map of Experiment Pos2.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Heat Map of Experiment Bad.

Figure 6.17.: Comparison of the different evaluation scenarios regarding Speed of the first
car as histograms and heat maps for the UTM Transformation Graph.

205

6. Evaluation

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(a) Histogram of Experiment ExtR.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(b) Histogram of Experiment Pos2R.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(c) Histogram of Experiment BadR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Heat Map of Experiment ExtR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Heat Map of Experiment Pos2R.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Heat Map of Experiment BadR.

Figure 6.18.: Comparison of the different evaluation scenarios regarding Speed of the first
car as histograms and heat maps for the Road Transformation Graph.

206

6.3. Automotive Scenario

The Road Transformation Graph provides approximately the same homogeneity for the
Speed as the UTM experiments. This presents a contrast to the expectation, which should
solve the under-estimation issues at steep corners. However, the additional transformations
induce additional uncertainty as more operations are performed on the information. In con-
sequence, the resulting distribution of speed is wider. This is visible in the comparison of
Ext and ExtR histograms. A benefit of the road coordinate system is the used Non-Uniform
Rational B-Spline (NURB) description of the road, which adds additional redundancy to
the system as it presents additional model information. This mitigates the additional uncer-
tainties in the experiments with bad conditions. Consequently, the maximum performance
of the Road Transformation Graph is worse, but the average performance is comparable to
the UTM Transformation Graph.

6.3.7. Distance Results UTM Transformation Graph

The second parameter to be evaluated is the homogeneity of the virtual ACC Distance and
the amount of Uncertainty assigned to it. The information is visualized as histograms and
heat maps, as shown in Figure 6.19.
The distance histogram shows a strong convergence of the observed distances on usage

of the Extended ACC. Additionally, the used model in the Kalman-Filter heavily decreased
the uncertainty. This is caused by the exploited redundancy created through the usage
of the local information, which is very accurate, but sometimes unavailable. The remote
information, which is generally worse, but is more available. Of course, the quality of
the information is decreased, especially in the experiments Pos2 and Bad. In Pos2 the
incoming uncertainty is largely increased, because both cars are injected with additional
uncertainty and the used subtraction operation increments the resulting uncertainty by the
sum of both uncertainties. The heat map is misleading in this case, as the uncertainty is
distributed between multiple positions, because the plot shows the positions as received and
used by the cars. There are no hot-spots on the map, because the transformation is not
able to grasp the induced offset of its under-estimation of the distance. This is a general
limitation of the system, which can only be circumvented using other coordinate systems
or other approaches towards the distance estimation. The uncertainty heat maps show a
large decrease of uncertainty between Basic and all Extended ACC text cases. If the input
information is worse, the VirtACCKalman Transformation puts more weight on the local
information, which provides precise information in some parts of the road. As the Kalman
also tracks the distance over time, badly conditioned information from the VirtACC may
be compensated by the predication step of the Kalman Filter.

6.3.8. Distance Results Road Transformation Graph

The generated distance information of the Road Transformation Graph should be very sim-
ilar to the UTM Transformation Graph results as the Speed results have already been
similar. The evaluation again uses a visualization of the distribution of distance and uncer-
tainty in histogram and heat map (Figure 6.20.
The histogram distribution of the distances is nearly the same compared to the UTM

experiments. However, the heat maps show two interesting results. The first result is
the stronger presence of differences on the heat maps, especially regarding straights and

207

6. Evaluation

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(a) Histogram of Experiment Ext.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y
(b) Histogram of Experiment Bad.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(c) Value heat map Experiment Ext.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Value heat map Experiment Pos2.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Uncertainty heat map Experiment
Ext.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Uncertainty heat map Experiment
Bad.

Figure 6.19.: Comparison of the UTM Transformation Graph using histograms and heat
maps of Distance (blue) and Distance Uncertainty (red).

208

6.3. Automotive Scenario

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(a) Histogram of Experiment ExtR.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y
(b) Histogram of Experiment BadR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(c) Value heat map Experiment ExtR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Value heat map Experiment Pos2R.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Uncertainty heat map Experiment
ExtR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Uncertainty heat map Experiment
BadR.

Figure 6.20.: Comparison of the Road Transformation Graph using histograms and heat
maps of Distance (blue) and Distance Uncertainty (red).

209

6. Evaluation

corners. This stems from the interaction of the remote and the local information. The
local information is accurate in whiter areas, whereas, this information is very inaccurate
in the darker ares. Consequently, the additional transformation of coordinates create some
additional noise, which is stronger in these areas, as the redundant information compensating
it is not available. The second observation are the missing spots in the heat maps, which
are generated by missing output of the Road Transformation Graph. This is caused by a
drawback of the road coordinate system, which is the jump occurring at the start/end of
the circular road. This jump prevents the VirtACC from outputting information with low
uncertainty. Consequently, the uncertainty of the events is increased beyond the threshold
and the events are discarded. The cars not presented with extended information switch
back to their local sensors. The used Kalman-Filter effects the information quality of the
road following this section. If the incoming information is worse, the Kalman-Filter takes
longer to converge to minimum uncertainty again. This is especially visible in the Bad
configuration, which contains large gaps in the heat map, where no information was created
by the Transformation.

6.3.9. Delay Analysis

The third major property of the Transformation Graphs is the delay, which is induced by
their operations to the delivery of the resulting information. To estimate this, the end of
the simulation time stamp interval at arrival is compared to the begin of the time stamp
interval contained in the event, which is propagated through the transformations. On each
transformation this interval may grow, because newer information is added, but the time
stamp of the oldest information defines the lower bound of the interval. The 100 Hz update
rate of the simulation is supposed to induce a generic delay of 10ms. Figure 6.21 shows
the resulting delays as Box-Whisker diagrams to indicate the mean and distribution of
delays for the UTM Transformation Graph. As the results were very similar between the
Transformations Graphs only one is shown. The results of the Road Transformation Graphs
are available in the appendix.
As visible, the delay of the experiment not inducing network delay is approximately the

same. On average it is 10ms with a small deviation as expected by the setup. There are
outliers, which can grow up to 100ms. Interestingly, induced noise and induced packet loss
rate have similar results on the delay. This may be caused by output events being filtered,
because their uncertainty is above the filter threshold for experiments Pos1 and Pos2. This
behavior is very similar to any event being lost on route because of the loss rate.
In experiment Late and Bad the induced delay dominates the packet loss behavior and

defines the resulting event delivery delay.

6.3.10. Event Rate Analysis

The rate of publication and the begin of the publication in simulation time is shown in
Table 6.4. The entries with PublisherID 58 are most interesting, as they indicate the
result of Transformation Graphs. None of these entries reach 100 Hz. This is caused by
the used filter statements of the subscribing cars and the used Transformations. For ex-
ample, a State event can only be translated to a Distance event when the corresponding
State event of another car exists. Also visible is the general decrease of event production

210

6.3. Automotive Scenario

Late Pos1m Lossy Pos2m Ext Bad

0

200

400

600

800

1000

1200

1400

Figure 6.21.: Box-Whisker plot showing the delay induced by the in-network processing for
the UTM test cases. The delay is measured from atomic event generation until
reception of the resulting complex event.

211

6. Evaluation

comparing UTM and Road Transformation Graphs. This behavior is strengthened with
bad conditions. However, the quality of the resulting data did not decrease as much, see
Section 6.3.8. This stems from the used uncertainty filter, which discards badly conditioned
data. Therefore, the system discards information, which the subscriber considered not use-
ful. This increases efficiency with minimal impact on the quality of the delivered data, as
only bad data is discarded. This shows a major benefit of the used inherent quality metric
and propagation of this metric through the processing. The additionally used road model in
the Road experiments discards more data when the incoming information is noisy or late,
because it provides an additional layer of analysis estimating the uncertainty.
The downside of this behavior is the run time dynamics of the event generation process.

In general, it is impossible to know how many events will be generated without knowledge
on the amount of publishers and filters used by the subscribers. The information contained
in the events might have a large impact on event generation depending on the actually used
Event Filters.

6.3.11. Performance Analysis

The last attribute to be analyzed is the performance of the event processing in the Trans-
formation Graphs within the ASEIA broker. To this end, the CPU utilization is analyzed
based on data acquired in the Ext and ExtR experiments, as they provide the highest event
generation rates. Therefore, the resulting data will equally contain all Transformations. Ta-
ble 6.5 shows the CPU utilization of the used Transformations within the Transformation
Graph. The values include the Event Storage to enable a correct comparison.
As visible, the VirtACC uses approximately 1% of a single CPU on the used Core-i7 5500U

for a single car. This is caused by the necessary evaluation of all event combinations of all
ObjectIDs. The VirtACC needs two input events, which are stored internally associative
according to their ObjectID. The Transformation needs to check these pairs of events
regarding their Time and regarding their Orientation. This process is time consuming
and depends on the buffer size for each ObjectID. In this example, the buffer size was set
to 10, which mandates the evaluation of 10 event pairs with a rate of 200 Hz. The output
of the transformation will always be only a single event representing the minimum distance.
The VirtACCKalman contributes only slightly to the CPU utilization as it only considers
a single event at a time and therefore has an update rate of approxmately 200 Hz (100 Hz

induced by the local Distance Events and 100 Hz induced by the State Events), which
does not depend on the amount of cars in the system. The UTMToRoad transformation needs
to extract the position of the car along the NURB representation of the road, which poses
a minimization problem of a fixed sample size dataset. In the experiments the number of
samples for the Road was set to 1000. Depending on the sample size, the performance of
the Transformation will increase or decrease, but at the cost of additional uncertainty.

Finally, the numbers represent the execution time for the Transformation Class, but there
are always two instances of the Transformation Graphs, because the two cars use different
filters containing their respective ObejctID. Since the current implementation has no means
to share Sub-Transformation Graphs, all operations are executed twice. Also, the ObjectID-
filter cannot be discarded, because the VirtACCKalman is state-based and according to the
definition of the Kalman-Filter it is a single state tracker.

212

6.3. Automotive Scenario

Experiment Event Car Publisher Rate in Hz Startup time in s

Basic State 0 2 100.00 0.00
Basic State 1 3 100.00 0.00
Basic Distance 0 2 100.00 0.00
Basic Distance 1 3 100.00 0.00
Ext Distance 0 2 100.00 0.00
Ext Distance 0 58 94.59 24.69
Ext Distance 1 3 100.00 0.00
ExtR Distance 0 2 100.00 0.00
ExtR Distance 0 58 93.67 0.69
ExtR Distance 1 3 100.00 0.00
Pos1 Distance 0 2 100.00 0.00
Pos1 Distance 0 58 88.38 27.06
Pos1 Distance 1 3 100.00 0.00
Pos1R Distance 0 2 100.00 0.00
Pos1R Distance 0 58 79.82 37.78
Pos1R Distance 1 3 100.00 0.00
Pos2 Distance 0 2 100.00 0.00
Pos2 Distance 0 58 85.38 23.03
Pos2 Distance 1 3 100.00 0.00
Pos2R Distance 0 2 100.00 0.00
Pos2R Distance 0 58 67.23 56.74
Pos2R Distance 1 3 100.00 0.00
Lossy Distance 0 2 100.00 0.00
Lossy Distance 0 58 68.01 19.84
Lossy Distance 1 3 100.00 0.00
LossyR Distance 0 2 100.00 0.00
LossyR Distance 0 58 65.73 25.10
LossyR Distance 1 3 100.00 0.00
Late Distance 0 2 100.00 0.00
Late Distance 0 58 97.97 21.70
Late Distance 1 3 100.00 0.00
LateR Distance 0 2 100.00 0.00
LateR Distance 0 58 91.20 21.10
LateR Distance 1 3 100.00 0.00
Bad Distance 0 2 100.00 0.00
Bad Distance 0 58 68.89 19.89
Bad Distance 1 3 100.00 0.00
BadR Distance 0 2 100.00 0.00
BadR Distance 0 58 65.05 38.58
BadR Distance 1 3 100.00 0.00

Table 6.4.: Summarizing table of publication rates and startup times of the different Event
Types produced by the test cases.

213

6. Evaluation

Transformation Graph Transformation CPU Time in %

UTM VirtACC 0.96
UTM VirtACCKalman 0.12
Road VirtACC 1.02
Road VirtACCKalman 0.12
Road UTMToRoad 0.86

Table 6.5.: Table indicating the CPU utilization of the different Transformations within the
executed Transformation Graph of the UTM and Road Extended ACC without
Errors.

In comparison to the robotic evaluation, as described in Section 6.2, the transformation
Graphs induce approximately 10 times more CPU utilization, which is caused by the 10
times higher Event generation rate of the system. This indicates a strong coupling between
Publication Rate and CPU utilization of the Transformations. The next section analyzes
this coupling more thoroughly.

6.4. Scalability Analysis

Scalability is a very important aspect for distributed systems. As ASEIA aims to provide
in-network processing in networks of arbitrary size, an analysis of the scalability of generated
Transformation Graphs to different networks is necessary. As scalability is very difficult to
assess in real systems because of the necessary large scale network of nodes and the inher-
ent problems of reproducibility, the evaluation is done analytically. The following section
evaluates the Realization of Transformation Graphs in networks regarding the Average Nor-
malized Event Transmission Rate avgT,R for Transformation Graph T and Realization R.
Additionally, a second metric is used: the Maximum Events to Process #maxT,R. The
scalability of the transformation Graph under different Realizations is analyzed regarding
the amount of ASEIA Brokers present in the network, as well as the amount of ASEIA
Publishers and ASEIA Subscribers.

Figures 6.22a and 6.22b show an example Transformation Graph and its Realization in an
example network. As visible, the number of producers is higher than the amount of input
events of the Transformation Graph. Additionally, multiple subscribers exist. Finally, the
Transformations are distributed into different Brokers, which are connected using interme-
diate nodes and some Transformations exist multiple times. Based on the observations of
the Realization, the Average Normalized Event Transmission Rate is expressed as a recur-
sive formula according to Equation 6.2, whereas, the Maximum Events to process metric is
defined in Equation 6.3.

214

6.4. Scalability Analysis

T eout

T6

f6

T5

f5

T4

f4

T3

f3

T2

f2

T1

f1

T ein0
T ein0

T ein1

(a) An example Transformation DAG.

n25
T eout

n24

n23
T eout

n22

n21

T eout

n20

T6

n19

n18

T6

n17

n16

T3

n11
n12

T5

n13
n14

T4 n15

n06
T ein1

n07

T1

n08
n09

T2 n10

T ein1

n05

n04

T ein0

n03

n02

T ein0

n01

(b) An example Realization of the Transformation DAG to an example network.

Figure 6.22.: Visualization of a Transformation DAG consisting of multiple Brokers execut-
ing parts of the graph. The brokers, publishers and subscribers are connected
through intermediate nodes only forwarding the Events.

215

6. Evaluation

#pj “ kj
ÿ

pi,j,hqPE

#pi (6.1)

avgT,R “
1

n

ÿ

pi,j,hqPE

h#pi (6.2)

#maxT,R “ max
jPN

ÿ

pi,j,hqPE

#pi (6.3)

These equations view the Realized Transformation Graph as a graph consisting of n nodes
and a set of edges E. The set of nodes N can be subdivided into three disjoint subsets
P, S,B containing the publishers, subscribers and brokers respectively. The set of edges is
described as a set of three tuples containing the sender, receiver and the distance between
them as E “ tpi, j, hq|i ‰ j, i P P YB, j P S YBu. To deduce the Event Transmissions, the
amount of produced Events #pi in each publisher, broker or subscriber of the network needs
to be estimated. Publishers always have an event production of 1: @i P P,#pi “ 1. For
brokers this formula 6.1 depends on the amount of incoming Events and the Transformation
specific filter/generation factor ki. Subscribers use the same formula as brokers, but with
their ki set to 1: @i P S, ki “ 1. The Average Normalized Event Transmission Rate avgT,R
is defined as the sum of all generated Events multiplied with the amount of hops they need
to travel, divided by the amount of nodes in the graph, see Equation 6.2. The Maximum
Events to Process maxT,R is defined as the maximum amount of incoming Events in a single
broker, see Equation 6.3.
The results of the two scaling metrics strongly depend on the factor ki, which is dependent

on the actual Transformation used. However, a classification of the types of Transformations
enable the expressions of limits to the factor. Table 6.6 shows this classification regarding the
event production. The Aggregation Unary Filter and n-ary Filter Transformation Classes
have implementation specific parameters k, which describe the average event production rate
on each encountered input event. For Aggregation and Unary Filter these k are within the
range r0, 1s. n-ary Filters have a k in the range r0, Bn´1s, with B being the Event Storage
size. The value of k depends on the chosen Policy, see Section 4.6.5. The Best and Newest
Policy reduces the value compared to the All Policy.
The application of the two scalability metrics to the Realization of the example Transfor-

mation Graph, see Figure 6.22, yields the results shown in Equation 6.4 and 6.5 using the
assumption of a homogeneous ki “ k for all used Transformations.

avg “
1

25

`

8` 14k ` 14k2 ` 28k3 ` 18k4
˘

(6.4)

max “ 2k2 p1` 2kq (6.5)

Plotting the exemplary scalability metrics regarding different k in the range r0, 2s yields
the Figures 6.23a and 6.23b.
The plots show a strong connection between the parameter k and the amount of Events

needed to be processed and transmitted in the network. As the generic recursive metric
is too complex to be analyzed directly, the following section evaluates the behavior of the
Realization regarding different generic sub-topologies on different k.

216

6.4. Scalability Analysis

Class Transformation #Input Events #Output Events
min avg max

Unary

Cast
1

1 1 1

Rescale
Interpolation
Scale Change 2
Kalman

nConcatenation
Extrapolation

Unary Filter
Constant Selection

1 0 k 1
Unary Process

Aggregation

min

1 0 k 1
max
avg
count
median

n-ary Filter
Dynamic Selection

n 0 k Bn´1

n-ary Process

Table 6.6.: Table showing the minimum, maximum and average amount of generated Events
for each transformed input Event.

0.0 0.5 1.0 1.5 2.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(a) Average Normalized Event Transmission Rate

0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

50

(b) Maximum Events to process

Figure 6.23.: Plots of the scalability metrics regarding the Realization of the example Trans-
formation Graph dependent on k in the range r0, 2s.

To separate the Transformation DAG T into single Transformations T , the set of publish-
ers P is set to contain all nodes transmitting events to brokers executing Ts, whereas, the set
of subscribers S is set to contain all nodes receiving events of Ts. This sub-topology consists
of a limited structure which is easier to analyze. There exists two topological extreme cases

217

6. Evaluation

of the connection between publishers, brokers and subscribers for this sub-topology, which
are shown in Figures 6.24a and 6.24b. These differ in the replication of the Transformation
Ts from the Transformation Graph T . In the first case the Transformation is executed in
a single Broker Bs “ b0 located as close as possible to its producers. This maximizes the
number of hops to the subscribers, but minimizes the number of hops from the publisher
to transmit input events from the publishers. The other topology utilizes multiple Brokers
B “ b0, . . . , bo, o ď |S| executing the same Transformation closer to the subscribers. This
minimizes the hop count for the resulting Events, but maximizes the hop count for the in-
put Events. Additionally, the amount of Events increases as the input Events need to be
replicated and delivered to all Brokers.

b0

s0

si

sn´1

p0

pj

pm´1

(a) Single Broker Topology to distribute final
Events to subscribers.

b0 bkbo´1

p0 pj pm´1

s0 sisn´1

(b) Multi-Broker Topology to distribute final
Events to subscribers.

Figure 6.24.: Visualization of the two extreme sub-topologies usable to deliver final Events
produced by a Transformation Graph to the subscribers.

The behavior of these topologies regarding the avgTs,R metric is expressed in the Equa-
tions 6.6. The multi-broker topology can be considered as the generic topology. Equation 6.8
describes the behavior of this topology using the parameters Hm

s and Hm
p denoting the aver-

age hop count for all used links from any broker to any subscriber and from any publisher to
any broker respectively. In the single broker case, the broker number o is 1, which simplifies
the formula to Equation 6.8. The maximum multi-broker case is reached when the brokers
are embedded in the subscribers, which leads to Hm

s “ 0. In this case n brokers exist,
which leads to Equation 6.9. Assuming an optimal routing algorithm, it can be assumed
that HM

P ď Hm
S `H

m
P , Hs

S ě Hm
S and Hs

P ď Hm
P . For arbitrary networks Hm

S and Hm
P can

be considered as functions of the amount of brokers |B| used.

218

6.4. Scalability Analysis

avgTs,R “
1

|N |

¨

˝km
ÿ

pi,j,hqPE,jPS

h`
ÿ

pi,j,hqPE,iPP

h

˛

‚ (6.6)

avgTs,Rm “
|Ps|

|N |
pk|Ss|H

m
S ` |Bs|H

m
P q (6.7)

avgTs,Rs “
|Ps|

|N |
pk|Ss|H

s
S `H

s
P q (6.8)

avgTs,RM “
|Ps||Ss|H

M
P

|N |
(6.9)

(6.10)

6.4.1. Sub-Topology Analysis

In the following, some example topologies are analyzed to extract an approximation of
avgTs, R.

s0

s1

s2

p0

p1

p2 p3

p4

b0

Figure 6.25.: Figure showing an example linear topology of a single cluster of subscribers
and publishers and a single broker connecting them.

For a linear topology of publishers and subscribers, as visualized in Figure 6.25, the sum
of average hops between publishers and brokers and subscribers and brokers is constant:
HSp|B|q ` HP |B| “ C « const. Consequently, HSp|B|q can be expressed as C ´ HP |B|.
Inserting the result in Equation 6.7 yields avgTs,R „ k|S| pC ´HSp|B|qq ` |B|HP p|B|q “

HP p|B|q p|B| ´ k|S|q ` k|S|C. The term k|S|C is constant as it is not dependent on |B|,
which yields |B| ´ k|S| as the defining term. It follows that minimizing |B| minimizes that
term. In consequence, single brokers are best suited for linear topologies. The remaining
question is the distance of the broker to the subscribers and the publishers. After |B| “ 1,

219

6. Evaluation

the term HP p|B|q p|B| ´ k|S|q simplifies to HP p|B|q p1´ k|S|q. Consequently, the broker
should be deployed closely to the publishers if k|S| ą 1 and closely to the subscribers if
k|S| ă 1. In the case k|S| ““ 1, the placement is not inducing any change.

p0

p1

p2 p3

p4

s0,0

s0,1 s0,2

b0

s1,0

s1,1 s1,2

b1
s2,0

s2,1 s2,2

b2

s3,0

s3,1 s3,2

b3

s4,0

s4,1 s4,2

b4

Figure 6.26.: Figure visualizing an example star topology with publishers in the center and
single brokers for each arm.

A star topology with publishers in the center, as visualized in Figure 6.26, can be consid-
ered to consist of separate independent linear topologies. Therefore, the same rules apply
as for a single linear topology. The factor k|S| defines how close the brokers should be to
the publishers. A large k|S| moves the broker away from the center towards the subscribers.
This behavior is independent for each arm. If multiple arms have small k|S| values, these
brokers may be merged in the center to a single centralized broker.

A star topology with subscribers in the center, as shown in Figure 6.27, shows com-
pletely different behavior. As all published events need to be delivered to all the brokers,
the placement of the brokers has little influence on the HP p|B|q, but a centralized broker
minimizes HSp|B|q. In consequence, the term k|S|HSp|B|q ` |B|HP p|B|q is simplified to
k|S|HS ` |B|HP , which is minimized by setting |B| to 1. Therefore, the best configuration
in this scenario is a single broker in the center of the star.

220

6.4. Scalability Analysis

b0

s0

s1 s2 p0,0

p0,1

p0,2p0,3

p1,0

p1,1

p1,2p1,3

p2,0

p2,1

p2,2p2,3

p3,0

p3,1

p3,2p3,3

p4,0

p4,1

p4,2p4,3

Figure 6.27.: Figure visualizing an example star topology with subscribers in the center and
a single broker in the center.

p0,0 n0,0 s0,0

p0,1 n0,1s0,1

p0,2n0,2 s0,2

p0,3 n0,3 s0,3

p0,4 n0,4s0,4

p1,0 n1,0s1,0

p1,1n1,1 s1,1

p1,2 n1,2 s1,2

p1,3 n1,3s1,3

p1,4n1,4 s1,4

Figure 6.28.: Figure showing an example uniform grid topology without brokers.

The last topology considered is the uniformly distributed two dimensional grid consisting
of equally spaced publishers and subscribers. For a square grid of size x, this topology
has a small changing HP p|B|q of approximately HP p|B|q “ r1{3x, 2{3xs. On the other hand,

221

6. Evaluation

HSp|B|q depends strongly on |B| as HSp|B|q “
1
3x

1?
p|B|q

if the brokers are uniformly dis-

tributed. The defining term becomes avg “ k|S|?
p|B|q

` 2|B|. The minimum of this formula

is Bmin “
k|S|

4

3
2 . Figure 6.29 shows a plot of the number of brokers |B| based on k values

and subscriber numbers |S|. As visible, even for large k, the optimal number of brokers is
only half of the number of subscribers. The Best and Newest Policies limit k to k ă 1.

Consequently, the optimal broker number for this topology is limited to |B| ă
?
|S|

3

8 .

k

0.000.250.500.751.001.25 1.50 1.75 2.00

|S
|

2.5
5.0

7.5
10.0

12.5
15.0

17.5
20.0

|B
|

0

2

4

6

8

10

Figure 6.29.: Surface plot of the optimal number of brokers |B| based on the Transforma-
tion’s filter/generation factor k and the subscriber count |S|.

6.4.2. Subscriber and Publisher Scalability

Subscriber scalability depends on the factor k|S|HSp|B|q, because the relevant term of the
avgTs,R equation is k|S|HSp|B|q ` |B|HP pp|B|q and |B|HP pp|B|q can be considered to be
constant in case no change in the number of brokers occurs. Therefore, the subscriber
scalability is good when the Transformation filter/generation factor is small or the average

222

6.5. Summary

distance to the broker is small. Consequently, Transformation Graphs with strong filters
discarding many incoming events are positive. Also, topologies with small distances between
brokers and subscribers are beneficial in this case.
Publisher scalability only depends on the average publisher to broker distance HP p|B|q,

because the factor |P | is a general factor independent of the number and placement of bro-
kers. When a publisher is added, which increases HP p|B|q, additional communication is
necessary, but the general resource consumption of the dissemination of the Events of this
publisher cannot be mitigated by the placement or number of brokers. However, the struc-
ture of the Transformation Graph has an impact on the performance. When Transformations
with small k values are generating the input events to the Transformation in question, fewer
events need to be considered and the effect of a high k value is mitigated. Unfortunately, the
movement of Transformations within an Transformation Graph is an optimization, which
is not generally valid and requires further research to establish optimization rules similar to
the ones of the relational algebra of databases, see [48] and [47].

6.5. Summary

This evaluation chapter provides four different evaluations. The first evaluation provides
insights on the expected quality and scalability of the Rescale Transformation of Time de-
ployed to WSN. This is an important aspect for the usage of ASEIA in WSN scenarios to
compensate for the lack of a global time base and still enable filter expressions and therefore,
Event inference based on Time. The second evaluation considers the usage of ASEIA for
robotic navigation using Transformations on OccupancyGrids, which are directly fed to
external navigation software. The results show the flexibility of the system as well as the
easy integration of ASEIA with other software, which is important to achieve the goal of dy-
namic composition of CPS. The third experiment evaluates ASEIA’s capabilities to describe
and process physical phenomena observed by sensors in mobile entities and automatically
process the information. The results show interesting results regarding the propagation of
uncertainty, but also indicate scalability problems in certain types of Transformations. The
last evaluation focuses on theoretical scalability based on regular topologies to evaluate the
behavior of the system for larger networks. The results showed the importance of the event
generation/filter factor k for the performance and scalability of the system. Additionally,
it showed some topologies to provide better performance when brokers are deployed based
on the actual k value. A remaining question is the acquisition and dissemination of the k
factor on run time to optimize broker placement and usage.

223

7. Conclusion

This thesis approaches the topic of dynamic composition of CPS, which is a key feature of
future applications in the area of Industry 4.0, autonomous cars and autonomous robots.
The thesis focuses on the description and dissemination of information flowing between com-
ponents in CPS to enable an automatic construction and reconfiguration on run time. To
this end, a structured description of the information in form of ASE has been developed,
which combines the description of data, semantics, uncertainties and contextual attributes.
The semantics are described using a vocabulary of elementary attributes specific to a sce-
nario. These attributes may relate to physical phenomena, but do not necessarily need to.
The set of attributes known to the system is not run time static, but may be extended by the
components of the system as needed. ASE allow individual development and better reuse
of existing CPS components because the coupling between them is reduced. The individual
components may use ASEs as a specification mechanism of their requirements towards the
necessary information. ASE provide means to specify adaptive interfaces between the com-
ponents. The challenge of these interfaces is the possible lack of appropriate information,
which requires the execution of information processing steps to transform existing informa-
tion to fullfil the requirements of the specifying component. To this end, an in-network
information processing system was developed, which is called ASEIA.
CPS using ASEIA contain loosely coupled components, because ASEIA decouples them

regarding space, flow, data type and semantics. This eases the development of the component
and increases its flexibility. The components may only state their requirements regarding the
incoming information, but without knowing the other components of the system providing
information. The necessary requirements are specified as Event Types and Filter Expressions
on the events described by the Event Types. The thesis provides a filter language to allow
the description and dissemination of these requirements through the network.
The processing of information is done within the network disseminating the information

through specialized nodes called ASEIA brokers. These execute Transformations, which
are automatically deployed if they are needed to fullfil a component requirement. The
ASEIA Brokers act individually and provide communication channels between components
in a fully distributed system. Possible Transformations are classified and structured by
the thesis to enable this automatic deployment and to combine them if necessary. The
described Transformations provide capabilities to transform the data, types and context
of the information. Additionally, sensor fusion operations are supported, which enable a
dynamic trade-off between e.g. update rate, observation range and uncertainty. To ease
the development of new Transformation ASEIA provides facilities to compute the sensor
data and the attached context as a single entity. These processing operations are context
aware and automatically adapt scales, units and uncertainty of the data. This allows the
components to specify requirements on quality attributes like QoC and QoS. The resulting
parameters of ASEIA regarding the comparison criteria used in the state of the art analysis

225

7. Conclusion

of Chapter 3 are shown in Table 7.1. As visible, ASEIA fulfills most of the described
requirements. A time coupling may only be observed whenever no buffering is used in the
Transformations. Additionally, QoS provision depends on the used P/S system. Therefore,
it cannot be guaranteed generally.

Criteria ASEIA

Coupling

Time (x)
Space
Flow
Data Type
Semantic

Context

Time x
Space x
Uncertainty x
Semantics x

Quality
Service (x)
Context x

Distribution Type distributed

Resources
CPU ++
Memory +
Network ++

Filter
Model Subscription-based
Elementary ++
Composite ++
Sequence –

Processing
Model Rule
Transformation ++
Aggregation ++
Fusion ++

Table 7.1.: Table indicating the results of ASEIA regarding the comparison criteria of the
state of the art (Chapter 3).

The concepts of ASEIA are implemented in a prototype, which has been evaluated re-
garding the uncertainty propagation as well as the run time behaviour for real robotic and
simulated car scenarios. The concepts were validated and proved to increase flexibility, while
still providing good performance. The uncertainty propagation within the Transformation
enabled the simulated car CPS applications to assess the current state of the incoming in-
formation. Additionally, the filter expression system of ASEIA successfully embedded a
Kalman Filter Transformation to decrease uncertainty based on applications requirements.
In the case of unsuitable information because of high uncertainty in the data, the ASE
are automatically filtered, which decreases the CPU and network load of the applications,
brokers and the communication backbone. The special issue of time attribute synchroniza-
tion has been tackled by a special time scale transformation, which has been evaluated in
simulation and on real WSN hardware. An evaluation of the scalability of the system in
different regular network topology types has been performed, which showed a very strong

226

dependence of the system on the placement and number of ASEIA brokers and the event
generation/filter factor k, which indicates how many events are generated on average for
each incoming event.
The optimization of the broker number and placement within real networks is subject to

future work, as multiple parameters such as the average hop count from publisher to broker
and the average hop count between broker and subscribers exist. Additionally, the factor k
is a pure run time variable, which is very difficult to estimate on design time. Therefore,
mechanisms need to be established to estimate this factor on run time. Dissemination of the
results and the uncertainty of the estimation through the network is already implemented by
ASEIA. The topology analysis already showed efficient broker placement strategies regarding
the minimization of ASE count and therefore, network load. However, other metrics such
as latency and load balance exists, which may be relevant to the real system. These three
metrics are typically in conflict and require a multi-objective optimization on run time
as some or all of them depend on k. The description of necessary optimization goals of
the components as well as the distributed optimization present a major research challenge.
Preliminary work was executed by Zug et al. [171] to optimize the delivery delay of sensor
information in a distributed network. Another approach was developed by Pietzuch [122],
which aims to minimize delay of event delivery by optimization of operator placement in the
network. Future work should aim to combine the individual approaches to provide optimal
broker placement based on the systems needs.
Another approach to prevent overload of the network by high event generation counts is

early filtering of incoming events. This also decreases the number of events processed in
the brokers and prevents processing overload. To this end, the filter expressions stated by
the subscribers and Transformations may be used. However, the automatic Transformation
DAG generation disables a prediction of the order of Transformations in the graph. To
minimize the k factor for the whole graph Static Selection statements should be propagated
downwards through the Transformation Graph, while they adapt themselves to the executed
Transformations. This requires a filter expression algebra enabling operations on filter ex-
pressions, which are linked to operations of the Transformation Algebra. The result is the
execution of the Static Selection filters as early as possible in the Transformation Graph,
which reduces the k factor, because individual ASE are filtered out early without the need
to store and combine them with other ASE.
An extension of this approach would be the integration of automatically generated filter

expressions in the Transformation Graph when the network or the broker is overloaded.
This enables a behaviour similar to Aurora, see Section 3.5, and Solar, see Section3.6, to
trade information and context quality against event loss in a predictable way. The challenge
in this extension lies in the acquisition of the overload indication parameters in the brokers
distributed in the network. ASEIA Transformation mechanisms can be used to fuse together
the results of the individual brokers to detect the overload. Afterwards, automatic generation
of additional Static Selection Filter Expressions may be used to mitigate this overload.
Another mitigation strategy would be the change of Realization of the Transformation DAG
to different ASEIA brokers.
ASEIA currently provides a high-level API to state physical processes and mathematical

computations on value-uncertainty complexes. This already enables an efficient statement
of Heterogeneous Transformations. A formal description of the linked algebra between filters

227

7. Conclusion

and Transformations enables the definition of a DSL to specify Transformations even more
easily. The DSL may provide additional design-time error reporting, which is not possible
with the current API-based description of Transformations. It also enables an interactive
execution of Transformations on ASEIA brokers providing human users with an interface
to test and tune parameters on run time. Currently, the used LLVM-based interpretation
of Transformation through intermediate code requires a compile and deploy step, which is
cumbersome in development situations, where multiple changes are done to the Transfor-
mation.

The last possible future optimization of the system is the integration and evaluation
of different uncertainty models, which may provide a better estimation of the uncertainty
present in the information or the context. Other presentations such as Gaussian-mixture
models provide means to estimate the uncertainty with a higher accuracy, but may require
much more information on the system in which they are used. This trade-off between
uncertainty estimation accuracy and system specification effort is worth future investigation.
The current setup of ASEIA enables an easy integration of different uncertainty models,
which eases the comparison, but it also allows the combination of different uncertainty
models in the same system. This presents further research challenges as the integration and
interaction of different uncertainty models is not well researched yet.

228

Bibliography

[1] ISO 11898-1:2015(E). Road vehicles – controller area network (CAN) – Part 1: Data
link layer and physical signalling, December 2015.

[2] IEEE Std 1451.5-2007. IEEE Standard for a Smart Transducer Interface for Sensors
and Actuators Wireless Communication Protocols and Transducer Electronic Data
Sheet (TEDS) Formats, October 2007.

[3] ISO/IEC 14977:1996(E). ISO/IEC Information technology – Syntactic metalanguage
– Extended BNF, December 1996.

[4] IEEE Std 1609.3-2016. IEEE Standard for Wireless Access in Vehicular Environments
(WAVE) – Networking Services, April 2016.

[5] ISO/IEC/IEEE 21450:2010(E). ISO/IEC/IEEE Information technology – Smart
transducer interface for sensors and actuators – Common functions, communication
protocols, and Transducer Electronic Data Sheet (TEDS) formats, May 2010.

[6] ISO/IEC/IEEE 21451-1:2010(E). ISO/IEC/IEEE Information technology – Smart
transducer interface for sensors and actuators – Part 1: Network Capable Application
Processor (NCAP) information model, May 2010.

[7] ISO/IEC/IEEE 21451-2:2010(E). ISO/IEC/IEEE Standard for Information technol-
ogy – Smart transducer interface for sensors and actuators – Part 2: Transducer to mi-
croprocessor communication protocols and Transducer Electronic Data Sheet (TEDS)
formats, May 2010.

[8] ISO/IEC/IEEE 21451-7:2011(E). Information technology–Smart transducer interface
for sensors and actuators–Part 7: Transducers to radio frequency identification (RFID)
systems communication protocols and transducer electronic data sheet (TEDS) for-
mats, February 2012.

[9] IEEE Std 754-2008. IEEE Standard for Floating-Point Arithmetic, August 2008.

[10] IEEE Std 802.11-1997. IEEE Standard for Information Technology- Telecommuni-
cations and Information Exchange Between Systems-Local and Metropolitan Area
Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, November 1997.

[11] IEEE Std 802.11p 2010. IEEE Standard for Information technology– Local and
metropolitan area networks– Specific requirements– Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wire-
less Access in Vehicular Environments, July 2010.

229

Bibliography

[12] IEEE Std 802.15.4-2011. IEEE Standard for Local and metropolitan area networks–
Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), September 2011.

[13] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cher-
niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther
Ryvkina, and others. The Design of the Borealis Stream Processing Engine. In Pro-
ceedings of the Conference on Innovative Data Systems Research (CIDR), volume 5,
pages 277–289, 2005.

[14] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A
New Model and Architecture for Data Stream Management. The VLDB Journal,
12(2):120–139, August 2003.

[15] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-
vey, C. Erwin, Eduardo F. Galvez, M. Hatoun, Anurag Maskey, Alex Rasin, A. Singer,
Michael Stonebraker, Nesime Tatbul, Ying Xing, R. Yan, and Stanley B. Zdonik. Au-
rora: A Data Stream Management System. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego, California, USA, June
9-12, 2003, page 666, 2003.

[16] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu,
T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood.
EnviroTrack: towards an environmental computing paradigm for distributed sensor
networks. In 24th International Conference on Distributed Computing Systems, 2004.
Proceedings, pages 582–589, 2004.

[17] Karl Aberer, Manfred Hauswirth, and Ali Salehi. The Global Sensor Networks mid-
dleware for efficient and flexible deployment and interconnection of sensor networks.
Technical Report LSIR-REPORT-2006-006, École polytechnique fédérale de Lausanne,
Lausanne, Switzerland, 2006.

[18] Karl Aberer, Manfred Hauswirth, and Ali Salehi. A Middleware for Fast and Flexible
Sensor Network Deployment. In Proceedings of the 32Nd International Conference
on Very Large Data Bases, VLDB ’06, pages 1199–1202, Seoul, Korea, 2006. VLDB
Endowment.

[19] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Addison Wesley, Boston, 2005. edition,
2004.

[20] Raman Adaikkalavan and Sharma Chakravarthy. SnoopIB: Interval-Based Event Spec-
ification and Detection for Active Databases. In Leonid Kalinichenko, Rainer Manthey,
Bernhard Thalheim, and Uwe Wloka, editors, Advances in Databases and Information
Systems, number 2798 in Lecture Notes in Computer Science, pages 190–204. Springer
Berlin Heidelberg, September 2003.

[21] Asaf Adi. Amit — the situation manager. Int. J. on Very Large Data Bases, 13:2004,
2004.

230

Bibliography

[22] Sarfraz Alam, Mohammad MR Chowdhury, and Josef Noll. Senaas: An event-driven
sensor virtualization approach for internet of things cloud. In Networked Embedded
Systems for Enterprise Applications (NESEA), 2010 IEEE International Conference
on, pages 1–6, Suzhou, China, 2010. IEEE.

[23] Hans-Jürgen Appelrath, Dennis Geesen, Marco Grawunder, Timo Michelsen, and
Daniela Nicklas. Odysseus: A Highly Customizable Framework for Creating Efficient
Event Stream Management Systems. In Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, DEBS ’12, pages 367–368, New York,
NY, USA, 2012. ACM.

[24] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru
Nishizawa, Justin Rosenstein, and Jennifer Widom. STREAM: The Stanford Stream
Data Manager (Demonstration Description). In Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’03, pages 665–665,
New York, NY, USA, 2003. ACM.

[25] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A Language for Continuous
Queries over Streams and Relations. In Database Programming Languages, number
2921 in Lecture Notes in Computer Science, pages 1–19. Springer Berlin Heidelberg,
September 2003.

[26] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query Lan-
guage: Semantic Foundations and Query Execution. The VLDB Journal, 15(2):121–
142, June 2006.

[27] Alfonso Ariza and Alicia Triviño. Simulation of Multihop Wireless Networks in OM-
NeT++, pages 140–158. IGI Global, 2012.

[28] Jean Arlat, Michel Diaz, and Mohamed Kaaniche. Towards resilient cyber-physical
systems: The ADREAM project. In Design & Technology of Integrated Systems In
Nanoscale Era (DTIS), 2014 9th IEEE International Conference On, pages 1–5. IEEE,
2014.

[29] Atmel Cooperation. IEEE 802.15.4 MAC Software Package - User Guide, June 2012.

[30] Atmel Corporation. Low Power,2.4GHz Transceiver for ZigBee, IEEE 802.15.4,
6LoWPAN, RF4CE and ISM Applications, October 2011.

[31] Ron Ausbrooks, Stephen Buswell, David Carlisle, Giorgi Chavchanidze, Stéphane
Dalmas, Stan Devitt, Angel Diaz, Sam Dooley, Roger Hunter, Patrick Ion, Michael
Kohlhase, Azzeddine Lazrek, Paul Libbrecht, Bruce Miller, Robert Miner, Chris Row-
ley, Murray Sargent, Bruce Smith, Neil Soiffer, Robert Sutor, and Stephen Watt.
Mathematical Markup Language (MathML) Version 3.0. Technical Report 2, W3C,
2014.

[32] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
Models and Issues in Data Stream Systems. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’02, pages 1–16, New York, NY, USA, 2002. ACM.

231

Bibliography

[33] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The impact of control
technology, 12:161–166, 2011.

[34] T. Bangemann, M. Riedl, M. Thron, and C. Diedrich. Integration of Classical Compo-
nents Into Industrial Cyber Physical Systems. Proceedings of the IEEE, 104(5):947–
959, May 2016.

[35] Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng Hong. Consistent
Streaming Through Time: A Vision for Event Stream Processing. In Proceedings of
the 3rd Biennial Conference on Innovative Data Systems Research, pages 363–374,
Pacific Grove, CA, USA, 2007. arXiv: cs/0612115.

[36] Christian Berger, Erik Dahlgren, Johan Grunden, Daniel Gunnarson, Nadia Holtryd,
Anmar Khazal, Mohamed Mustafa, Marina Papatriantafilou, Elad Michael Schiller,
Christoph Steup, Viktor Swantesson, and Philippas Tsigas. Bridging Physical and
Digital Traffic System Simulations with the Gulliver Test-Bed. In International Work-
shop on Communication Technologies for Vehicles, pages 169–184, Lille, France, 2013.

[37] G. Biegel and V. Cahill. A framework for developing mobile, context-aware applica-
tions. In Proceedings of the Second IEEE Annual Conference on Pervasive Computing
and Communications, 2004. PerCom 2004, pages 361 – 365, March 2004.

[38] Bluetooth SIG. Specification of the Bluetooth System Ver. 4.0, June 2010.

[39] Malte Brettel, Niklas Friederichsen, Michael Keller, and Marius Rosenberg. How virtu-
alization, decentralization and network building change the manufacturing landscape:
An Industry 4.0 Perspective. International Journal of Mechanical, Aerospace, Indus-
trial, Mechatronic and Manufacturing Engineering, 8(1):37–44, 2014.

[40] R. Cardell-Oliver, M. Reynolds, and M. Kranz. A space and time requirements logic
for sensor networks. In Leveraging Applications of Formal Methods, Verification and
Validation, 2006. ISoLA 2006. Second International Symposium on, pages 283–289,
Nov 2006.

[41] Donald Carney, Ugur \cC}etintemel, Mitch Cherniack, Christian Convey, Sangdon
Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik.
Monitoring Streams - A New Class of Data Management Applications. In VLDB
2002, Proceedings of 28th International Conference on Very Large Data Bases, August
20-23, 2002, Hong Kong, China, pages 215–226, 2002.

[42] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and
evaluation of a wide-area event notification service. ACM Trans. Comput. Syst.,
19(3):332–383, August 2001.

[43] Sharma Chakravarthy and Deepak Mishra. Snoop: An expressive event specification
language for active databases. Data & Knowledge Engineering, 14(1):1–26, 1994.

[44] Guanling Chen and David Kotz. Policy-driven data dissemination for context-aware
applications. In In Proceedings of the Third IEEE International Conference on Per-
vasive Computing and Communications, page 283–289, 2005.

232

Bibliography

[45] Guanling Chen, Ming Li, and David Kotz. Design and implementation of a large-
scale context fusion network. In First Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services (Mobiquitous), page 246–255, 2004.

[46] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don Carney, Uğur Çet-
intemel, Ying Xing, and Stan Zdonik. Scalable distributed stream processing. In In
CIDR, 2003.

[47] Thomas M. Connolly and Carolyn E. Begg. Chapter 21 Query Processing. In Database
systems: a practical approach to design, implementation, and management, pages 630–
664. Pearson Education, 2. edition, 2005.

[48] Thomas M. Connolly and Carolyn E. Begg. Chapter 4 Relational Algebra and Rela-
tional Calculus. In Database systems: a practical approach to design, implementation,
and management, pages 88–110. Pearson Education, 2. edition, 2005.

[49] AutomationML Consortium. Whitepaper AutomationML Communication, September
2014.

[50] AutomationML Consortium. Whitepaper AutomationML Part 1 - Architecture and
general requirements, April 2016.

[51] AutomationML Consortium. Whitepaper AutomationML Part 4: AutomationML
Logic, January 2017.

[52] Pedro Costa, José Ricardo Parizzi, Rolf Johansson, Elad Michael Schiller, Oscar
Morales, Renato Librino, António Casimiro, Joerg Kaiser, and Siavash Aslani. First
Report on the KARYON Architecture. Technical Report D2.1, European Commission
7th Framework Program - ICT, April 2012.

[53] Flaviu Cristian. Probabilistic clock synchronisation. Distributed Computing, 3:146–
158, September 1989.

[54] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glück, David Vandevoorde, and Todd
Veldhuizen. Generative Programming and Active Libraries. In M. Jazayeri, D. Musser,
and R. Loos, editors, Proceedings of Generic Programming, volume 1766 of Lecture
Notes in Computer Science, pages 25–39. Springer-Verlag, 2000.

[55] Hend Dawood. Chapter 1 Prologue: A Weapon Against Uncertainty. In Theories
of Interval Arithmetic: Mathematical Foundations and Applications, pages 1–6. LAP
Lambert Academic Publishing, October 2011.

[56] Hend Dawood. Chapter 2 The classical Theory of Interval Arithmetic. In Theories
of Interval Arithmetic: Mathematical Foundations and Applications, pages 7–24. LAP
Lambert Academic Publishing, October 2011.

[57] Arnaldo Carvalho de Melo. The New Linux ’perf’ tools. In Slides from Linux Kongress,
volume 18, Nuremberg, Germany, September 2010.

233

Bibliography

[58] dresden electronik. deRFsam3-23M10. http://www.dresden-elektronik.de/
funktechnik/products/radio-modules/oem-modules-derfsam3. accessed 13. Aug.
2017.

[59] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki-a lightweight and flexible
operating system for tiny networked sensors. In Local Computer Networks, 2004. 29th
Annual IEEE International Conference on, pages 455–462. IEEE, 2004.

[60] E. Einhorn, T. Langner, R. Stricker, C. Martin, and H. M. Gross. MIRA - middleware
for robotic applications. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2591–2598, Vilamoura, Portugal, October 2012. IEEE.

[61] Wilfried Elmenreich. An Introduction to Sensor Fusion. Research Report 47/2001,
Technische Universität Wien, Institut für Technische Informatik, Vienna, Austria,
2001.

[62] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchro-
nisation using reference broadcasts. In SIGOPS, volume 36, pages 147–163, New York,
NY, USA, December 2002. ACM.

[63] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, June 2003.

[64] Adrian Fitzpatrick, Gregory Biegel, Siobhán Clarke, and Vinny Cahill. Towards a
sentient object model. In Workshop on Engineering Context-Aware Object Oriented
Systems and Environments (ECOOSE). Citeseer, 2002.

[65] T. Foote. tf: The transform library. In 2013 IEEE Conference on Technologies for
Practical Robot Applications (TePRA), pages 1–6, April 2013.

[66] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19(1):17 – 37, 1982.

[67] Tobias Freudenreich, Stefan Appel, Sebastian Frischbier, and Alejandro P. Buchmann.
ACTrESS: Automatic Context Transformation in Event-based Software Systems. In
Proceedings of the 6th ACM International Conference on Distributed Event-Based Sys-
tems, DEBS ’12, pages 179–190, New York, NY, USA, 2012. ACM.

[68] Ernest Friedman-Hill and others. Jess, the rule engine for the java platform. Technical
Report 7.2p2, Sandia National Laboratories, 2008.

[69] Luotao Fu and Robert Schwebel. RT PREEMPT HOWTO. https://rt.wiki.
kernel.org/index.php/RT_PREEMPT_HOWTO. accessed 13. Aug. 2017.

[70] Richard Helm Gamma, Ralph Johnson & John Vlissidess Erich. Design Patterns:
Elements Of Reusable Object-Oriented Software. Pearson Education, 1994.

[71] Damien D. George, Paul Sokolovsky, and others. The micropython language. http:
//micropython.org. accessed 13. Aug. 2017.

234

http://www.dresden-elektronik.de/funktechnik/products/radio-modules/oem-modules-derfsam3
http://www.dresden-elektronik.de/funktechnik/products/radio-modules/oem-modules-derfsam3
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://micropython.org
http://micropython.org

Bibliography

[72] Martin Gergeleit and Hermann Streich. Implementing a distributed high-resolution
real-time clock using the CAN-bus. In Proceedings of the 1st international CAN-
Conference, Mainz, Germany, 1994. Can-in-Automation (CIA).

[73] James Gosling, Bill Joy, Guy L Steele, Gilad Bracha, and Alex Buckley. The Java
language specification. Pearson Education, 2014.

[74] Gaël Guennebaud. Eigen: a c++ linear algebra library. http://downloads.
tuxfamily.org/eigen/eigen_aristote_may_2013.pdf, May 2013. accessed 13.
Aug. 2017.

[75] Gaël Guennebaud, Benoît Jacob, and others. Eigen v3. http://eigen.tuxfamily.
org, 2010. accessed 13. Aug. 2017.

[76] Aleksey Gurtovoy and David Abrahams. THE BOOST MPL LIBRARY. http://www.
boost.org/doc/libs/1_64_0/libs/mpl/doc/index.html, November 2004. accessed
13. Aug. 2017.

[77] John W Hager, James F Behensky, and Brad W Drew. The universal grids: Universal
Transverse Mercator (UTM) and Universal Polar Stereographic (UPS). DMA technical
manual, 8358.2, 1989.

[78] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McK-
eown. Reproducible Network Experiments Using Container-based Emulation. In Pro-
ceedings of the 8th International Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’12, pages 253–264, New York, NY, USA, 2012. ACM.

[79] Godfrey Harold Hardy, EMWright, Roger Heath-Brown, and Joseph Silverman. State-
ment of the fundamental theorem of arithmetics. In An Introduction to the Theory of
Numbers, pages 3–4. Oxford University Press, Oxford, 6th edition, 2008.

[80] Vincent Huang and Muhammad Kashif Javed. Semantic sensor information description
and processing. In Sensor Technologies and Applications, 2008. SENSORCOMM’08.
Second International Conference on, pages 456–461, Cap Esterel, France, 2008. IEEE.

[81] Daniel Hughes, Klaas Thoelen, Wouter Horré, Nelson Matthys, Javier Del Cid, Sam
Michiels, Christophe Huygens, Wouter Joosen, and Jo Ueyama. Building Wireless
Sensor Network Applications with LooCI. In Advancing the Next-Generation of Mobile
Computing: Emerging Technologies: Emerging Technologies, pages 61–85. IGI Global,
Hershey, PA, USA, 1 edition, February 2012.

[82] International Bureau of Weights and Measures. The International System of Units
(SI), 2006.

[83] Jörg Kaiser, José Rufino, Christoph Steup, Tino Brade, José Rufino, Jeferson Souza,
Rui Caldeira, and André Guerreiro. Working prototype of adaptive middleware. Tech-
nical Report D3.3, European Commission 7th Framework Program - ICT, December
2013.

[84] Elliott Kaplan. Understanding GPS Principles and Applications. Artech House Mobile
Communicat, Boston, February 1996.

235

http://downloads.tuxfamily.org/eigen/eigen_aristote_may_2013.pdf
http://downloads.tuxfamily.org/eigen/eigen_aristote_may_2013.pdf
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.boost.org/doc/libs/1_64_0/libs/mpl/doc/index.html
http://www.boost.org/doc/libs/1_64_0/libs/mpl/doc/index.html

Bibliography

[85] Mumraiz Khan Kasi, Annika Hinze, Catherine Legg, and Steve Jones. SEPSen: Se-
mantic Event Processing at the Sensor Nodes for Energy Efficient Wireless Sensor
Networks. In Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems, DEBS ’12, pages 119–122, New York, NY, USA, 2012. ACM.

[86] Eli Katsiri, Jean Bacon, and Alan Mycoft. An extended Publish/Subscribe protocol
for transparent subscriptions to distributed abstract state in sensor driven systems
using abstract events. In Proceedings of the International Workshop on Distributed
Event-based Systems (DEBS), pages 68–73, Edinburgh, Great Britain, May 2004.

[87] Robert Katz. 2-2 The Lorentz Transformation: Simultaneity and Time Sequence. In
An Introdcution to the Special Theory of Relativity, pages 31–33. D. Van Nostrand
Company, 1964.

[88] V. Kodaganallur. Incorporating language processing into Java applications: a JavaCC
tutorial. IEEE Software, 21(4):70–77, July 2004.

[89] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer Science+Business Media, 2nd edition, 2011.

[90] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. T. Klein Haneveld, T. E. V.
Parker, O. W. Visser, H. S. Lichte, and S. Valentin. Simulating Wireless and Mobile
Networks in OMNeT++ the MiXiM Vision. In Proceedings of the 1st International
Conference on Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, page 71:1–71:8, Brussels, Belgium, March 2008. Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering.

[91] Vladimir Kostyukov. la4j. http://la4j.org. accessed 31. Oct. 2017.

[92] Mark Kranz. SENSID: a Situation Detector for Sensor Networks. PhD thesis, Uni-
versity of Western Australia, June 2005.

[93] Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim, Matthias Stein-
brecher, Frank Klawonn, and Christian Moewes. Bayes and Markov Networks. In
Computational Intelligence: A Methodological Introduction, pages 457–563. Springer,
New York, NY, 2nd ed. 2016 edition, September 2016.

[94] Christian Kuka, Sebastian Gerwinn, Sören Schweigert, Sönke Eilers, and Daniela Nick-
las. Context-model Generation for Safe Autonomous Transport Vehicles. In Proceed-
ings of the 6th ACM International Conference on Distributed Event-Based Systems,
DEBS ’12, pages 365–366, New York, NY, USA, 2012. ACM.

[95] Christian Kuka and Daniela Nicklas. Quality Matters: Supporting Quality-aware
Pervasive Applications by Probabilistic Data Stream Management. In Proceedings of
the 8th ACM International Conference on Distributed Event-Based Systems, DEBS
’14, pages 1–12, New York, NY, USA, 2014. ACM.

[96] Chris Lattner. LLVM – The LLVM Compiler Infrastructure. http://llvm.org/.
accessed 13. Aug. 2017.

236

http://la4j.org
http://llvm.org/

Bibliography

[97] Chris Arthur Lattner. LLVM: An infrastructure for multi-stage optimization. PhD
thesis, University of Illinois at Urbana-Champaign, 2002.

[98] Edward A. Lee. Cyber Physical Systems: Design Challenges. Technical Report
UCB/EECS-2008-8, EECS Department, University of California, Berkeley, January
2008.

[99] Jay Lee, Behrad Bagheri, and Hung-An Kao. Recent advances and trends of cyber-
physical systems and big data analytics in industrial informatics. In Proceedings of
the 12th International Conference on Industrial Informatics (INDIN), Porto Alegre,
Brazil, 2014. IEEE.

[100] Jay Lee, Behrad Bagheri, and Hung-An Kao. A Cyber-Physical Systems architec-
ture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3:18–23,
January 2015.

[101] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating System for Sensor
Networks. In Werner Weber, Jan M. Rabaey, and Emile Aarts, editors, Ambient
Intelligence, pages 115–148. Springer Berlin Heidelberg, 2005.

[102] Guoli Li and Hans-Arno Jacobsen. Composite Subscriptions in Content-Based Pub-
lish/Subscribe Systems. In Gustavo Alonso, editor, Middleware 2005, number 3790
in Lecture Notes in Computer Science, pages 249–269. Springer Berlin Heidelberg,
November 2005.

[103] Ray Lischner. STL Pocket Reference. O’Reilly & Associates, Sebastopol, CA, USA, 1
edition, 2003.

[104] Samuel Madden, Michael J Franklin, Joseph Hellerstein, and Wei Hong. TAG: a Tiny
Aggregation Service for Ad-Hoc Sensor Networks. In Proceedings of the 5th symposium
on Operating systems design and implementation, volume 36, pages 131–146, New
York, NY, USA, 2002. ACM.

[105] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, andWei Hong. Tinydb:
An acquisitional query processing system for sensor networks. ACM Transactions
on Database Systems (TODS) - Special Issue: SIGMOD/PODS 2003, 30(1):122–173,
2005.

[106] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige. The Office
Marathon: Robust navigation in an indoor office environment. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 300–307. IEEE, May 2010.

[107] Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder, Olga
Saukh, and Kurt Rothermel. FlexCup: A Flexible and Efficient Code Update Mecha-
nism for Sensor Networks. In Proceedings of the Third European Workshop on Wireless
Sensor Networks (EWSN), pages 212–227, Zurich, Switzerland, 2006. Springer.

[108] Keith Marzullo. Implementing fault-tolerant sensors. In Proceedings of the 10th IEEE
Real-Time Systems Symposium, Santa Monica, Ca, USA, December 1989. IEEE Com-
puter Society Press.

237

Bibliography

[109] Friedemann Mattern and Christian Floerkemeier. From the Internet of Computers to
the Internet of Things. In From Active Data Management to Event-Based Systems and
More, Lecture Notes in Computer Science, pages 242–259. Springer, Berlin, Heidelberg,
2010.

[110] Brian McBride. Jena: Implementing the RDF Model and Syntax Specification. In
Proceedings of the Second International Conference on Semantic Web - Volume 40,
SemWeb’01, pages 23–28, Aachen, Germany, 2001.

[111] Geoffrey McLachlan and David Peel. Normal Scale Mixture Model. In Finite Micture
Models, page 17. John Wiley & Sons, Ltd., 2001.

[112] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Continuous clock synchronisation
in wireless real-time applications. In Proceedings of the 19th IEEE Symposium on
Reliable Distributed Systems, pages 125–132, October 2000.

[113] Abdul-Wahid Mohammed, Yang Xu, Ming Liu, and Haixiao Hu. Semantical Markov
Logic Network for Distributed Reasoning in Cyber-Physical Systems. Journal of Sen-
sors, 2017(4259652):1–15, 2017.

[114] Lucas Nussbaum and Olivier Richard. A Comparative Study of Network Link Em-
ulators. In Proceedings of the 2009 Spring Simulation Multiconference, SpringSim
’09, pages 85:1–85:8, San Diego, CA, USA, 2009. Society for Computer Simulation
International.

[115] Dan O’Keeffe. Distributed complex event detection for pervasive computing. Techni-
cal Report UCAM-CL-TR-783, University of Cambridge, Computer Laboratory, July
2010.

[116] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[117] Open Geospatial Consortium 12-000. OGC® SensorML: Model and XML Encoding
Standard, February 2014.

[118] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Chapter 4 Using Wireshark -
Analyze. In Wireshark & Ethereal network protocol analyzer toolkit, pages 178–189.
Syngress, 2006.

[119] Santashil PalChaudhuri, Amit Saha, and David B Johnson. Probabilistic clock syn-
chronisation service in sensor networks. IEEE Transactions on Networking, 2:177–189,
2003.

[120] Michael Paleczny, Christopher Vick, and Cliff Click. The Java hotspotTM Server Com-
piler. In Proceedings of the 2001 Symposium on JavaTM Virtual Machine Research
and Technology Symposium - Volume 1, JVM’01, pages 1–1, Berkeley, CA, USA, 2001.
USENIX Association.

[121] C. Perkins, E. Belder-Royer, and S. Das. Ad hoc On-Demand Distance Vector (AODV)
Routing. RFC 3561, RFC Editor, July 2003.

238

Bibliography

[122] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt
Welsh, and Margo Seltzer. Network-aware operator placement for stream-processing
systems. In ICDE Proceedings of the 22nd International Conference on Data Engi-
neering, pages 49–61, Atlanta, GA, USA, 2006.

[123] Peter R. Pietzuch. Hermes: A scalable event-based middleware. Technical Report 590,
University of Cambridge, Computer Laboratory, 2004.

[124] Su Ping. Delay measurement time synchronisation for wireless sensor networks. Tech-
nical Report IRB-TR-03-013, Intel Research Berkeley Lab, 2003.

[125] György Pongor. OMNeT: objective modular network testbed. In Proceedings of the
International Workshop on Modeling, Analysis, and Simulation On Computer and
Telecommunication Systems, page 323–326, San Diego, CA, USA, October 1993. So-
ciety for Computer Simulation International.

[126] D. Preuveneers and Y. Berbers. Encoding Semantic Awareness in Resource-
Constrained Devices. IEEE Intelligent Systems, 23(2):26–33, March 2008.

[127] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity
of SPARQL. In Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel
Schwabe, Peter Mika, Mike Uschold, and Lora M. Aroyo, editors, The Semantic Web -
ISWC 2006, number 4273 in Lecture Notes in Computer Science, pages 30–43. Springer
Berlin Heidelberg, November 2006. DOI: 10.1007/11926078_3.

[128] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. ROS: an open-source Robot Operating System. In
ICRA workshop on open source software, volume 3, page 5, 2009.

[129] Raspberry Pi Foundation. Rapsberry Pi Model A+. http://www.raspberrypi.org/
products/model-a-plus/. accessed 13. Aug. 2017.

[130] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
Scalable Content-addressable Network. In Proceedings of the 2001 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’01, pages 161–172, New York, NY, USA, 2001. ACM.

[131] Marc Recksiedler. Master thesis: Synergieeffekte von GeoCasting in einem drahtlosen,
Ad-hoc Publish/Subscribe-System, 2013.

[132] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, February 2006.

[133] E. Rohmer, S. P. N. Singh, and M. Freese. V-REP: A versatile and scalable robot
simulation framework. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1321–1326, November 2013.

[134] K. Römer and F. Mattern. The design space of wireless sensor networks. IEEE
Wireless Communications, 11(6):54–61, December 2004.

239

http://www.raspberrypi.org/products/model-a-plus/
http://www.raspberrypi.org/products/model-a-plus/

Bibliography

[135] Kay Römer. Time synchronisation in ad hoc networks. In Proceedings of the 2nd
ACM international symposium on Mobile ad hoc networking & computing, MobiHoc
’01, pages 173–182, New York, NY, USA, 2001. ACM.

[136] Kay Römer and Friedemann Mattern. Event-based systems for detecting real-world
states with sensor networks: A critical analysis. In Proceedings of the Intelligent
Sensors, Sensor Networks and Information Processing Conference, pages 389–396.
IEEE, 2004.

[137] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Middleware
’01, page 329–350, London, UK, UK, 2001. Springer-Verlag.

[138] Jedrzej Rybicki, Björn Scheuermann, Markus Koegel, and Martin Mauve. PeerTIS: a
peer-to-peer traffic information system. In Proceedings of the sixth ACM international
workshop on VehiculAr InterNETworking, VANET ’09, pages 23–32, New York, NY,
USA, September 2009. ACM.

[139] Christopher M. Sadler and Margaret Martonosi. Data Compression Algorithms for
Energy-constrained Devices in Delay Tolerant Networks. In Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems, SenSys ’06, pages
265–278, New York, NY, USA, 2006. ACM.

[140] Matthias C. Schabel and Steven Watanabe. Chapter 43. Boost.Units 1.1.0. http:
//www.boost.org/doc/libs/1_64_0/doc/html/boost_units.html, April 2017. ac-
cessed 13. Aug. 2017.

[141] Michael Schiefer, Christoph Steup, and Jörg Kaiser. Real World Testing of Aggregation
in Publish/Subscribe Systems. In Proceedings of Wireless Information Networks and
Systems (WINSYS), pages 1–8, Reykjavik, Iceland, August 2013. IEEE.

[142] Michael Schulze. Adaptierbare ereignisbasierte Middleware für ressourcenbeschränkte
Systeme. PhD thesis, Otto-von-Guericke-University, Magdeburg, Germany, 2011.

[143] Boris Schäling. Part IX. Functional Programming. In The Boost C++ Libraries. XML
Press, Laguna Hills, Calif, 2. vollständ. überarb. edition, September 2014.

[144] Boris Schäling. Part XV. Application Libraries. In The Boost C++ Libraries. XML
Press, Laguna Hills, Calif, 2. vollständ. überarb. edition, September 2014.

[145] Amit P. Sheth. Interoperating Geographic Information Systems, chapter Changing
Focus on Interoperability in Information Systems: From System, Syntax, Structure to
Semantics, pages 5–29. Springer US, Boston, MA, USA, 1999.

[146] J. Shi, J. Wan, H. Yan, and H. Suo. A survey of Cyber-Physical Systems. In 2011 In-
ternational Conference on Wireless Communications and Signal Processing (WCSP),
pages 1–6, November 2011.

[147] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley Professional, 1 edition, 2001.

240

http://www.boost.org/doc/libs/1_64_0/doc/html/boost_units.html
http://www.boost.org/doc/libs/1_64_0/doc/html/boost_units.html

Bibliography

[148] Doug Simon and Cristina Cifuentes. The squawk virtual machine: Java(TM) on the
bare metal. In Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’05, pages 150–
151, New York, NY, USA, 2005. ACM.

[149] Thirunavukkarasu Sivaharan, Gordon S. Blair, Adrian Friday, Maomao Wu, Hector
Duran-Limon, Paul Okanda, and Carl-Fredrik Sørensen. Cooperating sentient vehicles
for next generation automobiles. In ACM/USENIX MobiSys 2004 International Work-
shop on Applications of Mobile Embedded Systems (WAMES 2004 online proceedings),
Boston, MA, USA, June 2004.

[150] Bruce Snyder, Dejan Bosanac, and Rob Davies. ActiveMQ in Action. Manning Pub-
lications Co., Greenwich, CT, USA, 2011.

[151] Dirk Steindorf. Master Thesis: Extended Robot Navigation Using Dynamically Gen-
erated Occupancy Grids, 2016.

[152] Christoph Steup. Collaborative Sensing in Wireless Sensor Actor Networks, February
2014. Presentation: Doktorandentag of the Computer Science Faculty of the Otto-
von-Guericke University Magdeburg.

[153] Christoph Steup. ASEIA - ROS. https://github.com/steup/ASEIA-ROS, January
2015. accessed at 2017-11-07.

[154] Christoph Steup, Michael Schulze, and Jörg Kaiser. Exploiting Template-
Metaprogramming for Highly Adaptable Device Drivers a Case Study on CANARY
an AVR CAN-Driver. In Proceedings of 12th Brazilian Workshop on Real-Time and
Embedded Systems (WTR), Gramado, Brazil, 2010. Brazilian Computer Society.

[155] Christoph Steup, Sebastian Zug, and Jörg Kaiser. Evaluation of an Uncertainty Aware
Hybrid Clock Synchronisation System for Wireless Sensor Networks. International
Journal on Advances in Networks and Services, 8(1&2):54–68, 2015.

[156] Christoph Steup, Sebastian Zug, Jörg Kaiser, and Andy Bruehan. Uncertainty Aware
Hybrid Clock Synchronisation in Wireless Sensor Networks. In Proceedings of Eighth
International Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM). IARIA, July 2014.

[157] Christoph Steup, Sebastian Zug, and Jörg Kasier. Achieving Cooperative Sensing
in Automotive Scenarios through Complex Event Processing. In Proceedings of Sev-
enth International Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies (UBICOMM), Porto, Portugal, July 2013. IARIA.

[158] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional,
4 edition, July 2013.

[159] Xiaoyu Tong and E.C. Ngai. A Ubiquitous Publish/Subscribe Platform for Wireless
Sensor Networks with Mobile Mules. In 2012 IEEE 8th International Conference on
Distributed Computing in Sensor Systems (DCOSS), pages 99–108, May 2012.

241

https://github.com/steup/ASEIA-ROS

Bibliography

[160] A. Vahidi and A. Eskandarian. Research advances in intelligent collision avoidance
and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems,
4(3):143 – 153, September 2003.

[161] Guido van Rossum and Fred L. Drake. The Python Language Reference Manual.
Network Theory Ltd., 2011.

[162] VAST Team. sensiasoft/lib-sensorml. https://github.com/sensiasoft/
lib-sensorml. accessed 13. Aug. 2017.

[163] Todd L. Veldhuizen. C++ Templates as Partial Evaluation. In Proceedings of the
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation, Tech. Report NS-99-1, pages 13–18. BRICS, 1999.

[164] Todd L Veldhuizen. Just when you thought your little language was safe:“expression
templates” in Java. In International Symposium on Generative and Component-Based
Software Engineering, pages 189–201. Springer, 2000.

[165] P. Verissimo and A. Casimiro. Event-driven support of real-time sentient objects.
In Proceedings of the Eighth International Workshop on Object-Oriented Real-Time
Dependable Systems, 2003. (WORDS 2003), pages 2–9, January 2003.

[166] Paulo Verissimo, Luis Rodrigues, and Antonio Casimiro. Cesiumspray: a precise and
accurate global time service for large-scale systems. Real-Time Systems, 12(3):243–294,
1997.

[167] Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard
Schuster, Holger Neumann, and Sebastian Hübner. Ontology-based integration of
information-a survey of existing approaches. In Proceedings of IJCAI-01 Workshop:
Ontologies and Information Sharing, volume 2001, pages 108–117, Seattle, USA, 2001.

[168] Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic Streams: A Framework for
Composable Semantic Interpretation of Sensor Data. In Wireless Sensor Networks,
Lecture Notes in Computer Science, pages 5–20. Springer, Berlin, Heidelberg, February
2006.

[169] Liyang Yu, Neng Wang, and Xiaoqiao Meng. Real-time forest fire detection with wire-
less sensor networks. In 2005 International Conference on Wireless Communications,
Networking and Mobile Computing, 2005. Proceedings, volume 2, pages 1214–1217,
September 2005.

[170] Sebastian Zug, André Dietrich, Marc Schappeit, Christoph Steup, and Jörg Kaiser.
Flexible Daten-Akquisition & Interpretation für verteilte Sensor-Aktor-Systeme im
Produktionsumfeld. In Forschung und Innovation: 10. Magdeburger Maschienenbau-
tage, Magdeburg, Germany, 2011.

[171] Sebastian Zug, André Dietrich, Christoph Steup, Tino Brade, and Thomas Petig.
Phase optimization for control/fusion applications in dynamically composed sensor
networks. In In Proceedings of the 2013 IEEE International Symposium on Robotic
and Sensors Environments (ROSE), Washington, DC, USA, 2013. IEEE Computer
Society.

242

https://github.com/sensiasoft/lib-sensorml
https://github.com/sensiasoft/lib-sensorml

Bibliography

[172] Sebastian E. Zug. Architektur für verteilte, fehlertolerante Sensor-Aktor-Systeme /
von Sebastian Ernst Zug. PhD thesis, Otto-von-Guericke University, 2011.

243

A. Additional Evaluation Results of
the Automotive Scenario

Pos1mR BadR LateR ExtR Pos2mR LossyR

0

200

400

600

800

Figure A.1.: Box-Whisker plot showing the delay induced by the in-network processing for
the Road test cases. The delay is measured from atomic event generation until
reception of the resulting complex event.

245

A. Additional Evaluation Results of the Automotive Scenario

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(a) Experiment Basic.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(b) Experiment Ext.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(c) Experiment Pos1.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(d) Experiment Pos2.

246

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(e) Experiment Lossy.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(f) Experiment Late.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(g) Experiment Bad.

Figure A.2.: Comparison of the different evaluation scenarios regarding Speed of the first
car as histograms for the UTM Transformation Graph.

247

A. Additional Evaluation Results of the Automotive Scenario

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(a) Experiment Basic.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(b) Experiment Ext.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(c) Experiment Pos1.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Experiment Pos2.

248

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Experiment Lossy.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Experiment Late.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(g) Experiment Bad.

Figure A.3.: Weighted heat map of the absolute speed of car 0 as result of the UTM Trans-
formation Graph. White areas indicate zero speed, dark blue areas indicate
maximum speed of 12 m/s.

249

A. Additional Evaluation Results of the Automotive Scenario

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(a) Experiment Basic.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(b) Experiment ExtR.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(c) Experiment Pos1R.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(d) Experiment Pos2R.

250

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(e) Experiment LossyR.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(f) Experiment LateR.

0 2 4 6 8 10 12
Distance in m

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(g) Experiment BadR.

Figure A.4.: Comp of the different evaluation scenarios regarding Speed of the first car as
histograms for the Road Transformation Graph.

251

A. Additional Evaluation Results of the Automotive Scenario

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(a) Experiment Basic.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(b) Experiment Ext.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(c) Experiment Pos1R.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Experiment Pos2.

252

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Experiment LossyR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Experiment LateR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(g) Experiment BadR.

Figure A.5.: Weighted heat map of the absolute speed of car 0 as result of the Road Trans-
formation Graph. White areas indicate zero speed, dark blue areas indicate
maximum speed of 12 m/s.

253

A. Additional Evaluation Results of the Automotive Scenario

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(a) Experiment Basic.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(b) Experiment Ext.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(c) Experiment Pos1.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(d) Experiment Pos2.

254

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(e) Experiment Lossy.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(f) Experiment Late.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(g) Experiment Bad.

Figure A.6.: Comparison of the different road evaluation scenarios regarding Distance and
Distance uncertainty of the first car as histograms produced by the UTM
extended ACC. Blue Bars indicate the Distance value and red bars indicate
Distance uncertainty.

255

A. Additional Evaluation Results of the Automotive Scenario

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(a) Experiment Basic.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(b) Experiment Ext.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(c) Experiment Pos1.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Experiment Pos2.

256

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Experiment Lossy.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Experiment Late.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(g) Experiment Bad.

Figure A.7.: Weighted heat map of the absolute distance of car 0 produced by the UTM
extended ACC. White areas indicate zero distance, dark blue areas indicate
maximum distance of 100 m.

257

A. Additional Evaluation Results of the Automotive Scenario

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(a) Experiment Basic.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(b) Experiment Ext.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(c) Experiment Pos1.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Experiment Pos2.

258

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Experiment Lossy.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Experiment Late.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(g) Experiment Bad.

Figure A.8.: Weighted heat map of the absolute distance uncertainty of car 0 produced by
the UTM Extended ACC. White areas indicate zero uncertainty, dark red areas
indicate maximum uncertainty of 100 m.

259

A. Additional Evaluation Results of the Automotive Scenario

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(a) Experiment Basic.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(b) Experiment Ext.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(c) Experiment Pos1.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(d) Experiment Pos2.

260

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(e) Experiment Lossy.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(f) Experiment Late.

0 20 40 60
Distance in m

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(g) Experiment Bad.

Figure A.9.: Comparison of the different road evaluation scenarios regarding Distance and
Distance uncertainty of the first car as histograms produced by the Road
extended ACC. Blue Bars indicate the Distance value and red bars indicate
Distance uncertainty.

261

A. Additional Evaluation Results of the Automotive Scenario

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(a) Experiment Basic.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(b) Experiment ExtR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(c) Experiment Pos1R.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Experiment Pos2R.

262

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Experiment LossyR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Experiment LateR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(g) Experiment BadR.

Figure A.10.: Weighted heat map of the absolute distance of car 0 produced by the Road
extended ACC. White areas indicate zero distance, dark blue areas indicate
maximum distance of 100 m.

263

A. Additional Evaluation Results of the Automotive Scenario

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(a) Experiment Basic.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(b) Experiment ExtR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(c) Experiment Pos1R.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(d) Experiment Pos2R.

264

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(e) Experiment LossyR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(f) Experiment LateR.

0 20 40 60 80
Position x in m

0

20

40

60

80

Po
si
tio

n
y

in
m

(g) Experiment BadR.

Figure A.11.: Weighted heat map of the absolute distance uncertainty of car 0 produced by
the Road extended ACC. White areas indicate zero uncertainty, dark red areas
indicate maximum uncertainty of 100 m.

265

1

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete

fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich

nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte

haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter

 Weise zu interpretieren,

- fremde Ergebnisse oder Veröffentlichungen plagiiert,

- fremde Forschungsergebnisse verzerrt wi dergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die

Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland

noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als

Ganzes auch noch nicht veröffentlicht.

Magdeburg, den

08.11.2017

Dipl.-Inform. Christoph Steup

	Table of Figures
	Table of Tables
	Table of Listings
	Table of Algorithms
	Table of Acronyms
	Introduction
	Motivation
	Example Scenarios
	Distributed Event Detection: WSN to Detect Forest Fires
	Semi-Autonomous Systems: Vehicular Collision Warning System
	Fully-Autonomous Systems: Dynamic Robot Navigation

	Goals

	Challenges of Dynamically Composed Cyber-Physical-System (CPS)
	Definition: Cyber-Physical Systems
	Properties
	Data and Information
	Context

	Functional Decomposition of CPS
	Smart Connection Layer
	Data-to-Information Conversion Level
	Cyber Layer
	Cognition Layer
	Configuration Level
	Summary

	Component View of CPS
	Sensing
	Actuation
	Processing
	Communication
	Storage and User Interface

	Summary

	State of the Art
	Comparison Criteria
	Couplings
	Context
	Quality
	Distribution Type
	Filter Model
	Filter Expressiveness
	Processing Model
	Processing Expressiveness
	Resource Efficiency

	Sensor Description Framework (SDF)
	Communication Middlewares
	Publish/Subscribe Middlewares
	Wireless Sensor Network (WSN) Middlewares
	Wireless Sensor Network (WSN) Ontology Systems

	Complex Event Detection Systems
	Stream Processing Frameworks
	Context Frameworks
	Conclusion

	Abstract Sensor Event Information Architecture (ASEIA)
	Goals
	General Architecture
	Sensor Information and Context
	Attribute Context
	Uncertainty Model
	Time Model
	Space Model
	Producer ID

	Abstract Sensor Event Model
	Attribute Values
	Attribute Units
	Scale Representation
	Attribute Operations
	Event Schemes and Event Format
	Event Hierarchy
	Semantic Annotation - Event IDs
	Format Hashes

	Abstract Sensor Event Transformations
	Selection
	Attribute Transformations
	Event Transformations
	Complementary Sensor Fusion Transformations
	Cooperative Sensor Fusion Transformations
	Concurrent Fusion
	Aggregation Transformation
	Kalman Transformations
	Uncertainty-aware Hybrid Clock Synchronization

	Abstract Sensor Event Transformation Engine
	Automatic Configuration of Generic Transforms
	Representing Rules as Knowledge Graph
	ASETE Channel Creation
	Buffering Incoming Events
	Activating Transformations

	Summary

	Implementation
	ASETE Implementation and Language Bindings
	ASETE Implementation Language
	CPS Application Binding
	Transformation Implementation

	Implementation of the P/S Overlay
	Overview of the Implementation
	CPS ASE API
	Transformation ASE API
	Implementation of the Knowledge Base
	Implementation of Adapters

	Extension on Run Time
	Insertion of Additional Transformations
	Plugins
	LLVM-based compiler/interpreter

	Summary

	Evaluation
	Hybrid Clock Synchronization
	Simulation Setup
	Beacon Interval Analysis
	Topology Analysis
	Small Scale Wireless Sensor Network Setup
	Single-Hop Synchronization
	Multi-Hop Synchronization
	Comparison with related protocols

	Robotic Navigation Test
	Scenario
	Tests
	Results

	Automotive Scenario
	Scenario
	Implementation
	Distributed Virtual ACC Sensor
	Results of the Basic Evaluation Test Case
	Speed Results of the UTM Transformation Graph
	Speed Results of the Road Transformation Graph
	Distance Results UTM Transformation Graph
	Distance Results Road Transformation Graph
	Delay Analysis
	Event Rate Analysis
	Performance Analysis

	Scalability Analysis
	Sub-Topology Analysis
	Subscriber and Publisher Scalability

	Summary

	Conclusion
	Bibliography
	Additional Evaluation Results of the Automotive Scenario

