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reference states become equal at J2 ≈ 0.58 indicating a first-order tran-
sition. For the order parameter M , we take that value calculated with
the reference state of lower CCM energy. . . . . . . . . . . . . . . . . . 74

8.1. (a) J1–J ′1–J2 model; — J1; - - J ′1; · − · J2; (b) Néel state, (c) stripe
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Chapter 1

Introduction

The study of quantum magnetism has attracted much experimental and theoreti-
cal attention over many years, for an overview, see Ref. [1]. In particular, quantum
phase transitions (or zero-temperature transitions) are one of the most active fields
in condensed matter physics [2, 3] because of the discovery of high temperature su-
perconductivity in La2−xSrxCuO4 and YBa2Cu3O7−x [4, 5]. The pure materials are
antiferromagnets and are not superconducting. The phase diagram of these materials
shows that by increasing the concentration by doping, the materials can be driven from
insulating to metallic behavior. While high-temperature superconductivity has raised
the question of the link between the mechanism of superconductivity in the cuprates,
for example, and spin fluctuations and magnetic order in one-dimensional (1D) and
two-dimensional (2D) spin-half antiferromagnets, the new magnetic materials exhibit
a wealth of new quantum phenomena of enormous interest in their own right.

For example, in 1D systems, the universal paradigm of Tomonaga-Luttinger liquid [6,
7] behavior has occupied a key position of interest, since Fermi liquid theory breaks
down in 1D. More generally, in all restricted geometries the interplay between reduced
dimensionality, competing interactions and strong quantum fluctuations, generates a
plethora of new states of condensed matter beyond the usual states of quasiclassical
long-range order (LRO). For the zero-temperature transitions thermal fluctuations
are irrelevant and the transition between different quantum phases (e.g. between
magnetically ordered and disordered phases) is driven purely by quantum fluctuations.

The basic model which shows strong quantum fluctuations in the antiferromagnetic
case is the spin-half Heisenberg model, particularly in low dimensions. According the
Mermin-Wagner theorem [8], we know that thermal fluctuations are strong enough
to destroy magnetic long-range order (LRO) at any finite temperature for Heisen-
berg spin systems in one and two dimensions, the role of quantum fluctuations is
less understood. It is now well-established that the ground-state of the Heisenberg
antiferromagnet in one-dimensional does not have Néel LRO [1, 9], whereas, the pure
Heisenberg antiferromagnet in two-dimensional (2d) and three-dimensional (3d) model
counterparts on the square or cubic lattice, respectively, is ong-range ordered (e.g., see
the reviews [4,10]). For the Heisenberg antiferromagnet (HAFM) on two-dimensional
lattices the interplay of interactions and fluctuations is well balanced and the existence
of semi-classical magnetic long-range order depends on the degree of competition be-
tween bonds [1,11]. Competition between bonds in spin systems may appear in various
ways. As frustration, which is present in classical as well as in quantum spin systems.
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In quantum systems a direct competition between bonds also exists which may lead
to local singlet formation on certain antiferromagnetic bonds (or plaquettes of four
spins) if these bonds are increased in strength. By tuning the degree of competition
zero-temperature order-disorder phase transitions can be realized. In contrast to frus-
tration, which yields competition in quantum as well as in classical systems, this type
of competition is present only in quantum systems.

Recent experiments on SrCu2(BO3)2 [12,13] and on CaV4O9 [14,15] demonstrate the
existence of gapped quantum paramagnetic ground states in (quasi-)two-dimensional
Heisenberg systems, and have stimulated various theoretical studies of quantum spin
lattices with competing interactions.

An example for competition without frustration is the ’melting’ of semi-classical Néel
order by local singlet formation in Heisenberg systems with two non-equivalent nearest-
neighbor bonds like the bilayer antiferromagnet [16, 17], the J − J ′ antiferromagnet
on the square lattice [18–20] and on the depleted square (CaVO) lattice [13, 21]. In
the above mentioned papers [13, 16–19, 21] the strength of quantum fluctuations is
tuned by variation of the exchange bonds J ′. Alternatively, the strength of quantum
fluctuations can be tuned by the anisotropy ∆ and the spin quantum number s in an
XXZ model.

In the classical HAFM the geometrical frustration often leads to canted spin states
which may or may not have counterparts in quantum HAFM. Such frustrated quan-
tum magnets often have ground states that are macroscopically degenerate. This
feature leads naturally to an increased sensitivity of the underlying Hamiltonian to
the presence of small perturbations. The interplay between frustration and quantum
fluctuations in magnetic systems may lead to unusual quantum phases [1]. A canonical
model to study these effects is the frustrated spin-1/2 J1–J2 antiferromagnet on the
square lattice (J1–J2 model). This model has attracted a great deal of interest, see,
e.g., Reefs. [22–52]. The recent discovery of several other quasi-2D materials that are
realizations of the J1–J2 model, has only served to extend the theoretical interest in
the model. Some of the actual magnetic compounds that can be well described by the
s = 1

2
J1–J2 model are La2CuO4 [53] for small values of J2/J1, and Li2VOSiO4 and

Li2VOGeO4 [54, 55] for large values of J2/J1. Other such materials include the com-
pounds VOMoO4 [56] and Pb2VO(PO4)2 [57]. The compound VOMoO4 is interesting
because its exchange couplings appear to be more than an order of magnitude larger
than those of Li2VOSiO4, even though the structures of the two compounds are closely
related. Similarly, the compound Pb2VO(PO4)2 also has a structure closely related
to that of Li2VOSiO4, but it appears to have a ferromagnetic NN exchange coupling
(J1 < 0) frustrated by an antiferromagnetic NNN exchange coupling (J2 > 0), with
|J2/J1| ≈ 1.5. By contrast, although all of the other compounds mentioned above
are also examples of quasi-2D frustrated spin-1/2 magnets, they have NN and NNN
exchanges that are both antiferromagnetic.

For the past few decades, a great deal of attention has also been devoted to magnetic
materials with spin-1 ions, such as the linear chain systems including CsNiCl3 [58] with
a weak axial anisotropy, CsFeBr3 [59] with a strong planar anisotropy and the complex
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materials NENP (Ni(C2H8N2)2NO2(ClO4)) [60] with a weak planar anisotropy and
NENC (Ni(C2H8N2)2Ni(CN4)) [61] with a strong planar anisotropy; as well as the
2D Heisenberg antiferromagnet K2NiF4 [62]. The spin gaps observed in CsNiCl3 and
NENP are believed to be examples of the integer-spin gap behaviour predicted by
Haldane [63, 64]; whereas half-odd-integer spin systems are gapless. Another new
spin-gapped material is the 2D triangular lattice antiferromagnet NiGa2S4 [65] which,
it has been argued [66, 67], may be a “spin nematic” [68]. It is clear, therefore, that
the theoretical study of 2D spin-1 quantum magnets is worthy of pursuit.

In this context we note the recent discovery of superconductivity with a transition
temperature at Tc ≈ 26 K in the layered iron-based compound LaOFeAs, when doped
by partial substitution of the oxygen atoms by fluorine atoms [69], La[O1−xFx]FeAs,
with x ≈ 0.05–0.11. This has been followed by the rapid discovery of superconduc-
tivity at even higher values of Tc (& 50 K) in a broad class of similar doped quater-
nary oxypnictide compounds. Enormous interest has thereby been engendered in this
class of materials. Of particular relevance to the present work are the very recent
first-principles calculations [70] showing that the undoped parent precursor material
LaOFeAs is well described by the spin-1 J1–J2 model on the square lattice with J1 > 0,
J2 > 0, and J2/J1 ≈ 2. Broadly similar conclusions have also been reached by other
authors [71].

There has also been considerable discussion in recent years as to whether the quan-
tum phase transition between the quasiclassical Néel phase and the magnetically dis-
ordered (intermediate paramagnetic) phase in the spin-1/2 J1–J2 model on the 2D
square lattice is first-order or of continuous second-order type. A particularly intrigu-
ing suggestion by Senthil et al. [72,73] is that there is a second-order phase transition
in the model between the Néel state and the intermediate disordered state (which
these authors argue is a VBS state), which is not described by a Ginzburg-Landau-
type critical theory, but is rather described in terms of a deconfined quantum critical
point. Such direct second-order quantum phase transitions between two states with
different broken symmetries, and which are hence characterized by two seemingly in-
dependent order parameters, are difficult to understand within the standard critical
theory approach of Ginzburg and Landau, as we indicate below.

Thus, the competition between two such distinct kinds of quantum order associ-
ated with different broken symmetries would lead generically in the Ginzburg-Landau
scenario to one of only three possibilities: (i) a first-order transition between the two
states, (ii) an intermediate region of co-existence between both phases with both kinds
of order present, or (iii) a region of intermediate phase with neither of the orders of
these two phases present. A direct second-order transition between states of different
broken symmetries is only permissible within the standard Ginzburg-Landau critical
theory if it arises by an accidental fine-tuning of the disparate order parameters to a
multicritical point. Thus, for the spin-1/2 J1–J2 model on the 2D square lattice and
its quantum phase transition suggested by Senthil et al., [72, 73] it would require the
completely accidental coincidence (or near coincidence) of the point where the mag-
netic order parameter (i.e., the staggered magnetization) vanishes for the Néel phase
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with the point where the dimer order parameter vanishes for the VBS phase. Since
each of these phases has a different broken symmetry (viz., spin-rotation symmetry
for the Néel phase and the lattice symmetry for the VBS phase), one would naively
expect that each transition is described by its own independent order parameter (i.e.,
the staggered magnetization for the Néel phase and the dimer order parameter for the
VBS phase) and that the two transitions should hence be mutually independent.

By contrast, the“deconfined”type of quantum phase transition postulated by Senthil
et al. [72, 73] permits direct second-order quantum phase transitions between such
states with different forms of broken symmetry. In their scenario the quantum critical
points still separate phases characterized by order parameters of the conventional (i.e.,
in their language, “confining”) kind, but their proposed new critical theory involves
fractional degrees of freedom (viz., spinons for the spin-1/2 J1–J2 model on the 2D
square lattice) that interact via an emergent gauge field. For our specific example the
order parameters of both the Néel and VBS phases discussed above are represented
in terms of the spinons, which themselves become “deconfined” exactly at the critical
point. The postulate that the spinons are the fundamental constituents of both order
parameters then affords a natural explanation for the direct second-order phase tran-
sition between two states of the system that otherwise seem very different on the basis
of their broken symmetries.

We note, however, that the deconfined phase transition theory of Senthil et al. [72,73]
is still the subject of controversy. Other authors believe that the phase transition
in the spin-1/2 J1–J2 model on the 2D square lattice from the Neél phase to the
intermediate magnetically-disordered phase need not be due to a deconfinement of
spinons. For example, Sirker et al. [47] have argued on the basis of both spin-wave
theory and numerical results from series expansion analyses, that this transition is
more likely to be a (weakly) first-order transition between the Neél phase and a VBS
phase with columnar dimerization. Other authors have also proposed other, perhaps
less radical, mechanisms to explain such second-order phase transitions (if they exist)
and their seeming disagreement (except by accidental fine tuning) with Ginzburg-
Landau theory. What seems clearly to be a minimal requirement is that the order
parameters of the two phases with different broken symmetry should be related in
some way. Thus, a Ginzburg-Landau-type theory can only be preserved if it contains
additional terms in the effective theory that represent interactions between the two
order parameters. For example, just such an effective theory has been proposed for
the 2D spin-1/2 J1–J2 model on the square lattice by Sushkov et al., [50] and further
discussed by Sirker et al. [47].

Another example model of a frustrated HAFM is the Shastry-Sutherland [74] type
models used in understanding the physical properties of SrCu(BO3)2 [14,75] (see e.g.,
Chap. 4: Fig. 4.1). This system is a magnetic insulator with dimer singlet phase, which
realized due to the strong antiferromagnetic couplings for dimer bonds. In the classical
limit (S → ∞), the ground state is the Néel ordered if J1/J2 > 1 and is helically
ordered (see e.g., Chap. 4: Fig. 4.3) otherwise. Recently, new interesting results on the
magnetization process of SrCu(BO3)2 have been observed. In particular, the plateaus
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at 1/5, 1/6, 1/7, 1/9, and 2/9 of the saturated magnetization have been reported [76],
in addition to the previously established plateaus at 1/3, 1/4, and 1/8 [14].

The theoretical treatment of the frustrated quantum antiferromagnets is far from
being trivial. Though, surprisingly, one can find exact GS’s of a simple product na-
ture in some exceptional cases, [74,77–79] many of the standard many-body methods,
such as quantum Monte Carlo techniques, may fail or become computationally infeas-
ible to implement if frustration is present. Other methods, such as density-matrix
renormalization group (DMRG) is essentially restricted to low-dimensional systems,
at lest for the present. Hence, there is considerable interest in any method that can
deal with frustrated spin systems in any number of dimensions, including magnetic
systems with incommensurate spiral GS’s. A method fulfilling this requirement is the
coupled cluster method (CCM). This approach, introduced many years ago by Co-
ester and Kümmel, [80, 81] is one of the most universal and most powerful methods
of quantum many-body theory (and for a review of which see, e.g., Ref. [22]). The
CCM has previously been applied to various quantum spin systems with much suc-
cess. [18, 20, 42, 82–95] The application to frustrated spin systems was started in the
1990’s, [86,87] and has been developed in more recent years to the point where it has
become a powerful tool in this field by including higher orders of approximations in
a well-defined truncation scheme. [18, 20, 42, 90, 93, 94]. Note, that The CCM is also
extended to models of strongly interacting electrons on lattices, such as the Hubbard
model [96].

This thesis is organized as follows. In Chap. 2 we present a general description of the
CCM methodology. The ket and bra state formalisms are given, and the form of the
ground-state energy equation, along with the characteristic CCM similarity transform,
is described. We also illustrate the CCM for quantum spin lattices. Finally, we report
(as a benchmark test) high-order CCM results for standard unfrustrated lattices in
d = 2, 3 and compare them with other accurate methods. In Chap. 3 we study the
Influence of Ising-anisotropy and the spin quantum number s on the zero-temperature
phase transition in the square lattice spin-1/2 J–J ′ model. In Chap. 4 we report on a
CCM treatment of the 2d Shastry-Sutherland model. In Chap. 5 we calculate the spin
stiffness for the the spin-1

2
HAFM with nearest-neighbor interaction on the cubic, the

square, and on the triangular lattices and compare our results with available data in
the literature. In Chap. 6 we investigate GS phase diagram for spin-half J1–J2 model
on the square lattice, we also discuss the nature of the phase transition between the
semiclassical Néel phase and the quantum paramagnetic phase. In Chap. 7 contains
a discussion of the GS ordering of a stacked frustrated square-lattice HAFM (the
quasi-2d J1–J2 model). In Chap. 8 we study the phase diagram of the 2D J1–J ′1–J2

spin-1/2 and spin-1 Heisenberg model. The effect of the coupling J ′1 on the Néel and
stripe states is investigated. Finally, in Chap. 9 we study the zero-temperature phase
diagram of the 2D quantum spin-1/2 and spin-1 frustrated J1–J2 XXZ model on the
square lattice. In particular, we examined the effects of the anisotropy ∆ on the z-
aligned Néel and (collinear) stripe states, as well as on the xy-planar-aligned Néel and
collinear stripe states.





Chapter 2

Many-Body Method: The coupled cluster

method (CCM)

2.1. The CCM ground-state formalism

In this section , we firstly describe the general ground-state CCM formalism [80,81,97],
and then we apply it to the different models. The exact ket and bra ground-state
energy eigenvectors, |Ψ〉 and 〈Ψ̃|, of a many-body system described by a Hamiltonian
H,

H|Ψ〉 = Eg|Ψ〉 ; 〈Ψ̃|H = Eg〈Ψ̃| , (2.1)

are parametrised within the single-reference CCM as follows:

|Ψ〉 = eS|Φ〉 ; S =
∑
I 6=0

SIC+
I ,

〈Ψ̃| = 〈Φ|S̃e−S ; S̃ = 1 +
∑
I 6=0

S̃IC−I . (2.2)

The starting point for the CCM calculation is the choice of a normalized reference or
model state |Φ〉, together with a set of (mutually commuting) multi-configurational
creation operators {C+

I } and the corresponding set of their Hermitian adjoints de-
struction counterparts {CI ≡ (C+

I )†}. Thus, |Φ〉 plays the role of a vacuum state with
respect to a suitable set of many-body creation operators {C+

I },

〈Φ|C+
I = 0 = CI |Φ〉 ∀I 6= 0 , [C+

I , C
+
J ] = 0 = [CI , CJ ] , (2.3)

with C+
0 ≡ 1, the identity operator. The operators C+

I (CI) are defined over a complete
set of many-body configurations denoted by the set of set-indices {I}. These operators
are complete in the many-body Hilbert(or Fock) space,

1 = |Φ〉〈Φ|+
∑
I 6=0

C+
I |Φ〉〈Φ|C

−
I

〈Φ|C−I C
+
I |Φ〉

. (2.4)

We note that although the manifest hermiticity,

〈Ψ̃|† = |Ψ〉/〈Ψ|Ψ〉,

7
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is lost in these parametrisations, the intermediate normalisation condition

〈Ψ̃|Ψ〉 = 〈Φ|Ψ〉 = 〈Φ|Φ〉 ≡ 1

is explicitly imposed. The ground-state version of the CCM is now completely specified
by the set of parameters {SI , S̃I}, and in particular an arbitrary expectation value Ā
may be written in the CCM as:

Ā ≡ 〈Ψ̃|A|Ψ〉 = 〈Φ|S̃e−SAeS|Φ〉 = Ā
(
{SI , S̃I}

)
. (2.5)

The correlation coefficients {SI , S̃I} are regarded independent (variational) parame-
ters, although formally we have the relation:

〈Φ|S̃ =
〈Φ|eS†eS

〈Φ|eS†eS|Φ〉
. (2.6)

We note that the exponentiated form of the ground-state CCM parametrisation of
eq.(2.2) ensures the correct counting of the independent and excited correlated many-
body clusters with respect to |Φ〉 which are present in the exact ground state |Ψ〉. It
also ensures the exact incorporation of the Goldstone linked-cluster theorem, which
itself guarantees the size-extensivity of all relevant extensive physical quantities [22].

The CCM correlation operators, S and S̃, contain the correlation coefficients, SI
and S̃I , which have to be calculated. Once known, all GS properties of the many-body
system can clearly be found in terms of them. To find the GS correlation coefficients
SI and S̃I , we simply require that the GS energy expectation value H̄ = 〈Ψ̃|H|Ψ〉 is a
minimum with respect to the entire set {SI , S̃I}, which leads to the GS CCM ket-state
and bra-state equations

δH̄/δS̃I = 0 ⇒ 〈Φ|C−I e−SHeS|Φ〉 = 0, ∀I 6= 0 ; (2.7)

δH̄/δSI = 0 ⇒ 〈Φ|S̃e−S[H,C+
I ]eS|Φ〉 = 0, ∀I 6= 0 . (2.8)

We note the important Hellmann-Feynman theorem is preserved in all such approxi-
mations [22].

The nested commutator expansion of the similarity-transformed Hamiltonian,

H̃ ≡ e−SHeS = H + [H,S] +
1

2!
[[H,S], S] + · · · , (2.9)

the fact that all of the individual components of S in the sum in eq. (2.2) commute
with each other, by construction, so that each element of S in the parametrisation
(2.2) is linked directly to the Hamiltonian in each of the terms in eq. (2.9). Thus, each
of the coupled equations (2.7) is of linked-cluster type. Furthermore, each of these
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equations is of finite length when expanded, since the otherwise infinite series of eq.
(2.9) will always terminate at a finite order, provided (as is usually the case) only that
each term in the second-quantised form of the Hamiltonian H contains a finite number
of single-body destruction operators, defined with respect to the reference (vacuum)
state |Φ〉. Therefore, the CCM parametrisation naturally leads to a workable scheme
which can be efficiently implemented computationally.

2.2. The CCM for quantum spin lattices

2.2.1. Choice of CCM model state

The starting point for the CCM calculation is the choice of a normalized reference or
model state |Φ〉. Our choice should usually be guided by any physical insight available
to us concerning the system or, more specifical, that particular phase of it which is
under consideration. For spin systems, an appropriate choice for the CCM model state
|Φ〉 is often a classical spin state, in which the most general situation is that each spin
can point in an arbitrary direction.

The appropriate reference state - classical ground state, e.g.

• Néel state |Φ〉 = | ↓↑↓↑↓↑↓↑ · · ·〉

• spiral or canted state |Φ〉 = | ↑↗ →↘ ↓↙ ←↖ ↑↗ · · ·〉
To treat each site equivalently we perform a rotation of the local axis of the spins
such that all spins in the reference state align in the same direction, namely along the
negative z axis, such that we have |Φ〉= |↓〉|↓〉|↓〉 . . . . We define a set of multi-spin
creation operators C+

I = s+
i , s

+
i s

+
j , s

+
i s

+
j s

+
k , . . . .

The choice of the C+
I ensures that 〈Φ|C+

I = 0 = CI |Φ〉, where CI = s−i , s
−
i s
−
j , s

−
i s
−
j s
−
k , . . .

is the Hermitian adjoint of C+
I .

In order to make the spin si to be aligned along the negative z axis one has to
perform a rotation of the respective spin by an appropriate angle δi. This rotation is
equivalent to the canonical transformations,

sxi = cos δis̃
x
i + sin δis̃

z
i ; syi = s̃yi ; szi = − sin δis̃

x
i + cos δis̃

z
i . (2.10)

A similar rotation about the y-axis by an angle δj is performed for the spin sj. Thus
we get for the transformation of the scalar product of the two spins, si · sj → (si · sj)ϕ,
where

(si · sj)ϕ ≡ cosϕ[s̃xi s̃
x
j + s̃zi s̃

z
j ] + sinϕ[s̃xi s̃

z
j − s̃zi s̃xj ] + s̃yi s̃

y
j

=
1

4
[cosϕ+ 1](s̃+

i s̃
−
j + s̃−i s̃

+
j ) +

1

4
[cosϕ− 1](s̃+

i s̃
+
j + s̃−i s̃

−
j ).

+
1

2
sinϕ[s̃+

i s̃
z
j − s̃zi s̃+

j + s̃−i s̃
z
j − s̃zi s̃−j ] + cosϕs̃zi s̃

z
j .

(2.11)
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The angle ϕ ≡ δj − δi is the angle between the two spins, and s± ≡ sx ± isy are the
spin-raising and spin-lowering operators. Note that this product of two spins after the
rotation depends not only on the angle between them, but also on the sign of this
angle. In case of the Néel model state (Φ = 0), the angle between any neighbouring
spins is π, and hence eq. (2.11) becomes

si · sj → −
1

2
[s̃+
i s̃

+
j + s̃−i s̃

−
j ]− s̃zi s̃zj . (2.12)

2.2.2. Commutation relations and the high-order general-s CCM formalism

In this section we present a new formalism and results for high-order ground-state
CCM calculations for general spin quantum number, s, based on a model state in
which all spins on the crystallographic lattice point downwards along the local z-axes.
A large part of the new formalism relies on the new “high-order” CCM operators
defined by

Fk ≡
∑
l

∑
i2,··· ,il

lSk,i2,···,ils+
i2
· · · s+

il

Gk,m ≡
∑
l>1

∑
i3,··· ,il

l(l − 1)Sk,m,i3,···,ils+
i3
· · · s+

il

Mk,m,n ≡
∑
l>2

∑
i4,··· ,il

l(l − 1)(l − 2)Sk,m,n,i4,···,ils+
i4
· · · s+

il

Nk,m,n,p ≡
∑
l>3

∑
i5,··· ,il

l(l − 1)(l − 2)(l − 3)Sk,m,n,p,i5,···,ils+
i5
· · · s+

il
, (2.13)

and also their commutation relations with the single-spin operators in order to deter-
mine the similarity transforms of various operators, such as the Hamiltonian for ex-
ample. In order to determine these commutation relations we firstly remind ourselves
that the ket-state correlation operator S is given by eq. (2.2) with C+

I ≡ s+
i1
s+
i2
· · · s+

il

and SI ≡ Si1,i2,···,il , and hence

S =
∑
l

∑
i1,i2,···,il

Si1,i2,···,il s+
i1
s+
i2
· · · s+

il
, (2.14)

where each of the indices {i1, i2, · · ·, il} runs over all lattice sites with the condition
that there can be no more than 2s of them at any particular lattice site. The usual
spin commutation relations of the spin operators also apply,

[s+
l , s

−
l′ ] = 2szl δl,l′ ; [szl , s

±
l′ ] = ±s±l δl,l′ . (2.15)
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We also note that the commutation of a given operator with S must be distributive,
such that

[sαk , S] =
∑
l

∑
i1,i2,···,il

Si1,i2,···,il
{

[sαk , s
+
i1

]s+
i2
· · · s+

il
+ s+

i1
[sαk , s

+
i2

]s+
i3
· · · s+

il

+ · · ·+ s+
i1
s+
i2
· · · [sαk , s+

il
]

}
, (2.16)

where α = {z,+,−}. To calculate the commutator [sαk , S] in eq. (2.17), we use the
basic commutation relations of eq.(2.16) we thus have

[s+
k , S] = 0

[szk, S] =
∑
l

∑
i2,···,il

lSk,i2,···,ils+
i2
· · · s+

il
s+
k = Fks

+
k

[s−k , S] = −2
∑
l

∑
i3,i4,···,il

l−1∑
n=1

Sk,k,i3,···,ils+
i3
s+
i4
· · · s+

il
s+
k

−2
∑
l

∑
i2,i3,···,il

lSk,i2,···,ils+
i2
s+
i3
· · · s+

il
szk = −Gk,ks

+
k − 2Fks

z
k.

(2.17)

By using eq. (2.17) the commutation relations between the single-operators and the
Fk, F

2
k , Gk,m, and Mk,m,n operators can also be written in the following compact forms,

[szk, Fm] = Gk,ms
+
k ,

[szk, Gm,n] = Mk,m,ns
+
k ,

[szk, F
2
m] = 2FmGk,ms

+
k ,

[s−k , Fm] = −2Gk,ms
z
k −Mk,k,ms

+
k ,

[s−k , F
2
m] = −2G2

k,ms
+
k − 2FmMk,k,ms

+
k − 4FmGk,ms

z
k,

[szk,Mm,n,p] = Nk,m,n,ps
+
k ,

[s−k , Gm,n] = −2Mk,m,ns
z
k −Nk,k,m,ns

+
k .

(2.18)

We note that for the case s = 1/2 the operator Gk,k = 0 because “double occupancy”
of the lattice site k is prohibited in this case.

2.2.3. Hierarchical approximation schemes

By analogy to Eq. (2.2), which define the general form for the ket-state and bra-state
correlation operators S and S̃ respectively, we rewrite these two operators for quantum
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spin systems as:

S =
∑

I 6=0 αIC
+
I =

∑∞
l=1Al

with Al ≡
∑

i1,i2,··· ,il [i1, i2, · · · , il]s
+
i1
s+
i2
· · · s+

il

S̃ = 1 +
∑

I 6=0 α̃C
−
I =

∑∞
l=1 Ãl

with Ãl ≡
∑

i1,i2,··· ,il
˜[i1, i2, · · · , il]s−i1s

−
i2
· · · s−il .

(2.19)

The CCM formalism is exact if we take into account all possible multi-spin configu-
rations in the correlation operators S and S̃. However, in general, this is impossible
to do in practice for a quantum many-body system. Hence, it is necessary to use
approximation schemes in order to truncate the expansions of S and S̃ in eq. (2.2) in
any practical calculation. The three most commonly employed schemes have been:

SUBn : S =
n∑
l=1

Al .

• In this scheme all correlations involving only n or fewer spins are retained, but
no further restriction is made concerning their spatial separation on the lattice.
The SUBn scheme has been used by CCM [83,84,97] for quantum spin systems.

• The SUBn-m sub-approximation, in which all SUBn correlations spanning a
range of no more than m adjacent lattice sites are retained.

• The localized LSUBm scheme, which take in to account all possible many-body
cluster configurations I = i1, i2, · · · , il in all different localised regions of m
contiguous sites on the lattice.

LSUBn : I ∈ SUBn with K(I) < n

K(I) = K(i1, i2, · · · , il) = max︸︷︷︸
a,b=1···l

d(ia, ib), d(i, j) = |xj − xi|+ |yj − yi| .

For s = 1/2 the LSUBm scheme is equivalent to the SUBn-m sub-approximation
[88, 89, 98] that means n = m. In the case of quantum number s > 1/2 we have
n = 2 · s · m. We note that only the LSUBm and SUBn-m scheme are adopted
throughout this thesis.

The first step in the practical implementation of the CCM at the LSUBm level
of approximation is to enumerate all fundamental configurations {i1, i2, · · · , il} with
n < m, which are retained at the LSUBm level. To find all possible fundamental
configurations which are different under the point and space group symmetries of both
the lattice and the Hamiltonian, we use the lattice symmetries. The numbers of fun-
damental configurations may be further reduced by the use of additional conservation
laws. For example, in the case of the Néel state | ↑↓↑↓ · · · 〉, the Hamiltonian com-
mutes with the total uniform magnetization, szT =

∑
k s

z
k (the sum on k runs over all



2.2 The CCM for quantum spin lattices 13

lattice sites). the GS lies in the szT = 0 subspace, and hence we exclude configuration
with an odd number of spins or with unequal numbers of spins on the two equivalent
sublattices. For the spiral state we cannot apply this property because it is not an
eigenstate of szT . For pure square lattice, this restriction, for example, reduces the
number of the fundamental configurations retained in the LSUB4 approximation to 7
if the z-axis Néel model state is employed in the CCM calculations, and see Fig.(7.1).
The lowest order LSUBm scheme is the LSUB2 (i.e, SUB2-2) approximation in which

Figure 2.1.: Illustration of fundamental configurations for square lattice antiferromagnet within
the LSUB4 approximation.

only a single nearest-neighbour, two-body term is retained in S. We note that the
Hamiltonian of Eq.(2.20) includes products of the spin operators which contain even
numbers of these spin operators only

H =
∑
i,j

Jij si · sj , (2.20)

where Jij = 1 for NN bonds, and Jij = 0 otherwise. This means that the ground state
contains only even numbers of spin flips with relation to the model state.

2.2.4. The ket-state equations

According to Eq.(2.7), we now determine the CCM ket-state equations for the config-
uration j1, j2, · · · , jl in spin systems as

〈Φ|s−j1s
−
j2
· · · s−jle

−SHeS|Φ〉 = 0 , (2.21)

where s−j1s
−
j2
· · · s−jl is the Hermitian conjugate of the corresponding multi-spin correla-

tion string s+
j1
s+
j2
· · · s+

jl
.

In practice we clearly need an approximation scheme (e.g LSUBn) to truncate the
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expansion of S in eq. (2.14) to some finite subset of the full set of multi-spin config-
uration {j1, j2, · · · , jl}. We note that we use lattice symmetries and, where possible,
any exact conservation laws for a given fundamental configuration in C−I in order to
pattern-match with the terms within H̃|Φ〉 and thus determine the I-th CCM ket-state
equation. The CCM ket-state equations can be determined in two steps, the first is
to calculate the similarity-transformed Hamiltonian, Ĥ = e−SHeS, which acts on the
reference state |Φ〉 can be performed straightforwardly my making use of the relations
s−|Φ〉 = 0 and sz|Φ〉 = −1

2
|Φ〉. The goal here is to completely eliminate sz and s−,

and thus retain the creation operators only, by utilising the commutation relations of
the spin operators see eq. (2.15). The similarity-transformed single spin operators can
be expressed as:

e−Ss+
k e

S ≡ ŝ+
k = s+

k

e−Sszke
S ≡ ŝzk = szk + Fks

+
k

e−Ss−k e
S ≡ ŝ−k = s−k − 2Fks

z
k −Gkks

+
k − (Fk)

2s+
k . (2.22)

using eq. (2.22), we can now determine the different kinds of two-spin interaction terms
in the similarity transformed Hamiltonian and their application on the model state |Φ〉
for example we calculate for s = 1/2 (k 6= m)

ŝ−k ŝ
−
m|Φ〉 = [(2G2

km + 4FkFmGkm + F 2
kF

2
m)s+

k s
+
m

−(2GkmFm + FkF
2
m)s+

m − (2GkmFk + F 2
kFm)s+

k

+Gkm + FkFm
]
|Φ〉

ŝ+
k ŝ
−
m|Φ〉 = (−F 2

ms
+
k s

+
m + Fms

+
k )|Φ〉

ŝ−k ŝ
+
m|Φ〉 = (−F 2

k s
+
k s

+
m + Fks

+
m)|Φ〉

ŝ+
k ŝ

+
m|Φ〉 = s+

k s
+
m|Φ〉

ŝzkŝ
z
m|Φ〉 =

[
(Gkm + FkFm)s+

k s
+
m − 1

2
Fks

+
k − 1

2
Fms

+
m + 1

4

]
|Φ〉

ŝ+
k ŝ

z
m|Φ〉 =

(
Fms

+
k s

+
m − 1

2
s+
k

)
|Φ〉

ŝzkŝ
+
m|Φ〉 =

(
Fks

+
k s

+
m − 1

2
s+
m

)
|Φ〉

ŝzkŝ
−
m|Φ〉 =

[
(−FkF 2

m − 2FmGkm)s+
k s

+
m + (Gkm + FkFm)s+

k + 1
2
F 2
ms

+
m − 1

2
Fm
]
|Φ〉

ŝ−k ŝ
z
m|Φ〉 =

[
(−F 2

kFm − 2FkGkm)s+
k s

+
m + (Gkm + FkFm)s+

m + 1
2
F 2
k s

+
k − 1

2
Fk
]
|Φ〉 .

(2.23)

The second step is to select all terms in Eq.(2.23) which containing creation operators
ŝ+ with indices corresponding precisely to the indices j1, j2, · · · , jl of the ŝ− operators
in eq.(2.21). By using the orthonormality relation 〈Φ|s+

ms
−
k |Φ〉 = δmk one get all terms

of the ket-state equations for the configuration j1, j2, · · · , jl

2.2.5. The bra-state equations

In order to compute a general ground-state physical quantity such as the magnetic or-
der parameter, we need to calculate both the ket-state correlation coefficients {SI} and
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the bra-state correlation coefficients {S̃I} which can be determined by eq.(2.5). How-
ever, the form of the bra-state equations is slightly cumbersome to use, and a simpler
way to calculated it is to use the following new set of CCM correlation coefficients

xI = SI
x̃I = NB

N
S̃IAIνI(nI !)

}
, (2.24)

where AI is a normalisation factor given by AI ≡ 〈Φ|(s−i1s
−
i2
· · · s−il ) (s+

i1
s+
i2
· · · s+

il
)|Φ〉,

where NB is the total number of Bravais lattice sites, and where νI is a symmetry factor
dependent purely on the point-group symmetries (and not the translational symme-
tries) for the crystallographic lattice in question and for fundamental configuration
r. We note that nI is the number of spin operators and that NF such fundamental
configurations. The CCM bra-state operator may be rewritten as

S̃ ≡ 1 +N

NF∑
I=1

x̃I
AI
C−I , (2.25)

such that

H̄ = E(x1, x2, . . . ) +N

NF∑
I

x̃IKI(x1, x2, . . . ) . (2.26)

Note that KI(x1, x2, . . . ) is the r-th CCM ket-state equation defined by eq. (2.21).
The CCM ket-state equations are easily rederived by taking the partial derivative of
H̄/N with respect to x̃I , where

0 =
∂(H̄/N)

∂x̃I
≡ KI(x1, x2, . . . ) . (2.27)

We now take the partial derivative of H̄/N with respect to xI such that the bra-state
equations take on a particularly simple form, given by

∂(H̄/N)

∂xI
=
∂(E/N)

∂xI
+

NF∑
J=1

x̃I
∂KI

∂xI
= 0 . (2.28)

This equation is easily solved computationally, once the CCM ket-state equations have
been determined and solved, and the numerical values of the coefficients {x̃I} may thus
be obtained.

2.3. The excited-state formalism

We now turn our attention to the CCM parametrization of the excited state developed
by Emrich [99]which may be utilised in order to perform high-order CCM calculations
for the exited state [89] of quantum spin systems of general spin quantum number. We
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note however that no excited-state results are presented in this thesis. The excited-
state wave function, |Ψe〉, is determined in Emrich’s formalism [99] by linearly applying
an excitation operator Xe to the ket-state wave function of eq. (2.2), such that

|Ψe〉 = Xe |Ψ〉 = Xe eS|Φ〉 . (2.29)

By analogy with the ground-state formalism, the excited-state correlation operator is
given by,

Xe =
∑
I 6=0

X e
IC

+
I , (2.30)

where the set {C+
I } of multi-spin creation operators may differ from those used in the

ground-state parametrisation in eq. (2.2), if the excited state has different quantum
numbers than the ground state. We note that equation (2.30) implies the overlap
relation 〈Φ|Ψe〉 = 0. Using the Schrödinger equation, H|Ψe〉 = Ee|Ψe〉, we find

εeX
e|Φ〉 = e−S[H,Xe]eS|Φ〉 , (2.31)

where εe ≡ Ee − Eg is the difference between the excited-state energy (Ee) and the
ground-state energy (Eg). By applying 〈Φ|C−I to eq. (2.31) we find that

〈Φ|C−I e
−S[H,Xe]eS|Φ〉 = εeX e

I ∀I 6= 0 , (2.32)

which is a generalized set of eigenvalue equations with eigenvalues εe and corresponding
eigenvectors X e

I . Analogously to the ground-state case, we define the excited-state
operators.

Pk ≡
∑
l

∑
i2,··· ,il

lX e
k,i2,··· ,ils

+
i2
· · · s+

il

Qk,m ≡
∑
l>1

∑
i3,··· ,il

l(l − 1)X e
k,m,i3,··· ,ils

+
i3
· · · s+

il
. (2.33)

By choosing the model state as the Néel state we find for the terms in Eq.(2.12)

e−S[s−k s
−
m, X]−e

S|Φ〉 = [(4FkFmQkm + 4GkmQkm + 2F 2
kPmFm + 2PkFkF

2
m

+4PkFmGkm + 4FkPmGkm)s+
k s

+
m

−(2FkQkm + 2PkGkm + F 2
kPm + 2PkFkFm)s+

k

−(2QkmFm + 2GkmPm + PkF
2
m + 2FkFmPm)s+

m

+Qkm + FkPm + PkFm]|Φ〉
e−S[s+

k s
+
m, X]−e

S|Φ〉 = 0

e−S[szks
z
m, X]−e

S|Φ〉 = [(Qkm + FkPm + PkFm)s+
k s

+
m − 1

2
Pks

+
k − 1

2
Pms

+
m]|Φ〉 .

(2.34)

For Heisenberg antiferromagnetic systems the ground state lies in the sector szT = 0.
By contrast, the lowest-lying excited states lie in the szT = ±1, and the number
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of such fundamental configurations for the excited state at a given level of LSUBn
approximation is labelled by Nfe . In order to determine the excited-state eigenvalue
equations we must firstly fully determine and solve the ground ket-state equations
in order to obtain numerical values for the set {S} which are then used as input to
the eigenvalue problem of equation (2.32). Finally, the interested reader is referred
to Ref. [89] for a full account of applications of high-order CCM calculations to the
limiting spin-half case of the XXZ model for the linear chain, the square lattice, and
the cubic lattice.

2.4. Calculation of physical quantities using CCM

2.4.1. Ground state energy and Sublattice magnetization

The ground state energy at the stationary point has the simple form

Eg = Eg({SI}) = 〈Φ|e−SHeS|Φ〉 , (2.35)

which also follows simple by projecting the ground state ket equation (2.1) with 〈Φ|e−S.
We note that this bi-variational formulation does not lead to an upper bound for Eg
when the summations for S and S̃ in Eq. (2.2) are truncated in specific approximations,
since the exact hermiticity between 〈Ψ̃| and |Ψ〉 will thereby be lost.

In order to discuss the phase transition further it is necessary to consider the degree
of quantum order inherent in the CCM wave functions obtained at the various LSUBn
levels of approximation, and based on both model state. The simplest such order
parameter is the sublattice magnetization, which is defined as the average over the
entire lattice of sz in the local (rotated) spin coordinates, or, equivalent over a single
sublattice of the corresponding unrotated component of the spin in the original global
coordinates. By using the CCM parametrization of eq.(2.2) we find,

M = − 1

N

N∑
k=1

〈Ψ̃|szi |Ψ〉 = − 1

N

N∑
k=1

〈Φ|S̃e−Sszi e
S|Φ〉 , (2.36)

where szk is in the local coordinates of each sublattice. In the notation of eq.(2.19),
and eq.(2.14) we find,

−〈Φ|S̃e−Sszi e
S|Φ〉 = −〈Φ|S̃(szi + Fks

+
k )|Φ〉 =

1

2
− 〈Φ|S̃Fks+

k |Φ〉
N∑
k=1

〈Φ|S̃Fks+
k |Φ〉 =

∞∑
k=1

n(n!)
∑
i1···in

S̃i1···inSi1···in

=⇒ M =
1

2
− 1

N

∞∑
k=1

n(n!)
∑
i1···in

S̃i1···inSi1···in . (2.37)
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The sum in eq.(2.37) may be rewritten in terms of the independent correlation coeffi-
cients X̃I and XI associated with the NF fundamental configurations of a given LSUBn
approximation, which were introduced in Sec. (2), to give the LSUBn estimate for M ,

M =
1

2
−

NF∑
r=1

nI(nI !)
2νIX̃IXI =

1

2
−

NF∑
r=1

nI(nI !)x̃IxI , (2.38)

where nI is the number of spin flips with respect to |Φ〉 for the rth fundamental
configuration, and where we have introduced the notation xI ≡ XI and x̃I ≡ (nI !)νIX̃I .

2.4.2. Spin stiffness

The spin stiffness ρs [31, 100–110] can be calculated by imposing a twist on the order
parameter of a magnetically long-range ordered system along a given direction, i.e.,

E(θ)

N
=
E(θ = 0)

N
+

1

2
ρsθ

2 +O(θ4) , (2.39)

where E(θ) is the GS energy as a function of the twist angle θ, and N is the number
of sites. To calculate the spin stiffness within CCM(e.g.Chap.5) we need to calculate
the ground state energy for Néel state (θ = 0) and for small value of the parameter θ
for example (θ = 10−4) then we use the numerical differentiation of E(θ)

E
′′
0 (θ) = [e(θ − h)− 2E0(θ) + e(θ + h)]/h2 three− points formula

E
′′
0 (θ) = [−e(θ − 2h) + 16e(θ − h)− 30E0(θ)

+16e(θ + h)− e(θ + 2h)]/12h2 five− points formula

(2.40)

where E(θ) is the ground state energy, θ = 0 and h = 0.0001

2.4.3. Generalized susceptibilities

Within the CCM technique the general susceptibility [23,25,26,47,49,50]

χ = − ∂2e

∂δ2

∣∣∣∣
δ=0

, (2.41)

can be evaluated by adding to the Hamiltonian H a term F = δÔ, where Ô is an
operator that breaks some symmetry of H and the coefficient δ gives the strength
of the field. After we calculate the energy per site e(δ) for H + F , then we use the
Eq.(2.40).
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2.5. Extrapolation Schemes

Since the LSUBn approximation becomes exact in the limit n → ∞, it is useful
to extrapolate the ’raw’ LSUBn results to the limit n → ∞. Although an exact
scaling theory for the LSUBn results is not known, there is some empirical experience
[18, 42, 88, 89, 93] indicating how the physical quantities for spin models might scale
with n. For the GS energy we employ [18,89]

E(n) = a0 + a1
1

n2
+ a2

(
1

n2

)2

. (2.42)

Furthermore, we note that it may be useful to discard the LSUB2 results for the
extrapolation, because generally they fit poorly to the asymptotic behavior [89]. For
the order parameter, the stiffness, and the generalized susceptibilities one utilizes
[89,95] an extrapolation law with leading power 1/n, i.e.,

A(n) = b0 + b1
1

n
+ b2

(
1

n

)2

. (2.43)

However, there is some experience that when applied to systems showing an order-
disorder quantum phase transition this kind of extrapolation tends to overestimate
the parameter region where magnetic LRO exists, i.e. to yield too large critical values
for the exchange parameter driving the transition. [18, 91, 93, 95] The reason for such
behavior might derive from the change of the scaling near a critical point. Hence, in
addition to the extrapolation rule of Eq. (2.43) for the order parameter m, we also use
a leading ’power-law’ extrapolation [89,93,95] given by

m(n) = c0 + c1

(
1

n

)υ
, (2.44)

where the exponent υ is a fitting parameter which is determined directly from the
LSUBn data. We note that there are some cases(see e.g., Chap.8) where the simple
two-term scheme of Eq. (2.44) is unstable in the critical regime. In order to solve this
problem, we use the following extrapolation scheme [111]

M = c0 + n−0.5
(
c1 + c2n

−1
)
. (2.45)

Meanwhile, this extrapolation scheme (2.45) has been applied to invetigate quantum
critical phenomena for several frustrated spin models [111–115]. Its has been found
that the scheme (2.45) leads to accurate results for the position of quantum critical
points.

We list below three fundamental rules, also based on our experience, as guidelines
for the selection and extrapolation of the CCM raw data, using any approximation
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scheme.

• Rule 1: As a fundamental rule of numerical fitting or numerical analysis, one
should always have at least (n + 1) data points in order to have a robust and
stable fit to any formula that contains n unknown parameters. This rule takes
precedence over all other rules.

• Rule 2: Whenever possible one should avoid using the lowest (e.g., LSUB2,
SUB2-2) data points since such points are rather far from the large-n limit,
unless it is necessary to do so to avoid breaking Rule 1.

• Rule 3: If Rule 2 has been broken then some other careful consistency checks
should also be performed..

2.6. The CCM for the pure Heisenberg antiferromagnet on square
and cubic lattice

During the last few years the running time and memory requirements of the original
CCM code have been considerably improved. [94,116] Consequently, it is now possible
to run higher levels of approximation by using an improved parallelization procedure.
In this Section we present a collection of CCM results for the (unfrustrated) pure
HAFM (see i.e., Eq. 2.20) on some basic lattices, and compare them with the most
accurate results obtained by other methods. While some of the CCM results have
already been published elsewhere, [89, 95] we also present here the new unpublished
results from higher levels of approximation. The results are shown in Tables 2.1 and
2.2, in which the entries shown in boldface are the new ones.

Table 2.1.: Data for the spin-1/2 square-lattice pure HAFM. Nf is the number of fundamental
configurations for the Néel reference state, E/N is the GS energy per spin and m is the sublattice
magnetization. The LSUBn results are extrapolated using Eq. (2.42) for E/N and Eq. (2.43) for m.

square lattice Nf E/N m

LSUB2 1 -0.64833 0.42071

LSUB4 7 -0.66366 0.38240

LSUB6 75 -0.66700 0.36364

LSUB8 1287 -0.66817 0.35242

LSUB10 29605 -0.66870 0.34483

Extrapolated CCM - -0.66936 0.31024

3rd order SWT [105] - -0.66931 0.3069

QMC [117,118] - -0.66944 0.3070
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Table 2.2.: Data for the spin-1/2 simple-cubic lattice pure HAFM. Nf is the number of fundamental
configurations for the Néel reference state, E/N is the GS energy per spin and m is the sublattice
magnetization. The LSUBn results are extrapolated using Eq. (2.42) for E/N and Eq. (2.43) for m.

cubic lattice Nf E/N m

LSUB2 1 -0.89076 0.45024

LSUB4 9 -0.90043 0.43392

LSUB6 181 -0.90180 0.42860

LSUB8 8809 -0.90214 0.42626

Extrapolated CCM - -0.90247 0.42054

3rd order SWT [105] - -0.9025 0.4227

The Tables 2.1 and 2.2 indicate that the extrapolated CCM results for the ground-
state energy and the sublattice magnetization of the spin-1/2 square-lattice and simple-
cubic lattice are more accurate estimates than the results which are published in
Ref. [89,95]. We also see from Tables 2.1 and 2.2 that the new results are in excellent
agreement with the results of third-order SWT [105] and QMC [117,118].





Chapter 3

Quantum phase transitions in 2D unfrustrated

Heisenberg antiferromagnet - J–J ′ model

3.1. Introduction

The zero-temperature properties of low-dimensional quantum spin systems and the
location and character of ground-state instabilities (critical points) as some parame-
ter in the Hamiltonian is varied represent fundamental problems in condensed matter
theory. The recent experimental results on spin-half Heisenberg antiferromagnets like
SrCu2(BO3)2 [12,13] and CaV4O9 [14,15] have stimulated the search for systems with
disordered liquid-like magnetic ground states. In quantum systems a direct competi-
tion between bonds also exists which may lead to local singlet formation on certain
antiferromagnet bonds (or plaquettes of four spins) if these bonds are increased in
strength. By tuning the degree of competition zero-temperature order-disorder phase
transitions can be realized.

A widely studied model describing competition without frustration and showing the
’melting’ of semi-classical Néel order by local singlet formation is the HAFM on the
square lattice with two non-equivalent nearest-neighbor bonds J and J ′ (J–J ′ model)
[18–20, 91, 119–123]. In these papers on the J–J ′ model the extreme quantum case
s = 1/2 is considered and the competition can be tuned by variation of the exchange
bond J ′. One finds a second-order transition from the quasi-classically Néel ordered
phase to a dimerized singlet phase at J ′c ≈ 2.5 . . . 2.9J . It was argued in [120,121] that
the quantum phase transition is of the same universality class as the thermal phase
transition of three-dimensional classical Heisenberg model. However, very recently by
QMC [122] it has been found that the spin-half J–J ′ model may belong to a new
universality class. The strength of quantum fluctuations within this model can be
varied either by anisotropy or by spin quantum number. Indeed its was found in [121]
for the J–J ′ model that the critical J ′c for the XY model is significantly larger than for
the spin rotationally invariant Heisenberg model. The role of Ising exchange anisotropy
∆I and of the spin quantum number s was not systematically studied. Some results
for spin models with s = 1 can be found e.g., in [120,124].

23
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3.2. The Model

We consider the J–J ′ model on a square lattice, i.e. a HAFM with two kinds of antifer-
romagnet nearest-neighbor bonds J and J ′ (see Fig. 3.1) described by the Hamiltonian

H = J
∑
<ij>1

(
sxi s

x
j + syi s

y
j + ∆szi s

z
j

)
+ J ′

∑
<ij>2

(
sxi s

x
j + syi s

y
j + ∆szi s

z
j

)
. (3.1)

The sums over < ij >1 and < ij >2 run over the two kinds of nearest-neighbor bonds,
respectively (cf. Fig. 3.1). We consider spin operators s2

i = s(s + 1) of spin quantum
number s = 1/2, 1, 3/2 and 2. We also split the square lattice into the equivalent A
and B sublattices shown in Fig. 3.1. Each square-lattice plaquette consists of three
J bonds and one J ′ bond. In the case of ferromagnetic J ′ bonds (i.e., J ′ < 0), the
plaquettes are frustrated. Conversely, for antiferromagnet J ′ bonds (i.e., J ′ > 0)
there is no frustration in the system. This model for s = 1/2 has been studied
previously using perturbation theory [19], renormalized spin wave theory (RSWT)
[119], and exact diagonalization (ED) [125]. Recently, for this model has been studied
the influence of local singlet formation (J ′ > 1) and frustration (J ′ < 1) on the stability
of the Nèel order (see i.e., Ref. [18, 20]). We note that the case of antiferromagnet
J ′ bonds with J ′ > J > 0 resembles the situation in bilayer systems and in the
depleted square lattice antiferromagnet CaV4O9, in which the competition between
two different antiferromagnet bonds leads to a phase transition from antiferromagnet
LRO to quantum disorder with a finite gap. There are some special cases of the model
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Figure 3.1.: Illustration of arrangement of bonds in the J−J ′ model on the square lattice (Eq.(3.1)):
J – dashed lines; J ′ – solid lines; A and B characterize the two sublattices of the classical Néel ground
state. .

Hamiltonian of Eq.(3.1) with ∆ = 1:
(i) J ′ = 1: square-lattice antiferromagnet, for which the ground state is long-range
ordered; (ii) J ′ = 0: honeycomb-lattice antiferromagnet, for which the ground state is
the long-range ordered; (iii) J ′ = −∞: spin-1 triangle lattice, for which the ground
state is long-range ordered; and (iv) J ′ = +∞: valence-bond solid, for which the
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ground state is a rotationally invariant quantum dimer state with an excitation gap.

3.3. Influence of Ising-anisotropy

We investigate the influence of the Ising anisotropy on the zero-temperature magnetic
order-disorder transition for the J − J ′ spin-half XXZ antiferromagnet on the square
lattice (Eq.(3.1)), using the coupled cluster method (CCM), a variational mean-field
like approach (MFA) and exact diagonalization (ED). We consider antiferromagnet
bonds J ′ ≥ J > 0, i.e. there is no frustration in the model. In what follows we set
J = 1 and consider the Ising anisotropy ∆ ≥ 1 and J ′ as the parameters of the model.
Since there is no frustration the classical ground state is the two-sublattice Néel state.

3.3.1. Variational mean-field approach

For the square-lattice antiferromagnet (J = J ′) the ground state is Néel ordered. The
corresponding uncorrelated mean-field state is the Néel state

|φMF1〉 = |↑〉|↓〉|↑〉|↓〉 . . . .

In the limit J ′ → ∞ and for finite ∆ the ground state approaches a rotationally
invariant product state of local pair singlets (valence-bond state)

|φMF2〉 =
∏
i∈A

{| ↑i〉| ↓i+x̂〉 − | ↓i〉| ↑i+x̂〉} /
√

2 ,

where i and i + x̂ correspond to those sites which cover the J ′ bonds. In order to
describe the transition between both states, we consider an uncorrelated product state
of the form [16,18]

|Ψvar〉 =
∏
i∈A

1√
1 + t2

[| ↑i↓i+x̂〉 − t| ↓i↑i+x̂〉]. (3.2)

The trial function |Ψvar〉 depends on the variational parameter t and interpolates
between the valence-bond state |φMF2〉 realized for t = 1 and the Néel state |φMF1〉
realized for t = 0. By minimizing Evar = 〈Ψvar|H|Ψvar〉 with respect to the variational
parameter t we obtain

Evar
N

=

{
− 1

24∆
(J ′2 + 3∆2J ′ + 9∆2) for J ′ ≤ 3∆

−1
8
J ′(∆ + 2) for J ′ > 3∆ .

(3.3)
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The relevant order parameter describing the Néel order is the sublattice magnetization

Ms = 〈Ψvar|szi∈A|Ψvar〉 =

{
1
2

√
1− (J ′/3∆)2 for J ′ ≤ 3∆

0 for J ′ > 3∆.
(3.4)

Ms vanishes at the critical value J ′c = 3∆J . The corresponding critical index is the
mean-field index 1/2. Eq. (3.3) may be rewritten in terms of Ms as

Evar/N = −1

8
J ′∆− 1

4
J ′
√

1− 4M2
s −

3

2
∆M2

s . (3.5)

We expand Evar up to the fourth order in Ms near the critical point and we find a
Landau-type expression, given by

Evar/N = −1

8
J ′(∆ + 2) +

1

2
(J ′ − 3∆)M2

s +
1

2
J ′M4

s . (3.6)

3.3.2. Coupled cluster method

We apply a high-order CCM approach (for details see Chap.2) to the above model, and
we choose the Néel state, in which the spins lie along the z-axis, to be the model state.
Furthermore, we perform a rotation of the local axes of the up-pointing spins by 180o

about the y axis, so that spins on both sublattices may be treated equivalent. After
this transformation we have |Φ〉 = | ↓〉| ↓〉| ↓〉| ↓〉 · · · . Using the lattice symmetries,
we have now to find all different possible configurations with respect to the point
and space group symmetries of both the lattice and Hamiltonian with up to n spins
spanning a range of no more than n adjacent lattice sites (LSUBn approximation,
Sec. (2.2.3)) and these are referred to as the fundamental configurations.

The Hamiltonian of Eq.(3.1) has four lattice point-group symmetries namely two
rotational operations (0o, 180o) and two reflections (along the x- and y-axes), defined
by:

x → x, y → y; x → −(x+ 1), y → −y,

x → x, y → −y; x → −(x+ 1), y → y.

The rotation of 180o and the reflection along the y-axis are connected by a shift
of (x̂ = (1, 0)). To improve the results it is useful to extrapolate the ’raw’ CCM-
LSUBn results to the limit n → ∞. In order to determine the critical point J ′c
where Ms(∞) vanishes we use the extrapolation scheme of Eq. (2.43). The values
for J ′c obtained by extrapolation of the LSUBn results for Ms are, however, found to
be slightly too large [18]. We may also consider the inflection points of the Ms(J

′)
curve for the LSUBn approximation, assuming that the true Ms(J

′) curve will have
a negative curvature up to the critical point. We might expect that (for increasing
n) the inflection point J ′inf approaches the critical point J ′c. Thus determining the
inflection points for the LSUBn approximation again we can extrapolate to the limit
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n → ∞ using a scaling law of Eq. (2.43) and interpret J ′inf (∞) as the critical value
J ′c.
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Figure 3.2.: Sublattice magnetization Ms versus J ′ obtained by CCM LSUBn with n = 2, 4, 6, 8
for ∆ = 1 and its extrapolated values to n → ∞ using two different extrapolation schemes, namely
according to Eq. (2.43)(extrapol 1) and to Eq. (2.45) (extrapol 3).

To illustrate the behaviour of the order parameter’s dependence on J ′ we present
Ms(J

′) calculated by CCM (Fig. 3.2, 3.3) and the resulting extrapolated values for
a particular values of Ising anisotropy ∆ = 1, 2. For the isotropic Heisenberg case
(∆ = 1) [18] the critical value J ′c = 3.4 predicted by extrapolation of LSUBn results
according to Eq. (2.43) is found to be slightly large. But the results of inflection
point J ′c = J ′inf (∞) = 2.54 are in good agreement with results of series expansions,
exact diagonalization and quantum Monte Carlo(QMC) [18, 19, 122]. To get a better
estimation for the critical value we use extrapolation scheme Eq. (2.45) for the order
parameter and we find J ′c = 2.8(see Fig. 3.2) which is indeed in a better agreement
with the results obtained by other approximations [18,19,122].

From the extrapolated order parameters one gets the critical values for ∆ = 2:
J ′c = 6.46 (CCM) and J ′c = 4.97 (ED). The mean-field value is J ′c = 6. The inflection
points of the Ms(J

′) curves in Fig. 3.3 are J ′inf (n) = 5.57 (LSUB2), 5.42 (LSUB4),
5.26 (LSUB6), 5.11 (LSUB8) leading to an extrapolated value of J ′c = J ′inf (∞) = 4.66.
As mentioned above, the extrapolation of the CCM results of the order parameter
tends to overestimate the critical value and yields the largest J ′c. This is connected
with the change of the curvature in the Ms-J

′ curve in the vicinity of the critical
point, cf. Fig. 3.3. Therefore the critical value J ′c taken form the inflection points
seems to be more realistic. Obviously, the difference in J ′inf between the LSUBn
approximations is small and the extrapolated value is quite close to the value for
LSUB8. This statement holds for all values of ∆. E.g. for ∆ = 4 one finds J ′inf = 10.37
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Figure 3.3.: Sublattice magnetization Ms versus J ′ for ∆ = 2 using coupled cluster method (CCM),
see Chap.2.

(LSUB2), 10.29 (LSUB4), 10.13 (LSUB6), 9.94 (LSUB8) leading to an extrapolated
value of J ′c = J ′inf (∞) = 9.41.
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Figure 3.4.: Order parameter versus J ′ for ∆ = 2 using exact diagonalization of finite lattices of
different sizes N , see text.

3.3.3. Exact diagonalization

In addition to the variational mean-field approach and the CCM we use ED to cal-
culate the order parameter, see Fig. 3.4. We consider finite square lattices of N =
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8, 10, 16, 18, 20, 26, 32 sites and employ periodic boundary conditions. The relevant or-
der parameter for finite systems is the square of the sublattice magnetization M2

s , here
defined as M2

s = 〈[ 1
N

∑N
i=1 τisi]

2〉 with the staggered factor τi∈A = +1, τi∈B = −1. For
the finite-size scaling of M2

s we use the standard three-parameter formula [126–129]
M2

s (N) = M2
s (∞)+c1N

−1/2 +c2N
−1. The critical value J ′c is that point where M2

s (∞)
vanishes.

3.3.4. Phase diagram

Our results for the critical point J ′c(∆) obtained by MFA, CCM and ED are collected
in Fig. 3.5. We find that the CCM results obtained by the extrapolation of the order
parameter are in good agreement with the MFA data. On the other hand, there is
an excellent agreement between the CCM results obtained by the extrapolation of
the inflection points and the ED results obtained by the extrapolation of the order
parameter. Clearly we see indications for a linear increase in J ′c as predicted by mean-
field theory. We mention that the curves shown in Fig. 3.5 cannot be extrapolated to
∆ < 1. Similar to the effect of the Ising anisotropy (∆ > 1) one rather expects an
increase of J ′c due to XY anisotropy, i.e. for 0 ≤ ∆ < 1. Indeed for the pure XY J−J ′
model (∆ = 0) the critical value was estimated to J ′c = 4.56J [121]. In summary,
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Figure 3.5.: The critical points J ′c versus anisotropy parameter ∆ using mean-field approach (MFA),
CCM with extrapolation of the order parameter (CCM I), CCM with extrapolation of the inflection
points (CCM II) and exact diagonalization (ED).

we have studied the zero-temperature magnetic ordering in a square-lattice spin-half
anisotropic Heisenberg (XXZ) model with two kinds of nearest-neighbor exchange
bonds J and J ′, see Fig. 3.1. In particular we discuss the influence of the Ising
anisotropy ∆ on the position of the quantum critical point J ′c separating the phase
with semi-classical Néel order (J ′ < J ′c) and the quantum paramagnetic phase without
magnetic long-range order (J ′ > J ′c). For this we calculate the order parameter within a
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variational mean-field approach, the coupled cluster method and exact diagonalization
of finite lattices up to N = 32 sites. We find in good approximation a linear relation
J ′c(∆) ∝ α∆ (∆ ≥ 1) with α ∼ 2.3 . . . 3.0. This result can be attributed to the
reduction of quantum spin fluctuations with increasing Ising anisotropy. In the pure
Ising limit (∆→∞) the only remaining z−z terms in the Hamiltonian (3.1) commute
with each other, i.e. no quantum spin fluctuations are present and, consequently, the
critical point disappears in the pure Ising limit.

3.4. Influence of the spin quantum number

In this section we study the ground state phase transition between a Néel ordered
phase and a dimerized singlet phase of the model(3.1) with spin quantum number
s = 1/2, 1, 3/2 and 2 using a variational mean-field like approach (MFA), the coupled
cluster method (CCM) and exact diagonalization (ED) of finite systems. We set J = 1,
∆ = 1 and consider J ′ ≥ 1 as the parameter of the model.

3.4.1. Variational mean-field approach (MFA)

We set J = 1, ∆ = 1 and consider J ′ ≥ 1 as the parameter of the model. Using
the MFA we calculate the ground-state magnetic order parameter of the J–J ′ model
(3.1). For the spin half HAFM this approach has been successfully applied to bilayer
systems [16], to the isotropic [3, 18] and anisotropic [91] J–J ′ model on the square
lattice and on the 1/5 depleted square lattice for CaV4O9 [1], but also on the strongly
frustrated HAFM on the star lattice [130]. In this section we extent the basic ideas of
this approach to higher spin quantum numbers s = 1, 3/2 and 2. We start with the
two uncorrelated mean-field like states, namely the Néel state |φMF1〉 = |+ s〉| − s〉|+
s〉|−s〉 . . . and the dimerized rotationally invariant singlet product state (valence-bond
state) |φMF2〉 =

∏
<ij>2

|{i, j}s〉, where the product runs over all J ′ bonds, cf. (3.1).
|{(i, j)}s〉 in |φMF2〉 is a singlet state of two spins s, i.e. we have

|{i, j}s=1/2〉 =
1√
2

[
|+ 1

2
〉| − 1

2
〉 − | − 1

2
〉|+ 1

2
〉

]
(3.7)

|{i, j}s=1〉 =
1√
3

[
|+ 1〉| − 1〉 − |0〉|0〉+ | − 1〉|+ 1〉

]
(3.8)

|{i, j}s=3/2〉 =
1

2

[
|+ 3

2
〉| − 3

2
〉 − |+ 1

2
〉| − 1

2
〉+ | − 1

2
〉|+ 1

2
〉 − | − 3

2
〉|+ 3

2
〉

]
(3.9)

|{i, j}s=2〉 =
1√
5

[
|+ 2〉| − 2〉 − |+ 1〉| − 1〉+ |0〉|0〉 − | − 1〉|+ 1〉+ | − 2〉|+ 2〉

]
.

(3.10)
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In order to describe the transition between both states we consider for the different
spin quantum numbers respective uncorrelated product trial states of the form

|Ψs=1/2
var 〉 =

∏
<ij>2

1√
1 + a2

[
|+ 1

2
〉| − 1

2
〉 − a| − 1

2
〉|+ 1

2
〉

]
(3.11)

|Ψs=1
var 〉 =

∏
<ij>2

1√
1 + b2

1 + b2
2

[
|+ 1〉| − 1〉 − b1|0〉|0〉+ b2| − 1〉|+ 1〉

]
(3.12)

|Ψs=3/2
var 〉 =

∏
<ij>2

1√
1 + c2

1 + c2
2 + c2

3

[
|+ 3

2
〉| − 3

2
〉 − c1|+

1

2
〉| − 1

2
〉

+c2| −
1

2
〉|+ 1

2
〉 − c3| −

3

2
〉|+ 3

2
〉

]
(3.13)

|Ψs=2
var 〉 =

∏
<ij>2

1√
1 + d2

1 + d2
2 + d2

3 + d2
4

[
|+ 2〉| − 2〉 − d1|+ 1〉| − 1〉

+d2|0〉|0〉 − d3| − 1〉|+ 1〉+ d4| − 2〉|+ 2〉

]
, (3.14)

where in the two-spin states |n〉|m〉 the first bra vector belongs to site i and the second
to site j of a J ′ bond. The trial wavefunctions depend on the variational parameters a;
b1, b2; c1, c2 c3; d1, d2, d3, d4 and interpolate between the valence-bond state |φMF2〉
realized for a = 1; b1 = b2 = 1; c1 = c2 = c3 = 1; d1 = d2 = d3 = d4 = 1 and the
Néel state |φMF1〉 for a = 0; b1 = b2 = 0; c1 = c2 = c3 = 0; d1 = d2 = d3 = d4 = 0,
respectively. The ground-state energy per site esvar = 〈Ψs

var|H|Ψs
var〉/N is calculated

as

es=1/2
var (a) = −J

′

2

a+ 1
4
(1 + a2)

1 + a2
− 3

2

(1− a2)2

4(1 + a2)2
(3.15)

es=1
var (b1, b2) = −J

′

2

2b1 + 2b1b2 + 1 + b2
2

1 + b2
1 + b2

2

− 3

2

(1− b2
2)2

(1 + b2
1 + b2

2)2
(3.16)

es=3/2
var (c1, c2, c3) = −J

′

2

3c1 + 4c1c2 + 3c2c3 + 1
4
(9 + c2

1 + c2
2 + 9c2

3)

1 + c2
1 + c2

2 + c2
3

−3

2

(3 + c2
1 − c2

2 − 3c2
3)2

4(1 + c2
1 + c2

2 + c2
3)2

(3.17)

es=2
var (d1, d2, d3, d4) = −J

′

2

4d1 + 6d1d2 + 6d2d3 + 4d3d4 + d2
1 + 4 + d2

3 + 4d2
4

1 + d2
1 + d2

2 + d2
3 + d2

4

−3

2

(2 + d2
1 − d2

3 − 2d2
4)2

(1 + d2
1 + d2

2 + d2
3 + d2

4)2
. (3.18)
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The relevant order parameter describing the Néel order is the sublattice magnetization
M = 〈Ψs

var|szi∈A|Ψs
var〉. Using Eqs. (3.11), (3.12), (3.13), (3.14) we obtain

Ms=1/2(a) =
1− a2

2 + 2a2
(3.19)

Ms=1(b1, b2) =
1− b2

2

1 + b2
1 + b2

2

(3.20)

Ms=3/2(c1, c2, c3) =
3 + c2

1 − c2
2 − 3c2

3

2(1 + c2
1 + c2

2 + c2
3)

(3.21)

Ms=2(d1, d2, d3, d4) =
2 + d2

1 − d2
3 − 2d2

4

1 + d2
1 + d2

2 + d2
3 + d2

4

. (3.22)

We minimize E = 〈Ψvar|H|Ψvar〉 with respect to the variational parameters. As a
result we obtain an analytic expression for a in the case of s = 1/2, but a set of
two, three and four coupled nonlinear equations for s = 1, 3/2 and 2 to determine
the variational parameters. As reported in [3, 18] the sublattice magnetization for
s = 1/2 is Ms=1/2(J ′) = 1

2

√
1− (J ′/3)2 for J ′ ≤ 3 but zero for J ′ > 3. Furthermore,

one can express the ground-sate energy as a Landau-type function of M , e
s=1/2
var =

−3
8
J ′+ 1

2
(J ′−3)M2+ 1

2
J ′M4, indicating the molecular field-like nature of the approach.

For s = 1, 3/2 and 2 we have to solve the corresponding set of nonlinear equations
numerically. We show M(J ′) in Fig. 3.6. M(J ′) vanishes at a critical point J ′c = 3
(s = 1/2), J ′c = 8 (s = 1), J ′c = 15 (s = 3/2), J ′c = 24 (s = 2), respectively. The
corresponding critical index is the mean-field index 1/2.
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Figure 3.6.: Sublattice magnetization M/s versus J ′ calculated by the variational mean-field like
approach (MFA), see text.

The sequence of critical points for s = 1/2, . . . , 2 are precisely described by Jc(s) =
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4
3
s(s+1)(z−1), where z = 4 is the coordination number of the square lattice. Although

we do not have results for s > 2, we argue that due to the systematic character of the
MFA approach it seems to be likely that this expression is also valid for s > 2.

3.4.2. Coupled cluster method

In principle it is possible to apply the CCM for arbitrary spin quantum number s.
However, within the used SUBn-n (Sec. 2.2.3) approximation scheme for higher s
additional problems appear, namely
(i) the number of fundamental configurations (lattice animals) NF increases with s,
which makes the calculations on a certain level of approximation n more ambitious
and
(ii) the total number of basis states grows drastically with s according to sN and as a
consequence the SUBn-n approximation may become less reliable.
While the latter point is irrelevant for systems where the quantum ground state is
close to the reference state (i.e. in our model in the case of well-pronounced Néel
order) it becomes relevant if the quantum ground state is far from the reference state
(i.e., in our model when Néel order breaks down). Hence the results for higher spin
quantum numbers must be taken with extra care. We have calculated CCM results
within the SUBn-n approximation for n = 2, 4, 6 for s = 1/2, 1, 3/2 and 2. For spin
1/2 results for n = 8 are also available (see [18, 91]). First we report again the values
for J ′c for spin s = 1/2 (see also [18, 91] and Sec. 3.3.2). The extrapolation of the
SUBn-n data for M with n = 2, 4, 6 as described above leads to J ′c ≈ 3.5. However,
as discussed above the extrapolation of the order parameter tends to overestimate J ′c
(note that J ′c obtained this way is even larger than the value found within MFA) and
the extrapolation of the inflection point is favorable. We found as inflection points of
the Ms(J

′) curves J ′inf (n) = 3.60 (SUB2−2), 3.33 (SUB4−4), 3.13 (SUB6−6) leading
to an extrapolated value of J ′c = J ′inf (∞) = 2.56. We mention that the consideration
of SUB8−8 data leads to a slight modification of J ′c to J ′c = J ′inf (∞) = 2.54, only.

We now consider the case s = 1, where the results for the order parameter M are
giving in Fig. 3.7. Clearly we see the weakening of the magnetic order by increasing
J ′. The extrapolation of the SUBn-n data for M with n = 2, 4, 6 leads to J ′c ≈ 11.7,
i.e. we get the same tendency as for the variational MFA, that J ′c increases with s.
Again the extrapolation of the order parameter leads to an overestimation of J ′c. This
overestimation is connected with the change in the sign of curvature of M(J ′) seen in
Fig. 3.7. The favorable extrapolation of the inflection points leads to J ′c = J ′inf (∞) ≈
6.4, where the inflection points for the different levels of SUBn-n approximations are
J ′inf (n = 2) = 3.93, J ′inf (n = 4) = 6.04, J ′inf (n = 6) = 6.36.

Finally, we consider spin s = 3/2 and s = 2. The results for the extrapolated sublat-
tice magnetization for spin values s = 1/2, 1, 3/2 and 2 using SUBn-n approximation
for n = 2, 4, 6 are shown in Fig. 3.8. Evidently the sublattice magnetization M/s
increases with s demonstrating the decreasing influence of quantum fluctuations with
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Figure 3.7.: Sublattice magnetization M/s versus J ′ for spin quantum number s = 1 using coupled
cluster method (CCM)

Table 3.1.: CCM results for the ground state of the Heisenberg antiferromagnet on the square lattice
with spin quantum number s = 3/2 and s = 2 using the SUBn-n approximation with n = {2, 4, 6}.
Note that NF indicates the number of fundamental clusters at each level of approximation. For
comparison we present the results of the second-order spin wave theory (SWT) [131].

S = 3/2 S = 2

NF Eg/N M/S NF Eg/N M/S

SUB2-2 1 −4.943927 0.936174 1 −8.593510 0.950368

SUB4-4 15 −4.976427 0.910266 15 −8.633108 0.93109

SUB6-6 461 −4.982685 0.89816 461 −8.640356 0.922284

SUB∞ – −4.9878 0.8687 – −8.6461 0.9011

SWT – −4.9862 0.8692 – −8.6442 0.9018

growing spin quantum number. The critical value for s = 3/2 is obtained as J ′c ≈ 18.5
which is again too large in comparison to the MFA result. The extrapolation of the
inflection points leads to J ′c ≈ 10.9. Note that we have calculated M using the CCM
up to J ′ = 100 for s = 2. However, we were unable to find a vanishing M (i.e., the
critical value J ′c obtained by extrapolation of the order parameter would be larger than
100.) Results for the point of inflection of M were similarly contradictory, and so the
results for the position of the phase transition point predicted by the CCM for s = 2
are not included here.

We conclude that the CCM SUBn−n approximation is inappropriate to describe
the quantum phase transition correctly for higher spin values (namely, s > 3/2) at
the levels of approximation currently available for present-day computers. However,
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we do observe that the tendency for critical value J ′c to increase with growing s is
observed using the CCM for s ≤ 3/2, as expected. This problem of reliability might
be resolved by going to higher orders of truncation index n, although we note that
the computational problem is very difficult (e.g., with NF = 108033 for SUB8-8 for
s = 3/2) and so this is not considered here. We note that LSUBn calculations do
not place a restriction on the total number of spin flips used in the CCM correlation
operators, although the fundamental clusters are restricted to remain within a locale
defined by n. However, this again leads to an extremely large number of fundamental
clusters even for low values of n and for higher spin quantum numbers, and so LSUBn
is not considered here. Mean-field model states (e.g., based on the variational states
in Sec. 3) might also provide enhanced results for the CCM.

As a byproduct we also present in Table 5.1 the results for the sublattice magnetiza-
tion M/s for higher spin values for the pure square lattices (J ′ = 1), which are so far
not calculated within CCM. We point out that for the pure square lattice the results
for M are expected to be quite reliable, since the true quantum ground state is close
to the reference state used as starting point. This is indeed confirmed by comparison
with high precision second-order spin wave results [131] also presented in Table 5.1.
We mention that due the reduced symmetry the number of fundamental configura-
tions NF increases in case of J ′ 6= J . For SUB6−6 we find NF = 267, 1420, 1744, 1744
for s = 1/2, 1, 3/2 and 2, respectively. Note that NF for s = 3/2 and s = 2 is equal
only up to SUB6−6 but differs for higher levels of approximation. For completeness
we also give the sublattice magnetization for s = 1/2: M/s = 0.63 (note that this
value can be improved by also considering SUB8−8 for the extrapolation, which yields
M/s = 0.62 [89]) and for s = 1: M = 0.81 (see also [132]).
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Figure 3.8.: Extrapolated sublattice magnetization M/s versus J ′ for various spin quantum numbers
s using coupled cluster method (CCM)
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3.4.3. Exact diagonalization
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Figure 3.9.: Sublattice magnetization M/s versus J ′ for spin quantum number s = 1 using exact
diagonalization of finite lattices of N = 8, 10, 16, see text.

In order to compare with the MFA and the CCM results, we use the exact diago-
nalization Lanczos technique to calculate the order parameter for finite square lattices
with periodical boundary conditions. We calculate the square of the sublattice mag-
netization M2 (see subsec. 3.3.3) For the finite-size scaling of M2 we use the standard
three-parameter formula (see subsec. 3.3.3). The critical value J ′c is that point where
M2(∞) vanishes. Again we are faced with the problem, that the method becomes less
reliable for larger quantum numbers s. While for s = 1/2 one can calculate the GS
for the J–J ′ model up to N = 32 [18,91,121] sites one is restricted to lattices of up to
N = 20 for s = 1, up to N = 16 for s = 3/2 and up to N = 10 for s = 3/2. Since for
s = 2 we have only two lattices (N = 10 and N = 8) with the full lattice symmetry,
we do not consider s = 2 within ED. To treat all three cases in a consistent way we
consider only N = 8, 10, 16 for s = 1/2, 1, 3/2. It is clear that the resulting finite-size
extrapolation remains quite poor and allows only some qualitative conclusions. We
present for illustration the results for the order parameter M for s = 1 in Fig. 3.9. The
critical values obtained by finite size extrapolation of M are: J ′c ≈ 2.2 for s = 1/2,
J ′c ≈ 5.5 for s = 1 and J ′c ≈ 10.1 for s = 3/2. These data confirm the tendency found
by MFA and CCM that the increase of J ′c with s is stronger than linear.

3.4.4. Phase diagram

To investigate the ground-state phase diagram of the 2D J–J ′ model with general spin
quantum number, we calculate the magnetic order parameter by means MFA, CCM,
and ED. In particular, we have studied the influence of the spin quantum number s



3.4 Influence of the spin quantum number 37

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5

J’
c

s

MFT
CCM I

ED
CCM II

Figure 3.10.: The critical value J ′c versus spin quantum number s obtained by different methods.
MFA: variational mean-field approach (see Sec. 3.4.1); CCM I: coupled cluster method (extrapolation
of the order parameter, see Sec. 3.3.2); CCM II: coupled cluster method (extrapolation of the
inflection point, see Sec. 3.3.2); ED: exact diagonalization (see Sec. 3.4.3).

on the quantum critical point J ′c. Our results for J ′c are presented in Fig. 3.10, and
we note that a transition from a semi-classically Néel ordered phase to a magnetically
disordered phase occurs at this point. Obviously, there is an increase of J ′c with s
signaling the diminishing of quantum effects. We have presented evidence that the
critical value J ′c increases with growing s according to J ′c ∝ s(s + 1). We note that
some of the results presented in this chapter are published in.1 2

1R. Darradi, J. Richter and S.E. Krüger, ”The influence of Ising anisotropy on the zero-temperature
phase transition in the square lattice spin-1/2 J-J’ model” , J. Phys.: Condens. Matter 16,
2681-2687 (2004)

2R. Darradi, J. Richter and J.J. Farnell, ”Influence of the spin quantum number S on the zero-
temperature phase transition in the square-lattice J-J’ model” , J. Phys.: Condens. Matter 17,
341-350 (2005)





Chapter 4

The quantum ground state phase diagram of the

Shastry-Sutherland model

Quantum phase transitions between semiclassical magnetically ordered phases and
magnetically disordered quantum phases which are driven by frustration attract much
interest, see, e.g., Ref. [2]. In particular, frustration may lead to the breakdown of semi-
classical Néel LRO in 2D quantum antiferromagnets. There are a variety of models
which are known to exhibit the so-called frustration effects. A typical model is the
Shastry-Sutherland antiferromagnet introduced in the eighties [74], which has special
arrangement of frustrating next-nearest-neighbor J2 bonds on the square lattice, cf.
Fig. 4.2. We note that for bonds of equal strength, i.e., J1 = J2, the Shastry-Sutherland
model is equivalent to a Heisenberg model on one of the eleven uniform Archimedean
lattices [1]. Although the initial motivation to study this special frustrated square-
lattice antiferromagnet is related to the existence of a simple singlet-product eigenstate
(which becomes the ground state (GS) for strong frustration), the renewed interest
in the last years was stimulated by the discovering of the new quantum phase in
SrCu(BO3)2 [14,75] which can be understood in terms of the Shastry-Sutherland model
(see Fig. 4.1). Although the GS of this model in the limit of small frustration J2 and
large J2 is well understood, the GS phase at moderate J2 is still a matter of discussion.

Figure 4.1.: Lattice structure of the Cu2+ spins closed circle of SrCu(BO3)2. The dashed and solid
lines represent the nearest-neighbor bonds J1 and next-nearest-neighbor bonds J2 respectively.
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4.1. Model

The Shastry-Sutherland model is a spin-1
2

Heisenberg model on a square lattice with
antiferromagnetic nearest-neighbor bonds J1 and with one antiferromagnetic diagonal
bond J2 in each second square (see Fig. 4.2). It is described by the Hamiltonian

H = J1

∑
〈i,j〉

si · sj + J2

∑
{i,k}

si · sk, (4.1)

where the operators si represent spin-half operators, i.e., si = s(s + 1) with s = 1/2.
The sums over 〈i, j〉 and {i, k} run over all nearest-neighbor bonds and over some of
the next-nearest-neighbor bonds according to the pattern shown in Fig. 4.2. Due to
the special arrangement of the J2 bonds the unit cell contains four sites. Therefore it
is convenient to split the square lattice into four equivalent sublattices A, C, B and
D as shown in Fig. 4.2. It what follows we set J1 = 1 and consider J2 > 0 as the
parameter of the model.

4.2. The classical ground state
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Figure 4.2.: Illustration of the Shastry-Sutherland model on the square lattice (Eq. (4.1)). The
antiferromagnetic NN bonds J1 = 1 and NNN bonds J2 are represented by solid and dashed lines.

To discuss the influence the quantum fluctuations on the ground-state (GS) prop-
erties of the model we need to know the Classical GS of Eq. (4.1). The Classical spin
(of length s) sitting at cell R of the Bravais lattice on sublattice A, B, C, and D is
given by:

SR,n = S
[
~e1 cos( ~Q~R + ϕn) + ~e2 sin( ~Q~R + ϕn)

]
, (4.2)
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where ϕn is given by

ϕn =

{
θ2,3,4 for n = 2, 3, 4

0 for n = 1 ,
(4.3)

and ~e1 and ~e2 are arbitrary orthogonal unit vectors, and ~Q is spiral wave-vector. The
spin orientations at A, B, C, and D lattice sites are defined by the angles 0, θ2, θ3 and
θ4 respectively. Using Eq. (4.2) the classical ground state energy is given by

Ecl = J1NS
2
[
cos(θ2) + cos(θ4) + cos( ~Q~a1 − θ2) + cos( ~Q~a2 − θ4) + cos(θ3 − θ2)

]
+J1NS

2
[
cos( ~Q~a2 + θ2 − θ3) + cos( ~Q~a1 + θ4 − θ3) + cos(θ3 − θ4)

]
+J2NS

2
[
cos( ~Q~a1 + θ4 − θ2) + cos( ~Q~a2 − θ3)

] (4.4)

where ~a1 = (1, 0) and ~a2 = (0, 1) are the Bravais lattice vectors. The numerical

solution of ~Q~a1, ~Q~a2, θ2, θ3, and θ4 correspond to the relations θ2 = θ4, θ3 = ~Q~a1, and
~Q~a2 = 0. We substitute the values of θ2 = θ4 = π + φ, ~Q~a2 = 0, and θ3 = ~Q~a1 = 2φ
with ~Q = (2φ, 0) in Eq. (4.4) we get a simple form of classical energy which given by

Ecl/NS
2 = −8J1 cos(φ) + 4J2 cos2(φ)− 2J2 . (4.5)

By minimizing Eq. (4.5) with respect to the parameter φ we find that the classical
(i.e., s→∞) GS of the Shastry-Sutherland model is given by

φ =

{
0 J2/J1 ≤ 1

π − arccos(−J1/J2) J2/J1 > 1
. (4.6)

We note that for φ = 0 the spiral state becomes the collinear Néel state classically.
The transition from the collinear Néel to noncollinear spiral state is of second order
and takes place at J2/J1 = 1. We note further that there are only two different angles
between interacting spins (see Fig. 4.3), namely, φ+ π for the J1 couplings and 2φ for
the J2 couplings.

4.3. The quantum ground state

The quantum s = 1/2 version of the model has been treated previously by various
methods like Schwinger boson mean-field theory [133], exact diagonalization [75,134],
series expansions [15, 135–137], renormalization group [138] and also by a gauge-
theoretical approach [139]. A recent review can be found in Ref. [140]. From these
studies one knows that for small J2 ≤ J1 the physics of the quantum model is similar
to that of the classical model, i.e., we have semi-classical Néel order. Furthermore,
one knows already from the early work of Shastry and Sutherland [74] that for large
J2 the quantum GS is a rotationally invariant product state of local pair singlets (so-
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Figure 4.3.: Illustration of the Shastry-Sutherland model with antiferromagnetic NN bonds J1 = 1
(solid lines) and NNN bonds J2 (dashed lines), together with its classical spiral state. The spin
orientations at lattice sites n are given by the angles θ = nφcl, where n = 0, 1, 2, . . . , and φcl is
the characteristic pitch angle of the classical spiral state. The state is shown for φcl = 5π/6 and
n = 0, 1, . . . , 5.

called orthogonal-dimer state) |Ψ〉dimer =
∏
{i,j}J2

[| ↑i〉| ↓j〉 − | ↓i〉| ↑j〉]/
√

2 , where

i and j correspond to those sites which cover the J2 bonds. The energy per site of
this orthogonal-dimer state is Edimer/N = −3J2/8. It becomes the GS at around
J c2 ≈ (1.44 . . . 1.49)J1 (see Table 2 in Ref. [140]). Note that such an orthogonal-dimer
state can be observed also in corresponding one-dimensional and three-dimensional
models [141–145]. The nature of the transition between the semi-classical Néel state
and the orthogonal-dimer phase is still a matter of controversial discussion. In the re-
gion 1.2J1 . J2 . 1.45J1 the main question is whether the system has an intermediate
phase. A direct transition between the Néel phase and the orthogonal-dimer phase is
favored in Refs. [75,135,136,138], whereas in Refs. [133,134,137,139] the existence of
an intermediate phase is found. However, concerning the nature of this intermediate
phase controversial results are reported, as candidates for the intermediate phase are
quantum spiral phases [133, 139] or a plaquette or columnar singlet phases [134, 137]
discussed.

To contribute to the solution of this open problem the CCM is an appropriate
method, since it is one of the methods which can deal with spiral phases in quan-
tum spin models. We apply a high-order CCM approach (for details see Chap. 2) to
this model. We set the classical collinear Néel state (φ = 0) and noncollinear spiral
state (φ 6= 0) to be the reference states |Φ〉. We calculate the ground-state wave-
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function, |Ψ〉 = eS|Φ〉, within the LSUBn approximation scheme. Using the canonical
transformations of Eq. (2.10) the Hamiltonian(4.1) is then rewritten as

H = J1

N∑
〈i,j〉

(1

2
sinϕi,j[ŝ

+
i ŝ

z
j − ŝzi ŝ+

j + ŝ−i ŝ
z
j − ŝzi ŝ−j ] + cosϕi,j ŝ

z
i ŝ
z
j

+
1

4
(cosϕi,j + 1)[ŝ+

i ŝ
−
j + ŝ−i ŝ

+
j ] +

1

4
(cosϕi,j − 1)[ŝ+

i ŝ
+
j + ŝ−i ŝ

−
j ]
)

+ J2

N∑
{i,k}

(1

2
sinϕi,k[ŝ

+
i ŝ

z
k − ŝzi ŝ+

k + ŝ−i ŝ
z
k − ŝzi ŝ−k ] + cosϕi,kŝ

z
i ŝ
z
k

+
1

4
(cosϕi,k + 1)[ŝ+

i ŝ
−
k + ŝ−i ŝ

+
k ] +

1

4
(cosϕi,k − 1)[ŝ+

i ŝ
+
k + ŝ−i ŝ

−
k ]
)
, (4.7)

where the angles ϕi,j ≡ δj − δi, ϕi,k ≡ δk − δi between two nearest-neighbor and next-
nearest-neighbor spins are ϕi,j = π+φ, ϕi,k = −2φ, respectively, and s± ≡ sx± isy are
spin raising and spin lowering operators. We note that the reduction in the number
of fundamental configurations can be made when the z-axis Néel model state is used
in the CCM calculations. This comes about because, although the total uniform
magnetisation szT =

∑
i s
z
i (where szi is defined with respect to a global quantisation

axis and the sum on the index i runs over all lattice sites) is always a good quantum
number independent of the model state used, only the z-axis Néel model state is an
eigenstate of szT . In contrast, the spiral state is not an eigenstate of szT . Therefore, for
the z-axis model state case one can explicity conserve szT by restricting the fundamental
configurations to those which produce no change in szT with respect to the z-axis Néel
model state. This restriction, for example, reduces the number of the fundamental
configurations retained in the LSUB4 approximation to LSUB8 if the z-axis Néel
model state is employed in the CCM calculations.

We calculate the fundamental configurations numerically, and the results of the
numbers of LSUBn configurations for n ≤ 8 are given in Table. (5.1). By using parallel
computing we are able to solve the 20892 equations of the CCM-LSUB8 approximation
for the Néel reference state. However, for the spiral state the current limitations of
computer power allow then solution of the CCM equations up to LSUB6, only.

To detect the existence of intermediate noncollinear spiral phase between collinear
Néel -ordered and orthogonal-dimer phase, we calculate the GS energy as a function
of J2 using as reference state a spiral state as sketched in Fig. 4.3. As quantum
fluctuations may lead to a “quantum” pitch angle that is different from the classical
case, we consider the pitch angle in the reference state as a free parameter. We then
determine the “quantum” pitch angle φqu by minimizing ELSUBm(φ) with respect to
φ in each order n. As for the classical model for small J2 the energy ELSUBm(φ)
has its minimum at φqu = 0, i.e., the quantum GS is the semi-classical collinear Néel
state. Contrary to the classical case, this collinear quantum state can survive into
the region J2 > J1, where classically it is already unstable. This effect is known as
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Table 4.1.: Number of fundamental GS configurations of the LSUBn approximation for the Shastry-
Sutherland model using the Néel state (φ = 0) and the spiral state (φ 6= 0) as the CCM reference
state.

LSUBn Néel state: φ = 0 spiral state: φ 6= 0

2 1 12

4 35 248

6 794 6184

8 20892 166212

-0.529
-0.5285

-0.528
-0.5275

-0.527
-0.5265

-0.526
-0.5255

-0.525
-0.5245

-0.524
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J2=1.56
J2=1.57
J2=1.58
J2=1.59

Figure 4.4.: Ground-state energy versus the pitch angle φ within CCM-LSUB4 approximation for
different values of J2 in the range 1.55 ≤ J2 ≤ 1.59.

order from disorder [146–148] and is widely observed in quantum spin systems, see,
e.g., Refs. [18, 86]. For frustrating couplings J2 & 1.5J2 apart from the minimum
at φ = 0 a second minimum at a finite φ > 0 emerges, which becomes the global
minimum for strong enough J2. This scenario illustrated in Fig. 4.4 is typical for a
first-order transition, i.e., we find indications that quantum fluctuations may change
the nature of the phase transition between the collinear Néel phase to the noncollinear
spiral phase from a second-order classical transition to a first-order quantum transition.
Note that a similar situation can be found in other frustrated spin systems [18, 20].
The “quantum” pitch angle φqu, where ELSUBm(φ) has its global minimum, is shown
in Fig. 4.5. φqu shows a typical jump from φqu = 0 to a finite value. Our data
clearly indicate that the quantum noncollinear spiral phase has lower energy than the
collinear phase only for strong frustration J2 & 1.5J1. Next we compare the energy of
the orthogonal-dimer state |Ψ〉dimer and the energy of the collinear quantum ground



4.3 The quantum ground state 45

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.48  1.5  1.52  1.54  1.56  1.58

α q
u/

π

J2

(a)

LSUB2
LSUB4
LSUB6
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Figure 4.6.: The energy of (i) the collinear quantum ground state as function of J2 obtained by
CCM-LSUBn with n = 4, 6, 8 and its extrapolated value to n → ∞, see Eq. (2.42), and (ii) of the
orthogonal-dimer state.

state (i.e. the reference state |Φ0〉 is the Néel state), see Fig. 4.6. We can postpone
the discussion of the question whether that quantum ground state possesses Néel LRO
or not, since it is possible (starting from the Néel reference state) to calculate the
energy up to high accuracy even in a parameter regime where the Néel order breaks
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down due to quantum fluctuations, i.e. for a magnetically disordered state, see e.g.
Refs. [18, 20, 87, 88, 91, 92]. Our results demonstrate, that the orthogonal-dimer state
has lower energy than the collinear state for J2 & 1.477J1. |Ψ〉dimer remains the
state of lowest energy also in the region where the noncollinear spiral state has lower
energy than the collinear phase. We conclude that there is no intermediate spiral
phase in the quantum model. Our estimate of the critical value Jd2 = 1.477J1 where
the transition to the orthogonal-dimer phase takes place is in good agreement with
other results, cf. Table 2 in Ref. [140]. So far we have discussed mainly the energy of
competing GS phases. The last question we would like to discuss is the question of
the stability of the Nèel LRO in the frustrated regime. For that we calculate the order
parameter (sublattice magnetization) M within the LSUBn approximation scheme up
to n = 8 and extrapolate to n→∞ using three variants of extrapolation as described
in Sect. 3.3.2. The results are shown in Fig. 4.7. The extrapolated data clearly
demonstrate that the LRO vanishes before the orthogonal-dimer state becomes the
GS. The transition from Néel LRO to magnetic disorder is of second order. Hence we
come to the second important statement that there exists an intermediate magnetically
disordered phase. Within the used CCM scheme starting from the Néel reference state
we are able to discuss the nature of the magnetically disordered state preceding the
orthogonal-dimer state (see. Sec. 4.4). Though there are some first attempts to develop
a CCM formalism for magnetically disordered valence bond phases [149], a high level
of approximation is reached currently only starting with Néel or spiral reference states.
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Figure 4.7.: Sublattice magnetization M versus J2 obtained by CCM-LSUBn with n = 4, 6, 8 and
its extrapolated values to n → ∞ using two different extrapolation schemes, namely according to
Eq. (2.43) (extrapol 1), Eq. (2.44) (extrapol 2) and Eq. (2.45) (extrapol 3)
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Obviously, the critical value where J c2 the Néel LRO breaks down depends on the
used extrapolation formula. The extrapolation according to Eq. (2.43) leads accurate
results for M in the unfrustrated (J2 = 0) square-lattice limit and yields J c2 ∼ 1.39J1.
As discussed in Sect. 3.3.2 this extrapolation scheme tends to overestimate the region
of magnetic LRO and indeed the value J c2/J1 = 1.39 is significantly larger than the
corresponding value calculated by series expansion, see Table 2 in Ref. [140]. The
extrapolation according to Eq. (2.44) with a variable exponent c2 is less accurate
in the unfrustrated limit but it seems to be more appropriate to find the position
of the critical point J c2 , since the scaling behavior might be changed at the critical
point. We get J c2 ∼ 1.14J1 which fits well to the corresponding value calculated by
series expansion. In addition to the extrapolation of Eq. (2.44) we use the three-term
scheme of eq. (2.45) and we get J c2 ∼ 1.24J1.

4.4. The plaquette valence bond order in the nonmagnetic phase

The nature of the nonmagnetic GS in the region 1.14J2 . J2 . 1.477J2 is a matter of
some controversy in the literature. A favored candidate is a plaquette singlet phase.
[134,137] To address this question we follow similar reasoning to that used in Ref. [47]
and consider the response of the spin system to a field Fp given by

Fp = δ
∑
x,y

[
(−1)xsx,y · sx+1,y + (−1)ysx,y · sx,y+1

]
, (4.8)

where x, y are components (integer numbers) of the lattice vectors of the square lattice.
This field corresponds to a plaquette valence bond order (as illustrated in the inset
of Fig. 4.8), which breaks the lattice symmetry. Thus, we use the CCM with the
Néel state as reference state to calculate the energy per site e(J1, J2, δ) for H + Fp,
namely the Hamiltonian of Eq. (2.1) perturbed by the additional term of Eq. (4.8).
The susceptibility χp is then defined by Eq. (2.41) [47].

In Fig. 4.6 we present the results for the inverse susceptibility, 1/χp, as a function
of J2. The extrapolation to n→∞ is performed using an extrapolation scheme with
leading power 1/n as in Eq. (2.43). Clearly, in the magnetically ordered Néel phase χp
is finite as it should be. However, close to the transition to the magnetically disordered
phase at J c2 ≈ 1.14J1 the susceptibility becomes very large and diverges at J2 ≈ 1.26J1,
which is close to J c2 .

4.5. Conclusions

In conclusion, we have studied the GS phase diagram of the spin half Shastry-Sutherland
antiferromagnet making use of high-order coupled cluster calculations. Comparing the
energies of competing Néel, spiral and orthogonal-dimer phases we can rule out the
existence of a noncollinear spiral phase. Considering the Néel order parameter we
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find that the semi-classical Néel long-range order disappears before the orthogonal-
dimer phase sets in. Hence we conclude that the Néel phase and the dimer phase are
separated by a magnetically disordered intermediate phase. We also investigate the
nature of nonmagnetic phase and we conclude from our CCM data that there exists a
valence-bond phase between the Néel -ordered phase and the orthogonal-dimer phase.
We note that some of the results presented in this chapter are published in.1 2

1R. Darradi, J. Richter and D.J.J. Farnell, ”Coupled cluster treatment of the Shastry-Sutherland
antiferromagnet”, Phys. Rev. B 72, 104425 (2005)

2J. Richter, R. Darradi, R. Zinke and R. F. Bishop, ”Frustrated quantum antiferromagnets: ap-
plication of high-order coupled cluster method”, International Jounal of Modern Physics B 21,
2273-2288 (2007)



Chapter 5

Spin stiffness of quantum Heisenberg

antiferromagnets

To understand the low-energy behavior and quantum phase tarnsitions of the system,
an important issue is the determination of the microscopic parameters. for quantum
Heisenberg antiferromagnet on square, cubic, and triangular lattice, these parameters
are magnetic order and spin stiffness. The spin stiffness ρs constitutes, together with
the spin-wave velocity, a fundamental parameter that determines the low-energy dy-
namics of magnetic systems. [101,103,104] In particular, in two-dimensional quantum
antiferromagnets, where magnetically ordered as well as quantum disordered ground-
state phases are observed, the ground-state stiffness measures the distance of the
ground state from criticality [103] and can be used, in addition to the sublattice mag-
netization M , to test the existence or absence of magnetic long-range order (LRO).

Over the last 15 years in a series of papers several methods like series expan-
sion, [105, 110] spin-wave theory, [102, 105–109] quantum Monte Carlo, [150] exact
diagonalization, [31,100,108] Schwinger-boson approach, [30,151] and renormalization
group theory [152] have been used to calculate the spin stiffness of the spin-half Heisen-
berg antiferromagnet (HAFM) on the square, the triangular and the cubic lattices.

The spin stiffness ρs measures the increase in the amount of energy when we rotate
the order parameter of a magnetically long-range ordered system along a given direc-
tion by a small angle θ per unit length, see Eq. (2.39). In the thermodynamic limit,
a positive value of ρs means that there is LRO in the system, while a value of zero
reveals that there is no LRO.

In this chapter we use the method presented in Sec. 2 to calculate the spin stiffness
for the quantum-spin HAFM using the coupled cluster method, see Chap. 2. In the
field of magnetism an important advantage of this approach is its applicability to
strongly frustrated quantum spin systems in any dimension. To demonstrate the
potential of the presented method we calculate the spin stiffness for the spin-1

2
HAFM

with nearest-neighbor interaction on the cubic, the square, and on the triangular
lattices and compare our results with available data in the literature. While for the
square and the cubic lattices accurate high order spin-wave results are available which
can be used to estimate the accuracy of the CCM results, the known results for the
frustrated HAFM on the triangular lattice with a non-collinear ground state seem to
be less reliable, since the used methods are less accurate. Therefore, results for the
triangular lattice seem to be less precise than those for the square lattice due to strong
frustration. Published values show significant variability. We argue that our result for
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the stiffness of the HAFM on the triangular lattice obtained by CCM in high order
of approximation is better than the so far available results. The model we consider is
the spin-Half HAFM of Eq. (5.1) which reads in new rotated coordinate systen

H = J
∑
〈i,j〉

{
1

2
sinϕ[s+

i s
z
j − szi s+

j + s−i s
z
j − szi s−j ] + cosϕszi s

z
j

+
1

4
(cosϕ+ 1)[s+

i s
−
j + s−i s

+
j ] +

1

4
(cosϕ− 1)[s+

i s
+
j + s−i s

−
j ]

}
, (5.1)

with ϕ being the angle between the two spins, and s± ≡ sx ± isy are the spin-raising
and spin-lowering operators. According to Fig. 5.1 we have e.g. for the twisted Néel
state on the square lattice ϕ = π for nearest-neighbors along the y direction but
ϕ = π + θ along the x direction and for the twisted 120◦ Néel state on the triangular
lattice we have ϕ = 2π/3 + θ/2 for nearest neighbors along the 1

2
~ex + ~ey direction but

ϕ = 4π/3 + θ along the x direction.

0−θ +θ +2θ

0−θ +θ +2θa)

60°

+3θ/2−θ/2

+2θ+θ0−θ

b) +θ/2

x

y

Figure 5.1.: Illustration of the twisted Néel state (a: square lattice; b: triangular lattice). The
twist is introduced along rows in x direction. The angles at the lattice sites indicated the twist of the
spins with respect to the corresponding Néel state.

The spin stiffness considered in this chapter is the stiffness of the Néel order param-
eter (sublattice magnetization). Hence the corresponding model state |Φ〉 is the Néel
state. This is the ordinary collinear two-sublattice Néel state for the square and the
cubic lattices. The model state is a noncollinear 120◦ three-sublattice Néel state for the
triangular lattice. Note that for the collinear Néel state only LSUBn approximations
with even n are relevant [18,89]. In order to calculate the spin stiffness directly using
Eq. (2.39) we must modify the model (Néel) state by introducing an appropriate twist
θ, see Fig. 5.1. Thus the ket-state correlation coefficients SI (after solving the CCM
equations (2.7)) depend on θ and hence the ground-state energy E is also dependent
on θ. Note that our numerical code for the CCM-LSUBn approximation allows us
to calculate E(θ) with very high precision of about 14 digits. First we have checked
numerically that the ground-state energy calculated in LSUBn approximation does
indeed fulfill the relation (2.39) with high precision for θ . 0.01. The stiffness now
can easily be calculated using numerical differentiation of E(θ) which was done using
a three-point formula 2.40 with θ = −10−4, 0,+10−4.
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Since the LSUBn approximation becomes exact for n→∞, it is useful to extrapolate
the ’raw’ LSUBn results to the limit n → ∞. Although we do not know the exact
scaling of the LSUBn results, there is some empirical experience [88, 89] how the
ground-state energy and the order parameter for antiferromagnetic spin models scale
with n (see Sec. 2.5). Based on this experience we have tested several fitting functions
for the stiffness and we have found the best extrapolation is obtained by the fitting
function of Eq. (2.43) (extrapol 1). We show this extrapolation in Fig. 5.2.

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5
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Figure 5.2.: Extrapolation of the CCM-LSUBn results for the stiffness. The points represent the
CCM-LUBn results and the lines correspond to the function (2.43) fitted to this data points.

5.1. The square lattice

We start with the results for the square lattice. By using the lattice symmetries we
are able to perform calculations up to LSUB8, where for the twisted state 21124 ket
equations (2.7) have to be solved. The results for the stiffness are given in Tab. (5.1).
The results for the stiffness are given in Tab. (5.1). Using LSUBn with n = 2, 4, 6, 8
the extrapolated result is ρs = 0.1831. As known from the sublattice magnetization
even better results can be obtained by excluding the LSUB2 data. Indeed the ex-
trapolation using the LSUB4, LSUB6, LSUB8 data yields ρs = 0.1812. Note that
the corresponding extrapolated value for the sublattice magnetization (see Tab.2.1)
M = 0.31024 is in good agreement with other results [105, 117, 118]. A certain es-
timate of the accuracy can be obtained by an extrapolation using LSUB2, LSUB4,
LSUB6, only, which yields ρs = 0.1839. We compare our results for ρs with some data
obtained by other methods in Tab. (5.2). In particular, we find that the value of spin
stiffness obtained by quantum Monte Carlo in Ref. [21] is in a good agreement with
the results of the CCM. We also think, that the high-order spin-wave theory [105] is
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Table 5.1.: Spin stiffness ρs for the spin-1/2 HAFM on the square lattice calculated by various CCM-
LSUBn approximations and the result of the n→∞ extrapolation using LSUBn with n = 4, 6, 8.

LSUBn Number of equations ρs
2 3 0.2574

4 40 0.2310

6 828 0.2176

8 21124 0.2097

extrapol 1 – 0.1812

the most systematic approach, since one can see how the stiffness changes with in-
creasing order of approximation. Assuming the third-order order spin-wave results as
a benchmark we find that our CCM result deviates by about 3%.

Table 5.2.: Collection of data for the spin stiffness ρs for the spin-1/2 HAFM on the square lattice
calculated by different methods.

method ρs
first-order spin-wave theory [105,107] 0.191

second-order spin-wave theory [105,107] 0.181

third-order spin-wave theory [105] 0.175

series expansion [105] 0.182

exact diagonalization [31] 0.183

quantum Monte Carlo [21] 0.185

Schwinger-boson approach I [153] 0.176

Schwinger-boson approach II [151] 0.153

CCM 0.181

5.2. The triangular lattice

For the triangular lattice the twist we consider (see Fig. 5.1) corresponds to the in-plane
spin stiffness. Due to the noncollinear structure of the three-sublattice Néel state also
LSUBn approximations with odd n appear. Furthermore the number of ket equations
in a certain level of approximation becomes larger than for the square lattice and as
a results the highest level of approximation we are able to consider is LSUB7. The
results for different LSUBn approximations are given in Tab. (5.3). The extrapolation
of the LSUBn data according to Eq. (2.43) with n = 2, 4, 6 leads to ρs = 0.0604 and
with n = 2, 3, 4, 5, 6, 7 to ρs = 0.0564. Again the difference in the two values can be
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considered as a certain estimate of the accuracy. As a byproduct of our high-order
calculation we can give here improved values for the sublattice magnetization M . So
far results for M up to LSUB6 [88, 132] are published. We can add M = 0.3152
(LSUB7) and M = 0.3018 (LSUB8). The corresponding extrapolated value using
Eq. (2.43) and LSUBn with n = 2, 3, 4, 5, 6, 7, 8 is M = 0.2134, which is close to spin-
wave [102,154] and Green’s function Monte Carlo [155] results. The small values of the
stiffness and the order parameter in comparison with the square lattice are attributed
to the frustration leading to a noncollinear ground state and in combination with
quantum fluctuations to a drastic weakening of magnetic order in the spin-half HAFM.
We compare our results for ρs with available results from literature, see Tab. (5.4).

Table 5.3.: In-plane spin stiffness ρs for the spin-1/2 HAFM on the triangular lattice calculated by
various CCM-LSUBn approximations and the result of the n→∞ extrapolation using LSUBn with
n = 2, 3, 4, 5, 6, 7.

LSUBn Number of equations ρs
2 3 0.1188

3 14 0.1075

4 67 0.0975

5 370 0.0924

6 2133 0.0869

7 12878 0.0824

extrapol 1 – 0.0564

Comparing the methods used to calculate ρs for the square lattice (Tab. 5.2) and for
the triangular lattice (Tab. 5.4) we see that the results for the triangular lattice are
much less reliable, since here the accuracy of the methods used in Refs. [102,108,151]
is limited. Assuming the same tendency as for the square lattice we can expect that
the first-order spin-wave value for ρs [102, 108] becomes smaller (and therefore closer
to our CCM result) going to second- and third-order spin-wave theories. We believe
that our result is indeed of higher accuracy than data for ρs so far available.

Table 5.4.: Collection of data for the spin stiffness ρs for the spin-1/2 HAFM on the triangular
lattice calculated by different methods.

method ρs
exact diagonalization [108] 0.05

first-order spin-wave theory [102,108] 0.080

Schwinger-boson approach [151] 0.088

CCM 0.056
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5.3. The cubic lattice

Table 5.5.: Spin stiffness ρs for the spin-1/2 HAFM on the cubic lattice calculated by various CCM-
LSUBn approximations and the result of the n→∞ extrapolation using LSUBn with n = 2, 4, 6.

LSUBn Number of equations ρs
2 4 0.2527

4 106 0.2416

6 5706 0.2380

extrapol 1 – 0.2312

We present now our results for ρs for the simple cubic lattice, see Tab. (5.5). Here
the highest level of approximation we can consider is LSUB6. From Fig. 5.2 it becomes
obvious, that there is only a weak dependence on the level of CCM approximation n.
Therefore we expect that the extrapolation according to Eq. (2.43) yielding ρs = 0.2312
is particular accurate. Indeed we find that our result is in very good agreement with
the result obtained by second-order spin-wave theory [105] ρs = 0.2343. Note that
the 1/s spin-wave expansion seems to converge very rapidly [105] and therefore the
second-order spin-wave theory is expected to yield a very precise result for ρs. For
the sublattice magnetization a corresponding extrapolation leads to M = 0.42054(see
Tab.2.2) is in excellent agreement with the high precision third-order spin-wave result.
[105]

In summary, we have presented a method for the direct calculation of the spin stiff-
ness within the framework of the coupled cluster method. We obtain accurate values
for the stiffness by applying this algorithm to high orders of LSUBn approximations
for the spin-half isotropic Heisenberg antiferromagnet on various lattices with and
without frustration. We note that some of the results presented in this chapter are
published in.1 2

1S.E. Krüger, R. Darradi, J. Richter and D.J.J. Farnell, ”Direct calculation of the spin stiffness of
the spin-1/2 Heisenberg antiferromagnet on square, triangular and cubic lattices using the coupled
cluster method”, Phys. Rev. B 73, 094404 (2006)

2J. Richter, R. Darradi, R. Zinke and R. F. Bishop, ”Frustrated quantum antiferromagnets: appli-
cation of high-order coupled cluster method”, Int. J. Mod. Phys B 21, 2273 (2007)



Chapter 6

Ground-state phases of the spin-1/2 J1–J2

Heisenberg antiferromagnet on the square

lattice

6.1. Introduction

In this chapter we investigate the zero-temperature phase diagram of spin-1/2 Heisen-
berg antiferromagnet with nearest-neighbor J1 and frustrating next-nearest-neighbor
J2 coupling (J1–J2 model) on the square lattice. This model has attracted a great deal
of interest during the last twenty years (see, e.g., Refs. [22–52] and references therein).
Recent interest in this model comes also from the synthesis of layered magnetic ma-
terials Li2VOSiO4, Li2VOGeO4, VOMoO4, and BaCdVO(PO4)2 [54,56,156–159] that
might be described by the J1–J2 model. A new promising perspective is also opened
by the recently discovered layered Fe-based superconducting materials [69] which may
have a magnetic phase that can be described by a J1–J2 model with spin quantum
number s > 1/2. [70,160]

For the square-lattice spin-1/2 J1–J2 model it is well-accepted that there are two
magnetically long-range ordered ground-state (GS) phases at small and at large J2

separated by an intermediate quantum paramagnetic phase without magnetic long-
range order (LRO) in the parameter region J c12 ≤ J2 ≤ J c22 , where J c12 ≈ 0.4J1 and
J c22 ≈ 0.6J1. The magnetic phase at low J2 < J c12 exhibits semiclassical Néel LRO
with a magnetic wave vector Q0 = (π, π). The magnetic phase at large J2 > J c22 shows
so-called collinear LRO. It is twofold degenerate and the corresponding magnetic wave
vectors are Q1 = (π, 0) or Q2 = (0, π), respectively. These two collinear states are
characterized by a parallel spin orientation of nearest neighbors in vertical (horizon-
tal) direction and an antiparallel spin orientation of nearest neighbors in horizontal
(vertical) direction.

The nature of the transition between the Néel and the quantum paramagnetic
phase as well as the properties of the quantum paramagnetic phase and the precise
values of the transition points are still under debate [22–52]. In particular, stimu-
lated by the recent discussion of deconfined quantum criticality in two-dimensional
spin systems, [72, 73] a renewed interest in the nature of the phase transition be-
tween the semiclassical Néel phase and the quantum paramagnetic phase has been
emerged [37, 47, 161, 162]. However, in spite of numerous intensive efforts focused on
the transition between the Néel and the quantum paramagnetic phase in the J1–J2
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square lattice

square-lattice antiferromagnet and some other candidate models, [122, 123, 163–166]
this field remains still highly controversial.

For completeness we mention that the classical square-lattice J1–J2 model (s →
∞) exhibits a direct first-order transition between Néel state and collinear state at
J2/J1 = 1/2.

Recently, several extensions of J1–J2 model have been studied. Interestingly, with
increasing of the space dimension from D = 2 to D = 3 the intermediate quan-
tum paramagnetic phase disappears. [42,167,168] Also spatial [111,169–172] and spin
anisotropies [41,112,173] as well as the spin quantum number s [27, 37,113,114] have
a great influence on the GS phase diagram.

The goal of this work is to study the GS phase diagram for spin-half J1–J2 model
on the square lattice using a high-order CCM (for further details see Chap.2). We
complement the CCM treatment by ED for finite lattices for a qualitative check of
our CCM data. By calculating GS quantities such as the energy, the magnetic order
parameter, the spin stiffness and generalized susceptibilities we will investigate the
quantum phase transitions present in the model as well as the properties of the quan-
tum paramagnetic phase. We will compare our results with the ones obtained recently
using series expansions. [47]

(d)(c)(b)
(a)

Figure 6.1.: (a) J1–J2 model; — J1; - - J2; (b) Néel state, (c) stripe state - columnar and (d)
stripe state - row. Arrows in (b), (c) and (d) represent spins situated on the sites of the square lattice
(indicated by • in (a)).

The Hamiltonian of the considered J1–J2 model reads

H = J1

∑
〈ij〉

sisj + J2

∑
[ij]

sisj, (6.1)

where J1 is the nearest-neighbor and J2 is the next-nearest-neighbor exchange coupling
(see Fig.7.1). Both couplings are antiferromagnetic, J1 > 0, J2 > 0. In our CCM and
ED calculations we set J1 = 1. We consider spin quantum number s = 1/2, i.e.
s2
i = 3/4.
We begin our CCM calculation with a reference state corresponding to semiclassical

order, one can compute the GS energy also in parameter regions where semiclassical
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magnetic LRO is destroyed, and it is known [18, 22, 42, 93, 94, 111, 112] that the CCM
yields precise results for the GS energy beyond the transition from the semiclassical
magnetic phase to the quantum paramagnetic phase. The necessary condition for the
convergence of the CCM equations is a sufficient overlap between the reference state
and the true ground state.

It has been already demonstrated(Chap.5) that the CCM can also be used to calcu-
late the spin stiffness ρs with high accuracy. In the thermodynamic limit, a positive
value of ρs means that there is magnetic LRO in the system, while a value of zero
reveals that there is no magnetic LRO. To calculate the spin stiffness within the CCM
using Eq. (2.39) we must modify the corresponding reference states (Néel or collinear)
by introducing an appropriate twist θ, see Fig. 7.2.
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a) b)

−θ

/2/2

/2 /2
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Figure 6.2.: Illustration of the twisted reference states used for the calculation of the spin stiffness
ρs. The angles at the lattice sites indicate the twist of the spins with respect to the Néel or the
collinear state. (a): Twisted Néel state, the twist is introduced along rows in x direction. (b):
Twisted collinear state, the twist is introduced along rows in ~ex + ~ey direction.

Thus the ket-state correlation coefficients SI (after solving the CCM equations (2.7))
depend on θ and, hence, the GS energy E is also dependent on θ.

To study the properties of the quantum paramagnetic phase existing in the vicinity
of J2 = J1/2 as well as the phase transitions to that phase we will consider generalized
susceptibilities χF that describe the response of the system to certain ‘field’ operator
F [23, 25, 26, 47, 49, 50] (see Sec.2.4.3). To calculate such a susceptibility χF we add
to the Hamiltonian (7.1) a ‘field’ term F = δ Ô, where Ô is an operator that breaks
some symmetry of H and the coefficient δ determines the strength of the field. Using
the CCM with either the Néel or the collinear reference state we calculate the energy
per site E(δ)/N = e(δ) for H + F , i.e. for the Hamiltonian of Eq. (7.1) perturbed by
the additional term δ Ô. The susceptibility χF is then defined by Eq. (2.41). For the
considered quantum spin model we have to use approximations in order to truncate
the expansion of S and S̃.

We use the well elaborated LSUBn scheme [83, 84, 88, 89, 92, 93] in which in the
correlation operators S and S̃ one takes into account all multispin correlations over
all distinct locales on the lattice defined by n or fewer contiguous sites. In the CCM-
LSUB10 approximation we have finally 29 605 (45 825) fundamental configurations for
the Néel (collinear) reference state. Note, however, that for the calculation of the
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stiffness (the susceptibilities) the twisted reference state (the modified Hamiltonian
H +F ) is less symmetric which leads to more fundamental configurations. As a result
we are then limited to LSUB8 approximation.

6.2. Ground-state phase diagram

6.2.1. Ground-state energy

As already mentioned in section 6.1, the considered J1–J2 model has two semiclassical
magnetic GS phases (small and large J2) separated by nonmagnetic quantum phase
(intermediate J2). To detect the quantum critical points by the above described CCM
we discuss the magnetic order parameter M , see Eq. (2.36), and the spin stiffness ρs,
see Eq. (2.39). Both, M and ρs, are finite in the magnetically ordered phases but
vanish in the intermediate quantum paramagnetic phase.

For completeness, we show first the CCM and the ED GS energies per spin e = E/N
in Fig. 7.3. The CCM curve consists of two parts corresponding to the Néel and
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−0.55
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−0.45

 0  0.2  0.4  0.6  0.8  1

E
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extr
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Figure 6.3.: The GS energy per spin as function of J2 obtained by CCM-LSUBn with n = 4, 6, 8, 10
and its extrapolated values to n → ∞ using the extrapolation scheme of Eq. (2.42). ED results for
N = 32 are shown by circles.

collinear reference state, respectively. The dependence e(J2) for ED and CCM is
qualitatively the same, however, due to finite-size effects, the ED curve is below the
CCM curves. Let us mention again that CCM GS energy corresponding to the Néel
(collinear) reference state is expected to be precise also in the intermediate quantum
paramagnetic phase if J2 is not too far beyond the transition points.
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6.2.2. Magnetic order parameter

The magnetic order parameter for both Néel state and collinear state dependence on J2

is illustrated by Fig. 6.4. Note again that only for the magnetic order parameter M and
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Figure 6.4.: Magnetic order parameter M versus J2 obtained by CCM-LSUBn with n = 4, 6, 8, 10
and its extrapolated values to n→∞ using the extrapolation scheme of Eq. (2.45).

the GS energy we are able to solve the CCM-LSUBn equations up to n = 10, while for
the stiffness and the susceptibilities we are restricted to n ≤ 8. Hence the extrapolation
to the limit n→∞ is most reliable for M and the estimation of the phase transition
points by using the data for M is most accurate. The extrapolation to n→∞ shown
in Fig. 6.4 is based the extrapolation scheme M(n) = b0 + b1(1/n)1/2 + b2(1/n)3/2 and
uses CCM-LSUBn data with n = 4, 6, 8, 10. We find for the phase transition points
between the semiclassical phases and the quantum paramagnetic phase J c12 = 0.447J1

and J c22 = 0.586J1.

To check the robustness of this extrapolation we have also extrapolated M using the
data of n = 2, 4, 6, 8, 10 which leads to J c12 = 0.443J1 and J c22 = 0.586J1. Those values
J c12 ≈ 0.44 . . . 0.45J1 and J c22 ≈ 0.58 . . . 0.59J1 are in agreement with CCM predictions
of Refs. [111,112].

Although the behavior of the extrapolated values of the magnetic order parameter
around J c12 and J c22 presented in Fig. 6.4 show a continuous behavior near J c12 and near
J c22 , it is obvious that the decay of the collinear order parameter to zero at J c22 is much
steeper than the decay of the Néel order parameter at J c12 . That might give some
hint for a first-order phase transition from the collinear to the paramagnetic phase, by
contrast to a continuous transition from the Néel to the paramagnetic phase [43–45,49].
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6.2.3. Spin stiffness

As mentioned above, another way to find the phase transition points is to consider
the spin stiffness ρs which is nonzero in a magnetically long-range ordered phase but
vanishes in the magnetically disordered quantum phase. The spin stiffness measures
the distance of the ground state from criticality [103], and constitutes together with
the spin-wave velocity the fundamental parameters that determines the low-energy
dynamics of magnetic systems [101,104,174]. In order to calculate the stiffness directly
using Eq. (2.39) we have to modify the both reference (Néel, collinear) states by
introducing an appropriate twist θ, see Fig. 6.5. The CCM LSUBn results for spin
stiffness as well as the extrapolated values for both reference states as a function of J2

are given in Fig. 6.5. The results show that approaching the magnetically disordered
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Figure 6.5.: The spin stiffness ρs versus J2 obtained by CCM-LSUBn with n = 4, 6, 8 and its
extrapolated values to n→∞ using the extrapolation scheme ρs(n) = c0 + c1(1/n) + c2(1/n)2.

phase the stiffness is decreased until it vanishes at J2 = 0.466J1 coming from the Néel
phase and at J2 = 0.578J1 coming from the collinear phase. These values obtained by
extrapolation including up to LSUB8 data are in reasonable agreement with the critical
points determined by extrapolating M . Note that our data for ρs are also in good
agreement with corresponding results of the other methods (see Refs. [30,31,34,175]).
Note further that similar as for M we observe also for ρs that the curvature near the
critical points is different at J c12 and at J c22 that might be again a hint on the different
nature of both transitions.

To summarize, the CCM results for the GS energy, the magnetic order parameter,
and the spin stiffness support a general physical picture known from earlier numerical
studies (including ED, [28,32,39,40,43,44] variational quantum Monte Carlo, [24,26]
series expansions [47, 50]): For intermediate values of J2, J c12 ≤ J2 ≤ J c22 with J c12 ≈
0.44 . . . 0.45J1 and J c22 ≈ 0.58 . . . 0.59J1 there is no magnetic order.
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6.3. Order of the phase transition. Generalized susceptibilities

While the phase transition from the collinear to the paramagnetic phase is most likely
of first order, [43–45,49] concerning the nature of phase transition from the Néel to the
paramagnetic phase so far no conclusive answers are known. However, the question
about the order of the phase transition from the Néel to the paramagnetic phase is
of great interest in particular in connection with the validity of the Landau-Ginzburg
paradigm [72,73]. Very recently by Sirker et al. [47] a number of arguments based on
series expansions and spin-wave theory have been given that this transition is of first
order. We reconsider this issue below using CCM and complementary ED results.

The first type of arguments in favor of the first-order phase transition from the Néel
to the paramagnetic phase presented in Ref. [47] was based on the combination of
field theory with series-expansion data. In what follows we use the same approach
as Sirker et al., [47] however, instead of series-expansion data we use CCM and ED
data. Interestingly, we will arrive at a different conclusion concerning the nature of
the phase transition.

The second type of arguments supporting the first-order phase transition from the
Néel to the paramagnetic phase were based on series-expansion data for several sus-
ceptibilities that test a possible valence-bond solid (VBS) order in the paramagnetic
phase. In what follows we use the CCM and ED to compute four different suscepti-
bilities χj defined in Eq. (2.41) for the J1–J2 model. The corresponding perturbations

(fields) Fj = δ Ôj, j = 1, . . . , 4 are given by

F1 = δ
∑
i,j

(−1)isi,jsi+1,j, (6.2)

F2 = δ
∑
i,j

(si,jsi+1,j − si,jsi,j+1) , (6.3)

F3 = δ
∑
i,j

(−1)i+j
(
sxi,js

x
i+1,j+1 + syi,js

y
i+1,j+1

)
, (6.4)

F4 = δ
∑
i,j

[
(−1)isi,jsi+1,j + (−1)jsi,jsi,j+1

]
, (6.5)

where i, j are components (integer numbers) of the lattice vectors of the square lattice,
see Fig. 6.6. where we visualize the perturbation terms (6.2) – (6.5). The above
definitions, Eqs. (6.2) – (6.5), are in accordance with previous discussions [25,26,47,49,
50] of possible valence-bond states or broken symmetries in the magnetically disordered
quantum phase. Previous results for χ1 can be found in Refs. [25,26,47,49,50], for χ2

in Refs. [26, 47], and for χ3 in Refs. [47, 50]. Note that in Refs. [47, 50] the results for
the perpendicular χ3 (i.e. the field F3 = δÔ3 contains only x and y components, see
Eq. (6.4)) were reported only.

For reasons of comparison with the available series-expansion data we consider in
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(a) (b)

(d)(c)

Figure 6.6.: (Color online) Illustration of perturbations (fields) Fj related to generalized sus-
ceptibilities χj : (a) perturbation F1 (6.2), (b) perturbation F2 (6.3), (c) perturbation F3 (6.4), (d)
perturbation F4 (6.5). Dark (red) [light (green)] shadows correspond to enforced [weakened] exchange
couplings.

the present study also the perpendicular χ3. To our best knowledge so far no data for
the susceptibility χ4 are published.

Note that all susceptibilities defined by Eqs. (6.2) – (6.5) break the symmetry of
the initial square lattice, for details, see Refs. [25, 26, 47, 49, 50]. The susceptibilities
χ1 and χ4 are most interesting, since they belong to order-parameter operators Ô1

and Ô4 probing directly columnar and plaquette valence-bond ordering. As discussed
in Ref. [73] they can also be interpreted as a single complex order parameter with a
different phase for the two patterns. Note that for the field F1 we have chosen the
x-axis for the aligment of modified nearest-neigbor bonds, see Fig. 6.6a. Alternatively,
the y-axis can be chosen. It is worth mentioning that the field F4 (6.5) is a sum of

fields F1 aligned along x and y axes, i.e. F4 = F
(x)
1 +F

(y)
1 , and hence χ4 = χ

(x)
1 + χ

(y)
1 .

If, in addition, a symmetry with respect to a π/2-rotation in the square-lattice plane
holds (that is, however, not the case, e.g., for the CCM calculations for large J2), one
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has χ
(x)
1 = χ

(y)
1 and χ4 = 2χ1.

Analyzing the behavior of these susceptibilities as J2 approaches the critical value
J c12 we will again arrive at a different conclusion in comparison to Ref. [47].

We begin with the examination of the order of the phase transition from the Néel
to the VBS state. By contrast to the transition from the VBS to the collinear state
where an energy level crossing indicates a first-order transition [45,47,111] the energy
behaves smoothly as J2 varies around J c12 and a more sensitive method to distinguish
between first- and second-order transitions has to be applied. [47] For that we consider
the GS energy e(δ) for the Hamiltonian (7.1) perturbed by the field F1 = δÔ1 (6.2).
We have performed CCM calculations for e(δ) choosing the Néel state as the reference
state and extrapolating LSUBn data with n = 4, 6, 8 according to the scaling law
e(n) = a0+a1(1/n)2+a2(1/n)4 (see Fig. 6.7a). We have also performed complementary
ED for a finite square lattice of N = 32 sites (see Fig. 6.7b) for a qualitative check of
the CCM results. The obtained dependence e(δ) may be fitted for a fixed J2 to the
following polynomial form

e(δ)− e(0) =
a

2
δ2 +

b

4
δ4 +

c

6
δ6. (6.6)

To determine the order of the phase transition we use the method described in
Ref. [47]. For a two-dimensional antiferromagnet, the system could be described by
the following O(3)-model

Hv =
1

2

[
(∂t~v)2 + c2

v(
~5~v)2 +m2

v~v
2
]

+
uv
4

(~v2)2. (6.7)

Consider now the case that we are in the magnetically ordered phase and add the field
F1 (6.2) with |δ| � 1. The Néel order will then coexist with a small dimerization
described by a scalar field

Hφ =
1

2

[
(∂tφ)2 + c2

φ(~5φ)2 +m2
φφ

2
]

+
uφ
4
φ4 +

rφ
6
φ6 − δφ. (6.8)

The fields ~v and φ are not independent, and the interaction between them reads

Hint =
uvφ
2
~v2φ2. (6.9)

The effective field theory in the ordered phase for δ 6= 0 is then given by H = Hv +
Hφ + Hint. Combining Eqs. (6.7), (6.8), (6.9) we will have a nonzero GS expectation
value

〈φ〉 =
δ

A
− uφ
A4
δ3 +

3u2
φ − Arφ
A7

δ5 +O(δ7) (6.10)
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Figure 6.7.: The GS energy e(δ)− e(0) versus square of field strength δ for H+ δ Ô1, see Eq. (6.2),
for J2 = 0.0, 0.1, 0.2, 0.3, 0.4, 0.45 (from top to bottom). (a): CCM results extrapolated to
n→∞ using the extrapolation scheme e(n) = a0 +a1(1/n)2 +a2(1/n)4. (b): ED results for N = 32.
The displayed curves might be compared to the ones in Fig. 1 of Ref. [47] where corresponding
series-expansion data for e(δ) are reported (however, only up to J2 = 0.3).

with A = m2
φ + uvφ〈~v〉2. Eq. (6.10) leads to a GS energy given by

e(δ)− e(δ = 0) = − 1

2A
δ2 +

uφ
4A4

δ4 +
Arφ − 3u2

φ

6A7
δ6 +O(δ8). (6.11)

The coefficient of the δ4-term in Eq. (6.11) may be positive or negative depending on
the sign of the parameter uφ. In the case of uφ > 0 we have a second-order transition
with respect to φ at a critical point, and a first-order transition if uφ < 0.

Using the polynomial in Eq. (6.6) we have fitted the data of e(δ), δ2 = 0 . . . 0.09 for
various J2 including values near the critical point J c12 (see Fig. 6.7a). We find that the
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coefficient of the δ4-term b is negative for small values of J2 but becomes positive if J2

approaches J c12 , see Fig. 6.8. This behavior is found for the CCM data as well as for

−5

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.1  0.2  0.3  0.4  0.5

b

J2

 

CCM
ED

−1.5

−1

−0.5

 0

 0  0.05 0.1 0.15 0.2 0.25

 

 

 

Figure 6.8.: The coefficient b of the quartic term in Eq. (6.6) obtained from a fit of the CCM data
in Fig. 6.7a and the ED data in Fig. 6.7b in dependence on J2. This figure might be compared to
Fig. 3 of Ref. [47]. Inset: The coefficient b versus J2 shown for small J2 with an enlarged scale.

the ED data. In particular, b calculated by the CCM (calculated by the ED) changes
its sign at J2 ≈ 0.35 (at J2 ≈ 0.31).

Comparing Fig. 6.8 with the results reported in Fig. 3 of Ref. [47] we note that
CCM data for J2 below 0.2 are in reasonable agreement with series expansions, linear
spin-wave theory or mean field spin-wave theory [in particular, CCM yields b(J2 =
0.1) ≈ −0.40, b(J2 = 0.2) ≈ −0.86, b(J2 = 0.25) ≈ −1.29, b(J2 = 0.3) ≈ −1.73
that is in between the series-expansion data and the spin-wave theory results]. A
drastical difference between the series-expansion data and the CCM results emerges
if J2 approaches the critical value J c12 : The series expansion gives b < 0 whereas the
CCM and the ED yield b > 0 for J2 → J c12 . We recall that any predictions from spin-
wave theory for the considered J1–J2 model are likely to be unreliable if J2 exceeds
0.35. [33] Combining Eqs. (6.6) and (6.11) we get b = uφa

4 and determining a and b
using CCM data (Fig. 6.7a) for J2 = 0.36 . . . 0.42 we find uφ ≈ 0.75 > 0. In summary,
the presented CCM and ED data, by contrast to series-expansion data of Ref. [47], do
not support a weak first-order phase transition from the Néel to the VBS state [47]
but give evidence that this transition is continuous.

Next we examine the susceptibilities associated with the probing fields (6.2) – (6.5)
directly. The CCM results are shown in Fig. 6.9. We also present in this figure the
ED data for N = 16, 24, 32 lattice in the insets (we do not show N = 24 results for χ1

and χ2 since the system of rectangular shape perturbed by F1 or F2 does not possess
symmetry with respect to a π/2-rotation in the square-lattice plane). Note that a
sophisticated finite-size analysis has to be performed in order to derive the correct
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Figure 6.9.: The inverse susceptibilities (a) 1/χ1, (b) 1/χ2, (c) 1/χ3 (please note the scaling factor
0.01 at the y-axis), and (d) 1/χ4 versus J2 obtained within the CCM LSUBn approximation with
n = 4, 6, 8 and extrapolated to n→∞ using χ(n) = c0 + c1(1/n) + c2(1/n)2.

behavior of susceptibilities in the thermodynamic limit [26]. Such an analysis goes
beyond the scope of the present study, since we use the ED data as a qualitative check
of our CCM results, only. We notice here that although χ1 and χ4 are related to each
other (see above), they are calculated completely independently. We have confirmed
the expected relation between these susceptibilities thus providing an additional double
check for our numerics.

As it has been already mentioned above, the susceptibilities χ1, χ2 and χ3 were
calculated in earlier studies using different methods. Our CCM results for χ1 and
χ2 are in a good quantitative agreement with series-expansion results reported for
J2 = 0 . . . 0.5 in Refs. [47,49] [for instance, one can compare our CCM data, 1/χ1(J2 =
0.3) ≈ 0.92, 1/χ1(J2 = 0.35) ≈ 0.66 and χ2(J2 = 0.3) ≈ 0.90, χ2(J2 = 0.35) ≈ 1.06,
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Figure 6.10.: The inverse susceptibilities (a) 1/χ1, (b) 1/χ2, (c) 1/χ3 (please note the scaling factor
0.01 at the y-axis), and (d) 1/χ4 versus J2 obtained within the CCM LSUBn approximation with
n = 4, 6, 8 and extrapolated to n→∞ using χ(n) = c0 + c1(1/n) + c2(1/n)2 Insets: The same as in
the main panels but using ED for finite lattice of N = 16, 24, 32. Panel (a) might be compared to
Fig. 2 of Ref. [47] and Fig. 3 of Ref. [49], panel (b) might be compared to Fig. 5 of Ref. [47], panel
(c) might be compared to Fig. 6 of Ref. [47] and Fig. 3 of Ref. [50].

with the data shown in Fig. 2 and Fig. 5 in Ref. [47].] The CCM results for χ1 and
χ2 also qualitatively agree with variational quantum Monte Carlo method and ED
results reported (for some J2 only) in Ref. [26]. The CCM results for χ3, however,
exhibit a different qualitative dependence on J2 as J2 approaches J c12 in comparison
with series-expansion data, [47, 50] compare, e.g., Fig. 6 in Ref. [47] and Fig. 6.10c in
the present paper. According to series-expansion data χ3 decreases by about 20% as
J2 increases from 0 to 0.4. In contrast, according to CCM data shown in Fig. 6.10c χ3

increases by a factor about 4 as J2 increases from 0 to 0.4.
Let us now discuss some general features of the generalized susceptibilities shown
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Figure 6.11.: Susceptibilities 1/χ1 (red) and 1/χ4 (gray) around the critical point Jc1
2 . Bold curves

correspond to the CCM curves shown in Fig. 6.10a and Fig. 6.10d. Thin lines obtained from a linear
fit of the CCM data for 0 ≤ J2 ≤ Jc1

2 . Extrapolated (thin) lines for both inverse susceptibilities
become zero at J2 ≈ 0.47.

in Fig. 6.10. Obviously, a divergence of a certain susceptibility (or 1/χ → 0) at a
particular value of J2 indicates an instability of a GS phase regarding to a possible
new GS order. It can be seen from Fig. 6.10, that all susceptibilities increase with
growing J2 in the Néel phase. Near the critical point J c12 both 1/χ1 and 1/χ4 (CCM
data imply χ4 = 2χ1) are significantly smaller than 1/χ2 and 1/χ3 indicating that the
valence-bond states belonging to the columnar dimerized and plaquette patterns are
favorable in the magnetically disordered quantum phase.

A similar behavior of χ1 and χ4 (CCM data imply χ4 = χ
(x)
1 +χ

(y)
1 ) is observed if J2

approaches J c22 form the collinear phase, i.e. from J2 > J c22 . On this side the behavior
of χ2 and χ3 is not conclusive, since both are already large in the collinear phase.

The behavior of the susceptibilities χ1 and χ4 (= 2χ1) near the critical point J c12 is
shown in more detail in Fig. 6.11. Obviously, approaching J c12 from the Néel phase,
χ1 (χ4) becomes very large, however, remains finite in the region around J c12 up to
J2 = 0.55. That might be attributed to limited accuracy of CCM results, since we have
(i) data only up to LSUB8 for extrapolation and (ii) and LSUBn data based on the Néel
reference state may become less accurate for values of J2 exceeding J c12 . However, if the
phase transition with respect to the corresponding VBS order parameter characterizing
the quantum paramagnetic phase would be of second order we may expect an almost
linear decreasing of the inverse susceptibility if J2 approaches J c12 , i.e. 1/χ1 ∝ (J c12 −
J2)γφ with γφ ≈ 1. [47] Hence a linear fit of the CCM data of 1/χ1 (1/χ4) versus
J2 using data points only within the Néel ordered region 0 ≤ J2 ≤ J c12 might give
reasonable results. We find that the linear fit for both, 1/χ1 (1/χ4) vanishes at the
same point J2 ≈ 0.47J1, see Fig. 6.11. This is in agreement with the scenario of
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deconfined criticality, that predicts such divergence if the deconfined critical point is
approached from the Néel phase [47,73].

To conclude this part, the CCM and ED data for all examined susceptibilities, χ1,
χ2, χ3, and χ4, exhibit an enhancement while the system runs out of the Néel phase.
This enhancement is most pronounced for χ1 (χ4). Moreover, χ1 (χ4) most likely
show the same critical behavior diverging at a value of J2 close to the quantum critical
point J c12 ≈ 0.44 . . . 0.45J1 determined by the most accurate data for the Néel order
parameter M . This finding is consistent with the predictions for a deconfined quantum
critical point. [73] Furthermore we find that our CCM data for χ1 and χ2 agree with
the series-expansion data [47]. By contrast, for χ3 we observe a qualitatively different
behavior. Finally, the enhancement/divergence of the considered susceptibilities if J2

approaches J c12 indicates that the translational symmetry is broken in the quantum
paramagnetic phase, i.e. most likely a spatially homogeneous spin-liquid phase for
J c12 < J2 < J c22 can be excluded.

6.4. Conclusions

To summarize, in this paper we have applied the CCM in high orders of approximation
to the spin-1/2 J1–J2 Heisenberg antiferromagnet on the square lattice and present a
comprehensive analysis of the GS phase diagram of the model. For this purpose we
have calculated the GS energy, the magnetic order parameter, the spin stiffness and
several generalized susceptibilities.

Our results enrich the list of available data and are complementary to other ex-
isting results obtained using different approximate methods like series expansions or
variational quantum Monte Carlo for the spin-1/2 J1–J2 square-lattice Heisenberg an-
tiferromagnet. In addition to the CCM results we present also ED results that are
found to be in good agreement with the CCM data.

Our findings confirm the basic picture discussed earlier: For intermediate values
of J c12 ≤ J2 ≤ J c22 the ground state is a paramagnetic quantum state. The CCM
prediction for the boundaries of the paramagnetic region is J c12 ≈ 0.44 . . . 0.45J1 and
J c22 ≈ 0.58 . . . 0.59J1. To discuss the nature of the quantum phase transition from the
semiclassical Néel phase to the quantum paramagnetic state at J c12 we use the CCM
(and ED) data as an input for the method developed in Ref. [47] to distinguish between
a first- and a second-order transition. Our analysis leads to the conclusion that the
phase transition from the Néel to the paramagnetic state at J c12 is second order. This
outcome contradicts the conclusion of Ref. [47] based on series-expansion data, but
agrees with the deconfined critical point scenario proposed in Refs. [72,73].

Another way to check the predictions of the theory of deconfined quantum criticality
is to examine the susceptibilities related to order parameters of a possible VBS ordering
emerging, if the deconfined critical point is approached from the magnetically ordered
Néel phase. The obtained data shown in Fig. 6.10 and Fig. 6.11 give another hint
that χ1 (χ4) diverges at J c12 which does not contradict the deconfined critical point
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scenario [72,73].
Finally, the divergence/enhancement of the generalized susceptibilities obtained by

CCM and ED approaching J c12 from the Néel phase gives evidence in favor of ground
states breaking translational symmetry and, therefore, our data yield further argu-
ments against a structureless (i.e. a spatially homogeneous) spin-liquid state without
any LRO. We note that some of the results presented in this chapter are published
in.1

1R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S.E. Krüger, and J. Richter, ” Ground-state
phases of the spin-1/2 J1–J2 Heisenberg antiferromagnet on the square lattice: A high-order
coupled cluster treatment”, Phys. Rev. B 78, 214415-1-10 (2008)



Chapter 7

The Quantum J1–J2 Antiferromagnet on the

Stacked Square Lattice

7.1. Introduction

The properties of quantum magnets strongly depend on the dimensionality. [176]
Though the tendency to order is more pronounced in three-dimensional (3d) systems
than in low-dimensional ones, a magnetically disordered phase can also be observed
in frustrated 3d systems such as the HAFM on the pyrochlore lattice [177] or on the
stacked kagomé lattice. [178] On the other hand, recently it has been found that the
3d J1–J2 model on the body-centered cubic lattice does not have an intermediate
quantum paramagnetic phase. [167,168]

As already mentioned in Chap. 6 the J1–J2 model on the square lattice is a canonical
model to study quantum phase transitions in d = 2. [22–24,26–28,39,43–49] However,
in experimental realizations of the J1–J2 model the magnetic couplings are expected
to be not strictly 2d, since a nonzero interlayer coupling J⊥ is always present. For
example, recently Rosner et al. [159] have found J⊥ ≈ 0.07J1 for Li2VOSiO4, a material
which can be described by a square lattice J1–J2 model with large J2. [54,159]

This motivates us to consider an extension of the J1–J2 model, namely the J1–J2

spin-1/2 HAFM on the stacked square lattice (see Fig.7.1) described by the Hamilto-
nian

H =
∑
n

(
J1

∑
〈ij〉

si,n · sj,n + J2

∑
[ij]

si,n · sj,n

)
+ J⊥

∑
i,n

si,n · si,n+1 , (7.1)

where n labels the layers and J⊥ ≥ 0 is the interlayer coupling. The expression
in parentheses represents the J1–J2 model of the layer n with intralayer NN bonds
J1 = 1 and NNN bonds J2 ≥ 0. The classical GS’s of the model are the Néel state
for J2 < 0.5J1 and another particular collinear state for J2 > 0.5J1. The latter state
(which we henceforth refer to as the collinear-columnar or, simply the collinear state) is
a columnar (π, 0) state characterized by a parallel spin orientation of nearest neighbors
along the direction of one axis (say, the vertical or columnar direction) in each layer,
and an antiparallel spin orientation of nearest neighbors along the perpendicular (say,
horizontal or row) direction. It is well known [22–24,26–28,39,43–49] that for J⊥ = 0
the quantum model has two corresponding GS phases with semi-classical magnetic
LRO, one (Néel -like) for small J2 . 0.4J1 and one (collinear-columnar-like) for large
J2 & 0.6J1, which are separated by a magnetically disordered (quantum paramagnetic)
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1J

J2

TJ

Figure 7.1.: Illustration of arrangement of bonds in the J1–J2 model on the Stacked Square Lattice
(Eq.(7.1)).

GS phase.
For the treatment of the model of Eq. (7.1) with arbitrary J⊥ we apply the CCM for

more details (see Chap.2) and use classical GS Néel (collinear-columnar) as reference
states for small J2 (for large J2). We note once more that the number of fundamental
configurations Nf can be reduced exploiting lattice symmetry and conservation laws.
However, this number Nf increases with increasing the number of dimension. In the
CCM-LSUB8 approximation we have finally 25953 (43070) fundamental configurations
for the Néel (collinear) reference state. To solve the set of the corresponding ket
equations we use parallel computing. [116]

Since the LSUBn approximation becomes exact for n→∞, it is useful to extrapolate
the ’raw’ LSUBn data to n → ∞. An appropriate extrapolation rule for the order
parameter of systems showing a GS order-disorder transition is the ’leading power-law’
extrapolation of Eq. (2.44) [93] where the results of the LSUB4,6,8 approximations are
used for the extrapolation. For the GS energy per spin we use Eq. (2.42) which is a
reasonable extrapolation ansatz. [18]

7.2. Results and discussions

As in the 2d case the GS of the stacked model is characterized by two magnetically
long-range ordered phases, namely a Néel phase for small J2 and a collinear phase for
large J2. For not too large J⊥ both magnetic phases are separated by a magnetically
disordered quantum paramagnetic phase, where the phase transition points are func-
tions of J⊥. In order to determine the GS phase transition points we calculate the
order parameters for various values of J⊥ and determine those values J2 = αNeel(J⊥)
and J2 = αcol(J⊥) where the order parameters vanish.

In Fig.7.2 we present some typical curves showing the extrapolated order parameters
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Figure 7.2.: The magnetic order parameter m versus J2 for various strengths of the interlayer
coupling J⊥ (with J1 = 1).

(according to Eq. (2.44)) versus J2 for some values of J⊥. The magnetic order param-
eters of both magnetically long-range ordered phases vanish continuously as is typical
for second-order transitions. We note, however, that there are arguments [43, 44, 49]
that the transition from the collinear-columnar phase to the quantum paramagnetic
phase should be of first order. The order parameters for both phases are monotonically
increasing functions of J⊥, and the transition points αNeel and αcol also move together
as J⊥ increases.

In Fig. 7.3 we present the dependence on J⊥ of these transition points. Close to
the strictly 2d case (i.e., for small J⊥ � J1) the influence of the interlayer coupling is
largest. For a characteristic value of J∗⊥ ≈ 0.19J1 the two transition points αNeel and
αcol meet each other. For larger J⊥ exceeding J?⊥, we have a direct first-order transition
between both types of magnetic LRO as is also observed in the classical model and in
the 3D quantum J1–J2 model on the body-centered cubic lattice [167,168]. We can add
to the above discussion of the order parameters a comparison of the energies. Provided
that the CCM equations converge for the Néel and the collinear reference state far
enough beyond those points where the order parameters vanish we can determine the
point where both energies become equal. For the considered LSUBn approximation,
this happens for J⊥ & 0.1. in the inset of Fig. 7.4 we show the energies versus J2 for
J⊥ = 0.2 calculated by extrapolation. The corresponding points J2 = α′coll(J⊥) where
both energies meet are shown in Fig. 7.3 as dashed line.
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Figure 7.3.: The ground-state phase diagram (where the solid lines show those values of J2 for
which the order parameters vanish and the dashed line represents those values of J2 where the two
energies calculated for the Néel and collinear reference states). Note that J1 = 1.
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Figure 7.4.: CCM results for the energy per spin e for both reference states (inset) and the order
parameter M for J⊥ = 0.2. Both quantities are obtained by extrapolation of the ’raw’ LSUBn results
to the limit n → ∞ as explained in the text. The energies calculated with the Néel and collinear
reference states become equal at J2 ≈ 0.58 indicating a first-order transition. For the order parameter
M , we take that value calculated with the reference state of lower CCM energy.

7.3. Conclusions

We obtain that both transition points αcoll and α′coll are close to each other and show
a similar dependence on J⊥. Secondly, we find that, at least for J⊥ & 0.1, the energy
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obtained with the Néel reference state is lower than that obtained with the collinear
reference state even for J2 values where the Néel oder parameter is already zero but the
collinear order parameter is still finite. Thus, this energetic consideration leads to the
following sequence of zero-temperature transitions: Second-order transition from Néel
LRO to a quantum paramagetic phase at J2 = αNeel and then a first-order transition
from the quantum paramagnetic phase to collinear LRO at J2 = α′coll > αcoll > αNeel.
This behavior is illustrated in Fig. 7.4, where the order parameter M is shown versus
J2 for fixed J⊥ = 0.2. For a certain value of J⊥ ≈ 0.23 both transition points αNeel
and α′coll become equal, and one has a direct first-order transition between the two
semiclassically long-range ordered phases. We note that some of the results presented
in this chapter are published in.12

1D. Schmalfuß, R. Darradi, J. Richter, J. Schulenburg and D. Ihle,” Quantum J1-J2 Antiferromagnet
on a Stacked Square Lattice: Influence of the Interlayer Coupling on the Ground-State Magnetic
Ordering”, Phys. Rev. Lett 97, 157201 (2006)

2J. Richter, R. Darradi, R. Zinke and R. F. Bishop, ”Frustrated quantum antiferromagnets: ap-
plication of high-order coupled cluster method”, International Jounal of Modern Physics B 21,
2273-2288 (2007)





Chapter 8

The spin-1/2 and spin-1 quantum J1–J
′
1–J2

Heisenberg models on the square lattice

8.1. Introduction

In the previous two chapters (6) and (7) the ground-state properties of the spin-1/2
J1–J2 frustrated Heisenberg antiferromagnet on the square lattice, the nature of the
magnetically disordered quantum phase and the influence of the interlayer coupling on
the ground-state magnetic ordering have been discussed. However, an interesting gen-
eralization of this model has also introduced recently by Nersesyan and Tsvelik [169].
They consider a 2D spatially anisotropic spin-1/2 J1–J ′1–J2 model on the square lat-
tice, where the nearest-neighbour bonds have different strengths J1 and J ′1 in, say, the
x (intrachain) and y (interchain) directions respectively. This model has been further
studied by other groups using the exact diagonalization (ED) of small lattice samples
of N ≤ 36 sites [170], and the continuum limit of the model [171]. Both groups sup-
port the prediction by Nersesyan and Tsvelik [169] of a resonating valence bond state
for J2 = 0.5J ′1 � J1, and the limit of small interchain coupling extends along a curve
nearly coincident with the line where the energy per spin is maximum. The model has
also been studied by Moukouri [172] using a two-step density-matrix renormalization
group approach.

Although spin problems are conceptually simple, they often exhibit rich and inter-
esting phase diagrams due to the strong influence of quantum fluctuations in these
strongly correlated systems. The strength of the quantum fluctuations can be tuned
by varying either the anisotropy terms in the Hamiltonian or the spin quantum number
s (see e.g., in Chapter. 3: Sec. 3.3, 3.4). Thus, lattice quantum spin problems maintain
an important role in the study of quantum phase transitions. Very few calculations
have been performed for the J1–J ′1–J2 model for the case of s = 1 up till now. It
has, however, been studied using the two-step density-matrix renormalization group
method, but only for the specific value of J ′1/J1 = 0.2, and a second-order transition
from a Néel phase to a disordered phase is observed with a spin gap [179]. It has also
been observed that quantum fluctuations can destabilize the ordered classical ground
state, even for large values of s, for large enough values of the frustration [27,37].

Furthermore, it has been argued recently that the quantum phase transition between
the semiclassical Néel phase and the quantum paramagnetic phase present in the 2D
J1–J2 model is not described by a Ginzburg-Landau type critical theory, but rather
may exhibit a deconfined quantum critical point [47,72,73,115].
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Heisenberg models on the square lattice

Our main goal in this chapter is to further the study of the J1–J ′1–J2 model by using
the CCM (see e.g., Chap.2). A particularly important result from our calculations is
the indicated existence of a quantum triple point (QTP) at nonzero (positive) values
of J1, J ′1 and J2.

8.2. The Model

(a) (d)(c)(b)

Figure 8.1.: (a) J1–J ′1–J2 model; — J1; - - J ′1; · − · J2; (b) Néel state, (c) stripe state - columnar
and (d) stripe state - row. Arrows in (b), (c) and (d) represent spins situated on the sites of the
square lattice (indicated by • in (a)).

The J1–J ′1–J2 model is a general spin-s Heisenberg model on a square lattice with
three kinds of exchange bonds, with strenth J1 along the row direction, J ′1 along the
column direction, and J2 along the diagonals, as shown in Fig. 8.1. All exchanges are
assumed positive here, and we set J1 = 1. The Hamiltonian of the model is described
by

H = J1

∑
i,l

si,l · si+1,l + J ′1
∑
i,l

si,l · si,l+1

+ J2

∑
i,l

(si,l · si+1,l+1 + si+1,l · si,l+1). (8.1)

This model has two types of classical ground state, namely, the Néel (π, π) state and
stripe states (columnar stripe (π, 0) and row stripe (0, π)), the spin orientations of
which are shown in Figs. 8.1(b,c,d) respectively. There is clearly a symmetry under
the interchange of rows and columns, J1 
 J ′1, which implies that we need only
consider the range of parameters with J ′1 < J1. The ground-state (gs) energies of the
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various classical states are given by

Ecl
Néel

N
= (−J1 − J ′1 + 2J2)|s|2,

Ecl
columnar

N
= (−J1 + J ′1 − 2J2)|s|2,

Ecl
row

N
= (J1 − J ′1 − 2J2)|s|2. (8.2)

We take J1 = 1 and J ′1 < 1. Clearly, from Eq. (8.2), the classical GS is then either
the Néel state (if J ′1 > 2J2) or the stripe state (if J ′1 < 2J2). Hence, the (first-order)
classical phase transition between the Néel and stripe (columnar) states occurs at
J c2 = 1

2
J ′1, ∀J1 > J ′1.

We now apply the CCM formalism to the spin-1/2 and spin-1 quantum J1–J ′1–J2

Heisenberg models on the square lattice, and we choose the Néel and stripe states
as the model state. For the case of s = 1/2 we employ here, as in our previous
work [22,42,88,92,93], the localized LSUBn scheme. The numbers of such fundamental
configurations (viz., those that are distinct under the symmetries of the Hamiltonian
and of the model state |Φ〉) that are retained for the Néel and stripe states of the
current model in various LSUBn approximations are shown in Table 8.1.

We note next that the number of fundamental LSUBn configurations for s = 1
becomes appreciably higher than for s = 1/2, since each spin on each site i can now
be flipped twice by the spin-raising operator s+

i . Thus, for the s = 1 model it is more
practical to use the alternative SUBn–m scheme 2.2.3, where m is the size of the locale
on the lattice and n is the maximum number of spin-flips. In our case we set m = n,
and hence employ the SUBn–n scheme. More generally, the LSUBm scheme is thus
equivalent to the SUBn–m scheme for n = 2sm. Hence, LSUBm ≡ SUB2sm–m. For
s=1/2, LSUBn ≡ SUBn–n; whereas for s = 1, LSUBn ≡ SUB2n–n. The numbers of
fundamental configurations retained at various SUBn–n levels for the s = 1 model are
shown in Table 8.1.

In order to solve the corresponding coupled sets of CCM ket- and bra-state (see
Eq. 2.7, 2.8) equations we use parallel computing [116].

In our results below the LSUBn results for n = {4, 6, 8, 10} are extrapolated for
s = 1/2, in order to preserve the three rules (see e.g., Sec. 2.5), whereas the SUBn–n
results for n = {2, 4, 6, 8} are extrapolated for s = 1, in each case using the schemes
indicated above. For both the s = 1/2 and the s = 1 models we perform two separate
sets of CCM calculations for given parameters (J1 ≡ 1, J ′1, J2) based respectively on
the Néel state and the stripe state as the model state |Φ〉.
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Table 8.1.: Numbers of fundamental configurations (Nf ) for s = 1/2 and s = 1 in various CCM
approximations.

s = 1/2 s = 1

Scheme Nf Scheme Nf

Néel stripe Néel stripe

LSUB2 2 1 SUB2–2 2 1

LSUB4 13 9 SUB4–4 28 21

LSUB6 146 106 SUB6–6 744 585

LSUB8 2555 1922 SUB8–8 35629 29411

LSUB10 59124 45825 – – –

8.3. Results and Discussion

8.3.1. Ground-state energy

Figures 8.2, 8.3 shows the gs energy per spin as a function of J2 for various values of J ′1
(all with J1 ≡ 1), extrapolated from both the s = 1/2 and s = 1 models from the raw
CCM data as discussed above. Both the raw LSUBn data for the s = 1/2 model and
the raw SUBn–n data for the s = 1 model terminate at some particular values. This
occurs for the CCM curves based on both the Néel state and the stripe state as the
model state |Φ〉. In all cases such a termination point arises due to the solutions of the
CCM equations becoming complex at this point, beyond which there exist two branches
of complex-conjugate solutions. In the region where the solution reflecting the true
physical situation is real, there actually also exists another real solution. However, only
the (shown) upper branch of these two solutions reflects the true physical situation,
whereas the lower branch does not. The branch reflecting the true physical situation of
the solutions is the one which becomes exact in some appropriate (e.g., perturbative)
limit. This physical branch then meets the corresponding unphysical branch at some
termination point beyond which no real solutions exist. The termination points shown
in Figures 8.2, 8.3 are the extrapolated n→∞ termination points and are evaluated
using data only up to the highest level of the CCM approximation schemes used here,
namely LSUB10 for the s = 1/2 model and SUB8–8 for the s = 1 model. The SUBn–
n and LSUBn termination points are also reflections of phase transitions in the real
system, as we discuss more fully below.

We observe from Fig. 8.2 that for the case of the s = 1/2 model the two curves,
based on the Néel and stripe model states, for a given value of J ′1, cross (or, in the
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Figure 8.2.: Extrapolated CCM LSUBn results for the gs energy per spin, E/N, for J ′1 =
0.2, 0.4, 0.6, 0.8, 1.0, using the Néel and stripe states of the s = 1/2 J1–J ′1–J2 model. The LSUBn
results are extrapolated(according to Eq. (2.43)) in the limit n → ∞ using the set n = {4, 6, 8, 10}.
The NN exchange coupling J1 = 1.

limit, meet) very smoothly near their maxima for all values of J ′1 . 0.6, at a value of J2

slightly larger than the classical transition point of 0.5J ′1. This behaviour is indicative
of a second-order quantum phase transition between these two phases, by contrast
with the first-order classical transition from Eq. (8.2). Conversely, for values J ′1 & 0.6
the curves no longer cross at a physical value (viz., where the calculated staggered
magnetization is positive), indicating the opening up of an intermediate quantum
phase between the Néel and stripe phases. For the case of s = 1(see Fig. 8.3), the
extrapolated gs energy curves of the Néel and stripe states again meet smoothly with
the same slope for J ′1 . 0.66 ± 0.03. This behaviour is again indicative of a second-
order phase transition. By contrast, for J ′1 & 0.66 ± 0.03 the behaviour is typical of
a first-order phase transition where the curves now cross with a discontinuity in the
slope. Figures 8.2, 8.3 clearly show the distinct differences in the gs energy curves for
the two models with s = 1/2 and s = 1. This different behaviour observed in the
gs energy for the two models is reinforced by the gs staggered magnetization results
discussed below.
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Figure 8.3.: Extrapolated CCM SUBn–n results for the gs energy per spin, E/N , of the s = 1 J1–
J ′1–J2 model, for J ′1 = 0.2, 0.4, 0.6, 0, 7, 0.8, 0.9, 1.0. The SUBn–n results are extrapolated(according
to Eq. (2.43)) in the limit n→∞ using the set n = {2, 4, 6, 8}.

8.3.2. Magnetic order parameter

For the gs staggered magnetization for the s = 1/2 model we find that the extrap-
olation of Eq. (2.44) produces smooth and physically reasonable results, except for
a very narrow anomalous “shoulder” region near the points where M vanishes for
0.6 . J ′1 . 0.75 for the Néel state(see Fig. 8.4(a)). This critical regime is undoubtedly
difficult to fit with the simple two-term scheme of Eq. (2.44). Our method for curing
this problem and for stabilizing the curves is to make efficient use of the information
we obtain in Eq. (2.44) to extract the exponent ν, and then to use that value to infer
the next term in the series. We find, very gratifyingly, that the value for ν fitted to
Eq. (2.44) turns out to be very close to 0.5 for all values of J ′1 and J2 except very close
to the critical point. Therefore, we use the form of Eq. (2.45). The use of Eq. (2.45)
removes the anomalous shoulder, as shown in Fig. 8.4(b). Henceforth, in all of the
results we discuss, we use Eq. (2.45) for the staggered magnetization.

We have also checked that for the s = 1/2 model the extrapolated results using the
data sets with n = {2, 4, 6, 8, 10} and n = {4, 6, 8, 10} are very similar, thereby adding
credence to the validity and stability of our results. Conversely, the results using the
data set with n = {6, 8, 10} again display a minor spurious “shoulder” which is almost
certainly due to violating our Rule 1 (see e.g., Chap. 2: Sec. 2.5).

For the s = 1 model, no narrow anomalous “shoulder” region is observed in the
raw SUBn–n results. We have also performed some vigorous tests in the extrapola-
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Figure 8.4.: Extrapolated CCM LSUBn results for the gs staggered magnetization, M , for J ′1 =
0.6, 0.65, 0.7 for the Néel state of the s = 1/2 J1–J ′1–J2 model. (a) Results using Eq. (2.44), (b)
Results using Eq. (2.45). The LSUBn results are extrapolated in the limit n → ∞ using the set
n = {4, 6, 8, 10}. The NN exchange coupling J1 = 1.

tion schemes for the staggered magnetization in this case. Our main finding is that
Eq. (2.45) using the data set with n = {2, 4, 6, 8} is the most consistent in terms
of both the gs energy meeting point and the staggered magnetization critical point,
as discussed below. Figures 8.5, 8.6 shows our extrapolated results for the the gs
staggered magnetization M for both models. The quantum phase transition or crit-
ical point marking the end of either the quantum Néel state or the quantum stripe
state is determined by calculating the order parameter M for various values of J ′1 to
obtain those values of J2 where M vanishes. However, as seen in Figs. 8.5, 8.6, there
also occur cases where the order parameters of the two states meet before the order
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

M

J2

Néel stripe

J1’=0.2
J1’=0.4
J1’=0.6
J1’=0.7
J1’=0.8
J1’=0.9
J1’=1.0

Figure 8.6.: Extrapolated CCM SUBn–n results for the gs staggered magnetisation, M , of the
s = 1 J1–J ′1–J2 model, for J ′1 = 0.2, 0.4, 0.6, 0, 7, 0.8, 0.9, 1.0. The SUBn–n results are extrapo-
lated(according to Eq. (2.45)) in the limit n→∞ using the set n = {2, 4, 6, 8}.

parameter vanishing point. In these cases we take the meeting point to define the
phase boundary between the quantum Néel and quantum stripe states. Thus, our
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definition of the quantum critical point is the point where there is an occurence of
a phase transition between the two states considered or where the order paramenter
vanishes, whichever occurs first.

For the s = 1/2 model we note that M vanishes for both the quantum Néel and
stripe phases at almost exactly the same critical value of J2, for a given J ′1, so long
as J ′1 . 0.6. Conversely, for J ′1 & 0.6 there exists an intermediate region between the
critical points at which M → 0 for these two phases. The order parameters M of both
the Néel and the stripe phases vanish continuously both below and above the point
J ′1 ≈ 0.60, as is again typical of second-order transitions.

By contrast, we note the surprising result for the s = 1 model that the order
parameter M goes to zero smoothly at the same point for both the quantum Néel and
stripe phases with the same value of J ′1, for all values of J ′1 . 0.66± 0.03, whereas the
corresponding curves for the two phases meet at a nonzero value for higher values of
J ′1. Thus, in this regime we have behaviour typical of a second-order phase transition
between the quantum Néel and stripe phases. Furthermore, the transition occurs at
a value of J2 very close to the classical transition point at J2 = 0.5J ′1. Conversely, for
values of J ′1 & 0.66± 0.03, the order parameters M of the two states meet at a finite
value, as is typical of a first-order transition.

8.3.3. Ground-state phase diagrams

We show in Figs. 8.7, 8.8 he zero-temperature phase diagrams of both the spin-1/2
and spin-1 J1–J ′1–J2 models on the square lattice, as obtained from our extrapolated
results for both the gs energy and the gs order parameter M . In the case of the spin-
1/2 model our results provide clear and consistent evidence for a quantum triple point
(QTP) at (J ′1 ≈ 0.60 ± 0.03, J2 ≈ 0.33 ± 0.02) for J1 = 1. For J ′1 . 0.60 there exist
only the Néel and stripe phases, with a second-order transition between them, whereas
for J ′1 & 0.60 there also exists an intermediate (disordered, paramagnetic) quantum
phase, which requires further investigation. Although the nature of the intermediate
phase is still under discussion, a valence-bond crystal phase seems to be the most
favoured from other investigations [40, 47]. On the other hand, another possibility
for this intermediate phase is the resonating valence bond (RVB) phase [170]. Other
calculations on this spin-1/2 model [170, 171] differ predominantly by giving a QTP
at (J ′1 = 0, J2 = 0) for J1 = 1. We believe that the difference arises essentially from
the nature of the alternative methods used. For example, due to the small size of the
lattices used, the ED calculations of Sindzingre [170] might easily miss the longer-range
correlations that become increasingly important the nearer one approaches the QTP.

Unlike the s = 1/2 case there is no sign at all of any intermediate disordered phase
for any value of the parameters J ′1 or J2 (for J1 = 1) for the case of s = 1. Hence, in
this respect the quantum spin-1 model is much closer to the classical case, viz., the
s → ∞ limit. However, unlike the classical case, there now appears to be a quantum
tricritical point (QTCP) at (J ′1 ≈ 0.66 ± 0.03, J2 ≈ 0.35 ± 0.02) for J1 = 1, where
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Figure 8.7.: The extrapolated CCM LSUBn results for the gs phase diagram of the s = 1/2 J1–
J ′1–J2 model. The LSUBn results are extrapolated in the limit n→∞ using the set n = {4, 6, 8, 10}.
The NN exchange coupling J1 = 1. QTP ≡ quantum triple point.

a tricritical point is defined here to be a point at which a line of second-order phase
transitions meets a line of first-order phase transitions. We note that the behaviour
of both the order parameter (which goes to zero smoothly at the same point for both
Néel and stripe phases below the QTCP, but which goes to a nonzero value above
it) and the gs energy curves for the two phases (which meet smoothly with the same
slope below the QTCP, but which cross with a discontinuity in slope above it) tell
exactly the same story. We note that some of the results presented in this chapter are
published in.1 2

1R. F. Bishop, P. H. Y. Li, R. Darradi and J. Richter ”The quantum J1–J ′1–J2 spin-1/2 Heisen-
berg model: influence of the interchain coupling on the ground-state magnetic ordering in two
dimensions”, J. Phys.: Condens. Matter 20 , 255251 (2008)

2R. F. Bishop, P. H. Y. Li, R. Darradi and J. Richter,”The quantum J1–J ′1–J2 spin-1 Heisenberg
model: Influence of the interchain coupling on the ground-state magnetic ordering in 2D”, Euro-
physics Letters 83, 47004 (2008)
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Chapter 9

Effect of anisotropy on the ground-state

magnetic ordering of the spin-1/2 and spin-1

frustrated J1–J2 XXZ model on the square

lattice

9.1. Introduction

In this chapter we study the zero-temperature phase diagram of the 2D quantum
spin-1/2 and spin-1 anisotropic Heisenberg model on the square lattice. In particular,
the effects of the anisotropy ∆ on the z-aligned Néel and (collinear) stripe states, as
well as on the xy-planar-aligned Néel and collinear stripe states, are examined. We
generalize the spin-1/2 and spin-1 J1–J2 model on the 2D square lattice in a different
direction by allowing the bonds to become anisotropic in spin space rather than in
real space. Such spin anisotropy is relevant experimentally as well as theoretically,
since it is likely to be present, if only weakly, in any real material. Furthermore,
the intermediate magnetically-disordered phase is likely to be particularly sensitive to
any tuning of the quantum fluctuations, as we have seen above in the case of spatial
anisotropy. Indeed, other evidence indicates that the intermediate phase might even
disappear altogether in certain situations, such as increasing the dimensionality or the
spin quantum number.

Thus, for example, the influence of frustration and quantum fluctuations on the
magnetic ordering in the GS of the spin-1/2 J1–J2 model on the body-centered cubic
(bcc) lattice has been studied using linked-cluster series expansions [168], and also
by using exact diagonalization of small lattices and linear spin-wave theory [167].
Contrary to the results for the corresponding model on the square lattice, it was found
for the bcc lattice that frustration and quantum fluctuations do not lead to a quantum
disordered phase for strong frustration. Rather, the results of all approaches suggest
a first-order quantum phase transition at a value J2/J1 ≈ 0.70 from the quasiclassical
Néel phase at low J2 to a quasiclassical collinear phase at large J2. Similarly, the
intermediate phase can also disappear when the spin quantum number s is increased
for the J1–J2 model on the 2D square lattice. Thus, we found no evidence for a
magnetically disordered state (for larger values of J2/J1) for the spin-1 case, in contrast
with the spin-1/2 case (see Chapter. 8).

As in previous work (see Chap. 8) involving the effect of spatial anisotropy on
the spin-1/2 and spin-1 J1–J2 models on the 2D square lattice, we again employ the
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coupled cluster method (CCM) to investigate now the effect on the same model of spin
anisotropy.

9.2. The Model

The spin-1/2 and spin-1 J1–J2 model is an isotropic Heisenberg model on a square
lattice with two kinds of exchange bonds, with strength J1 for the NN bonds along
both the row and the column directions, and with strength J2 for the NNN bonds along
the diagonals, as shown in Fig. 9.1(a). Here we generalize the model by including an

(a) (b) (c) (d)   (e)

Figure 9.1.: (a) The J1–J2 XXZ Heisenberg model; — J1; - - - J2; (b) and (c) z-aligned states for
the Néel and stripe columnar phases respectively; (d) and (e) planar x-aligned states for the Néel
and stripe columnar phases respectively. Arrows in (b), (c), (d) and (e) represent spins situated on
the sites of the square lattice [symbolized by • in (a)].

anisotropy in spin space in both the NN and NNN bonds. We are aware of only a
very few earlier investigations with a similar goal [41,173,180]. The two most detailed
have studied the extreme limits where either the frustrating NNN interaction becomes
anisotropic but the NN interaction remains isotropic [41] (viz., the J1–JXXZ2 model)
and the opposite case where the NN interaction becomes anisotropic but the NNN
interaction remains isotropic [173] (viz., the JXXZ1 –J2 model). In real materials one
might expect both exchange interactions to become anisotropic. To our knowledge
the only study of this case [180] (viz., the JXXZ1 –JXXZ2 model) has been done using
the rather crude tool of linear spin-wave theory (LSWT), from which it is notoriously
difficult to draw any firm quantitative conclusions about the positions of the gs phase
boundaries of a system. It is equally difficult to use LSWT to predict with confidence
either the number of phases present in the gs phase diagram or the nature of the
quantum phase transitions between them. We comment further on the application of
spin-wave theory to the J1–J2 model and its generalizations in Sec. 9.4. In order to keep
the size of the parameter space manageable the anisotropy parameter ∆ is assumed to
be the same in both exchange terms, thus yielding the so-called JXXZ1 –JXXZ2 model,
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whose Hamiltonian is described by

H = J1

∑
〈i,j〉

(sxi s
x
j + syi s

y
j + ∆szi s

z
j) + J2

∑
〈〈i,k〉〉

(sxi s
x
k + syi s

y
k + ∆szi s

z
k) , (9.1)

where the sums over 〈i, j〉 and 〈〈i, k〉〉 run over all NN and NNN pairs respectively,
counting each bond once and once only. We are interested only in the case of competing
antiferromagnetic bonds, J1 > 0 and J2 > 0, and henceforth, for all of the results shown
in Sec. 9.3, we set J1 = 1. Similarly, we shall be interested essentially only in the region
∆ > 0 (although for reasons discussed below in Sec. 9.3 we shall show results also for
small negative values of ∆). This model has two types of classical antiferromagnetic
ground states, namely a z-aligned state for ∆ > 1 and an xy-planar-aligned state
for 0 < ∆ < 1. Since all directions in the xy-plane in spin space are equivalent,
we may choose the direction arbitrarily to be the x-direction, say. Both of these z-
aligned and x-aligned states further divide into a Néel (π, π) state and stripe states
(columnar stripe (π, 0) and row stripe (0, π)), the spin orientations of which are shown
in Figs. 9.1(b,c,d,e) accordingly. There is clearly a symmetry under the interchange
of rows and columns, which implies that we need only consider the columnar stripe
states. The (first-order) classical phase transition occurs at J c2 = J1/2, with the Néel
states being the classical GS for J2 < J1/2, and the columnar stripe states being the
classical GS for J2 > J1/2.

For the CCM treatment of the model of Eq. (9.1), we use the classical GS (Néel
at small J2 and collinear-columnar (CC) state at large J2) as reference state |Φ〉.
Starting from these reference states the CCM employs the exponential parametriza-
tion |Ψ〉 = eS|Φ〉 of the quantum GS |Ψ〉 where the correlation operator S contains
all possible multi-spin-flip correlations present in the true GS. Naturally, S has to be
approximated. We use the well-elaborated CCM-LSUBn and CCM-SUBn–m approx-
imation [18, 22, 42, 88, 92, 93, 113] for spin-1/2 and spin-1 respectively to calculate the
GS energy per spin E and the sublattice magnetization per spin M . We note again
that the number of fundamental LSUBn configurations for s = 1 becomes apprecia-
bly higher than for s = 1

2
, since each spin on each site j can now be flipped twice

by the spin-raising operators, so that in this case the multi-configurational creation
operators, C+

I can contain up to two spin-raising operator s+
j for each lattice site j.

Thus, for systems with s > 1
2

it is more practical to use the SUBn–m scheme (see e.g.,
Subsec. 2.2.3). Clearly, for spins with spin-1, the SUB2n–n scheme is fully equivalent
to the LSUBn scheme. More generally for spins with arbitrary spin quantum number
s, SUB2sn–n ≡ LSUBn. In order to keep the number of fundamental configurations
from growing too quickly with increasing level of approximation we set m = n, and
thus we have the SUBn–n scheme. Clearly, as n → ∞, the approximation becomes
exact.

Table 9.1 and 9.2 show the number of fundamental LSUBn and SUBn–n configu-
rations for the z-aligned and planar x-aligned states in the Néel and striped phases.
We see that the number of fundamental configurations for the planar model state at
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Table 9.1.: Numbers of fundamental configurations (Nf ) for spin-1/2 and spin-1 in various CCM
approximations for the z-aligned states of the spin-1/2 and spin-1 JXXZ

1 –JXXZ
2 model on the square

lattice.

s = 1/2 s = 1

Scheme Nf Scheme Nf

Néel stripe Néel stripe

LSUB2 1 1 SUB2–2 1 1

LSUB4 7 9 SUB4–4 15 21

LSUB6 75 106 SUB6–6 375 585

LSUB8 1287 1922 SUB8–8 17864 29411

LSUB10 29605 45825 – – –

Table 9.2.: Numbers of fundamental configurations (Nf ) for spin-1/2 and spin-1 in various CCM
approximations for the planar x-aligned states of the spin-1/2 and spin-1 JXXZ

1 –JXXZ
2 model on the

square lattice.

s = 1/2 s = 1

Scheme Nf Scheme Nf

Néel stripe Néel stripe

LSUB2 1 2 SUB2–2 2 3

LSUB4 10 18 SUB4–4 31 57

LSUB6 131 252 SUB6–6 1085 2131

LSUB8 2793 5532 SUB8–8 61904 123471

LSUB10 74206 148127 – – –

the LSUB10(SUB8–8) level of approximation is 74206(61904) for the Néel phase and
148127(123471) for the stripe phase. The intensive calculations required at even this
very high order of approximation are easily practicable with relatively modest super-
computing resources. Thus, for example, we employed 600(200) processors simultane-
ously to execute the LSUB10(SUB8–8) calculations using the planar x-aligned collinear
stripe state as model state, and with this number of processors it took approximately
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six hours to solve the CCM equations (2.7) and (2.8) at this level of approximation
for each value of the anisotropy parameter ∆ in the Hamiltonian (9.1).

The final step in any CCM calculation is then to extrapolate the approximate LSUBn
and SUBn–n results to the exact, n → ∞, limit. We use here for the extrapolations
of the raw LSUBn and SUBn–n data the same well-tested scaling laws as we used
previously in our studies of the J1–J ′1–J2 model for both the s = 1

2
and the s = 1 (see

e.g., Chap. 8).

9.3. Results

9.3.1. Ground-state energy

Figure 9.2 shows the extrapolated results for the gs energy per spin as a function of
J2 (with J1 = 1) for various values of ∆, for the z-aligned and planar x-aligned model
states. For each model state, two sets of curves are shown, one (for smaller values
of J2) using the Néel state, and the other (for larger values of J2) using the stripe
state. As has been discussed in detail elsewhere, [22,88,92] the coupled sets of LSUBn
equations (2.7) and (2.8) have natural termination points (at least for values n > 2)
for some critical value of a control parameter (here the anisotropy, ∆), beyond which
no real solutions to the equations exist. The extrapolation of such LSUBn termination
points for fixed values of ∆ to the n → ∞ limit can sometimes be used as a method
to calculate the physical phase boundary for the phase with ordering described by the
CCM model state being used. However, since other methods exist to define the phase
transition points, which are usually more precise and more robust for extrapolation
(as we discuss below), we have not attempted such an analysis here.

Instead, in Fig. 9.2, the Emax points shown, for each set of calculations based on
one of the four CCM model states used, are either those natural termination points
described above for the highest (LSUB10) level of approximation we have implemented,
or the points where the gs energy becomes a maximum should the latter occur first
(i.e., as one approaches the termination point). The advantage of this usage of the
Emax points is that we do not then display gs energy data in any appreciable regimes
where LSUBn calculations with very large values of n (higher than can feasibly be
implemented) would not have solutions, by dint of having terminated already.

Curves such as those shown in Fig. 9.2(a) illustrate very clearly that the corres-
ponding pairs of gs energy curves for the z-aligned Néel and stripe phases cross one
another for all values of ∆ above some critical value, ∆ & 2.1. The crossings occur
with a clear discontinuity in slope, as is completely characteristic of a first-order phase
transition, exactly as observed in the classical (i.e., s → ∞) case. Furthermore, the
direct first-order phase transition between the z-aligned Néel and stripe phases that
is thereby indicated for all values of ∆ & 2.1, occurs (for all such values of ∆) very
close to the classical phase boundary J2 = 1

2
, the point of maximum (classical) frus-

tration. Conversely, curves such as those shown in Fig. 9.2(a) for values of ∆ in the
range 1 < ∆ . 2.1 also illustrate clearly that the corresponding pairs of gs energy
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Figure 9.2.: Extrapolated CCM LSUBn results using (a) the z-aligned and (b) planar x-aligned
states for the gs energy per spin, E/N , for the Néel and stripe phases of the s = 1/2 JXXZ

1 –JXXZ
2

model. The LSUBn results are extrapolated in the limit n → ∞ using the sets n = {4, 6, 8, 10} for
both the z-aligned states and the planar x-aligned states. The NN exchange coupling J1 = 1. The
meaning of the Emax points shown is described in the text.

curves for the z-aligned Néel and stripe phases do not intersect one another. In this
regime we thus have clear preliminary evidence for the opening up of an intermediate
phase between the Néel and stripe phases. The corresponding curves in Fig. 9.2(b)
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Figure 9.3.: Extrapolated CCM SUBn–n results using (a) the z-aligned and (b) planar x-aligned
states for the gs energy, E/N, for the Néel and stripe phases of the s = 1 JXXZ

1 –JXXZ
2 model. The

SUBn–n results are extrapolated to the limit n → ∞ using the sets n = {2, 4, 6, 8} for both the
z-aligned and planar x-aligned states.

for values of ∆ < 1 tell a similar story, with an intermediate phase similarly indicated
to exist between the xy-planar-aligned Néel and stripe phases for values of ∆ in the
range −0.1 . ∆ < 1.

Figure 9.3 shows the extrapolated CCM results for the gs energy per spin, E/N , as
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a function of J2 for various values of ∆, using both the z-aligned and planar x-aligned
model states. For each value of ∆ two curves are shown, one (for smaller values of J2)
using the Néel state, and the other (for larger values of J2) using the stripe state as
CCM model state. All of the curves such as those shown in figure 9.3 illustrate very
clearly that the corresponding pairs of gs energy curves (for the same values of ∆) for
the Néel and stripe phases cross one another, for both the z-aligned (figure 9.3(a) for
all values ∆ > 1) and the x-aligned (figure 9.3(b) for all values 0 ≤ ∆ < 1) cases. The
crossings occur with a clear discontinuity in slope, which is completely characteristic
of a first-order phase transition, exactly as observed in the classical (i.e., s→∞) case.
Unlike in the s = 1

2
version, there is no indication at all in the present spin-1 case

of any intermediate paramagnetic phase emerging for any values of the parameters J2

and ∆. Furthermore, the direct first-order phase transition, so indicated by our results
for the gs energy, between the quasiclassical Néel-ordered and collinear stripe-ordered
phases, in both the z-aligned and planar x-aligned cases, occurs for all values of ∆ ≥ 0
very close to the classical phase boundary J c2 = 1

2
, the point of maximum (classical)

frustration.

9.3.2. Magnetic order parameter

We show in Fig. 9.4 corresponding indicative sets of CCM results, based on the same
four model states, for the gs order parameter (viz., the staggered magnetization), to
those shown in Fig. 9.3 for the gs energy. The staggered magnetization data completely
reinforce the phase structure of the model as deduced above from the gs energy data.
Thus, let us now denote by Mc the quantum phase transition point deduced from
curves such as those shown in Fig. 9.4, where Mc is defined to be either (a) the point
where corresponding pairs of CCM staggered magnetization curves (for the same value
of ∆), based on the Néel and stripe model states, intersect one another if they do so
at a physical value M ≥ 0; or (b) if they do not so intersect at a value M ≥ 0, the
two points where the corresponding values of the staggered magnetization go to zero.

Clearly, case (a) here corresponds to a direct phase transition between the Néel and
stripe phases, which will generally be first-order if the intersection point has a value
M 6= 0 (and, exceptionally, second-order, if the crossing occurs exactly at M = 0).
On the other hand, case (b) corresponds to the situation where the points where the
LRO vanishes for both quasiclassical (i.e., Néel-ordered and stripe-ordered) phases
are, at least naively, indicative of a second-order phase transition from each of these
phases to some intermediate magnetically-disordered phase. We return to a discussion
of the actual order of such transitions in Sec. 9.4. In summary, we hence define the
staggered magnetization criterion for a quantum critical point as the point where there
is an indication of a phase transition between the two states by their order parameters
becoming equal, or where the order parameter vanishes, whichever occurs first. A
detailed discussion of this order parameter criterion and its relation to the stricter
energy crossing criterion may be found elsewhere [42].
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Figure 9.4.: Extrapolated CCM LSUBn results using (a) the z-aligned and (b) planar x-aligned
states for the gs staggered magnetization, M , for the Néel and stripe phases of the s = 1/2 JXXZ

1 –
JXXZ

2 model. The LSUBn results are extrapolated in the limit n→∞ using the sets n = {4, 6, 8, 10}
for both the z-aligned states and planar x-aligned states. The NN exchange coupling J1 = 1.
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From curves such as those shown in Fig. 9.4(a) we see that for ∆ . 1.95 for the z-
aligned states, there exists an intermediate region between the critical points at which
M → 0 for the Néel and stripe phases. Conversely, for ∆ & 1.95 the two curves for
the order parameters M of the quantum Néel and stripe phases for the same value of
∆ meet at a finite value, M > 0, as is typical of a first-order transition. Similarly,
Fig. 9.4(b) shows that for the planar x-aligned states, there exists an intermediate
region between the critical points at which M → 0 for the Néel and stripe phases for
all values of ∆ in the range −0.15 . ∆ < 1. Again, the two curves for the order
parameters M of the Néel and stripe phases for the same value of ∆ intersect at a
value M > 0 for ∆ . −0.15. In order to show more explicitly how the quantum phase
transitions are driven by anisotropy, ∆, we display the same data for the extrapolated
results for the order parameter, M , somewhat differently in Fig. 9.5, where we plot M
as a function of ∆ for various values of J2 around the value J2 = 0.5, corresponding
to the point of maximum (classical) frustration.
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Figure 9.5.: Extrapolated CCM LSUBn results using the z-aligned and planar x-aligned states for
the staggered magnetization versus the anisotropy ∆ for the s = 1/2 JXXZ

1 –JXXZ
2 model, for the

NN exchange coupling J1 = 1. The LSUBn results are extrapolated in the limit n → ∞ using the
sets n = {4, 6, 8, 10} for both the z-aligned model states and the planar x-aligned model states.

For spin-1 we present in Fig. 9.6 the gs order parameter M calculated by CCM for
N → ∞, based on the same four model states. It is clear from figures 9.6(a) and (b)
that case (b) never occurs for the present spin-1 model for any values of the anisotropy
parameter ∆ or for any values of the NNN exchange coupling J2, unlike in the s = 1

2

version.
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Figure 9.6.: Extrapolated CCM SUBn–n results using (a) the z-aligned and (b) planar x-aligned
states for the gs staggered magnetization, M , for the Néel and stripe phases of the spin-1 JXXZ
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2 model. The SUBn–n results are extrapolated to the limit n→∞ using the sets n = {2, 4, 6, 8}
for the z-aligned states.
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9.3.3. Ground-state phase diagrams

By putting together data of the sort shown in Figs. 9.2 and 9.4 of the spin-1/2 we
are able to deduce the gs phase diagram of our 2D spin-1/2 JXXZ1 –JXXZ2 model on
the square lattice, from our CCM calculations based on the four model states with
quasiclassical antiferromagnetic LRO (viz., the Néel and stripe states for both the
z-aligned and planar xy-aligned cases). We show in Fig. 9.7 the zero-temperature gs
phase diagram, as deduced from the order parameter criterion, and using our extrap-
olated LSUBn data sets with n = {4, 6, 8, 10}, shown as the critical value J c2 for the
NNN exchange coupling J2 as a function of anisotropy ∆ (with NN exchange coupling
strength J1 = 1). Very similar results are obtained from using the energy criterion,
where it can be applied (viz., along the transition lines between quasiclassical states
with magnetic LRO). In order to test the accuracy of our results, particularly the posi-
tions of the phase boundaries shown in Fig. 9.7, we have also performed extrapolations
using the LSUBn data sets with n = {2, 4, 6, 8, 10} and n = {6, 8, 10} for both the
energy criterion and the order parameter criterion. In general terms we find that the
results are remarkably robust, and the error bars quoted below are based on such an
analysis.
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Figure 9.7.: Extrapolated CCM LSUBn results using the z-aligned and planar x-aligned states for
the ground-state phase diagram of the spin-1/2 JXXZ

1 –JXXZ
2 model, for the NN exchange coupling

J1 = 1. The LSUBn results for the staggered magnetization are extrapolated to the limit n → ∞
using the sets n = {4, 6, 8, 10} for both the z-aligned model states and the planar x-aligned model
states. Mc ≡ magnetization critical point, defined in the text.

For the case of the z-aligned states, all of our results provide clear and consistent
evidence for an upper quantum triple point (QTP) at (∆c = 2.05± 0.15, J c2 = 0.530±
0.015) (for J1 = 1). For 1 < ∆ . 2.0, there exists an intermediate paramagnetic
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(magnetically-disordered) quantum phase, separating the Néel and stripe phases. This
intermediate phase disappears for ∆ & 2.0, and both our energy and order parameter
criteria give clear and unequivocal evidence for a direct first-order quantum phase
transition between the two quasiclassical antiferromagnetic states in this regime, just
as in the corresponding classical model (i.e., with s → ∞). The phase boundary
approaches the classical line J c2 = 0.5 as ∆→∞.

Similarly, for the case of the xy-planar-aligned phases, a second (lower) QTP occurs
at (∆c = −0.10±0.15, J c2 = 0.505±0.015) (for J1 = 1), with an intermediate disordered
phase existing in the region−0.1 . ∆ < 1. The z-aligned and xy-planar-aligned phases
meet precisely at ∆ = 1, just as in the classical case. Exactly at the isotropic point
∆ = 1, where the model becomes just the original J1–J2 model, the disordered phase
exists for the largest range of values of J2, J c12 < J2 < J c22 , as can be clearly seen from
Fig. 9.7. For the pure J1–J2 model our calculations yield the values J c12 /J1 = 0.44±0.01
and J c22 /J1 = 0.59±0.01 that demarcate the phase boundaries for the disordered phase,
in complete agreement with both our own earlier work and that of others that we have
already discussed in Chap. 6.
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Figure 9.8.: Extrapolated CCM SUBn–n results using the z-aligned and planar x-aligned states
for the ground-state phase diagram of the spin-1 JXXZ

1 –JXXZ
2 anisotropic Heisenberg model on the

square lattice, for the NN exchange coupling J1 = 1. The SUBn–n results for the energy per spin and
the staggered magnetization are extrapolated to the limit n → ∞ using the sets n = {2, 4, 6, 8} for
both the z-aligned and planar x-aligned model states. Mc ≡ magnetization critical point, defined in
the text. Emeet denotes the crossing point of the CCM energy curves for the same value of ∆ based
on the Néel-ordered and collinear stripe-ordered model states.

In Fig. 9.8 we present the zero-temperature gs phase diagram of the 2D spin-1
JXXZ1 –JXXZ2 model on the square lattice for the z-aligned and planar x-aligned states,
as obtained from our extrapolated results for both the gs energy and the gs order
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parameter. The completely independent results from both the energy criterion and
the order parameter criterion for the phase transition give extremely similar positions
for the phase boundary, as one can observe from figure 9.8. Note that the results from
using the order parameter criterion become increasingly inaccurate for large values
of ∆, and this is why we show them in figure 9.8 only out to ∆ . 2. The reason
for this is simple. Thus, as ∆ → ∞, the order parameters M → 1 for both the
Néel-ordered and collinear stripe-ordered phases, and it becomes increasingly difficult
to determine the point where they cross, since the angle of their crossing becomes
vanishingly small. This effect can clearly be seen in figure 9.6(a), where it has clearly
become acute even for values of ∆ as small as about 2. On the other hand, the energy
criterion correspondingly becomes more accurate as ∆→∞, as one may observe from
figure 9.3(a). Thus, figure 9.8 clearly shows that the phase boundary approaches the
classical line J c2 = 0.5 as ∆→∞, as expected in this Ising-like limit.

Our results certainly provide very clear and consistent evidence that there exists
no intermediate phase. Thus, the curves for the order parameters of the Néel and
stripe phases always meet at a finite value and the corresponding curves for the gs
energies of the two phases interesct with a discontinuity in slope, for both the z-
aligned and planar x-aligned states, for all values of the anisotropy parameter ∆. All
of the evidence clearly points towards a first-order phase transition between the two
phases.

We note also that the z-aligned and xy-planar-aligned phases meet precisely at the
isotropic point ∆ = 1, just as in the classical case, and exactly as expected. However,
this does provide a consistency check on our independent numerical calculations for
the two phases. The case ∆ = 1 obviously reproduces the usual (isotropic) J1–J2

model. Thus, at ∆ = 1, we find J c2 = 0.55 ± 0.01 which, very encouragingly, is
the same value we found (see e.g., Chap. 8 and Ref. [113]) for the spin-1 J1–J ′1–J2

model in the spatially isotropic limiting case when J ′1/J1 = 1. We also note that in
the present spin-1 quantum model, the isotropic point ∆ = 1 is precisely the point
at which the boundary between the two quasiclassical phases deviates most from its
classical position at J c2 = 1

2
for all values of ∆ ≥ 0. Our calculations also indicate that

at the isotropic XY point of the model (i.e., where ∆ = 0) the phase boundary is at
J c2 = 0.50± 0.01

9.4. Discussion and Conclusions

We have shown in detail how, as expected, the quantum fluctuations present in the
spin-1/2 and spin-1 J1–J2 model on the 2D square lattice, that has become an archety-
pal model for studying the interplay between quantum fluctuations and frustration,
can be tuned by the introduction of spin anisotropy. We have clearly confirmed our
prior expectation that anisotropy reduces the quantum fluctuations. Thus, for both the
cases ∆ > 1 and 0 < ∆ < 1, the intermediate paramagnetic phase present in the pure
J1–J2 model is observed to shrink to a smaller range of values of J2/J1 centered near
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to the point of maximal classical frustration, J c2/J1 = 1
2
, that marks the classical phase

boundary between the Néel-ordered and collinear stripe-ordered phases. However, un-
like what would be predicted by lowest-order LSWT [27], for example, we can now
conclude with confidence from our results that no such intermediate disordered phase
as the one that we observed in the spin-1/2 version of this model between the two quan-
tum triple points at (∆c = −0.10±0.15, J c2/J1 = 0.505±0.015) and (∆c = 2.05±0.15,
J c2/J1 = 0.530± 0.015), exists for the spin-1 version, for any values of the parameters
J2/J1 and ∆. In the context of a spin-wave theory treatment of the isotropic J1–J2

model on the square lattice, LSWT predicts that quantum fluctuations can destabilize
the classical GS with LRO, even at large values of the spin quantum number s, for
values of the frustration parameter J2/J1 around 0.5. For the spin-1/2 case the range
of values, αc1 < J2/J1 < αc2 , for which a magnetically-disordered phase thereby occurs
is predicted by LSWT to be given by αc1 ≈ 0.38 and αc2 ≈ 0.52. These values may
be compared to our own predictions of αc1 = 0.44 ± 0.01 and αc2 = 0.59 ± 0.01. For
the spin-1 case LSWT predicts a narrower, but still non-vanishing, strip of disordered
intermediate phase in a range with αc1 ≈ 0.47 and αc2 ≈ 0.501, whereas we predict
with confidence that the disordered phase simply does not exist as a GS in this case.

The discrepancy between our results and those of LSWT for the spin-1 case are
undoubtedly due to the shortcomings of LSWT. Thus, while LSWT can work reason-
ably well in the absence of frustration (e.g., for the isotropic J1–J2 model here when
J2 = 0, that represents the Heisenberg model with only NN interactions), in the pres-
ence of frustration it consistently overestimates the effects of quantum fluctuations.
This effect worsens as the frustration (here measured by the ratio J2/J1) increases.

Thus, Igarashi [33] has shown explicitly for the J1–J2 model by going to higher
orders in SWT (i.e., by calculating higher-order terms in the 1/s power expansion),
that while the series seems to converge for values J2/J1 . 0.35, the second-order
corrections grow so large for values J2/J1 & 0.4 that no prediction based on LSWT, or
even on higher-order SWT, in this region (e.g., about the appearance of an intermediate
magnetically-disordered phase near J2/J1 ≈ 0.5) should be relied upon. Furthermore,
he showed that the effects of the higher-order correction terms to LSWT make the
Néel-ordered state more stable than predicted by LSWT.

We note that the results presented here for the spin-anisotropic spin-1 JXXZ1 –
JXXZ2 model are also consistent with our own previous results (see e.g., Chap. 8) and
Ref. [113]) for the spatially-anisotropic spin-1 J1–J ′1–J2 model discussed in Chap. 8,
for which we also found no evidence for an intermediate disordered phase between
the quasiclassical Néel and collinear stripe phases with LRO. However, whereas for
the spin-1 J1–J ′1–J2 model we found strong evidence for a quantum tricritical point at
(J ′1/J1 ≈ 0.66, J2/J1 ≈ 0.35) where a line of second-order phase transitions between
the Néel-ordered and the collinear stripe-ordered states (for J ′1/J1 . 0.66) meets a
line of first-ordered phase transitions between the same two states (for J ′1/J1 & 0.66),
we find for the present spin-1 JXXZ1 –JXXZ2 model that the phase transition between
these two states is first-order for all values ∆ ≥ 0. Clearly, these two sets of results
are in complete agreement with one another at their common point of overlap, when
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J ′1 = J1 and ∆ = 1.
At the XY isotropic point (∆ = 0) of the present spin-1 JXXZ1 –JXXZ2 model we

predict that the phase boundary occurs at a value J c2(0) = 0.50±0.01. It is interesting
to note that our results for the spin-1/2 version of the model 9.1 showed QTP at
(∆c = −0.10 ± 0.015, J c2 = 0.505 ± 0.015). Clearly our results for this spin-1/2
case are consistent with this lower QTP occurring exactly at the XY isotropic point
(∆ = 0) and also at the point of maximum classical frustration, J2 = 1

2
. Similarly,

in the present spin-1 case our results are consistent with the phase boundary at the
XY isotropic point also occurring at the point J2 = 1

2
. It would seem likely, therefore,

that for both the cases of spin-1/2 and spin-1 particles the corresponding quantum
JXX1 –JXX2 model has a special behaviour at the point J2/J1 = 1

2
where the classical

frustration is greatest. Our results indicate that a more detailed investigation of this
case might, therefore, be worth undertaking for general values of the spin quantum
number s. We note that some of the results presented in this chapter are published
in.1 2
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Chapter 10

Summary and Outlook

In this thesis, we have performed a numerical and analytical investigation of the ground
state properties on different low dimensional quantum spin models, using the cou-
pled cluster method (CCM) for high orders of approximation, exact diagonalization
(ED), and variational mean-field approach (MFA). We discuss the influence of strong
quantum fluctuations and frustration on zero-temperature phase transitions, we study
competition of magnetic bonds with an without frustration. In Chap. 2 we present
new CCM results for the ground-state energy and the sublattice magnetization of the
spin-1/2 Heisenberg antiferromagnet (HAFM) on the square lattice and simple cubic
lattice which are in excellent agreement with other accurate methods.

In Chap. 3 we investigate the quantum phase transitions in unfrustrated systems us-
ing the CCM, ED, and MFA. We consider the square lattice spin-1/2 XXZ Heisenberg
antiferromagnet with two different nearest-neighbour coupling J and J ′. Increasing
J ′ > J the model shows in the isotropic Heisenberg limit a second-order transition
from semi-classical Néel order to a quantum paramagnetic phase with enhanced lo-
cal dimer correlations on the J ′ bonds at about J ′c ∼ 2.5 . . . 3J . This transition is
driven by the quantum competition between J ′ and J on the square lattice. We study
the influence of Ising anisotropy parameter ∆ and spin quantum number s on this
phase transition. By increasing the anisotropy parameter ∆ > 1 and quantum num-
ber s > 1/2 we diminish the quantum fluctuations and thus the degree of competition.
As a result the transition point J ′c is shifted to larger values. We find that the critical
value J ′c increases with growing ∆ > 1 and s according to J ′c(∆) ∝ α∆ (∆ ≥ 1) with
α ∼ 2.3 . . . 3.0 and J ′c ∝ s(s + 1), i.e. the transition disappears in the Ising limit
∆→∞ and in the limit s→∞.

In Chap. 4 we study the ground state and the magnetization process of the spin-
half two-dimensional Shastry-Sutherland antiferromagnet. We find that this model
demonstrates various ground-state phases (Néel, magnetically disordered, orthogonal
dimer). In particular, we find that orthogonal-dimer state becomes the ground state
at Jd2/J1 ∼ 1.477. For the critical point J c2/J1 where the semi-classical Néel order
disappears we obtain a significantly lower value than Jd2/J1, namely, J c2/J1 in the
range 1.14–1.39. We conclude that an intermediate phase exists between the Néel and
the dimer phases. An analysis of the energy of a competing spiral phase yields clear
evidence that the spiral phase does not become the ground state for any value of J2.
we also conclude from our CCM data that there exists a valence-bond phase between
the Néel -ordered phase and the orthogonal-dimer phase.
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In Chap. 5 we present a method for the direct calculation of the spin stiffness by
means of the CCM. For the spin-half Heisenberg antiferromagnet on the square, the
triangular and the cubic lattices we calculate the stiffness in high orders of approxi-
mation. For the square and the cubic lattices our results are in very good agreement
with the best results available in the literature. For the triangular lattice our result is
more precise than any other result obtained so far by other approximate method.

In Chap. 6 we investigate the phase diagram of the frustrated Heisenberg antifer-
romagnet, the J1–J2 model, in two dimensions. We have found that the quantum
critical points for both the Néel and collinear order are J c12 ≈ 0.44 . . . 0.45J1 and
J c22 ≈ 0.58 . . . 0.59J1 respectively, which are in good agreement with the results ob-
tained by other approximations. We use the CCM and ED to analyse the generalized
susceptibilities. We find that the phase transition from the Néel to the paramagnetic
state at J c12 is second order. This result agrees with the deconfined critical point sce-
nario which is suggested by Senthil et al., [72, 73], but contradicts the conclusion of
Ref. [47].

In Chap. 7 we also discuss the influence of interlayer coupling (J⊥) on the quantum
paramagnetic ground-state phase. We demonstrate that increasing the interlayer cou-
pling J⊥ > 0 the parameter region of this phase decreases, and finally the quantum
paramagnetic phase disappears for quite small J⊥ ∼ 0.2 − 0.3J1.

In Chap. 8 we use the CCM to investigate the GS phase diagram of the 2D J1–
J ′1–J2 spin-1/2 and spin-1 Heisenberg model, where the nearest-neighbour bonds have
different strengths J1 and J ′1 in, say, the x (intrachain) and y (interchain) directions
respectively. In particular, we study the effect of the coupling J ′1 on the Néel and
stripe states. We found that for the spin-1/2 case there exists a quantum triple point
(QTP) below which there is a second-order phase transition between the quasiclassical
Néel and stripe-ordered phase with magnetic LRO, whereas only above this point
are these two phases separated by the intermediate magnetically disordered phase
seen in the pure spin-1/2 J1–J2 model (J ′1 = J1). The QTP was found to occur
at J ′1/J1 ≈ 0.60 ± 0.03, J2/J1 ≈ 0.33 ± 0.02. Similarly, the intermediate phase can
also disappear when the spin quantum number s is increased for the J1–J2 model on
the 2D square lattice. By contrast with the s = 1/2 case, we found for the spin-1
no evidence for a magnetically disordered state between the Néel and stripe states.
However, for the s = 1 case we found instead strong evidence for the QTP at J ′1/J1 =
0.66±0.03, J2/J1 = 0.35±0.02, where a line of second-order phase transitions between
the quasiclassical Néel and columnar stripe-ordered phases (for J ′1/J1 . 0.66) meets a
line of first-order phase transitions between the same two phases (for J ′1/J1 & 0.66).

In Chap. 9 we discuss the influence of an exchange anisotropy ∆ on the zero-
temperature phase transition of the spin-1/2 and spin-1 frustrated J1–J2 XXZ an-
tiferromagnet on the square lattice. We find for spin-1/2 case strong evidence for two
QTP’s at (∆c = −0.10± 0.15, J c2/J1 = 0.505± 0.015) and (∆c = 2.05± 0.15, J c2/J1 =
0.530± 0.015), between which an intermediate magnetically-disordered phase emerges
to separate the quasiclassical Néel and stripe collinear phases. Above the upper QTP
(∆ & 2.0) we find a direct first-order phase transition between the Néel and stripe
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phases, exactly as for the classical case. The z-aligned and xy-planar-aligned phases
meet precisely at ∆ = 1, also as for the classical case. For all values of the anisotropy
parameter between those of the two QTP’s there exists a narrow range of values of
J2/J1, αc1(∆) < J2/J1 < αc2(∆), centered near the point of maximum classical frustra-
tion, J2/J1 = 1

2
, for which the intermediate phase exists. This range is widest precisely

at the isotropic point, ∆ = 1, where αc1(1) = 0.44 ± 0.01 and αc2(1) = 0.59 ± 0.01.
The two QTP’s are characterized by values ∆ = ∆c at which αc1(∆c) = αc2(∆c).

For spin-1 we predict no intermediate disordered phase between the Néel and collinear
stripe phases, for any value of the frustration J2/J1, for either the z-aligned (∆ > 1)
or xy-planar-aligned (0 ≤ ∆ < 1) states. The quantum phase transition is determined
to be first-order for all values of J2/J1 and ∆. The position of the phase boundary
J c2(∆) is determined accurately. It is observed to deviate most from its classical po-
sition J c2 = 1

2
(for all values of ∆ > 0) at the Heisenberg isotropic point (∆ = 1),

where J c2(1) = 0.55 ± 0.01. By contrast, at the XY isotropic point (∆ = 0), we find
J c2(0) = 0.50± 0.01. In the Ising limit (∆→∞) J c2 → 0.5 as expected.

Finally, this thesis has provided a number of interesting results which may serve
to understand more about quantum phase transitions in quantum magnetic system.
The CCM is universal tool of microscopic quantum many-body theory that has been
applied successfully, e.g. in quantum chemistry, nuclear physics and condensed mat-
ter physics. Several years ago, a special variant of the CCM has been developed to
calculate the ground-state properties of quantum magnets. Recent investigations on
quantum magnets have demonstrated that the CCM is able to describe accurately the
various zero-temperature phases of quantum spins systems with competing interac-
tions and the quantum phase transitions between them. Unlike the quantum Monte
Carlo (QMC) techniques, the CCM does not suffer from the minus sign problem and so
can be applied also to the challenging problem of highly frustrated quantum magnets
and for lattices of arbitrary spatial dimensionality.

In order to compute a general ground-state physical quantity such as the ground-
state energy, the magnetic order parameter, the spin stiffness, and generalized suscep-
tibilities, we need to find and to solve a coupled set of non-linear equations for both
the ket and the bra states equations in a certain level of approximation n. The number
of those equations (i.e. the technical complexity of the numerical problem), however,
increases with n. Since the quality and accuracy of the results is the better the higher
the level of approximation n one has to try to increase n as much as possible. Recently,
in collaboration with a group in Manchester the Magdeburg group has developed an
open source program package called CCCM [116]. It is written in programming lan-
guage C++ and uses the MPI library for parallelization. with this CCCM package we
can now solve a big number of CCM equations with high level of approximation n.
We can also calculate excitation energy with spins of general spin quantum number
s. Another new application of CCM using CCCM package is to study the frustrated
systems in magnetic field. In the future we plan to apply the CCM to quantum spin
systems at non-zero temperature.
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Phys. Rev. B 78 (2008) pages 214415–1–10.

[116] For the numerical calculation we use the program package CCCM (D.J.J. Farnell and
J. Schulenburg).

[117] J. K. Kim M. Troyer, Phys. Rev. Let 43 (1998) 2705.

[118] M. S. Makivic H. Q. Ding, Phys. Rev. B 43 (1991) 3562.
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[134] A. Läuchli, S. Wessel, M. Sigrist, Phys. Rev. B 65 (2001) 014408.

[135] E. Müller Hartmann R. Singh, Phys. Rev. Lett. 84 (2000) 1808.

[136] Z. Weihong, C. J. Hamer, J. Oitmaa, Phys. Rev. B 60 (1999) 6608.

[137] Z. Weihong, J. Oitmaa, C. J. Hamer, Phys. Rev. B 65 (2001) 014408.

[138] M. A. Hajii, N. Guihery, J. P. Malrieu, B. Bouquillon, Eur. Phys. J. B 41
(2004) 11.

[139] C. H. Chung, J. B. Marston, S. Sachdev, Phys. Rev. B 64 (2001) 134407.

[140] S. Miyahara K. Ueda, J. Phys. Condens. Matter 15 (2003) R327.

[141] N. B. Ivanov J. Richter, Phys. Lett. A 232 (1997) 308.

[142] A. Koga N. Kawakami, Phys. Rev. B 65 (2002) 214415.

[143] J. Richter, N. B. Ivanov, J. Schulenburg, J. Phys. Condens. Matter 10 (1998)
3635.

[144] J. Schulenburg J. Richter, Phys. Rev. B 65 (2002) 054420.

[145] K. Ueda S. Miyahara, J. Phys. Condens. Matter 11 (1999) L175.

[146] E. Shender, Zh. Eksp. Teor. Fiz. 83 (1982) 326.

[147] E. Shender, Sov. Phys. JET 56 (1982) 178.

[148] J. Villain, R. Bidaux, J. P. Carton, R. Conte, J. Phys. 41 (1980) 1263.

[149] Y. Xian, J. Phys. Condens. Matter 6 (1994) 5965.

[150] M. Makivic H. Ding, Phys. Rev. B 43 (1991) 3562.

[151] L. O. Manuel, A. E. Trumper, H. A. Cecatto, Phys. Rev. B 57 (1998) 8358.

[152] L. Spanu A. Parola, Phys. Rev. B 72 (2005) 174418.



116 Bibliography

[153] A. Auerbach D. P. Arovas, Phys. Rev. Lett 61 (1988) 617.

[154] S. J. Miyake, J. Phys. Soc. Jpn 61 (1992) 983.

[155] L. Capriotti, A. E. Trumper, S. Sorella, Phys. Rev. Lett 82 (1999) 3899.

[156] A. Bombardi, J. Rodriguez-Carvajal, S. D. Matteo, F. de Bergevin,
L. Paolasini, P. Carretta, P. Millet, R. Caciuffo, Phys. Rev. Lett 93 (2004)
027202.

[157] P. Carretta, R. Melzi, N. Papinutto, P. Millet, Phys. Rev. Lett 88 (2002)
047601.

[158] R. Nath, A. A. Tsirlin, H. Rosner, C. Geibel, Phys. Rev. B 78 (2008) 064422.

[159] H. Rosner, R. R. P. Singh, Z. Weihong, J. Oitmaa, S.-L. Drechsler,
W. Picket, Phys. Rev. Lett 88 (2002) 186405.

[160] T. Yildirim, Phys. Rev. Lett 101 (2007) 057010.

[161] R. Kumar B. Kumar, Phys. Rev. B 77 (2008) 144413.
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