Framework for a Service-oriented
Measurement Infrastructure

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultat fiir Informatik
der Otto-von-Guericke-Universitat Magdeburg

von: Dipl.-Inform. Martin Kunz
geb. am 10.03.1980 in Burg (b. Magdeburg), Deutschland

Gutachter:
Prof. Dr.-Ing. habil. Reiner Dumke
Prof. Dr.-Ing. habil. Georg Paul

Prof. Dr. Juan José Cuadrado-Gallego

Magdeburg, den 5. Juni 2009

Framework for a Service-oriented Measurement Infrastructure

i

Kunz, Martin

Framework for a Service-oriented
Measurement Infrastructure

Dissertation,

Otto-von-Guericke University of Magdeburg,
20009.

Framework for a Service-oriented Measurement Infrastructure

Acknowledgement

The successful completion of this research work would not have been possible without the
support, guidance, and cooperation of several fellows.

At first, | would like to gratefully acknowledge the supervision of Prof. Dr. Reiner Dumke
during this work. Especially his continued encouragement, invaluable suggestions, and the
valuable comments he has given over the years significantly contributed to this thesis.

| am also very grateful to Prof. Dr. Juan-José Cuadrado-Gallego and Prof. Dr. Georg Paul for
their efforts in reviewing and providing their expert opinions on the thesis at hand.

Special thanks go to Dr. René Braungarten, Daniel Reitz, and Niko Zenker, for their friendship,
encouragement, hard questions, and helpful remarks over the years. The joint research,
conference travels, and fruitful discussions resulted in deep friendship and mutual advice.

Furthermore, | am deeply indebted to my former colleagues at the Otto-von-Guericke
University of Magdeburg that have provided the environment for sharing their experiences
about the problem issues involved as well as participated in stimulating team exercises
developing solutions to the identified problems. | would specially like to thank my fellows
Prof. Dr. Andreas Schmietendorf, Dr. Fritz Zbrog, Dr. Steffen Mencke, Dr. Dmytro Rud,
Dagmar Doérge, and Ayaaz Farooq for their support and insights.

Moreover, | would like to thank Prof. Dr. Alain Abran and Prof. Dr. Alain April from the ETS at
Montréal, Dr. Luigi Buglione from Engineering.IT, Dr. Marek Leszak from AlcatelLucent, Dr.
Evgeni Dimitrov from T-Systems, Dr. Yoshiki Mitani from NAIST at Tokyo and Harry Sneed
from the University of Regensburg for their cooperation and advice.

I am also thankful to Scientific Toolworks and Telelogic for providing evaluation copies of
their tools which was essential for analyzing them. Additionally, | want to thank the ISBSG for
an evaluation copy of their benchmarking suite and T-Systems for detailed insights into their
metrics database system.

Finally, my very special thanks belong to my family for their warm support and strength all
these years.

A special thought is devoted to my father for a never-ending support.

Burg, April 2009

Martin Kunz

Framework for a Service-oriented Measurement Infrastructure

[]

Abstract

The increasing economic relevance of software measurement for organizations cannot be
neglected. But issues like complexity and missing traceability of measurement processes
constitute the need for direction and measurement tool support.

Unfortunately, the area of software measurement tools is dominated by inflexible,
monolithic, and self-contained tools. This situation aggravates a process comprehensive
solution and results in n unsatisfying situation regarding corporate measurement programs.

Due to manifold advantages of high-flexible infrastructures compared to monolithic products
a lot of initiatives propose approaches for the integration of single components (e.g.
services).

Having analyzed the SOA-capability of existing measurement tools this thesis introduces a
framework for creating a measurement infrastructure by means of a service-oriented
architecture.

Beyond the presentation of different components to implement the infrastructure the
specific relevance of software measurement databases is addressed by the design of a
service-oriented measurement database.

Beside the functional characteristics the quality of developed architectures is of substantial
interest for the success of systems integration in the long run. Therefore for a procedure for
quality driven design of service-oriented architectures has been integrated into the
framework.

Additionally, formal considerations of existing paradigms in comparison to the service-
oriented approach constitute the reasonability of the presented research topic.

Framework for a Service-oriented Measurement Infrastructure

Table of contents

[o) B T TP viii
I o] B -1] L= PSPPI Xi
Table Of ADDIEVIAtIONSccc.eiiiieiieeeee ettt s s Xii
I T A o T I3 T A o] o B PP U PP PP PP 1
0 1Y/ o 1 17 o o T o TP PP O PP P PP 1
1.2. ReSEAICH QUESTION ...ueeiiiiieiee ettt ettt et e st esabe e s bt e e sas e e sareesabeeenneeesanes 3
1.3. Research MethOdOIOZYccccuuiiiiiiiiiicieie e et e e st e e e sata e e s sbtaeeesbaeeesnes 4
1.4, TRESIS SEIUCTUIE ettt ettt et e s bt e s bt e s be e sa e s et e s ane s b e s bt e bt e b e e sbeesbeesaeesanenas 7
2. Software Measurement FOUNATIONSccueiviriiiiiiieeeeeeesee sttt 8
2.1, MEtriCS @Nd IMBASUIESccoueieiiieiitie ettt ettt ettt et st e e s et e st e s b e e smeeesaneesareesneeesareesaneean 8
2.2. MEASUIEMENT SOUICESceviiiiiiiiiiiiiitiiie ettt s r e e e e s s s r et s e e s s s s sabaa e e e e e s ssnrnes 14
2.2.1. ProduCt IMEASUIMEMENTciiiiieiiiieeiieetee et ettt e stee e bte e st e st e st e e smeeesabeesabeesbeeesnseesareeenneean 16
2.2.2. ReSOUICE MEASUIEIMENTeiiiiiiiiiiiiiiie ettt et e e e e e e s s s s saraae e e e e s s seannee 21
2.2.3 Process MeasUrEMENT.......ccoiviiiiiiiiiiiiiiic ittt ra e s aba e e s snae s 22
2.3. Software Measurement Systems aNd PrOCESSES.......cuveiiiciiieeiiiiieeecieeecetteeeectreeeetaeeeesteeeesnes 24
2.3.1. Measurement INGrediENtS.....ccii e e e e s e e e e e e e e s artrae e e e e e eanannes 25
2.3.2. Measurement in Software Development PrOCESSccocccuiiieeee e e e e e 28
2.3.2.1. ISO/IEC GO0X SEIIES..c.uveverrrrreererieseessesseseessessesseessessesseessessesseessessessesssessessesssessessesssessessesnses 28
2.3.2.2. CMMI Framework for Process Integration and Product Improvementcccccecvveeercnneenn. 30
2.3.3. Measurement Process MethodolOZIesccueiiiiiiiiiiiiiee e 32
2.3.3.1. The Goal-Question-Metric Method.........cc.cceeiiiiiiiiiiiii e 35
2.3.3.2. The E4 Software Measurement PrOCESScccceieirierieiieniente ettt e e i e saee s 38
2.3.3.3. The ISO/IEC15939 Software MeasuremMent PrOCESSuveeeeieeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeeessens 39
2.3.4. Software Measurement PrOZramscccieiiiiieieieiiee e ceiee e seiee e st e e see e s sate e e e sbae e e s sabaeeesnnes 42
2.4. Software Measurement ParadigmsS.......cccuuiiiiiiiee it e e e sree e e sbee e e aree e e eanes 48
D I - T T o T or=1 =1 o1 L Y PP 49
2.4.2. Main Characteristics Preferences of Measurement Process Components..........ccceeeeeveeeennne 50
2.4.3. Sub Characteristics Preferences of Measurement Process Componentscccceeeeeecuvvieennn. 51
2.4.4. Combined Characteristics Preferences of Measurement Process Components..................... 51

2.4.5. Simplified Examples of Measurement Process Descriptioncccocvueeeevviveeiiiieeeeccieeeceieeeeeans 52

v

[i

Framework for a Service-oriented Measurement Infrastructure

2.4.6. Measurement Process IMProVemMeENTSceeieeeieieieieccie s ebeaenene 54
. Performing the Software MeasuremMeNnt PrOCESScccuiccviiiiieeeeecciiite e e e e e e ecirere e e e e e esennreeeeaeeeesnnnnes 57
3.1. Software Measurement TOOI SIEUATIONcooiuiiiiiiiiii e e 58
3.1.1. Product Quality Measurement TOOISc..ciiiiiiiiiiiiiee ettt e e e 58
3.1.2. Process Quality Measurement TOOIS......c..ciiiiiiieiicieee ettt et e e e evae e e 62
3.1.3. General Measurement Tool Capabilities........cceeiviiieeieiiiei i 65
3.2. Software Measurement REPOSITOIIEScccuiiiiiiiieeeccciee et eetee e e ete e e e e bte e e e bae e e ennes 67
3.2.1. Analysis of existing Spreadsheet for Software Measurementccocceeeeeivcciiieeee e ecccineeen, 68
32,110 DACS SLED ..ttt ettt et a ettt e a et st e e bt e be e be e bt e beesbeesheesaeesanenas 70
3.2.1.2. ISBSG Benchmarking Data CD Release 10cccccueeiiiiiieeeiiiieeeciieeeccieeessciieeeesvreeessnveeeesanes 72
3.2.2. Measurement Databasesoceeveerieeiieiiiiieree ettt st s 73
3.2.2.1. Assorted Measurement Databasescccevueeiieiiiiiiniieniee e e 76
3.2.3. General measurement repository characteristiCS...cccccvuvrciiiirieee i 78
3.2.4. Review and Evaluation of existing Approaches to tackle the described Drawbacks 79
3.2.4.1. Measurement Repository APProachesc.eeciciieiiiiiie e e e st e e 79
3.2.4.1.1. Assorted Repositories with the Potential to Store Measurement Dataccccuuuneeee... 79
I 0 WV 1T oYY} i o Y=Y o Yo] (o] VUSSR 80
3.2.4.1.3. ASG-ROCNAAE ...ttt e 82
3.3. Measurement Data INtegration. ... 85
3.4. Measurement EXPerience APPrOACNESccii i i ciiiieeee ettt e e e e e e rre e e e e s e e e enrraaeeeae s 87
3.5. SOftWare €-IMEASUIEMENTcouiiiiiieiie ettt ettt ettt et e e st e e st e e s bt e e sabeesabeesabaesaeeesabeesanes 89
3.6. Agent-oriented Software MeasUrEMENTccocciiiiiiieee et bee e e 94
3.7. Telemetry based Software MeasUrE€MENTccueeiiiieeeieiiee et e e et e e e e e e 97
3.8. Measurement Paradigms EValUationccooiiiiiiieii e e e e e snrrree e e 100
. SOA-DASE IT ArChITECTUIESeoiiietee ettt ettt e st e e re e s e e e sabeesneeesnneenns 103
v/ B (01 d oo [¥ Loy d o T3 VT O TPSPTRTTOUSPI 103
4.2. Aspects of Service-oriented ArchiteCtUreScoccviiiiiciiie i 103
4.2.1 Demarcation against other Integration Proposalscccccveieeiiieiiccciee e, 105
4.2.2. Technological Aspects Of WED SEIVICESccovcuiiiiiiiiiieiiiiee ettt e e 105
4.3. SOA-capability of Software Measurement TOOIScccueiieiiiieiciiiee e 112
4.3.1. Assessment about SOA-capability of measurement toolscccceeeeiciiiiiiee e, 113
4.3.2. Survey among Measurement Tool Manufacturescccccoecccieiiee e 115
. Service-oriented Measurement INfrastruCturescooveerieiiiiieniienee et 118
5.1, Process DefiNitiONcc.eiiiiiieiieiie et e e st 122

5.2. Service-oriented Measurement Infrastructure detailed Descriptionccccceeevveeevcieeeecnnenn. 127

Framework for a Service-oriented Measurement Infrastructure

5.2.1. GOM Process IMOGEL.........coouiiiiiieiieeeee et e s e e snee e e 128
5.2.2. Ontology for Object-oriented MEetriCS.....cccuiciiiiiiee e e e e rbreee e 128
5.2.3. Web Service for Object-oriented Metrics........ccouiiiieiieeciiiieee e e 134
5.2.4. Search and Integration Process for Measurement SErViCescocvvvveeeeeeeiicivveeeeeeeeecnnnnenn 138
5.3. Quality driven Assembly of WED SEIVICEScccciiiiiiiiiei et 139
5.3.1. QUAD? FramEWOIK .c.eeueeuieiiiiiriisieietee ettt sttt sttt st st ne st 140
5.3.2. Quality-Based Service Selection COre PrOCESSuuiieiieecciiireeeeeeecciiiree e e e e sesvteneeee e e s senssaneees 145
R N €] - o] o1 Tor=Y I U EY =T gl 1o} €=] o = Tol O UUERRP 153
5.4.1. Traffic Light Visualization of Measurement REsUltS.........cc.uveeieiieiciiiiieee e, 155
5.4.2. Cockpit for Measurement Results ANalYSiSeeeicuiiiiiiiiiiiiiiecccee e 157
5.5. Service-oriented Measurement Databasecccocieviirriieneineeneeseeeeeeee e 159
5.5.1. Measurement Data ANAIYSIScceii i e et a e e e 163
5.6. Mapping to Measurement Paradi@mS.......ccuiiiiccuiiieeeeeeicciiiiree e e e scviere e e e e s eseatreee e s e e e snnreaneeeee s 164
6. SUMMArY and FULUIE WOTKuiiiiiii ettt e e e e e e et re e e e e e e e esannraaeeeeeeennnnns 166
23] o] Lo =4 =T o] o1V PP 170
Appendix A: ISO/IEC 15939 Measurement Process ACHIVItIES......c..ccvevieeieerieeneecie e e ereeneens 194
Appendix B: Attributes of analyzed Measurement Databasescoceeeveiieiieiiieeicciee e 197
Appendix C: Assessment results for Measurement TOOIS........cccuveieciieeieciiee e 202
Appendix D: Process Modeling With BPIVINcooiiiiiiiiiieee e esrtrre e e eevnre e e e e s e e sanrenne e e e s 204

Appendix E: Detailed Description of selected Artifacts......cccceoeeeciiiiiieei e, 208

Framework for a Service-oriented Measurement Infrastructure

List of Figures

FIGURE 1: EVOLUTION OF AN ENGINEERING DISCIPLINE [SHAWOO]vieieiuiiieiiiieeeieieeeeeieeesseieeeessteeessaeeessnseeeesnseeessnsneessseneens 2
FIGURE 22 THESIS STRUCTURE ..cceettteuuttttteeeseaauneteeeeessaauneseeeeesesaaunsseeeeessaaannseeeeesesannsseeeeeesaannnseeeeeeesaannsseneeessaannnnees sanreneeas 7
FIGURE 3: MEASUREMENT TO PASS THE INTELLIGENCE BARRIER [KRIZB8]ccccuviieeiiiiieieiieeeriieeestieeesitee s sveeeesvvee e saneessnaeeens 9
FIGURE 4: DIFFERENCE BETWEEN EUCLID DISTANCE AND IMANHATTAN METRIC ...cuvtttteeseaiiereeeeesesainreeeeesssesnnsenesesssannnnneeeesesnn 14
FIGURE 5: SOFTWARE MANAGEMENT AREAS [DUMKEODZ] ...cciuuvteeeiiieeeeciiee e etee e st e e esetee e seateeessateeeesstaeessnseeessnsaeesnnsnesssnsenns 15
FIGURE 6: INTERDEPENDENCES BETWEEN ENTITIES [LOTHEROD 7] .eeeieeuvreieieeiieiirreeeeeeeeeitteeeeeeeseibareeeseeesnsssseeseeessnsbenseesesenes 16
FIGURE 7: 1ISO/IEC 9126 QUALITY IN PRODUCT LIFE CYCLE [ISO/IECOL] ..uvvivieieeieiteecieecteete et ereeeteere e e et e veeveeaveesaenraens 18
FIGURE 8: PRINCIPLE OF STATIC SOURCE CODE ANALYSIS [EBERTDUMKEOD7] ..cceeiuvrieiieeiieiirieeeeeeeeeiireeeeeeeeesirareeeseeesnnnnreeeeeeen 18
FIGURE 9: PRINCIPLE OF DYNAMIC SOURCE CODE ANALYSIS [EBERTDUMEKEO7] ...veeiiuiieeeiieeeeiieeeseieeeseieeeseeeeeeesnveesesneeeesnnes 19
FIGURE 10: ISO/IEC 9126 QUALITY IN USE CHARACTERISTICS [ISO/IECOA]vvveiiieieeeeeee ettt ettt ettt 19
FIGURE 11: INTERPLAY BETWEEN COUPLING AND COHESION [CHIKEMO4] ...eiiueiieiiiiieeeiiee e ciee s seieeessitee s eeeeeeneveeeesnnee e snanes 21
FIGURE 12: BASIC VISUALIZATION OF RESOURCE CHARACTERISTICS [DUMKEKUNZ O8] v.vevveveeereeeeeeeeeeeeeeeseeeeeeeeseseesesesenesens 22
FIGURE 13: THE GENERAL LAYER MODEL OF SOFTWARE MEASUREMENT ...ccetttiiuuuttteteeeaauurteeeeesseaisreeeaesesaaunsseesesesaasnnseesesesan 24
FIGURE 14: SOFTWARE MEASUREMENT PHASES AND IMETHODS «.uvvveuvverreeeseesreessseesseesseesseeesssessseessssessseesssesssseesssessssesssnes

FIGURE 152 1SO Q00X SERIES ..t eeuuutttteeeeeeaauieteeeeeesauteeteeeesasausbeteeeesaaanbaeeeeeesasnsbeeeeeeeaaaanseeteeeesaaannbeneeeesaaannsseaeee nrreeeas

FIGURE 16: PROCESS-ORIENTED QUALITY MANAGEMENT SYSTEM
FIGURE 17: CMMI STAGED AND CONTINUOUS STRUCTUREcetttetauutttteeeseaauteeteeesesaausereeeeessaasrsseeeesesaansseeeesesesansseneeessannan
FIGURE 18: CMMI STAGED REPRESENTATION — MATURITY LEVELS
FIGURE 19: CMMI CONTINUOUS REPRESENTATION — PROCESS AREAScctettiauuurtteeeseaauureeeeeessaasnreeeaesssannnsseeeesessansnseeeeesanan
FIGURE 20: CMMI CONTINUOUS REPRESENTATION — PROCESS CAPABILITY LEVELS «.eeevvieriieriieenieeeieesieesreesreesieeesieeesaeeenes
FIGURE 21: VIEWS ON SOFTWARE MEASUREMENT ...cetttetuuttttteeesaaauueeeeeesesaaussseeeeesesausseseeeesasansesteeessasasseneeessassanssnseeessanans
FIGURE 22: INFORMATION NEED BY STAKEHOLDER ROLE c..vvteuuteeutteeeeesreesteesuseesaseessseesusesssesenseesssessasesenseessessnsesssseessesssees
FIGURE 23: GOAL-QUESTION-IMETRIC PARADIGIM ...cceeteiuuutttteeeeeeaauueteeeeeesauteteeeeesesaunteeeeeesesaunbeeeeeaesaaannseneeessaaaansseaeeessanann
FIGURE 24: AN EXAMPLE OF THE APPLIANCE OF THE GQOIM METHOD ..cccecuttierurreeeireeesareeessnreessreeessnseessnseessnneesssnneeesannees
FIGURE 25: GOAL-QUESTION-IMIETRIC METHOD ...tteteeeeuuterteeeeeaaaueeteeeesesauseseeeeesasnsseteeeesasaunseseeeessasannseneeessasaansseaseessanns
FIGURE 26: FACTOR-CRITERIA-IMIETRIC IMODEL.....vtteuveeeuteeeeeesteesteesuseesuteesseeesusessseesssaesseesasessnseesasessseesnseessesssesesseessses
FIGURE 27: CONTINUOUS IMPROVEMENT CIRCLE [EBERT 05 1.evrvvvveeeeeeeeeeeeeeseeeeseseseseeseeeeeeeesesesesesessesesesesaseeseaensesenenanas
FIGURE 28: MEASUREMENT LIFE-CYCLE [EBERT'05] cvuvuvuvuveeeerererieisesssssesessssesssssssesessssssssssssesesessssssssssesessssssssssssesesssssssnans
FIGURE 29: THE ISO/IEC 15939 SOFTWARE MEASUREMENT PROCESS MODEL [ISO/IEC02]
FIGURE 30: ASSIGNMENT OF MEASUREMENT PROCESS ELEMENTS TO ISO/IEC 15939....c.uiciieieiieeeeeeeeieeeieseesrese e eeseeneesnns

FIGURE 31: KEY RELATIONSHIPS IN THE MEASUREMENT INFORMATION MODEL....vveevveesereseeessesesseesssesssseesssesssessseessssessesenses

FIGURE 32: RESULTS OF ESTABLISHED CORPORATE MEASUREMENT PROGRAMSveeuvveeuteeeeresnreessteesseessseesseesusessseessseessseesnes

FIGURE 33: SCOPE OF DIFFERENT CAIME TOOLSeetiiiiiiiitieee ettt e e e e ettt e e e e e sttt e e e e s e sanreeeeeeseesanreeaeeeeseans 57
FIGURE 34: GENERATION OF QUALITY STATEMENTS [LOTHER2007] ...ceeviiiiieriieiiieeeieesieesiteesteesieeesiteesieessbeessaeesbeesseesares 59
FIGURE 35: TELELOGIC LOGISCOPE KIVIAT DIAGRAMveeuvvieueeesesesseessessseesssessssesssseesssesssessssssensessnsessnsesssessssessssesssssnsens

FIGURE 36: TELELOGIC STATIC SOURCE CODE ANALYSIS..cuutteutersueeeseesreesseessseessessseeesssesssessssesessessssesenseessseesssessssesssesssees

FIGURE 37: TELELOGIC DASHBOARDvvetutveeuteeseteeeseessseessseessssessssasesessassssessseesssessssesssseesssssssessssssessessssessnsesssessnsessssees

FIGURE 38: CAME TOOL FOR CIMIMI ASSESSIMENT.c...veeuvteeeeesreeeseesreesseessseesusessseessssesssesssessnsessasessnseessessnseesssessssesssens

FIGURE 39: ISD APPRAISAL WIZARD FOR CMMI ASSESSMENTS
FIGURE 40: ISD APPRAISAL WIZARD PROCESS AREA VIEWER ...cevvreuierueeerueesteesseesseesseesseeesusessseesssesesseessseessseessessssesssnes
FIGURE 41: RATIONAL PROJECTCONSOLE «..euuiietteeeeeeaitttteeeeeaautetteeeesasaunbeteeeeseaaunbbeaeeeesasunbeaeeeeeaaannsseeeeeesaaannseneeeessanans
FIGURE 42: ARCHITECTURE OF MIICROSOFT REPOSITORY ...veeuvteetteeiresieesseesiseesreesuseesusessseessseesssessnsessnseesasessnseesssesssesssees
FIGURE 43: MEASUREMENT DATA WAREHOUSEccettieiitetteeeeeesaiieteeeeeesaubeteeeeesesasbeteeeesesaunbebeeeeeaeaannbeeeeessaaanseeaeeessanans
FIGURE 44: MEDIATED MEASUREMENT REPOSITORY ...ceeuvtieuierieeeueesteesseessseesseessseesssesssessnsessssesssessnseesasesssseessseessesssees
FIGURE 45: SERVICE-ORIENTED MEASUREMENT DATABASE.....ccetetetauunreeeeesaaanrreteeesesaanrereeesesssasreseeeesssannseseeesssesansseneeessannnn
FIGURE 46: THE CONCEPT OF BASIL'S EXPERIENCE FACTORYuvviiiiuieeeeieieeeesiteeessuteeeessteeesnuseessssseeeesssseessnseeessnseeesnsssesssssenes

Framework for a Service-oriented Measurement Infrastructure

FIGURE 47: E-MEASUREMENT APPROACH FOR SOFTWARE QUALITY ASSURANCE [LOTHERO7] ...vveviuveiiieeniieeniieeieeesiee et 90
FIGURE 48: GENERAL COMPONENTS OF MULTI-AGENT SYSTEMS (IMIAS) ...ttt ettt ettt e e eeate e et e e et e e 95
FIGURE 49: BASIC ARCHITECTURE FROM THE HACKYSTAT FRAMEWORK [JOHKOU05]evvevviccectcte et 98
FIGURE 50: HACKYSTAT SENSOR DEFINITION [ULLWERDB]uuvvieeiiiieeeitiieeeeiteeeeeieeeeetteeeeeiaeeeesabeeeeeasseeeeaneeeeensaeesansseseennnnas
FIGURE 51: ACTIVITIES OVER TIME ANALYSIS .uvveeuttteueesteeenueesseesseesuseesuseessseesssesssessssessssesssessnsesssessseesssesssesssssesssessses
FIGURE 52: SOFTWARE MEASUREMENT PROCESS ASPECTS AND LEVELS

FIGURE 53: SOFTWARE MEASUREMENT PROCESS LEVELS....veeuvterureeeteesureesseesseeesseesssesesseesssessssessnsessssesssessssesssseesseessseesnne
FIGURE 54: SERVICE-ORIENTED INTEGRATION ARCHITECTURE [SCHMIETENDORFO7] ...vviiiiiiieeeiiieeeiieeeciree e et eveee e 104
FIGURE 55: BASIC WEB SERVICE PROTOCOL STACK [KOSLEYOZ]eeiueiiiiiieiieniee sttt e sie et sieeste e st esbeesareesaneesareesaneenes 107
FIGURE 56: STRUCTURE OF A SOAP IMESSAGE......ettttettiauuittteeteeeatttteeeesaaanbeteeeeeaaaabeeaeeeeaasanbabeeaeeaaansseeeeeeeesaanseneeaeens 107
FIGURE 57: STRUCTURE OF A WSDL DESCRIPTION ..uuvteeutteeteerureesseesureeseessseeesseesssessnseesssessnseesseessessssessssessseesssesssseesne 108
FIGURE 58: OVERVIEW ABOUT WSDL CONCEPTS [KOSLEYOZ] ...cccoiiiiiiiieee i ittt ettt e e e sttt e e e e e sesaraaeeseeeseaasananee s 109
FIGURE 59: BASIC APPLICATION OF THE UDDI CONCEPT [KOSLEYOZ] ..ccueviieeeiieeesiteeeetieeeetee e siveeeesteeeesaveeessnneeeesnranesnes 109
FIGURE 60: PRINCIPLE OF ORCHESTRATION AND CHOREOGRAPHY [PELTZO3] ... iiiiiriiiieeiieiiireee e ettt e e eesreree e e e e e eeannaeeees 110
FIGURE 61: ARCHITECTURE OF A BPEL ENVIRONMENT [COLLAXAD3] .oeiiitiieieiiereiiteeeesiieeeeeiteeessnteeeesnteeeesnseeessnsneessssaeesnnns 111
FIGURE 62: SUBSTANTIAL FUNCTIONALITY FOR SOA-CAPABILITY .eiieiiiiiiiieeeeeseiieteeeeeesaiereteeesesennereeeeesssannnreeeeesesanneneeeess 113
FIGURE 63: OCCURRENCE OF DIFFERENT INTERFACE TECHNOLOGIES ...vveeesuvveeesrreresrreessssseesssseneessssessssssessssssseesssseesssssenesnnes 114
FIGURE 64: RESULTS ABOUT EXPORT INTERFACEScetettteauureteeeseaaaunreeteessaaansereeeessaaansseneeessesanssneeesssesanssnseeessesansenneesens 115
FIGURE 65: COMBINATION OF DIFFERENT MEASUREMENT TOOLS uvveeeesureeeeeeresesreeessssessssssessssssessssssessessssessssseessssenesnnes 116
FIGURE 66: USAGE OF SINGLE FUNCTIONALITY ..uuettttteeesaauusteteeessaaaunreeeeeessaaaunseneeesssaannsseneeessesannseneeesssesanssnseeessesnnnseneeesens 116
FIGURE 67: DIFFERENT TYPES OF LICENSES MODELS ..vveeesuvteeesereeesueeeessseesssssessssssessssssesessssssssssessssssesssssssesssssssssssssnsensnes 117
FIGURE 68: SIMPLIFIED ARCHITECTURE AND INCLUDED SYSTEMS OF THE FRAMEWORKuuutvvieeeeeeraiinteeeeeesnnieeereeesesnnreneeeeens 119
FIGURE 69: SCOPE OF ISO/IEC 15939 STANDARD [ISO/IECO2]cveeteeieiieeiteecieecteetee et eere ettt et eteeveeaaeereesbeeabeeanesaees 120
FIGURE 70: SOA-BASED IMEASUREMENT PROCESS...cceetieiuurettteeeaaiutttteeeesesanreteeeessaannreneeeesesanreeneesesesannneseeeesesnansenneesens 121
FIGURE 71: DIFFERENT SOMI ORCHESTRATION PROCESSES [KUNZ OBF]eveieieieieeeeeeeeeeeeteesesessse st tenesessesssnaeas 121
FIGURE 72: LEVEL-BASED INFRASTRUCTURE COMPOSITIONtttteeeeesuurereeeeeaasanrereeesesesanseneeeeesssansnsneeeesesannnsseeesesesansneneeeens 122
FIGURE 73: SIMPLIFIED ISO/IEC 15939 PROCESS OVERVIEWuvveeveeireeeseeinreeeseessseessssessesessesensessssessssessnsessseesssesesenns 122
FIGURE 74: TECHNICAL AND MANAGEMENT PROCESSES

FIGURE 75: ESTABLISH AND SUSTAIN COMMITMENT .veeeutteeeeereeesaueeeessresesssseessassessssssesesnsesssssessssssseesssssesssssssssssssnsssnnes
FIGURE 76: DETAILED VIEW ON PROCESS ESTABLISH AND SUSTAIN COMMITMENTvvttteeesaiunreeeeessaaunrreeeeessesnnreneeesssannnneeeees 123
FIGURE 77: PLAN THE IMEASUREMENT PROCESS ...uvvteeesuteeeesuereeesseeeesssseessssseesssssesssnssesssssesssssssesssssesssssssesssssssessssenssnsnes 124
FIGURE 78: DETAILED VIEW ON PLAN THE IMIEASUREMENT PROCESSvvvtteteeesaitereeeeesasainneeeeesesanunnneeeeesssannnseeeeesssannnnneneens 124
FIGURE 79: PERFORM THE MEASUREMENT PROCESS ..ce.uvvteietreeesteeeestreeessueeesssnseesssssesessssaessssseesessseeesssssesssssssssssssnssnsnes 125
FIGURE 80: DETAILED VIEW ON PERFORM THE IMEASUREMENT PROCESS ...ceeeeeseuurereeeeesesaunnreeeeessaannreeeeesssasnsneeeesssasnmnseeeees 126
FIGURE 81: EVALUATE MEASUREMENTetteteieututteeeessaaiurteeeesssasssseeesesssasnsseaeeessasssssseseesssnsssseseessssssnssessessssssnseeneessns 126
FIGURE 82: DETAILED VIEW ON EVALUATE MEASUREMENT ...vttteeetesaurnteeeeesasantreeeeeesesanneneeesesasannnsseeeesesannnsseeesesesanssnneeeens 127
FIGURE 83: BPMN DIAGRAM OF GQUIM PARADIGM ..eeeiieiuueiiiieeseeniutieteeesssssntareeesssssasssereeesssssssssseessssssnssseeesessssnsssseeeens 128
FIGURE 84: ONTOLOGY COMPONENT “SOFTWARE CHARACTERISTIC” [WEISEOB] ..vvvvvieeiiiiiirieeieeieiiirreeeeeeeeeivreeeeeeesesannvenens 130
FIGURE 85: ONTOLOGY COMPONENT “MEASURABLE PROPERTIES”

FIGURE 86: ONTOLOGY COMPONENT “IMETRIC CONTEXT” 1uvviereeerreesreesiseesreesueessaeesseesssesensassnsesssseessesssesssseesssesnsnesnne
FIGURE 87: ONTOLOGY COMPONENT “OBJECT-ORIENTED IMETRIC” ...eeeeiutieeeeereeesiteeeeestieeesnseeeessnseessssseasenseessssseessssenesnnns 133
FIGURE 88: ONTOLOGY FOR SOFTWARE MEASURESceiieiuuuretteeeeaaiusteteeeesaaanrereeesssasansseneeeesasaanssseeesesesansssseeesssssnsenneeeens 134
FIGURE 89: WEB SERVICE FOR MEASURING C&K METRICS [FAROOQOS] ..veuveeiurireieesiiieeieestieseeesiteesiaesnsesessaesveesnseesnseesns 135
FIGURE 90: EXAMPLE FOR A XML RESULT FILE FOR A MEASUREMENT ..cuvveeuteeruteeeseesireeseeesseeesseesssesssseesssesssseessseesssesssseenns 136
FIGURE 91: SEQUENCE DIAGRAM FOR MEASURING A JAVA PROJECT [FAROOQOS5]uvieieiiriieieiiieeciiieeectreeeeettee et eeeeivee e 136
FIGURE 92: ACTIVITY DIAGRAM FOR MEASURING A JAVA PROJECT .e.uveeruteeeieerteesseesuseeseeessesesseesssesssseesssessnseesseessessseenns 137
FIGURE 93: SEQUENCE DIAGRAM FOR MEASUREMENT DATA RETRIEVING ...ceeeieieuuirteeeeseaaiunteeeeessaannreeeeesssesunsseeeeessesnnseeeeas 137
FIGURE 94: SOA SERVICE CENTER [SCHMIDIMOZ] ..ceeeiieiiiriiiieeeeeieirteeee e eeestteeeeeeeeseatbeseeeeeeesstsseeesesesnnsrsseeesesessnssaneeeens 139

FIGURE 95:
FIGURE 96:

FIGURE 97

UsSE CASE DIAGRAM: EMPIRICAL-BASED SERVICE ORCHESTRATION PROCESS ..vvuuiieeeiiiiiiiiieeeeeeeeeriniieeeeeeeeenrnnnns 141
DEFINITION OF USED DIAGRAM ELEMENTS
: QUAD2 FRAMEWORK ...ceevetvtuiieieeeeeettenteeeeeeesesssteeaesesesessssnneeeessssssssnsaesessssssssnnneseessssssssnnnesesssessssnnnneeeseens

x

Framework for a Service-oriented Measurement Infrastructure

[x]

FIGURE 98: SERVICE SELECTION PROCESS ...cetieuuereeereseeeinrreeeeesseenneeeteessesmsreneeessesnmneeeeeessesmnreneeeesessnnrnneeeeesesnnreneeesens 146

FIGURE 99:
FIGURE 100
FIGURE 101
FIGURE 102
FIGURE 103
FIGURE 104
FIGURE 105
FIGURE 106
FIGURE 107
FIGURE 108
FIGURE 109
FIGURE 110
FIGURE 111
FIGURE 112
FIGURE 113
FIGURE 114
FIGURE 115
FIGURE 116
FIGURE 117
FIGURE 118
FIGURE 119
FIGURE 120

UsSE CASE DIAGRAM: SERVICE REPOSITORY MANAGEMENT USE CASESuuiiiiiieieeeeeiietee e e e e eiireee e e e e eieeeeeeeeeas 150
2 SERVICE EVALUATION PROCESS ...vveeiuveeruieesiteeniteeniteesttessteeesseesabeessseesateesuseesseeesssessessnssesnsessnseessseessessseens 152
: USE-CASE DIAGRAM OF INTENDED INFRASTRUCTUREuiuetitteeseeeiitteteeeeseeunreteeessseannseeeeessesnnnaeeeesssasnnnreeeens 153
: ARCHITECTURE OF INTENDED FRAMEWORK ...
: ECLIPSE PLUG-IN DESIGN [HERTELDS] .. .eeeeeutiieeeiiiiieeeitieeeetteeeeeiteeeeeiteeeesveeeeeteeseenseaeesseaeeassesesassaseeasrenaans
2 KIVIAT DIAGRAM REPRESENTATION ... uvteuteesureesuteesuteesseessseeesseesseesseessseesssesssseesssesssesesseesssessnseessseessseessseens
* MEASUREMENT RESULTS OVER TIME .uvveeuveesuteessueesuseesuesessesensessssesessessssessssessssesssssessssessessssessssessssessssessssenss
2 COCKPIT VISION [PLENUMOB] ...ccietrrieeeeeeieiitreeeeeeeeetrreeeeeeesestbaseeeseeesestnsseeeeessessasssesesesassssseseesesanssssneeeens
: ARCHITECTURE FOR COCKPIT VIEW REALIZATION ..veeiuveesureesureeseeessseessueessesessesssessssesssessssessssessssesssesensessnsens
: MEASUREMENT COCKPIT AT SML@B[HANSENOS8]
: ENTITY-RELATIONSHIP DIAGRAM OF THE SOMDB
: DETAILED VIEW ON THE QUALITYMODEL DATASET
: THRESHOLD CONCEPT FOR MEASUREMENT VALUES
T XIMIL-SCHEMA DEFINITION 1euuveeeureesureessseessseanseeessesasseesssasasessssesssssessssesssssnsssssssssnsesensessssessnseessesssesssseans
T EXAMPLE OF A MEASUREMENT FILE 1.uuveeeuveesuteessueesueeenseeessesessesssessnsesssseesseesssessssssnsesensessssessnseesssessssesssseens
: OVERVIEW ABOUT THE SERVICE-ORIENTED MEASUREMENT DATABASE
2 ANALYSIS BY USING SIMILAR PROJECTS REGARDING A SPECIFIC MEASURE ..cceeetiuitirereeesesainereeeesesemnnneeeeesesannnnees 164
2 KIVIAT DIAGRAM WITH SELECTED PROJECTS ..uvveeuveesureesuseesuseesseeessssansesssesassessssessssessssesssssssssssssssssesansessnsenn 164
: SOFTWARE MEASUREMENT PROCESS LEVELS INCLUDING THE QUAD? APPROACH ...vvvveuverieieiesresrestesseesseseessesnens 165
: SCHEMA OF THE OOMO DATABASE [WEISEDB]veiiieiieeeieiieeeetieeeeiteeestteeessareeeseneeeesnnseeessseeeesnnsenessnseneens

T OOMO CLASS DESCRIPTION .ceeeeeiauuuerereresesaunereeeeessaaseseeeeesesaasseseeeesssaasnseeesesssansssseeesssasanseseeesssesanneneeesens

: BPEL STRUCTURE OF THE OOMO METRICS IDENTIFICATION PROCESS

Framework for a Service-oriented Measurement Infrastructure

List of Tables

TABLE 12 STEP 1 = DEFINITION 1eteeuuttteeeuuteeesuteeesaueeesaseeeesseeesansseeesassesssssseesssssssesssssesssnssesssnssessssssesssnsssessnssesssnsssesessessnsees 4
TABLE 22 STEP2 - PLANNING et eeiuettttteeeeeiiitttteeeeeeiunteeeteeesaaansbe e e eeesaaasnnaeeeeeesaasnseeeeeesaansnbeeeeeeesansnneeeeeseaannnseeeees saneeesennn 4
TABLE 3: STEP 3 - DEVELOPMENT AND OPERATION .uuuutirteeeesesautrrteeesssssureneeesssssasseseeesssssanssaseesssassssesesessssssnsseseessssssnsaes 5
TABLE 42 STEP 4 - EVALUATION «..uiiiiittieeeeeiietttteeeeeeiuteeeteeeseaamnte e eeeesaamnsseeeeeesaaannseeeeessaasnsseeeeeesansnnaeeeesesaannnseeeeeesanneeeenn 6
TABLE 5: MEASUREMENT SCALE TYPES AND ADMISSIBLE TRANSFORMATIONuvveeeeurreeenreesesrresessseeesssnsesessnseessnssessssseeessnnees 12
TABLE 6: ISO/IEC 9126 INTERNAL AND EXTERNAL QUALITY CHARACTERISTICS ..vveeuveeereesereeereessreesseeesseeenseeensesensesssesssseessnes 17
TABLE 7: RETURN ON INVESTMENT OF SOFTWARE MEASUREMENT PROGRAMSceeeutreeenureeeesrreeessseeeessnseeessnseesssssesssssssessnnees 43
TABLE 8: MATURITY GRID FOR SOFTWARE MEASUREMENT MATURITY ASSESSMENT [BRAUNGARTENO7] ..cceovvnriiiieeiieiirieeeee e 46
TABLE 9: OVERVIEW ABOUT MEASUREMENT TOOL CAPABILITIES 1.eeuuetvrteeeeeesuirtteeessessurereeeessesaunsereeesssssansssseessssssnsseneeesssnnas 66
TABLE 10: SURVEY AND CLASSIFICATION OF ASSORTED SPREADSHEETS OF SOFTWARE MEASUREMENT ...ceeveeeruiriireeeeeannnreeeeeesannns 69
TABLE 11: ADVANTAGES AND DISADVANTAGES OF SPREADSHEETSvveeeeuvreeesreeesasreeesssseeesssseesessseessssssesssssseessnssessssssesesnnnnes 73
TABLE 12: OVERVIEW ABOUT MEASUREMENT DATABASEScetetieiiuurereteseaaiutiteteeesasanreeeeesssesnnreneeessasannreneeesssasannreneeessannn 76
TABLE 13: OVERVIEW OF ADVANTAGES AND DISADVANTAGES OF SOFTWARE MEASUREMENT DATABASESveeuveeeereeeveesereessessenes 77
TABLE 14: OVERVIEW OF ADVANTAGES AND DISADVANTAGES OF REPOSITORIES ..ccuvveeveerureenreessreesseessseeesseessseesnseessseessseessees 83
TABLE 15: EFFORT CLASSIFICATION FOR SOA-EXECUTION OF MEASUREMENT RESULTS ...uuuuterieeeeseiiieteeeeeeannrereeeeesesannreneeeeens 113

TABLE 16: EXAMPLE OF NORMALIZATION IMPLICATION ...evvvteeeesernnnneeeeessaannneeeeeesesanneneeeeesssnnrnneeessesannneneeesssesannnnneeessesns 148

Framework for a Service-oriented Measurement Infrastructure

Table of Abbreviations

AOP

ANSI

AOSE

API

ASG

BPMN

BPEL

CASE

CAME

CBSE

CBO

CFP

CMM

CMMI

COCOMO

cOM

CORBA

COSMIC

COTS

Ccsv

CWM

C&K

DACS

DAML

Aspect-Oriented Programming

American National Standards Institute
Agent-Oriented Software Engineering
Application Programming Interface

Allen Systems Group

Business Process Modeling Notation
Business Process Execution Language
Computer-Aided Software Engineering
Computer-Assisted Measurement and Evaluation
Component-Based Software Engineering
Collaboration Between Objects

Cosmic Function Point

Capability Maturity Model

Capability Maturity Model Integration
Constructive Cost Model

Common Object MOdel

Common Object Request Broker Architecture
The Common Software Measurement International
Commercials Off The Shelf

Comma Separated Values

Common Warehouse Metamodel

Chidamber & Kemerer

Data & Analysis Center for Software

DARPA Agent Markup Language

DBMS

DBS

DCE

DDL

DML

DIT

DPDS

DTD

EAI

EBD

EF

ERP

ETL

FOD

FP

Gam

GUI

HTML

ICASE

ICT

IDL

IEC

IEEE

IFPUG

IPD-CMM

IPSE

ISBSG

Framework for a Service-oriented Measurement Infrastructure

Data-Base Management System

Data-Base System

Distributed Computing Environment

Data Definition Language

Data Manipulating Language

Depth of Inheritance Tree

DACS Productivity Center

Document Type Definition

Enterprise Application Integration
Event-Based Design

Experience Factory

Enterprise Resource Planning

Extract Transform Load

Feature-Oriented Design

Function Point

Goal-Question-Metric

Graphical User Interface

HyperText Markup Language

Integrated Computer Aided Software Engineering
Information and Communication Technology
Interactive Data Language

International Electrotechnical Commission
Institute of Electrical & Electronics Engineers
International Function Point Users Group
Integrated Product Development CMM

Integrated Project Support Environment

International Software Benchmarking Standard Group

Framework for a Service-oriented Measurement Infrastructure

[v]

ISO

J2EE
KDSI
LCOM
LOC
MAS
MP
NASA
NOC
ODMG
OoIM
OLAP
OoMG
omMT
OOAD
OOMO
OOSE
OWL
PDF
PNG
PSM
Qlp
QoS
QuaD?
QmMmP

RFC

International Standardization Organization
Information Technology

Java Platform, Enterprise Edition

Kilo Delivered Source Instructions

Lack of Cohesion in Methods

Lines of Code

Multi-Agent System

Measurement Process

National Aeronautics & Space Administration
Number Of Children

Object Data Management Group

Open Information Model

Online Analytical Processing

Object Management Group

Object Modeling Technique
Object-Oriented Analysis and Design
Object-Oriented Measurement Ontology
Object-Oriented Software Engineering
Ontology Web Language

Portable Document Formant

Portable Network Graphics

Practical Software Measurement
Quality Improvement Paradigm

Quality of Service

Quality Driven Design

Quality Model

Response For a Class

ROI
RTF
SANTA
SD
SDK
SDP

SE
SECM
SEMS
SLED
SMDB
SML@b
SMP
SOA
SOAP
SOMDB
SOSE
SP
SPARC
SPC
SPICE
saL
SR

TIM
TLB
uDDI

UML

Framework for a Service-oriented Measurement Infrastructure

Return On Investment

Rich Text Format

Solution Architecture for N-Tier Applications
Software Development Process

Software Development Kit

Software Development Project

Software Engineering

Software Engineering Capability Model

Software Engineering Measurement System
Software Lifecycle Empirical/Experience Database
Software Measurement Data-Base

Software Measurement Laboratory

Software Measurement Program
Service-Oriented Architecture

Simple Object Access Protocol

Service-Oriented Measurement Database
Service-Oriented Software Engineering

Software Product

Standards Planning and Requirements Committee
Statistical Process Control

Software Process Improvement and Capability Determination
Structured Query Language

Software Development Resources

Type Information Model

Type Libraries

Universal Description, Discovery and Integration

Unified Modeling Language

E

Framework for a Service-oriented Measurement Infrastructure

[i

UREP
URI
W3C
WBSE
WMC
WS
WS-CDL
WSDL
XML

XSD

Universal Repository

Unified Resource Identifier

Word Wide Web Committee

Web-Based Software Engineering

Weighted Methods per Class

Web Service

Web Service Choreography Description Language
Web Service Description Language

eXtensible Markup Language

XML Schema

Framework for a Service-oriented Measurement Infrastructure

.

1. Introduction

1.1. Motivation

The influence of software in our daily life has been raised dramatically over the past decades.
Software is an important part almost everywhere and used for various reasons from sending
a greetings card via email to automatically control the flight of an airplane. Living without
software is nearly unimaginable these days. These increased influence and the associated
usage was made possible in particular through the rapid price decline of computer software
and hardware in the past decades. This process was again accelerated through the

globalization in the nineties.

From software producers point of view new challenges arises through this development:
competitors have to respond very fast to the customer’s demand for high quality and low

priced products.

Through the incoherency of these requirements a huge risk for development projects arise

and in many cases projects overrun time or budget or they fail achieving high quality.

To avoid failure of projects even under these requirements and to clinch project goals
methods, procedures, and tools have to be evolved and have to be applied to support

software development in every of its branches.

One approach to target the set of problems is to identify well-tested methods from other
engineering disciplines which are faced with comparable challenges. A second one is to

observe leading competitors which achiever better results than their fallen behinds.

In doing so, beyond minor factors like excellent technical staff or professional work climate,
such leading organizations achieving their goals by applying a quantitative approaches to

software development that has been successfully used over large number of years.

Therefore the measurement of the software development process, software development
resources, and software work products can provide important support to overcome

conflictive requirements within the software engineering discipline.

A setting of tasks arises in particular for software management with it sub disciplines project
management and quality management, to make decisions on basis of certain measurement

values and with the application of standardized methods.

Another motivation for the usage of software measurement in the scope of a software
development project was already outlined by Mary Shaw in the early nineties. She identified
that software measurement is required to evolve the software development to a

professional engineering discipline where measurements are used to distinguish whether or

Framework for a Service-oriented Measurement Infrastructure

2]

not specified quality requirements have been achieved during the development process
[Jones96].

Figure 1 shows the evolution of an engineering discipline where the lower line track the
technology and the upper line represent the influence of production skills and scientific

knowledge carry new capabilities to the engineering practice.

Science
Production " Professional engineering
~
Commercial
Craft

« Virtuosos and talented « Skilled craftsmen * Edulcat_ed PLOfESSIOHaB

amateurs + Established procedure P”a ysis anl' theory
« Intuition and brute force + Pragmatic refinement Erogbrl(_ess r;e Ies on scl:_lenc_:e
+ Haphazard progress + Training in mechanics h”a 'EQ 0 Ine‘_N applications
« Casual transmission « Economic concern for cost tMrOLlig analysis X
+ Extravagant use of and supply of materials * Market segmentation by

available materials + Manufacture for sale product variety

+ Manufacture for use
rather than sale

Figure 1: Evolution of an engineering discipline [Shaw90]

In comparison to other engineering disciplines the evolution software engineering is still in
progress. Even though the term “software engineering” is used since 1968 [Shaw90] and the
application of scientific analysis and standardized methods emerged the lack of mature tools,
trustworthy experience, and the lack of established software measurement technology

draws the picture that the path to professional engineering is still in progress [Boehm06]

The quantifiable approach of software measurement is backed up by IEEE’s definition of
software engineering [IEEE9OQ]:

(1) Software Engineering is: “The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the

application of engineering to software.
(2) The study of approaches in (1).

In a formal consideration according to [Dumke05] the entities comprised in software
engineering (SE) are SE methods, supporting tools of Computer-Aided Software Engineering
(CASE), system of measures, standards, the produced software system, derived experience

which is shared in SE-communities:

Framework for a Service-oriented Measurement Infrastructure

N

SE = (Msg, Rse)
= ({SE-Methods, CASE, SE-SystemOfMeasure , SE-Standards,
SE-SoftwareSystems, SE-Experience, SE-Communities}, Rse)

The realization of software engineering in order to conduct a specific development project
leads to the definition of Software Engineering Management as the “application of
management activities — planning, coordinating, measuring, controlling, and reporting — to
assure that the development and maintenance of software is systematic, disciplined, and
quantified!” [AbranMoore*04].

In order to support software management software measurement has been identified as an

important assistance.

The interplay of software measurement and management phrases by the following citation:
“management without measurement [...] suggests a lack of rigor, and measurement without

management suggests a lack of purpose or context.” [AbranMoore*04]

1.2. Research Question

One on the major success factors for the applicability of software measurement is the
overcoming of manual activities in software measurement. Therefore tools are used to
automate as much activities as possible.

The dedicated task for this thesis is to investigate the lack of measurement maturity and
measurement tool distribution.

The main research question that is investigated by the thesis is therefore:

How should an infrastructure for software measurement be arranged, to implement the

software measurement process of an organization?

To address the primary research question the following questions are also investigated
which simultaneously represent the scope of the thesis:
1. What are the special challenges for the implementation of software measurement
programs?
2. Which basic software measurement approaches are significant for the software
engineering discipline?
3. Which software measurement process should be realized by a measurement
infrastructure?
What measurement process level can be observed in existing solutions?
5. Which elements should be part of a measurement infrastructure and how should an
example be implemented?
6. How can quality requirements alongside with functional requirements quality
requirements be achieved?

Framework for a Service-oriented Measurement Infrastructure

[4]

1.3. Research Methodology
The following section should give an overview about the used research methodology and
steps which resulted in the thesis in hand.

Step 1 — Definition: consists the following activities

(1) Identification of a problem which has never before solved in industry or
academia

(2) Documentation of the research question

(3) Identification and documentation of the methodology for the proposed
solution.

Step 2 — Planning of the research project: consists a literature study to the state of the art of
the two significant topics:

(1) Software measurement
(2) Software measurement programs
Step 3 — Design and implementation of the proposed solution
Step 4 — Interpretation and Evaluation of the proposed measurement infrastructure

Table 1: Step 1 - Definition

Motivation Objectives Proposal Research Stakeholders
How should a Evaluate tools and A framework that - measurement tool
measurement architectures and contains components manufactures
infrastructure be support the torealize a

. . - software

designed to automate | enhancement. standardized software
measurement tool

the software measurement process.

measurement users

? .

Process: - researcher in
software
measurement

Table 2: Step2 - Planning

Stages of the project Inputs Outputs

Literature review of the - literature review of - atechnical report covering

detailed practices of software software measurement the state of the art in

measurement programs _ _ measurement data
- literature review of storages
corporate measurement

Framework for a Service-oriented Measurement Infrastructure

5

programs

- evaluation of existing tools
and architectures

- formalization of the
software measurement
process level

- survey about exiting
measurement tools

- survey among tool
producers regarding
measurement tool
capabilities

- the role of Software
Measurement Databases
(SMDB) in this regard

Table 3: Step 3 - Development and Operation

Preparation

Execution

Analysis

Evaluation of existing
measurement paradigms

Design of an architecture
framework for dynamic
assembled measurement
infrastructures

- Study sources for
automatic service
composition

- Enhancement of existing
approaches to a holistic
quality driven procedure

- Use a stepwise mapping of
ISO/IEC 15939
measurement process
standard to different
components

- Creation of semantic
knowledge for automated
procedures

- Integration of existing
measurement databases
for empirical analysis

- Design of a measurement
cockpit for empirical
analysis

- description of the
framework for the
proposed infrastructure
with different modeling
languages (UML, BPMN)

- requirements for
measurement services

- quality attributes for
services

- introduction of quality
oriented service selection

Framework for a Service-oriented Measurement Infrastructure

- Selection of a SOA-
paradigm for measurement
process automation

Model verification

- Implementation of selected
components for a proof of
concept

- Evaluation of measurement
process level

- Framework related papers
appear at international
conferences

Table 4: Step 4 - Evaluation

Evaluation context

Continuation of results

Future work

Model validation

- Delphi study about the
framework for a service-
oriented measurement
infrastructures

- Case studies of the usage of
implemented components
and empirical analysis
about the usage of the
framework in comparison
to monolithic tools

Framework distributed along
software tool manufactures,

software measurement users
and researchers

- prototypical
implementation was
integrated into software
development environment
via a plug-in approach and
as services to demonstrate
the concept of ubiquitous
software measurement by
the use of a service-
oriented measurement
infrastructure

- publication of the
framework

- integration of existing
measurement tools to
enhance provided
functionality

- providing semantic
knowledge about software
measures for support and
automated procedures

- proposal of a measurement
SOA guideline for future
measurement tool
developments

Framework for a Service-oriented Measurement Infrastructure

1.4. Thesis Structure

- Software Measurement Service-oriented | T =
o Foundations Architectures T
o = e
=0 b _;_E
= =5
= . — = O
= Ferforming the Software Service-oriented Measurement 5
Measurement Process Infrastructure v

Figure 2: Thesis structure

The thesis in hand is divided into six parts. The structure of the thesis and the information
path is shown in Figure 2. While the first chapter deals with motivation, scope, and goal of
the thesis the subsequent chapters addresses the research work and is structured as follows:

Chapter two examines the foundation about software measurement, describes software
measurement systems and processes, and analyzes their application in software
measurement programs.

The third chapter reviews the current situation and state of the art regarding software
measurement tools, measurement data repositories, and analyzes different approaches for
software measurement.

Chapter four provides an overview about service-oriented architectures, examines the
technology aspects, and reviews the SOA-capabilities of existing measurement tools.

The fifth chapter presents a framework for a Service-oriented Measurement Infrastructure
including process description, an approach for a quality driven design of service-oriented
architectures, and the presentation of a service-oriented measurement database.

Chapter six contains a summary of the research’ contribution, a review of the questions
asked, and an outlook for future work.

Framework for a Service-oriented Measurement Infrastructure

2. Software Measurement Foundations

In particular experimental sciences bases on the possibility of quantifying certain aspects of
theories to justify or reject assumptions. Centuries ago, Galileo Galilee (1564 - 1642) shaped
the slogan:

"Measure what is measurable, and what is not measurable, make it measurable.”
Similarly for the software engineering discipline measurement more precisely software
measurement has been identified as a key success factor for software engineering
management. Tom DeMarco gives good evidence of its importance with his paraphrase "You

can’t control what you can’t measure." [DeMarco82]

2.1. Metrics and Measures

In colloquial language measurement is a way of assigning a number, representing an
attribute, to a physical object. In mathematics such assignment is usually called a mapping or
a function.

For a lot of objects and measures the relationship between both is clear. If one tree trunk is
five meters long and another one ten meters then the second one is longer. We can select
the longer one even without doing measurement at all because of an intuitive perception of
“length of a tree trunk”.

But in most cases related to software engineering the relationship is anything but clear. For
example we have to evaluate software systems consisting of different classes. One system
contains ten classes each with complexity measures in the range of 30 to 40 and the other
one 20 classes each with complexity measures in the range of 10 to 20. Which software
systems contain less overall complexity?

With this example one can visualize the difficultness of an important engineering question:
selection of different possible solutions. With appropriate measures software measurement
can be very helpful to answer this type of questions. Usually there is more than one measure
which determines the alternatives and tradeoffs between them have to be made.

The first example presented an intuitive perception regarding a specific measure but the
second one showed that most cases in software measurement are not intuitive. The missing
human ability of intuitive conclusions in every case is described in literature as an
intelligence barrier.

Jurgen Kriz provided the following figure which illustrates the measurement process as the
way to pass this barrier.

Framework for a Service-oriented Measurement Infrastructure

Measurement
e

- - Statistics
\ Intelligence barrier \

Relevant
empirical
results

Numerical
results

Interpretation

Figure 3: Measurement to pass the intelligence barrier [Kriz88]

The first step in this regard is to measure real-world objects to achieve numbers. The next
step is to apply mathematical or statistical operations on the achieved numbers. The result is
a second set of numbers which relates to the original object in the real world and the
wanted conclusions. The last step is the interpretation of numerical result to achieve an

answer in the objects domain.

Gary Ford gives a good example of this relationship which can be mapped to our previous
one. Suppose you were given a dozen tree trunks with different lengths and asked to select
the tree trunk of “average” length. Most likely it is not intuitively obvious which tree trunk
one has to pick. If one measures the length of all tree trunks the result is a set of numbers.
So after that one can compute the average (arithmetic mean) of those numbers and finally
interpret this number as the length of the tree trunk to be chosen, and pick the trunk closest
to this length. [Ford93]

For formal examinations the real-world objects with the included set of operations and
relations is named as empirical relational system A with the following definition according to
[Zuse1998]:

Let A be a non-empty set of objects, ® > is an empirical relation on Aand °is a closed
binary operation on A, the empirical relational system is defined as A= (A4,® >,0).

The set of numerical objects with the included set of operations and relations is named
numerical relational system B. With B = (R,>,®) where R are the real numbers, > a

relation on 4, and ® stands for an arbitrary closed binary operation on ‘R .

The process of measurement is defined as the one-to-one mapping i from objects out of A

to elements of B:
H:4—>R

with a e> b < u(a)zubd) v a,be 4

The one-to-one mapping ensures that every object has exactly one measure.

s

Framework for a Service-oriented Measurement Infrastructure

In this case the tuple (A, B,) is called a scale. But there are a number of possible numerical

representations for a given empirical relational system. If two numerical representations are
acceptable measures the mapping from one measure to another is called admissible
transformation [FentonPfleeger97].The set of admissible transformations that exist in each

class of scale determines a scale type [Whitmire97].

In measurement five scale types can be named: nominal, ordinal, interval, ratio and absolute
scale. In theory there are other scale types known but the mentioned four are sufficient for
meaningful statistical operations [Zuse98]. Shari Pfleeger pictures the importance of
determine the scale type with the phrase: “Unless we are aware of the scale types we use,

we are likely to misuse the data we collect.”[Pfleeger97].

Nominal scale type is the most primitive form of measurement and simply gives numeric
terms to objects and any distinct numbering of elements is an acceptable measure but there
is no notion of magnitude possible. Nominal-scale measures create a classification of

elements but the classes are not ordered even if they are numbered from 1 to n.

In this regard the only informative operation for nominal-scale measures is the empirical
equivalence relation = for two objects a,b € 4 which is expressed by the numerical

equivalence relation=. The formal expression of the nominal scale is:
((4,%),(R,=), 1)

The set of admissible transformations spans over all one-to-one mappings that assign the
same equivalence class to equivalent instances (with g is the set of admissible

transformations: g = any one-to-one) [Zuse98].
Ordinal scale type measures assign numbers to objects in a specific order.

In addition to the empirical equivalence relation =~ statements about the empirical ranking
e > of two objects a,b € A are possible. ((4,®>),(R,>, 1)

Ordinal scale ((A4,®>),(*R,>, 1)
where for all a,b,c € A
ae>band be>c =>qge>c (transitive)
ae > bor be> g (connected)

In the case of a transitive and connected relation e >, (A4, >)is called a weak order.

[Zuse98]

Because only ranking can be represented by ordinal scale type measures addition,

subtraction and other arithmetic operations have no meaning.

Any mapping that preserves the order of the elements can be accepted. So, two measures

can be related by a monotonic mapping and the class of admissible transformations is the

Framework for a Service-oriented Measurement Infrastructure

set of all strictly monotonic mappings (g: strictly increasing monotonic function)
[FentonPfleeger97].

Interval scale type measures enhancing the idea from ordinal scale in a way that the interval
size between two empirical objects is meaningful throughout the range of values. In this case
the gap between one class and another is reflected. For formal examination the term

algebraic structure should be defined at first.

Let 4 be a non-empty set of objects and let ® > be a quaternary relation on 4 (quaternary
means for example a binary relation (4xA4) on then the pair (4xA4,e >) is called algebraic

structure if for all a,b,c,d,a’,b’,c',d’ € Athe following axioms are sufficient satisfied.
= (AxA,e >)is a weak order.
= gbe>chthendce > ba
= gbe>a'b'and bce > b'c' then ace>a'c'.
= gbe>cde > aa,then there exists d',d'"'€ A, such that ad'=cd =~ d'"'b.

" g,,a,..aq,,..is a strictly bounded sequence (a,,,,a; = a,a, for every a,,a,, in the

sequence; not a,a, = a,a, ; and there exist d',d''e Asuch that d'd''e>a,a,e>d"d'
for all @, in the sequence), then it is finite.

To complete the formal view the interval scale can be defined as ordered containing the
algebraic structure (A4xA4,e >)the numeric relational system B and the measure x .

Interval scale ((4x4,® >),(RxNR,>), 1)

As an enhancement in comparison to ordinal scale type addition and subtraction are
acceptable and according to Zuse any positive linear function (g(x)=ax+b, a>0) is an

admissible transformation [Zuse98].

Ratio scale type measures assign values in a way that preserves the ratio of scale values. In
doing so, ratio scale type is highest scale type of measurement. Ratio scale type is common
in other academic fields like physics. For example “length” is a ratio scale type no matter of

the measurement unit because ratio concepts are meaningful (e.g. “twice as long”).

The main characteristic is a zero element which stands for the total lack of the measured
characteristic. This zero element is a consequence of the introduction of an additive

property over a concatenation operation which increases over equal intervals.

For formal examinations it is important to define the term closed extensive structure
[Zuse98]:

Let A be a non-empty set of objects and let e > be a binary relation on 4, and let © be a
closed binary operation on A4 then the ordered triple (4,8 >,0)is called a closed extensive

5 -

structure if there is a function #on A4 on the domain R such that forall a,b e 4:

Framework for a Service-oriented Measurement Infrastructure

ae>b << u(a) > u(b)

p(aob) = p(a)+ u(d)
Additionally the function u'satisfies both statements, when there exists @ > Osuch that

H'(a) = au(a).

The formal expression of the ratio scale then is: ((4, >,0),(R,>,®), 1) where the described

axioms of the extensive structure are valid.

The above described function ' defines the only admissible transformation for ratio scale

measures which can alternatively be defined as positive linear functions in the form (g(x)=ax,

x>a).

The last considered scale type is the absolute scale. It is the most restrictive scale type of all
mentioned. The only way of measuring objects in this case is the counting of the number of
elements and the only admissible transformation is the identity transformation (g(x)=x)
[Zuse98].

For formal expression let A =(4,®>,0,,0,,...)be a totally ordered structure than x is an
absolute scale type measure for A, if there exists a numerical relational system B that is the
set of N-representations for A that are onto B. The numerical relational system B has exactly

one element.

The described sequence of scales is increasingly restrictive. Every interval scale is also an
ordinal scale, but not vice versa. Every ordinal scale is also a nominal scale, but not vice versa.
A summary of the presented scale types with the defined relations, applicable statistics and

admissible transformations is shown in Table 5.

Table 5: Measurement scale types and admissible transformation

. . Applicable Admissible
Defined Relation Type of Scale o .
Statistics Transformation
Frequency
Equivalence Nominal distribution, Any one-to-one
contingency
Distribution, _
g: strictly
Equivalence, Median, Kendall))
) increasing
greater than or Ordinal and Spearman _
] monotonic
equal Correlation,
function

association

Framework for a Service-oriented Measurement Infrastructure

13

Equivalence,

greater than or

Arithmetical
median, standard

deviation, Pearson

Interval . g(x)=ax+b, a>0
equal ratio value correlation,
within an interval multiple
correlation
Identity, greater Geometrical

) median, coefficient
Ratio g(x)=ax, a>o
of variation, all of

than or equal, ratio

value as per two

values the above

Number of g(x)=x
Identity Absolute

occurrences

Having introduced measures and scale type another term often linked with measurement is
metric. A metric measure the distance between two points and has an accurate mathematic
definition: A function f is called metric if it satisfies the following three properties, where

(x,y) is the distance between two points x and y:
f(x,y)=0 if x=y (equity)

f(x,y) = f(y,x) for all x,y (symetric property)

f(x,z) <=f(x,y) + f(y,z) forallx,y,z (triangular inequation)

A familiar example for a metric is the metric of Euclid which measures the shortest distance

between two points on a plane:
Let p, =(x,,y,)and p, =(x,,y,)be two points in a plane. Then the distance d is defined
by Euclid as: d(pl,pz) = \/()c1 —xz)2 +(y, —y2)2 .

A 2nd example is the so called “Manhattan” metric which calculates the distance between
two points that one would travel on a grid layout of streets (for example on idealized
Manhattan Island, New York).

With the above defined two points on a plane the metric is defined as:
m(pl,p2)=|x1—x2|+|y1—y2|.

The following figure exemplifies both metrics. The Manhattan metric as the way a car or a
person has to drive or walk to reach a specific location in a checker-board pattern built town
like Manhattan and the Euclid distance as the air-line distance between the same points.

Framework for a Service-oriented Measurement Infrastructure

-

W

Figure 4: Difference between Euclid distance and Manhattan metric

Some but not all software measures are metrics and because of that in software engineering
the term is ambiguous. Some researchers decline the usage of the term “metric” because
“The use of the term “metric” for any other type of measure is imprecise at best and
misleading at worst.” [Whitmire97] They argue that the term “metric” should be reserved
for the area of geometry in mathematics. Other researchers refuse ignoring the term and
tried to find a solution by adapting the meaning. Definitions like “metric is a measurement
function” [KanerBond04] or “software metric is a term that embraces many activities, all of
which involve some degree of software measurement” [FentonPfleeger97] imply that a

software metric is an application of some kind of software measurement.

Summary: Metrics and Measures

Out of the presented viewpoint Software Metrics can be defined as: “The continuous
application of measurement-based techniques to the software development process and
its products to supply meaningful and timely management information, together with
the use of those techniques to improve that process and its products.” [Goodman04]

But since the difference of metrics and measures is not essentially [Zuse98] both terms
“software metric” and “software measure” will be used as synonyms in the thesis in
hand.

2.2. Measurement Sources
Having introduced the mathematical foundations of software measures the mapping to the
practical implementation in software engineering is presented next. The term software

measurement is defined as: “Software measurement is the process of the quantification of

Framework for a Service-oriented Measurement Infrastructure

s

software engineering attributes according to selected measurement goals by using (if

possible) appropriate tools.” [Dumke04]; [FentonPfleeger97], [AbranMoore*04]

After introducing software management as the application of management activities (among
others namely measurement) the classification of the software management areas and the

interconnections are shown in Figure 5.

Software Management ’

Development ‘ Maintenance ‘ ‘ Application ’
Management Management Management

Project Management
Quality Management

Figure 5: Software management areas [Dumke04]

Out of this classification the main areas for the comprehension of software measurement

are project management and quality management.

Software project management thereby contains the planning, observation and controlling of
software projects for the supply of resources on schedule and the realization of a software

product on time and budget. [Dumke04], [Wallmller01]

Software quality management means the assurance of quality characteristics for a software
product on basis of process and resource quality by the application of organizational

methods, chosen techniques and technologies. [Dumke04] [Wallmiiller01]

Whereas software quality different meanings and can be defined in various ways [Dumke03],
[DeMarc89], [Weinberg92].

For the thesis in hand the definition from ISO has been used where software quality is
defined as the totality of features and characteristics of a product or service that bear on its
ability to meet stated or implied needs [ISO/IEC94].

Thus, the quantification of instances of entities which are involved in some way in a software

engineering process is the intention of software measurement. The question what such

Framework for a Service-oriented Measurement Infrastructure

entity can be and what characteristics can be measured was of substantial interest for the

software measurement community over years.

Norman Fenton presented in 1991 a framework introducing three classes for software
engineering entities namely products, processes and resources [Fenton91]. Some researchers
enhanced the framework by adding projects or exchanging resources with projects
[Whitmire97] [Daskalantonakis94].

Since the framework from Norman Fenton is still the most accepted and feasible one, it is

used for the thesis in hand.

Software Quality
Management

Software Process
Qualit

Software Product
Quality

Software Resources
Quality

Figure 6: Interdependences between entities [Lother07]

2.2.1. Product Measurement

The measurement of software engineering products can be seen as the origin of software
measurement. Information about final product characteristics satisfies the costumers desire
to know as much as possible about used commercial software [Pfleeger97]. Examples for
such measures are the number of implemented lines of source code (LOC), the metrics from
Halstead (volume, effort), or the cyclomatic complexity by McCabe [McCabe76]. In the
course of time fewer and fewer people wanted to wait until final products were available
and many software engineering projects failed to deliver some kind of a final product. Beside
simply applying the above described metrics to semi-products, measures has been evolved
to evaluate early stages of software engineering.

Considering the early stages of software engineering quantitative information about the
quality of requirement specifications defined by Mora and Denger [MoraDenger03] can
provide useful information.

Afterwards, quantitative information about the emerged design of software has been
identified as important. Measures for design complexity (Henry and Kafura’s structure
metrics) [HenryKafura81] or several object-oriented measures for design quality (Chidamber
and Kemerer’s metrics suite for object-oriented design) [ChiKem94] have been invented to
answer this need.

Framework for a Service-oriented Measurement Infrastructure

The ISO/IEC 9126 international standard for product quality and the successor ISO/IEC 25000
provide a comprehensive compendium about software product quality attributes and
measures [ISO/IEC01]. The ISO/IEC 9126 standard is divided into four parts.

Partl: Software Engineering Product Quality - Quality model: describes the relationship
between different approaches to quality and describes the quality characteristics and sub-
characteristics of a distinct software product [ISO/IECO1].

Part2: Software Engineering Product Quality - External metrics: describes the external
metrics used to measure the characteristics defined in Part 1 [ISO/IEC03a].

Part3: Software Engineering Product quality - Internal metrics: describes the internal metrics
used to measure the characteristics defined in Part 1 [ISO/IECO3b].

Part4: Software Engineering Product quality - Quality in use metrics: identifies the measures
used to distinguish the effects of the quality characteristics for the user [ISO/IEC04].

Table 6: ISO/IEC 9126 Internal and external quality characteristics

Functionality Maintainability

e Suitability

e Accuracy

e Interoperability
e Security

e Functional compliance

Analyzability
Changeability
Stability
Testability

Maintainability compliance

Efficiency

Reliability

e Time behavior
e Resource utilization

e Efficiency compliance

Maturity
Recoverability
Fault tolerance

Reliability compliance

Usability Portability
e Understandability e Adaptability
e Learn ability e Install ability

e Operability
e Attractiveness

e Usability compliance

Co-existence
Replace ability

Portability compliance

Framework for a Service-oriented Measurement Infrastructure

are shown in Figure 7.

The I1SO/IEC 9126 does not treat the product isolated and the connections to other entities

Process

influences

Process-

Process
Measures

Figure 7: ISO/IEC 9126 Quality in product life cycle [ISO/IEC01]

Whereas the internal quality attributes measure a product by means of the principles of
static analyzes. The static analysis contains syntactic and semantic analysis of the source
code and delivers results for complexity measures, call graphs, control graphs, quality

Internal
Quality

Software Product

Internal
Measures

influences

External

Quality

External
Measures

Effect of Software Product

influences

D (e

depends on

Quality in use
Measures

reports, and so on. The principle of static analysis is shown in Figure 8.

Source code
files

Compiler

|

Figure 8: Principle of static source code analysis [EbertDumke07]

In contrast to this procedure dynamic source code analysis measures the running program.
Previous the compiling the source code statements are marked and instrumented. During
the execution information are written into the execution result file. Afterwards information
about test coverage and other dynamic measures can be analyzed. This dynamic source code
analysis measures external quality attributes and therefore all ISO/IEC 9126 external quality
characteristics are applicable. The principle of dynamic source code analysis is shown in

Figure 9.

"——-_-/_-

Analyzer

|

Analysis
result files

-

Quality model

Viewer

=

“§ Contexts

Framework for a Service-oriented Measurement Infrastructure

Source code
files

1 Analyzer 1

Instrumented Analysis
Source Code result files
files
—]
Instrumentation
Compiler library

k

Instrumented
binary

h

Test
Checker

T it

Execution Viewer N -4
Result file

Figure 9: Principle of dynamic source code analysis [EbertDumke07]

Additional to external and internal quality attributes the product quality can be determined
by measuring the effect of a software product in its context of use. The characteristics taken
into account for the quality in use model are shown in

{ Quality in use

N

Y

L

Effectiveness ’ { Productivity ‘ { Safety ‘ ‘ Satisfaction
Figure 10.
{ Quality in use
Effectiveness ’ { Productivity ‘ { Safety ‘ ‘ Satisfaction

Figure 10: ISO/IEC 9126 Quality in use characteristics [ISO/IEC04]

Framework for a Service-oriented Measurement Infrastructure

Due to the great spread of different stakeholders, users, and use-cases of software products,
quality can mean something completely different for different kinds of software. Some
attributes are of higher or lower relevance and it is not the silver bullet to measure all of
ISO/IEC 9126 over 300 measures each time when quality evaluation is needed.

To tackle this problem the definition of so-called quality models arises as early as product
measures have been established. The usual procedure thereby is to specify quality
requirements and to make trade-offs between software product capabilities [ISO/IEC0O1]
[BoehmBrown*76] [McCallRichards*77].

The result is a quality model containing a set of measures with aligned thresholds for
different quality characteristics and possible different weighting of these characteristics.
[BuglioneAbran99]

As an example for a set of measures for a distinct area of product characteristic the metric
suite for object-oriented design should be presented next.

This metrics suite was proposed in [ChiKem94] by S. R. Chidamber and C. F. Kemerer. The six
structural design metrics proposed by them are:

e Weighted Method per Class (WMC)

WMC is the sum of complexities of all methods in a class. Consider a class C1 with
methods M1, . ..,Mn that are defined in the class. Let cJ, . . . ,cn be the complexity of
each of these methods. Then WMC has been defined as:

WMC = ici
i=1

e Depth of Inheritance Tree (DIT)

The DIT of a class is defined as the longest way from a class in the inheritance tree to
the node.

e Number of Children (NOC)
The Number of immediate sub-classes subordinated to a class in class hierarchy.
e Coupling between Objects (CBO)

CBO for a class is the count of the number of other classes to which it is coupled. Two
classes are coupled together if methods of one use methods or instance variables of
another. Excessive coupling between object classes is negative to modular design and
inhibits the reuse of the class in other applications. As more independent a class is, as
higher is the reusability.

Framework for a Service-oriented Measurement Infrastructure

e Response for a Class (RFC)

RFC = |RS|where RS is response set for the class. This is a set of methods that can

potentially be executed in response to a received message. This message is sent by an
object of that class. Additionally calls from outside the class can be included. Thus,
RFC is also a measure for the communication between on class and another.

e Lack of Cohesion in Methods (LCOM)

The LCOM is the count of the number of method pairs whose similarity is 0 minus the
count of method pairs whose similarity is not zero. The degree of similarity for two
methods M; and M, in class C; is defined by:

0() = {I, }n{I, }where {I,}and {, }are the set if instance variables used by M; and
Mz,

As larger the number of similar methods is as more cohesion exists between these
two classes. In object-oriented design the cohesion should be as high as possible.

The interplay between coupling and cohesion is shown in Figure 11. The right hand side
represents the object-oriented ideal.

. 2 e

|

~ > \ X | >
High coupling Low coupling
Low cohesion High cohesion

Figure 11: Interplay between coupling and cohesion [ChiKem94]

2.2.2. Resource Measurement
Beside the product itself, the used resources to create the products are of high importance.
The primary domain is thereby human resources: skills or abilities as well as difference in
mental conditions of involved people results in variation of quality and complexity of created
products [Basili1996], [DeMarco89].

Alongside with human factors non-human factors like time schedule, production equipment
(development tools, working environment) and monetary budget are important factors, too
[ZenkerKunz*08a].The following Figure 12 shows a possible distribution of the different

characteristics addressed to the main parts of the software development resources.

Framework for a Service-oriented Measurement Infrastructure

[2]

personnel resources software resources platform resources
characteristics: aspects: characteristics:
sidlls communication compatibility paradigm reliabilit, arﬂabiﬁg-‘
‘\‘\3 T A}J !\ / /\
|) v J(mobile) r v
user : customer COTS ICASE computers [| peripherals
S N ¥ S A (hosts)
A A [3 A
development team f\
(test team) v g L 4 L4 ¥
——————————— system software networks
maintenance team 4 architectures A
productivity performance performance

Figure 12: Basic visualization of resource characteristics [DumkeKunz'08]

To control and predict the software development measurements of resources
quantifications as well as prediction of future trends are of substantial interest
[ZenkerKunz'07]. Measurements of personal resources can be done according to the
Personal Software Process (PSP) where the activities of stakeholders are recorded in an auto
didactical process [Humphrey96].

For cost and schedule related aspects there exists a complete research area called effort
estimation. Models like the Constructive Cost Model (COCOMO) with different variations
(COCOMO 2.0 and COCOMO Il) [Boehm00] or the Functional Size Measurement Model with
different methods (e.g. IFPUG Function Points [IFPUG99], COSMIC Full Function Points
[AbranOligny’00]) provide techniques for measuring and estimation of financial costs,

project duration, or head count [Kunz'07b].

2.2.3 Process Measurement

In the course of time deeper insights of researchers’ leads to the meaningfulness of taking
into account not only resources and products but also the activities which lead to these

products [Wallmuller01].

Considering theses activities it is important because of “product quality is evidence of

process success” [Pfleeger97].

But the definition of “process” is not beyond controversy in software engineering research
community. As mentioned in the entity classification some researchers prefer the term
“project” or embrace a time factor. To avoid misunderstanding a well-defined demarcation

is needed.

According to [Pall87] [Lonchamp93] [AbranMoore*04] a process can be defined as the logical
organization of people, materials, energy, equipment, and procedures into work activities

designed to produce a specific end result.

Framework for a Service-oriented Measurement Infrastructure

‘3

In contrast to that definition projects bear references to the time and are nonrecurring while
processes are based on repeatable activities. They can be defined as a distinct execution of a
software development process with a set amount of resources within a set interval

[Whitmire1997]. That means that a project is a set of entities and not an entity given alone.

Summary: Product, Resource, and Process Measurement

Embracing the aspects the software product (SP) can be defined as:
SP = (Msp, Rsp) = ({programs, documentations}, Rsp)

Even though product measures are these days able to quantify a lot of different aspects,
one has to take into account other entities to get a complete picture.

For formal considerations the software development resources SR can be defined as:

SR = (Msg, Rsr) = ({personnelResources, softwareResources, platformResources,

financialRessources}, Rsg)

whereas the software resources play a dual role in the software development: as a part
of the final system (as COTS or software components) and as the support for the
development (as CASE or integrated CASE as ICASE).

Dumke et al. [DumkeKunz'08] defines the software development process (SD) as the
collaboration of elements from development method, lifecycle model, software

management, and needed resource entities (SR).
SD = (Msp, Rsp) = ({developmentMethods, lifecycle, softwareManagement} U Msg, Rsp).

A formal notation of a software development project (SDP) can be defined according to

[DumkeKunz08] as following:
SDP = ((Mspp, Rspp) = (Msp U Msg U Msp , Rspp)

Measureable attributes in this regard are for example number of resource usage, mean
cost per detected error, number of coding faults found. But the boundaries between
process and project measures often overlap since some of the measures contains as
time reference and thereby quantifying a process by measuring its application in

concrete projects.

Framework for a Service-oriented Measurement Infrastructure

2.3. Software Measurement Systems and Processes

The formal representation of the synthesis of the above elements can be defined as a

Software Engineering Measurement System (SEMS) [DumkeKunz08].
SEMS = (MSEMSI RSEMS) = ({G/ A/ M; Q/ ‘/1 U/ E; T; P}I RSEMS)

where G is the set of the measurement goals, A the set of measured artifacts or
measurement objects, M the set of measurement methods, objects or entities, Q the set of
measurement quantities, V the set of measurement values (especially we could have the
situation Q =V), U the set of measurement units, £ the set of measurement-based
experience, T the set of measurement CASE tools (respectively CAME tools), and P the set of

the measurement personnel. Rsgys defines all meaningful relations between the elements of

Mseps.

Especially, the measurement process MP as one of the instantiations of a software

measurement system is explained by the following sequence of relations
MP: (GXAXM)T,p9(QXE)T,pé(VXU)T,peE’XA’

This measurement process description explains the process results as quantities including
some thresholds, values involving their units and/or extended experiences combined with

improved or controlled measurement artifacts.

Software measurement process is embedded in the general motivation and classification

characterized in the following figure.

Measuremenrstrategxes

/-.__./' /‘____,_._- _—— “Qf,'P)
’._.f' / Measurement frameworks™
P /7 ﬁw\
; P ~ Measuwrement methods f\
N \

Metrics, Thresholds

QY

Figure 13: The general layer model of software measurement

Furthermore, the detailed phases of software measurement and their different kinds of

measurement methods can be described as the following.

Framework for a Service-oriented Measurement Infrastructure

s

< controlling)

L]
b=
]
£
g
improvement
5 >
= axparimantation
7]
5 - i = =
E estimation
E *
assessment
| | | | | | Measurement
|) |) | | . [) I) phases

refarencing madeling measurement analysis evaluation application

] [] L I | [|
» ’ ‘ ’ 1 ’
1.;3' L] [! g 00 [|
=9 U]) !) ! " "
%] [s ! s 0
= ' prediction pred.? pred.y experience
s] [0

] [}]
5 ' ' .
5
3 Y \J Y
g visualization visualization visualization

Figure 14: Software measurement phases and methods

2.3.1. Measurement Ingredients

The tuple of (G x A x M) describes the input and basis for any software measurement. The
detailed characteristics of these three sets are [DumkeKunz08]:

G: Intention: Goals are considered as understanding, evaluation, improving and
managing. This enumeration corresponds to an increasing level of measurement
goals.

Viewpoint: On the other hand the goals depend on the special viewpoint such as
internal goals/quality, external goals/quality and goals/quality in use. [ISO/IEC01]

A: Domain: The considered measurement artifacts should be the general classification
of software as products (systems), processes (e. g. project) and resources (including
their different parts or aspects (e. g. product model, process phases or personal
resources)). [Fenton91]

Origin: Note that a pendant or analogical artifact of measurement is considered to
drive the path to the kinds of measurement as analogical conclusion. Analogy can be
defined as tuning (where a pendant in the same class of software systems is used)
and as adaptation (where another pendant of artifact is used). This kind of

description is motivated in the following consideration.

Framework for a Service-oriented Measurement Infrastructure

The complexity of the measured artifact is explained as: Software measurement of
different systems is related to the kind of systems (information-based, embedded,
web-based, decision support, knowledge-based etc.) and to the different kinds of
software development paradigms such as object-oriented software engineering
(OOSE), aspect-oriented programming (AOP), component-based software
engineering (CBSE), feature-oriented development (FOD), service-oriented software
engineering (SOSE), event-based design (EBD) and agent-oriented software

engineering (AOSE).

In contrast, general characteristics of software systems are meaningful in different IT
environments such as performance, security, and usability or context-dependent as
outsourcing and off shoring. And finally, measurement artifacts can depend upon

different kinds of systems such as embedded systems and information systems etc.

Method: The chosen measurement methods are classified here as experiment/case
study, assessment, improvement and controlling. That means that measurement
should contain the partial phases as referencing, modeling, measurement, analysis,
evaluation and application and could cover different parts of these phases. Note that
the dominant use of experiences could lead to the kinds of measurement as

estimation or simulation.

Sort: Furthermore, depending on the measured artifact(s) that is involved in the
measurement it will be distinguished between no measurement (no artifact), aspect-
oriented measurement (considering some aspects of product or process or resources),
capability-oriented measurement (considering the whole product, the whole process
or all resources) and whole measurement (considering all, product and process and

resources).

Measurement Output

The immediate output of software measurement consists of numbers that would be

interpreted by using any experience described by the pair as (Q x E). The typical properties

of these sets are:

Q:

Value: This set of metrics values/numbers characterizes a qualitative measurement

and are given in a nominal scale or ordinal scale.

Structure: Measured values could be structured in different kinds of presentations

and transformations such as tuple, table, aggregation and normalization.

Form: The appropriate experiences for Q are given as analogies, axioms, correlations,
intuitions, laws, trends, lemmas, formulas, principles, conjectures, hypothesis’s and

rules of thumb.

Framework for a Service-oriented Measurement Infrastructure

Contents: The contents or kinds of experience could be thresholds, lower and upper

limits, gradients, calculus and proofs.
Measurement Results

As a higher level of measurement output the goal is to achieve real measures including their

units. Characteristics of the sets in the tuple (V x U) are:

V: Measure: This set of metrics values characterizes a quantitative measurement and is

given an interval scale or ratio scale.

Aggregation: The values could be built as different structures and aggregations such
as measurement repositories, simple visualizations (e. g. diagrams scatter plots),

dashboards and cockpits.

u: Type: The measurement unit could be CFP (COSMIC FFP functional size), program
length of Halstead [Halstead77], kilo delivered lines of code (KDSI), cyclomatic
complexity of McCabe [McCabe76] etc.

Standard: Otherwise the mostly used units could be classified as physical, economical,

sociological, software and hardware units.
Measurement Resources

Every phase of the software measurement process is supported by tools used by personnel.

The detailed characteristics of these sets are:

T: Level: The kind of tool and the tool support should be classified as manual (without

any tools), semi-automatic and automatic.

Support: In contrast, the tool could be applied in the IT area (as internal

measurement) or by vendors (as external measurement).

p: Kind: The measurement personnel involve the different kinds of measurement and
intentions and could be distinguished as measurement researchers, practitioners and

managers.

Area: Furthermore the measurement personnel is divided in origin measurement
staff (measurement analyst, certifier, librarian, metrics creator, user and validator)
and in IT staff who use the software measurement indirectly (administrator, analyst,
auditor, designer, developer, programmer, reviewer, tester, maintainer, customer

and user).
Measurement Repercussions

Finally, the software measurement is leading to extensions of the experience and to
improvements of the measures artifacts explained in the tuple (E’x A’). Typical properties

are:

Framework for a Service-oriented Measurement Infrastructure

E’: Form: The obtained experiences are also given as analogies, axioms, correlations,
intuitions, laws, trends, lemmas, formulas, principles, conjectures, hypothesis’s and
rules of thumb.

Extension: Especially the marked set of experiences explains the extended knowledge
based on the measurement, evaluation and exploration and can produce formula

correction, principle refinement, criteria approximation and axiom extension.

A’ Domain: The kinds of measurement that include the change or improvement of the

measured artifacts leads to such a marked set A.

Changing: Depending on the measurement process goals and methods, the artifact

could be understood, evaluated, improved, managed or controlled.

The measurement process MP itself should be characterized by the level of
covered/measured artifacts (as approach) and by the kind of IT relationship (as solution).
Hence, the essential measurement process characteristics are defined in the following
formal manner [DumBra*07]:

intention domain method .1 kin value Jorm level kind
MP = (G viewpoint o A origin s pf sort)7 swport - p area = (Qstructure x | contenis). support p area —p

measure type level ki Sform domain
(v aggregation . \ standard) support , Kind S Eextension x A changing

2.3.2. Measurement in Software Development Process

As mentioned above the quality of a software development process intensely influences the
quality of the resulting product. That leads to several approaches for evaluating process
quality [Humprey87]. Important standards and methods are the ISO/IEC 900x series
(including [ISO/IEC00a] and [ISO/IECO0b]) and the CMMI (Capability Maturity Model
Integration) [SEI02a] [SEIO2b]. These models take into account the key role of the logical
organization of all activities for the software development process and therefore integrates
product, resource or project related sub processes into a holistic process model.

2.3.2.1.ISO/IEC 900x Series

ISO/IEC 900x is not limited to software development processes but used in different fields of
application. ISO/IEC published a survey stating that nearly 800.000 organizations have been
evaluated by ISO/IEC 9001:2000 [ISO/IECO5].

The general goal of the standard is to describe minimal characteristics of quality and process
management to establish a quality system [Pandian2003]. Such quality system is often a
basic business precondition for customers before ordering products or services.

For the development process especially the ISO/IEC 9000-3 gains importance because the
standard connects the ISO/IEC 900x series to the software engineering to other IT-related
standards. The different documents and their affiliation to the different series are presented
in Figure 15.

Framework for a Service-oriented Measurement Infrastructure

1SO 900x
Standard series

!

v

l

1SO 9000 ISO 9001-9003 ISO 9004
Introduction Certification Quality management
\
1SO 9000-1 ISO 9001
Selection and use of Design, development, ISGOuic?giggj
1SO 9001, 9002, 9003 production, installation
1ISO 9000-2 ISO 9002
Application of Production, installation, Isgefvciﬁ: 2
1SO 9001, 9002, 9003 servicing
1ISO 9000-3 ISO 9003
Application for Software Final inspection and Prolci(sjsegdqg;ﬁials
I1SO 9001, 9002, 9003 test
SO 9_000—4 1SO 9004-4
Dependability program Quality improvement
management Y Imp
2000
revision
ISO 9000 ISO 9001 oualt fio) 900‘1 e,
Quality management systems: Quality management systems: "('?la '.g' man?gemerp SPELEIEY
Fundamentals and vocabulary| Requirements uldance Tor performance
improvement

Figure 15: ISO 900x series

The ISO/IEC 900x series quality management system aims a continuous improvement to
satisfy customer requirements. The basic activities of this process-oriented quality
management system are shown in Figure 16.

Continuous improvement of the
Quality Management System

Customer Customer

[— — — —

Management
responsibility

Resource Measurement, .
Management analysis, < -_— = = = —I‘W: Satisfaction |
Improvement | | | Ttmmommoomoomooe-

Output

Product
realization

Product

v

Figure 16: Process-oriented Quality Management System

Framework for a Service-oriented Measurement Infrastructure

2.3.2.2. CMMI Framework for Process Integration and Product
Improvement

In contrast to the ISO/IEC 900x series the Capability Maturity Model Integration has been
developed specific for the software development process. The model is originated from the
Capability Maturity Model (CMM) which has been developed by the Software Engineering
Institute at the Carnegie Mellon University for the U.S. Department of Defense to choose
among different software development companies [Humprey87].

Alongside with the mentioned CMM, the Systems Engineering Capability Model (SECM), and
the Integrated Product Development CMM (IPD-CMM) has been combined to the CMMI
Framework. [SEI02a] [SEIO2b]

Due to different approaches in the initial models two variable representations for the
underlying process has been provided: staged and continuous [ChrissisKonrad*03].

Staged Continuous

Maturity Levels

[Process Area 1 [Process Area 2] [F‘rocess Area nJ [Process Area 1] [Process Area ZJ [Process Area n]

SGpemIﬂc GGeneIric Specific Generic
oas oals Goals Goals
Capability Levels

Common Features

Directing
Implementation

Abllltyto
Perform

Commitment
toPerform

Verifying
Implementation

/
AN

A 4 A 4
Generic Specific Generic
Practices Practices Practices

Figure 17: CMMI staged and continuous structure

Specific
Practices

The different order of the elements in the two structures is compared in Figure 17. The
unique maturity levels of the staged representation, the focus of the different stages, and
the aligned processes are shown in Figure 18. The process areas and the capability levels of
the continuous representation are presented in Figure 19 and Figure 20.

Framework for a Service-oriented Measurement Infrastructure

Focus

Continuous
Process
Improvement

Qantitatively

Managed
(4)

Defined

3) .

Managed

/) _

- Ad hoc, Chaotic
processes

Quantitative
Management

Process
Standardization

Basic Project

Management Analysis

Initial

(n

Optimizing
f/' (5)

« Organizational
Innovation and Deployment

+ Quantitative Project
Management

« Organizational
Process Performance

Risk Management
Integrated Project
Management

Product Integration
Requirements Development

Project Planning
Measurement &

Process and Product
Quality Assurance

Figure 18: CMMI staged representation — maturity levels

Beside this two dispread models for software development process evaluation there exists
some other approaches with the same goal, for example ISO/IEC 15504 (Software Process

Improvement and Capability determination (SPICE))

[ISO/IEC98] [Drouin95] and BOOTSTRAP

[KochKuvaja“94]. Since worldwide studies discovered that ISO 900x series and the CMMI are

by far the most popular ones [KugRem95] [WangD

‘ CMMI \

scope here.

orling"99], the other models are out if

Project
Management

+ Project Planning

+ Risk Management

- Integrated Project
Management

+ Quantitative
Project Management

Process
Management
+ Organizational
Process Performance
+ Organizational

Innovation and
Deployment

* Product
+ Require

‘ Engneeﬂng\

Development

‘ Support \

+ Measurement &
Analysis

- Process and Product
Quality Assurance

Integration
ments

Figure 19: CMMI continuous representation — process areas

Framework for a Service-oriented Measurement Infrastructure

[3]

Process Capability Levels

5 Optimizing

4 Quantitatively Managed

2 Managed

1 Performed

| |
| |
[3 Defined }
| |
| |
|

0 Incomplete }

Figure 20: CMMI Continuous Representation — Process Capability Levels

The detailedness of the software process quality models and the definition of an optimum
(e.g. CMMI Level 5) prescient these evaluation methods from software measures.

2.3.3. Measurement Process Methodologies
Integrated into a software development process the software measurement process aims to
be a tool for the following goals [Ebert*05]:

- estimation of future product components, resources and process aspects
- analysis of artifacts, technologies and methods used in a development process
- structuring of the software process

- improvement of methodologies and techniques

control the software development process and the resulting product quality

Consequently, different stakeholders or costumers of software measures can be identified as
[Kueng00], [ListBruckner*05]:

- project management
- software engineers

- specialists (e.g. software quality management, process engineering, configuration
management)

- functional (senior) management
- users/costumers

In order to aim the described goals for the named stakeholders different views on above
described entities (product, resource, process) has to be distinguished.

Framework for a Service-oriented Measurement Infrastructure

In literature three major views for software measurement are defined. Strategic issues taken
into account by functional (senior) management, tactical issues are addressed by project
management, and technical issues are treated by specialists (e.g. software engineers or
software quality managers) and costumers [Whitmire1997] [Ebert97].

X

Strategic view

Product Resources

X

Technical view

Processes Projects

X

Tactical view

Figure 21: Views on software measurement
Strategic view

The strategic view is the most abstract one and addresses the feasibility of the whole
business process in the long run. Therefore functional manager is interested in
organizational goals which should be stated in measurable terms.

Usually the strategic view tracks trends of summarized statistics and determines if and how
well business goals are being met. Since, not more than trend-setting data is used, raw or
detailed software measures can be counterproductive.

Examples for such measures are:
- unit cost (labor hours/size)
- defect rates (delivered defects/size)
- cycle time (project days/size)
Tactical view

The tactical view is concerned about the performance of individual projects. Therefore
project managers are responsible for established processes and they should use
measurement data for building project planning and project controlling. In doing so
measurement data is used to compare actual results to target results in which any variances
should be investigated. Another use case for measurement values in the tactical view is the
prediction of values by using measured ones (for example using project size to predict cost
and schedule).

3

Framework for a Service-oriented Measurement Infrastructure

Examples for such measures are:
- Planning:
o Resource (time and skill level) required for each task
o Activities and processes required to complete tasks
o Cost of resources required for the project
- Controlling
o Actual effort-to-date by activity or product deliverable
o Progress-to-date
o Expected effort required to complete project
o Target performance using target values of product measures
o Defect data (defect rates, correction efficiency, cost of rework)
Technical view

All measures used in the strategic and technical views are built from fundamental technical
measures. Physically, all previous described measurements are realized at the technical level.
Furthermore the technical view deals with the detailed software measures needed for
engineering purposes. They are focused upon a set of internal attributes of a single work

product or process and the applied measures strongly depend on the used technology on
the software development process.

Examples for such measures are:

Size and complexity to choose between alternative implementations

Coupling and cohesion to evaluate software design

Defect rates and direct product measures to investigate relationships

Productivity of own process to assess the effects if using new tools or methods

The different views and resulting differences in information needs for the roles have been
summarized in the following figure [Ebert’05].

Framework for a Service-oriented Measurement Infrastructure

Senior Management Project Management
+ Easy and reliable visibility + Immediate project reviews

on business performance + Status and forecasts for quality
+ Forecasts and indicators schedule, and budget

where action is needed « Follow-up action points
+ Dril-down into underlying * Reports based on consistent

information and commitments rawi data
+ Flexible resource refocus

Measurements
Engineers

+ Immediate access to team planning
and progress
+ Get visibility into own performance and
howe it can be improved
+ Indicators that show weak spots and deliverables
+ Focus energy on software development
{instead of rework or reports)

Figure 22: Information need by stakeholder role

The different types of information needs and the manifold forms of technology and their
application into a software development process facilitate a huge amount of different
measures. In the course of time an uncounted number of measures have been published. A
decade ago 1500 have been counted and a quantity of a few thousand has been estimated.

The increasing economic relevance of software measurement for organizations cannot be
neglected. But issues like complexity and missing traceability of measurement processes
constitute the need for direction and guidance in this regard.

To establish a well defined measurement process describing the path from the information
need to the execution of measure has been targeted to making software measurement a
success.

2.3.3.1. The Goal-Question-Metric Method

Researchers and practitioners have been trying over time to address this topic and to
develop methodologies and procedures for a standardized measurement process. Early
approaches propose a top-down architecture containing planning and execution of a set of
software measures assigned to defined measurement goals.

One of the first models for a structured measurement process was published in the nineteen
eighties by Basili et al. [BasiliWeiss84] [BasiliSelby'86]. The Goal/Question/Metric (GQM)

N

method assists one in detecting matching measurement approaches and measurement goals.

(cf. [SolBer99])

Framework for a Service-oriented Measurement Infrastructure

Figure 23: Goal-Question-Metric paradigm

Project success

i / l \
Question Why do software product Which capabilities and/or Which risks are implied by
developments fail? characteristics do the project software development?
l managers bring along? l
Metric Influencing factor (percentage), Related to management’s Risk factor (percentage)
Project extent activities and projects

Figure 24: An example of the appliance of the GQM method

GQM (as exemplified by [Dumke03]) initially requires the definition of distinct goals and in
the following the compilation of suitable questions, which are thought to highlight the
indicated issue from different sides. At the same time in the majority of cases hypotheses
are nominated, that have to be approved or confuted in the course of the numerical
evaluation. In case those hypotheses can be debilitated as wrong assumptions, they are to
be classified among experts as myths. One of these wrong assumptions is for instance the
one every programming expert being an excellent team leader, as well [Dumke03].
Ultimately, for the quantifiable answer to the questions only the required measures have to
be determined.

In order to support the measurement beyond the identification of measures and to integrate
the different sub processes the GQM approach was enhanced with a more holistic process
model [GresseHois|95].

This model separates the measurement process into four different phases (sub processes):
1. Planning
a. establish GQM team

b. create project plan

Framework for a Service-oriented Measurement Infrastructure

c. training of staff
2. Definition
a. Definition of measurement goals
b. Define Question and hypotheses
c. Define metrics
d. Review metrics on completeness and consistency
e. Produce measurement plans
3. Data collection
a. Create measurement database
b. Define analysis methods
c. Collect data
4. |Interpretation
a. Provide feedback
b. Mapping of results to definition phase
c. Control achievement of goals

d. Report measurement results

The interrelations and connections between the particular phases are depicted in Figure 25.

Goal - Iaiaiuts Ittty Goal attainment
c Question Db tebd Rl > Answer
i)
by Metric «--------t-» Measurement
I Definition Interpretation
o
Y A 4
» Collected data
Planning Data collection

Figure 25: Goal-Question-Metric method

An often mentioned problem of goal oriented approaches is that practitioners feel not being
involved in the goal definition and interpretation of measures which they have to implement.

Framework for a Service-oriented Measurement Infrastructure

But the straightforward and intuitive characteristic and a quite high propagation makes it a
promising approach in the past.

A related approach can be found in the factor-criteria-metric model [Balzert08] where a
quality goal is expressed by different factors. Afterward criteria’s for the compliance of
factors are defined and quantified by selected metrics.

Factor Criteria Metric
Metric
Qua"ty
Metric
Metric

Figure 26: Factor-Criteria-Metric model

2.3.3.2. The E4 Software Measurement Process
But in the course of time process improvement gains more and more importance and the
measurement process was surveyed in this regard, too.

In doing so the design of cyclic models has been identified as a promising approach for
future measurement processes. Especially the idea of improvement objectives behind
measured artifacts promotes the development of cyclic measurement processes.

One example for a cyclic measurement process is the E4 process model proposed by Ebert
and Dumke containing four sub processes: “Establish”, “Extract”, “Evaluate”, and “Execute”.

e

Establish Extract

Execute Evaluate

Figure 27: Continuous improvement circle [Ebert"05]

Framework for a Service-oriented Measurement Infrastructure

Trying to overcome described disadvantages of single ad-hoc measurement approaches two
things can be identified as success factors for a successful measurement process [Ebert’05]:

- integration of the measurement process into engineering and management
processes

- fertilization of measurements by the corporate culture

Beside this integration perspective the realization of cyclic measurement approaches leads
to a so called measurement lice-cycle. This aims to overcome single ad-hoc measurement

Start
Status assessment
Establish

Optimization

activities.

Goal orientation

Extract, Evaluate, Execute
Practical measurement

Figure 28: measurement life-cycle [Ebert*05]
The measurement life-cycle contains four phases:

1. Status assessment: define improvement goals for enterprise and identify what
matters.

2. Goal orientation: implementation of goal-oriented measurement.
3. Practical measurement: execution of software measurement.

4. Optimization: close the loop and provide feedback, decision for further measurement
cycles.

2.3.3.3. The ISO/IEC15939 Software Measurement Process

Aiming the goals, the integration of measurement in project management and the
realization of a cyclic measurement model, the ISO/IEC 15939 standard for software
measurement has been created in 2002 [ISO/IEC02]. The standard contains four process
categories: “Establish and sustain measurement commitment”, “Plan the measurement
process”, “Perform the measurement process”, and “Evaluate measurement”. As a trigger
for measurement activities it includes a process area “Technical and management
processes”.

The activities are sequenced in an iterative cycle allowing for continuous feedback and
improvement of the measurement process. Two activities are considered to be the Core

Framework for a Service-oriented Measurement Infrastructure

Measurement Process: Plan the Measurement Process, and Perform the Measurement

Process. These activities mainly address the concerns of the measurement user. The other

two activities provide a foundation for the Core Measurement Process, and provide

feedback: Establish and Sustain Measurement Commitment and Evaluate Measurement.

Measurements should be evaluated in terms of the added value they provide for the

organization, and only deployed where the benefit can be identified. These later two

activities address the concerns of the measurement process owner.

The layout of the processes and the included regularities are fully consistent with the CMMI

process area “Measurement and Analysis”.

The ISO/IEC 15939 Software Measurement Process helps to identify, define, select, apply,
and improve software measurement in any software development project. This standard

describes a compliant measurement process concerning its purposes and outcomes

combined with appropriate activities and tasks.

Requirements for measurement Technical

Measurement user feedback

\aml ma

N . rocesses
Information needs P

Information products

Planning
information

Establish &
sustain
measurement
commitment

Plan the
measurement
process

Conunitment

Core measurement process

Perform the
measurement
process

Evaluate
measurement

Information
products &
performance

Measurement experience base

measures

Information products &
evaluation results

Improvement actions

Legend

Data flow

e —

Figure 29: The ISO/IEC 15939 software measurement process model [ISO/IEC02]

The basic tasks and artifacts/objects are:

establishingTasks = {acceptanceOfMeasurement, assignTheResources}

establishingArtefacts =

{managementCommitment, measurementRequirements,

planForMeasurementResources,

descriptionOfTheOrganisationalUnit}

Framework for a Service-oriented Measurement Infrastructure

{organisationCharacterization, needsldentification, measuresSelection,
evaluationProcedures, evaluationCriteria, measurementResourcing,
measurementSupporting}

planningTasks =

planningArtifacts = {informationNeeds, descriptionOfTheOrganisationalUnit,
candidateMeasures, selectedMeasures, measurementTasks,
informationProducts, toolsDescriptions,

trainingCourseMaterials}

performingTasks = {processintegration, dataCollection, dataAnalysis,

userCommunication}

performingArtifacts = {measuredArtifacts, collectedData, storedData,

informationProducts, measurementExperienceBase}
evaluationTasks = {measurementEvaluation, measurementimprovement}

evaluationArtifacts = {evaluationCriteria, informationProducts,

lessonLearned, measurementExperienceBase}

explorationTasks = {measurementReporting, measurementExploration,

measurementConclusion}
explorationArtifact = measurementExperienceBase
controllingTasks = {measurementFeedback, informationGeneration}
controllingArtifacts = {informationProducts, informationNeeds}

Mapping the formal description of the software measurement process to the ISO/IEC 15939
measurement standard one can assign the elements as shown in Figure 30.

Requirements for Measurement Measurement User Feedback 4’

Technical and
Management | g
Information Needs Process
A el -

Core Measurement Process

Infarm ation Products

Comrnitrnent

Establish &
Sustain
Measurement
Zommitment

P

Y

L

Plan the
Measurement

\F'ricess

4

A

Flanning
Information

'I‘I‘
Perform the

QV

Measurement
Process

Evaluate
Measurement

Informn ation
Products &
Perfarmance

Measures

U

¥ O

heasurem ent Experience Base

Evaluation Results

Improvement Actions

Figure 30: Assignment of measurement process elements to ISO/IEC 15939

Framework for a Service-oriented Measurement Infrastructure

As described regarding the GQM and E4 Model mapping information needs with measurable
attributes is of high interest in measurement processes. In ISO/IEC 15939 the relationship is
defined in the Measurement Information Model. The Measurement Information Model
contains Interpretation, analysis Model, Measurement Function, and Measurement Method
aiming to connect an information need with one or more measurable attributes. This
connection is called a measurable concept.

i
The outcome of the i

)
measurement process that !
satisties the mformation need i

Information
product

Explanation relating the quantitative information
in the idicator to the information needs in the
language of the measurement users

Variable assigned a value by applying the

Indicator analysis model to base and/or derived measures

Algorithim for combining measures and decision
criteria

Variable assigned a value by applying
the measurement finction to two or
more values of base measures

Derived Derived
Measure Measure

Algorithin for combining two or
more bage measures

Measureable
Concept

Variable assigned a value by applying
the method to one attribute

Operations mapping
an attribute to a scale

Property relevant to
Information needs

Figure 31: Key relationships in the measurement information model

2.3.4. Software Measurement Programs

Mapping the theoretical foundations and concepts of the software measurement process to
the practical application in software engineering industry has been aimed by using different

approaches which can be recognized by the number of references reviewed.

Among others the terms “metrics program” or “measurement framework” are used to
describe the application or implementation of software measurement processes in software

engineering processes. [Kitchenham96] [PerkinsPeterson®03] [Goodman04], [Mendon¢a97].

Out of this meaning and the definitions in Abran et al. [AbrLaf'99], and Berry and Jeffery

[Berryleffery00], software measurement programs can be defined as follows:

“A software measurement program is the set of on-going organizational processes required

to define, design, construct, implement, operate, and maintain an information system for

Framework for a Service-oriented Measurement Infrastructure

collecting, analyzing and communicating measures of software processes, products, and

services.”

A major driving force for establishing and sustaining a software measurement program are
often legal terms or other contracts which dictate a specific process quality level and thereby
the use and application of software measurement. Apart from that companies even, if they
are convinced of the usefulness of a software measurement program, have to do a cost-
benefit analysis to know whether or not the investment of personal and financial resources
is worth. Experience reports regarding the cost of measurement programs points out that
the overall cost for establishing such program should not exceed 10% of the overall project
costs [GrableJernigan®99]. The six major outcomes of successful measurement programs are
[Solingen04]:

e Increase productivity

e Fewer defects

e Reduced development time

e Increase reusability

e Future expertise of personal resources
e Increase user satisfaction

The quantification of costs and benefits is not an easy task because some of the benefits are
difficult to express in numbers and not implementing a measurement program can end up in
failed projects and thereby risk the entire business.

To overcome this situation recent approaches try to measure these benefits and calculate
the return on investment (ROI) [EweWag05] [Rico04] of software measurement programs
and presents an average ROl of 8 [Solingen04]. The return on investment is thereby
calculated by dividing a financial representation n of the resulting benefits by a financial
representation of the costs.

Table 7: Return on Investment of software measurement programs

Context Return on Investment
General Dynamic 2.2

US Navy 4.1

Hughes Aircraft 5

IBM Global Services India 5.5

Motorola 6.77

44

Framework for a Service-oriented Measurement Infrastructure

Philips 7.5

Raytheon 7.72
Boeing 7.75
Hewlett-Packard 10.4
Northrop Grumman 12.5
Odgen ALC 19

Average 8.04

Of course, this numbers should be used cautiously because usually only success stories are
published. Taking into account other reports about tackled software measurement programs
the actual situation is quite different:

According to Kaner and Bond [KanerBond04] just a few companies establishes a program
and even less can finally succeed. Unfortunately those who come to pain are often kept
secret. [HallFenton97] Already from 1988 Howard Rubin [Rubin87] [Rubin90] produced
statistics about measurement program successes or failures. Also in the eighties, an industry
survey [Hetzel90] has revealed that less than 10% of respondents had a positive image of
measuring software because of bad experiences. Since then, these statistics show a
permanent disability rate of 78% or more within two years of the program proper
functioning elapsed. Another corroborating Desharnais study [Desharnais94] among the
twenty Canadian companies have analyzed successes and failures in the implementation of
SMP and exhibitions same failure rate 60%. This results could be clarified by a study from
Dekkers [DekkersMcQuaid02] subsumed the investigations in this regard and comes up with
a failure rate of almost 80% in the first two years after establishment on a population of up
to 640 measurement programs in the industry. This study was reconsidered in 2004 and the
quintessence as well as the statement about the success rate has been confirmed
[McQuaidDekkers04].

Framework for a Service-oriented Measurement Infrastructure

100% Al — —

80% —

60% —

40% —

20%

0%

42 50 60 82 90 95 102 110 130 140 140

34 40
30

2 L 2 200 [250 [} 320 [} | 400 | 450 [} {500 [} {525 [{575} | 625 || 650 [660
80 115 | 130

20 22 34 40

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

O Unsuccessful O Succssful

Especially the fact that over time the success rate declines draws a worrying picture and the

Figure 32: Results of established corporate measurement programs

reasons as well as possible solutions should be investigated.

A very detailed analysis of pitfalls and best practices for implementation and sustainment of

software measurement programs can be found in [Braungarten07].

Beside reasons related to software measurement in general:

misunderstanding of measurement theory [DekkersMcQuaid02]

lack

of senior management’s commitment [Dennis02]

lack of ongoing education of measurement theory among staff [KanerBond04]

Some pitfalls are related to the used measurement tools:

non

fear of staff against effort for tool usage and data analysis [Minkiewicz00]

existence or expensiveness of automated tool support [BakerHantos03]

[deSilveira2002]

unclear cost-benefit ratio of used tools [EmamBriand97][Reifer02]

inflexible usage of existing measurement tools [Johnson01]

In the course of time experiences with software measurement programs lead to distinct best

practices regarding measurement context, measurement process, measurement product,

and measurement input. Important best practices are related to the measurement tools:

easy to use measurement tools for automatic data collection and analysis
[UmaEmu05] [Jones03] [Holmes02]

Framework for a Service-oriented Measurement Infrastructure

e real-time data collection and integrity and consistency

[EbertDumke07][Russac02]

securing of data

e storage of software measurement data into repositories or comprehensive databases
[DekkersMcQuaid02] [Harrison04]

e general access to software measurement data for the collectors or stake holders
[Pfleeger93]

e realistic assessment of cost-benefit ratios, implementation costs

[DawsonNolan03] [Kitchenham96]

ROIl, or

e enable incremental implementation of software measurement programs (starting
with a small set if high-priority measures) [EbertDumke07][Goodman04] [lveMat00]

e enable monitoring of trend analysis over time [Wiegers97]

e provide quick feedback on measurement results [Wiegers99][DekkersMcQuaid2005]
[Grablelernigan®99]

Since it has been identified as a key factor for the success of a software measurement
program the maturity of measurement technology is addressed in some of the above
mentioned reasons [Kunz'06e]. To analyze the importance of measurement technology and
to draw connection between different levels of measurement process maturity and
measurement technology maturity, [Daskalantonakis94] proposed a maturity model for
software measurement maturity assessment. Based on similar assumptions in other
maturity model like CMMI (see chapter 2.3.2.2. CMMI Framework for Process Integration
and Product Improvement) they propose six maturity levels. Later adoptions [BP95], [BP96a]
and analysis [Braungarten07] of the maturity model ended up in the maturity grid presented
in following table.

Table 8: Maturity grid for software measurement maturity assessment [Braungarten07]

Topic Level 1 Level 2 Level 3 Level 4 Level 6
(initial) (repeatable) (defined) (managed) (optimized)
1. Formalization of | - Process - Repeat mastered - Process - Process measured - Process optimized
the development unpredictable tasks characterized and and controlled
process understood - Focus on process
- Project depends on | - Process depends improvement
experienced on experienced
professionals professionals
- no/poor process
focus
2. Formalization of - Little or no - Formal procedures | - Standards applied - improvement - Organization has
the measurement formalization established procedures been learned and
process established improved
- internal standards
applied

Framework for a Service-oriented Measurement Infrastructure

TU—

3. Scope of
measurement

- Done occasionally
on projects with
experienced people
or not at all

- Done on projects
with experienced
people

- Data collection
and recording

- Existence of

- Metric packages
applied

- Existence of

- Organization have
learned and adapted
metric packages

- Project estimation | specific automated integrated - Problem
techniques exists tools automated tools prevention
- Project focus - Product focus - Process focus - Process
optimization
4. Implementation - No data or - Per project - Product database - Process database - Knowledge base
support database database
- standardized - corporate database | - Improvement and
database across all containing process learning database
projects information
5. Measurement - Little or no - Project - Product Process - Continuous
evaluation measurement measurement and measurement and measurement and measurement
conducted management management management feedback and
improvement
6. Measurement -Management not - Little support by - Product - Management - Can define
support for supported by measurement measurement and process measured technology values
management control | measurement control and controlled and needs
- Basic control
- can check
achievements
7. Project - No statistical - Disciplined project | - Dedicated process | - Need discipline to - Quantitative
improvement process control and configuration resources track and eliminate project feedback
management problems
- No senior - Process data not - Effective reuse
management - Risk management retained nor - Improving
involvement analyzed technology
- Subcontractors
evaluated - Subcontractors
controlled
8. Product - Poor configuration | - Effective quality - Qualitative - Have some - Can analyze and
improvement management and assurance foundation for mechanisms for prevent problem
quality assurance applying technology | determine problem causes
- Reviews causes
conducted - Not many
quantitative
- Periodic customer | measures of
interface for problem causes
feedback
9. Process - Hard to plan and - Hard to improve - Quantitative - Methods and tools | - Significant
improvement commit the measurement foundation for tailored to needs productivity
process improvement improvement
- No focus on - Quality
improvement - No foundation for - Staff training improvement
improvement established
- Training assessed
and improved
10. Predictability - Unpredictable - Predictable results | - Able to project - Process quality - High predictability
results for similar for similar work and track product and productivity due to process
work quality parameters projection and optimization
- Tools used for tracking

- Unstable plans and
schedules

project planning

- Can analyze and
prevent problem
causes

Framework for a Service-oriented Measurement Infrastructure

Summary: Software Measurement Systems and Processes

The classification of the measurement process MP itself is based on the measured
artifact. The measurement of aspects (aspects product or processes or resources) leads
to the aspect-oriented measurement. The measurement of all aspects of a product or all
aspects of the process or all aspects of the resources would be called as capability-
oriented measurement. If we involve all software artifacts (product and process and
resources) we will call this as a whole measurement. These characteristics build the
“approach” attribute of measurement process.

The inclusion of measurement activities (e.g. measurement and analysis, effort
estimation) itself confirm the exceptional position and constitute that software
measurement becomes part of a software engineering process model.

In this way one can identify a software measurement process which can potentially use
every above mentioned measure to satisfy an information need for the management of a
software engineering process.

Otherwise, the “solution” characteristic of the measurement process can be explained
depending on their kind of performing such as in-house or outsourced or based on
methodology of global production.

Unfortunately, there is no general international consensus about a defined set of
measurement activities for the development of software. Because of that the
implementation of above described theoretical foundations, concepts, processes, and
standards as a Corporate Measurement Program seems to be a promising approach and
increasingly important. Though, it does require taking into account manifold aspects and
can be considered as non-trivial. [FentonPfleeger97], [Goodmann93]

Based on the identified best practices for SMP implementation two areas for the support
and assistance for successful SMP can be identified: infrastructures for measurement
consisting out of different tools and the automation of software measurement (sub)

processes.

For the identification of a better solution regarding both aspects the current situation in
the tool area should be considered taking into account both goals: acceptance of the

stakeholders and automated procedures.

2.4. Software Measurement Paradigms

As outlined in the previous sections of this chapter the application of software measurement
can be done using different ways and techniques of quantifying software entities. To
characterize the existing ones and to draw the connections this chapter is intended to
provide a detailed consideration of measurement paradigms.

Framework for a Service-oriented Measurement Infrastructure

2.4.1. Basics of Scalability
In this section a first graduation of the software measurement characteristics is introduced.
The idea of classification of measurement aspects and processes is not new. Examples are

1. Zelkowitz defines a ranking of validation of research papers as a 14-scale taxonomy in
decreasing manner as: project monitoring, case study, field study, literature search,
legacy data, lessons learned, static analysis, replicated experiment, synthetic,

dynamic analysis, simulation, theoretical, assertion, no experimentation [Zelkowitz07].

2. A consideration of the experiment levels by Kitchenham leads to (also decreasing):
industrial case studies, quasi experiment, and formal experiment [Kitchenham07].

3. Sneed identifies a ranking of (function point based) productivity related to the kinds
of developed systems as (decreasing): industry, trading, governance, assurance and
banking [Sneed05].

For the considerations, experiences and some of the results from industrial projects at
Alcatel, Siemens, Bosch, and German Telecom ([BraKun®05], [Dumke07], [EbertDumke07],
[Richter05], [SchmKunz*07]) is used in order to achieve a holistic approach. The different
aspects of the measurement process component are defined as a first assumption in an
ordinal manner/scale (considering also [BourqueOligny'07], [Braungarten07], [FarBra*05],
[LairdBrennan06], [Pandian04], [SchmKunz'07], and [Sneed05]). First ordinal classifications
of the measurement process components in an increasing manner are the following

G: intention € {understanding, evaluation, improving, managing}
viewpoint < {internal_goals, external_goals, goals_in_use}
A: domain € {(product_aspects v process_aspects v resources_aspects),
(product v process v resources), (product A process A resources)}
origin € { other_pendant, pendant_in_same_domain, original }
M: method € {experiment/case study, assessment, improvement, controlling}
sort € {analogical_conclusion, estimation, simulation, measurement}
T: level € {manual, semi-automatic, automatic}
support {one_measurement_phase,some_measurement_phases, whole_measurement}
p: kind € {manager, researcher, practitioner}
area € {measurement_expert_staff, measurement_application_staff}

Q: value e {identifier/nomination, ordinal_scale}

Framework for a Service-oriented Measurement Infrastructure

structure € {single_value, (normalization v transformation), aggregation}
E: form e {(intuition v law v trend v principle), analogy, (criteria v rules_of thumb),
(axiom v lemma v formula)}
contents & {(limits v threshold), (gradient \/ calculus), proof}
v: measure & {interval _scale, ratio_scale}
aggregation € {values, (data_basis v repository), (dashboard v cockpit)}
u: type € { sociological _unit, economical_unit, physical_unit, hardware_unit,
software_unit}
standard € {non_standard, quasi_standard, standardized}
E’: form: see above
extension € {correction, (refinement v approximation v adaptation), extension}
A’ domain: see above
changing € { understood, improved, managed, controlled }

Including the different levels of performing the measurement in the IT area leads to the
following classification

MP: approach € {aspect-oriented_measurement, capability-oriented_measurement,
whole_measurement}

solution € { outsourced, global_production, inhouse}

Note that the exponents address the main characteristics and the indexes show the sub
characteristics. This assumption explains some first relationships.

2.4.2. Main Characteristics Preferences of Measurement Process
Components

In the following some examples of this kind of measurement aspects scaling are presented.
Related to the measurement artifacts the following elements are established (note that the

sign “<” characterizes the so-called evidence level (see [KitchenhamO07]):

aA/.?ec.tA /)'c.od.uct V process \ resources /)'c.od.uct A process A resoutces
A0rigin 2 porigin 2 porigin

Considering the measurement and including the application leads to

case_study assessment improvemen t controlling

M sort < M Sort < M sort < M sort

Framework for a Service-oriented Measurement Infrastructure

Addressing the tool aspects gives

manual semi_automatic automatic

T support 27 support 2 Tsupport

Achieving the personnel background it is obtained:

ma.n.aget researcher ,o'ca.ctitionet

p area < p area < p area
And finally addressing the used experiences leads to

,o‘zinci,ale analogé('zules_of_t humb formula
E contents < Econtents < E contents < Econtents

2.4.3. Sub Characteristics Preferences of Measurement Process Components
Considering the sub characteristics chosen relationships are given:

domain domain domain

Aot/zet _'aendan.t 2A domain_pendant 2 A o'u;gin.al

Describing the measurement and application aspects obtains

method

v @ alogical_conelusion By method method method

estimation < |\/] simulation < |\/| measutement
Relating the tool aspects leads to

level level level
one_meas. _phase 2 T ome_meas. _phases 2 Twhole_measurement

Achieving the personnel background as

kind kind
p measutement_expert 2p applicatio n_staff

Furthermore, considering the experiences it is defined:

form Jor mn form
E threshold 2 F gradient 2E proof .

2.4.4. Combined Characteristics Preferences of Measurement Process
Components
Finally, using both kinds of characteristics leads to the following example relationships.

aspects aspects ,o'coduct V p'tocess \ esou’ces

A domain, _/Jendaat 2 Aotgin.al 2A other, _pelu{ ant

[52

Framework for a Service-oriented Measurement Infrastructure

product \/ process \/ xesources product A process A xesoutces
2A domain_pen dant 2 A other_pend ant
or

case_study improvement controlling expetiment

< Manalogical _conclusio n <M estimation <2 M estimation < |\/] simulation

as’sessment caAe_Atu.@ as’sessment controllin g

<M simulation < |\/] measurement < |\/| measuzement < |\/| measuxement

and

law analo, analogy analogy
faw Law zadient
E theeshold 2 F caleulus 3 F P 2 f imits 2 F & 2 E Proof

wules_of t humb lemma formula

ckitetia axiom

2 E threshold < F caleulus < E threshold < E gradient 2E proof

2.4.5. Simplified Examples of Measurement Process Description

At first the formal descriptions is used in order to describe some typical software
measurement situations and implementations. Therefore some different levels of
measurement evidence such as

e Using only the next lower levels of previous paradigm measurement experiences
leads to the measurement approximation

e Using one or more of the second and/or third lower substitution levels can be
considered as measurement qualification

e Using only the lowest level of previous paradigm measurement experiences leads to
the measurement initialization

are established.

In the following some examples using the scaled measurement process description are
described. Usually, in the software development and application one can describe some of
the following tasks and activities based on our formal background [DumBra*07].

First general metrics application:
A first example shows a simple application of metrics based on a basic measurement process.

aA,oect_o'ci ented
MP inhouse

evaluation product_aspects

(G inteznal g oals % A o‘n;gin.al

expetiment semi_autom atic practition ex
X M meadutemen t)Tbom.e_m.eaa. _,aﬁ.aAeA PmeaAutement_exl:ezt

’

Framework for a Service-oriented Measurement Infrastructure

s

oxdinal_scale formulas
> (Q notmalization x [threshold)

Product quality assurance:

Then next example describes a more practical situation considering the (full) product
measurement in an IT area.

ca/mbility —oxiented

MP inhouse
managing In'coduct
P assessment semi_autom atic practitioner
(G exteznal. g oals y Aotgmal « |\ measutemen ¢)T X ¢_ph p maas t_expert
zatio_scak software

évcockpit x (J standaxdized

Process improvement:

This example characterizes some of the process improvements using process improvement
standards.

ca/mbillt# —orxiented

M P inhouse
”n'/";:y;:g . Io ::iuél i,n’,,‘ v nt semi_aut £ /;'cactiticaet
(G goard_in_u 3¢ A orgtnat M measurement)T 5 t_ph p e t_appl._staff
ztdil;ala_éz :le cxitetia Semi_automati practitioner
> (Q G ceg X E threshold) T 5 t_ph P s t_expert

ckiteria

SE approximat ion < A im./)':oved

/)’ZOC&AA

Project controlling:

Another example of process measurement and evaluation is given in the following.

ca/mbdité(— otiented
MP global _pro duction

managing process .
controll automatic practictio net

(G exte'cnal_g oals X A o'a;gin.al X [V measutement)Tw/tole_meanzement' p meas._appl ._staff

'Catl'o_-5cal e Aoftwate_mit automatic practictioners
-S> (V4 coc'(/"’t x U standardizd)7. whole_meas urement p meas._appl_staff

criteia prrocess

SE adaptation x A controlled

Framework for a Service-oriented Measurement Infrastructure

Resources adaptation:

The last example is addressed to the resource measurement as an improvement of the IT
infrastructure.

ca,oabilig —orxiented

M P outsourced
imp'eovin,
mp b i 4 . 'cer;'cc:A improvemen ¢t semi_automatic practition ex
(Ggoa _Ln_u 3e < A pendan x || measuremen t)T t h p t_expert
identifica tion)) -
. intuition semi_automatic practition ex
> (Q sinle_value E thteshold) meas t_phases P t_expert

“'ml%l‘e’ zesou’ces

N Eacla;ptation. % Allm./)‘zoved

These examples demonstrate some of the possible constellations of measurement processes.
One example involves an aspect-oriented approach and the other ones are capability-
oriented. In order to perform a general comparison and classification one must consider all
the MP characteristics (at first the G level then the A level etc.). That leads to

traditional traditional traditional
MP first_metrics_appl. 2 MP process_improvement 2 MP resource_adaptation 2

traditional traditional
MP product_quality _assurance. 2 MP project_controlling

This is only one of the results. On the other hand one can identify the point of view in order
to achieve any improvement in the measurement process level.

2.4.6. Measurement Process Improvements
In the sections above an ordinal scaled multi-dimensiona

Ill

space” of software measurement
aspects have been characterized that consists of the lowest measurement level as

aspect_oxi ented
M P outsouced

understanding preoduct
(Gin.temal_goalb < A pendant_in_same_domain

ex,aetimen.t
manual managet

analogical conclusion
x M geeal)T one_meas._ ,o/uuea P meu._expe‘tt_étaﬁ"

iden.tification. o
) intuition
N (Q sinle_value X E threshold)

Framework for a Service-oriented Measurement Infrastructure

s

some immediate levels or measurement situations such as

aspect_oriented
M P inhouse

evaluation ,otodu.ct_a.ﬂ,oectg
(G external. g oals % A o'u;gin.al

4, ry A

assessment semi_
X |V estimation)TAom.e_m.eaA._P/laAeAl p mu._appl_btaﬁ

nomination an.alog#
'Q notmalization x F caleulus)

intewval_scale hardwarze_amit
Vdata_buu < U guasi_atadatd

(can be improved by “aspect-oriented” = “capability-oriented”, “evaluation” = “improving”,

n

“external_goals” = “goals_in_use”, “product_aspect” - “product” etc.)
and the highest software measurement level

whole_meas utement

MP inhouse

managin. zoduct N pocess N zesouces
i r re controlli automatic practitionet

(G goald_in._ase X A ou’ginal X V] measurement)Tw/l.ole_metu urement meas._appl._staff

xatio_scale software_wit practitionet

-S> (V4 coc'(/":t x U standardizd) T whole_measurement P meas._appl_staff

emulas poduct N process A xesoutces
—> E extension x A controlled

Framework for a Service-oriented Measurement Infrastructure

Summary: Measurement Paradigms and Improvements

Finally, the following graduation of measurement improvements is presented as a first
kind of improvement classification:

Weak measurement improvement: This kind of improvement consists of an
improvement of a measurement sub characteristic to the next level (as one
step).

Moderate measurement improvement: The improvement of the measurement
process based on more than one step of a/some sub characteristic(s) building
this kind of measurement process improvement.

Essential measurement improvement: This kind of improvement consists of an
improvement of a measurement main characteristic to the next level (as one
step).

Remarkable measurement improvement: The improvement of the
measurement process based on more than one step of a/some main
characteristic(s) building this kind of measurement process improvement.

Therefore, based on the formal described measurement process methods of
measurement improvement are identified easily.

Framework for a Service-oriented Measurement Infrastructure

3. Performing the Software Measurement Process
“The efficiency of the software measurement process depends on the level of
automation by tools.”[Ebert’05]

Tool support is an important factor in every area of software engineering and ensures
activities starting with the requirement definition at the beginning until software test and

maintenance at the end of the software development life-cycle.

Therefore the purpose is to determine the performance or quality of the software product or
the software development process by producing and collecting measurement data by so-
called measurement tools [Dumke05]. The need for a measurement tool application and
thereby the support of measurement activities strongly enhances the acceptance of
software measurement methods. It is a well known and commonly accepted coherency that
one can’t expect that a measurement method will be really accepted by users if there is no
adequate tool support [BunDek08], [Lother2007], [Dumke96], [KnélIBusse91] [Kunz'08e].

For the different intentions the notion of computer-assisted software measurement and
evaluation (CAME) can be used to identify the different kinds of measurement tools
[DumGri96]. In this regard the usage of a measurement tool is based on define
measurement frameworks [Dumke96], [OmanPfleeger96], [Zuse98] and they can be
classified according to the degree if integration on software development environments for
instance as integrated forms, external coupling forms or stand-alone, monolithic

measurement tools [EbertDumke07].

Taking into account the different software measurement phases the scope of measurement
tools are identified according to Figure 33. The dotted lines represent typical stage coverage

by single tools (adapted from [Dumke05]).

Visualization/
Exploration

Analysis

I:”Mathematical- “\, Classification- \‘\,
_ Statistics / / Tool

Figure 33: Scope of different CAME tools

According to the different measurement activities CAME tools needs to realize the following

features:
e measuring artifacts (source code, structure graphs etc.)

e collecting data

Framework for a Service-oriented Measurement Infrastructure

e processing data

e planning and analyzing resources (budget, software resources, human

resources)
e generating reports and providing actual analyses

The high importance of measurement tools for software engineering can be summarized
with by citing Louis Pasteur with his phrase: “A science is as mature as its measurement
tools.”

Nowadays CAME tools can be successful used in all areas of software engineering for
instance software product measurement, process quality evaluation, and measurement of

resource quality.

The determination into measurement activities and measurement data storage presented in
the measurement process frameworks (see chapter 2.3.2. Measurement in Software
Development Process) suggest a differential consideration into the thesis in hand, too. At first
the situation on measurement tools should be examined and later measurement storage
facilities are taken into account. The framework for a novel measurement infrastructure will

involve both aspects, of course.

3.1. Software Measurement Tool Situation

Since various different measurement tools exist, the following chapter is intended to present
selected representatives for different tool types. Further reading can be found in [Smlab09],
[Dumke96] and [EbertDumke07].

3.1.1. Product Quality Measurement Tools

For existing measurement tools in a commercial environment the portfolio of the
measurement tool producer Telelogic is identified as a good reference example. Starting in
1993 Telologic became a world leader in software quality assurance tools and was taken
over by IBM in 2003. Telelogic produces various tools to support measurement in a broad
scope of use cases starting in requirements management (with Telelogic DOORS); across
modeling (Telelogic Rhapsody) to software test (Telelogic Tau). For measuring source code
and analyzing static and dynamic product quality attributes Telelogics tool Logiscope is a
major player in the tool market. By supporting different programming languages,
programming paradigms and various types of measures the universal scope of Telelogic
Logiscope is comprehensible.

Logiscope is able to calculate measures in different design levels (application, class, function)

and therefore analyze different levels of granularity inside a software product.

For the specific quality evaluation of entirely different products the user is able to adapt
existing or define a new quality model for a specific use case. The definition of a quality

model is done by selecting measures and defining thresholds for each measure. This practice

is a well known procedure widely used in the software measurement area [Abrkunz*03].

The measurement results are shown together with the defined quality model thresholds in

so-called kiviat diagrams. Some publications appoint this diagram style as radar charts

[Lother07].

The derivation of the measurement values is contrariwise to the factor-criteria-metric
scheme (see chapter 2.3.3.1. The Goal-Question-Metric Method) All measurement results are
used to compute a quality statement for each sub-criteria and the results for the sub-

criteria’s are used to compute the overall quality statement. This procedure is called the

Framework for a Service-oriented Measurement Infrastructure

generation of quality statements and shown in Figure 34.

Metric Name Max Min Value

io of 1 inheril i ion 10.00 0.00] 0.00
Percentage of non-member functions 10.00 0.00 2400
[average couping between obicts toml[ool e
Average of the VG of the application’s functions 5.00 1.00 142
Fatio of recursiv the call gr: 5.00 0.00 0.12
Iethod hiding factor (MOODY 0.40 0.10 0.10
Attribute hiding factor (MOOD) 1.00 0.70] 083
Iethod inheritance factor (MOOD 0.0 0.60] 0.25
[Attribute inheritance factor (MODD) 050 030 024
Polym: LIRE M 1.00] 0.30 0.4
Coupling factor (MOOD 0.18 0.03 0.08
r of Is in the Inh - 4.00 1.00] 3.00
Héerarchical Complexity of the Inheritance Graph 200 1.00 193
r of I3 i th 9.00 200 6.00
[Pumber of Repeated inheritance +00 o0 0.00
[Munber of Edges i the inheritance Graph +00) ool 1500
[Mumber of application functions +00 —oo][__s00.00
[Nusnber of application member fnctions +00 -oof{ 38000
Coupling between obiects +00)| -00 202 00
Number of application classes +00)| =00| 19.00
rSI.IIItlIJTnL:ﬂ‘lJ\I\dll.' ruinbers (VG)of the spplicalion 08 =50 708,00
Call Graph recursions +00| -00| 1.00
[Numier of Edges in the Cail Graph +00 -oo][_&1200

Cometa tiame [Categury [mas 1wt [weiga |
|EXCELLENT 8| | 3

arial zasn i1y 000 g4 2
[ram 3 2 1

[Foos 0| 0 0

EXCELLENT E 3 3

. . [cooo 4 3 F]
FAR 2 1 1

hmﬂ o) 0 0

[ExceLLen | 2| o[Bl

n—— [aoon | 4 3[B|
[Fam L3l 1]

[room | | ol [[

[ExcELLENT =) 4 3l

[sooe 3 2 2

va [Faun 1) 1J 1
[Fo0R o o of|

T actes Hame [Catagary I max [e
EXCELLENT 129 1

N _— LO00 11

FAJK 7| 4
FODR 3 ofl

Figure 34: Generation of quality statements [Lother2007]

Framework for a Service-oriented Measurement Infrastructure

=l C:\samples\. ..ind\Mstrmind. ttp - Telelogic Logiscope Viewar - [Workspacel - Average kiviat]
[Fis UL Selal Mavigals Visw

D|=(=|

[=le] o sle| [w a8

Winndewe Help

& B % &%

|l E| =

‘workspacel - Compor vl

[T consistent ~

[T end_game F

[T find_digt

[frrnat_nusbpat

[T ost_code_pla

™ help

[T hi_scores_disp

™ hi_scores_writ

[instruction

™ machine_plays

[~ make_code

[~ master/main

[play

[player_plays

[player_score

[~ print_help

[T pairt_inatructio

T pini_irestiotio

™ peint_score_pl:

[T promgt

T refrech

™ rest

[T srre_player

[set_dummy

™ setcolors

[skipine

[~ waiting_loop

T akoi

[fclose

[fopen

[T fprintf

[e

[T getc

[getchar v
| &

&

Press F1 for Help

[o] £]=z 2] 2] % =% 3R] &[4 [uwoion ManTs =] ||

RETU wpCALLING

PATH

AXIS

HIGH.

MAK

AVERASE

COME

0.20

+oo

0.00

1.00

0.24

AVGE

1.00

9.00

3.50

10.00

5.63

STMT

1.00

50.00

2.00

137.00

22.07

VG

100

1000

100

21 00

5 26

GOTO

0.00

0.00

0.00

29.00

1.26

VOCT

1.00

4.00

1.00

10.74

3.18))

LVAR

0.00

5.00

0.00

B.00

183

PARA

0.00

5.00

0.00

3.00

0.6/

DECT CALLS
RETU

0.00
0.00

7.00
1.00

0.00
0.00

14.00
11.00

333
0.59

NRBCATILING

000

500

000

16 00

193

PATH

1.00

80.00

1.00

1,200.00

7341

LLEVL

0.00

4.00

1.00

5.00

2.63

I

MO RECEPTION

Figure 35: Telelogic Logiscope kiviat diagram

Beside the analysis of the measurement results the user is able to analyze the corresponding
source code to identify the reasons and causes for possibly adverse quality evaluation. An

example of a kiviat diagram containing measurement values is shown in Figure 35.

The application of the tool is described in a more detailed way in [LotSchm®02] and
[LotherB6hmO02].

Framework for a Service-oriented Measurement Infrastructure

[T MstrmindRule.ttw - Telelogic Logiscope - write_instr.c

Ble Edt Yiew Browse [rojeck Link Tools Window Help
DEEH@ $B@BK o @& 2N [Mamndidetn |[eraur [Logiscape i o | EE | ||4
U ®ea) 8 FE) & |||nFa2Ra o | || |25 R Hypeink = | e
._57” 3 An unconditional break statement shall ter... = [3]%] B wiite_instic =
= Mstrmindilule._thp - I 5
g A raturn(0; A
=5 Violated Rules
= & Wit # MISRA 15 2 (An unconditional break ?1;9
* g MISRA_8_10 statement shall terminate every non- ;:""‘ b
+ & Misna_n 7 2 =L
o MISRA S| emnply swilch clause) ; returnioh
=8 WSmA_1n1 . : X cazs ‘i
+ T MISRA_12.4 This rule iz availabls for C language. om0
+ @ MISRA_12.5 fommat_oubput (" &
o F MISRA 131 Deseisinton inst = waiting Ic
= 8 MISRa_14.3 return(U;
= & MISRA 14 4 Pescription alss
- MISRA_I4F in unconditional bresk statement shall ter tormmt o
v 8 ::2: ::g The break statement is mandatory for case ak = 17
7§ MISRA_14¢ The break statement must be the last of th return{ok
B MisRa 152 }
+ E‘himc Role case 'q':
P cass 'G°:
El MHGL_'w;; The way in which the switch statemsnt fornat_cutput(Az
o i functions 1s aligned with that of & inst = waiting lc
9 Ln2i3 rase statement in Pascal. This will il {inst == 'n n'l
Q Lm??‘i make code easler to understand and alzs return (0,
@ Lnezr — minimizes the risks of erroes. 1
= MIsRA_16.2 S
¢ MISRAIEL ResLriction ok = 1;
x ‘ HIS_RA—IB_—S—I Thas rule gcans first level instructions } rel:lu"n(ol
3 MISRAIE 4w of A case clause. b violation is dececied TRt
= 3 MISRA_20 10 ot
L =i b if the laost inatruction in the scquence case 'D°:

«| | b|— im oot A break instruction. T you want w format cutput(”Aw
1] File View !vumml < ¥ £ >
i_l L | File | Hule | Deoscrpbion B

Q2 Lina 213 IS amplashFlulah b stoeninedbwurite_iratr % MISFA_15_2 This basnch of swibeh is rot anded by s beesk shabamant
@ Ling 225 ChsampleaFRule M strmindwite_inatrc MISFRA 15 2 Thiz beanch of switch iz not cnded by a break statoment, |
O Lne 237 Cleamples\Ruls\Metrmindvwiite_inetr.c MISRA_15_2 Thic branch of wilch is rot snded by 3 break statemant. o |
[T 1o\ Messapes b Senpt B, Buid b vislahors el I
Done Ready E

Figure 36: Telelogic static source code analysis

In the course of time Telelogic enhances its portfolio with tools for companywide
measurement information integration from the different Telelogic measurement tools. The
common example is Telelogic Dashboard with the ability to integrate the described Telelogic
tools and with various types of visualization capabilities for strategy decision making
[Telelogic08]. This intention to create a measurement tool chain is on the one hand
supported by the capabilities of integration third party software products like Microsoft
Excel and Microsoft Project but on the other hand is limited to specific measurement tools.

As mentioned before the presentation of the Telelogic tool portfolio is only a case in point
other tool producers like power software with their tools Essential metrics, Krakatau
professional and “visualize it”"[powersoftware08] or scientific toolworks with their
representative Understand and TrackBack [SciToo08] containing similar functionality and co-

operation as described in the case of Telelogic.

Framework for a Service-oriented Measurement Infrastructure

& Summary Unit - Windows Internet Explorer . | B ﬁ
=3 [|
@k_/;v € http:/Nocalhost/Portal/App_LL Status/Folder.aspeTFoldedd=155 v | 4y A||lEx_:'-: R~
W dr | @ Summary Unit Bo- B - @ v yPager oy
Statis callection Library Reports Admin
Summary Unit Status -> Summary Uil Status {Java Kit Product Summarny)
Information Need View
e
o —— lomTile | Actusl| Target| Variance) Status | Trend
By Reference Unit
Sy Falder OM Appropriats Lss Java KR L1 Tellogic Syrergy em o oo - [] —
8y Information Need Ragicn Test Telslogic Syrrgy Tem LU ® =
By Interface Requirements Progress Praject 1 System Requirements a0 BN 00 o =
_ Praject 2 Prc 2 System Soscs zom 2o wes @ &4
CARS Project DOORS Requirements Hem %o T -1y @
Analysg
A Sched Grid Test DOORS Requirements lem an e on 0 =
Riegior Test DODRS Requirsmets Hem un es op @ e
Rt Sty Pt 1 e w0 - e
Fiters User Reguirements Actual Progress
Infarmation Needs /12006
Security alarm
Linit Praper ties A I I I I I N D D B
120 l A
100 =
20
Bl
40
20
'Dnns _ . :
Jan 08 Feb 05 Mar 03 Apr 05 May 05 Jus 05 Jul 05 Aug 05 Sep 05 Oct 03 Nowv 08 Dec 05 Jan 08 Feb 08 Mar 08 Apr D8 May 08
4 I e J2an [az |26 Joo |52 [e1 [73 Jos | | [| I
5 | o [[= [a7 [ae [|57 | ee | &2 | o7 [113 [122 [128 [120 [130 | 130 |

| W sctial W planned |

Figure 37: Telelogic Dashboard

3.1.2. Process Quality Measurement Tools

Beside measurement tools arranged alongside the software development lifecycle and
creating so-called tool chains for a product quality driven approach, additional measurement
tools has been developed to measure the software development process itself.

These process measurement tools are focused on specific process quality standards as there
were described in chapter 2.3.2. Measurement in Software Development Process . A common

example for suchlike tools is the CMMi assessment tool from CMM Quest [CMMQuest08].

“4 CMMI Assessment * - CMM Quest v1.2

File Assessment Help

R A S =R A X N[O

Framework for a Service-oriented Measurement Infrastructure

1.Prepare | 2.Fillin | 3. Analyze |4.Repor‘ts

Charts:

[=l Process Attribute Charts ~

Frequency Distribution for Process Group
gquency Distribution for Maturity Lewvel

PAC chart for Process Group SUP
PAC chart for Process Groug P
PALC chart for Process Group ENG
PAC chart for Maturity Lewel ML 2
[=I Capability Level Charts
Frequency Distribution for Process Grougp
Freguency Distribution far Maturity Level
All Processes
CLEC chart for Process Group SUP
CLC chart for Process Group PM
CLC chart for Process Group ENG
CLC chart for Maturity Lewvel ML 2
(=l Maturity Level Charts
ML.ALL
= Process Charts
Process chart far Ch Configuration Management
Process chart for MA Measurement and Analysis
Process chart for PMC Project Monitoring and Cortrol
Process chart for PP Project Planning
Process chart far PPQA Process and Product Quality Assur

Legend
Bl ot schieved
P Partially achizved
L Largely achieved
- Fully achieved

showrvaues:] in% [] showRating [30 (O wertical A’ 23 Copy chart to clipboard

|ShUW anzwered processes only V| [filed (&) Horizontsl A" & Full screen

All Processes

SAM Supplier Agreement Management
RE2M Reguirements Management

PPG& Process and Product Gualty Assurance

9
1
o1
g PP Project Planning _
=1
&
PMC Project Monitoring snd Control -
hd Measurement and Analysis
Zh Configurstion Mansgement -
y T T T T T T
(o] o (o] o (o] o} (o]
o] 2] o] [a]] G]
- - - 3 w = m
Process Attributes
Annotations for this chart:

Include this chart in the report

Aliasname:

[0 Frocesses

Font Size: & PACALL

Figure 38: CAME tool for CMMI Assessment

The main goal of suchlike tools is to support assessments for process quality evaluation
during a certification appraisal. The integration into the development process lacks of the

mentioned missing

measurement tools and the distrust of development companies to allocate theirs data for

quality assessments.

Especially the process alignment with process standards can provide intrinsic value and the
standardization of the appraisals can reducing the costs while establish a process
improvement cycle. This process improvement can easily be documented through CAME

tools for process evaluation.

integration or

data exchange capabilities of product quality

Framework for a Service-oriented Measurement Infrastructure

@/ Profile (AMD34) o] oA |

KPA G1 G2 G3 G4

Demo Company Appraisal
Process Change Mgmt

Technology Change Mgmt

Defect Prevention Demo Company

Level 5

SW Quality Mgmit
e L) O satisfied
Quantitative Process Mgmit
@ Hot satisfied

I Hot Rated
{_> Hot Applicable

Managed | Optimizing

Level 4

Peer Reviews
Intergroup Coord
SW Product Engr
Integrated SW Mgmt
Training Program
Org Process Def

Level 3
Defined

Org Process Focus

SW Configuration Mgmit
SW Quality Assurance
SW Subcontract Mgmit

SW Project Tracking
SW Project Planning
Requirements Mgmit

o000

l-'|_ Close
il Capture

000000 0000000
0eCCe 0 ¢ O

0000000000000
0000000000000

Level 2
Repeatable

Figure 39: ISD Appraisal Wizard for CMMi Assessments

Demo Company Appraisal - Practice by Process Ares

24
22
20
18
16
14
12
10

Counts

== S

Figure 40: ISD Appraisal Wizard Process Area Viewer

Another major market contender for process measurement and control which should be
mentioned is Rational with their core product ProjectConsole [Rational08]. The tool provides
information import from other Rational tools and few third-party tools (e.g. Microsoft
Project). With this information ProjectConsole offers reporting capabilities to development
teams in means of project control and continuous usage of this tool throughout the

development process enables analysis in means of process measurement.

Framework for a Service-oriented Measurement Infrastructure

fie I8t Vew puet oo

g | x|d|eg| o]D] wim|m]| v|

Mubti-Chart Dizplay

1 Dbt d

= | Fisen Bhne Fallers
| P ko -l %
Ql“.ll-l:bilﬁﬂﬂl‘r

3 82 Dbt

h"lllﬂllﬂhl"l-lhllhﬂ"-i
ﬁw’lr—luium |
.3 11 et o Dot
i A5 Tipeatinl | xt ety g Gt |
jof 2 Mt ol Lo B e it 1 it |
B Ryl of | vl B sl | ool | |
o 1 it of Lo © L |
5o Quiritition of § el 1 el e |
L 8 bt o Moo Aruwoone |
i Dmibrfsion of Megur reeefy ||
h‘#m—#l“lm'
joi 1Bt o O Descrs g ¢ |
Rt of | . Akt Rt |
:{:FIIH‘HWM“H:
(3 Eeiution of Butects sy Lormgs |
1§ vt et of (e Dorferts. iy |
Litublﬂ-fh-nh—uu!:

ﬁﬁ-mn‘mwl;
Hnﬁ_l_-htrli
NS R of P s by 1 |
L Evitn o ot Ddscri o 8 |
O el Bilatone T byl |
HW Topesl of @ of Lgis Tk

S R T il W P o |
WP Tenrsd of S507 { ormpiets |
e ———
LS Trewel o sl v, Pl |
e Teerd of ROAE wa. BOWE |
P Torrsd ol rurirs, Corvend, |
e Tl o BOWE AL BOWS. |
3N oo o el Vil v ||
ﬁﬂ-un—r—h—mi

,.n_s_::tiii

§ ’ |

T Equnsed TR Apregred
1
in

H
Fraey

e

s
b |
s
-

JET]
(1]

s

ECEl im
Eree
o

FL]
(L]
1]
tL]
18
10

X

—spwe

1y

|

g
!
£
i
:

[
Tl

M‘:
o]
R
LE
[
4D
a

£ D
(AR E
4
s
O ial
Eea
i e T

o
A
L
A
LEa ko]
W

XXX

i
i

Figure 41: Rational ProjectConsole

A detailed analysis about the monolithic characteristics and the capabilities respectively
needed efforts for measurement tool integration is presented in chapter 4.3. SOA-capability
of Software Measurement Tools because this research has been done with a focus to a
specific integration paradigm called service-oriented architecture (SOA).

3.1.3. General Measurement Tool Capabilities

Existing measurement tools integrate more functionality and tool producers try to establish
tool chains within their portfolio to cover as much potential use cases as possible. But
obviously interchange from tools of different producers bears a lot of bottlenecks due to few
export possibilities and proprietary tool architecture.

To provide an overview about existing tool characteristics the input, output, and automation
capabilities are summarized in the following table.

The chosen criteria’s are input, output, and automation: Input/output has been chosen
because software measurement tools heavily rely on data from various sources (e.g.
integrated development environments, UML modeling tools, and work effort databases).
The existing of connections to theses applications substantially influences the efficiency of a
measurement tool. Secondly the results of software measurement have to be exported for
further processing (for example in spreadsheets or other measurement data storage
facilities) or reports and graphs have to be created and printed [AuerGraser'03].

The automation of software measurement and thereby the avoiding of expensive manual
practices lowers the effort and enhances the accuracy of collected data.

Framework for a Service-oriented Measurement Infrastructure

Table 9: Overview about measurement tool capabilities

Tool

Input

Output

Automation

Telelogic Logiscope

Manual Entry,

Source Code File

Project Data, CSV,
HTML

None

Graphs: PNG
Krakatau Manual Entry, CSV, HTML, PDF, Generation of quality
Professional Comma-Separated data fi reports
Values (CSV) MySQl data file
ISD Appraisal Wizard | Manual Entry, CSV PDF, PNG; HTML None

Rational
ProjectConsole

Manual Entry, MS
Project File

CSV, HTML

Graph: PNG

Data Collection,

Generation of
project website

Framework for a Service-oriented Measurement Infrastructure

Summary: Measurement Tool Situation

The consideration of existing measurement tools discovers general short-comings
[AuerGraser'03]:

® missing interfaces

o few implemented input file formats
e rare native automation

e customization effort required

e platform dependence

e expensive tool evaluation

As a result of applying suchlike measurement tools in practical environments different
drawbacks are extracted from lessons learned [Lother07]:

e measurement tool complexity and lack of standardized interfaces
makes it difficult extract measurement data

e expert knowledge is necessary to analyze measurement results

e integration of the measurement tool is necessary to assure a
continuous application into a measurement process

e the handling of the tools and the analyses of measurement results is
nontrivial

e software developers wanted to have direct access to measured data
which is not possible due to lack of interfaces and access possibilities

e no (automated) integration of the measurement process into the
development process that leads to lack of support of distributed
development processes

One approach to provide the possibility of a tool overlapping analysis and measurement
data storage is the establishment of particular measurement storage facilities.

3.2. Software Measurement Repositories

As already mentioned software measurement or more specific software metrics can be used
for instance to help estimate project characteristics, measure project progress and
performance, or quantify product attributes. But once, having defined a suitable set of
metrics data to be collected and analyzed, the question of how to store these data in an
appropriate way comes up [BraKunz*05a].

Framework for a Service-oriented Measurement Infrastructure

Hence, among others the Canadian Software Productivity Center Inc. (SPC) prepared a list of
general criteria to meet at best when defining a software measurement data storage facility
in line with the establishment of an intra-enterprise software metrics program
[BraKunz'05b].

Corresponding to SPC (cf. [SPC 04]), this facility should:

e be easy to use so that users can update and report data with a minimum of trouble.

e be flexible for the following reasons:

o so that one can change its structure as the underlying metrics program
evolves and new data is collected;

o soone can perform ad hoc reports and queries on the raw data;

o and so one can use the data to create metrics other those than identified
afore.

e interface to other tools such as configuration management, defect tracking, and
project management systems, ideally. This could greatly simplify data collection and
reduce repetition of data within the company.

e be large enough to contain significant historical information.

e qavoid repetition of data.

e provide the necessary access security, in case data security is an issue. This includes
the security to protect against unauthorized use as well as data corruption.

Of course there is a strong relationship between software measurement data storage

facilities and general data storage facilities. Because of that one can identify a common
classification in spreadsheet and database management systems within analyzed facilities.

Consecutively both concepts will be described in a nutshell.

3.2.1. Analysis of existing Spreadsheet for Software Measurement

Since there are ambiguous interpretations of the term spreadsheet prevalent in the IT area,
generally one has to distinguish between the following two forms in order to be scientifically
right.

Spreadsheet program

According to Clermont [Clermont03], a spreadsheet program basically consists of the
calculation directive and constant values, which are required to properly specify pertinent
formulas.

Spreadsheet (instance)

Also following Clermont [Clermont03], a spreadsheet (instance) can be defined as a
spreadsheet program plus the expected input data in the same manner compared to the
execution of a program.

Being well aware of the fact that spreadsheet programs are just a piece of software to IT
professionals organizing input values in concise columns and rows, for typical spreadsheet
program end-users (mostly domain specialists with little or no IT training) a slightly different
interpretation approach seems to be advisable:

“For them spreadsheets are a computer supported realization of three tools that are
fundamental for our modern civilization: paper, pencil, and calculator.” [Clermont 03]

Framework for a Service-oriented Measurement Infrastructure

In the context of this publication the abbreviated term spreadsheet is used to pool both
meanings in the direction of the instance of a spreadsheet program.

Owing to the release of Microsoft’s operating system with a graphical user interface,
Windows, a new era of spreadsheet systems got introduced with new features, like mouse
operation or drag and drop.

Since Microsoft’s Excel was one of the first available spreadsheet systems for the new
environment, its rivals have not been able to compensate this competitive edge, ever.
Consequently, Excel has remained the standard spreadsheet system up to now even
implementing a macro-language that enables the user to add arbitrary imperative functions
[Clermont03].

Current trends in the development of innovative techniques for spreadsheet systems even
include eXtensible Markup Language (XML) [Bradley98] representation of data.

In the course of our investigations plenty of spreadsheets of historical software
measurement brought together by different organizations or professional associations could
be found, whereas only the apparently most established ones shall be illustrated by the
following table and examined beneath:

Table 10: Survey and classification of assorted spreadsheets of software measurement

Architecture
Research DACS NASA Ames NASE/SEL Software — ISBSG Bench-
Facilit Productivity Dataset Dataset Reliability marking Data
actify Dataset Dataset CD R10
Dataset
Owner: U.S. Department of Defense (DACS SLED) ** ISBSG '
Updates: 1979 1989 End of 1970ies 1997 1970ies Approx. Every
2 Years
Region: USA USA USA USA USA Worldwide
Source: NRL, U.S. u.s. NASA NASA (GSFC), NASA, AT&T International
D.o.D. Government, SEL Bell Labs Market Leaders
Industry
Environment: Military Mixed Aerospace, Mixed Mixed Mixed
Military
Domain: Problem data Productivity Error data Complete Failure Interval Project and
data Software Productivity
Lifecycle Data Data
Extent of 1 > 500 33 > 50,000 16 2,027
Projects: Records from
(192 man (3,700 trouble Status /
weeks) with reports) Runtime
142 defects Reports
Anonymization: No Yes -/- -/- Yes Yes

Validation: -/- -/- -/- -/- -/- Yes

Framework for a Service-oriented Measurement Infrastructure

Metrics:
oc ooy < < v (pardy)
P < x < S < v
EFFORT oy < . - x v
DURATION < v < - ;— 777777777777777 < v
ERRORS oy v VN VA
Others v v x - x v

Legend: v = present | X = not present | -/- no information available

As rendered in Table 10, the market of publicly available but commercially purchasable
spreadsheets or as the case may be datasets of software metrics focusing on different
domains is basically being dominated by the two organizations DACS (USA) and ISBSG
(Australia).

3.2.1.1. DACS SLED

The Software Lifecycle Empirical/Experience Database (SLED) which consist of five sub areas
has been collected out of diverse sources by the Data & Analysis Center for Software (DACS)
of the Department of Defense (D.o.D.) of the Government of the United States of America
and can be acquired by purchase for a fee of 50 US Dollar. The referring collection process
has been initiated by the DACS in order to support the acquisition as well as the
maintenance and distribution of empirical data accompanying the software lifecycle (cf.
[Dumke00]). Thus, software process quality with regard to research, teaching and
commercial concerns can be improved, similarly.

As already stated earlier, therefore five different datasets are being offered that cover all
aspects of the software lifecycle:

a) ARF Dataset

In the year 1979 the U.S.-American Naval Research Laboratories (NRL), assigned by the U.S.
Department of Defense, worked on the development of a computer-based military
Architecture Research Facility (ARF), while one of its chief developers, D. Weiss, compiled the
error data emerging in line with this development endeavor as the ARF Dataset. Withal, the
carried out software development project had a personnel expenditure of 192 man weeks,
whereupon 142 defects stemming from the program code could be discovered [King 04].

A brief survey of the characteristics of the noted error data is shown in Appendix B.

b) DACS Productivity Dataset

Just like almost all other datasets and/or spreadsheets belonging to the DACS SLED the DACS
Productivity Dataset (DPDS) has been produced by an institution being subordinated to the

Framework for a Service-oriented Measurement Infrastructure

U.S. D.o.D. In this special case, the information have been collected by R. Nelson at Rome
Research Laboratories of the homonymous Rome Airforce Base on the base of countless,
public Government or private industry sources and even got augmented, when he switched
over to the DACS organization. This collection of productivity data now comprises
information of more than 500 software development projects starting from the 1960ies and
quitting in the end of the 1980ies of the past century, stemming from the domains of
aviation electronics, aerospace, radar system support, COTS, communication and MIS
[King04].

The development aimed at the intention to bring forward and support the analysis of the
impact of methodologies for the implementation on the productivity in the area of software
development. For this purpose the decision was made to provide valuable software tools for
the analysis of the distribution and for the determination of certain relationships between
the respective parameters with access to the persisted storage for online users for free.
[King04]

For the characterization of a project within the DACS Productivity Dataset beyond a vast
guantity of others, primarily ten parameters are applied, which are noted in Appendix B.

c) NASA Ames Error/Fault Dataset

The error and/or defect dataset of the US-American NASA Ames Aircraft Research
Laboratories (AARL) contains error data had been originated from the end of the 1970ies in
line with the development of 33 digital flight control systems on the base of the appraisal of
more than 3,700 software trouble reports ([Harrison00] and [King04]).

d) NASA SEL Dataset

In the year 1976 the Software Engineering Laboratory (SEL) was founded as an organization
funded by the NASA and the affiliated Goddard Space Flight Center (GSFC) in order to
improve both GSFC software products and processes continuously as well as to positively
influence research in the area of measurement and evaluation of the software development
process and the effectiveness of methodologies for the software development. In the course
of time the SEL achieved an outstanding importance for this scope and could benefit from
the collaboration with the Computer Sciences Corporation of America (CSC) and the
University of Maryland (UMD) by the same token.

After the major update in November 1997 the data collection of the SEL now comprehends
more than 50,000 records which contain data of the whole software lifecycle, arranged into
five different datasets. Because of the multitude of the consulted sources (mostly
component status reports and runtime analyses) a precise subsumption in definite software
environments or domains is not feasible, so far [King 04].

The online and at no charge offered software tools for a visualization by scatter plot
diagrams and histograms on the base of project statistics as well as scatter plot diagrams
and histograms on the base of component statistics are of invaluable virtue.

Unfortunately, an overview of the persisted project parameters is not publicly accessible and
can thus not be put on record.

Framework for a Service-oriented Measurement Infrastructure

e) NASA Software Reliability Dataset

In the nineteen seventies, J. Musa compiled a set of failure interval data emerging from 16
software development projects of the AT&T Bell Laboratories in order to assist software
managers in monitoring test status and in predicting workflows on the one hand and to
assist researchers in validating software reliability models on the other hand. Withal, the 16
measured projects were carefully controlled during data collection to ensure a high quality
and they originate from different environments; among them is software for real time
command and control as well as commercial and military applications [DTIC08].

A detailed description of the dataset can be found in Appendix B

3.2.1.2. ISBSG Benchmarking Data CD Release 10

Cultivating a close cooperation with one of the most important associations for functional
size measurement of software called IFPUG the International Standards and Benchmarking
Group (ISBSG) continuously collects project and productivity data of international and
market-leading organizations of the software development sector. Additionally, the ISBSG
cares for the anonymity and offers the compilation combined with valuable software tools
for a statistical analysis packed on a CD-ROM for purchase; a maximum fee of 850 US Dollar
for a single-user license has to be allowed for [ISBSG07].

This collection of product and productivity data has been produced in order to support the
emerging of international standards for the software development and to produce a dataset,
which is often misattributed a database, as an alternative to commonly very cost-intensive,
internal investigations and analyses. Thereby, it mainly aims at resource and effort
estimation as well as benchmarking that is of special interest to project managers of the
software development. To ensure the quality of the subsequently distributed data, the
retrieved information is carefully checked before incorporation. Over and above, with the
help of rotational updates in an interval of some two years a high refresh period and steady
augmentation of the dataset can be guaranteed: The tenth and latest version of the year
2007 contains records of project and productivity data on over 4000 software development
projects emanating from miscellaneous environment of predominantly well established and
market-leading organizations from all parts of the world.

A detailed description of the attributes stored in the spreadsheet can be found in Appendix B.
Owing to its straightforwardness, rapidity and hence to the marginal impacts on a limited
budget, spreadsheets are exceedingly favored and prevalent for the acquisition of software
measurement data. Though they are not suited for a serious conducted data collection in the
long-run because the work and management effort on increasing amounts of data cannot be
legitimated (cf. [Bernhard 2001]). Furthermore problems due to the lack of structural and
systematic consistency pay special attention to a publication of the well-known management
consultancy PricewaterhouseCoopers [PriCoo04].

The following table complying with the notes of SPC [SPCO4] opposes the emerging
advantages and disadvantages of spreadsheets and summarizes them, once more:

Framework for a Service-oriented Measurement Infrastructure

Table 11: Advantages and disadvantages of spreadsheets

Pro Contra
v’ Inexpensive and accessible % No support of ad hoc queries
v’ Easy to configure and use x Difficult support over network
v/ Built-in graphical reporting facilities x Not suitable for storing large volumes of
data

v’ Easy to update when new data structureis % Difficult to interface to other tools
defined

v’ Familiar to most management x Little or no security available

3.2.2. Measurement Databases
Consulting technical literature ([HeuerSaake'07], [Vossen00], and [Stein04]), the adjacent
definitions can be formulated as:
A database is defined as a structured collection of an exhaustive set of persistent
(permanently available) data in an electronic form. These data are acquired under certain
aspects and rules, arranged and archived. The management, the access on the data, and its
manipulation can be performed with small effort via a database management system.
Software programs for database management (e.g. database access, data manipulation,
ensure consistency) form a DBMS as a whole. Thereby they create a software layer between
a user and the physical representation of the data.
After all, a database system consists of the subsequently stated constituents:

DBS = DB1..n + DBMS

Suchlike DBMS are generally thought to be very efficient in managing tidy and mostly for a
long-term use designated amounts of data. They define a database model, which harbors
concepts for a uniform characterization and provides operations und descriptive languages
for data definition (Data Definition Language, DDL), data manipulation (Data Manipulation
Language, DML) as well as for performing queries (Query Language, QL). Furthermore, those
systems support transactional concepts with regard to multi-user control and even take care
for aspects of data integrity, data security and they also ensure the continuity of the stored
data by appropriate arrangements [HeuerSaake*07].
A common summarization of elementary, functional requirements for database
management systems that obtained great famousness as the Nine Rules of Codd was
established in the year 1982 by Codd [Codd82]:

1. Integration (non-redundant data storage by common management)

2. Operation (data definition, storage and manipulation)

Framework for a Service-oriented Measurement Infrastructure

3. Catalogue (access to all descriptions of the DB through data dictionary)
4. User views (for different users or applications)

5. Consistency control (assurance of data integrity for events)

6. Access control (avoidance of not-authorized accesses)

7. Transactions (atomic functional units, parallelism, isolation)

8. Synchronization (prevention of mutual influences)

9. Data security (recovery of the stored data)

In the course of time some substantial architecture recommendations and/or standards
were set up for DBMS; among them the probably most important ones are: The Strawman
architecture of CCA/NBS [MatthesSchmidt99], the Three Level Architecture of ANSI/SPARC
[TsiKlu78] and the Five Layer Model of Senko [Senko73] and Harder [Harder87].

In order not to exceed the scope of this thesis the focus shall be limited on the ANSI/SPARC
Three Level Architecture, which is probably the most wide-spread standard from the
conceptual point of view.

The standardization Three Level Architecture of ANSI/SPARC has been developed in order to
create an independency between data and applications and to support different user views.
Thereunto, a database scheme is sectioned into three consecutive levels, initially [Stein04]:

1. External Scheme (Definition of specific (probably partial) views for different users
and/or applications)

2. Conceptual Scheme (Thorough modeling of the entire database by a data model,
which is completely independent from a potential system or a concrete
implementation)

3. Internal Scheme (Description of the system-specific realization of the database)
Moreover, the architecture of ANSI/SPARC aims at protecting the user of a DBMS against
disadvantageous effects in the course of fundamental changes of the system or runtime
environment.

This requirement, which is also known under the term data independency, can be organized
by logical and physical aspects: When the conceptual scheme can be modified without
consequences for the external scheme, it is to be the talk of logical data independency,
whereas physical data independency can be detected, if the internal scheme can be
modified unattached by the conceptual scheme without the appearance of changes in the
functionality or even within the applications.

Prior to the concrete characterization of two widespread database models, a definition
concerning this matter and stemming from the appropriate literature [HeuerSaake*07] is to
be quoted:

»A database model is a system of concepts for the description of databases. Consequently, it
defines syntax and semantics of database descriptions, the so-called database schemes.”

With regard to this concept formation, a database depicts itself as a tangible peculiarity of a
database scheme, which comes in a language that offers assorted and in the database model
anchored abstraction concepts.

Framework for a Service-oriented Measurement Infrastructure

In line with the examination of classical database models, two main categories can be
identified: On the one hand, abstract database models like the Entity-Relationship (E-R)
model of Chen [Chen76], the modeling with help of the Object Modeling Technique (OMT)
[RumPre*94] or even the Unified Modeling Language (UML) [RumPre*94] exist, which are
predominantly suitable for design purposes.

Apart from that, definite database models were developed, which can assist in combination
with the results of a preceding design process in implementing a database system.

The two definite database models for the design that are most relevant for the considered
practice are now to be brought up: hereunto come within the relational model and several
object-oriented models. Besides that, there is a band of additional definite database models
like the network or hierarchical model, whose pervasiveness und hence relevance is an only
historical one, nowadays ([HeuerSaake™07]).

The relational model

Because of its bribing straightforwardness and accuracy the relational model, which has
been inaugurated in 1970 by Codd [Codd70], relishes a high degree in distribution. As its
main concepts pertain plain, non-nested tables (sets of tuple), where relationships are

established under use of equality of values [HeuerSaake*07].
Object-oriented models

Object-oriented models are usually regarded as an advancement of semantic and nested,
relational models: In general (like e.g. the theoretical very profound, object oriented
database model of Beeri [Beeri90]), they are endorsed in the structural and operational
section as well as in the part of the utilization of higher concepts by object oriented
constituents. The structural frame is not only enhanced by types and type constructors, but
even by object identities, classes and structural heredity with reference to a class or type
hierarchy. Additionally, the object orientation asserts itself in operations for queries and
manipulations. Higher concepts like Meta classes, methods, heredity, overriding of methods

and encapsulation are used too, of course.

In order to standardize a homogeneous formulation out of the distinctive, object oriented
directions of development and database models, the Object Data Management Group
(ODMG) as an independent constituent of the Object Management Group (OMG) created
the “de-facto” standard ODMG-97 [ODMG97], which is also known under the term ODMG
2.0.

It articulates an object model for the description of terms and semantic determinations of
the related object oriented data model, certain database languages like an Object Definition
Language (ODL) and an Object Query Language (0OQL) as an interface for the definition and
manipulation of data and/or information. Beyond that, it presents eventualities for a
language embedment (bindings) in object-oriented programming languages and identifies
parallels to the OMG, CORBA and ANSI-C++ [HeuerSaake*07].

Framework for a Service-oriented Measurement Infrastructure

3.2.2.1. Assorted Measurement Databases

In the course of time many different implementations of databases with the aim to storage
measurement data could be observed, Table 12 presents an overview about a careful
selected set of measurement databases. Some details about each one can be found in
Appendix B.

Table 12: Overview about Measurement Databases

5) T-Systems SPR .
ESA Software FiSMA Laturi NASA MDP)) Ericsson
. QSM Project Nova Knowledge PSM Insight
Development Experience Data i Research
Database Database Repository Database MetricsDB Database Canada MMR
System Database
Cost: Not Opento Mandatory Mandatory Not Public, Not Public, Not Public, Free Tool, Not Public,
the Public, “Experience but Free In-House Use Delivered Mandatory
Accessible to Pro” Online (Indirect) with SPR but Free In-House Use
Researchers Membership Registration Access as per Know- Online
(min. 1,000 € License Level ledgePLAN Registration
p.a.)
Updates: Permanently Annually Permanently Every 12 to 1998 Annually o.C. Permanently
18 Months
Region: Europe Europe Northern Worldwide Europe Worldwide o.C. Canada
America
Source: ESA, Industry Industry NASA IV&V, Mixed Industry U.S. o.C. Industry
Industry Government,
(Consultancy Industry
Clients)
Environ- Aerospace, Banking, Aerospace, Mixed Telecommu- Management 0.C. Telecommu-
Military, Trade, Military, nications Information nications
ment: Industry Assurances, Industry Systems
Administra-
tion, Manu-
factoring
Domain: Productivity Productivity Error and Any Project- Mutable Any Project- Different Required
Data Data Product Data related Data related Data Templates Product and
Process Data
for CMMi
Extent of 157 Approx. 600 > 14,000 Approx. -/- > 8,000 Initially -/-
Projects: 6,300
(Status 1998) (plus 2,700 Just 1
Problem Sample
Reports) Project
Anony- Yes -/- Yes No No -/- No No
mization:
Validation: Yes Yes -/- Yes No Yes 0.C. -/-

Benefit: Commercial Commercial Commercial Commercial None,Justa Commercial O.C. Commercial

Framework for a Service-oriented Measurement Infrastructure

and Research and Research and Research Prototype
Metricss
oc v x v Mutable - v Mutable
Pooox o x v Mutable - v Mutable
erFORT v o < v Mutable - v Mutable
DURATIONW””; 777777777777); 777777777777 ;””””””‘/7 777777777 I\i/liuitiaiail(-;‘ 777777777 - 7/—””””””:/7 777777777 l\)l Llit;;)ie””
eRRORS x < oy Mutable - v Mutable
othes v O SO Mutable - R Mutable

Legend: v“=present | %= not present [-/- no information available | O. C. = owner’s choice

The following table complying with the notes of SPC [SPCO4] opposes the emerging
advantages and disadvantages of (relational) DBMS within this special context and
summarizes them, once more:

Table 13: Overview of advantages and disadvantages of software measurement databases

Pro Contra

v’ Effective storage of large volumes X Initial setup is more costly and time

of data consuming

v’ Security and network access x people may require training to use
the database

v' Support of ad hoc queries and % more expensive to license than

reports spreadsheets

v many interface to high quality

graphical presentation facilities

v easy to update and customize as

data evolves

Framework for a Service-oriented Measurement Infrastructure

3.2.3. General measurement repository characteristics
Especially high acquisition cost and therefore questionable cost/benefit ratios are
counterproductive to identified best practices for software measurement. That aggravates
the establishment of software measurement programs as stronger as lower the provision of
capital is present in distinct software development processes. This situation leads to a very
adverse situation especially in small and medium-size enterprises.

But beyond gut instinct scientific research needs empirical analysis to establish new research
perspective.

Overall a large diversity of different CAME tools for different measurement approaches and
data storage facilities can be observed. Due to the described shortcomings an automation of
software measurement could not be observed. The definition of standardized interfaces of
measurement data storage facilities enables at least an automation of data collection. The
analysis of the state of the art of measurement tools shows that the long standing goal of
creating an integrated measurement and management system bearing the capability of
synchronizing and coordinating every measurement activity is not reach yet. Keeping in mind
that this goal was stated by Knoll nearly twenty years ago [Kno6ll91].

Nowadays the realization of corporate measurement programs is done by applying different
monolithic tools and respectively measurement data management facilities to create a
specific tool chain for a specific measurement process. Founded in the existence of more
than one measurement process in one development process/company a variety of the
measurement tool landscape can be identified.

The general situation in the coverage of measurement approaches by measurement tools
can be described as sufficient. The adverse situation regarding the success rate of corporate
measurement programs cannot be reasoned with non existence of measurement tools for
specific methods or measures.

But nearly all identified process related best practices are considered inadequately.

All monitored measurement programs find application in major companies. The collected
empirical data about software measurement is limited to major development processes, too.

The exclusion of small and mid-size companies in software measurement leads to a
tendentious situation regarding empirical data which adverse for major companies, too. This
one-sided consideration is one reason for the described problems in software measurement
processes.

The goal of the thesis in hand is to enhance the success rate and feasibility of corporate
software measurement programs by providing a framework for a measurement
infrastructure aiming process automation and tool integration.

Framework for a Service-oriented Measurement Infrastructure

3.2.4. Review and Evaluation of existing Approaches to tackle the described
Drawbacks

Beside the described existing measurement tools and measurement databases some new
approaches regarding software measurement and measurement data storage has been
published and used in areas unlike software measurement. Even if these approaches are not
applied in software engineering industry the capability of being a solution or at least part of
the solution should be analyzed in the following chapter. For the ease of reading the order of
the topics has been inverted and the chapter starts with new approaches regarding data

storage facilities.

3.2.4.1. Measurement Repository Approaches

To overcome the described disadvantages of existing measurement data storage facilities to
major approaches not limited to software engineering can be identified: Repository and
Experience Factory.

In the described context of IPSE and CASE, Chou (in [Bergin93]) comprising Meta data,
modeling and source code repositories, circumscribes the term in that way:

“The repository, also known as an encyclopedia, is a database that stores information about
organizational and data structures, strategic goals, functional processes and models,
implementation procedures, and related computer programs.”

Bernstein, probably being one of the most common researchers in that thematic area of the
US-American Microsoft group, defines the term Repository in one of his papers [Bernstein97]
more generally referring to engineering disciplines:

“A repository is a shared database of information about engineered artifacts, such as
software, documents, maps, information systems, and discrete manufactured components
and systems (e.g., electronic circuits, airplanes, automobiles, industrial plants).”

Differing only slightly from Bernstein’s disambiguation, McClure [McClure92] as a long term
repository expert understands the term “repository” in the following sense:

“The Repository is the mechanism for the definition, storage, and management of all
information about an organization, its data and its software systems as well as its access.”
Considering these characterizations, the aim of a repository’s appliance for the software
development process becomes apparent: Models and contents of engineered artifacts shall
be stored in order to support not only software-based design tools.

According to Bernstein [Bernstein97], in the course of the lifecycle of engineered software
artifacts various objects of umpteen diverse types are defined, created, manipulated, and
managed by a diversity of tools. They need to share or exchange their data, even though the

objects themselves may also be stored in a diversity of storage systems.

3.2.4.1.1. Assorted Repositories with the Potential to Store Measurement Data

Since the repository technology turns out to be a relatively new one bearing the potential to
form amazingly all-embracing IPSE and/or CASE environments even having the ability to

Framework for a Service-oriented Measurement Infrastructure

store software measurement and/or metrics as well as other Meta data accompanying the
software development process, many vendors released and still their versions of repositories
with more or less prosperity.

Presumably, one of the first (but commercially less successful) attempts to establish such a
repository has been undertaken in 1990 as constituent of the product Application
Development/Cycle or shortly AD/Cycle of the IBM. When Texas Instruments in cooperation
with Microsoft smelled the rat and winded profit in 1994 the development got pressed
forward a lot resulting in the Microsoft Repository product line with versions 1.0 in 1997,
Version 2.0 of 1998 and the current one 3.0 in 2003 [Microsoft08]. From that time one or as
the case may be in parallel other vendors stepped in and presented their repositories,
among them parts of the powerful mySAP Business Suite of SAP AG, Unisys Repository
(UREP), Rochade of Allen System Group (ASG, initially developed by Viasoft), and even the
passed by Universal Directory of Logic Works.

Because it is nearly impossible to elude from Microsoft’s dominance, their repository version
is probably the most important and referred one in present. Consequently, in order not to go
beyond the scope of the thesis in hand, the explanations should be limited to a short and

shallow characterization of the Microsoft Repository and ASG-Rochade.

3.2.4.1.2. Microsoft Repository

In spring 1994 Texas Instruments and Microsoft started a collaborative project to design a
Meta data repository to be integrated into the respective company’s tool strategies. Ever
since version 2.0 evolved in 1998 when Microsoft Repository 2.0 has been enclosed to MS
SQL Server 7 and Visual Studio 6 for the first time, it is now constituent of several succeeding
Microsoft products. Starting with Microsoft SQL Server 2000 the repository engine 3.0 is
enclosed. Its development aimed at the compatibility to the Microsoft’s object architecture
Component Object Model (COM), at simple extensibility as well as version and configuration

management.

The architecture, consisting of CASE/CAME tools, an information model, a repository
manager, and an underlying database, can be outlined as illustrated in Figure 42 and is
described below.

Framework for a Service-oriented Measurement Infrastructure

- - () oo M=ot CASE/CAME Tools
0 ﬁ « Browser, Report
slest all | e ® = « Editor, Compiler

|] « Test, Analysis

C 1 =] Information Model

125

% Repository Manager

(Repository Engine)

Database System

©

Database

Figure 42: Architecture of Microsoft Repository
Information Model

The contained information model is classed as the Open Information Model (OIM) describing

a core model of shareable and reusable type descriptions under use of a set of UML-driven

Meta data specifications to circumscribe the structure and the semantics of these Meta data.

Targeting the three main areas of Object-Oriented Analysis and Design (OOAD), component
description and specification, and database schema and warehousing [Mclnnis99], its
concrete formulations of classes, interfaces, properties, relationships, collections, and
models resulting in a so-called Type Information Model (TIM) can either be performed

graphically by the Visual Modeler tool or textually by Visual Basic.

Ultimately, these type descriptions are lodged in interface type libraries by standards of the
Interface Definition Language (IDL) or custom Type Libraries (TLB). Owing to the
pervasiveness of the eXtensible Markup Language (XML) being a text-based format for
representing structured data using tags to mark the information, the repository offers
special import and export tools, which translate instances of the OIM between the
repository and XML. These mechanisms named under the term XML Interchange Format
(XIF) can be considered as a standard way of interchanging OIM’s instances [McInnis99].

Repository Engine

Preferably layered on a SQL server of Microsoft’s product line as underlying storage engine,
the repository engine appears as an object management system with Application
Programming Interfaces (APIs) resting upon Microsoft’'s COM and SQL. Of course, the engine
features tasks such as relationship and version management, a workspace model and
support of repository sessions as claimed by Bernstein ([Bernstein97] and [BerHar"97]).

Framework for a Service-oriented Measurement Infrastructure

Additional Software

Besides the standard components of the repository’s architecture the Repository Software
Development Kit (SDK) and the Modeling Environment are ready for free download. As a
modeling and administration environment including OIM, it allows simple creation,
enhancement and development of information as well as a check of self-developed
information models. Furthermore the SDK has the ability to generate another variant of the
repository via Microsoft’s pseudo-relational DBMS Access from the OIM. Even an installation
script for the OIM, type libraries or header/constant files containing the object IDs for COM
can be produced. As a goody, the SDK can even produce relating specification documents in
Rich Text Format (RTF).

3.2.4.1.3. ASG-Rochade
The Rochade repository of Allen Systems Group Inc. (ASG) formerly originated by Viasoft is

denoted by its software producer as the leading Meta data repository fitting for large and
medium-sized organizations.

Believing in the sales promotion documents [ASGO0S8] it provides a “streamlined process for
centralizing the management of metadata from sources throughout the enterprise.” From a
single, centralized, and easily accessible location the repository is designed to store,
interrelate, and disseminate information customized to every user’s view. Besides
supporting reconciliation of business and design models, integration of different CASE tools
(e.g. Rational Rose), and resolution of conflicts in data definitions, it also provides versioning,
configuration management, and security.

Additionally, the repository brings along outstanding capabilities in data warehousing,
component/object management, enterprise architecture, and portfolio management.
Existing applications can be integrated via XML and a wide range of APIls. Information is
delivered according to the end-user’s preferences or background; even a Web-based access
to all stored Meta data is possible. In addition to the standardized supported Common
Warehouse Meta-Model (CWM) of OMG, the repository ensures a maximum leverage of
Meta data through integrated development facilities resting upon open APIs.

Believing in the notes of McClure [McClure94] the utilization of repositories entails a number
of advantages and just one obvious disadvantage, which shall be opposed within the

following table:

Framework for a Service-oriented Measurement Infrastructure

Table 14: Overview of advantages and disadvantages of repositories

Pro Contra

v" Allows shared utilization of system % Increases management efforts and
v' information far beyond the acquisition costs

boundaries

v' of applications, tools and the

system’s

v life cycle

v’ Facilitates an integrated multi-user

v’ tool environment

v" Support of ad hoc queries and

reports

v' Improves the communication
between
v’ users and the shared access on

v information

v Consolidates und removes
redundant

v’ information of an organization
v’ Increases system integrity
v’ Relieves system maintenance

v" Allows the combination of CASE
tools of different vendors

v" Allows the reuse of information
beyond the boundaries of the life

cycle supporting tools

v' Alleviates the migration and

conversion

Framework for a Service-oriented Measurement Infrastructure

Summary: Software Measurement Repository

Summing up pros and cons one has to reason that spreadsheets do not bear the
capability to be a driving force for measurement programs. Especially the lack of
interfaces to other tools and the lack of security are major drawbacks. And spreadsheets
are not able to use nowadays prevalent communications capabilities over ICT
(information and communication technology). The situation for measurement databases
is less adverse indeed they are more difficult to use and the initial setup is more costly
and time consuming but they bear at least the capability to store and mange
measurement data over long period in time and provide the necessary functionality to
support the analysis of measurement data [BraKunz'05c].

The inadequacies of existing implementations or more related to comprised
measurement data rather than database technology. These measurement data is either
bounded to a specific measurement method or few specific metrics or the measurement
data is bounded to a single measurement field of application inside a single company or
department. The strengths of DBMS technologies regarding security and network access
promise to deliver sufficient integrations capabilities to use existing measurement
databases in new measurement infrastructure solutions [Kunz06d].

Indeed, the automation of measurement analysis needs adjustments in database
technology, too. Possible approaches regarding data description for analysis support are
shown in chapter 5.5. Service-oriented Measurement Database

Accessorily, Bernstein [Bernstein97] lists several benefits of a common repository:

1. Since a repository provides storage services, tool developers need not to create
tool-specific databases.

2. Furthermore, it forms the fundament, so that tools can work together via easy
information sharing without special and cumbersome protocols: By conforming to
a data and information model, software tools can share data without knowing the
internals of other tools. In contrast to an axiomatic similar data dictionary, a
repository can store not only metadata but information about the whole range of
object types pertinent to an enterprise.

3. Because a repository is per definition also a database, it is subject to common
control services of databases like integrity, concurrency, and access control. Over
and above, mechanisms for check out/check in, version and configuration control,

notification, context management and workflows exist.

Framework for a Service-oriented Measurement Infrastructure

3.3. Measurement Data Integration

An implementation of new techniques in a novel measurement database has to take into
account existing databases and it has to support the integration of existing information
because of their importance in software measurement processes.

Three major integration approaches have been proposed by the author and should be
described next in a nutshell.

A measurement data warehouse is intended to use measurement data integration for data
consolidation into a data warehouse by extracting and transforming measurement data from
different sources like measurement tools or spreadsheets. The information is stored into
measurement data storage by using ETL tools (Extract Transform Load) [NaumannQ5]. As
result the approach contains a central measurement database to serve analysis needs
[Wu05]. These analyzing needs can be solved using various analysis possibilities provided by
an OLAP server (Online Analytical Processing). The principle architecture is shown in Figure
43.

Metadata

% Repository
Analysis
Spreadsheets
Transform
% Reporting
Integrator \ Data Mining
CASE tool's g 11111

measurement stores / @ @ @
Operational DB

Data Marts OLAP Servers| Tools
Measurement Data Integration Measurement Storage Analysis
(Consolidation) (Data Warehouse)

Figure 43: Measurement Data Warehouse

Due to one central measurement data storage redundancy can be much reduced. And single
analysis functionality bears the capability to integrate multiple measurement data into
different views.

A second approach creates a Measurement Data Repository by the use of a mediator.
Different wrapper for each data source enables the integration independent from the used
technology in the different sources which should be integrated. In this approach the data is
kept into the original sources and accessed by the mediator each time an analysis need is
demanding the information. From the analysis perspective the case is the same in
comparison to the data warehouse approach but from the data storage view each data
source has to be maintained and operated. The mediator centered approach is presented in
Figure 44.

Framework for a Service-oriented Measurement Infrastructure

This approach is a promising one especially if the original data storage is an important source
for information in the future and not in the domain of the measurement database owner.

Metadata
Repository
query Analysis
'\
query Reporting
Spreadsheets
P Mediator .
query / Data Mining
R Wrapper query
CASE tool's
measurement stores / Tools
<DOperational DB, > >
Measurement Measurement Data Integration Analysis
Storage (Mediator-based system)
{type does not
matter)

Figure 44: Mediated Measurement Repository

With raising numbers of information systems the amount of data sources raised, too. And
this evolution leads to new integration approaches like service-oriented architectures. To
uses these techniques in the area of software measurement storage facilities seem to be a
promising approach. Especially since the whole measurement infrastructure contains
service-oriented paradigms. An alteration at this point would be astonishing and in this case
very adverse.

The main architecture is shown in Figure 45. Containing different adapters for measurement
data integration and defined interfaces for visualization purposes. The availability of service-
interfaces in the different measurement tools or existing measurement facilities is the most
important requirement in this approach to support an easy integration of these components.

Measurement Applications Storage
Measurement ¢:
Web Service
SOAPMHTTP Database Measurement
Adapter
Measurement Database
Service .NET SOAPHTTR
Service Bus

Legacy Measurement . e . i
Application G/C++ ¢: Analysis Applications (Visualization,...)
App Adapter ::] Legacy Analysis
Legacy Measurement IMS/ICA Web Service,..

Application J2EE IVIS/ICA SOAPMHTTP
App. Adapter

F 3
"
4
v
4
Y

Measurement Measurement Data Integration Measurement
(interface availability) (EAI) Usage

Figure 45: Service-oriented measurement database

Framework for a Service-oriented Measurement Infrastructure

3.4. Measurement Experience Approaches
Dumke [Dumke03b] defines experience in the environment of Software Engineering as
following:

“Experience in the area of software development and utilization is the gained knowledge by
practice, case studies, and experiments for the development and utilization of software
products comprising the underlying processes and applied resources.”

According to the preceding definition, experience can also be seen as immediately
“experienced” knowledge resulting from actual software development project business
exertion, where it turns out to be a competitive advantage.

Indeed, there are problems in conveying and receiving experiences due to inadequate
provision for its validation as well as its origin and suitability for special project contexts, or
due to alternating team assemblies for different projects, employee turnover, or
organizational expansion. An explicit organizational experience management can help
overcoming these shortcomings and improving organizational performance by bringing
forward reuse of products, processes and experience stemming from the entire software life
cycle.

Aiming at the development of higher quality software systems at lower costs complying with
the Quality Improvement Paradigm (QIP) [Basili85], this challenge leads to the development
of so called Experience Factories incorporating repositories, which Basili defines as following:
“The Experience Factory is the organization that supports reuse of experience and collective
learning by developing, updating and delivering upon request to the project organizations
clusters of competencies [...] as experience packages.” [BasCal*92].

“The Experience Factory is a logical and/or physical organization that supports project
developments by analyzing and synthesizing all kinds of experience, acting as a repository for
such experience, and supplying that experience to various projects on demand.” [BasCal*94].
Both disambiguations suggest a philosophy of logical separation (see Figure 46 for details)
between project development and systematic, organizational learning, and packaging of
reusable experiences in order to avoid neglecting one of the tasks, sooner or later.

While the Project Organization has to meet a development project’s constraints like duration
and budget, business units and/or organizations are striving for the improvement of their
products and development processes with the aid of reuse and error prevention via

experience packaging by an Experience Factory (EF).

Framework for a Service-oriented Measurement Infrastructure

Project Organization (PO) Experience Factory (EF)
Environment
characteristics
Project Planning > gf§£g¥
(characterize, [>
set goals,
choose process) Goals, processes,
tools, produets,
resource models, K
defect models e B
plans EXPERIENCE
A 4
. -
Project Data,
Management lessons learned
(Execute process) P ANALYZE
a
Project analysis

Figure 46: The concept of Basil’s Experience Factory

As mentioned before, the Experience Factory approach is based on the Quality Improvement
Paradigm (QIP), which consists of six steps performed within projects and two feedback
cycles [Basili85]: 1) characterize project goals, 2) set goals, 3) choose a process, 4) execute,
5) analyze results, and 6) package the results of analysis.

Supplementary, two feedback cycles are defined: a project feedback cycle (feedback
provided during the execution phase of the project) and an organizational feedback cycle
(feedback provided to the project execution and at the completion of the project). The
definition of the QIP also implies that organizational and product improvement requires
continually accumulating knowledge and storing that knowledge in a form that can be easily
accessed, used, and modified.

So the first three steps of the QIP in terms of project planning (namely characterize, set goals,
choose process) are performed by the Project Organization. The results are transmitted as
specifications and/or environment characteristics to the Experience Factory or more detailed
to the project support.

By virtue of the received data, the Experience Factory tries to find adequate and matching
artifacts within the Experience Base. These artifacts can be of different kind (goals, processes,
tools, and so on). In case no adequate artifacts can be found, the impact and attention of the
project is raised, since there are still no comparable projects available.

In the fourth phase of the QIP the project is executed (execute process) by the project
organization or more specific project management. As a result the product to be created and

Framework for a Service-oriented Measurement Infrastructure

experiences (data, lessons learned) as well as knowledge emerge, which are forwarded to
the Experience Factory. Having obtained the new information, the analysis division of the
Experience Factory quits the QIP by analyzing and packaging the gained experiences. The
Experience Base is enhanced and improved by the new data in order to sharpen it to be
more effective and suitable for following projects.

Summary: Measurement Experience Bases

In conclusion both approaches can be described as an enhancement of data with
additional information. This information is meta-information which makes it easier to use
the original stored date. This so called semantic data is a major driving force in many
fields of application [Mencke08]

Since their target is to collect and store date rather than cover the complete software
measurement process the techniques has to be integrated in holistic measurement
approaches to benefit from the advantages in comparison to existing measurement data

storage approaches.

3.5. Software e-Measurement

To provide next generation measurement tools three major approaches can be identified:
the usage of ICT in e-Measurement, the creation of measurement sensor networks in an
area so called software telemetry and the usage of software agents in the area of agent-
oriented software measurement.

The usage of information and communication technology (ICT) in many fields of application
in IT industry has changed the way developing software. To tackle this challenge the
question arises how web technologies can support measurement processes [LotBraKunz'05].

Mainly three characteristics from web technologies are transformed to software
measurement [Lother07]:

e ubiquity (in reach from everywhere, applied when desired)
e pervasiveness (wide-spread, involvement of different communities)
e mobility (usable independent of user’s position)

Thus, the term e-Measurement can be defined as: ,the process of the quantification of
objects or component’s attributes according to selected measurement goals by using the
capabilities of ICT technologies.” [Lother07] [ErnstHage*02]

The structure of e-Measurement approaches and the interplay with the IT area are shown in
Figure 47.

Framework for a Service-oriented Measurement Infrastructure

e-Messurement Service e-Consulting

IT Area - - = -

X £yl | X D
\ Reparts LY !
. _ Projoct Lesder Duveloper - ~ S04 Personng! T Managomost -
o - a5 - e -

e-Certification

Viorsian

Figure 47: e-Measurement approach for Software Quality Assurance [Lother07]

The e-Measurement approach is characterized by the different elements which are
connected by the internet. Each component realizes a specific functionality to enable e-
Measurement based software quality assurance [Lother07].

The e-Measurement Service can be described as

e—Measuremen t
Mpe—Service

r T
(G X A X M) Web_technology » S (Q % E) Web_technology »

T
RN (VX U) Web_technology » SEXA

with a simple explanation as e-Service € {global _production, outsourced} and
Web_technology € {document-based, dynamic, semantic, service, mobile, agent,
operational} and the indexes characterizing the main kinds of Web technology.

The e-Measurement Community as a virtual environment for the measurement community
including features for knowledge transfer, communication, cooperation, and coordination
activities is characterized by

e—Measurement T
wmp e~ Community (G xAx M) Web_technology

system _ operationa lity

’

system _ operationa lity

T
N (Q x E) Web_technology

’

Framework for a Service-oriented Measurement Infrastructure

T 1 tiona lit
9(V % U) Web_technology system _ operationa Lty SEX A
with the same kind of description as e-Community € {P2P, research team, cooperating team,
organization, competence network}, Web_technology € {document-based, dynamic,
semantic, service, mobile, agent, operational} and system operationality € {coordination,
conferencing, cooperation, collaboration}.

Essential backgrounds as e-Repository and/or e-Experience can be described in a simplified
manner as

e—Measurement T
VP e—Experience (G x A x M) Web_technology

system _ operationa lity

’

T t tiona li
Web_technology Web_techno logy Web_technology system _ operationa lily
->(Q x E) -

’

We We T W system oper ationa lit y
eb _technolo, eb technolo, eb_techno lo, — / !
9 (V i gy X U i gy) 8y

SE Web_technology % A’

whereas e-Experience € {information basis, repository, knowledge data basis, experience
factory}, Web_technology € {document-based, dynamic, semantic, service, mobile, agent,
operational} and system_operationality € {coordination, conferencing, cooperation,
collaboration} [Lother07].

The e-Quality Service are helpful Web-based activities and are described as

e— Measurement

. T . ionali
— Web technol Web technol system _ operationality
Mpe Qualzly .'(GXAXM eb_technology) eb_technology

’

T system tionalit
Web_technology Web_technology Web_technolo, System _operationatity
>(Q - x E"7-) - &

’

We W T system op: ationalit y
eb_technolo eb_technolo, Web_technolo, Sys _operati L

SE Web_technology < A’

with an explanation as e-Quality € {information, certification, consulting, estimation},
Web_technology € {document-based, dynamic, semantic, service, mobile, agent,
operational} and system_operationality € {coordination, conferencing, cooperation,
collaboration}.

Framework for a Service-oriented Measurement Infrastructure

Especially, the e-Control summarizes a lot of Web technologies and methodologies in order
to perform this operational kind of Web systems, described as

e—Measuremen t
mp e—Control

type _of _measurement 1 system _operationality

Web_technology

’

Web_technolo,
(Gx A" &

T t tionalit
Web_technology Web_technology Web_technology system _operationality
->(Q x E) -

’

T system tionality
Web_technolo, Web_technolo Web_technolo, ysien _operationai
B(V _ gy x U _ gy) _ gy

7’

SE Web_technology < A’

with the details as e-Control € {evaluation, improvement, managing, controlling},
Web_technology < {document-based, dynamic, semantic, service, mobile, agent,
operational}, system_operationality € {coordination, conferencing, cooperation,
collaboration} and type of measurement < {modeling, measurement, evaluation,
application} [Kunz*05].

Finally, the Measurement e-Learning [Kunz'05] as one of the measurement training aspects
can be formalized as

e — Measuremen t
wmp €~ Learning

WebMeasurement _ operation T system _operationality

Web_technology

’

Web_technolo, Web_technolo
(G- Y e V|

We We T system 017erationalilv
eb technology eb_technolo, Web_technolo, SYs —
9 (Q — X E i gy) i gy

’

We We T systen opemt'a al ity
eb technolo, eb technolo, Web technolo. n_ tonait
; (V ! gy X U — gy) 8y

7’

SE Web_technology < A’ Web_technology

whereas it holds that e-Learning € {learning, repetition, consultation, practice, examination},
Web_technology < {document-based, dynamic, semantic, service, mobile, agent,
operational}, system_operationailty =~ € {coordination, conferencing, cooperation,
collaboration, consulting} and measurement_operation € {artefactBasedOp,
quantificationBasedOp, valueBasedOp, experienceBasedOp}.

Framework for a Service-oriented Measurement Infrastructure

The main benefit of e-Measurement leads to the availability of such e-Services and e-
Supports. Therefore, the measurement level could be characterized as immediate level
mainly. Otherwise, using e-Measurement the case of outsourced measurement is the typical
one. A usual measurement level description of measurement e-Services as external process
evaluation could be given as following.

aA,oect_o'ci ented ?valu.atlon. process
M P outsourced (G internal_goals % A oxiginal

" 22, $idi,

assessment semi_ P
X [V estimation)T one_meas._phases P meas._expert_staff

oxdinal scale analo#

> (QPsle-vakie [theeshold)

Another example of e-Measurement based on the “Web-based Measurement” at the
SML@b (http://www.smlab.de) as Java measurement service has the following
measurement characteristics (again as immediate measurement level) [Kunz'05].

aspect_oxiented evaluation product_aspects
M P outsourced : (G intetnal_goals % A oxiginal
assessment semi_automati A

X |\/] measutemen t)Tnme__mem. _phases p meas-_expe «t_staff
’

oxdinal scale intuition

> (Qbinsle-value | [ihreshold)

The best case of measurement level in e-Measurement could be a remote service of e-
Control (as server management) including the following measurement characteristics.

ca/;abilig_o'ciented
M P outsourced .

managin,
Frd zesources conteolli automatic practitioner

(G goa[é_in._u se < A o‘tigin.al x V] measurement)7_ whole_meas utement p meas._appl_staff

ta:io_.bca@ Aoftwa‘ze_u. nit L atic practitioner
9 (VCO P it x U standardiz ed) T whole_measurement P meab._a/)/:[_.ﬁtuﬁ"

f°'¢"w1¢ zesources
—> Eextension x A controlled

Otherwise, simple relationships could be built comparing the traditional kinds of
measurement described in the section before. It is simple to see that holds

traditional e—Measuremen t traditional
MP. first_metrics_appl. < Mp e—Service <~ MP product_qu ality_assurance.

and

Framework for a Service-oriented Measurement Infrastructure

e—Measuremen t traditional .
MP e—Control ~MP project_controlling

where the non obvious improvements of e-Measurement is reasoned in their better kind of
availability and more (world-wide) involved experiences as described above.

Summary: e-Measurement

In general e-Measurement is able to extend the availability and accessibility of
measurement tools and enables centralized software management in distributed
software development [LotDumBraKunz'05]. A comprehensive description and a very
detailed presentation of the software e-Measurement approach can be found in
[Lother07].

Especially the accessibility of measurement results by the provision of reports using
various formats and communication ways of the internet has been addressed
successfully by measurement tool producers. A lot of the described e-Measurement
aspects have found their way to practical implementations in large measurement tool
suites. Unfortunately the usage of ICT in the different implementation of tool
manufactures was not following a specific guideline or industry standard. Only general
standards or file formats has been used [DumBraKunz'05]. As the result the capabilities
of the software measurement tool enhanced only in perspective of single tool portfolio.
The interplay of tools from different tool manufactures is still challenging
[AuerGraser'03].

Other disadvantages of existing tools (automation, tailored functionality) are not aimed
by this approach [DumkeKunz'05b].

3.6. Agent-oriented Software Measurement

Software agents can be applied to solve new types of problems such as dynamic open
systems: the structure of the system itself is capable of changing dynamically and its
components are not known in advance, can change over time, and may be highly
heterogeneous. Usually, the AOSE would be divided in the three areas of software agent,
multi-agent systems (MAS) and MAS development (see [BauerMiiller04], [CiaWoo001],
[Knapiklohnson98], and [PanaitLuke06]).

Software agents: The essential components of a software agent form a measurement point
of view in the following scheme [Wille05].

Multi-agent systems: The viewpoints of agent-based systems — especially multi-agent
systems (MAS) - are generally defined in architecture models. We will also start with a
general description of the MAS aspects as shown in the following figure [DumkeKunz'05al].

Framework for a Service-oriented Measurement Infrastructure

object 1

coordinalion

ageni remole operalion

coop er&}y
L]

object 3
system management -
S

agent action

]

—1 MAS application

User
Interface

system
object

MAS

Figure 48: General components of multi-agent systems (MAS)

MAS development: The specification, design and implementation of agent-based system
and/or MAS differ from the OO development by starting with subjects (roles) and
introducing a training phase after the system implementation. The following figure shows
this AOSE development phase involving measurement and evaluation characteristics
[MenckeDumke07].

First, the description of measurement of software agents considering the new kind of
controlling by the agents themselves is described as:

AOSE
MP agents

mmagin'g ag.er.zts c°m°11"'g automatic
(G agent_intention g A otiginal x M measurement)7 tome_measurement

zatio_scale softwate_uwit tomati
zeposito uasi_stardard omatie
9(V » % x U) =)Tbome_measugmy,_t

agent_knowl edge_basis improved_agent
- E extension x A controlled

Especially, the measurement methods tgen: can be summarized as

size structure ~ complexity functionality

agent agent agent agent
8 ,'ug ,ﬂg 8

measurement € { u , M ,

description(development) description(application) description(publication)

agent agent agent
» H

ﬂ //—l 7

Framework for a Service-oriented Measurement Infrastructure

communicaton interaction learning adaptation negotiation

agent i ﬂagent , ﬂagent , ﬂagent agent

u , H ,

collaboration coordination ~ cooperation reproduction

agent agent agent agent
g ,,ug ,,ug g

ﬂ /ﬂ 7

performance specialization

,uagent , ,uagent }

Usually, agent measurement means controlling considering some of the product
characteristics during the run time. This situation can also be established for the multi-agent
system itself. Furthermore, agent controlling does not include any personal resources
explicitly. Hence, the high level of software measurement for agent technology is described
as:

ca,oabilig(_oxiented
MP inkouse .

managing product
(G goals_in_u se % A oxiginal

con.t'tollillg automatic
X V] measutement)TAome_meam zement

zatio_scale softwate_uwit romati
ito uasi_stardard , 0T
Q(V“'o‘m 7# X U 92 -) Taome_measuemen.t

formula product
- Eextension x A controlled

Otherwise, the process of agent and MAS development could be classified as an immediate
measurement level. The following description demonstrates this case of software
measurement ingredients.

aspect_oriented
MP inhouse

managin.g process
extetnal_goals oxiginal
(G - x A%

im./)tovemen.t semi_automati P
X V] measuxement)Tsome_ 5 t meas t_application_staff

otdln;l_male cxiteria semi_autom atic practitionet
Q(Q tepositoty X E threshold) 7 Some_meas t p 5 né_application_staff
wules_of thumb 'a rocess d
-5 E extension x A mprove

Summary: Agent-oriented Software Measurement

Framework for a Service-oriented Measurement Infrastructure

7

The agent-based measurement level comparing to the other paradigms described above
leads to the following relationships:

traditional e—Measurement AOSE
MP product qu ality assu rance. ~ mpe—Control <~ MP agents

based on the internal (in-house) measurement and improvement and considering the
training phase in MAS development as

traditional e—Measuremen t AOSE
M p Project_controlling , prp e—Quality <~ MP MAS development

which can be characterized as a moderate measurement process improvement.

3.7. Telemetry based Software Measurement
One approach to overcome disadvantages of monolithic tools was the invention of telemetry
based software measurement.

As an instrument for monitoring and control telemetry has been used over time in a lot of
different fields of application (e.g. oil pipeline operation, production processes, and
aerospace industry). The Encyclopedia Britannica defines the terms as: ,,a highly automated
communications process by which measurements are made and other data collect data
remote or inaccessible points and transmitted to receiving equipment for monitoring, display,
and recording.” [EncBrit08]

Mapping the idea to software measurement means that an automation of measurement
data capture, collection, and measurement data analysis should be achieved. Furthermore,
the measurement process should not interfere the activity of a developer.

In the area of software measurement telemetry-based measurement has to fulfill four
characteristics [JohKou*05]:

e Measurement data has to be captured automatically and non obstructive
e Measurements represent events which contains a timestamp

e All stakeholders have continuous access to the data

e Analytics enable short time controlling and forecast

The implementation of the telemetry approach requires the application of measurement
sensors. For the application in means of telemetry based software measurement a
measurement sensor can be defined as: a software program which is integrated into a
software development tool (CASE-tool), whereas multiple sensors can be integrated into one
tool. The sensor thereby is intended to capture measures, collect measurement data and to
transmit measurement data to analyzing tools or measurement data storage facilities.

Framework for a Service-oriented Measurement Infrastructure

Sensors are tool-
and data-specific

Analysis results/URLs

Mailer -
Emacs . Emacs . . Raw sensor
- ~Sensor__4 ~ FileMetric data is sent

— via SOAP
Ant ™

Ant e sensor -~ Build
PR \——j 7™ Hackystat

Commit _ Webserver |~ = , XML

CVs T database
cus = - sensor) Acil\nly v
e /{/-/
- //
Eclipse - Eclipse)
sensor

-1

\ Browser

Telemetry data and drill downs

Figure 49: basic architecture from the Hackystat framework [JohKou®05]

Especially the availability of the measurement data for all stakeholders requires a different
approach for the desired infrastructure because often used measurement standards defines
three different views on software measurement (technical, strategic, and tactical view) (see
chapter 2.3.3.). Furthermore the telemetry approach bears differences regarding software
management and constitutes three management requirements [Johnson01]:

e Not disruptive: no detraction, overhead or context swapping due to data collection

e Developer oriented: measurement and data collection direct out of the developer
activities and analysis are oriented to this activities

e In-process: analysis and evaluations are embedded into the development process.

QH‘M cullwerics.uni-magdeburg.de Prﬂject Save
OTTO-VON-GUERICKE-UNIVERSITY admin | analyses | preferences |
MAGDEBURG alerts | extras | help | home
Project updates were successful.
Name: hackySensor_OpenOffics
Start day: 01-Now-2005
End day: Undetermined
Member cullwer@cs.uni-magdeburg.de cullwer@gmx. de
emails:
Workspaces: hackySensor_OpenOfficel, projectWrite,
Description: The project to develop the sensor for the diploma thesis,
Maodify | Return to project management I

Figure 50: Hackystat sensor definition [Ullwer06]

A practical use case for example can be the measurement of changes in design documents.
Editing, printing, and expanding of interface definition in specification documents can be
measured for instance by a Hackystat sensor. A project at the Software Measurement Lab at

Framework for a Service-oriented Measurement Infrastructure

the University of Magdeburg has been established to prove the capabilities of the Hackystat
framework in this regard.

Daily Diary: Provides information about the specified day in & minute intervals {more...} Analyze |

Day: |28 | [Februar = [z008 =]

Column: M activities M Buffer Transitions I Commits " coverage I Dev Event
" DevEventSummary [File Metrics M mMost Active I~ perf ¥ Project

File

™ Unit Test " workspace

Format: lm

Time Activities Transitions Most Active File Project{s)

02:50 PM 7 UnoSensorlob.java hackySensor_OpenOffice

02:55 PM 7 UnoSensorlob,java hackySensor_OpenCffice

03:00 PM 10 UnoSensorlob,java hackySensor_OpenCffice

03:05 PM 9 UnoSensorlob,java hackySensor_OpenOffice

03:10 PM 7 UnoSensorlob,java hackySensor_OpenCffice

03:15 PM 5} UnoSensorlob,java hackySensor_OpenCffice

03:20 PM =3 UnoSensorlob,java hackySensor_OpenOffice

03:25 PM g UnoSensorlob,java hackySensor_OpenCffice

03:30 PM [1,2,0,1]

03:35 PM 4 OpenCfficeSensarinstaller java hackySensor_OpenCffice

03240 Pk FinentiffireSencorinetaller java hackwSencnr Cnentiffics

Figure 51: Activities over time analysis

The orientation on the developers view makes the telemetry-approach promising for specific
product related measures and measurements. Unfortunately the framework is limited to
Hackystat sensors and existing tools can only be included by data integration the
functionality cannot be used separately and the framework contains no methods for the
automated selection of appropriate sensors for a distinct information need (for example be
the use of semantic descriptions),

For the analysis of measurement results the Hackystat framework uses a browser-based
approach. The measurement data is stored on a public web server. That can counter the
efforts for higher measurement acceptance due to security concerns because measurement
results are normally a high valuable good in software engineering industry.

General shortcomings of Hackystat:

e Measurement is limited to Hackystat sensors, other approaches needs second
parallel infrastructure

e Development of measurement sensors is driven by committed non-professionals and
does not take into account professional information needs

e The framework does not take into account measurement standards

e Measurement is considered as enclosed task, needed integration into process
frameworks is difficult

Summary: Telemetry-based Software Measurement

100

Framework for a Service-oriented Measurement Infrastructure

Unfortunately, in practice common software measurement tools find small acceptance
due to their high costs, inflexible structures, missing integration capabilities, and
therewith unclear cost/benefit ratio. That disadvantages have been tackled by e-
Measurement approaches and by the definition of telemetry-based measurement.

Subsuming a combination of all approaches seems to be a promising approach for the
creation of a measurement architecture providing tailored functionality by using
measurement services, containing semantic described measurement data and
experience, and building an infrastructure by applying e-Measurement characteristics
and using ICT.

3.8. Measurement Paradigms Evaluation

This chapter discussed the software measurement involvements and different levels
addressing different software technology paradigms such as Web-based software
engineering (WBSE), agent-based software engineering (AOSE) and service-oriented
software engineering (SOSE) [DumkeKunz'08]. Based on these technologies an
infrastructure-based measurement service was discussed considering the quality assurance
themselves.

For an evaluation of the aforementioned paradigms a lot of different aspects have to be
taken into account. To provide a visualization of all aspects in one figure an adoption of the
kiviat diagram type using an interlacing approach has been chosen.

The following figure summarizes the different aspects of measurement process evaluation
considering the best at the outer circle.

Framework for a Service-oriented Measurement Infrastructure

Measurement ingredients

= Measurement RNy
¥F artefact A 1
,--"'""—;- _PI';d‘l_JCTE_-"‘ﬁH
Measurement -7 process - Measurement
goal PR () resources ~. method V4
-~ L i
i . O
(7 Managmg Product v process .
. i o vV resources 0 C&'leling
i \
. P o B S Shorman,
¥ ,:" & - pods () Damain pendant . Sfma;?gnemem \ \\
alimation
-/ Measurement ; (G mermal gaals () Other pendant {JIanabogy \\ Measurement %
3 ; quantity Apaceificati valuation Aspects o Assessment Vo value Vo2
assification
‘g ! et .. Under- 7, & Repository (o r Vs
! Q ! o g N o stan- 9, vanes it Ratic ¥ , 2
= | / O e minab ding O Casa study Or scale 3
@ Noemination 5 9 e \ (-
% ! I'i “ O .- 7 & o Interval Ll '|L 3
1 O scale =
% 1 -J| Anal Principle A IM : ... ;:‘:_Om |: "La
1 nalogy . eve) r— 2
@ | Criteria o0 20 dard
¢ | Measurement Fprmula Vet m S 38 Soci_ 800 r1.1mm,,d ! Measurement : =
. uni .
= | experience »O OO it it Manual_Orin- & 5y 0 unit Physical - 0 O-O-0 _ unit i
] - ' -
I \ Semi t'i-le:pr»-g::p Y unit unit "tm ‘H
\ uto m " CF some phases) (3 Managery, unt
\\ a matic Wiheale meas) Aspect) ,.’lf
] Q
5\ o, /
e O Analogy . Researcher ™~ r
1‘ wat c Camrection () .. Mg, axpen - ,
Refireman: o
Ze ‘. Measurement Em“f;;_’:ﬂ” P;?nﬁ; ;:;c::ironnr ¢ Messurament 5
ﬁ@o@ \ tools e AN Criteria v resources (JUndarsiood o P personnel J 6@0
[l ()) Imaraved
g e s /
06:-‘ @F% \\ \-\\-) Praduct * 0 Maniaged /:’ // o“@ {GGC.J
(<> T .) " onirolled - » =)
C’% A Fofmula process * P S \}3@ :Jo-,}
- — resources - ‘a
S e s 1
[Y artefact 4
~ -
ny -

- -
-
- ——
- ———

Measurement repercusssions

Figure 52: Software measurement process aspects and levels

Note the shown sub characteristics in this chart are described only one time per

measurement component.

Based on this kind of visualization we can demonstrate the different levels of measurement
processes in the following manner. Figure 53 compares the measurement process levels of
an example of traditional measurement, e-Measurement and AOSE.

Taking into account the aforementioned formal considerations, the resulting levels
representing ordinal scale type. The main reason is that the previous analysis only contains
ranking order.

As shown in Figure even the analysis of measurement paradigms based on ordinal scale type
provides valuable results which drawbacks of existing solutions have to mentioned and
which levels a measurement infrastructure should cover to provide a useful approach.

101

Framework for a Service-oriented Measurement Infrastructure

102
I METZEL, e corance | iy
- CT Measurement [MF }Igen s
artefact A ——
Measurement Measurement
goal - S method 4

e—deasurement r
] MPF . _Service (] s

- - . .. s

Measurement-/

quantity ‘."' - value
Q) v
| -
“ I
& |
|
Measuremant I Measurement
experience unit
E
\
!
\
\
\\ ,‘J
Measurement \ /- Measurement
tools \ personnel
TN P
~. e
Extended B -
. ' Improved !
experience E proved A

artefact

Figure 53: Software measurement process levels

Taking a closer look to the results in Figure 53 it is obvious that there is no single approach
which combines outstanding characteristics in every relevant category.

In comparison to traditional software measurement, e-Measurement and Agent-oriented

measurement delivers good results in most categories. Particular Agent-oriented
measurement is outstanding in some categories

The consequential limitation constitutes the need for building infrastructures from scratch
determine effort to avoid technological isolated solutions especially regarding the
capabilities to integrate existing functionality and data [DumkeKunz'06a].

Their major drawback, the missing practical usage, leads to other approaches for integration
technologies. One of the most observed in recent surveys is the approach of service-oriented
architectures [Schmietendorf07]. The idea of the approach and their capabilities for building
software measurement infrastructures is presented in the next chapter.

Framework for a Service-oriented Measurement Infrastructure

4.S0A-based IT Architectures

4.1. Introduction

After describing the state of the art and pointing out techniques and technologies that could
depict the way to next generation measurement tools, the general question arises if one
should start from the scratch with something complete new or is upgrading and enhancing
of existing solutions the better choice.

Observations in related IT areas show that the integration of existing solutions in new
approaches is often necessary to promote the acceptance of new implementations by
assuring former investments and enable a stepwise migration.

Mapping this idea to software measurement tools changes the viewpoint from product-
centered to process-centered software architectures [FarBraKunz'06].

A general definition of software architecture can be found in [BassClements'03]: “The
software architecture of a program or computing systems is the structure or structures of
the system, which comprise software components, the externally visible properties of those
components, and the relationships among them.”

Service-oriented architectures (SOA) as the prevailing approach and upcoming industry
standard for integration and creation of corporate IT architectures has been chosen as the
technological groundwork for the thesis in hand [RuSchmKunz*07al].

The following chapter is intended to describe the concept and uses technologies of service-

oriented architectures in a nutshell.

4.2. Aspects of Service-oriented Architectures

One of the biggest challenges in the software-engineering field is the paradigm change from
“from scratch” development without taking into account existing implementations to reuse
striving software development processes were the focus lies on the development of
functional services to establish service oriented architectures [Meinel06].

In difference to this definition of software architectures service-oriented architectures are
not restricted to a single program or system. Contrariwise they deal with company-wide or
as the case may be with cross-company IT system architectures.

A service-oriented architecture has to have an integrated process-oriented perspective of IT
system architecture. In the foreground of a service-oriented solution is not a single
application but the integration of different components which provide their functionality as
services.

Therefore a multi-tier integration architecture for a service-oriented architecture is needed.
Shan and Hua proposed a solution named SANTA (Solution Architecture for N-Tier
Applications) [ShanHua06]. This model was mapped to SOA in [Schmietendorf07]. The main

Framework for a Service-oriented Measurement Infrastructure

contribution is the determination of different layers for business process, basic services and
existing applications.

4 4 w 4 4
. . 2
- Access and interactions - SOA, ... -g
3 : o o
8 £ Business processes - SOAG .inessprocesses & %
3 £ ";-', S
= 8 Composite services - SOAq;nsitesenices § £
= = o
= el @ | o
Z w Basi . SOA 7] =]
8 @ asic services - Basic Services 3 2
[= < =
@ & Integration & communication - SOA eqration T &
3 g
0 Existing applications - SOA,stapnications <
v v \4 \J
SOAqeration Layers of the architecture components - SOA ., SOApeeloprment
- >

SOA Information management - SOAL i cering

Figure 54: Service-oriented integration architecture [Schmietendorf07]

Existing applications provide their functionality by using basic services or composite services
respectively to execute assigned business processes [RuSchmKunz*07b].

Such services can be spread across heterogeneous IT landscapes by being implemented in
different programming languages or they can only be integrated temporarily. But only as
recently as a standard technology for the implementation of services arises SOA solutions
found more and more acceptance. Especially the creation of the eXtensible Markup
Language (XML) and the usage of this language to describe services, relationship of services
and service interfaces forced the application of service-oriented architectures from the
technological side.

This technological viewpoint marked the consideration of service-oriented architectures in
the beginning of its appearance. This viewpoint was established in the definition of SOA by
the Gartner Group in 2003:

“Essentially, SOA is a software architecture that builds a topology of interfaces, interface
implementations and interface calls. SOA is a relationship of services and service consumers,
both software modules large enough to represent a complete business function. Services are
software modules that are accessed by name via an interface, typically in a request-reply
mode. Service consumers are software that embeds a service interface proxy (the client
representation of the interface).”[Natis03]

Framework for a Service-oriented Measurement Infrastructure

With raising application and propagation and the determination in different layers (see
Figure 54) the definition what a SOA is about shifts from the technological perspective to a
methodical one where SOA is defined as a paradigm:

“Service-oriented Architecture is a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains.” [MacKenLas 06]

4.2.1 Demarcation against other Integration Proposals

The idea of service-oriented architectures has not been emerged with the development of
the web service technology [Dostalleckle04]. The basic concepts were presented in the
surrounding of distributed communication models like DCE (Distributed Computing
Environment) or CORBA (Common Object Request Broker). Both approaches were focused
on client/server-based systems and to a less extent on the implementation of company-wide

integration architectures.

But in difference two this two techniques there are approaches for company-wide
integration solutions in the context of Enterprise Resource Planning systems (ERP) and in the
Enterprise Application Integration (EAI) approach [Schmietendorf07].

Integrated ERP systems offered for example by SAP or Oracle provide a consistent and
homogeneous data model to realize integrated and unified business processes on an
overlying level. They apply data and process integration to provide a consistent presentation
[Woods04].

Due to the concentration of ERP systems the approach of enterprise service architectures is
not an alternative the area of software measurement infrastructures.

4.2.2. Technological Aspects of Web Services

Service offers provided by service-oriented architectures are mostly characterized by
attributes that appear in the context of component-based and object-oriented software
engineering. Additionally some new characteristics emerged such as the unavailability of the
source code in most cases and the fact that a service can be already running at the point in

time when the service is integrated in new developed architectures.
In general the characteristics of services can be sorted into two different aspects [Erl05]:
Technical characteristics

= Aservice provides functionality across well defined interfaces. The internal details

of the implementation are hidden.

= Services support a loose coupling. That means that modifications in one service

not entail modifications in other services

= Services are executed autonomic. The needed and used resources are controlled

by the service itself.

Framework for a Service-oriented Measurement Infrastructure

= Services support reuse in principle. Therefore design guidelines have to be

established as mandatory.

= Services are stateless. Information is stored only for a specific session.

Mechanisms for the storage of a status are allocated at a higher level.
Functional characteristics

= Services can be assembled by using existing applications or services. New
requirements can be implemented by the orchestration or choreography of

existing services.

= The usage of a service implies an agreement about functional and non functional

requirements.
= Services can be discovered on demand by human or technical users.

Even if it is only one possible way of implementation, service-oriented architectures are
linked most times with web services. That is the case because the technology of web services

progresses the implementation of SOA’s very much.

According to the definition of the World Wide Web Consortium (W3C) a web service is a
“software system, designed to support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-process able format.” [BoothHugo*04]

The cornerstone for the pervasion of web service technology was placed by the prevalence
of XML with its advantages of platform independence and readability for machine and

human users.

XML by itself is not only a mark-up language in contrast to the name. In fact it is possible to
define new languages by using the contained rules and methods. Especially the separation of
the content and the logical structure of a document to describe the enclosed data is a key
target. In this way the term “meta-data” was inducted to depict the fact that enclosed

content is described with a logical structure.

A language defined with XML consist a number of mark-up tags and a document specific tree
structure. The combination of both is called content model and stored as Document Type
Definition (DTD) or XML Schema (XSD).

The usage of XML can provide some advantages in the area of service-oriented architectures.
XML can be used as a universal exchange format data description and interface definition to
enable communication between applications or services. XML offers the possibility of using
enclosed meta-data to describe the document structure with its hierarchy and data
elements. But the XML file and the corresponding scheme definition is linked by loose

coupling which enabled platform independent implementation [ChaBer08].

Framework for a Service-oriented Measurement Infrastructure

107
Thus, four key attributes of web services can be declared [KosLey04]:

e aweb service can be identified by a Uniform Resource Identifier (URI)
e the web service interface is machine readable and described in a standardized way
e aweb service communicates with other software systems through XML messages

e a web service acts autonomously, a distinct observation in which way a message is
processed is not intended

This key attributes direct to a so-called web service protocol stack with different
technologies and specifications for the different attributes. The several building blocks are
described next.

uDDI
WSDL
SOAP

XML http

Figure 55: Basic web service protocol stack [KosLey04]

The communication between web services (which consists method invocation, parameter
and result transfer) is realized by the Simple Object Access Protocol (SOAP). Even if the usage
of the Hypertext Transfer Protocol (HTTP) is not mandatory SOAP is often summed up by the
formula SOAP = XML over HTTP [KnuDim*03].

A SOAP message consist of a so called BODY with data and an optional HEADER with
additional information for example how the data is coded or which authentication is used.

<?xml version=1.0">
<env:Envelope xmins:env = http://www.w3c.org/soap-envelope>
<env:Header> ... </env:Header>*

<env:Body>

<env:Fault> ... </env:Fault>*

</env:Body>

</env:Envelope>

Figure 56: Structure of a SOAP message

Framework for a Service-oriented Measurement Infrastructure

According to [Short02] the usage of SOAP provides some advantages in the area of service-
oriented architectures. As explained above SOAP is independent from specific transport
protocols. HTTP is specific but since a SOAP-message is just a XML file it can be transferred

with other protocols.

Existing middleware systems like J2EE (Enterprise Java Beans) or COM+ (Component Object
Model) can be modified to support SOAP. In this way SOAP enables interoperability between
different middleware approaches.

And as most important advantage SOAP is programming language and platform independent.
Every technology that supports XML and HTTP can interact with other technologies doing
the same.

Having described the structure of messages the next important point is the definition of
interfaces. The Web Service Description Language (WSDL) is used for the XML-based
interface definition for web services.

<wsdl:definitions xmins:wsdl = ,http://w3.org/...“>
<wsdl:documentation ... />
<wsdl:types> Schema Imports </wsdl:types>
<wsdl:message> Nachrichten </wsdl:message>
<wsdl:portType> Operationen </wsdl:portType>
<wsdl:binding> Protokolle und Formate </wsdl:binding>
<wsdl:Service> Service Definition </wsdl:Service>

</wsdl:definitions>

Figure 57: Structure of a WSDL description

This WSDL definition accordingly describes mainly technical aspects to enable the

implementation and not quality or commercial aspects.
The WSDL definition addresses three major questions:

1. What offers the service? That defines what messages that are sent by the service and

which operations are offered for clients of this service.

2. How are the messages defined? That defines which protocols are used by the web service
to encode the messages (afore cited SOAP is the standard protocol but other protocols can

be used to).

3. Where the web service located? Typically the name and physical address (e.g. Unified
Resource Identifier) is defined here.

Framework for a Service-oriented Measurement Infrastructure

support Input/output
Interface Operation Message What?
invocation
protocols encoding How?
Binding
implements
provide
Endpoint Service Where?

Figure 58: Overview about WSDL concepts [KosLey04]

Figure 58: Overview about WSDL concepts [KosLey04] presents an overview about the WSDL

concept and the three described aspects.

Another basic technological specification for services is UDDI (Universal Description,
Discovery, and Integration). This specification is used to identify and discover widespread
web services. The main goals are cataloguing, indexing and registration of web services.

Therefore the contained information is distinguished into White-, Yellow-, and Green-Pages.

White- and Yellow-Pages contain information about the service provider (contact
information and industry sector) and the Green-Pages contain the technical description of
the service (basically the WSDL definition). The fundamental application of UDDI is shown in

Figure 59

UDDI

Search Registry

Provider

Y

Client

Utilization

Figure 59: Basic application of the UDDI concept [KosLey04]

From technical viewpoint UDDI provides an expandable data model for the description of
web services and possible multiple client-side or server-side interfaces which support the
registry, the search and the administration of services.

In contrast to other integration approaches SOA enables to assemble different service
activities. In this context the terms orchestration and choreography have been stamped to
describe the different way of cooperation of web services [Dostalleckle’05]. Thereby

110

Framework for a Service-oriented Measurement Infrastructure

orchestration describes the executable aspects of a business process from a process
viewpoint with a central controlling instance. On the other hand choreography describes the
tasks and the interplay of different processes with a peer-to-peer characteristic.

The goal of orchestration is to map a business process to a sequence of atomic service
implementations. The responsibility for the process execution and the execution of the
behind services is assigned to a single stakeholder (who is in charge for the single business
process) [Erl05]. Whereas, the choreography approach combines the process executions of
different stakeholders and realizes an intercorporate-wide process handling [Erl05].

Orchestration Choreography Orchestration

Acknowledge

A 4

F Y

SOAP

Accept

Acknowledge

%
%
Fy

h 4
%
%’

WS-BPEL WS-BPEL

Figure 60: Principle of orchestration and choreography [Peltz03]

For the two approaches different web service technologies has been established. For
orchestration the Business Process Execution Language for Web Services (BPELAWS) and for
choreography the Web Service Choreography Description Language (WS-CDL). Due to the
fact that BPEL has become a de-facto standard and under consideration of the drawbacks of
existing choreography solutions [BarrosDumas’05] the explanations are constrict to

orchestration in the following.

BPELAWS is a XML based programming language and enables the mapping, controlling and
execution of business process by using of web services. Every business process can be
defined as an abstract process (definition of process characteristics) or an executable

process (definition of internal implementation).

With BPEL it is possible to define which information are transferred to a specific destination
and which functionality is called in a specific location. Additionally exceptions (for example
error processing) can be defined. BPEL enables the user to define specific sequences of web

services without taking care of their internal implementation.

Framework for a Service-oriented Measurement Infrastructure

111

Thus, for every process or sub-process the following attributes are defined [AlvesAssaf'07]:

Partner links. Connection of stakeholders to WSDL-port types
Variable declaration by using XML schema
Definition of events, compensation, fault, and termination handlers

Description of the desired process action

For the description of the desired process action a set of atomic (e.g. invoke, receive, reply,

assign, throw, validate, exit) and structured activities (e.g. process, scope, sequence,

repeatUntil, forEach, if, flow) are predefined.

For the definition of BPEL documents often GUI based tools (e.g. Active BPEL Designer) are

used but they can also be generated from graphical notation (e.g. Business Process Modeling

Notation). The execution of defined processes is done by so-called WS-BPEL engines

[RudKunz*07].
Process description o CUED DE D A
< | 0N .
BPEL activities: = | Operation A,
Operation A,
Request
5 ., » <invoke>
53 <receive>
T % <flow> =
2 <assign> (GWeo) — | Web Service B
o \Service/
© 3 <sequence> - &) :
s =2 <switch> l — 2| Ovperation B,
T3 Operation B,
n © . "
2% a
as Py A
Response g o [:'5';";'j:c;| befL
-— — - ~ | Web Service C
Runtime environment «—> g Operation C,

Figure 61: Architecture of a BPEL environment [Collaxa03]

112

Framework for a Service-oriented Measurement Infrastructure

Summary: Service-oriented Approach

EAIl solutions are able to realize business processes by using applications or data source
over a network. Thereby they are able to implement company wide architectures. Such
solutions often only provide a technical view on integration while describe in the core a
platform for message exchange, protocol conversion, and mapping of information via a
bus system [ReiSchm*03].

By contrast a Service-oriented architecture provides integration on a functional
dimension and thereby a decoupling of applications. In that case not applications are
used but functionality is invoked. By using standardized service descriptions, services can

be exchanged without affect the execution of superordinated business processes.

Only for the integration of existing measurement databases EAl techniques should be
taken into account to provide as much empirical knowledge as possible for any Service-
oriented architecture.

Currently the Web-Service technology is used mainly within the application development
as substitution of proven middleware technology as for example CORBA. The arising
advantage consists of the resulting technology independence. In this way a combination
of techniques like J2EE from SUN or .net from Microsoft is possible [Schmietendorf07].
Through the standardization Web Services can be used in manifold use cases they can be
integrated just in time for various business processes far beyond the boundaries of the
individual enterprise.

4.3. SOA-capability of Software Measurement Tools

The analysis of existing measurement tools was performed with two different viewpoints:
a) A survey of manufacturers about existing products and existing integration opportunities
b) An independent analysis of existing measurement tools concerning the SOA-capability

The presented detailed analysis covers aspects concerning among others functionality,

interfaces, security, payment options, and supported standards [SchmKunz'07].

As an additional result three major capability levels of service interfaces has been identified:
1) Output of measurement values
2) Input of measurement data
3) Control and triggering of measurement services

In this way we consider two different views for interface evaluation: the used technology

and the provided functionality.

Framework for a Service-oriented Measurement Infrastructure

113
4.3.1. Assessment about SOA-capability of measurement tools

The target of this section is to analyze how far the aspects of service-oriented architectures
have penetrated into the area of software measurement tools.
The SOA-capability depends predominantly on import potentiality of measurement data,

export potentiality of results, and the implemented facilities to control the tool.

measurement or test tool

Web Service

Web Service

Web Service

Figure 62: substantial functionality for SOA-capability
Since the most important thing for the usage of a distinct tool is the occurrence of interfaces
for the export of measurement results, the analysis is focused on this aspect.
At first, a classification of interfaces according to the needed effort to adapt the interfaces
into a service-oriented measurement infrastructure is introduced. And five major categories

are identified and pointed out in the following table.

Table 15: Effort classification for SOA-execution of measurement results

Existing Web-Service- | Very marginal effort

Interface

XML-based Interfaces Low effort (simple creation of web-

services out of XML-files and databases)

Standardized exchange | Effort at medium level

format

Proprietary exchange | Medium up to high effort

format

No exchange possibility | Continuous effort due to manual

(only paper and printout) | information transfer

By applying this classification approach to the 39 analyzed tools, one can see that over half
of all tools just have a proprietary interface with a medium up to high adoption effort. If a

measurement tool provides more than one type of interface the one with the lower effort

114

Framework for a Service-oriented Measurement Infrastructure

was captured. The results are pointed out in Figure 63 while the detail results for each tool
are put into the appendix.
Based on the results one can reason that the majority of existing measurement tools have a
medium or high effort for embedding them into an SOA. Only nearly one third (31%) need
just marginal or low effort.

m51%

015%

mno export functionality
m properietary format
ODatabase connection
OXML-based interface
mWeb Service interface

Figure 63: Occurrence of different interface technologies
The second focus in the survey was on the combination of the functionality of different tools
and/or the possibility to control the tool by an interface. This is important for the SOA idea
of measurement tools because the main goal is to create a tailored measurement tool out of
the functionality from different independent tools.
The results in this area are very uneven. Over half of all the tools just provide proprietary
interfaces and in this way no possibilities exist to access functionality or to control the tool
via the interface. Another 10% use database connections to transfer data in the first instance.
These connections also do not have the precondition either to control or to access tool
functionality.
Even if the other 34% do not provide options for controlling or accessing functionalities, the
usage of XML at least allows enhancements in this direction in the near future.
As a subsumption one can say that the functionality of the presented interfaces does not
deliver the needed requirements for service-oriented architectures. In this way the
realization of a software measurement tool as a web service offer is the exception
[NewLomO3].
Therefore, the second step was to make a survey among measurement tool manufactures
how far their products are applicable to create service-oriented measurement
infrastructures, and if they are available as a service offer, respectively.
Another facet was to find out if there are any planed ideas for SOA’s in future releases, if at

the moment there is no service-oriented functionality.

Framework for a Service-oriented Measurement Infrastructure

us
4.3.2. Survey among Measurement Tool Manufactures
As an outcome of our survey, over 30 replies has been received. Some of the tools were part
of our first assessment and, in general, one can outline that the answers give a
representative view on software measurement tools from the manufactures point of view.

The first look is again on export interfaces. The results are shown in Figure 64 and they are
corresponding to the first assessment. Every tool has an export possibility but the effort to
integrate them into SOA’s is not marginal due to non service-able connection type.

Is it possible to export data out of your product?

0% 10%

41% @ Yes, via proprietary format
B Yes, Via standardized format

O Yes, via XML-based format

o No

Figure 64: Results about export interfaces

The next questions target another important fact for Service-oriented Measurement
Architectures: the combination of different tools according to distinct functionality. The
results can be that for every distinct information need, different functionalities from
different tools were combined to a new service by using web service orchestration [Peltz03].

The results point out an optimistic view to this issue: over 80% of all manufactures say that
their tool can be combined with other tools (see Figure 65) and nearly 80% say that single
functionality of their tools can be used independently (see Figure 66).

As aforementioned an approval of this appraisal is very doubtful. The first reason is that tool
manufactures often understand combining opportunities as the option to combine tools
from their product portfolio and not to other tools, for example by using open or
standardized interfaces or connections. Because of the fact that more features have been
implicated into the concept of tool combination, the independent assessment is not
rebutted.

Framework for a Service-oriented Measurement Infrastructure

Is it possible to combine your tool with other measurement
tools?

19%

@ Yes, via proprietary interface
m Yes, Via standardized interface

oONo

48%

Figure 65: Combination of different measurement tools

Is it possibile to use only a single functionality?

23%

@ Measurement
@ Analysis
O Data-storage

13% oNo

30%

Figure 66: Usage of single functionality

Especially for commercial software, the question about the different type of license models
is very important. If a software measurement tool provides functionality as a web service,
the license model should provide pay-per-use to avoid high acquisition cost and therewith
open up new possible users. Unfortunately this aspect is not considered by the tool

manufactures at the moment [Kunz'06a].

Only 3% provide a pay-per-use option and just a quarter provide at least the possibility to

purchase a single module/component.

Framework for a Service-oriented Measurement Infrastructure

Which type of licenses are available?

@ Purchase of a single Product
29%
45% @ Purchase of a single
module/component
o Pay per use (online)
3%

O Other

23%

Figure 67: Different types of licenses models

Summary: Current Situation of SOA-based Measurement

Subsuming the assessment and the survey one can say that existing measurement tools are
in general SOA-capable even if there is some effort to invest on.

But the establishment of new license models for Service oriented tools is necessary in view
of the current situation. But to create a real benefit of Service oriented architectures, the
possibility of combination among different measurement tools has to be improved.
Therefore, an accepted SOA Guideline which describes requirement and interface
requirements has to establish and to create an applicable approach for Service
standardization and collaboration. Tailored functionality and new license models in the
area of software measurement tools especially for small and medium-sized businesses can
boost the application of software measurement in this area [Kunz'06b].

117

118

Framework for a Service-oriented Measurement Infrastructure

5. Service-oriented Measurement Infrastructures

The analysis of existing measurement tools and the target of implementing a standardized
measurement process make it reasonable to take into account the technological solution of
service-oriented architectures and the paradigm of providing services rather than monolithic
tools. The application of the mentioned technologies could create a measurement
infrastructure which should be defined as:

“A Measurement Infrastructure is an adaptable, automated, and coherent substructure for
technical and organizational securing of a Corporate Measurement Program, through the
holistic usage of CAME tools, a persistent data storage in a measurement database, and a
measurement data exchange by the use of well defined interfaces.”

To distinguish between the terms architecture and infrastructure for the thesis in hand an
infrastructure is defined as an implementation of a distinct architecture.

Applying the technologies and the paradigm of service-oriented architectures to software
measurement one will early come to a point that a lot of different ways exist to implement a
software measurement program by means of SOA. Taking into account the described basic
characteristics of SOA and the outlined needs for a software measurement infrastructure, it
is obvious that the framework cannot end up in only one distinct measurement tool.
Contrariwise, the thesis in hand aims to present a general framework for creating a service-

oriented infrastructure for various software measurement use-cases.

The previous chapter points out that different aspects have to be taken into account to
successfully implement a software measurement program. Summing up, the following goals

are defined for a service-oriented measurement infrastructure:

- No limitation to product measurement. Support of resource and process
measurement and establishment of

- Support of corporate measurement programs

- Controlling and enhancement of measurement process level and continuous
realization of a standardized software measurement process

- Overcoming of general measurement tool shortcomings

- Establishment and support of software measurement repository

- Inclusion of a measurement experience base

- Application of ICT and guideline for the interplay of tools of different providers

- Standardized approach for integration of different services

- Enable different license models

- Enable automated procedures for measurement service orchestration according

to a specific information need

Framework for a Service-oriented Measurement Infrastructure

In order to reach the defined goals different systems and components are needed for very
different functionalities. To provide an overview Figure 68 shows the different elements and

how they are interacting together.

Measurement Process Definition - — Quality Driven Design
Semantic Measurement Description

]

o
80060,

L
Setvice Repository
b
> Service
\irapper Measurement
" A * Measurement Service Legacy Service
Service-oriented Measurement Evaluation Service
Pracess -
i C =A s e
Measurement Process Evaluation = %
................... — I = ;: 'El Empirical data
........... e == | L 5
¥ [o] —— 9 ’ [y
I =N == @ ;
: Service-Oriented —_—
Measurement Data-base = %
Y
=

Figure 68: Simplified architecture and included systems of the framework

Every decision for on a specific technology or on a specific subset of entities has been done
with the target to create a coherent solution and not to cover all possible use cases.

The increasing economic relevance of software measurement for organizations cannot be
neglected. But issues like complexity and missing traceability of measurement processes
constitute the need for direction and guidance in this regard. This need is satisfied by the
development of the Practical Software Measurement (PSM) [PSMO01]. The main concepts of
PSM provide a foundation for the international standard ISO/IEC 15939 (see Chapter2.3.3.3.
The ISO/IEC15939 Software Measurement Process.).

As described in chapter 2 the ISO/IEC 15939 Information Technology — Software
Measurement Process helps to identify, define, select, apply, and improve software
measurement in any software development project. This standard describes a compliant
measurement process concerning its purposes and outcomes combined with appropriate
activities and tasks. Thereby the core measurement process is divided in the sub-processes
“plan” and “perform” using the information needs as input, for example by using the Goal
Question Metric approach (see chapter 2.3.3.1. The Goal-Question-Metric Method) with the aid

of appropriate business goals.

119

Framework for a Service-oriented Measurement Infrastructure

For a better understanding the following figure draws the scope of the intended
infrastructure is shown in context of the ISO standard.

Requirements for measurement Technical Measurement user feedback
{ and management
processes

Information needs Information products

shsasssssssasssrssssassnassssnsssssassssnssnsnssssnsasnasnssnnnsnasfosssssansssssfonnanse

Core measurement process

Planning

Establish & -~ Plan the information Perform the Evaluate
sustain ;\ measurement measurement R measurement
measurement CommiEment process process Information
cornmitment . products &
: performance
M Measures

Measurement experience base

Information products &

Scape of intended :
evaluation results

infrastiucture

Improvement actions

T

L R R L R

.

Figure 69: Scope of ISO/IEC 15939 standard [ISO/IEC02]

To date, the core measurement process can be facilitated by monolithic software
measurement tools taking a set of metrics and the measurement object as input and
producing measurements together with some kind of evaluation or analysis
[KernchenKunz'07c].

Owing to high license costs of such monolithic and rigid measurement tools, the real benefit
is hard to identify. Because of that the commercial application of software measurement
seems to be increasable by using flexible infrastructures without high acquisition costs and
with the possibility to tailor the functionality according to a project specific measurement
information needs.

Framework for a Service-oriented Measurement Infrastructure

Measurement
Service
Consumer Find

Registy

aynoex3 g pulg

. r
Collection [-_ Measurement Register
Service

Storage L7 Provider

Analysis

Figure 70: SOA-based Measurement Process

Based on the general characteristics of ISO/IEC 15939 a service-oriented measurement
infrastructure with different services and components should be specified and implemented
to realize the defined processes and activities.

To give an overview about the desired infrastructure Figure 71 describes the core
architecture and the core elements aligned to the ISO/IEC 15939 measurement process

standard
Resource Identification
Service
directory Business
Goals [*
GCEM
Y
Infarmation
need
Measurament Establish OF
Services
\) Process Description
Integration-
engine >
Plan GP
. ISO/IEC 15939
Trigger -
SOon Perform OF Orchestration-
Process (OP)
Fa : .
Infarmatian s
product 4 |Evaluate OP
Level 2 Level 1

Figure 71: Different SOMI orchestration processes [Kunz 06f]

121

Framework for a Service-oriented Measurement Infrastructure

122
To create such an infrastructure it is necessary to define the technology or the notation in

which the different elements or specifications have to be implemented or described. In this
way a level-based procedure was used as shown in Figure 72.

Process-Definition
(BPMN)
Orchestration-Level
(BPEL)

Composition-Level

(SOAP)

Figure 72: Level-based infrastructure composition

5.1. Process Definition

At first it is essential to describe the process model in a semantic manner to obtain a high-
level view of the entire measurement process and to enforce a standard compliant
procedure. Therefore, the Business Process Modeling Notation (BPMN) [OMGO06] has been
applied. In doing so this representation describes all processes, sub-processes, properties,
and sub-properties of ISO/IEC 15939. This process model is used to divide the complete
measurement process into different architectural components. Furthermore, the BPMN is
used to produce the business process diagram on the basis of the ISO/IEC 15939 process
model. Figure 73 presents the standard at a glance. Since he has been described in detail in
chapter 2.3.3.3. The ISO/IEC15939 Software Measurement Process, the following
explanations are shrieked to the BPMN implementation.

Technical and 1~ Establish and
Management . " 2-Plan 3 - Perform 4 - Evaluate
sutain commitment
processes
[[F] O [F]

A

L
<1

Measurement Experience Base

Figure 73: Simplified ISO/IEC 15939 process overview

Framework for a Service-oriented Measurement Infrastructure

123

Technical and Management Processes

The Technical and Management processes represent the overlying business processes where
a requirement for measurement is driven by an information need which is intended to be
satisfied by the result of an instance of a measurement process: information product.

(2\
Technical and Management processes

Requirements for
measurement

Information need Information product

Figure 74: Technical and Management processes

The first process step is intended to establish and sustain measurement commitment. Assign
resources and identify measurement scope are the subtask for this sub process.

1 — Establish and sustain commitment

()—b{ Accept requirements H Assign resources }—{)

Figure 75: Establish and sustain commitment

The trigger for the measurement commitment has its origin in the requirement for
measurement from Technical and Management processes.

[Technical and Management processes]

,,,,,,,,,,,,,,,,,,,,,,,,,, 4 Requirements for
’ measurement

Establish
commitment between

Commitment shall be

Accept requirements
for measurement

_% Identify scope management and communicated to
2. staff to measure organisational unit
3 'c
(2}
°
eE
e
L
o E
= 0o [P A5 . T
.% O cg Assign responsibility Provide individuals
2 =15 for measurement
w

L 2 8 process measurement process

9]

“

Figure 76: Detailed view on process Establish and sustain commitment

Framework for a Service-oriented Measurement Infrastructure

Plan the Measurement Process

The first out of two core measurement processes is plan the measurement process. Major
input is logically the information need and the measurement commitment (scope and
resource allocation). Additional improvement actions from earlier iterations of the

measurement process

2-Plan
Characterize Analyze Define data collection, Review, approve, Acquire and
o .) Select . - and provide)
organizational information analysis, and reporting deploy supporting
: measures resources for)
unit needs structures technologies

measurement tasks

Figure 77: Plan the Measurement process

The most important process step thereby is analyze information needs and within select
measures. Activities in this regard should use experience from previous mappings of
information needs and software measures and follow a standardized procedure (e.g. Goal-
Question-Metric or Factor-Criteria-Metric paradigm). The second important step is the
definition of evaluation criteria’s. Thus, the definition of a quality model has to be done in
the plan process.

2
E
9 B
@ 5
[Technical and Management processes] R Characterise organisational unit
a
Be
s 5
Information needs 5%
c
L S
£
.§ — - Selected information
£ Information needs Identified Information needs needs shall be
= for measurement informatior_| ne_eds to be addressed documented and
5 § shall be identified shall be priortised shall be selected communicated.
=2e
atisfying
9 measures
5 SERETEE identified and
@ andidate measures
© Measures shall be selected from
9 o that satisfy selected Belected from the Selected measures candidate
g = information needs P ateincase shall be documented measures
° g shall be |dent|f|ed
a < i
g 3 D by
g o their name, unit of
o £ measurement,form
2 5 al defination the
3 58, Procedures for data Procedures for data Configuration method of data
= § se collection, including analysis, reporting management collection, and their
% g gg storage, verification information products procedures shall be link to Information
= c=>9 shall be defined shall be defined. defined. needs
= ®e2
T L
First Procedures are o i
ot
defined secondly 256 g Criteria for evaluating Criteria for evaluating
integrated and used EEw9, information products shall be measurement process shall be First reporting is
laterally SESZ® defined defined defined and then
55888 criteria for
M ie = evaluating
Information
P products
=
>93
e3¢
= 29 Results of measurement planning aszislziéll-geff)rs?:\” Iziqr::t?:
232 shall be reviewed and approved [9
s08 planned measurement tasks
23Ey [—
38:%
zall
>
3
=
g
@
g g.% Available supporting technologies (Selected supporting
oE 2 = shall be evaluated and te shall be acquried
.*5- 3 g appropriate ones selected —L and deployed
gs%
<as
{Measurement Experience Base] (Evaluate]
Experience I'"‘:;“’:r"‘;em

Figure 78: Detailed view on Plan the Measurement process

The results of the sub process are a set of appropriate measures aligned with project specific

threshold as a quality model.

Framework for a Service-oriented Measurement Infrastructure

Perform the Measurement Process

The second core measurement process is Perform the measurement process. Thereby the
measurement of software engineering artifacts, data collection and analysis, as well as the
communication of results is the major steps. The major output of the perform process and

therefore of the core measurement process is the information product.

3 — Perform

Integrate procedures
into organizational
processes

H

Collect data and
meta information

H

Analyze data and
develop information
products

HCommuncate results

Experience from previous iteration is mainly used in regards of measurement analysis. The
analysis and results communication will be done in an iterative manner as long as

Figure 79: Perform the Measurement Process

measurement data is collected.

125

Framework for a Service-oriented Measurement Infrastructure

126

[Technical and

Management processes]
Information
Products

The procsdyrgs are The proce‘,'}dures are
integrated which are integrated;which are
already defined in already defined in

5244 5.214.2

Data generation and Integrated data Data analysis and
collection shall be collection procedures reporting shall be
integrated into relevant shall be communicated integrated into relevant
process to data providers processes
Collected data shall be stored,
including any context
Data shall be collected information necesary to Collecte\(/:le(:i?it:dshall e
verify, understand, or
evaluate data Data analysis

|
results,

indicators,
interpretations

| 1 &supportive

L information

make up the
‘(Collected data shall Data analaysis results Information products Information
‘ be analysed shall be interpreted shall be reviewed Products

Integrate procedures

Collect data

Perform the Measurement process

products

Communicate results

Analyse data and
develop information

[Measurement

q Information products shall be
Informatézrljéo:&ztds shalllEs communicated to the
measurement users O
Experience Base]
These processes
are performed in
an Iterative manner

Experience

Figure 80: Detailed view on Perform the Measurement process
Evaluate Measurement

The last process step and the most unique one of the ISO/IEC 15939 measurement process is
Evaluate measurement. As the name implies the focus is to evaluate previous procedures
and to identify potential improvements. Especially the mapping of information need and
measure should be evaluated in this process step.

4 — Evaluate

Evaluate information Identify potential
products improvements

Figure 81: Evaluate measurement

Beside the pure software measurement data (derived from perform) the measurement
experience base is feed with information in this sub process.

Framework for a Service-oriented Measurement Infrastructure

127

informatin products evaluated
against specified evaluation
criteria and conclusions on
strengths and weaknesses of
information products drawn.

Lesson learned from
the evaluation shall be
stored in
~Measurement
Experience Base".

Measurement process
shall evaluated against
specified evaluation
criteria.

Evaluate information products and

measurement process

Evaluate measurement

tPgt_el;tial irgprovergelg:: Potential improvements Potential
srlmglrlt—)rgaidlgr?ti%?d S to measurement process improvements shall
b shall be identified. be communicated.

[Measurement Experience
Base]

B

Improvement
actions

Identify potential
improvements

[Plan]

Evaluation Result

Figure 82: Detailed view on Evaluate measurement

5.2. Service-oriented Measurement Infrastructure detailed Description

The automation and technical support of the several processes and sub processes differs
between each other. The fulfillment of the measurement of identified measures and the
collection and storage of the measurement data is freely offered by existing tools but as
described in previous chapters a set of different services is necessary.

In general a service-oriented measurement infrastructure need a throughout support of a
complete measurement process. That drives the look to sub processes which are barely
automated or supported: the mapping of an information need with distinct measure and the
evaluation of measurement processes. But obviously this throughout implementation is
necessary for a proof of concept of a service-oriented measurement infrastructure.

The question arise which use case is appropriate for a first prototype, which components
from common SOA’s could be used and which components have to be implemented specific
as measurement services.

Some restrictions have been made regarding supported measures and measurement
artifacts. To choose a widespread and well accepted set of measures for a relevant use case
the Chidamber & Kemerer metrics for object-oriented design have been selected. The
measurable artifacts have been constricted to Java as the major programming language in
the scientific area as well as the open source community. But even with these constraints
the pictured scenario (C&K metrics and Java technology) can be taken as widespread in
software engineering practice.

Since, their exists manifold possible technical solutions for every described framework
element and the fact that the technical solutions are only part of a device record out of

Framework for a Service-oriented Measurement Infrastructure

which a distinct infrastructure is created at runtime. The presented implementations can
only provide a glimpse of resulting infrastructures.

5.2.1. GQM Process Model

For the task of mapping the information need with a measure two standardized approaches
has been applied: the Goal-Question-Metric Method (GQM) and the machine readable
description of knowledge about metrics with ontology’s.

As presented in chapter 2.3.3.1. The Goal-Question-Metric Method GQM contains a holistic
measurement process. Since, the ISO/IEC 15939 was chosen as the overall process model,
the following BPMN diagram is limited to two sub processes representing the GQM
paradigm for selecting appropriate measures for defined goals and thereby information
need.

2 — Identify 3 — Produce 4 Collect and 5 — Analyze
Q’_> 1 - Prestudy H GQM goals GQM plan val|date data data 6 - Package m
[+] [+ [+ [+]

1 — Prestudy

Characterize
organization and
identify org.
improvement

goals

Identify available
inputs,
preconditions,
constraints

Identify and
characterize
candidate
application projects

Select project and
identify project
goals

2 — Identify GQM goals

Specify
. Rank and
measurement Specify GQM select GQM
goals goals oals
informally 9

Figure 83: BPMN diagram of GQM paradigm

5.2.2. Ontology for Object-oriented Metrics

Ontology’s are a fundamental concept of the Semantic Web envisioned by Tim Berners-Lee
[LeeHendler'01]. Together with explicit representation of the semantics of data for machine-
accessibility, such domain theories are the basis for intelligent next generation applications
for the web [AngMarOIs'03] and other areas of interest [Devedzic06] with a special focus on
knowledge sharing and reuse. Ontology’s are also basis for interaction and work of different
agents or applications [KernchenRud*07] [MenckeKunz'08a]. Top-level application areas
identified by [Fikes98] are collaboration, interoperation, education, and modeling.

Ontology’s can be defined as a specification of a conceptualization [Gruber93], or in other
words as the formal representation of an abstract view of the world. They include a
vocabulary, instances, taxonomy, relations, and axioms about a certain domain.

Framework for a Service-oriented Measurement Infrastructure

A vocabulary defines terms with unambiguous meanings. Furthermore, logical statements
for the description of terms and rules for their combination and relation are provided. A
taxonomy is part of the ontology concept for a hierarchical classification in a machine-
process able form. Individuals/instances represent the objects of the ontology and thereby
the available knowledge, while classes/concepts describe abstract sets of individuals.
Attributes can be assigned to instances for description. They have a name and value. The last
key concept of ontology’s is the relation. It can be described by using attributes and
assigning another individual as a value. Common relation types are the is-a relation
(subsumption relation) and the part-of relation (metonymy relation). The possibility to
define special domain specific relations is a considerable additional value of the concept of
an ontology. Axioms are always true and represent knowledge that is not inferable from
other individuals.

It is possible to distinguish ontology’s in two broad categories: lightweight and heavyweight
ontology’s. A lightweight ontology is described by individuals, classes, attributes, relations
and axioms, meanwhile heavyweight ontology’s are an extension of lightweight ones by the
additional usage of axioms for a more detailed domain description [MenckeKunz'08b].

There already exist ontology’s for different fields of application. Some are available via
libraries like the DAML ontology library [DAMLO8] and the SchemaWeb library [Schema08].

The first part of the ontology connects a distinct information need with a software
characteristic. The software characteristics can be distinguished into product, process, or
resource related. For resources the ontology defines among others costs, experience, and
magnitude, for process among others time and effort. For the product characteristics
artifacts like size and complexity were taken into account as well as aspects of the ISO/IEC
9126 standard for product quality. Some standardized examples are efficiency, portability,
reusability, design, reliability, usability, and availability. Considering the general goal of
object oriented metrics it is clear that product quality and in this case the design is the main
focus for object-oriented software characteristics. The other elements have been defined to
provide an extensible model [Kunz'06a].

Framework for a Service-oriented Measurement Infrastructure

Software Charactenstics]

Object-oriented Software|

hasCharacteristic

I Measurement goal |

| appliesTo

Software characteristic |

’ T 1

Resource char. [Process char.l |Product char. |

{ Reusabiliy | \—| Maintainability |
A
—{ Design | Testability
Modifiability
H Reliabiiity |
Understandability
Usability Stability
Changeability
Availability Prsmsre.
nalyzabili

Figure 84: Ontology component “Software Characteristic” [Weise06]

Another important part of the ontology is the consideration of object-oriented structure and
concept. The logical structure of object-oriented objects like encapsulation or coupling is
often a measurable artifact. Therefore the measurable artifact is divided into object-oriented
structure and object-oriented concept.

The object-oriented structure is arranged by using different elements with correlated
relations.

Another important feature in this ontology component is the “usesElement” association.
Thereby a “using”-relation between two elements is described. A metric measures an
attribute of an element by using another element. For example the size of a class
(“isDefinedFor”) is measured by counting its included methods (“usesElement”).

Framework for a Service-oriented Measurement Infrastructure

Yeasureable Properties)]

usesElement

Object-oriented Metric
sDefinedFor i
-narms-String

-acronymSiring
-informalDescription: String

| Measurable property hasPropery

-formalDescriptionbyte]]
-interpretation: String

|t}hje{:t-oriented Software

I
|

Ohbject-oriented structure |

Element

1",1 hasStanElement T
[[

Relation

l

Object-oriented concept

i

Fa

-name-Siring coversConcent

-wisibility: String[2..1]
-modfierSrng["]

Ja

hasTargetElement hashction

1
| System | | inherits from |
—_— =
4| Fackage I:| 1 |
t _I overrides |
- ST
Class _I acts on
-constructonSiring
(I
l Interface |
T [} | Obiest |
.
Method
-input-anonym[®]
-cutput Enenymfd 1]
-fumiction:String
[— .
Arnribure . Polymo
[}IEIementar_l.r DataT:.lpel

-ealues:Set

Figure 85: Ontology component “Measurable Properties”

As previously described the target of the ontology is to connect a distinct information need,
which must be satisfiable by measurements, with a specific measure. The need itself evolves
from requirements for control and optimization of software and related processes and

resources.

Framework for a Service-oriented Measurement Infrastructure

[]

Based on an analysis of the problem area a concept model is created. It aims to connect
object-oriented metrics with a measurement goal which refers to distinct software
characteristics with predications which are based on measurement results. Furthermore
evaluation and interpretation criteria are included.

Metric Context J

haslnformationNeed

Information need

-description:String

Concept model
) useshletric -name:String
usesMetric <@ -approach:String
. ’7 -specification:String o
-references:Siring
Object-oriented Metric
. 1+ makesPredication
-name:String
-acronym:String 1.*
-informalDescription:String
formalDescription:byte[] 1 Measurement Predication
-interpretation:String — — -timepoint :Date -result:String
utilizesMetric

producesResult

*

isPerformedOn 1. isBasedOn

| Measurement results| »
Object-oriented Soﬁ:warel

hasGoal
1.7

-values:Set

Measurement goal |

assessesCharacteristic

1.* appliesTo

hasCharacteristic

| Software characteristic |

Figure 86: Ontology component “Metric Context”

The metrics themselves can be distinguished in base and derived metrics and they can be
classified into product, process or resource metric.

In a similar way a metric is defined for a measurable property which connects it to an object-
oriented structure respectively an object-oriented concept.

Framework for a Service-oriented Measurement Infrastructure

Object-oriented Metric J

| Scale

-

|Nominaf scafel

| Ordinal scale |

|fntervaf scafel

|Ratio scale| |Absolute scale|

isDerived

hasScale

useshMetric

Derivation

Object-oriented Metric

Base metric |

| Derived metric

IsMemberOf

Metric class

Product metric|

| Resource metric

| Process metric

-name:String
-acronym:String
-informalDescription:String
-formalDescription:byte[]
Jinterpretation:String

isDefinedFor

*

Measurable property

Figure 87: Ontology component “Object-oriented Metric”

133

In the following figure all components are arranged in the intended manner as Object-
Oriented Metrics Ontology (OOMO).

An information need is connected with a concept model and in this way with a measurement

goal and with a distinct software characteristic.

The software characteristic is connected with a measurable property which is defined for an

object-oriented metric and the according metrics attributes.

Figure 88: Ontology for software measures presents the interplay of the aforementioned

components into the ontology for object-oriented metrics.

Framework for a Service-oriented Measurement Infrastructure

Qhject-Oriented Metric Ontlogy J

m hasl nformationieed
£ Information need| '

‘ -description:String

|Nomma! sca!e‘ |0rm'na!srde‘ ‘mtervd sm!el hasScale Eopteprmael
useshl efric -name:String
Ratio scafe| | Absolute scaje I Bl -approach:String
- -specification: String
” -references:String
TR isDerived Object-oriented Metric -
1.* rriakesPredication
-hame: String
-acronyrSting 1=
| Base metric | | Derived metic | -informalDescription:String T
-formalDescription: byte[] i3 Measurement Predication
isM emberof -interpretation: String lilize s etric -timepoint :Date -result String
isDefinedFar producesResult
usesElement isPerformedon i isBasedon
P
I results| 1 =
; [object-oriented Software| e hasG ol
i i g
Process meltic =

£ assessesCharacteristic Measurement goal
Measurahle property hasFropety 1.7 appliesTo
;; hagCharacteristic

I Software characteristic |

| Objed-onented structure Object-oriented concept |Resuun:e char.| |Pruc&ss char.‘ |Pruduu char. ‘

hasStanElement

hasTargetElement paea ction

Element

-name:String coversConcept

=wigibility: String(0..1]
-modifier:String*

Expirience

Magnitude

inherits from

implements
defines 5
E <}
i

overides
= ol oy} Bt
Class acts on [Emcency — reasiity |

’ ’ instances ! b

[object | [message Passing

Fil}

-inputanonymf®]
-output :anonyrm[0.1]
-function:String

)

Inhentanca

Polymorphism
Attribute % oD

Stabhility

-values:Set
Changeability
Analyzability
iV

Elementary Data Type

Figure 88: Ontology for software measures

5.2.3. Web Service for Object-oriented metrics

Another core component for a service-oriented measurement infrastructure is for sure a
web service for performing measurement activities. This task has been realized as part of a
master thesis project at the SML@b [Farooq05]. The implementation of the
Chidamber&Kemerer metrics for object-oriented design as a web service creates an
important building block for the proof-of-concept of the service-oriented measurement
infrastructure. By including the results of the evaluation of a comprehensive set of open-
source libraries and applications the web service creates the groundwork for an extensive
set of empirical data. This empirical data can be used for benchmarking user projects against

the industry standard

Framework for a Service-oriented Measurement Infrastructure

represented by a large set of open-source applications

135

[FarKerKunz'06] [BraFarKunz'06] (A detailed description of the collection and storage of

empirical data is shown in chapter 5.5. Service-oriented Measurement Database).

Chidamber & Kemerer Metrics Graphical Analysis

Systems m J2SEL 5.0

Selected SystemsPackages

jJZ=zel. 5.0 java.aws, jZsel.S.0:aun.awvt

{ram, tnages

{aras. mansgement

AT A

{avaz. print

e az. o

[

[Home] [Back]
Java Technologies liaa. applet
ava.awt
o AFACHE liava.beans
. DOMAT jaraie | Show || Peset]
» J2EE1.2.1 favra.lang
« J2EE13.1 liava math
o JEEE14.1 liava.net
. J2ME {araio
v JEEELS0 ava.rird a0
o JTAVACARDZZ 1 {aira S B Uiy
« TWEDP1S jara.sol
o TOMCATS 131 jaratest
» TOWCATSSS fava.uil
javaz accesabiify
[l . ac kY

as
o0
@
ER-CE
]
=2
#£ 45
104
5
0

2sel.5.00ava. awt

CK Metrics Comparison

b

J2se1.5 Ofsun.awt
Metrics Value

Wos Waqo

1115 1830 31+

The GUI has been created as a prototype and is not part of the final infrastructure. But it
enables and idea of analysis possibilities provided by the measured data. Figure 89 shows a
screenshot of the implemented measurement analysis. In this case a comparison of two Java
software systems.

A detailed description how visualization is realizes in the intended infrastructure can be

found in chapter 5.4. Graphical User Interface

For the integration of this service into the SOMI it is more important how the measurement
results are provided for other services beside the graphical visualization. To provide a
feasible interface the measurement results are captures as an XML file. Figure 90 shows an

Figure 89: Web service for measuring C&K metrics [Farooq05]

example for a measurement result containing the different measures.

Framework for a Service-oriented Measurement Infrastructure

<?xml version="1.0" encoding="UTF-8"?>
<!—Cg&K Metrics Results for the dom4j technology (code author:User)-->
-<domé4j>
<!--org.dom4j.dom element contains metrics results for DOMText packages.-
-<dom4j-1.6.1>

<NOC>0</NOC>

<LOC>64</LOC>

<DIT>5</DIT>

<WMC>38</WMC>

<CBO>7</CBO>

<RFC>47</RFC>

<LCOM>703</LCOM>

</dom4j-1.6.1>

-</dom47j>

Figure 90: Example for a XML result file for a measurement

The interaction of the different actors and web service elements regarding measurement
and data retrieving are shown in the sequence diagrams (Figure 91, Figure 93) and the
different activities are presented in the activity diagram (Figure 92).

i Controller XMLMetricsFiles

actor:Designer |
1 I

L — - — - —
: 1: Request Project Eval. TJ-‘
: = - >| EvaluateProject
| 2: Lo#d Evaluate Project Page
|
3: Upload Project Files
T CalculateMetrics
4: Olalculate Metrics
.]
|
I

Figure 91: Sequence diagram for measuring a Java project [Farooq05]

Framework for a Service-oriented Measurement Infrastructure

User

b

v

Load Proj. Eval. Page)

(Upload Proj. JAR File)

[No additional

libraries used]

[Proj. uses additional libraries]

(Upload Support Libraries

)

~J Calculate Metrics

[Success]

System

[Error with Proj. Files]

(Store Metrics Results)

Show Error Msg.

Figure 92: Activity diagram for measuring a Java project

X

Controller

actor:Designer
—,g% Request Metrics Results

L - e e e — — — =
I
|
I
|
I
I

_______ ___L_____>

MetricsResults

XMLMetricsData

1
]
I
|
I
I
1
I
I
1
I
]
4 : Get Metrics Data
I

- —_— = = —

5; Display Results

Figure 93: Sequence diagram for measurement data retrieving

137

Framework for a Service-oriented Measurement Infrastructure

5.2.4. Search and Integration Process for Measurement Services

To realize the components for the service directory and measurement service integration we
choose the approach of a SOA-Service-Center [SchmiDimO04]. Such a service center supports
different tasks and implies the use of already existing tools and new approaches. It provides
several functionalities like a directory about all available services, descriptions for provided
interfaces, and information about existing service compositions. A second important
information in this concrete use case aims at the number and types of metrics that a distinct
measurement service supports. In addition, one can add Meta information about the
provided services in such a service center, for example sequence relationships or expected
quality behavior.

But more important for building up an infrastructure are the provided search functionalities.
Therefore, the service center offers functionalities like runtime search, criteria-based search,
and information where the services already have been used [SchmiDimO04].

The second important question addresses the security of measurement services. Logically,
no user will accept that his measurement objects become public. Therefore, it is necessary
that the integration architecture is able to ensure that the web services which are being
used to build the measurement infrastructure are compliant to the security policy of the
concrete environment.

On this account the Web Service Security Framework has been used to describe how to
incorporate security technologies (e.g. Kerberos [MIT05]) into web services by defining a
place for them within the SOAP headers [NewLomO03]. The WS-Security specification targets
message alteration by including digital signatures and message disclosure by supporting
message encryption, while it can also be used to authenticate messages through the use of
Kerberos [MITO5].

Framework for a Service-oriented Measurement Infrastructure

139

SOA Service Center

Service Endpoint

MQ WebSphere: .

IP-Adressen, Queue- YJV':E Service:

Manager & -Name (0]

c
? Service Interface g’
2 w
g MQ WebSphere: Web Service: <
o | XML-Schemata wsDL %
oy

Service Specification n

Non Standard Web Services: Standard

description formats uDDI description format

Visualisierung & Animation
< - . c
GEJ SLA Availabilty Security QoS S
o Management Management Management Measurement)
2 =
e €
g S
= Billing Version Choreography Negotiation
Support Management Management Management

Figure 94: SOA Service Center [SchmiDim04]

This SOA Service Center is not limited to measurement infrastructures nor was it developed
particular for this field of application. But this Service Center is a good example that using
the SOA technology enables the integration of new technologies in the area of software
measurement.

Even if some of the components contain a own GUI for demonstration purpose the general
goal is to create a complete infrastructure by the use of SOA and web services with the aim
to be viewed as one software measurement tool. That establishes a need for a uniform
interaction with a user.

Referring back to the foundations of software measurement it was mentioned those
different users are stakeholder in a software measurement program.

On the one hand for a software developer the measurement process should disappear and
on the other hand capabilities are needed for quality engineers if measurement indicates
lack of quality.

5.3. Quality driven Assembly of Web Services

The importance of providing service-oriented architectures in every field of application is
beyond controversy these days and applied in high diversity in different economic fields.
Unfortunately existing solutions are focusing mainly on the provided functionality. But for
the success of Systems Integration in the long run, the quality of developed architectures is
of substantial interest [Kunz'08a] [Kunz'08b].

Framework for a Service-oriented Measurement Infrastructure

Existing approaches relates to QoS (Quality of Service) parameters such as throughput,
response time and availability. Similar approaches are introduced by Menascé and Dubey
[MenDub07] or Sirin, Parsia and Hendler [SirinParsia’05]. But these QoS parameters describe
only single aspects out of many and the orientation on network related aspects like
performance, availability, capacity, integrity, security, and accessibility leads to the result
that a lot of services lack on other quality facets like reusability, portability, or
maintainability.

In a Gartner study the adverse situation in the usage of services was summarized by the
quotation [Chappell06] [Gartner07]:

“You should expect to reuse only a fraction of your services, maybe just 20% of them.”

Probably it is not astonishing that reusability is not being reached if it is not measured
previously.

For the enhancement of QoS attributes with comprehensive product quality attributes a
framework for quality-driven creation of architectures is proposed in this chapter. Besides
these quality-oriented characteristic the usage of semantic knowledge and structured
process descriptions enable an automatic procedure. Especially the combination of both is a
promising approach. Due to manifold advantages of high-flexible infrastructures compared
to monolithic products a lot of initiatives propose approaches for the integration of single
components (e.g. services). Semantic metadata provides the basis for the automation of this
process. But those approaches lack from a throughout consideration of empirical data.
Either only functional requirements or single quality attributes are taken into consideration.

In contrast to existing approaches the presented framework reveals a holistic orientation on
quality aspects. It combines semantic web technologies for the fast and correct assembly of
system elements and quality attribute evaluations for making the best assembly decisions
possible. Therefore complex quality models [AbrKunz'03] are considered as well as empirical
evaluations. Furthermore different types of quality evaluation like simulation and static and
dynamic software measurement are used. Combining them delivers a holistic quality view on
components and the flexibility enables a quality improvement of the targeted system by the
exchange of single components if the evaluation of their quality attributes decreases.

The presented general QuaD’-Framework (Quality Driven Design) can easily be adapted to
many different fields of application, e.g. service-oriented architectures or enterprise
application integration [KerKunz'07a]. In this way the framework can be a meaningful
approach for service-oriented architectures in a general way beside the service-oriented
measurement infrastructure [Kunz'08c] [MenckeKunz'08d].

5.3.1. QuaD? Framework

In general the sub processes of this empirical-based assembly process are the initialization,
the feasibility check (checking the functional coverage), and the selection process based on
empiricism as well as the operation of the established application. Quality assurance is

Framework for a Service-oriented Measurement Infrastructure

141
achieved by certain sub processes that allow optimizations at initialization time as well as

during runtime. Furthermore measurement sub processes are performed to update
evaluation data.

The major goal of the described core process is an architecture consisting of single services.
Such a service contains metadata-annotated functionality.

In order to achieve the sketched goals a special process is developed below. Its major use
cases are introduced in Figure 95.

Process Model
Adaption

Dromain Model
Repository Access

[includes]

Process Model
Repository Access

Duality Model
Adjustment

includes|

Quality Model
Selection

Chuality Muodel
Repository Access

[[
[includes] [imcludes|

[imcludes] [includes)

Experience
Factory Access

Weight Update

[includes]

Funtime
Evaluation

Entity Execution

Result Delivery [includes]

Lser

Figure 95: Use Case Diagram: Empirical-Based Service Orchestration Process

The basis of the presented approach is a collection of semantically-annotated sources: the
process model repository, the service repository, a quality model repository and
furthermore an experience factory.

The process model repository is the source for process models that serves as description for
the functionality of the aspired distributed system. Example for such processes can be
ISO/IEC 15939 [ISO/IEC02] for the software measurement process or didactical approaches
[Mencke08]. Technological realization may vary, too. They can result in UML [OMGO07],
BPMN [OMGO05], ontology’s [MenckeQ7], etc.

Framework for a Service-oriented Measurement Infrastructure

An important source for empirical quality evaluations are quality models being provided by a
quality model repository. The basis of a quality model’s definition is an extensible list of
quality attributes. The specification of a certain quality model is realized by selecting and
weighting appropriate attributes. The evaluation and selection of appropriate services is
based on evaluation criteria for each included attribute. Such attributes can be e.g. cost,
performance, availability, security, and usability. The attributes and corresponding
evaluation formulas are standardized e.g. in ISO/IEC 9126 [ISO/IEC01].

The service repository contains services, their semantic description and their evaluation data
regarding all defined quality attributes.

The selection and adoption of process models and quality models are difficult tasks which
constitutes the need for guidance and support. Because of this, the presented framework
proposes the usage of existing experiences and knowledge about previously defined and
used process models and quality models to support both process steps. Based on the Quality
Improvement Paradigm, Basili and Rombach proposed the usage of an Experience Factory
which contains among others an Experience Base and Lessons Learned [Basili94], [Basili99].

In the presented framework, the Experience Factory is fed from the process evaluation
process and is the major building block to save empirical data and the user’s experiences
with specific process procedures or with distinct quality attributes.

Figure 96 defines the used diagram elements for the diagrams below; optional elements
have a grey border.

/ N
Process Loop Start Document
Loop End _/—\
Automatic / -— d
Manual Entity
Process ‘@ \/-\
‘
Process Flow
—="
Data Flow End Parallelism

Figure 96: Definition of used diagram elements

Framework for a Service-oriented Measurement Infrastructure

143
P s Process Model
A R rocc?tss Selection &
€pOS oy Adaptation
S—
y
Experience Quality Model Initialisation
Factory Selection &
Update
A 4
Quality Model A 4
Repository Service
Repository j¢—p—"—
Query
Calculate Abort Feasibility
Probability check
Weighted Quality
Attributes Matrix
Acceptable? Y | Yes v
No Repeat
(il !
Process Step A |
Determination
A 4
Process Model Selection
Quality ProcessModel | | Element / Service /
Assurance! Element Query Evaluation Data Matrix
A 4 £ A 4
Ll
Service Selection
A 4
A 4
Measurement Servit_:e
Execution
Operation
Measurement y P
Dat Process Step ¢ SCRTEE
Evaluation Executics
Result
Current
Process State 4 Service
& Evaluation Repositol
Data Until Process v 3
Completed
v
y
Process
Evaluation

Figure 97: Quad’ Framework

Framework for a Service-oriented Measurement Infrastructure

The focus on quality is a throughout property of the developed process and results in certain
measurement and evaluation sub processes that are introduced in the following general
process description and are described more detailed in subsequent sections. The derived
results are directly used for optimization purposes [MenckeKunz'08c].

Initialization Steps

The selection of an appropriate process model that defines the functional requirements for
the parts of the later distributed system is the first step. Due to the fact, that such a choice
can be a manual process, it should be supported by an experience factory providing
knowledge and experiences — lesson learned — for the decision for or against a specific
process model for the current need. The process model essentially bases on semantic
metadata to allow the later automatic mapping of semantically described service
functionalities to the functional requirements specified by the process model. With the
chosen process model a set of concrete distributed systems is possible. In our measurement
process characterization that means an essential measurement improvement.

/;l:o;{uct Aesources U A /noceus /)’:oductAteru‘tceAA ,otocess
oxiginal o‘zgi/ml - o':igin.al

After the experience-supported selection of an appropriate process model the second step
of the presented approach is a selection of a quality model from a quality model repository.
This is intended to be done automatically. For certain domains manual adaptations can be
more efficient. A manual individualization of this predefined set of quality attributes as well
as of their importance weighting is also possible. That means the experience basis in the
measurement process establishes an essential measurement improvement

criteria emula ﬁ)tmu:la
E threshold \) F extension > [epository

For these purposes an experience factory can be helpful again. As a result of this step a
process model and importance-ranked quality attributes are defined.

Feasibility Check Steps

With this information process step three is able to determine whether enough available
services exist to provide an acceptable amount of functionality demanded by the process
model. If there is no acceptable coverage after the negotiation sub processes, then an abort
probability based on already collected data can be computed. The user needs to decide
whether he accepts the probability or not. If not the distributed system provision process
will be aborted.

In the case of an acceptable coverage the runtime sub processes of step 4 can start.

The involved transformation of measurement results could be characterized as remarkable
measurement improvement as

Framework for a Service-oriented Measurement Infrastructure

. Software_unit
oxdinal_scale criteria zatio_scak fiware_

(Q‘te/waito'c# x E threshold) > (V/ data_basis + gumi_standatd)

The first of them determines the next process step to be executed following the process
model. Therefore information about the last process steps can be taken into consideration
to optimize the next process step execution. Exception handling in case of aborted pre-sub
processes is a functional requirement and thereby should be covered by the process model
itself.

Due to the fact that new services can be added to the service repository, another coverage
check for the next process step is performed. Now, up-to-date service information, their
evaluation values as well as the data of the quality model are available to identify the best
service possible.

Selection Steps

The weighting of the quality attributes during the initialization delivered weighted attributes.
This procedure is not intended to be performed during runtime, because the executed
distributed system should not be interrupted (abort, costs ...).

The result is a best possible distributed system based on the existing services as well as the
specified quality model.

Operation and Evaluation Steps

Once the most optimal service is identified it can be executed and measured in parallel.
These data are used to evaluate the last process step. The runtime sub processes are
repeated until either all process steps of the process model are successfully executed or an
abort due to missing services took place. Considering the quality assurance the modified
kind of measurement tools can be described as essential measurement improvement as

semi_autmatic ST autmatic ST automatic
one_meas. _/;/;agg one_meas._ ,o/mse whole_measurement

including the derivation of the involved personnel that is used only for the first steps of
infrastructure building as

/)'zactition.et

> P

measurement_application_staff initial

The last step five of the presented approach covers the evaluation of the entire process
being an input for the experience factory. It compares the achieved results with the desired
ones.

5.3.2. Quality-Based Service Selection Core Process
In general the service selection has several steps. The first identifies all possible services
according to the required functionality defined within the process model (during

Framework for a Service-oriented Measurement Infrastructure

initialization phase). An additional step selects the identified quality model that specifies
what quality aspects are useful for the intended usage and how important they are for the
initiator of the application to be assembled. Manual adjustments are possible, but not
necessary and are performed during initialization, too. Only in exceptional cases a manual
adjustment during runtime is reasonable.

That means that the measurement itself using the QuaD? approach is changed as essential
measurement improvement in the following manner

assessment controlli
M measuzement — |\/] measuremert

Step three is the most important one and identifies the most appropriate service for the next
process step to be performed during the selection process. It takes into account the
weighted quality attributes as well the candidate service set whose elements fit the
functional requirements of the current process step. Figure 98 shows a diagram presenting

the underlying application flow of this special Service Selection Process.

Quality Model
Repository

Process Model
Evaluation Data Element /Service /
Normalization Evaluation Data
Matrix

v

Weighted Quality Determine Worst
Attributes Matrix Evaluated
Service

v

Delete Worst
Evaluated
Service

y

Until
|subset|=1

Figure 98: Service Selection Process

The weighted quality requirements matrix is manually created by selection needed quality
attributes from a predefined set during initialization. The user has to weight the attributes in
a normalized scale. For example he can decide to weight the cost of a service with 70% (0.7),

Framework for a Service-oriented Measurement Infrastructure

the performance is considered to be less important (20% = 0.2) and size is weighted with
10% (0.1). All weights must sum up to 1.

Amongst others the calculation formula and normalization directive are stored for all quality
attributes to be able to determine the qualitatively best service for the current need.

For the service selection process quite a few approaches have been taken into account. The
general goal was to create a ranking based approach whereas the qualifiedly best service can
be identified. A second arbitration was made to enable consideration of measures with
different range of values: a normalization of service quality measures.

In doing so the normalization contains a transformation of values into a specific range [0 to
1]. On the one hand it enables comparison and combination of different measures on the
other hand a shifting of values in the original set beyond the primarily values and thereby a
changing of variance or deviation can influence the values of other services, even if their
values haven’t changed at all. Normalization with the highest value among the candidates
converts the value to the desired range [0 to 1] and the normalization keeps the ranking
property. Due to the influence of the normalization range the values are only meaningful in
comparison to identical normalized values which is sufficient for the desired ranking, of
course.

To display the mentioned side effect Table 16 presents an example where three services are
part of the selection process. A selected set of measures and specific weights for each
measure constitutes the basis for the selection process. With the measured values for each
service at a distinct point in time a normalization process is calculated and the aggregation
of these values leads to the ranking of the three services.

In the course of time the quality measures for the several services can change, of course.
Consequently, the presented example contains the second set of measured values. In that
case the Response Time for a service has been worsening noticeable. In doing so the shifting
of the range of values has the described side effect to the normalization process. The ranking
in those measures stays consistent but the aggregation delivers a different result in
comparison to the first dataset even though the values for service A and service B are still
unchanged.

147

Framework for a Service-oriented Measurement Infrastructure

Table 16: Example of normalization implication

Point in Time
X
ili Continued
. Restorability Memory Response
Service use of data tilizati Ti
utilization ime
(1 best) (1 best)

Service A 0.5 0.64 400 kB 30ms
Service B 0.75 0.40 700 kB 20ms
Service C 0.30 0.20 1100 kB 60ms
Weight 0.20 0.20 0.20 0.40
Normalized . .

. Aggregation Ranki
and weighted
Service A 0.1 0.128 0.128 0.2 0.556 2
Service B 0.15 0.08 0.072 0.268 0.57 1
Service C 0.06 0.04 0.0 0.0 0.1 3
Point in Time
Y
Service A 0.5 0.64 400 kB 30ms
Service B 0.75 0.40 700 kB 20ms
Service C 0.30 0.20 1100 kB 200ms
Normalized .

. Aggregation Rank
and weighted
Service A 0.1 0.128 0.128 0.34 0.696 1
Service B 0.15 0.08 0.072 0.36 0.662 2
Service C 0.06 0.04 0.0 0.0 0.1 3

Framework for a Service-oriented Measurement Infrastructure

The approach to overcame the described disadvantage has been identified in establish an
elimination process. Since the worst service (regarding the measured values) is eliminated
and the remaining values are re-normalized the described side effect is corrected.

Following the defined necessities and given data the service selection is formally described
below. For the following formulas let PM be the chosen process model. Formula

£/ (PM) specified in Formula 1 is used to determine the set of services E from the

service repository. Each of them can deliver the functionalities specified within the chosen
process model within formula 2.

£ : Process model — {Service, ...} (Formula 1)

_ g funct
E=f"(PM) (Formula 2)

Using the classic normalization approach presented in Formula 3, the evaluation values v, ;

of quality requirements j defined in the quality model must be normalized for each service i.
These v, ; are the measurement/simulation values to anticipate the optimal decision for the

next process step.

v, —min(v)

norm __

b max(v) — min(v)

* N . .
(max norm mln norm) + mln norm

(Formula 3)

With the help of the weighted requirements matrix from the (maybe adjusted) quality model
the last step — the identification of the optimal service according to the empirical data and
the quality model — can be performed (see Formulas 4 to 8). Formula 4 adjusts the
normalized evaluation values to ensure proper calculation. If v=1 describes the best quality
level then no adjustments are necessary, otherwise a minimum extremum is desired and 1-v
must be calculated.

) v ,1f a maximalv is the best
v =
1-v ,if a minimalv is the best (Formula 4)
’ n—1
feva (ei) — mem (vzjrm)ei c E AN = |QM|
= (Formula 5)
eval
V= {f (el.)|Vel. € E} (Formula 6)
e""™ =e, . lindex = min({x v, = min(V)})/\ Cnaex €E (Formula 7)

E'=E\e"™ (Formula 8)

Framework for a Service-oriented Measurement Infrastructure

To determine the best evaluated service, Formulas 5 to 8 are repeated until £’ contains only
one element. It provides the needed functionality and is the most appropriate one according
to the specified quality model.

After the service selection execution can occur and measurement about runtime behavior
will be captured to get additional quality evaluations for this service.

Service Repository Management

As described in the general QuaD? Process the presented quality-driven service assembly
framework requires a service repository and semantic descriptions and evaluation data
about all available entities. This section introduces the Service Repository Managements
Processes.

A first overview is given in the following Use-Case Diagram. Two different users are
distinguished. The controller activates evaluation updates and the service provider who can
either add or update a service. Every change of a service forces a new evaluation regarding
all defined quality attributes.

Update

Chuality Atiribute

Contralle [includes]
Runtime Data

Storage

Subprocess

Ewvaluation

[includes] [includes]

[includes]

Process
Ewvaluation

Entity Provider

Figure 99: Use Case Diagram: Service Repository Management Use Cases

Amongst the described use cases, the service insertion is the major one. The insertion is
divided into three steps — consistency check, standardization check and evaluation. The first
and second focus on functionality and the third is about quality. As mentioned above,
functionality-related issues are already discussed elsewhere. The quality-driven QuaD*-
Framework adds a new dimension and shifts the focus towards the Service Evaluation
Process (see Figure 100).

The Service Evaluation Process uses the defined formulas for each quality attribute being
stored in the Quality Attributes List to calculate the evaluation values for every service. Not
for every attribute a mathematical formula is available, but at the attribute’s definition time

Framework for a Service-oriented Measurement Infrastructure

an evaluation procedure must be specified to allow quality assessment. Such evaluation
procedures can be e.g. experiments, user surveys, or certain simulations.

Because initial evaluations can change over time, updates are necessary. For this purpose a
runtime measurement is performed parallel to service execution. Event and time triggered
service evaluations provide additionally empirical data. This continuous service evaluation
ensures the throughout quality assurance during the QuaD*-Processes and enables high
quality software products [KernchenKunz'07b].

151

T

Framework for a Service-oriented Measurement Infrastructure

-

Service

S

o Inclusion
Discovery metad iy Request
Completion & | Consistency
Correction v Check
A
Yes
Rectifiable? N Successfull?
No
End Yes
—t—
For all Interfaces
Standardization Interface
Check Repository
Wrapper
Detection No
Yes
Successfull? Yes 4

Service/Interface

Matrix

Service Interface
Approval

v

Service Interface Check Process
A 4
Storage
A 4
Service 4 A A
R p Evaluation Quality Attributes
epository List
Service Evaluation Process
A 4
End

Figure 100: Service Evaluation Process

Framework for a Service-oriented Measurement Infrastructure

5.4. Graphical User Interface

According to the Use-case diagram of the whole measurement infrastructure (see Figure
101) different visualization opportunities has to be provided. Different views should be
provided for developer, quality engineer, and project manager. Developer and product
manager should be served with to analyze visualizations whereas the quality engineer view
should enable to analyze the measured values in detail [Kunz'08d].

Since, the desired measurement framework takes into account these different roles of the
software development process, different use cases could be identified and are considered
for design of different graphical user interfaces.

aaxtandss

salact measurament
SEMVICE

extends
" ! traffic light
report

% banchmarking data

define information
need

Project-Manager

evaluate entity

evaluate
measurement process

Developar

analyze
megsurement values

define guality
Cuality Engineer

Y dafine thresholds

Figure 101: Use-case diagram of intended infrastructure

The selection and interplay of the different services are not the focus of the layer
architecture. The figure is intended to present the approach of using plug-ins for
development environments or project dashboards as presentation layer.

153

Framework for a Service-oriented Measurement Infrastructure

Presenation layer

Application layer

Traffic Light
Control

Visualization
Service

Measurement
Service

METRICS Export

| XL
File

Import
Service

Analyzing
Service

Storage Service

Data management layer

Measurement values

Quality model

Figure 102: Architecture of intended framework

Providing analysis of measurement values is logically one of the most important parts of
software measurement. The general goal is to give the different stakeholders an
understanding of the measures quality attributes. Thereby it is an integrative part of every
literature one can identify manifold approaches of

measurement activity but in

measurement data analysis [Kunz'07a] [ZenkerKunz08b].

Since, the framework is intended to implement the ISO/IEC 15939 measurement standard
for high diversity of use-cases the concept contains stakeholders with different view on

measurement data.

To cover the different perspectives two visualization concepts have been implemented:

Traffic Light Report

Measurement Cockpit

Taking into account the desired user of this type of measurement visualization it is very
important to define in which way, from a CASE tool perspective, the different quality reports
should be provided. For the integration of measurement reports in existing tools or new
created infrastructures the providing as a service seems to be a consequential.

In consideration of the stakeholders it is obvious that in either case the traffic light report

should be an integrative part of existing CASE tools.

Framework for a Service-oriented Measurement Infrastructure

155
Because of the quality engineers demand of a much more detailed view, complete analysis

of all measured values, and the demand of creating own reports out of a huge amount of
datasets, a stand-alone tool with a strong connection to the measurement database seems
to be meaningful in this regard.

5.4.1. Traffic Light Visualization of Measurement Results

As the title of concept implies, the measured values should be mapped by using defined
thresholds to present an easy to understand result. To derive this representation of quality
out of the possibly high amount of measured data the methodology of the Goal-Question-
Metric Method is used (see chapter 5.2.1. GQM Process Model).

Java - Eclipse SDK

Fle Edit Navigate Search Project Run Window Help)
3~ F-0-Q- =38 g C I >4 f_jg;’hva :a
= —— —— v

% Package Explor & Hierarchy 1 o E-:- Outline]

An outline is not available.

== exampleProject

8 src

+ B\ JRE System Library [jre1.6.0_02]

Quality

Kwviat |LOC NOM | CC | WMC LCOM | DIT

NOM

Loc A ——
%

| 1
o | ®00 :
Lo I ece |
= : 000 |

Figure 103: Eclipse Plug-In Design [Hertel08]

In some cases, especially if the traffic light report indicates a lack of quality, the demand for
a more detailed analysis constitutes the need for a visualization of the several measures with
the same user interface.

Framework for a Service-oriented Measurement Infrastructure

Quality

Kiviat LOC NOM | OC | WMC LCOM | DIT

NOM

o

Figure 104: Kiviat diagram representation

A second aspect which is of interest in relation to traffic light report is the lapse of values.
Once again of higher interest if the traffic light report switches to a non desirable state.

Quality

Kiviat | LOC NOM CC WMC LCOM DIT

JJ_I—'—Ii
0w m w w % w

.
.
. 4‘—’—‘_ﬁ

Figure 105: Measurement results over time

As mentioned above the traffic light visualization is desired to be integrated in CASE-tools for
software development. This has been realized by implementing such plug-in for the Eclipse
development environment [Eclipse07]. Eclipse is an open-source project aiming to provide
an efficient platform for software development using various programming languages (e.g.
Java, C++). The implementation of the plug-in has been done within a master-thesis project
at the SML@b in 2007. A detailed description of the project and the outcome can be found
in [Hertel08].

Framework for a Service-oriented Measurement Infrastructure

5.4.2. Cockpit for Measurement Results Analysis

= F\ i = — e — = /’\
hE HE an e aRR 22
Szl Eb{? ia ~ x—.\‘ —_— - — . - — f-\
< o | |t | S vl [
- A . - : - - Coe
Al A e p— o e | = = =
E MM e “ |m, \ 3 |
s 2 A q =
______ = — ==

Figure 106: Cockpit vision [Plenum06]

Not only in software measurement but more in more also in this area multi-screen cockpits
gain higher importance for visualization purposes. As mentioned above especially for quality
engineers the capabilities are helpful. Even if our own measurement service implementation
so far only support object-oriented measures, the specification for a multi-screen
measurement cockpit should take into account all available measures. Therefore the
common determination of software measures into product, process, and resource seems to
be adequate to define different views for the multi-screen cockpit. The main enhancement
in comparison to Figure 102 is the enhancement of three view components in contrast to
only one in the general plug-in concept.

One the one hand with arising technical solutions the limitation to one or two displays is
outdated but on the other hand the limitation of the human mind to capture a limited
amount of information at one time persists. That contradiction leads to the question how
much information about a specific project or the process at one time is useful.

The general goal is not to provide a huge amount of information but to substantiate

information where necessary.

Finally, the concept contains four views. Whereas one view provide merely communication
and presentation instruments and the other three views provide measurement analysis and
information. Namely the views are intended for:

= Project overview
= Measurement analysis
= Progression of measurement values over time / future trend / estimation

= Communication / presentation

157

Framework for a Service-oriented Measurement Infrastructure

158

© Quality Model

Service

Storage Service

- o—

Presentation
Service

=2

Analyzing
Service

I

——¢

. Report Creation

Quality Models

. XML Service
= Export
Resource View o
Service —C
XML-=
Export Measurement
Process View Data Extraction Data
TV —— Service
XME=
—(Exp;/
Product View
Service

Figure 107: Architecture for cockpit view realization

By applying this approach a multi-screen measurement cockpit based on the presented
building blocks and GUI elements could be implemented and the current setting is shown in
Figure 108.

Framework for a Service-oriented Measurement Infrastructure

Figure 108: Measurement cockpit at SML@b[Hansen08]

5.5. Service-oriented Measurement Database
The importance of a comprehensive storage of software measurement data is beyond
controversy these days. Two major use cases can be identified in this regard:

= storage of measured data for analyzing

= provision of empirical or historical data for benchmarking or to support the analysis
of new measured data

Based on the architecture in Figure 45 a service-oriented measurement database (SOMDB)
has been created to build a central part of the desired service-oriented measurement
infrastructure.

The data model of the database contains a key element: QualityModel. As described above a
quality model contains a set of weighted attributes to provide an empirical base for

159

Framework for a Service-oriented Measurement Infrastructure

analyzing measured values. Each created project holds an own set and the standard
initialization values can be modified according to distinct project characteristics.

QualityModel

Tupel 1 o Tupel m

m 1

1 0.n as by n 1
Metric @ Mea;{:t;rpem Measurement Project

0.n 0.n
01 01
OoClass Organisation

Figure 109: Entity-Relationship diagram of the SOMDB

For formal considerations the entity QualityModel (QMP) can be defined as:
QMP = (T; [T;={M,, W, 0, TG, TY;} with M;element MP)
With MP as the set of all measured metrics in a distinct project the tuple QMP and:
M; : Measure M element MP
W, : Weight of M
O, : optimum value of M
TG, : target value
TY; : threshold for acceptable values

The representation of this tuple in the Entity-Relationship diagram is shown in Figure 110,
whereas for each defined project one tuple is existing.

Framework for a Service-oriented Measurement Infrastructure

161

Qualityhodel 10: int)

Tuple 1

@ (Optimumiyalue: double))

Weighting: double; Standard: 0
Cuality Model e 0 == Waighting <= 1

{LightGreenDistance: double))

Tuple m

{LightYellowDistance: double))

Figure 110: Detailed view on the QualityModel dataset

To provide a more graphically view on the threshold concept Figure 111 shows the three
areas:

= jdeal range: target value and a defined distance from that value (green color in traffic
lights)

= accepted range: acceptable interval between the green interval and the second
threshold (yellow color in traffic lights)

= beyond accepted range: unacceptable values (red color in traffic lights)

All three values (optimum, ideal threshold, accepted threshold) are defined as positive real
numbers without any limitations.

i R
i R
i R
i R
i R

Optimal value ldeal range Accepted range

o o o T W W o
o o o T W W o
R R R R TR L LSRR
R R R R TR L LSRR
R R R R TR L LSRR
R R R R TR L LSRR
o e o o o o o o B A T

Figure 111: Threshold concept for measurement values

Another important part is the interface of the database and the thereby associated
measurement data validation. To realize the validation data an approach by using XML
Schema [HoriEuzenat’03] has been chosen. Thereby the structure of a valid document is
defined and adjusted with the received one. In doing so the parameters of the interface are
defined, too. The following figure shows in detail the structure of the created schema.
Thereby, the statement of a project identifier and organization name is optional. All other

Framework for a Service-oriented Measurement Infrastructure

attributes are required, namely project name, measurement tool name, and programming
language. To this measurement dataset a various number of measurement results can be
added. This measurement results are containing metric name, acronym, and the
measurement value. Optionally, the identifier of the measured class can be added.

<?xmlversion = "1.0" encoding = "utf-8"?>
<xs:schema xmlns:xs = "http://www.w3.0rg/2001/XMLSchema">
<xs:element name = "measurement">
<xs:complexType>
<xs:sequence>
<xs:element ref = "measurementResult" maxOccurs = "unbounded"/>
</xs:sequence>
<xs:attribute name = "projectName" type = "xs:string" use = "required"/>
<xs:attribute name = "projectID" type = "xs:integer" use = "optional"/>
<xs:attribute name = "organisationName" type = "xs:string" use = "optional"/>
<xs:attribute name = "measurementToolName" type = "xs:string" use = "required"/>
<xs:attribute name = "programminglLanguage" type = "xs:string" use = "required"/>
</xs:complexType>
</xs:element>
<xs:element name = "measurementResult">
<xs:complexType>
<xs:sequence>
<xs:element name = "metricName" type = "xs:string"/>
<xs:element name = "metricAcronym" type = "xs:string"/>
<xs:element name = "ooClass" type = "xs:string" minOccurs = "0"/>
<xs:element name = "value" type = "xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 112: XML-Schema definition
In Figure 113 an example of a measurement file with two measurement results is presented.

At each time the web service is called the measurement file is transferred and the data is
stored. In doing so, a latching or a buffer in the web client is not necessary and the size of
the file only depends on the number of measurement results to be stored.

<?xml version = "1.0" encoding = "ISO-8859-1" ?>
<measurement projectName = "SMLab project" projectID = "1" organisationName = "SMLab"
measurementToolName = "OOMJ" programminglLanguage = "Java">
<measurementResult>
<metricName>Number Of Children</metricName>
<metricAcronym>NOC</metricAcronym>
<ooClass>checktransaktion</ooClass>
<value>4</value>
</measurementResult>
<measurementResult>
<metricName>Lines Of Code</metricName>
<metricAcronym>LOC</metricAcronym>
<value>121324</value>
</measurementResult>
</measurement>

Figure 113: Example of a measurement file

Framework for a Service-oriented Measurement Infrastructure

5.5.1. Measurement Data Analysis

As a result of the survey about existing measurement spreadsheets and databases (see
chapter 3.2. Software Measurement) the visualization of measurement data and the thereby
provided analysis possibilities are a key success factor for software measurement in general.
This defines the goal of drawing meaningful conclusions out of the created measurement
database.

The major concept in this regard is the visualization by using kiviat diagrams (as presented in
Figure 35). Bearing the capability of presenting different measures in one chart, alongside
with a defined quality model or other measurement data makes this approach the agent of
choice.

In Figure 114 the blue line visualizes the measured value for a distinct project. The desired
values for each measure are drawn with the green line. The traffic light behind each measure
represents the analysis regarding the defined thresholds for this specific project. This has
been done sine drawing all three lines of the quality model makes the emerging figure very
confusing.

Software Measurement / Analyse

Messreihen anzeigen

Analyse/Darstellung
Speicherung (Test]
Online-Hilfe
Impressum

Sitemap

= Qualitatsmadsll
== Durchschnitt
= Apache: bcek5.1/04.11 2008 12:07.28

Figure 114: Overview about the Service-oriented Measurement Database

Since, the quality model is a generic one sometimes the desired values are out of reach or
beside a reachable level. In this case a comparison with other real projects provides a more
realistic view on software quality. For this purpose the SOMDB contains the possibility of
choosing similar projects as benchmark on the basis of included measures. Logically, one has
to select a set of measures which are used as the basis to calculate similarities and this set of
measures should not included the measure to analyze. Otherwise one can only identify if
other project reaches a specific characteristic with less Lines of Code or a lower Depth of
Inheritance Tree but assertions about the target measure is not possible.

164

Framework for a Service-oriented Measurement Infrastructure

Qrganisation Projekt Messung vom
Tomcats 5.9 catalina ! Java 04.11.2008 12:26:21/ OOMJ
Analysebasis: @& Durchschnitt
© Minimum
© Maximum
© Minimum/DurchschnittMaximum
Darstellung: dieser Messreihe

. aller Messreihen dieses Projektes.
und Wergleich mit anderen Projekten dieser Organisation
und Wergleich mit ahnlichen Projekten

o Sl Sl Bl ¢

Bitte wihlen Sie maximal 5 Projekte/Messreihen fir die vergleichende Darstellung aus.

Auswahl Identifikation Organisation Projekt CAME-Tool Messung amium

= 157 Tomcat5.5.9 catalina OOk 04.11.2008 13:20:09
O 153 Tormcat5.5 9 Jasper-compiler-jdt OOk 04.11.2008 13:20:18
O 154 Tomcat5.5 9 Jasper-runtime OOMJ 04.11.2008 13:20:29
= 158 Tomcat5.5.9 jsp-api OOk 04.11.2008 13:20:30
O 156 Tomcat5.5 9 narming-factory OOMJ 04.11.2008 13:20:31
O 157 Tomcat5.5.9 servist-api OOk 04.11.2008 13:20:32

Figure 115: Analysis by using similar projects regarding a specific measure

The values of the selected similar projects are drawn together with the main projectin a
kiviat diagram, too.

= JavaCard2.2.1: installer/04.11.2008 131711

== Tomcatd.1.21 Jasper-compiler/04.11.2008 13:19:30
= Tomcats 5.9: catalina/04.11.2008 13:20:09

RFC == JFreeChart jfreechart-1.0 0/04 11 2008 13:23:27

Figure 116: Kiviat Diagram with selected projects

At the moment the database contains 15.000 measures java classes, 150.000 measured java
methods, and over 400 million measured lines of code. With this huge amount of
comparative data the SOMDB is one of the biggest in her sort and a very powerful tool for
benchmarking approaches.

5.6. Mapping to Measurement Paradigms

The kernel idea constructing proactive measurement infrastructures is based on the so-
called QuaD? framework. This framework can be implemented using various technologies as
e.g. ontology’s, web services and agents. The presented quality-driven approach uses

Framework for a Service-oriented Measurement Infrastructure

165
semantic descriptions for processes automation and supports different quality models and
quality attribute evaluations. The easy extensibility of process models, services, interfaces
and quality models makes the presented framework deployable for many fields of

application.

. —— . —
---f---------- -‘IPSOS‘_E o
infrasruaure - sarvice_ appiicanon
v X ; Measurement
(R 4 t
' meas._senice_dev efcpmen [} artefact A L] — . —
-------------'
e Measurement

Measurement -
goal -

&
.

~. method
~

M

7
‘o
/‘ A
Measurement ‘5 \ Measurement
quantity '\ value
-
A} vV
Q%

1 [1

I Y I

I |

| .

. J
Measurement | Measurement
experience unit

E U
\
A
A
N
\
N P
Measurement M/ Measurement

tools

infrastructure

M 3
1F QuaD~

Extended .
experience K

’fmprovad A7
artefact

Figure 117: Software measurement process levels including the QuaD? approach

Framework for a Service-oriented Measurement Infrastructure

6. Summary and Future Work

The final chapter of the thesis recapitulates this work, provides a summary and a future
perspective of the presented topic.

The thesis in hand presents the undertaken steps of a PhD project to answer the main
target:

How should an infrastructure for software measurement be arranged, to implement the

software measurement process of an organization?

Chapter 1 draws the point of origin of the thesis. The increasing importance of software
engineering in general and software measurement in detail constitutes a demand for a
research work in this area.

The foundations of software measurement and existing approaches are presented in chapter
2. Thereby an overview about general aspects of software measurement is presented. In
doing so the elements of a software measurement systems and different paradigms for
software measurement are presented.

The implementation of these approaches as a measurement program is described in chapter
3. Especially the drawbacks of existing solutions and the resulting success rate are discussed
and the reasons are analyzed.

Additional, existing approaches to tackle the described drawbacks and an evaluation of
existing measurement paradigms- guides the way to a service-oriented measurement
infrastructure.

For the provision of a new type of measurement approach two different drivers were
identified:

a) customer asks for tailored functionality to combine components of different tool
manufactures and to avoid high acquisition costs

b) Measurement tool producer’s needs to gain access to new sales markets which is
intended to be reached by provide services combined with the possibility of new
license models e.g. pay per use.

To introduce this topic, chapter 4 contains a presentation of service-oriented IT architectures,
in a nutshell. An important part of this chapter is the analysis of SOA-capability of existing
measurement tools. This analysis is realized by taking into account different viewpoints. A
detailed survey of tool manufactures about the capabilities of existing tools and future
strategy is validated by an independent analysis about SOA capabilities of existing

Framework for a Service-oriented Measurement Infrastructure

measurement tools. This analysis provides valuable input for the framework for a service-
oriented measurement infrastructure.

The review of the state-of the art, the need and relevance stated by a survey, the analysis of
SOA, and the determination of the SOA capability of existing measurement tools leads to the
framework described in chapter 5.

The implementation of such infrastructure based on object-oriented metrics constitutes a
proof of concept with a highly distributed type of measures in practical software
measurement.

The single elements are presented as well as prototypical implementations of measurement
components which are able implement all desired elements of the service-oriented
measurement infrastructure. The inclusion of graphical user interfaces for a very broad
range of users (from project management to quality engineers) reason a high distribution
into a software engineering organization in comparison with existing solutions focused on
single functionality.

Another major component, the service-oriented measurement database, is described in
detail in chapter 5.

Some of the presented components provide a benefit away front the presented use case of a
Service-oriented measurement infrastructure. Especially the component for a quality driven
assembly of services QuaD? creates benefit for all service-oriented solution away from the
presented use-case.

Subsuming some elements missing in available solutions have been achieved by own
investigations:

- Creation of an ontology for object-oriented metrics including a web service for
standardized machine readable interface

- BPMN based Implementation of the ISO/IEC 15939 measurement process
standard for a throughout realization of measurement processes

- Application of the OASIS Reference Model for Service-Oriented Architecture 2.0

- Integration architecture for existing solutions and an integration of the
infrastructure into an IDE by using plug-ins

- the mentioned QuaD? framework for quality driven service assembly

The Validation of the presented approach has been done by different approaches. Surveys
and case studies regarding existing solution prove their relevance for establishing new
solutions in this regard.

Prototypical implementation and validation by publishing them in various papers and
thereby applying Delphi studies [RoweWright01] on them implies a validate approach of the
framework.

167

Framework for a Service-oriented Measurement Infrastructure

Applying the Delphi approach to the complete framework or a validation approach by
implementing the whole architecture beyond a prototypical solution for a practical
validation and empirical studies about the usage would go beyond the scope of the thesis in
hand and has to be kept for future work in this research area.

To reach the described goals the thesis mainly deals with the following areas:

- the challenges and the potential of provide measurement services instead of
monolithic measurement tools

- measurement infrastructure alongside a defined measurement process

- semantic description of service to provide automated assembly

- design of service-oriented architectures on the basis of quality indicators

- process evaluation as input for infrastructure design

Future Perspective

Based on the evaluation of the technical solution two main application scenarios are
reasonable:

- Establishing of public service provider to provide single services as broker and
which will be paid by different license models (e. g. pay per use, pay per month,
flat rate). Commercial services can be provided alongside with open-source
services. The functionality of each service is described in a semantic manner and
the service provider measures the services in use, in this case the service
selection can be done by functional and non functional characteristics

- The main technology is adopted by large development organizations which build
their own infrastructures inside their intranet. According to needed measurement
functionality services from measurement tool producers are bought and
integrated into the internal infrastructure.

Both use cases provide promising perspectives for the future of software measurement tools.

The first one is able to enable small and mid size companies to implement software
measurement because high acquisition costs and thereby unclear cost/benefit ratio is solved.

The second case enables a throughout solution regarding software measurement in large
scale development organizations and provide one solution for a hole measurement process,
consolidates the knowledge but providing different graphical user interfaces, analysis
possibilities and different level of detail for different stakeholders.

In both cases two facts can be assured from whereas benefits for the framework are
expected:

- More functionality is provided as web services owing semantic descriptions for an
automated assembly. That would enhance the applied measurement field to
other than object-oriented measures

- more empirical data about measurement processes, web services and
measurement results can be collected and applied for an enhancement of
measurement data analysis and web service evaluation

Framework for a Service-oriented Measurement Infrastructure

In both cases the application to other measurement areas and other application areas of
service-oriented architectures can be identified as beneficial.

Beside the enhancement with more functionality and empirical data a framework like the
presented one needs acceptance beside the scientific world. But economic success not
always relates to technical capabilities or applied standards. More often success in
commercial business relates to support and publicity by perceived communities.

To promote the framework he has been published at various conferences and workshops.
Additionally, the framework is supported among other by the German speaking user
association for software metrics and effort estimation and by the central European
computer measurement group at their workshop for measurement aspects of service-
oriented architectures.

Framework for a Service-oriented Measurement Infrastructure

170

Bibliography

[AbrLaf"99]

[AbrKunz'03]

[AbranMoore®04]

[AbranOligny*00]

[AlvesAssaf 07]

[AngMarOls'03]

[ASGOS]

[AuerGraser'03]

Alain Abran, Lucie Laframboise, and Pierre Bourque. A risk assessment
method and grid for software measurement programs. Technical
Report 99-03, Département d’informatique, Université du Québec a
Montréal, Montréal, QC, Canada, 1999.

Alain Abran, Martin Kunz, Reiner R. Dumke, and René Braungarten.
The prototypical web-based implementation of the QEST model. Proc.
of the IWSM2003, Montréal, Canada, 23.-25. September, 2003, pp. 82-
92, ISBN 3-8322-1880-7

Alain Abran, James W. Moore, Pierre Bourque, and Robert Dupuis,
editors. SWEBOK — Guide to the Software Engineering Body of
Knowledge.l[EEE Computer Society, Los Alamitos, CA, USA, February
2004.

Alain Abran, S. Oligny, Charles Symons: COSMIC FFP and the World
Wide Field Trials Strategy. In R.R. Dumke and A. Abran editors: New
Approaches in Software Measurement. Springer Publishing. Berlin.
2000

Alves, Alexandre ; Arkin, Assaf ; Askary, Sid ; Barreto, Charlton ; Bloch,
Ben ; Curbera, Francisco ; Ford, Mark ; Goland, Yaron ; Guizar,
Alejandro ; Kartha, Neelakantan ; Liu, Canyang K. ; Khalaf, Rania ; Konig,
Dieter ; Marin, Mike ; Mehta, Vinkesh ; Thatte, Satish ; Rijn, Danny van
d. ; Yendluri, Prasad ; Yiu, Alex: Web Services Business Process
Execution Language Version 2.0. OASIS standard. http://docs.oasis-
open.org/wsbpel/ 2.0/0S/wsbpel-v2.0-0S.html. Version: April 2007

Maria de Angeles Martin; Luis Olsina. Towards an Ontology for
Software Metrics and Indicators as the Foundation for a Cataloging
Web System/ GIDIS, Department of Informatics, Engineering School at
UNLPam, LaPampa. Argentina. 2003.

Allen Systems Group, Inc.: ASG-Rochade - Product Details.
http://www.asg.com/products/product_details.asp?code=ROC&id=50,
Naples (USA), cited December 2008.

M. Auer, B. Graser, and S. Biffl, “A survey on the fitness of commercial
software metric tools for service in heterogeneous environments:

Framework for a Service-oriented Measurement Infrastructure

171
Common pitfalls,” in Proceedings of the Ninth International Software

Metrics Symposium (METRICS’03), 2003, p. 144.

[BakerHantos03] Emanuel R. Baker and Peter Hantos. Implementing a successful
metricsp rogram: Using the ggm-rx concept to navigate the metrics
minefield. In Proceedings of the 15th Annual Software Technology
Conference (STC) 2003, Salt Lake City, UT, USA, April/May 2003.

[Balzert08] Helmut Balzert. Lehrbuch der Softwaretechnik.-.Softwaremanagement.
Spektrum Akademischer Verlag. Heidelberg. 2008.

[BarrosDumas’05] A. Barros. M. Dumas, P. Oaks. A Critical Overview of the Web Service
Choreography Description Language. BPTrends. July 2005

[Basili85] Victor Basili. Quantitative Evaluation of Software Engineering
Methodology. Proc. Of the First Pan Pacific Computer Conference,
Melbourne (Australia), 1985.

[BasCal92] Basili, V.; Caldiera, G.; McGarry, F.; Pajerski, R.; Page, G.; Waligora, S.:
The Software Engineering Laboratory - An Operational Software
Experience Factory. In: Proc. of the 14th International Conference on
Software Engineering, ACM, pp. 370-381, Melbourne (Australia), 1992.

[BasCal'94] Basili, V.; Caldiera, G; Rombach, D.: Experience Factory. In:
Encyclopedia of Software Engineering. Editor: Marciniak, J. J., Volume |,
pp. 469 - 476, John Wiley & Sons, New York (USA), 1994.

[BasiliWeiss84] Victor R. Basili and D.M. Weiss. A methodology for collecting
validsoftware engineering data. IEEE Transactions on Software
Engineering,10(6):728-738, June 1984.

[BasiliSelby*86] Victor R. Basili, Richard W. Selby, and David H. Hutchens.
Experimentationin software engineering. |EEE Transactions on
Software Engineering,SE-12(7):733-743, July 1986.

[Basilios] Victor R. Basili. The role of experimentation in software engineering:
past, current, and future. In ICSE '96: Proceedings of the 18th
international conference on Software engineering, pages 442-449,
Washington, DC, USA, 1996. IEEE Computer Society.

[BassClements'03] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional 2" edition. 2003.

[BauerMiiller04] Bauer, B., Miiller, J.: Methodologies and Modeling Languages. In:
Agent-Based Software Development, Luck, M.; Ashri, R. and d'Inverno,
M. (Editors), Artech House, Boston, pp. 77-131, 2004.

172

Framework for a Service-oriented Measurement Infrastructure

[Bergin93]

[Bernstein97]

[BerHar"97]

[Berri90]

[Berryleffery00]

[BoehmBrown*76]

[BoehmAbts00]

[BoehmO06]

[BoothHugo'04]

[BourqueOligny*07]

[Bradley98]

[BraFarKunz'06]

Bergin, T. J.: Computer-Aided Software Engineering: Issues and Trends
for the 1990s and Beyond. Idea Group Publishing, Harrisburg (USA),
1993.

Bernstein, P. A.: Repositories and Object-Oriented Databases.
Datenbanksysteme in Biiro, Technik und Wissenschaft, In: Dittrich, K.R.
und Geppert, A. (Editors.): Proceedings of BTW Conference 1997 Ulm,
p. 34-46, Springer-Publishing, Berlin (Germany), 1997.

Bernstein, P.; Harry, B.; Sanders, P.; Shutt, D.; Zander, J.: Microsoft
Repository. In: Proceedings of the 23rd VLDB Conference, Athens
(Greece), pp. 3-12, 1997.

Beeri, C.: A formal Approach to object-oriented Databases. Data and
Knowledge Engineering, Volume 5, Nmbr. 4, pp. 353-382, 1990.

Michael Berry and Ross Jeffery. An instrument for assessing
softwaremeasurement programs. Empirical Software Engineering,
5(3):183—200,November 2000.

Barry Boehm, J.R. Brown, M. Lipow. Quantitative Evaluation of
Software Quality. Proceedings of the International Conference on
Software Engineering. Pg. 592-605. San Francisco. CA. USA. 1976

Barry Boehm, C. Abts., et al. Software Cost Estimation with Cocomo II.
Prentice Hall PTR. Upper Saddle River. NJ. USA. 2000

Barry W. Boehm. A view of 20th and 21st century software
engineering.In ICSE ’06: Proceeding of the 28th international
conference on Softwareengineering, pages 12-29, New York, NY, USA,
2006. ACM Press.

Booth, David ; Haas, Hugo ; McCabe, Francis ; Newcomer,Eric ;
Champion, Michael ; Ferris, Chris ; Orchard, David: Web Services
Architecture. W3C Working Group Note. http://www.w3.org/TR/ws-
arch/. February 2004

Bourque, P.; Oligny, S.; Abran, A.; Fournier, B.: Developing Project
Duration Models in Software Engineering. Journal of Computer Science
and Technology, 22(3). 2007.

Bradley, N.: The XML Companion. Addison-Wesley, New York (USA),
1998.

Braungarten, R.; Farooq, A.; Kunz, M.; Schmietendorf, A.; Dumke, R.:
Applying Service-Oriented Software Measurement to Derive Quality
Indicators of Open Source Components. UPGRADE - The European

[BraKunz'05a]

[BraKunz'05b]

[BraKunz'05c]

[Braungarten07]

[BuglioneAbran99]

[BunDek08]

[ChaBer08]

[Chappell06]

[ChiKem94]

[Chen76]

Framework for a Service-oriented Measurement Infrastructure

Journal for the Informatics Professional, Vol. VII, No. 1, February 2006,
ISSN 1684-5285

Braungarten, R.; Kunz, M.; Farooq, A.; Wille, C.; Schmietendorf, A.;
Dumke, R.: A Metrics Data Base Maturity Model. Proceedings of the
9th IEEE International Multi Topic Conference (INMIC2005), National
University of Computer and Emerging Sciences, Karachi/Pakistan,
December 2005, ISBN 0-7803-9430-5

Braungarten, R.; Kunz, M.; Farooq, A.; Dumke, R.R.: Towards
Meaningful Metrics Data Bases. Proc. of the IWSMO05, September 12-
14, 2005, Montreal, Shaker Publishing. Aachen. 2005

René Braungarten, Martin Kunz, and Reiner R. Dumke. An Approach to
Classify Software Measurement Storage Facilities. Preprint Nr. 2,
Computer Science Departement, University Magdeburg, 2005

René Braungarten . A The SMPI Model: A stepwise process model to
facilitate software measurement process improvement along the
measurement paradigms. PhD thesis, Otto-von-Guericke University of
Magdeburg, 2007.

Luigi Buglione, Alain Abran. Multidimensional Software Quality
Measurement Models: A Tetrahedron-based Design. In: Dumke R,
Abran A, editors. Software Measurement: current trends in research
and practice. Deutscher Universitats- Verlag GmbH, 1999.p.93-107.

Manfred Bundschuh, Carol Dekkers. The IT Measurement
Compendium: Estimating and Benchmarking Success with Functional
Size Measurement. Springer Publishing. Berlin. 2008

Chappell, David ; Berry, David: Next-Generation Grid-Enabled SOA: Not
Your MOM'’s Bus. In: SOA Magazine XIV, January. 2008

Chappell, David: SOA and the Reality of Reuse
http://www.davidchappell.com/HTML_email/Opinari_No16_8_06.htm
|, Cited December 2008

Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object-
oriented design. IEEE Transactions on Software Engineering,
20(6):476—493, June 1994.

Chen, P.: The Entity-Relationship Model — Toward a Unified View of
Data. ACM Transactions on Database Systems, Vol. 1, Nmbr. 1, pp. 9-
36, 1976.

173

Framework for a Service-oriented Measurement Infrastructure

174
[Chrissiskonrad™03]

[CiaWoo001]

[Clermont03]

[CMMQuest08]

[Codd70]

[Codd82]

[Collaxa03]

[daSilveira02]

[Daskalantonakis94]

[DasBas'91]

[DAMLOS]

[DawsonNolan03]

Mary Beth Chrissis, Mike Konrad, and Sandy Shrum. CMMI:
Guidelinesfor Process Integration and Product Improvement. Addison-
Wesley Professional,Boston, MA, USA, 1st edition, February 2003.
ISBN: 0321154967.

Ciancarini, P. and Wooldridge, M. J.: Agent-Oriented Software
Engineering. In: Agent-Oriented Software Engineering, Springer, Berlin,
2001

Clermont, M.: A Scalable Approach to Spreadsheet Visualization. PhD
thesis, University of Klagenfurt, Klagenfurt (Austria), 2003.

CMM-Quest for CMMi 1.2: http://www.cmm-quest.com/about.htm,
cited December 2008

Codd, E.: A relational model for large shared data banks.
Communications of the ACM, Volume 13, Nmbr. 6, pp. 377-387, 1970.

E.Codd. Relational database: A practical foundation for productivity.
Communications of the ACM, Volume 25, Nmbr.2, pp. 109-117, 1982.

Programming BPEL — Collaxa Developers Guide. Verison 2.0 Collaxa Inc-
2003.

Marcio Luiz Barosso da Silveira. IT Measurement — PracticalAdvice
from the Experts. Addision-Wesley Information Technology Series.
Boston. MA. USA. 2002

Michael K. Daskalantonakis. Achieving higher SEI levels. IEEE
Software,pages 17-24, July 1994,

Michael Daskalantonakis, Victor R. Basili, and Robert Yacobellis. A
method for assessing software measurement technology. Quality
Engineering,3(1):27-40, 1991.

DAML, “DAML Ontology Library”, http://www.daml.org/ontologies/.
cited: December 2008

Ray Dawson and Andrew J. Nolan. Towards a successful software
metrics programme. In Proceedings of the Eleventh Annual
International Workshop on Software Technology and Engineering
Practice (STEP’04), pages 48-51, 2003.

[DekkersMcQuaid02] Carol A. Dekkers and Patricia A. McQuaid. The dangers of using

software metrics to (mis)manage. IEEE IT Professional, pages 24-30,
March 2002.

[DeMarco82]

[DeMarco89]

[Dennis02]

[Desharnais94]

[Devedzic06]

[Dimitrov08]

[DITCOS]

[Dostalleckle04]

[Dostalleckle05]

[Drouin95]

[Dumke96]

[DumGri96]

[Dumke03]

Framework for a Service-oriented Measurement Infrastructure

Tom DeMarco. Controlling Software Projects — Management,
Measurement & Estimation. Prentice Hall PTR, Englewood Cliffs, NJ,

USA, June 1982

Tom DeMarco. Software-Projektmanagement. Druck

GmbH. Miinchen. 1989

Ulenspiegel

Sheila P. Dennis. IT Measurement: Practical Advice from the Experts,
chapter 18 — Avoiding Obstacles and Common Pitfalls in the Building
of an Effective Metrics Program, pages 295 —304. 1. Addison-Wesley,
Boston,MA, USA, 2002.

Jean-Marc Desharnais. Statistics on function point measurement
programs in 20 canadian organizations. In Software Measurement
Programs in Industry and Administration — A Joint DASMA — CIM
Workshop, Koblenz, Germany, November 1994.

V. Devedzic, “Semantik Web and Education”, Springer Publishing,
Berlin, 2006.

Dimitrov, Evgini: SOA in der Telekom-Branche, SOA Roundtable FHW
Berlin 2008

Data & Analysis Center for Software (DACS), a sub-division of Defense
Technical Information Center (DTIC): The Software Reliability Dataset.
http://www.dacs.dtic.mil/databases/sled/swrel.shtml cited: December
2008.

W. Dostal, M. Jeckle. Semantik, Odem einer service-orientierten
Architektur. Java Spektrum 1/2004. SIGS-DATACOM, February/March
2004

W. Dostal, M.
Architekturen mit Web Services. Akademischer Verlag, Miinchen. 2005

Jeckle, 1. Melzer, B. Zengler. Service-orientierte

Jean-Normand Drouin. The spice project: An overview. IEEE

SoftwareProcess Newsletter, 3(2):8—-9, Winter 1995.

Reiner R. Dumke. CAME Tools — Lessons Learned- Proceedings of the
Fourth International Symposium on Assessment of Software Tools.
May 1996. Toronto, Canada.

Reiner R. Dumke, H. Grigoleit. Efficiency of CAME Tools in Software
Quality Assurance. Software Quality Journal. 1996

Reiner R. Dumke Softwarequalitditsmanagement. http://ivs.cs.uni-
magdeburg.de/~dumke/ST2/St2skript.html. Cited: Januar 2009

175

176

Framework for a Service-oriented Measurement Infrastructure

[Dumke03b]

[Dumke04]

[Dumke05]

[DumBra*07]

[DumBraKunz'05]

[DumkeKunz 053]

[DumkeKunz'05b]

[DumkeKunz'06a]

[DumkeKunz*08]

Reiner R. Dumke. (Editor): Software Engineering. 4th Revised and
Extended Edition, Vieweg Verlagsgesellschaft mbH, Wiesbaden
(Germany), 2003

Reiner R. Dumke. Software Engineering- Eine Einfihrung fir
Informatiker, Ingenieure: Systeme, Erfahrungen, Methoden, Tools.
Vieweg. Wiesbaden. 2004.

Reiner R. Dumke. Software measurement frameworks. In
Proceedingsof the 3rd World Congress for Software Quality, volume I,
Online Supplement,pages 75-84, Munich, Germany, September 2005.
InternationalSoftware Quality Institute (isqi), Erlangen, Germany. ISBN:
3-9809145-3-4.

Reiner R. Dumke, René Braungarten, Steffen Mencke, Karsten Richter,
Hashem Yazbek. Experience-Based Software Measurement and
Evaluation Considering Paradigm Evolution. Blren et al.: Metrikon
2007 — Praxis der Software-Messung, Shaker-Publ., 2007,

Reiner R. Dumke, René Braungarten, Martin Kunz, and Heike Hegewald.
An |ISO 15939-Based Infrastructure Supporting the IT Software
Measurement. In: Bliren et al.: Praxis der Software-Messung —
Tagungsband des DASMA Software Metrik Kongresses (MetriKon 2005),
Shaker Verlag, Aachen, 2005, pp. 87-106, ISBN 3-8322-4615-0

Reiner R. Dumke, Martin Kunz, Heike Hegelwald, Hashem Yazbek. An
Agent-based Measurement Infrastructure. In: A. Abran and R.R.
Dumke: Proceedings of the 15th Workshop on Software Measurement
(IWSMO05), September 12-14, 2005, Montréal, Canada, Shaker Verlag,
Aachen, pp. 79-94, ISBN 3-8322-4405-0

Dumke, R.; Kunz, M.; Riekehr, A.:Software e-Measurement in the
WWW. Metrics News, Journal of the Gl-Interest Group on Software
Metrics, 10(1):37-42, August 2005. ISSN 1431-8008

Dumke, R. R.;Braungarten, R.; Kunz, M.; Schmietendorf, A.; Wille, C.:
Strategies and Appropriateness of Software Measurement Frameworks.
In: A. Abran; R. Dumke; M. Ruiz: Proceedings of the International
Conference on Software Process and Product Measurement
(MENSURA 2006), November, 6-8, 2006, Cadiz, Spanien, 2006, Servicio
de Publicaciones de la Universidad de Cadiz, Spain, pp. 150-170,
ISBN13: 978-84-9828-101-9, ISBN10: 84-9828-101-6

Reiner R. Dumke, Martin Kunz, Ayaz Farooq, Konstantina Georgieva,
Heike Hegewald. Formal Modelling of Software Measurement Levels of

[Ebert97]

[Ebert’05]

[EbertDumke07]

[Eclipse07]

[EmamBriand97]

[EncBrit08]

[ErlO5]

[ErnstHage'02]

[EweWag05]

[Farooq05]

[FarBra'05]

[FarBraKunz'06]

Framework for a Service-oriented Measurement Infrastructure

Paradigm-Based Approaches. Technical Report. University of
Magdeburg. Department of Computer Science. Magdeburg. Germany.
2008

Christof Ebert. The road to maturity: Navigating between craft and
science. IEEE Software, 14(6):77-82, November 1997.

Christof Ebert, Reiner R. Dumke, Manfred Bundschuh, and Andreas
Schmietendorf.Best Practices in Software Measurement — How to use
metricsto improve project and process performance. Springer, Berlin
Heidelberg,2005.

Christof Ebert, Reiner R. Dumke. Software Measurement. Springer
Berlin 2007. ISBN 978-3-540-71648-8.

Eclipse.org: Eclipse Documentation — Latest Release Eclipse 3.3. Online
Ressource,http://help.eclipse.org, Cited: 10/2007.

K. El Emam and L. Briand, Cost and Benefits of Software Process
Improvement, tech. report ISERN-97-12, International Software
Engineering Research Network, 1997

Encyclopedia Britannica. 2008

Erl, T. “Service-Oriented Architecture Concepts, Technology, and
Design” Prentice space Hall, 2005

Dietmar Ernst, Holger Hage, Dietrich Hofmann, Gerhard LinR.
Breakthrough in Bridging the Digital Gap in Real-time e-Measurement,
e-Training & e-Services. http://imeko.mit.tut.fi/vw2002/ernst.pdf cited
December 2008.

Ralf Ewert, Alfred Wagenhofer. Interne Unternehmensrechnung.
Springer Berlin. 2005 ISBN 978-3-540-23617-7

Conception and Prototypical Implementation of a Web Service as an
Empirical-based Consulting about Java Technologies. Master Thesis.
Otto-von-Guericke University Magdeburg. 2005

Farooq, A., Braungarten, R., Dumke, R.R.: An Empirical Analysis of
Object-Oriented Metrics for Java Technologies. Proceedings of the 9th
IEEE International Multi Topic Conference (INMIC2005), National
University of Computer and Emerging Sciences, Karachi/Pakistan,
December 2005

Farooq, A.; Braungarten, R.; Kunz, M.; Schmietendorf, A.; Dumke, R. R.:
Towards SOA-based approaches for IT Quality Assurance. Proceedings

177

178

Framework for a Service-oriented Measurement Infrastructure

[FarKerKunz'06]

[Fenton91]

[FentonPfleeger97]

[Fikes98]

[Ford93]

[Gartner07]

[Goodman93]

[Goodman04]

[GrableJernigan*99]

[GresseHois|"95]

of the CONQUEST 2006 - Software Quality in Service-Oriented
Architectures, pp. 45-54, dpunkt.verlag, Heidelberg, Germany,
September 2006, ISBN-10 3-89864-432-4, ISBN-13 978-3-89864-432-7

Farooq, A.; Kernchen, S.; Kunz, M.; Dumke, R.; Wille, C.: Complexity
and Quality Evaluation of Basic Java Technologies. In: A. Abran; M.
Bundschuh; G. Biren; R.R. Dumke: Proceedings of the International
Workshop on Software Measurement and DASMA Software Metrik
Kongress (IWSM/MetriKon 2006), 2.-3. November 2006, Potsdam,
Germany, Shaker Publ., pp. 471-482, ISBN 3-8322-5611-3

Norman E. Fenton. Software Metrics: A Rigorous Approach. Kluwer
Acdemic Publishers, Boston, MA, USA, April 1991.

Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics — A
Rigerous and Practical Approach. Internationl Thomson Computer
Press,London, UK, 2nd edition, 1997.

R. Fikes, “Multi-Use Ontologies”, Stanford University
http://www.ksl.stanford.edu/people/fikes/cs222/1998/Ontologies/sld
001.htm. cited: December 2008.

Garry Ford. Lecture Notes on Engineering Measurement for Software
Engineers. SEl educational material package. Carnegie Mellon
University. USA. 1993

GartnerResearch, Transforming Business, Optimize the Business
Outcomes of SOA:
http://h71028.www7.hp.com/enterprise/downloads/Gartner_Transfor
ming_Business.pdf, Cited December 2008

Paul Goodman. Practical Implementation of Software Metrics.
McGraw-Hill International Software Quality Assurance. London .1993.
ISBN 978-0077076658

Paul Goodman. Software Metrics — Best Practices for Successful IT
Management. Philip Jan Rothstein, FBCI, Brookfield, CT, USA, 2004.
ISBN 1-931332-26-6.

Ross Grable, Jacquelyn Jernigan, Casey Pogue, and Dale Divis. Metrics
for small projects: Experiences at the sed. IEEE Software, 16(2):21-29,
March/April 1999.

Christiane Gresse, Barbara Hoisl, and Jiirgen Wust. A process model for
ggm-based measurement. Technical Report STTI-95-04-E, Software-

[Gruber93]

[HallFenton97]

[Halstead77]

[Hansen08]

[Harder87]

[Harrison00]

[Harrison04]

[HenryKafura81]

[Hertel08]

[Hetzel90]

[HeuerSaake*07]

[Holmes02]

Framework for a Service-oriented Measurement Infrastructure

Technologie-Transfer-Initiative Kaiserslautern, Universitat
Kaiserslautern, Kaiserslautern, Germany, 1995.

T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications”, Knowledge Acquisition, 5, pp. 199-220, 1993.

Tracy Hall and Norman Fenton. Implementing effective software
metrics programs. |IEEE Software, 14(2):55-64, 1997.

Maurice Howard Halstead: Elements of software science. Elsevier, New
York u.a. 1977, ISBN 0-444-00205-7 (Operating and programming
systems series; 2).

Antje Hansen. Konzeption und prototypische Realisierung eines

Metriken-Cockpits fiir das Software-Projektmanagement. Diplomarbeit.

Otto-von-Guericke Universitat Magdeburg. 2008

Harder, T.: Realisierung von operationalen Schnittstellen. In:
Lockemann, P.; Schmidt, J. (Hrsg.): Datenbank-Handbuch, S. 163-335,
Springer-Verlag, Berlin (Germany), 1987.

Warren Harrison. A Universal Metrics Repository. In: Proc. of the
Pacific Northwest Software Quality Conference, Portland (USA), 2000.

Warren Harrison. A flexible method for maintaining software metrics
data: a universal metrics repository. Journal of Systems and Software,
72(2):225-234, 2004.

Sallie Henry and Dennis Kafura. Software structure metrics based on
information low. IEEE Transactions on Software Engineering, SE-
7(5):510-518, September 1981.

Frank Hertel. Konzeption und prototypische Realisierung einer
Messtoolverwaltung fiir das projektbezogene Qualitdatsmanagement.
Diplomarbeit. Otto-von-Guericke Universitat Magdeburg. 2008

Bill Hetzel. The software measurement challenge. In Proceedings of
the First International Conference on Applications of Software
Measurement, November 1990.

Heuer, A.; Saake, G., Sattler, K.U. : Datenbanken: Konzepte und
Sprachen. 3rd, Updated and Enhanced Edition, MITP Publishing,
Germany, 2007.

Lori Holmes. IT Measurement: Practical Advice from the Experts,
chapter 6 — Measurement Program Implementation Approaches,
pages 97-111. 1. Addison-Wesley, addison-wesley edition, May 2002.

179

Framework for a Service-oriented Measurement Infrastructure

[HoriEuzenat®03]

[Humphrey87]

[Humphrey96]

[IEEE9O]

[IFPUG99]

[ISBSGO7]

[1SO/IEC94]

[ISO/IEC98]

[1SO/IEC00a]

[ISO/IEC00b]

[ISO/IECO01]

[ISO/IEC02]

Masahiro Hori, Jérome Euzenat, Perter F. Patel-Schneider. OWL Web
Ontology Language XML Presentation Syntax. W3C Consortium.
http://www.w3.org/TR/owl-xmlsyntax/. Cited: December 2008

Watts S. Humphrey. Characterizing the software process: A maturity
framework. Technical Report CMU/SEI-87-TR-11, ADA182895, SEI at
CMU, Pittsburgh, PA, USA, June 1987.

Watts S. Humphrey. Introduction to the Personal Software Process.
Addison-Wesley Professional, Boston, MA, USA, December 1996.
ISBN:0201548097.

Computer Society [|EEE. 610.12:1990 standard glossary of
softwareengineering terminology, 1990.

IFPUG: Function Point Counting Practices Manual, Release 4.1.
Westerville. OH. USA. 1999.

The International Software Benchmarking Standards Group (ISBSG):
ISBSG Repository (R10) Field Description.
http://www.isbsg.org/documents/datdskfd.doc, Warrandyte
(Australia), 2007.

ISO/IEC 8402. ISO/IEC 8402:1994 — Quality Vocabulary. 1994.

ISO/IEC15504-1 Information technology- Software process assessment
Part 1: Concepts and introductory guide. International Organization for
Standardization, Geneva, Switzerland. 1998

ISO/IEC 9000 EN ISO 2000 Qualitatsmanagementsysteme- Grundlagen
und Begriffe. International Organization for Standardization, Geneva,
Switzerland. 2000

ISO/IEC 9001 EN ISO 2001 Qualitditsmanagmentsysteme
Anforderungen. International Organization for Standardization,
Geneva, Switzerland. 2000.

ISO/IEC. ISO/IEC 9126-1 Information Technology - Software
engineering— Product quality — Part 1: Quality model. International
Organization for Standardization, Geneva, Switzerland, 2001.

ISO/IEC. ISO/IEC 15939 — Information Technology — Software
Engineering — Software Measurement Process. International
Organization for Standardization, Geneva, Switzerland, 2002.

[ISO/IEC033]

[1SO/IECO3b]

[ISO/IEC04]

[ISO/IEC04b]

[ISO/IECO5]

[lveMat00]

[Johnson01]

[JohKou'05]

[Jones96]

[Jones03]

[KanerBond04]

Framework for a Service-oriented Measurement Infrastructure

181
ISO/IEC. ISO/IEC 9126-2 Information Technology - Software

engineering— Product quality — Part 2: External Metrics. International
Organization for Standardization, Geneva, Switzerland, 2003.

ISO/IEC. ISO/IEC 9126-3 Information Technology — Software
engineering— Product quality — Part 3: Internal Metrics. International
Organization for Standardization, Geneva, Switzerland, 2003.

ISO/IEC. ISO/IEC 9126-4 Information Technology - Software
engineering— Product quality — Part 4: Quality in Use Metrics.
International Organization for Standardization, Geneva, Switzerland,
2004.

ISO/IEC 90003 Software engineering- Guidelines for the application of
ISO/IEC 9001:2000 to computer software. International Organization
for Standardization, Geneva, Switzerland. 2004.

ISO/IEC. The iso survey — 2005. http://www.iso.org/iso/en/iso9000-
14000/pdf/survey2005.pdf, December 2005. Geneva, Siwtzerland.

Jakob Iversen and Lars Mathiassen. Lessons from implementing a
software metrics program: In Proceedings of the 33rd Hawaii
International Conference on System Sciences - 2000, volume 7. Alborg
University, Denmark, IEEE Computer Society Press, 2000.

Philip M. Johnson: Accelerating adoption of empirically guided
software development through non-disruptive, developer-centric, in-
process data collection and analysis. / University of Hawaii,
Department of Information & Computer Sciences. Honolulu,
November 2001

Philip M. Johnson; Hongbing Kou, Michael Paulding ; Qin Zhang; Aaron
Kagawa, Takuya Yamashita: Improving Software Development
Management through Software Project Telemetry. In: IEEE Software 22
(2005), August, Nr. 4, P. 76-85

Capers Jones: The economics of software process improvement.
I[EEEComputer, 1996.

Cheryl L. Jones. Implementing a successful measurement program:
Tried and true practices and tools. Cutter IT Journal, 16(11):12-18,
November 2003.

Cem Kaner and Walter P. Bond. Software engineering metrics: What
do they measure and how do we know? In Proceedings of the 10th

Framework for a Service-oriented Measurement Infrastructure

[KerKunz'073]

[KerKunz'07b]

[KerKunz'07c]

[KernchenRud*07]

[King04]

[Kitchenham96]

[Kitchenham07]

[Knapiklohnson98]

[KnolIBusse91]

[KnuDim*03]

[KochKuvaja“94]

International Software Metrics Symposium METRICS 2004, pages 1-12,
2004.

Kernchen, S.; Kunz, M.; Dumke, R.: "Proactive Class Schedule". IEEE
Multidiscplinary Engineering Education Magazine, Vol. I, No. 3, 2007

Kernchen, S.; Kunz, M.; Dumke, R.: Proactive Class Schedule. In:
Proceedings of International Conference on Computer Aided Blended
Learning (ICBL2007), 7.-9. May, 2007, Florianopolis, Brazil.

Kernchen, S.; Kunz, M.; Schmietendorf, A.; Dumke, R.: Ontology
Metrics- Measurement and Evaluation of Ontologies. In: T. Dekkers.
Proceedings of the 4th Software Measurement European Forum (Smef
2007), 9.-11. May,2007 Rome, Italy.

Steffen Kernchen, Dmytro Rud, Fritz Zbrog, and Reiner R. Dumke,
“Processing Remote Measurement Databases by the Means of Mobile
Agents”, In Proceedings of the 3rd International Conference on Web
Information Systems and Technologies, Barcelona, Spain, March 2007.

King, P.: SLED — Defense Technical Information Center, U.S. D.o.D., Fort
Belvoir (USA), 2004

Barbara A. Kitchenham. Desmet: A method for evaluating software
engineeringmethods and tools. Technical Report TR96-09, Department
ofComputer Science, University of Keele, Keele, Staffordshire, UK,
August1996.

Kitchenham, B.: Empirical Paradigm — The Role of Experiments. In:
Basili et al.: Emiprical Software Engineering, Springer-Publishing, 2007

Knapik, M. and Johnson, J.: Developing Intelligent Agents for
Distributed Systems, McGraw-Hill, New York, 1998

H.D. Kndll, J. Busse. Aufwandsschatzung von Softwareprojekten in der
Praxis. Bl Wissenschaftsverlag. Mannheim. 1991

M. Knuth (Editor), Evgini Dimitrov, M. GroBmann, J. Lezius, G. P6hner,
Daniel Reitz, J. Renner, M. Schmidt, Andreas Schmietendorf. Web
Services- Einfiihrung und Ubersicht. Software&Support Publishing.
Frankfurt 2003

P. Koch, Pasi Kuvaja, L. Mila, A. Krzanik, S. Bicego, and G.
Saukkonen.Software Process Assessment and Improvement: The
BOOTSTRAP Approach.Blackwell Publishers, Boston, MA, USA, July
1994. ISBN: 0631196633.

Framework for a Service-oriented Measurement Infrastructure

[KosLey04] D. Kossmann, F. Leymann. Web Services. Informatik Spektrum. Band
27.Volume 2. Springer Publishing Heidelberg. 2004

[Kriz88] Jurgen Kriz, editor. Facts and Artefacts in Social Science: An
Ephistemological and Methodological Analysis of Empirical Social
Science. McGraw HillResearch, New York, NY, USA, 1988.

[Kueng00] Peter Kueng. Process performance measurement system — a tool to
supportprocess-based organizations. Total Quality Management,
11(1):67-85, January 2000.

[KugRem95] Hans-Jirgen Kugler and Santiago Rementeria. Software
engineeringtrends in europe. Technical report, European Software
Institute (ESI),Bilbao, Spain, 1995.

[Kunz'05] Kunz, M.; Braungarten, R.; Dumke, R.R.: Measuring elearning - A
classification approach for eLearning Systems. In: A. Abran and R.R.
Dumke: Proceedings of the 15th Workshop on Software Measurement
(IWSMO05), September 12-14, 2005, Montréal, Canada, Shaker Verlag,
Aachen, pp. 79-94, ISBN 3-8322-4405-0

[Kunz'06a] Kunz, M.; Schmietendorf, A.; Braungarten, R.; Dumke, R.:
Serviceorientierte Ausrichtung von Test- und Messwerkzeugen. In: A.
Schmietendorf and R. Dumke: Tagungsband 1. Workshop
Bewertungsaspekte serviceorientierter Architekturen (BSOAO06), 24.
November, 2006, FHW Berlin, Germany, Eigenverlag Otto-von-
Guericke-University Magdeburg, pp. 11-20, ISBN 3-929757-95-8

[Kunz'06b] Kunz, M.; Schmietendorf, A.; Dumke, R.; Rud, D.: SOA-Capability of
Software Measurement Tools. In: A. Abran; R. Dumke; M. Ruiz:
Proceedings of the International Conference on Software Process and
Product Measurement (MENSURA 2006), November, 6-8, 2006, Cadiz,
Spanien, 2006, Servicio de Publicaciones de la Universidad de Cadiz,
Spain, pp. 216-225, ISBN13: 978-84-9828-101-9, ISBN10: 84-9828-101-
6

[Kunz'06¢] Kunz, M.; Kernchen, S.; Dumke, R.; Schmietendorf, A.: Ontology-based
web-service for object-oriented metrics. In: A. Abran; M. Bundschuh; G.
Blren; R.R. Dumke: Proceedings of the International Workshop on
Software Measurement and DASMA Software Metrik Kongress
(IWSM/MetriKon 2006), 2.-3. November 2006, Potsdam, Germany,
Shaker Publ., pp. 99-106, ISBN 3-8322-5611-3

[Kunz'06d] Kunz, M.; Leszak, M.; Braungarten, R.; Dumke, R.R.: Design of an
Integrated Measurement Database for Telecom Systems Development.

Framework for a Service-oriented Measurement Infrastructure

[Kunz'06e]

[Kunz'06f]

[Kunz'07a]

[Kunz'07b]

[Kunz*08a]

[Kunz*08b]

[Kunz'08c]

[Kunz'08d]

In: A. Abran; M. Bundschuh; G. Biiren; R.R. Dumke: Proceedings of the
International Workshop on Software Measurement and DASMA
Software Metrik Kongress (IWSM/MetriKon 2006), 2.-3. November
2006, Potsdam, Germany, Shaker Publ., pp. 471-482, ISBN 3-8322-
5611-3

Kunz, M.; Braungarten, R.; Dumke, R.: Bewertungsansatze und Modelle
flir unternehmensweite Software-Messinitiativen. Arbeitskonferenz
Softwarequalitdt und Test (ASQT) 2006, Klagenfurt, Austria, 14.-15.
September 2006

Kunz, M.; Schmietendorf, A.; Dumke, R.; Wille, C.: Towards a service-
oriented measurement infrastructure. In: T.Dekkers. Proceedings of
the 3rd Software Measurement European Forum (Smef 2006),10.-12.
May 2006, Rome, Italy.

Kunz, M.; Dumke, R.; Braungarten, R.; Schmietendorf, A.: How to
measure Agile Software Development. Proceedings of the
International Conference on Software Process and Product
Measurement (IWSM-Mensura 2007), 5.-8. November 2007, Palma de
Mallorca, Spain, pp. 319-325, ISBN 978-84-8384-020-7

Kunz, M.; Dumke, R.: Empirische Grundlagen zur COSMIC-FFP-
Anwendung fur die Aufwandsschatzung Preprint Nr. 7, Computer
Science Departement, University Magdeburg, 2007

Kunz, M.; Mencke, S.;Zenker, N.; Braungarten, R.; Dumke, R.; Quality-
driven orchestration of services; IWSM-Mensura 2008, Lecture notes in
computer science ; 5338 Software process and product measurement .
- Berlin : Springer, ISBN 3-540-89402-0. — 2008

Kunz, M.; Mencke, S.;Zenker, N.; Rud, D.; Dumke, R.; Empirical based,
guality-driven orchestration of services: BSOA 2008 . - Aachen : Shaker,
ISBN 978-3-8322-7221-0. - 2008

Kunz, M.; Mencke, S.; Rud, D.; Dumke, R.; Empirical-Based Design -
Quality-Driven Assembly of Components. In Proceedings of the 2008
IEEE International Conference on Information Reuse and Integration
(IEEE IRI-2008), Las Vegas, USA 13-15. July 2008, ISBN 978-1-4244-
2659-1

Kunz, M.; Zenker, N.; Mencke, S.; Dumke, R.; "Unit Metrics" - A Tool to
support Refactoring in Agile Software Development. In Proceedings of
the 2008 World Congress in Computer Science Computer Engineering

[Kunz'08e]

[LairdBrennan06]

[LeeHendler'01]

[ListBruckner'05]

[Lonchamp93]

[LotBraKunz'05]

[LoDuBrKunz*05]

[LotSchm*02]

[LotherB6hmO02]

Framework for a Service-oriented Measurement Infrastructure

and Applied Computing (Worldcomp’08), Las Vegas, USA 14-17. July
2008, ISBN 1-60132-090-6

Kunz, M.; Dumke, R.; Zenker, N.; Software Metrics for Agile Software
Development. In Proceedings of the 19th Australien Software
Engineering Conference (ASWEC 2008); Perth, Australia 25-28. March
2008; IEEE Computer Society, ISBN 978-0-7695-3100-7

Laird, L. M.; Brennan, M. C.: Software Measurement and Estimation —
A Practical Approach. IEEEComputer Science, 2006

T.B. Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific
American, 284, pp. 34-44, 2001.

Beate List, Robert M. Bruckner, and Jochen Kapaun. Holistic
softwareprocess performance measurement from the stakeholders’
perspective. In Proceedings of the 16th International Workshop on
Database and ExpertSystems Applications (DEXA’05), pages 941-947.
Vienna University of Technology, Austria, IEEE Computer Society,
August 2005.

Jacques Lonchamp. A structured conceptual and terminological
framework for software process engineering. In ICSP, volume Session
II: Software Process Conceptual Frameworks, pages 41-53, Berlin,
Germany, 1993.

Mathias Lother, René Braungarten, Martin Kunz, and Reiner R. Dumke.
The Functional Size eMeasurement Portal (FSeMP) - A Web-based
Approach for Effort Estimation, Benchmarking and eLearning. In: Abran
et al.: Software Measurement - Research and Application, Proc. of the
IWSM/Metrikon 2004, Berlin, Germany, November 2004, Shaker Publ.,
pp. 27-40, ISBN 3-8322-3383-0

Lother, M.; Dumke, R.; Braungarten, R.; Kunz, M.: Ein Portal zur
funktionalen GréBenmessung von Software. Softwaretechnik Trends,
25 (2005) 1, pp. 39-44, ISSN 0720-8928

Mathias Lother, Andreas Schmietendorf,T. Bohm, Reiner R. Dumke.
Quality Evaluation of Large-scale Software Systems. In R.R. Dumke et al
(Editors). Software Measurement and Evaluation- Proceedings of the
12" International Workshop on Software Measuremen. Shaker
Publishing. Aachen 2002.

Mathias Lother, T. Bohm. Qport- Quality Evaluation of
Telecommunication Systems- Project internal Report. Magdeburg.
2002

Framework for a Service-oriented Measurement Infrastructure

[Lother07]

[MacKenLas*06]

[MatthesSchmidt99]

[McCabe76]

[McCallRichards*77]

[McClure92]

[Mclnnis99]

Mathias Lother. From Software Measurement to e-Measurement.
Shaker Publishing. Aachen. 2007

C. MacKenzie, K. Laskey, F. McCabe, P.F. Brown, R. Metz. Reference
Model for Service Oriented Architectur 1.0 OASIS, July 2006

Matthes, F.; Schmidt, J.W.: Datenbanken und Informationssysteme.
Lecture Notes, TU Harburg, http://www.sts.tu-
harburg.de/teaching/ws-98.99/DBIS/91-dbis.pdf, Hamburg (Germany),
1999

Thomas J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4):308-320, December 1976.

J.LA. McCall, P.K. Richards, G.F. Walters. Factors in Software Quality.
Volume |: Concepts and Definitions of Software Quality. Technical
Report. RADC-TR-77-369. Rome Air Development Center. Griffiss Air
Force Base. USA. 1977.

McClure, C.: The Three R’s of Software Automation: Re-Engineering,
Repository, Reusability. Prentice Hall, London (UK), 1992.

Mclnnis, K.: Managing The Microsoft Repository AD131.
http://www.cbd-hg.com/PDFs/repository.pdf, Dallas (Texas), 1999.

[McQuaidDekkers04] Patricia A. McQuaid and Carol A. Dekkers. Steer clear of hazards on the

[MITOS]

[Meinel06]

[MenDub07]

[Mencke07]

[Mencke08]

road to software measurement success. Software Quality Professional,
6(2):27-33, March 2004.

MIT (Massachusetts Institute of Technology) Kerberos: The Network
Authentication Protocol, http://web.mit.edu/kerberos/ 2005

A. Meinel. Serviceorientierung verandert Paradigmen — Im Gesprach.
ComputerZeitung 28. July 2006

Menascé, D. A. and Dubey, V.: Utility-based QoS Brokering in Service
Oriented Architectures. In Proceedings of the IEEE International
Conference on Web Services (ICWS 2007)

Mencke, Steffen, Dumke, Reiner R., Agent-Supported e-Learning.
Preprint No 8, Department of Computer Science, University of
Magdeburg, 2007

Proactice Ontology-Based Content Provision in the Context of e-
Learning. PhD thesis, Otto-von-Guericke University of Magdeburg,
2008.

[MenckeKunz'08a]

[MenckeKunz'08b]

[MenckeKunz 08c]

[MenckeKunz'08d]

[Mendonc¢a97]

[Microsoft08]

[Minkiewicz00]

[MoraDenger03]

[Natis03]

[NaumannQ5]

Framework for a Service-oriented Measurement Infrastructure

Mencke, S.; Kunz, M.; Zenker, N.; Dumke, R.; Ontology-Based Generic
Learning Path Recommendations. In Proceedings of the 2008 World
Congress in Computer Science Computer Engineering and Applied
Computing (Worldcomp’08), Las Vegas, USA 14-17. July 2008, ISBN 1-
60132-090-6

Mencke, S.; Kunz, M.; Dumke, R.; Towards Metrics for Ontology
Balance. In Proceedings of the 20th International Conference on
Software Engineering & Knowledge Engineering (SEKE 2008), San
Francisco, USA 1-3. July 2008, ISBN 1-891706-22-5

Mencke, S.; Kunz, M.; Pukal, M.; "Runtime Adaptations within the
QuaD’-Framework", In Proceedings of the 5th ECOOP'2008 Workshop
on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE
2008), Paphos, Cyprus, July 7, 2008.

Mencke, S.; Kunz, M.; Dumke, R.; Steps to an Empirical Analysis of the
Proactive Class Schedule. In Proceedings of Interactive Mobile and
Computer Aided Learning Conference, IMCL 2008; Amman, Jordan 16-
18. April 2008

Manoel Gomes Mendonga. An Approach to Improving Existing
MeasurementFrameworks in Software Development Organizations.
PhD thesis,University of Maryland, 1997.

Microsoft Corporation. Using the Microsoft Repository.
http://msdn.microsoft.com/en-us/library/aa224785(SQL.80).aspx
Cited: December 2008.

Arlene Minkiewicz. Software measurement? what’s in it for me? In
Proceedings of the SM /ASM 2000 Conference, 2000.

Maricel Medina Mora and Christian Denger. Requirement metrics. an
initialliterature survey on measurement approaches for requirement
specifications.Technical Report 096.03/E, Fraunhofer IESE,
Kaiserslautern,Germany, October 2003.

Y.V. Natis. Service-Oriented Architecture Scenario. ID Number AV-19-
6751. Gartner Research. April 2003

Naumann, F.: Mediator/Wrapper: Architektur & Peer-Data-
Management. Information Integration. http://www.informatik.hu-
berlin.de/forschung/gebiete/wbi/ii/folien/Infolnt_07_MediatorWrapp
erPDMS.ppt. Cited: December 2008. Berlin 2005

187

188

Framework for a Service-oriented Measurement Infrastructure

[NewLomO03]

[ODMGY7]

[OmanPfleeger96]

[OMGO6]

[Pall87]

[PanaitLuke06]

[Pandian03]

[Pandian04]

[Peltz03]

Newcomer, E., Lomow, G. “Understanding SOA with Web Services”
Addision Wesley, 2003

Cattell, R.G.G. et al. (Editor): The Object Database Standard ODMG 2.0.
Morgan Kaufmann Publishers, San Francisco (USA), 1997.

Paul Oman and Shari Lawrence Pfleeger, editors. Applying Software
Metrics. Wiley-IEEE Computer Society Press, New York, NY, USA, first
edition, 1996.

Business Process Modeling Notation (BPMN) Specification.
http://www.omg.org/docs/dtc/06-02-01.pdf. Version: February 2006

Gabriel A. Pall. Quality Process Management. Prentice Hall, Englewood
Cliffs, NJ, USA, 1st edition, May 1987.

Panait, L. and Luke, S.: Selecting Informative Actions Improves
Cooperative Multiagent Learning. In: Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS 200, Hakodate, Japan, May 8-12, pp. 760-766, 2006

C. Ravindranath Pandian. Software Metrics. Auerbach Publications,
NewYork, NY, USA, 2003.

Pandian, C. R.: Software Metrics — A Guide to Planning, Analysis, and
Application. CRC Press Company, 2004

Peltz, C. “Web Services Orchestration and Choreography”, Computer,
2003

[PerkinsPeterson’03] Tim Perkins, Ronald Peterson, and Larry Smith. Back to the basics:

[Pfleeger93]

[Pfleeger97]

[PlenumO06]

[PricCoo04]

Measurementand metrics. STSC CrossTalk, pages 9-12, December
2003.

Shari Lawrence Pfleeger. Lessons learned in building a corporate
metrics program. |IEEE Software, 10(3):67—74, May 1993.

Shari Lawrence Pfleeger. Assessing measurement. IEEE Software,
14(2):25-26, March/April 1997.

plenum, Management Consulting G.: IT-Cockpit — Kennzahlenbasierte
Steuerung von Kosten und Nutzen lhrer IT. 2006

PricewaterhouseCoopers: The Use of Spreadsheets: Considerations for
Section 404 of the Sarbanes-Oxley Act.
http://www.pwc.com/extweb/service.nsf/docid/CD287E403COAEB718
5256F08007F8CAA, New York (USA), 2004.

Framework for a Service-oriented Measurement Infrastructure

[powerSoftware08] powerSoftware: Essential Metrics, Krakatau Professional
http://www.powersoftware.com/em/, Cited December 2008

[PSMO1] McGarry, J.; Card, D.; Jones, C.; Layman, B.; Clark, E.; Dean, J. & Hall, F.
“Practical space Software Measurement: Objective Information for
Decision Makers” Addison-Wesley, 2001

[Rational08] IBM Rational Software: Project Console,
http://www.gsi.com.ar/brochures/projectconsole.pdf, cited December
2008

[Reifer02] D. Reifer, “Let the Numbers Do the Talking,” CrossTalk, Mar. 2002, pp.
4-8.

[ReiSchm*03] Daniel Reitz, Andreas Schmietendorf, Reiner R. Dumke, Evgeni

Dimitrov. J. Lezius, T. Schlosser. Aspekte des empirischen Software
Engineerings im Umfeld von Enterprise Application Integration
Losungen. Preprint Nr. 5. Otto-von-Guericke Universitdt Magdeburg.

2003.

[Richter05] Richter, K.: Softwaregroflenmessung im Kontext von Software-
Prozessbewertungsmodellen. Diploma Thesis, University of Magdeburg,
2005

[Rico04] D.F. Rico, ROI of Software Process Improvement: Metrics for Project

Managers and Software Engineers, J. Ross Publishing, 2004.

[Rubin87] Howard A. Rubin. Critical success factors for measurement programs.
In Proceedings of the 1987 Spring Conference of the International
Function Point Users Group (IFPUG), Scottsdale, AZ, USA, 1987.

[RoweWright01] Rowe and Wright. Expert Opinions in Forecasting. Role of the Delphi
Technique. In: Armstrong (Ed.): Principles of Forecasting: A Handbook
of Researchers and Practitioners. Kluwer Academic Publishers. Boston,
2001.

[Rubin90] Howard A. Rubin. Measurement — where we’ve been. The Rubin
Review, 3(3), July 1990.

[RudKunz*07] Rud, D.; Kunz, M.; Schmietendorf, A.; Dumke, R.: Performance Analysis
in WS-BPEL-Based Infrastructures. In: Proceedings of the 23rd Annual
UK Performance Engineering Workshop (UKPEW2007), pp. 130-141,
July 2007, Edge Hill University, Ormskirk, Lancashire, UK

[RuSchmKunz'07a] Rud, D.; Schmietendorf, A.; Kunz, M.; Dumke, R.R.: Prozessqualitit bei
dem Ubergang zur serviceorientierten Architektur. In: G. Biiren; M.
Bundschuh; R.R. Dumke: Praxis der Software-Messung - Tagungsband

Framework for a Service-oriented Measurement Infrastructure

[RuSchmKunz*07b]

[RumPre*94]

[Russac02]

[SciToo08]

[Schema08]

[Schmietendorf07]

[SchmKunz'07]

[SchmiDim04]

[SEI02a]

[SEIO2b]

des DASMA Software Metrik Kongress (MetriKon 2007), 15.-16.
November 2007, Kaiserslautern, Shaker Verlag, pp. 141-154, ISBN 978-
3-8322-6703-2

Rud, D.; Schmietendorf, A.; Kunz, M.; Dumke, R.: Analyse verfiigbarer
SOA-Reifegradmodelle - State-of-the-Art.. In A.Schmietendorf; M.
Mevius; R.R. Dumke: Tagunsband 2. Workshop Bewertungsaspekte
serviceorientierter Architekturen (BSOA 2007), pp. 115-126, November
2007, Karlsruhe, Germany, Shaker Pupl. ISBN 978-3-8322-6716-2

Rumbaugh, J.; Blaha, M.; Premerlani, W.: Eddy, F.; Lorensen, W.:
Objektorientiertes Modellieren und Entwerfen. Carl Hanser Verlag,
Munich (Germany), 1994.

Janet Russac. IT Measurement: Practical Advice from the Experts,
chapter 18—Cheaper, Better, Faster: A Measurement Program
ThatWorks, pages 147-158. 1. Addison-Wesley, Boston, MA, USA,
2002.

Scientific Toolworks: Understand SourceCode Analysis and Metrics,
http://www.scitools.com/products/understand/, Cited December 2008

SchemaWeb, “SchemaWeb”, http://www.schemaweb.info/. Cited:
December 2008.

Andreas Schmietendorf. Eine strategische Vorgehensweise zur
erfolgreichen Implementierung serviceorientierter Architekturen in
groflen IT Organisationen. Shaker Publishing Aachen. 2007

Schmietendorf, A.; Kunz, M.; Dumke, R.: Empirical analyses about the
granularity of industrially used Web Services. In: Proceedings of the
10th International Conference on Quality Engineering in Software
Technology (CONQUEST2007), September 2007.

Andreas Schmietendorf, Evgini Dimitrov. “Implementation of services-
oriented infrastructures by the use of a Service Centre” Proc. of the
2nd International Workshop on eServices and eLearning, Plovdiv 2004

SEl. Capability maturity mode integration (cmmi), continuous
representation,version 1.1. Technical Report CMU/SEI-2002-TR-012
ESC-TR-2002-012, SEI at CMU, Pittsburgh, PA, USA, March 2002.

SEl. Capability maturity model integration (cmmi), staged
representation,version 1.1. Technical Report CMU/SEI-2002-TR-012
ESC-TR-2002-012, SEIl at CMU, Pittsburgh, PA, USA, March 2002.

[Senko73]

[ShanHua06]

[Shaw90]

[Short02]

[SirinParsia’05]

[Smlab09]

[Sneed05]

[Solingen04]

[SolBer99]

[SPCO4]

[Stein04]

[Telelogic08]

[TsiKIu78]

[Ullwer06]

[UmaEmu05]

Framework for a Service-oriented Measurement Infrastructure

Senko, M.: Data structures and access in database systems. IBM
Systems Journal, Volume 12, pp. 30-93, 1973.

T.C. Shan, W. Hua. Solution Architecure for N-Tier Applications. In
proceedings IEEE International Conference on Service Computing. IEEE
Computer Society, Los Alamitos. CA. USA. September 2006

Mary Shaw. Prospects for an engineering discipline of software. IEEE
Software 7 (6):15-24. 1990

Scott Short. Building XML Web Services for the Microsoft .Net Platform.

Microsoft Press. 2002

Sirin,E., Parsia B. and Hendler, J.: Template-based composition of
semantic web services. In Proc. AAAI fall symposium on agents and the
semantic web, Virginia, USA (2005)

SML@b Web Site: www.smlab.de (2009), Cited: Januar 2009

Harry Sneed. Software-Projektkalkulation. Hanser Publishing, Berlin
2005

Rini van Solingen. Measuring the ROl of Software Process
Improvement. IEEE Software May/June 2004.

Rini van Solingen, E. Berghout. The Goal/Question/Metric Method.
McGraw-Hill. London. 1999

Software Productivity Center Inc.: Creating a Metrics Program, Step 7:
Create a Metrics Database. Vancouver (Canada), 2004.

Stein, B.: Einfiihrung in Datenbanken. Lecture notes, University of
Weimar, Weimar (Germany), 2004.

IBM Telelogic Dashboard,
http://www.telelogic.com/products/dashboard/index.cfm, Cited
December 2008

Tsichritzis, D.; Klug, A.: The ANSI/X3/SPARC DBMS Framework Report
of the Study. Group on Database Management Systems. Information
Systems 3, pp. 173-191, 1978.

Christof Ullwer. Konzeption und prototypische Realisierung einer
Telemetrie-basierten Mess-Architektur. Diplomarbeit. Otto-von-
Guericke Universitat Magdeburg. 2006.

Medha Umarji and Henry Emurian. Acceptance issues in metrics
program implementation. In Proceedings of the 11th IEEE International

191

Framework for a Service-oriented Measurement Infrastructure

[Vossen00]

[Wallmuller01]

[WangDorling"99]

[Weinberg92]

[Weise06]

[Whitmire97]

[Wiegers97]

[Wiegers99]

[WilleO5]

[Woods04]

[Wu05]

[Zelkowitz07]

Software Metrics Symposium (METRICS 2005), pages 20-30. University
of Maryland Baltimore County, Baltimore, ML, USA, IEEE Computer
Society, September 2005.

Vossen, G.: Datenmodelle, Datenbanksprachen und Datenbank-
managementsysteme. Oldenbourg Verlag, Munich (Germany), 2000.

Ernest Wallmdiller. Softwarequalitaitsmanagement in der Praxis. Hanser
Verlag. Miinchen. 2001

Yingxu Wang, Alec Dorling, Graham King, Margaret Ross, Jeff
Staples,and lan Court. A worldwide survey on best practices toward
softwareengineering process excellence. ASQ Journal of Software
Quality Professional,2(1):34—-43, December 1999.

Gerald M. Weinberg. Quality Software Management: Systems Thinking,
Volume 1. Dorset House Publishing Company, New York, NY, USA,
1992. ISBN: 0-932633-22-6.

Eric Weise. Konzeption und prototypische Realisierung einer Web
Service-basierten Ontologie objektorientierter Metriken. Diplomarbeit.
Otto-von-Guericke Universitat Magdeburg. 2006.

Scott A. Whitmire. Object-Oriented Design Measurement. John Wiley
&Sons, Inc., New York, NY, USA, 1st edition, 1997.

Karl E. Wiegers. Software metrics: Ten traps to avoid. Software
Development, 5(10), October 1997.

Karl E. Wiegers. A software metrics primer. Software Development,
July 1999.

Cornelius Wille, Software Agent Measurement Framework. Shaker-
Publishing, Aachen 2005.

D. Woods. Enterprise Service Architecture — SAP’s Bauplan fir
Geschaftsapplikationen der ndchsten Generation. SAP Press. Galileo
Press. Bonn. 2004.

Wu, T.: EII-ETL-EAI: What, Why, and How!. Information Integrator
Advocate. Software Group. IBM Taiwan.
https://wwweé.software.ibm.com/developerworks/tw/events/2005102
8/db2_6b.pdf. cited: December 2008.

Zelkowitz, M., V.: Techniques for Empircal Validation. In: Basili et al.:
Empirical Software Engineering, Springer-Publishing., 2007

[ZenkerKunz*07]

[ZenkerKunz'08a]

[ZenkerKunz'08b]

[Zuse98]

Framework for a Service-oriented Measurement Infrastructure

Zenker, N.; Kunz, M.; Rautenstrauch, C.: Service Oriented Architecture:
Resource Based Evaluation of a SOA . In A.Schmietendorf; M. Mevius;
R.R. Dumke: Tagunsband 2. Workshop Bewertungsaspekte
serviceorientierter Architekturen (BSOA 2007), pp. 23-32, November
2007, Karlsruhe, Germany, Shaker Pupl. ISBN 978-3-8322-6716-2

Zenker, N.; Kunz, M.; Mencke, S.; Resource Consumption in
Heterogeneous Environments. In Proceedings of the 2008 World
Congress in Computer Science Computer Engineering and Applied
Computing (Worldcomp’08), Las Vegas, USA 14-17. July 2008, ISBN 1-
60132-090-6

Zenker, N.; Kunz, M.; Rajub, J; Software Metrics for Educational
Software Development. In Proceedings of Interactive Mobile and
Computer Aided Learning Conference, IMCL 2008; Amman, Jordan 16-
18. April 2008

Horst Zuse. A Framework of Software Measurement. Walter de
Gruyter &Co., Berlin, Germany, 1998.

Framework for a Service-oriented Measurement Infrastructure

Appendix A: ISO/IEC 15939 Measurement Process
Activities

1. Establish and sustain measurement commitment
a) Accept the requirements for measurement
i. The scope of measurement shall be identified.
ii. Commitment of management and staff to measurement shall be established.
iii. Commitment shall be communicated to the organizational unit.
b) Assign resources

i. Individuals shall be assigned responsibility for the measurement process within

the organizational unit.

ii. The assigned individuals shall be provided with resources to plan the

measurement process.
2. Plan the measurement process
a) Characterize organizational unit

i. Characteristics of the organizational unit that are relevant to selecting
measures and interpreting the information products shall be explicitly

described.
b) Identify information needs
i. Information needs for measurement shall be identified.
ii. The identified information needs shall be prioritized.
iii. Information needs to be addressed shall be selected.
iv. Selected information needs shall be documented and communicated.
c) Select measures

i. Candidate measures that satisfy the selected information needs shall be
identified.

ii. Measures shall be selected from the candidate measures.

Framework for a Service-oriented Measurement Infrastructure

jiii. Selected measures shall be documented by their name, the unit of
measurement, their formal definition, the method of data collection, and their
link to the information needs.

d) Define data collection, analysis, and reporting procedures

i. Procedures for data collection, including storage and verification shall be
defined.

ii. Procedures for data analysis and reporting of information products shall be
defined.

iii. Configuration management procedures shall be defined.
e) Define criteria for evaluating the information products and the measurement process
i. Criteria for evaluating information products shall be defined.
ii. Criteria for evaluating the measurement process shall be defined.
f) Review, approve, and provide resources for measurement tasks
i. The results of measurement planning shall be reviewed and approved.

ii. Resources shall be made available for implementing the planned measurement
tasks.

g) Acquire and deploy supporting technologies

i. Available supporting technologies shall be evaluated and appropriate ones
selected.

ii. The selected supporting technologies shall be acquired and deployed
3. Perform the measurement process
a) Integrate procedures
i. Data generation and collection shall be integrated into the relevant processes.

ii. The integrated data collection procedures shall be communicated to the data
providers.

iii. Data analysis and reporting shall be integrated into the relevant processes.
b) Collect data
i. Data shall be collected.

ii. The collected data shall be stored, including any context information necessary
to verify, understand, or evaluate the data.

Framework for a Service-oriented Measurement Infrastructure

iii. The collected data shall be verified.
c) Analyze data and develop information products
i. The collected data shall be analyzed.
ii. The data analysis results shall be interpreted.
iii. The information products shall be reviewed.
d) Communicate results
i. The information products shall be documented.
ii. The information products shall be communicated to the measurement users.
4. Evaluate measurement
a) Evaluate information products and the measurement process

i. The information products shall be evaluated against the specified evaluation
criteria and conclusions on strengths and weaknesses of the information
products drawn.

ii. The measurement process shall be evaluated against the specified evaluation
criteria and conclusions on strengths and weaknesses of the measurement
process drawn.

iii. Lessons learned from the evaluation shall be stored in the “Measurement
Experience Base”.

b) Identify potential improvements
i. Potential improvements to the information products shall be identified.
ii. Potential improvements to the measurement process shall be identified.

iii. Potential improvements shall be communicated.

Framework for a Service-oriented Measurement Infrastructure

197

Appendix B: Attributes of analyzed Measurement
Databases

Attributes of the ARF Dataset [Harrison 2000]

Software Component Details

Component Code Total Statements in Segment

Number of Comments in Segment Number of Pre-Process Statements in Segment

Subjective Complexity (Easy, Moderate, Hard) Function (Computational, Control, Data Accessing,

Error Handling, Initialization)

Software Problem Report Details

Form Number Project Code

Programmer Code Form Date
Number of Components Changed Number of Components Examined
More than one Component Affected Date Change was Determined
Date Change was Started Code of Changed Component

Effort for Change (Less than I hour, I hour to 1 day,
1 day to 3 days, more than 3 days, unknown)

Type of Change (Error Correction, Planned
Enhancement, Implement Requirements Change, Improve
Clarity, Improve User Service, Develop Utility,
Optimization, Adapt to Environment, Other)

Implementation Technique

(The implementation techniques used on the software project expressed as a percentage of the DSLOC built using
specific techniques of Structured Coding, Top Down Design and Programming, Chief Programmer Teams, Code
Reviews or Inspections, and Librarian or Program Support Library.)

Productivity

(Ratio consisting of DSLOC to Total man-months)

Error Rate (Ratio Consisting of Errors to DSLOC)

Average Number of Personnel

(Ratio consisting of total man-months to total months)

Framework for a Service-oriented Measurement Infrastructure

Attributes of the DACS Productivity Dataset [Harrison 2000]

Software Component Details

Project Size

(Number of delivered source lines of code (DSLOC) in the
delivered project.)

Project Duration

(Duration of project in total months derived from start
and end dates of projects, less any “dead time” in the

project.)

Errors
(The number of formally recorded Sofiware Problem

Reports (SPRs) for which a fix has been generated during
the period covered by the project.)

Implementation Technique

(Percentage of DSLOC built using specific techniques of

Structured Coding, Top Down Design and Programming,
Chief Programmer Teams, Code Reviews and Librarian
or Program Support Library.)

Average Number of Personnel

(Ratio of Total man-months to Total Months)

Project Effort

(Effort in man months required to produce the software
product.)

Source Language
(Programming languages used on the project recorded by

name and expressed as a percentage of the total DSLOC
written in each different language.)

Documentation
(Delivered pages of documentation including program

listings, flow charts (low and high level), operating
procedures, etc.)

Error Rate
(Number of formally recorded Software Problem Reports

for which a fix has been generated during the period
covered by the project.)

Productivity

(Ratio of DSLOC to Total man-months.)

Attributes of the NASA Software Reliability Dataset DTIC 2004

Software Component Details

Project Identification (System Code)

(An internally assigned identification number.)

Failure Interval

(The time elapsed from the previous failure to the current
failure. For project 6, this time is given in CPU seconds;
for the remaining projects, the time is given in wall-clock
seconds.)

Failure Number

(A number identifying a particular failure. Failure a
consecutively numbered from the first failure recorded.)

Day of Failure

(Represents the day on which the failure occurred in
terms of the number of working days from the start of the
current phase or data collection period.)

Framework for a Service-oriented Measurement Infrastructure

Attributes of the ISBSG Benchmarking Data CD Release 10 [ISBSG 2007]

Project Data Parameters

Project ID

(A primary key, for identifying projects.)

Function Points

(The adjusted function point count number. Adjusted by
the Value Adjustment Factor.)

Value Adjustment Factor

(The adjustment to the function points, applied by the
project submitter, that takes into account various
technical and quality characteristics e.g.: data

communications, end user efficiency etc. This data is not
reported for some projects, (i.e. it equals 1).)

Development Platform
(Defines the primary development platform, (as

determined by the operating system used). Each project is
classified as either, a PC, Mid Range or Mainframe.)

Resource Level
(Data is collected about the people whose time is included

in the work effort data reported. Four levels (1 to 4) are
identified in the data collection instrument.)

Max Team Size

(The maximum number of people that worked at any time
on the project, (peak team size).)

Reference Table Approach

(This describes the approach used to handle counting of
tables of code or reference data, (a comment field).)

Language Type

Defines the language type used for the project: e.g. 3GL,
4GL, Application Generator efc.

DBMS Used

(Whether the project used a DBMS.)

Lower CASE Used (with code generator)

(Whether project used lower CASE tool with code
generator.)

Used Methodology

Count Approach

(A description of the technique used to count the function
points; e.g. IFPUG, MKII, NESMA, COSMIC-FFP etc.)

Function Size Metric Used

(The functional size metric used to record the size of the
project, e.g.. IFPUG3, IFPUGH4, in-house etc.)

Counting Technique
(The technology used to support the counting process.

Certain technologies used in function point counting can
impact on the count’s potential accuracy.)

Summary Work Effort
(Provides the total effort in hours recorded against the

project by the development organization. The three
methods provided for are A, B and C.)

Data Quality Rating
(This field contains an ISBSG rating code of A, B, C or D

applied to the project data by the ISBSG quality
reviewers.)

Development Type

(This field describes whether the development was a new
development, enhancement or re-development.)

Architecture

(Defines the architecture type of the project. e.g.:
Client/Server, LAN, WAN etc.)

Primary Programming Language

The primary language used for the development: JAVA,
C++, PL/1, Natural, Cobol etc.

Upper CASE Used

(Whether project used upper CASE tool.)

Integrated CASE Used

(Whether project used integrated CASE tool.)

Project Elapsed Time

(States whether a methodology was used.)

Development Techniques

(Techniques used during development. (e.g.: JAD, Data
Modeling, OO Analysis etc.).)

Project Inactive Time

(This is the number of months in which no activity
occurred, (e.g. awaiting client sign off, awaiting
acceptance test data). This time, subtracted from Project

Elapsed Time, derives the elapsed time spent working on
the project.)

Defects Delivered
(Defects reported in the first month of system use. Three

columns in the data covering the number of Extreme,
Major and Minor defects reported.)

User Base — Locations

(Number of physical locations being serviced/supported
by the installed system.)

Organization Type

(This identifies the type of organization that submitted the
project. (e.g.: Banking, Manufacturing, and Retail).)

Application Type
(This identifies the type of application being addressed by

the project. (e.g.: information system,
transaction/production system, process control.))

Degree of Customization
(If the project was based on an existing package, this field

provides comments on how much customization was
involved.)

Work Effort Breakdown
(When provided in the submission, these fields contain the

breakdown of the work effort reported by five categories:
Plan, Specify, Build, Test and Implement.)

Percentage of Uncollected Work Effort
(The percentage of Work Effort not reflected in the

reported data. i.e. an estimate of the work effort time not
collected by the method used.)

Enhancement Data

Framework for a Service-oriented Measurement Infrastructure

(Total elapsed time for project in months.)

How Methodology Acquired

(Describes whether the methodology was purchased or
developed in-house.)

Implementation Date

(Actual date of implementation. (Note: the date is shown
in the data in date format 1/mm/yy).)

User Base — Business Units

(Number of business units that the system services, (or
project business stakeholders).)

User Base — Concurrent Users

(Number of users using the system concurrently.)

Business Area Type
(This identifies the type of business area being addressed

by the project where this is different to the organization
type. (e.g.: Manufacturing, Personnel, and Finance).)

Package Customization

(This indicates whether the project was a package
customization. (Yes or No).)

Project Scope
(This data indicates what tasks were included in the

project work effort data recorded. These are: Planning,
Specify, Design, Build, Test, and Implement.)

Ratio of Project Work Effort to Non-Project
Activity

(The ratio of Project Work Effort to Non-Project
Activities.)

Function Point Categories

(When provided in the submission, the following five

fields which breakdown the Function Count are provided:

external Inputs, external Outputs, external Enquiries,
internal logical files, and external interface files.)

Total Defects Delivered

Framework for a Service-oriented Measurement Infrastructure

(When provided in the submission, for enhancement
projects the three fields Additions, Changes, and
Deletions, which breakdown the Function Point Count are
provided.)

Source Lines of Code (SLOC)

(A4 count of the SLOC produced by the project.)

Normalized Work Effort

(For projects covering less than a full development life-
cycle, this value is an estimate of the full development life-
cycle effort. For projects covering the full development
life-cycle, and projects where development life-cycle
coverage is not known, this value is the same as Summary
Work Effort.)

Unadjusted Function Point Rating

(This field contains an ISBSG rating code of A, B, C or D
applied to the unadjusted function point count data by the
ISBSG quality reviewers.)

201

(Defects reported in the first month of system use. This
column shows the total of Extreme, Major and Minor
defects reported. Where no breakdown is available, the
single value is shown here.)

Unadjusted Function Points

(The unadjusted function point count (before any
adjustment by a Value Adjustment Factor if used).)

Work Effort Unphased

(Where no phase breakdown is provided in the
submission, this field contains the same value as the
Summary Work Effort. Where phase breakdown is
provided in the submission, and the sum of that
breakdown does not equal the Summary Work Effort, the
difference is shown here.)

Productivity Rates Parameters

Project ID

(The primary key, for identifying projects.)

Project Productivity Rate
(Project productivity delivery rate in hours per function

point calculated from Summary Work Effort divided by
Unadjusted Function Point count.)

Reported Productivity Delivery Rate (adjusted)

Normalized Productivity Delivery Rate

(Project productivity delivery rate in hours per function
point calculated from Normalized Work Effort divided by
Unadjusted Function Point count. Use of normalized
effort

comparable rates.)

and wunadjusted count should render more

Normalized Productivity Delivery Rate
(adjusted)

(Project productivity delivery rate in hours per function
point calculated from Normalized Work Effort divided by
Adjusted Function Point count.)

(Project productivity delivery rate in hours per function point calculated from Summary Work Effort divided by

Adjusted Function Point count.)

Framework for a Service-oriented Measurement Infrastructure

Appendix C: Assessment results for Measurement

Tools
Measurement tool Non Non Results File DB XML Web-
exportable | exportable presented (Format) (Interfac Service-
report charts in HTML e oriented
(JDBC,
"))
JMetrics X X *(planned: x (Textfile) - *(plann | -
XML to ed)
HTML
Reports)

Imagix 4D X X X X - - -
- RTF,

-CSV
[Microsoft
Visio-
Support])
-PS

-PNG

-Table
(ASCII text
file)

SLIM-Metrics and SLIM- | x X - - x (DB, | - -

DataManager ODBC)

Scientific Toolworks, | X X X x (PERL APL, | - - -

Inc. C/C++ API)

Understand for ADA

Understand for C++

Understand for Delphi

Understand for

FORTRAN

Understand for Java

Understand for JOVIAL

Function Point Workbench | x X X X - X -
(spreadsheet (XML-
format) File)

TAU / Logiscope X X X X (Word, 7?
Framemaker,

Interleaf)
SCOPE - Project | x X - E | }()\ggd’ fM e | -
T xcel, s

Sizing Software ESS)

SDMetrics X X X x (text [tab | - X -
separated (XML
tables], for
Openoffice.or Micros
g CALC, oft
XML for Excel)
Microsoft
Excel)

CMM-Quest X X X X (text) - - -

CMTJava, CMT++ X X X X (text, Excel, | - X -
XML)

COSTAR X X - X (text | - - -
(Costar's
native file
format), CSV,

Excel, BMP)
EPM - Essential Project | x X X x (CSV) * (SQL | x -
Manager DB,
JDBC)
EM - Essential Metrics X X X x (CSV) * (SQL | x -

DB,

Framework for a Service-oriented Measurement Infrastructure

203

JDBC)
Krakatau Essential X x (CSV) X X
Metrics (MySQL
data file)
Krakatau Project Manager X x (CDF/CSV) | - -
Krakatau Professional X x (CDF/CSV) | - -
Krakatau Lite
Resource Standard Metrics X X (text, CSV) | - -
— RSM / RSM Wizard
(GUI)
TychoMetrics X X (CSV, | - (x) [not | -(x)
MetaFile, confirme [not
BMP, JPG, | d] confir
PNG) med]
Appraisal Wizard X x (text, CSV, | - -
Excel, rtf,
pdf, bmp, jpg,
wmf, emf,
gif, wbl,
wk2, dif] slk)
Metrics4C, - X - N
Metricsd FORTRAN, (text[console
Metrics4Pascal, output], gif)
Metrics4Project
ASSESS for Assembler, X X (with | x X
COBOL, Java external (MSAcce
Plugins: ss)
CSV,...)
ExperiencePro X x (txt, xIs) - -
CodeReports X x (xIs, Crystal | x -
Reports, ...) (ODBC,
JDBC)
CodeCheck *(customiz | X (txt) - *
eable) *customizeab (custo
le mizeab
le)
MPP (Kuhrau) - X (txt,xls) - -
COSMOS - X (txt) - -
LDRA Testbed X X (txt) - -
JUNIT X X (txt) - X
JDepend X (with | x (txt) - X

Ant)

Framework for a Service-oriented Measurement Infrastructure

Appendix D: Process Modeling with BPMN

To present an overview about the Business Process Modelling Notation the following short
description has been taken from selectbs.com (http://www.selectbs.com/adt/analysis-and-

design/what-is-business-process-modeling-notation-bpmn)

The Business Process Modeling Notation (BPMN) is a standardized graphical notation for

drawing business processes in a workflow.

The Business Process Management Initiative has developed a standard Business Process
Modeling Notation (BPMN) [OMGO06]. The primary goal of BPMN is to provide a notation
that is readily understandable by all business users, from the business analysts that create
the initial drafts of the processes, to the technical developers responsible for implementing
the technology that will perform those processes, and finally, to the business people who
will manage and monitor those processes. Thus, BPMN creates a standardized bridge for the

gap between the business process design and process implementation.

This specification defines the notation and semantics of a Business Process Diagram (BPD)
and represents the amalgamation of best practices within the business modeling community.
The intent of BPMN is to standardize a business process modeling notation in the face of
many different modeling notations and viewpoints. In doing so, BPMN will provide a simple
means of communicating process information to other business users, process implementers,

customers, and suppliers.
There are different levels of process modeling [OMGO06]:
» Process Maps — simple flow charts of the activities

» Process Descriptions — flow charts extended with additional information, but not

enough to fully define actual performance

» Process Models — flow charts extended with enough information so that the process

can be analyzed, simulated, and/or executed
» BPMN supports each of these levels

A goal for the development of BPMN is that the notation be simple and adoptable by
business analysts. The modeling BPMN is made by simple diagrams with a small set of
graphical elements. It should make it easy for business user as well as developers to

understand the flow and the process. The four basic categories of elements are:
1. Flow Objects
a. Events

b. Activities

Framework for a Service-oriented Measurement Infrastructure

c. Gateways

2. Connecting Objects

a. Sequence flow
b. Message Flow

c. Association

3. Swim lanes

a. Pool
b. Lane
4. Artifacts

a. Data Objects
b. Group

c. Annotation

These four categories of elements give us the opportunity to make a simple diagram (BPD). It

is also allowed in BPD to make your own type of a Flow Object or an Artifact to make the

diagram more understandable.

Flow objects

Flow Objects consist of only three core elements. The three Flow Objects are:

>

Event: An Event is represented with a circle and is something that happens. It could

be Start, Intermediate or End. This element is a trigger or a result.

© O @

Start Intermediate End

Activity: An Activity is represented with a rounded-corner rectangle and shows us the
kind of work which must be done. It could be a task or a sub-process. A sub-process
also has a plus sign in the bottom line of the rectangle.

=) =5

Gateway: A Gateway is represented with a diamond shape and will determine

different decisions. It will also determine forking, merging and joining of paths
[OMGO6].

Framework for a Service-oriented Measurement Infrastructure
Gateway FarkiJoin Inclusive DedsionMerge

Connecting objects

The Flow Objects are connected to each other with Connecting Objects. There are three
different Connecting Objects [OMGO06]:

» Sequence Flow: A Sequence Flow is represented with a solid line and arrowhead and
shows in which order the activities will be performed. A diagonal slash across the line
close to the origin indicates a default choice of a decision.

» Message Flow: A Message Flow is represented with a dashed line and an open

arrowhead. It tells us what messages flow between two process participants.

» Association: An Association is represented with a dotted line and a line arrowhead. It
is used to associate an Artifact, data or text to a Flow Object.
-

Sequence Flow

Association

Swim lanes

A Swim lane is a visual mechanism of organizing different activities into categories of the

same functionality. There are two different swim lanes, and they are:

» Pool: A Pool is represented with a big rectangle which contains many Flow
Objects, Connecting Objects and Artifacts.

» Lane: A Lane is represented as a sub-part of the pool. The lanes are used to
organize the Flow Objects, Connecting Objects and Artifacts more precisely.

Pool
Lane

Framework for a Service-oriented Measurement Infrastructure

207
Artifacts

Artifacts allow developers to bring some more information into the model/diagram. In this
way the model/diagram becomes more readable. There are three pre-defined Artifacts and
they are [OMGO06]:

» Data Objects: Data Objects are used to show the reader which data is required or

produced in an activity.

Data

» Group: A Group is represented with a rounded-corner rectangle and dashed lines.
The Group is used to group different activities but does not affect the flow in the
diagram.

» Annotation: An Annotation is used to give the reader of the model/diagram an

understandable impression.

Annotation

Framework for a Service-oriented Measurement Infrastructure

Appendix E: Detailed Description of selected Artifacts

thiElementType
N
.’PK ElementTypelD
el
ElementName l
towisibility
P PK | VisibilitylD |
VisibilityName ion
thiPublication il tolCancept tolCharacteristic
PK RelationID
thiModifier PK | P ionlD PK | D 1D P PK | ConceptlD PK | CharacteristiclD
RelationMame
PK | ModifierlD Title Lasthame EK1 | StartElementiD ConceptName Characteristichame
Information Firsthame EndElementiD A A
fI‘.‘|m‘lifiar'Na$a A ry FK2 | ConceptlD
relMetricUsedElement relMetricDefinedElement relMefricPublication relMetricDeveloper relMetricRelation reiMetricConcept relMeatricUsedMetric relMetricCharacteristic
FiK1 | MetriclD FK1 | MetriclD FK1 | MetriciD FK1 | MetriclD FK1 | MetriclD FK1 | MetriclD Fi2 | MetriclD FK2 | MetriclD
FK2 | VisibilitylD FK2 | VisibilitylD FK2 |PublicationlD | |FK2 | Developer ID FK2 | StrEimRelation|D FK2 |ConceptiD FK1 | UseMetriciD FK1 | CharacteristiclD
FK3 | ModifierlD FK3 | ModifieriD
Fi4 | ElementTypelD FK4 | ElemeniTypelD
hiMetric -
di
PK MetriclD h
> Name -
»
Acronym :
informDescription [*&
formDescription
Interpretation .
Annotation 2
FKS | DerivationiD -
FK1 [ScalelD
FK3 [SuitelD -
FK2 [MeasureServicelD ["&
FK4 [MetricClassID
A4 ¢ Y A 4 Y
thiSuite thiMeasure Service thlScale tblMetricClass tbiDerivation
PK | SuitelD PK | MeasureServicelD PK | ScalelD PK | MetricClassID PK | DerivationlD
SuiteMame MeasureServiceURI ScaleType MetricClassMName DerivationName
MeasureServiceName
. .
Figure 118: Schema of the OOMO database [Weise06]
DatabaseConnector TDeveloper TMetric OOMOWebService
-dbURL -developerFirsilames | |TTAME
-dbiser -developerLastiame -acronym L +getallShortMetrics])
-dbPass -informal Description +getConcepts()
-dbCon -formalDescription +gEtDE'i'.-=ri-:|r'; \
*+close() TPublicati -interpretation +getDevelopers()
+initConnection() ublication -annctation +gethatricSying)
+zendCuary() -title -derivation +gethMetricClasses()
-information -scale +getRelations])
-suite = "
DatabaseResult -matricClass +getScales|) o
ol = t - bool fidh i +getSoftwareCharacteristics()
-ColumnCount | booleani - Y N
N el TShortMatric usedietric +getStructureElementhModifiers()
- —daf (=11 —_
gz:ﬂr::;:;r"es —0 de |;Eca.rucb.|éaElen1ar't +getSiructureElementTypes()
Z r'=|_";'u; -usedstructureElement +getStructureElementyisibilities])
a;:n:\r' o -relation +getSuites()
Y -concept +lookuphetric])
-characteristic +searchMatricByAcronymi()
-publication +saarchMetricByDeveloper{)
-developer

+searchMetricByMame()

-measureZervicehame +saarchMeatricBy Suita()

-measureServicelJRI

Figure 119: OOMO class description

Framework for a Service-oriented Measurement Infrastructure

209

<l-- DDHOWebSsrvice BPEL Process [Oenerated by the Oracle BPEL Designer] --=»
cprocess namne="00MOWsbBervice" targetNamespace="http:/fcomo" suppresaloinFailurs="yss" xnlns:tna="hittp://oomo" xmlna
="heop://achenas . xnlscap. org/wa /2003/03/businsess -process/" xmlns :bpelx="http:// schemas. oracle . com/bpsl/extension
" xmlos:ora="http://schemas . oracle. con/xpath/extension">
<partnerLinks >
«l-- The *client’' role represents the requsester of thiz service. --»
<partnerlink nane="clisnt" partnerlinkType="tons: 00MOWsbService” myRole="00HOWebServiceProvidar'/»
</partnerLinks»
cvariables»
cl-- RKeference to the nezsage passed as input during initiation -->»
<variable name="input® nessageType="tns:00H0Web3srvicsRequescHessage™ />
<l-=
Reference to the nessage that will be returmed to the requester
—_
<variable name="output® messageTyps="tnez:00HOWebBerviceResponasMessaga™/ >
</ wvariables>
CEEQUENCS >
<flow name="getMeiricCriterias">
¢|-- Receive input from requsster
Note: This maps to opsration defined in 00MOWebService . wsdl
—-—ix
<@equence name="getScalss'>
“receive nanse="receivelnput" partnsrlink=-"client" portType="tns:00HOWsbSsrvice"
opsration="getdcalss" variabls="input"™ crsatelnstance="yas"/»
<|-- Gensrate reply toe synchronous request -->
<reply name="replylDutput" partnsrlink="client" portType="tns: 00HDWebSsrvice"
operation="getdcalsa" variabls="output#»
<f sequence »
<gegquence name="getDerivations":>
“receive createlnstance="no" nane="receive-1" partnerLink=-"client® portType=-"tns
00MOWebBervice" operaticon="getDerivationa"/>
“reply name="reply-1" partnerlink="clisnt" porcTypse=-"tons:00MOWsbService" operation=*
getlerivations" />
</ sequence»
c@equence name="getloncepta™s
<recelive createlnstance="no" nane="receive-2" partnerLink="client" portType="tns
0OMOWebService" operation="getConcepta"/»
“reply name="reply-2" partnerlink="clisnt" portTyps=-"tonz:00MOWsbService™ operation="
getloncepts"/»
«f saquencs»
<gggquence name="getStructureElemsntTypss">
“«receive createlnstance="no" nane="receive-3" partnerLink="client" portType="tns
00MOWebBervice” operation="getStructureElensntTypss' />
<reply name="reply-3" partnerlink="clisnt" portType="tns:00MOWebService" operation="
get8tructursElenentTypes />
«f ssquence >
<gsquence name="getStructureElemsntVisibilitiss">»
“receive createlnstance="no" nane="receive-4" partnerLink=-"client® portType=-"tns
00MO¥ebBervice" operation="getStructureElensniVisibilities />
<reply name="reply-4" partnerlink="clisnt" portType="tns:00MOWebService" operation="
getitructursElensntVisibtilicies "/ »
<f sequence »
<ssgquence name="getStructureElemsntModifisra’»
crecelive createlnstance="no" nane="receive-5" partnerLink="client" portType="tns
00MO¥ebBervice" operaticon="getStructureElensniModifisrs"/»
«reply name="reply-5" partnerlink="clisnt" portType=-"tonz:00MOWsbService™ operation="
getitructursElenentHodifiers”/»
<f sequence »
<@equence name="getRelations®>
“receive createlnstance="no" nane="receive-&" partnerLink=-"client" portType=-"tns
00MOWebBarvice" ocperation="getRslations®/>
<reply name="reply-8" partnerlink="clisnt" portType="tn=:00MOWsbService" operation="
getRelations />
«f sgquence >
<gequence name="getSoftwareCharacteristicas>
<recelive createlnstance="no" nane="receive-7" partnerLink="client" portType="tns
00MOWebEervice” operaticon="getSoftwarsCharacteristics/»
“reply name="reply-7" partnerlink="clisnt" portTyps="tonz:00MOWsbService" operation="
getioftwareCharacteristica®™/»
</ sequence »
offlows
<gequence nane="getMetriclist™>
<receive createlnstance="no" name="receive-8" partnerlink="clisnt" portType="tns
O0HOWebBervice" operation="lookupMstric"/»
<reply name="reply-8" partnerlink="client" portType="tns:00MOWsbSsrvice" operation="
lockupHetric"/>»
«f sequence »
<sequence namne="getMetric"»
<receive createlnstance="no" name="receive-9" partnerlink="clisnt" portType="tns
O0HOWebSsrvice” opsration="getMetricByID"/>
<reply name="reply-9" partnerLink="client" portType="tns:00MOWsbService" operation="
getlHetricByID"/»
of gequencs >
</ sequence >
</process >

Figure 120: BPEL structure of the OOMO metrics identification process

	Abstract
	Table of contents
	List of Figures
	List of Tables
	Table of Abbreviations
	1. Introduction
	1.1. Motivation
	1.2. Research Question
	1.3. Research Methodology
	1.4. Thesis Structure

	2. Software Measurement Foundations
	2.1. Metrics and Measures
	2.2. Measurement Sources
	2.2.1. Product Measurement
	2.2.2. Resource Measurement
	2.2.3 Process Measurement

	2.3. Software Measurement Systems and Processes
	2.3.1. Measurement Ingredients
	2.3.2. Measurement in Software Development Process
	2.3.2.1. ISO/IEC 900x Series
	2.3.2.2. CMMI Framework for Process Integration and Product

	2.3.3. Measurement Process Methodologies
	2.3.3.1. The GoalQuestionMetricMethod
	2.3.3.2. The E4 Software Measurement Process
	2.3.3.3. The ISO/IEC15939 Software Measurement Process

	2.3.4. Software Measurement Programs

	2.4. Software Measurement Paradigms
	2.4.1. Basics of Scalability
	2.4.2. Main Characteristics Preferences of Measurement ProcessComponents
	2.4.3. Sub Characteristics Preferences of Measurement Process Components
	2.4.4. Combined Characteristics Preferences of Measurement ProcessComponents
	2.4.5. Simplified Examples of Measurement Process Description
	2.4.6. Measurement Process Improvements

	3. Performing the Software Measurement Process
	3.1. Software Measurement Tool Situation
	3.1.1. Product Quality Measurement Tools
	3.1.2. Process Quality Measurement Tools
	3.1.3. General Measurement Tool Capabilities

	3.2. Software Measurement Repositories
	3.2.1. Analysis of existing Spreadsheet for Software Measurement
	3.2.1.1. DACS SLED
	3.2.1.2. ISBSG Benchmarking Data CD Release 10

	3.2.2. Measurement Databases
	3.2.2.1. Assorted Measurement Databases

	3.2.3. General measurement repository characteristics
	3.2.4. Review and Evaluation of existing Approaches to tackle the describedDrawbacks
	3.2.4.1. Measurement Repository Approaches
	3.2.4.1.1. Assorted Repositories with the Potential to Store Measurement Data
	3.2.4.1.2. Microsoft Repository
	3.2.4.1.3. ASGRochade

	3.3. Measurement Data Integration
	3.4. Measurement Experience Approaches
	3.5. Software eMeasurement
	3.6. AgentorientedSoftware Measurement
	3.7. Telemetry based Software Measurement
	3.8. Measurement Paradigms Evaluation

	4. SOA-based IT Architectures
	4.1. Introduction
	4.2. Aspects of ServiceorientedArchitectures
	4.2.1 Demarcation against other Integration Proposals
	4.2.2. Technological Aspects of Web Services

	4.3. SOAcapabilityof Software Measurement Tools
	4.3.1. Assessment about SOAcapabilityof measurement tools
	4.3.2. Survey among Measurement Tool Manufactures

	5. Serviceoriented Measurement Infrastructures
	5.1. Process Definition
	5.2. ServiceorientedMeasurement Infrastructure detailed Description
	5.2.1. GQM Process Model
	5.2.2. Ontology for ObjectorientedMetrics
	5.2.3. Web Service for Objectorientedmetrics
	5.2.4. Search and Integration Process for Measurement Services

	5.3. Quality driven Assembly of Web Services
	5.3.1. QuaD² Framework
	5.3.2. QualityBasedService Selection Core Process

	5.4. Graphical User Interface
	5.4.1. Traffic Light Visualization of Measurement Results
	5.4.2. Cockpit for Measurement Results Analysis

	5.5. ServiceorientedMeasurement Database
	5.6. Mapping to Measurement Paradigms

	6. Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

