
 
 

Spatio-temporal dynamics of glycolysis 

in an open spatial reactor 

 
 

Dissertation 

 

zur Erlangung des akademischen Grades 

 

doctor rerum naturalium 

(Dr. rer. nat.) 

 

 

von:     M.Sc. Satenik Vermeer (geb. Bagyan) 

geb. am:   26. Februar 1979 

in:    Yerevan, Armenien 

 

 

genehmigt durch die Fakultät für Verfahrens- und Systemtechnik 

der Otto-von-Guericke-Universität Magdeburg 

 

 

Gutachter:    Prof. Dr. rer. nat. habil. Helmut Weiß 

Jun.- Prof. Dr. rer. nat. habil. Marcus Hauser 

 

 

eingereicht am: 27. Juni 2008 

Promotionskolloquium am: 12. Dezember 2008 



 
 
 
 
 
 
 
 
 

 
 
 
 
 

In addition to all the glycolytic patterns investigated in this thesis  

more exotic structures may also be generated every now and then.  

For example, heart-shaped patterns. 
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Zusammenfassung vi 

Zusammenfassung 

Die glykolytische Spaltung von Zucker ist der wichtigste Schritt zur Energieerzeugung 

in lebenden Zellen. Bei diesem Prozess können nichtlineare, oszillatorische 

Reaktionskinetiken entstehen, welche durch die autokatalytische Reaktion der 

Phosphofruktokinase (PFK) vermittelt werden. In der hier vorgestellten Arbeit wurde 

die Entstehung von raum-zeitlichen Mustern bei der Glykolyse des Hefeextrakts mit 

Hilfe eines offenen räumlichen Reaktors untersucht. Dabei wurde der Hefeextrakt in 

einem Agarose-Gel fixiert und der Reaktor kontinuierlich mit essentiellen Metaboliten 

und Salzen versorgt.  

Zeitliche Oszillationen der Glykolyse wurden durch die Zugabe von Trehalose, 

einem Vorläufer des Substrats der Glykolyse, induziert. Durch die sorgfältige Auswahl 

der Bedingungen, konnten Oszillationen von mehr als 12 Stunden Dauer erreicht 

werden. Diese Dauer ließ sich durch Erhöhung der Proteinkonzentration auf 40 Stunden 

verlängern. Das richtige Verhältnis zwischen ATP-verbrauchenden und ATP-

produzierenden Reaktionen ist eine notwendige Grundvoraussetzung für die Initiierung 

und das Aufrechterhalten von Oszillationen. Eine wichtige Funktion zur Erhaltung 

dieses Gleichgewichts übernimmt dabei die Adenylatkinase-Reaktion, welche die 

Umwandlung von zwei ADP-Molekülen in je ein ATP und ein AMP-Moleküle 

katalysiert. Diese Adeninenukleotide vermitteln eine positive und negative 

Rückkopplung der Phosphofruktokinase-Reaktion. Die unterschiedlichen Adenine-

nukleotide bestimmen auch den energetischen Status von fast jeder Zelle. Die 

Ergebnisse dieser Arbeit zeigen, dass das Enzym Phosphofruktokinase in der Lage ist, 

verschiedene energetische Zustände in stationäre oder periodische Dynamiken des 

gesamten glykolytischen Pfads zu übersetzen. Somit kann die Phosphofruktokinase 

einen Beitrag zur biologischen Informationsverarbeitung liefern, zum Beispiel in Form 

der Frequenzkodierung. 

Die Entstehung von glykolytischen Oszillationen steht im Zusammenhang mit der 

Erzeugung von NADH-Konzentrationswellen. Die Dynamiken dieser Wellen wurden in 

der vorliegenden Arbeit für verschiedene Proteinkonzentrationen des Hefeextrakts 

untersucht. Die Variation der Proteinkonzentration zwischen 23 mg/ml und 91 mg/ml 

hat einen starken Einfluss sowohl auf den Typ der Wellen als auch auf deren 
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Ausbreitungsdynamik. Unter diesen Wellenformen finden sich Muster, die bisher noch 

nicht in einem biologischen System gezeigt werden konnten. Es sind einwärts 

propagierende Wellen, segmentierende Wellen oder punktförmige Wellen, welche bei 

niedrigen, mittleren oder höheren Proteinkonzentrationen auftreten. Jeder Typ dieser 

Wellen ist durch eine bestimmte Ausbreitungsgeschwindigkeit und Wellendicke 

charakterisiert. Dabei ist die Periode der Wellen für alle Typen ähnlich. Bisher konnten 

die Entstehungen derartiger “exotischer” Mustern nur in der Belousov-Zhabotinsky 

Reaktion in Wasser-Öl Mikroemulsionen gezeigt werden. Die hier vorgestellten 

Ergebnisse zeigen, dass auch in biologischen Systemen eine Vielzahl von 

unterschiedlichen Mustern entstehen kann, wenn sich die Proteinkonzentration ändert. 

Diese Erkenntnis könnte eine wichtige Bedeutung für biologische Systeme mit 

räumlichen Gradienten von Proteinen haben.  

Während der ersten zwei Stunden des Experiments, mit niedrigen 

Proteinkonzentrationen, bildet der Hefeextrakt im Gel mit der Nahrungslösung ein 

Gleichgewicht aus, wodurch ein stabiles Fließgleichgewicht entsteht. Während dieses 

Überganges entstehen drei verschiedene Muster: einwärts propagierende konzentrische 

Wellen in der ersten Phase, das heißt während der Equilibrierung des Geles; auswärts 

propagierende spiral- oder kreisförmige Wellen während der dritten Phase, das heißt, im 

Fließgleichgewichtszustand; und mehr komplexe Muster während des Übergangs 

zwischen den beiden Phasen. Um diesen Übergang zu analysieren und die dominanten 

räumlichen Strukturen zu identifizieren, wurde die Dynamik der raum-zeitlichen Muster 

mit Hilfe der Karhunen-Loève-Zerlegung untersucht. Die Analyse zeigt, dass der 

Übergang von den einwärts propagierenden konzentrischen Wellen zu den auswärts 

propagierenden Spiralwellen durch Desynchronisation ausgelöst wird. Während dieses 

Überganges tritt Desynchronisation allerdings nur bei räumlichen Skalen, die größer als 

6 mm sind, auf. Darunter liegt immer noch Synchronisation vor. In der ersten Phase tritt 

hingegen keine Desynchronisation auf. Derartige raum-zeitliche Synchronisations- bzw. 

Desynchronisationsprozesse können eine wichtige funktionale Bedeutung für 

biologische Systeme haben. 
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Summary 

Glycolytic degradation of sugar is the primary pathway for the generation of energy in 

living cells and shows non-linear, oscillatory reaction kinetics, which is mediated by the 

autocatalytic reaction of the phosphofructokinase. In the present dissertation, the 

formation of spatio-temporal patterns during glycolysis in a yeast extract has been 

investigated in an open spatial reactor. The yeast extract was fixed in a gel and the 

reactor was continuously supplied with non-recycling metabolites and salts.  

Temporal oscillations of glycolysis were induced by feeding the yeast extract with 

trehalose, a precursor of the substrate of glycolysis. Under appropriate conditions, 

sustained oscillations persist for more than 12 hours and can be further prolonged up to 

40 hours at higher protein concentrations. The proper balance between ATP-consuming 

and ATP-producing reactions that allow for a negative feedback of the phosphofructo-

kinase-catalysed reaction is a necessary prerequisite for the generation and maintenance 

of oscillations. An important function for maintaining this balance could be attributed to 

the adenylate kinase reaction, which catalyzes the conversion of two ADP molecules 

into one ATP molecule and one molecule of AMP. These different adenine nucleotides 

determine the energetic status of nearly every cell. The results of this work demonstrate 

that the enzyme phosphofructokinase can translate different energetic states into either 

stationary or oscillatory dynamics of the whole glycolytic pathway. Thus, the 

phosphofructokinase may contribute to biological information processing, e.g. via 

frequency encoding.  

The emergence of glycolytic oscillations is associated with the generation of 

travelling NADH concentration waves. The dynamics of these waves were studied at 

different protein concentrations in the yeast extract. Variations in the protein 

concentration between 23 mg/ml and 91 mg/ml strongly affected the type waves as well 

as their propagation dynamics. Among these waves are patterns, which so far have not 

been reported in biological systems. These are inwardly propagating waves, segmented 

and dot-shaped waves, which occur at low, intermediate and high protein 

concentrations, respectively. Each of these waves is characterized by a distinct 

propagation velocity and wave thickness. However, the period of the waves is similar 

for all types.  
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So far, the formation of these novel patterns has only been reported for the 

Belousov-Zhabotinsky reaction in water-oil microemulsions. The present results 

demonstrate that also in biological systems a multitude of different patterns can arise 

when the protein concentration is changed. This may have important impacts for 

biological systems with spatial gradients of the protein.  

During the first 2 hours of the experiment with low protein concentration, the yeast 

extract in the gel comes into equilibrium with the feeding solution. Thereafter a stable 

stationary state is maintained. This process is associated with the occurrence of 3 

different types of patterns: inwardly propagating target waves in the first phase, i.e. 

during equilibration; outwardly propagating spiral or circular waves during the third 

phase, i.e. at stationary state conditions; and more complex patterns during the transition 

between these two phases. To elucidate the mechanisms leading to the transition from 

ordered to complex behaviour and to identify the dominant spatial structures, the 

dynamics of these spatio-temporal patterns were analysed by Karhunen-Loève 

decomposition. The analysis demonstrates that the transition from inwardly propagating 

target waves to outwardly moving spiral waves is accompanied by desynchronization 

and loss of spatial coherence. This desynchronization is space dependent. At spatial 

scales larger than 6 mm the local glycolytic oscillators become desynchronized, 

whereas at smaller scales they are still synchronized. In contrast, the patterns remain 

synchronization in the first phase independently of the spatial scales. Such spatio-

temporal synchronization/desynchronization processes may have important functional 

meaning for biological systems. 
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Abbreviations 

ACA     Acetaldehyde  

ADH     Alcohol dehydrogenase 

ADP     Adenosine diphosphate 

AK     Adenylate kinase 

ALD     Aldolase 

AMP     Adenosine monophosphate 
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BSA     Bovine serum albumin 
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cAMP     Cyclic adenosine monophosphate 
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CIMA     Chlorite-iodide-malonic acid (reaction) 
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Eq.    Equation 
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1 Introduction and motivation 

Pattern formation is a fascinating phenomenon widely observed in nature [1]. Many 

examples of pattern formation occur in physical, chemical, and biological systems far 

from thermodynamic equilibrium [2-8]. Since these patterns can be formed 

spontaneously due to the internal dynamics of the system, the process of pattern 

formation is also called self-organisation.  

The necessary conditions for the generation of self-organisation are: the presence of 

non-linear dynamics, such as an autocatalytic step, coupled with transport, and far from 

equilibrium conditions [9;10]. Modern research on pattern formation is often associated 

with the paper by Turing [11]. He investigated the chemical basis of morphogenesis; 

with the help of a mathematical model, he showed that diffusion and interaction of two 

substances are sufficient to create spatio-temporal patterns under appropriate boundary 

conditions. Thus, the coupling of non-linear kinetics with diffusion may lead to spatial 

differentiation. 

Substantial information about the dynamics and basic principles for the generation 

of spatio-temporal patterns has been obtained from investigations of chemical systems, 

mainly from the Belousov–Zhabotinsky (BZ) reaction [12-14].  

However, travelling reaction-diffusion waves have also been reported from many 

different biological systems, e.g. calcium waves in frog oocytes [15], spreading 

depression waves in the cortex [16] and the retina [17], cAMP waves in cell layers of 

slime mould Dictyostelium discoideum [18;19], NAD(P)H waves in yeast extract 

[20;21] and in neutrophils [22]. Most of these waves exhibit the characteristic 

propagating dynamics of reaction-diffusion waves. In spite of the difference of specific 

mechanisms, which lead to the formation of the reaction-diffusion waves in biological, 

chemical, and physical systems, the basic principles of wave generation in all of these 

systems are very similar: namely, they are based on the interplay of non-linear reaction 

kinetics with transport processes.  

In biological systems, reaction-diffusion waves may encode information, which can 

act at different hierarchical levels of cellular organization, e.g. cell migration, signal 

transduction between the cells, and coordination of the cellular processes. It is believed 
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that these waves may have an important impact in the biological information processing 

[23-25]. 

In order to unravel possible biological functions of reaction-diffusion waves, it is 

necessary to investigate the mechanisms of self-organisation. A well studied 

experimental example of biochemical self-organisation is the oscillatory glycolytic 

degradation of sugar in a yeast extract. Glycolysis plays a central role for the energy 

metabolism in nearly all living cells, and it is also involved in the regulation and 

coordination of cellular metabolism. Glycolytic oscillations are observed in many 

different cells and cell extracts. However, most of the knowledge about the temporal 

dynamics of glycolysis comes from experiments with yeast, both from cells [26-28] and 

organelle-free extracts [29;30]. Glycolytic waves have so far only been observed in 

yeast extracts [20;21].  

The central role of glycolysis in cellular metabolism suggests various possible 

functions of glycolytic oscillations and waves. Indeed, experimental results indicate an 

interaction between glycolytic oscillations and the control of insulin secretion in 

pancreatic ß-cells [31-34]. Also the immune response of neutrophil cells may involve 

the formation of travelling glycolytic NADPH waves [22;25]. It has been suggested that 

the propagation dynamics of these waves can translate the metabolic state of the cell 

into signals that co-ordinate the immune response of the cells [21;25].  

The present thesis is focused on the study of spatio-temporal dynamics of 

glycolysis in yeast extracts. A necessary prerequisite for a precise investigation of such 

a system under nonequilibrium conditions is to have it operating in an open reactor. 

Several groups have studied the temporal dynamics of glycolysis in continuous-flow 

stirred tank reactors (CSTR) with yeast cells [35], yeast extract [36;37], or purified 

glycolytic enzymes [38;39]. However, these studies did not take the formation of spatial 

patterns into account, which have so far only been investigated under batch conditions 

[20;21].  

The study of sustained spatio-temporal patterns is only possible in an open spatial 

reactor. Standard reactors of this type consist of a diffusive layer in contact with the 

contents of a CSTR. The former, often a disc of hydrogel, prevents any hydrodynamic 

flow but allows the coupling of reaction and diffusion within the gel. Permanent 

nonequilibrium conditions are ensured in the gel by diffusive exchange of matter 
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between the CSTR and the gel. Such open spatial reactors have been used to investigate 

travelling waves in the Belousov-Zhabotinsky (BZ) reaction [40;41] or stationary 

patterns in the Chlorite-iodide-malonic acid (CIMA) reaction [42-44]. In this thesis, 

such a reactor was used for the first time in the investigation of spatio-temporal 

dynamics of glycolytic waves. 

This thesis is organized as follows. In section 2, the basic concepts of reaction-

diffusion systems and non-linear dynamics in glycolysis are introduced. Two kinetic 

models describing temporal dynamics of glycolysis, namely, the Goldbeter and Selkov 

models, are presented. In section 3, the materials and methods as well as construction 

and optimization of an open spatial reactor for the investigation of glycolytic 

oscillations and waves are described. Section 4 includes the results of the temporal and 

spatial dynamics of yeast extract in the open spatial reactor, and it is divided into three 

parts. In the first part, the temporal dynamics of glycolysis is investigated. An effect of 

the adenine nucleotides on the glycolytic oscillations is shown, and the conditions are 

established to obtain sustained oscillations. The second part deals with the spatial 

dynamics of glycolysis at different protein concentrations in the yeast extract. The third 

part of the results is focused on the analysis of the spatial desynchronization of the wave 

dynamics by Karhunen-Loève decomposition. As example of spatial desynchronization, 

the transition from inwardly propagating target waves to outwardly propagating target 

waves and spirals is analyzed. The last two sections present the discussion of the key 

results of this thesis, as well as future perspectives.  
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1.1 Tasks of the study 

Glycolytic degradation of sugar in a yeast extract was chosen as a model system for 

investigation of the spatio-temporal dynamics of glycolysis. The first task of this thesis 

was to optimize and establish conditions for the generation of glycolytic oscillations and 

waves in an open spatial reactor. With the help of such a reactor, it is possible to 

investigate spatio-temporal pattern formation in a yeast extract under far from 

equilibrium conditions.  

This system has the advantage that the origin of spatio-temporal patterns can be 

investigated in detail and the complexity of the yeast extract can be changed. For 

example, different factors in the feeding solutions can be changed, leading to different 

metabolic states in the yeast extract. On the other hand, the dynamics of the yeast 

extract can also be changed by varying the protein concentration in the yeast extract.  

One important aim of this work was to study the impact of feedback regulation of 

phosphofructokinase (PFK) on the dynamics of glycolysis by varying the adenine 

nucleotide composition in the feeding solution. Another task was to prove the effect of 

the protein concentration on the wave dynamics. These investigations should provide 

information about the local and global system properties of the yeast extract as a 

function of the metabolic components. For example, synchronization/desynchronization 

processes may occur at different metabolic states. Additionally, different types of wave 

patterns may form when the network complexity of the yeast extract is changed.  

These results will provide new insights into the regulation of glycolytic oscillations 

and waves, thereby implying indications for their biological functions.  
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2 Fundamentals 

2.1 Basic concepts of spatio-temporal pattern formation 

For reaction-diffusion systems it is possible and convenient to establish the 

connection between the observed patterns and the temporal dynamics of the system 

without diffusion. Two main types of pattern-forming or so-called active media are 

described in this thesis: excitable and oscillatory. Many features of general pattern-

forming active media could be discussed using a system of differential equations:  

 

 

(2.1) 

where,  and  are two dynamic variables. In the dynamical systems theory the variable 

 is called the activator
1
 and the variable  is called the inhibitor.  and  are the 

diffusion coefficients for  and , respectively;  is the Laplacian operator. The 

functions  and  account for the kinetics of the reaction system, and the 

parameter  accounts for the markedly different characteristic timescales of  

and  variables, so that  changes much more rapidly than . 

The temporal dynamics of the two variables  and  without diffusion terms are 

best represented in the phase diagram. There are two special functions on the phase 

plane, so-called nullclines, on which the rate of change of each variable is zero. Figure 

2.1a shows the nullclines of  ( -nullcline) and the  ( -nullcline), 

when the reaction terms  and  are cubic and linear functions, respectively. 

The -nullcline, ( ) has a characteristic S-shape, while the -nullcline 

( ) is simply a straight line (Figure 2.1). The intersections of the two 

nullclines determine the stationary state of the system.  

By means of the nullclines, active media can be classified as excitable (Figure 2.1a) 

and oscillatory (Figure 2.1c) (see e.g. [45]). In addition, stationary or multistable 

solutions can also be obtained (not show in Figure 2.1). 

                                                 
1
 Note that in this nomenclature the activator drives the system out of its present dynamic state, while the 

inhibitor tends to stabilize it. It is therefore evident that the terms “activator” and “inhibitor” as used in 

the dynamical system theory differ from the terms “activator” and “inhibitor” as known from enzyme 

kinetics. 
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Figure 2.1: Phase diagram of the local dynamics of  and  variables in an excitable medium 

(a) and in an oscillatory medium (c). The temporal evolution of perturbations in the excitable 

and oscillatory medium is shown in (b) and (d), respectively. The solid lines in (a) and (b) 

denote the nullclines of  and  as indicated. The intersection point 

indicates the stationary state of the system, which is stable (filled circle) in the case of excitable 

media (a) and unstable (open circle) for the oscillatory media (c). The arrows indicate the 

trajectory of the system following a perturbation. From [46]. 

 

An excitable medium is characterized by having a stable stationary state. The 

stationary state intersection point lies slightly to the left of the minimum in the -

nullcline as shown in Figure 2.1a. If  variable increases due to some perturbation to 

values that remain on the left of the middle branch of the -nullcline, the system returns 

quickly to the stationary state (Figure 2.1a). If the perturbation takes the system across 

the middle branch of the -nullcline, the system becomes stimulated and jumps to the 

right-hand branch of the -nullcline. This state of the system is called excited state. The 

system performs a large amplitude excursion into the phase space before returning to 

the original stationary state. The trajectory of the system following the perturbation is 

indicated by the dashed arrows in Figure 2.1a. The large excursion is a typical property 
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of excitability, where the stationary state is stable to small perturbations, but 

perturbations above a certain threshold will lead to large amplitude excitations before 

returning to the stationary state (see Figure 2.1b). Whilst the system is moving from the 

maximum of the right-hand branch to the left-hand branch of the -nullcline and down 

the left-hand branch, the system is insensitive to the further perturbations. This state is 

called refractory state, and is characterized by the high concentration of the inhibitor . 

As the system approaches the stationary state it regains its excitability and becomes 

ready for the next excitation.  

In the case of the oscillatory media, the intersection point of the nullclines lies in 

the middle branch of the -nullcline (Figure 2.1c). This fixed point is unstable and any 

perturbation of the system points away from the stationary state (Figure 2.1c). At no 

time the system can jump “back” to the middle branch, and so the stationary state is 

never approached. Instead there is continuous cycling in the phase space around the 

closed loop indicated with the dashed arrows in Figure 2.1c. This loop describes the 

trajectory of oscillations and is called limit cycle. In this case, both,  and  variables 

oscillate (Figure 2.1d). 

2.1.1 Spatially extended excitable media 

In spatially extended systems, the coupling of the local dynamics with diffusive 

transport leads to the formation of spatial patterns. In the case of excitable media, 

stationary patterns or travelling waves can be observed, depending on the magnitude of 

the diffusion coefficients of the activator ( ) and inhibitor ( ) (Eq. (2.1)). If the 

diffusion coefficients are roughly of the same order of magnitude, travelling 

concentration waves, such as concentric (also called target), spiral-shaped waves, or 

more complex patterns, like scroll waves in three dimensions, can be found [47]. If the 

diffusion coefficient of the inhibitor ( ) is sufficiently larger than that of the activator 

( ), stationary patterns, as for example Turing structures, may be formed [4;42-44].  

2.1.1.1 Wave properties 

In spatially extended excitable media, travelling reaction-diffusion waves often occur as 

circular-shaped waves. If circular-shaped waves are broken, their open ends curl up 

forming a pair of counter-rotating spirals. Travelling excitation waves show mutual 

annihilation upon collision, due to their excitable nature.  
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Dispersion relation 

A characteristic property of the travelling excitation waves, also called trigger waves, is 

their propagation velocity. The wave velocity is determined by kinetic and transport 

parameters of the system. However, in a strict sense, this is valid only for a solitary 

planar wave. A more common situation is the generation of target patterns, i.e. wave 

trains consisting of several concentric waves that originate from a common centre. The 

velocity of these waves is also influenced by the precursor waves, so that the decrease 

of the spatial distance from the precursor wave leads to the decrease of the wave 

velocity. The dependence of wave velocity on the source frequency, or equivalently, the 

period or wavelength of the target pattern is known as the dispersion relation.  

The most common type of the dispersion relation is monotonic, where the wave 

velocity increases monotonously with increasing wavelength and approaches a constant 

value at high wavelengths (Figure 2.2a). This dispersion relation is characteristic for 

many excitable media [10;48-50] and is therefore referred to as normal dispersion.  

If there are deviations from monotonic dispersion behaviour, the dispersion relation 

is called anomalous [51;52]. In this case the domains with negative slopes can be found. 

Examples of the anomalous dispersion relation are shown in Figure 2.2b and Figure 

2.2c. 

 

 

 

Figure 2.2: Schematic illustration of three qualitatively different types of dispersion curves for 

trigger waves: (a) normal, (b) non-monotonic non-oscillatory, and (c) oscillatory. c0 is the 

velocity of the single solitary wave. From [51]. 
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At normal dispersion, the first wave propagates through the excitable medium with 

the maximum possible velocity (c0) (Figure 2.2a). The medium in the wake of the first 

wave is refractory (i.e. contains a high concentration of inhibitor), and it takes some 

time until the excitable state will be recovered. Therefore, the velocity of the subsequent 

wave depends on the spatial distance from the previous wave, e.g. wavelength of the 

waves. When the distance between two waves is small, the subsequent wave propagates 

into the refractory zone and consequently slows down. Only for sufficiently large 

spacing the velocity of consecutive wave front becomes independent from the previous 

wave. In general the shortest possible wavelength corresponds to the absolute refractory 

period, where the inhibitor concentration is too high for the generation of new waves.  

 

Curvature effect 

Another important parameter which influences the propagation velocity of travelling 

excitation waves is the wave curvature. It has been shown theoretically [10;53] and 

experimentally [54] that the velocity of circular-shaped waves depends on the curvature 

of the wave front. An increase of the curvature leads to a decrease of the velocity. This 

relationship can be expressed by the eikonal equation: 

 (2.2) 

where,  is the normal velocity of the curved wave front,  is the velocity of a planar 

wave front,  is the curvature,  is the diffusion coefficient of the activator species ( ). 

If the curvature  becomes too high, i.e., if radius  is too small, the velocity 

may become zero, that is, the wave does not propagate anymore. This critical radius  

for initiation of waves can be determined by setting  in Eq. (2.2):  

 
(2.3) 

This means that propagation of waves cannot take place at and below the critical radius 

of waves. 

2.1.2 Spatially extended oscillatory media 

An oscillatory medium consists of elements that perform stable limit-cycle oscillations, 

with weak interactions between the neighbours. If the oscillatory phase between any 

two subsequent elements is non-zero, and a constant phase shift in the initial phase of 
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oscillations is established, this results in a time-dependent activity pattern, which looks 

like propagating waves. These waves are known as phase waves [55], also called 

kinematic waves [56], or pseudowaves [57]. The velocity of these waves is inversely 

proportional to the steepness of the phase gradient and increases with the decrease of 

the concentration gradients. Such waves do not involve diffusion.  

In a spatially extended oscillatory medium, both trigger and phase waves can be 

formed, depending on the system parameters [55;56]. In the experiments phase waves 

and trigger waves often look very similar and cannot be easily distinguished one from 

another. One possibility for distinguishing between these patterns is their dispersion 

relation [58]. Figure 2.3 illustrates the dispersion relation of phase waves (solid line) 

and trigger waves (dashed line). Up to a certain value of the wavelength ( ), phase and 

trigger waves have roughly the same dispersion (Figure 2.3, inflection point I). When 

the wavelength increases further, the velocity of phase waves grows infinitely with 

increasing wavelength, whereas the velocity of trigger waves shows normal dispersion, 

approaching a constant value c0 [59]. 

 

 

 

Figure 2.3: Dispersion relation of phase and trigger waves. The solid line represents the 

dispersion curve of phase waves and the dashed line represents the dispersion curve of trigger 

waves. The velocity of phase and trigger waves coincide up to a critical wavelength . I 

denotes the inflection point, which separates phase waves from trigger waves. c0 is the velocity 

of the single solitary excitation pulse. From [59]. 
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Nonuniform phase distribution and phase waves can play significant roles in the 

formation of various wave patterns. Recently, the formation of a new type of target and 

spiral waves, which propagate inwardly (i.e. towards the source), have been observed in 

an oscillatory medium [60] (Figure 2.3c). The condition for the occurrence of these 

waves is that the frequency of the bulk oscillations is larger than the frequency of the 

inwardly propagating waves and spirals [60;61]. The essential difference between 

inwardly propagating spirals (Figure 2.3b) and outwardly propagating, so-called 

“normal” spirals (Figure 2.3a) is the sign of the selected group and phase velocity of the  

 

 

Figure 2.4: Schematic illustration of the phase and group velocities. (a) and (b) outwardly 

rotating so-called “normal” spiral and its evolution in time, respectively. (c) and (d) inwardly 

rotating spiral and its evolution in time, respectively. The yellow lines in (a) and (c) mark the 

image lines along which the time evolution in (b) and (d) is plotted. The red arrows in (b) and 

(d) indicate the directions of phase and group velocities. In both cases, “normal” spirals and 

inwardly propagating spirals, the group velocity  points away from the spiral core. The 

distinction between “normal” spirals and inwardly propagating spirals comes only from the sign 

of the phase velocity ( ), which points toward the core for inwardly propagating spirals (d) 

and away from the core for “normal” spirals (b). Figures (a) and (b) are from [62], and (c) and 

(d) from [63].  
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travelling waves emanating from the core region. The phase velocity is defined as 

 (where  and  are wave frequency and wave number, respectively), and 

characterizes the velocity at which the positions of waves maxima move. Typically, the 

wave velocity observed from the experiments corresponds to the phase velocity. The 

group velocity is defined as , and determines the velocity at which small 

perturbations propagate through the medium (Figure 2.3d) [64;65]. For the inwardly 

propagating spirals, the phase velocity points towards and the group velocity away from 

the spiral core (Figure 2.3d), whereas for the “normal” spirals, phase and group 

velocities point in the same direction, i.e. away from the core (Figure 2.3b) [63].  

2.2 Glycolysis 

Glycolysis is the primary pathway for generation of energy in almost all living cells. It 

converts the chemical energy of sugars into biologically available energy in the form of 

adenosine triphosphate (ATP). Glycolysis is catalyzed by a series of enzymes, which 

transform a sugar into the key metabolite pyruvate, yielding two moles of ATP per mol 

of glucose: 

Glucose + 2ADP + 2Pi + 2NAD
+
 → 2Pyruvate + 2ATP + 2NADH + 2H

+
 + 2H2O 

Under anaerobic oxidation of glucose, the NADH is re-oxidazed by fermentation of 

pyruvate in order to maintain the homeostasis of the cells. In yeast, this fermentation 

leads to the formation of ethanol and CO2: 

Pyruvate + NADH + 2H
+
 → EtOH + CO2 + NAD

+
 

The overall reaction steps, i.e. the metabolic cascade of yeast glycolysis under anaerobic 

conditions, are presented in Figure 2.5. 

Under aerobic conditions, pyruvate is degraded further in order to provide energy 

for the cells. This degradation takes place in the mitochondria, where pyruvate is 

oxidized primarily by NAD
+
 in the citric acid cycle. The NADH from this oxidation is 

oxidized by oxygen in the electron transport chain, finally producing ATP.   
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Figure 2.5: Overall enzymatic reactions of glycolysis in yeast under anaerobic conditions. For 

simplification glycolysis can be divided into two parts: the upper part, where the sugar is 

phosphorylated (C6-carbohydrates) and the lower part, starting from glyceraldehyde-3-

phosphate (GAP). In the upper part, two molecules of ATP are consumed, whereas in the lower 

part four molecules of ATP are produced. In total, two moles of ATP are formed from one mole 

of glucose. From [66]. 
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2.3 Glycolytic oscillations 

Glycolytic oscillations have been intensively studied since the early sixties of the last 

century. The first observation of oscillatory behaviour in glycolysis dates back to 1957, 

when Duysens and Amesz studied the fluorescence of some glycolytic intermediates in 

yeast, and reported that one of these intermediates underwent damped oscillations [67]. 

Oscillations of the NADH concentration in intact yeast cells were then described by 

Chance and co-workers in 1964 [27]. Shortly thereafter glycolytic oscillations were also 

demonstrated in cell-free yeast extract [29;30]. Recently, glycolytic oscillations have 

also been observed in the isolated single yeast cells [68]. Besides yeast, glycolytic 

oscillations have been observed in many other types of cells and cell extracts, e.g. in 

smooth muscle cell extract [69], skeletal muscle cell extract [70], heart cells [71], 

tumour cells [72], and pancreatic ß-cells [32;33].  

Experiments with yeast extract at constant glucose supply demonstrate that 

glycolytic oscillations can be observed only at certain supply rates of glucose into 

glycolysis. For yeast extract, this rate is in the range of 40 mM/h to 120 mM/h [73]. 

These conditions can be achieved by a permanent supply of glucose, or by using 

trehalose as a substrate for glycolysis [74]. Trehalose is transformed into two molecules 

of glucose by the enzyme trehalase at a low, constant rate, providing a constant input of 

glucose during glycolysis. It was shown that all glycolytic intermediates oscillate with 

the same frequency, but with different phases. This phenomenon was observed for yeast 

cells [26;28] as well as for yeast extract [75]. The frequency of oscillations depends on 

the rate of substrate supply, temperature, pH, and enzyme concentration. It was shown 

that an increase in the phosphate (Pi) and decrease in the enzyme concentration [76], as 

well as a decrease of the temperature lengthened the period of the oscillations [77;78].  

2.4 Non-linear reaction step in glycolysis 

Glycolysis exhibits non-linear reaction kinetics by means of an autocatalytic reaction 

step. This autocatalytic step is catalyzed by the enzyme phosphofructokinase (PFK) via 

positive and negative feedback regulation. The adenine nucleotides serve as important 

effectors of PFK with adenosine triphosphate (ATP), which acts as inhibitor
2
 (and 

substrate) of PFK, and adenosine mophosphate (AMP) and adenosine diphosphate 

                                                 
2
 Note that the terms activator and inhibitor are used in the sense of enzyme kinetics. 
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(ADP) both acting as activators of PFK [28]. The allosteric regulation and the 

cooperativity of the PFK are the kinetic bases that drive the system into the oscillatory 

state [79].  

The oscillatory function of PFK has also been demonstrated by experiments, where 

the yeast extract was continuously supplied with a substrate of glycolysis [73]. It has 

been shown that the periodic behaviour in glycolysis can still be observed when 

glucose-6-phosphate (G-6-P) or fructose-6-phosphate (F-6-P) is used as a glycolytic 

substrate instead of glucose. However, when the PFK step is bypassed and the 

metabolites further down the glycolytic pathway (Figure 2.5) are used as glycolytic 

substrates, no oscillations could be observed. 

The control of PFK by adenine nucleotides represents a way in which the energy 

metabolism responds to the adenylate energy charge [80]. The adenylate energy charge, 

which is defined as a ratio of concentrations , provides a measure of 

the energetic resources of the cell. The energy charge increases from zero up to unity as 

adenylates transform from AMP into ADP, and finally into ATP. At high energy 

charge, the relative abundance of ATP causes the energy-yielding glycolytic pathway to 

become reduced in activity. As a consequence, PFK becomes inhibited. Conversely, 

high ADP or AMP levels signal that the energy charge is low and that flux through 

glycolysis should be increased. In this case, the signal results in activation of PFK. 

2.4.1 Allosteric regulation  

The PFK belongs to the group of regulatory proteins that are known as allosteric 

enzymes. These enzymes possess multiple subunits that carry catalytic sites specific for 

the substrate and regulatory sites where an activator or inhibitor may bind. This allows 

for a modulation of the enzyme activity.  

An essential property of allosteric enzymes is their cooperativity: the subunits 

forming the protein interact in such a manner that the binding of an effector or of the 

substrate to one of the sites facilitates (positive cooperativity) or impedes (negative 

cooperativity) the binding of the substrate to the remaining free sites. These properties 

are responsible for the sigmoidal kinetic curves obtained for the majority of allosteric 

enzymes in the most common case, namely positive cooperativity. In contrast to 

Michaelis-Menten enzymes, which have hyperbolic kinetic curves, allosteric enzymes, 
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due to their sigmoidal kinetics, possess an enhanced sensitivity towards variations in the 

concentration of an effector or of the substrate.  

Several models have been developed to describe the mechanism of allosteric 

regulation of enzyme activity [81;82]. The simplest model for accounting the effect of 

allosteric activators and inhibitors is the concerted model of Monod-Wyman-Changeux 

[82]. According to this model, allosteric enzymes exist in two different forms, in the T 

(tense) form, which has a low affinity and in the R (relaxed) form, which has a high 

affinity for the substrate. The transition between these two conformational forms is 

concerted, i.e. binding of substrate leads to a simultaneous transition of all subunits of 

the enzyme from the T form into the R form. Hybrids such as TR are forbidden. This 

simultaneous conformational changes cause a drastic alteration in an enzyme activity. 

The principle of allosteric regulation of the PFK can be explained based on the 

concerted model [82]. PFK is a tetrameric enzyme [83], which is allosterically activated 

by ADP, AMP, and its product FDP, and is allosterically inhibited by its substrate ATP 

(Figure 2.6).  

 

Figure 2.6: Reaction catalyzed by the enzyme PFK. The figure illustrates the allosteric 

regulation of PFK by positive and negative effectors. From [66].  

 

ATP is both substrate and inhibitor of PFK (Figure 2.6). Each subunit of the PFK 

contains two binding sites for ATP, one for binding of ATP as a substrate, and the other 

for binding of ATP as an inhibitor. As a substrate, ATP binds to the catalytic site of 

PFK, independently of the conformation of the enzyme, whereas as an inhibitor, ATP 

binds to the regulatory site of PFK preferentially in the T form. Conversely, allosteric 

activators of PFK (AMP or ADP) bind to the regulatory site preferentially in the R 

form. Consequently, ATP shifts the R→T conformational equilibrium towards the T 

form, whereas AMP or ADP shifts it towards the R form. The second substrate, F-6-P, 
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binds to the PFK enzyme primarily in the R form. The result is that high concentrations 

of AMP or ADP favour the binding of F-6-P to the PFK, whereas high concentrations of 

ATP decrease the binding of F-6-P to the PFK.  

Figure 2.7 illustrates the influence of an activator and an inhibitor on the PFK 

activity. An activator (ADP or AMP) shifts the substrate-concentration curve to lower 

substrate (F-6-P) concentrations and consequently increases the activity of the PFK. The 

inhibitor (ATP) shifts it towards higher substrate (F-6-P) concentrations, so that higher 

concentrations of substrate are required to activate the PFK (Figure 2.7). 

 

 

Figure 2.7: The influence of an activator and inhibitor on the PFK activity. The middle curve is 

observed in the absence of activator and inhibitor. In the presence of activator (AMP) this curve 

is shifted to low F-6-P concentrations, whereas in the presence of an inhibitor (ATP) it is shifted 

to higher F-6-P concentrations. From [84]. 

 

2.5 Models of glycolysis 

The first model for glycolytic oscillations was proposed by Higgins in 1964 [85]. It is 

based on the activation of the enzyme PFK by its product fructose-1,6-diphosphate 

(FDP). This model, however, produced damped oscillations. A second model was 

suggested a few years later by Selkov [86]. In this model, a similar autocatalytic 

regulation of PFK was considered, which leads to sustained oscillations of the limit 
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cycle type. This model gives good qualitative description of the basic dynamic 

properties of the PFK reaction. However, due to its simplicity some of the important 

properties observed in the experiments, as for example, the existence of two critical 

values of the substrate supply rate, cannot be explained by means of this model.  

An improved model for glycolytic oscillations was later proposed by Goldbeter 

[79], and it is focused on the cooperativity and allosteric regulation of PFK, where 

product activation occurs via ADP. This allosteric model yields better agreement with 

the experimental data both qualitatively and quantitatively.  

Later, detailed models, including all relevant or possibly all glycolytic steps and 

intermediates, were proposed [36;37;87].  

In the next two sections, two of the widely used models for describing the dynamics 

of glycolytic oscillations, namely the Goldbeter [79] and Selkov models [86], will be 

shortly reviewed.  

2.5.1 The Goldbeter model 

The Goldbeter model considers the PFK reaction and its regulation via the product ADP 

as the key step of oscillatory glycolysis [79;88]. According to this model, the enzyme 

PFK can exist in two different forms, either in the active R or in the inactive T form. 

These conformational forms differ in their affinity for the substrate and/or in their 

catalytic activity. Following the concept of Monod-Wyman-Changeux [82], the 

transition between the two conformational forms is taken as concerted. The reaction 

product ADP is the activator, as it binds exclusively to the most active, R form, of the 

enzyme. The conformational ratio of enzyme in the T and R forms in the absence of 

ligand is given by the allosteric constant L (L=[T]/[R]) [82]. The openness of the system 

is assured by the supply of the substrate S at a constant influx rate, and the removal of 

the product P (ADP) at a rate proportional to its concentration.  

Based on these assumptions, a two variable model of the substrate and the product 

was proposed, which is schematically shown in Figure 2.8. 
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Figure 2.8: Schematic model of allosteric regulation of PFK enzyme. The PFK can exist in two 

different conformational forms, R and T, which differ in their affinity for the substrate and/or in 

their catalytic activity. The transition between the two forms is concerned. The product P is an 

activator of the PFK. It binds to the R form of the enzyme and thereby shifts the conformational 

equilibrium from the T to the R form. The system is open as the substrate S is continuously 

supplied at the constant rate and the product P is removed at the rate proportional to its 

concentration. From [2].  

 

The Goldbeter model [79;88] can be expressed in the following dimensionless form:  

 

 
(2.4) 

 
(2.5) 

where,  corresponds to the dimensionless substrate concentration ([S]/KR), and  to the 

dimensionless product concentration ([P]/KP). KR and KP denote the dissociation 

constants for binding of the substrate and the product to the R form;  and  are the 

substrate input rate and the maximal enzyme reaction rate, divided by KR;  = KR/KP;  

is the rate function, which describes the allosteric regulation of the enzyme. In the case 

when the enzyme is a n-mer the rate function  can be expressed in the general form 

[88]: 

 

 
(2.6) 

where n = 4, since the PFK is a tetrameric enzyme [83], i.e. contains four subunits.  
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Extension of this model to two-dimensional reaction-diffusion processes predicts the 

appearance of travelling waves in the yeast extract [89].  

2.5.2 The Selkov model  

The Selkov model is a simple kinetic model which also describes the PFK reaction. 

However, in contrast to the Goldbeter model it does not account for the allosteric nature 

of the PFK explicitly. This model is based on the regulation of the PFK reaction, where 

the enzyme is inhibited by the substrate (ATP) and activated by the product (ADP) [86], 

according to the following scheme: 

 

 

 

 

 

(2.7) 

Here, the substrate  (ATP), that is supplied at a constant rate , is irreversibly 

converted to the product  (ADP), which is irreversibly removed at the rate . The 

free enzyme (PFK) E becomes activated by forming the  complex (  is the number 

of  molecules required for the regulation of the enzyme).  

The following three conditions should be satisfied [86]: ; , , , , 

, , , where . Additionally, since glycolytic 

oscillations occur at very low glycolytic flux, it can be assumed that the substrate supply 

rate  is . Under these conditions and taking into account the kinetic scheme (2.7), 

the Selkov model can be expressed in the following dimensionless form: 

 

 
(2.8) 

 
(2.9) 
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where,  and  correspond to the substrate and product, respectively, and are defined as: 

 and . The variables  and  are given as  

and . Here,  and  are the relative concentrations of the substrate and 

product, respectively;  is the relative supply rate;  is the relative enzyme-product 

affinity;  is the dimensionless time;  is a product of rate constants and the total 

enzyme concentration . 

2.5.3 Glycolytic waves 

When the excitable reaction system is coupled to diffusion, oscillatory glycolysis is 

associated with the formation of travelling reaction-diffusion waves. Using an extended 

version of the Goldbeter model, the occurrence of spatial patterns in glycolysis was 

predicted before experimental data were available [89]. Travelling NADH and proton 

concentration waves in a yeast extract have been observed experimentally by Mair and 

Müller [20]. They showed that these waves exhibit all properties of chemical reaction-

diffusion systems, e.g. mutual annihilation and formation of spiral-shaped waves. The 

propagation velocity and front width of NADH waves were determined as 5 µm/s and 

0.7 mm, respectively, which is in a good agreement with the predicted wave velocity 

from the model simulations [89].  

Controlled initiation of NADH concentration waves by local injection of fructose-

2,6-biphosphate (F-2,6-BP), the strong activator of PFK, indicated the crucial role of the 

PFK enzyme in the control of the dynamics of these patterns. This result confirmed the 

validity of the theoretical assumption, underlying the Goldbeter model, namely the 

important impact of PFK enzyme for glycolysis, and hence also for wave generation 

[89]. Further investigations of NADH waves provided a first study on the dispersion of 

these waves [21]. Recently, the dynamics of NADH waves were studied by applying 

spatial temperature gradients to the yeast extract by means of a Peltier element [77]. So 

far, all studies on wave propagation in a yeast extract were performed under batch 

conditions.  
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3 Materials and Methods 

3.1 Methods  

3.1.1 Growth of yeast cells  

All experiments were performed with a cell-free yeast extract. The yeast extract was 

prepared from yeast cells, which were grown under aerobic conditions from agar slants 

of the yeast Saccharomyces carlsbergensis (ATCC 9080).  

Since the yeast cells on the agar slants are stored at 4 °C and thus located in the 

passive state, it is necessary to first adapt these cells to the growth conditions in order to 

obtain more controlled and reproducible fermentation. To this purpose, the yeast cells 

were grown in two-step cultures [90]. At first, the yeast from the agar slant was grown 

in a small-volume preculture, in order to increase the growth rate of cells. Subsequently, 

for conduction of the final growth of yeast cells, a large-volume main culture was 

inoculated with a defined amount of yeast cells from the preculture. 

3.1.1.1 Preparation of media for preculture and main culture 

The media for preculture and main culture were prepared together from stock solutions 

(Table 3.1) as described in Table 3.2. After the consecutive addition of the substances of 

Table 3.2 (except for glucose and vitamins), the medium was filled up with distilled 

water to 4500 ml, and the pH of the medium was adjusted to 5.5 with KOH pellets. 

Then the medium was filled with distilled water to a total volume of 8871 ml and well 

mixed. Finally, the medium was split into the 240 ml preculture medium and 8630 ml 

main culture medium. The medium for the preculture was transferred into a 1000 ml 

shaking flask and the medium for the main culture was poured into a fermenter. In order 

to prevent foam formation during growth of the yeast cells in the fermenter, 1 ml of 

Antifoam 289 (Sigma) was added to the main culture.  

The medium for the main culture was sterilized for 1h and the medium for the 

preculture and glucose solution for 20 min in an autoclave at 120 °C (Table 3.3). The 

solution of vitamins was sterilized at room temperature by mechanical filtration through 

a sterile filter (Sartorius, pore size: 0.2 µm) under a clean bench. 
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Table 3.1: Stock solutions for yeast culture medium 

Salt A 

 

(NH4)2SO4 

KH2PO4 

KCl 

MgSO4 x 7H2O 

Mass/200 ml 

18.75 g 

5.5 g 

4.25 g 

1.25 g 

Salt B 
 

CaCl2 x 2H2O 

Mass/50 ml 

0.85 g 

Trace elements 

 

FeCl3 x 6H2O 

MnSO4 x 7H2O 

(1 drop of 2N HCl) 

Mass/50 ml 

125 mg 

125 mg 

Vitamins 

 

 

Pyridoxine /HCl 

Thiamine 

Biotin (12.5 mg in 0.07 ml 1mM 

KOH + 0.93 ml absolute ethanol) 

Ca-Pantothenate 

Myo-Inositol 

Mass/50 ml 

12.5 mg 

12.5 mg 

0.1 ml 

 

175 mg 

500 mg 

Citric acid 

 

Citric acid 

(pH 5, with KOH pallets) 

Mass/500 ml 

31.52 g 

 

Casein Hydrolysate 
 

Casein Hydrolysate (acid) 

Mass/375 ml 

37.5 g 

Glucose 

 

Glucose 

(heat up to ~ 40 °C for dissolution) 

Mass/400 ml 

200 g 

Tryptophan 
L-Tryptophan 

in 2N KOH 

1.638 g in 1 ml 

2N KOH 
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Table 3.2: Preculture and main culture media for growth of yeast cells 

Substances Main culture (9000 ml) Preculture (250 ml) 

Yeast extract 

Salt A 

Trace elements 

Citric acid 

Casein Hydrolysate 

Salt B 

Tryptophan in KOH 

9 g 

180 ml 

9 ml 

450 ml 

360 ml 

45 ml 

1.62 g 

0.25 g 

5 ml 

0.25 ml 

12.5 ml 

10 ml 

1.25 

0.045 

pH 5.5 with KOH pellets 

Glucose  

Vitamins  

360 ml 

9 ml 

10 ml 

0.25 ml 

 

Table 3.3: Specification of the sterilization parameters 

 Duration Temperature 

Preculture medium 

Main culture medium 

Glucose solution  

Vitamins  

20 min 

60 min 

20 min 

 

 

120 °C 

120 °C 

120 °C 

Sterile filtration (0.2 µm pore 

size) at room temperature 

 

3.1.1.2 Preparation of the preculture 

10 ml of sterile glucose solution and 0.25 ml of sterile vitamin solution (Table 3.2) were 

added to the preculture medium under the clean bench. Afterwards, the preculture was 

inoculated (approximately one inoculation loop) with the yeast Saccharomyces 

carlsbergensis from agar slants under the clean bench. The preculture was incubated in 

a rotary shaker at 28 °C for 18 h under constant shaking (170 rpm). This culture serves 

as the inoculum for the main culture. 

 



Materials and Methods 25 

3.1.1.3 Preparation of the main culture 

360 ml of sterile glucose solution and 9 ml of sterile vitamin solution (Table 3.2) were 

added to the main culture medium. Finally, the main culture of 9000 ml volume in the 

fermenter was inoculated with 0.25 million precultured cells per ml. In order to 

determine the amount of preculture containing 0.25 million cells, the number of cells in 

the preculture was counted after 17.5 h of growth by using a Thoma chamber. When the 

number of cells in 1 ml of the preculture is determined, the required amount of the 

preculture for inoculation of the main culture can be calculated as follows, 

 (3.1) 

where,  is the volume of preculture required for inoculation of the main culture, 

0.25 million cells/ml is the quantity of cells used for the inoculation of the main culture, 

 is the total volume of the main culture, which is 9000 ml, and  is the 

number of cells in 1 ml of preculture. 

The main culture was grown for 16 h at 28 °C under constant mixing at 550 

rpm/min and continuous air supply at 700 l/h.  

3.1.2 Preparation of yeast extract  

The cells were harvested at the beginning of the stationary phase (see Figure 3.1), when 

the glucose concentration in the medium was approaching zero. In order to determine 

this time point, after 16 h of growth, 20 ml of the main culture were taken out from the 

fermenter and centrifuged at 10000  g for 5 min at 21 °C in a Avanti J-20 centrifuge 

(Beckmann, JA 20 rotor). The concentration of glucose was measured in the supernatant 

by using a coupled enzymatic determination method (for recipe see section 3.1.5). 

When the glucose concentration in the fermenter was below 0.1 mM, the fermentation 

was stopped and the cells were harvested by centrifugation at 5000  g for 6 min at 4 °C 

in the Avanti J-20 centrifuge (Beckmann, JLA 8100 rotor). After centrifugation, the 

pellet was resedimented, washed, and centrifuged twice at 5000  g for 6 min at 4 °C 

with cooled distilled water in the Avanti J-20 centrifuge (Beckmann, JLA 8100 rotor). 

After removal of the supernatant, the cell pellet was resuspended in 25 mM MOPS, 50 

mM KCl, pH 6.5 buffer and kept on ice. The millilitre volume of the buffer added for 
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Figure 3.1: Growth curve of yeast. It shows different phases of yeast growth in a batch culture. 

The yeast cells were harvested at the beginning of the stationary phase. From [91]. 

 

resuspension of the cells corresponds to 1/10 of the cell weight in gram (e.g. for 

resuspension of 200 g of yeast cells 20 ml of the buffer is used). The cells were then 

ruptured by use of glass beads in a Braun – Melsungen cell homogenizer. For this, 10 

ml of the cell suspension and 25 g of glass beads (diameter 0.45-0.5 mm, B. Braun 

Biothech International) were placed into a 50 ml Duran glass flask (precooled at 4 °C). 

The cell suspension in the Duran flask was then shaken 6  30 s at 4000 rpm. 

Throughout the homogenization process the cells were cooled to about 0 – 10 °C with 

liquid CO2 using 10 s on/off cycles. All further steps were carried out at 4 °C. The 

broken cells were transferred into the centrifuge tubes and 1 ml of buffer (25 mM 

MOPS, 50 mM KCl pH 6.5) was used to wash the rest of the cells from the Duran 

flasks. The cell homogenate was immediately centrifuged twice (6000  g and 10000  

g, respectively for 5 min at 4 °C) using the Avanti J-20 centrifuge (Beckmann, JLA 

16250 rotor) to remove the glass beads before further differential centrifugation. The 

sediment with glass beads was removed and the resulting supernatant was then further 

centrifuged at 20000  g for 30 min at 4 °C in the Avanti J-20 centrifuge (Beckmann, 

JA 20 rotor). Finally, to separate proteins and enzymes from mitochondria and 

organelles, the supernatant was centrifuged in a Beckmann Optima Le-80K 

ultracentrifuge (Ti 70 rotor) at 130000  g for 1 h at 4 °C. After ultracentrifugation, the 

solution was separated in four differently coloured layers. A white layer on top of 

solution, containing mainly lipids, a transparent yellow layer, containing all proteins 
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and enzymes of the cytoplasm, a brown layer, containing organelles and a dark brown 

layer, containing mainly mitochondrial proteins. The yellow layer (second layer from 

top) was carefully removed with a Pasteur pipet and centrifuged a second time at 

130000  g for 1 h at 4 °C in the a Beckmann Optima Le-80K ultracentrifuge (Ti 70 

rotor). The remaining yellow layer, which represents a yeast extract, was divided in 

aliquots of 1 ml and stored at -75 °C until later use. Under these conditions the extract 

maintained its activity for about one year.  

3.1.3 Concentration and dilution of yeast extract 

The concentration of proteins in a yeast extract obtained from different preparations 

varied between 32 and 81 mg/ml, depending on the dilution of yeast extract during the 

preparation.  

In order to obtain low protein concentrations, the yeast extract was diluted with 

buffer (25 mM MOPS, 50 mM KCl, pH 6.5) before use. For obtaining higher protein 

concentrations (higher as 81 mg/ml), the yeast extract was concentrated in a dialysis bag 

(Sartorius, Viva Spin 2, cellulose triacetate with molecular weight (MW) cut off 10 kD). 

For this purpose, the dialysis bag was first washed with distilled water twice for 5 min, 

at 6000  g at 4 °C using the Avanti J-20 centrifuge (Beckmann, JA 20 rotor). Then, 1.5 

- 1.8 ml of yeast extract were filled into the dialysis bag and centrifuged at 6000  g for 

40 min at 4 °C in the Avanti J-20 centrifuge (Beckmann, JA 20 rotor) to a final volume 

of 1.0 - 1.15 ml. After centrifugation, the concentrate was carefully mixed with a pipet 

and removed from the dialysis bag. The maximal concentration of yeast extract obtained 

by this procedure was 125 mg/ml. 

3.1.4 Methods for protein determination 

In this thesis the protein content of yeast extract was measured; however, according to 

biochemical conventions, this is generally called protein concentration. Therefore, for 

the rest of the thesis the terminology protein concentration will be used.  

Two different methods were used for determination of the protein concentration in 

the yeast extract. For a rough estimation of the protein concentration and of the quality 

of preparation, the Warburg-Christian method [92] was used.  
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In some experiments in an open spatial reactor, the protein concentration of yeast 

extract was varied. Hence, the determination of the protein concentration in these 

experiments requires a more accurate method. Therefore, the protein concentration was 

additionally determined by the Lowry procedure [93].  

3.1.4.1 The Warbung-Christian method 

Most proteins exhibit an ultraviolet-light absorption maximum at 280 nm wavelength, 

due to the absorption of the tyrosine and tryptophan amino acids. Since the tyrosine and 

tryptophan content of various enzymes varies within narrow limits, the absorption peak 

at 280 nm is used as a rapid and fairly sensitive measure of protein concentration [94]. 

However, not only does protein absorb at 280 nm, but many other compounds also 

absorb in this wavelength. This includes nucleic acids that are one of the most common 

contaminants of protein preparations. The Warburg-Christian method [92] was deve-

loped to correct for nucleic acids contamination, leaving only the absorbance due to 

protein. Since nucleic acids absorb strongly at 260 nm while proteins do not, the method 

uses a correction factor calculated from the ratio of the absorbance at 280 nm to that at 

260 nm. The Warburg-Christian method uses the  and  values to calculate 

protein concentrations.  

At first, 2.8 ml of distilled water were filled into a quartz cuvette (optical length 

d=1 cm) and the absorption was measured at 260 nm and 280 nm ( ). The protein 

concentration of yeast extract was diluted with distilled water to obtain the protein 

concentration in the range of the calibration curve. Then 0.2 ml of the diluted sample 

were added to the quartz cuvette and well mixed. The absorption of the sample was 

measured at 260 nm and 280 nm ( ). The measurement was conducted at room 

temperature. The protein concentration was calculated from 

 (3.2) 

while  was determined according to the formula given by Warburg-Christian [92]:  

, (3.3) 

where, c is the protein concentration in mg/ml,  is the absorption of water and  is 

the absorption of sample,  is the total volume of the test solution (3 ml),  is 
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the volume of the sample (0.2 ml),  is the length of the cuvette (1 cm), and  is the 

dilution factor. The coefficients 1.55 and 0.76 of Eq. (3.3) are based on the extinction 

coefficients of the crystalline yeast enolase and yeast nucleic acids [92].  

3.1.4.2  The Lowry method 

The Lowry procedure is one of the widely used protein assays, which is sensitive down 

to about 0.01 mg of protein/ml [93]. The method is based on two colour forming 

reactions. Under alkaline conditions, the divalent copper ion forms a complex with 

peptide bonds in which it is reduced to a monovalent ion (Biuret reaction). Monovalent 

copper ion and the radical groups of tyrosine, tryptophan, and cysteine react with the 

Folin-Ciocalteu reagent to produce an unstable product that becomes reduced to 

molybdenum/tungsten blue (Folin-Ciocalteu reaction). The reactions result in an 

intensive blue color, which depends on the tyrosine and tryptophan content.  

 

Reagent A:  

1 ml water 

0.5 ml of 0.08 M CuSO4 x 5H2O 

0.5 ml of 0.174 M sodium potassium tartrate (NaKC4H4O6 x 4H2O)  

20 ml of 0.944 M Na2CO3 in 0.5 N NaOH 

Reagent A was prepared freshly before use. 

 

Reagent B:  

Folin-Ciocalteu phenol reagent (phosphomolybdic-phosphotungstic acid) from Sigma. 

The Folin-Ciocalteu phenol reagent was diluted in distilled water to 1:14 before use. 

 

Standards:  

Each time the assay is performed, a calibration curve from a set of standards of known 

protein concentrations should be prepared. A stock solution of bovine serum albumin 

(BSA) containing 5 mg/ml protein in distilled water was used for preparation of the 

standards. The standards were prepared by diluting the stock solution of BSA with 

distilled water as described in Table 3.4. Each standard was prepared in triplicate.  
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Samples: 

The samples with unknown protein concentration were diluted with two different 

dilution factors, to obtain the protein concentration in the range of the calibration curve. 

Each sample was prepared in triplicate. 

Table 3.4: Preparation of the standards from 5 mg/ml BSA stock solution 

 

Assay: 

250 μl of each standard and sample solution were pipeted into a clean, dry test tube. 250 

µl of Reagent A were added to each tube and immediately mixed using a vortex mixer. 

The solutions were incubated at room temperature for 10 min. Subsequently, 750 µl of 

Reagent B were added to each solution tube and thoroughly mixed using a vortex mixer. 

This mixing step is critical for obtaining reproducible results. The samples were 

incubated at room temperature for 30 min. The content of each tube was transferred into 

the half-micro cuvettes (Brand, optical length d=1 cm). The absorption of the standards 

was measured at 550 nm, starting from the lowest to the highest protein concentration. 

Then, the absorption of the samples was measured at the same wavelength. A 

calibration curve was prepared by plotting the absorbance of the standards versus their 

concentrations. The amount of protein present in the sample was then determined from 

the calibration curve by taking the dilution factor into consideration. 

3.1.5 Determination of metabolite concentration by the end-point method 

The concentration of glycolytic metabolites was determined by means of a coupled 

enzymatic determination analysis [94]. This analysis is based on coupling of an 

enzyme-catalysed reaction that uses the metabolite to be analysed as substrate, with an 

enzyme-catalysed NAD
+
/NADH oxidation/reduction reaction. The NADH absorption is 

Final concentration 

of proteins, µg/ml 
0 25 50 100 150 200 250 300 350 

BSA (5 mg/ml), µl 0 5 10 20 30 40 50 60 70 

Water, µl 1000 995 990 980 970 960 950 940 930 
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measured at 340 nm before and after the addition of each of the enzymes. The 

concentration of the metabolite can be calculated according to the law of Lambert-Beer:  

 (3.4) 

where,  is the absorption difference before and after the addition of enzyme,  is the 

extinction coefficient of NADH at 340 nm (6.3 10
3
 l/(mol cm) [94]),  is the length of 

cuvette,  is the total volume of sample in the cuvette, and  is the volume of 

the probe in the total sample.  

The procedure of metabolite analysis is described for the determination of ATP and 

G-6-P.  

 

Determination of ATP and G-6-P: 

Reaction: 

- -   (1) 

- - -  (2) 

 

Materials: 

Substance 

Concentration 

of stock 

solution 

Volume 

Triethanolamin buffer pH 7.6 0.1 M 2 ml 

MgSO4 0.1 M 0.1 ml 

NAD
+
 0.024 M 0.1 ml 

Probe  0.05 ml 

G6PDH (contains ~ 0.05% HK) 1000 Unit/ml 0.005 ml 

Glucose 0.1 M 0.05 ml 

HK 1500 Unit/ml 0.005 ml 

 

Procedure:  

Triethanolamin buffer, MgSO4, NAD
+
, and the probe were filled into the quartz (QG) or 

optical glass (OG) cuvette (Hellma, optical length d=1cm) and well mixed. The cuvette 

was placed into the spectrophotometer and the absorption of NADH was measured at 
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340 nm. When the NADH absorption became constant, the first enzyme, Glucose-6-

phosphate dehydrogenase (G6PDH), was added into the cuvette (reaction 2). The 

absorption of NADH increases and reaches the maximum when Glucose-6-Phosphate 

(G-6-P) present in the probe is converted into 6-Phosphogluconate (6-PG) (Figure 3.2). 

Since the conversion of 1 mol G-6-P yields 1 mol NADH (reaction 2), the difference in 

NADH absorption before and after addition of the enzyme G6PDH corresponds to the 

concentration of G-6-P and can be calculated by using the Eq. (3.4).  

In order to determine the concentration of ATP in the probe, glucose
3
 and the 

second enzyme Hexokinase (HK) were added to the assay mixture (reaction 1). 

Thereby, in the presence of glucose the ATP contained in the probe was converted to 

ADP and G-6-P (reaction 1), which was further converted to 6PG and NADH (reaction 

2). This results in an increase of NADH absorption, which reaches its maximum when 

all ATP is consumed. In this case, the difference in NADH absorption corresponds to 

the ATP concentration. 

 

Figure 3.2: Development of NADH absorption during determination of ATP and G-6-P. 

NADH absorption was measured at 340 nm. The arrows correspond to the addition of enzymes 

G6PDH and HK into the cuvette. The difference in NADH concentration after addition of 

G6PDH and HK corresponds to the concentration of G6P and ATP, respectively. 

                                                 
3
 Since the enzyme G6PDH contains HK (about 0.05%), glucose was added to the assay mixture after 

determination of the G-6-P in the probe. 
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If the concentration of the metabolites in the probe is too high (A > 0.7), the 

metabolite will not be converted completely, because the substances of the assay 

(Glucose, NADH, etc.) are limited. In this case the analysis should be repeated with 

diluted probes.  

The determination of all other metabolites was performed in an analogous way. The 

analysis of these metabolites is described below. 

 

Determination of Glucose and G-6-P: 

Reaction: 

 

 

 

Materials: 

Substance 

Concentration 

of stock 

solution 

Volume 

Triethanolamin buffer pH 7.6 0.1 M 2 ml 

MgSO4 0.1 M 0.1 ml 

NAD
+
 0.024 M 0.1 ml 

Probe  0.05 ml 

G6PDH (contains ~ 0.05% HK) 1000 Unit/ml 0.005 ml 

ATP 0.1 M 0.05 ml 

HK 1500 Unit/ml 0.005 ml 

 

 

Determination of AMP, ADP, and Pyruvate: 

Reaction: 
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Materials: 

Substance 

Concentration 

of stock 

solution 

Volume 

Triethanolamin buffer pH 7.6 0.1 M 2 ml 

MgSO4 0.1 M 0.1 ml 

KCl 0.1 M 0.1 ml 

NADH 0.01 M 0.05 ml 

Probe  0.05 ml 

LDH (contains ~ 0.001 % PK) 2750 Unit/ml 0.005 ml 

PEP (contains ~ 3.14 % Pyruvate) 0.01 M 0.2 ml 

PK 2000 Unit/ml 0.005 ml 

MK 6630 Unit/ml 0.005 ml 

 

 

Determination of G-6-P and F-6-P: 

Reaction: 

 

 

 

Materials: 

Substance 

Concentration 

of stock 

solution 

Volume 

Triethanolamin buffer pH 7.6 0.1 M 2 ml 

MgSO4 0.1 M 0.1 ml 

NAD
+
 0.024 M 0.1 ml 

Probe  0.05 ml 

G6PDH (contains ~ 0.05% HK) 1000 Unit/ml 0.005 ml 

PGI 700 Unit/ml 0.005 ml 
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Determination of DAP, GAP, and FDP: 

Reaction: 

 

 

 

 

Materials: 

Substance 

Concentration 

of stock 

solution 

Volume 

Triethanolamin buffer pH 7.6 0.1 M 2 ml 

NADH 0.01 M 0.05 ml 

Probe  0.05 ml 

GDH 360 Unit/ml 0.005 ml 

TIM 10000 Unit/ml 0.005 ml 

ALD 90 Unit/ml 0.005 ml 

 

3.1.6 Karhunen-Loève decomposition 

The Karhunen-Loève (KL) decomposition is a well-established method which allows 

one to find a minimal linear representation for a given data set that is optimal in the 

statistical sense [95]. It has been successfully exploited to characterize the catalytic CO 

oxidation on Pt surfaces [96] as well as for the local characterization of spatio-temporal 

chaos in a reaction diffusion system [97]. When applied to spatio-temporal data, it 

yields a separation of the dynamics into a set of static spatial modes and corresponding 

time-dependent amplitudes, which describe the temporal behaviour of the associated 

spatial mode. It is frequently used to obtain a low dimensional representation of 

experimental data, which might then allow for an interpretation of the data even in the 

case that a detailed model is either missing or too intricate.  

To perform KL analysis of the spatio-temporal dynamics of glycolytic patterns, a 

MatLab program, written by Ronny Straube (Max-Planck-Institute Magdeburg, Group 
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of Systems Biology), was applied to a temporal sequence of two-dimensional video 

images.  

The experiments yielded a set of  intensity images ( ) of dimension dim 

x  dim y. In this representation, a particular image  is given by a matrix  where 

the (i, j)-th entry denotes the grey value of the (i, j)-th pixel in the image . Next, the 

time average of the image sequence was subtracted from each image: 

 

where, are the original grey value images (dim x dim y),  are deviations from 

the mean value. As a result, the new data set  has a vanishing mean value = 0. 

For explicit calculations, it is convenient to represent each intensity image by a 

vector instead of a matrix. This can be done by reordering the matrix elements  in the 

row major form; i.e. the rows of the image  are concatenated such that the matrix 

element is mapped to the vector component where q is given by 

q = j + (i - 1)  dim y (3.5) 

and the indices (i, j) range between 1 ≤ i ≤ dim x and 1 ≤ j ≤ dim y, respectively. As a 

result, one large matrix of dimension n (dim x dim y) is obtained from the initial set 

of n images . The corresponding matrix elements  have the following form: 

 (3.6) 

i.e. each row, labelled by the index t, corresponds to one of the original images ( ). 

The KL decomposition of the matrix  can be obtained from its singular value 

decomposition 

 (3.7) 

as 

 (3.8) 
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which yields the desired separation of the original data set into time-independent modes 

 and their corresponding time-dependent amplitudes . In Eq. (3.7) the superscript 

 denotes matrix transposition, whereas  and  are matrices of the left and right 

eigenvectors of , and  denotes a diagonal matrix containing the associated 

singular values of . The right eigenvectors  are also eigenvectors of the covariance 

matrix  

 (3.9) 

that is  

 
(3.10) 

This relation defines the KL modes  in Eq. (3.8). i.e. they diagonalize the covariance 

matrix of the original data set. Note that each KL mode  can be rearranged into a 

matrix with the help of transformation (3.5). In terms of these matrices the original 

image sequence  can be reconstructed from 

 (3.11) 

The eigenvalues  in Eq. (3.10) are all positive and can be ordered as 

. Their magnitude is a measure for the variance of the original data set 

projected along the l-th KL mode since the coefficients  are on average uncorrelated, 

i.e. 

 (3.12) 

Experimental data sets usually exhibit some degree of redundancy due to 

correlations among certain variables. Accordingly, the eigenvalue spectrum will decay 

towards higher mode numbers. In this case, the original images  may well be 

reconstructed using only the first  modes . The number of modes, which are 

used for reconstruction, is generally much smaller, than the total number of modes N of 

the covariance matrix. Only the modes with significantly high eigenvalues are used for 

reconstruction, since these modes reflect most of the correlations of the original data set. 
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A widely used measure to determine the number of modes for reconstruction is the 

fraction of the statistical variance that is captured by the first k KL modes: 

 (3.13) 

For later reference, normalized eigenvalues  are defined as: 

 (3.14) 

 

3.2 Materials 

Enzymes, their substrates, and coenzymes were purchased from Roche. Antifoam 289 

and agarose (Type IXA) were purchased from Sigma, casein hydrolysate and yeast 

extract from Oxoid, Folin-Ciocalteu`s phenol reagent from Merck, and vitamins from 

Fluka. All other chemicals were purchased from Merck, Fluka, and Sigma at the highest 

purity available.  

3.3 Experimental set up 

3.3.1 The open spatial reactor 

The open spatial reactor is made of two parts: the lower part is a continuous-flow stirred 

tank reactor (CSTR) in which solutions of substrates and co-factors for glycolysis are 

permanently supplied by means of a peristaltic pump (Figure 3.3) and constantly mixed 

by a magnetic stirrer. The upper part consists of a gel-fixed yeast extract. A set of two 

circular membranes is placed between the gel and the CSTR: a black nitrocellulose 

membrane with 0.8 µm pore size from Millipore is tightly placed on a cellulose 

triacetate membrane, molecular weight (MW) cut off 10 kD, from Sartorius. The black 

membrane strongly reduces the fluorescence background from the slightly 

fluorescencing white membrane and greatly improves the detection of the NADH-

fluorescence from the yeast extract. The role of the membrane is not only to keep the 

enzymes within the gel but also to partly decouple the gel contents from the CSTR 

contents. The effective volume of the reactor (CSTR) is 3.2 ml.  

In the experiments shown in section 4.1.2, an O-ring from rubber was additionally 

used to ensure that the membranes are tightly squeezed to the holder. This O-ring (23  
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1mm) was placed on the black nitrocellulose membrane (Figure 3.3). All other 

experiments were conducted without this O-ring.  

 

 

 

Figure 3.3: Schematic drawing of the open spatial reactor. The lower part of the reactor 

represents the CSTR with effective volume of 3.2 ml. The upper part of the reactor contains the 

gel-fixed yeast extract. The diameter and volume of the circular piece of gel are 24 mm and 590 

µl, respectively. An O-ring made from rubber with diameter 1 mm was placed on the upper 

membrane. This O-ring was used only for the experiments in section 4.1.2.  

 

3.3.2 Gel fixation of yeast extract 

0.35 ml of deionized water (conductivity ≤ 0.056 µS cm) was added to 21.45 mg of 

agarose (Type IXA from Sigma) and the mixture was heated for 5-7 min at 65 °C. The 

liquid solution of agarose was then placed in a water bath at 23 °C. At the same time 

0.95 ml of yeast extract were also incubated at 23 °C. After 2-3 min, the yeast extract 

was carefully mixed with the agarose solution (end concentration of agarose: 1.65 % 

(w/v)). This mixture was then placed between two glass plates separated by 1.3 mm 

thick spacers. A 5 kg weight was placed on the upper glass plate (20 cm x 15 cm) for 15 

min in order to obtain a flat surface of the gel. During this gelation process the 

temperature was kept at 0 °C by ice containers. Thereafter, a circular piece (diameter 24 

mm) was cut out of the gel slide and placed on the black nitrocellulose membrane. The 

volume of the circular piece of gel was 590 µl. 
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Figure 3.4: Scheme of the preparation of the gel with a diffusive barrier. (a) A circular piece of 

gel (  = 24 mm). (b) and (c) The gel was cut and detached into two halves. (d) A segment made 

from rubber (  = 1 mm and  = 37 mm) was placed in-between the two gel pieces. (e) The gel 

separated by the barrier. 

 

For the experiments with the diffusive barrier (section 4.2.4), the circular piece of 

gel was prepared from yeast extract and agarose as described above (Figure 3.4a). The 

gel was then cut into two halves (Figure 3.4b and c). A semicircle made from rubber 

with a diameter of 1 mm and length 37 mm was placed in-between these two gel pieces 

(Figure 3.4d). This gel (Figure 3.4e) was placed in the reactor and the experiment was 

started as usual. 

3.3.3 Experimental procedure 

Prior to the start of the experiments, the black nitrocellulose and the white cellulose 

triacetate membranes were soaked in deionized water for 2 h. The gel-fixed yeast 

extract was placed on top of the set of these two membranes and then transferred into 

the reactor. The upper face of the gel was pressed against a quartz window. Time zero 

of experiments is defined as the start of the supply of feeding solution to the CSTR. The 

flow rate and stirring rate were 6.2 ml/h and 500 rpm, respectively. The residence time 

in the reactor was 30 min. The temperature in the reservoir of the reactor was kept 

constant at 21 °C by a Cryostat (Lauda RM6). 
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The following solution was used (end concentrations in the total input flow) for 

feeding into the reactor: 0.6 mM ATP, 0.4 mM ADP, 0.8 mM NAD, 10 mM MOPS pH 

6.5, 3 mM MgCl2, 50 mM trehalose, 50 mM KH2PO4 pH 6.5, 100 mM KCl. Derivations 

of this composition are indicated in the text. 

3.3.4 Optical set up 

The spatio-temporal dynamics of glycolysis in the yeast extract were monitored using 

the optical set up shown in Figure 3.5. White light from a Xenon lamp (Laser 2000) was 

passed through an UG-11 filter (broadband filter, centered around 340 nm) and the 

resulting light beam was reflected via a dichroic mirror (LINOS) to the yeast extract. 

Fluorescence light of NADH in the gel (460 nm) passed through the dichroic mirror to 

an intensified camera, containing a bialkali-photocathode (Corail, Optronis -SG). In 

order to reduce noise from reflecting light, a 460 nm long pass filter was placed directly 

in front of the camera objective. This optical set up is based on the principle of Köhler 

illumination [98]. It allows homogenous illumination of the area of interest and 

independent adjustment of the brightness and the size of the illuminated area. 

 

 
 

 
Figure 3.5: Schematic drawing of the optical set up for monitoring spatio-temporal patterns of 

NADH. 
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The camera output was connected to a frame grabber card (Data Translation DT 

3155) in the computer. The analogue signal from the camera was grabbed by a frame 

grabber and digitized into *.tif images by means of Acquisition program (Lab View) 

written by Ulrich Storb (Biophysics Group, Otto-von-Guericke University of 

Magdeburg). Every 10 images were averaged online to yield 1 image, which was stored 

as a final movie. After each experiment the length scale was calibrated with a millimetre 

paper.  

The temporal dynamics of the system were studied by following the local changes 

of the NADH fluorescence in the gel. For this purpose, the grey levels of a selected 

small area (10 x 10 pixel = 0.22 mm x 0.22 mm) were averaged and the arithmetic mean 

of the grey levels was plotted as a function of time.  

3.3.5 Tools for image analysis  

The sequence of grabbed images was processed and analysed using an IDL (Interactive 

Data Language, Version 6.3) program written by Ulrich Storb and Chaiya Luengviriya 

(Biophysics Group, Otto-von-Guericke University of Magdeburg). The program 

contrast_img.pro (Appendix A.1) was used to subtract the background and enhance the 

contrast of the original images. The background image was obtained by averaging each 

individual pixel of the sequence of images. The obtained background intensity was 

subtracted from the sequence of original images. Then, the contrast of the resulting 

images was increased by rescaling the histogram of grey values in the images to the 

range from 0 to 255 grey levels. This was performed by applying the following formula 

[99] to each pixel of a background subtracted image:  

 (3.15) 

where,  and  are the original and rescaled grey levels of the pixel ( ),  and 

 are the minimal and maximal values of grey level in the original image. The 

resulting images were stored as a new file and used for future analysis of the 

experiments. 

Substantial information about the dynamics of spatio-temporal patterns was 

obtained from the time-space plots. The time-space plot was constructed from the 

sequence of enhanced images by using the program timespaceplot_freedirection_v6.pro  
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Figure 3.6: An example of time-space plot for evaluation of spatio-temporal dynamics of 

patterns. The white lines represent propagating NADH waves. The slope of the lines is a 

measure of the wave velocity (green line). The period (T) was measured as the distance between 

two successive waves in the vertical direction.  

 

(Appendix A.2). The intensity profile of a horizontal line for all images of the movie 

was plotted as a function of time. An example of such a time-space plot is shown in 

Figure 3.6. The white lines represent propagating NADH waves. Time-space plots were 

used to calculate the velocity and the period of waves. The wave velocity was calculated 

from the slope of the tangent fitted to the displacement of the wave front (green line in 

Figure 3.6). The period of waves was determined from the time-space plot as the 

distance between two successive waves in the vertical direction (indicated with T in 

Figure 3.6).  

3.4 Optimization of experimental conditions 

Open spatial reactors are widely used for the investigation of spatial patterns in 

chemical systems, such as the Belousov-Zhabotinsky (BZ) reaction [40;41] and the 

Chlorite-iodide-malonic acid (CIMA) reaction [42-44]. In the present study such a 

reactor, was designed and implanted for the first time to investigate the spatio-temporal 

dynamics of glycolysis in yeast extract. 



Materials and Methods 44 

At the beginning of this study, the components of the reactor, which play an 

important role for the pattern formation in the open spatial reactor, needed to be 

optimized. One of these components is the gel, which represents the diffusive layer, in 

where the yeast extract is partially fixed. Moreover, the gel prevents the formation of 

undesired convection patterns. Another important component of the reactor, which must 

be optimized, is the membrane which separates the gel from the CSTR. This membrane 

should support a sufficiently effective diffusion of the substances from the reservoir of 

the reactor into the gel and back. In addition, the membrane should prevent the loss of 

proteins from the gel. Consequently, the gel and the membrane have to be carefully 

chosen to provide adequate conditions for the formation of spatio-temporal patterns. 

3.4.1 Selection of the gel 

To select the proper type of gel, it should be considered, that the gelation temperature of 

the gel must not be higher than 23 °C, otherwise the yeast extract will be denaturated 

during mixing with the gel. In addition, the gel ready for use should be hard and easy to 

handle. In order to select the type of agarose with the above mentioned characteristics, 

the gel was prepared from different types of agarose and mixed with the yeast extract 

(for details see section 3.3.2). The results of the experiments indicate that the agarose 

type IX A is the most suitable to trap the yeast extract in the gel since it is fluid at 23 °C 

and can be easily mixed with the yeast extract. To obtain the hard gel, which is easy to 

handle, the concentration of agarose (Type IX A) was varied from 1.5 % to 1.8 % (w/v). 

The optimal results were found with an agarose concentration of 1.6-1.65 % (w/v) 

(Table 3.5). For future experiments the gel was prepared from 1.65 % (w/v) agarose 

(Type IX A). 

 

Table 3.5: Properties of the gel at different agarose concentrations. 

Concentration of agarose (Type IX A) in gel, % (w/v)  

1.5 % 1.6 % 1.65 % 1.7 % 1.8 % 

Soft gel 
Hard gel, 

easy to handle 

Hard gel,  

easy to handle 

Very hard gel, 

difficult to mix 

Very hard gel, 

difficult to mix 
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3.4.2 Selection of the membrane 

3.4.2.1 Test of membrane permeability 

In order to choose an appropriate membrane, which supports a sufficient diffusion of 

glycolytic intermediates, the relevant diffusion properties of different membranes were 

tested. For this purpose, the reactor was fed with a solution of NADH in phosphate 

buffer. In this case the agarose gel was prepared only with water. NADH is one of the 

main intermediates of glycolysis and can be easily monitored by its intrinsic 

fluorescence. Since the molecular weight of NADH is in the range of other glycolytic 

intermediates, the diffusion behaviour of NADH should provide qualitative information 

about the exchange of glycolytic intermediates through the membrane. 
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Figure 3.7: Transport of NADH into the agarose gel (1.65% (w/v)) through different types of 

membranes. First, the reactor was fed with 50 mM KH2PO4 buffer, pH 6.5, which was replaced 

after 15 min (t = 0 in the figure, indicated by an arrow) by a solution of 1 mM NADH in 50 mM 

KH2PO4, pH 6.5. After 2 h the feeding solution was changed back to the buffer (arrow head). 

Cellulose triacetate membrane (black line), Anodisc membrane (red line), Nitrocellulose 

membrane (blue line). For each time trace the highest fluorescence value was taken as 100 %. 
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Figure 3.7 shows the kinetics of the NADH fluorescence increase in the gel when 

the reactor was fed with NADH solutions. Removing NADH from the feeding solutions 

results in a decrease of the fluorescence in the gel, demonstrating an efficient 

communication between the gel and the CSTR through the membrane. The experiments 

were performed with three different types of membranes: an Anodisc membrane (type: 

Anodisc 25, from Whatman) with 20 nm pore size, a nitrocellulose membrane with the 

molecular weight (MW) cut-off 10 kD (Schleicher & Schuell), and a cellulose triacetate 

membrane with MW cut-off 10 kD (Sartorius). The Anodisc membrane was used for 

comparison, because in control experiments this membrane has been proven to support 

the formation of Turing patterns in the chemical CIMA reaction in this reactor.  

The initial rates of the change in NADH fluorescence obtained with these 

membranes are listed in Table 3.6 for comparison. The results show that the Anodisc 

membrane has by far the highest permeability. However, the Anodisc membrane is not 

appropriate for our experiments, because its pore size is too large (larger than the size of 

enzymes). Membranes made of cellulose triacetate or nitrocellulose have smaller pores 

(10 kD) and are designed for the retention of proteins. The data show that the transport 

 

Table 3.6: Initial rates of NADH transport through different types of membranes. The data were 

calculated from fluorescence measurements as shown in Figure 3.7. They are expressed in % of 

change in NADH fluorescence per minute. The maximal change in fluorescence was taken as 

100 %. The mean value of three different experiments together with the standard error of the 

mean (SEM) is shown, except for the Anodisc membrane, where only one representative 

experiment is given. The middle column of the table shows the initial velocity of NADH 

transport into the gel (Vin); the right column shows the initial velocity of NADH disappearance 

out of the gel (Vout). 

 

Type of membrane Vin (%/min) Vout (%/min) 

Cellulose triacetate membrane (10kD) 1.6  0.04 0.47  0.01 

Cellulose triacetate (10 kD) + black 

nitrocellulose membrane (0.8 µm) 
1.16  0.2 0.8  0.17 

Nitrocellulose membrane (10 kD) 1.38  0.05 0.46  0.007 

Anodisc membrane (20 nm) 14.75 1.65 
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rates through the cellulose triacetate membrane and the nitrocellulose membrane are 

similar (Figure 3.7, Table 3.6). However, both membranes exhibit undesirable 

background fluorescence, which is larger in the case of the nitrocellulose membrane 

compared to the cellulose triacetate membrane. Therefore, the cellulose triacetate 

membrane was chosen for the experiments. 

3.4.2.2 Calibration of NADH fluorescence in the open spatial reactor 

Figure 3.8 illustrates the calibration of the fluorescence intensity of NADH in the open 

spatial reactor. For this purpose, discs of agarose gel containing different NADH 

concentrations were placed either directly on the cellulose triacetate membrane or on a 

set consisting of the cellulose triacetate membrane covered by a black nitrocellulose 

membrane (for details see section 3.3.1). These gel discs were then placed into the 

empty reactor and the fluorescence of NADH was measured with the optical set up 

shown in Figure 3.5. As a control, NADH solutions in a quartz cuvette were measured 

with this set up. When using only the cellulose triacetate membrane as a support for the 

gel, a saturation of the fluorescence signal for concentrations exceeding 0.5 mM NADH 

was found. After measuring the autofluorescence of the cellulose triacetate membrane, 

it was found that the cellulose triacetate membrane exhibits a pronounced fluorescence 

at 460 nm when excited at 340 nm. This may explain why the NADH calibration curve 

reaches saturation when the cellulose triacetate membrane is used. When monitoring the 

NADH solution in a quartz cuvette, a linear relationship between the NADH 

fluorescence and a concentration up to 1 mM was found. Covering the white cellulose 

triacetate membrane with a black nitrocellulose membrane (Millipore, pore size 0.8 µm) 

eliminates the background fluorescence from the cellulose triacetate membrane and 

yields similar results as with the cuvette (Figure 3.8).  
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Figure 3.8: Fluorescence intensity as a function of NADH concentration. NADH fluorescence 

was measured in an agarose gel placed on the cellulose triacetate membrane (triangles), or on 

the set made of black nitrocellulose and cellulose triacetate membranes with the black 

membrane on top (squares), or in a quartz cuvette (for reference, circles). The solid lines 

represent fits of the experimental data with either a linear fit (circles and squares) or with the 

Boltzmann function (triangles). The highest fluorescence value of each calibration curve was 

taken as 100 %, and corresponds to 177 grey levels for the cellulose triacetate membrane, 19 

grey levels for the set made of black nitrocellulose and cellulose triacetate membranes, and 20 

grey levels for the quartz cuvette.  

 

The fluorescence intensity of NADH for the set of the cellulose triacetate and black 

membrane was calibrated for different sensitivity settings of the camera. The results of 

the calibration are summarized in Table 3.7. The concentration of NADH can be 

determined from the following relationship: 

  (3.16) 

where,  is the fluorescence intensity of NADH,  is the slope of the calibration line, 

and  is an offset.  
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Table 3.7: Summary of the calibration results of the NADH fluorescence intensity for different 

sensitivities of the camera. The NADH fluorescence at different sensitivity settings of the 

camera was measured in an agarose gel placed on the set consisting of a cellulose triacetate 

membrane covered by a black nitrocellulose membrane. The experimental procedure was 

performed as described for Figure 3.8. For each sensitivity setting of the camera, the results of 

two different measurements were averaged and their mean value was fitted linearly.  

 

Sensitivity of camera 

(Units) 

Slope of calibration line, 

(grey level/mM)  

Offset,  

(mM) 

620 47.18 0.37 

630 73.63 0.32 

640 89.9 0.24 

650 110.5 0.18 

660 156.8 0.185 

670 191.1 0.15 

680 223.1 0.116 

690 261.1 0.076 

700 300.6 0.09 

 

 

The permeability of this set of membranes differs from that of the uncovered 

cellulose triacetate membrane (Figure 3.9, Table 3.6). When this set of membranes was 

used, the initial rates of NADH transport into the gel decreases by about 28 %. 

However, the amount of NADH diffused into the gel is the same (about 0.9 mM) for 

both cases (Figure 3.9). By feeding the reactor with 1 mM NADH solution, the NADH 

concentration in the gel increases up to 0.9 mM (Figure 3.9). This indicates that in the 

absence of reactions 90 % of NADH fed into the reactor was recovered in the gel. When 

the NADH was removed from the feeding solution (see arrow heads in Figure 3.9), the 

concentration of NADH in the gel decreases and finally reaches 0 mM. These results 

demonstrate that the exchange between the feeding chamber and the gel through the 

cellulose triacetate membrane as well as through the set of the cellulose triacetate and 

black membrane works properly. 
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Figure 3.9: Decrease of NADH transport rate with the set of two membranes. The time trace for 

the NADH transport through the set of the cellulose triacetate and black nitrocellulose 

membrane (dashed line) and through the cellulose triacetate membrane alone (solid line) is 

shown. The left ordinate shows the normalized NADH fluorescence and the right ordinate 

shows the corresponding NADH concentration. The arrow indicates the time points of the 

replacement of the phosphate buffer with a 1 mM NADH solution and the arrow heads indicate 

the change of solution back to the phosphate buffer. The experimental procedure was the same 

that described for Figure 3.7. 
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4 Results  

4.1 Temporal dynamics of glycolysis in an open spatial reactor 

4.1.1 Glycolytic oscillations 

The permanent supply of fresh reactants through the open spatial reactor allows to 

maintain the system far away from thermodynamic equilibrium and in a constant and 

well-defined state. In order to induce oscillatory glycolysis, the yeast extract has to be 

supplied with the substrate of glycolysis (sugar). Because of a permanent diffusion of 

substances out of the gel, it is necessary also to feed all low-molecular weight 

components, e.g. salts and buffer, which are required to maintain oscillatory glycolysis. 

In particular, adenine and pyridine nucleotides must be fed, because they are tightly 

connected to the glycolytic pathway, but are not synthesized during glycolysis. 

Glycolytic oscillations in the open spatial reactor under continuous feeding and 

stirring are displayed in Figure 4.1. After an induction time (not shown), oscillations 

with a period of 5.5 min were observed. Due to the openness of the reactor, oscillations 

should last as long as the reactor is fed with substrates. However, they already damp out 

after about 2 h. There are several possible reasons for this damping. For example, 1) the 

pores of the membrane could be clogged, 2) there might be a leak of an unknown 

metabolite, 3) the enzymes might be denaturated, and/or 4) the ratio of the adenine 

nucleotides might be inappropriate to support oscillations. Generally, the problem could 

originate either in the yeast extract kinetics or in the reactor components.  

4.1.2 Effect of adenine nucleotides on glycolytic oscillations 

In order to analyse the factors that lead to the damping process, shown in Figure 4.1, the 

concentrations of various glycolytic intermediates in the outlet of the reactor were 

analysed (for details see section 3.1.5). The results are shown in Figure 4.2. The 

concentrations of all species vary from the oscillatory to the damped phase. Most 

pronounced are changes in the concentrations of adenine nucleotides: adenosine 

triphosphate (ATP) decreases 33 fold and adenosine monophosphate (AMP) increases 7 

fold. These changes point to a strong activation of the enzyme phosphofructokinase 

(PFK) at the transition from the oscillatory to the damped phase. The decrease of the
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Figure 4.1: Glycolytic oscillations of the yeast extract in the open spatial reactor. The reactor 

was continuously fed with trehalose, non-recycling substrates, salts and buffer. For the 

experimental procedure and composition of the feeding solution see section 3.3.3. The stirring 

rate is 500 rpm. The feeding rate is 6.2 ml/h. The protein concentration in the yeast extract is 24 

mg/ml. The rectangular boxes mark the time intervals during which probes from the outlet of 

the reactor were taken for the enzymatic analysis of glycolytic intermediates. 

 

Figure 4.2: Determination of glycolytic intermediates during the oscillatory and the damped 

phases. The probes were taken at the time instants marked in Figure 4.1 as probe 1 (after 30 

min) and 2 (after 2 h and 30 min), respectively. 
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concentration of ATP, the inhibitor (and substrate) for this enzyme, and the concomitant 

increase of the concentration of the activator (AMP) results in a full activity of the PFK 

(no negative feedback), which is also supported by the 3.5-fold increase in fructose-1,6-

diphosphate (FDP) concentration in this experiment. It is suggested that the supply of 

ATP (by the pump) was smaller than the demand (activity of kinases), so that the 

adenylate kinase (AK) converts most adenosine diphosphate (ADP) into ATP and AMP. 

Since ATP is further consumed, this yields a permanent production of AMP.  

To decrease the consumption of ATP by hexokinase (HK) and PFK, the product of 

these enzymes, glucose-6-phosphate (G-6-P) and fructose-1,6-diphosphate (FDP) were 

added to the feeding solution. Additionally, for reducing the ATPase activity and 

increasing the supply of adenine nucleotides, the concentrations of KH2PO4 and adenine 

nucleotides in the feeding solution were increased. When running the reactor under 

these conditions (for composition of the feeding solution see legend to Figure 4.3), the 

analysis of the glycolytic intermediates in the eluate demonstrates, that the ratio of the 

adenine nucleotides does not change markedly during the first 4 h of feeding (Figure 

4.3). This indicates that the supply-demand problem, observed in Figure 4.2, is now 

solved. As a result the duration of the oscillatory phase is doubled.  

However, the damping process is still observed after 4 h, indicating that additional, 

yet unknown factors are involved in the maintenance of the sustained oscillations. This 

damping might be caused by the components of the open spatial reactor, as for example, 

the membrane may be bent, which leads to a direct communication between the gel and 

the CSTR.  

In these experiments an O-ring made of rubber was used to press the membrane to 

the holder (Figure 3.3). This was done to ensure that a direct communication between 

the gel and the CSTR is prevented. However, during the course of the experiments there 

were indications that the O-ring impaired the formation of the oscillations. Hence, the 

next experiment was performed without the O-ring.  

After removal of the O-ring, the oscillatory phase was prolonged for more than 10 

h, when feeding with the components described in Figure 4.3. A similar duration of the 

oscillatory phase was also found for the experiments performed with a recipe described 

in Figure 4.1. In this case, the duration of oscillations was increased from 2 h up to 10 h 

(Figure 4.4). Apparently, the O-ring, which was introduced to squeeze the membrane 
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Figure 4.3: Effect of increased supply of adenine nucleotides on the glycolytic oscillations. The 

feeding solution contained (final concentrations): 0.84 mM ATP, 0.66 mM ADP, 1 mM FDP, 1 

mM G-6-P, 3.5 mM MgCl2, 0.8 mM NAD, 100 mM KH2PO4 pH 6.5, 100 mM KCl, 50 mM 

Trehalose. The stirring rate is 500 rpm. The feeding rate is 6.6 ml/h. The protein concentration 

in the yeast extract is 24 mg/ml. The probes were taken 30 min and 210 min after the start of 

feeding (both during the oscillatory phase).  

 

tightly to the holder and prevent the direct communication between the enzymes trapped 

in the gel and the CSTR, instead, induced the bending of the membrane. This probably 

induced the leak of the enzymes from the gel and early damping of oscillations.  

The analysis of glycolytic intermediates in the outlet of the reactor demonstrates 

that the ratio of adenine nucleotides does not change significantly during the transition 

from the oscillatory to the damped phase after the O-ring was removed from the reactor 

(Figure 4.5). Moreover, it is important to note that the ratio of adenine nucleotides in the 

damped state (after 16 h of feeding) is still appropriate to induce the negative feedback 

on the PFK reaction. This indicates that damping of glycolytic oscillations in this 

experiment is not induced due to the supply-demand problem, as it was found for Figure 

4.1. Obviously, additional factors are required to increase the duration of glycolytic 

oscillations in the open spatial reactor. These factors will be discussed in the next 

section.  
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Figure 4.4: Glycolytic oscillations in the open spatial reactor after removal of the O-ring from 

the reactor. The reactor was fed with the same solutions as for Figure 4.1. For the experimental 

procedure see section 3.3.3. The blue marks indicate the time intervals in which the probes from 

the outlet of the reactor were taken for the enzymatic analysis of the glycolytic intermediates. 

The stirring rate is 500 rpm. The feeding rate is 6.6 ml/h. The protein concentration in the yeast 

extract is 24 mg/ml.  

 

Figure 4.5: Determination of glycolytic intermediates after removal of the O-ring from the 

reactor. The probes were taken at the time instants marked in Figure 4.4 as probe 1 (after 30 

min), probe 2 (after 3 h), and probe 3 (after 16 h).  
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4.1.3 Effect of the protein concentration on the duration of oscillations 

In section 4.1.2 the experimental conditions were established under which the yeast 

extract oscillates for about 10 h. This is about five times longer than the oscillations 

observed under batch conditions. However, the duration of oscillations can be further 

increased by varying the protein concentration of the yeast extract.  

Among the proteins of yeast extract are the enzymes, which are catalysts of the 

glycolytic reactions, and consequently, a variation of the concentration of these 

enzymes should lead to changes in the dynamics of the oscillations. Because it is not 

possible to determine the concentration of each individual enzyme, the concentration of 

all enzymes and proteins, present in the yeast extract was used as a measure for the 

enzyme concentration (for the measurement of protein concentration see section 3.1.4). 

Figure 4.6 displays the duration of oscillations as a function of the protein 

concentration. An increase of the protein concentration from 23 to 80 mg/ml results in a 

prolongation of the glycolytic oscillations from 10 up to 40 h. An example of such long-

lasting oscillations is shown in Figure 4.7.  
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Figure 4.6: Effect of protein concentration on the duration of oscillations. The protein 

concentration was determined by the Lowry method (see section 3.1.4). The results represent 

the mean of at least three different experiments, except for protein concentrations higher than 60 

mg/ml, where only one representative experiment is given. The standard deviation is shown as 

error bars.  
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Figure 4.7: Sustained glycolytic oscillations in the open spatial reactor. The experiment was 

performed with a protein concentration of 59 mg/ml. For the experimental procedure and 

composition of the feeding solution see section 3.3.3. 
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Figure 4.8: Increase of period of oscillations in the course of experiment. The period was 

calculated at different time points of the experiment shown in Figure 4.7. The protein 

concentration of yeast extract is 59 mg/ml. The standard deviation is shown as error bars. 
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The period of oscillations is not constant and increases from 10.5 min to 14.5 min 

in the course of the experiment (Figure 4.8).  

4.2 Formation of glycolytic patterns in an open spatial reactor 

When the autocatalytic reaction is coupled to mass transport processes, such as 

diffusion, oscillatory glycolysis is associated with the generation of reaction-diffusion 

waves (see section 2.4). This has been first shown by theoretical analysis [79] and later 

confirmed experimentally [20;100]. The open spatial reactor has a diffusive layer 

supporting the coupling of an autocatalytic reaction and diffusion, which is a necessary 

condition for the formation of spatio-temporal patterns.  

4.2.1 Temporal development of spatial patterns 

Figure 4.9 displays travelling NADH waves in the open spatial reactor. After an 

induction time of about 20 min, NADH waves were spontaneously generated. The 

dynamics of these waves is illustrated in the form of a time-space plot in Figure 4.10. At 

first NADH waves propagate from the centre of the gel to the borders (Figure 4.9-A). 

These outwardly propagating waves are indicated with the arrow marked A in the time-

space plot (Figure 4.10). The waves break up into small wave segments when reaching 

a certain distance from the borders of the gel. After a transient phase, which lasts 

approximately for 1 h, the NADH waves become more stable and develop into rotating 

spirals and/or outwardly propagating large waves. The formation of rotating spirals is 

indicated with a black oval mark in the time-space plot (Figure 4.10). One of these 

spirals indicated with an arrow marked B in the time-space plot (Figure 4.10) is shown 

in Figure 4.9-B. After a while, these waves start to propagate mainly in the middle of 

the gel, and do not reach the borders, whereas spatial oscillations were observed at the 

borders of the gel. They are indicated by a red oval mark in Figure 4.10. Finally, 

towards the end of the experiment, small outwardly propagating, short-distance waves 

popped up randomly (Figure 4.9-C). These waves are indicated by an arrow marked C 

in the time-space plot (Figure 4.10).  
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Figure 4.9: Spontaneous generation of NADH waves in the open spatial reactor. The spatial 

distribution of NADH in the gel was monitored with a camera (see section 3.3.4). Note, that the 

area of observation is the gel at three different time points, which are indicated with the arrows 

marked A, B and C in Figure 4.10). Grey levels quantify the NADH concentration, with white 

corresponding to maximum and black to minimum. For the experimental procedure and 

composition of the feeding solution see section 3.3.3. The protein concentration is 40 mg/ml. 

(A) Outwardly propagating NADH waves, which break up into small wave segments upon 

reaching a certain distance from the borders of the gel. (B) Counterclockwise rotating spiral. 

The tip of the spiral is indicated by a red arrow. (C) Outwardly propagating short distance 

waves.  
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Figure 4.10: Time-space plot of propagating NADH waves, shown in Figure 4.9. The 

horizontal yellow line in the left image of Figure 4.9-A marks the image line that was used for 

construction of this time-space plot. The intensity profile of this line from each image of the 

movie was plotted as a function of time. The arrows marked A, B, and C indicate the time 

instant when the waves shown in Figure 4.9 appear. The black and red ovals mark a rotating 

spiral (see Figure 4.9-B) and the spatial oscillations, respectively.  

 

4.2.2 Effect of the protein concentration on the spatio-temporal dynamics of 

glycolysis 

In section 4.1.3 the effect of the protein concentration on the temporal dynamics of 

glycolysis was investigated. It was shown that an increase of the protein concentration 

results in an increase in the duration of oscillations. Since glycolytic oscillations are 

associated with the generation of travelling NADH waves, it is also worthwhile to 

investigate the effect of protein concentration on the spatial pattern formation. 

When the protein concentration was varied between 23 and 91 mg/ml, different 

types of spatial patterns were observed.  
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Figure 4.11: (a) Inwardly propagating NADH waves in the open spatial reactor. Large circular 

NADH waves spontaneously emerge after an induction time and propagate from the borders of 

the gel to the centre. The spatial distribution of NADH in the gel was monitored with a camera. 

Grey levels quantify the NADH concentration, with white corresponding to maximum and black 

to minimum. The protein concentration of the yeast extract is 25 mg/ml. (b) Time-space plot of 

the large inwardly propagating NADH waves. The horizontal line indicated in the first image of 

(a) marks the image line that was used for construction of a time-space plot. The intensity 

profile of this line from each image of the movie was plotted as a function of time. An oval 

mark indicates the annihilation of the inwardly propagating waves in the centre of the gel. An 

arrow indicates the time point at which the waves in (a) occur. For the experimental procedure 

and composition of the feeding solution see section 3.3.3.  
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For protein concentrations from 23-34 mg/ml, large inwardly propagating circular 

waves were always found. An example of these waves is shown in Figure 4.11a. 

Circular-shaped waves propagate from the borders of the gel and annihilate in the 

middle. Annihilation of the waves is indicated by an oval mark in the time-space plot 

(Figure 4.11b). The time-space plot illustrates ordered propagation of the waves in time. 

Only towards the end of the experiment, the waves can change their dynamics and start 

to propagate from the left of the gel to the right (Figure 4.11b). In some experiments 

they change their dynamics from inwardly propagating to outwardly propagating waves 

or spiral(s). Transition from the inwardly propagating waves to the outwardly 

propagating spirals will be shown in section 4.3.2.1. Changes of the wave dynamics in 

the later stage of the experiment are also observed at a protein concentration of 34 

mg/ml. In this case the waves change their direction only from inwardly to outwardly 

propagating waves. 

For protein concentrations of 40-59 mg/ml, outwardly propagating waves are 

always found in the beginning of the experiment (Figure 4.9-A). After a transient phase, 

lasting for about 1 h, these waves developed into patterns with large thickness. These 

patterns can form either rotating spiral(s) or outwardly propagating circular waves 

(Figure 4.9-B). The thickness of the waves before and after the transient phase increases 

from 0.67 mm to 2 mm. Finally, in the end of the experiment, small outwardly 

propagating short distance waves are always observed (Figure 4.9-C). The detailed 

description of the dynamical changes of these waves is given in section 4.2. 

Starting from a protein concentration of 71 mg/ml, dot-shaped NADH waves were 

always found as shown in Figure 4.12a. The time instant when these waves appear is 

indicated with an arrow marked A in the time-space plot (Figure 4.12b). In the 

beginning of the experiment, dot-shaped waves emerge randomly in the gel and later 

develop into outwardly propagating short-distance waves. Shortly thereafter, spatial 

oscillations, which randomly propagate through the gel, are observed in addition to the 

short-distance propagating waves. The spatial oscillations can be seen in the domain of 

the time space plot indicated with arrows marked B and C (Figure 4.12b). In the time 

interval indicated with an arrow B (Figure 4.12b), both spatial oscillations (indicated by 

the red arrows) and outwardly propagating short-distance waves (indicated by the 

yellow circles) coexist. However, towards the end of the experiment, (arrow marked C
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Figure 4.12: (a) Dot-shaped NADH waves in the open spatial reactor. Later, these patterns 

develop into short-distance propagating waves. For the experimental procedure and composition 

of the feeding solution see section 3.3.3. The protein concentration of the yeast extract is 91 

mg/ml. (b) Time-space plot of the dot-shaped NADH waves. The plot was constructed along the 

horizontal line, indicated in the first image of (a). The intensity profile of this line from each 

image of the movie was plotted as a function of time. The arrows marked A, B, and C indicate 

the magnification of the time-space plot at different instants of time. An arrow marked A 

indicates the time point at which the waves in (a) are shown. The yellow oval and circles in the 

time-space plot indicated with an arrow B and C mark the outwardly propagating short-distance 

waves. The red arrows in the time-space plot indicated with B mark spatial oscillations. 
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Table 4.1: Summary of all types of waves observed in the open spatial reactor at different 

protein concentrations. 

Type of waves 

Protein concentration (mg/ml) 

23-28 34 40 47-49 59 71 80 91 

Inwardly propagating large 

circular waves 
X X       

Outwardly propagating 

large circular waves 
X X X X X    

Large rotating spiral(s)   X X X    

Segmented waves   X X X    

Outwardly propagating 

short-distance waves  
  X X X X X X 

Dot-shaped waves      X X X 

Only spatial oscillations     X X X X 

Coexistence of trigger 

waves and spatial 

oscillations 

  X X X X X X 

Coexistence of dot-shaped 

waves, planar waves and 

spatial oscillations 

     X X X 

Coexistence of short-

distance propagating waves 

and spatial oscillations 

    X X X X 
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in Figure 4.12b) mainly spatial oscillations are found together with a few outwardly 

propagating short-distance waves, which are indicated by the yellow oval and the circles 

in Figure 4.12b-C.  

The different types of waves which are observed at protein concentrations of yeast 

extract ranging from 23 to 91 mg/ml are summarized in Table 4.1. In general, seven 

different types of waves and wave combinations are observed during glycolysis in the 

open spatial reactor. These are inwardly and outwardly propagating large target waves, 

large rotating spiral(s), segmented waves, dot-shaped waves, outwardly propagating 

short-distance waves and spatial oscillations. 

For low protein concentrations, one or two types of waves are found, while for 

protein concentrations higher than 40 mg/ml, five or six types of waves and wave 

combinations are observed. The most common types of waves are the outwardly 

propagating short distance waves and trigger waves coexisting with spatial oscillations.  

4.2.3 Analysis of the wave dynamics 

In order to characterize the propagation dynamics of the waves, the velocity, period, and 

thickness of the waves were analysed at different protein concentrations in the yeast 

extract. The velocity and period of the waves were obtained from the time-space plots 

(see section 3.3.5).  

For some type of waves, as for example the outwardly and inwardly propagating 

large waves, it was not possible to measure the wavelength, because two subsequent 

waves could not be observed in a single image (see Figure 4.13b). Therefore, for all 

types of waves, the thickness of the waves was evaluated instead of the wavelength. The 

thickness of the waves  was measured directly from the images as shown in Figure 

4.13. The relationship between the wavelength and the thickness of the waves is given 

by: , where,  is the thickness of the wave,  is the wavelength of the 

waves, and  is the distance between two subsequent waves. 

The analysis of the waves was performed for the following most frequently 

observed types of waves: inwardly and outwardly propagating large waves, segmented 

waves and outwardly propagating short-distance waves (see Table 4.1).  
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Figure 4.13: Determination of wave thickness from the images. “r” corresponds to the distance 

between two subsequent waves, “d” corresponds to the thickness of the waves. (a) Outwardly 

propagating waves, (b) inwardly propagating large waves. Please, note that two inwardly 

propagating waves could not be observed in one experiment. Size of images are 16.2 12.4 mm. 
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Figure 4.14: Velocity of different types of waves as a function of protein concentration. The 

velocity was calculated from the slope of the lines in the time-space plot (see section 3.3.5). The 

results represent the mean of two to four different experiments. The standard deviation of these 

results is shown as error bars. The solid lines are drawn to indicate three different ranges of the 

velocity in dependence on the type of the waves. The black line corresponds to the inwardly 

propagating waves, the red line to the outwardly propagating waves and the green line to the 

short distance propagating waves and segmented waves. 
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Figure 4.15: Thickness of different types of waves as a function of protein concentration. The 

thickness of the waves was measured from the images as shown in Figure 4.13. The results 

represent the mean of two to four different experiments. The standard deviation of these results 

is shown as error bars. The solid lines are drawn to indicate three different ranges of the 

thicknesses depending on the type of the waves. The black line corresponds to the inwardly 

propagating waves, the red line to the outwardly propagating waves and the green line to the 

short distance propagating waves and segmented waves.  

 

The results of the analysis show that the velocity and thickness of the different 

types of waves can be separated into 3 distinct ranges. These ranges are indicated by the 

lines in Figure 4.14 and Figure 4.15. Each of this range corresponds to one type of 

wave, except for the segmented waves and short distance propagating waves. These two 

types of waves have similar values of the velocity and thickness, and can be considered 

as belonging to one range (green line in Figure 4.14 and Figure 4.15).  

Each type of wave is characterized by a particular value for the velocity and 

thickness. The velocity of each type of waves is constant and does not change when 

varying the protein concentration (Figure 4.14). However, the thickness of the waves is 

constant only for the segmented waves and short distance propagating waves, but varies 

for the outwardly and inwardly propagating waves with protein concentration (Figure 

4.15). By increasing the protein concentration of the yeast extract from 23 to 91 mg/ml
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Figure 4.16: Period of different types of waves as a function of the protein concentration. The 

period was calculated from the time-space plot as a distance between two wave maxima in a 

vertical direction (see section 3.3.5). The results represent the mean of two to four different 

experiments. The standard deviation of these results is shown as error bars.  

 

the thickness of the inwardly propagating waves decreases from 3.6 to 2.4 mm, while 

that of the outwardly propagating waves increases from 1.2 to 2.0 mm.  

The period is similar for all type of waves and varies between 8 and 14 min for 

different protein concentrations (Figure 4.16).  

When comparing the dynamics of the different wave types, one can see that the 

inwardly propagating waves have the highest values for the thicknesses and propagation 

velocities, which are given by 3 mm and 11 µm/s, respectively. Outwardly propagating 

waves propagate at a somewhat slower velocity (7.5 µm/s) and they have half of the 

thicknesses of the inwardly propagating waves (1.6 mm). Finally, the slowest waves 

with the narrowest profiles are found for the segmented and short-distance propagating 

waves, which have thicknesses of 0.6 mm and propagate with velocities of 2 µm/s.  
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4.2.4 Phase waves and reaction diffusion waves  

The differences in wave velocity and thickness described in the section 4.2.3 show 

clearly that the various types of waves differ not only in their structural properties, but 

also in their dynamical characteristics. The most pronounced differences are found for 

the inwardly propagating waves. The velocity and thickness of these waves are 

significantly higher than the velocity and thickness of the outwardly propagating, short-

distance propagating and segmented waves. This suggests that the mechanism of wave 

formation for the inwardly propagating waves is different from that of the other types of 

waves.   

From theoretical studies of wave dynamics using the complex Ginzburg-Landau 

equation, it was suggested that the inwardly propagating waves correspond to phase 

waves with an inwardly pointing phase velocity [61;63;101] (see section 2.1.2).  

In order to check whether the inwardly propagating waves correspond to phase 

waves, experiments were performed with a gel, which was separated into two pieces by 

means of an impenetrable barrier (see section 3.3.2). These experiments were conducted 

with yeast extract at low protein concentrations (24.5 mg/ml), where inwardly propaga-

ting large waves were observed, and with yeast extract at high protein concentrations 

(59 mg/ml, where outwardly propagating waves were found. In the case of phase waves, 

it is expected that the waves will cross the barrier and propagate into the other half of 

the gel, while reaction-diffusion waves cannot cross the barrier.  

The temporal sequence of the spatial structures for protein concentrations of 24.5 

mg/ml and 59 mg/ml is shown in Figure 4.17 and Figure 4.18, respectively. For 

inwardly propagating large waves (protein concentration 24.5 mg/ml), it was found that 

the waves propagate from the borders of the gel to the centre without stopping at the 

barrier. The yellow arrows in Figure 4.17 indicate how the waves, formed below the 

barrier, cross the barrier and propagate to the upper part of the gel. This suggests that 

inwardly propagating waves are phase waves, and propagate due to the phase shifted 

oscillations. 
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Figure 4.17: Inwardly propagating NADH waves in the gel with a barrier. An O-ring from 

rubber was used as a barrier to separate the gel into two pieces (for details see section 3.3.2). 

The O-ring in the gel is indicated by red curves. The yellow arrows indicate how the waves 

cross the barrier and propagate from the lower part to the upper part of the gel. The protein 

concentration of the yeast extract is 24.5 mg/ml. For the experimental procedure and 

composition of the feeding solution see section 3.3.3. The image size is 15.1 mm  12 mm. 

 

A different behaviour is observed for the outwardly propagating waves (protein 

concentration 59 mg/ml). In this case, the outwardly propagating waves are observed in 

both halves of the gel. However, the waves propagating in one half of the gel can 

neither cross the barrier nor propagate to the other half of the gel (Figure 4.18). This 

kind of behaviour is expected when the dynamics of the waves is described by means of 

a coupling between reaction and diffusion. Thus, it is suggested that outwardly 

propagating waves correspond to reaction-diffusion waves.  
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Figure 4.18: Outwardly propagating NADH waves in the gel with a barrier. An O-ring from 

rubber was used as a barrier to separate the gel into two pieces (for details see section 3.3.2). 

The red curve marks indicate the O-ring in the gel. The yellow arrows indicate how the 

outwardly propagating waves hit the barrier and cannot cross it. The protein concentration of the 

yeast extract is 59 mg/ml. For the experimental procedure and composition of the feeding 

solution see section 3.3.3. The image size is 15.1 mm  11.2 mm. 

 

4.2.5 Dispersion relation at different protein concentrations 

As additional parameter for characterization of the wave dynamics, namely, the 

dependence of the wave velocity on the wavelength was measured. This relationship is 

called dispersion relation. In general, dispersion relations characterize the dependence 

of the wave frequency on the wavelength and play an important role for understanding 

the dynamics of wave propagation (see section 2.1.1.1). Since the velocity is 

proportional to the wave frequency, the dispersion relation can be equally constructed 

by plotting the velocity of the waves as a function of the wavelength. Both, wave 

velocity and wavelength, were determined from the time-space plots. An example of 

such a time-space plot is shown in Figure 4.19. The wavelength () is determined as the 

distance between two subsequent wave fronts, and the wave velocity is given as the 

derivative of tangent of the second consecutive wave front (green line in Figure 4.19).  
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Figure 4.19: An example of a time-space plot, used for construction of dispersion curves. The 

first and second wave fronts are marked with red and green lines, respectively. The wavelength 

is indicated by . The velocity is calculated from the derivative of the tangent of the second 

wave front (green line). The protein concentration of the yeast extract is 40 mg/ml. 
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Figure 4.20: Dispersion curves for outwardly propagating waves at protein concentrations of 40 

mg/ml (black squares), 49 mg/ml (red circles) and 59 mg/ml (blue triangles), and inwardly 

propagating waves at protein concentration of 25 mg/ml (green triangles). The solid and dashed 

lines represent fits and extrapolation of experimental data, respectively.  
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The dispersion relation was measured for outwardly propagating waves at protein 

concentrations of 40 mg/ml, 49 mg/ml and 59 mg/ml, and inwardly propagating large 

waves at a protein concentration of 25 mg/ml. The resulting dispersion curves are 

displayed in Figure 4.20. The velocity of outwardly propagating waves increases 

monotonously with increasing wavelength, approaching a constant velocity at 2.3 µm/s, 

4.2 µm/s, and 5,2 µm/s for protein concentrations of 40 mg/ml, 49 mg/ml, and 59 

mg/ml, respectively (black, red, and blue lines in Figure 4.20). This type of dispersion 

curve corresponds to classical reaction-diffusion waves (see section 2.1.1.1) [58;59]. 

The extrapolation of the experimental data shows that the extraction of the absolute 

refractory zone of outwardly propagating waves approaches the same value (1.1 mm) 

for different protein concentrations (Figure 4.20). This suggests that the concentration 

profile of the inhibitor (ATP) in the outwardly propagating waves is not significantly 

affected by the protein concentration.  

Interestingly, the dispersion relation of the outwardly propagating waves at a 

concentration of 40 mg/ml protein contains an additional branch, which grows infinitely 

for increasing wavelengths (Figure 4.20). This type of dispersion curve corresponds to 

the dispersion relation of phase waves (see section 2.1.2) [58;59]. A similar relationship 

is also observed for the inwardly propagating large waves (green triangles in Figure 

4.20). Unfortunately, it was not possible to obtain this relationship for low values of 

velocity and wavelength of the inwardly propagating waves, because two subsequent 

wave maxima could not be observed in a single image (see section 4.2.3). The minimal 

wavelength which could be measured was 5.2 mm.  
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4.3 Analysis of spatio-temporal dynamics of glycolytic patterns 

4.3.1 Analysis of spatio-temporal turbulence at high protein concentrations  

In this section the spatio-temporal dynamics of waves at high protein concentrations 

will be analysed. As it was already shown in section 4.2.2 at protein concentrations 

higher than 71 mg/ml, dot-shaped NADH waves were always observed (see Figure 

4.12a). These waves appear randomly in the gel displaying irregular behaviour from the 

beginning of the experiment. In order to characterize the irregular dynamics of these 

patterns, the time-space plot of these waves (Figure 4.21a) was analysed by calculating 

the temporal and spatial correlation functions. For comparison, both correlation 

functions were also calculated for synchronously propagating inward waves (Figure 

4.21b).  

In order to calculate the spatial and temporal correlation function, an IDL 

programme was written by Frank Rietz (Group of Non-linear Phenomena, Otto-von-

Guericke University of Magdeburg) according to reference [102;103]. The formula of 

these authors is given by: 

 

 

 

(4.17) 

 

where, ,  is the temporal correlation coefficient,  

is the spatial correlation coefficient,  is the grey level,  and  are the time and space, 

respectively, index zero indicates the starting point, and angular brackets represent an 

average over time or space.  

Application of this programme to the time-space plots yields the following results. 

Figure 4.22 shows the temporal correlation functions for synchronously propagating 

inward waves (red line) and dot-shaped NADH waves (blue line). The temporal 

correlation coefficient for inwardly propagating waves oscillates periodically between 

0.9 and -0.8, reflecting coherent behaviour of these waves in time. In contrast, the 

temporal correlation coefficient of NADH dot-shaped waves oscillates with rapidly 

damping amplitude and approaches zero at large values of t (Figure 4.22). This indicates
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Figure 4.21: (a) Time-space plot of dot-shaped NADH waves. The temporal behaviour of dot-

shaped NADH waves and the entire dynamics of these waves are shown in Figure 4.12. The 

protein concentration of the yeast extract is 71 mg/ml. (b) Time-space plot of synchronously 

propagating inward waves. The temporal behaviour of these waves and the time-space plot of 

the entire experiment are shown in Figure 4.11. The protein concentration of the yeast extract is 

25 mg/ml. Please note, that in (b) the waves in the middle and in the borders have the same 

intensity, which is seemingly brighter in the middle. 

 

that the temporal behaviour of dot-shaped NADH waves is incoherent.  

Figure 4.23 shows the spatial correlation function for both types of waves. The 

spatial correlation function of synchronously propagating inward waves remains 

constant until the next maximum appears, where the correlation function shows a sharp 

transition to the anti-correlated phase (Figure 4.23). For the dot-shaped NADH wave the 

correlation function remains constant for small distances (r ≤ 0.1 mm), indicating a 

strong local coupling and approaching zero at larger values of r (Figure 4.23). In the 

range from 0.2 mm to 1.6 mm the correlation function exhibits power-law decay (black 

line in Figure 4.23). According to references [102-104], this implies the presence of 

chaotic motions in the dot-shaped NADH waves.  
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Figure 4.22: The temporal correlation function for synchronously propagating inward waves 

(red line) and dot-shaped NADH waves (blue line). The temporal correlation function was 

calculated from the time-space plots shown in Figure 4.21. 
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Figure 4.23: Spatial correlation function for synchronously propagating inward waves (red line) 

and dot-shaped NADH waves (blue line). The radius (r) is plotted in logarithmic scale. The 

spatial correlation function was calculated from the time-space plots shown in Figure 4.21. The 

black line indicates the slope of power-law decay (-1.18) for dot-shaped NADH waves.  
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4.3.2 Desynchronisation of spatial patterns at low protein concentrations  

The structure of glycolytic waves in the open spatial reactor changes from one type to 

another in the course of an experiment (see section 4.2). During this change, the waves 

pass through a transient phase, which is characterized by complex spatio-temporal 

patterns. One possible reason for this behaviour could be desynchronization of the wave 

dynamics over time. 

To analyse the coherence of the patterns in general and to check whether 

desynchronization is involved during the transient phases, the dynamics of the spatio-

temporal patterns was analysed by the Karhunen-Loève (KL) decomposition. This was 

done for a protein concentration of 24 mg/ml, where the waves change their propagation 

dynamics from inwardly propagating waves to outwardly propagating target waves or 

spiral waves. 

4.3.2.1 Transition from inwardly propagating patterns to outwardly propagating spirals  

Figure 4.24 shows temporal oscillations of the NADH fluorescence averaged over a 

small area (40 40 pix
2
) indicating a local oscillatory dynamics. The analysis of this time 

series in conjunction with the observed spatio-temporal patterns suggests a division of 

the experiment into three distinct time intervals. The first interval (0-120 min) is clearly 

non-stationary. It is characterized by a rapid decrease of the NADH fluorescence. Here 

an equilibration between the gel and the feeding solutions takes place, since the 

metabolic/ionic compositions in the gel and in the reactor are different at the beginning 

of the experiment. Interestingly, large inwardly propagating circular waves are observed 

during this stage of the experiment (Figure 4.25) with a thickness and wave velocity of 

4 mm and 14 µm/s, respectively.  

In the course of the second interval (120-240 min), a transition from inwardly 

propagating waves to outwardly propagating spirals is found (Figure 4.26), while the 

local dynamics acquires a second, modulating frequency (Figure 4.24, interval 2). This 

modulation could be caused by the interaction between two competing patterns in the 

transition region.  
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Figure 4.24: Temporal dynamics of yeast extract in the open spatial reactor. Intensity of NADH 

fluorescence was averaged over a small area (40 40 pix
2
) taken from the total observation area 

(540 740 pix
2
). The protein concentration of the yeast extract is 24 mg/ml. For the experimental 

procedure and composition of feeding solution see section 3.3.3. The experiment was divided 

into three distinct time intervals. Each interval was analysed separately by KL decomposition.  

 

 

Figure 4.25: Spatial dynamics of yeast extract in the time interval 1, indicated in Figure 4.24. 

The spatial distribution of NADH in the gel was monitored with a camera (see section 3.3.4). 

Grey levels quantify the NADH concentration, with white corresponding to maximum and black 

to minimum. Large circular NADH waves propagate from the borders of the gel to the centre. 



Results 79 

 

 

Figure 4.26: Spatial dynamics of yeast extract in the time interval 2, indicated in the Figure 

4.24. Grey levels quantify the NADH concentration, with white corresponding to maximum and 

black to minimum. Transient phase, where transition from inwardly propagating NADH waves 

to outwardly propagating spirals takes place.  

 

 

 

Figure 4.27: Spatial dynamics of yeast extract in the time interval 3, indicated in the Figure 

4.24. Grey levels quantify the NADH concentration, with white corresponding to maximum and 

black to minimum. In the interval 3 large outwardly propagating spiral waves are observed. The 

spiral is enclosed in the centre of the figure.  
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The last stage of the experiment, from 240 to 430 min, is characterized by 

outwardly propagating spirals with a wavelength of 5 mm and velocity of 10 µm/s 

(Figure 4.27).  

4.3.2.2  Analysis of the coherence of the patterns by the KL decomposition 

The spatio-temporal dynamics of each time interval were analyzed separately by the KL 

decomposition (see section 3.1.6). The KL eigenvalue spectrum for time interval 1 

(Figure 4.28a) shows that 80 % of the total variance is captured by the first two modes 

(  0.80, cf. section 3.1.6, Eq. (3.13)). Consequently, the inwardly propagating waves 

observed during the initial stage of the experiment are sufficiently described by the first 

two modes. The presence of two dominant modes reflects a high degree of spatial 

correlation of the spatio-temporal structures. This coherence is also observed in the 

phase portrait of the temporal amplitudes  and  associated with the first two 

KL modes (Figure 4.28b). The trajectory approaches a limit cycle in the course of time 

indicating an essentially two dimensional structure of the phase space.  

Finally, to confirm that the glycolytic oscillations are synchronized in different 

regions of the reactor, the phase differences between local oscillations in three different 

regions (see Figure 4.29) of the total area of observation were compared (Figure 4.30). 

For this purpose, a KL analysis was performed only within small regions, which are 

indicated in Figure 4.29. After about 20 min the phase differences ( ) between the  

 

 

Figure 4.28: (a) Normalized eigenvalue spectrum  for the whole area of observation (540x 

740 pix
2
) in the time interval 1, (b) the phase portrait of the temporal amplitudes  and 

 associated with the first two KL modes for the same interval.  
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Figure 4.29: Three different regions of the total area of observation. The numbers in each 

region indicate the index of the region. The indicated regions were analysed by the KL 

decomposition. In each region the phase relations between the first and second KL 

modes , and third and forth KL modes  were measured.  
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Figure 4.30: Temporal behaviour of the phase differences  between the 

first and second KL modes in three different regions (indicated in Figure 4.29) of the total area 

of observation during interval 1.  and  are the phase relations between the first and 

second KL modes in the region  and , respectively.  and  are the indices of the three regions 

indicated in Figure 4.29. 
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first two KL modes assume a nearly constant behaviour indicating that the waves are 

synchronized and propagate uniformly with a constant phase shift during the time 

interval 1 (Figure 4.30).  

In the time interval 2, where the transition from inwardly propagating target 

patterns to outwardly propagating spirals takes place, the number of leading KL modes 

increases (Figure 4.31a). To account for the same statistical variance as during interval 

1, at least 6 KL modes (  0.86) are needed to describe the dynamical behaviour of 

the waves. The first two KL modes are still dominant capturing 46 % of the total 

variance. The phase plane plot of the first two KL amplitudes reveals a more complex 

structure than the simple limit cycle behaviour during interval 1. In accordance with the 

presence of two frequencies during interval 2 (cf. Figure 4.24), the trajectory in Figure 

4.31b could be interpreted as a 2d projection of a higher dimensional torus. 

The last stage of the experiment (interval 3) is characterized by outwardly 

propagating spirals. Similarly to the previous interval, at least 6 modes (  0.81) are 

needed to reconstruct the dynamics of the spirals (Figure 4.32a). Interestingly, while the 

eigenvalue spectrum is comparable to that of interval 2, the phase plane projection of 

the first two KL amplitudes has a significantly different shape (Figure 4.32b). Thus, the 

temporal behaviour of the large scale spatial structures during interval 3 is irregular as 

compared to interval 1 and 2. However, the coherently rotating spirals are visible during 

interval 3. This suggests that the transition to the irregular behaviour during the later 

stages of the experiment is associated with some kind of spatial desynchronization. In 

order to study this hypothesis, the phase differences between local oscillations in three 

different regions, which are indicated in Figure 4.29, were measured. The phase 

differences between the first two KL modes ( ) show a nearly constant behaviour in 

the interval from 260 to 400 minutes (Figure 4.33a). This indicates that the irregular 

structures appearing in the later stage of the experiment still retain some coherent 

behaviour, which is described by the first two KL modes. In contrast, the phase 

differences between the third and fourth KL modes ( ) show irregular behaviour in 

time (Figure 4.33b), pointing to some spatial desynchronization.  
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Figure 4.31: (a) Normalized eigenvalue spectrum  for the whole area of observation (540x 

740 pix
2
) in the time interval 2, (b) the phase portrait of the temporal amplitudes  and 

 associated with the first two KL modes for the same interval. 

 

 

Figure 4.32: (a) Normalized eigenvalue spectrum  for the whole area of observation (540x 

740 pix
2
) in the time interval 3, (b) the phase portrait of the temporal amplitudes  and 

 associated with the first two KL modes for the same interval.  

 

4.3.2.3 Separation of spatial scales during interval 3 

The observation that the dynamics of the spatio-temporal patterns becomes irregular on 

the large scale during interval 3 prompted to investigate whether these structures retain 

some coherence on smaller spatial scales. It was found that in the last stage of the 

experiment a separation of spatial scales takes place. On the large scales (e.g. the entire 

area of observation) the patterns are spatially desynchronized as measured by the 

number of KL modes needed for reconstruction as well as by the phase differences
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Figure 4.33: Temporal behaviour of the phase differences in three different regions (see Figure 

4.29) of the total area of observation during interval 3, (a) between the first and second KL 

modes , and (b) between the third and fourth KL modes . The numbers in branches 

(1-2, 1-3, 2-3) indicate the indices of regions (see in Figure 4.29), between which the phase 

differences were measured. 
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Figure 4.34: Effect of increasing of the area of observation , expressed by effective 

radius, , on the contribution of the first 6 KL modes  during the interval 3. KL 

analysis was performed for at least three different non-overlapping regions of equal size, which 

were randomly chosen from the total area of observation. The results represent the average 

contribution of the first six KL modes to the spatio-temporal pattern. The standard deviation of 

these results is shown as error bars.  

 

between local oscillations in different regions of the gel. However, on smaller scales the 

patterns during interval 3 are still synchronized as will be shown now. 

First, the dependence of the number of KL modes needed for reconstruction on the 

size of the area was analyzed (Figure 4.34). For this purpose, an effective radius was 

assigned to the local area of observation ( ) as . Then, a local KL analysis 

was performed for at least three different non-overlapping regions of equal size that 

were arbitrarily chosen from the total area of observation. By making the area smaller 

and smaller, the average contribution of the first 6 KL modes to the spatio-temporal 

pattern during interval 3 was obtained as a function of the local observation area or, 

equivalently, as a function of effective radius. Most importantly, the contribution of the 

first mode increases rapidly with decreasing radius of the domain of interest (Figure 

4.34). It captures 65 % of the total variance for the smallest analyzed radius ( 1 mm).
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Figure 4.35: KL analysis of the area with radius  3mm (200 300 pix
2
): (a) distribution of 

KL modes in the time interval 1, (b) the phase portrait of the temporal amplitudes  and 

 associated with the first two KL modes for the time interval 1, (c) distribution of KL 

modes in the time interval 2, (d) the phase portrait of the temporal amplitudes  and  

associated with the first two KL modes for the time interval 2, (e) distribution of KL modes in 

the time interval 3, (f) the phase portrait of the temporal amplitudes  and  associated 

with the first two KL modes for the time interval 3. 
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This is more than twice as large as the contribution of the first mode, obtained when the 

entire image ( 7.7 mm) was analyzed by KL decomposition (Figure 4.34). The 

contribution of the higher modes is marginal for small radii and increases for larger 

ones. Thus, the spatio-temporal patterns during interval 3 are sufficiently described by 

the first two KL modes on spatial scales  3 mm, where the mode spectrum exhibits a 

sharp transition (Figure 4.35e). More importantly, the phase plane projection of the first 

two KL amplitudes  and  exhibits simple limit cycle behaviour similar to that 

observed during interval 1 on the large scale (cf. Figure 4.28b), which demonstrates that 

they are evolving coherent in time.  

Figure 4.35 summarizes the coherence properties of the spatio-temporal patterns 

during all three intervals at the transition point  3 mm. For interval 1 and 3, the first 

two KL modes are sufficient to account for the locally observed patterns since there are 

clear cut-offs in the eigenvalue spectra between the second and the higher modes 

(Figure 4.35a,e). Also, the corresponding phase space projections show a limit cycle 

behaviour for the trajectories of the corresponding KL amplitudes  and  (Figure 

4.35b,f). This clearly demonstrates the local coherence of the spatio-temporal patterns. 

By contrast, the cut-off in the eigenvalue spectrum during interval 2 (Figure 4.35c) is 

less obvious, indicating that two KL modes are probably not sufficient to account for 

the local spatio-temporal dynamics during this transient interval. Moreover, the 

trajectory in the phase plane projection of the first two KL modes is highly irregular 

(Figure 4.35d). This means that the dominant modes do not evolve coherently in time 

during interval 2.  
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5 Discussion 

An open spatial reactor was designed and optimized for investigations of glycolytic 

reaction-diffusion waves in a layer of yeast extract under well defined and stationary 

conditions. In this reactor reaction-diffusion coupling is achieved by fixation of the 

yeast extract in an agarose gel. The openness of the system is maintained by constant 

feeding of the gel-fixed yeast extract with substrates and sugar. Under these conditions 

glycolytic oscillations lasting for about 40 h were observed (Figure 4.6). This is about 

10 times longer than the lifetime of the glycolytic oscillations observed at batch 

conditions [21]. There is an induction time, during which an equilibration between the 

gel and the feeding solution takes place, because the metabolic/ionic compositions in 

the gel and in the reactor are different at the start of experiment. This adaptation process 

is reflected by a decrease of the NADH fluorescence amplitude, which reaches a 

constant value after approximately 2 h (see Figure 4.7, Figure 4.24).  

The disaccharide trehalose was used as the sugar source of glycolysis for feeding of 

the yeast extract. This sugar is split into 2 units of glucose by the enzyme trehalase, 

which is present in the yeast extract. Since this enzyme works at low activity in the 

yeast extract (30 nmol/(mg prot. min), [30]), there is a slow and constant input of 

glucose into glycolysis. This means, that the trehalose concentration can reach quite 

high concentrations throughout the gel and then can act as a “substrate buffer” for 

glycolysis. It is assumed that only small fractions of trehalose (the input species into the 

gel) are converted, since the conversion rate is low, as compared with feeding rate. This 

may explain, why oscillations with a period of about 10 min can be observed, although 

the typical diffusion time (d
2
/D) perpendicular through the gel is estimated to be 28 min 

for the 1.3 mm thick gel. Here, d is the thickness of the gel, and D is the diffusion 

coefficient, which is taken to be 10
-5

 cm
2
/s for the small molecules. 

5.1 Impact of the feedback regulation of PFK 

An important prerequisite for the maintenance of constant glycolytic oscillations is a 

proper balance between the ATP-consuming and ATP-providing processes as has been 

already reported for oscillatory glycolysis under batch conditions [75]. If this balance is 

perturbed, the glycolytic oscillations damp out (see Figure 4.1). This damping process 
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can be explained based on the feedback regulation of PFK by ATP (inhibitor) and ADP, 

AMP (activators) [105] as shown in Figure 5.1. 

When the ATP concentration in the feeding solution is too low, all ATP is 

consumed in the upper part of glycolysis by HK and PFK for phosphorylation of 

glucose. This occurs during the transition from the oscillatory to the damped state (see 

Figure 4.2). As a result, the feedback inhibition of PFK by ATP is no longer possible. 

On the other hand, the increasing concentration of ADP results in activation of the PFK. 

This increased kinase activity even enlarges the consumption of ATP, so that the 

demand for ATP for phosphorylation of glucose overcomes the supply of ATP. The 

increase in ADP concentration leads to a shift of the equilibrium of the AK-catalysed 

reaction to the formation of AMP and ATP. Due to the imbalance between supply and 

demand, the ATP produced from the AK-catalysed reaction is immediately consumed 

by the kinases, which results in the accumulation of AMP (see Figure 4.2, Figure 5.1). 

Under these ATP-limiting conditions, the PFK is fully activated (high concentration of 

AMP), whereas a negative feedback is no longer possible, since the ATP concentration 

is too low. Accordingly, the nonlinearity of the PFK reaction does not contribute any 

more, resulting in abolishment of the oscillations. This leads to an increased PFK 

mediated flux as demonstrated by the rise of the FDP concentration in the non-

oscillatory state (Figure 4.2).  

A substantial effect of the ATP/ADP ratio on the glycolytic flux has also been 

observed in living cells. Koebmann and co-authors [106] reported that an increased 

expression of ATPase in E. coli cells markedly decreases the ATP/ADP ratio, which 

leads to a marked increase of the glycolytic flux. Such a condition is similar with the 

situation in our system in the damped phase, where the ATP/ADP ratio is getting low 

(Figure 4.2). Similarly, Kroukamp and co-authors [107] found an increase of the flux 

through glycolysis when the ATP demand in the yeast cells was modulated by addition 

of uncouplers, i.e. substances, which uncouple electron transport from oxidative 

phosphorylation in the mitochondria, resulting in a decrease of the ATP/ADP ratio.  
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Figure 5.1: Simplified scheme for the control of glycolytic oscillations in the open spatial 

reactor, based on feedback regulation of the PFK. The left side represents the CSTR, which is 

separated from the gel-fixed yeast extract by a membrane. The right side represents the gel-

fixed yeast extract, where glycolysis takes place. This scheme demonstrates the steps involving 

ATP during glycolysis in the open spatial reaction. The system conceptually can be divided into 

a “supply” and “demand” blocks in term of the production (supply) and usage (demand) of 

ATP. The upper part of glycolysis represents a demand block, consuming the ATP, whereas the 

lower part of glycolysis represents a supply block, producing ATP. In addition ATP is also 

supplied by diffusion from the CSTR and by AK reaction. For the detailed scheme of glycolysis 

including single reaction steps see Figure 2.5. 
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The results of theoretical metabolic control analysis, performed by Thomas and Fell 

[108] to study the role of the ATP demand for the control of the glycolytic flux showed 

that the control of glycolytic flux depends primarily on the activation of PFK by AMP 

and on ADP inhibition of ATPase. These results support our view that control of PFK 

diminishes rapidly as the AMP concentration increases.  

Larsson and co-authors [109] used permeabilized yeast cells to study the control of 

the glycolytic flux. By this method they were able to adjust the concentrations of the 

adenine nucleotides as well as other glycolytic intermediates within the cells. They 

found that the ATP/AMP ratio strongly depends on the initial concentration of ATP and 

glucose. Similar to our findings, low initial ATP concentrations were completely 

converted to AMP, whereas at higher ATP levels the ATP consumption was reduced 

and the AMP production was negligible. This was accompanied by a complete 

suppression of FDP formation and accumulation of G-6-P and F-6-P at high ATP 

concentrations. Larsson and co-authors explained this behaviour by a control of the 

glycolytic pathway through feedback inhibition of PFK by ATP.  

Schellenberger and co-authors [110] used an open reconstituted enzyme system 

consisting of PFK (ATP-consuming) and pyruvate kinase (ATP-producing) as well as 

glucose-6-phosphate isomerase and AK. They found different stationary states for this 

system with respect to the concentrations of intermediates, depending on the activity of 

PFK and PK. A transition between ATP-producing and ATP-consuming stationary 

states could be explained by the allosteric properties of PFK. A self-stabilisation of the 

energy charge could be achieved by increasing the activity of the PK [39]. 

All these data demonstrate that the flow through glycolysis strongly depends on the 

ATP and AMP concentrations. In our opinion, this control is due to the allosteric 

feedback regulation of PFK. A negative feedback is required in order to reduce the flux 

through this enzyme reaction. This ensures that the activity of the kinase is small 

enough in order to maintain a “reasonable” energy charge. If the ATP concentration 

falls below a critical value, the insignificant negative feedback as well as the strong 

positive feedback by AK-generated AMP lead to a full activation of the PFK. This in 

turn leads to a nearly complete consumption of ATP, such that ATP becomes limiting 

for phosphorylation of glucose, i.e. the ATP-demand overcomes the ATP-supply. Our 

results also demonstrate that the oscillations of the glycolytic pathway can only occur, 
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when the ATP concentration is sufficiently large to permit the negative feedback of 

PFK to be effective (Figure 4.3 and Figure 4.5).  

The group of Westerhoff has obtained similar experimental results but, based on 

theoretical analyse, came to different interpretations [111-114]. Calculation of the 

control coefficients yielded a strong control of glucose transport and ATPase activity 

over the glycolytic pathway, whereas PFK was nearly ineffective. To our opinion, this 

interpretation is not complete. Since both, glucose transport and ATPase activity, lead to 

a marked decrease of ATP, the allosteric properties of PFK cannot be neglected for 

control of glycolysis.  

5.2 Effect of the protein concentration on the spatio-temporal 

patterns 

Among the proteins of yeast extract are the enzymes which are the catalysts of the 

glycolytic reaction and play an important role in regulation of glycolysis. Changes in 

the protein concentration can drastically influence the dynamical properties of the 

system. The influence of the protein concentration on glycolytic oscillations has been 

studied by Das and Busse [76]. They observed an increase of the period of oscillations 

from 20 min to 6 h, when the protein concentration of the yeast extract was diluted from 

40 mg/ml to 2 mg/ml. Moreover, they showed that a decrease in the protein 

concentration results in a change of the shape of the oscillations from the spike to the 

relaxation type. These results indicate that the protein concentration can influence the 

dynamical properties of the system, and hence can serve as a powerful tool for changing 

the system properties of glycolysis in the open spatial reactor.  

When the protein concentration of the yeast extract in the open spatial reactor was 

increased from 23 to 81 mg/ml, the duration of the glycolytic oscillations was prolonged 

from 10 h to 40 h (Figure 4.6). This fourfold increase of the oscillatory phase that was 

induced by the increase of the protein concentration could be explained as follows. 

Since the experiments last one to two days, the enzymes of yeast extract become 

denaturated during this long period of time. With increasing protein concentration, the 

amount of enzymes that retain their activity by the end of the experiment increases. 

Hence, at high protein concentrations, the ratio of functioning enzymes to the 

denaturated enzymes is high enough to provide long lasting oscillatory glycolysis. 
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A characteristic property of oscillatory systems is the formation of spatio-temporal 

patterns due to the coupling of a non-linear reaction with diffusion. The gel-fixed yeast 

extract represents a diffusive layer that enables reaction-diffusion coupling. 

Accordingly, the generation of travelling NADH-waves in this gel, associated with the 

appearance of glycolytic oscillations, was found (Figure 4.9).  

The dynamics of glycolytic waves in an open spatial reactor were investigated at 

different protein concentrations in the yeast extract. By varying the protein 

concentration from 23 to 91 mg/ml, seven different types of glycolytic travelling NADH 

waves were observed in the open spatial reactor (Figure 5.2, Table 4.1). These are 

inwardly and outwardly propagating large target waves, large rotating spiral(s), 

segmented waves, dot-shaped waves, outwardly propagating short-distance waves and 

spatial oscillations. In addition, for high protein concentrations the coexistence of 

different types of waves with the spatial oscillations was also found. The dynamical 

properties of some of these waves will be discussed in the next section. 

 

Figure 5.2: Schematic overview of patterns found during glycolysis in the yeast extract. 
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The formation of different types of patterns in dependence of the protein 

concentration in the yeast extract might be induced due to the change of the two 

important parameters of the system. One of these parameters is the spatial coupling, i.e. 

the mean distance between the proteins in the gel. When the protein concentration is 

low, the spatial coupling between the proteins is also low. This leads to the formation of 

simple inwardly and outwardly propagating target patterns. By increasing the protein 

concentration, the spatial coupling between the proteins also increases and leads to the 

formation of more complex dynamical structures, such as spirals, segmented waves, 

outwardly propagating large circular waves. Finally, at very high protein concentrations 

the turbulent patterns, in the form of dot-shaped waves, are formed. Another parameter 

that might be affected by change of the protein concentration in the yeast extract is the 

flux through glycolysis.  

The presence of a multitude of different patterns when the protein concentration is 

varied may have important impacts for biological systems with spatial gradients of the 

protein, e.g. in developing Drosophila oocytes [115-119].  

5.2.1 Inwardly propagating target waves  

The inwardly propagating target waves have been observed at protein concentrations of 

23 to 34 mg/ml. These waves initially start to propagate from the border of the gel to the 

middle where they exhibit mutual annihilation. Later these waves develop into the 

outwardly propagating target or spiral waves (Figure 4.11). This type of spatio-temporal 

structures has so far only rarely been reported in experiments [60], while many 

theoretical investigations have been performed to elucidate the propagation mechanism 

of these waves.  

Theoretical studies of wave dynamics using the complex Ginzburg-Landau 

equation (CGLE) suggest that inwardly propagating target and spiral waves should 

generically occur in oscillatory media close to the onset of oscillations, where the 

frequency of the bulk oscillations is larger than the frequency of the inwardly 

propagating waves [61-63;65;101]. According to these investigations inwardly 

propagating target and spiral waves are generic solutions of the complex Ginzburg-

Landau equation with a negative phase velocity such that the phase velocity and the 

group velocity point to opposite directions (see section 2.1.2). In that sense, the 
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inwardly propagating waves observed at low protein concentrations of yeast extract 

could correspond to phase waves with an inwardly pointing phase velocity. 

On the other hand, it is possible that spatial gradients in certain system parameters 

may also lead to inwardly propagating patterns [56;120]. Since there are no-flux-

boundary conditions in the local edges of the gel, (i.e. x-y plane) and formation of local 

gradients at the edges in the gel cannot be excluded, this scenario should be also 

considered as an alternative explanation for the occurrence of inwardly propagating 

target waves. 

5.2.1.1 Desynchronization of the inwardly propagation waves 

The inwardly propagating target waves observed in the yeast extract (see interval 1, 

Figure 4.25) often spontaneously develop into outwardly propagating target or spiral 

waves after about 100 min. This occurs via a transition phase, where the inwardly 

propagating target waves become unstable and give rise to outwardly propagating 

spirals that randomly emerge in the gel (see interval 2, Figure 4.26). This transition 

region lasts for approximately 120 min until the outward propagation of the spirals 

become stabilized and the target patterns disappear (see interval 3, Figure 4.27).  

KL analysis of the spatio-temporal patterns shows that the transition from inwardly 

propagating target waves to spirals is accompanied by desynchronization and spatial 

decoherence. The spatio-temporal structures observed during the last stage of the 

experiment (interval 3, Figure 4.24) are characterized by two different spatial scales. 

The spatial dynamics is desynchronized on scales larger than r  3mm (where r 

corresponds to the effective radius of the observation area), while it still retains some 

correlation on smaller scales (r ≤ 3 mm, Figure 4.34). The dynamics of the patterns on 

the smaller scales can be sufficiently described by only the first two KL modes (Figure 

4.35e, Figure 4.35f). The question arises whether these two dominant KL modes have 

any biological interpretation of glycolytic pathway. 

For this purpose, the local spatio-temporal dynamics of the leading KL modes at 

the spatial scale  3 mm were compared with the results of a simulation of travelling 

glycolytic waves. The simulation was performed by Anastasia Lavrova (Group of 

Theoretical Biophysics, Humboldt University Berlin) using the Selkov model for 

glycolysis (see section 2.5.2). The one dimensional Selkov model [86], which describes 
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the temporal dynamics of glycolysis, was extended by including the diffusion term to 

describe the spatial patterns [120].  

The two dominant KL modes and the time evolution of these modes (  and ) are 

shown in Figure 5.3. The spatial structures of the first and the second KL modes look 

similar, but slightly shifted with respect to each other (Figure 5.3c).  

 

 

Figure 5.3: Results of the KL analysis of the area with effective radius of r = 3 mm (200 300 

pix
2
) for the time interval 3 of the experiment shown in Figure 4.24. (a), (b) first two dominant 

KL modes, and (c) the temporal amplitudes  and  associated with these two KL 

modes. For the experimental procedure and composition of the feeding solution see section 

3.3.3. Grey levels quantify the NADH concentration, with white corresponding to maximum 

and black to minimum.  
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The results of the simulation are shown as time-space plots for the x and y variables 

of the modified Selkov model in Figure 5.4 [120]. The phase shifts between the x and y 

variables in the simulation (Figure 5.4c) and between the first ( ) and the second ( ) 

KL modes (Figure 5.3c) are comparable, and amount to 60° and 100°, respectively. 

Thus, the spatio-temporal behaviour as well as the phase differences between the first 

two KL modes (  and ) and the two variables (x and y) exhibit similar dynamics. 

This suggests that the spatio-temporal dynamics of the leading KL modes in the interval 

3 on small scales (r ≤ 3mm) can be sufficiently described by the x and y variables of the 

extended Selkov model [120]. 

In order to interpret the role of the x and y variables in the sense of glycolytic 

dynamics, the phase shift between these variables was compared with the phase shift 

between glycolytic intermediates during oscillatory glycolysis. The phase relation 

between different glycolytic intermediates has been experimentally measured by Hess 

and co-authors [75]. They showed that all glycolytic metabolites can be summarized in 

two groups (Figure 5.5), based on their phase relation. In each group the glycolytic 

metabolites oscillate 180° out of phase, whereas these two groups differ by a variable 

phase angle ∆α, which is approximately 45° (see Figure 5.5). The phase angle ∆α 

between the two groups of glycolytic metabolites is comparable to the phase shift of 

60°, which was obtained between the x and y variables of the modified Selkov model. 

Therefore, it can be roughly assumed that these two variables (x and y), which represent 

the leading KL modes, describe the two groups of glycolytic metabolites shown in 

Figure 5.5.  
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Figure 5.4: Time space plots of the variables x (a) and y (b) obtained from the extended Selkov 

model (from Lavrova [120]). (c) Temporal dynamics of these variables, measured from the 

time-space plots along a vertical line indicated in (a).   
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For a more accurate description of the dominant KL modes precise experimental 

data sets are required, which account for the kinetics of single glycolytic intermediates. 

There are first measurements of temporal dynamics of the glycolytic pathway by Mair 

and co-authors [121]. They showed that the kinetic properties of all glycolytic 

metabolites can be simultaneously measured by Fourier transform infrared (FT-IR) 

spectroscopy. Inspite of the high complexity of the glycolytic pathway, they could 

quantitatively reproduce the temporal behaviour of some glycolytic metabolites and the 

known phase relations between most of them [75]. This provides the basis for future 

investigations of the kinetic properties of single glycolytic intermediates during 

oscillatory glycolysis. 

 

 

 
 

Figure 5.5: The phase relation of glycolytic intermediates during oscillatory glycolysis. The 

amplitude of the concentrations is normalized (from [75]).  
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5.2.2 Segmented waves and “bubbles” 

Recently, Vanag and Epstein reported on the types of patterns, which were formed in 

the BZ system, when the reagents of the BZ reaction were dispersed in water in oil 

microemulsion (the BZ-AOT system) [122-124]. These patterns were called dashed or 

segmented waves and could be found only in a narrow range of parameter values, such 

as droplet radius, the volume fraction of the dispersed phase, and chemical composition. 

Segmented waves were formed when target or spiral waves broke up into wave 

segments and gaps. It is suggested that this type of waves should be also observed in 

living systems, which often display travelling waves, multiple steady states, and species 

with extremely different diffusion coefficients [123].  

When the protein concentration in the yeast extract was varied from 40 to 59 mg/ml 

segmented waves could be observed during glycolysis of yeast extract in the open 

spatial reactor (Figure 4.9 (A)). These waves emerge by segmentation of the outwardly 

propagating target waves as the latter reach a certain distance from the centre (Figure 

4.9 (A)). Similar to the segmented waves observed in the BZ-AOT system, these waves 

also require ordinary target waves as precursor and cannot be formed spontaneously 

[123].  

Vanag and Epstein showed that low wave velocities are necessary for the formation 

of segmented waves [123]. This observation is in agreement with the velocity of wave 

segments in the yeast extract, which amount to 2 µm/s (Figure 4.14). Moreover, it is 

also in good agreement with the velocity of segmented BZ-AOT waves (2 µm/s).  

From experimental and theoretical investigations Vanag and Epstein concluded that 

the length of the segmented waves in the BZ-AOT system depends only on the chemical 

parameters of the system [123] and not on the geometry of the system [125]. It is not 

clear whether this hypothesis holds also for the segmented waves in the yeast extract 

and it should be clarified in the future experimental studies.  

Vanag and Epstein proposed a mechanism for the emergence of segmented waves, 

which suggests that segmented waves are propagating 1D Turing structures in a system 

exhibiting several steady states, one of which is stable and spatially homogenous but 

excitable, in which local superthreshold perturbations generate trigger waves [123]. The 

other one is a spatially inhomogeneous pseudo-Turing (PT) unstable steady state with a 

characteristic Turing wavelength, which is driven to a different stable state, steady or 
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oscillatory, by an infinitesimal perturbation. However, PT instability and excitability are 

necessary but not necessarily sufficient conditions for the description of segmented 

waves [123]. It might be necessary also to consider the curvature of segmented waves 

and its influence on the velocity [126].  

Waves similar to the segmented waves were also observed in other systems. 

Showalter and co-authors have shown that global negative feedback can lead to 

formation of wave segments propagating along a straight line in the excitable 

photosensitive BZ reaction [127]. The propagation of wave segments is strongly 

dependent on the excitability of the reaction. At higher light intensities, the excitability 

of the system is low, whereas a decrease in the intensity of illumination leads to an 

increase of the excitability of the system. Using this feature, they have been able to 

control and stabilize the size of the segments by applying feedback control algorithm.  

Another system where similar wave segments have been observed is the catalytic 

oxidation of carbon monoxide (CO) on a Pt (110) single-crystal surface, where CO 

molecules and oxygen atoms were adsorbed from the gas phase [128;129]. Within a 

very narrow range of conditions, the wave segments, which were characterized as 

dissipative solitons, were formed. The wave segments always propagate in the same 

direction (either forward or backward) along straight lines parallel to the 

crystallographic (001) direction of the surface. Interestingly, these wave segments 

propagate at a constant velocity of about 3 µm/s, which is similar to the velocity of the 

segmented waves found in the yeast extract and BZ-AOT system.  

When the concentration of BZ-AOT reactants and the volume fraction of the 

dispersed phase was varied by 10 %, small concentric waves were observed, which 

emerge randomly, grow slightly and disappear without collision with other waves [124]. 

Vanag and Epstein called these waves “bubbles”. Interestingly, when the protein 

concentration of yeast extract was increased up to 71 mg/ml and higher, a similar type 

of pattern, named dot-shaped waves, (Figure 4.12a) was also observed in the yeast 

extract.  
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5.2.3 Different types of waves: Phase waves or Reaction-Diffusion waves? 

It is known that, if the kinetics of the underlying reaction-diffusion system is oscillatory, 

then both trigger waves and phase waves can be formed (see section 2.1.2) [55;59]. 

Since theoretical studies of the CGLE suggest that the inwardly propagating waves can 

only occur in an oscillatory medium [61;63], it can be concluded that the kinetic part of 

the reaction-diffusion equation of glycolysis in the open spatial reactor is oscillatory. 

Thus, depending on the system parameter, phase waves or trigger waves can be 

observed. From the experimental point of view the propagation mechanism of inwardly 

propagating waves observed in the yeast extract still remains unclear.  

In order to clarify whether inwardly propagating waves represent phase waves or 

trigger waves, experiments were performed, in which the gel was separated by an 

impermeable barrier (Figure 3.4). It is known that phase waves are induced due to phase 

shifted oscillations in the oscillatory medium and are not stopped by a barrier [55;57]. 

The experiments were performed for two different conditions: for inwardly propagating 

target waves and outwardly propagating waves. In the case of the inwardly propagating 

target waves the waves could cross the barrier (Figure 4.17), demonstrating the 

properties of phase waves; whereas the outwardly propagating waves were impeded by 

the barriers (Figure 4.18), demonstrating the properties of reaction-diffusion waves.  

An additional confirmation that inwardly propagating target waves represent phase 

waves can be obtained from the analysis of the velocity of the waves, since it is known 

that the velocity of phase waves is generally much higher as the velocity of trigger 

waves [55;58]. Bodet and co-authors showed that the velocity of the phase waves in the 

BZ system is about fourfold higher than the velocity of the trigger waves [56]. Similar 

results were found also for the inwardly propagating waves in the yeast extract, which 

are 2 to 4 fold larger than the velocity of the other types of glycolytic waves. 

A more precise distinction between phase and target waves was proposed by Aliev 

and Biktashev based on the analysis of the shape of the dispersion curve [58] (see 

section 2.1.2, Figure 2.3). According to this quantification, it could be assumed that the 

inwardly propagating target waves show the dispersion relation typical of phase waves, 

and the outwardly propagating waves show “normal dispersion”, which corresponds to 

the reaction-diffusion waves (Figure 4.20).  
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An exception is the dispersion relation for protein concentrations of 40 mg/ml 

(Figure 4.20). At this protein concentration, a dispersion curve with two overlapping 

branches is observed. One branch is found at wavelengths of 1.29 to 2.68 mm and 

corresponds to the dispersion of reaction-diffusion waves. The second branch with 

infinitely increasing wave velocity is found at wavelengths of 2.33 to 2.86 mm and 

corresponds to the dispersion of phase waves [58;59]. The existence of two branches at 

40 mg/ml protein concentration might be explained according to the theory of transition 

of the phase waves to the trigger waves [55;56]. When the solution in contact with the 

catalyst oscillates, it first generates a phase wave. If the phase gradient between the 

initiated phase wave and the adjacent areas is large, then this phase wave will start to 

propagate slower. If the velocity of this phase wave is sufficiently slow it can initiate a 

trigger wave that will propagate through the oscillatory medium [55;130].  

Interestingly, analysis of velocity and thickness of glycolytic waves at different 

protein concentrations show that at protein concentration of 40 mg/ml both phase waves 

(inwardly propagating target waves) and trigger waves (outwardly propagating waves, 

segmented waves, and short-distance propagating waves) are observed (Figure 4.14 and 

Figure 4.15). This protein concentration acts as transition point, below which, in the 

beginning of experiment, phase waves in the form of inwardly propagating target 

patterns and above which reaction-diffusion waves in the form of segmented and short-

distance propagating waves are formed.  
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Outlook 

The results of this study demonstrate that the spatio-temporal dynamics of glycolysis 

can be efficiently investigated by means of the open spatial reactor introduced in this 

work. For future research the following scientific tasks are of increased interest: 

 

 Recently, theoretical investigations of the Selkov model showed that the 

concentration changes of immobilized PFK changes the effective diffusion of ADP 

and ATP in such a way that the diffusion coefficient of ATP (inhibitor) becomes 

much larger than that of ADP (activator) [131]. This occurs due to the different 

binding constants of the PFK for ADP and ATP. Under appropriate conditions, the 

theoretical studies predict the appearance of Turing patterns in glycolysis on spatial 

scales of single cells (10 µm). For this, the concentration of PFK has to be 

increased in such manner that the ratio of the DATP/DADP markedly increases. Such 

experiments could be optimally performed with the open spatial reactor presented 

in this work.  

 

 In order to have increased external control on the system, glucose should be used as 

a feeding substrate. This requires thorough analysis of the balance between ATP-

consuming and ATP-producing reactions at different glucose concentrations.   

 

 The metabolic complexity of the yeast extract can be gradually increased by adding 

cellular organelles, e.g. mitochondria, thus supporting a detailed investigation of the 

influence of particular metabolic pathways on the spatio-temporal pattern 

formation. By systematically increasing the complexity, the conditions present in 

real cells could be approached.  
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Appendix A 

The programs for image enhancement and construction of time-space plot are presented 

below for documentation reasons. These programs were written by Ulrich Storb and 

Chaiya Luengviriya from Biophysics Group, Otto-von-Guericke University of 

Magdeburg, in IDL (Interactive Data Language).  

A.1 IDL program for construction of time-space plots 

(timespaceplot_freedirection_v6) 

 
Pro timespaceplot_freedirection_v6 ,NOSHOW      = noshow      , $ 
                                 FIRSTIMAGE  = firstimage  , $ 

                                 LASTIMAGE   = lastimage   , $ 

                                 SUBIMAGE    = subimage    , $ 
                                 no_area     = no_area     , $ 

                                 setvalue    = setvalue    , $ 

                                 avg_width   = avg_width 
 

     COMMON COORD,xa,xe,ya,ye,win_draw,win_plot,              $ 

                  WID_BUTTON_extrema,WID_BUTTON_print,        $ 
                  WID_BASE_MIDDLE,win_neighbor,win_neighbor2, $ 

                  slider_neighbor,WID_LABEL_x,WID_LABEL_y,    $ 

                  WID_LABEL_GRAYVAL,mousex,mousey 
     COMMON VELO, WID_BUTTON_delete,WID_BUTTON_plot_velocity, $ 

                  row,WID_BUTTON_print_table,SYS,frame_list,  $ 

                  testbild,testbild2,line_index,anzahl,ortho 
     COMMON MOVIE,width,height,number,film,times,             $ 

                  rot_index,index,loaded,range,               $ 

                  ep_gestartet,ap_gestartet,file,delayfile,   $ 
                  extrema_pressed 

     COMMON PLOT, line,maxi,mini,smline,WID_DRAW_plot,        $ 
                  magnif,magnif2,level,smooth_level,z,        $ 

                  WID_BUTTON_Compute,bw_wb,                   $ 

                  hat_width,sigma,mex_hat,lap_level,          $ 
                  front_width,spatial_width,temporal_width,   $ 

                  neighbor_width,gray_width,neighbor_width2,  $ 

                  old_spatial_width,old_temporal_width,       $ 
                  extrema_lupe,bottom_left,upper_right,avlines 

 

 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    ;; Geometry of the screen. Any idea how to get 

    ;; it from IDL? Send an e-mail to 
    ;;         storb@physik.uni-magdeburg.de 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    bildschirmweite =  960 
    bildschirmhoehe =  720 

 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    ;; Some system depending stuff 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    IF ( !VERSION.OS EQ "Win32" ) THEN BEGIN 
           dir          = "e:\temp" 

           os_list      = "dir /B /L " 

           os_del       = "del " 
           fdlm         = "\" 

           recursive    = "*.*" 

           nonrecursive = "*" 
    ENDIF 

    IF ( !VERSION.OS EQ "linux"    ) THEN BEGIN 

           dir          = "/work/storb" 
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           os_list      = "ls -1d " 

           os_del       = "rm " 

           fdlm         = "/" 

           recursive    = "*" 
           nonrecursive = "*.*" 

    ENDIF 

    IF ( !VERSION.OS EQ "sunos" ) THEN BEGIN 
           dir          = "/work/storb" 

           os_list      = "/usr/bin/ls -1d " 

           os_del       = "rm " 
           fdlm         = "/" 

           recursive    = "*" 

           nonrecursive = "*.*" 
    ENDIF 

 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    ;; Some other useful settings 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    dreistellig = "'(I3.3)'" 
    vierstellig = "'(I4.4)'" 

 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    ;; Prepare loading names of images 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    file  = DIALOG_PICKFILE(/READ,FILTER='*.*',PATH=".",TITLE="Select Folder of imgs",/MULTIPLE_FILES) 
    IF ( file(0) EQ "" ) THEN RETURN 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    ;; Change to desired folder 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    pfad     = drivename(file(0))+dirname(file(0)) 

    print,"Imagefolder in ",pfad 
    CD,pfad,CURRENT=old_dir 

    ;temppfad = filepath("",/TMP) 

    temppfad = "E:\" 
    s=size(file) 

    scenes="" 

    FOR i=0,s(1)-1 DO BEGIN 
        ;;;;;;;;q;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;; Create list of all Movies 
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;IF ( !VERSION.OS EQ "Win32" ) THEN SPAWN,"dir /B /L /ON *.tif > "  +temppfad+"filelist" 

        ; IF ( !VERSION.OS EQ "linux" ) THEN SPAWN,"ls -1 imgs* > "          +temppfad+"filelist" 

        ;IF ( !VERSION.OS EQ "sunos" ) THEN SPAWN,"/usr/bin/ls -1 imgs* > " +temppfad+"filelist" 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;; Read list of all Movies 
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;OPENR,unit,temppfad+"filelist",/GET_LUN 

        ;scenes = [scenes,read_all_lines(unit)] 
        ;CLOSE,unit 

        ;FREE_LUN,unit 

       SPAWN,"dir /B /ON *.tif ", scenes 
 

    ENDFOR 

    ;IF ( !VERSION.OS EQ "Win32" ) THEN SPAWN,"del "+temppfad+"filelist" 
    ;IF ( !VERSION.OS EQ "linux" ) THEN SPAWN,"rm  "+temppfad+"filelist" 

    ;IF ( !VERSION.OS EQ "sunos" ) THEN SPAWN,"rm  "+temppfad+"filelist" 

    nroflines = size(scenes) 
    nroflines = nroflines(1)-1 

    images    = scenes(1:nroflines) 

    s=size(images) 
 

    ;outdir  = DIALOG_PICKFILE(/READ,FILTER='*.*',PATH=".",TITLE="Select Folder to save subimages") 

    ;IF ( outdir EQ "" ) THEN RETURN 
 

    IF ( NOT(KEYWORD_SET(noshow )) )   THEN    wind = 1 ELSE    wind = 0 

    IF ( NOT(KEYWORD_SET(firstimage))) THEN firstimage = 0 
    IF ( NOT(KEYWORD_SET(lastimage ))) THEN lastimage  = s(1)-1 

    number = lastimage - firstimage + 1 
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    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    ;; Prepare loading images. 

    ;; That means: 

    ;;        - detect size of images 
    ;;        - Allocate memory needed 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 
 

outdir = pfad + 'timespace_plot\' 

spawn,'md ' + outdir 
 

file  = DIALOG_PICKFILE(/READ,FILTER='*.tif',PATH=".",TITLE="Select an image to show sub-area") 

originalfile   = file 
 

    filewithoutext = basename(originalfile,/NO_EXTENSION) 

    extension      = basename(originalfile,/EXTENSION) 
    CASE extension OF 

        ".tif":  BEGIN 

                 testbild = REVERSE(READ_TIFF(originalfile),2) 
                 ;testbild = READ_TIFF(originalfile) 

             END 

        ".gif":  BEGIN 
                 READ_GIF,originalfile,testbild 

             END 

        ".hed":  BEGIN 
                 testbild   = read_hed(originalfile,0) 

             END 

    ELSE: 
    ENDCASE 

 

    ;testbild = reform(testbild(0,*,*)) 
 

    filmsize = SIZE(testbild) 

    sizex    = filmsize(1) 
    sizey    = filmsize(2) 

    xsize = sizex 

    ysize = sizey 
    xleft    = 0 

    xright   = sizex-1 
    ybottom  = 0 

    ytop     = sizey-1 

 

 

    ;;modified 

    xleftj     =   intarr(no_area) 
    xrightj    =   intarr(no_area) 

    ybottomj   =   intarr(no_area) 

    ytopj      =   intarr(no_area) 
    plot_direction   = strarr(6,no_area) 

 

    IF KEYWORD_SET(setvalue)  THEN BEGIN 
 

           file = DIALOG_PICKFILE(TITLE ='select the file of coordinates of sub areas') 

           OPENR, Unit, File, /GET_LUN 
    ENDIF 

 

    testbild0 = testbild 
 

    FOR j = 0, no_area -1 DO BEGIN 

 
    ;IF (KEYWORD_SET(subimage) ) THEN BEGIN 

 

 
        WINDOW,7,xsize = sizex  , ysize = sizey       , $ 

                 xpos  = bildschirmweite/2 - sizex/2  , $ 

                 ypos  = bildschirmhoehe/2 - sizey/2  , $ 
                 title='Select a point on the image' 

         WSET, 7 

;--------- 
testbild2 = testbild 

x1 = 0 

x2 = 0 
ok_con = 'Yes' 
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while  ok_con eq 'Yes' do begin 

             testbild3 = testbild2 

 

             TV,testbild2 
 

    ok = dialog_message(/Information,"Select the first point on the image.") 

             rdpix,testbild 
             x = !mouse.x 

             y = !mouse.y 

             print,x,y 
 

         testbild2(x,y-2:y+2) = 255 

         testbild2(x-2:x+2,y) = 255 
         TV,testbild2 

 

             key = "a" 
   ok = dialog_message(/Information,"Move the selected point by l:left,r:right") 

 WHILE NOT (key EQ 'c') DO BEGIN 

 
            testbild2 = testbild3 

             minx = max([0,x]) 

             maxx = min([xsize-1,x]) 
         testbild2(x,y-2:y+2) = 255 

         testbild2(x-2:x+2,y) = 255 

 
            TV,testbild2 

 

         print, 'get key' 
       key = GET_KBRD(1) 

 

       IF key EQ 'l' THEN x = x - 1 
       IF key EQ 'r' THEN x = x + 1 

       IF key EQ 'd' THEN y = y - 1 

       IF key EQ 'u' THEN y = y + 1 
 

       endwhile 

 
       x1 = x;[x1,x] 

       y1 = y 
testbild3 = testbild2 

    ok = dialog_message(/Information,"Select the second point on the image.") 

                rdpix,testbild 

             x = !mouse.x 

             y = !mouse.y 

             print,x,y 
 

 

         TV,testbild2 
 

             key = "a" 

   ok = dialog_message(/Information,"Move the selected point by l:left,r:right") 
 WHILE NOT (key EQ 'c') DO BEGIN 

 

            testbild2 = testbild3 
             minx = max([0,x]) 

             maxx = min([xsize-1,x]) 

 
xa = x1 

xe = x;x2 

ya = y1 
ye = y;y2 

avlines = avg_width 

width = sizex 
 

calc_bresenham_line 

 
testbild2(line_index) = 255 

markbegin = line_index(*,0:10) 

testbild2(markbegin) = 0 
 

            TV,testbild2 

 
         print, 'get key' 
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       key = GET_KBRD(1) 

 

       IF key EQ 'l' THEN x = x - 1 

       IF key EQ 'r' THEN x = x + 1 
       IF key EQ 'd' THEN y = y - 1 

       IF key EQ 'u' THEN y = y + 1 

 
       endwhile 

 

         x2 = x;[x2,x] 
         y2 = y 

;--------------------------------------------- 

;connect two selected points with a straight line. 
xa = x1 

xe = x2 

ya = y1 
ye = y2 

avlines = avg_width 

width = sizex 
 

calc_bresenham_line 

;-------------------------------------------- 
   ok_con = 'No';dialog_message(/question,"Calculate another slope?.") 

 

endwhile 
;-------- 

 

;line_index ;1D position of 1+2*avlines 
 

testbild(line_index) = 255 

markbegin = line_index(*,0:10) 
testbild(markbegin) = 0 

 

             name_pos =   '_x' + string(format='(I3.3)',x1) + '_' + string(format='(I3.3)',x2) $ 
                      + '_y' + string(format='(I3.3)',y1) + '_' + string(format='(I3.3)',y2) 

 

             selectpointfile = outdir + 'selectpos' + name_pos + '.jpg' 
          WRITE_JPEG, selectpointfile,  testbild 

 
ENDFOR ;j =0, no_area -1 

 

 

s = size(line_index) 

s = s(2) 

 
;;;modified 

;file = DIALOG_PICKFILE(TITLE ='Save average intersity to') 

;OPENW, Unit, File, /GET_LUN 
;intensity = bytarr(2,lastimage - firstimage + 1) 

 

    plottime = lastimage - firstimage + 1 
   ;select_plot_y = intarr(no_area) 

   ;maxsize = max([sizex,sizey]) 

    timespaceimage = bytarr(s,plottime) 
 

    FOR i=firstimage, lastimage-1 DO BEGIN 

 
        originalfile   = images(i) 

        filewithoutext = basename(originalfile,/NO_EXTENSION) 

        extension      = basename(originalfile,/EXTENSION) 
        ;outfile        = drivename(outdir)+dirname(outdir)+fdlm+filewithoutext+extension 

 

        ;IF ( !VERSION.OS EQ "Win32" ) THEN SPAWN,"md "+ drivename(outdir)+dirname(outdir)+basename(images(i))+fdlm 
        ;IF ( !VERSION.OS EQ "linux" ) THEN SPAWN,"ls -1 imgs*"          + basename(file(i)) + " > " +temppfad+"filelist" 

        ;IF ( !VERSION.OS EQ "sunos" ) THEN SPAWN,"/usr/bin/ls -1 imgs*" + basename(file(i)) + " > " +temppfad+"filelist" 

        PRINT,'        image : ',i-firstimage+1,'   of ',number, '  file = ', originalfile 
 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;; Stop processing on demand. 
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        key_in=GET_KBRD(0) 

        IF ( key_in EQ "q" ) THEN BEGIN 
            WDELETE,0 
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            RETURN 

        ENDIF 

 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
        ;; Read image. 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        CASE extension OF 
            ".tif":  BEGIN 

                     aaxx = REVERSE(READ_TIFF(originalfile),2) 

                      
       IF avg_width gt 0  then begin ;plot_xline 

 

           for x = 0,s-1 do begin 
             timespaceimage(x,i-firstimage) = mean(aaxx(line_index(*,x))) 

 

           endfor;x 
        endif else begin 

           timespaceimage(*,i-firstimage) = aaxx(line_index(*,x)) 

        endelse 
 

                 END 

            ".gif":  BEGIN 
                     READ_GIF,originalfile,aaxx 

                     pict = aaxx(xleft:xright,ybottom:ytop) 

                 END 
            ".hed":  BEGIN 

                     aaxx = read_hed(originalfile,0) 

                     pict = aaxx(xleft:xright,ybottom:ytop) 
                 END 

            ELSE: 

        ENDCASE 
 

    ENDFOR;i 

timespaceimage = bytscl(timespaceimage) 
timespaceimage(0:10,0:2) = 0 

 

       outfile = outdir +'timespace'+ name_pos + '.tif' 
       write_tiff,outfile,timespaceimage,compression=1,0 

 
    PRINT,"done" 

 

END 

 

A.2 IDL program for image enhancement (contrast_imgs) 

 

Pro contrast_imgs , BACK_SUB     = back_sub     , $ 
                    BACK_DIV     = back_div     , $ 

                    KEEP_MEAN    = keep_mean    , $ 

                    FIX_MEAN     = fix_mean     , $ 
                    UNIQUE_AMP   = unique_amp   , $ 

                    NOSHOW       = noshow       , $ 

                    NONVERBOSE   = NONVERBOSE   , $ 
                    LOWERLEVEL   = lowerlevel   , $ 

                    UPPERLEVEL   = upperlevel   , $ 

                    FIRSTIMAGE   = firstimage   , $ 
                    LASTIMAGE    = lastimage 

 

    IF ( NOT(KEYWORD_SET(lowerlevel))) THEN lowerlevel = 0.0;2 
    IF ( NOT(KEYWORD_SET(upperlevel))) THEN upperlevel = 1.0; - 0.02 

    MEDIANWIDTH    = 3 

    ausfall_bilder = 0.00 
    scratch        = 1 

 
 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    ;; Geometry of the screen. Any idea how to get 
    ;; it from IDL? Send an e-mail to 

    ;;         storb@physik.uni-magdeburg.de 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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    bildschirmweite =  1024 

    bildschirmhoehe =   768 

 

 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    ;; Prepare loading names of images 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    file  = DIALOG_PICKFILE(/READ,FILTER='*.txt',PATH=".", $ 

            TITLE="Select list file of movies to enhance contrast") 

    IF ( file(0) EQ "" ) THEN RETURN 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    ;; Change to desired folder 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    pfad     = drivename(file(0))+dirname(file(0)) 

    print,"Imagefolder is        ",pfad 

    old_dir  = "" 
    CD,pfad,CURRENT=old_dir 

    OPENR,unit,file(0),/GET_LUN 

    scenes = read_all_lines(unit) 
    CLOSE,unit 

    FREE_LUN,unit 

    nroflines = size(scenes) 
    nroflines = nroflines(1)-1 

    ;movies    = scenes(1:nroflines) 

    movies    = scenes 
    s         = size(movies) 

 

    outdir  = DIALOG_PICKFILE(/READ,FILTER='*.*',PATH=".",TITLE="Select Folder to save movies with enhanced contrast") 
    IF ( outdir EQ "" ) THEN RETURN 

    print,"destinationfolder is ",drivename(outdir) + dirname(outdir) 

 
    IF ( NOT(KEYWORD_SET(noshow )) )   THEN wind = 1 ELSE wind = 0 

    IF ( NOT(KEYWORD_SET(firstimage))) THEN firstimage = 0 

    IF ( NOT(KEYWORD_SET(lastimage ))) THEN lastimage  = s(1)-1 
    number = lastimage - firstimage + 1 

 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    ;; Prepare loading images. 

    ;; That means: 
    ;;        - detect number of images 

    ;;        - detect size of images 

    ;;        - Allocate memory needed, if not available use scratchfile 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    originalfile   = movies(0) 

    filewithoutext = basename(originalfile,/NO_EXTENSION) 
    extension      = basename(originalfile,/EXTENSION) 

    CASE extension OF 

        ".tif":  BEGIN 
                 testbild = READ_TIFF(movies(0)) 

             END 

        ".gif":  BEGIN 
                 READ_GIF,movies(0),testbild 

             END 

        ".hed":  BEGIN 
                 testbild   = read_hed(movies(0),0) 

             END 

    ELSE: 
    ENDCASE 

 

    filmsize    = SIZE(testbild) 
    sizex       = filmsize(1) 

    sizey       = filmsize(2) 

    nsq         = sizex*sizey 
    back        = FLTARR(sizex,sizey) 

    meanlights  = FLTARR(number) 

    meanlights2 = FLTARR(number) 
    maxlights   = FLTARR(number) 

    minlights   = FLTARR(number) 

    IF (wind EQ 1) THEN BEGIN 
        mean_l      = FLTARR(number) 

        ma_l        = FLTARR(number) 

        mi_l        = FLTARR(number) 
    ENDIF 
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    alpha       = FLTARR(number,511) 

    beta        = FLTARR(number,511) 

    maxalpha    = FLTARR(number) 

    maxbeta     = FLTARR(number) 
    zett        = FINDGEN(511) - 255.0 

    IF ( KEYWORD_SET(back_div) ) THEN BEGIN 

        zett = (zett / 255.0) * ALOG(255) 
    ENDIF 

    gamma       = FLTARR(number,511) 

    gammamin    = FLTARR(511) 
    gammamin2   = FLTARR(511) 

    gammamax    = FLTARR(number) 

    gammashift  = FLTARR(number) 
    IF ( scratch NE 0 ) THEN              $ 

        pict = FLTARR(sizex,sizey,1)      $ 

    ELSE                                  $ 
        pict = FLTARR(sizex,sizey,number) 

 

 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    ;; If requested, show some illustration of what 

    ;; we are doing. In the first step we need only 
    ;; windows to show 

    ;;     - original images 

    ;;     - the calculated background 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    IF (wind EQ 1) THEN BEGIN 

        xinc2       = bildschirmweite / 3 
        xinc        = MIN([xinc2,sizex+5]) 

        ycorrection = 28 

        xcorrection = 56 
        y_plot_size = (bildschirmhoehe-sizey-20-3*ycorrection)/2 

        WINDOW,0,xsize = sizex  , ysize = sizey+20                         , $ 

             xpos  = 0*xinc , ypos  = bildschirmhoehe-sizey-20-ycorrection , $ 
             title='original picture' 

        IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 

            WINDOW,2,xsize = sizex  , ysize = sizey+20                         , $ 
                 xpos  = 1*xinc , ypos  = bildschirmhoehe-sizey-20-ycorrection , $ 

                 title='background' 
        ENDIF 

        erase_img = BYTARR(sizex,20) 

    ENDIF 

 

 

    IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 
        ;==== 1. determine background =================== 

        IF (wind EQ 1) THEN PRINT,FORMAT = '($,"  start determine background : ")' $ 

                       ELSE PRINT,FORMAT = '("    start determine background : ")' 
 

        FOR i=firstimage, lastimage DO BEGIN 

 
            originalfile   = movies(i) 

            j              = i-firstimage 

            IF ( scratch NE 0 ) THEN jj = 0 ELSE jj = j 
            ;PRINT,'        image : ',j+1,'   of ',number, '  file = ', originalfile 

 

 
            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            ;; Stop processing on demand. 

            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
            key_in=GET_KBRD(0) 

            IF ( key_in EQ "q" ) THEN BEGIN 

                IF (wind EQ 1) THEN BEGIN 
                    IF ( NOT(KEYWORD_SET(nonverbose)) ) THEN BEGIN 

                        blabla = DIALOG_MESSAGE("If you want to keep the windows then press yes, otherwise they will be closed", $ 

                                                TITLE = "Keep windows?" , /QUESTION ) 
                        blabla = STRUPCASE(blabla) 

                        IF ( blabla EQ "NO" ) THEN BEGIN 

                            WDELETE,0 & WDELETE,2 
                        ENDIF 

                    ENDIF ELSE BEGIN 

                        WDELETE,0 & WDELETE,2 
                    ENDELSE 
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                ENDIF 

                STOP 

            ENDIF 

 
            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            ;; Read image. 

            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
            pict(*,*,jj) = TIF_GIF_HED_READ(originalfile,sizex,sizey) 

 

            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
            ;; Median-filtering the image to get rid of that 

            ;; salt&pepper-noise. 

            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
            IF ( MEDIANWIDTH GT 1 ) THEN pict(*,*,jj) = MEDIAN(pict(*,*,jj),MEDIANWIDTH) 

            IF ( KEYWORD_SET(back_sub) ) THEN BEGIN 

                back      = back + pict(*,*,jj) 
            ENDIF 

            IF ( KEYWORD_SET(back_div) ) THEN BEGIN 

                pict2         = pict(*,*,jj) 
                unsinn        = WHERE(pict2 LT 0.5) 

                IF (unsinn(0) GE 0) THEN pict2(unsinn) = 1.0 

                pict(*,*,jj)  = pict2 
                back          = back + ALOG(pict(*,*,jj)) 

            ENDIF 

            IF (wind EQ 1) THEN BEGIN 
                WSET,0 

                TV,BYTE(pict(*,*,jj)),0,20 

                TV,erase_img 
                XYOUTS,3,5,basename(originalfile)+STRING(FORMAT='(" img ",I4.4," of ",I4.4)',j+1,number),/DEVICE 

                WSET,2 

                IF ( KEYWORD_SET(back_div) ) THEN BEGIN 
                    TV,BYTE(EXP(back/(j+1))),0,20 

                ENDIF ELSE BEGIN 

                    TV,BYTE(back/(j+1)),0,20 
                ENDELSE 

            ENDIF 

 
        ENDFOR 

 
        back = back/number 

        PRINT,"  MEAN of background image = ",MEAN(back) 

        PRINT,FORMAT='("done")' 

        IF ( KEYWORD_SET(back_sub) ) THEN BEGIN 

            IF (wind EQ 1) THEN PRINT,FORMAT = '($,"  start backgroundsubstraction and determination of stretch parameters : ")' $ 

                           ELSE PRINT,FORMAT = '("    start backgroundsubstraction and determination of stretch parameters : ")' 
        ENDIF 

        IF ( KEYWORD_SET(back_div) ) THEN BEGIN 

            IF (wind EQ 1) THEN PRINT,FORMAT = '($,"  start backgrounddivision and determination of stretch parameters : ")' $ 
                           ELSE PRINT,FORMAT = '("    start backgrounddivision and determination of stretch parameters : ")' 

        ENDIF 

 
    ENDIF ELSE BEGIN ; Background handling 

        IF (wind EQ 1) THEN PRINT,FORMAT = '($,"  start determination of stretch parameters : ")' $ 

                       ELSE PRINT,FORMAT = '("    start determination of stretch parameters : ")' 
    ENDELSE 

 

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
    ;; If requested, show some illustration of what 

    ;; we are doing. In the first step we need only 

    ;; windows to show 
    ;;     - original images 

    ;;     - the calculated background 

    ;;     - calculated difference / ratio image 
    ;;     - mean, min and max after applying the cut-off 

    ;; Remember, the last three things depend on 

    ;; the parameters lowerlevel & upperlevel 
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

    IF (wind EQ 1) THEN BEGIN 

        IF ( KEYWORD_SET(back_sub) ) THEN BEGIN 
            WINDOW,3,xsize = sizex  , ysize = sizey+20                         , $ 

                 xpos  = 2*xinc , ypos  = bildschirmhoehe-sizey-20-ycorrection , $ 

                 title='original - back picture' 
        ENDIF 
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        IF ( KEYWORD_SET(back_div) ) THEN BEGIN 

            WINDOW,3,xsize = sizex  , ysize = sizey+20                         , $ 

                 xpos  = 2*xinc , ypos  = bildschirmhoehe-sizey-20-ycorrection , $ 

                 title='original / back picture' 
        ENDIF 

        WINDOW,5,xsize = xinc2    , ysize = y_plot_size                 , $ 

             xpos  = 0*xinc2      , ypos  = 0                           , $ 
             title='mean (original), min, max (after cut-off)' 

        WINDOW,6,xsize = xinc2    , ysize = y_plot_size                 , $ 

             xpos  = 1*xinc2      , ypos  = 0                           , $ 
             title='Distribution (original)' 

        WINDOW,4,xsize = xinc2    , ysize = y_plot_size                 , $ 

             xpos  = 2*xinc2      , ypos  = 0                           , $ 
             title='Density (original)' 

    ENDIF 

 
 

    FOR i=firstimage, lastimage DO BEGIN 

 
        j              = i-firstimage 

        IF ( scratch NE 0 ) THEN jj = 0 ELSE jj = j 

 
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;; Stop processing on demand. 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
        key_in=GET_KBRD(0) 

        IF ( key_in EQ "q" ) THEN BEGIN 

            IF (wind EQ 1) THEN BEGIN 
                IF ( NOT(KEYWORD_SET(nonverbose)) ) THEN BEGIN 

                    blabla = DIALOG_MESSAGE("If you want to keep the windows then press yes, otherwise they will be closed", $ 

                                            TITLE = "Keep windows?" , /QUESTION ) 
                    blabla = STRUPCASE(blabla) 

                    IF ( blabla EQ "NO" ) THEN BEGIN 

                        WDELETE,0 & WDELETE,6 
                        WDELETE,4 & WDELETE,5 

                        IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 

                            WDELETE,2 & WDELETE,3 
                        ENDIF 

                    ENDIF 
                ENDIF ELSE BEGIN 

                    WDELETE,0 & WDELETE,6 

                    WDELETE,4 & WDELETE,5 

                    IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 

                        WDELETE,2 & WDELETE,3 

                    ENDIF 
                ENDELSE 

            ENDIF 

            STOP 
        ENDIF 

 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
        ;; Read image. 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        IF ( ( scratch NE 0 ) OR ( NOT(KEYWORD_SET(back_sub)) AND NOT(KEYWORD_SET(back_div)) ) ) THEN BEGIN 
            originalfile   = movies(i) 

            ;PRINT,'        image : ',j+1,'   of ',number, '  file = ', originalfile 

            pict(*,*,jj) = TIF_GIF_HED_READ(originalfile,sizex,sizey) 
            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            ;; Median-filtering the image to get rid of that 

            ;; salt&pepper-noise. 
            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            IF ( MEDIANWIDTH GT 1 ) THEN pict(*,*,jj) = MEDIAN(pict(*,*,jj),MEDIANWIDTH) 

        ENDIF ; IF ( scratch NE 0 ) THEN BEGIN 
 

        IF (wind EQ 1) THEN BEGIN 

            WSET,0 
            TV,BYTE(pict(*,*,jj)),0,20 

            TV,erase_img 

            XYOUTS,3,5,basename(originalfile)+STRING(FORMAT='(" img ",I4.4," of ",I4.4)',j+1,number),/DEVICE 
        ENDIF 

        IF ( KEYWORD_SET(back_sub) ) THEN BEGIN 

            ;==== background substraction ======= 
            pict(*,*,jj) = (pict(*,*,jj) - back) 
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            IF KEYWORD_SET(fix_mean) THEN BEGIN 

                pict(*,*,jj) = pict(*,*,jj) - MEAN(pict(*,*,jj)) 

            ENDIF 

            IF (wind EQ 1) THEN BEGIN 
                WSET,3 

                TV,BYTE(pict(*,*,jj) + MEAN(back)),0,20 

                TV,erase_img 
                XYOUTS,3,5,basename(originalfile)+STRING(FORMAT='(" img ",I4.4," of ",I4.4)',j+1,number),/DEVICE 

            ENDIF 

        ENDIF 
        IF ( KEYWORD_SET(back_div) ) THEN BEGIN 

            ;==== background division ======= 

            pict2         = pict(*,*,jj) 
            unsinn        = WHERE(pict2 LT 0.5) 

            IF (unsinn(0) GE 0) THEN pict2(unsinn) = 1.0 

            pict(*,*,jj)  = (ALOG(pict2) - back) 
            IF KEYWORD_SET(fix_mean) THEN BEGIN 

                pict(*,*,jj) = pict(*,*,jj) - MEAN(pict(*,*,jj)) 

            ENDIF 
            IF (wind EQ 1) THEN BEGIN 

                WSET,3 

                TV,BYTE(EXP(pict(*,*,jj) + MEAN(back))),0,20 
                TV,erase_img 

                XYOUTS,3,5,basename(originalfile)+STRING(FORMAT='(" img ",I4.4," of ",I4.4)',j+1,number),/DEVICE 

            ENDIF 
        ENDIF 

        IF ( NOT(KEYWORD_SET(back_sub)) AND NOT(KEYWORD_SET(back_div)) ) THEN BEGIN 

            meanlights2(j) = MEAN(pict(*,*,jj)) 
            pict(*,*,jj)   = (pict(*,*,jj) - meanlights2(j)) 

        ENDIF 

 
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;; Here we are. The algorithm begins, beside all technical 

        ;; details. First step is to calculate the histogram 
        ;; of the image and rescale it depending on the values of 

        ;; lowerlevel & upperlevel. 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
        pict2   = pict(*,*,jj) 

        a1      = MIN(pict2) 
        a2      = MAX(pict2) 

        binsize = 1.0 

        IF ( KEYWORD_SET(back_div) ) THEN BEGIN 

            binsize = (a2-a1) / (510.0) 

            binsize = MAX([binsize,1.0/(510.0)]) 

            hist    = HISTOGRAM(EXP(pict(*,*,jj)),REVERSE_INDICES=r,MAX=255.0,MIN=-255.0,BINSIZE=1.0); 
        ENDIF ELSE BEGIN 

            hist    = HISTOGRAM(pict(*,*,jj),REVERSE_INDICES=r,MAX=255.0,MIN=-255.0,BINSIZE=1.0) 

        ENDELSE 
        s       = SIZE(hist) 

        r       = r - r(0) 

        result  = WHERE(r(0:s(1)) gt nsq*lowerlevel) 
        IF (result(0) EQ -1) THEN BEGIN 

            minlights(j) = 255 

        ENDIF ELSE BEGIN 
            minlights(j) = MIN(result) - binsize 

            zuklein = WHERE(pict2 LT minlights(j)) 

            IF (zuklein(0) NE -1) THEN pict2(zuklein) = minlights(j) 
        ENDELSE 

        result = WHERE(r(0:s(1)) ge nsq*upperlevel-1) 

        IF (result(0) EQ -1) THEN BEGIN 
            maxlights(j) = 0 

        ENDIF ELSE BEGIN 

            maxlights(j) = MIN(result) 
            zugross = WHERE(pict2 GT maxlights(j)) 

            IF (zugross(0) NE -1) THEN pict2(zugross) = maxlights(j) 

        ENDELSE 
 

        meanlights(j) = mean(pict(*,*,jj)) 

        IF (wind EQ 1) THEN BEGIN 
 

            ;; Show the graylevel density 

            WSET,4 
            max_hist = MAX(hist) 



Appendix A 116 

            PLOT,FLOAT(hist) / FLOAT(max_hist),XRANGE=[0,511.0] 

            OPLOT,[minlights(j),minlights(j)+0.001],[0,1.0],COLOR=255 

            OPLOT,[maxlights(j)-0.001,maxlights(j)],[0,1.0],COLOR=65535 

 
            ;; Show the graylevel distribution 

            WSET,6 

            PLOT,FLOAT(r(0:s(1)))/FLOAT(nsq),XRANGE=[0,511.0] 
            OPLOT,[minlights(j),minlights(j)+0.001], $ 

                  [0,FLOAT(r(minlights(j)))/FLOAT(nsq)+0.1],COLOR=255 

            OPLOT,[maxlights(j)-0.001,maxlights(j)], $ 
                  [0,FLOAT(r(maxlights(j)))  /FLOAT(nsq)+0.1],COLOR=65535 

 

            ;; Show the course in time of the mean-, max- and min-graylevel 
            WSET,5 

            PLOT,meanlights,YRANGE=[-255.0,255.0] 

            OPLOT,minlights-255,COLOR=255 
            OPLOT,maxlights-255,COLOR=65535 

 

        ENDIF 
 

        ;IF ( KEYWORD_SET(keep_mean) OR KEYWORD_SET(unique_amp)) THEN BEGIN 

            IF ( KEYWORD_SET(back_div) ) THEN BEGIN 
                alpha(j,*) =   ( ALOG(255.0) - (meanlights(j) + zett) ) $ 

                             / (  maxlights(j) - meanlights(j)  ) 

                beta (j,*) =   ( ALOG(255.0) + (meanlights(j) + zett) ) $ 
                             / ( meanlights(j) - minlights(j)   ) 

            ENDIF ELSE BEGIN 

                alpha(j,*) =   ( 255.0 - (meanlights(j) + zett) ) $ 
                             / (  maxlights(j)-255.0 - meanlights(j) ) 

                beta (j,*) =   ( 255.0 + (meanlights(j) + zett) ) $ 

                             / ( meanlights(j)+ 255.0 - minlights(j)  ) 
            ENDELSE 

            FOR k=0,510 DO BEGIN 

                gamma(j,k) = min([alpha(j,k),beta(j,k)]) 
            ENDFOR 

            FOR k=0,510 DO BEGIN 

                gamma(j,k) = max([gamma(j,k),0.0]) 
            ENDFOR 

        ;ENDIF 
    ENDFOR 

 

    PRINT,FORMAT='("done")' 

 

    FOR j=0,510 DO BEGIN 

        a1           = MIN(gamma(*,j)) 
        a2           = MAX(gamma(*,j)) 

        binsize      = (FLOAT(a2)-FLOAT(a1))/255.0 

        binsize      = MAX([binsize,0.01]) 
        hist         = HISTOGRAM(gamma(*,j)-a1,REVERSE_INDICES=r,BINSIZE=binsize) 

        s            = size(hist) 

        result       = WHERE((r(0:s(1))-r(0)) ge number*ausfall_bilder) 
        gamma2       = gamma(*,j)-a1 

        wegschmeiss  = WHERE(gamma2 LT MIN(result)) 

        IF (wegschmeiss(0) NE -1) THEN gamma2(wegschmeiss) = MIN(result) 
        gamma(*,j)   = gamma2 + a1 

    ENDFOR 

 
    IF ( KEYWORD_SET(keep_mean) AND KEYWORD_SET(unique_amp)) THEN BEGIN 

        FOR j=0,510 DO BEGIN 

            gammamin(j) = MIN(gamma(*,j)) 
        ENDFOR 

        gammamax2     = MAX(gammamin,gammaindex2) 

        gammamax(*)   = gammamax2 
        gammashift(*) = gammaindex2-256 

    ENDIF ELSE BEGIN 

        IF ( KEYWORD_SET(keep_mean) ) THEN BEGIN 
            FOR j=0,510 DO BEGIN 

                gamma2      = gamma(*,j) 

                gammamin(j) = TRANSPOSE(gamma2)#gamma2 
            ENDFOR 

            gammamax2     = MAX(gammamin,gammaindex2) 

            gammamax(*)   = gamma(*,gammaindex2) 
            gammashift(*) = gammaindex2-256 
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        ENDIF 

        IF ( KEYWORD_SET(unique_amp)) THEN BEGIN 

            FOR k=0,number-1 DO BEGIN 

                gammamax(k) = MAX(gamma(k,*)) 
            ENDFOR 

            gamma3      = MIN(gammamax) 

            gammamax(*) = gamma3 
            FOR k=0,number-1 DO BEGIN 

                gamma2        = gamma(k,*) 

                shifts        = WHERE(gamma2 GE gamma3) 
                gammashift(k) = MIN(ABS(shifts-(511+1)/2));-256 

            ENDFOR 

        ENDIF 
    ENDELSE 

    IF ( NOT(KEYWORD_SET(keep_mean)) AND NOT(KEYWORD_SET(unique_amp))) THEN BEGIN 

        FOR k=0,number-1 DO BEGIN 
            gamma2        = gamma(k,*) 

            gammamax(k)   = MAX(gamma(k,*),gammaindex2) 

            gammashift(k) = gammaindex2-256 
        ENDFOR 

    ENDIF 

 
    IF (wind EQ 1) THEN PRINT,FORMAT = '($,"  start normalization : ")' $ 

                   ELSE PRINT,FORMAT = '("    start normalization : ")' 

 
    IF (wind EQ 1) THEN BEGIN 

        WINDOW,1,xsize = sizex  , ysize = sizey+20                         , $ 

             xpos  = 3*xinc , ypos  = bildschirmhoehe-sizey-20-ycorrection , $ 
             title='normalized picture' 

        WINDOW,7,xsize = xinc2    , ysize = y_plot_size                 , $ 

             xpos  = 0*xinc2    , ypos  = y_plot_size + ycorrection     , $ 
             title='mean, min, max (after stretching)' 

        WINDOW,8,xsize = xinc2    , ysize = y_plot_size                 , $ 

             xpos  = 1*xinc2                                            , $ 
             ypos  = y_plot_size + ycorrection                          , $ 

             title='Distribution (after stretching)' 

        WINDOW,9,xsize = xinc2    , ysize = y_plot_size                 , $ 
             xpos  = 2*xinc2                                            , $ 

             ypos  = y_plot_size + ycorrection                          , $ 
             title='Density (after stretching)' 

    ENDIF 

 

 

    FOR i=firstimage, lastimage DO BEGIN 

 
        originalfile   = movies(i) 

        filewithoutext = basename(originalfile,/NO_EXTENSION) 

        extension      = basename(originalfile,/EXTENSION) 
        outfile        = drivename(outdir)+dirname(outdir)+filewithoutext+extension 

        j              = i-firstimage 

        IF ( scratch NE 0 ) THEN jj = 0 ELSE jj = j 
        ;PRINT,'        image : ',j+1,'   of ',number, '  file = ', originalfile 

 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
        ;; Stop processing on demand. 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        key_in=GET_KBRD(0) 
        IF ( key_in EQ "q" ) THEN BEGIN 

            IF (wind EQ 1) THEN BEGIN 

                IF ( NOT(KEYWORD_SET(nonverbose)) ) THEN BEGIN 
                    blabla = DIALOG_MESSAGE("If you want to keep the windows then press yes, otherwise they will be closed", $ 

                                            TITLE = "Keep windows?" , /QUESTION ) 

                    blabla = STRUPCASE(blabla) 
                    IF ( blabla EQ "NO" ) THEN BEGIN 

                        WDELETE,0 & WDELETE,1 & WDELETE,9 & WDELETE,4 

                        WDELETE,5 & WDELETE,6 & WDELETE,7 & WDELETE,8 
                        IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 

                            WDELETE,2 & WDELETE,3 

                        ENDIF 
                    ENDIF 

                ENDIF ELSE BEGIN 

                    WDELETE,0 & WDELETE,1 & WDELETE,9 & WDELETE,4 
                    WDELETE,5 & WDELETE,6 & WDELETE,7 & WDELETE,8 



Appendix A 118 

                    IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 

                        WDELETE,2 & WDELETE,3 

                    ENDIF 

                ENDELSE 
            ENDIF 

            STOP 

        ENDIF 
 

        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;; Read image. 
        ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

        IF ( scratch NE 0 ) THEN BEGIN 

            pict(*,*,jj) = TIF_GIF_HED_READ(originalfile,sizex,sizey) 
            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            ;; Median-filtering the image to get rid of that 

            ;; salt&pepper-noise. 
            ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            IF ( MEDIANWIDTH GT 1 ) THEN pict(*,*,jj) = MEDIAN(pict(*,*,jj),MEDIANWIDTH) 

            IF ( KEYWORD_SET(back_sub) ) THEN BEGIN 
                ;==== background substraction ======= 

                pict(*,*,jj) = (pict(*,*,jj) - back) 

                IF KEYWORD_SET(fix_mean) THEN BEGIN 
                    pict(*,*,jj) = pict(*,*,jj) - MEAN(pict(*,*,jj)) 

                ENDIF 

            ENDIF 
            IF ( KEYWORD_SET(back_div) ) THEN BEGIN 

                ;==== background division ======= 

                pict2         = pict(*,*,jj) 
                unsinn        = WHERE(pict2 LT 0.5) 

                IF (unsinn(0) GE 0) THEN pict2(unsinn) = 1.0 

                pict(*,*,jj)  = (ALOG(pict2) - back) 
                IF KEYWORD_SET(fix_mean) THEN BEGIN 

                    pict(*,*,jj) = pict(*,*,jj) - MEAN(pict(*,*,jj)) 

                ENDIF 
            ENDIF 

            IF ( NOT(KEYWORD_SET(back_sub)) AND NOT(KEYWORD_SET(back_div)) ) THEN BEGIN 

                pict(*,*,jj) = (pict(*,*,jj) - meanlights2(j)) 
            ENDIF 

        ENDIF ; IF ( scratch NE 0 ) THEN BEGIN 
 

            pict2 = (  (pict(*,*,jj) - meanlights(j) ) $ 

                     * gammamax(j)) + (meanlights(j)) + gammashift(j) 

            zugross = WHERE(pict2 GT 255.0) 

            IF (zugross(0) GE 0) THEN pict2(zugross) = 255.0 

            zuklein=WHERE(pict2 LT -255.0) 
            IF (zuklein(0) GE 0) THEN pict2(zuklein) = -255.0 

 

        IF (wind EQ 1) THEN BEGIN 
            WSET,1 

            TV,BYTE(pict2 / 2.0 + 128),0,20 

            TV,erase_img 
            XYOUTS,3,5,basename(originalfile)+STRING(FORMAT='(" img ",I4.4," of ",I4.4)',j+1,number),/DEVICE 

            IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 

                WSET,3 
                TV,BYTE(pict(*,*,jj) + MEAN(back)),0,20 

                TV,erase_img 

                XYOUTS,3,5,basename(originalfile)+STRING(FORMAT='(" img ",I4.4," of ",I4.4)',j+1,number),/DEVICE 
                WSET,0 

                TV,BYTE(pict(*,*,jj) + back),0,20 

                TV,erase_img 
                XYOUTS,3,5,basename(originalfile)+STRING(FORMAT='(" img ",I4.4," of ",I4.4)',j+1,number),/DEVICE 

            ENDIF ELSE BEGIN 

                WSET,0 
                TV,BYTE(pict(*,*,jj)+meanlights2(j)),0,20 

                TV,erase_img 

                XYOUTS,3,5,basename(originalfile)+STRING(FORMAT='(" img ",I4.4," of ",I4.4)',j+1,number),/DEVICE 
            ENDELSE 

            hist    = HISTOGRAM(pict(*,*,jj),REVERSE_INDICES=r,MAX=255.0,MIN=-255.0); 

            s       = SIZE(hist) 
            r       = r - r(0) 

 

 
            ;hist      = HISTOGRAM(BYTE(pict(*,*,jj)),REVERSE_INDICES=r ) 
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            hist2     = HISTOGRAM(pict2,REVERSE_INDICES=r2,MAX=255.0,MIN=-255.0) 

            mi_l(j)   = MIN(pict2) 

            ma_l(j)   = MAX(pict2) 

            mean_l(j) = MEAN(pict2) 
            s2        = SIZE(hist) 

            r2        = r2 - r2(0) 

 
 

            WSET,4 

            max_hist = MAX(hist) 
            PLOT,FLOAT(hist) / FLOAT(max_hist),XRANGE=[0,511.0] 

            OPLOT,[minlights(j),minlights(j)+0.001],[0,1.0],COLOR=255 

            OPLOT,[maxlights(j)-0.001,maxlights(j)],[0,1.0],COLOR=65535 
 

            WSET,9 

            max_hist2 = MAX(hist2) 
            PLOT,FLOAT(hist2) / FLOAT(max_hist2),XRANGE=[0,511.0] 

            OPLOT,[mi_l(j)+255,mi_l(j)+255.001],[0,1.0],COLOR=255 

            OPLOT,[ma_l(j)+255-0.001,ma_l(j)+255],[0,1.0],COLOR=65535 
 

            ;; Show the graylevel distribution 

            WSET,6 
            PLOT,FLOAT(r(0:s(1)))/FLOAT(nsq),XRANGE=[0,511.0] 

            OPLOT,[minlights(j),minlights(j)+0.001], $ 

                  [0,FLOAT(r(minlights(j)))/FLOAT(nsq)+0.1],COLOR=255 
            OPLOT,[maxlights(j)-0.001,maxlights(j)], $ 

                  [0,FLOAT(r(maxlights(j)))  /FLOAT(nsq)+0.1],COLOR=65535 

 
            WSET,8 

            PLOT,FLOAT(r2(0:s2(1)))/FLOAT(nsq),XRANGE=[0,511.0] 

            OPLOT,[mi_l(j)+255,mi_l(j)+255.001],[0,FLOAT(r2(mi_l(j)+256))/FLOAT(nsq)+0.1],COLOR=255 
            OPLOT,[ma_l(j)+255-0.001,ma_l(j)+255],[0,FLOAT(r2(ma_l(j)+255))/FLOAT(nsq)+0.1],COLOR=65535 

 

            ;; Show the course in time of the mean-, max- and min-graylevel 
            WSET,7 

            PLOT,mean_l,YRANGE=[-255,255] 

            OPLOT,mi_l,COLOR=255 
            OPLOT,ma_l,COLOR=65535 

        ENDIF 
        ;;;;;;;;;;;;;;;;;;;;;;;;;; 

        ;; Save the result 

        ;;;;;;;;;;;;;;;;;;;;;;;;;; 

        pict2   = pict2 / 2.0 + 128 

        CASE extension OF 

            ".tif": BEGIN 
                WRITE_TIFF,outfile,REVERSE(BYTE(pict2),2),1,COMPRESSION=1 

                END 

            ".gif": BEGIN 
                WRITE_GIF,outfile,BYTE(pict2) 

                END 

            ".hed": BEGIN 
                WRITE_HED,outfile,BYTE(pict2) 

                END 

            ELSE: 
        ENDCASE 

 

    ENDFOR 
 

    PRINT,FORMAT='("done")' 

    PRINT,"" 
    CD,old_dir 

    PRINT,FORMAT='("DONE")' 

    IF (wind EQ 1) THEN BEGIN 
        IF ( NOT(KEYWORD_SET(nonverbose)) ) THEN BEGIN 

            blabla = DIALOG_MESSAGE("If you want to keep the windows then press yes, otherwise they will be closed", $ 

                                    TITLE = "Keep windows?" , /QUESTION ) 
            blabla = STRUPCASE(blabla) 

            IF ( blabla EQ "NO" ) THEN BEGIN 

                WDELETE,0 & WDELETE,1 & WDELETE,9 & WDELETE,4 
                WDELETE,5 & WDELETE,6 & WDELETE,7 & WDELETE,8 

                IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 

                    WDELETE,2 & WDELETE,3 
                ENDIF 
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            ENDIF 

        ENDIF ELSE BEGIN 

            WDELETE,0 & WDELETE,1 & WDELETE,9 & WDELETE,4 

            WDELETE,5 & WDELETE,6 & WDELETE,7 & WDELETE,8 
            IF ( KEYWORD_SET(back_sub) OR KEYWORD_SET(back_div) ) THEN BEGIN 

                WDELETE,2 & WDELETE,3 

            ENDIF 
        ENDELSE 

    ENDIF 

END 
 

FUNCTION tif_gif_hed_read,originalfile,sizex,sizey 

 
            pict = FLTARR(sizex,sizey) 

            filewithoutext = basename(originalfile,/NO_EXTENSION) 

            extension      = basename(originalfile,/EXTENSION) 
            CASE extension OF 

                ".tif":  BEGIN 

                         ;; React on changing image size 
                         query_ok  = QUERY_TIFF(originalfile,query_info) 

                         xs = query_info.DIMENSIONS(0) 

                         ys = query_info.DIMENSIONS(1) 
                         IF ( xs LT sizex ) THEN BEGIN 

                             pict( (sizex-xs)/2 : xs + (sizex-xs)/2 - 1, $ 

                                   (sizey-ys)/2 : ys + (sizey-ys)/2 - 1) $ 
                           = REVERSE(READ_TIFF(originalfile),2) 

                         ENDIF 

                         IF ( xs GT sizex ) THEN BEGIN 
                             abcd = REVERSE(READ_TIFF(originalfile),2) 

                             pict(*,*) = abcd( (xs-sizex)/2 : sizex+(xs-sizex)/2 - 1,*) 

                         ENDIF 
                         IF ( xs EQ sizex ) THEN BEGIN 

                             pict(*,*) = REVERSE(READ_TIFF(originalfile),2) 

                         ENDIF 
                 END 

                ".gif":  BEGIN 

                     READ_GIF,originalfile,abcd 
                     pict(*,*) = abcd 

                 END 
                ".hed":  BEGIN 

                     pict(*,*) = read_hed(originalfile,0) 

                 END 

                ELSE: 

            ENDCASE 

            RETURN,pict 
END 
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